R 7 ) e re—
‘-—w\ \ ’ - . ! wj
L REVISIONS
_REV. DESCRIFTION i ) | cHu | pATE | ARFROVED
-
i DRAWING NO. DESCRIPTION , REFERENCE DESIGNATION r;%wa
MATERIAL LIST
NOTES UNLESS SPECIFIED DRAWN J%/] . ey [emrmaage, | erpezon . B
VNG f B repeori) & /b Sl .. = v ~ S
f. TOLERANCES - CHECK % 7400 p/ . ‘ ' — vy o “
XX 080 ANGULAR /C Ny >4 |\ 2777/ ' ‘ SANTA MONICA. CALIFORNIA '
XXX %010 P . == - 77 pe— - :
2. BREAK ALL SHARP EDGES APPR. E 'KW c//%j/ -
010 APPROX. ’ " 7 X
ACK. SURFACE 7 : 7 . UNIVERSAL TIME-SHARING SYSTEM (UTS)
MACH, -4 - ~ .
FUNCTIONAL SPECIFICATION !
ALL DIM. I8 INCHES _ » ‘ A . ';
. i
. MIODEL.NC; k , ' | sZe DWG, NG, g;‘tégggi
| A 702489 S
NEKT ASBY. : b
 SCALE | DO NOT SCALE DRAWING E SHEEY | OF /o i E

-——- e ARMET b 4 Bem oAt



DRAWING NO, 705489
SHEET 2. OF /£

UNIVERSAL TIME-SHARING SYSTEM (UTS)

FUNCTIONAL SPECIFICATION

BY

-B. Bruffey
E, Bryan
B. Doeppel
J. Smith



Iv,

VI,

VI,

VIII,

X1,

LILNLS VY Jax\a 1Y\,

(A7 “hr SEEN

SHEET\.Z OF /&%

OVERALL TABLE OF CONTENTS
OVERALL SUMMARY OF UTS
PREDICTING, MEASURING, TUNING UTS
SYSTEM CAPACITY AND LOADS
SCHEDULING AND MANAGEMENT
SYSTEM REQUIREMENTS AND CONFIGUR ATION
TERMINAL EXECUTIVE LANGUAGE (TEL)
TEXT EDITING SUB-SYSTEM (EDIT)
ASSEMBLY LANGUAGE DEBUGGING SUB-SYSTEM (DELTA)
PERIPHERAL CONVERSION LANGUAGE SUB-SYSTEM (PCL)
LOADING OF PROGRAMS (LINK)

MONITOR SERVICES FOR ON-LINE AND BATCH PROGRAMS

d
We {18
@

26

38

45

49
17

93
128

a7

163



DRAWING NO. 7024:¢
SHEET & OF /24

1. OVERALL SUMMARY OF UTS

A. Introduction

UTS is a time-shared computing service consisting of a central computer complex and a

~ collection of remote teletype and other typewriter~like terminals connected to the central -
complex by full duplex communication lines. UTS gives its users access to all the programming -
services of the Batch Processing Monitor (BPM), including symbiont and real-time services.
These are augmented by tools specifically tailored for remote-terminal users engaged in the
én-line creation, modification, debugging and use of programs.  The on-line entry of jobs for
batched service, in the form of BPM control-card programs, is permitted. Such programs

may be composed;, filed owoy-ang_fﬁnfered in the Batch job stream from the términol, and

on-line users may query UTS about the status of such jobs.

LTS is son, sibling, and parent to BPM,-and will be derived from that system by a set of
specific changes and addiﬂons.ﬁé For the first version of UTS, these fall into three classes.
1. Processors and associated languages primarily related to on-line users.

a.  An executive processor and language (TEL) for handling requests
from on-line users. To such users UTS appears to be a single active agent that responds-
to commands couched in TEL. Most commonplace activities associated with FORTRAN and
assembly language programming can be carried out directly in TEL: file management, compilation
and assembly, loading, execution and debugging. Lengthier or more involved operations |
and activities associated with other programming languages must be carried out by requesting
the services of a sub-system of UTS. Each sub=system acts as an independent, active
~sub-agent of UTS, accepting requests in a language tailored to its job and to the expected.
profile and bents of its users. N o

b.  Simple, fast turn-around compilers and assemblers for batch-compatible
subsets of FORTRAN 1V and Meta-Symbol (FORTRAN E and Extended Symbol), and a
low-cost, one-pass loader (like LOPE). These are available on-line and.in Batch.

c. A compile-and-go processor for the extended Basic language, which
includes provisions for direct operations on arrays; an on-line sub-system»kfor creating,

modifying, running and debugging Basic programs.



DRAWING NO, 7024
SHEET £ OF /%

'd.  An editing processor and language for the on-line creation, modification

‘and management of programs and other bodies of text.

e. - Debugging processors and languages appropriate to FORTRAN debugging
(FDP) and to assembly language debkugging (Delfa).v These processors are always at hand
for the on-line user (who can call on them at any stage of execution), and are ideal for
carrying out parameter studies. | ‘

f. Utility processors and languages for: a) managing files of informatior
and fransmitting information between different media (PCL); b) combining and recombining
compiled and assembled object programs (Link, Syfncon).

2.  Distinct bodies of code that regulate and provide information about the
activities of UTS and its users. These include routines for: .a) scheduling activities;
b) managing time and storage; c) measuring and displaying the cumelctive end individual
behavior of UTS and its users; d) handling information passing to and from remote terminals
on an asynchronous basis; e) detecting and recovering from errors.

3.  Changes and fixes to BPM and its component processors. These include:

a) modifying compilers and assemblers so that they produce information necessary for

‘on-line debugging; b) creating versions of processors and run~time packages (and all

~ other public routines) that are re-entrant and, therefore, capable of being shared a‘mong

. more than one user; c) simplifying input-output interfacing with BPM and speeding-up its

file-management services; d) changing BPM and its processors so that they can deal with
typewritten lines of information and files of such information produced at a terminal as

readily as they now handle card images and card decks; e) fixes required to use the memory

map.

B, Behavior and Responses

UTS is supposed to service real-time loads, batch loads and on-line loads simultaneously --
all without batting an eyelash What these loads are and how. they vary from msto”ohon

to installation are an unknown. On the other hand, some complete statistics have been

‘pubhshed for batch loads in aerospace and university environments and for on-line loads -

in ffme-sharing systems. These figures share one healthy attribute == they compute, they

. compore, they match. These ﬁgures and their requirements in-terms of UTS capacity

are described in a succeeding section. Application of sfralght-forward queue and traffic-

theory techniques to these figures shows that UTS can be designed to strike a balance
between on-line and batch requirements. Although some of its facilities will be denied the



DRAWING NO. 70247
SHEET % OF s8¢
??bcfch user and others the on-line user, the two classes of service will belccmpﬁemen?ary
" rather than antagonistic. Under typical loads, on-line demands will rarely overwhelm
‘:bc?ch processing, nor will batch throughput seriously hamper on-line negotiations. The
‘typical demands of on-line users need less than 50 ms. of processing and constitute 85%

' of on-line requests. For 30 users, these can be handled comfortably at costs not exceeding -

' 8% of main-frame time. This includes the overhead costs of scheduling, time-sharing and

transmitting information to tind from consoles. Average delays to typical on-line requesis of
30 users will exceed .2 seconds no more than 1 0% of the time and will exceed 4 seconds

no more than .01% of the time. These figures are based on configurations matched to

" reasonable loads, and should not be considered totally satisfying; they are simply better
than dnyfhing else on the market, except for dedicated, single-language systems. Delays

of .2 seconds are noticeable, particularly to people using processors thot maintain intra-

line dialogues with their users, when delays can not be blanketed by the carrier-retum

times associated with typing requests. Although average delays will bg just less than .2
seconds, variations will occur frequently. However, users will hard‘lyf"everihave to wait more
~ than 3 or 4 seconds for a response to a typical request, nor should thgy observe any halting

or stuttering behavior during output situations.

- For 60 users, main-frame degradoﬁon'is:dou,;b__l'.c_ed, but the distribution of response times |
remains éubstantially the same -~ delays greo}er than .2 seconds still occuring about 10%

of the time. BPM itself mokes demands on main-frame time for’ symbtont, mput-outpuf

Eand flle-mcnogement services, for control-card mterprefuhon and snmply tooling up to-do

o batch job, and for processor and monitor overlays. This service cost is 2 to 3 times

f-gr‘eafer than that required to service the typical demands of 30 on-line users. What is left

'  of main-frame copacufy (70% for 30 on-line users) must be devoted to "computing”

.‘processmg batch programs and compute-bound on-line users. The more on=line users and/or

i the more compute-bound on-line users, the greater the posslble impact on raw butch compuhng

power.

C. Requirements . | ‘
“/In terms Vof“inpuf/oufpuf throughput, the 72024 RAD is inode.quate if used alone operating

B at 150% of capacity for typical batch and on-line loads. Under such circumstances,



DRAWING NO. 702487
SHEET & OF /8¢

_batch user and others the dn-line user, the two classes of service will be complementory

' rather than antagonistic. der typical loads, on-line demqnds will rarely overwhelm

.f;bafch processing, nor will b&ch’throughpuf seriously hamper on-line negeﬁqti'ohs. The

l:typiccd demands of on-line users need less than 50 ms. of processing and constitute 85%

~of on-line requests. For 30 users) these can be handled comfortably at costs not exceeding

‘ 8% of main-frame time. This inclydes the overhead costs of schedullng, time-sharing and

fransmtthng information to #ind from\consoles. Average delays to typical on-line requests of

5 30 users will exceed .2 seconds no more than 10% of the time and will exceed 4 seconds |

| no more than .01% of the time. These figures are based on conﬂgurations matched to

' reasonable loads, and should not be co\ sidered totally satisfying; they are simply better

than enyfhing else on the market, excep for dé}dicated Singfe'—language sysfehs. Delays
N

of .2 seconds are noticeable, particularly\to people using processors that maintain intra-

line dialogues with their users, when delays\can not be blanketed by the comer-retum
' ‘_ﬂmes associated with typing requests. Altho ‘c{h average deluys will be guqt less than .2
seconds, variations will occur frequently. HoWever, users will hardly’ever have to wait more
- than 3 or 4 seconds for a response to a typical request, nor should they observe any halting

or stuttering behavior during output situations.

- For 60 users, main-frame degradaﬁon'is:do-ul?_.l;,ed, buf\ the distribution of response times f

i remains substantially the same -~ delays grea;‘er than )2 seconds still occuring about 10%

" of the time. BPM itself makes demands on main-frame time for: symbtonf, mput-output,
and fi le-management services, for control-card interpretation and snmply toohng up ‘to-do
«a batch job, and for processor and monitor overlays. This service cost is 2 to 3 times
 greater than that required to service the typical demands of\'\30 on-line users. Whut is left
of main-frame capacity (70% for 30 on-line users) must be deyoted to "computing” --

4 .
processing batch programs and compute-bound on-line users. The more on-line users and/or

the more compute-bound on-line users, the greater the possible impact on raw batch computing. " -

power.

C.. Reqmremenfs
In terms of input/output throughput, the 72024 RAD is inadequafe lf used alone operating
at 150% of capacity for typical batch and on~line loads. Under such cu;\cg\mstances, .

N

¢ ".\‘



DRAWING NO. 702489
 SHEET 7 OF /8¢

everyone waits. A single 7232 is marginal, while a 7212, high speed RAD would operate
at 50% capacity under typlcal loads -~ a comfortable figure, alfhough an extra umt |

dedicated solely to handling user's flles may be required for many insfallahons. .

The costs and delays mentioned above can be achfeved only through use of the memory map.
“:On systems without this feature, the overhead costs of core managemeﬁf and time=- ‘

sharing have reached 40% of CPU capacity; this is an uhconscionable,dle_g‘rodotibn of
computing power. With the feature, uncomplicated, low overhead manqéemenf ond scheduling
disciplines can be used, as can re-entrant processors that may easily be shared among

many users.

- The frequency and extent of variations from the norm are dependent on the hardware

configuration chosen and on how effectively an installation can control "ifs own loading
“patterns: by ad-hoc adjustment of dynamic allocation and scheduling parofnetets,from
| an on-site console, by education of Its user commur;ify, or by direct madqgemenf fiat.

'UTS is meant to be a large system -~ large both in terms of configuration and in terms of

its ability to handle variations in load. To this end, space will be traded off to get good reSpons;es
and to use CPU capacity efficiently. Core residency requirements will be approximately 16K.
UTS will be designed for a minimum 64K core configuration with adjustment to 48K possible

- for reduced requirements.

It must be clearly understood that large transient or installation-systemic variations from the
estimated loads around which UTS is built will inevitably call for a retuning of the system,

no matter what the configuration. This is an operation that will be possible within reasonable,
but fuzzy limits. Beyond these, installation-management techniques must be bfou’ght to
bear. To test the UTS desngn, to predict re~designs and to allow installations to tune fhezr

own systems, UTS wull devote a small portion of its time and other resources. to



DRAWING NO. 70248
SHEET & OF /8¢

measuring the cumulative and individual behavior of itself and ifs users. Installations
should be prepared to do the same; if is therefore requited that each installation dedicate
an on-site console to the job of displaying the results of these metering activities on a
minute-by-minute basis.

D. Services and Factlities

UTS provides its users three classes of service.

1. Real=Time Service

Preemptive access to the hardware is provided for programs engaged in simulation, control
and other "real-time" activities. Such programs may be permanently resident in UTS's
{appropriately enlarged) core store, or may be made temporarily resident on a demand basis,
at the user's option. | N
2.  Batch Service

All facilities and processors of BPM are available. Access to, and control over, these
facilities is obtained through "programs"” written in the control-card language of BPM.

Such control-cc’t/rgi programs may be submitted to UTS through card readers or they may

be composed, filed away and submitted on-line. In addition, the status of previously

submitted batch jobs may be interrogated from remote terminals.

Although some facilities and processors are reserved solely for on-line use, while others
are available only in batch, the two classes of service are complementary. Generally
speaking, anything that can be done in batch can be done on-line, albeit sometimes in a
curtailed manner. In particular, compilers and assemblers are compatible across the two
classes of service at both source and reloccto.ble levels:

a. . processors for FORTRAN IV~H, Symbol and Extended Symbol (X Symbol)
are available both on=line and in batch; ‘

b.  processors for SDS FORTRAN 1V and Meta=-Symbol are available in
batch only; ‘ _

| c.  programs compiled or assembled in batch can be linked with those

produced on-line, and can be run and debugged on line; | |

d.  programs compiled or assembled on-line can be linked and run in batch.

3. On-line Service

The summaries given below must be treated as such. Most details of syntax and designation



 DRAWING NO. 702489
SHEET & OF /8¢

_are glossed over or omitted completely; this is particularly true for sub-systems such as PCL
1 and Delta, whose languages are highly encoded or abbreviated. The names assigned to

-specific languages and systems will often be used indifferently to refer to thelanguage or to

/
/

| . /o
the associated system or sub-system, whichever seems appropriate in context.

a. Communicating with the User

Control of each user's keyboard will be proprietary: elther the user has control fof"purposes

. of input or UTS has control while carrying out requests and for purposes of output. This

"holds whether the user is negotiating directly with UTS, one of its sub-systems or his éwn

’program_. Who has control will be made clear to the user at all times. This is particularly

" necessary in the case of error reports and task completion reports. In the event of error#

the user must know what the error was, who reported it and to whom he mciy_ direct any
corrective actions he may wish to take. In general, the user must know three things: when
he can type responses and requests; to whom he is talking; who last talked to him. These are
often clear in context so long as fhg system adheres to some reasonable rules of behavior.

b.  Terminal Executive Language and Processor (TEL) .

‘Requests for the facilities and processors provided on-line users take the form of single-line
commands and declarations in UTS'# Terminal Executive Language (TEL). Most commonplace
| programming and accounting activities can be carried out directly in TEL. These include:
Sa) logging-in and out; b) simple file management; c) FORTRAN IV-H compilations, and
' Symbol and X Symbol assemblies; d) Iihking and loading of relocatable programs;
e) controlling fhe execution of programs; f) saving intermediate core status for later
- resumption; g) submitting batch jobs. Other classes of operations, more involved -
!operations, and activities associated with other programming languages must be carried out
i by calling (in TEL) for the services of one of UTS's sub-systyms.
ﬁ c. Text-Editing Sub-System (EDIT) ,
EDIT is used to produce FORTRAN and assembly. language programs, control card programs

for submission to the batch queue, and other bodies of information. Each file produced under
EDIT consists of a set of lines of text. Euch line is uniquely numbered, and the set is

ordered by increasing magnitude of the line numSers. - Such files are retained on RAD
storage in a format designed to expedite and facilitate their production cndﬂ_gg-,édaﬁng by

EDIT and their use by other processors.



DRAWING NO. 702489
SHEET/® OF /86

d. Peripheral and Information Control Sub—System. (PCL)

PCL allows the user to move information between input-output devices and storage media:
card and paper tape {devices, liﬁe‘.printers, disc files, labeled and free-form tape reels.
Conversion and re-representation of data, selection of data, and record sequencing and
resequencing are allowed. The processor and its language are provided both én-line _
r;nd in batch. Single-line commands are used for the gross operations of copying, ééleting;
positioning and for other utility functions.

e. Assembly-Language Debuggmg (DELTA)
DELTA is specifically designed for the debugging of programs at the assembly-language

level. It operates on object programs accompanied by tables of internal and global symbols
used by the programs, but does not demand that such tables be at hand. With or without

such tables, it recognizes machine instruction m.nemonics and can assemble, on an
instruction-by-instruction basis, machine language programs, [ts main business, however,
is to facilitate the activities of debugging.

l)“ The examinaﬁ'on, insertion and modification of elements of
programs: instructions, numeric values, encoded information -~ data in all its representations
and formats.

2)  Control of exec.ui;ion, including the insertion of breakpoints
~ into a program and requests for breaks on changes in elements of data.

! 3) Tracing execution by displaying information at designated points
i’n a program.
‘ 4)  Searching programs and data for specific elements and
sub-elements.

To assist in the first activity, assemblers and compilers of UTS will include in a program's
table of symbols, information about what type of ‘data each symbol represents: symbolic
instruction, decimal integers, floating point values, single and double precision values,

‘EBCDIC encoded information, and others, | |

f. FORTRAN Debugging (FDP)

The language is terse, conformmg in many respects to the current FORTRAN IV-H console

. debugging language. If program execution is started under FDP, keyboard control is pcssed

to the user with a notification that execution of the main program is about to begm. DUI‘II‘\Q



DRAWING NG. 702489
SHEET/j3 OF /g2

| execution, control reverts to the user whenever he interrupts, whenever an error occurs
and whenever FDP reaches a stopping point. When the user is in control he can ask FDP
to carry out execution in a variety of modes and then ask FDP to continue execution. He
can also request that values assigned to identifiers be displayed, and can reussié}}ééggéw
values. | o ;

g. Symlgol-Control Sub-System (SYMCON)
SYMCON provides progra‘mrhé/rs the facilities for controlling the global symbols associated

with a load module; it may be used either on-line or in batch. When relocatable object
modules (ROM) are combined into a load module, the global syrﬁbols associated with the
ROMs may be required to link the ROMs properly or to link the resulting load module with
other ROMs and load modules. In the latter case, it may be necessary to change some of
the symbols to avoid conflicts or to eliminate many of them so that the global symbols used
for linking the original ROMs become Internal symbols for the resulting load module. In
brief, SYMCON allows programmers to link ROMS and load modules freely in the face of
conflicting naming conventions. |

h. - Object-Program Linking (LINK)

All operations that can be performed under the LINK executive command can be performed

under the sub-system. The notation and conventions for specblfyl'ng the retention, deletion

and merging of internal symbols remain the same. On the sUrFace, the sub-system's main
advantage over the executive command is that it allows programmers to link more modules |
than can be listed in a single executive command line. its main reason for existence, however;
is as a vehicle for incorpordﬁng more complicated linkages involving hierarchies of modules.

i Sub-system for Basic Programmers (BASIC)

Under this sub-system, Basic programs may be composéd, edited, executed and debugged.

All the appropriate commands of the EDIT and FDP‘ sub-systems are provided. ln}addit‘ion,

users of BASIC can indicate an insertion or replacement by typing the desired line number ahead
of the line. Basic programs are compiled directly into executable form, and the entire ‘
prgc‘eisi_iof compiling and initiating execution Is referred to as "running". Detailed descripﬁons
of the sub-system's language and its responses are .covered in complete functional specifications

for the sub-system.



DRAWING NO. 702489
SHEET /& OF 78¢é

.
The above list constitutes a summary descnphon\ of the initial UTS. Services to on-line
~ users may be expanded in later versions to Include a conversational algebraic language,
a tutorial service (HELP), etc. The remainder of this specsflccﬂon is devoted fo g detailed
presentation of the items mentioned in this introductory overview. Any ful'ure services
" or processors will be described in detail when they are outhorlzed and assigned by uppropnu?e

- departments within SDS.



Iv,

H D O W P>

DRAWING NO. 70246Y
SHEET 43 OF /&
TABLE OF CONTENTS
Page
PREDICTING, MEASURING, TUNING UTS _ 14
. Expected Demands on Capacity

. Reéponses toc On~Line Demands

. Resource Management

Fiscal Accounting
. Performance Measures

. Error Detection and Recovery

SYSTEM CAPACITY AND LOADS 26
A, RAD Transfers

. RAD Transfer "I"imes and Loadvs

. Interactive Delays

. CPU Loads

H U aow

. Assumptions

SCHEDULING AND MANAGEMENT ’ 38

Inputs to the Scheduief

Scheduler O utputs

User Status Queues

" Scheduler Operation -

3

AR

Treatment of Batch Jobs

Swap Hardware Organization

Processor Management

mQ0ME Y QWb

System Management Parameters

SYSTEM REQUIREMENTS AND CONFIGURATION 45



DRAWING NO. 702489
SHEET/# of /8¢

11,  PREDICTIHNG,:MEASURING, TUNING UTS

The effectiveness and quality of each class of service (batch,real-time, on-lixie‘)
depend on: a) the emphasis and degree of control placed on each class by the
installation; transient and systemic variations of load within each class; b) the
hardware configuration chosen.  Although few absolute assertions can be made,
some statements about capacity and responses to typical loads can be offered
with reasonable degrees of certitude. These are based on known figures for
batch loads in an aerosi)a.ce and a university environment, arnd on-line loads foi
several time-~sharing systems comparable to U735, The effects of such loads on

standard UTS configurations are presented in succeeding sections.

A. Demands on Capacity

Figures for on-line systems show that better than 85% of on-line interactions
occur infrequently and make only modest demands on the hardware; averége
demands, however, are much greater than typicai ones. The typical on-line

user can be characterized as one who is editing, debugging or otherwise inter-
acting with programs at a leisurely rate (in terms of computer speeds), or is |
observing the line-by-line output of a running program that is highly output-bound
by the slow speed of his terminal device. The drain on main-frame capacity for
30 typical on-line users is about'8%; for 60, about 16%:. These figures

include all processing time required to service requests, including disc trans-
missions and the transmission of information to and from the termainals. Thus;'
the typical on-line user does not overwhelm the batch stream, and handling such

" users must be considered a service of the system for which some overhead is '/
paid. By the same token, most activities associated with BPM must be considered
services of that system: symbiont and cooperative processing; control-card
iﬁte:pretation; input, output and file management; fielding and processing of inter-
rupts and rmonitor calls. It turns out that the overhead costs for such services

in BPM are two to three times those needed to handle the typical on-line sifuation.

The remaining capacity of the hardware is dedicated to processing batch programs




DRAWING NO. 70248%
SHEET 45 of /A&

and compute-bound (or average) on-line demands. The manner in which this
remaining capacity is distributed can be controlled by the installation, in two
distinct ways. First, ad-hoc control can be exercised directly from the on-site
console, as described in fhe section on séheduling. Second, educatioﬁ and
management control caﬁ be applied to the user community to insure that activities
appropriate to on-line access (and to Atﬁe processors piovided on-line users) be
carried out on-line, while those activities that are best batched be directed to the
batch queue. To assist both attacks on the allocation problem, UTS will devote .
part of its time to measuring the cumulative and individual activities of itself a;éxd
its users; these are described in the section on metering and performance meas-
ures. It is strongly suggested that installations dedicate an extra on-site ténﬁinal
to the job of displaying the minute-by-minute results of this metering. To assist
in the managerial approach, language processors and systems tuned to the on-
line user, and to the batch user who does not need the full power of th’é, "big"

»

processors, may be used effectively.

B. Responses to On-Line Demands

As will be discussed in the section on scheduling, typical on-line useré vx‘rillvbbe :
handled by a straightforward scheduling discipline. In brief, high pridrities are
given to servicing users whose current behavior portends a shoxt burst of pro- |
‘cessing followed by a relatively long period of withdrawal when no service at all
will be required: users who hawve just typed a request for service of any kind, -
users who are output-limited, users who are interrupting UTS or who are entering
c;r leaving the system. The abplication of this diséipline will, i the absence of
real-time interference, result in averége delya.ys of less than 2/10 seconds for up
to sixty users. Delays exceeding 2/10 -seconds v&ill bé experienced 10% of the
time; delays greater than 4 seconds will occur with probability . 000} . Mariy
delays will be blanketed by the time required for the typewriter carrier to return
to rest point after fhe user has typed his request and by the time required to type
a response. However, delays greater than 2/10 seconds will be felt by users who

are debugging, particularly in assembly 1angua‘ge. The system and language



DRAWING NO. 702489
SHEET /& of /&g

provided for this activity is designed to carrf on an intraline dialogue with its' ?
users, thus providing no carrier-return time for masking delays. This is ’
contradictory, since debugging is an impatient activity that may find stuttering
resﬁonses a drag; however, lengthy periods of silence (delays greater than two

seconds) will be infrequent.

C. Resource Management

In order to lachieve the estimates given above for'mai:n-frame degradation and

for response ti;mels, it is essential that UTS maﬁage itself in such a way as to
minimize the overhead costs of tirne-sha.ring its activities among its batch and
on-line users, and organize things so that it can efficiently overlap input and
output with main-frame procéssing. At the same time, it is equally essential
that the installation manage itself in such a way as to use UTS most efficiently,
-and thereby reduce the wide variations that are inherent in the figures given above.
UTS's job is complicated by thefact that its cor_..e store is not large enough to
a:'ccommodate simultaneously all possible on-line users. A secondary (High Speed
RAD):storage is used to cache those users .n‘ot of immediate concern, so that
time-sharing overhead includes the cost of "swapping'' users between core store
and disc store. A broad-brush solution to UTS's problems can be characterized
by some woodsy-lore precepts: a) keep ehough compute bound users in core so
that there is always something to do while swapping and other input/output
activities are going on; b) keep enough users in core so as to reduce the probgb-
ility of swapping; c) swap as little as possible. In order to even begin to effect
a solution, UTS must.-strike some compromise in allocating resources, particu-
larly to on-line users. In particular, core and disc storage and input/output |
devices that are guaranteed to real-time and batch service are de -facto not

available for on-line use except by entries into the batch..quexi.e.“ Second, lirixit,s..

must be set on the amount of core storage to be allowed individual on-line users = -

and on the amount of core storage to be given batch users-(above that glia.rante_é:d); _ '

these limits ‘will be controllable within reason from the on-site console. Heé.vy

bl



DRAWING NO. 702489
SHEET /7 of /A&

use will be made of reentrant processors capébie of being shared among many

‘users and residing anywhere in éore, thus effectivély reducing the average

user's core demands. Provisions for handling growirigand contracting core
requirements for users will be provided. The SIGMA 7 mapping feature is absolutely
vital to UTS's operation; In the absenée of such a feature, it is necessaﬁ at the
very least that programs and dé.ta. reside in contiguous stretches of core store. In
systems without mapping features, the overhead involved in compa.cting, shufﬂing
and swapping core blocks to satisfy the contiguity requirements can reach 40%..

By using mappings, this overhead becomes negligible, even under conditions of

high loading.

.Real-time programs,can, of course, bfi'ing everything else to an effective halt;
such matters are best left to the individual installation. Some real-time progrm
-~ called ""resident" -- will be given dedicated core étoré.ge and input-output
devices at system-generation,.  Core‘storage so guaranteed‘ia.'nevér available for
batch or on-line purposes. Other real-time programs will be .given dedicated,
input-output devices at system generation time, and will be granted their core
requirements on a demand basis. This core is available for batch or on-line
p‘urposes until the on-site operator demands it for a ''non-resident" real-time |
program. If reiéased by the operator, it the again becomes generally available.
Many programs commonly characterized as "real-tirhe" ones, but who only -
demand ihterfaces with terminals, can be operated satisfactorily as an on-line

"user's program -- one that may be linked to more than one terminal.

Beyond the "'resident'' real-time guarantee, no more core is frozen than is
required to satisfy the residency requirements of UTS itself -- '(161{ words).

Né- core is absolutely guaranteed batch programs. Instead, batch programs
become 'fixed' in core only by virtue of their preferred treatment in the queue
for "éon‘iputation" This may occasion minor delays averag1ng 2, seconds before '
some batch operations are‘carried out .and similar delays during the actual
processing of some batch operations. The cumulative delays to batch will probably .
be equivalent to those caused by the machine operator dropping a tape once or tv._nce }

during the day.



. DRAWING NO. 702489
SHEET/® of /8¢

Allocation of disc resources depends oﬁ whether the high-speed RAD is used alone -
or in cdnso:ét with a slower one for stoi'ag'e of user's files and systemn files. It
is clear that the high-speed RAD can‘easily handle swap s'tdrage, ‘symbiont
and cooperative files as well as dedicated storage for processors and other

heavily used components of the monitor.

D. Ac counting

The UTS system should provide charging for a variety of usage parameters.

The installation manager can assign each of these parameters a separate

charge rate and can thus maintain effective control over the use of the system.
The price associated with each system compdity will be a dynamic system para-
meter which can be varied with time of day and user priority, or with other
criteria set up by the installation manager. A'preliminary list of the system

resources which will be separately charged includes:

(1) Central processor time

(2) Line connect time

(3) File I/0O activity (e.g. number of pages)

(4)  File space used

(5) Core space used _

6) Taple usage (unit holding time and transfer time)

(7) Number of on-line user interactions .

~An installation manager may thus adjust the usage of his system by modifying
. the chargmg structure -- for instance, by ra1sing the pnce for the use of tapes

in order to discourage excessive use.

Such dat;a)w;ubé available to the user via direct console requests. At job
termination time all accounting information will be 6-utput on the accounting

log device.



LIINLL WY AN r 2NN, VL0 Yy

SHEET /P of /85

E. Performance Measures

Ability to measure the operation of the system is particularly important during
the initial debugging stages and increases in importance as the system' is tuned
~to meet the load of the users! partié.ular environment. These performance
measures are built directly into the system as a series of counters; a given‘

area of executive storage will bé devoted to counting actions and reéording times
for completion of various functibns. Special code i\n_ the form of counting instruc-
tions will be provided at critical points within the sSrstem to count these e‘ventsi
As such the recording of performance information will bé on a routine-by-rouﬂne
basis throughout the entire system. A user program with special executive
privilegeg will display this information. This program will use a dedicated
console to print the contents of the tables which record system performance
measures. Appropriate formats and appropriate time intervals for printing wﬁl
be used. Through a standard monitor feature this program is 'awakened", per-
haps every minute, to print the c.u-rrent contents of the statistical counters. This
mechanism provides a relatively flexible scheme for adding nevf perforrriance
measures to the system and providing for their printout as the gathering of new
statistics is indicated. Some items éhould be measured and displayed frequently,
perhaps every minute: others should be measured and displayed at a longer
interval -- perhaps every ﬁftéén minutes or every hour. The display frequency
will be adjustable so that operational data can be displayed more often if special

tests are to be made.

. Printing every'minute

(1) = Total number of users
(2) Inputing

(3) Outputing

(4) CPU time computing

(5) Compute time for users
(6) Compute time for batch



DRAWING NO. 702489
SHEET &0 of /8¢

(7)  Overhead time

(8)  1dle time

(9) Unoverlapped I/O time"

(10) Number of swaps o

(11) Commands received from users

(12) Number of lines transmitted to users L
(13) Number of file I/O actions '

(14) Tape errors

(15) - Disc errors

(16) Console parity errors

(17) Other errors

Longer-Term Measurements

(1) Distribution of compute time per user interaction

(2) Distribution of time between user interactions

(3) Total compute time per session

(4) Distribution of the size of the programs

(5) Distribution of console input/output frequency on a line basis
(6) Recording of I/O rates to the consoles

(7) Recording of use frequency by processor

(8) Distribution of the number of users simultaneously in core
(9) Distribution of response time to user requests

(10) Restricting all measurements to users of single processor

Continuous monitoring of these quantities and of other éentral parameters will
permit linstallations to tuneﬂyUTS to m.eét local fluctuations in loads, provide-,s :
installations and SDS an experimental, long-term approach to tuning UTS for
general environments, and provides.amechanism for testing the initial design

and predicting redesigns .

Adjustable parameters of the system can be adjusted from the on-site operators'

console and their effects observed on the console dedicated to displaying



DRAWING NO. 702489
SHEET 2/ of /8¢

""performance measures''. These include:

(1) ’ compute time in short and long time-slice quanta

(2) maximum core size for on-line users

(3) maximum number of on-line.‘i:J.Sers

(4) ratio of CPU time for batch to that for on-line computing, or some

' other measure of batch priority

(5) 1/ 0 buffer limits, and ''choke-unchoke' points that determine when a

program i to be considéred output bound or ready for more computation.

F. System Error Detection and Recovery

In addition to standard error recoyefy normal to_IVI/O devices the /UTS system

will take special measures to prow}ide reasonable recovery for detectable machine
malfunctions. Assuming that the normal failure mode will Be that of intermittef;t'
error, the system will effect recovery by immediate restart of the user in question
or the whole system if necessai‘y:«a,fter making records of machine status to aid |

in error diagnosis . This rec overy ‘will be accdr'hplished withdut operator inter-

‘vention. This technique will maximize the up time of the system while recording

" information useful to machine maintenance personnel.

Errors, whether caused by hardware or software, are of concern in any computer

systerh'."“ The consequences of failure in a time-shared system are multiplied

because of its multi-programmed operatiox{. When a time-sharing system fails
each of the concurrent users of the system is affected, perhaps fatally. The
possibility of an operator re-trying a job that has run into a machine problem is

no longer an available option. Even symbiont batch systems run into difficult '

‘backup prpple‘ljns.

S This' specification does not offer any complete solutions to the reliability problem.

- Rather it suggests a number of possibilities of various degrees of implementation



DRAWING NO. 70248%
SHEET 22 of /84

difficulty for use in detecting or recovering from hardware problems. Since
truly adequate error recovery depends in large measure on the exact strain

put on the hardware by the mode or modes of operation of the software we must
continually adjust our approaches to the reliablility problem as the effectiveness
of the various techniques are proved or disproved through experience. We
expect this experience to show both the common failure modes of the hdrdware

and the effectiveness of recovery and detection techniques.

The presumption is made that standard and adequate recovery measures have been
taken wherever possible. That is, tape and disc transfers are parity-checked.
Critical transfers are check-summed and/or address checked. Detected errors
are recovered by re~-read or re-write and operator assistance has been used
where possible (say card problems). With these standard techniques out of the
way we are still left with errors. (For some errors, such as memory parity,

we are introuble mn'g;xed:tatelyﬁandg recovery ;byk re-trial-is imposaible. ) The latter

category is the one we need to attack.

At least six facets of error handling need to be considered for a comprehensive

attack on system reliability:

(1) Prevention = (4) Isolation
(2) Detection (5) Recording

(3) Recovery (6) Restart
} ;

Prevention of hardware errors is a matter of good machine design and good
maintenance. However, we must not eliminate the possibility of identifying
weaknesses in the hardware and providing fixes for them. System software has
a history of identifying hardware weaknesses. In many cases a hardware fix will

be the‘ correct solution.

Detection is also often left to the hardware through parity checks, bounds checks,

—— s i e .

etc. Often, of course, only the software can tell that a certain signal means a

malfunction in one case and not in another. Many software checks are possible --

)



DRAWING NO. 70248¢
SHEET o&3 of v5¢

80 mény, in fact, that it is often difficult to know where to stop. The usual
solution is to check very little and depend heavily on the hardware. This is not
good enough in time-sgharing systems. Errors must be detected quickly and
recovery initiated beiore total chaos develops. Simple checks for consistency
of data should be made when feasible. More elaborate checks should be
developed in frequentiy used codes such as the Scheduler, job control, check
interrupt routines,. and I/O handlers. A partial iist of software error detection
techniques which are useful in various situations is listed below. It is certainly

not complete and should be added to as we gain experience.

(1) Periodic consistency checks

(2) Checkrunning

(3) One word data comparisons on I/0O transfers
(4) Seli-addressed RAD records

(5) Range checks on internal'dé,ta‘

(6) Double end loop tests in critical routines

(7) Read compare after RAD write

(8) Watchdog timer checks for dropped I/O traps

(9)  Software double checks on I/O action (for extraneous interrupts)

Diagnostics have long been used to identify failing machine parts. With the use
of margins, weak components can sometimes be detected before they cause

trouble in the actual working machine. While diagnostics of many types can be
run in a time-shared system, their usefulness is limited because of the difficulty
in margining; we have no way of providing marginal voltages or frequencies fox |
just the time slice in use by the diagno-stic (and returning to normal after errors\._

e

detection to provide automatic reporting of the error location and type).

Time-shared diagnostic programs are very useful for exercising peripheral
units (tapes, card equipment, paper tape equipment, discs,v etc. ) and their
controllers since the equipment can be isolated and separately margined. UTS

will provide for such diagnostics allowing them master made operation and [



DRAWING NO. 7024§,
SHEET & of /55

providing for automatic execution of diagnostics during periods of light load.

Recovery of I/O errors of various types is fairly standard practice although

. it is often a long and difficult task. Many main frame errors are not recoverable

at all. In fact, in the case of parity errors in the Sigma 7 it is not even possible
to re-try. We may find that hardware help is needed in this and other cases.

In certain cases known to the program the error is of little consequence (e. g.,

if it occurs while cycling in the idle loop) and the remedy will be to ignore the
error. Thesé cases will be relatively few. In the time-share situation a |
machine error in a user's program may be "recovered'" by restarting the job
from the last swap image or RAD. This will work if no other I/O has occurredﬁ
(a fact which can be recorded) and if the accounting information has been updatéd.
Whether it is worth doing depends on the frequency with which we expect machine

errors to occur.

Isolation of the area of error is particularly important if recovery is not possible.
(Of course if isolation is complete enough we can recover but this is rarely the

case). In the time-sharing environment, it is important to isolate the error to

a gingle user if possible. If this can be done then the user and his data can be -

discarded without injury to other users.

Recording of all detected errors, whether recovered or not, is vital to good
system maintenance. Automatic recording is preferable since fewer errors are
over looked or ignored. (How many Sigfna 7 machine errors went unreported
last week? ). In addition, the accumulation of records of intermittent failure is
valuable in isolating problem areas of the machine which will require both moré

maintenance attentlon and bettér d1agnostic and error recovery procedures. It

is required that a teletype console be dedicated to recordmg of errors detected

and recoveries made. The console also serves as a performance measurement log

Total failures of the system should automatically record the vitals of the machiﬁé

- (registers, PSW, etc.) on the log for later analysis and a total core dump of the



DRAWING NO. 702489
SHEET &£ of /86

machine on RAD to enable a very detailed analysis when warranted. Time and

effort required to make this record is paid for on the first error, hard or soft.

A brief summary of the data which should be recorded is:

Recovered errors Catastrophic failures
user console - sta #; count type of test which failed
tape - unit #; count registers
RAD - sector; count PSD
card special system temps
other types core (on RAD)

Restart after a system failure in the shortest possible time is of great importance
in a time-shared sy‘stem. Users understand that machines fail occasionally and
are happy if an automatic restart procedure is able to restart qﬁickly from zi

total but intermittent failure. If all fallures were solid ones, automatic restarf.'t
would not help much but most failures_ 329 intermittent and restart serves to

get the machine back up for the users quickly. The recording of the failure

directs the CEs in their efforts during the next normal maintenance period.

In summary, the philosophy of UTS for machine errors and failures is Erevehtion
wherever possible, care in detection at the earliest possible time, recovery from
as many errors as possible, isolation of the failures to limit the bad‘effécts,

recording of both error and failure situations to aid maintenance and rapid restart

in the event of fajlure to maximize up time.

s



DRAWING NO. 702489
SHEET % of /8¢

‘m,  UTS SYSTEM CAPACITY

We have stated above that UTS is intended to handle batch processing
, operatmns and real-time progra.ms m addition to on-line terminal users.
“ Clearly the ability of a Sigma 7 to handle all these tasks adequately will depend
“on the total load submitted, the distribution of this load over the three broad
categories of use, and the hardware configuration of the Sigma supplied to the
task. Also, the user's sa.tisfaction will depend on his definition of ""adequately'' --
what job turn-around time is acceptable in batch, and what response delays are

tolerable in on-line service.

UTS achieves its responsiveness and befficiency through the application
of several hardware and software techniques. The principal additions to the
standard techniques embodied in BPM, and the primary gain from their use, '

have been discussed previously but are listed below for reference:

Multiple users in core - increases CPU utilization by increasing
the probability that an executable task is in core. We try to assure
t_;hat, on the average, four or more executable tasks (on—liné, batch,

etc. ) are in core.

Use of Sigma 7 fnemory map - provides execution time relocation N

of user programs by page, thus sirhplifying bookeeping and, reducing
overhead in achieving multiple users in core. Since the page parts

of a user's program may be placed anyw‘hebre in core, scheduling of
tasks may be made to depend only on task priority and not be hampered
by a need for contiguous memory allocation. Some additional flexibility
accrues to the programmer thfough the évailability of a large virtual

address space.

Shared common processors - Re~- entrant programming, in addition
“to MAP, allows all users to share commonly used- processors such

as editors, debuggers, and BASIC. Considerable saving in co_re'sp.ace

is achieved in comparison to systems requiring a processof copy per ..

user.



LIINLL WY KAV 2N, V&30

SHEET J7 of /8¢

But what will be the system's response under some typical loads? How

- effective will thé above techniques be ? In the paragraphs bélow we examine CPU
and RAD load, on=~line terminal response, and the division of thé load arhong batch,
on-line, and real-time uses for various loads typical of the industry. The results
are back-of-the-envelope type éalculations,but serve to give é, general impression

of expected UTS operation.

Two critical areas are examined below: RAD usage and CPU usage. RA;D
usage is examined for total time load; that is, the sum of the time required to
service all requests for RAD transfers is estimated and compared with the tifne'
available to vperform‘ the requests, The calculations are made for three SDS
RAD's and average delays are estimated from standard quéuing delay curves.

The results show thut‘i;fer‘thg;ﬂ;%:hl” l6ad the q204:- RAD is inadequate, the

7232 is marginal, and the 7212 quite satisfactory in any case. These results are -
for both files and swap storage on a single RAD, We will discuss later the splitting
of these functions onto more than one device. RAD size capac‘ity is no_t discussed,
but BPM capacity can be used as a guide by adding 20-30,000 S;vords for new pro- |

"cessors and 120,000 words for swap étorage (4, 000»words »e’ach for 30 users).

; This would put the UTS RAD size requirement at about 2 x 106 bytes exclusive

of file space.

CPU utilization for all non-compute bound and non-batéh operations is
estimated. Under the assumptions used, 70% of CPU capacity remains to be .
divided between compute bound batch, real-time, and on«line users after allow-

ing for file I/0, symbiont operation, and service for non-compute bound terminal

users. /

A,

Table 1 below summarizes in éeven broad categories the number of t’rahs-
fers required of a RAD in a UTS system. In each category the underlying assump-

tions are noted. Following the table the assumptions ar_e,discu.ss‘ed_‘more fully.

&



1)
2)
3)

4)

5)

6)

7)

DRAWING NO. 70248% *
SHEET &8 of /&&

Table 1
. Disc I/O Transfers

Y

Printer Symbiont & Co~op (800 lpm)

Card Reader Symbiont & Co=op (200 cpm)

Batch execution I/O - (non-peripheral)

Terminal user I/O to files -~ -g—lg; not for

editing or debugging; 3/user/interaction;

20 sec/interaction; N = 30 users.

Swaps for interactive users -- N/10

2 transfers/interaction/user;

20 sec/interaction; N = 30 users.

Swaps for time .slicing -- 2/@:

Monitor overlays =« 500 per batch job;

Transfers/seé

500/j processor fetches, library loading etc;

job time j = 1.5 min,

n——

"TOTAL 28.5



DRAWING NO. 7024f9
SHEET <*? of /8¢

Some notes on the values assumed in Table 1 are appropriate:‘

1) We assume that the print: load generated by all progi'ams in the
system will be sufficient to drive the printer at its full épeed of 800 lines per
minute, This is probably a goo& assumption for'btisy periods, but somewhat
high as a full time rate. Student problems at a university preduce 800-1000
lines of output per minute of execution while scientiﬁc-é.erospace environments

have rates nearer 300 lines per minute.

2) Average card input rates at university and aerospace computing

centers seem to be in the range 100-300 cards per minute of computing.'

3) File I/O necessary for problem execution naturally depends on the

program, and ranges from zero to whatever rate the device is capable of. We

guess that 5 transfers/sec will be ‘representative..

4) File I/0 generateci " by terminal users is estiinat‘;evd from JOSS
where program loading, JOSS's equivalent of chaining, and date I/d amouni
to about 3 records transferred per terminal interac.tion. Three records trané—-_
ferred per interaction also seems to be a reasonable rafe for inquiry systems -t
.say two dictionary look-ups and one data fetch. The assumed figure should be
conservative'since we presume that most user time Will be spent editing or
debugging, and in both of these activities the I/O rates should be an order of

magnitude smaller than the assumed rate.

5) In servicing terminal usere‘reguests we assume that for everj'
request (interaction) the users program must be brought into core from RAD.
Space in core must be cleared by transfer to RAD., The assumed inieraction
‘rate .of once each 20 seconds is conservative - most time-sharing systems measure

an interaction rate of once per 30 seconds,

6).. Compute bound users are serviced in round-robin fashion. . That is,
each time quanta we sh1£t CPU control from the currently executmg program to
the next program in the compute queue. It is usual that 5- 20% of the on-line users

are compute bound (both JOSS and SDC systems have 6% compute bound) so it

'



DRAWING NO. 702489
SHEET 30 of /84

‘might often be the case i:hat no swap is required to ready the Pext compute
bound user for execution.v We choose the conservative aésumption, however,
that a swap is always required each compute quanta./ (For instance the case .
of 5-4,000 word compute bound prograrins'operating in 16K of mefnory. ) Note
that if some of the users are compute bound then they should not be countéd in
the swap for interaction, 6r the terminal file I/O categories. We can either
count this as conservatism or say that the number of users served is 5-20%

higher.

7) Current measurements on;”typical" batch jobs in BPM record

about 500 file I1/0O actions. This includes fetches for all needed processors
(FORTRAN, SYMBOL, LOADER, CCI) overlays for the processors, overlays for
. the monitor, file I/O for ASSIGN's, Debugs, proce ssor intermédiate data, pro-
C grams fetched from the libraryy,‘ etc. The assumption‘ of a constant number of
I/O actions per job is rather gross but we know of no better assumption. The
~average job time of 1.5 minutes is representative of a univereity-student environ-
‘ment. For scientific- aerospace shopl, the Job time is more like 3 mmutes. We

choose the conservative figure.

B, Transfer Times

Transfer time depends on the amount transferred, the RAD used, and the
access algorithm. Reasonable transfer amounts for the seven items above are

1) and 2) 256 words, 3) and 4) 512 words, 5) and 6) 4, 000 words, and 7) 512 words,

RAD trénfer timés for 3 SDS RAD's are:

7204 23.6 ms/1000 words
7232 11.3 "

7312 1.7 "

* Table 2 below repeats Table 1 but also lists the percent of RAD capacity

required for data transfer only -- latency assumed to be zero.



DRAWING NO. 702489
SHEET\3/ of vgi

Table 2
Percent of RAD Capacity

.Words
Xfered
- Item Xfers/sec 1000's 7204% 7232% - 7218%
1) Print Symbiont | 3.3 1/4 2.0 1.0 )
2) Card Symbiont - .5 1/4 .3 4 L2
3) Batch Execution 5.0 ‘ 1/2 6.0 2.8 . '~Ti5
4) Interactive File I/O 4.5 1/2 5.4 2.5 .4
5) Swaps for Interaction 3.0 4 28,0 13.5 2.1
6) Swaps for Time Slice 6.7 4 3.0  30.2 4.7
7) Batch Overlays 5.5 1/2 6.6 3.1 5
TOTAL  28.5 S 111%  53% 8%
Latency @ 17ms/Xfer (28.5 Xfers) 49% 499 497
GRAND TOTAL 160% - 102%  57%

The table shows clearly that swaps performed for time slicing have a large
;’effect. Since the quanta size is under our control, we change it from 300 ms to 1

. second and recalculate. This is "tuning' the system.

Total load on the RAD's are now:
A

7204 7232 7212

Transfer Load 67 32 5

Latency Load 40 40 40

Total | C107%  T2%  45%
C. Interactive Delays

Interactive respbnse time is ?:ontrolled by our ability to fetch a user's
" program from the RAD in conflict with all other users wishing response. The

situation is similar to single-server queue situations. Average delays have been

LY
}



DRAWING NO. 702489
SHEET 38lof /84

calculated and delay curves 'are shown in Figure 1, The delay is given as a

function of the fraction of full load and is pldtted in terms of service time.

- The four solid curves are plotted according to four v‘d'ifferent assumption¢

_about the nature of the souréé of the load. The/ﬁppei' pair of curves ref:resents

the exponential service time assumption, meaning that the aﬁiouxit of time re-
quired to take care of the request is distributed exponentially. The lower curves
assume that service time is a constant for all requests. Our serviqé times are
neither, but contain components of each: The compite component and part 6‘f

the data transfer time are probably distributed exponentially; part of the transfer
time and some overhead time is constant; and the RAD latency is uniforndl} | .
distributed. We hope that our composite case can be estimated to be between

‘the two curves shown.

The upper and lower curves in each pair show the variation with the
number of sources supplying the:load -- in our case the number of users. Note
‘ carefully, however, that the.curves are normalized in éuch a way that the users --
whether 25 or infinite -- are ’generatﬁtgtthe}same total load. However, the curveé v

are still useful; when the number of users 1& doubled, the load isialso doubled.

Note that at a loéd of 1 (100%) that the average delay is equal to the ‘t;ux‘n-ﬁér
of users multiplied by the service time. The queue is full; each request finds all
the other users already in the waiting line. The average delay is also the maximum

Y

~delay.

The dashed curves give some idea of the variation to be expected in delay.
~ For the two assumptions of expo'nential and constant service times’these curves
mark a level of delay which will be exceeded in 10% of cases. The important
thing to note here is that the delay may closely approach the maximum value at

RAD loads as low as 80%.

Service time for interactive users is the time to swap his program into
core (usually this requires transfer of a currently resident program to RAD to
make room) plus the computation time necessary to service the requéét.' An

average computation time of 50 ms is sufficient for more than 95% of on-line



702489

DRAWING NO.

e

H
e s e 8w
B '

it

$.2én

0

..y
L

24

e oo s

Eeay  RER

Kp4T €A

SEPUBR.

SHEET 33 of /54

}

ERAGE

i

PR 1
RN

L SINGLE

10

642

sa

6.

[e

e

Fw/y FNNIFS IO S FTcl (LT |y

20

fol

—

o S

~

w

v

~

pe

o

NI IR

SM¢
VosthoNt 2z

. 14-88€

o ™

AYTI

0L X GTIDAD ©

©

) «

. .

A4S TN

O MISSD X NTALANTIA

DINHAITYYDOT INES

=3

5,0

:fy

.8 ;
er Capac

f serv

.6
cHomn o

-as a fra

7

.

2
ToTAL LOoAD SUBMITTED

o



DRAWING NO, 70248%
SHEET 34 of /84

" interactions. The table below shows the service times for 4000 word programs
on the three SDS RAD's, including two way data transfer and 17 ms latency fo;.;

each unit transferred. -

Service Times 4000 Word Full Swap

RAD . Swap ms. Comp. ms. Total ‘ms.i
7204 222 50 272
7232 124 | 50 174
7212 48 50 98

The curve indicates that loads of 50% result in an avera& delay of 1
service time. Thus with the 7212 RAD responses to users would average about
150 ms, including a reasonable amount of computmg time. Clearly this kind of

'response is good. ’

On the other hand,the average delay curve rises very rapidly as load
approaches 100%. At 100% load the average and maximum delay are equal and
may be approximated by the number of users multiplied by the Servme time --

7 seconds for the 7204 RAD,

The percent RAD load can be calculated and the delay due to RAD load

can be estimated for cases other than that given above in Table 1 from the following

formula,
N 2 500 28 250

L = (88+4 a5t j') (35+ (3/4+S)+ + —_— 3 )
where -

N = The number of interactive users.

= RAD transfer rate - ms/1000 words.

d = latency delay per transfer - ms.

8 = average program size (intéractive users) - words,

j = average batch job time-~ seconds |

Q = time slice quanta - seconds,

%)

N,



DRAWING NO. 7024&
SHEET ¥4 6f #84

D.. . .Compute-Load on-the CPU
Table 3 below shows the breakdown of the major compohent’s of load on

the CPU not including execution of user programs or batch processors.

Table 3
CPU Load
Jo of Sigma 7 CPU
1) Printer Symbiont & Co=-op (800 lpm); 4.0

2.0 ms/record for Co~op; 1 ms/record

for symbiont;
2) Card reader symbiont & Co-op (200 cpm) 1.0

3) Cycle stealing - memory transfer 5.0
interference of swap and file I/O with

computing. Worst case,
4) Swap I/O management @ 500 Msec/transfer. .5

5) File 1/0 mané.gement and transfer @ 7 ms/record, 13.0

. 6) COC terminal I/O management and conversion - 1.2
© 100 Msec/char; 30 users; 4 char/sec/user.
7) Computation for interactive response 30 users; 7.5

1l interaction/20 sec; 50 ms average processing -=-
(enough for < 95% of all interactive requests)

TOTAL 32.2

E. Assumptions

Some notes on the assumptions used in computing the various loads are

again given in order.

ta



DRAWING NO. 7024&%
SHEET 36 of /4

1
i

1 & 2) The loads assumed for the card and printer Symbio\nt are thé v
sa’.n'}le' as those ﬁge;d for the RAD load. The difference id time req.uired between the
symbiont and its corresponding cooperative reflects the fact that the symbiont
transfers data directly from buffer to device, while a move of the record core-fo-—

core is required for the cooperative.

3) Worst case interference between a computing program and I/O
transfers occurs when both operations use the same memory box. In time-~sharing
systems we are transferring data and programs between RAD and core a large |
fraction of time so there is usually a payoff in interference reduction if core is
organized into non-interléaved boxeé. A first guess would be 1/Nth interference

if there are N core boxes. ' A

4) The estimate here of 250 instructions to control each swap should

be conservative,

5) Overhead of the BPM file I/O system is currently about 7 ms/record
of 100 bytes. Scheduled 1mprovements w111 reduce the figure by about 2 ms/record

and new access methods may add to the improvement : : 7

6) Terminal I/0 include_a translation{ between internal and extefnal
form and buffering as well as“’ata’rildard chécking and facilities for severai different
kinds of consoles. The rate o?4 characters per second per user is that measured
in the JOSS system and others. We have no reason to believe that the rate will be

any different in UTS.

7) As before, the interactive rate of one message per user per 20
seconds is a conservative one by standards set in current time sharing systems.
The estimate that 50 ms of computing i8 the average required for over 95% of all
requests again comes from JOSS, 85% of requests require less than 50 ms to com-
plete. The figure is lower than that recorded in the SDC and MAC systems but
only by amounts that may be explained by the difference in machines. A factor of

two increase would not be suprising.



DRAWING NO. 702489
SHEET37 of sa&s

Thus about 70% of CPU capacity remains to be divided among éomputing for
batch jobs, compute bound terminal controlled jobs, and real time responses. Of
course a single compute bound program can use all of this time if allowed, and
if more than one is in the system, delay must occur sin ce the resource is over-~
loaded. Scheduling of compute bound jobs is controlled by installation manage-~

ment through contrel parameters discussed in a later section.



DRAWING NO. 7024+
SHEET 3§ of /8«

Iv.. SCHEDULING

The routines described in this section control the overall oPeration of
the system. They receive inputs from the I/O systems whén certain critical
events occur, from the user program when it requ'ests monitor services, and
from the Executive language processor reflecting requésts of the user. These
inputs {or signals) coupled with the current status of the user as recorded by
the Scheduler are used to change the position of the user in the scheduling status
queues, It is from these queues that selections are made!for both swapping and
execution. Swaps are set up by selecting a high priority user to come into coré'
and pairing him with one or more low priority users fof transfer to RAD,

Similarly, the highest priority user in core (and thus ready to run) is selected

for execution.

A. Inputs to the Scheduler

1

The list below records those system activities which must be reported to
the Scheduler. The reporting is done variously through a logical signalling table,
through direct'entry to the Scheduler, and through protected changes to the User
Status queues. The Scheduler records the receipt of signals by a change in the
user’status' queues plus other information associated with the user. In general,

a table driven technique is used with the received signal on one coordinate and.
the current state on the other. The table entry thus defined names the routine
to be executed in response to the given signala_state combination. Since tﬁe |
number of signals and sltates is large the table teéhnique aids' in debuggi"n‘g by

forcing complete specification of all the possibilities.

Inputs from the COC r.outines
1) Input completeuéactivation character réceivé’d
..2) Output limit reached--sufficient output for 3-5 s’e‘cc_mds
3) Output nearly empty--only 1/2-1 seconds typing left
4) Interrupt (BREAK) character received--request for altern’ate
entry, usually for i;etﬁrn of console g:ontrol‘ to the user.
5) Request for executive control :

i

6) Other special signals as required



DRAWING NO. 702489
SHEET3% of /25

Inputs from the swap I/O handler _’

1) Swap complete--~rescheduling and/or another swap may be nee.de'd

2) Swap error--a RAD sector cannot be written successfully. Action
will be a report to the error log, lockout of the failing sector, .and
re-trial at a different location

3) Swap error--a RAD sector cannot be read successfully. The ':user

cannot be continued; the error is logged and the user informed.

Inputs from the program (through monitor service calls)

1) Request console input -

2) Transmit output to the console

3) Waita spécific time period

4) Program exit (complete)

5) Core request-~both kinds pro_vided by BPM plus request at
specified virtual address

6) Program overlay--load and link, load and transfer

7) Input-Output service calls.

Inputs from Executive Language Processor

1) Name of system program to load and enter. Implies deletion of
any current program | |

2) Continuation signal

3) Special continuation address

4) File name for submission to batch processing

B. Scheduler Output

The scheduling routine performs two major functions during the times
it is in control of the machine: First it sets up swaps between main core mémory
and secondary RAD in such a way that high pridrity users are brought into core
replacing low priority users who are transferred to RAD, The actual swap is
controlled by an I/O handler for the swap RAD aécording to specifications pre-
pared by the Scheduler. The Scheduler makes up the specifications for the swap

according to the priority state queues described below. Given a suitably large



DRAWING NO. 70245
SHEET .§/8 of /84

ratio of available core to average user size the Scheduler can keep swaps and

compute 100% overlapped.

Secondly, the Scheduler selects a high priority user for execution. Accord-
ing to the single priority state queues and the rules for treating batch. The rule

is extremely simple--pick the highest priority user whose data is in core.

C. User Status ‘Queues

The status or state queues form a single priority structure from which:
selections for swaps and selections for execution are made. The state queues.
form an ordered list with one and only one entry for sach user. Position is an
implied bid for the services of the computer. As the events occur which are ,
signalled to the Scheduler as described above individual users fhove up and down
in the priority structure. When they are at the high end they take high priority
for swap into core and execution, and when at the low end they are prime ’
candidates for removal to secondary storage. This blatter feature-~-that of a
definite priority order which selects users for’ removal to disc--.is”a"x»; important
and often overlooked aid to efficient swap management. Itr.avbids swaps by xhaiking

an intelligent choice about outgoing as well as incoming users.

In addition to these primary functions the queues are used for other
purposes: synchronizing the presence in core of user data and program with thé
availability of I/O devices, waiting for '"wake up" at a pre-established time,

queuing for entry and use of processors, and core management problems.

A list of the state queﬁes in decending pr-idritjr order is ‘given below.

ANT - Interrupt or break received queue
IAC - Input activation queue '
UBL - Console Output unblocked queue
COM -  The interactive compute queue
BAT - The batch compute queue

Ccu - - Current user in execution
Du .. - Current disc file user

"DQ - Waiting for disc queue
BLK -  Console output blocked queue
INW - Waiting for console input queue
QW -  Queue of users to be awakened

OFF - Queue of users turned off.



DRAWING NO:. 702487
SHEET #/ of £8&

The above list serves for the illustration of the operation of the Scheduler

below.

D. Scheduler Operation

To select users for execution the Scheduler searches down the priority
list for the first user in core memory. Thue.,‘ interrupting users will be.eervedv
before those with an active input message, both will take precedence over users -
with unblocked console output, next will come compute users and fiually the
batch job(s). Note that users in any lower state_s_ have no current requests for
CPU resources.  Note allso that as each user is selected for execution his state
queue is changed to CU, and when his quanta is complete the h1gheat przonty
queue he can enter is the compute queue. Users who enter any of the three .
highest priority states receive rapid reaponse, but only for the first quantas ot

service. Thereafter they share with others in the compute q_ueue.
Two examples of typical interactive use x;vill be illustrative.

The first follows a user with a 81mp1e short 1nteract1ve Trequest, As he
types the request he is in the INW queue and his program probably has been
swapped to RAD. It remains there until the COC routines receive an activation :
character. This is reported to the scheduler and cause a state change to IAC :
The Scheduler ‘f'inds a high priority user rxot in core and initiates a swap to kick out a
low priority user (if necessary). a'nd‘-brihg»in the just activated one, On completion of th
swap the Scheduler is again called and it now finds a high priority user ready |
ito run. The users state is changed to CU the program is entered and examines
the input command, The cycle may complete by preparatlon of a reSponse lme
and a request to the monitor for more mput Thls would reduce the users state

to INW again makmg h1m a prime candidate to kxck out of core..

The second example illustrates a console o’utput-bound program. This
program moves through the state cycle BLK UBL-~CU as. output is generated by
the program, the COC signals the reachmg of the output limit, and finally the

output is drained onto the terminal, If the operation is proper, five or six



 DRAWING NO 702463
' SHEET#42 of /S¢

seconds of typing will be readied in buffers each time the user'progrem is brought
into core and executed. Durmg this typing time the program is not requu-ed in

core and the cpu resources can be glven to other programs.

Selection for swapping picks a user to bring into core and the lowest
priority user to kickout. Priorities are a.rranged frqxn high to low, in oi'der oi;'
increasing expected time before next activation. This assures that the users. who
are least likely to be needed are swapped our first, retaining in core always the
set most likely to require execution. The swap algorithm willi operate so that:

a) if there is room in core for three user pregraxns',’b)' if two users are compuﬁng
steadily and c) if many other users are doing short interactive tasks, then the
compute users will remain in core and use all available compute time while the
interactive users are swapped through the third core slot Of course the non-
uniformity of program sizes and request arrival thnes will cause dxfferent actmn

from time to time but on the average it will be substantially as described.

E. . Treatznent of Betch Jobs

Two ways of scheduling batch are reasonable in this prior:ty structure.
They result in quite different fractions of machine time devoted to batch Both
will be provided in UTS and the operator or installation manager will be able to
select the desired mode of operation. The first treats the batch stream in a
separate queue (BAT) of lower priority than the interactive _compute queue as
indicated in the queues of Section C. Thus betch only gets service when no interactive
user has a request., Crude estimates from current systems indicate that 1,.0;-20*?»’0‘
ef machine time would be available to 'l'::a,tchnon'a system suppvortir’xg‘between 20 and
20 concurrent users in prime shift,. * That is 10-20% of the time no on-line user
is requesting time. Duringnon‘-'prime" time 90% or more of CPU time would be
available to batch. '

*In Part IIIl we estimated that 70% of CPU capacity v}ould be evailable to ba.tch_ and
on-line compute~bound combined. Here we estimate the on~line will use 50 or 60

of that 70%,.



DRAWING NO. »702‘3’- 29
SHEET "s/.':", of &

The second discipline cycles the batch user through the interactive cornpufe
queue where each job receives an equal fraction of the available time. It is usual

in on-line systems that 5-20% of the on-line users are compyting at any one time;
thus as much as 1/2 of prime time could be devoted to batch background operatics
plus the 907, + on non~prime time. In this scheme, batch can be biased to ger a -

different quantum than on~line users.

F. Swap Hardware Organization

Users are saved in 2 dedicated area of the RAD (or a sepafate RAD in large
configurations) during the periods between the turns for execution on the central
processor. The minimum system will allocate a portion of file RAD to this purpose

and dedicate a special handler to the performance of the swaps.

A bit table is used to keep track of the availability of each sector on the
RAD, marking zero for in use (usually assigned to a user) and one for available.
Users are assigned a sufficient number of page size sectors to accommodate their
current use. The assigninent is done in such a way that command chaining 'ofvtl'i.e’
I/O can order the sectors to be fetched for a single us er with minimum latency.

That is, each users pages are spread evenly over the set of available sectors so

that when the user is swapped data will be transmitted in every sector passed over.

" The records of the disc sectors associated with each user will be kept in the

users job information table (JIT) which is kept on RAD when the user is not in core.

The disc location of the JIT table is kept in core by the Scheduler. The RAD layout
is such that sufficient time is available to setup I/O commands for the remainder of

a user after his JIT arrives from RAD.

The amount of RAD storage assigned to swapping will be a parameter of SYSGEN
The number of on~line users which the system can accommodate is limited by the

size of RAD space allocated for swappiﬁg and the total size of all active o;u-li:de users.

G. Processor Management

Processors will be considered time~sharing précessors when th'eyia‘.re.add'edv
in such a way that the processor is read-only and makes no initial as’suni;ptions about
the user's data area. When these criteria are met the'prqcessor is treafed in.i;'h'e
following special ways: |

1



DRAWING NO. 702489
SHEET¥Y of &

1) Its name is known to the Executive Language; it may be called
on by name.
2) It will have dedicated residency on swap storage established ut

SYSGEN time.

3) Its use will imply a particular virtual map for th.. user.
4) A single copy will be used by all requesting users.
5) It will never be swapped out. In fact, we will write lock to

portions of RAD dedicated to such processors,

1.System Management Parameters

Effective control over the operation of UTS is provided to the installation
manager through the adJustment of the dynamic. parametera of svsten* ogez,.tlon.
Gross adjustments can be made at SYSGEN time but the fine tuning of the svstem

. to the changing demands of a part1cu1ar compute shop is done by changes to the
dynamic system parameters through commands at the operators console. The

list of adjustable parameters includes at least the following:

1) Maximum core size for on-~line users

2) Maximum core size for batch user

3) Maximum RAD file épace allowed on on-line user

4) Number of on-line users allowed

5) Size of time slice compute quanta-milliseconds {Q) -

6) Size of minimum compute quanta-milliseconds (q)

7) Batch bias parameter, b: batch geis bQ compute quanta

8) Batch scheduling dicipline-high or low priority

9) Number of tapes allowed an on=~line user.



DRAWING NO. 702489
SHEET 445~ OF /8¢
| f
!

V. System Requirements and Configuration

Throughout this specification the assumption is made that UTS will be a system designed and bﬁilr.
to service batch, real-time, and on-line terminal users. Each installation will have to evaluate
its requirements and desired service in order to arrive at a useful machine configuration. A
reasonable selection of hardware can bnly be made with a good knowledge of the characteristics

of its intended use, including the portions of combuﬁng devoted to real~time, batch, and on-lir;e.
| Also, the number and usage profiles of on=line users, size of on-line programs, 1/O characteristics,

etc. must be evaluated.

It is obviously impossible to list the infinite combinations of equipment which would support UTS

in some manner. It is also difficult to delineate a minimum configuration (different requirements
will have different minimum configurations). Therefore we will describe a configuration for a set
of requirements and indicate possible downward and upward adjustments in equipment that could be

made for varying requirements.

In attempting to determine what a particular configuration should be, several things musthbé kept
in mind: |
1. The UTS resident monitor will require an estimated 16K words.
2, UTS is predicated on and requires a symbiont system.
3. Since real-time requirements are pre-emptive and installation dependent, no allowance
is given here to these demands on the machine. | |
4.,  References should be made to the sections of this specification dealing with loading,
responses, and performance, since these factors will largely determine conﬁguraﬁbh

requirements,

" In order to support 32 on-line users (who are not compute-bound) and maintain a high rate of batch
‘ throughpuf (cbou'r 70% of BPM rate) , the following confngurahon is appropriate. UTS design opti~

" mazation wull focus on fhns system level

cU
Model .Descripfion
8401 Sigma 7 CPU

8413 Power Fail~Safe



- CPU (Cont.)

Model
8414
3415
8416
8421
8422
8418

Description

Memory Protect

Memory Map

1 Additional Register Block
Interrupt Control Chassis
Priority Interrupt, Two Levels

Floating Point Arithmetic

Memory, 64K

8451
8452

Basic 1/O
8473
8475
7012
8485
7211
7212
8456
7611
7612
7615
. 7615
7621
- 7613
7015

Memory Module, 4 each
Memory Module, 12 each

MIOP

Four Byte Interface
Keyboard Printer (2)
Selector IOP

Hi-Speed RAD Controller
Hi-Speed RAD

3 Way Access, 4 each
Communications Controller
Format Group Timing Unit
Send Module, 32 each
Receive Module, 32 each
EIA Interface Modules

Line Interface Unit, 3 each

Keyboard/Printer KSR/35, 32 each

DRAWING NO, 701489
SHEET¥& OF /86



DRAWING NO. 7024u%
SHEET#'/ OF /&

1 Seiacondary Storage and Peripherals

7?40 Card Reader

7]60 Card Punch

| 7%1-45 Line Printer

73321 Magnetic Tape Controller

7322 Magnetic Tape Units (4)

7231 RAD Controller (4 byte interface for 7231)
7?32 RAD Storage (24MB)

dommen’rs and Variations
| 1, CPU

" All items listed except Floating Point are minimum requirements for any system. Another option

oﬁ'/ailable is the Decimal package. ' ‘

2

Memory ‘
Some systems may run satisfactorily with 48K; for example, 8 users rather than 32, or a 32 user system

‘with little or no concurrent batch, More memory than 64K will allow more users, larger progrars, etc.

a. Basic 1/O -
Ti’me absolute requirements are an MIOP, 2 Keyboard Printers, one RAD (6MB) and controller, and the
ommunications Controller and associated terminal equipment. However, to maintain reasonable |
' ‘performcnce, separate RAD's for the system and file storage are recommended for all systems. For a
32 user system, the system RAD should be a Hi-Speed RAD with an SIOP. Smaller systems, 16 users

for example, could maintain acceptable performance with two 7232 RAD's, for example.

4, Secondary Storage and Peripherals

The only requirements are a card reader, a tape controller, and at least one tape unit. Any reasonable
batch configuration can be expected to also include a line prinfer, additional tape units, RAD file
sforage, and a card punch. An additional MIOP may be required, depending on the type and number
of seéondury storage devices and peripherals. Varicfions in the number and type of 1/0 devices will
depend on installation requirements, but the configuration listed is reasonable for a batch system with

up to 32 on-line users.



DRAWING NO, 702487
SHEET4/%= OF /8¢

4, Secondary Storage and Peripherals (Cont.)

Terminals
The only variation in on-line terminals forseeable now is the addition of different kinds of terminals
(Keyboard/Display, IBM 2741, etc.) . Provisions will be made to the extend feasible for suﬁpcﬂing
future terminal devices. UTS will be limited to a maximum of 64 terminals. To increase this number
would require major changes to the COC software (which will support only one 7611 Communications

.&ontro ler).



VI. Terminal Executive Language

TABLE OF CONTENTS

COMMUNICATION CONVENTIONS

A, Keyboard Control

B. Typing Lines ‘
Correcting Typing Errors
Erasing Lines
Blank Lines
End-of~-Message Signalé
Pagination, Lineation
Tabbihg
Echoing Charaér'ters

C. Interrupting UTS

1. Preemptive Returns to TEL

DRAWING NO. 702459
SHEET %% OF /g4

(TEL)

2, Interrupting Sub-Systems and Running Programs

D. Typing and interpreting Commands

E. Error Detection and Reporting

IDENTIFICATION AND NAMING CONVENTIONS

A, Accounting Information and File Identification

User's Identification (id)
A‘ccount Identification (account)
Password (password)

File Identification (fid)

B, Device Identifications

INITIATING AND ENDING ON-LINE SESSIONS
Turniﬁg On
Changing Idventification
Turning Off

60



x , DRAWING NO. 702489
SR : . SHEETS® OF /&
MAJOR OPERATIONS 61
A, CompilatiOns and Assemblies
1. .Inputs and Outputs
2. Commands (COMPILE, ASSEMBLE)
3. Controlling Error Commentary and Output
4, Error-Handling and End Actions
5. Entering Program from the Terminal
6. Debugging Information
B. Linking ROM's and LLM's to Form LM's
1. Simple Linkages (LINK)
2. Load Module Symbcl Tables
3. Merging Internal Symbol Tables
4. Searching Libraries
5. Error Reporting and End Actions
C. Loading LM's Into Core |
LOAD
D, Initiating Execution
START
RUN
E. Initiating Debugging Operations
DELTA, FDP '
F. File Management
COPY
DELETE
CALL PCL.
G. Editing
' CALL EDIT
" EDIT
| ACCEPT
H. Submitting Batch Jobs
BATCH
Requesting Status
Cancelling Remote Batch Jobs



DRAWING NO.
SHEET &/ OF
I. Calling Sub-Systems
Answering Conventions

J. Continuing and Quitting Major Opérations'
CONTINUE

QUIT

Automatic QUIT

MINOR OPERATIONS

A, Checkpointing Programs (SAVE, GET)
B. Assigning Files and I/O Devices (ASSIGN)

INDEX OF COMMANDS

IV



DRAWING NO. 702489
SHEETS2 OF /&

COMMUNICATION CONVENTIONS

A. Keyboard Control

As previously mentioned, control of each user's keyboard will be
proprietary: either the user or the system will have control. The assumption is
made that all terminals in use are attended, Terminal communication conventions

will be as follows.

1. Whenever the UTS executivé processor returns control to the user
affer an error, an interrﬁption by the user, or after completing a request, it _4.‘
will type an exclamation mark () at the left margin of a fresh line before turning
control of the keyboard over to the user. This notifies the user that he is talking
to the UTS executive processor and must couch his request in that procebs sor's

language (TEL).

2. Whenever the services of a sub-system are first requested by the
user, that sub-system will identify itself in plain-talk before turning control

over to the user,

3. All sub~-systems that carry on line-by=~line, rather than intraline,
dialogues with the user will type an identifying mark at the left margin of the
line before retﬁrning control to the user. Sub-systems for editing will use an
asterisk (*); sub=-systems for combining object programs and manipulating their
associated symbol tables will all use a colol (:); utility sub-systems for file
management and information transfer will use the numerical relafion sign (<);:
all sub-systems for working with other programming languages will use the sign
(>). These identifying marks notify the user that one of a class of sub-systemvs
is awaiting a command from him. Which sub=system it is and which language
must be used should be in the head of the user. This is possible, since no
sub-system of UTS will call on another one, or even on itself, Honever, some
commands in UTS's executive language (TEL) require the services of a succession

of distinct processors, as may some commands in other sub-systems. Whenever



DRAWING NO. 70z 189
SHEET-S3 OF /&¢

such '"hidden' processors detect an error, they will, where necessary, prccede
error messages by a single space followed by an identifying mark appropriate

to the processor's function.

4, Users' programs that must return control to the user to allow him to
input values and other information are left to their own devices. Such programs
should be written so that they display enough information for the user to deter~

mine what is expected of him in such situations.

B. Typing Lines

The mechanisms for correcting characters, for erasing messages
that may be hopelessly mistyped, for signalling end of message, and for line

spacing are uniform. These are given below for users with TTY terminals.

1. The user can erase his last unerased token by depressing the RUBOUT
"key. UTS will respond by typing a slant-line (/) to indicate that it has effectively
backspaced and erased. On terminals that can backspace, backspacing will be
non-erasive and users will be able to overstrike tokens as well as erase them.
On such terminals, UTS's image of the line being typed by the user is identical
to the one the user sees on his printed page =~ assuming that he can read his

overstrikes and erasures.

2. The user can erase an entire message by depressing two keys simul-
taneously, CONTROL and X. UTS will type a back arrow (=), return the carrier
to the beginning of a fresh line, and return control to the user without further

comment,

3. Blank lines are ignored by UTS's executive processor and by all
its sub-systems that carry on line-by-line diaiogues with users. The appropriate
identifying mark will be typed at the left of a fresh line before control is returned

to the user. e



DRAWING NO. 702-&%
SHEET\$4 OF /8¢

4, When talking to TEL or any sub~system that carries on line-by-line
dialogues with users, the user signals end-of~message by depressing the cérrier
RETURN or LINE FEED key, or by simultaneously depressing the CONTROL |
and L keys to signal end-of-page (see 5. below) as well, UTS will shift the
carrier to the left margin of a fresh line (after taking care of any pagination
that may be called for or required) and take over control of the keyboard, Except
for interruptions (see C. below) all suflasequent transmissions by the user will be

ignored until keyboard control has beea returned to him.

5. Pagination and lineation are controlled by UTS so as to provide 8 1/2
by 11 pages with one inch margins at the top and bottom of each "page'. This -
assumes a 9 1/2" platen, giving 85 Gothic characters to the line; 8'" platens pro-
vide for 72 characters. UTS will count lines to give 54 lines per page, In addition,
the t'_\s.er can request pagination directly by‘d'epre ssing the CONTROL and L keys
simultaneously., Pagination consists of: a) six blank lines; b) a heading line,
containing date, time, user identification, console identification and page number;
c) six more blank lines. Thus, the heading line can be scissored ofi to obtain

11" pages.

6. .Some terminal devices have readily adjustable and usable tabbing
feafures, others can tab but make adjustments difficult, others, can't tab at all,
To handle the last two cases, UTS permits users to request that tabs be simulated
by successive spaces, Tabs are not normally simulated; to turn on tab simulation
triply depress the (CONTROL, SHIFT, "OH'") keys and then depress the T key.

" To turn off tab simulation, repeat the procedure, ~The setting and cleai’ing of
tab s,topv‘é will also be allowed, possibly by preempti}xg two non-printing characters
to signal séf;tab and clear-tab; an alternative is to provide explicit com‘man’ds for

these actions,



DRAWING NO., 70289
SHEET$5 OF /¢,

7. Echoing of characters back to the terminal is at the discretion of the
‘user. Normally, UTS will echo; to request no echoing, the user must triply
depress (CONTROL, SHIFT, "OH") aad then depress the E key. To turn on

echoing again, the procedure is repeated.

A compléte list of these and other control functions is given in the COC

Functional Specification,

C. Interrupting UTS

1. Whenever one of UTS's sub-systems is in control of the keyboard, the
user can interrupt and temporarily suspend operations by simultaneously
‘depressing the CONTROL and E keys., UTS will respond by s.topping the current
operation as soon as it reaches a convenient break-point, and then turning the

user over to the executive processor, TEL.

2. 'Whenever UTS oi;"one of its sub-systems is in control of the keyboard,
the user may interrupt whatever is being done for him at the moment by depressing
the BREAK key which will give control to that part of the system currently in
communication with the terminal (e.g., a sub=-system). Since some actions can
only be stopped at points of convenience and others have so much inertia that\ thev
can not be stopped at all, a éuccessiofl of BREAK depressions will be treated by
UTS as a single interrupt request. It must be emphasized that depression of the
BREAK key does not constitute a preemptive request for the services of UTS's
executive processor (see 1. above): the precise handling of interruptions by
sub-systems will accompany the functional description of the sub-system; handling
of interrupts by users' object programs will be covered in the section that
describes the calls that programs can make on UTM services. Baldly speaking,
however, interruptions of the system or any 6f its major sub=-systems will result
in termination of the current operation as soon as possible and a return of key~
board control to the-user after the appropriate identifying mark has been typed.
Since line noise can generate spurious interrupts, it is also wise to have UTS say
something first; e. g., "'Stopped by interrupt.' Interruptions of object programs
will, in the absence of short-stopping actions by the prégrams themselves, always

cause a back-up to the executive processor, Programs being



DRAWING NO. 702489
SHEET-3C OF /& &

run under control of debuggers. or under contral of a programming language

sub-system like BASIC will identify the point of interruption as best they can
(e.g., "Interrupted at statement 120.") before returning control to the user,
By the same token, the execution of se~called "stdp” and ''pause' commands

should result in similar behavior; e, g., '"Stopped by statement 120, "

D. Typing and Interpreting Commands

Except for a few declaratives, commands take the form of imperative
sentences: an imperative verb followed by a direct object or list of objects;
indirect objects usually follow a preposition, but may follow the verb (with elision
of the implied direct objects). Minor variations on the major theme of a command
~ are expressed as encoded parentheticals following either the verb or one of the
objects., Individual elements of a list of objects are set off from one another by
- commas. Common rules of composition hold: words of the language, numerals,
object identifiers and other textual entities may not be broken by Spaces; other-
wise, spaces may,be used f;'eelly; For purposes of scanning commands
- (both by machine and the human eye) this rule.has a simple interpretation: in
a left-to-right scan for the next syntactic element of a command, skip over
h leading spaces; treat a trailing space as a.terminator for a word, numeral or
vother textual entity. In terms of machine scanning, tabs (which are represented
by a unique encoding) are treated as spaces. In addition, a unique encoding that
indicates "end-of-command' must be recognized as a syntactic element; fof TEL,
‘this will probably be the carrier-returs code. In other words, a legitimate
command can't have any trailing garbage -- one could never determine whether

it was a spoof on the part of the user or a real error,

E. Error Detection and Reporting

UTS's general philosophy in-these areas is made up of t\iﬁélf)oints.

1. Don't mess up the user or his information by carrying out a
command or an operation that can't be carried through to cvompletiom This rule
must be tempered by considerations of efficiency and speed. For example, in
commands that refer to file storage, it may be unfeasible to check for the existence

or non-existence of the files mentioned; it is probably unwise to simulate an entire



DRAWING NO. 702:§%
SHEETY? OF /& ¢

commahd to check for storage-limit run-overs before actually carrying out the.
command, and impossible to anticipate hardware and device malfunctions. How-—
ever, TEL and all its sub-systems thé;t carry on line-by-line dialogues with users
will always par’se an entire command before starting an operation to insure that

the command is, at the least, formally valid,

2. The majority of errors are readily grasped by the user's eye and
head once the fact of an error has been brought to his attention, Accordingly,
error messages will be as terse as is possible within the constraints of reada-

bility.

The error messages themselves and the specific actions taken on errors will
be covered in final UTS documentation, However, many errors and error reports

are uniform throughout TEL and some of its sub-systems, and can be listed here,
a) Garbled, malformed or unintelligible commandsﬁ

ERn?

b) Garbled or invalid file, device, reel, account identifications, and others:

FILE ... ?
 DEVICE ... ?

' ACCOUNT ... .?

. PASSWORD ... ?
CJOB ... ? |

" ¢). References to (deleting, reading,.overwriting) a non-existant file: -

- NO FILE ...



DRAWING NO. 702489
SHEET.SS OF /¢

d) Attempts to write ON rather than OVER an existing file:
ON FILE LI ?

e) Errors, abnormalities, stor‘age-limit over-runs associated with
an input-output action or with a specific file:
FILE ... :
DEVICE ... :

followed by error message



DRAWING NO. 702s39
SHEET.$7 OF ~g ¢

IDENTIFICATION AND NAMING CONVENTIONS

On-line users are provided a set of uniform conventions for repre-
senting information for fiscal accounting, file identifiers, devices, and

other objects,

A, Accounting Information and File Identification

An on-~line user must identify himself before he can use TEL

or any of its sub-systems, Procedures for doing so are described in the next
section. Three pieces of information are required: ‘

a) the user's personal identification (_i_g_)

b) the user's account identification (account)

c) a password (password)
These, as well as names for files (file name) may be represented by a string
of no more than 11 contiguous letters and/or decimal digits. Embedded under-i
scores may be used as separators (they count as characters); these print as

left-facing arrows (+) on model 33 and 35 TTY's.

Files are identified by name, account and password; file identifications

(fid) are represented by file name, account and password {in that order) separated
by hyphens. In the absence of account and/or password, UTS uses the log-on

accounting identification. All identified files are permanent,

B, Device Identification .

Device identifications are represented by two-letter abbreviations
for: card reader (CR); card punch (CP); line printer (LP); on-line terminal (ME);

labeled tape (LT); free-format tape (FT).

!
Tape identifications must be followed by a number sign (#) and a reel

number; e. g., LT#727.



DRAWING NO. 70z+%9
SHEET 62 OF /4.

INITIATING AND ENDING ON~LINE SESSIONS

An on~line user must establish a connection with UTS and identify
himself properly before he can use TEL or any of its sub=-systems. When

a connection with UTS has first been established, UTS will respond by typing

IDENTIFICATION PLEASE:

and then waiting (on the same line) for the user to identify himself by typing

his id, account and password (separated by commas) on the remainder of the

line and then depressing the RETURN key. If the identification is valid and
consistent with UTS's records, TEL will type an exclamation mark (! ) at the

left margin of the top line of a new page and then await the user's f{irst commanrd.
If the identification is garbled or otherwise invalid, UTS Will notify the user, and

then repeat the initiation procedure. The messag‘es are:

EH?
ACCOUNT veo 2 ; ‘
ID... ? ‘(ﬁlling in the garbled or invalid item)
PASSWORD ...
During the course of a session, the user may close out his current session's
accounting and reinitiate under new identification by typing

I'M ID, account, paésword

or a combination of
ID id
ACCOUNiT account .
PASSWORD password
To close out and disconnect, thev user types
OFF
Whenever a session is closed out, UTS wAill print at the user's terminal a
summary of his charges and other information. This 1nc1udes total qesswn

time, charged CPU time, and the reel numbers of any new tapes that had

not been dismounted prior to closing out.



DRAWING NO. 70.:48%
SHEET &/ OF /&% go

MAJOR OPERATIONS

Most commonplace activities associated with FORTRAN and assembly«
language programming can be carried out directly in TEL; others require
calling for the services of one of TEL's sub-systems. Figure 3 indicates
‘'how such activities are carried out from the console; TEL commands are

capitalized, and sub-systems indicated,

1. FORTRAN, SYMBOL and XSYMBOL programs are created, filed
away and changed through the EDIT sub-system either by explicitly calling
for EDIT or by the EDIT and ACCEPT directives.
2, Programs are COMPILED or ASSEMBLED from the files or from the
terminal (Iine-at-a—fime) into relocatable object modules (ROM). '
3. ROMS may be LINKed into load modules (LM).
4, ROMS5 and LM may be LINKed and may be modified by SYMCON.
5, LMs can be LOADed into core and execution STAR Ted.
6. Linking, loading and starting of ROM's can be subsumed under the
single directive, RUN,
7. Objéct programs can be run or started unéer the control of pae
of the debugging systems DELTA and FDP,
8. Executing programs that h_elve been interrupted or stopped can be
CONTINUEAJ after corrective actions. | )
9. Core images can be SAVEd on the files, and a user may GET a saved
core image at some later date for continuation.
10. Files of information can be managed directly (COPY, DELETE) anc
through the PCL and EDIT sub-systems. . .

A. Compilations and Assemblies

1., Inputs and Outputs

" One or more source programs can be compiled or assembled into
a single ROM. Input identification (sp) may be either a file id'e:r.xt»i'ficat._ioﬁ. (&_g) or the
device identification, ME., Whenever it encounters the latter, UTS will réque__st
that the user type in his source program a line at a time. To signal end of input,

the user depresses,the BREAK key, (see 5. below).



DRAWING NO, 702-18¢
SHEET &2 OF /&

CALL EDIT

User's
CALL EDIT Console -
EDIT, ACCEPT

EDIT,ACCEP
>

filed
Fortran
programs

COMPILE

relocatablyg
object
modules

ASSEMRLE

loa
modules

LOAD

coplir o S Xegél;éng
core module
madnle SAVE

Fi'glire 3. FORTRAN and ASSEMBLY-LANGUAGE PROGRAMMING

s%eb%%‘% f:len s responses
FDP, DELTA to demagids for input



DRAWING NO. 702489
SHEET &3 OF /8¢

Listing output (list) may be directed to a file, the
terminal or a line printer (fid, ME, LP). . ROM output (denoted rom ) may
be directed to a file or may be unspecified, In the latter case, UTS caches the

ROM on a scratch file, which the user may subsequently refer to by a dollar
sign ($).

2. Commands -
COMPILE sp, 8P, ..., Sp ON rom, list
ASSEMBLE sp,, 8P, ..., 8¢ ON rom, list
Listing and ROM output may be specified beforehand.
LIST ON list
OUTPUT ON rom_

(or OVER an existing file)

When so specified, the commands can be abbreviated; e. g.,

COMPILE filel, file2

COMPILE filel, file2 ON romfile3
Listing specification hold over all subsequent operations until changed or until
specifications accompany a compile or assemble command; specifications that
accompany a command hold only for the duration of the command. BRBeiorehand
ROM output specifications hold only for the next assembly or compilation, and
ROM output files are closed after each operation; that is, no "'file-extension' in
the BPM sense is permitted. ,The parenthesi')zed letter‘,"'E” after COMPILE or
LIST indicates that assembly~language expansions of FOR TRzAN statements .'é.'re

to accompany the listings; normally, they do not.

3. Controlling Error Commehtary and Outputs
Error commentary is alwéys directed to the user's terminal
and always accompames listing output if specified., During the course of a compila«~
tion or asserﬁbly, the user may interrupt the process to turn output on or on, to

Lo,

turn off error comments to hlS terminal, and to redirect error commentary.

LIST or DON'T LIST
OUTPUT or DON'T OUTPUT
COMMENT or DON'T COMMENT

COMMENT ON list
COMMENT OVER fid (over an existing file)



DRAWING NO. 70248¢
SHEET &7 OF /&

The facility for turning off and redirecting error commentary is one that can
only be appreciated by assembly-language programmers and debuggers who
have sat at an on~line console, wringing their_hands in desperation while the
machine chatters on and on about an error that they could either ignore or
repair instantly once they began debugging. Once the user has redirected
things to his satisfaction, he can request that processing continue by typing
CONTINUE -
In the event that things are hopelessly messed~up, the user can tell UTS to
give up on the operation by typing

QUIT

4, Error Handling and End Actions

Whenever UTS aborté an action, either because it cannot be
continued or because the user has told it to quit, UTS will always clean up.
i:hings before reporting and returning control to the user. In particular,
after assemblies, compilations, and linkages and loadings (see the sections

below ):

a) If listing had been specified beforehand, both the listing

itself and the specification are retained;

b) Any listing specified with'_tfle command itself is erased
(unless it has gone to the printer) and specifications return to their default

state: DON'T LIST; ' .

c) Any ROM output is erased, and ROM output specifications
revert to the default state: DON'T OUTPUT

d) Specifications for error commentary revert to the default

state: COMMENT ON ME (but accompany listings if specified).



DRAWING NO. 70248
SHEET (% OF ~&&

The same cleaning up is done whenéver the user has interrupted an action
and asked TEL to carry out a different one before telling it to quit. This
holds only for the so-called major cornmands: ASSEMBLE, COMPILE LINK,
LLOAD, COPY, and others that require the services of major processors or

of sub-systems.

Whenever a inajor operation has been carried to completion, TEL will notify
the user that it is done by printing

DONE
before returning control to him. All Specifications and options associated
with the operation or command return to their default states except for

beforehand listing specifications, which are retained.

5. Entering Programs From the Terminal

Whenever the input designator, ME, is encountered, TEL
types: |

ENTER PROGRAM
and then returns the carrier to the left margin of a fresh line to await the
user's first program statement. Each stétement is terminated by a carriage
return or line feed. Error commentary, if any, follows immediately to the
user's terminal. To indicate the end of his source text, the user depresses
the BREAK key. For purposes of formatting, print columns on the terminal's
platen are in on-to-one correspondence with card columns, and trailing blanks
are assumed for short lines. To facilitate typing of commands and statements,
TEL will assume that the terminal’s tab stops are set to conform to the proéra,m-
ming language being used, and will so simulate them if tab-stop simulation is in
effect. For FORTRAN, a singl‘e”tab stop at print.c}.qltgjl;nn 7 is uéed; for assemblies,
tab stops are set at columns 10, 20 and 37. The gene;a‘lﬁhandling and simulation of
tab stops is covered cofrfpletelyx in'the COC Functional Specifications. Briefly, tabs
are simulated so that longer fields can be used: whenever a tab stop is typed-over
rather than tabbed-to, the next tab is replaced by a single\space. On il’iput, tabs
accompany the source statements literally, and assemblers and compilers will treat

them properly.



DRAWING NO. 70289
SHEET && OF 4

6. Debugging Information

ROM outputs of both compilations and assemblies always contain
information required for subsequent debugging at the assembly-language level
under DELTA, To debug FORTRAN~produc¢ed programs under FDP, furtne:
.nivraon must accompany the compiled code. In tie absence of other speci-
ficatiohs, this information will always be produced by the compiler. Such
information increases the size of object ﬁrograms and siows them down. To
turn off the production of this information for a specific compilation, the user

follows the verb COMPILE by a parenthesized letter "N,

B. Linking ROM's and LM's to Form LM's

ROM!'s are representé.tions (of programs and data) that are
specifically designed for efficient combination with other ROM's; LM's are
representations designed for efficient translation into executable programs ami
loading into core. Both may be pictured as bodies of potential maéhine éode ,
t§ which are appended so~called symbol~tables. Symbol tables list the cor-
respondences between the symbolic identifiers used in the original source-
program and the values or virtual core locations that have been or will be
assigned to them. Many of these symbolic identi‘ﬁé:i'ﬂs are used and refe-red
to solely within the module itself; these are the so-called internal symbols of
the module. Others, the so-called external or global symbols, either identify "
objects within the module that may be referred‘ to in other modules or are used
fo refer to objects defined within other modules. Fuﬁctionally, “these ‘moduleé ‘
are black boxes with labelled connectors dangling from them, some pointing out

and others in. The labels are the global symbols associated with the module;
\



DRAWING NO. 70248%
SHEET4 Y OF /86

the internal connections have all been potted, and are hidden, The process

of linking modules together is one of ""making big ones out of little ones, "

In the process, internal symbols associated with the new module's constituent
parts are potted and hidden, but all global symbols are still visible. 1f the
resultant module is to be itself recombined with other modules to form yet
larger pieces, it is often necessary that it be repotted in such a way that

those global symbols used solely for connecting its original constituents either
be renamed or be made internal to itself so that conflicts with external symbols
of other modules be circumvented. The sub-system SYMCON, described in a
separate document,” provides users facilities for such renaming and fepotting.
These facilities simplify the construction of large programs, since they permit

sub-programs to be linked freely in the face of conflicting naming conventions.

Continuing the black~box analogy, if a module is slit open, a junﬁble of -
internal connections should be visible. If the module has been tested and deemed
fit for production, these connections need not be labeled. However, if the
module is still in the debugging stage, the labels may be necessary. To this
end, TEL permits users to specify when the internal symbols associated with a

module being linked are to be kept with the resulting load ‘module.

1. Simple Linkage-sw
‘ Both ROM's and LLM's may be linked. Their identification (mil)
may be a"f_i_g‘l or the dollar sign ($) which refers to the ROM'produced by the

most recent compilation or assembly.

The sub-system, LINK, is specifically designed for linking and is

described in a separate document. However, most commonplace linkages can
be carried out directly in TEL. -

LINK mfl, mfl, ..., mfl ON lm

LINK mfl, mfl, ..., mfl OVER lm (over an existing file)
LINK mfl, mfl, ..., mfl | (for subsequent loading into core)

The result of any linking operations is always available for subsequent loading

into core whether specified or not (see C, below).

y:Drawving Number 702477.



DRAWING NO. 70248%
SHEET ¢4 OF /%G

2, Load Module Symbol Tables

A load module can be pictured as being comprised of three parts:
a) a body of code; b) a table of global symbols; c) a table or set of tables of
internal symbols, each associated with a specific input module and identified
by that module's file name. This identification permits users who are debugging
under DELTA to define which set of internal symbols are to be brought into play
for their debugging activities. What happens to these sub-tables associated with
a load module when the module is relinked with other modules is described in

3. below.

The mechanisms for specifying when an input module's internal symbols

are to be kept with the resulting load module follow:

a) The parenthesized letters '""NI' preceding an input module's file
identification in the LINK command specifies that internal symbols for that
module are to be left out; the parenthesized letter 'I'" indicates that internal

symbols are to be kept.

b) Once given, a specification holds for all subsequent modules mentioned

in the command until the occurrence of a new specification.

c) In the absence of any specifications at all, all internal symbols are

kept.v

3. Merging Internal-Symbol Tables

Keeping each constituent's internal-symbol table distinct and_
uniquely identified in a load module makes sense when common namihg:conventions
have been repeated in programming the conétituent modules; i,e., when objects
internal to dlstmct modules are frequently identified by the same symbolic
1dent1f1er. When non conflictmg naming conventions have been used the user may
instruct TEL to merge his specified sy'mbol tables into a single__one\?in the re-
sulting load module, This is done by enclosing the 1is~t‘ .of iné.ﬁt,A'modules named‘

in the command in parentheses. Only one level of parentheses nesting is allowed

and either all or none of the input n‘x'c:)dul'ves'ma‘y be merged. This convention was



DRAWING NO. 7024¢
SHEET. 6 OF /§&

adopted in favor of, say, choosing a distinct command for the prdcess, to
maintain uniformity with the conventions of the LINK sub-system, TEL resolves
multiple uses of internal identifiers by assigning to them the object that they
identify in the last input module with which they were associated (reading from
left to right within parentheses). When a load module containing separate
internal-sym501 tables is itself linked in any way, T.EL will merge its sub-

tables into a single one before carrying out the linkage.

4, Searching Libraries -

To resolve any dangling identifiers, users may indicate the Order
and identification of libraries to be searched after all input modulés have been
linked. Libraries are identified by account, and library identification (lid) is
identical to account, The list of lid's separated by commas is appended to the
list of mfl's in the LINK command, and is separated from that list by a semi-

colon, for example:

LINK mlf, mlf, ..., mlf; lid, lid, ...

In the absence of any other specifications, a special UTS library will be seérched
to resolve dangling identifiers, usually those associated with FORTRAN com~-
pilations, This is done after all libraries specified by the user have been
searched. To turn off this final library search, the user follows the command

verb by the parenthesized letters '"NL",

5. End Action and Error Reporting
Options governing error diéplays are given immediately after
the verb, LINK, as a parenthesized code or list of codes:
ND or D.mean do notior do display dangling identifiers
NC. or C:mean do not or do display conflicting identifiers
NM or M mean  do not or do display complete loading map
The normal options are D, C, NM. _After any displays, TEL types "DONE"

and then returns control to the user.



'DRAWING NO. 702489
SHEET 72 OF /86

C. Loading LM's Into Core

Two forms of the command are provided:
LOAD lm |
LOAD

The second loads the result of the last linking opération, which
is always available for loading even when no output file was specified in the
LINK command., The user may specify when copies of the internal symbols
are to be carried with the loaded LLM. by following the command verb.
with a parenthesized letter ''S"., Normally, internal symbol tables are not
“1oaded',' but global symbols are always“loadéd"unless turned off by the paren-

thesized letters ""NG'.

LOAD(S)‘° oo globals and internals '
"LOAD(NG). .. neither globals nor internals
LOAD(S) NG) ...

internals but no globals
LOAD(NG)(S) ... :

D. Initiating Execution

To start execution of the loaded LM, the user types

START '
To load and start execution of an LM, the user types

START lm_
To load and start the result of the last major operation (assembly, com-
pilation or linkage), the user types

RUN
To link, load and start execution of a set of modules, the user types

RUN mlf, mlf, ...
All opfiohs éf the LINK and. LOAD ébmmands may be exercised ih the RUN
command, in exactly the same manners. Normal options are the same except
that a RUN under DELTA or FDP (See E. below) always loads internal and
global symbols with the load module. |

RUN(SNI) filel, file2, (NI) file3



DRAWING NO. 702485
SHEET 7/ OF / 8&

Requests that three files be linked, loaded and started. Internal symbols for
the first two only are to be kept with the resulting load module; all internal

symbols kept with the load module are to be "oaded"with it.

E. Initiating Debugging Operations

Execution of programs can be started under control of either of

the two debugging sub-systems, DELTA or FDP,

RUN DELTA (for assembly-language debugging)
» o e e UNDER ‘ )
START o FDP (for FORTRAN debugging)

Once the programs have been loaded into core, control passes to the

designated debugging package which notifies the user and then awaits his orders.

The debugging sub-systems may also be called when execution has been
initiated without them; usually after an interruptiori by the user or an error comment

by the system,

CALL DELTA
CALL FDP

It must be clearly understood that FDP can do little more than display
and re-assign values if applied to programs that have not been conupi.led under

the debugging option, and can't even do that if symbol tables have not been loaded.



DRAWING NO, 702489
SHEET %) OF /R

F, File Management

A few simple operations on dAisc files can be ,carvried out directly
in TEL. Full file=management and information~transfer capabilities are
provided by the PCL sub-system. In TEL, disc files may be copied O.N new
files the printer or the termindl, may be copied OVER an existing file, .and

may be deleted

COPY f£id OVER fid
COPY fid ON fid or PTR or ME
DELETE fid

Once started, deletions and copies on or over a disc file cannot be interrupted
by the user; copies to a printer or to the terminal will be aborted by interruption.

TEL will type

REVOKED BY INTERRUPT
in such cases. When an operation is carried through to.completion, TEL
prints

DONE

before returning control to the user.
G. Editing
Line~at~a~time composition and editing of files of sequentially
numbered lines is provided by the EDIT sub-system, which can called in

three ways.,

CALL EDIT .
EDIT fid (an existing file)
ACCEPT fid (a new file)

In the first two cases, the user is connected to EDIT, which identifies itself
before returning control to the user. In the second case, EDIT has already
been apprised of which file is to be edited, and has opened that iile for updating.
In the third case, EDIT assumes that the user wishes to type in a new file, a

line at a time, beginning with line number 10 and continuing in steps of 10.



DRAWING NO. 702489
SHEE_’lr 73 OF /4

EDIT responds byﬁ '[")rinting ez;éh line's number at the left margin and then
waiting for the user to type in the line itself. Although EDIT is invisible to
the user during this operation, it is explicitly available to him for corrections
and other editing operations., To end the operation of accepting a new file, the

user must depress the BREAK key to ihterrupt EDIT, and then type
END
after EDIT returns control to him,

H, Submitting Batch Jobs

Control-card programs destined for submission to the batch queue
can be composed and filed away on-line in the EDIT sub-system. These may

then be submitted to the batch queue:

BATCH f{id
UTS will respond by assigning the batch job an identification (J_lii) and no.tifying
the user: ‘

JOB jid SUBMITTED date~time
The procedure for assigning priorities to remote_iy-submitted batch jobs will be
defined concurrent with the development of the Remote Batch Functional Speci-

fication which is in process. The user can interrogate the status of remotely-

entered jobs by typing:

JOB jid?
At the very least, UTS will be able to tell the user whether the job has com-~

pleted or whether it is still in queue. The ‘user can cancel an unfinished or

unstarted job:
CANCEL JOB jid

I. Calling Sub-Systems

i
All sub-systems are called by typing the verb "CALL" followed by

the sub-systems 1dentif1cat10n, e.g.,

CALL PCL



DRAWING NO. 702443
SHEET 74 OF /&

All sub-systems will respond by identifying themselves; e. g. ,
PCL HERE

and then typing their identifying mark at the,left margin of a fresh line before
returning controi to the user. All sub-systems are described in separaté part;
of these specifications, The marks are: EDIT (%), PCL (<), FDP (/),
SYMCON (:), LINK (:),BASIC (>), none for DELTA.,

J. Continuing and Quitting Major Operations

Whenever a major operation, a sub-system or an executing user's

program has been stopped or interrupted in any way, the user can:

1. Take any of the minor actions described in the section below,

and then request TEL to continue from the point of interruption by typing

CONTINUE _
or from a point identified by a global symbol (o&: a hexadecimal symbol) by typing

CONTINUE symbol
2. Give up completely on th.'e operation by :‘typing
QUIT |
In the latter case, TEL cleans things up and then returﬁs controL to the user..

3. Initiate a new major operation. In this case, the effecbt is as
if he had told TEL to QUIT before giving the new command. The sole exception
to this rule of automatic QUITfing occurs when the user calls one of the debugging
systems (DELTA, FDP) ,d’urir_xg execution of his program. In this case the user's

program will have to be initiated again under control of the debugging svstem.



DRAWING NO. 702459
SHEET 75 OF /¥

MINOR OPERATIONS

A. Checkpointing Sessions

During interruptions of execution, core images of programs may
be saved on the disc files for subsequent recall and continuation. To save

and file away a core image:

SAVE ON fid

SAVE OVER fid (over an existing file)
The current status of the user's files is not copied, and the user must be
aware of any on-going but interrupted input-output activities, In brief,
checkpointing will work well so long as the user knows what he is doing,
To recall a checkpointed core imagé for continuation, the user types

GET fid »
At this point, the user is -~ to within file changes and input-output activities -=
exactly where he was when he SAVEd, TEL will respond to both commands by
typing | |

DONE

when it has finished,

B. Assigning Files and Input-Output Devices

The assign command of BPM is provided in a simplified and
restricted form, mainly to allow users to connect files and input-output
devices to their running programs. Devices and files are equated in users'
programs to so-called data-control blocks (dcb) that make the programs
'"device independent'’. Assignment,of specific devices and files to dch's
can be made at any stage of the game, even after execution has begun, TEL
will notify the user whenever it"encountex."s an unassigned dcb during execu-
tion of a program by typing

ASSIGN deb =7
The user assigns things, to<_:'l_9_b__’s by typing

ASSIGN dcb = fid or device code or tape reel



DRAWING NO. 702439
SHEET 74 OF /&

INDEX OF COMMANDS - TEL

ACCEPT Calls EDIT and accepts a new file from the terminal
ASSEMBLE Assembles specified source program

ASSIGN Assign file or device to a DCB

BATCH Enter specified file in batch jobstream

CALL Make the specified sub-system available
CANCEL JOB Cancel the designated batch job

COMMENT Directs error commentary to specified device
COMPILE Compiles Fortran source program

CONTINUE Continue processing from point of interruption
COPY Copy a file to specified device

DELETE Delete the specified file .

EDIT Calls the EDIT sub-system

GET Restore previously saved core image

LI,NK" - Form load module as specified
| LIST Directs listing output to desired device

LOAD Bring designated load module into core

OFF 'Disconnects user from system

OUTPUT - Directs object output to specified device

QUIT Terminate current operation

RUN Load specified load module and start execution
SAVE Save current core image on designated file
START Begin execution of program just loaded

%



DRAWING NO. 70289
SHEET 77 OF /& &

VII. Text Editing Sub-System (EDIT)

TABLE OF CONTENTS

INTRODUCTION o | 78
A, Calling EDIT
B. Operational States
C. Summary of Commands
DESCRIPTION | | 8l
A. Conventions and Terminal Operation ‘
B, Defining the Edit File
1. AGCEPT
2, EDIT
C. Text Modificatibn
1. Tabs (T)
2. Insert (I)
3. Renumber (R)
4, Delete (D)
5. Print (P)
6. Comment (C)
D. File Maintenance
1. COPY
2, DELETE
E. Termination of EDIT ‘
F. Language Syntax
EDIT FILE STRUCTURE (Compact) 91

INDEX OF EDIT COMMANDS 92



'DRAWING NO. 702-.35
SHEET 778 OF /8¢

INTRODUCTION

’l:he UTS sub-system, EDIT, is a line-at-a-time text editor designed
for on=~line creation, modificatioh, and handling of programs and other bodies
of information. All EDIT data is stored on disc in a special file structure called
Compact., This structure (described in‘a separate section) permits EDIT
to directly access blocks of data EDIT fuhctions are controlled through
single line commandssupplied by the user, | The command language provides for
the insertion, deletion, and replacement of lines of text. Selective printing
and renumbering commands, and a corhmand to simplify commentary editing
for assembly~language programs are included. File maintenance commands

are also provided to assist the user.

A, Calling EDIT

An on-line user of UTS may call EDIT using one of three commands
provided in the Terminal Executive Lat;guage (TEL).

l. CALL EDIT

2. ‘E"DIT an existing file

3. ‘ACCEPT a nev;/“fi:le
In all cases the EDIT sub-system is brought into play. The first case represents
a direct call to EDIT, which in turn, responds by typing "EDIT HERE" and ther
by typing its identifying asterisk (*) at the left margin of a fresh line. At this
point, the user may enter his next cbmnland, The second case allows theku‘ser
"to call EDIT for the purpose of updating an existing file. EDIT first opens the

specified file and then responds to the user as in the first case.

‘The third case permits the user to call EDIT for on-line creation of a
text file., EDIT opens the specified'file and responds to the user by typing the
first line number at the left margin of a fresh line, The user is then expected :
to enter the first line of the ,new:file. "EDIT" and ”ACC_EPT" are included as

part of the EDIT command language and are de scribed further below.



DRAWING NO. 702489
SHEET 77 OF 8¢&

B. Operational States

EDIT, as a processor, operates in one of two states: the command state
or the active state, The command state is defined as the time in which EDIT
is accepting or processing a command. This state is entered when EDIT types
its identifying asterisk (*), returns control to the user, and awaits the next com-
mand. On the other hand, the active state is defined as that time in which EDIT
is executing commands, processing text, or accepting text from the user. This
state is entered when a command starts execution and terminates at the comple~
tion of the command. When carrying out a command, EDIT may be processing
information while in control of the keyboard, or may have returned control to
the user so that he may enter text data. Which of the two situations holds is

always clear to the user.as described under Text Modification,

C. Summary of Commands

/

'I‘hel no.taﬁion "fid" in the following definitions represent file ideziti-v
fication in the form: namew~account-password. |
1. COPY fid ON fid (n, k) Copies an existing file to a’
‘ new file. The specification
(n, k) allows resequencing ¢f
line numbers starting at n in

increments of k,

2. COPY fid OVER fid (n, k) "~ Same as above with the exception

that an existing file is copied

over.
3.  DELETE fid ' Deletes an existing file.
4.:: : EDIT fid ~ Specifies an existing file to be
| updafed.
5. ACCEPT ﬁd' (n, k) ) \D,efi'neAs a new file for creation.

(n, k) indicates desired line

number sequencing.



10.

11,

12.

13,

P(N) n,m

R nm

~
v

DRAWING NO, 702489
SHEET &2 OF /&7

Inserts lines of text starting

at line number n in increments

of k. EDIT displays each line

number and awaits text data.

The first line n may be a replace-

ment.

Same as above except line

numbers are not displayed.

Delete lines n through m

inclusive.

Print at console, with line
numbers, line n through m

inclusive,

Print at console, without line
numbers, lines n through m

inclusive,

Re-numbers line n to the new |

number m.,

Insert commentary for an
assembly language program

starting at line n. EDIT prints

each lipe number and awaits the

commentary text,

Set software tab stops for Fortran

{F), Symbol and Meta~Symbol (M),

and a short form of Symbol-and
Meta-Symbol (S), . .



DRAWING NO, 702489
SHEET#&/ OF /g

DESCRIPTION

A. Conventions and Terminal Operation

For purposes of clarification, certain conventions have been adopted
throughout this document. These, concatenated with associated terminal operations,

are given below:

1. Underlined copy in the example is that generated by the computer.

Copy not underlined represents that typed by the user.

2. The line numbers displayed by the Insert (I) or Comment (C) commands
are always right justified and blank filled to five characters. Thus, the first input
position (card column 1) is displaced to column 7 on the teletype. For purpose of
the examples, only the significant (rightmost) portion of the display is shown as

computer generated copy.

3. Control characters are represented in this document by an alphabejtié
C . ’
character and a superscript ¢, e.g., E . The user simultaneously depresses the

alphabetic key and the Control key (CTRL) to obtain this function.

4. Carriage Return. The Cr notation following each line in the example
rep_resents. a carriage return. Depressidn of this key informs the computer that
an inpuf line is terminated.. A carriage return (Cr) will automatically cause the
computer to give a line feed. The line =feed (Lf) key operates identically to the CTr

for the EDIT processor,

5. Escape (EC). This key enables the user to temporarily escape to

the executive command level. Escape may be applied at any time when the user
has control of the keyboard. The current status of EDIT is retained and may be

re~-activated using the executive "CONTINUE'" command.

6. RUBOUT The last input character may be deleted with this key.
‘A\ is echoed to the user, N RUBOUTS echo N\!'s and delete the previous N character

7. Cancel (XC) Application of this key cancels the current input line,

A+ is echoed to the user followed by a Cr and Lf{.



DRAWING NO. 702489
SHEET ¥ OF /&

8. BREAK This key, indicated by Bk, causes an automatic interrupt
in current EDIT activities. When applied during the command state, the current
command is ignored as if X had occurred. 'Applicatic‘m during the active state
causes EDIT to terminate what it is doing, pass control to the user, and revert
to the command state. A Cr response is given if used during input. Effects of
the interruption or the termination vary with the command being executed and
are discussed in detail with the particular commands. If no mention is made, ]gk

is assumed to have no effect on the execution of that command.

B. Defining the Edit File

Prior to utilizing text editing commands, the user must first identify
a file to be used. The "EDIT" and "ACCEPT’; commands perform this function
and are available at both the executive and EDIT comm'an.dv_ ie.vélé. Wnen ap\pi’ied(-
at the executive level, EDIT is automatically cﬁéllé.df and appriséd. o.f" theconmlavc*
parameters., At this point, the source of the command is irrevelevant to its
opgl%';.'al;t‘ion, and the following descriptions are given in this context. An existing.

edit file is forced closed by either of these commands.

1. ACCEPT To create a new text file through EDiT, the user types a

conﬁhand of the form:
ACCEPT fid (n, k)

Where fid represents name-account-password of a new file, n is any
line number, and k is a line number increment. After receiving this conlmarid;
EDIT checks the file specification aga;nst the user's file directory. If a match
is found an appropriate diagnostic is given to the user and he must re-enter the
command, _Qt"herwise, the file"is opened and EDIT executes the implied insert
(I n,k). - Thlb is indicated when EDIT responds by typing the first line number (n)
at the left margin of the next line and awaits the first line of text. For example:
* ACCEPT SOURCE (10,20) Cr

10



DRAWING NO. 702489
SHEET £3 OF /24

The file named “SOURCE" is opened under the user's account with no password.
An insert (I 10,20) is then simulated giving the line number response (10). The
user may now enter his first line of text. The Insert (I) command describes

the subsequent steps for file creation in detail.
2. EDIT Updating of an existing file requires a file definition of the type:
EDIT fid

where fid represents name-account-password of an existing file. The file
specification here is also checked against the user's directory. An appropriate
diagnostic is given if a match is not found and the user must re-enter the command.
If a match is found, the file is opened for updating, and thé user may type his next

command following the i"dentifying'v* of the commmand state,
For example:

*EDIT SOURCE~.PLEASE Cr

sle
5

After receiving this command, EDIT located the file "SOURCE'" under the user's
account. The password "PLEASE" was compared with password of the file and
"SOURCE" was di)enéd for ﬁpdating. EDIT then re-entered the command state

'suyggested by the * response.

C. Text Modification

Once the user has defined the edit file, he may desire to make
insertions, deletions, or replacements to update his file. Several commands
are g,vail'able in EDIT to assist him in these operations,
1. Tabs (T) In addition to the standard algorithm for setting software tabs
in UTS, this command permits the user to set software simulated tab stops for
that input or output in Fortran, Metasymbo“l, or Symbol format. The commanid

“is of the form:

T M
: S



DRAWING NO. 702489
SHEET&Y OF /& &

where F implies Fortran (column 7), M implies Meta-Symbol or Symbol (columns
10,19,37) and S implies a short form of Meta-Symbol (columns 8,16, 30). After
receiving this command, EDIT transmits the required settings to COC routines

which perform the actual tab simulation. The user can turn on and off tab simu-
lation with special terminal key strok?s as described in the Terminal Executive
Language specification (TEL). The settings transmitted are displaced by six
characters to allow for ling number display giving F(IS), M(l16, 25, 43) and S(14, 22, 36).

Consider the example:

#*T M Cr

sl
R

EDIT transmits the settings for columns 16, 25,43 corresponding to actual input

columns 10,19, 37 for Metasymbol.

2. Insert (I) The insert command may be used to insert or create one
or more lines of text; or to replace a line followed by one or more insertions.

The generai format is of the form:

I nk
where n is any line number and k is a line number increment. Upon receiving
this command, EDIT enters a special "accept text'" mode in which one or more
lines of text may be inserted or created starting at line n ‘and proceeding in
sequential s/tieps of k. EDIT prompts the user to type each line by displaving the
associated number at the left ma/rgin.l* The user then enters desired text following
the line number display, términating the line with a Cr. If the first line (n) exists,
it will be replac‘ed, however, successive line numbers, created by increments of
k, must not oveJrrun the nug}ber o_i;' the next existing line. Termination of the |
"accept text" m,’ode is accomplished by replacing the last Cr with Bk. Note also
that if tabs are to be used with input text, the é’ettings must take into account the

6 character disTlacement required for line number dis;ﬁlay.



DRAWING NO. 70248¢
SHEET &5 OF /& ¢

Consider the example:
*130, 2Cr |
30 ONLY THE FIRST LINE CAN BE A REPLACEMENT Cr
32 Cr |
34 LINE NO. 32 WAS SKIPPED Cr

36 END INSERT WITH THE BREAK Bk

The line (if any) with the large'st number < 30, say X, is located in the
current edit file. . Lines 30, 34,‘and 36 are then inserted following X if X<30 or
replac1ng X if X ~30v The line number 32 was purposely skipped to allow for a
futurg ms,e,_rtmn : If the nbxt line in the file had been < 36 an overrunve*ror would
have. Sccurred Note that the insert command was termmated by the Bk key end-
ing" 36 Smgle line 1nse:;t1ons or’ replacements can be accomphshed by’ om1ttma‘

the mcrement k as in the example

*150Cr
50 SINGLE LINE INSERT OR REPLACEMENT Cr

e . .
" [N

—

S

Line 50 in the edit file is located. If it exists, it is :eplaced, if not, the
line is inserted in proper sequence. Sometimes it is desirable to sﬁppress line -
number feedback in order to obtain extra 1ength'1ines, or just as a convenience
when entering relativély error free text. The parenthetical expression (N)
following‘the;cgmmand letter I suppresses {he lide number displaying. For

example: °

*1 (N)10, 10 Cr
LINE NUMBER DISPLAY MAY BE SUPPRESSED Cr
USING THE (N) OPTION Bk

b . . : R
The user is prompted for each line of text by output of a bell character. . EDIT‘
operates izsing the impliéd line numbers and thus, merges lines 10 and 20 into

the edit file,



DRAWING NO. 702489
SHEET 8¢ OF /&

3. Renumber (R) Use of this command permits the user to renumber a

line that would normally be overrun during an insert (I) operation. The command
is of the form: |
R n,m
where n is any existing line number and m is the desired line number. EDIT
locates line n within the edit file and replaces the line number with m. The commandc
must not take the line out of proper monotonic .sequence. If n does not exist, the

user is notified by an appropriate diagnostic. Consider the example:

#R 30,39 Cr

%

The existing line 30 is located and renumbered to 39. This allows nine additional
numbers for insertions. If the next existing line after line 30 had been < 39, the

command wou_ld have been ignored and an err;?r diagnostic given,
. R . .

4. Delete (D) The user may delete one or more lines of text through

the following command:

D n,m
where n and m are any line numbers with n <m. All lines X withn < X < m will

be deleted in sequence from the _edﬂ: file. For example:

* D 30,36 Cr

*®

This command causes lines 30~36 to be deleted from the file. If no lines had

~,

existed within this range, the command wbuldhave been ignored., Single line

deletions may be specified by omitting the second line number, for example:

*°D 10
S

Line 10 located and‘deleted from the edit file. If'line 10 had not existed, the

command would have been ignored.



DRAWING NO, 702489
SHEET &7 OF /¢ .-

5. Print (P) This command enables printing of one or more lines

of consecutive text at the user's console. The command is defined as follows:

P nm
where n and m are any line numbers with n< m. After receiving this command,
EDIT prints all lines with number X, where n< X <m, in sequence at the user's '
console. Associated line numbers are printed at the left margin of each line.
Execution of P may be terminated following the output of the current line by
depressing the Bk key., Assuming the insert (I) example descrbibed above still
exists, consider the following:

* P 30,36 Cr
30 ONLY THE FIRST LINE MA‘Y BE A REPLACEMENT

34 LINE NO. 32 WAS SKIPPED
36 END INSERT WITH THE BREAK

*
Lines 30, 34, and 36 were located within the specified range and were printed with
corresponding line numbers. Line numbers may be suppressed from the outlput
as in the following example:

* P (N) 30,36 Cr

ONLY THE FIRST LINE MAY BE A REPLACEMENT

LINE NO. 32 WAS SKIPPED

END INSERT WITH THE BREAK

als
b

In addition, single line printouts may be obtained as follows:

#*P 34 Cr |
34 LINE NO. 32 WAS SKIPPED
# P (N) 34 Cr | o
LINE NO. 32 WAS SKIPPED

i




DRAWING NO. 702489
SHEET 88 OF /&

6. Comment (C) This command allows the user to insert or delete

the comment field of program code formatted for Symbol or Meta-Symbol. The

r

command takes the form:

Cn
where n is any line number. As in the insert command (I), EDIT enters a sﬁecial
"accept text" mbde. Line numbers of ekisting lines, starting at the first line X,
where X = n, are displayed in sequence for possible comment modification. Fol-
lowing each line number display, the user is expected to supply a comment, indicate
no change, or delete the comment field, A comment is entered in the same manner
as any other line of text. A blank line (one or more blanks) causes the_ comnient
| to be deleted, and a null line (Cr-only response) indicates no change in the
comment field. Termination is implied by depressing the Bk key instead of the
Cr on input. Assuming the edit file consists of a Meta-Symbol or Symbol pz'o;gram,

consider the example:

*GC10Cr v
10 TEST FOR ZERO Cr
20 b Cr

30 Bk

se
e

The comment at the existing line 10 was replaced_ by "TEST FOR ZERO'". Rlanks
were entered into the comment field of line 20 and the third line 30 resulted with
no change. Bk was depressed following the display of the number 30 which flagged

EDIT to return to the command state after completionv,of the current operation,

D. ' File Maintenance

Two commands are available within EDIT to assist the user in file main-
tenance. They permit copying, deleting or renumbering of complete edit files

{Compact type) retained on disc.

1. COPY To copy an existing file for the purpose of backup or re~

numbering, theé user enters the following command:

COPY fid ON f{id (n, k)



DRAWING NO. 7024679
SHEET &7 OF /8

where the first fid represénts name~account-password of an existing file;

the second fid represents name~-account-password of a new file; and (n, k) tells
EDIT to resequence the line numbers starting at n in sequential steps of k,
Depression of the Bk key during éxedution of this command causes the copy

operation to be cancelled, A common example could be:

* COPY AON B (10,10) Cr
File A was located in the current user's directory and opened for input. File B
was opened as a new output file, EDIT then copied the complete file A to B, re~
numbering each line starting at 10 in sequential steps of 10. Upon completion .
of the copy, both files were closed and EDIT reverted back to the command state.
The command also permits copying over an existing file. This is demonstrated

by the example:

COPY C~0986 OVER A Cr

| 3¢ |

In this case file C under the account 0986 is written over the existing file A, uhder
the account number of the current job, with no resequencing of line numbers. A

Bk character cancels the operation with no effect on the existing file A,
2. DELETE files may be deleted using this command which is of the form:
DELETE fid

where fid represents name-account-password of an existing file. Following the
entry of this command, a con firmation message of the form ';DELETE fid?" is
typed. The user must then type YES to confirm the deletion or anything else to
cancel it. If YES is entered, the file is deleted and the disc space released, Bk

cancels the command if applied prior to the confirmation., For example:

* DELETE SOURCE~~PLEASE Cr
DELETE SOURCE-~PLEASE? YESCr

wha
3
—

Upon receiving the command, EDIT located the file in the user's directory and re-
sponded with the confirmation message. After the YES reply, the file SOURCE

was deleted.,



DRAWING NO. 70248*
SHEET 40 OF /&&

E. Termination of EDIT

In order to complete final file updates on disc, it is necessary for the

user to indicate when he has finished with EDIT functions. The command END

fulfills this requirement and also returns control to the UTS executive level.

Prior to exiting the sub-system a termination message is given to the user.

For example:

g
b
—

END Cr ,
EDIT PROCESSING TERMINATED

This command closed any open files and forced EDIT to return to the executive

command level. The Executive responded with it's identifying mark (!) indicating

" the command state.

F. Language Syntax

The EDIT command language is designed to be free form, with a few

restrictions imposed for simplicity in implementation and use. These include:

1.

All commands must comply with the general format of the particu}yar

command.

Blanks are allowed preceding or following an argument field. Im-

bedded blanks are not permitted.

At least one blank must follow each control command verb {COPY,
ON, ACCEPT, EDIT, ...) and also proceed an imbedded command
verb (ON). Single character commands (I, C, P,...) do not require

4

this blank delimiter.

Continuation between commands is not allowed.

- Line numbers must be within the range 1< n< 99999



DRAWING NO. 70249
SHEET ¢/ OF /g

Each input command is edited for format, content and completeness. The
user is notified by appropriate o}n-line;feedback of diagnostic messages. At this
point the user may re-enter the command or confirm the diagnostic condition if

given that choice by EDIT,

EDIT FILE STRUCTURE (Compact)

Files used by EDIT are stored on disc, ina special structure especially
designed for compact storage, fast random access, and easy editing of text,

The file structure (Compact) has the following features:
1. The file consists of keyed physical records, 512 words long.

2. Within the 512 word block, sub-records (1-64 words long) are
preceded by one word of identification, Byte zero of this word
carries the byte count for the sub-record and bytes 1-3 are used

for a sub=record identifying number (line number),

3. The identification word is kept on a word boundary to assure that

sub-records also begin on a word boundary.
4. The blocking buffer is terminated by a zero identification word.
5. Trailing blanks are removed from sub-record text.

6.. The key for each 512 word block is the line number of the first
sub~record within that block.

This type of file structure enables EDIT to direttly access large blocks
(512 words) of text data, and thus substantially reduces I/0O time for most upﬁates_
In addition, line number identifiers attached to each sub-record permit inserts

without resequencing.



DRAWING NO. 702-89
SHEET ¥ OF /3

INDEX OF EDIT COMMANDS

ACCEPT Accept a new file .

C Comment Symbol or Meta-Symbol ‘sourc'e text
COPY Copy a file ON OVER a file

D Delete lines of text

DELETE Delete a file

EDIT Edit an existing file

END End EDIT processing

I Insert or replace lines of text

P Print lines of text

R Re=-number a line of text .

T Set simulated tabs for Efortran', Symbol or Meta-Syn‘fubol



| DRAWING NO, 702419
1 SHEET %3 OF /#¢
(o '

VIII Assembly Language Debugger (DELTA)

TABLE OF CONTENTS

Page
INTRODUCTION 34
A, Calling DELTA ’
B. Symbol Tables
C. Command Summary
DESCRIPTION ' f 102

A, Syntax, Symbols, and Such
1 Comménd Delimiters
2 Fixing Typing Errors
3. Symbols
4 Special Symbols
5 Input of Explicit Co’hstants
6. Expressions '

7. Expression Evaluating Algorithm

B. Memory Location Display: The / command
C. Expression Evaluation: The = command _
D, Memory Modification: The Cr, 1f, t, and tab commands
E, Output Format Control '.
F.  Execution Control: The ;X ;G and. ;P commands
G. Breakpoints: The ;B and ;D commands
1. Instruction breakpoints
2. Data breakpoints v
3, BREAK key breakpoints
H. Memory Searching: The ;W and ;N commands _
) 1. Symbol Table Control: The ;U ;K ;S ! < >gomman§s : it
J. Miscellaneous Commands: The ;G ;P ;X commar;ds .
K. Additional Commands for the Executive «V_ersi;)t;':. The A;Q.a‘r;ﬂd_“:;_J;c‘orumands
L. :“E'rrox__"s l

-

INDEX TO DELTA COMMANDS | . 126



DRAWING NO, 702489
SHEET 2% OF /3 &

INTRODUC TION

DELTA is specifically designed for the debugging of programs at the
assembly-language and machine-language level. It operates on object pro-
grams and the tables of internal and global symbols accompanying them, but
does not demand that the tables be at hand. With or without symbol tables,
it recognizes machine instruction mnemonics and can assemble, on an instruction-
by-instruction basis, machine language programs. Its main business, however, is
to facilitate the activities of debugging. These are:

1. The examination, insertion and modification of elements of
programs: instructions, numeric values, encoded information -- data in

all its 'repres entations and formats.

2. Control of execution, including a) the insertion of breakpoints

into a program, and b) requests for breaks on changes in elements of data.

3. Tracing execution by displayi_h'g' infor'xn'at‘i.'dn‘a.,t; de51gnated

peints in a program.

4. Seariching programs and data for specific elements and sub-

elements.

To assist in the first activity, assemblers and compilers of UTS will include in a
program's table of symbols information about what type of data each symbol repre--
sents: syrnbblic instructions, ‘decimal integers, floating point values, single and

doub‘le precision values, EBCDIC encoded informétion, and others.

_ The command language of DELTA is crypt{ic and highly encoded, but easily
learned and used by the professional programmer‘.‘ It is substantially identical
. to the DDT language family which has been in use on a variety of machines for

‘.thmejrla st decade. .



" “Two versions of DELTA will be produced:

s

| ROM's but some LM's) The loader ‘language allows the user.to isp

DRAWING NO. 702489 '
SHEET £% OF /8 &

1. a user version with codes and restrictions appropriate
to multiple on-line users operating in the slave mode from teletvpe consoles,
and | |
2. an executive version for system debugging which will operate in

executive mode under control of one of the operator's consoles. This will not be

. . . . !
resident when UTS is in service, ;

A, Calling DELTA

DELTA may be associated with the execution of a user's prograrﬁ
either at the time the user loads his program inte core for execution or by
direct call after execution has begun. The two executive level commands are:

1. To load the user's program in association with DELTA:

RUN program naihe UNDER DELTA or
START program name UNDER DELTA
'**\ Hogoii o Bp o g fed f[‘\ JAV YL mnoae 1)’4 Iﬁ\ )
Control goes to DELTA and the user ma,r examine and modxfy before passing

control to the program.

2. To bring in DELTA after a program has been initiated,
the user must return to the executive level by the teletype console command E®
(control shift and E key depressed together), and give the executive command

CALL DELTA.

A

DELTA also may be brought in and started without prlor program le d“p.g: for
R Y _..1 \ 1A'y e Ai l‘(’“"‘_'
writing and checking of short simple programs 'and other purposesj ' "‘) ot

To make it possible to call DELTA in this way, a segment of v1rtua1 address

space must and has been reserved for DELTA.in h1gh vu-tual addresses A \, .‘ J /
similar reservation apphes to the executive language processor, g} A Prac :
n “”’L’l

B. Symbol Tables | ‘ ; (s .{:;1‘_;&

assembled units (ROM’s) which have been* combined by the' LIN,K puocess. mto '
a load module (LM)., During linking, a global symbol table consistxng of all TP

symbols which have been so declared by a DEF directive is created for the

load module. and an-internal-dymbal table is created for each, unit, (m: tly.




DRAWING NO. 702449
SHEET %% OF /8

internal symbol tables should be retainé_:d. Internal symbol tables are named
by the file name of the source ROM; that is, LINK writes a symbol table for
each ROM input under a key identical tc the input ROM name. A simple Link

Command is shown below:
(\)m;n\) | ’I\
LINK A, B, C,,(NS) DONE ="

In this case, the load module E is created for eicecution; and symbol tables are
retained for units A, B, and C, but not for D. For further examples of linking

operations and a complete list of optiohs, see the loader specification.

C. Command Summary

The following summary lists the DELTA commands and facilities
in eleven broad groupings:
1. Evaluating expressions consisting of symbols, constants,
special symbols, and the operators plus and minus (+-). |
2. Commands for printing the contengg,of memory cells and
opening them in preparation for change. R
3. Format codes which enable the user to control the g_u_g)_u_t
format used in the evaluation and display commands of Group 1) and 2).
‘4. .Commands fo:._stpring new contents in open merﬁory cells.
5. Format codes .\.J.s}hich control the conversion of constants
typed by the user.. ” | ‘
6. Special symbols used to examme machine ﬂags and to con-
trol operating bounds in DELTA,
7. Commands to insert in, delete from, change completelv
and otherwxse control the symbol table used by DELTA,
8. Commands to initiate and continue executionl‘.‘. '
9. . Cqmmands to insert, ‘delete, and control bre;akﬁoi_nts.
10. Commands‘for searching memory. B

11. s Mode fs etting commands.



DRAWING NO. 702459
SHEET 97 OF /§&

In outlining the commands, the following conventions are used in depicting the

format of the order typed by the user:

e Special characters, numbers and upper case letters stand for

themselves. Thus in the command e;G the user actually types the semicolon

and the G.

e Lower case letters are placed where the user has a choice of
things to type. The letter e alone or postcripted is used to stand for any ex-
pression consisting of symbols, special symbols, constants, and the operators
plus and minus (+-). At times other lower case letters are used to stand for
expressions when some additional mnemonic content seems desirable. -Examples

are n, loc, val, m.

e The letter f stands for one of the format characters. Abbrevia-

tions for user key strokes are:

Letters used in text User Keystroke‘
cr carriage return
1f _ line feed
- shift and O
’ shift and N
\ _ shift and L
tab ‘ - control and I

bk BREAK

Most of the DELTA commands are terminated (and thus delivered fi-orh UTS I/0-
to DELTA) by the carriage return (cr) character; however, certain other char-
acters also delimit commands to allow dialog within a single typed line. The

command terminating characters of DELTA are cr, 1f, }, tab, /, and =.

Whenever DELTA gives'control of the terminal to the'user for input, it sends

its tprompt' character,,the bell, to the .console.



DRAWING NO, 702483
SHEET 98 OF 54

3

DELTA Commands

1. Expression Evaluation

e= Evaluates and types the value of the expression e in the
most appropriate format.

e(f= Evaluates and typés the value of e in format f (see 4 below).

2. Displaying and opening memory cells

e/ Displays the contents of a cell e in the most appropriate
format. The cell is open; that is, it may be changed.

e(f/ Displays the contents of cell e in format f.

el, e2/ Displays the contents of cells el through e2 in the most

or appropriate format or in the specified format. Cell e2

el, e2(f/ is opéned. '

e\ Opens but does not display cell e.

/ Slash alone following a displayvdisplays the cell addressed
by the display. (Displays the cell a.ddressed by the last
quantity typed (;Q) ) ' ' ‘

o S
3. Storing in open memory cells : c A b
e cr Stores the word specified by e in the currently open cell
and closes the cell. | o
e 1f Stores e in the currently open cell, closes it, and opens and
displays the next higher addressed cell.
et . Stores e in the cgrren&ly open cell, closes it,-‘a‘r}d; opens and

displays the next lower addressed cell.
e tab Displays and opens the cell addressed by the last quantity
typed (;Q). If an expression precedes the tab it is stored

in the open cell.

Format codes for / and = commands

symbol table format type

,‘hexaé.eAc.i:mal'-words
signed ,d.eé:ﬂi,‘m‘arl.: integer
EBCDIC characters



DRAWING NO. 70289
SHEET 2/ OF /&

symbolic instructions with symbolic addresses
symbolic instructions with hexadecimal addresses
half-word addresses

binary (base two)

double word decimal integer

Eshort floating point number

t g3 @m > W

'long floating point number

sets the default format for / commands to f

2
N
I

sets the default format for = commands to f

5. Input conversions and expressions
Expi'essions for evaluation, display, and storage are formed
from the program symbols, explicit constants, and special symbols using the

operators plus and minus (+-).

The conversions that may be specified for expvlicit constants are: 1) hexadecimal
when introcuded by a " ("'BAD), 2) EBCDIC characters when surrounded by '

("BAD'), and 3) decimal when the constant consists of all numerics (1234).

6. Special Symbols -
Special symbols are recognized by DELTA and may be used in ex-
pressions. Used as commands, they set the value of the corresponding symbol

table entry.

$ or . last opened cell

;I  instruction counter

;C condition code .
F floating .controls

M search mask |

i1 lower search bound

;2 upper search bound

iQ last quantity typed



DRAWING NO. 702489
SHEET /02 OF /&6

7. Symbol Table Control

s;S Select internal symbol table s.

;U Display undefined symbols.

e(f<s> The symbol s is assigned location.

s(f! The symbol s is assigned the value of the currently open
cell ($) and format code f.

s;K Symbol s is removed from the sy'xhbo]. table.

K Removes all symbols except instruction mnemonics.

8. Execution Control

e;G Begins execution at e.
e;X Executes the instruction e (executive version only).
P Proceed with execution.

9. Breakpoints
th
e,n;B  Set the n  instruction breakpoint at location e.

e, n, loc;B
Same as above but display contents of loc when the break occurs.

e,n,loc;BT
Same as above but proceed from the break after printing (trace
mode).
. th, . .
n;B Remove the n  instruction breakpoint.
O;B Remove all instruction breakpoints.

e,n,val, m;Dr or e, n,val, m;DT<
Causes a data break to occur whenever the contents of cell e

(masked by m) are in-relation r to v}al.b

The relations are:

A for all changes in e
L e<val

E e ’=‘va1

G . e>val

GE e>val

NE  es#val

LE™ esval



n;D
O;D
P

n; P

bk

DRAWING NO. 702453
SHEET ///OF /5&

Remove the nth data breakpoint.

Remove all data breakpoints.

Proceed from the break.

Proceed and do not break until the breakpoint has been
passed n times (instruction breékpoints only).

Proceed automatically from the break after printing.
(Set 'trace mode!').

Break at the current execution point (analogous to the

machine's stop switch).

Output produced when a breakpoint is reached is n;B>loc where n is the break-

point number and loc its location (or the location of the instruction modifying the

~data). If a display is specified (data breaks always display), the output prdduced

is:

n;B>loc addr/contents

n;D>loc  addr/contents

10.

Memory Searching

Memory between the bounds specified in ;1 and ;2 (initially set to the

lower and upper limits of user memory) are searched under the mask in :M

(initially all ones).

e;W Search for and display words vwhich match e under the mask ;M.
e;N Search for and dispiay, words that do not match e.
e;l Set the memory search lower bound to e.
e;z Set the memory search upper bound to e.
el, e;2L
Set ;1 to el and ;2 to e2.
e;:M Set the search mask to e.
11. Mode Setting and Othez; |
;R Display locations of‘displaye‘d cells as symbol plus relative number.
;A Display' locations as hexadecimal numbers.

el,e2;Z Zeros memory from el through e2.

HY4

Zeros all user memory.



DRAWING NO. 702489
SHEET/22 OF /&

DESCRIPTION

A, Syntax, Symbols, and Such

The language of DELTA follows the DDT formula of syimplified
expressions and single letter commands, which holds the number of keystrokes
required of the user to a minimum. Because every keystroke counts, olnly a few
error conditions are detected. The most common commands have been assigned’f
to lower case keys in order to simplify typing. The space character follows this
line of thought in that it is assigned to mean plus in vexpressions and so eliminates

a shift when plus is desired.

1. Command Delimiters

In order to interface efficiently with the time-sharing system,
DELTA has been made '"message' oriented. That is, only certain characters
are recognized as command delimiters or end-of-message characters and cause
UTS to deliver the command to. DELTA for interpretation. The characters which

are command delimiters are:

/ The open and display command

= The expression evaluation command

cr The store_command and delimiter of other commands
. 1f ‘The store and open next'command .

t The store and open previous command

tab The store and open indirect command

With the exception of / and =, the commands above cause a carrier return and line

i
feed. The slash and equal commands interact within a single typed line.

2. Fixing Typing Errors

. _' Before giving one of the command delimiters, the user may
repair typing errors by rubout (the rubout key prints a \ at the console and erases
.the preceding.character; N rubouts print N \ s and erases the preceding N char-
acters) or he may delete the entire current command by using’ the cancel key (control
'shift and X keys pressed together). Note that the current command may be a full line

}'or a part1a1 line -- partial if a = or / command is already complete on the line qf
the cancel character. In the executive version the BREAK key cancels the command.



DRAWING NO. 702489
SHEET /43 OF /8¢

3. Symbols

The symbols used by DELTA for reference to memory
locations, computing values, and formatted displays are those supplied from the
assembly or compilation of the program plus any added from the terminal by the
user. They are carried in DELTA's symbol table as séven characters plus count.
Symbols longer than seven characters are truncated to include only the first seven,
although the count of characters is retained. Thus, symbols which were originally
longer than seven characters and have both the same length and the same initial
seven characters are indistinguishable from each other and only the last received

definition is retained.

The symbols used by DELTA follow the same rules as those fo.r
Symbol and Meta-Symbol -- they are made up of the alphabetic characters A-2Z,
the numerics 0-9, and the specials §, @, #, :» -, =i at least one must. be non -
numeric; and the number of characters must be less that 64, DELTA however enly

retains the first seven characters and the total count,

Symbols have an associated type code which allows DELTA to use
a conversion for display that matches the symbols original use. The types are e't
least the following and perhaps others as the need ‘arises. Symbols have either a)
constant value or b) are associated with a memory location. If the latter is the case,
then the type code descrlbes the contents of the location. |
ya) Instruction
b) Integer
c) EBCDIC Text
d) Short floating point number
e) Long floating point number
£ )—'-Decimal«:num“b‘e-‘m |
g)mPa cked”Decimal “numbers:

h) Hexade cimal

‘s
e P '
~ -

The default mode of the display command will be to examine the symbol table for a

symbol at o,r w1th next smaller location value that that requested and use the con-

'verswn type given. This means that a memory dump of a machine language pro-

‘gram would resemble closely the original source symbohc.



DRAWING NO, 7024&9
SHEET /04 OF /6.4

4. Special Symbols

The initial contents of the symbol table include the mnemonic
names of Sigma 7 machine instructions and a list of special symbols associated |
with program debugging. The special symbols may be used in expressions for

values. The special symbols and values associated are givei; below.

Symbol | ~ Vvalue
$or. . Memory location of the last opened cell.
| ,;I/ ‘ Instruction counter contents at program interrupt.
3C Condition code contents at program interrupt.
i F ' Floating control contents at program interrupt.
M The mask used in memory’ searches.
i1 - The lc‘;wer bound used in memory searches.
2 © The upper bound used on memory searches.
Q- The last quantity type by DELTA. Or the value

stored by the user with the commands cr, If,
and tab. ' ‘ . |
Except for $, ., and ;Q the value of these symbol table entries
can be set using a special command form in which a defining expreésion is given

followedvbyy the semi-symbol to be set and a carriage return:

" 1"46B;I cr ASet ;I to hex 46B
"FFF;Mecr Set ;Mto hex FFF
10051 cr ~ Set;l to decimal 100

The value of all special symbols may be displayed using the = command.

;C =4
I = "3BD

B o= 2

The symbols $ and . always carry the location of the last opened
cell as their common-value;.: The'shorthand is convenient in the same way as in

symbolic aSsembly code.

A/ LW,4 K45 $(X="105 $/ LW, 4 K45



DRAWING NO, 702489
SHEET /45 OF /44

The ;Q shorthand for the last thing ty'ped is similarly con-

' veniently in special situations:

'B'/AI,5 7 Q+2 cr
./AIL,5 9

5. Input of explicit constants’

When the user wishes to type in numbers he must specify the
conversion that he wishes made on his input. Three conversion types are pro-
vided by DELTA: hexadecimal obtained by introducing the constant with a double
quote mark ("), EBCDIC obt ained by enclosing the characters in single quotes
('), and decimal the conversion used on strings of numerals. Within EBCDIC

:text strings the characters /, {, cr, 1f, tab ' are not allowed.
Some examples cf input ccnstaﬁts in various formats are:
NACE 100 100 14 "A
'EBCD' A |
Note that the single quote (') is reguxred to termmate the

EBCDIC text string, and that it must cons1st of four or fewer characters If
‘fewer than four they are right- Justiﬁed

"ACE -34
1100 +100
"3FF + 'wxyz'

6. Expressions

Expressions are typed by the user for location value, para-
meter value, and to be assembled into an instruction. ExpresSions are com-
posed of a) symbols, b) explicit constants, and c) the opeiators plus, minus
and space. Multiplication, division and other operations are not allowed and
in fact the characters usually used to indicate them are used for cther things --
theg_s'terisk to indicate indirect_éddressing in instructions and the slash as the

command for display.



DRAWING NO. 702439
SHEET 78& OF /& -

The user will have little trouble constructing legitimate and
o . I
correct expressions for the values he wishes as can be seen from the examples

below:

A
A+3

A+3-B
ALl 2

STW,7 *LOC
LW,7 TAB,5
CALl,3 LIST

The space character, in addition to its use to introduce the
address field in expressions to be assembled into instructions, is also used to
mean plus (+).. This convention is convernient for a lazy typist as space does not
‘require the case shift that plus does. Thus some equivalent expressibns and’
§commands are:

A 3 and A+3
LwW,5 ALPHA+3 and LW,5 ALPHA 3
A+3,A+9;L.,. and A 3,A 9;L »
Just exactly how DELTA accomplishes its expression evaluation is described in

the next section.

7. Express Lon Evaluatlon Algorithm
. ' Expressmn evaluatxon a&cumulates values into four cells 1,2, 3,
and 4 from four posmble expression fields. Receipt of a comma advances the accu-
mulation to the next field; when a space is received the accumulation goes to field 3
(the address field if the expression is to be an instruction) unless it is already there
or beyond, Plus and minus cause accumulation in the current field, At the end of the
expression the four fields ﬁold values which are combined and used in wavs dependent

on the command supplied.



DRAWING NO. 702489
SHEET /47 OF /8¢

The flow chart of Figui‘e 1 gives a rough idea of expression

evaluation.

' If the command following the expression is a stére type (cr,
1f, , or tab) then ""assembly'' of the instruction is accomplished as follows:
Field 2 is masked ar%d,shifted to the register position (bits 8-11} field 4 is maskéd
and shifted to the‘index position (bits 12-14); and fields 1'and 3 are masked as oppra—
tions and an acidréés: respectively. Then all four fields are added to form the vilue

for storage in j'\the open location.

" For location values, say preceding a slash command, fields 1 and
3 are added and masked to address size to form the first display address. If the
. sum of fields 2 and 4 are nonzero then they form the upper limit of a display se-

quence. Thus equivalent commands are:

A, A+3/ and A,A 3/
B+2, B+9/ and B 2,B 9/
LW,4 LOC+3,7/ and LW+LOC+3,4+7/

The reader may wish to confirm the correctness of the last rather bizarre example
by following the scan on the flow chart. Commands such as those for breakpoint
setting use the fields separately, and the use of space for plus may not have the de-
sired result as can be seen in the following:

' A 3,1,LOC;B  is not equivalent to

A+3,1,LOC;B

&

B. Memory Location Dis‘play: The / command

The / character is a command to DELTA to open a memory cell and
display its contents. The cell is indicated by an expression preceding the / char-
acter. The expression is evaluated and the word address portion is used as a |
memory address. If no format is given and the default is F (normal case) then the
symbol table is searched to find a symbol at or next smaller than the indicated
address and the data type associated with the symbol found is used to controil output

formatting.



DRAWING NO, 702489
Sheet /o¥ of /84

Evaluate Expression

PO =previous operator
CO =current operator
FP =field pointer

: 1 : F1,F2,F3,F4 = ervj“aluatiors
+ > PO ’ ' fields
D - F1,F2,F3,F4 ’ :
l - FP

O

“accumulate symbol
or constant, lookup
value or convert;
delimiter - CO

. ; ]
switch on COZ

v e e n e e e e wm P e Gm am e e e e v en e R W= e = e e Me S ee S 4m e e mm e Vel = W e e tm e e S W e e e T e e e

+ other
. ACV > roceed witly
P command

i
+—="PO

. scan’

>4
FP+]1-FP{———ps€rror

Jf | . .

(& ~

T~ : AC \}/
2~FP | (‘i) ' : ;

add or subtract
value of las? item
into field (¥P)

]

O

EXPRESSION EVALUATION ALGORITHM

Figure 1



DRAWING NO, 702489
SHEET/&’;};OF 2 e

g
, i
- More than one cell may be displaycd using a single [ cemamand., Two expressions

separated by a comma define th: linits of displa y. They :-> the word =ddrcss
of the lower limit followed by that of the upper Umnlt. Fo . iag display of the

upper limit cell it is open for change

ALPHA, ALPHA + 2/ BAL,4 SUB
ALPHA +1/ STW,5 DCTZ
ALPHA + 2/ AI 6 "100

Format codes may be specified with ( as in the basic / command.

100, 101 (X/ "58000100
101/ 168000200 -

If the user wishes to interrupt a too-long display he presses the break key and any

- remaining output is discarded. The last displayed cell is opened.

C. Expression Evaluation: The = command

Expressions consisting of program symbols, explicit constants,
special symbols (see Section A4), and the operators plus and minus (+-) may be
evaluated by use of the = command. The expression may be that just typed by the

user or the last one typed by DELTA,

242 =14

5+5 ="A

ALPHA/ BAL,5 SUB = 6 A5006B3
The fcrmat used for outpu’r is either the fault formator an explicitly r equest;d one. M
The expressmn for evaluation is followed by Al 5"*: paren, one of the format COdeb E—

given in Section E, and the equal sigh,

>+5=1A
+5 (1 =10
. +5(C =12

’Ihe default format t\rpe may he set by the user using the command f; =, where £ 1s»

‘the ueqlred format type. The initial default format is X for hexacecimal.



DRAWING NO.
SHEET //2 OF

.« =1
£ O
T rg
L e
Lo
<

D. Memory Modification: The cr, 1f, t, and tab commands

Four commands allow the user to store a typed expression for
word value into a memorj} location -~ the one opened by a /,\ , or one of the
modification commands 1f, {, or tab. If no expression précedes the command
character the action taken is as described except that nothing is stored in the

open cell.

ecr The expression ¢ is assembled and stored in the open
memory cell, Carriage return and new line are sent
to the terminal. Temporary display modes are reset

to default values.

A/ BAL,4 JWS BAL;4 GEBR ecr
A/ BAL,4 GEB o

. o)
JED/ EXU LS (X/ '6800643 / "78C cr

/' \_Exu Ls
Note in the above that a temporary display format was
established by the (X/ which carried over until the cr

command reset it.

e 1f When the user terminates an expression with the 1If command

...-.the'valuge.of the expression is stored in the currently open

: égll, th'a:‘..cel'l‘i's closed, a new line is produced at the terminal,
and the cell with the next highest locéfion value is opened. The
mode of initial cell opening is preserved and carried forward on

succeeding openings as is the display format.
A(I/ 435 436 1f

A+ 1/ 763 1f
A+2/ 7689 cr

EM\ STM,4 ERS If

EM + 1\ BAL,6 LP 1If

EM+2\ BGE BB cr

&

. ..For'the executive version the EOM key replaces lf.



DRAWING NO, 702:&%
'SHEET /// OF /&

100 / 34

Al / BAL,6 ALPHA
A+l /  STW,5 BETA
BETA / ABCD

The user may either temporarily or permanently override this output format
contraol by the symbol table code. Temporary change is accomplished by indicating
the desired format in the command. The expression for the location is followed by
a left paren character, then by one of the format codes (see sectionbE for a com-

plete list), and finally by the c?r’/m'nand /.

X(X/ (o} hexadecimal conversion

X(C/ A EBCDIC character conversion
X(1/ 193 decimal integer conversion

Permanent change in output format is achieved by the command £;/ where f is the

desir’ed format code. ‘See section E.

X/ Ccl X
C;/ X/ A

If a slash is given without preceding typing by the user the cell addressed by the
last thing typed by the computer is examined but not opened. This allows the user
to look at the indirect contents of a cell. In the example below ALPHA remains the

open cell even though the contents of cell DCT8 are displayed.

ALPHA/ LW,5 DCT8/ 132

A cell may be opened without displaying its contents by the use of the\ command.
(\is produced by pressing shift and L keys together). This mode is convenient |
when the user .wishes to insert new contents in memory and is not interested in the
current contents. DELTA remembers the mode of opening for cells and on 1f and !

commands opens in the remembered mode.

ALPHA | .- BAL,4 SUB  If
ALPHA+ 1\ STW,5 DCT2 If
ALPHA +2| AL 1100  er




DRAWING NO, 702-.39
SHEET //2 OF /&

el Action is exactly the same as 1If except that the cell
within the next lower location value is opened. For the

executive version & is used for t

EM+4/ 0 B JH|
EM+3/ 0 AL3 1 cr

e tab The tab command causes the typed expression to be stored
in a currently open cell. Following output of a carriage re-
turn, the cell addressed in the just closed cell is opened and
displayed. The effect is like that of a cr command followed

by a ;Q/. The tab command is useful for patches:

A/ BAL,5 SUB If

A+1/ STW,6 BETA B PATCH tab
PATCH/ 0 AIL6 1 1f’

PATCH+1/ 0 STW,6 BETA 1f
PATCH+2/ 0 B A+2 cr

§
E. Output Format Control

Displays of the contents of memory locations via the / conhﬁxénd and
expression evaluation via the = command have the output format controlled by code\s‘
given with the / or = command or by the default format as set using the(f;/ and (f;:
commands. The original default setting of the output conversion format is hexade’cé‘mal
(X) for = éommands and under control of the nearest symbol table type (F) for / ’coz‘n-

- mands. Temporary conversion type settings‘set by using e (f/ or e (f= are retainéq
| until the next cr command is given. In partic“ﬁlar the temporary conversion type i.s“

retained over successive 1f, f, /, =, and tab commands.

(i;/

A(X/ "C 1f
A+l/ "D 1f
A+2/ _"E er
A+3/ 15

The codes provided for directing output formatting and conversion are given below.

In all conversions leading.ze,ros in the printout are suppressed.



DRAWING NO. 7024&9
SHEET //3 OF /% ¢

The word -- contents of memory or expression is
typed out as a hexadecimal number. Hexadecimal
numbers are always typed with a leading ". This is

the original default code for = command.

Conversion is according to the format code given in the
symbol table for the location displayed or that for the
next lower valued location symbol if no symbol occurs
at the location in question. For = commands F con-
version is equivalent to X conversion. F conversion is

the default code for / commands.
The word is converted as a signed decimal integer.

The word is converted to EBCDIC characters: that is,
it is sent to the terminal directly. Non-printing char-
acters may be output in this way, including the EOT (04)

character, which will turn off many types of terminals.

Conversion is to an octal number. Each three bits from
the word to be converted starting on the right are con-
verted to a number in the range 0-7. The final two bits.

on the left are converted to the range 0-3.

The word is converted to a symbolic instruction: output

has the form 0P, R ADDR, X similar to assembler sym-
bolic mac)hine instruction format. OP is the symbol table
value of the op code part of the word (bits #-7) -- %XX is
printed if the value XX of the field is not an instruction.

R.is the value of the register field (bits 8-11) and is printed
as a decimal integer, except if zero when it is suppressed
along with the preceding comma. ADDR the address field is
printed with a leading * if bit 0 is a 1 and followed by the
symbol obtained from lookup of value in bits 15-31 -- if no
no symbol corresponds to the value, then the next lower sym-

bol plus a relative hexadecimal offset is printed. - Values™



DRAWING NO. 70248y
SHEET //¥# OF /&

less than 64 decimal are always printed in hexadecimal.
If the index field (bits 12-14) is nonzero, it is printed as

an integer (1-7) following a comma.

The word is converted in exactly the same way as R format
except that the address field is always given as a hexadecimal

number.

Halfword. Each 16 bit half of the word is treated as an
address quantity and printed as symbol plus hexadecimal

addend.

Base Two. Thirty-two ones or zeros are printed depending
on the bits in the word. Leading zeros are not suppressed,

and the printout is separated into 4 groups of eight by spaces.

Short floating point number. The word is converted from v

internal floating point formiat to the form. XXXXX E+YY.

<

Long floating point numher. Same as above except the current
word plus the next higHest addressed word are converted (same

as S for = commandfi ..

Double word decimal integer. The current word plus the next
word are converted as a 64-bit decimal integer with sign.

(Same as I for = command. )

)
The final three conversion types S, L, and D will not be available on the executive

version of DELTA.

F. Execution Control: The ;G, ;P, and ;X commands

The three commands described in this section allow the user to begin

and continue execution of his program. Each of the commands is terminated by

carrier return.

Execution is started by typing e;G where e is an expression for the

starting or GO location. (The value of the expression is masked to form the word

address of the starting location. )

BEGIN;G



DRAWING NO. 702489
SHEET //4 OF /&85

Execution can be stopped in three ways:
1. encounteﬁng a breakpoint (see Section G),
2. a user interruption via the BREAK key,
3, an error causing a machine trap (illegal instruction,

memory protect violation, etc.)

.In each case the cause of the stop is reported by an appropriate message, the

values of ;I, ;C, ;F, are set, and terminal control returns to the user.

BREAK AT "5C3
ILLEGAL INSTRUCTION AT "77B
I=  "7TB

J‘Proceeding from a stop condition is directed by the ;P command. The use of
N ,
;P for instruction breakpoints is covered in Section G.. For user interruptions

via the BREAK key, execution continues as if the interfuption had not occurred.

BREAK AT "68C
P
‘Proc‘eeding from a machine trap will in general cause reexecution of the violating

instruction and another trap.

MEMORY VIOLATION AT "74B
P .
MEMORY VIOLATION AT "74B

In either of the above cases any expreséibn typed before the ;P is ignored.
The ;X command assembles and executes the expressibn just preceding the ;X.

LH,3 = TABLE 4;X
STB,6  *LOC;X

If the expression does not result in a legitimate instruction, the illegal instruction
message results and other error messages correspond to other illegal constructs
just as if the error had béen an executing program. If the expression is a branch
instruction control. -goes to the user's program (or causes a memory violation). _
ﬂThus the commands B GO;X and GO;G are equivalent. If the expressmn is a sub-

routine Ju.mp, the subroutine is entered and if it returns normally (to the calhng

location plus 1, 2, or 3) control returns to Delta and terminal control to the user.



DRAWING NO. 70289
SHEET // OF /& &>

i

G. Breakpoints: The ;B and ;D commands

Delta provides the user with multiple breakpoints of two kinds:

1) on instruction execution, and 2) on a change in data value. Eight break-
!

points of each kinh are available to each user. As each breakpoint is reached,
|

a small amount of information is printed out giving the break location and an
associated value. A special mode;aliows execution to continue automatically
after the breakpoint-repbrt to provide a limited kind of trace of both the flow

of execution controi and of the variation of data values.

| , S
1. Instruction Breakpoints
| B

|

i th . .
e,n;B - The n~ breakpoint (there are eight numbered 1-8)
is set to stop execution and return control of the
terminal to the user when the instruction at location

e is reached. The stop occurs before execution of
the instruction at e. When the breakpoint is reached,
DELTA prints the number and type of breakpoint and

its location.

A+3,1;B A;é

‘ 1;B> A+3

. A third field of the:: breakpoint command may be used to specify a location to be
displayed when the breakpoint is reached. Registers as well as core locatiens

can be displayed in this way. A fourth field specifies the format of the display.

A+3,1,R5;:B A;G
1;B>A+3 5/ ""54
A+3,1,R5,I:B A;G
1;B>A+3 5/ 84

When stopped at a breakpoint, the user may examine and modify his program as
appropriate:and.then continue from the pbint of interruption by giving the command
;P. A count may be given with the ;P command. If the count is n then the break-

point will be passed n times before the Break occurs.



:' DRAWING NO, 702489
| SHEET //7 OF /&¢

B+8,2,R2;B B;G
1;B>B+8 R2/ 4 ;P
1;B>B+8 R2/ 5 ;P
1;B>B+8 R2/ 6 5;P
1;B>B+8 R2/ 11

t
The n b breakpoint may be removed by the command 0, n;B.

If the user wishes to trace a particular instruction, he may give either of the
forms above (display or no display) and specify the T mode; e,n,loc;BT. In
this mode, when the instruction at e is reached the breakpoint reporting informa-

tion is printed and execiyition continues.

A+3,4,5BT AG
4;B>A+3 5/. 54
4;B>A+3 5/ -1
4;B>A+3 5/ -175

The trace mode may be set after a break occurs by specifying ;T which is equivalent

to ;P plus setting the trace mode at the current breakpoint.

2. Data Breakpoints

Data breakpoints allow the user to halt execution when any
memory location (not register) changes value in a specified way. The command
has the form:

e, n, val, m;Dr
It causes the nth‘data break to be set in such a way that execution halts and terminal
control returns to the user whenever the conténts of memory at location e when
masked by the mask m is in relation r to val. The mask for each data breakpoint is
initially all ones. . A T or trace parameter appliés to data breakpoints in the same
way and with the s;ame effects as described above for instructio;x breakpoints. The
letters used for r‘aﬁd the corresponding condition causing a break to occur are the

following:



L
E
G
GE
NE
LE

DRAWING NO. 702489
SHEET /8 OF /8¢

e<val
e=val
e>val
e>val
ekval

e>val

If no r specification is given a break occurs for all changes in the data. The

mask, if specified, is ignored in this case.

Some sample data breakpoint settings are given below. Any data breakpoint may

be removed by the command 0,n;D. The output resulting from a data break has the

form n;D>loc e/ contents where niis the number of the breakpoint, loc is the location

of the data modifying instruction, e is the data address in question, and '"contents"

is the new value as just modified.

A,l1,3;DG
A+5,2,"FF, "FF;DE
B, 3;DA

SDS, 4, CSC;DGE ;P
4;D>PH SDS/ CSC+2

3. BREAK Key Breakpoints

At any time during execution the user may cause the execution

of his program to halt by pressing the BREAK key. Amessage is printed for the

user given the location of the break. The ;P command will continue execution

after such a break.

BREAK>MP+34



DRAWING NO. 702489
SHEET /9 OF /5 &

H, Memory Searching::The ;W and ;N commands

The two active search commands e¢;W and e;N search memory
for a rhatch or no match with the expression e. Display of all matching ceils
(bit for bit identical) occurs in the case of ;W and of all non-matching cells
in the case of ;N. The search is carried out between limits determined by
the symbol table values of ;1 and ;2; it runs between.the lower limit :1 and
the upper limit ;2 inclusive. The initial value of ;1 is zero and of ;2 the highest
current user core address. Before the test for a match is made, thé word
from memory is masked with a word which is the symbol table value of :M.

The initial value of ;M is all ones,

The values of ;1, ;2, and ;M are set by the commands e:l, e:2,
and e;M (each followed by Cr). In addition, the limits may be set with the smg;e ,

command el, e2;L which sets ;1 to el and e;2 to e2.

Al
B;2

A, B;L is equivalent

2;M Mask bit 30 of the word. Search for all
2:W wérds between A and B which have a 1
in bit 30.

A+2/ 2
A+3/ 3
At6/ 6
AT/ g
A+A/ nA
B/ "B

"1FFFF;M L, L+"100;L. ERR;W

L+3/ _ BAL,4 ERR
L+A/ BAL, 4 ERR
‘1L+D/ _ BAL,4 ERR
L+6A/ AWM, 1 ERR

All words between L and L+"100

‘_With addresses equal to ERR,

‘ The user may mterrupt an 1n progress search by pressing the BREAI\ key. -

DELTA halts the search and returns terminal control to the user (rinas the bell)



DRAWING NO. 70248¢

SHEET /20 OF /S

I. Symbol Table Control: The ;U, ;K, ;S, !, <> commands

The symbol table available to DELTA after a load is com- -
pleted consists of the global symbols (::those ciefined by DEF directives) and
a set of internal symbol tables (one for each ROM loaded) which are filed
under the name of the file from which the ROM was loaded. Each internal
symbol table is a keyed record in the file created for DELTA by the loader.
If more than one ROM is contained in the load file, then only the last external -

symbol table remains at the end of the load since earlier ones are overwritten.

During debugging the user always has the global symbols of the
load and he may select one of the internal symbol tables by using the s:S com-
mands, which causes DELTA to load the symbol table from record s (the
internal symbols from the program loaded from file s). They replace, for |

reference purposes, any previously selected internal symbol set.

"B73/ LW,4 IOP+ "A7 1f |
IOP+ "CB/ BAL,6IOP+ "17TF IOPF; St
IOPT2+6/ LW,4 K34 .

Each of the loaded programs may have contained undefined sym-
bols. DELTA will print all undefined symbols when the ;u is given. Symbols
which are undefined and within the range of an assembler LOCAL directive are

lost. They are given value zero in the loaded code and do not appear when :u is

given.

Symbols may be defined by the user at any time during his debugging
session. Symbols so defined are added to the set of global symbols associated

with the program load.

s(f! Adds the symbol s to the global symbol table with the
location value of the currently open cell ($ or .) and
format type f. If f is omitted, symbolic instruction

(R) type is assumed.



DRAWING NO. 702489
" SHEET /a1 OF /&

e(f<s> Adds the symbol s to the global symbol table
with value defined by the expression e and .
format codé f. In addition to the codes of
Section E the letter K may be used to indicate

constant value. If f is omitted R is assumed.

s:K v Removes the symbol s from the symbol table.

- The removal is permanent if s is in the giobal
table and temporary if s is in an internal sym- |

bol table. (It will return if the user switches

to another internal symbol table and back again!)

K Is used to remove all symbols from the symbol
table. Symbols defining instruction codes are
not erased. Individual internal symbol tables

are recoverable using s;S command.

J. Miscellaneous Commands: The ;G, ;P, ;X commands

The commands covered in this section cause DELTA to change
its normal or def::;tult modes for display and to zero areas of memory. All com-‘
mands in this section are terminated by carriage return. |

;R and ;A |

This pair of commands is complernentafy to one another; they control how DELTA -
displays location values when typing the contents of cells. The mode of display is
either relative (;R) or absolute (;A). When in relative mode, DELTA looks up the
location value in the symbol table and displa;rs the symbol if one corresponds to
the value; if not it displays the symbol with next smaller value and a word offset in
hexadecimal. If the mode is absolute (;A) thén all location values are displayed as
hexadecimal numbers. Note that these commands control the display of location
values and not the @_isplay of the address parts of instructions contained in those

locations.



DRAWING NO, 702489
SHEET /2X0F /& &

iR
AyA+5/ LI, 1 "10
A+l/ CW,1 K45
A+2/ BGE 2727
A+3/ ALl 1
A«;-4/ B Al7
ZZ7Z/ STW,2 BRI13

jA
A,A+5/ LI, 1 "0
"5CD/ CW,1 K45
"S5CE/ BGE ZZZ
"5CF/ ALl 1
"5D0/  B. L Al7
"5D1/ STW,2 BRI!3

YA
The command for zeroing memory takes two forms: the first,
a,b;Z, names the limits -~ a the lower limit and b the upper limit -~ of memory
to be zeroed. Expressions may be used for a and b. An error results if the

value of b is less than that of a.

A,A+5;Z
100,1;Z
?

!

The second form of ;Z is without ar guments or has zero arguméms
and is a request that DELTA zero all of user's core, The action requirebs a con=-
firming period after a query about the users intentions before the command is
carried out.

4
OK.,

If any other response is made to the OK, the zeroing is not done.

Zeroing the user's area erases all the user's program and data,
but not the monitor's context area about the user or the user's I/O buffers. If

1/O is in progress directly to or from the user's area the results of the 1/0O



DRAWING NO. 702359
SHEET /230F /& ¢&

transfer are unpredictable. Because the user's physical core pages are re-
leased to the monitor, any asynchronous references to the area will result in
traps which will cause the UTS executive to receive control and report the

cause of the trap (illegal instruction, illegal mémory reference, etc.) to the

user,

K. Additional Commands for the Executive Version:

The ;0, ;J, and ;V commands

Three commands are provided for the executive version of DELTA
and are disallowed the on-line terminal user. They are ;O to produce hexa- :
decimal dumpsbon the line printer; ;J to direct DELTA output t‘o the line printeri
particularly in the cases of formatted displays and output from tracing break; :

points; and ;V which allows saving core on a self-loading tape for later restoration.

The commands are designed primarily to aid in debuggzing of the UTS

. system itself but may also be used to form the basis of a stand-alone debugzging

: package, The printer and tape I/»O routines are completely selfi-contained witn -
‘'no dependence on system I/O routines. The executive version of DELTA operates

with all interrupts disabled,

a, b;O Contents of memory from location a throughy
location b are printed on the line printer single-
spaced, eight hexadecimal words with initial héx :
location value per line, Allv zero lines are sup=-

pressed,

iJ Toggles thé Sutput 1ocation switch alternating
between the o;erators console and the line printer
on each instance of the command, Output irom a
non-tracing break is always directed to the operators

console,



DRAWING NO. 702459
SHEET/QYOF J/Hg

A, I;B '

X,2,3;DTE ;J B;G

(output here from data break #2 goes to the line
printer)

1;B>A

w;V This command saves a core image on tape with
a self-loader to enable restoring at a later time.
The parameter u gives the highest core location

to be saved.

Programmed breaks

Programmed breaks may be inserted into code by assembly or
patching in a CALZ,4 XXX, Y instruction, When this instruction is executed
control is sent to DELTA by UT‘M“,_;;X/XX BREAK>loc is printed at the opérators
console where xxx is the addres;";art of the CALZ,4 instr‘uction, and DELTA

. waits for commands from the operator. If Y, the index field, is 1 the break

is treated as a tracing break,

Interrupts _

Control may be giveén to the executive version of DELTA at any time
via a monitor KEYIN, The system programmer may get control at fhe operators
console by pressing the Sigmva 7 panel interrupt button and responding to the
"MKEYIN" message with "DELTA';. DELTA responds with cr, lf, and the pro- -
grammer may examine, change, or set breakpoints in the system. Return to

the point of interrupt is via the ;P command,

L. Errors 4 _
In the cause of brevity DELTA has a single error message: --7 . This
message is sent to the user whenever DELTA cannot understand the user's command
syntax. It is usually simpler for the user to identify the error than for DELTA to be

.
verbosely specific about it. ‘Some errors and the reasons for them are shown below:



DRAWING NO. 70248
SHEET /25 OF 484

X,¥,2,2,7/ *? / too many commas

'ABCDE'=  ? o “chstant value larger than one word
P ! !

ABGC;K symbol rot in symbol table

1

?

FF:M 100,XY;L 6B;W symbol value not found

;L 6B;,W ? remainder of command string ignorec
A,5:M command unknown
?

Lwx5 ALPHA= 7 asterisk in'a funny place



DRAWING NO. 7{:489
SHEET /& OF /&

INDEX TO DELTA COMMANDS

/ | . open cell, print contents
\ open cell, no print
cr store in currently open cell
1f ~ store in currently open cell, open next cell
t store in currently open cell, open previqus"
tab store in currently open cell, open cell last named

= evaluate and print expression

<io0> define symbol

: define symbol

i1 set lower signal limit

i/ set default display conversion mode

)= set default display conversion mode

display location values as hexadecimal

-e

set (or clear) instruction breakpoint; BT set trace mode

set condition code

-

-e

set data breakpoint; DT set trace mode

-e

set floating controls

being execution

set instruction counter

divert output to line pr inter {-(exeéutive"version only)"”

remove (kill) symbol table entry

-e

set upper and lower limits for search

set the search mask

-

cm e ®DRYWOoOZEERS®OWmUDawh

search for word mismatch

-

hexadecimal dump (executive version only)

“e

proceed from breakpoint

set last quantity typed

display location values as SYmbol plus hex, offset

select internal symbol table

set trace mode and proceed

diéplay undefined symbols

-a



N X oE <

Y

DRAWING NO, 702¢ 3%
SHEET /27 OF /&4

saves core on tape with a self-loader (executive version orly)
search for word match
execute instruction

Z€ro memory



INTRODUCTION

DRAWING NO.

 SHEET /.250F

IX. PERIPHERAL CONVERSION LANGUAGE (PCL)
TABLE OF CONTENTS

A.  Batch Operation

On-Line Operation

B.
C.  Summary of Commaﬁds

DESCRIPTION

A.  Conventions and Terminal Operation

B.  File Copy Command

1.

Ve N o oo w N

Device Identification Codes
File Identification

Data Encodings

Data Formcfs

Modes

Record Sequencing

Record Selection

Valid Option Combinations

Examples

C.  Catalog Copy Command
- D.  Other Commands

1.

H e

G N O Wi

DELETE (delete file)

LIST (list directory)

SPF (space file)

SPE (space to end)

WEOF (write ehd-of~file)
REW (rewind) , ‘“
REMOVE (remove tapes)

TABS {set fabs)‘

E. - Termina’fion'ofiPC‘L

]' F .. "Language Syntax

!

- INDEX TO PCL COMMANDS

—
(93]
ot



DRAWING NO. 702489
SHEET ;29 OF /& &

SUMMARY | _

This part of the UTS Functional Specifications describes a peripheral utility sub=system designed
for both on=line and batch operation. The Sub=-system, PCL (Peripheral Conversion Language),
provides for information movement befw'een‘cord and paper tape devices, line printers, teletype
devices, magnetic tapes, disc files, and labeled magnetic tape files. The command language
allows for single or multiple file transfer with options for selection, sequencing, formatting,

and conversion of data records. File maintenance and manipulation functions are also availcble

to assist the user.



DRAWING NO. 702489
SHEET /2OF ~/ & g

INTRODUCTION

PCL is a peripheral utility sub-system designed for operation in a batch envirdq‘menf under BPM,

or on-line under UTS. It provides for information movement among card and paper tape devices,
line printers, teletype devices, magnetic tape, disc files, and labeled magnetic tape files. PCL
is controlled by single line commands supplied from a user console in UTS, or by command cards
in the BPM job stream. The command language provides for single or multiple file iransfer vrith
options for selection, sequencing, formatting, and conversion of the data records. File deletion
and positioning coﬁmands, and o command to copy complete file cufalogs between disc and
labeled tape are included. Additional file maintenance and utility commands are also provided

to assist the user,

A. Batch Operation

PCL is activated under BPM through an !PCL control command card in the BPM job stream.
Once active, PCL reads subsequent command cards directly through the same control (C) device
until terminated by an END command (see below) or by encountering another batch contro!l card
(!f}'pe). All user input and output is done through the M:El and M:EO DCB's respectively. PCL

diagnostic output is transmitted to the device currently assigned to the DO operational labeél .

B. On-Line Operation

As a UTS sub-system, PCL is called using fhe CALL command of the Termmol Execuhve
Language (TEL). PCL responds by.fypmg "PCL HERE" and then i‘ypmg it's identifying murk (<
~ at the l;aff margin of the next line indicating that it is ready to accept ‘the‘ first command. When
accepting or processing a command, PCL is said to be in the command state. Entry to this state
is always indicated by the display of the < as described above. Once a valid command begins
execution, PCL exits the command state ar\d enters the active state. This stctus.remcins in effect
until execution of the command terminates, at which time the command state is re-entered and
the user may enter his next command. As in batch operation, user input and output is done through

M:EI and M:EO DCB's, dnagnoshcs .go 4o DO and communds ‘are. receuved through C.

C. Summary of Commands

The following is a list of available functions in PCL described in terms of the actual command

verbs.



DRAWING NO. ij-/",a;g«;;sv
SHEET /3 OF /&

.COPY device(s) and/or file(s) TO device or new file |

COPY device(s) and/or file(s) OVER device or existing file

COPYALL files on disc TO labeled tape(s)

COPYALL files on labeled tape(s) TO disc,

DELETE an existing file

LIST a file directory

SPF (Space file) + n files on designated device

WEOF (Write end-of-file) on designated device

REW (Rewind) designated tapes

SPE (Space to end) of last file on labeled tape

REMOVE designated tapes

TABS (Set tabs) for output device.

DESCRIPTION

The following description of PCL is oriented toward the on-line user. Nevertheless, only one

explanation should be necessary 'fo/ include both on-line/cmd most batch features, For the bqfch
user, communication is established with input through the BPM job stream and output through the
DO device with no user interaction. Thus, all user prompting (* efc'.) and terminal operations

(Cr,Br, X" ...) given here do not apply. e g 1/ | |

/

~ A, Conventions and Terminal Operations’

For purposes of clarification, certain convenfiohs and terminal operations have been
assumed throvout the balance of this document. They include: |
1. Underlined copy in examples is that genercfedlby the compufer. Copy not
underlined represents that typed by the user.

2. Optional parameters within a given command are identified as such by
enclosure within brackets, e. Q[OPTION ]
3.  Control characters are represenfed in this document by an olphobehc chorccter

and the superscript ¢, e.g., ES. The user simultaneously depresses the alphabetic key and the
Confrol key (CTRL) to obfom this function.

4. Carncge Return.  The Cr notation following each line in the examples

represents a carriage return, Depré'ssuon of this key informs the computer that an input line is
terminated. A carriage return (Cr) will aufomahcally cause the computer to gwe a line feed. The

line feed key operotos identically to the Cr wnthin the PCL processor.



DRAWING NO. 702489
SHEET/S20F /gc.

5. Escape (Ec) This key enables the user to temporarily escape to the executive
command level. Escape may be applied at any time when the user has control of the keyboard. The
current status of PCL is retained and may be re-activated using the executive "CONTINUE"
command. |

6. RUBOUT. The last input character may be deleted with this key. A\ is
echoed to the user. N RUBOUTS echo N \s and delete the previous N characters.

7.  Cancel (XC) This key cancels the current input line, A -~ is echoed
to the user followed by a Cr. ‘

8.  BREAK:Y This key, indicated by Bk, causes an interrupt in current PCL
activities. When applfed during the command state, the current command is ignored as if' X had
occurred. Application during the olcfi‘\'/e “s\fqte causes PCL to terminate what it is doing (like
. printing or copying), pass cs:r'\frol to the u's’er, and revert to the command state. A Cr response
is given if used during input. Effects of the interruption or the termination vary with the command
being executed and are discussed in detail with the particular commands. If no mention is méde, :

Bk is assumed to have no effect on the execution of that command.

/



DRAWING NO, 70248y
SHEET /Z3OF /& &

B. File Copy Command

This command permits single or multiple file transfer between peripheral devices and/or file
storage. Options are included for selection, sequencing, formatting, and conversion of the data

records, The format is of the general form::

COPY d(s)/Fid(s), fid(s), . . . ;d(s) /Fid(s), Fid(s), . . .;. .. Z)?lER d(s)/fid(s)
or,
TO
OVER d(s) /fid(s)
COPY d(s)/fid(s), fid(s), . . . ;d{(s)/Fid(s), Fid(s),...;...
COPY d(s) /fid(s), Fid(s), . . . ;d(s)/Fid(s), fid(s), . . . ;. ..
where, =
/ separates a device from the files on that device
' separates files on the same device
; separates devices
COPY introduces a device or file identification for input
TO introduces a device or file identification for output
OVER introduces a file identification of an existing file to be overwritten
d represents device identification, has the form:
device code [freel no.][#reel no.][#reel no.]
Reel numbers apply only for magnetic tapes. Absence of a reel number for c
tape device implies scratch tape. Valid device codes are listed below.
fid represents file identification, has the form:
name[-account[-password] ]
s represents specifications for data encodings, formats, modes, etc., has the

form:: |
[option][, option]. . .[, option]

Options may include any data encodings, data formats, device modes, record
sequencing, and record selection listed below. Specifications given at the device
level (d(s) ) apply for all files on that device. Those given at the file level (fid(s) )
apply only for that file and have precedence if a conflict occurs between the two

levels.



DRAWING NO. 707359
SHEET /ZYOF /6 i

When given a command of this type, PCL first checks for a destination device or file introduced
by the TO or OVER command verbs. If found, the current destination device or file (if any) is
closed and the new one opened for output. Files, of course are matched against the user's
directory to insure OVER was used to introduce an existing file. The device(s) and/or file(s)’f
introduced by the COPY command verb are then opened for input one at the time in the order
given and copied to the destination. The destination device or file remains open until resﬁeciﬁed

(by TO or OVER) or PCL is terminated (by END) so that more inputs (by COPY) are added to it.

If Bk is applied during execution of a COPY, PCL responds with identification of the last file
completely - copied.

11 1

1. Device identification Codes (d). These codes are used to indicate the "to

and "from" devices. They include:
CR  card reader - files separated by/ two successive |EOD cards.
CP  card punch
LP  line printer
ME  interactive users console - input terminated by Bk from teletypes
DC disc file storage |
LT  labeled tape file storage
ET  free form tape - files separated by EOF mark
PP paper tape punch

PR - paper tape - files are separated by two successive |EOD codes

2, File Identification (fid). Files are identified by name, account, and password
in that order separated by hyphens (-). The name (1 -él characters) is required whereas the account
(1-8 characters) and the password (1-8 characters) are optional. Thus, four Forfns of file identificatio
may be specified: name, name-account, name-account-password, and name--password. AEsence

of the account implies the current user's account.

3. Data Encoding. These codes describe the source or destination data encodings

to be expeéréa or produced,
E EBCDIC
'H  Hollerith _
A ASCII



DRAWING NO. 7062489
SHEET /2 OF /56
4, Data Formats. These codes describe source or destination record fomorfing
to be expected or produced.
C Metasymbol compressed
K Compact file structure {required by EDIT)

X hexadecimal~dump

5. Modes. These codes dictate device control modes for the devices indicated.

BCD, BIN BCD or binary mode - valid for card, paper tape, and magnetic tape devices.
77,97 Iseven or nine track magnetic tape ‘

PK, UPK seven track binary tape packing or unpacking

SSP, DSP, VFC single, double, or variable format controlled spacing on line printer.

6. Record Sequencing Insertion or deletion of sequence identification for output

data records (error if on input side) is accomplished using this specification. Option include:
CS (id, n, k) card sequencing in columns 73-80 where id is the identification (1-4 characters),

n is the initial value, and k is the increment. The id is left=justified in the field

“(73-80) followed by the sequence number right-justified in the same ﬁ’elld. Pre-
cedence is given to the sequence number if overlapping occurs.

NCS no card sequencing - strips columns 73-80 from each output data record.

LN (n, k) number lines within.a Compact (Kitype)file starting at n in sequential steps of -
k. Line numbers must be between 1 and 99, 999.

NLN . no line numbers - délefes line numbers within a Compact (K type) file.

7.  Record Selection This specification permits selection of the logical records to

be copied by giving their sequential position within the file.

X-Y select all records whose position n"in the file satisfies the followingicondiﬁon
X<n<Y. Multiple selections may be specified, e.g. X-Y, U-V, W-Z.
Selections do not have to be in sequential order. Maximum number of selections is
10 for each input file.

8.  Valid Option Combinations  Not all combinations of from and to devices, data

encodings, modes, etc. are valid. Table I shows the valid options, the disallowed combinations, and
the default provisions for the possible combinations. If o disallowed cdmbinaﬁon.is found, an apcro-
priate error diagnostic is given to the user. Execution of the command may or may not continue .

depending on the severity of the error encountered (see Language Syntax).



TABLE I
- FROM DEVICE

DRAWING NO.

702 39

SHEET /5 QF /g

TO DEVICE

CPDLFM fD L F MLC P

RRCTTE CTTETPPP

CODES E|D X DDDD DD DD DDX
H|X - X X X - X XX - =X -

Ajl- D X X X * X XX * - -0D

FORMATS ClX X X X X - - . - -
Kl = X X = = X X = = = = =

X|w = @ = o« = - = =X X - -

MODES None |- D D = - D D --D - =D
BCD |[D - - - X = - =X - - D -

BIN {X -~ - DD = - DD - =X -

7T |- .- X X - - XX = = - =

9T |- =~ - D D =~ --DD----

PK [- - = X X = - X X = = = =

UPK [~ - - - X - - =X = = - -

SSP [~ = = = - =| - = = =D - =

DSP |« = « = &« = T G

VFC |« « =& = o = - . m w X e -
SEQUENCING None |~ = = =~ = - DDDDDDD
| - CS|{~ = = - - = X X X - X XX
NCS [~ = =~ = = = X X X - X X X

LN|- - - - - 4 X XX - XXX

"NLN |=_ =" = - - . X XX - XXX

wi'xe re
default

optional
error, not avallable, ridiculous

*a KU

EBCDIC to ASCII conversion for taletunes is done hu (COC wairfimo a



DRAWING NO. 702487
SHEET A*7OF /8¢

9.  Examples
< COPY CR TO DC/A-0986-PLEASE Cr
< v b

After receiving this command PCL opens a new disc file with name (A),
account (0986), and password (PLEASE). Successive cards are then copied to this file from the

card reader until a double 'EOD is encountered.

< COPY LT#57/8,C TO DC/B--PASS Cr
<

Tl'his example demonstrates a multiple file copy. Files B and C from labeled
tape with reel number 57 are ‘copied in that order to a new disc file B with password PASS. Note

that all files must be under the user's account (as specified at log on or on the 1JOB card).

|

COPY DC/A(C) TO LP(DSP) Cr

In_iAn—

The disc file A under the user's account is uncompressed and listed on the line

printer with double spacing.

COPY FT#73 TO DC/A (K, LN(5, 5))Cr

AN

|
PCL reads successive records from free form tape #73, assigns line numbers

starting at 5 in steps of 5, and writes them to file A on'disc in K format.

< COPY LT#205/SOURCE TO CP (CS (SRCE, 1,1)) Cr
< ,
The label tape file named SOURCE on reel number 205 is sequenced and punched.

The logical records were given sequence identification (SRCE0001, SRCE0002, ...etc.) in columns
73-80 vt



DRAWING NO. 702449
SHEET /22 OF /& &7

COPY PR3PR;PR OVER DC/ALPHA Cr

INTIA

Three consecutive files on the paper tape reader are copied over an existing

file ALPHA under the user's account. Each file on paper tape terminated by a double !EOD.

< COPY FT#6(BCD, 7T, H) TO LP(X) Cr
<
In this case, free form tape #6 is a 7 track tape in BCD containing Hollerith

coded data. Each record is read, converted to EBCDIC, and dumped to the line printer in

hexadecimal.

< COPY DC/A(K) TO FT(BIN, 7T, H)Cr
<

This example points out the use of a scratch tape. Line images stored on

disc in K format are read sequentially, converted from EBCDIC to Hollerith, ond written on a

7 track scratch tape in BIN mode.

<TO DC/N3Cr
< COPY DC/N1(20~30, 40-100), N2-1234-PASS(50-75) Cr

N

Sections of two files (N1 and N2) are combined to form a third file N3.
Records 20-30 and 40-100 of N1 followed by records 50-75 of N2 are copied in that order to NZ.
The user's account is assumed for files N1 and N3, qnd N2 is from account 1234 with

password PASS. Note that the destination file was defined on a separate line.



DRAWING NO. 702437
SHEET /27 OF £ &

< COPY DC(K)/SOURCE TO ME Cr
10020 START LW, R1 ALPHA -

10020 ALRT 5
10030 CW,R1 BETA
S : [}

] a 'y

<

This command requested a Meta-Symbol source file on disc in K format be
dumped at the user console. Note that the line numbers occupy the first six characters of each

line.

< COPY FT#7236 TO PP Cr
< COPY FT#7236 Cr
< COPY FT#7236 Cr
<

i

Three successive files from free form tape #7236 are punched as one long file
on paper tape. An end of file mark (two IECD's) will not be written on the paper tape until the

device is closed.

COPY LT#5/A,B,C; DC(K)/D, E; FT#8 TO LT#6#7/A Cr

ZoIN A

This example demonstrates the multi-file multi-device capabilities of the
file copy command. Files A, B, and C from Iubeled tape #5, files D and E from disc, and the
next file on free form tape #8 are copied respechvely to file A on lcbeled tapes 76 and #7.
Tape #7 is used only if #6 overflows. - Note the format specification K holds for all files
up to the next device id code (files D and E),

C. Catalog‘ Copy Command

| .
This command enables the user to copy his complete file catalog between disc and labeled
tape. The command is of the form:
{COPYALL DC TO LT [freel no.][*reel no][#reel no.]

or,

“COPYALL LT [#reel ‘no.] [*reel no.][*reel no.JTO DC



DRAWING NO. 702459
SHEET /4% OF .~ &és

PCL copies all files under the user's account from the input device (LT or DC) to the output
device (LT or DC). Files protected by passwords cannot be copied with this command. The
Bk key will terminate execution of this command and cause PCL to respond by typing the

identification of the last file copied. Consider the example:

< COPYALL DC TO LT#3#4 Cr
<

All of the files given in the user's catalog are copied to labeled tapes #3 and #4. Tape #4 is
used only if #3 overflows. The disc space previously occupied by this catalog of files can now

be released for other use.

To restore his file catalog, the user may enter the following:

< COPYALL LT#3#4 TO DC Cr
2 |

This causes PCL to copy all the files from labeled tapes #3 and #4 to disc.under the user's

account.

D. . Other Commands

This group of commands provides for file deletion, directory listing, file positioning,

and other manipulation and maintenance functions.

1. DELETE
Files may be erased using this command, which .is of the form:
DELETE fid

where fid represents name-account-password of an existing file. Following the entry of this
command, a confirmation message of the form "DELETE fid?" is typed. The user may respond
by typing "YES" to confirm the operaﬁoh or with anything else to cancel it. If YES is typed,

the file is deleted and the disc space released. For example:

< DELETE SOURCE--PLEASE Cr
DELETE SOURCE--PLEASE?YES Cr
<




DRAWING NO. 702447
SHEET /57 OF /& &

Upon receiving this command, EDIT locates the file in user's directory and responds with the

confirmation message. After the YES reply, the file SOURCE is deleted.

2. LIST

To list the account directory or labeled tape file names for a designated account,

the user enters a command of the form:

LIST LT [#reel no.][*reel nb.][#reei no.], account

or,

- LIST DC, account

PCL scans the directory (DC) or tape reels (LT), listing the names of files encountered.
Output is to the user's terminal in UTS or the line printer in BPM. Printing may be interrupted

and the LIST command terminated with the Bk key. Consider the example:
o

< LIST LT#3#4, 0986 Cr
ALPHA
SOURCE

IN 1@ |>

Labeled tapes #3 and 4 under account 0986 are scanned for existing files. Four such files

are located and their corresponding names printed at the user's console.

3. e
This command allows the user to position input peripheral devices forward

or backward a designated number of files. The command is of the form:
SPF device id [*reel no.] ,£n

where device id represents one of the device identification codes LT, CR, FT, or PR, £
implies direction and n is the number of files to be skipped. If direction (£) is not given,

forward () direction is assumed.



DRAWING NO. 702458
SHEET /20F 5

For example:

SPF FT#2076, +2 Cr

IANIA

Free form tape #2076 is positioned forward 2 files. If an end-of-reel is encountered prior to

completion, an appropriate diagnostic is given to the user.

4 e | |
The user may skip to just following the last file on labeled tcp.e" through the

following command:
SPE LT [#reel no.]

For example:

SPE LT#5Cr

IN A

PCL positions labeled tape #5 to just following the last file. The user may now add cdditional

files to the tape.

5. WEOF

This command enables the user to write an end-of-file mark on output peripheral

devices. The command has form:

WEOF device id [freel no.]
where device id is any output device code excluding LT and DC. PCL writes antEOF on

magnetic tape and double 'EOD records on card and paper tape. For example:

< WEOF CP Cr
<

This example causes PCL to punch two successive EOD cards.

6. REW

A user may request that designated magnetic tapes be rewound using the following



DRAWING NO. 702:39
SHEET »¢20OF /9.5

command C
. N
REW #reel no. [*reel no.] ...[freel nol

PCL rewinds each tape in the order specified. For example:

REW #205#206 Cr

INTA

Tape units currently identified with reels 205 and 206 are rewound.

7. REMOVE
This command permits the user to request removal of tapes no longer needed

and thus, release the tape unit for other purposes. The format is as follows:
REMOVE #reel no. [#reellno.] ... [freel no.]

Each tape specified is rewound and, upon completion, a dismount message is given to the

operator. For example:

<REMOVE #2075#2076 Cr
<

Tape units associated with reels 2075 and 2076 are rewound. Messages are given to the

operator to dismount these tape reéls.

8. TABS
This command sets listing tabs for the current output device as defined by
the latest TO or OVER command. It is of the form:
'I!'ABS c|["c2]“'['cn]« |
where ; represenfs’ column numbers of desired‘rob settings. PCL merges the settings into the
current output dcb. For the ME device, settings are transmitted to the COC routines which

performs the actual tab simulation in this case. Consider the example:
| : :



DRAWING NO. 702459
SHEET #¢+OF /8&

< TABS 10,19,37 Cr ~
< 1
Assuming Meta-Symbol source is being/c\:gpied to a listing device, this command sets the

appropriate tabs for this language.

E. Termination of PCL

In order to close the current output file, it is necessary for the on-line user to indicate
when he has finished with PCL functions. The command END fulfills this requirement and also
returns control to the UTS executive. Prior to exiting, a termination message is given to

the user. For example:

SEND Cr
PCL PROCESSING TERMINATED
|

—

This command closes. the current output file (if any) and causes PCL to return to the executive
command level. The Executive responds with its identifying mark (!) indicating the command

state,

F. Language Syntax

The PCL control language is designed to be free form with a few restrictions imposed

. for simplicity in implementation and use. These ihclqde: A

1. Al ‘commands must comply to the general format given in the definition.

2.  Blanks are allowed preceding or following an argument ﬁela. Imbedded
blanks are not permitted.

3. At least one blank must follow each command verb and must precede an
imbedded command verb (TO, OVER). |

4. Continuation between input records is not allowed.- (One corﬁ_mand per line.)
End of command is indicated by a period (.) or by end of the input record
(column 80 for card input, Cror Lffor TTY's) ~

6.  An output device or file (TO, OVER) rﬁust be defined prior to or on the same
line with COPY command. COPYALL, END,TO, or OVER commands terminate - |

the current output specification.



DRAWING NO. 70247
SHEET/«5OF /& &

Each command is edited for compliance to the above rules and is checked against Table 1.
The user is notified of all errors (including I/O errors) through appropriate diagnostics.
A severity level of 1, 2 or 3 is attached to each error and has the following effect on the
execution of the command in quesfion.
1 - warning, requireﬁ;"vGO" confirmation from on-line user, continues execution
for batch user. 1
2 - invalid syntax or 1/O error, terminate execution of command, but continue

syntax edit for both on~line and batch users.
3 - format error, terminate command, revert to command state for on-line user,
read next command card for batch user.

The maximum severity encountered for a command is displayed following diagnostic output.

For example:

< COPY CC TO DC/A Cr
INVALID DEVICE
SEVERITY 2

<




DRAWING NO. 702459
SHEET/+20OF 8¢

INDEX TO PCL COMMANDS

COPY
COPYALL
DELETE
LIST
REMOVE
REW

SPE

SPF

TABS
WEOF

copies device(s) and/or file(s)g\)/ER device or file
copies file cafolbgs between disc and labeled fapé
deletes a file _

lists file names from account directory or labeled tape
removes reels from tape units

rewinds tape reels

spaces to end of last file on labeled tape

spaces device forward or backward n files

set tab stops far output

write end-of-file on device



DRAWING NO. 70248
SHEET /477 OF /&'

X. Loading of Programs (LINK)

TABLE OF CONTENTS

INTRODUCTION
LOAD MODULE STRUCTURE

A. Program
1. Pure Procedure
Data or Program Context
Common
DCB's
Public (core) Library

o U W WN

System Library

B. Global Symbols
C. Internal Symbols

SYMBOL TABLE FORMAT

THE LINK COMMAND
A. Load Module Symbol Tables
B. Merging Internal Symbol Tables
C. Library Search "
D. Display Options

COMMANDS WHICH INITIATE THE LINK SUB-~SYSTEM

A. LINK
B. RUN
C. CALL LINK
BREAK Key

Index;to; LINK Commands and Options
. ; [

161



DRAWING NO. 702439
SHEET /%@ OF /45

INTRODUCTION

LINK is designed to construct a single entity calléda load module (LM). A load
module is an executable program formed from relocatable object modules (ROM's}
and/or library load modules (LM's). ROM's a.re representations (of program

and data) that are generated by a processor such as Meta~Symbol or FORTRAN.
The on-line user has, at the executive level his choice of constructing a load
module (LINK)‘, loading into core a previously constructed load xnovdvule. (kLOAD‘s,
starting execution of the loaded LM (START), or combining the‘ above steps (RUN).
RUN is used either to load and start execution (LOAD-START) or it is used to link,
load and start execution, (LINK~-LOAD~START) see PART VI Terminal Executive
Language (TEL). A library load module is a single entity formed from relocatable
object modules which is constructed in such a manner that it may be combined
with other ROM's or library load modules. LINK is a one~-pass linking loader

(reads each input module oncé)fm,aking full use of the mapping hardware.

LINK is not an overlay loader. If the need exists for overlays the user must call
on the overlay loader by ehtering a job in the batch stream. At a later time a

simple chaining feature will be added to LINK to provide a simple form of overlay.

In order to form a load module which may later be combined with other load mocdules
or ROM's the load module must be of one protectionAtjrpe. A program of mixed

protections type may not be combined.

Object programs consist of one or more program sections. Sectioning is the
arhitrary grouping of areas of a program into logical divisions, such as specifying
one section for the main program, one for data, one for literals, etc. - Furthermore
with memory map and/or write locks, progré.rh sectioning enables f:he programmer

to designate the mode of protection he wishes to have for the program divisions.

The access protection features are:

- read, write, and access permitted (data)

- read and access permitted (pure procedure)



DRAWING NO. 702482
SHEET /4% OF 3 i

- read only permitted (static data)

~ no access, read, or write permitted (no access)



DRAWING NO. 702484
SHEET .5¢OF .~ ¢

LOAD MODULE STRUCTURE

A load module (LM) formed by LINK may be throught of as being camprised
of three parts: A. program, B.bglobal symbols, and C. internal symbols.

A. Program

The program may be sectioned into the following parts:

1. Pure procedure = This section of code has read and
access protection is generated by the

compilers and assemblers as control section 1.

2. Data or program context ~« This section of code has read,
write and access protection and is generated
by the compilers and assemblers as control

section 0.

3. Common -~ This is blank COMMON and is gener'a.ted by

' compilers and assemblers as a dunun‘,; section
with the name F4:COM. The size of blank |
COMMON is deterrninéd by largest size

j declared.

4. DCB's ~ A Data Control Block is a table containing the
information used by the Monitor in the perz’obmﬂxanée
of an I/O operation. LINK will construct a DCB
corresponding to each external reference with
names beginning with F: or M:, or it will satisfy
these references from a standard set, allocated

automatically for each on~line user.

The standard set of DCB's will be defined in a later
document é.long with the information contained in the
job information ta,b‘}e :‘(‘T-I I'I'), f'fﬁ'g',;gq,qf-ggr,x_t,gx_tarea, s for

) tl}gl i:ubli‘ c library andstandardproce diots , ‘and other

UTS'_s;i.:ap_c'lardAs.f. DCB'é constructed by LINK will be



DRAWING NO. 702489
SHEET ,5/OF /4%

twenty~two (22) words and will contain default
assignments. Additional words are generated
allowing space for a file name, account number, "“
password, input serial numbers and/or outpﬁt séri:z.l
numbers. The exact number of additional words

and what defaults will be assumed is to be specified
in the same document. In those cases where the
DCB's constructed by the loader do not fit the user's
needs the user may define his own. While allocating,
constructing and combining DCB's, LINK wili alwavs
guarantee that each DCB will be contained within a
page. This allows the operating /s/;ystem to access

DCB's in either mapped or unmapped mode.

5. Public (core) librai’y -~ Each installation will have the ability
to define a set of reentr.axvlt subroutines thch together
constitute the public core;-library. The reentﬁaﬂt
portion of the core library is shared among users
(on~line, batch, and real-time), thus s_aving' vhysical
_core memory and allowing for more efficient system:
operation. The user dependent data for each core
library rdutine is allocated by LINK at a fixed virtual
address. Thus, the public library is constructed
in two pa;ts: reentrant procedure and direct access
contexf data (i. e. in fixed virtual memory). By
forming the library in this manner a speed advantage of
frorﬁ 5 to 20 percent over push-down storage re-entrancy
can be obtained. | '

6. System library--:.*--"i“}{e‘ system library, mucrlli the same as the public

core=library, is constructed in two'parts: reentrant



DRAWING NO. 75489
SHEET /S OF /5 &

procedure and direct access context data. Routines
which are obtained from the system library become
part of the user's program and are not shared. The
speed advantage is still maintained by providing a
library which-accesses a data area in fixed virtual

memory.

The difference between the Public Library and the
System Library is that every individual user paysr

. core for each System Library routine used while only
one instance of the Public Library is required no
matter how many are using it. In the Public Library,
however, use of jﬁst one routine requires core for
the whole package. The Public Library contents wiil
be specified and built at SYSGEN time.

Global Symbols

While performing the link process, a global symbol table is constructed.
" This table is a list of correspondences between symbolic identifiers
(labels) used in the original source program and the values or virtual
core addresses which have been assigned to them by LINK. The global
symbols identify objects (DEF's) within a module which may be referred
to (REFed) in other modules.  This table'is.gvailable to DELTA, for
use in debugging, and;to-SYMCQN. e e

Internal Symbols

An internal symbol table is a list of correspondences similar to the
global but which applies solely within the module. Each inter;:lal symbol
table constructed by LINK is associated with a specific input module
and identified by the module’s file name. The internal as well as the
global symbol tables are created for use by the débug processors,

such as:DELTA. The user has the «a,bi‘lit;y,under,‘D‘E.L.’I‘A to define

which sehﬁ“‘(Sf'. inte rnal symbols are to be usedforspec1f1cdebuggmg

a'ctivitie 8.



DRAWING NO, 702489

SHEET /52 OF /8

SYMBQL TABLE FORMAT

As has been mentioned above, the main usage of symbol tables are by DELTA,
DELTA allows the user to reference both internal as well as global symbols

in the debugging of programs. The user operates on his object provgrams as
formed by the loaders, together with the tables of internal and global svmbols

accompanying them in what appears to be assembly language symbolic,

Both global and internal symbol tables, as formed by L_INK and used by DELTA,
consist of three word entries. Symbolic identifiers (labels) are limited to seven
(7) characters plus count, Symbols originally longer than seven are truncated
leaving the initial characters, although the character count is retained, Symbols
which are identical in their first seven characters and are of equal length occupvy
one position in the symbol table. The value or definition for multiply defined
symbols is the last one encountered during the linking process. Each symbol
entered ihto the table has a type and internal resolution classification. The
internal resolution types are; byt’e, half-word, word, double word, and constant,
The following is a list of the symbol types which are suppliéd by the object:
language and maintained in the symbol table: instruction, integer, EBCDIC :ext,

short floating point, long floating point, decimal, packed decimal, and hexadejcizzzal.

In order to provide internal symbols definvi.tion‘together with internal resolution
and type classification, the relocatable object language will be augmented. This
means that the compilérs and assemblers must be changed in order to provide
this facility. In addition, existing loaders must be modified in order to procéss
the changes in the object language. The required additions to the object language
and the exact symbol table format will be detailed in a separate document.

v

THE LINK COMMAND

The LINK command may appear both as‘an executive command (in TEL) or it
may appear as a direct command to the LINK processor, All operations that can
be performed under the LINK executive command can be performed under the
sub-system, The,’ no,,tat‘i‘gt,i*.a'nd conventions for specifying the r'ete..r}t,ion,' deletion,
and merging of%i:fxtfa‘r.r;;é.i,-symbo_lgm'aye,the same.

Ther;mv‘qs't-;V‘cjbﬁimqnpla,ce LINK commands are of the form: .-

- 'LINK mfl, mfl,... ON1lm ~ (on a new file) .
LINK mfl, mfl,... OVER Ilm (over an existing file)-



DRAWING NO, 702489
SHEET /5% OF & &

LINK mfl, mfl,... - (on a temporary file for sub-
sequent loading)

where

mfl specifies the load module or relocatable object -
module name and is represented by file name,
account and password (in this order) separated
by hyphens. In the absence of account and/or
password, the log-on accounting identification is
used. A dollar sign '$' may be used to designate

linking of the most recent compilation or assembly.

Im specifies the name (file identificatiori) of the load

module to be created by LINK.,
Optional specifications on the LINK command control:
A, Lioad module symbol tables

(I) /(NI) The parenthesized letters "NI' preceding an input
module's file identification specifies that no internal
symbol table is to be éonstructed; the parenthesized
letter "I" specifies that an internal symbol table is to
be constructed., The "I"' or "NI" option holds for all
subsequent modules mentioned in the command until
the occurrence of a new specification., In the absence

of any specification "I" is assumed,
'

Example:
LINK A, (NI) B, C, (I) DONE

This command specifies that a load module E is to be
created for execution from files A, B, C, and D. (Bv
implication, the public library and system library are
to be searched to satisfy any external references.)
Internal symbol tables are to be created for file A and
D but not for files B and C. The global symbol table

is always retained.



DRAWING NO. 702489
'SHEET /55 OF /£ &

Merging internal symbol tables

(mfl, ...)

LINK may be instructed to merge the internal symbols
of several files by enclosing the files in parentheses, -

Only one level of parenthesized nesting is allowed.
Example:
LINK (D,A) (NI) B, C, ON E

This command specifies that no symbol table is to be
constructed for files B and C and the internal svmbols
for files D and A are to be merged., The internal svm-
bol table will be identified by A, The identification given
to the internal symbol table will be that of the last input

module specified in the merge.

When a load module containing separate internal sym-
bol tables is itself linked, LINK will merge all the tables

under that module's name.

Library search

; lid, 1id.. .

(L) &

(NL)

specifies the libraries which are to be searched for
program references which have not yet been satisfied.
Libraries are identified by account. The 1’\ist_ of library
accounts separated by commas is appended to the LINK
command following a semicolon, In the absence of anyv
other specifications the public library will be searched
followed by the UTS system library, any user specifica-
tion eliminates these searches unless requested by the

user,

specifies that the public and system libraries are to be
searched to satisfy external references which have not

been satisfied by the program.

specifies that a library search is not requested.



DRAWING NO. 702489
SHEET /5% OF /&

D. Displays

(D) - specifies that at the complefion of the linking process
(including searching libraries, if specified), all
unsatisfied internal and external symbols are to be
displayed. The unsatisfied symbols are identified as
to whether they are internal or external and to which

module they belong.
(ND) specifies that the unsatisfied internal and external svimbolis
are not to be displayed,
N

(C) specifiés that all conflicting internal and external symbols
are to be displayed. The symbols are displayed with their

source ({module name) and typé (internal or external).
(NC) specifies that the conflicting symbols are not to be displaved,

(M) specifies that the loading map is to be displaved upon
completion of the linking process. The symbols are

displayed by source with type resolution, and value.

(NM) specifies that a load map is not to be displayed,

The default specifications for the linking process are D, C, NM, and L. Any

specifications stated or implied hold over subsequent LINK commands.



DRAWING NO. TUZz489
SHEET L7 OF ~R&

- COMMANDgZ WHICH INITIATE THE LINK SUB-SYSTEM

The LINK sub-system may be called as a subroutine or it may be called directly

as a processor.
A, LINK

LINK is called as a subroutine when TEL receives a LINK comtﬁand. In this
mode the information and specifications supplied on the LINK command are
assumed complete. Therefore, the sub-gystem will have little or no interaction

with the user,

The specified input modules are linked with or without library modules as
specified and, if specified, a map is displayed. The user is notified when the
operation is complete by the executive system (TEL). The sub-system (LINK)

returns control and TEL requests further commands from the user.

Example:
4 LINK (ND) (NC) A, B,C

DONE

!
.

If, when called as a subroutine, LINK has any need to request information from
the user, it will identify itself, identify the problem, and then prompt for input
as follows:

LINK HERE

(problem identified)

s
o 32

In all subsequent requests from LINK only the problem and prompt character

are displayed. .
B. RUN

The LINK sub-system is called as a subroutine when TEL receives a RUN
command,  In this mode information and specifications supplied on the RUN
command are assumed complete. The sub-system normally has no interaction

with the user.

% :is LINKs i)rdmpt'character.--



DRAWING NO. 702 :89
SHEET A58 OF /& ¢

The two forms of the RUN command that may be presented to the executive

system (TEL) are:

RUN
RUN mlf, mlf, ...

The first form is used to link, load, and start the result of the last major

operation (assembly, compilation or linkage).

If the last major operation was a 1inkage, the sub-system (LINK) is not needed
and will not be bcalled. However, if it was an assembly or compilation, LINK

is called as a sub‘routine. The second form is used to link,‘load, and start execu-=
tion of a set of modules. All options of the LINK command may be exercised

in the RUN command,

Two options may appear on the LLOAD and RUN commands which do not appeér'on
the LINK command. The options are ""NG'", and ""S". The "S" option allows the
user to specify when copies of the internal symbol tables associated with a LM
are to be carried along with the loaded LM. Normaily, the internal symbol
tables are not "loaded'', and global symbols are "loaded' unless turned off by

the parenthesized letters "NG'",

e.g.,
RUN (S) (I) A, B, (NI)C

This example requests that files A, B and C are to be linked, loaded, and v

started. Internal symbols for the first two only are to be kept with the resulting

load module; all internal symbbls kept with the load module are to be 'loaded”

with it,

C. LINK called as a processor

LS

‘The sub-system is called directly by using the command CALL LINK. The notation

and conventions for input files and retention, deletion, and merging of internal
I .

I:symbol tables remain the same. The main advantage as a processor is that of inter-
action., It allows the user to link more moduies, search more libraries and in
ganeral the user has more control over the li.nking process, In addition to the

LINK command the sub-system recognizes the commands: OUTPUT, SEARCH,
LIST, QUIT and END, ‘



DRAWING NO, 702 :89
SHEET /87 OF /&' G

Specifications governing the displays and library searches are given immediately

following the LINK command verb in the form of a parenthesized code or list of

codes,

(D) specifies display unsatisfied internal and external references
(ND) signifies don't display internal and external references

(C) signifies display all conflicting identifiers
(NC) signifies don't display identifiers:

(M) signifies display the loading map on completion of the linking
process

(NM) signifies don't display loading map on completion of the linking
process

(L) signifies search the public and system libraries for unsatisfied
program references

(NL) signifies don't search the public and system library for unsatisfied
program references

The default specifications are D, C, NM, L. Specifications hold over sub-

sequent LINK commands until changed.,

1. OUTPUT

Specification of an output file instructs LINK to complete any previous

link process and initiate a new one. The previous output module, if any, is

closed and saved for future loading.

As a processor LINK will not initiate any linking until an output file has been

identified. The user may spécify an output file by the LINK command.
LINK mfl ON Im (new file)
LINK mfl OVER lm (old file)

All commands are analyzed for validity. If any discrepancies appear, the

user is informed and LINK requests that corrective action be taken,
2, LIST

At any time prior to completing the linking process the user may request
optional displays to be listed on the printer, file, or terminal. The format of
the LIST command is: | - LP (printer)

LIST (loading map,et al) ON file
ME (terminal)

The default specifications are D, C and M.



DRAWING NO. 702489
SHEET /42 OF /538

-3, SEARCH

At any time prior to the completion of the linking process the user may
request LINK to search his own and/or system and public libraries to resolve
unsatisfied external program references. The format of the SEARCH COmman& ‘
is: .

SEARCH 1id, 1id, lid...

(NL)
4. © QUIT

At any time prior to the completion of the linking process, the user may
request LINK to terminate. Termination results in the release of all core and

disc space allocated as the results of the linking process.

5. END

The linking process is terminated with the END command. This command
instructs LINK to close and save the current output file, if any, for future
loading.

Example: _
! CALL LINK

LINK HERE

+ LINK (ND) (NC) (NL) A, B ON JED
+ LINK C .

: SEARCH CH (L)

: LIST (M) (C) (D) ON JOE

: END B

'DONE

In this exafinple the output fil'e4is JED and input modules A and B are linked. No
display has been requested, Input module C is then combined with A and B and

the system library is sé‘ba.rched. Théﬁ, the user i’equests that the inép, conflicting
~and unsatigfied symbols be listed on file JOE. The LINK session is cdncludéd by

t:’be7 command END and control is returned to the executive.

g -



DRAWING NO. 70249

A

 SHEET .4/ OF ~ & &

BREAK KEY -

Despression of this key causes LINK to terminate whatever it has been d“oing‘ _
as soon as it can; however, this signal is ignored if given by the user while he is

typing in a command. Usually, LINK will type
REVOKED

as soon as it honors the break. However, if engaged in linking a module or
searching a library, LINK will finish that operation and then tell the user how
far it has gotten. For example, if wofking on the command
LINK A,B,C,D

and interrupted while working on file B, LINK will finish linking B and then
type ’

- DONE THRU B
If actually finished with a command before honoring the break, 'LINK will simple
behave as it usually does after finishing a command. If called as a sub-system,
LINK will return control to the user after typing its identifying mark; if called

as a sub-routine, LINK will notify the exec that it has been interrupted, without’

typing anything at all (TEL will tell the user that the command has been revoked). -

INDEX TO LINK COMMANDS AND OPTIONS

COMMAND OPTIONS , MEANING
LINK | ‘ Specify the linking process
D/ND Display or don't display unsatisfied internal
and external references
c/Nc T e Display'or don't display conflicting identifier
M/NM *+, Display or don't display loading map
L/NL Search or don't search the public and system
library _
I/NI Construct or don't construct internal sumbol
tables
OUTPUT Specify the LM file.
none
LIST Specify display options to be listed on printer, -
- file or terminal ‘
D/ND
- D/NC Same as link.

M/MN



DRAWING NO. 702489
SHEET /@A OF & s

SEARCH Specify which libraries are to be used in
satisfying unsatisfied references
L/NL Same as LINK
END | Specifies the end of a linking process
| None ;
RUN Specifies to link, load and start execution
D/ND )
C/NC
M/NM g Same as LINK
L/NL
I/NI J
NG Do not load the global symbol table with the

load module : _
S ._ Load internal symbol tables with the load module



XI. Monitor Services for On-Line and Batch Programs

TABLE OF CONTENTS

INTRODUCTION

DATA MEMORY MANAGEMENT
A. Get Limits

B. Get Common Pages

C. Free Common fages

D. Get N Pages

E. Free N Pages

F. Get Virtual Page

G. Free Virtual Page

NEW UTS SERVICE CALs

A. Set DELTA Breakpoint
B. Set Prompt Character
C. Change Terminal Activation and Translation Table

ON-LINE - BATCH DIFFERENCES

. Exit Return (M:EXIT)

Error Return (M:ERR)

Abort Return (M:XXX)

Type a Message (M:TYPE)
Request a Key-In (M:KEYIN)
Connect to Interrupt (M:INT)

mmoN® R

ERROR AND ABNORMAL MESSAGES
SUMMARY OF CALs

On-Line, Batch, Real~Time
Batch Only -
On-Line Only

Real-Time Only

Monitor Only

mooE»

NUMERICAL LIST OF CAL's

OPERATIONAL LABELS ,

DRAWING NO., 702487
SHEET . s OF 7+ .-

173

181

185



DRAWING NO. 702489
SHEET /¢ OF 77 ..

INTRODUCTION

This document describes the calls for service by user programs, their operation and restrictions

in the UTS environment. All facilities and processors now available as BPM services remain
available to the batch user in UTS. Some UTS facilities are provided solely for on-line use,

while others are available only in batch.

New and modified services allow the user to get and free core storage -~ both in the old ways
from must above his program area and from common storage and in a new way by specifying the

virtual address of the desired core,

New services are provided to a) allow communication and memory protection changes when
transferring between a user program and system processors, b) set up a "prompt" character with
the terminal 1/O routines which will be typed whenever input is requested, and c) control the

~ character translation and end-of~message indication tables in the terminal I/O routines.

Some of the current CAL's behave differently when called by an on-line user. These differences

are outlined.

The Monitor service CAL's are listed by the restriction in usage =~ on=line, batch, or reol-tirﬁe,

and for convenience in numerical order.

The standard assignments to devices of the system operational labels are listed in the final section.



DRAWING NO. 702459

SHEET - s~ OF ~&f &

N ' i
DATA MEMORY MANAGEMENT ‘

The Monitor provides two forms of memory management which allow the user to manipulate his

core memory area assigned to data, They are: Relative allocation and Specific allocation.

Relative allocation allows user data to be extended from the top or bottom of core. Memcry
may be extended from the highest available virtual page above the user's current allocation o
the lower limit of the user's common dynamic area. The pages obtained in this munﬁer are
called dynamic pages. Memory may also be allocated from the highest available virtual page
down to the upper limit of the dynamic area. The pages obtained in this manner are called -
common dynamic data. The memory management routines do not permit overlapping of dynamic

and common dynamic memory.

Installation parameters set at SYSGEN time and modified by operator KEYIN'S separately

regulate the amount of core storage available to on-line or batch users.

Specific allocation allows user programs to request or release any virtual memory page between
the first available virtual page and the last available virtual page, but the two forms of memory
management may not be used within the same program (at the same time). A sample virtual

memory layout is shown below.

Job
ContexH ‘ dynamic data common dynamic shared
Monitor Area ¢ Program_—3 N data <—— | processors
Vi rrae WA
/ , S S
//\. // . Y
)
first |°5f' _
available available
virtual virtual
Poge ._ page

Seven monitor service calls described below allow user manipulation of memory. They are divided
info two groups: 1) CAL's analygous to BPM memory requests for getting and freeing dynamic and
common memory, and 2) New UTS CAL's which request and release specific virtual memory pages.
The user must confine his memory request to either group 1 or group 2 with an error resulting from
mixed usage. A single program may use both groups of allocation commands so long as all memory

is released to the monitor between command groups.



DRAWING NO, 702489
SHEET 744 OF /& 4

Get Limits o
M:GL The GL routine is used to obtain the absolute hexadecimal addresses of common

dynamic core storage. The lower limit is returned in SR1 and the upper limit in SR2, =

The M:GL procedure call is of the form

M:GL
Calls generated by the M:GL procedure have the form
CAL1,8 FPT

FPT is the address of a word as shown below.

X'0B" 0 9
0 78 — el

Get Common Pages

M:GCP The GCP routine is called to extend the lower limit of common dynamic storage
by a specified number of pages. If the réquired pages are available, condition code (i.e.,
bit 1 of CC) is sef' to 0. If the required number of pages are not available, condition code 1
is set to 1 and the number of pages actually available is returned in SR1. In either case, SR2
contains the address of the first available common page (lowest address value). If spec'ifi;:
allocation is in effect, SR1 and SR2 will be set to zero and CC1 is set to 1, that is the request
is denied. The M:GCP procedure call is of the form

MGCP pages
Pages specifies the number of memory pages by which common dynamic storage is to be ex-
tended. '
Calls generated by the MGCP procedure have the form

CAL1,8 FPT |

"FPT is the address of a word as shown below,

x'ocC! 0 0 Number of pages required i
0 78 14 15 31




DRAWING NO. 732489
SHEET /¢ OF /& -

Free Common Pages

M:FCP The FCP routine is called to free a specified number of pages from the |ov;er, Hii
of the current dynamic common storage area. The freed pages are not available for:use by
the user's program (access protection is set to 11) and any attempt to use freed pages will

result in a trap.

If the specified pages are not parf of the user's dynamic storage area, or if in specific
allocation is in effect, no pages are affected and cordition code 1 is set to 1; otherwise

it is set to 0.

The M:FCP procedure call is of the form
M:FCP pages | _
Pages specifies the number of pages to be freed.
- Calls generated by the M:FCP procedure have the form
CALI,8 FPT |

FPT is the address of a word as shown below.

X'oD' 0 0 - Number of pages to be freed
0 78 ' 415 3

Get N Pages

M:GP The GP routine extends the dynamic area of core storage that may be used by
the user's program. If the specified number of additional pages of memory are available,
CC1 (i.e., bit 1 of the CPU's condition code register) is set to 0 and the access protection
on the allocated pagés is set to 00; bfherwise, CCl1 is set fovo/l and the number of availabl
pages is returned in SR1 with the access protection set to 00 on those pages ulloccfed.; In
any case, SR2 contains the address of the first available page. If specific allocation is in

effect no allocation is made: SR1 and SR2 are set to zero and CC1 is set to 1.

The M:GP procedure callis of the form
M:GP pages B
Pages specifies the number of additional pages requested.
Calls generated by the M:GP procedure have the form
CAL1,8 FPT

FPT is the address of a word as shown below.



DRAWING NO. 7024£9
SHEET 5+ OF 75 ¢

1 X'08! 0 0 , Number of pages required

0 78 ' 1415 31

Free N Pages

M:FP The FP routine frees a specified number of dynamic pages from the Ahigh end of
the area of core storage that may be used by the user's program. The pages freed are no
longer available for use by the user's program, and an aﬁempfbby the user’s program to
access any of the freed pdges will result in a trap, If the specified pages are not part of
the user's dynamic storage area or if specific allocation is in effect, no pages are affected

and condition code 1 is'set to 1; otherwise, it is set to 0,

The M:FP procedure call is of the form

M:FP pages _
Pages specifies the number of pages to be freed from use ‘by the user's program.
Calls generated by the M:FP procedure have the form

CAL1,8 FPT

FPT is the address of a word as shown b'e.low.

X'09" 0 0 Number of pages to be freed :
0o 78 14 15 ; 31

Get Virtual Page

M:GVP The G VP routine is called to make a virtual page of memory available to the
operating program. If the requested page is in use, or if physical memory limits have béen
exceeded or if relative allocation has been used, no pages are affected and condition code
1 isset to 1; otherwise, it is set to zero and the monitor sets the access projection to 00 on

the requested virtual page.

The M:GVP procedure call is of the form
M:GVP virtual address
Virtual address specifies the address of the first word in the virtual page desired.

Calls generated by the M:G VP procedure have the form
CAL1,8 FPT



DRAWING NO. 702489
SHEET /¢ % OF & &

FPT is the address of a word as shown below.

X'05" 0 : 0 , Virtual Address

0 78 | — 1415

Free Virtual Page

M:FVP The FVP routine is called to free a specified virtual page of memory. If the
page to be released is not a data page, or if relative allocation is in effect, no pages are
affected and condition code 1 is set to 1; otherwise, it is set to zero and the Monitor sets

the access protection to 11 (no access) on the released virtual page.

M:FVP procedure call is of the form
M:FVP  virtual address ,
Virtual address specifies the address of the first word on the virtual pcgé to be‘releosed.
Calls generated by the MFVP procedure have the form '
- CAL1,8 FPT

FPT is the address of a word as shown below.

X'05! 0 0 Virtual Address -

0} 78 4135 Y



DRAWING NO. 702489
SHEET /7:OF /& &

NEW UTS SERVICE CALs

Three new calls have been added to UTS in order to provide setup of communication with -

‘the DELTA debugger, and the terminal 1/O handler. They may only be issued by on-line

user's program and are ignored if issued by a batch program.

A.  Set DELTA Breakpoint ;
Communication between the user's program and the DELTA debugger is via the M:DELTA

routine. Primary use is by DELTA in planting calls to itself in the user's program in response tc
instruction breakpoint requests. On execution the monitor stores the PSD and general }egisiers
in ‘o 19 word block of user's memory (on a vdoqubleword boundary) and places a pointer to thet
block in register 1. The iqcation given in the FPT is then entered. Return to the user's
program is via the TRTN routine.

The M:DELTA procedure is of the form_

M:DELTA address

Address is DELTA's breakpoint entry location.
The calls generated have the form

CAL1,8 FPT

FPT is the address of a word as shown below.

X'OF! 0 0 DELTA breakpoint entry

0 78 1415 - 31

B.  Set Prompt Character

| The on-line user's keyboard is proprietary: either he has control for purposes of input or
UTS has control for carrying out requests and for purposes of output. Who or what is
controlling the keyboard must be made clear at all times. On-line processors are assigned
a prompt character which is issued to the user whenever control of the terminal is returned
to him for input. This allows the user to know at all times to whom he is talking; who talked
to him last and when he can type. A user program may set the prompt character to key his
input requests if he wishes. Ordinarily when the control is turned over to the user a null

prompt is assigned.



DRAWING NO. 702449
SHEET /7. OF /& 4

[

Current assignment of prompt-characters is:

" -Monitor !
Edit *
PCL <
LINK |
BASIC >
Assembler +
FORTRAN $
DELTA bell
SYMCOM
FDP /
user _ null

M:PC The Set prompt call allows the user's program to set ’fhe términcl prompt

character (identification mark). This prompt character if non null, will be output (usually

at the left margin) whenever input is requested from the user's terminal (UC device.)

The procedure call is of the form ;
M:PC character |
Character specifies the EBCDIC prompt character (identification mark) which is to be
associated with the user. An EBCDIC 00 (Null) means no prompt character is desired.
Calls generated by the M:PC procedure call have the form
CAL1,1 FPT |

FPT is the address of a word as shown below.

. . EBCDIC
xX22c? 0 ‘ 0 Prompt Character
o 78 ' 23 24 31




DRAWING NO. 702489
SHEET /%.20F 4 ¢

Change Terminal Activation and Translation Table

Translation of characters dppearing on the user terminal input lines to the EBCDIC ihternal
Sigma 7 standard, translation of EBCDIC to the proper output form for the terminal, and the
determination of which characters are to be considered end-of-message or ogfi\)ution charact
when received are all controlled by tables resident in the COC I/O handling routines. A

Monitor CAL allows the user to switch among the tables available in the system.

The procedure is of the form:

M:CT n
n specifies the number of the desired table 0 < n < 5.
The procedure generates a

CAL1,8 FPT

FPT is the address of a word as shown below.

X106' » | | n
0 78 T

The current tables translate for Model 33 and 35 Teletypes, and SDS Keyboard Displays.
Additional tables are contemplated for Model 37 teletypes, IBM 2741's, and Frieden 7100's.
Since translation tables are assigned to lines at SYSGEN time it is unnecessary for users of fi:

location consoles to use this command. Dial-up lines are another matter.

The current assignments for the n parameter are:

n Meaning

0 Use DELTA activation set\( /= tcr If tab)

1 Use standard Mod, 33,35 TTY table (cr If and ESC) |

2 Use the standard K/D table (all cursor movements, hard copy signals, mode
changes, and roll commands activate) '

3 Reserved for Model 37 TTY

4 Reserved for IBM 2741 |
5 Reserved for Frieden 7100



ON-LINE BATCH

DRAWING NO. 702489
SHEET / 730OF /& &

DIFFERENCES

The monitor has different actions to certain CAL's depehdflhg on which they were issued by an

on=line or a batch program. The CAL's which depend on the calling environment are described

Below.

A, Exit Return
Batch
On-~line

B. Error Return

Batch

On=line

(M:EXIT) |

The monitor performs any PMDI dumps that have been specified for the program
and then reads the C device ignoring everything up to the next control card.
The monitor returns control to the on-line executive program, which prompts

with an 'l* at the terminal (UC device) for the input message.

{M:ERR)

The monitor outputs the message

11JOB id ERRORED BY USER AT xxxxx

where xxxxx is the address of the last instruction executed in the program. The
message plus the contents of the current register block and program status éoubie-
word (PSD) are listed on the LL and DO devices. The monitor also lists the
message k

I1JOB id ERRORED

on the operator's console (OC device). Post-mortem dumps are performed, and
the C device is read ignoring everything up to the next control card.

The monitor outputs the message M:ERR AT xxxxx where xxxxx i§ the address of
the last instruction executed in the program on the UC and DO devices, if differs
The monitor then returns confrol,j\o the on-line executive, which prompts for the

next user message with an 17,

I4

C.  Abort Return (M:XXX)

Batch

The monitor outputs the message ! 1JOB id ABORTED BY USER AT xxxxx where
xxxxx is the address of the last instruction executed. This message plus the
contents of the current register block and program  status doubleword (PSD) are

listed on the LL and DO devices, if different.



On-=-line

DRAWING NO. 702489

SHEET /¢ OF /5.,

The monitor also lists the message

IJOB id ABORTED , o

on the operator's console (OC device). The M:XXX procédure call is of the
form: | '

M:XXX v

when a job is aborted, any specified postmortem dumps are performed, but no
further control commands are honored until a JOB or FIN control command is

encountered.

The monitor outputs the message M:XXX AT xxxxx where xxxxx is the address of
the/last instruction executed in the program. This ’meséoge is listed on the UC
and DO devices, if different. The monitor then returns control to the on-line

executive which prompts for the next user action with an 1.

Type a Message (M:TYPE)

Batch

On=line

-The monitor outputs the specified message on the OC device.

The monitor outputs the specified message on the UC device.

Request a Key=in (M:KEYIN)

Batch

On=line

The monitor outputs the specified message on the OC device and enables the

- operafor’s reply‘fo be returned to the user's program.

The monitor outputs the specified message on the UC device and enables the user's
reply to be returned to the program. A prompt character is sent if one was specifi

by a M:PC.

1

Connect to Interrupt or BREAK key (M:INT)

The purpose of this procedure is to allow execution of the program to be controlled from the

terminal or console, When control is given to the INT routine, the PSD cnd general registers

are stored in a 19-word block of user's memory (on a doubleword boundary) and a pointer to

word O of that block: is placed in current general register 1. The TRTN routine may be used

to restore control from a cansole or terminal interrupt. -



DRAWING NO. 702489
SHEET /75 OF & .

/
Batch The monitor enables the user's program to be cannected to a console interfupt

(key=-in addressing the program). This enables the user's program to be ccritrolle
from the operator's console.
On-line  The monitor enables the user's program to be connected fo a teletype intertupt

{Break key). This enables the user's program to be controlled from the ferminal.

The monitor INT routine is called by an on=line program to set the address of a routine to ke
entered when the user presses the BREAK key on his terminal. The execution of this procedur
causes the monitor to store the PSD and general registers into a 19-ward block of user's
memory (on a doubleword boundary) and a pointer to word 0 of that block is placed in current
register 1. The TRTN rdufiﬁe (see M:TRTN) may be used to restore control to the user’s

program,

The M:INT procedure‘cqbll is of the form:
M:INT address

Address specifies the location of the entry to the programs BREAK response routine. Cc‘lls

generated by the M:INT procedure Ecve the form
CAL1,8 FPT |

FPT is the address of a word dszshowh’beloW:

X'OE' 0 — 0 address of BREAK l;oufin'e |
0 78 14 15 ' 31

ERROR AND ABNORMAL MESSAGES ¢

All error or abnormal conditions which normally result in the Batch monitor continuing to the next

job step will be processed for on=line users as follows:

>

The monitor outputs fwo messages. The first message has the form

mmmm ..,
where mmmm ... is the specific message identifying the error or abnormal conditions. The¢ message
reside in the system file (:MESS), The keys to the error text records are the codes established by th

monitor for the error or abnormal conditions.



DRAWING NO. 702489
SHEET /7. OF &t

The 'sécb.nclzl message has the form
EXECUTION STOPPPED AT xxxxx
where xxxxx is the location of the last instruction executed.
i fhe;é.messages'are listed on the UC and DO vde\}.'i‘ces, if different. The monitor then returns control

to the On~line Executive, which prompts for the next user action with an 'I',

SUMMARY OF CAL's

There are four CALL instructions (CAL1, CAL2, CAL3, and CAL4) provided by the Sigma 5,7 hard-
~ ware. Execution of a CAL instruction causes the executing program to trap to the monitor where o
check is made for the validity, CALL instructions are used for requesting monitor services. The
requester may be a user, processor, real-time task, or the monitor. Each CAL trap is decoded to
determine the service requested (if any) and the requestor. If valid, the requested service is
performed. If invalid in either type of CALL or type of service requested, the request is not horored

and the user is informed.

Of the four CAL's provided by the Sigma 5/7, CAL3 and CAL4 are reserved for the installations or
users; CAL2 is reserved for monitor use and CAL1 is divided into user, real-time and monitor

services,

The CAL's currently assigned are listed below in five categories: 1) On-line, Batch, and Real-

Time; 2) Batch only; 3) Onfline only; 4) Real-time only; and 5) monitor only.



A

On-liné, Batch, Real-Time

CAL
CAL, 1

qddress
FPT

FPT CODE

X'01°
X102
X'03'
X'04"
X105'
X106l
X'0B
X'0C"
X'0D"
X10F"
X'10"
X"
X112!
X114
X115
X"nce
X'1D!
X120'
X121
X122!
X123'
X124!
X125
X126
X127
X128"
X129
X124
xlzBl

DRAWING NG, 702489

SHEET / 770F s¢.

FUNCTION

M:REW

M:WEOF

M:CVOL

M:DEVICE (PAGE)
M:DEVICE (VFC/NOVFC)
M:SETDCB ,
M:DEVICE (DRC/NODRC)

 M:RELEC

M:DELREC
M:TFILE
M:READ
M:WRITE
M:TRUNC
M:OPEN
M:CLOSE

"M:PFIL

M:PRECORD
M:DEVICE (LINES)
M:DEVICE (FORM)
M:DEVICE (SIZE)
M:DEVICE (DATA)
M:DEVICE (COUNT)
M:DEVICE (SPACE)
M:DEVICE (HEADER)
M:DEVICE (SEQ)
M:DEVICE (TAB)
M:CHECK

M:DEVICE (NLINES)
M:DEVICE (CORRES)



DRAWING NG, 702489
SHEET/ PEOF 5 -

CAL address FPT CODE FUNCTION
CAL1,2 ~ FPT X1 M:PRINT
' ' X'02' M:TYPE
X'04' : M:KEYIN
X'10! M:MERC
CALTL, 3 FPT X'00' M:SNAP
x'or "~ M:SNAPC
X'02! M:IF
X'03! o M:AND
X04' M:OR
X'05' M:COUNT
. CALL, S8 FPT X'01! M:SEGLD
X'04! M:GVP
X'05* M:FVP
X'08!' M:GP
X'09' M:FP
X'0A"  M:SSMPRT
X'0B! ‘ M:GL
- X'oC! - M:GCP
X'oD! M:FCP
X'0E! - M:INT
X'10! M:TIME
X" M:STIMER
X2 : M:TTIMER
X'14! M:TRAP
CAL1,9 1 M:EXIT
| 2 M:ERR
3 M: XXX
4 M:STRAP
5 M:TRTN



B.

C.

D.

Batch Only
CAL
CAL1, 4

CAL1,8

On-Line Only

CALI, 1
CAL1,8
CAL1,8

Real=Time Only
CAL1, 5

CALL,9

CAL1,A

address

FPT

FPT

FPT
FDT
FPT

FPT

@ P> 0 O N

FPT

'FPT CODE

X*00'
X'o1t

X'02'
X103

X'2¢
X'06'
X'0F

X'00'
X'or
X'02'
X'03'
X'04'
X'05'
X'06'
X'07'
X'os'
X'09"
X'0A'
X'0B'
X'oC!

X'00"
X01*

DRAWING NO. 702439
SHEET/?;‘OF P

FUNCTION

M:CHKPT
M:RESTART -

M:LINK
M:LDTRC

M:PC
M:CT
M:DELTA

M:TRIGGER
M:DISABLE
M:ENABLE
M:DISARM
M:ARM
M:DCAL
M:CAL
M:SLAVE
M:MASTER
M:SBACK
M:RBACK
M:TERM
M:RXC

Reserved for
¥ real-time
extensions

r

Save Monitor's interrupted

environment )
Restore Monitor's interrupted

environment



DRAWING NO. 70539
SHEET/8¢ OF /4¢,

E.  Monifor Only .
CAL  address - - FPT CODE 'FUNCTION

- CALI1 ’ X"14! Direct Disc Read
X1z , Direct Disc Write
CALT, 9 6 ——— ~ Close Cooperative File
CAL1,B —— Event Mark
- Event Count  Reserved for
Event Time " generalized ev
Event Auto- measurements
Display Control J B

CAL2,0 —— Branch to overlay
segment (0B)
CAL2,0 —— Branch and save . g
' segment number Ufsedfc
(OBAL) : ' © g internc
~ Monitc
CAL2,2 —— Restore segment and overla;
' B*SR4 (OBSR4)
CAL2,3 code —— ' System Recovery
CAL2,4 code] ——— , Reserved for internal debug routine

]The code appears in the address fields of the CAL instruction and is internally assigned.



DRAWING NO. 70279
SHEET £/ OF /5.

NUMERICAL LIST OF CAL's .

The following list gives all UTS CAL in numerical order with the M: proc'ncme for invoking

the routine and a brief description of the function performed. Restrictions on usage to on-

line, batch, and real-time are given in the use code column on the left.

m restricted to moni.for use
) restricted to on-line use

r restricted to real-time use
b restricted to batch use

- usable in all environments

If a CAL is given which is illegal for the current user it is treated in the same way as an

illegal instruction.

CAL's marked with an asterisk (*) are new to UTS or have different or extended functions

relative to BPM.



Numerical List Of Monitor CAL's

FPT

i

Mz

DRAWING N, 702489
SHEET /65 OF £ &

USE

CODE CAL hex cbde NAME uTs Description
- CAL1,1 FPT 1 " REW |
- 2 WEOF
- 3 CVvoL
- 4 DEVICE (PAGE)
- 5 DEVICE (VFC)
- 6 SETDCB -
- B DEVICE {DRC)
- C RELEC
- D DELREC
- F TFILE
- 10 READ
- 11 WRITE
- 12 TRUNC
- 14 OPEN
- 15 CLOSE
m 16 -—— Direct disc read
m 17 —_— Direct disc write
- 1C PFIL
- 1D PRECORD
- 20 DEVICE (LINES)
- 21 DEVICE (FORM)
- 22 DEVICE (SIZE)
- 23 DEVICE (DATA)
- 24 DEVICE (COUNT)
- 25 DEVICE (SPACE).
- 26 DEVICE (HEADER)
- 27 DEVICE (SEQ)
- 28 DEVICE (TAB)
- 29 CHECK
- 2A DEVICE (N LINES)
- 2B 'DEVICE (CORRES)
o 2C PC - Set prompt character
- CAL1,2 FPT 1 PRINT ’

2 TYPE ' * Type message to operator

- (or user)
- KEYIN * Type message and await

response



USE

CODE ' . CAL

FPT

M:
NAME

DRAWING NO, 752489

SHEET ; 830F & ¢

UTS

Description

oo

I OO 1

- O

‘1 O

S T T R B T I R T B T

CAL1,2 FPT

CALI,3 FPT

CAL1,4 FPT

CAL1,5 FPT

CAL1,6
CAL1,7

CAL1,8 FPT

hex code
10

G dWN-—-O

- O

O®>OVONCUARWN—O

unused
unused

O WN—

MO ™@> 0 o

.

10
11
12

14

MERC

SNAP
SNAPC
IF

AND
OR
COUNT

CHKPT
RESTART

TRIGGER
DISABLE
ENABLE
DISARM
ARM
DCAL
CAL
SLAVE

~ MASTER

SBACK
RBACK

- TERM

RXC

SEGLD’
LINK
LDTRC
GVP
FVP

CT

GP

FP
SMPRT
GL
GCP
FCP
INT

DELTA

"TIME

STIMER
TTIMER

TRAP

* *

* % % %

Load overlay segment

Get virtual page

Free virtual page
Change COC Table

Get core page
Free core page

Get available core limit
Get core page in commo
Free core page in commc
Connect to interrupt of
BREAK key

Return to DELTA Debugg



DRAWING NO. 703489
SHEET/84OF /8¢

M:

USE FPT M:
CODE CAL hex code NAME UTS Description
- CAL1, 9 1 - EXIT - R Normal program terminatol
- 2 - ERR ' L ~ Error termination of job ste
- 3 ~-- XXX * Error termination of job
- 4 - STRAP
- 5 - TRTN
m ) - - Close cooperative file
) e . . .
r 8 - ‘ ;
r 9 -- Reserved for real-time
r A - '
r B -
r CALT,A FPT 0 e : Save monitor environment
r T mme—— I Restore monitor environmer
m CAL1,B code - ‘Event marker *
m CAL],C code - Event counter * :
m CAL1,D code - Event timer * Monitor n{.verformuncé
m CAL1,E code - Display * measurement
m CAL2,0 -~ OB Branch to overlay segment
m CAL2,1 -~ OBAL ' Branch to overlay and save
‘ . . return
m CAL2,2 -- - OBSR4 ‘ Restore segment and return
: , *SR4 :
m CAL2,3 code Reserved for error recovery and diagnosis
m CAL2,4 code

Entry to executive DELTA

All remaining CAL2, x instructions are reserved to monitor use.

%\II CAL3, x and CAL4, x instructions are available for installation assignment.



DRAWING NO. 702289
SHEET /8¢ OF /4.,

OPERATIONAL LABELS FOR ON-LINE USE

An operational label is a name (and a set of monitor records) used to identify a logical
input/output function. All I/O activity (Reads and Writes) take place through the information
in a DCB, One piece of information there is the deVice address or, alternately, an operational
label which in turn is connected to the device. The connection of devices fo DCB's through
operational labels allows the installation the capability of changing the device assignmeni of

a particular 1/O class. The batch user may change the assignments for the duration of the job

by using ISTDLB cards or the operation may make permanent ch'a.nges using 1SYST key-ins.

For on~line operation the operational label assignments are kept separately from batch and are not
changeable by the user. Change by the operator is a possibility and is left as an open question.

Table 1 below lists the assignments of op labels for on=line.



i

DRAWING NO.

- (02489

SHEET /é’éOF 7y 2

output

one llne

TABLE 1. Momfor Operaﬂonol Labels for On=Line Users
~ Label Standard Use Assigned Device 1/O Function
BI Binary Disc Read number of bytes specified
input E '
C 'Control Terminal Read number of bytes specified
input (same or fo message complete
as UC) . ‘
: c1 Compressed Disc Read number of bytes 'spe'cified
input : '
EL Element Disc Read number 6frbyté§ specified
input e :
SI ~ Source Disc Read ,numl;er of bytes specified
input :
BO * Binary Disc ‘Write number of bytes specified
output : « IR ;
coO ~ Compressed Disc. Write number of bytes specified '
output
EO Element Disc Write number of bytes specnﬁed :
. output | o L
SO Source - | Disc Write number of bytes speﬁffed
output '
PO Punch " Disc Write number of bytes _specifiéd
output ‘ ‘
uc Users Term!;wi | Read or write numbpr of bytes
Terminal specified
DO Diagnostic Terminal Break into carridge-fsi;e'records,y
Output - * | insert carriage returns, and type up
to 132 characters.
LO Listing Line Printer | Write numbor of bytes speclf‘ed up fo




	001
	002
	003
	004_01
	005
	006
	006a
	007
	008
	009
	010
	011
	012
	013
	014_02
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026_03
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038_04
	039
	040
	041
	042
	043
	044
	045_05
	046
	047
	048
	049_06
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077_07
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093_08
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128_09
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147_10
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163_11
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186

