
/~

Pf!----~'.' .. ,.,'\ ;,-!""'==-===----""""'-,.".,. """""'''''""''''''''If::.nr-==-''''''''='-:;;a:=--''''''''''' ·E"-l'""'''''-=:;. ,===-==-:=s:=="=Qr=~~~~x~~~~~I===~~, ..

u---__ --------------<-,,-- *"- ¥ • ---,----~=
.. ~_ REV. 0 ES C R! P T ~ ,:,t N c~m; PATE APFROVED

~=~------------------------~------~----~----------~

!

i

! ~

,
~ -C) i ~ ~

~ I ! ,
i ~.

I ~
ii

.-----r--~------~----~------------~---
II 1--Ic=N=-O-.~------D--R--A-VV--I-N--G---N-O--.----~--------~-----D~E-S--C-R--I-P-T--I-O-N--------------~~------R-.-E-F-.. ~E-R--E-N--C--E---O-E--S~I-G--N--A-T~IO--N--~----~-rrmE=f,-~~' ,.,~:

REQ. NO. __ <

l~----~ __ ----__ ------------~----~~------------_T-M-A--T-E--R_'TA-L---L-'-s--T----__ ~ __ ~ ______________________ ~ ________________ ~'
J NOTES UNLESS SPECIFIED DRAWN I /'/J. /7/ (-2 / . /'
!, __ ----------------------~--------+~~.~ .. 't/~·~,-·~j'~~~~UAy~~~~V~~~~~~4/.~A~//~~~~~~f/
! t. TOLERANCES [~/ 72;;'(7 77p1. ,-

•
"X +_.030 AN"ULAR CHEC~. _ _ 7 • _ ~/// b.. SCieNTIFIC DATA SYSTeMS
A - 1 ____ ~/~,~~~~~~~~~~'l~'~~k~~~----------____ --__ --__ ~S~A~N~TA~~M~O~N~IC~A~._=C~A~LI~F~O~R~N~IA~ ____________________ ~·
.xxx ±.OIO ± v.- r - 'd -.h t?cJ...~ 'l' I i

Z. BREAK ALL SHARP EDGES APPR. ef{ 0~~" c,4-~ y' too TITLE
.0tO APPRO);:.

2, MACH.aURFACEG

;4. ALL. DIM. IN INCHflS

j MODEI.. .. NO.

, 7
UNIVERSAL TIME-SHARING SYSTEM (UTS)
FUNCTIONAL SPECIFICATION

OWG.NO.

702489

. f

I
I

J

DRAWING NO.. 7DJ~~>tt~9

SHEET 02- OF 18~

UNIVERSAL TIME-SHARING SYSTEM (UTS)

FUNCTIONAL SPECIFICATION

BY

. B. Bruffey

E. Bryan

B. Doeppel

J. Smith

J..,J..t\..l"1. 'IV '-'. "'tv. I uc.~Jo. .'

SHEETS OF /!:;1~

OVERALL TABLE OF CONTENTS

I. OVERALL SUMMAR Y OF UTS

ll. PREDICTING, MEASURING, TUNING UTS 14-

ID. SYSTEM CAPACITY AND LOADS 26
[

IV. SCHEDULING AND MANAGEMENT 38

;

I

V. SYSTEM REQUIREMENTS AND CONFIGUR.A.TION 45

VI. TERMINAL EXECUTIVE LANGUAGE (TEL) 49

vn. TEXT EDITING SUB.:.sYSTEM (EDIT) 77

V ill. ASSEMBLY LANGUAGE DEBUGGING SUB-SYSTEM (DELTA) 93

IX. PERIPHERAL CONVERSION LANGUAGE -SUB-5YSTEM (PCL) 12.8

X .. LOADING OF PROGRAMS (LINK) "·147

XI. MONITOR SERVICES FOR ON""ILiNE AND BATCH PROGRAMS 163

, I. OVERALL SUMMARY OF UTS

A. Introducti'on

DRAWING NO .. 7024r~_9
SHEET 4- OF ,/$G

UTS is a time-shared computing service consisting of a central computer complex and a

collection of remote teletype and other typewriter-like terminals connected to the central

complex by full duplex communication lines. UTS gives Its users access to aJi the programming

services of the Batch Processing Monitor (BPM), including symbiont and real-time services.

1heseare augmented by tools specifically tailored for remote-terminal users engaged in the

on-line creation, modification, deb~ggin9 and use of programs. The on-line entry of iobs for

botched servi ce, in the form of BPM control-card programs, is permitted. Such programs

may be composed;;' fi led away- an#.,tntered tn the Batch iob stream from the terminal, and

on-line users may query UTS about the status of such iobs.

VTS is son, sibltng, and parent to BPM, and will be derived from that system by a set of

specific changes and addltlons.:~ For the first version of UTS, these fall tnto three classes.

1. Processors and associated languages primarily related to on-line users.

a. An executive processor and language (TEL) for. handling requests

from on-line users. To such users UTS appears to be a single active agent that responds

to commands couched in TEL. Most commonplace activities asso~iated with FORTRAN and

assembly language programming can be carried out directly in TEL: file management, compilati'on

and a~semblYI loading, execution and debugging. Lengthier or more involved operations

and activities associated with other programming languages must be carried out by requesting

the services of a sub-system of UTS. Each sub-system acts as an independent, active

sub-agent of UTS, accepting requests in a language tailored to its iob and to the expected.

profile and bents of its users.

b. Simple, fast turn-around compliers and assemblers for batch-compatible

subsets of FORTRAN IV and Meta-Symbol (FORTRAN E and Extended Symbol), and a

low-cost, one-pass loader (like LOPE). These are available on-line and·in Batch.·

c. A compile-and-go processor for the e>dended Basic language, which

i ncl udes provisions for direct operations on arrays; an on-line sub-system for .creating,

modifying, running and debugging Basic programs.

DRAWING NO, 702.;t·~;(!

SHEET SOF 18t;
d. An editing processor and language for the on-line creation, modificarion

i ,:md management of programs and other bodi es of text.

e. Debugging processors and languages appropriate to FORTRAN debugging

(FOP) and to assembly language debugging (Delta). These processors are always at hand

for the on-line user (who can call on them at any stag~ of execution), and are ideal for

carrying out parameter studies.

f. Utility prooessors and languages for: a) managing files of information

and transmitting information between different riledia (pel); b) combining and recombining

compi led and assembled object programs (Uink, Symcon).

2. Distinct bodies of code that regulate and provide information about the

activities of UTS and its users. These include routines for: a} scheduling activities;

h) managing time and storage; c) measuring and displaying the cumulative cnd individual

i behavior of UTS and its users; d) handling information passing to and from remote terminals

on an asynchronous basis; e) detecti n9 and recoveri ng from errors •.

i
3. Changes and fixes to BPM and its component processors. These include:

, a) modifying compilers and assemblers so that they ·produce information necessary for

. on-line debugging; b} creating versions of processors and run-time packages (and all

other public routines) that are re-entrant and, therefore, capable of being shared among

, more than one user; c} simplifying input-output interfacing with BPM and speeding-up its

fi Ie-management serv ices; d) changing BPM and its processors so that they can dec I wi th

typewritten lines of inf()rmation and fi les of such information produced at a terminal as

readily as they now handle card images and card decks; e) fixes required to use the memory

,map.

B. Behavior and Responses

UTS is supposed to servi'ce real-time loads, batch. loads and on-line loads simultaneously ~­

all without batting an eyelash. What these loads are and hgw .. .they vary from. ins.tqllqtion.

to installation are an ~~known. On the other hand, some co~pl~;~"'~~~~i~tics ·h~~~ "been '.

published for batch loads in aerospace and university environments and for on-line loads

in ti,me-sharing systems. These fi9ure~ share·one h~~Jthy attribute -- they compute, they

. .' compare, they match. These figures and their requirements in terms of UTS capacity

are described in a succeeding section. Application of straight-forward queue and traffic~
,

theory techni ques to these figures shows that UTS can be designed to strike a balance

between on-line and batch requirements. Although some of its facilities will be 'denied the

", ~ ,' ...

:.: ;.

DRAWING NO" 7021::':(,,;>
SHEET ~~. OF /8~,

,batch user and others the on-line user, the two classes of servi ce wi II be complementary
, I .

rather than antagonistic. Under typical loads, on-line demands will rarely overwhelm

i ,batch processing, nor wi II batch throughput seriously hamper on-lin'e negotiations. The
i'

,typical demands of on-line users need less than 50 ms. of processing and constitute 85%

, of on-line requests. For 30 users, these can be handled comfortably at costs not exceeding

,I 8% of main-frame time. This includes the overhead costs of scheduling, time-sharing and

I transmitting information to dnd from consoles. Average delays to typical on-line requests of

30 users wi II exceed .2 seconds no more than .1 00/0 of the ti me and wi II exceed 4- seconds

no more than. 01% of the time. These figures cne based on configurations matched to

reasonable loads, and should not be considered totally satisfying; they are simply better

than anything else on the market, except for dedi catad, single-language systems. De~ays

of .2 seconds are noti ceable, particularly to people using processors that maintain intra-
\ -

line dialogues with their users, when delays can not be blanketed by the carrier-return
, ,

times associated with typing requests. Although average delays will be iust less than. 2
,I

seconds, variations wi II occur frequently. However, users will hardly'ever ihave to wait more

than 3 or 4 seconds for a response to a typical request, nor should they observe any halting

or stutteri ng behavi or duri n9 output situations.

, For 60 users, main-frame degradation' is :do~?:I:~d, but the distribution of response times

remains substantially the same -- delays greater than .2 seconds stili occuring about 10%

.', of the time. BPM itself makes demands. on main-frame time for'$Y,rnbiont, input-output,
• ' , • ,'" t

, ',:and file-management services, for control-card interpretation and simply t~lin9 ~p"to·;do
, ' ,

,"a batchiob, ,and for processor and monitor overlays. This service cost is 2 to '3 times

,greater than that required to service the typical demands of 30 on-line users. What is left

of main-frame capacity (700tb for 30 on-line users) must be devoted to "computing" -­

processing'batch programs and compute-bound o~:"line users. The more on-line users and/or

,,' the more compute-bound on-line users, the greater the possible impact on row batch computing

power. •• 't' • • ~ •

'

C. Requi rements .

'; .. In, terms 'of input/output throughput, the 72Q2;.4- RAD is inadequate if used alone operating

'"at 1500A,'of capacity for typical batch and on-line loads. Under such circumstances,

DRAWING NO. 702489
SHEET ''If, OF /8 ~

Ii !.

,batch user and others the n-line user, the two classes of servi ce wi II be complementary

I rather than antagonistic. ~der typical loads, on-line demands will rarely overwhelm

: : batch processing, nor wi II ba)ch throughput seriously hamper'on-line negotiations. The
I ~ \ ' . "

,typical demands of on-line use need less than 50 ms. of processing and constitute 85%

of on-line requests. For 30 users these can be handled comfortdblyat costs not exceeding

I 8% of main-fr~me time. This incl des the overhead costs of scheduling, time-sharing and
, -

! transmitting information to teind from consoles. Average delays to typical on-line requests of

I 30 users will exceed. 2 seconds no more than ,10010 of the time and will exceed 4 seconds
: \ ,:

no more than. 01% of the time. Thes\ figures cue based on configurations matched to

• reasonable loads, and should not be co,\sldered totally satisfying; they are simply better

than anything else on the marketl excep\ for dedJ cated, single-1an9UC1ge systems. Delays

I of • 2 seconds are noticeable, ~rtlcularl~to people using processors that, maintain intra-

line dialogues with their users, when delays can not be blanketed by', thecarrier-retum
I. '~ .1 I I

, tl mes associ ated with typl ng reques~s. A I tho ~h average de lays ,will 'b,)~t(l~ than ; 2

I seconds, variations will occur frequently. How\ver, users will hardlY;.ever~aveto wait more

, than 3 or 4 seconds for a response to a typIcal re\es~, nor should the/y:observe at:ly halting

or stuttering behavior during output situations. \ .'

For 60 users, main-frame degradation'ls:QOll?:\{!d, b~the distribution of respo~e times

. remains substantially the same -- delays greater than ~2 seconds still occurlng about 10%

: of the time. BPM Itself makes deman~ on main-frame \ime fony~lJIbt\lnt, input-output,

:and file-management services, for control-card Interpre~tion and"~i'~Jy t40ling ~"to.:do
a batch job, and for processor and manltor overlays. Th'l~ervice cost is 2to 3 times

. \
. \

. greater than that required to service the typical demands of\30 on-line users. What is left

of main-frame capacity (70% for 30 on-line use~) must be d~oted to Hc;omputins" --

proces$in~ batch programs and compute-bound on-line users. T~e more on-line use,rs and/or,.

:~:re comput~-bound:n:,nne users, the greater the pouible ,\ct on raw batch ;~~~1t~': • ',:""
~ ~ , " Requi rements.. \

In terms of-Input/output throughput, the l2~RAD is inadequate if us~d alone operating
\ .

at lSOOk of capacity for typical batch and on-line loads. Under such circumstances,
. \

\
\\,

DRAWING NO., 702489
SHEET 'jj OF /8 td

everyone waits. A single 7232 is marginal, while a 7212, high speed RAD would operate

at SOOk capacity under typical loads --' a comfortable figure, although an extra unit
./~- " "I' .: ".- ,;':) , ' ;'

dedicated solely to handling user's files may be required for many installations.

,The costs and delays mentioned above can be achieved only through use of the memory mop.

On systems without this feature, the overhead costs of core management' and time­

sharing have reached 400"{' of CPU capacity; this is an unconscionable d~graclation of

computing power. With the feature, uncomplicated, low overheCld management and'scheduling

discipl ines can be used, as can re-entrant processors that may easi Iy be shared among

many users.

The frequency and extent of variations from the norm are dependent on the hardware

configuration chosen and on how effectively an installation can control its own loading

patterns: by ad-hoc adiustment of dynamic allocatipn and scheduling parameters ,from

an on-site console, by education of Its user community, or by direct r.:nanQgement fiat.

UTS is meant to be a large system -- large both in terms of configuration and in terms of

its ability to handle variations in load. To this end, space will be traded off to get good responses

and to use CPU capacity efficiently. Core residency requirements will be approximately 16K.

UTS will be designed for a minimum 64K core configuration with adiustment to 48K possible

for reduced requiremer,ts/

It must be clearly understood that large transient or installation-systemic variations from the

estimated loads around which UTS Is built will inevitably cell for a retuning' of the system,

no matter what the configuration. This is an operation that wi II be possible within reasonable,

but fuzzy limits. Beyond these, installation-management techniques must be brought to

bear •. To test the UTS design, to predict re-designs and to allow installations to tune their

own syste,~s., UTS will"-lievote a small portion of its t~me andother,·:Je~9Vcr.ce.s, to : '. "":'<:~:::':':;:~"::',.: .'; .
......

DRAWING NO. 702489
SHEET /!I OF /8 ~

measuring the cumulative and individual behavior of itself and its users. Installations

should be prepared to do the same; it is ther.~.f~re \r~guited that each installation dedicate

on on-site console to the iob of displaying the results of these metoring activities on a

mi nute-by-minute basis.

D. Services and Foci litles

UTS provides its users three classes of service.

1. Real-Time Service

Preemptive access to the hardware is provided for programs engage,;d in simulation, control

clOd other "real-time" activities. Such programs may be permanently resident in UTS's

(appropriately enlarged) core store, or may be made temporarily resident on a demand basis,

at the user's option.

2. Batch Service

~II foci Iities and processors of BPM are available. Access to, and control over, these

foci lities is obtained through "programs" written in the control-card language of BPM.

Such control-card programs may' be submitted to UTS through card readers or they may

be composed, filed away and submitted on-line. In addition, the status of previously

submitted batch iob~ may be interrogated from remote terminals.

Although some foci lities and processors are reserved solely for on-line use, whi Ie others

are available only in batch, the two classes of service are complementary. Generally

speaking, anything that can be done in batch ca,n be done on-line, albeit sometimes in a

curtailed manner. In particular, compilers and assemblers are compatible across the two

classes of service at both source and relocatable levels:

a. , processors for FORTRAN IV-H, Symbol and Extended Symbol (X Symbol)

ore avai lable both on-line and in batch;

b. processors for SOS FORTRAN IV and Meta-Symbol are available in

batch onJYi

c. programs complied or assembled In batch can be linked with those

produced on-line, and can be run and debugged, on line;

d. program~ compiled or assembled on-line can be linked and run in batch.

3. On-line .service

The summaries given below must be treated as such. Most details of syntax and designation

DRAWING NO. 702489
SHEET' OF\ /lifb-

, are glossed over or omitted completely; this is partIcularly true for sub-$ysten1$ such as PCL
I

; and Delta, whose languages are hIghly encoded or abbreviated. The names a~igned to
I I,

s:pecific languages and systems wi II often be used indifferently to refer to ~he la~gua,~ or to

the associated system or sub-system, whichever seems approprIate in cont~xt. //j

a. Communi catt n9 wi th the User

, Control of each user's keyboard wi II be proprietary: either the user has control for purposes

: of input or UTS has cont~ol while carrying out r'equests and for purposes of output. This

: holds whether the user is negotiating directly with UTS, one of its sub-systems or his own

progra~. Who has control will be made clear to 'the user at all times. This is particularly

necessary' in the case of error reports and task comp letf on -reports. In the event of errors

: the user must know what the error was, who reported it and to whom he may direct any

corrective actions he may wish to take. In general, the user must know three things: when

he can type responses and requests; to whom he is talking; who last talked to him. These are

often clear in context so long as the system adheres to some reasonable rules of behavior.

b. TermInal Executive language and Processor (TEL)

, Requests for the faci IIties and proc~ssors provldecJ on-line users take the form of single-line

commands and declarations in UTS's Terminal EXElcutive Language (TEL). Most commonplace

i programming and accounting activities can be carried out directly in TEL. These include:
I

'a) logging-in and out; b) simple fi Ie management; c) FORTRAN IV-H compi lations, and
, .

: Symbol and X Symbol assemblies; d) linking and loading of relocatable programs;

i e) controlling the execut.ion of programs; f) saving interme.diate core status for later

: resumption; 9) submitting batch iobs. Other classes of operations, more involved

. operations, and activities associated with other programming languages must be carried out

by ca II i ng (i n TE L) for the services of one of UTS's sub-systems.

c. Text-Editing Sub-System (EDIT)

EDIT is used to produce FORTRAN and assembly language programs, control card programs

for submission to the batch queue, and other bodIes of information. Each fi Ie produced under

EDIT consists of a set of lines of text. Each line is uniquely numbered, and the set is

ordered by increasing magnitude of the line numbers. ' Such fi les are retained on RAD,

st.orage in a format designed to expedite and facilitate their producti~n a~~,:~~dating by

EpIT and their use by other processors.

DRAWING ~JO. 702489
SHEET/P OF le~

d. Peripheral and Information Control Sub-System (PCl)

pel allows the user to move information between input-output devices and storage media:
·1' ,.

card and paper tape devices, line printers, disc fi les, labeled and free-form tape reels.

Conversion and re-representation of data, selection of data, and record sequeneirig and.

resequencing are allowed. The processor and its language are provided both on-line

and in batch. Single-line commands are used for the gross operations of copying, deleting,

positioning and for other uti Ihy functions.

e. Assembly-Language Debugging (DELTA)

DELTA is specifically designed for the debuggln9 of programs at the assembly-language

level. It operates on Ob]8ct programs accompanied by tobles of internal and global symbols

used by the programs, but does not demand that suchtobles be at hondo With or without

such tables, it recognIzes machine instruction mnemonics and can assemble, on an

I i.nstruction-by-instructton basis, machine language programs, Its main business, however,

is to faci litate the activities of debugglnge

1) The examination, insertion and modificatio'n of elements of

programs: instructions, numeric values, encoded information -- data in all its representations­

and formats.

2) Control of execution, including the insertion of breakpoints

i.nto a program and requests for breaks on changes in elements of data.
I

3) Tracing execution by displaying information at designated points

in a program.

4) Searching programs and data for specific elements and

sub-elements.

To assist in the first activity, assemblers and compilers of UTS will include in a program's

table of symbols, information about what type of :c:btu each symbol represents: symbolic

instruction, decimal integers, floating point values, single and double precision values,

EBCDIC encoded information, and others.

f. FORTRAN Debugging (FOP)

The language is terse, conforming In many respects to the current FORTRAN IV-H console

. debugging language. If program execution is started under FOP, key~oard contfOl is passed

to the user with a notification that execution of the main program is about to begin. During.

DRAWING NO. 702489
SHEET I~ OF 166

execution, control reverts to the user whenever he interrupts, whenever an error occurs

and whenever FOP reaches a stopping point. When the user is in control he can ask FOP

to carry out execution in a variety of modes ,and then, ask FOP to continue executio/'_He

can also request that values assigned to Identifiers be displayed, and can reassigWtriew

values.

g. Symbol-Control Sub~SYstem. (SYMCON)

SYMCON provides pro9ramm~rs the fdci litres for controlling the global symbols associated

with a load module; it may be used either on-line or in batch. When relocatable obiect

modules (ROM) are combined into a. load module, the global symbols associated with the

ROMs may be requi red to 'link the ROMs properly or to Ii nk the resulting load module with

other ROMs and load modules. In the latter case, it maybe necessary to change some of

the symbols to avoid conflicts or to eliminate many of them so that the global symbols used

for linking the original ROMs become Internal symbols for the resulting load module. In

brief, SYMCON allows programmers to link ROMs and load modules freely in the face of

conflic.ting naming conventions.

h. 'Obiect-Program LInking (LINK)

,All operations that can be performed under the UN K executive command can be performed

'Under the sub-system. The notation and conventions for spectfylng the retention, deletion

and merging of internal symbols remaIn the same. On the surface, the sub-system's main

advantage over the executive command is that it allows programmers to link more modules'

than can be listed in a single executive command line. Its main reason for existence,however,i'

is as a vehicle for incorporating more complicated linkages involving hierarchies of modules.

i . Sub-system for Basi c Programmers (BASIC)

Under this sub-system, ,Basic programs may be composed, edited, executed and debugged.

All the appropriate commands of the EDIT and FD~ sub-systems are provided. In addition,

users of BASIC can indi cote an insertion or replacement by typing the desired line number ahead

of the line. Basic programs are compiled directly into executable form, Qnd the entire

process of compi ling and initiating execution Is referred to asllrunningu • Detai led descriptions
<:: -- .•.

of the sub-system's language and Its responses are covered in complete functional specifications

for the sub-system.

,'.\ '.

\

DRAWING NO. 702489
SHEET /.S(,qF /86

The above list constitutes a summary desc~iptJ\dn of the inItiol UTS. Services to on-line

users may be expanded in "later ve~slons to'include a conversational algebraic language,

; ,0 tutorial service (HELP), etc. The remainder of this specificatIon is devoted t:oo detailed

presentation of the items mentioned itl this introductory overview. Any future services

; or processors wi II be described in detail when they are authorized and Qssignedbyappropriate

departments within 50S.
I !

II.

TABLE OF CONTENTS

PREDICTING, MEASURING, TUNING UTS

A. Expected Demands on Capacity

B. Responses to On-Line Dern.ands

Co Resource Management

D. Fiscal Accounting

E. Performance Measures

F. Error Detection and Recovery

III. SYSTEM CAPACITY AND LOADS

A. RAD Transfers

B. RAD Transfer Times and Loads

C. Interactive Delays

D. CPU Loads

E. Assumptions

IV. SCHEDULING AND MANAGEMENT

A. Inputs to the Scheduler
\ I '

B. Scheduler 0 utputs

C. User Status Queues

D. ' Scheduler Operation

E. Treatment of Batch Jobs 1\

F. Swap Hardware Organization

G. Processor Management

H. System Management Parameters

DRAWING NO. 702469-
SHEET /0 OF /B~

14

26

38

v. SYSTEM REQUIREMENTS AND CONFIGURATION , 45

DRJ\. WING NO. 702489
SHEET/pY of Jl/J(7

The effectivenes s and quality of each clas s of service (batc~ real-time, on-lirle)

depend on: a) the elYlphasis and degree of control placed on each class by the

installation; tral1sient and systemic variations of load within each class; b) the

hardware configuration chosen. ' Although few absolute assertions can be n'lade,

some Btatelnents about capacity andresponscs to typical lo'ads can be offered

with reasonable degrees of certitude. These are based on known figures for

batch loads in an aerospace and a. university environment. and on-line loads foi:

several time-sharing systems comparable to U'I'S. 'The effects of such loads on

standard UTS configurations are presented in succeeding sections.

A. Demands on Capacity

FIgures for on-line systems show that better than 850/0 of on-line interactions

occur infrequently and make only modest demands on the hardware; average

demands, however, are much greater than typical ones. The typical on-line

user can be characterized as one who is editing, debugging or otherwise inter­

acting with programs at a leisurely rate (in terms of computer speeds), or is

observing the line-by-line output of a running program that is highly output-bound

by the slow speed of his terminal device. The drain OIl m.ain-frarne capacity for

30 typical on-line use rs is a.bOUti~8%;' for :60 J 'abo)ut 1,6%; 'These figures

include all processing time required to service requests, including disc trans­

missions and the transmission of information to and from the tenninals. Thus,

the typical on-line user does not overwhelm the batch strearn., and handling such

users m.ust be considered a service of the system for which SOIne overhead is !

paid. By the same token, most· activities a:.'asociated 'with BPM must be considered

services of that system: symbiont and cooperative processing; control-card

interpretation; input, output and file Inanagement; fielding and processing of inter- .

rupts and monitor calls. It turns out that the overhead costs for such services

in BPM are two to three times those needed to handle the typical on-line situation.

The remaining capacity of the hardware is dedicated to processing batch prograxns

DRAWING N(). 7024B9
SH.EET .t.6of / t1~

and compute-bound (or average) on-line demands. The manner in which this

remaining capacity is distributed can be controlled by the installation, in hvo

distinct ways. First, ad":hoc control can be exercised directly froIIl the on-site

console; as described in the section on scheduling. Second, education and

management control can be applied to the user comrn.unity to insure that activities

appropriate to on-line access (and to .the processors provided on-line users) be

carried out on-line, while those activities that are best batched be directed to the

batch queue. To assist both attacks on the allocation problem, UTS \vill devote

part of its time to ll1easuring the cumulative an.d individual activities of itself ~TJ.d
,

its users; these are described in the section on metering and periorIIlance xnea:3-

ures. It is strongly suggested that installations dedicate an extra on-site terminal

to the. job of displaying the minute-by-minute results of this metering.' To assist

in the managerial approach, ~language proce.ssors and systems tuned to ,the on-
. s .

line user, and to the batch user who does not need the full power of the; ','big"
" :. I

processors, may be used effectively.

B. Responses to On-Line Demands

As will be discussed in the section on scheduling, typical on-line users will be ,

handle'd by a straightforward scheduling discipline. In brief, high prioritiesarie,

given to servicing users whose current behavior portends a short burst of pro­

cessing followed by a relatively long period of withdrawal when no service at all

will be required: users who have just typed a request for service of any kind,

users who are output-lim.ited, users who are interrupting UTS or who are entering

or leaving the systeIIl. The application of this 'dis.Cipl~wttl,tl! the absence of

real-time interference, result in average delays of less than 2/10 seconds for up

to sixty users. Delays exceeding 2/l0-seconds will be experienced 100/0 of the

time; delays greater than 4 seconds will occur with,p:r.ob~bilfty I.OOOl., Many

delays will be blanketed by the time required for the typewriter carrier to return

to rest point after the user has typed his request and by the time .required to type

a response. However, delays greater than 2/10 seconds will be felt by users who

are debugging, particularly in assemb~y language. The system and language

.' .

DRAWING NO. 702489
SHEET /6' of ~d6

provided for this activity is designed to carryon an intraline dialogue with its, 7
users, thus providing no carrier-retur'n time for masking delays. This is

contradictory, since debugging is an iInpatient activity that may find stuttering

responses a drag; however, lengthy pe~iods of silence (delays greater than two

seconds) will be infrequent.

C. Resource Management

In order to achieve the estiInates given above for main-frame degradation and

for response tim.es, it is essential that UTS rr.tanage itself in such a way as to

minimize the overhead costs of time-sharing its activities am.ong its batch and

on-line users, and organize things so that it can efficiently overlap input and

output with main-frame processiIl;g. At the SaIne time, it is equally essential

that the installation manage itself in such a way as to use UTS most efficiently,

, and thereby reduce the wide variations that are inherent in the figures ghren above.

UTS's job is co~plicated by the';·fact that its co~.e store is not large enough to

a'ccommodate siInultaneously all possible on-line users. A secondary (High Speed

RAD) storage is used to cache those users not of immediate concern, so that

time-sharing overhead includes the cost of "swapping" users between core store

and disc store. A broad-brush solution to UTS's problems can be characterized

by some woodsy-lore precepts: a) k~ep enough compute bound users in core so'

that there is always something to do while swapping and other input/output

activities are going on; b) keep enough users in core so as to reduce· the probeJ-b­

ility of swapping; c) swap as little as possible. In order to even begin to effect
....... :.

a solution, UTS m.U·.8t;J~:t~~~e some compro~ise in allocating resources, particu­

larly to on-line users. In particular, core and disc storage and input/output

devices that are guaranteed to real-t1m.e and batch service are 'de-facto not,

available for on-line use ,except by entries into the batch .. que:ue.:' Second, Imlits .. ,­

must be set on the amount of core storage to be allowed individual on-line user$' .

and on the amount of cor.e storage ... tQ.;pe;:·given batch users' (above that guarante~d); .

these ·H.niits '''will be controllable within reason from the on-site console. Heavy

DRAWING NO. 702489
SHEET Ii of /6€.

use will be made of reentrant processors capable of being shared aInong many

'users and residing anywhere in core, thus effectively reducing the average

user's core demands. Provisions for handling growing and contracting core

requirements for users wi.ll be provided. The SIGMA 7 ~apping feature is absolutely

vital to UTS' s operation. In the absende of such a feature, it is n~cessary at the

very least that programs and data reside in contiguous stretches of core store. In

systems without mapping featu:res, the overhead involved in compacting, shuffl~.ng

and swapping core blocks to satisfy the contiguity requirements can reach 400/0.;
i'

By using mappings, this overhead becomes negligible, even under conditions of

high loading •

. Real-time programs"can, of course, bring everything else to an effective halt;

such matters are best left to the individual installation. Some real-thne programs

- - called" resident" -- Will be given dedicated core storage and input-output

devices at system-generation.-;' Co-re":storage so guaranteed i.'never available ~or

batch or on-line purposes. Other real-time programs will be given dedicated,

input-output devices at system generation time,' and will be granted their core

requirements on a demand basis. This core is available for batch or on-line

purposes until the on-site operator demands i.t for a "non-resident" real-tim.e

program. If released by the operator, it once again b~comes generally avai lable.

Many programs commonly characterized as "real-thne'lonea, but who only .

demand 'interfaces with terminals, can lleoperated satisfactorily as an on-line

user's program -- one that may be linked to more than one terminal.

Beyond the "resident" real-tb:ne guarantee, no more core is frozen than is

required to satisfy the residency requirements of UTS itself -- '(16K words).

~, No' core is absolutely guaranteed batch program.s. Inste~d, batch program.s

become "fixed" in core only by virtue of their preferred treatment in th~ queue

for'.~ computation". This may occasion, n:t:1:nor delays averagi~g .. ,.~, ~.".~~:cQnd,s ,before
.. - '.. '.. ',,:"'~' "".' .

some batch operations a>re':'carried 'out, and similar :delays' during·::tl?:~ :"~~!ll: ",
processing of some batch operations. The cum.ulative delays to batch 'w~i~:~,~babi)!"
be equivalent to those caused by the machine operator dropping a tape once or t\\"ice

during the day.

DRA WINO NO. 702489
SHEET/? of /8"

Allocation of disc resources depends o~ whether the high-speed RAD is used alone

or in consort with a slower one for storage of userJ s files and system files. It"

is clear that the high-speed RAD can easily handle swap storage •. sy:mbiont

and cooperative files as well as dedicated storage for processors and other

heavily used components of the monitor.

D. Accounting

The UTS system should provide charging for a variety of usage parameters.

The installation manager can assign each of these parameters a separate

charge rate and can thus maintain effective control over the use of the system.

The price associated with each system co:m:odity will be a dynamic system para­

meter which can be varied with time of day and user priority, or with other

criteria set up by the installation manager. A·'prelim.inary list of thesystexn

resources which will be separately charg.ed includes:

(1) Central processor time

(2) Line connect time

(3) File I/O activity (e. g. number of pages)

(4) File space used

(5) Core space used

(6) Tape usage (unit holding time and transfer time)
I

(7) Number of on-line user interactions

An installation manager may thus adjust the usage of his system by modifying

the charging structure - - for instance, by raising the price for the use of tapes

in order to discourage excessive use.

. .

Such dafa~~i.ll·be available to the user via direct console requests. At job

tennination tim.e all accounting infonnation will be output on the acc~unting

log device.

.1.J~~" u ~ ... _. t U~"%O·,

SI-IEET I?o£ I (Jtp

E. Performance Measures

Ability to measure the ope ration of the system is particularly iInportant during

the initial debugging stages and increases in importance as the system is tuned

to meet the load of the users' particular environment. These perfonnance

measures are built directly into the sy~tem as a series of counters; a given

area of executive storage will be devoted to counting actions and recording tiInes ,

for completion of various functions. Special code in the form of counting instrtic-
\

tions will be provided at critical points within the system. to count these events~

As such the recording of performance information will be on a routine-by-routfne

basis throughout the entire system. A user prograIn with special executive

privileges will display this inio rmati on.. This program will use a dedicated

console to print the contents of the tables which record system perforxnance

measures. Appropriate fonnats and appropriate tiIne intervals for printing will

be used. Throug1?- a standard monitor feature this program is "awakened", per­

haps every minute, to print the current contents' of thestatistic~l counters. This

mechanism provides a relatively flexible scheme for adding new performance

measures to the system and providing for their printout, as the gathering of new

statistics is indicated. Some items should be measured and displayed frequently,

perhaps every minute: others should be measured and displayed at a longer

interval -- perhaps every fifteen minutes or every hour. The display frequency

will be adjustable so that operational data can be displayed more often if special

tests are to be made.

(1) Total nUll'lber of users

(2) Inputing

(3) Outputing

(4) CPU time computing

(5) Compute time for users

(6') Compute time for batch

(7) Overhead time

(8) Idle time

(9) Unoverlapped Ilo tUlle'

(10) NUIIlber of swaps

(11) COmIllands received from users

(12) NUIIlber of lines transmitted to users

(13) Number of file Ilo actions

(14) Tape errors

(15) Disc errors

(16) Console parity errors

(17) Other errors

Longer-Term. Measurements

DRAWING NO. 702489
SH EET~~ of 18,('"

(1) Distribution of compute tUne per user interaction

(2) Distribution of tUne between user interactions

(3) Total compute tUne per session

(4)

(5)

(6)

Distribution of the size of the programs

Distribution of console input I output frequency on a line basis

Recording of Ilo rates to the consoles

(7) Recording of use frequency by processor

(8) Distribution of the number of users simultaneously in core

(9) Di.stribution of response tim.e to user requests

(10) Restricting all measurements to users of single processor

Continuous monitoring c;>f·these quantities and of other central parameters will

permit installations to tune. UTS to m.eet local fluctuations i:o. loads, provides
..

installations and SDS an experimental, long ... term approach to tuning UTS for

general enviromnents, and provides,amechanism for testbig the initia~. design

and predicting redesigns.

Adjustable parameters of the system can be adjusted'from the on-site operators'

console and their effects observed on the console dedicated to displaying

.. /

"perfonnance measures". These include:
r

DRAWING NO. 702489
SHEET .p/' of /St;

(1) compute time in short and long time-slice quanta

(2) maximutn core size for on-line users

(3) maximum number of on-line users

(4) ratio of CPU time for hatch to that for on-line computing, or so:me

\ other measure of 'batch priority

(5) I/O buffer limits, and "choke-unchoke" points that determine when a

:-pr,og.ra~·'is to be consl~~red.o,utput bound or ready for m.ore cornputat'ion.

F. System Error Detection and Recovery

In «:Lddition to standard error reco?,ery normal to I/O devices the UTS system

will take special measures to provide reasonable recovery for detectable machb;le
~;

m.alfunctions. Assutning that the norznal failure mode will be that of intennitterit

error, the system will effect recovery by immediate restart of the user in question

or the whole system if necessary, ~fter making records of machine status to aid
- . " .

in error diagnosis. This recoV.~:ry willbe'a.c·complishedwithout operator inter-

vention. This tec@ique will maximize the up time of the system while recording

information useful to machine Il1aintenance personnel.

Errors, whether caused by hardware or software, are of concern in any computer

~ystem.:···'The consequences of failure in a time-shared'system are multiplied·

I because of its znulti-programmed operation. When a time- sharing system. fails
\ ,

each of the concurrent us~rs of the system is affected, perhaps fatally. The

possibility of an operator re-trying a job that has run into a machine problem is

no longer an available option. Even symbiont batch systems run into difficult

backu.p ~r~ple.J;P.s.
~.. ."

'. This speci~ication does not offer any com.plete solutions to the reliability problen1..

Rathel' it suggests a number of possibilities of various degrees of irnplem.entation

,:..r'

DRAWING NO. 702489
SHEET ;);2. of /8~

difficulty for use in detecting or recovering from hardware problems. Since

truly adequate error recovery depends in large measure on the exact strain

put on the hardware by the mode or modes of operation of the software we nUlst

continually adjust our approaches to the reliability problem as the effectiveness

of the various techniques are proved or disproved through experience. We

expect this experience to show both the corn.mon failure modes of the hardware

and the effectiveness of recovery and detection techniques.

The presumption is made that standard and adequate recovery measures have been

taken wherever possible. That is, tape and disc transfers are parity-checked.

Critical transfers are ·check-sum.med ~nd/ or address checked. Detected errors

are recovered byre-read or re-write and operator assistance has been used

where possible (say card problems). With these standard techniques out of the

way we are sti1lleft with errors. (For some errors, such as mem.ory parity, '

we are in trouble ~edh~telY·.'.~Jld.::recQvery ::pYl'~-trial:-is impos·sj,ple.) TheJa~ter

category is the one we need to attack.

At least six facets of error handling need to be considered for a comprehensive

attack on system reliability:

(1)

(2)

(3)

Prevention

Detection

Recovery

(4)

(5)

(6)

Isolation

Recording

Restart

Prevention of hardware errors is a matter of good machine design and good

maintenance. However, we must not eliminate the possibility of identifying

weaknesses in the hardware and providing fixes for them'. System software has

a history of identifying hardware weaknesses. In many cases a hardware fix will

be the correct solution.

!2~!.ection is also often left to the hardware through parity checks, bounds checks,

etc. Often, of course, only the software can te~l that a certain signal means a

m.alfunction in one case and not in another. Many software checks are possible

q
!

DRA "\VIl\lG 1'JO. 70242(
SHEET ~ of /8t;

so many, in fact, that it is often difficult to know where to stop. The usual

solution is to check very little and depend heavily on the hardware. This is not

good enough in time-sharing systems. Erl·ors must be detected quickly and

recov~ry initiated before total chaos develops. Simple checks for consistency

of data should be nlade \vhen feasible. More elaborate checks should be

developed in frequently used codes such as the Scheduler, job control, check

interrupt routines, and I/O handlers. A partial list of software error detection

techniques which are useful in various situations is listed below. It is certainly

not complete and should be added to as we gain experience.

(1) Periodic consistency checks

(2) Checkrunning

(3) One word data comparisons on I/O transfers

(4) Self-addressed RAD records

(5) Range checks on internal data

(6) Double end loop tests in critical routines

(7) Read compare after RAD write

(8) Watchdog t:i.:mer checks for dropped I/O traps

(9) Software double checks 011 I/O action (for extraneous interrupts)

Diagnostics have long been used to identify failing machine parts. With the use

of margins, weak components can sometimes be detected before they cause

trouble in the actual working machine. While diagnostics of many types can be

run in a time-shared system, their usefulness is limited because of the difficulty

in margining; we have no way of p;ovi<;ling marginal voltages or frequencies for
. .

just the time slice in use by.the diagnostic (and returning to normal after error

detection to provide automatic reporting of the error location and type).

T:i.:me-shared diagnostic programs' are very useful for exercising peripheral

units (tapes, card equipment, paper tape equipment, discs, etc.) and their

controllers since the equipment can be isolated and separately margined. UTS

will provide for such <:iiagnostics allowing them master made operation and j

I!' DRAWING NO. 70248.,
SHEET,~rjI of ·/B({;

providing for automatic execution of diagnostics during periods of light load.

Recovery of I/O errors of various types is ~airly standard practice although

it is often a long and difficult task. Many main frame errors are not recovera~

at all. In fact, in the case of parity errors in the Sigma 7 it is not even possible

to re-try. We may find that hardware help is needed in this and other cases,

L"1. certain cases known tbthe program the error is of little consequence (e. g. ,

if it occurs while cycling in the idle loop) and the remedy will be to ignore the

error. These cases will be relatively few. In the time-shared situation a

m.achine error in a user's program m~y be 11 recovered" by restarting the job ,
r

from the last swap image or RAD. This will work if no other I/O has occurred.
. '

(a fact which can be recorded) and if the accounting inforrn.ation has been updated.

Whether it is worth doing depends on the frequency with which we eJcpect machine

errors to occur.

Isolation of the area of error is particularly irn.portant if recovery is not possible.

(Of course if isolation is complete enough we can recover but this is rarely the

case). In the time-sharing enviromnent, it is i:mportant to isolate the error to

a single user if possible. If this can be done then the user and his data can be

discarded without injury to other users.

Recording of all detected errors, whether recovered or not, is vital to good

system m.aintenance. Automatic recording is preferable since fewer errors are

over looked or ignored. (How many Sigma 7 machine errors went unreported

last week?). In addition. the accumulation of records o{ intennittent failure is

valuable in isolating problem areas of the machine which will rerluire both m.ore

maintenance attention and bettJr diagnostic'and error recovery procedures. It
. \.

is, required that a teletype console be dedicated to recording of errors detected

and recoveries made. The console also serves as aperforrnance measuren1ent ~.og~:

Total failures of the system should automatically record the vitals of the machine

(registers, PSW, etc.) on the log for later analysis and a total core du:mp of th~

DR.l~ ... WING NO. 702489

SHEET ~of /'86

machine on RAD to enable a very detailed analysis when warranted. Time and

effort required to make this record is paid for on the first error, hard or soft.

A briefsununary of the data which should be recorded is:

Recovered errors

user console - sta #; count

tape - Unit #; count

RAD - sector; count

card

other types

Catastrophic failures

type of test which. failed

registers

PSD

special system temps

core (on RAD)

Restart after a system failure in the shortest possible tim.e is of great im.port~.;nce

in a thne-shared system. Users understand that machines fail occasionally and

are happy if an automatic restart procedure is able to restart quickly frorri. a .
I

total but interm.ittent failure. If all failures were solid ones, automatic restai~t

would not help much but most failures.~ intermittent and restart serves to

get' the .machineback up for the users quickly. The recording of the failure

directs the CEs in their efforts during the next norm.al maintenance period.

In summary, the philosophy of UTS for machine errors and failures is prevention

wherever possible, care in detection at the earliest possible tiIne, recovery from

as many errors as possible, isolation of the failures to limit the bad effects,

recording of both error and failure situations to aid maintenance and rapid restart

in the event of failure to maxim.ize up time.

m. UTS SYSTEM CAPACITY

DRAwiNG NO. 70;2489
SHEET 07t of ·vlke.

We have stated above that UTS is intended to handle batch processing

operations and real-thne programs in addition to on-line terminal users.

Clearly the ability of a Sigma 7 to handle all the se tasks adeq'U:ately will depend

on the total load submitted, the distribution of this load over the three broad

categories of use, and the hardware configuration of the Sig:ma supplied to the

task. Also, the user's satisfaction will depend on his definition of tladequatelytt

what job turn-around time is acceptable in batch, and what response delays are

tolerable in on-line service.
I
I

UTS achieves its responsiveness and efficiency through the application

of several hardware and software techniques . The principal additions to the

standard techniques embodied in BPM, and the primary gain from. their use,

J:1ave been discussed previou~ly but are listed below for reference:

Multiple ~sers in core - increases CPU utilization by increasing

the probability that an executable task is in core. We try to assure

that, on the average, four or more executable tasks (on-line, batc~,

etc.) are in core.

Use of Sigma 7 memory map - provides execution tiIne relocation

of user programs by page, thus siInplifying bookeeping and reducing

overhead in achieving multiple users' in core. Since the page parts

of a user's program may be placed anywhere in core, scheduling of

tasks may be made to. depend only on task priority and not be hampered

by a need for contiguous memory allocation. Some additional flexibility

accrues to the programmer through the availability of a large virtual,

address space.

Shared common processors - Re -entrant progranuning, i:p. 'addition

"',to' MAP, allows' "ali:~:~~'~s to share co~~~l;':--~~e·~".'~··;~~'~~~ors sU:ch

as editors; debuggers, and BASIC. Considerable savingln core space
' •• ,0"

is achieved in comparison to syste:rns requiring a processorc'opy per.,"

user.

U.t\..n.. n .t..I,,,," I. ... "". I UC.~o)

SIiEE! ~7 of 1'8,,"

But what will be the systeml s response under some typical loads? How

effective will the above techniques be? In the paragraphs below we examine CPt!

and RAD load, ,on-line terminal response, and the division of the load among ba~cht

on-line, and real-time uses for various loads typical of the industry. ,The resuLts'

are back-of-the-envelope type calculations .. but serve to give a general impreSSion

of expected UTS operation.

Two critical areas are examined below: RAD usage and CPU usage. R.AD

usage is examined for total time load; that is. the sum of the time required to

service all requests for RAD transfers is estimated and compared with the time'

available to perform the requests. The calculations are made for three SDS

RADls and average delays are estimated from standard queuing delay curves.

The results show thatt:for'~~:!'~~cal~116ad the:'1164',RAD 1s bladequate. ~e

7232 is marginal, and the 7212 quite satisfactory in any case. These results are

for both files and s~ap storage on a single RAD. We will discuss later the splitting

of these functions onto more than one device. RAD size capacity is not discussed,

but BPM capacity can be used as a guide by adding 20-30,000 words for new pto-

, cessors and 120, 000 words for swap storage (4,000 words each for 30 u.sers).

: This would put the UTS RAD size requirement at about 2 X; 106 bytes exclusive

, of file space.

CPU utilization for all non-compute bound and non-batch operations is

estimated. Under the assumptions used, 70% of CPU capacity remains to be

divided between compute bound batch, real-time, and on-line users after allow­

ing for file I/O, symbiont operation, and service f01· non-compute bound terminal

users. I

Table 1 below summarizes In seven broad categories the number of trana­

,fers required of a RAD in a UTS system. In each category the underlying assump­

tions are noted. Following the table the asstlmptionsare discussed,more fully_

DRAWING NO. 702489
SHEET de of I'~ .

'Ia1->le 1

Pisc I/O Tr~ns£ers

\

1) Printer Symbiont & Co-op' (800'lpm)

2) Card Reader Symbiont & Co-op (200 cpm)

3) Batch execution I/O - (non-peripheral)

4) Terminal user I/O to files-- ~~i not for

editing or debugging; 3/user/interactioni .

20 sec/interaction; N = 30 users.
'.

5) Swaps for interactive users -- N /1 0

2 transfers /interaction/user;

20 sec/interaction; N = 30 users.

6) Swaps for time,.slicing 2/fl. :..... :,

2 transfers per .time·.slice quanta; Q = 300 mB.

7) Monitor overlays -- 500 per batch job;

500/ j proce s sor fe tche s. library loadb'1g etc;

l'ransfers/se(:

3.3

.5

5.0

4.5

3. 0

6. 7

5. 5 .

job time j = 1. 5 min.
TOTAL 2D

DRAWING NO. 7024~:9

SH EET .;19' of , :/8~

Some notes on the values assumed in Table 1 are appropriate:

1) We assume that the print: load generated by all programs in the

system will be sufficient to drive the printer at its full s peed of 800 lines per

minute. This is probably a good assumption for' busy periods. but somewhat

high as a full time rate. Student problems at a university produce 800 ... 1000

lines of output per minute of execution while scientific-aerospace environments

have rates nearer 300 lines per minute.

2) Aver~ge c~rd input rates at university and aerospace computing

centers Seem to be in the range 100-300 cards per minute of computing.
!

3) File I/O nece ssary' for problem execution naturally depends on the

program, and ranges from zero to whatever rate the device is capable of. 'Ve

sue'ss that,5 tran'sfeits/sec'wil1 be representative.

4) File I/O generated' by terminal users is estima~ed from JOSS

where program loading, JOSS's equivalent of chaining, a~d data I/O amount

to about 3 records transferred per terminal interaction. Three records trans­

ferred per interaction also seems to be a reasonable rate for inquiry systems _.1.

,say two dictionary look-ups and one datc:t fetch. The assumed figure should be

conservative' ,.ince we presume that most user time will be, spent editing or

debugging, and in both of these activities the I/O rates should be an order of

magnitude smaller than the assumed rate.

5) In servicing terminal use rsi reques ts we as sume that for every
'-,

\

request (interaction) the users program must be brought into core from RAD.

Space in core must be cleared by transfer to RAD. The assumed interaction

,rate -o-f once ea~h 20 seconds is conservative .. most time .. sharing systems measure

an interaction rate of once per 30 seconds.
,., -

6) ," Comp.lite.bound uaers are serviced in round-robill fashion. ' That is,

eac::p"time qu.a.nta w~ shtft, CPU cOQtrol from t\1e currently executing progranl to .. . '. " ,".... ,' ~. '.
the next program in the compute queue. It is usual that 5-20% of the on-line us.rs

aJ"e compute bound (both JOSS and SDC systems have 6o/c compute bound) so it

II i

DRAWING NO. 702489
SHEET --Jt3' of 18~

'might often be the case that no swap is required to ready the ;next compute
. I

bound user for execu tion.' We choose the conservative assumption, however,

that a swap is always required each COl"hpute quanta. (For instance the case

of 5-4,000 word compute bound prograrhs operating in 16K of meinory.) N~te

that if some of the users are compute bound then they should not be counted in

the swap for interaction, or the terminal file I/O categories. We can either

count this as conservatism or say that the number of users served is 5-Z0%

higher.

7) Current measurements on' "typical" batch jobs in BPM record

about 500 file I/O actions. This includes fetches for all needed processors

(FOR TRAN, SYMBOL, LOADER, CCI) overlays for the processors, overlays for

, the monitor, file I/O for ASSIGN IS, De bugs, processor intermediate data, pro-

: grams fetched from the library, etc. The assumption of a constant nu:mber of

I/O actions per job is rather gross but we know of no better assumption. The

average job time of 1.5 minutes is representative of a ~niversity-student environ­

ment. For scientific-aerospace shops, the job time is more like 3 minutes. ,Ve

choose the conservative figure.

B. Transfer Thnes

Transfer time depends on the amount transferred, the RAD used, and the

access algorithm. Reasonable transfer amounts for the seven items above are'
... ~,

1) and 2) 256 words, 3) and 4) 512 words, 5) and 6) 4, 000 words, and 7) 512 words.

RAD transfer times for 3 SDS RAD's are:

7204

7232

7312

23. 6 ms /1000 words

11. 3

1. 7

"

"
Table 2 below repeats, Table 1 but also lists the percent of RAD capacity

required for data transfer only -- latency assumed to be zero.

Table 2

Percent o~ RAD Capacity

Words
.. Xfered

Item ~fers/sec 1000' s

1) Print Symbiont 3. 3 1/4

2) Card Symbiont • 5 1/4

3) Batch Execution 5. 0 1/2

4) Interactive File I/O 4.5 1/2

5) Swaps for Interaction 3. 0 4

6) . Swaps for Tirn.e Slice 6. 7 4

7) Batch Overlays 5.5 1/2

TOTAL 28.5

Latency @ l7P1s/Xfer (28.5 Xfers)

GRAND TOTAL

'D:,1A WING NO. 702489
SHEET....31 of ';let;

J204% 7232~ 7212o/r --
2. 0 1. 0 .. 1

.3 • 14 .. qz

6. 0 2. 8 . ~i5

5.4 2.5 .4

28.0 13. 5 2. 1

63.0 30.2 4. 7

I

6.6 3. 1 i-. ,:,
1110/" '530/(- 80/(

49'/0 490/0 49'~~ ,

1600/0 102% 570/r

The table shows clearly that I;Iwaps performed for time slicing have a large

,effect. Since the quanta size is under our control, we change it from 300 ms to 1

second and recalculate. This is "tuning" the system.

Total load on the RAD's are now:

7204 7232 7212

Transfer Load 67 32 5

La~ency Load 40 40 40

Tota.l 1070/0 72% 45%

c. Interactive DelaIs

Interactive response ttrne is controlled by our ability to fetch a user's

. program from the RAD in conflict with all other users wishing response. The

situation is shnilar to single-server queue situations. Average delays have been

DRAWING NO. 702489
SHEET 3~ of/8~ ,

calculated and delay curves are shown in Figure 1. The delay is given as a

function of the fraction of full load and is plotted in terms of service time.

The four solid curves are plotted according to four d~ferent assurnption~
I, • , •

about the nature of the source of the load. The upper pair 'of curves represents

the exponential service time assumption, meaning that the amount of time re­

quired to take care of the reques t is distributed exponentially. The lower curves

assume that service time is a constant for all requests. Our servi~e tim.es are

neither, but contain components of each: The comp~te component and part of

the data transfer time are probably distributed exponentially; part of the transfer

time and some overhead time is constant; and the RAD latency is uniform.ly

distributed. We hope that our composite case can be estimated to be between

the two cu~ves shown.

The upper and lower curves in each pair show the variation with the

number of sources Bupplying:,the;:.load, -- in our case the num.ber of users. Note

carefully, however, that the.curves'·are: normalized in such a way that the users -'"I"

whether 25 or infinite -- are ,generatmg:the'·sar.ne total load. However~ the curves \

are still useful; when the ,huniberi of users is doubled. the load isl·also doubled.

Note that at a load of 1 (1 00%) that the aver age de la y is equal to the nUlnber .
of users multiplied by the service time. The queue is full; each request finds all

the other users already in the waiting line. The average delay is also the rnaxim.un1

, delay.

The dashed curves give Some idea of the variation to be expected in delay.

For the two assumptions of exponential and constant service times these curves

rn.ark a level of delay which will be exceeded in 10% of cases. The important

thing to note here is that the delay rn.ay closely approach the ma..xi'mum value at

RAD loads as low as 80%.

Service time for interacti~e users is the time to swap his progr.arn into

core (usually this requires transfer of a currently reside~t program to RAD to

make room) plus the computation time necessary to service the request. An

average computation time of 50 ms is sufficient for rn.ore than 95% of on-line

DRAWING NO .. 702489

k 5_+-_

~
~ 4_'*-____ ,

::s--

o .8
servcr

DRAWING NO. 702489'
SHEEl'~4f of /8~

interactions. The table below shows the service times for 4000 word'programs

on the three SDS R.AD's, including two way data transfer and 17 ms latency foi­

each unit transferred.

RAD

7204

7232

7212

Service Times 4000 Word Full Swap

,Swap ms.

222
I \

124

48

Compo ms.

50

50

50

Total ms.

272

174

98

The curve indicates that loads of' 50% result in an average delay of 1

service time. Thus with the 7212 RAD, responses to users would average about

1'1150 ms, including a reasonable amount of computing time. Clearly this kind of

,'response is good.

On the other hand,the average delay curve rises very rapidly as load

approaches 10.00/0. At 100% load the average and maximum delay are equal and

may be approximated by the number of users multiplied by the service tim.e --

1'7 seconds for the 7204 RAD.

The percent RAD load can be calculated and the delay due to RAD load

can beestimq"ted for cases other than that given above in Table 1 from the following

formula.

d N 2 500 1 N" 2S 250
L = 10 (8. 8 + 4 + Q + j) + 10 (3. 5 + 10 (3/4 + S) + Q + T)

where·

N = The number of interactive users.

r = RAD transfer rate - ms /1000 words.

d = latency delay per transfer - ms.

s = average program size (interactive users) - words.

j = average batch job time,,· ... seconds

Q = time slice quanta - seconds.

DRAWING NO. 7024f<.;
SHEET \.."J..;-bf;'18~

D.'" ,·.Compute ... Loadol1-the CPU

Table 3 below shows the breakdown of the major components of load on

the CPU not including execution of user programs or batch processors.

,,-

",'

:rable 3

CPU Load

1) Printer Symbiont & Co-op (800 Ipm);

2.0 ms/record for Co-op; 1 ms/record

f~r sytnbiont;

Pft, of Sigma 7 CPU

4.0

2) Card reader symbiont & Co-op (200 cpmJ

3) Cycle stealing - memory transfer

interference of swap and file I/O with

computing. Worst case.

4)

5)

6)

7)

Swap I/O management @ 500 ,.A.(sec /transfer.

File I/O m~nagement and trap.~fer @ 7 rns /record.

:

COC terminal I/O management and conversion -

100 .M.sec/char; 30 users; 4 char/sec/user.

Computation for interactive response 30 users;

1 interaction/20 sec; 50 ms av~rage processing --

(enough for < 950/0 of all interactive requests)

TOTAL

1. a

5.0

. 5

13. 0

1. 2

7. 5

32.2

E. Assumptions

Some notes on the assumptions used in computing the various loads are

again given in order.

'\,

\.

.5" ::

DRAWING NO. 70~4t;J~;~

SHEET ~6 of·,/,dt;
,
!
i: .

I

1 & 2) The loads assumed for the card and pri~ter' syYllbiont are th~
'. ,

same as those used for the RAD load. The difference in time required between the

symbiont and its correspo~ding cooperative reflects the fact that the symbiont
I

transferf!l data directly from buffer to device, while a move of the record core';'1:o-

core is required for the cooperative.

3) Worst case interference b~tween a computing program and I/O

transfers occurs when 90th operations use the same memory box. In time-sharing

systems we are transferring data and programs between RAD and core a large

f.;raction of time so there i't. uaul~lly a payoff in interference reduction if core is

organized into non-interleaved boxes. A first gue~s would 'be l/Nth interference

if there are N core boxe s. '----
4) The estimate here of 250 instructions to control each swap should

be conservative.

5) Overhead of the BPMfile ~/O system is currently about 7 ms/record

of 100 bytes. Scheduled improvements will reduce the figure by about 2 ms/record
/ ' /

and new access methods may add·to the improvement.

6) Terminal I/O includes translation between internal and external

form and buffering as well as==-stahdard checking and facilities for several different

kinds of consoles. The rate of 4 characters! per second per user is that measured

in the JOSS system and others. We--have no reason to believe that the rate will be

any different in UTS.

7) As before, th~ interactive rate of one ,message per user per 20

seconds is a conservative one by standards set in current time sharing systems.

The estimate that 50 ms of computing is the average required for over 95% of all

requests again comes from J.9S~, 85% of requ~stsrequire less than 50 ms' to com-
~ '

plete. The figure is lower than that recorded in the SDC and MAC systems but

only by amounts that may be explained by the difference in machines. A factor of

two increase would not be suprising.
'.,"

DRAWING NO. 702489
SHEET~7 of /8~

Thus about 70% of CPU capacity remains to be divided among corn.puting for

batch jobs, compute bound terminal controlled jobs, and real time responses. Of

; course a single compute bound program can use all of this time if allowed, and

if more than one is in the system, delay must occur sin ce the resource is over­

loaded. Scheduling of compute bound jobs is controlled by installation m.anage­

ment through control parameters discussed in a later section.

lV.. SCHEDULING

DRAWING NO. 7024,·;j
SHEET ~e of /J9t:~

The routines described in this section control the overall operation of
. I

the system. They receive inputs from the I/O systems when certain critical

events occur, from. the user program when it requests monitor service s. and

from the Executive language processor reflecting requests of the user. These

inputs (or signala) coupled with the current status of the user as recorded by

the Scheduler are used to change the position of the user ~n the scheduling status
I

queues. It Is from these queues that selections are made for both swapping and

execution. Swaps are set up by selecting a high priority user to come into core

and pairing him with one or more low priority user s for transfer to R.AD.

Similarly, the highest priority user in core (and thus ready to run) is selected

for execution.

A. Inputs to the Scheduler

The list below records those system activities which must be reported to

the Scheduler. The reporting is done variously through a logical signalling table.

through direct entry to the Scheduler, and through protected changes to theUselr

Status queues. The Scheduler records the receipt of signals by a change in the

user status queues plus other information associated with the user. In general,

a table driven technique is used with the received signal on one coordinate and.

the current state on the other. The table entry. thus defined names the"routine"

to be executed in response to the given signal--.state combination. Since the

number of signals and states is large the table technique aids in debuggi,ng by

forcing complete specification of all the possibilities.

Inputs from the COC routines

1) Input cOInplete activation character received -....

,.2} Output . .limi~ reached--sufficient output for 3-5· seconds

3) Output nearly empty- .. only 1/'2-1 seconds typing left

4) Interrupt (BREAK) character received ... -request for alternate

entry, usually for returl'l: of console control to the user.

5} Request for executive control
....... \.

6) Other special signals as required

DRAV/ING NO. 7tJZ.'Hj~:

SHEET39 of /&6

,
. . ' ~nputs from the swap I/O handler

1) Swap complete reacheduling and/or another swap may be needed

2) Swap error--a RAD sector cannot be written successfully. .'\ction

will be a repor t to the e.rror log, lockout of the f«idling sector I . and

re-trial at a different location

3) Swap error--a RAD sector cannot be read successfully. The user

cannot be continued; the error is logged and the user informed.

Inputs from the pro grarn (through rn.onitor service calls)

1) Reque st console input

2) Transmit output to the console
~

3) Wait a specific tirn.e period

4) Program exit (corn.plete)

5) Core request--both kinds provided by BPM plus request at

specified virtual addres s

6) Program overlay--load and link, load and transfer

7) Input-Output service calls.

Inputs from Exec uti ve Language Proces sor

1) Name of system program to load and enter. Implies deletion oi

any current program

2) Continuation signal

3) Special continuation addres s

4) File name for submission to batch processing

B. Scheduler Output

The scheduling routine performs two major functi()ns during the times

it is in control of the machine: First it sets up swaps between main core menlory

and secondary RAD in such a way that high priority users are brought into core

replacing low priority users who are transferred to RAD. The actual swap is

controlled by an I/O handler for the swap RAD acc.ording to specifications pre­

pared by the Scheduler. The Scheduler makes up the specifications for the swap

according to the priority state queues described below. Given a suitably large

DRAWING NO.' 702 L!r, ~

SHEET • tit> of r'~"'Br;

ratio of available core to average user size the Scheduler can keep swaps and

compute 1 00% overlapped.

Secondly, the Scheduler selects a high priority user for execution. Acc(;)rd­

lng to the single priority state queues and the rules for treating batch. The rule

is extrem.ely simple -pick the highest priority user whose data is in core.

G .•. User Status 'Queues

The status or state queues form a single priority structure from which

selections for swaps and selections for execution are rnade. The state queues

form an ordered list with one and only one entry for each user. Position is an

im.plied bid for the services of the computer. As the events occur which are ,

signalled to the Scheduler as descloibed above individual users move up and dO'Nn

in the priority structure. When they are at the high end they take high priority

for swap into ~ore and execution, and when at the low end they are prime

candidates for removal to secondary storage. This latter feature ... -that of a

definite priority order which selects users for rern.oval to disc-Mis 'an important

and often ove.'rlooked a~d to efficient swap management. It',avoids swaps by making

an inte lligent choice about outgoing as well' as it~coming users •
... ~ ..

In addition to these primary functions the queues are used for other

purposes: synchronizing the presence in core of user data and program, with th\~

availability of I/O devices, waiting for ,"wake up" at a pre-established time,

queuing for entry and use of processors, and core management problems.
~ .. ,.,

A list of the state queues in decending pr-iority order is given below.

-INT
IAC
UBL
COM
BAT
CU
DU

''''DO
BLK
INW
QW
OFF

Interrupt or break received queue
Input ~ctivation queue
Console Output unblocked queue
The interactive compute queue
The batch compute queue
Current user in execution
Current disc file user
Waiting for disc queue
Console output blocked queue
Waiting for console input queue
Queue of users to be awakened
Queue of users turned off.

below.

DRAWING NO~ 7024f/J
SHEET·~1 of I~

The above list 'serves for the illustration of the operation of the Scheduler

D. Scbedulelo Operation

To select users for execution th.e Scheduler searches down the priority

list for the first user in core memory. Thu~ ~ interrupting users will be served

before those with an active input message. both will take precedence over users

with unblocked console output, next will come compute users and finally the

batch job(s). Note that users in any lower states. have no c'url"ent requests for. ,

CPU resources. Note also that as each user is selected for execution his state

queue is changed to CU ,and when hisq~antais complete the highest priority

queue he can enter is the compute queue. Users who enter any of the three

highest priority states receive rapid response, but only for the first quantas of

service. Thereafter they share with others in the compute queue.

Two examples of typical interactive use will be illustrative.

The first follows a user with a simple short interactive request. As he

types the request he is in the INW queue and his program probably' has been

swapped to RAD. It remains there until the COC routines receive an activation

character. This is reported to the scheduler and cause a state' change to lAG •.

The Scheduler finds a high priority user not in core and initiates a swap to kick out a

low priority us'er (if necessa.ry) and·bring. in the just activated one •. On completion of th

swap the Schedule:t: is again called and it now finds a high priority user ready
I

to run. The users state is changed to CU the program is entered and examines

the input command. The cycle may complete, by preparation. of a response line
: . . .

and a request to the monitor for more input •.. This·'~ould reduce the users state

to INW again making him a prime candidate ,to k~ckout' of core •..

. The second exam.pIe illustrates a console output-bound program. This'

program moves through the state cycle BLK-UBL-GU,~~.'outp.ut is, generated by

the program, the' COG signals the reaching of the output limit, and finally the

output is drained onto the terminal. If the operation is proper J five or six

· DRAWING NO. 702489
f SHE,ET,y'.,2; of /8&-.

seconds of typing will be readied in buffers each time the user prograIn is brought

into core and executed. During this typing time the prograxn is not required in

core and the cpu resources can be given to other programs.

Selection for swapping picks aU,ser to bring into core and the lowest

priority use r to kic;k out. Prioritie s are arranged fr~ high to low J in order of
increasing expected ti:J:ne before next activation. This assures that the users who

are least likely to be needed are swapped our first, retaining in core always the

set most likely to require execution. The swap algorithm will operate so that:

a) if there is room in core for three user progra.m.s. b) if two users are computing

steadily and c) if many other users are doing short interactive tasks, then the

compute users will remain in core and use all available compute time while the

inter~ctive users are swapped through the third core slot. Of course the non­

uniformity of program sizes and request arrival times will cause different acti6n

from time to time but on the average it will be substantially as described.

E. Treatment of Batch Jobs

Two ways of scheduling batch are reasonable in this prio:J!'itystructure.

They result in quite different frac~ions of machine tim.e devoted to batch. Both

will be provided in UTS and the operator or installation Inanage~ ~lll be able to

select the desired mode of operation. The first treats the batch strea.xn in a

separate queue (BAT) of lower priority than the interactive com.pute queu.e as

indicated in the queues of Section C. Thus batch only gets service when no interactive

user has a request. Crude estimates from current systems indicate that lO--200/0

of machine time would be available to batch on a system supporting.between 20 and

20 concurrent users in prime shift. * That is lO-200/0 of the tim.e ~on-line user

is requesting time. During,non· ... primei time'900/0 or more of CPU time would be

ayaila.ble to batch.

*In Part In we estimated that 70% of CPU capacity wc;>uld be available to batch and

on-line compute-bound combined. Here we estiInate the on-line will use 50 or 6Q

of that 700/0.

DRAWING NO. 702'1·~·,9

SHEET ~~; of /';!:,~~~.

The second discipline cycles the batch user through the interactive cornpute

queue where each job receives an equal fracti.on of the available time. It is usual

in on-line systems that 5-20% of the on-line users are cornp1}ting at anyone thne;

thus as rnuch as 112 of prime time could be devoted to batch background oreration

plus the 90·~1() + on non-prim.e tim.e. In this schelne, batch can be biased to get ?

diffe rent quantwn than on-line use rs.

F. Swa"~) Hardware Organization

Users are saved in a dedicated area of the RAD (or a separate RAD in l~!"ge ..
configurations) during the pe riods between the turns for execution on the central

processor. The minimum system will allocate a portion of file RAD to this purpose

and dedicate a special handler to the performance of the swaps.

A bit table is used to keep track of the availability of each sector on the

Rj:~D, ITlarking zero for in use (usually assigned to a user) and one for available.

Users are assigned a sufficient number of page size sectors to accoIl1Il1.odate their

current use. The assignrn.ent is done in such a way that command chaining "of tHe

I/O can order the sectors to be fetched for a single us er with n1.inUnUITl latency".

That is, each users pages are spread evenly over the set of available sectors so

that when the user is swapped data will be transmitted in every sector passed over.

The records of the disc sectors associated with each user \viII he kept in t'~H_"

users job information table (JIT) which is kept on Ri\'D when the user is not in core.

The disc location of the JIT table is Itept in core by the Scheduler. The RAD layout

is such that sufficient time is available to setup IIO cOlTIlnands for the relnainde r of

a user after his JIT arrives from RAD.

The amount bf RAD storage assigned "to swapping will be a "para.-rneter of SYSGEN

The nmnber of on-line users which th~ systeIn can accommodate is liInited by t1:e

size of .RJ-\D space" allocated for swapping and the total size of alt active on-line users.

G. Processor Managernent

Proces SOl'S will be considered timewsharing processors when they are added

in such a way that the processor is read-only and makes no initial assurnptiol1s about

the user's data area. When these criteria are met the processor is treated in the

following special ways:

DRAWING NO. 702489
SHEET tftj of .r/,g t.~

1) Its name is known to the Executive Language; it may be called

on by name.

2) It will have dedicated residency on swap stol"nge esL~blished ~it

SYSGEN time.

3) Its use will iITlply a particular virtual map for tho Jsex.·

4) A single copy will be used by all requesting users.

5) It will never be swapped out. In fact, we \vill write lock to

portions of RAD dedicated to such processors.

EoSystem. M.anagement Parameters

Effec tive control over the operation of UTS is provided to the i~st~ Hation

rnanager through the adjustment of the dynarnic. pararneters of systen1 Oper3.tion.

Gross adjustments can be made at SYSGEN tinie but the fine tuning of. the systen:

to the changing deITlands of a particular con1pute shop is done by changes to the

dynarnic sys tern parameter s through comrrlands at the operators console. The

list of adjustable parameters includes at least the following:

1) MaximuITl core size for on-line users

2) Maximum core size for batch user

3) Maximum RAD file space allowed on on-line user

4) Number of on-line users allowed

5) Size of time slice compute quanta-milliseconds (Q)

6) Size of minimum compute quanta-milliseconds (q)

7) Batch bias parameter, b: batch gets b· 0 con1pute quanta

8) Batch scheduling dicipline -high or low priority

9) Number of tapes allowed an on-line user.

DRAWING NO. 702~S9
SHEET 1>-/:;- OF /B(~

f

v. System Requirements a'nd Configuration r

Throughout this specification the assumption is made that UTS will be a system designed and bujlt

to service batch, real-time, and on-line terminal users. Each installation will have to evaluat:e

its requirements and desired service in order to arrive at a useful machine configuration. A

reasonable selection of hardware can only be ma~e with a good knowledge of the characteristics

of its intended use, including the portions of computing devoted to real-time, batch, and on-line.

A Iso, the number and usage profiles of on-line users, size of on-line programs, I/O characterisHcs,

etc. must be evaluated.

It is obviously impossible to list the infinite combinations of equipment which wou Id support UTS

in some manner. It is also difficult to delineate a minimum configuration (different requirementS

will have different minimum configurations). Therefore we will describe a configuration for 0 set

of requirements and indicate possible downward and upward adjustments in equipment that cou'ldbe

made for varying requirements.

In attempting to determ ine what a particu lar configuration should be, several th ings must, be kept

in mind:

1. The UTS resident mon itor wi II requ ire an es~imated 16K words.

2. UTS is predicated on and requires a symbiont system.

3. Since, real-time requirement,s are pre-emptive and installation dependent, no allowance

is given here to these demands on the machine.

4. References should be made to the sections of this specification dealing with loading,

responses, and performance, since these factors wi II largely determine configuration

requirements.

":In order to support 32 on-line users (who are not compute-bound) and maintain a high rate of batch

: throughput (about 70% of B PM rate), the fo Ilowing configuration is appropriate. UTS design opti­

. n\azat lari~i IIf6~~s~n th Is sys~;:'?li!\'e I.,

CPU

Model

8401

. '~.,. . ,' .. : .. -..

Description

Si9~a 7 CPU

.' ': . ."

8413 Power Fall-Safe

CPU (Cont.) -,-
~Aodel Description

8414 Memory Protect

8415 Memory Map

8416 1 Additional Register Block

8421 Interrupt Control Chassis

8422 Priority Interrupt, Two Levels

8418 Floating Point Arithmetic

Memory, 64K

8451

8452

Basic I/O

8473

8475

7012

8485

7211

7212

8456

7611

7612

7615

! 7615

7621

7613

7015

Memory Modu Ie, 4 each

Memory Modu Ie, 12 each

MIOP

Four Byte Interface

Keyboard Pri nter (2)

Selector lOP

Hi-Speed RAD Controller

Hi-Speed RAD

3 Way Access, 4 each

Communications Controller

Format Group Timing Unit

Send Modu Ie, 32 each

Receive Modu Ie, 32 each

EIA Interface Modu les

Line Interface Unit, 3 each

Keyboard/Printer KSR/35, 32 each

DRAWING NO.. 702,~89

SHEET.vb OF leG

: S i condary Storage and Periphera Is

7 40 Card Reader

7J 60 Card Punch
!

7145

7321

7322

7231
I

,7,32

Line Printer

Magnetic Tape Controller

Magnetic Tape Units (4)

RAD Controller (4 byte interface for 7231)

RAD Storage (24MB)

domments and Variations

1t CPU

DRAWING NO. 7024~9
SHEET J('/ OF IS,:;·

A,II items listed except Floating Point are minimum requirements for any system. Another option

a~ailable is the Decimal package. "
I

2; Memory r
I

Some systems may run satisfact~rily with 48K; for example, 8 users rather than 32, ora 32 user s}'stem

with I itt Ie or no concurrent batch. More memory than 64K wi II a Ilow more users,larger prograr'ns, etc.

Basic I/O
I

Th~ absolute requirements are an MIOP, 2 Keyboard Printers, one RAD (6MB) and controller, and the

~ommunications Controller and associated terminal equipment. However, to maintain reasonabl,e ':

performance, separate RAD IS for the system and fi Ie storage are recommended for all s),stems. For a
I

32 user system, the system RAD should be a Hi-Speed RAD with an SlOP. Smaller systems, 16 users

for example, could maintain acceptable perform~nce with two 7232 RADls, for example.

4. Secondary Storage and Peripherals

The only requirements are a card reader, a tape controller, and at least one tape unit. Any reasonable

batch configuration can be" expected to also include a line printer, additional tape units, RAD file

storage, and a card punch. An additional MIOP may be required, depending on the type and nvmber

of secondary storage devices and peripherals. Variations in the number and type of I/O devices will

depend on installation requirements, but the configuration listed is reasonable for a batch system with

up to 32 on-line users.

4. Secondary Storage and Peripherals (Cont.)

Terminals

ORA WING NO. 70248'9
SHEET~/& OF /8C:;

'The only variation in on-line terminals forseeable now is the addition of different kinds of ter;ntnals

(Keyboard/Display, IBM 2741, etc.). Provisions will be made to the extend feasible for supporting

future terminal devices. UTS will be limited to a maximum of 64 terminals. To increase this number

would require maior changes to the cac software (which will support only one 7611 Communications

~ontro Iler).

DRAWING NO. 702·Hj9
SHEET '19 0 F / t! t;.~

VI. Terminal Executive Language (TEL)

TABLE OF CONTENTS

COMMUNICATION CONVENTIONS

A. Keyboard Control

Bo Typing Lines

Correcting Typing Errors

Erasing Lines

Blank Lines

End-of-Mes sage Signals

Pagination, Lineation

Tabbing

Echoing Characters

C. Interrupting UTS

1. Preemptive Returns to TEL

\
~.

2. Interrupting Sub-Systems and Running Programs

D. Typing and interpreting Commands

E. Error Detection and Reporting

IDENTIFICATION AND NAMING CONVENTIONS

A. Accounting Information and File Identification

User's Identification (id)

Account Identification (ac,count)

Pas sword (password)

File Identification (fid)

B. Device Identifications

INITIATING AND ENDING ON-LINE SESSIONS

Turning On

Changing Identification

Turning Off

Page

52

59

60

MAJOR OPERATIONS

A. Compilations and Assemblies

1 •. Inputs and Outputs

DRAWING NO. 702489
SHEET6d OF I it;'

2. Commands (COMPILE, ASSEMBLE)

3. Controlling Error Commentary and Output

4. Error -I-Iand1ing and End Ac tions

5. Entering Program from the Terminal

6. Debugging Information

B. Linking ROM's and LM's to Form LM's

1. Simple Linkages (LINK)

2. Load Module Symbd1 Tables

3. Merging Internal Symbol Tables

4. Searching Libraries

5. Error Reporting and End Actions

C. LoadingLM's Into Core

LOAD

D. Initiating Execution

START

RUN

E. Initiating De bugging Operations

DELTA, FDP

F. File Management

COpy

DELETE

CALL PCL

G •. Editing

CALL EDIT

EDIT

ACCEPT

H. Submitting Batch Jobs

BATCf:T

Requesting Status

Cancelling Remote Batch Jobs

Page
~

61

1. Calling Su b-Sys terns

Answering Conventions

DRA \VING NO. 702489
SIIEET 6'/ OF /~;.~;

J 0 Continuing and Quitting Major Operations'

CONTINUE

QUIT

Automatic QUIT

MINOR OPERATIONS

A. Checkpointing Pro grams (SAVE, GET)

Bo Assigning Files and I/O Devices (ASSIGN)

INDEX OF COMMANDS 76

COMMUNICATION CONVENTIONS

A. Keyboard Control

DRAWING NO. 702489
SHEE T-6~2 0 F ,/ j,.;'; C.

As previously mentioned,· control of each user's keyboard will be

proprietary: either the user or the system. will have control. The assum.ption is

m.ade that all terrrlinals in use are attended. Term.inal comm.unication conventions

will be as follows.

1. Whenever the UTS executive proces 801' returns control to the user

after an error, an interruption by the user, or after con1pleting a request, it,.

will type an exclamation m.ark 0) at the left m.ar gin of a fresh line before tu:-nin~

control of the keyboard over to the user. This notifies the user that he is talking

to the UTS executive processor and m.ust couch his request in that processor's

language (TEL).

2. Vlhenever the services of a sub-system. are first requested by the

user, that sub-system. will identify itself in plain-talk before turning control

over to the user.

3. All sub-system.s that carryon line - by-line, rather than intraline,

dialogues with the user will type an identifying m.ark at the left m.argin of the

line before r~turning control to the user. Sub-systen1s for editing will us~ an

asterisk (~~); sub-system.s for combining object progranls and n1allipulating their

associated sym.bol tables will all use a colol (:)j utility sub-systen1s for file

m.anagem.ent and information transfer will use the numerical relation sign «);:

all sub-system.s for working with other programm.ing languages will use the sign

(». These identifying m.arks notify the user that one of a class of sub-systems

is awaiting a command from. him.. '~Vhich sub-system. it is and which language

must be used should be in the head of the user. This is possible, since no

sub-system of UTS will call on another one, or even on itselfo However, sonle

commands in UTS' s executive language (TEL) require the services of a succes sion

of distinct processors, as may some comm.ands in other sub-systen1.s. \Vhenever

DRAWL~G NO. 702 ~f9
SHEET..5"3 OF /;;,;:i,;

such "hidden" processors detect an error, they will, where necessary, precede

error m.essages by a single space followed by an iuentifying nlark appropriate

to the processor's function.

4. Users' programs that must return control to the user to allow hiIn to

input values and other information are left to their own devices. Such progralTls

should be written so that they display enough information for the user to deter.~

mine what is expected of him in such e.ituations o

Bo Typing Lines

The mechanisms for correcting characters, for erasing rnessages

that may be hopelessly mistyped, for signalling end of message, and for line

spacing are uniform. These are given below for users with TTY tern"linals.

1. The user can erase his las t unerased token by depres sing the R UBOUT

key. UTS will respond by typing a slant-line (/) to indicate that it has effectivel}~

backspaced and erased. On terminals that can backspace, backspacing will be

non-erasive and users will be able to overstrike tokens as well as erase them.

On such terminals, UTS's image of the line being typed by the user is identical

to the one the user sees on his printed page -- as suming that he can read his

over strike s and erasures.

2. The user can erase an entire me ssage by depre ssing two keys siInul­

taneously, CONTROL and X. UTS will type a back arrow (-), return the carrier

to the beginning of a fresh line, and return control to the user without further

comment.

3. Blank lines are ignored by UTS's executive processor and by all

its sub-systems that carryon line-by-line dialogues with users. The appropriate

identifying mark ,will b~ typed at the left of a fresh line before control is returned
~:~f . ~w '>. : ,.. '8 ,~

to the 'user'~"" ,

DRAWING NO. 702·1B'}
SHEET~t/OF /e(~

4. \Vhen talking to TEL or any sub-systelTI that carries on line-by-line'

dialogues with users, the user signals end-of-message by depressing the carrier

RETURN or LINE FEED key, or by si~ultaneously depressing the CONTROL

and L keys to signal end-of-page (see 50 below) as well o UTS will shift the

carrier to the left m.argin of a fresh line (after taking care of any pagination

that may be called for or required) and take over control of the keyboard. Except

for interruptions (see C. below) all subsequent transnl.issions by the user w"ill be

ignored until keyboard control has bee:.?- returned to hinl..

5. Pagination and lineation are controlled by UTS so as to proyide 8 liz

by 11 pages with one inch margins at the top and bottom of each "page ". This

assumes a 9 1/2" platen, giving 85 Gothic characters to the line; 8" platens pro­

vide for 72 characters .. UTS will count lines to give 54 lines per page. In addition,

th~ user can request pagination directly by depressing the CONTROL and L keys

simultaneously.. Pagination consists of: a) six blank lines; b) a heading line J

containing date J time, user identification, console identification and page num.ber;

c} s'ix more blank lines.. Thus, the heading line can be scissored off to obtain

11" pages ..

6.Som.e terminal devices have readily adjustable and usable tabbing.

features, others can tab but make adjustments difficult, others, can't tab at alL

To handle the last two cases, UTS permits users to request that tabs be shnulc.ted

by successive spaces. Tabs are not normally sinHllated; to turn on tab sin1ulation

,triply depress the (CONTROL, SHIFT, "OH") keys and then depress the T key.;

Toturn off tab silTIulation, repeat the procedure •. -'rhe setting and clearing of

tab stops will also be allowed, pos sibly by preem.pting two non-printing charac ter s

to signal set~tab and clear-tab; an "al'ternative is to provide explicit cOInrnands for

these actions.

DRAWING NO. 70,~~89

SHEE T I. tI::.:~~;o 0 F ~.-r~~~ /8 ,~:;

7. Echoing of charac ter s back to the terminal is at the discretion of the

user. Normally, UTS will echo; to request no echoing, the user n1ust triply

depress (CONTROL, S!-IIFT, "OI-I") a:n.d then depres s the E key- To huon on

echoing again, the procedure is repeated.

, .
A complete list of these and other control functions is given in the COC

Func tional Specificationo

C. Interrupting UTS

1. Whenever one of UTS' 5 sub~system.s is in control of the keyboard, the

user can interrupt and temporarily suspend operations by simultaneously

depressing the CONTROL and E keys. UTS will respond by stopping the cur rent

operation as soon as it reaches a convenient break-point, and then turning the

user over to the executive processor, TEL.

2~ '\V,henever UTS or"one of its sub-systems is in control of the keyboard,

the user may interrupt whatever is being done for hitn at the n10nlent by depres sing.

the BREAK key which will give control to that part of the sys ten1. currently in

communication with the terminal (eo go, a sub-system.). Since some actions can

only be stopped at points of convenience and others have so m.uch inertia that they

can not be stopped at all, a succession of BREAK depressions will be treated by

UTS as a single interrupt request. It must be emphasized that depression of the

BREAK key does not constitute a preemptive request for the services of UTS's

executive processor (see 1. above): the precise handling of interruptions by

sub-system.s will accompany the functional description of the sub-systen1; handling

of interrupts by users I object programs will be covered in the section that

describes the calls that programs can make on UTN! services. Baldly speaking,

however, interruptions of the system or any of its m.ajor sub-sygten1s will result

in termination of the current operation as soon as possible and a return of key­

board control to the, USer after the appropriate identifying nlark has been typed.

Since line noise can generate spurious interrupts, it is also wise to have UTS say

something first; e. g., "Stopped by interrupt." Interrupti~ns of object program.s

will, in the absence of short-stopping actions by the progranls themselves, ahvays

cause a back-up to the executive processor. Progranls being

DRAWING NO. 702.f89
SI-IEE T''''? 0 F I f..-i G

run under control of de bugger s or under control of a programming language

sub-system like BASIC willidenti~y the point of interruption as best they can

(eo g., "Interrupted at statement 120. ") before returning control to the user.

By the same token, the execution of sa-called "stop" and "pause" commands

should result in similar behavior; e. g., "Stopped by statement 120. "

D. Typing and Interpreting Commands

Except for a few declaratives, commands take the forn1 of in1.peratiye

sentences: an imperative verb followed by a direct object or list of objects;

indirect objects usually follow a preposition, but may follow the verb (with'C' lisior:

of the implied direc t 0 bjects). Minor variations on the major theme of a cOlTInl.anc

are expressed as encoded parentheticals following either the verb or one of the

objects. Individual elements of a list of objects are set off fron1 one another by

commas. Common rules of compositi.on hold: words of the language, numerals,

object identifiers and other textual entities, maY,.not be broken by spaces; other­

wise, spaces may,be used freely. For purposes of scanning commands

(both by machine and the human eye) this rule has a simple interpretation: in

a left-to-right scan for the next syntactic element of a con"lmand, skip over

leading spaces; treat a trailing space as a. terminator for a word, numeral or

other textual entity. In terms of machine scanning, tabs (which are represented

by a unique encoding) are treated as spaces. In addition, a unique encoding that

indicates "end-of-command" rnust be recognized as a syntactic element; for TEL,

this will probably be the carrier-return code. In other words J a Ie gitimate

command can't have any trailing garbage -- one could never determine whether

it was a spoof on the part of the user or a real error.

E. Error Detection and Reporting

UTS' s gener.t.iL,philosop~y in· these areas is made up of t\vopoints.

1. Don't m,ess up the user or his information by carrying out a

command or an operation that can't be carried through to completion.. This rule

must be tempered by considerations of efficiency and speed. For example, in

commands that refer to file storage, it may be ~nfeasible to check for the existence

or non-existence of the files mentioned; it is probably unwise to simulate an entire

DRAWING NO. 702·~g9

SHEETd"'7 OF /l:? C;.

command to check for storage-limit rhn-overs before actually carrying out the.

command, and 'impossible to anticipate hardware and device malfunctions. How­

ever, TEL and all its sub-systems that carryon line-by-line dialogues with users

will always parse an entire command before starting an operation to insure that

the command is, at the least, formally valid.

2. The majority of errors are.readily grasped by the user's eye and

head once the fact of an error has been brought to his attention. Accorciingly,

error mes sages will be as terse as is possible within the constraints of reada-

bility.

The error messages themselves and the specific actions taken on errors \\"i11

be covered in final UTS documentation. However, many errors and error reports

are uniform throughout T~L and some 0:(its sub-systems, and can be listed here.

a) Garbled. malformed or unintelligible commands:

EH?

b) Garbled or invalid file, device, reel, account identifications" and other s:

FILE .•• ?

DEVICE ... ?

ACCOUNT .1

PASSWORD 1

JOB ?

c). References to (deleting, reading overwriting) a non-existant file: .

NO FILE

DRAWING NO. 702·189

SHEET0-5 OF /Bc:,;"

d) Attempts to write ON rather than OVER an existing file:

ON FILE ... ?

e) Errors, abnormalities, storage-limit over-runs associated with

an input-output'action or with a specific file:

FILE

DEVICE •• 0

followed by error mes sage

IDENTIFICATION AND NA:M1.NG CONVENTIONS

DRAWING NO. 702~J:V?

SHEET",5~1 OF /G' 6

On-line users are provided a" set of uniform conventions for repre­

senting information for fiscal accounting, file identifiers, devices, and

other objects.

A. Accounting Information and File Identification

An on-line user must identify himself before he can use TEL

or any of its sub-systems, Procedures for doing so are described in the next

section. Three pieces of information are required:

a) the user's personal identification (id)

b) the user's account identification (account)

c) a pas sword (pas swor d)

These, as well as names for files (file name) may be represented by a string :

of no more than II contiguous letters and:/or decimal digits. Embedded under-,

scores may be used as separators (they count as characters); these print as

left-facing arrows (+-) on model 33 and 35 TTY's.

Files are identified by name, account and password; file identifications

(fid) are represented by file name, account and password (in that order) separated

by hyphens. In the absence of account and/or password, UTS uses the log-on

accounting identification. All identified files are permanent ..

B. Device Identification,

Device identifications are represented by two-letter abbreviations

for: card reader (CR); card punch (CP); line printer (LP); on-line terIninal (!vIE);

labeled tape (LT); free-format tape (FT).

I

Tape iden'tifications must be followed by a number sign (#) and a reel

number; e. g., LT#727.

. .". "

INITIATING AND ENDING ON-LINE SESSIONS ,

DRAWING NO. 702·~.!8SI

SHEET G,() OF /,.f,:;,;:":'

An on-line user must establish a connection with UTSalld identify

himself properly before he can use TEL or any of its sub-systenls. When

a connection with UTS has first been established, UTS will respond by typing

IDENTIFICATION PLEASE:

and then waiting (on the salTIe line) for the user to identify hinlself by typing

his id, account and pas sword (separated by commas) on the ren"lainder of the

line and then depref3 sing the RETURN key. If the identification is valid and

consistent with UTS's records, TEL will type an exclamation mark (~) at the

left margin of the top line of a new page and then await the user' s first cornnlar..d"

If the identification is garbled or otherwise invalid, UTS will notify the user, and

then repeat the initiation procedure. The messages are:

EH?

ACCOUNT ?

ID . •• ? (filling in the garbled or invalid iten"l)

PASSWORD. 0 0 .!~

During the course '0£ a session" the user may close ont his curr.~ll~ session's

accounting and reinitiate unqer new identification by typing

I'M U)" account" password .-
or a combination of

ID id

ACCOUN:T account
!

PASSWORD password'

To close out and, disconnect, the user types

OFF

Whenever a session is closed out, UTS will print at the user's terminal a

summary of his charges and other information. This inc.1~des tota~ session

time, charged CPU time" and the reel numbers of any ne:w ,tap:es that had

not been dismounted prior to closing out.

MAJOR OPERATIONS

DRAwrnG NO. 70.:.:4;8~J
SHEET tl OF /8 (.~:~

Most commonplace activities associated with FOR TRAN and assernblY-1

language programming can be carried out directly in TEL; others require

calling for the services of one of TEL's sub-systems. Figure 3 indicates

how such activities are carried outfrom the console; TEL commands are

capitalized, and sub-systems indicated.

1. FOR TRAN, SYMBOL and XSYMBOL programs a1."e created, filed

away and changed through the EDIT sub -systeni either by explicitly calling

for EDIT or by the EDIT and ACCEPT directives.

2. Program.s are COMPILED or ASSEMBLED frotTI the iile s or fron1 the

terminal (line-at-a-time) into relocatable object lTIodules (RO~1). ,
3. ROMs may be LINKed into load modules (LM).

4. ROMs and LM's may be LINKed and ITlay be ITlodified by SYMCON.

5. LMts can be LOADed into core and execution STAR Ted.

6. Linking, loading and starting of ROM's can be subsum.ed under the

single directive I RUN.

7. Object programs can be run or started under the control of one

of the debugging systeITls DELTA and FDP.

8. Executing prograITls that helve been interrupted or stopped can be

CONTINUEd after corrective actions.

9. Core images can be SAVEd: on the files, and a user lTIay GET a saveci

core iITlage at some later date for continuation.

1 D. Files of inforlTIation can be Inanaged directly (COpy I DELETE) anc.

through the PCL and EDIT sub-systeInso r

A. COInpilations and As seITlblie s

1.. Inputs and Outputs

One or·.more source programs can be compiled or a-sse~bled into

a single ROM. Input identification (sp) may be either a file identific:ation (fid) or the

device identification, ME. Whenever it encounters the latter, UTS Will reque.st

that the user type in his source program a line at a time. To signal en~1 9£ input,

the user depresses, the BREAK key, (see 5. below).

CA.LL EDIT

COMPILE

CALL LINK
CALL SYMCON

LOAD

DRAWING NO. 702-}8\'
SHEET '-;2. OF laG

START

-

CALL EDIT
EDIT, ACCEPT

./

/
,/

/

I
/

I
/

responses

Figure 3. FORTRAN and ASSEMBLY-LANGUAGE PROGRAMWNG

DRA\VING NO. 702489
SHEET t3 OF /8'w

Lis ting output (lis t) Ina y be dire c te d to a file $ the

terminal or a line printer (fid, ME, LP)., ROM output (denoted ~) nlay

be directed to a file or may be unspecified. In the latter case, UTS caches the

ROM on a s'cratch file, which the user may subsequently refer to by a dollar

sign ($).

2. Commands

COMPILE ap J SPI~' ••• ' SiJON ~, ~

ASSEMBLE sPJ} ap, , s.p ON rom, list - - - --
Listing and ROM output nlay be specified beforehand.

LIST ON list

OUTPUT ON rom
(or OVER an existing file)

When so specified, the commands can be abbreviated; e. g. ,

COMPILE file l, fileZ

COMPILE file l, fUeZ ON ~0m.file3

Listing specification hold over all subsequent operations until changed or until

specifications accompany a compile or assemble conl.mand; specifications that

accompany a com.mand hold only for the duration of the command. Beforehand

ROM output specifications hold only for the next assembly or con~pilation, and.

ROM output files are closed after each operation; that is, no "file-extension" in
" .

the BPM sense is permitted. ..The parenthesized letter "E" after CO~fPILE ,or

LIST indicates that assembly-language expansions of FOR TR~N statements 'a.'re

to, ':l~~.Qrppany the listings; normally, they do not.

3. Controlling Error Commentary and Outputs

Error commentary is always direc ted to the user I s t~:r:,minal

.and, ~}w~y~:;~~~ompanies listing output if specified. During the course of a cOlllpila­

tion or a8se'm~~y, the user may interrupt the process to turn .output on or off, to
.";y ' .• ::.~ v : 'I .:-~': .. " ~., •

turn off error comments to his terminal, and to redirect error conlnlentary.

LIST

OUTPUT

COMMENT

or

or

or

COMMENT ON list

COMMENT OVER fid

DON'T LIST

OON'T OUTPUT

DONtT COMMENT

(over ,an existing file)

DRAWING NO. 7024Si~;

SHEET ~,y OF /$t;;

The facility for turning off and redirecting error commentary is one that can

only be appreciated by assembly-language programmers and debuggers who

have sat at an on-line console, wringing their hands in desperation \vhile the

machine chatters on and on about an error that they could either ignore or

repair instantly once they began debugging. Once the user has redirected

things to his satisfaction, he can request that processing continue by typing

CONTINUE

In the event that things are hopelessly messed-up" the user can tell UTS to

give up on the operation by typing

QUIT

Error Ffandling and E~d Actions

Whenever. UTS aborts an action. either because it cannot be

continued or because the user has told it to quit, UTS will always clean up

things before reporting and returning control to the user 0 In particular,

after assemblies, compilations, and linkages and loadings (see the sections

below):

a) If listing had been s'pecified beforehand, both the listing

itself and the specification are retained;

b) Any listing specified with the command itself is erased

(unless it has gone to the printer) and specifications return to their default

state: DON'T LIST;

c) Any ROM output is erased, and ROM output specifications

revert to the default state: DON'T OUTPUT

d) Specifications for error commentary revert to the default

state: COMMENT ON ME (but accompany listings if specified)o

........ __ .-..

DRAWING NO a 70248~;

S!-JEET (;6- OF /rli'(.;"

The sam.e cleaning up is done whenev€lr the user has interrupted an action

and asked TEL to carry out a differellt one before telling it to quit. This

holds only for the so-called rnajorcor.nrnands: ASSEMBLE, COMPILE LINK,

LOAD, COPY, and others that require the services of m.ajor processors or

of sub-system.s.

Whenever a m.ajor operat,ion has been carried to completion, TEL will notify

the user that it is done by printing

DONE

before returning control to him. All specification3 and options associated

with the operation or command return to their default states except for

beforehand listing specifications, which are retained.

5. Entering Programs From the Terminal

vVh~never the input designator, ME, is encountered, TEL

types:

ENTER PROGRAM

p.nd then returns the carrier to the left mar gin of a fresh line to await the

user's first program statement. Each statem.ent is terminated by a carriage

return or line feed. Error commentary, if any, follows immediately to the

user's terminal. To indicate the end of his source text, the user depresses

the BREAK key. For purposes of formatting, print columns on the terITlinal's

platen are in on-to-one correspondence with card columns, and trailing blanks

are assumed for short lines. To facilitate typing of commands and statements,

TEL will assum.e that the terminal's tab st~ps are set to conform to the prograp1.­

m.ing language being used, and will so simulate them if tab-s top simulation is in

effec t. For FOR TRA,N, a siIl:gl~, ,tab stop at pr !nt c(~,~t.Irnn 7 is used; for as sem.blie 5,

tab s'tops are set at columns la, 20 and 37. The general handling and sin~ulation of

tab stops is covered co~'pletely. intb~_COC Functional Specificatlons. Briefly, tabs

are shnulated so that longer fields can be used: whenever a tab stop is typed-over
, \

rather than tabbed-to, the next tab is replaced by a single, space. On input, tabs

accompany the source statements literally, and assemblers and con"lpilers will treat

them properly.

6. Debugging Information

DRA'VING NO.
SHEET t,t, OF

ROM outputs of both compilations and assemblies always contain

information required for subsequent debugging at the assembly-language level

under DELTA. To debug FOR TRAN-produced programs under FDP, iurti1e:'

.JUU.l· ~lJ.dIIOn must accompany the conlpilec1 code. In tle absence of other speci-

fications. this information will always be produced by the compiler. Such

information increases the size of object programs and slows them down. To

turn off the production of this information for a specific compilation, the user

follows the verb COMPILE by a parenthesized letter "N".

Bo Linking ROM's and LM's to Form LM's

ROM's are representations (of programs and data) that are

specifically designed for efficient combination with other ROM's; LM's are

representations designed for efficient translation into executable progranls and

loading into core. Both may be pictured as bodie s of potential machine code

to which are appended so-called symbol-tables 0 Symbol tables list the cor­

respondences between the symbolic identifiers used in the original source­

program and the values or virtual core locations t~~t.have been or will be

assigned to them. Many of these symbolic identifiers are used and refe:-red

to solely within the module itself; these are the so-called internal syrnbolsof

the Illoduleo Others, the so-called external or global symbols, either identify'

objec ts within the Illodule that Illay be referred to in other modules or are used

to refer to objects defined within other Illodules. Functionally"thesen"lodules

are black boxes with labelled connectors dangling from them, some pointing out

and others in. The labels are the global sYIllbols as sociated with the module;

'"

DRAWING NO.. 70248'~\

SHEET~1 OF /gc..

the internal connections have all been potted, and are hidden.. The process

of linking modules together is one of "making big ones out of little ones. tl

In the process, internal symbols associated with the new module's constituent

parts are potted and hidden, but all global symbols are still visible. If the

resultant module is to be itself recom.bined with other m.odules to form yet

larger pieces, it is often necessary that it be repotted in such a way that

those global sym.bols used solely for connecting its original constituents either

be renamed or be made internal to itself so that conflic ts with external sym.bols

of other Inodules be circuInvented. The sub-system SYMCON, described in a

separate docuInent/ provides users fac:ilities for such renaming and repotting.

These facilities siInplify the construction of large programs, since they pern1.it

sub-programs to be linked freely in the face of conflicting nanling conventions.

Continuing the black-box analogy, if a module is slit open, a junlble of

internal connections should be visible 0 If the module has been tested and deenled

£i t for produc tion, the se connec tions need not be labeled. However, if the

module is still in the debugging stage, the labels may be necessary. To this

end, TEL perITlits users to specify wh€:n the internal symbols associate~with a

module being linked are to be kept with the, resulting load module..

10 Simple Linkage·s

Both ROM's and LM's Inay be linked. Their identification (nlll)

may be a' fid or the dollar sign ($) which refers to the R01vl produced by the

Inost recent compilation or assembly.

The sub-systeIn l LINK, is specifically designed for linking and is

described in a separate docuInent. However, most cOInIl1onplace linkage scan

be carried out directly in TEL.
. (

LINK mfl, Infl,

LINK mil, ITlfl,

LIN K Infl, Infl,

o • 0 I

• 0 • ,

... ,

ITlfl ON hn

m.fl 0 VER 1m

m.fl

(over an existing file)

(for subsequent loading into core)

The r~~ult of arty linking operations is always available for subsequent loading

into core whether specified or not (see C. below).

5'tDrawing Number 702477.

2. Load Module Symbol Table s

DRAWING NO. 702489
SHEET ~8 OF /'0"

A load module can be pictured as being comprised of three parts:

a) a body of code; b) a table of global sYITlbols; c) a table or set of tables of

internal symbols, each associated with a specific input module and identified

by that module's file name. This ide ntification permits user s who are de bugging

under DELTA to define which set of internal synlbols are to be brought into play

for their debugging activities. What happens to these sub-tables associated ~~vith

a load module when the module is relinked with other modules is de scribed in

3. below.

The nlechanisms for specifying when an input module's internal syrnbols

are to be kept with the re suIting load module follow:

a) The parenthesized letters "NI" preceding an input luodule's file

identification in the LINK command specifies that internal symbols for that

module are to be left out; the parenthesized letter "I" indicates that internal

symbols are to be kept.

b) Once given, a specification holds for all subsequent modules lUentl0ned

in the cOnlmand until the occurrence of a new specification.

c) In the absence of any specifications at all, all internal symbols are

kept.

3. Merging Internal-SYnlbol Tables

Keeping each constituent's internal-symbol table distinct and

uniquely identified in a load lnodule makes sense when COnlmon namingconventions

have be.en r.epeated in prpgram.ming the constituent modules; i. e., when objects
"

internal to. disti.~c.t :mod~les are frequently identified by the sam.e syznbolic

identifi~·r·.··'·~·w'~·~n·~o'~~:~o~~~~c.ting'.~aming conventions have been us~d, the user may
\

instruct TEL to merge his specified sYmbol tables into a single ·On~:.in the re-
o .' .."

suIting load module. This is done by enclosing the list of input modules named

in the command in parentheses. Only one level of parentheses nesting is allowed

and either all or none of the input modules· may be mer ged. This convention was

DRAWING NO. 7024C)
SHEET,61 0F lOt;

adopted in favor of, say, choosing a distinct com.mand for the process, to

ITIaintain uniformity with the conventions of the LINK sub-system. TEL resolves

multiple uses of internal identifiers by assigning to them the object that they

identify in the last input module with which they were associated (reading fronl

left to right within parentheses). When a load m.odule containing separate

internal-symbol tables is itself linked in any way, TEL will n1erge its sub­

tables into a single one before carrying out the linkage.

4. Searching Libraries '

To resolve any dangling identifiers, users may indicate the order

and identification of librarie s to be searched afte r all input n10dule s haye been

linked. Libraries are identified by account, and library identification (lid) is

identical to account. The list of lid's separated by comn1as is appended to t'ne

list of E2Q's in the LINK command, and is separated from that list by a semi­

co Ion. for example:

LINK mlf, mlf, 0 0 ., ~; lid, lid,

In the absence of any other specifications, a special UTS library will be searched

to resolve dangling identifiers, usually those associated with FORTRAN con'l­

pilations. This is done after all libraries specified by the userhaye been

searched. To turn off this final library search, the user follows the C0111111and

verb by the parenthesized letter s "NL".

5. End Action and Error Reporting

Options governing error c;lisplays are given immediately after

the verb, LINK, as a parenthesized code or list of codes:

NC. or C ::n:tean

NM or M mean

do not lor do display dangling identifiers

do not. or do display conflicting identifiers

do not or do display complete loading map

The normal options are D, C, NM. ,After any displays, TEL types "DONE"

and then r,eturns control to the user.

. DRAWING NO. 702489
SHEET 1t> OF //9 ~

C. Loading LM's Into Core

Two forIlls of the COTI1Illand are provided:

LOAD lIll

LOAD

The second loads the result of the last link ing operation, \vhich

is always available for loading even when no output file was specified in the

LINK cOIllmand. The user m.ay specify when copies of the internal syn"lbols

are to be car·ried with the loaded LM. by following the 'command verb

with a parenthesized letter "S". Normally, internal symbol tables are not

" 1/ \\ 1/ . loaded, but global symbols are always loaded unless turned off by the paren-

thesized letters "NG".

LOAD(S) 000

LOAD (NG). 0 •

LO AD (S) N G) •• 0

LOAD(NG) (S) .0.

Do Initiating Execution

globals and internals

neither globals nor internals

internals but no glo bals

To start execution of the loaded LM, the user types

START

To load and start execution of an LM, the user types

STARTlm

To load and start the result of the last Illajor operation (assenlbly, com­

pilation or linkage), the user type s

RUN

To link, load and start execution of a set of modules, the user types

RUN TIllf, m 1£ , •• 0

All options of the LINK and LOAD commands may be exercised in the RUN

command, in exactly the same mannelis. Normal options are the same except

that a R UN under DELTA or FDP (see E. below) always loads internal and

global sYIllbols with the loadrnodule.

R UN(S))(I) file 1, file 2 , (NI) file3

DRAWING NO. 70248(;
SHEET '1/ OF / & b

Requests that three files be linked, loaded and started. Internal syn1bols lor

the first two only are to be kept with the resulting load module; all internal

symbols kept with the load module are to be '1oaded"with it.

E. Initiating Debugging Operations

Execution of programs can be started under control of either of

the two debugging sub-systems, DELTA or FDP"

RUN DELTA (for as sembI y-language de bugging)
UNDER

START FDP (tor FOR TRAN debugging)

Once the programs have been loaded into core, control passes to the

designated debugging package which notifies the user and then awaits his orders.

The de bugging sub-systems may also be called when execution has been

initiated without them; usually after an interruption by the user or an error comluent

by the system.

CALL DELTA

CALL FDP

It must be clearly understood that FDP can do little n10re than display

and re-assign values if applied to programs that have not been cOITlpiled under

the debugging option, and can't even do that if syrn.bol tables have not been loaded.

F. File Management

DRAWING NO. 702489
SHEET 1) OF /gc;

A. few simple operations on disc files can be carried out directly

in TEL. Full file-management C;lnd information .. transfer capabilities are

provided by the PCL sub-system. In TEL, disc files may be copied ON new

files the printer o·r the terminal:, may be copied OVER an:existirig file, ,and

may be deleted

COpy fid OVER fid

COpy fid ON fid or PTR or ME

DELETE fid

Once started, deletions and c~pies on or over a disc file cannot be interrupted

by the user; copies to a printer or to the terminal will be aborted by interruption.

TEL will type

REVOKED BY INTERRUPT

in such cases. When an operation is carried through to:conlpletion, TEL

prints

OONE

before returning control to the user.

Go Editing

Line .. at-a-time composition and editing of files of sequentially

numbered lines is provided by the EDIT sub-system, which can called in

three ways.

CALL EDIT

EDIT fid

ACCEPT fid

(an exis ting file)

(a new file)

In the first two cases, the user is connected to EDIT) which identifies itself

~efore returning control to the user. In the second case, EDIT has already

been apprised of which file is to be edited, and has opened that iile for updating.

In the third case ~ EDIT assum.e s that the user wishe s to type in a new file, a

line at a time, beginning with line number 10 and continuing in steps of 10.

DRAWING NOD 702489
SHEET '7.":1 OF /8 ",' I";;; ~

EDIT responds by"printing each line's nun1.ber at the left margin and then

waiting for the user to type in the line itself. Although EDIT is invisible to

the user during this operation, it is explicitly available to hin1 for corrections

and other editing operations. To end the operation of accepting a new iile, the

user m_ust depress the BREAK key to interrupt EDIT, and then type

END

after EDIT returns control to him.

H. Submitting Batch Jobs

Control-card programs destined for submission to the batch queue

can be composed and filed away on-line in the EDIT sub-systen1 o These ll1ay

then be submitted to the batch queue:

BATCH fid

UTS will respond by assigning the batch job an identification (~) and notifying

the user:

JOB jid SUBMITTED date-time

The procedure for assigning priorities to remotely-submitted batch jobs will be

defined concurrent with the development of the Remote Batch Functional Speci­

fication which is in process. The user can interrogate the status of ren1otely­

entered jobs by typing:

JOB jid?

At the very least, UTS will be able to tell the user whether the job has com­

pleted or whether it is still in queue. The'user can cancel an unfinished or

unstarted job:

I.

CANCEL JOB ~

Calling Sub-Systems I
I

I
All sub-systems are called by typing the verb "CALL" followed by

;. I
the sub-systems identification; e. g. J

CALL peL

DRAWIN'G NO. 7024H~~

SHEET 7Ji OF /8~

All sub-systems will respond by identifying themselves; e. g. J

PCL I-IERE

and then typing their identifying. mark at the left mar gin of a fresh line ··before

returning control to the user ~ All sub-systems are described in separate parts

of, thes.e specifications. The marks are: EDIT (::~), PCL «), FDP (I),

SYMCON (:), LINK (:),BASIC (», none for DELTA.

J. Continuing and Quitting Major Operations

Whenever a major operation, a sub-system or an executing. user t s

program has been stopped or interrupted in any way, the user can:

1. Take any of the minor actions described in the section below.

and then request TEL to continue from the point of interruption by typing

CONTINUE

or from a point identified by a global symbol (or a hexadecinlal symbol) by typing

CONTINUE symbol
.

2. Give up completely on tHe operation by ·'typing

QUIT

In the latter case, TEL cleans things up and then returns control to the user.

3. Initiate a new major operation. In this case, the effect is as

if he had told TEL to QUIT before giving the new command. The sole exception

to this rule of automatic QUITting occurs when the user calls one of the debugging

systems (DELTA, FDP) during ex~cution of his program. In this case the user! s

program will 11 ave to be initiated again under control of the debugging system.

MINOR OPERATIONS

A. Checkpointing Ses sions

DRAWING NO. 702·1~9

SHEET 750F /'~~.:.;

During interruptions of execution, core images of programs may

be saved on the disc files for subsequent recall and continuation. To save

and file away a core image:

SAVE ON fid

SAVE OVER fid (over an existing file)

The current status of the user's files is not copied, and the useT n1ust be

aware of anyon-going but interrupted input-output activities. In brief,

checkpointing will work well so l~ng as the user knows what he is doing.

To recall a checkpointed core image ,for continuation, the user types

GET fid

At this point, the user is .. :-:" to within file change s and input~output activitie s-~

exactly where he was when he SAVEd. TEL will respond to both cornnlands by

typing

OONE

when it has finished •

. 1;3. Assig;ning Files and Input-Output Devices

The as sign command of BPM is provided in a simplified and

restricted form, mainly to allow users to connect files and iIiput-outp\lt

devices to their running programs. Devices and files are equated in users'

programs to so"'!"called data-control blocks (dc b) that ll1ake the programs

"device independent". Assignrnent'of specific devices and files to ~IS
can be made at any stage of the game, even after execution has begun. TEL

will notify the user whenever it encounter's an unassigned dcb during execu­

tion of a pro gram by typing

ASSIGN dc b =?

The user assigns .things. to dcb's by typing

ASSIGN dc b = fid or device code or tape reel

DRAWING NO. 702 .. i 39
SHEET ?~ OF /J.g i~

INDEX OF COMMANDS - TEL

ACCEPT

ASSEMBLE

ASSIGN

BATCH

CALL

CANCEL JOB

COMMENT

COMPILE

CONTINUE

COpy

DELETE

EDIT

GET

LINK

LIST'

LOAD

OFF

OUTPUT

QUIT

RUN

SAVE

START

Calls EDIT and accepts a new file from the terrn.inal

Assembles specified source prograIl1

Assign file or device to a DCB

Enter specified file in batch jobstreaIll

Make the specified sub-system available

Cancel the de signated batch job

Directs error commentary to specified device

COInpiles F,ortran source program

Continue processing fron1. point of interruption

Copy a file to specified device

Delete the specified file,

Calls the EDIT sub-systeIl1

Restore previollsly saved core image

, Form load module as specified

Directs listing output to desired device

Bring designated load module into core

Disconnects user from system

Directs objec t output to specified device

TerIl1inate current operation

Load specified load module and start execution

Save current core image on designated file

Begin execution of program. just loaded

DRAWING NO. 70l~~B9

SHEET 77 OF //5 ,;:'

VUe Text Editing Sub-System (EDIT)

TABLE OF CONTENTS

Page
-~

INTRODUCTION 78

A. Calling EDIT

B. Operational States

C. Summary of Commands

DESCRIPTION 81

A. Conventions and Terminal Operation

B. Defining the Edit File

1. ACCEPT

2. EDIT

C. Text Modific ation

1. Tabs (T)

2. Insert (1)

3. Renumber (R)

4. Delete (D)

5. Print (P)

6. Comment (C)

Do File Maintenance

1. COpy

2. DELETE

E. Termination of EDIT

F. Language Syntax

EDIT FILE STRUCTURE (Compact) 91

INDEX OF EDIT COMMANDS 92

INTRODUCTION

-DRAWING NO. 702~-·39

SHEET ?B OF 18:;>,

~he UTS sub-systern., EDIT. is a 1ine-at-a-tin1.e text editor designed

for on-line creation, modification, and handling of program.s and other bodies

of information. All EDIT data is stored on disc in a special file structure called

Corn.pact. This structure (described in a separate section) permits EDIT

to directly access blocks of data EDIT functions are controlled through

single line comm.ands':supplied by the user. The command language provides for

the insertion, deletion, and replacement of lines of text. Selective printing

and renumbering commands, and a command to sirnplify con1.n1.entary editing

for assembly-language programs are included. File n1.aintenance con1n1.ands

are also provided to assist the user.

A. Calling EDIT

An on ... line user of UTS may call EDIT using one of three conln1.ands

provided in the Terminal Executive Language (TEL).

1. CALL EDIT

2. ~ .. DIT an existit;lg ,file
..

3. ACCEPT a new file

In all cases the EDIT sub-system is bi'ought into play. The first case represents

a direct call to EDIT, which in turn, responds by typing "EDIT HERE" and ther..

by typing its identifying asterisk (*) at the left lTIargin of a fresh line. ..At this

point, the user may enter his next com.nland o The second case allows the user

. to call EDIT for the purpose of updating an existing file. EDIT first opens the

specified file and then responds to the -~ser as in the-first case.

-T.he third case'permits the user to call EDIT for on-line creation of a

text file. EDIT opens the specified file and responds to the user b~r typing the

first line number at the left m.argin of a fresh line. The user is then expected;

to ent~r the first line of th~ ,pew' file. "EDIT" and "ACCEPT" are included as

part of the EDIT com~and language and are described further below.

B. Operational Statef;

DRAWING NO.. 702489
SHEET 77 OF //9t

EDIT, as a processor, operates in one of two states: the command state

or the active state. The command state is defined as the time in which EDIT

is accepting or processing a command. This state is entered when EDIT types

its identifying asterisk (~~), returns control to the user, and awaits the next con1-

mand. On the other hand, the active state is defined as that time in which EDIT

is executing commands, proces sing text, or accepting text from the user. This

state is entered when a command starts execution and terminates at the con1ple­

tion of the command. When carrying out a command, EDIT lnay be processing

information while in control of the keyboard, or may have returned control to

the user so that he may enter text data. Which of the two situations holds is

always clear to the user.as described under Text Modification.

C. Sum~ary of Commands

The notation 0fi~" in/the following definiti.ons represent file identi­

fication inthe£orm: name-account-password.

1. COpy fid ON fid (n,]\:)

2. COpy fid OVER fid (n, k)·

3. DELETE fid

EDIT fid

5. ACCEPT fid (nJ k)

Capie s an exis Hng file to a

new file. The specification

(n, k) allows re sequencing df

line numbers starting at n in

inc reITlents of k.

Same as above with the exception

that an existing file is copied

over.

Deletes an existing file.

Specifies an existing iile to be

updated.

D~fines a new file for creation.

(n, k) indicates desired line

number sequencing.

6.

7.

8.

9.

10.

11.

12.

--

13.

I n, k

I(N) n, k

D n,m

P n,m

P(N} n, m

R n,m

C n

F
T M

S

DRA\VING NO.
SHEET 8'c..? OF

702489

Inserts lines of text starting

at line nunlber n in increnH~nts

. of k. EDIT displays each line

number and awaits text data.

The first line n n~ay be a replace-

mente

Same as above except line

numbers are not displayed.

Delete lines n through m

inclusive.

Print at console, with line

numbers, line n through In

inclusive.

Print at console, without line

numbers, lines n through n~

inclusive.

Re-numbers line n to the ne\,'

number m.

Insert 90nimentary for an

asseITlb~y,language program

starting at line n.. EDIT prints

each lipe number and awaits the

comnlentary text.

Set software tab stops for Fortran

(F); Symbol and Meta-Syn~bol (M),

and a short form of Symbpl-Clnd

Me.ta-Symbol (~). ,_ ,,_

DESCRIPTION

A. Conventions and Term.inal Operation

DRA\VING NO o 70i:~-HF~

SHEET8 (OF /i,i>':'~

For purposes of clarification, certain conventions have been adopted

throughout this docwnent. These, concatenated with associated terminal operations,

are given below:

1. Underlined copy in the exaluple is that generated by the COlllputer.

Copy not underlined represents that typed by the user.

2. The line num.bers displayed by the Insert (I) or Corrlluent (C) COnl!11ancis

are always right justified and blank filled to five characters. Thus, the first input

position (card column 1) is displaced to colun~n 7 on the teletype. For purpose of

the examples, only the significant (rightmost) portion of the display is shown as

computer generated copy.

3. Control characters ~re represented in this docwnent by an alphab~tic
c

character and a superscript c, e. g., E. The user simultaneously depresses the

alphabetic key and the Control key (CTRL) to obtain this function.

4. Carriage Return. The Cr notation following each line in the eXaI11ple

rep.resents a carr.iage return. Depression of this key inforlus the COluputer that

an input line is terminated.· A carriage return (Cr) will autolnatically' cause the

computer to give a line feed. The line feed (Lf) key operates identically to the Cr

for the EDIT processor.

5. Escape (E
c

). This key enables the user to temporarily ~scape to

the executive command level. Escape lTIay be applied at any tiIne when the user

has control of the keyboard. The current status ,of EDIT is retained and 111ay be

re-activated using the executive" CONTINUE" com.m.and.

6. RUBOUT The last input character :rnay be deleted \vith this key.

'A\ is echoed to the user. N RUBOUTS echo N"s and delete the previous N character

7. Cancel (Xc) ApplicatiQn of this k.ey cancels the current input line.

A - is echoed to the us er followed by a Cr and Lf.

DRAWING NO. 702489
SHEET B'- OF /~6

8. BREAK This key, indicated by Bk, causes an automatic interrupt

in current EDIT activities. When applied during the co:rrunand state, the current

command is ignored as if XC had occurred. Application during the active state

cause's EDIT to terminate what it is doing, pass control to the us er, and revert

to the cOm.nland state. A Cr response is given if used during input. Effects of

the interruption or the termination vary with the cOlTImand being executed and

are discussed in detail with the particular conunands.
i

If no n~ention is lUac.e, Bk

is as sumed to have no effect on the execution of that corrunand.

B. Defining the Edit File

Prior to utilizing text editing co:rrunands, the user must first identify

a file to be used. The "EDIT" and "ACCEPT" conll~n.anrl~ p~rfo,rl:!l this function

and are available at both the executive and EDIT comlna~~ ~~.yels .W:hen a:pplied. '
~ ...

at the executive level, EDIT is automatically c~l1ed and apprised of'the COn1ll1and.

parameters. At this point, the source of the cOlnmand is irrevelevant to its

op~'#:a,tion, and the following descriptions a£e given in this context. An existing,

edit file is forced closed by either of these commands.

1. ACCEPT To create a ne,w text"file through EDIT, the use r types a
, j

corrunand of the form:

ACCEPT fid (n, k)

\Vhere fid represents name-account-password of a new· file, n is any

line nwnber, and k is a line number in9rement. ,After receiving this con1ll~and,
~ ,

EDIT checks the file specification against the user's file directory. If a n~atch

is found an appropriate diagnostic is given to the user and he 111USt re-enter the

command, Otherwise, the fi le"is opened and EDIT executes the unplied insert'
(I n, k). '. ·Thio is indicat~~ ,when"EDIT responds by typing the first line nl.unbe r (n)

at the left margin of the next line and awaits the first line of text. For exa:mp1e:

~:~ ACCEPT SOURCE (10, 20) Cr

10

DRAWING NO. 702489
SHEET B.3 OF /.!'-,-1(..':,

The file named "SOURCE" is opened under the user's account with no password.

An insert (I 10, 20) is then simulated giving the line number response (10). . The

user may now enter his first line of text. The Insert (1) command describes

the subsequent steps for file creation in detail.

2. EDIT Updating of an existing file requires a file definition of the type:

EDIT fid

where fid' represents name-account-password of an existing .file. The file

specification here is also checked against the user's directory. An appropriate

diq.gnostic is given if a match is not found and the user nlust re-enter tht." conllUan,~~

If a match is found, the file is opened for updating, and the user lllay type his next

cornmand following the identifying~:< of the conllnalld state.

For example:

~::EDIT SOURCE_-.. PLEASE Cr

After re~eiving this command, EDIT located the file "SOURCE" under the user: s

account. The password "P~EA.sE" was cOlnpared \vith pass\\rord of the file and

"SOURCE" was cfpe:ned for updating. EDIT then re-entered the command state

'sllggested by the ~:~ response',

C, Text Modification

Once the user has defined the edit file, he nlay desire to 11lake

insertions, deletions, or replacements to update his file. Several conmlands

are~;vai1able in EOIT to assist him in these oper~tions,

1 . Tabs (T) In addition to the standard algoritlun for setting software tabs

in UTS, this command permits the user to set software simulated tab stops for

that input or output in Fortran, Metasym.bol, or Synlbol format. The comm.and

is of the form:

DRAWING NO o 702489
SHEET8 fl OF Ilj"l~;~

.. where F implies Fortran (column 7), M implies :tvleta-Syn1bol or Syn1.bol (colulllns

10, 19, 37) and S hnplies a short form of Meta",Sylnbo1 (columns 8, 16, 30). After

receiving this command, EDIT transrnits the required settings to COC routines

which perform theactllal tab simulationo The user can turn on and off tab simu­

lation with special terminal key strokes as described in the Terminal Executive
I

Language specification (TEL). The settings transmitted are displaced by six

characters to allow for lin~ number display giving F(13), M(l6, 25, 43) and S(14, 22, 36).

Consider the example:

~~ T M Cr

EDIT transm.its the settings for columns 16,25,43 corresponding to actual input

columns 10, 19, 37 for Metasym.bol.

2. Insert (I) The insert com.rnand may he used to insert or create one

or more lines of text; or to replace a line followed by one or nl.ore insertions.

The general format is of the form:

where n is any line number and k is a line nurnbe r incren1.ent. Upon receiving

this con1.mq.nd, EDIT enters a special "accept text" mode in \vhich one or n1.ore

lines of text., may be ins.erted or created starting at line 11 :and proceeding ili.
/

sequential steps of k. EDIT prom.pts the user to type each 1i.ne by displaying the
/;

associated number at the left margin. The user the:a enters desired text follo\ving
-'"

the line number l display, terminating the line with a Cr. If the first line (n) exists,
.I

it will be replaced, however~ successive line numbers, created by increments of

k, must not ove~rrun the nllmb~r of the next existing line. Termination of the

"accept text" m:ode is acco~';1i~h~d by replacing the last Cr with Bk. Note also

that if tabs are to be used with input text, the settings m.ust take into accolmt the

6 character diSflacement required for line munber display.,

Consider the exaInple:

~:~I30, 2Cr

DRAWING NO. 702489
SHEET 8 ~ OF I f:~ \:~:~

30 ONLY THE FIRST LINE CAN BE A REPLACEMENT Cr

32 Cr

34 LINE NO. 32 WAS SKIPPED C r

36 END INSER T WITH THE BREAK Bk

,',
','

The line (if any) with the lar ge st number.:: 30 p say X, is located in the

cur.ren~. edit file. Lines 30, 34, and 36 are then inserted follo\ving X if X<30 or

replaci~g X if :X;.;:~·30~' The line number 32 was purposely skipped to allow for~ a

future ins.er tion.· I(the next line in the file had bee n < 36 an overrun error \vould . -,,, ",). - .

have,occurredo I'~rote.'tbat the insert command was terminated by the Bk key encl-
. ~ . '",

ing 36:,!~':; :Sing,le ·line i:n~e:tti~ri~, oT"r'ep1aceri)ents can be aC'cotnplish:d 'by on~itting ,
,. ~ '. ~, :. . ~. , .'. ~ . .. ;

the increment k as in the example

~:~ I 50 Cr

50 SINGLE LINE INSER T OR REPLACEMENT Cr

* ~

Line 50 in the edit file is located. If it exists, it is replaced, if not, the

line is inserted in proper sequence. Sometimes it is desirable to suppress line

number feedback in order to obtain extra length lines J or just as a convenience

when entering relatively error free text. The parenthetical expression (N)
.J .

following 'the ~c?mmand letter I suppresses 'the line number displaying. For

::C I (N) 1 0 , laC r

LINE, N.UM.BER DISPLAY MAY BE SUPPRESSED Cr "' ... ' . .
USING THE(N) OPTION Bk

The user is prompted for each line of text by output of a bell character. ' EDIT

operates using the implied line numbers and thus, merges lines 10 and 20 into."

the edit file.

DRAWING NO. 702489
SHEET 8<f, OF/l?~

3. Renumber (R) Use o~ this command permits the user to renumber a

line that w.ould normally be overrun during an insert (I) operation. The command

is of the form:

R n,m,

where n is any existing line num.ber and m is the desired line number. EDIT

locates line n within the edit file and repl~ces the line num.ber with m. The cot-nm.anci

must not take the line out of proper m.onotonic sequence. If n does not exist, the

user is notified by an appropriate diagnostic. Consider the exan~ple:

~:~ R 30, 39 Cr

The existing line 30 is located and renumbered to 39. This allows nine additional

number s for inse rtions. If the next exis tin~ line after line 30 had bee n < 39, t!le

command would have been ignored and an erro'r diagnostic given.
: ill '

4. Delete (D) The user may delete one or more lines of text through

the following command:

D n,m.

where nand m are any line numbers with n < m. Aillines X with n < X < In will

be deleted in sequence from the edit fiie. For example:'

~:~ D 30, 36 Cr

This command causes lines 30-36 to be deleted from the file. If no lines had

existed within this range, the command would hC!-ve been ignored. Single line

deletions may be specified by omitting the second line number, for eXarrlple:

Line 10 located and deleted from the edit file. Ifline 10 had not existed, the

command would have been ignored.

DRA \VIN'G NO. 702-189
S!-TEET 81 OF IL~,i ,,,'--

5. Print (P) This command enables printing of one or more lines

of consecutive text at the user I s console. The cornllland is defined as follow 5:

P n, m

where nand m are any line numbers with n< m. After receiving this command,

EDIT prints all lines with number X, wheren~ X <m, in sequence at the user l s

console. Associated line numbers are printed at the left margin of each 1int?

Execution of P may be terminated following the output of the current line by

depressing the Bk key. Assuming the insert (I) example described above still

exists, consider the following:

* P 30,36 Cr

30 ONLY THE FIRST LINE MAY BE A REPLACEMENT

34 LINE NO. 32 WAS SKIPPED

36 END INSERT WITH THE BREAK

Lines 30, 34, and 36 were located within the specified range and ,vere print~d \\'ith

corresponding line numbers. Line nUinbers :may be suppressed from the out.put

as in the following Etxa:mple:

)~ P (N) 30, 36 Cr

ONLY THE FIRST LINE MAY BE A REPLACEMENT

LINE NO. 32 WAS SKIPPED

END INSER T WITH THE BREAK

In additipn, single line printouts may be obtained as follows:

~:c P 34 Cr

34 LINE NO. 32 ,WAS SKIPPED

t.c P (N) 34 Cr

LINE NO. 32W AS SKIPPED
~,~

DRAWING NO. 702489
SI-IEET8G OF /(},;

6. Comment (C) This cOll1ll1and allow s the user to inse rt or de lete

the COll1ment field of prograll1 code formatted for SYll1bol or Meta-SYJl1bol. The

cOll1ll1and takes the form:

C n

where n is any line number. As in the insert cOll1ll1and (I). EDIT enters a special

"accept text" ll10de. Line number s of existing lines, starting at the first line XJ

where X = n, are displayed in sequence for possible comment modification. F:ol­

lowing each line nUll1ber display, the user is expected to supply a comment, indicate

no change J or delete the COll1ll1ent fie ld. A comll1ent is entered in the same manner

as any other line of text. A blank line (one or more blanks) causes the comnlent

to be deleted, and a null line (Cr-only response) indicate s no change in the

comment field. Termination is ill1plied by depressing the Bk key instead of th~

C r on input. Assull1ing the edit file consists of a Meta-SYll1bol or Syll1bol prog:-anl,

consider the example:

~~C IOCr

10 TEST FOR ZERO Cr

20 b Cr

30 Bk

The comment at the existing line 10 was replaced by "TEST FOR ZERO". Blanks

were entered into the cornrnent field-of line 20 and the third line 30 resulted with

no change. Bk was depressed following the display of the rlu11.1ber 30 \"hich !1a~ged

EDIT to return to the cornmand state a!ter completion .of the current operation.

D. File Maintenance

Two commands are available within EDIT to assist the user in file main­

tenance. They permit copying, deleting or renumbering· of complete edit files

(Compact type) retained on disc.

1. COpy To copy an existing file for the purpose of backup or re­

numbering, the user enters the following command:

COPYfid ON fid (nJ k)

DRAWING NO. 7024(~·?

SHEET gl OF /g/;~~

where the first fid represents naIne-account-password of an existing iile;

the second fid repre sents naIne -account-passwor d of a new file; and (n, k) tells,

EDIT to resequence the line numbers starting at n in sequential steps of k.

Depression of the Bk key during execution of this command causes the copy

operation to be cancelled. A common example could be:

~.c COpy A ON B (10,10) Cr

~~

File A was located in the current user l s direc tory and opened for input. File B

was opened as a new output file. EDIT then copied the cOInplete file A to B, re­

numbering each line starting at lOin sequential steps of 10. Upon completion

of the copy, both files were closed and EDIT reverted back to the cOInInanci state.

The com.mand also permits copying over an existing file. This is deInonstrated

by the exam pIe:

~~ COpy C-0986 OVER A Cr

In this case file C under the account 0986 is written over the existing file A, und~:r

the account number of the current job, with no resequencing of line numbers. A

Bk character cancels the operation with no effect on the existing iile A.

2. DELETE files may be deleted using this comInand which is of the forr.:::

DELETE fid

where fid represents name .. account-pa~sword of an existing file. Following the

entry of this command, a con firmation Ine s sage of the form "DELETE fid? " is

typed. The user Inust then type YES to confirIn the deletion or'anything else to

cancel it. If YES'is'entered, the file is deleted and the disc space released. Bk

cancels the command if applied prior to the confirmation. For example:

~r DELETE SOURCE ... -PLEASE Cr

DELETE SOURCE--P,LEASE? YES Cr

*
Upon receiving the command, EDIT located the file in the user's directory and re­

sponded with the confirmation message. After the YES reply, the file SOURCE

was deleted.

E. Termination of EDIT

DRAWING NO. 70248"­
SHEET 90 OF /.€~

In order to cornplete final file updates on disc, it is necessary for the

user to indicate when he has finished with EDIT functions. The COIT1Uland END

fulfills this requirement and also returns control to the UTS executive le,-el.

Prior to exiting the sub-system a termination message is given to the user.

For example:

~~ END Cr

EDIT PROCESSING TERMINATED

This comITland closed any open files and forced EDIT to return to the executh-e

corrunand level. The Executive responded with it's identifying mark (!) indicating

the cOInITland state.

F. Language Syntax

The EDIT comITland language is designed to be free fOrITl, \vith a fe\'\"

restrictions irrlposed for sirnpliclty in iITlplementation and use. These i.nclude:

1. All cornrnands must comply with the general fonnat of the partictllar

command.

2. Blanks are allowed preceding or follo\ving an argun1ent field. Irn­

bedded blanks are not permitted.

3. At least one blank ITlust follow each c'ontrol conn:nand verb (COPY,

ON, ACCEPT, EDIT, ...) and also proceed an iInbedded COl11..J.···uana

verb (qN). Single cha~a.cter cornrnands (I, C, P, ...) do not require

this blank delimiter.

4. Continuation between commands is not allowed.

5. Line numbers rnust be within the range 1 <n < 99999

DRAWING NO. i024 :-':j

SHEET 91 OF /6~;

Each input conunand is edited fo~ format, content and completeness. The

user is notified by appropriate on-line 'feedback of diagnostic messages. At this

point the user may re-enter the command o-r confirm the diagnostic condition if

given that choice by EDIT 0

EDIT FILE STRUCTURE (Compact)

Files used by EDIT are stored on disc, in a special structure especially

designed for compact storage, fast random access, and easy editing of text.

The file structure (pompact) has the following features:

1. The file consists of keyed physical records, 512 words long ..

2. Vvithin the 512 word block, sub-records (1-64 words long) are

preceded by one word of identification. Byte zero of this word

carries the byte count for the sub-record and bytes 1-3 are used

for a sub-record identifying number (line num.ber).

3. The identification word is kept on a word boundary to assure that

sub-records also begin on a word boundary.

4. The blocking buffer is terminated by a zero identification word.

5. Trailing blanks are removed from sub-record text.

6. The key for each 512 word block is the line nUIllber of the first

sub-record within that block.

This type of file structure enables EDIT to directly access large bloc;ks

(512 words}of text data, and thus substantially reduces 1/0 tiIlle for nlost updates.

In addition, line number identifier s attached to each sub-record pernlit inserts

without resequencing.

DRAWING NO. 702·489
SHEET ~ OF /(~C:)

INDEX OF EDIT COMMANDS

ACCEPT

C

COpy

D

DELETE

EDIT

END

I

P

R

T

Accept a new file

Comment Symbol or Meta-Sy-rnbol Source text

Copy a file ON OVER a file

Delete lines of text

De Ie te a file

Edit an exis ting file

End EDIT processing

Insert or replace line s of text

Print line s of text

Re-numbera line of text.

Set simulated tabs for ~ortran, Symbol or J.Aeta-Syr/1.bol

\ .

DRAWING NO. 702489
SHEET 93 OF 18 r;

VIII Assembly Language Debugger (DELTA)

TABLE OF CONTENTS

:CNTRODUCTION

A. Calling DELTA

B. Symbol Tables

C. Command Summary

DESCRIPTION

A. Syntax, Symbols, and Such

1 . Comrnand Delimiters

2. Fixing Typing Errors

3. Symbols

4. Special Symbols

5. Input of Explicit Constants

6. Expressions

7. Expression Evaluating Algorithm

B. Memory Location Display: The / command

C. Expression Evaluation: The = command

D. Memory Modification: The Cr, If, t, and tab comnlands

E. Output Format Control

F. Execution Control: The ;X ;G and ;P commands

G. Breakpoints: The; Band ;D commands

1. In'struction breakpoints

2. Data breakpoints

3. BREA K key b~eakpoints

Memory Searching: The ;W and ;N cornmands . : ~:; .

Symbol Table Control: The ;U ;K ;S ~ < > ~on1n:a~.ds .

Miscellaneous Commands: The ;G;P;X comm~.n9":s:~,'~ .. "",
.' ... ~

Page
-..:::.-

102

H.

I.

J.

K.

L'

Additional Commands for the Executive ,y~.rsion: The ;Q .. a'Qd :}~c,on1n1~nds
• • ~ ;..01 .;. • •

INDEX TO DELTA COMMANDS 126

INTRODUC TION

DRAWING NO. 702489
SHEET 9'1 OF I;; ~

DELTA is specifically designed for the debugging of programs at the

assembly-language and machine-language level. It operates on object pro­

grams and the tables of internal and global symbols accompanying thenl, but

does not demand that the tables be at hand. With or without symbol tables,

it recognizes machine instruction mnemonics and can assemble, on an instruction­

by-instruction basis, machine language programs. Its main business, however, is

to facilitate the activities of debugging. These are:

1. The examination, insertion and modification of elem.ents of

programs: instructions, numeric values, encoded information -- data in

all its repres entations and formats.

2. Control of execution, including a) the insertion of breakpoints

into a program, and b) requests for breaks on changes in el~~en,t~ ,of.data.,
. ",_ .. ':t. ,':.

3. Tracing execution by displayi'~'g' informati~~'~t: design~t'e(i,
.. , f. •

points in a program.

4. Searching programs and da,ta for specific elements and sub-
I '

elem.ents.
! •

I
To assist in the .first activity, assemblers and compilers of UTS will include in a

program's table of symbols information about what type of data each symbol repre-'

sents: sytnbolic instructions, decimal integers, floating point values, single and

double precision values, EBCDIC encoded information,an~ others.

The command language of DELTA is cryptic and highly encoded, but easily
\

learned and used by t}.:t,e p.rofes'sional programmer. It is substantially identical

to the DDT language familY'.:~y'hic.h 'has be'en in use on a variety of ffi'achines for

th,e,'la stdecade.

DRAWING NO. 702489 I

SHEET t!S OF /l; t

. -Two versions of DELTA will be produced:

1. a user version with codes and restrictions appropriate

to multiple on-line users operating in the slave mode from teletype consoles,

and

2. an executive version for system debugging which will opera te in

executive mode under control of one of the operator's consoles. This will nut be

resident when UTS is in service.
A. Calling DELTA

DELTA may be associated with the execution of a user's prog.ran"l

either at the time the user loads his program into core for execution or by
I

direct call after execution has begun. The two executive level commands are:

1. To load the user's program in associati~~ with DELTA:

RUN progr~m nar.p.e UNDER DELTA or

St:t~,~,f:~~~~"~~:Jn~,~,' !y~~E~i\.~~~~;'~~ (lJ;'d'h'~) /
Control goes to DELTA: and tlie user may examine and modify befor~ passing

control to the program.

2. To bring in DELTA after a program has be~n initiated,

the user must return to the executive level by the teletype console cotnn1and 'E
c

(control shift and E key depressed together), and give the executive comn1and

C,A.LL DELT.A .. ' " . .~ '.:'

DELTA also may be brought in and started without ~r~~r ,J?~,·91~,~~pn.l;Q-~cLi,!l'g,: fo'r ,\),,~~,
1'1\'\\ ":1,,, \,'..:.' ,'''''''''.~ I.Hl~':!.~'·':' 1;(.,.. ~"

writing and checking of short simple p.~?~~.~IB:~A~ .. t:l;cr 9t~.e~J;'::,p'~r.P:9.~·es. . ",;') , "'" '.,
••••• ~ ... "0' • -""

To make it possible to call DELTA in this way, a segment of virtual address
! ~, (\ ~\, (\,.

space must and has been reserved for DELTA . .in ~~_.yirtua~ addressesli ' .~
I

silnilar reservation applies to the executive language processor. \:~) A'i}
" Ii .tv/l.·{ .'

I ,;,-,~ J, I 1 "1\ I . ~
B. Symbol Tables , I (\ \.~,~:.<_~,

I " ,. \ « I ,J

A program consists of one or more individually compiled orl; ;
< .' • ' I:JIII

I

If,'.'

assembled units (ROM's) which have b,e_e"n~c.qIl}.,b!!le.d~9.Y lhe ·.L~'.p..l1Q.c:ess.' i'nt,o,.
I •

a· load-m!?~~~e (L.M)., During linking, a global symbol table consisting of all
~ .. -. H .. ··: .. ~

symbo!~ .w.hi~;h have been so declared by a DEF directive is created for the

loadmod";i.~ .~p,d,.a_n··inte·1·na1·:s:ym:b.ol·.tahle is 9~e~t~d 'J~~: ,~~c,h. ~.~,tj~P:f?,:UY: :, ,,';' <: ..

ROM's but some LM' s). The loader -language allows t~~·'~<~~~i.·~··f~··~::~;:~~~tti:i~~:'~'iG~h'::'·.··
.. :.:". ; .. ' '" .. - ':'<:":'.;~<;:~~:.::~'~'" . ~ ~:'.".' .. ~ ..

'I"

/.,

, /

, j

DRAWING NO. 702'"1,S9

SHEET T~ OF I ~~t.~f

internal symbol tables should be retain~d. Internal symbol tables are named

by the file name of the source ROM; that is, LINK writes a symbol table for

each ROM input under a key identical to the input ROM name. A simple Link

Command is shown below:
())(;dl ;)

LINK A, B, C'I\(NS} D ON E

In this ca~e, the load module E is crea~ed for execution, and symbol tables are

retained for units A, B, and C, but not for D. For further examples of linking

operations and a complete list of options, see the loader specification.

C. Command Summary

The following sum.mary lists the DELTA commands and facilities

in eleven broad groupings:

1. Evaluating expressions consisting of symbols, constants,

special symbols, and the operators plus and minus (+-).

2. Commands for printing the contents-:.of memory cells and

opening them in preparation for change.

3. Format codes which enable the user to control the output

" format used in the evaluation and display commands of Group 1) and2}.

'"4. :C.ommands fo~ st9ring new contents in open InemoTY cells.
.. :::. "

5. Format "codes which control the conversion of constants
.. ,;.

typed by the use'r· ...

6. Special sy.trib~t{:\is."¢:d;.·:t·~.:.:~xamine·ma~hine flags. ~,n9 to con-
o '. .. • ~.. ' • - • • •

.
trol operating bound"s in DELTA.

7. Commands to insert in, delete from, change cOInpletely,

and otherwise control the symbol table used by DELTA.

8. Commands to initiate and continue execution."
.'

9. Commands to insert, 'delete, and control brt?akpoints.

10. Commands,for searching memory.
r '

.1). .. ~. ~e~~:s etting commands. "

DRAWING NO. 702489
SHEET 91 OF / Gh:~:

In outlining the commands, the following conventions are used in depicting the

format ,of the order typed by the user:

• Special characters, numbers and upper case letters stand for

themselves. Thus in the conlmand e;G the user actually types the semicolon

and the G.

• Lower case letters are placed where the user has a choice of

things to type. The letter e alone or postcripted is used to stand for any ex­

pression consisting of symbols) special symbols, constants, and the operators

plus and minus (+-). At times other lower case letters are used to stand for

expressions when some additional mnemonic content seems desirable. Examples

are n, lac, val, m .

• The letter f stands for one of the format characters. Abbrevia... .

tions for user key strokes are:

Letters used in text User Kelstroke

cr carriage return

If line feed

- shift and 0
t

shift and N

" shift and L

tab contro 1 and I

bk BREAK

Most of the DELTA commands are terminated (and thus delivered from UTS Ii 0 .

to DELTA) by the carriage return (cr) character; however, certain other char­

acters also delimit commands to allow dialog within a single typed line. The

command terminating c'haracters of DELTA are cr, If, t, tab, /, and =.

When~ever I?E;LJ4, g!~~p 'control of the te~minal to. the'user for input, it sends
i "';:..

DELTA Commands

1. Expression Evaluation

DRAWING NO. 70248'~

SHEET 98 OF ~/ i3 {,.~

e= Evaluates and types the value of the expression e in the

most appropriate format.

e(f= Evaluates and types the value of e in format f (see 4 below).

2. Displaying and opening memory cells

el Displays the contents of a cell e in the most appropriate

format. The cell is open; that is, it may be changed.

e(fl Displays the contents of cell e in format f.

e1, e21 Displays the contents of cells el through e2 in the most

or appropriate format or in the specified format. Cell e2

e 1, e2 (f/ is opened.

e\ Opens but does not display cell e.

I Slash alone following a display displays the cell addressed

by the display. (Displays the cell addressed by the last

quantity typed (;Q))

3. Storing in open memory cells

e cr Stores the y?ord specified by e in the curr.ently open cell

and clos es the cell.

e If Stores e in the currently open cell, closes it, and opens and

displays the next higher addressed cell.

e t Stores e in the currently open cell, closes it,; aI}.d; opens and
. "\. ; ..

displays the'next lower addressed cell.'

e tab Oisplays and opens the cell addressed by the last quantity

typed (;0) .. If an expression precedes the tab it is stored

in the open cell.

Format codes for I and = commands

sYfIlbol table fo'rma t type . '. . ..
Jlexa d~c imal-words

sign~dde~i.mal: integ'er
." ... "; .. ' . :,::". :.' ".-

EBCDIC characters
\

DRA"\V1NG NO. 702·.~S9

SHEET itl OF /li.;;

R symbolic instructions with symbolic addresses

A symbolic instructions with hexadecimal addresses

H half-word addresses

T binary (base two)

D double word decimal integer

S ! short floating point number

L !long floating point number

f;/ sets the default format for / commands to f

F; = sets the default format for = commands to f

5. Input conversions and expressions

Exp~essions for evaluation, display, and storage are forn1.ed

from the program symbols, explicit constants, and special symbols using the

operators plus and minus (+-).

The conversions that may be specified for explicit constants are: 1) hexadecinlal

when introcuded by a II ("BAD), 2) EBCDIC characters when surrounded by I

('BAD'), and 3) decimal when the constant consists of all nun~erics (1234).

6. Special Symbols

Special symbols are recognized by DELTA and may be used in ex­

pressions. Used as cO,mmands, they set the value of the corresponding symbol

table entry.

$ or . last opened cell

;1 instruction counter

;C condi tion code

;F floating ,.controls

;M search mask

;1 lower search bound

;2 upper search bound

;0 last quantity typed

7. Symbol Table Control

s;S Select internal symbol table s.

Display undefined symbols.
I

;u

e(f<s> The symbol s is assigned location.

DRAWING NO. 702489

SHEET /lJ" OF /8"

s(f! The symbol s is assigned the value of the currently open

cell ($) and format code f.

s;K Symbol s is removed from the sytnbol table.

;~ Rem.oves all symbols except instruction rn.nen1.onics.

8. Execution Control

e;G Begins execution at e.

e;X Executes the instruction e (executive version only).

;P Proceed with execution.

9. Breakpoints

e, n;B Set the nth instruction breakpoint at location e.

e,n,loc;B
Same as above but display contents of loc when the break occurs.

e,n,loc;BT
Same as above but proceed from the break after printing (trace

mode). ,

n;B h ' th. t . b k . Remove ten lns ruchon rea pOlnt.

O;B Remove all instruction breakpoints.

e, n, val, m;Dr or e, n, val, m;DT<
Causes a data break to' occur whenever the contents of cell e

(masked by tn) are in "{'7lation r to val.

The relations are:

A for all changes in e

L e<val

E e ::val

G e>val

GE e~val

NE e~val

~'E' esval

n;D

0;0

;P

n;P

h th b: Remove ten data reakpoint.

Remove all data breakpoints.

Proceed from the break.

DRAWING NO. 702469
SHEET / CIOF /gb

Proceed and do not break until the breakpoint has been

pass ed n times (instruction breakpoints only).

; T Proceed automatically from the break after printing"

(Set 'trace mode! ').

bk Break at the current execution point (analogous to the

machine! s stop switch).

Output produced when a breakpoint is reached is n;B>loc where n is the break­

point number and ~oc its location (or the location of the instruction rnodif~ring the

data). If a display is specified (data breaks always display), the output produced

is:

n;B>loc

n;D>loc

addr/ contents

addr / contents

10. Memory Searching

Memory between the bounds specified in ;1 and ;2 (initially set to the

lower and upper limits of user memory) are searched under the mask in ;M

(initiall y all one s).

e;W Search for and display words which match e under the mask ;1\11.

e;N Search for and display: words that do not match e.

e;I Set the memory search lower- bound to e.

e;2 Set .the memory search upper bound to e.

el, e;2L

Set ;1 to el and ;2 to e2.

e;M Set the search mask to e.

11 . Mode Setting and Other

;R Display locations of·displayed cells as symbol"plus relative nwnber.

;A Display locations as hexadecimal nwnbers.·

.el I ·e2;Z Zeros memory from. el through.e2.
!I

."

;.Z Zeros all user memory.

DESCRIPTION

DRAWI~G NO. 702489
SHEET/t1,;t- OF '/&L.':

A. ~tax, Symbols, and Such

The language of DELTA follows the DDT formula of simplified

expressions and single letter commands, which holds the number of keystrokes

required of the user to a minimum. Because every keystroke counts, only a few~

error conditions are detected.
i

The most cornmon corom.ands have been assigned.

to lower case keys in order to simplify typing. The space character follows this

line of thought in that it is assigned to mean plus in expressions and so elin1.inates

a shift when plus is desired.

1. Conunand Deli-miters

In order to interface efficiently with the time-sharing system,

DELTA has been made Jl.message" oriented. That is, only certain characters

are recognized as comm.and delim.iters or end-of-message characters and cause

UTS to deliver the com'mand to DELTA for interpretation. The characters which

are command delimiters are:

/

=
cr

If

t

tab

The open and display command

The expression evaluation command

The store command and delimiter of other commands

The store and' Q.pe.nne~t·c.ommand·
, .' • I ~,: ' .- •• '.' • .: • r; ...

The sto're' and open previous command

The sto re and open indirect command',

With the exception of / and =, the commands above cause a carrier return and line
~

feed. The slash and equal commands interact within a single typed line.

2. Fixing Typing Errors

:ee~ore giving one of tb .. e command delimiters, the user Inay

repair typing e'~~'o'r~' by rubout (the rubout key prints a \ at the console and era$es

",the pre~edi~g,charact.e;r;();t-J~r.;.ll;pout.s·p.r-i:nt N \ 's and erases the preceding N char­

acter,s) or' he may delete the entire ,current command by us.iJ;lg:.thfrcance~ k,ey. (cqntrol
;.. t .. ~ ...• :: . ~ ~ * "

'shift and X k~y8':p'ressed together). Note that the cur.re_n~.<:pnU;naIl'q,may he '~ full line

'01" a'partialline -- partial if a = or / command is already~o~pl~et'e on th'e line qf

the :~ancel character. In the executive version the BREAK. key cancels ,the command •.

3. §ym.bols

DRA WING NO. 702489
SHEET /03 OF /gc:;

The sym.bols used by DELTA for reference to men~ory

locations, computing values, and formatted displays are those supplied from the

as sembly or compilation of the program. plus any added from. the terminal by the

user. They are carried in DELTA1s symbol table as seven charac.ters plus count.

Sym.bols longer than seven characters a~e truncated to include only the first seven,

although the count of characters is retained. Thus, symbols which were originally

longer than seven characters and have both the same length and the same initial

s even characters are indistinguishable from each other and only the last received

definition is retained.

The symbols used by DELTA follow the san1e rules as thpse for

Sym.bol and Meta-Sym.bol -- they are made up of the alphabetic characters A-Z,

the numerics 0-9, and the specials $, @~ #, :'''':''', -; at least one nHlst be non­

numeric; and the number of characters must. be less that 64 .. DELTA however only

retains the first seven characters and the total count.

SY1D-bols have an associated type code which allows DELTA to lfse

a conversion for display that matches the symbols original use. The types are at
least the following and perhaps others as the need arises. "Symbols have either a)

constant~value or b) are as~ociated with a memory loca,tion. If the latter is the case,

then the ~ype code describes the contents of the location.

a) Instruction

b) Integer

c) EBCDIC Text

d) Short floating point number

e) Long floating point number

·f)-Becima~l-nurrrbe~

- .. ,.g'):";Pa:cked~;~Decirrial"::hum. 'b·'e"r·'····,
'I" : •• b ".t.'

, . :: .. ft:~~.~7:~!'cP?':~}< ...•..
The default Il10de of the 'display corn.:rnand will be to examine the symbol table for a

syz:Pbo~ .a.t,..o;r: with n.e~··.:~ril·a:llerl().~ation value that that requested and us e the cqn-
. .'" .. " '.. . '. '.

yer·siop:typ~ .. gi,,~:ep:;·" ... This.Jjl~~n.~. ~h.at·amemory dmnp of a machine language pro-

"g~'a~'~6~id'res'emble" cl~sely the origin'al source symbolic. .
'.

4. Special Symbols

DRAWING NO. 702489
SHEET It>r OF /6.'(

The initial contents of the symbol table include the mnemonic

names of Sigma 7 machine instructions and a list of special symbols as $ociated

with program debugging. The special symbols may be used in expressions for

values. The special symbols and values associated are given below.

Symbol

$ or

;c
;F

. ;M

; 1

;2

;0

Value

Mem.ory location of the last opened cell.

Instruction counter contents at program interrupt.

Condition code contents at program interrupt.

Floating control contents at program interrupt.

The mask used in memory searches .

The ldwer bound used in memory searches.

The upper bound used on mem.ory searches.

The last quantity type by DELTA. .Or the value

stored by the user with the conll11ands crt 1f,

and tab.

Except for $, ., and ;0 the value of the!?e synlbol table entries

can be set using a special command form in which a defining expression is given

followed by the semi-symbol to be set and a carriage return:

"46B;1 cr

"FFF;M cr

100;1 cr

Set;1 to hex 46 B

Set ;M to hex FFF

Set; 1 to decimal 100

The value of all special sy.rnbols may be displ.~yed using the:: command.

;C :: 4

;1 = "3BD

;F :: 2

The symbols $ and. always carry the location of the last opened

cell as their common·.:v.alli.~):~.::.:~q~·shorth~Acl is convenient in the same way as in

symbolic assembly code.

AI LW,4 K45 $(X::"l05 $1 LW,4 K45

DRAWING NO. 702489
SHEET las- OF 18 &.

The ;0 shorthand for the last thing typed is similarly con­

veniently in special situations:

B/ AIlS 7

• fAI, 5 9

;0+2cr

5. Input of explicit const2.nts'

When the user wishes to type in numbers he must specify the

conversion that he wishes n1.ade on his input. Three conversion types are pro­

vided by DELTA: hexadecimal obtained by introducing the constant '\\-"ith a double

quote mark (")~ EBCDIC obt ained by enclosing the character,s in single quotes

('), and decimal the conversion used on strings of numerals. WithinEBCDIC

'text strings the characters /, t J cr, If, tab I are not allowed.

Some examples of input constants in various formats a:re:

"ACE 100 11100 14 "A

IEBCD' 'A'

Note that the single quote (') is required to termina te the

EBC DICtext string, and that it must consist of fo~r or few.er characters. If

. fewer than four they are right- justified.

"ACE -·34

"100 +100

"3FF + Iwxyzl

6. Expres sions

Expressions are typed by the user for location value l para­

meter value, and to be assetnbled into an instruction. Expressions are con1.­

posed of a) sytn'Qols, .b) explicit constants, and c) the operators plus, minus

and space. Multiplication, division and, other operations are not allowed and

in fact the characters usually used to indicate them are used for other things

the ~sterisk to indicate indirectadqressing in instructions and the slash as the

command for display.

DRA WING NO. 702489

SHEET /v6, OF /~;'"

The user will have little frouble constr~cting legitin1ate and

correct expressions for the values he wishes as can be seen from the examples

below:

A

A+3

A+3-B

AI, 1 2

STW, 7 ~:CLOC

LW,7 TAB,5

CALI,3 LIST

The space character, in addition to its use to introduce the

addre ss field in expre ssions to be as sembled into instructions, is a 1s 0 us ed to

mean plus (+). This convention is convenient for a lazy typist as space does not'

require the case shift that plus does. Thus some equivalent expressions and

commands are:

A 3 and A+3

LW,5 ALPHA+3 and LW,5 ALPHA 3

A+3, A+9;L and A 3, A 9;L

Just exactly how DELTA accomplishes its expression evaluation is described in

the next section.

7. ExpresBion Evaluation Algorithm
.. · .••• 0.,

~xpre s 8'i6'o. "evaluation ae~ umulate s value s into four cells 1, 2, 3,

and 4 from four possible expression fields. Receipt of a comma advance'~·:.the accu­

mulation to the next field; when a space is received the accumulation goes to field 3

(the address field if the expression is .to be an ins.truction) unless it is already· ,there

or beyond. Plus and minus cause accumulation in the current field. At tht. ... end. of tht. ...

expression the four fields hold values which are combined and used in \,-ays depl~nd("nt

on the command supplied.

evaluation.

DRAWING NO. 702·:H~9

SHEET I~ 7 OF IBG

The flow chart of Figure 1 ~ives a rough idea of expression

I. If the com'mand following the expression is a store type (cr,

If, ,or tab) then Ila,ssemblyll of the instruction is accomplished as follo'ws:

Field 2 is ,'mas~ed a~d, shifted to the register position (bits 8-11» field 4 is masked

and shifted to the index position (bits 12-14); and fields 1, and 3 are masked as opera-
\ .

tiODS and an addres s, respectively. Then all four fields are added to forlTI the vcl1ue
, \

for storage in,!the open location.
, \ .

For location values, say preceding a slash conunand, fields 1 and

3 are added and' masked to address size to form the first display address. If the

! swn of fields 2 and 4 are nonzero then they forn1 the upper limit of a displa)r se­

quence. Thus equivalent conunands are:

A, A+3/

B+2, B+9/

LW,4 LOC+3, 7/

and

and

and

A, A 3/

B 2, B 9/

LW+LOC+3, 4+7/

The reader may wish to confirm the correctness of the last rather bizarre example

by following the scan on the flow chart. COlnmands such as those for breakpoint

setting use the fields separately, and the use of space for plus may not have the de­

sired result as can be seen in the following:

A 3, I, LOC;B is not equivalent to

A.+ 3, 1, L OC ; B

:8. Memory Location Display: The / command

The / character is a command to DELTA to open a m.en1.ory cell and

display its contents. The cell is indicated byan expression preceding the / char­

acter. The expression is evaluated and the word address portion is used as a

memory address. If no format is given and the def~ult is F (normal case) then the

symbol table is searched to find a symbol at or next smaller than the indicated

address and ~~~ data type associated with the symbol found is used to control output

fo r~atting. ,

Evaluate Expression

+ - PO
o - F 1 , F2, F 3, F 4

1 -:FP

".",._----------,
accum.ulate symbol
or constant, lookup
value or :convert;
delin~itar - CO

FuE-o-'l---'

DRAWING NO. 702489
Sheet / C>'i! of /;;,~ t;;>

PO =previous operator
CO = current operator
FP = field pointer
Fl, F2, F3 J F4 = ev:aluation

fields

other

add or subtr~-ct 1
value of la s t i terr.;

into field (FP) I
1

CJ

EXPRESSION EVALUATION ALGORITHM

~tg,ure 1

DRAWING NO. 7024L:9

SHEET/i:;>;OF / t<,<-,.,.,

More than one celllnay be displayed using a fdngle / cC~.i1.In::H:d. .i'\,·o exp'I,-essi'.)ns

separated by a cornITla define th~' HlnitL~ of dL5p:.ay. They ... :~ the \vot"d ·;,ddrl".~:;3

of the lower lirnit followed by that of t'i0 'J.P:P(~J.· H.rn.1L Fe Lrlg display of the

upper limit cell it,is open for chari.gB.

ALPHA, ALPHA + 2/

ALPHA + 1/ STW, 5

ALPI-IA + 2/ AI, 6

BAL,4 SUB

DCT2

"100

Forrnat codes may be specified with (as in the basic / comD1and.

100, 101 (X/

101/

"58000100

"68000200

If the user wishes to interrupt a too-long display he presses the break key and an:.'"

remaining output is discarded. The last displayed cell is opened.

c. Expres sion Evaluation: The.:: COlnn1.and

Expressions consisting of prograrn sym.bols, explicit constants,

special symbols (see Section A4), and the operators plus andnlinus (+-) rnay be

evaluated by use of the.:: con'lmand. The expression n1.ay be that just typed by the

user or the last one typed by DELTA.

2 + 2 .:: "4

5 + 5 ~ "A

ALPHA/ BAL,5 SUB.:: "6A5006B3

.~) + 5 .:: II.A

+ 5 {I ::: ~

, + S (0 .::.~

The d~fa~lt format typer:1ay be set by the user using the command f; :::, 'where f is

" 'the 1:l~~Jred format type. The iUltial default format iB X for hcxar~ecimal.

:, + 5 :.~ "A.

t·:-, 5 + 5 ::-: lO

DRAWING NO. 702489
SHEET lit> OF /e';~::·

D. Me'mary Modification: The cr, If, t, and tab commands

Four commands allow the user to store a typed expression for

word value into a memory location -- the one opened by a I, \ , or one of the

modification cO'mmands If, t, or tab. If no expression precedes the command

character the action taken is as described except that nothing is stored in the

open cell.

e cr The expression e is assembled and stored in the open

memory cell. Car1:·iage return and ne'\v line are sent

to the terminal. Ten'lporary display Illodes are reset

to default values.

AI BAL,4 JWS BAL~ 4 GEB cr

AI BAL,4 GEB
()

JEDI EXU LS (Xl "6800643 / n78C cr
/ ..

· I~\~. EXULS

Note in the above that a temporary display format was

established by the (Xl which carried over until the cr

command res et it.

e If When the user terminates an expression with the If C0l11nland

:::.; ... tJ:?~·.v.alu,~ ... qf the expression is stored iri the currently- open

·· .. ~·~·· .. :~·:~:~;l,· that ·cerl'is closed, a new line is produced at the tern'linal,

and the cell with. the' next highest location value is opened. The

mode of initial cell opening is preserved and carried forward on

succeeding openings as is the- display format.

A (II 435 436 If.

A + 1/ 763 If

A + 21 7689 cr

EM\ STM,4 ERS If ..

~M+ l~ BAL,6 LP If
~

'EM + 2\ BGE BE c:z:-

.... For··thE(executive version the EOM key 'replaces If.

100 I 34

Al I BAL, 6 ALPHA

A+l I STW,5 BETA

BETA I ABCD

DRAWING NO. 702-~B9

SHEET /1/ OF /l.gi~~~

The user may either temporarily or permanently override this output format

control by the symbol table code. Temporary change is accomplished by indicating

the desired format in the command. The expression for the location is fol1o'\vedby

a left paren character, then by one of t~e format codes (see section E for a corn·~
/

plete list), and finally by the command I .
I I

X{XI

X(CI

X(II

Cl

A

193

hexadecimal conversion

EBCDIC character conversion

decimal integer conversion

Permanent change in output format is achieved by the command f;1 where f is the

I desired format code. 'See section E.

xl

c;1

CI

xl

X

A

If a slash is given, without preceding typing by the user the cell addressed by the

last thing typed by the computer is examined but not opened. This allo,vs the user

to look at the indirect contents of a cell. In the example belo'\v ALPHA loenlains the

open cell even though the contents of cell DCT8 are displayed.

ALPHAI LW,5 DCT8 I "32

A cell may be opened without displaying its contents by the use of the \ con"lnland.

(\ is produced by pressing shift and L keys together). This mode is convenient

when the 'Q.ser wishes to insert new contents in m.e:mory and is not interested in the

current contents. DELTA. remembers the :mode of opening for cells and on If and

commands opens in the remembered mode.

ALP.HA l :'.: , BAL,4 SUB

DCT2 ~~~HX'l~\ SrW.5
. "'." ~ ~----

ALPHA + 2l A~I..:.. •. 6 ___ '_'l_O_0_

If

If

cr

DRAWING NO. 702 L _.89
SHEET lirA OF /6'6

e t Action is exactly the same as If except that the cell

within the next lower location value is opened. For the

executive version & is used for t.
EM + 41 0

EM + 3/ 0

B JHf

AI, 3 1 cr

e tab The tab command causes the typed expression to be stored

in a currently open cell. Following output of a carriage re.:

turn, the cell addressed in the just closed cell is opened and

displayed. The effect is like that of a cr corrunand followed

by a ;QI. The tab command is useful for patches:

\

AI BAL,5 SUB If

A+ll STW,6 BETA B PATCH tab

PATCHI 0 AI, 6 1 If

PATCH + 11 0

PATCH + 2/ 0

STW,6 BETA If

B A + 2 er

E. Output Format Control

Displays of the contents of memory locations via the / conL."nand and

expression evaluation via the == cOInInand have the output format controlled by code,s

given with the I or == corn.rnand or by the default form.at as set using the(£;/ '~~d(f; ==

conunands. The original default setting of the output conversion fonnat is hexadl~ci;rnal

(X) for == cO'mmands and under control of the nearest symbol table type (F) for I corn­

rn.ands. Temporary conversion type settings set by using e (fl or e (f== are retain~q
",

until the next cr command is given. In partic'ular the temporary conversion type if;

retained over succ es si ve If, t, I, ==, and tab commands.

(1;1

A(XI "C If

A+11 liD If

A+21 liE cr

4+31 15

The codes provided for directing output format,ting and conversion are given below.

In all conversions leading ze,ros in the printout are suppressed.

DRAWING NO. 702489
SHEET 11:6 OF ,/6'c;.;

X The word -- conten.ts of memory or expression is

typed out as a hexadecimal number. Hexadecimal

nUlTlbers are always typed with a leading II

the original default code for:: command.

This is

F Conversion is according to the format code given in the

symbol table for the location displayed or that for the

next lower valued location symbol if no symbol occurs

a t the location in question. For:: cOJ.n!l'.ancis F con-

version is equivalent to X conversion. F conversion is

the default code for / comnlands.

I The word is converted as a signed decilnal integer.

C The word is converted to EBCDIC characters; that is,

it is sent to the terrninal directly. Non-printing char­

acters may be output in this way, including the EOT (04)

character, which will turn off many types of terITlinals.

o Conversion is to an octal number. Each three hits from

the word to be converted starting on the right are con­

verted to a number in the range 0-7. The final nvo bits·

on the left are converted to the range 0 3.

R The wo rd is converted to a s YITlbolic instruction: output

has the form OP, R ADDR, X sinli1ar to assernbler synl-
1

bolic machine instruction format. OF is the sYlTIbol table

value of the op code part of the word (bits 0-7) - - %XX is

printed if the value XX of the field is not an instructi.on.

Ris the value of the register field (bits 8-11) and is printed

as a decimal integer, except if zero when it is suppressed

along with the preceding comma. ADDR the address field is

printed with a leading >.'c if bit 0 is a 1 and followed by the

symbol obtained from lookup of value in bits 15- 31 - - if no

no symbol corresponds to the value, then the next 10'\ve1" syn1-

bol plus a relative hexadecimal offset is printed. Values"·

DRAWING NO. 70248")
SHEET II'! OF /8{:~

less than 64 deci-mal are always printed in hexadecimal.

If the index field (bits 12-14) is nonzero~ it is printed as

an integer (1-7) following a comn'la.

A. The word is converted in exactly the same way as R format

except that the addl"ess field is always given as a hexadecin1al

number.

H Halfword. Eacb. 16 bit half of the word is treated as an

address quantity and printed as symbol plus hexadeciITlal

addend.

T Base Two. Thirty-two ones or zeros are printed depending

on the bits in the word. Leading zeros are not suppressed,.

and the printout is separated into 4 groups of eight by spaces.

S Short floating point number. The word is converted from

L

internal floating point< for,at to the form. XXXXX E+YY.

Long floating point nurn)e~;~ Same as above except the current

word plus the next highest addressed viord are converted (san1.e

D Double word decim.al·integer. The current '\vord plus the next

word are converted as a 64- bit decimal integer with sign.

(Same as I for = con:rnand.)
"l

The final three conversion types S, L, and D will not be available on the executive

version of DELTA.

F. Execution Control: The ;G, ;P, and ;X con1nl.ands

The three commands described in this section allo'w the user to begin

and continue execution of his program. Each of the comn1ands is terrn.inated by

carrier return. Execution is started by typinge;G wher'e e is an expression for the

starting or GO location. (The value of the expression is m.asked to forill. the word

address of the starting location.)

BEGIN;G

DRAWING NO. 702489
SHEETjl.6-0F /<9~

Execution can be stopped in three ways:

1. encountering a breakpoint (see Section G),

2. a user interruption via the BREAK key,

3, an error causing a machine trap (illegal instruction,

memory protect violation, etc.)

, In each case the cause of the stop is reported by an appropriate m.essage, the

values of ;I, ;C, ;F, are set, and term.inal control returns to the user.

BREAK AT '''5C3

" ILLEGAL INSTRUCTION AT "77B

;1= tr77B

I Proceeding from a stop condition is directed by th'e ;P conunand. The use of
\

;P for instruction breakpoints is covered in Section G\ For user interruptions

via the BREAK key, execution continues as if the interruption had not occurred.

BREAK AT "68C

;P

'Proceeding from a machine trap will in general cause reexecution of the violating

instruction and another trap.

MEMORY VIOLATION AT "74B

;P

MEMORY VIOLATION AT "74B

In either of the above cases any expression typed before the ;P is ignored.

The ;X command assembles and executes the expression just, preceding the ;X.

LH,3

STB,6'

TABLE 4;X

~:~LOC;X

If the expression does no~ result in a legitimate instruction, the illegal instruction

message results and other error messages correspond to other illegal constructs

just as if the error had been an executing program. If the expression is a branch

instructiC?!l con~ro~"g<?es to the user's program (or causes a n1.emory violation).
'-. # - ,..,

,Thus Jt~e cOl!lp:1ands B GO;X and GO;G are equivalent. If the expression is a sub-
..

routine jump, the subroutine is entered and if it returns normally (to the calling
. ,

location plUB 1, 2, or 3)' control returns to Delta and terminal control to the user.

DRA\VING NO. 702489
SHEET /14 OF ./ i:/ c.;~

G. Breakpoints: The ;B and ;D commands

Delta provides the user with multiple breakpoints of t\vo kinds:

1) on instruction execution, -and 2) on a change in data value. Eight break-
! -

points of each kind are available to each user. As each breakpoint is reached,
! '

a small am.o';!nt of information is printed out giving the break location and an

associated value. A special !node ,allows execution to continue autonl.atically

after the breakpoint-report to provide a lilTIited kind of trace of both the flo'\\'

of execution control and of the variation of data values.

I ,

1. 1',Instruction Breakpoints
I
I

e,n;B The nth breakpoint (there are eight nunlbered 1- 8)

is set to stop execution and return control of the

terlTIinal to the user when tlie instruction at location

e is reached. i The stop occurs before execution of

th.e instructio~ at e. When the breakpoint is reached,

DELTA prints the number and type of breakpoint and

its location.

A+3 , l;B A;G

I ;B> A+3

A third field of the breakpoint cOlTIrnand may be used to specify a location to be
I I

displayed when the breakpoint is reached. Registers as well as core locations

can be displayed in this way. A fourth field sp~cifies the forn'la't of the display.

A.+3, 1, R5;B A;G

I ;B>A+3 5/ "54

A+3, 1, R5, I:B A;G

I ;B>A+3 5/ 84

When stopped at a breakpoint, the usermay examine and modify his progratn as

appropria~e:.an(;LtA~!l. continue from the point of interruption by giving the cOInnl.and

;P. A count may he given with the ;P command. If the count, i.sn then the break­

point will be ~~ssed :t:l ~iInes before'thebreak occurs.

B+8, 2, R2;B

1 ;B>B+8 R2/

. .1 ;B>B+8 R2/

1 ;B>B+8 R2/

B;G

4

5

6

1 ;B>B+8 R21 11

;P

;P

5 ;P

DRAWING NO. 702489
SHEET /17 OF / 8 ,~~

th
The n breakpoint may be removed by the command 0, n;B.

If the user wishes to trace a particular instruction, he may give either of the

forms above (display or no display) and specify the T m.ode; e,n,loc;BT. In

this mode, when the instruction at e is reached the breakpoint reporting inforIna­

tion is printed and execv.tion continues.

A+3, 4, 5;BT A;G

4;B>A+3 5/, 54

4;B>A+3 5/ -1

4;B>A+3 5/ -175

The trace mode may be set after a break occurs by specif)ring ; T which is equi vcllent

to ;P plus setting the trace ·mode at the current breakpoint.

2. Data Breakpoints

Data breakpoints allow the user to halt execution when any"

memory location (not register) changes value in a specified way. The conunand

has the form:

e, n, val, m; Dr
th

It causes the n data break to be set in such a way that execution halts and tern"linal

control returns to the user whenever the contents of n'lemory at location e \vhen

nlasked by the mask m. is in relation r to val. The mask for each data breakpoint is

initially all ones. : A T or trace param.eter applies to data breakpoints in the same
! l

way and with the ~ame ~ffects as described above for instruction breakpoints. The
I

letters used for r 'and the corresponding condition causing a break to occur are the

fol1ow,i~g:

L

E

G

GE

NE

LE

e<val

e=val

e>val

e>va1

e/=val

e>val

DRAWING NO. 702489
SHEET //8 OF /l3tP

If no r specification is given a break occurs for all changes in the data. The

mask, if specified, is ignored in this cas e.

Some sample data breakpoint settings are given belov/. Any data breakpoint may

be removed by the command 0, n;D. The output resulting from a data break has the

form n; D>loc e/ contents where nas the number of the breakpoint, loc is the location

of the data 'modifying instruction, e is the data address in question, and Ilcontents I~

is the new value as just modified.

A, 1, 3;DG

A+5, 2, tiFF, "FF;DE

B,3;DA

SDS, 4, CSC;DGE ;P

4;D>PH SDS/ CSC+2

3. BREAK Key Breakpoints

At any time during execution the user may cause the execution

of his program to halt by pres sing the BREAK key. Am.essage is printed for the

user given the location of the break. The;P c~Inmand will continue execution

after such a break.

BREAK>MP+34

DRAWING NO. 702489
SHEET //9 OF /f./(; .

H~ Memory Searching:: The ;W and ;N commands

The two active search commands e;W and e;N search memory

for a match or no match with the expression e. Display of all matching cells

(bit for bit identical) occurs in the case of ;W and of all non-matching cells

in the case of ;N. The search is carried out between limits determined by

th,e symbol table values of ; 1 and ;2; it runs between the lower limit; 1 and

the upper limit ;2 inclusive. The initial value of ;1 is zero and of ;2 the highest

current user core address. Before the test for a match is lTIade, the word

from memory is masked with a word which is the symbol table value of :~L

The initial value of ;M is all ones.

The values of ;1, ;2, and;M are set by the commands e.:l, e;2,

and e;M (each followed by Cr). In addition, the limits may be set with the single

command el, e2;L which sets ;1 to e1 and e;2 to e2.

A;1

Bj2

2;M

2:W

A+2/

A+3/

A+6/

. A+7/

A+A/

B/

A, B;L is equivalent

Mask bit 30 of the word. Search for all

words between A and B which have a 1

in bit 30.

2

.3

6
.:

·7 .. ' ~

"A

"B

"lFFFF;M L~ L+" 1 OO;L ERR;W

L+3/

L+Al

L+D/

L+6A/

BAL,4 ERR

BAL,4 ERR

BAL,4 ERR

AWM,l ERR
,~ ,

All words between L and L+!~lOO

,with addresses equal to ERR.

The us~r.rna:y i.nterrupt,:an.inprqgress search by pressing th~ .BREAK ~ey,

m:LTA halts~ the ~~arch· ;~~ ~etu~ns terminal control to the use~ (ring~jbe b~ll).

DRAWING NO. 702489
SHEET I~C OF Id~~

I. Symbol Table Control: The ;U, ;K, ;S,!, < > conunands

The symbol table available to DELTA after a load is COlTI­

pleted consists of the global symbols (those defined by DEF directives) and

a set of internal symbol tables (one fo'r each ROM loaded) which are filed

under the name of the file from which the ROM was loaded. Each internal

symbol table is a keyed record in the file created for DELTA by the loader.

If more than one ROM is contained in the load file, then only the last external

symbol table remains at the end of the load since earlier ones are over\vritten:

During debugging the user always has the global symbols of the

load and he may select one of the internal symbol tables by using the s:S conl.­

mands, which causes DELTA to load the symbol table from record s (the

internal symbols from the program loaded from file s). They replace, for

referenGe purposes, any previously selected internal symbol set.

I'B731 LW J 4 IOP+ "A7 If

IOP+ "CBI BAL, 6IOP+ "1 7F IOPF} S t
IOPT2+6/' LW,4 K34:

Each of the loaded programs may have contained undefined sym­

boIs. DELTA will print all undefined 'symbols when the ;\1 is given. SyTIlbols

which are undefined and within the range of an asselllbler LOCAL directive are

lost. They are given value zero in the loaded code and do not appear \vh"en ;u is

given.

Symbols may be defined by the user at any time during his debugging

session. Symbols so defined are added to the set of global sYlnbols associated

with the program load.

s{f! Adds the symbol s to the global symbol table \vith the

location value of the currently open cell ($ or .) and

format type f. If f is omitted, symbolic instruction

(R) type is assumed.

e(f<s>

s:K

;K

DRAWING NO. 702489
SHEET I~J OF ,/ 6'~~;

Adds the symbol s to the global symbol table

with value defined by the expression e and

forma t code f. In addition to the codes of

SectionE the letter K may be used to indicate

constant value'. If f is omitted R is assumed.

Removes the symbol s from the symbol table.

The removal is permanent if s is in the global

table and temporary if s is in an internal sym­

bol table. (It will return if the us er s\vitches

to another internal symbol table and back again:)

Is used to remove all symbols from the syrribol

table. Symbols defining instruction codes are

not erased. Individual internal symbol tables

are recoverable using s;S command.

J. IMiscellaneous Commands: The ;G, iF, iX commands

The commands covered in this section cause DELTA to change

its normal or def'!lult modes for display and to zero areas of memory. All COITl­

mands in this section are terminated by carriage return.

;R and ;A

This pair of commands is complementary to one another; they control how DELT_-\

displays location values when typing the contents of cells. The nlode of display is

either relative (;R) or absolute (;A). When in relative mode, DELTA looks up the
'"

location value in the symbol table and displays the symbol if one corresponds to

the value; if not it displays the sym.bol with next smaller value and a word offset in

hexadecimal. If the mode is absolute (;A) then all location values are displayed as

hexadecimal numbers. Note that these commands control the display of location

values and not the display of the address parts of instructions contained in those . .
loc~tions .

;R

A"A+S/ LI, 1 "10

A+l/ CW, 1 K4S

A+Z/ BGE. ZZZ

A+3/ AI, 1 1

A+4/ B AI7

ZZZ/ STW,2 BRI3

;A

A, A+S/ LI,1 "10

"seD/ CW,1 K45

"5eE/ BGE ZZZ

"5CF/ AI, 1 1

" 5DO/ B. ",AI?

"5 Dl / STW, 2 BR13

;Z

DRAWING NO. 702489
SHEET 1c:l~OF /8e

The command for zeroing memory takes two forms: the first,

a, b;Z, names the limits -- a the lower limit and b the upper limit -- of -men"lory

to be zeroed o Expressions may be used for a and b. An error results if the

value of b is less than that of a.

A,A+5;Z

100, l;Z

?

The second form of ;Z is without ar gun"lents or has zero arfurnents

and is a request that DELTA zero all of user's core. The action requires a con­

firming period after a query about the users intentions before the COll"ln1and is

carried out.

;Z

OK.

If any other response is m.ade to the OK, the zeroing is not don~.

Zeroing the user's area erases all the user's program. and data,

but not the monitor's context area about the user or the user's I/O buffers. If

I/O is in progress directly to or from the user's area "the results of the I/O

DRAWI!,-~G NO.
SHEET 1,:}3 OF

transfer are unpredictable. Because the user's physical core pages a:'e re­

leased to the monitor, any asynchronous references to the area will result in

traps which will cause the UTS executive to receive control and report the

cause of the trap (illegal instruction, illegal memory reference, etc.) to the

usero

K. Additional Commands for the Executive Version:

The ;0 J ;J, and ;V commands

Three commands are provided for the executive ver sion of DEL T_-\

and are disallowed the on-line terminal user. They are ;0 to produce hexa­

decimal dumps on the line printer; ;J to direct DELTA output to the line printer

particularly in the cases of formatted displays and output from tracing break­

points; and ;V which allows saving core on a self-loading tape for later restoration.

The commands are designed primarily to aid in de bugging of, the UTS

system itself but may also be used to form the basis of a stand-alone debu~~ing

package. The printer and tape I/O routines are completely se If-contained \vit~'1

'no dependence on system I/O routines. The executive version of DEL TA operates

with all interrupts disabled.

a, b;O

;J

Contents of rn.ern.ory from location a throus,h

location b are printed on the line printer single­

spaced, eight hexadecimal words with initial hex

location value per line. All zero lines are sup­

p~essed.

Toggles the output location switch alterl1atin~
\

between the operators console and the line printer

on each instance of the conlnlanci.. Output iron1 a

non-tracing break is always directed to the operator s

console.

DRAWING NO.. 7024 fJ?
SHEET I;>L/OF ,/B~ ,

u;V

A,l;B

X, 2, 3;DTE ;J B;G

(output here from data break #2 goes to the line

printer)

l;B>A

This command save s a core image on tape with

a self-loader to enable restoring at a later time.

The parameter u gives the highest core location

to be saved.

Programmed breaks

Programmed breaks may be inserted into code by assen"lbly or

patching in a CAL2,4 XXX, Y instruction. When this instruction is executed

control is sent to DELTA by UT.¥~'eXXX BREAK>loc is pri~ted at the operators

console where xxx is the addres~"part of the .. CAL2, 4 instruction, and DELTA

waits for com.mands from the operator. If·Y, the index field, is 1 the bre·ak

is treated as a tracing break.

Interrupts

Control ma.y be given to the executive version of DELTA at any time

via a monitor KEYIN. The system programmer may get control at the operators

console by pressing the Sigm.a 7 panel interrupt button and responding to the

I1~KEYIN" message with "DELTA". DELTA responds with cr, li, and the pro­

grammer may examine, change, or set breakpoints in the systen1. Return to

the point of interrupt is via the ;P comni~u\d\

L .. Errors

In th~ cause of brevity DELTA has a single error message: ." -- : . This

message is sent to the user whenever DELTA cannot understand the user's comnland

syntax. It is usually simpler for the user to identify the error than for DELTA to be
\

verbosely specific aboutit. 'Some errors and the reasons for them are shown belo\\r:

x, y,Z,Z,7/ ?

JABCDEJ=?

ABC;K

?

/ too many commas

DRA\VING NO .. 702-\8-_
SHEET /~.sOF /,~:3~;:~

cqnstant value larger than one word
I

symbol not in symbol table

FF:M 100, XYiL 6B;W symbol value not found

;L 6B;\\,? remainder of con1rnand string ignore\..~

A,5:M command unknown

?

LW>:~5 ALPHA= ? asterisk in a funny place

DRA "\VING NO. 7(}L-189
8HEE T I,..)~ 0 F / .>'~ .-j 15 .:t:'

INDEX TO DELTA COMMANDS

/
\
cr

1£

t
tab

=
< ••. >

open ce 11, print contents

open ce 11, no 'print '

store in currently open cell

store in currently open cell, open next cell

store in currently open cell, open previ<?us

store in currently open cell, open cell last nan-led

evaluate and print expres sion

define symbol

define symbol

;1 set lower signal limit

; / set default display conversion Ulode

;= set default display conversion Ulode

;A display location values as hexadecin1al

;B set (or clear) instruction breakpoi nt; BT':s'e'-{'t~'~~e'ITlod~

;C set conditio~"c'~de- ,

;D set data breakpoint; DT set trace Ulode

;F set floa.ting controls

;G being execution

;1 set instruction counter

;J divert output.to ',line printer :·(executive·'version only)
:; I .

;K remove (kill) symbol table entry

;L set upper and lower liUlits for search

;M set the search mask

;N search for word mismatch

;0 hexadecimal duUlp (executive version only)

;P proceed froUl breakpoint

;Q set last quantity typed

;R display location values as symbol phis' hex. offse~

;8 select interna'l syrrtbol table

;T

;U

'. C""..:o.t"

set trace mode and proceed

display undefined syUlbols

;V

;W

;X

;Z

DRAWING NO o 702" .::
SHEET/a'l.?OF /'ilb

saves core on tape w:~th a self-loader (executive version onlv)

search for word match

exec ute ins truction

zero memory

IX. PERIPHERAL CONVERSION LANGUAGE (pel)

TABLE OF CONTENTS

INTRODUCTION

A. Batch Operation

B. On-Line Operation

C. Summary of Commands

D:SCRIPTION

A. Conventions and Terminal Operation

B. Fi Ie Copy Command

1 • Device Identification Codes

2. Fi Ie Identifi cation

3. Data Encodi ngs

4. Data Formats

5. Modes

6. Record Sequenci ng

7. Record Selection

8. Valid Option Combinations

9. Examples

C. Catalog Copy Command

D. Other Commands

1 • DELETE (delete fi Ie)

2. LIST (list directory)

3. SPF (space fi Ie)

4. SPE (space to end)
~ .
.J. WEOF (write ehd-ofr-fi Ie)

6. REW (rewind) ,i.

7. REMOVE (remove ,top~s) .

8 • TABS (set tabs)'
. ,

E. Termina·tio.n of pel

": ·,F •. , .. ' ''''language Syntax

INDEX TO pel COMMANDS

Pag~

130

1 31

1~6

SUMMARY

DRAWING ~lO. 702489
SHEET 1..;2 9 OF / f~'\ ,t:,.

This part of the :'vTS Functional Specifications describes a peripheral utility sub-system designed

for both on-I i~e and batch operation. The Sub-system, PCL (Periphera I Conversion. Languoge),

provides for information movem~nt between card and paper tape devices, line printers, teletype

devices, magnetic tapes, disc files, and labeled magnetic tape files. The command language

allows for single or multiple file transfer with options for selection, sequencing, formatting,

and conversion of data records. File maintenance and manipulation functions ore also availclble

to assist the user.

DRAWING NO. 7(:2489
SHE ET I '..-?,(,~·:OF / 61 ('.:;~

INTRODUCTION

PCl is a peripheral utility sub-system designed for operation in a batch environment under BPM,
\j .

or on-line under UTS. It provides for information movement among card and paper tape devices,

line printers, teletype devices, magnetic tape, disc files, and labeled magnetic tape files. pel

is controlled by single line commands supplied from a user console in UTS, or by command cbrds

in the BPM iob stream. The command language provides for single or multiple fi Ie transfer v/ith

options for selection, sequencing, formatting, and conversion of the data records. Fi Ie deletion

and positioning commands, and a command to copy complete file catalogs between disc and

labeled tape are included. Additional file maintenance and utility commands are also provided

to assist the user.

A. Batch Operation

PCl is activated under BPM through an I pel control command card in the BPM job stream.

Once active, pel reads subsequent command cards directly through the same control (C) device

until terminated by an END command (see below) or by encountering 'another batch control card

(I type). All user input and output is done through the M:EI and M:EO DCBls respectively. PCL

diagnostic output is transmitted to the device currently assigned to the DO operational label.

B. On-Line Operation

As a UTS sub-system, PCl is called using th~ CALL command ~f the Terminal Executive

Language (TEL). PCl responds by,typing "PCl HERE" and then typing i,tls identifying mark (<)

at the left margin of the next line indicating that it is ready to accept the first command. When
/ ' .

accepting or processing a command, PCl is said to be in the command state. Entry to this state

is always indicated by the display of the < as described above. Once a valid command beg!ns

execution, PCl exits the command state a~ enters the active state. This status remains in effect

until execution of the command terminates, at which time the command state is re-entered and
I

tbe user may ente~ his next command. A~,_ in batch operation, user input and output is done through
I. I

M:EI and M:EO DCBls, diagnostQic;~.gC;Hto DO, and command.$'(Jr~~r~~.Eti~.ed·thr.ough C.

C. Summary of Commands

The following is a I,ist of available functions in pel descri'bed in terms of the actual command

verbs.

·COPY device(s) and/or file(s) TO device or new file

COpy device(s) and/or fi le{s} OVER device or existing fi Ie

COpy ALL fi les on disc TO labe led tape(s)

COPYALL files on labeled tape(s) TO disc,

DELETE an existing fi Ie

LIST a fi Ie directory

SPF (Space file) ± n files on designated device

WEOF (Write end-of-fi Ie) on designated device

REW (Rewind) designated tapes

SPE (Space to end) of last fi Ie on labeled tape

REMOVE designated tapes

TABS (Set tabs) for output device.

DESCRIPTION

I .
I

DRAWING NO. 17C~~4B9
SHEET 1(,3./ OF /'f3';;

The following description of PCl is oriented toward the on-line user. Nevertheless, only one

explanation should be necessary to include both on-line and most batch features. For the batch
. / .

user, communication is established with input through the BPM job stream and output through the

DO device with no user interaction. Thus, all user prompting (* etc.) and terminal operations

(Cr, Sr, XC •••) given here do not apply.
I !

A. Conventions and Terminal Operations'

For purposes of clarification, certain conventions and terminal operations have been

assumed throuout the balance of this document. They include:

1. Underlined copy in examples is that generated'by the computer. Copy not

underlined represents that typed by the user.

2. Optional parameters within a given command ~re identified as such by

enc~osure within brack~t~~ ~. ~[9PTION.]

3. Control characters are represented in this document by an alphabetic character

and the superscript c, e. g., E
C

• The use~ simultaneously depresses the alphabetic key and the

Control key (CTRL) to obtain this function.
I'

4. Ca-rriage Return. The Cr notation following each line in the examples

represents a carriage return. Depre'ssionoftr,is key informs the computer that an input line is

terminated. A ca·rrla9~.r~turn (Cr) will automatically cause the computer.to give a line feed. Tne
. t .•• , •••• '. •

line feed key operates Identically to the Cr ~vithtn the PCl processor.

DRAWING NO. 702·!H39
SHEET/2~~OF / Sc;~

5. Escape (El. This key enables the user to temporarily escape to the executive

command level. Escape may be applied at any time when the user has control of the keyboard. The

current status of PCl is retained and may be re-activated using the executive "CONTINUE"

command.

6. RUBOUT. The last input character may be deleted with this key. A" is

echoed to the user. N RUBOUTS echo N "",s and delete the previous N characters.

7. Cancel (Xl. This key cancels the current input line. A - is echoed

to the user fo I lowed by a Cr.

8. BREAKi- This key, indicated by Bk, causes an interrupt in current pel

activities. When applied during the command state, the current command is ignored as if XC had

occurred. Application duri,ng the activestc;lte causes pel to terminate what it is doing .(Iike
, " .,\'

. printing or copying), pass contro I to the u'ser, and revert to the command state. A Cr response
\ '

is given if used during input. Effects of the interruption or the termination vary with the camIrand

being executed and are discussed indetai I with the particular commands. If no mention is made,

Bk is assumed to have no effect on the execution of that command.

B. Fi Ie Copy Command

DRAWING NO. 702489
SHEET /I..?OOF /& t;~

This command permits single or multiple file transfer between peripheral devices and/or file

storage. Options are included for selection, sequencing, formatting, and conversion of the doto

records. The format is of the genera I form:

TO
COpy d(s)/fid(s), fid(s), ... jd(s)/fid{s),fid{s), ... j • •• OVER d{s)/fid(s)

or,

TO
OVER d(s)/fid(s)

COpy d(s}/fid(s), fid(s), ... jd{s)/fid(s), fid(s), ... j • ••

COpy d(s)/fid(s), fid(s), ... jd(s)/fid(s), fid(s) I ••• j • ••

where}

/

COpy

TO

OVER

d

separates a devi ce from the fi les on that devi ce

separates fi les on the same device

separates devi ces

introduces a device or file identification for input

introduces a device or fi Ie identification for output
'/ .

introcl~6es a file identification of an existing file to be overwritten

represents device identification, has the form:

device code [#reel no.][#reel no.H#reel no.]

Reel numbers apply only for magnetic tapes. Absence of a reel number for a

tape device implies scratch tape. Valid device codes are listed below.

fi d represents fj Ie identification, has the form:

na me [-a c co un t [-password]]

s represents specifi cations for-data encedi ngs, formats, modes, etc., has the

"

form:-
\

[opti on H, opti on] ••• [, opti on 1
I

Options may include any data encodings, data formats, device modes, record

sequencing, and record selection listed below. Specifications given at th~ device

level (d(s)) apply for all files on that device. Those given at the file level (fid(s))

apply only for that fi Ie and have precedence if a conflict occurs between the two

levels.

DRAWING NO. 70~~ ,i~~9
SHEET j,,3(,10F /6' (,;,

When given a command of this type, PCl first checks for a destination device or fi Ie introduced

by the TO or OVER command verbs. If found, the current destination device or file (if any) is

closed and the new one opened for output. Files, of course are matched against the user1s i

directory to insure OVER was used to introduce an existing fi Ie. The device(s) and/or fi le(s)1

introduced by the COpy command verb are then opened for input one at the time in the ordE'~r

given and copied to the destination. The destination device or file remains open until respecified

(by TO or OVER) or pel is terminated (by END) so that more inputs (by COPy) are added to it.

If Bk is applied during execution of a COPY, PCl responds with identification of the last fiie

complete Iy' copied.

1. Device identification Codes (d). These codes are used to indicate the II to II

and "from ll devices. They include:

CR card reader - files separated, by two successive ! EOD cards.

C P card punch

LP line printer

ME interactive users console - input terminated by Bk from teletypes

DC disc fi Ie storage

L T labe led tape fi Ie storage

FT free form tape - fi les separated by EOF mark

PP paper tape punch

PR paper tape - files are separated by two successive! EOD codes

2. File Identification (fid). Fi les are identified by name, account, and password
~,

in that order separated by hyphens (-). The name (1 -31 characters) is requir~d whereas the account

(1-8 characters) and the password (1-8 characters) are' optional. Thus, four forms of fi Ie identificatiol

may be specified: name, name-account, name-account-password, and name--password. Absence

of the account implies the current user's account.

3. Data Encoding. These codes describe the source or destination data encodings

to be expected or produced1

E EBCDIC

, H 110llerith

A ASCII
. :::

.... :

DRAWING NO. 702·;(19
SHEET ,<:~}·'''·OF / 8'~

4. Data Formats. These codes describe source or destination record formatting

to be expected or produced.

C Metasymbol compressed

K Compact fi Ie structure (required by EDIT)

X hexadecimal-dump

BCD, BIN

7T,9T

PK,UPK

5. Modes. These codes dictate device control modes for the devices indicated.

BCD or binary mode - valid for card, paper tape, and magnetic tape devices.

seven or nine track magnetic tape

seven track binary tape packfng or unpacking

SSP, DSP, VFC single, double, or variable format controlled spacing on line printer.

6. Record Sequencing Insert'ion or deletion of sequence identification for output

data records (error if on input side) is accomplished using this specification. Option include:

CS (id, n, k) card sequencing in columns 73-80 where id is the identification (1-4 chora~ters),

NCS

IN (n, k)

NlN

n is the initial value, and k is the increment. The id is left-iustified in the field

(73-80) followed by the sequence number right-justified in the same fi'eld. Pre­

cedence is given to the sequence number if overlapping occurs.

no card sequencing - strips columns 73-80 from each output data record.

number lines within.a Compact (Kitypei)file start-ing at n in sequential steps of

k. Line numbers must be between 1 and 99,999.

no line numbers - deletes line numbers within a Compact (K type) fi Ie.

7. Record Selection This specification permits selection of the logical records to

be copied by giving their sequential position within the fi Ie.

X-v

8.

select all records whose position n"'in the file satisfies the following condition

X~n9'. Multiple selections may be specified, e.g. X-V, U-V, W-Z.

Selections do not have to be in sequential order. Maximum number of selections is

10 for each input fi Ie.

Valid Option Combinations Not all combinations of from and to devices, data

encodings, modes, etc. are valid. Table I shows the valid options, the disallowed combinations, and

the default provisions for the possible combinations. If a disallowed combination:is f,?und, an appro­

priate error diagnostic is given to the user. Execution of the command mayor may not contin.oe.

depending on the severity of the error encountered (see language Syntax).

CODES E

H

A

FORMATS C

K

X

MODES None

BCD

BIN

7T

9T

PK

UPK

SSP

DSP

VFC

SEQUENCING N one

CS
NCS

LN
. NLN ,"

I

wher~
D default

TABLE I

FROM DEVICE

C P D L F M
R R C T T E

D X D D D D

X - X X X -
... D X X X ~:.:

X X X X X -
-- - X X - -

- - - - - -

- D D - - D

D - - - X ...
X - - D D -
- - - X X -
- - - D D -
- - - X X -
- - - - X -
- - ~:--- - - -
- - - - - -
- - - - - -

- - ... - - -
- - - - - -
- - - - - -1 - - - - - -
- - " - - - -

~

X optional
error, not available, ridiculous

~D L
C T

D D

X X

X X

- -
X X

- -

D -
- -
- D

- X

- D

- X

- -
- -
- -
- -

D D

X X

X X
X X

DRA\VING NO. 70Z~~9

SHEET / ... ~~ 0 F /t~~ t~·~

TO DEVICE

F M L C P
T E P P P

D D D D X

X - - X -
X ~: - ... D

,

- - - - -
- - - - -
- X X - -

- D - - D

X - - D -
D - - X -
X - - - -
D - - - -
X - - - -
X - - - -
- - D - -
- - X - -
- - X - -

D D D D D

X - X X X

X - X X X
X - X X X

X X X - X X X

~c EBCDIC to ASCII conversion for teletvoes is done

9. Examples

< COpy CR TO DC/A-0986-PLEASE Cr

< \ I

,'1

DRAWING NO. 702~,H)
SHEET ,,{~'?OF 18 ~

After receiving .thiscommarid pel opens a new disc fj Ie with name (A),

account (0986), and password (PLEASE). Successive cords are then copied to this fife from the

card reader unti I a double! EOD is encountered.

< COpy LT#S7/B, C TO DC/B--PASS Cr

<

This example demonstrates a muftiple fi Ie copy. Files· Band C from labeled
I

tape with reel num~er 57 are ·copied in that order to a new disc fi Ie B with password PASS. Note

that all files must b;e under the user's account (as specified at log on or on the lJOB card).
I
I

i

:5. COpy DC/ A(C) TO LP(DSP) Cr

<
j .,

The disc fj Ie A under the user's accou-nt is uncompressed and listed on the Ii ne
I .

printer with double :spacing.
I

S COpy FT#73 TO DC/A (K, LN(5, 5)Cr

<
I

PC L reads successive records from free form tape #73, assi gns line numbers

starting at 5 in steps of 5, and writes them to file A on'disc in K format.

~ COpy LT#205/S0URCE TO CP (CS (SRCE, I, 1» Cr

<

The label tape file named SOURCE on reel number 205 is sequenced and punched.

The logical records were given sequence identification (SRCE0001, SRCEOOO~, ••• etc.) in columns

73-80

.. ,

. < COpy PRJPR,PR OVER DC/ALPHA Cr

<

~ ~ ... '

DRAWIN G NO. 7024iJ9
SHE ET /,?/2, OF //!1 L~

Three consecutive fi les on the paper tape reader are copied over an existing

file ALPHA under the user's account. Each file on paper tape terminated by a doubJe lEaD .

.s. COpy FT#6(BCD, 7T, H}: TO LP(X) Cr

,<

In this case, free form tape #6 is a 7 track tape in BCD containi ng Hollerith

coded data. Each record is read, converted to EBCDIC, and dumped to the line pri nter in

hexadecimal.

.s. COpy DC/A(K} TO FT(BIN, 7T, H}Cr

<

This example points out the use of a scratch tape. Line images stored on

disc in K format are read sequentially, converted from EBCDIC to Hollerith, and written on a

7 track scratch tape in BIN mode •

.s. TO DC/N3 Cr

.s. COPY DC/N 1 (20-30, 40-100), N2-1234-PASS(50-75} Cr

<

Sections of two fi les (N 1 and N2) are combined to form a third fi Ie N3.

Records 20-30 and 40-100 of Nl followed by records 50-75 of N2 are copied in that order to N3.

The user's account is assumed for fi les N 1 and N3, and N2 is from account 1234 with ,

password PASS. Note that the destination file was defined on a separate line.

~ COpy DC(K)/SOURCE TO ME Cr

10020 START LW, Rl AlPH~

10020 AI, Rl 5

10030 CW, Rl BETA

<

• • •
• • •

DRAWING NO. 702~a9
SHEET /'-~l OF /~:':'~ (t'.

This command requested a Meta-Symbol source file on disc in K format be

dumped at the user console. Note that the line numbers occupy the first six characters of each

line.

< COPY FT#7236 TO PP Cr

< COpy FT#7236 Cr

< COpy FT#7236 Cr

<

Three successive fi les from .free form tape #7236 are punched as one long fi Ie

on paper tape. An end of file mark (two! EOO's)' wi II not be written on the paper tape until the
I ,

devi ce is closed.

~ COpy LT#5/A, 8, C; OC(I<)/O, E; FT#S TO LT#6#7/A Cr

<
~: '

This example demonstrates the multi-file multi-device capabilities of the

fj Ie copy command. Fi les A, B, and C from labeled tape #5, fi les D and E from disc, and the
\

next file on free form tape #8 are copied respectively to file A on labeled tapes #6 and tl7.

Tape #7 is used only if #6 overflows. 'Note the format specification K holds for all fi les

up to the next device id code (fi les D and E),.
i

C. Cata log Copy Comma nd
I

This command enables the user to copy his complete file catalog between disc and labeled

tape. The command is of the form:

\COPYALL OC TO LT [#reel no.] [Dreel no.] ['reel no.]

or,

. 'COPYAL,L LT [#reel no.] [#reel noJ [#reel no.]TO DC

DRAWING NO. 70248S~
SHEET/~1) OF .,,.'\-:It-..

peL copies all fi les under the user's account from the input device (LT or DC) to the output

device (LT or DC). Files protected by passwords cannot be copied with this command. The

Bk key will terminate execution of this command and cause PCl to respond by typing the

identification of the last fi Ie copied. Consider the example:

< COPYALL DC TO LT#3#4 Cr

<

All of the files given in the user's catalog are copied to labeled tapes #3 and 114. Tape'4 is

used only if #3 overflows. The disc space previously occupied by this catalog of fi les can no~v

be released for other use.

To restore his fj Ie catalog, the user may enter the following:

< COPYALL LT#3#4 TO DC Cr

<

This causes PCL to copy all the files from labeled tapes #3 and #4 to disc under the vser's

account.

D. Other Commands

This group of commands provides for file deletion, directory listing, file positioning,

and other manipulation and maintenance functions.

1 • DELETE

Fi les may be erased using this c,ommand, which ,is of the form:

DELETE fid

where fid represents name-account-password ",of an existing fi Ie. Following the entry of this
\

command, a confirmation message of the form "DELETE fid?" is typed. The user may respond

by typing IIYES" to confirm the operation or with anything else to cancel it. If YES is typed,

the fj Ie is deleted and the disc space released. For example:

< DELETE SOURCE--PLEASE Cr

DElETE SOURCE-":"eL~ASE ?YES Cr

S

DRAWING NO. i'02''-1~'{'?
SHEET ./?;/OF /'~~(;

Upon receiving this command, EDIT locates the fi Ie in user's directory and responds with the

confirmation message. After the YES reply, the fj Ie SOURCE is deleted.

2. LIST

To list the account directory or Icbeled tape fj Ie names for a designated account I
•

the user enters a command of the form:

LIST LT [#reel no.][#reel no.][#reel no.] , account

or,

LIST DC, account

PCl scans the directory (DC) or tape reels (IT), listing the names of files encountered.

Output is to the user's terminal in UTS or the line printer in BPM. Printing may be interrupted

and the LIST command terminated with the Bk key. Consider the example:

2. LIST IT#3#4,0986 Cr

ALPHA

SOURCE

A

B

<

labeled tapes #3 and 4 under account 0986 are scanned for existing fi les. Four such fi les

are located and their corresponding names printed at the user's console.

3. SPF

This command allows the user to position input peripheral devices forward

or backward a designated number of files. The co~mand is of the form:

SPF device id ['reel no.l ,±n

where device id represents one of the device identification codes IT, CR, FT, or PR, ±

implies direction and n is the number of files to be skipped. If direction (±) is not given,

forward (r:) direction is assumed.

For example:

.s SPF FT#2076, +2 Cr

<

DRAWING NO. 702-"r.oS
SHEET 1:':10F .. /8'6,

Free form tape #2076 is positioned forward 2 files. If an end-of-reel is encountered prior to

completion, an appropriate diagnostic is given to the user.

4. SPE

The user may skip to just following the last fi Ie on labeled tape through the

following command:

For example:

SPE IT [#reel no.]

<: SPE IT#5 Cr

<

pel positions labeled tape #5 to jusf following the last file. The user may now add additional

fi les to the tape.

5. WEOF

This command enables the user to write an end-of-file mark on output peripheral

devices. The command has form:

WEOF device id [#reel no.J

where device id ;s any output device code excluding IT and DC. pel writes on(EOF on

magnetic tape and double IEOD records on card and paper tape. For example:

< WEOF CP Cr

<

This example causes PCl to punch two successive: ! EOD cards.

6. REW

A user may request that designated magnetic tapes be rewound using tOhe following

command; i,

REW #reel no~ [#reel no.l ••• [#reel no.]

pel rewinds each tape in 'the order specified. For example:

< REW #205#206 Cr

<

DRAWING NO. 702~9
SHEET /~;OF /8t~~

Tape units currently identified with reels 205 and 206 ore rewound.

7. REMOVE

This command permits the user to request removal of tapes no longer needed

and thus, release the tape unit for other purposes. The format is as follows:

REMOVE Dreel no. [#reel no.] ••• [Dreel no.]

Each tape specified is rewound and, upon completion, a dismount message is given to the

operator. For example:

< REMOVE #2075#2076 Cr

<

Tape units associated with reels 2075 and 2076 are rewound. Messages are given to the

operator to dismount these tape reels.

8. TABS

This command sets listing tabs for the current output device as defined by

the latest TO or OVER command. It is of the form:

TABS ,[,c2]···[,cnJ,
where c. represents column numbers of desired tab settings. PCl merges the settings into the

I I

current output deb. For the ME device, settings are transmitted to the COC routines which

performs the actual tab simuJation in this case. Consider the example:

I I

< TABS

<

10, 19,37 Cr

DRAWING NO. 702489
SHEET /L~:,JOF .lb Q

1/\ !
Assuming Meta-Symbol source is being/copied to a listing device, this command sets the

!
appropriate tabs for this language,

E. Termination of PCl

In order to Close the current output file,. it is necessary for the on-I i ne user to i ndi cote

when he has finished with PCl functions. The command END fulfills this requirement and also

returns control to the UTS executive. Prior tq exiting, a termination message is given to

the user. For example:

< END Cr

PCl PROCESSING TERMINATED

1

This command ClOSES. the current output file (if any) and causes. PCl to return to the executive

command level. The Executive responds with Its identifying mark (J) indicating the command

state.

F. language Syntax

The PCl control language is designed to be free form with a few restrictions imposed ..
for simplicity in implementation'and use. These include:

1. All commands must comply to the general format given in the definition.

2. Blanks are allowed preceding or following an argument field. Imbedded

bl~nks are not permitted.

3. At least one blank must follow each command verb and must precede an

imbedded command verb (TO, OVER).

4. Continuation between input records is not aIlQw~~,.' (One command per line.)

5. End of command i.s in~icated by a period (.) or by end of the input record
'0". ••.. . .

(col umn 80 for card input, .Cr or ~f for TTYt~)' '.

6. An output device or file (TO, OVER) must be defined prior to or on the same

line with COpy command. COPYAll, END, TO, or OVER commands terminate

the current output specification.

DRAWING NO. 7024~~~)
SHEET /1f{S-OF /,:; ~

Each command is edited for compliance to the above rules and is checked against Table I.

The user is notified of all errors (including I/O errors) through appropriate diagnostics.

A severity leve I of 1, 2 or 3 is attached to each error and has the followi ng effect on the

execution of the command in question.

- \wcsrntng, require 11$011 confirmation from on-line user, continues execution

for batch user.

2 - invalid syntax or I/O error, 1'erminate execution of command, but continue

syntax edi t for both on-I i ne and batch users.

3 - format error, terminate command, revert to command state for on-line user/

read next command card for batch user.

The maximum severity encountered for a command is displayed following diagnostic output.

For example:

5. COpy CC TO DC/A Cr

INVAUD DEVICE

SEVERITY 2

<

DRAWING NO. 702489
SHEET/,vt;"OF / 8G

INDEX TO PCl COMMANDS

COpy copies device{s) and/or fjle{s)6~ER device or file

COPYAlL

DELETE

LIST

REMOVE

REW

SPE

SPF

TABS

WE OF

copies file catalogs between disc and labeled tape

deletes a fi Ie

lists fi Ie names from account directory or labeled tope

removes reels from tape units

rewinds tape reels

spaces to end of last fi Ie on labeled tape

spaces device forward 01' backward n fi les

set tab stops fatr output

write end-of-fi Ie on device

DRAWING NO. 70248~i

SHEET /'f<-;'J OF /ii' (~~

X. Loading of Program s (LINK)

rABLE OF CONTENTS

INT~ODUCTION

LOAD MODULE STRUCTURE

A. Program

1 . Pure Procedure

2. Data or Program Context

3. COrnIllon

4. DCB's

5. Public (core) Library

6. System Library

B. Global Sym.bols

C. Inte rnal Symbols

SYMBOL TABLE FORMAT

THE LINK COMM.AND

A. Load Module Symbol Tables

B. Merging Internal Sy.mbol Tables

C. Library Search

D. Display Options

COMMANDS WHICH INITLt\.TE THE LINK SUB-SYSTElvI

A. LINK

B. RUN

C. CALL LINK

BREA~ Key

Index. to, L~~K CO:rnp1aIl,ds and Option~
.'~ : t/';

Pa;e

150

153

153

.~ (:>.~

INTRODUCTION

DR/'~WING NO. 7024.39
SHEET)~/e; OF /8 c;

LINK is designed to construct a single entity called a load ITlodule (Ll\,f). _'""- load

module is an executable prograITl formed from relocatable object modules (RO!vf' s i

and/ or library load modules (LM's). ROM's are representations (of program.

and data) that are generated by a processor such as Meta-Symbol or FORTRA.N.

The on-line user has, at the executive level his choice of constructing a load

module (LINK), loading into core a previously constructed load lllodule (LO.AD),

starting execution of the loaded LM (START), or corn.bining the above steps (RUN).

RUN is used either to load and start execution (LOAD-STAR T) or it is used to Ih:k t

load and start execution, (LINK-LOAD-START) see PART VI TerrninalExecutive

Language (TEL). A library load module is a single entity formed from relocatable

object mop-ules which is constructed in such a manner that it ll1ay be combined'

witr other ROM's or library load modules. LINK is a one-pass linking loader

(reads each input rpodule onc e) :m,aking full use of the mapping hardware.
/ ' ,

LINK is not an overlay loader. If the need exists for overlays the user must call
, .

on the overlay loader by entering a job in the batch stream. At a later time a

simple chaining feature will be added to LINK to provide a siInple form. of oyerlay.

In order to form a load module which may later be combined with other load rnodules

or ROM's the load module 'rn.ust be of one protection type. _-\ progranl of n1.ixed

protections type may not be corn.bined.

Object programs consist of one or more program sections. Sectioning is the

arbitrary grouping of areas of a prograITl into logical divisions, such as specifying

one section for the ITlain prograITl, one for data, ?ne for literals, etc. Furthermore

with :meITlory map and/or write locks, program sectioning enables the progran"L."TIer

to designate the ITlode of protection he wishes to have for the progranl divisions.

The access protection features are:

.. read, write, and access pennitted (data)

- read and acces s pe nnitted (pure procedure)

DRAWING NO. 70248::
SHEET I L-.<:) OF / .:{ ~.~~

7 / " ,r

... read only permitted (static data)

... no acce s s. re ad, or write pe rmi tted (no acce s s)

DRAWING NO. 7024S,.l
SHEET .<}.'() OF /"il t~:<

LOAD MODULE STRUCTURE

A load module (LM) formed by LINK may be throught of as being comprised

of three parts: A. program, B. global symbols, and C. internal sy:mbols.

A. Program.

The program. may be sectioned into the f~l1owing parts:

1 . Pure procedure ... This section of code has read and

access protection is generated by the

com.pilers and assemblers as control section 1 .

2. Data or program. context - This section of code has read,

write and acce s s protection and is gene rated

by the cbmpilers and assemblers as control

section o.

3. Common - This is blank GOMMON and is generated by'

compilers and assen1.blers as a dunu···ny section

with the nam.e F4:COM. The size of blank

COMMON is determined by largest size

declared.

4. DCB's .. A Data Control Block is a table containing the
; .

information used by the lvlonitor in the periorI11.ance

of an I/O operation. LINK will construct a DeB

corresponding to each external reference \~rith

names beginning wi.th F: or ~1:, or i.t \vill satisfy

these references from. a standard set, allocated

autom.atically·£or each on ... tine user.

The standard set of DeB's will be defined in a later

document along with the information COI,taineq. L""1 the

job information t9-bl~ :·(.~IT)I.:' ~~·~~.d:'.co,~~~xtareas ior

, t~~' }mbli'c' library .~~·4:':~:·t~'~:~l~,;~~:;~~;~~eEis~r·~··;··':~ndotheX'
1 • '. ~ '.. .•

UTS'$"t~~.dar4s.·. DCB's constructed by LINK will be
.. .

DRAWING NO. 702489

SHEET /-5/ OF 186:

twenty-two (22) words and will contain default

assignments. Additional words are generated

allowing space for a file name, account nunlber,

pa$sword, input serial nUInbers and/ or output serL=.l

nwnbers. The exact nmnber of additional words

and what defaults will be assUlned is to be specified

in the same docrunent. In those cases where the

DCB's constructed by the loader do not fit the use r' s

needs the user may define his own. Vlhile allocat~ng,

constructing and combining DeB's, LINK will always

guarantee that each DeB will be contained \vithLYl a

page. This allows the operating/system to access

DeB ' s in eithe:r mapped or urunapped mode.

5. Public (core) library - Each installati.on will have the ability

to define a set of reentrant sub rou tine s which to ge the r

constitute the public c ore -library. The reent:.-ant

portion of the core library is sha red a1llong use rs

(on-line, batch, and real-tilne), thus s.aving physical

core Inemory and allowing for Inore efficient sy-sten:

operation. The user dependent data for each core

library routine is alloca,ted by LINK at a ii."Ced 'virtual

address. Thus, the public library is constructed

in two parts: reentrant procedure and direct access

context data (i. e. in fixed virtual rnen1.ory). By

forIning the library in this manner a speed advantage or
from 5 to 20 perce~t oyer push-down storag~, re-entrancy

can be obtained. . ","

6. System library,~·· The' systenl library, n'1uch'the"sanle as the public

,co:t:~"'librarYJ is constructed in two'parts: reentrant

B. GloQ.al Symbols

DRAWING NO. 70.~4g9
SHEET /,S~ OF /tlt:;

procedure and direct access context data. Routines

which are obtained from the system library becoIne

part of the user's program and are not shared. The

speed advantage is still maintained by providing a

library which accesses a data area in fixed virtual

memory.

The difference between the Public Library and the

System 'Library is that every indiVidual user pays

core for each System Library routine used while on1r

one instance of the Public Library is required no

matter how many are using it. In the Public Library,

however, use of just one routine requires core for

the whole package. The Public Library contents \\,.i11

be specified and built at SYSGEN time.

While performing the link process, a global synlbol table is const.ructed.

This table is a list of correspondences between syrnbolic identifiers

(labels) used in the original source program and the values or virtual

core addresses which have been assigned to them by LINK. The global

symbols identify objects (DEF' s) within a module which may be referred

to (REFed) in other modules .. This.table·~s~,q.v;aq)able to DELTA, for

use in debugging, anQ.:~q .. pYMCQN.
.II , ••

4 ..

C. Internal Symbols

An internal symbol table is a list of correspondences similar to the
,.

global but which applies solely within the module. Each internal sy-rnbol

table' constructed by LINK is associated with a specific input nlodule

and identified by the module's file name. The internal as \vell as the

global symbol tables are created for use by the debt:tg processo:rs,

such a.fPp;~.LT.A. The user has the ,a~~ll~yunde:r;:DE.L.TA to defin~
, ".,

which se't"~[internal sym.bols al"e to be used':~9:?i:,~.~;"~~~fi.C"d~1)p.ggm.g
activitie s ~

SYMBOL TABLE FORMAT

DRA \VING NO. 702~±89

SHEET /,:[3 OF /6~;

As has been mentioned above, the main usage of symbol tables are by DELTA.

DELTA allows the user to reference both internal as well as global symbols

in the debugging of programs. The user operates on his object programs as

formed by the loaders, together with the tables of internaland global s~~nlbols

accompanying them in what appears to be assembly language symbolic.

Both global and internal symbol tables, as formed by LINK and used bY' DEL T_-\.

consist of three word entries. Symbolic identifiers (labels) are lin"lited to seven

(7) characters plus count. Symbols originally longer than seven are truncated

leaving the initial characters l although the character count is retained. SYlllbols

which are identical in their first seven characters and are of equal length occup~­

one position in the symbol table. The value or definition for nlultiply defined

symbols is the last one encountered during the linking process. Each s~ ... nlbol

entered into the table has a type and internal resolution classification. The

internal resolution types are; byte, half-word, word, doubl~ word, and const2.:1t.

The following is a list of the symbol types which are supplied by the object·

language and maintained in the symbol table: ins truction, integer, EBCDIC :ext 1

short floating point, long floating point, decimal, packed decimal J ana hexadeci:11.al.

In order to provide internal symbols definition together with internal resolution

and type classification, the relocatable object language will be augn1ented. This

means that the compilers and assemblers must be changed in order to pro\-ide

this facility. In addition, existing loaders must be modified in order to process

the changes in the object language. The required additions to the object lan~na~t:'

and the exact symbol table format will be detailed in a separate docu111ent.

THE LINK COMMAND

The LINK command nlay appear both as an executive comn1and (in TEL) or it

may appear as a direct command to the LINK processor. All operations that can

be performe~ under the LINK executive command can be performed under the

sub-syst~m. The,. no~~tJ.?J)~a'nd conventions for specifying the reteI?-t.ion, deletion,

and :nergi.ng OL\rt~r.~,~i:.s.y~n)~oJ~ .. "a~e. t~e same.
'. '." ..

Th~': mO,st<commonplace LINK commands are of the form:·.·

'LINK mil, m.£l,... ON 1m (on a new file)

LIN'Kmfl, mfl,... OVER 1m (over an existing file)'

where

DRA WING NO. 702489

SHEET /.f)'Y" OF ./ ,8 :~

LINK mil, mn, ... (on a temporary file for sub­
sequent loading)

mfl

1m

specifies the load module or relocatable object

module name and is represented by file name,

account and password (in this order) separated

by hyphens. In the absenc·e of account and/or

pass word, the log -on accounting identification is

used. A dollar sign '$' n1ay be llsed to designate

linking of the most recent cOlnpilation or as sell1bly.

s pecifie s the name (file identification) of the load

module to be created by LINK.

Optional specifications on the LINK command control:

A. Load module symbol tables

(I) / (NI) The parenthesized letter s "NI" preceding an input

module's fUe identification specifies that no internal

symbol table is to be constructed; the parenthesized

letter "I" specifies that an internal symbol table is to

be constructed. The "I" or "NI" option holds for all

subsequent modules mentioned in the cOl1unand u"ntil

the occurrence of a new specification. In the nbsencc"

of any specifica~ion "I" is assumed.

Example:

LINK A, (NI) B, c, (I) D ON E

This command specifies that a load n10dule E is to be

created for execution from files A, B, C, and D. (By'

implication, the public library and systen1 library' are

to be searched to satisfy any external reference s.)

Internal symbol tables are to be created for file A anCt

D but not for files Band C. The global symbol table

is always retained.

DRA WING NO. 702489

SHEET /.. r ,~ .. O'F /' [/
. ,-~",:,.\ ~:, ~

B. Merging internal symbol tables

(mn, ...) LINK may be instructed to merge the internal symbols

of several files by enclosing the files in parentheses.

Only one level of parenthesized nesting is allo\'Oed.

Example:

LINK (D, A) (NI) B, C, ON E

This command specifies that no symbol table is to be

constructed for files Band C and the internal synl.bols

for files D and A are to be rnerged. The internal s\-nl.­

bol table will·be identified by A.. The identification gh-en

to the internal symbol table will be that of the last input

module specified in the rnerge.

When a load module containing separate internal. s~rlll-

bol tables is itself linked, LINK will merge all the tables

under that module I s name 0

C. Library search

; lid, lid.' ..

(L)

(NL)

specifies the libraries which are to' be searched for

program references which have not yet been 'satisfiel-i.

Libraries are identified by account. TheHst of lib::-ar\­

accounts separated by commas is appended to the LI:\K

command following a semicolon. In the absence of any

other spec,ificatioQ-s the public liqrary will be seqrched

followed by the UTS system library, any user specifica­

tion eliminates these searches unless requested by the

user.

specifies that the public and system libraries are to be

searched to satisfy external reference.s which have not

been satisfied by the program.

specifies that a library search is n,ot. req~este4.'

D. Displays

(D)

(ND)

(C)

(NC)

. (M)

(NM)

DRA \VING NO. 702489

SHEET <.,to OF / lf~;

s pecifie s that at the completion of the linking proces s

(including searching libraries, if specified), an

unsatisfied internal and external symbols are to be

displayed. The unsatisfied symbols are identified as

to whether they are internal or external and to which

module the y belong.

specifies that the unsatisfied internal and external SYll1bo~s

are not, to be displayed.
\

specifies that all conflicting internal and external syn1bols

are to be displayed. The syrnbols are displayed with their

source (module name) and type (internal or external).

specifies that the conflicting symbols are not to be displayed.

specifies that the loading map is to be displayed upon

completion of ~_h~ linking process. The symbols are

displayed by source with type resolution, and value.

specifies that a load map is not to be displayed.

The default specifications for the linking process are D, C, NJ\1, and L. Anv

specifications stated or implied hold over subsequent LINK comn1ands.

COMMAND1'WHICH INITIATE THE LINK SUB-SYSTEM

DRAWING NO. 7u2·189

SHEET)..S""'/ OF ,/f,"':'

The LINK sub .. system may be called as a subroutine or it may be called directly

as a processor.

A. LINK

LINK is called as a subroutine when TEL receives a LINK cOl1."lmand. In this

mode the information and specifications supplied on the LINK comn'1and are

assumed complete. Therefore, the sub-system will have little or no interaction

with the user.

The speci£ied input modules are linked "vUh or without library modules as

specified and, if specified, a map is displayed. The user is notified \vhen the

operation is complete by the executive system (TEL). The sub-system (LINK)

returns control and TEL requests further commands from the user.

Example:

.l LINK (ND) (NC) A, B, C

DONE

If, when called as a subroQ.tine, LINK has any need to request inforn1ation 1ron1

the user, it will identify itself, identify the problem, and then prompt for input

as follows:

LINK HERE

(problem identified)

In all subsequent requests from LINK only the problem and prompt character

are displayed.

B. RUN

The LINK sub-system is called as a subroutine when TEL receives a RUr\

command~ .' In this mode ~nformation and sp~cifications supplied on the RUN

comman(r:a~·e a~'sumed complete. The sub-system normally has no interaction

with the user •

. ' J . * : is LINKs prompt 'character"

DRAWING NO. 702 ~89

SHEET A.,,~§ OF

The two forms of the RUN command that may be presented to the executive

system (TEL) are:

RUN

RUN mlf" mlf" .••

The first form is used to link, load, and start the result of the last major

operation (assembly, compilation or linkage).

If the last major operation was a linkage, the sub-system (LINK) is not needed

and will not be called. However" if it was an as sembly or compilation, LI);K

is called as a subroutine. The second form is used to link, load, and start execu..:

tion of a set of modules. All options of the LINK command may be exercised

in the RUN command.

Two options may appear on the LOAD and RUN commands 'which do not appear on

the LINK command. The options are "NG", and "S". The "S" option allo\vs the

user to specify when copies of the internal symbol table s associated \vith aLlYl

are to be carried along with the loaded LM. Normally" the internal s'yrnbol

table s are not "loaded". and global symbols are "loaded" unle s s turned off by

the parenthesized letters "NG".

e. g. ,

RUN (S) (I) A, B, (NI)C

T~is example requests that files A, Band C are to be linked, loaded, and

started. Internal symbols for the first two only are to be kept \vith the resulti::g

load module; all internal symbols kept with the load module ~re to be "loaded!1

with it.

c. LINK called as a processor

,The sub-system is called directly by using the command CALL LINK. The notatior~

land conventions for input files and retention, deletion, and merging of internal
I

~symbol tables remain the same. The main advantage as a processor is that of inter-

action. It allows the user to link more modules, search more libraries and in

general the user has more control over the linking process. In addition to the

LINK command the sub-system recognizes the commands: OUTPUT, SEARCH,

LIST, QUIT andcEN,Do

DRA"\VING NO. 702 d~9

SHEET /.:5"7' OF /"r.~'1:: C~

Specifications governing the displays and library searches are given imIllediately

following the LINK command verb in the forn1. of a parenthesized code or list of

codes.

(D)

(ND)

(C)

(NC)

(M)

(NM)

(L)

(NL)

specifies display unsatisfied internal and external references

signifies don't display internal and external references

signifies display all conflicting identifiers

signifies don't display identifiers

signifies display the loading map on completion of the linking
process

signifies don't display loading map on completion of the linking
process

signifies search the public and systen1. libraries for unsatisfied
program references

signifies don't search the public and systern library for unsatisfied
program references

The default specifications are D, C, NM, L. Specifications hold oye r sub­

sequent LINK comn1.ands until changed.

1. OUTPUT

Specification of an output file instructs LINK to complete any pre\rious

link process and initiate a new one. The previous output module, if any, is

closed and saved for future loading.

As a processor LINK will not initiate any linking until an output file has been

.identified. The user may specify an output file by the LINK command.

LINK mfl ON lrn (new file)

LINK mil OVER 1m (old file)

All commands are analyzed for validity. If any discrepancies appear,' th'e

user is informed and LINK requests that corrective action be taken.

2. LIST

At any time prior to completing the linking process the user n1.ay request

optional displays to be listed on the printer, file, or tern1.inal. The format of

the LIST command is:
LP (printer)

LIST (loading map, et al) ON file

ME (terminal)

The default specifications are D, C and M.

3. SEARCH

DRAWING NO.,' '702489

SHEET /(/.c} OF' / ... '1 Cit'

At any time prior to the completion of the linking process the user may

request LINK to search his own and/ or system and public libraries to resolve

unsatisfied external program references. The format of the SEARCH command

is:

SEARCH
(L)

(NL)
lid, lid, lid ••.

4 •. QUIT

At any time prior to the completion of the linking process, the user may

request LINK to terminate. Termination results in the release of all core and

disc space allocated as the results of the linking process.

5. END

The linking process is terminated with the END command. This command

instructs LINK to close and save the current output file, if any, for future

loading ..

Example:

CALL LINK

LINK HERE

.. LINK (ND) (NC) (NL) A, B ON JED

""' LINK C

SEARCH CH (L)

LIST (M) (C) (D) ON JOE

END

:OONE
J

In this exa~ple the output file is JED anti input modules A and B are linked. No

display has been requested. Input module C is then combined \~ith A and Band

the ,sysl~er:n library is searched. Then, the user requests that the map, conflicting

and urisatisJie~d symbols be listed on file JOE. The LINK session is concluded by

the command END and control is returned to the executive.
'j'

.BREAK KEY·

DRAWING NO.. 7024f.;9

SHEET /&/ OF:/ .. q.:.~

Despression of this key causes LINK to terminate whatever it h~s'been doing

as soon as it can; however, this signal is ignored if given by the user \vhile h'e is

typing in a command. Usually, LINK will type

REVOKED

as soon as it honors the break. However, if engaged in linking a module or

searching a library, LINK will finish that operation and then tell the user ho\\"

far it has gotten. For example I if working on the command

LINK A, B, C, D

and interrupted while working on file B, LINK will finish linking B and then

type

DONE THRU B

If actually finished with a command before honoring the break, LINK will simple

behave as it usually does' after finishi~ng a command. If called as a sub-system,

LINK will return controi to the user after typing its identifying mark; if called

as a sub -routine, LINK will notify the exec that it has been interrupted, \vithout;

typing anything at all (TEL will tell the user that the command has been revoked).

INDEX TO LINK COMMANDS AND OPTIONS

COMMAND OPTIONS

LINK

D/ND

CINC
-l I

M/N1\1

LINL

IINI

OUTPUT

none

LIST

DIND } DINC

MIMN

/

' . /

MEANING

Specify the linking proce s s

Display or don't display unsatisfied internal
and external references

Display"or don't display conflicting identifier

Display or don't display loading map

Search or don't search the public and system
library

C'onstruct or don't construct internal sumbol
table s

Specify the LM file.

Specify display options to be listed on printer,
file or terminal

Same as link.

SEARCH

END

RUN

L/NL

None

D/ND

CINe
M/NM

L/NL

I/NI

NG

s

DRA WING NO. 702489

S I-IE E T /(~~~ OF.· ... i.:f ~~;

Specify which librarie s are to be used in
satisfying unsatisfied references

Same as LINK

Specifie s the end of a linking proce s s

SpecUie s to link, load and start execution

Same a sLINK

Do not load the global syn"lbol table \vith the
load ITlodule

Load internal symbol table s \vith the load module

XI. Monitor Services for On-Line and Batch Programs

TABLE OF CONTENTS

INTRODUCTION

DATA MEMORY MANAGEIv\ENT

A. Get Limits
B. Get Common Pages
C. Free Common Pages
D. Gei' N Pages
E. Free N Pages
F. Get Virtual Page
G. Free Virtual Page

NEW UTS SERVICE CALs

A. Set DELTA Breakpoint
B. Set Prompt Character
C. Change Terminal Activation and Translation Table

ON-LINE - BATCH DIFFERENCES

A. Exit Return (M:EXIT)
B. Error Return (M:ERR)

, C~ Abort Return (M :XXX)
D. Type a Message (M: TYPE)
E. Request a Key-In (M:KEYIN)
F. Connect to Interrupt (M:INT)

ERROR AND ABNORMAL MESSAGES

SUMMARY OF CALs

A. On-Line, Batch, Rea I-Time
B. Batch Only
C. On-Line Only
D. Real-Time Only
E. Monitor Only

NUMERICAL LIST OF CAL's

OPERATIONAL LABELS

DRAWING NO. 702489
SHEET ,,' ~~ .. ,?', OF ,//~: ~.:

165

170

173

175

176

181

185

DRAWING NO. 702489
SH EET / ./ / OF ... ~ (""Y' l~~:,":,:,

INTRODUCTION

This document describes the calls for service by user programs, their operation and restrictions

in the UTS environment. All facilities and processors now available as BPM services remain

available to the batch user in UTS. Some UTS facilities are provided solely for on-line use,

while others are available only in batch.

New and modified services allow the user to get and free core storage -- both in the old ways

from must above his program area and from common storage and in a new way by specifying the

virtual address of the desired core.

New services are provided to a) allow communication and memory protection changes when

transferring between a user program and system processors, b) set up a "prompt" character with

the terminal I/O routirles which wi II be typed wh~never input is requested, and c) control the

character translation and end-of-message indication tables in the terminal I/O routines.

Some of the current CAL IS behave differently when called by an on-line user. These differences

ar$ outlined.

The Monitor service CALis are listed by the restriction in usage -- on-line, batch, or real-time,

and for convenience in numerical order.

The standard assignments to devices of the system operational labels are listed in the final section.

DATA MEMORY MANAGEMENT

DRAWING NO. /02,,1[59
SHEET /G:~S' OF /"(.'3;j' .:,,;

The Monitor provides two forms of memory management which allow the user to manipulatH his

core 'memory area assigned to data. They are: Relative allocati·on and Specific allocation.

Relative allocation allows user data to be extended from the top or bottom of core. Memoty

may be extended from the highest availab Ie virtual page above the user's current allocation to

the lower limit of the user's common dynamic area. The pages obtained in this manner are

called dynamic pages. Memory may also be allocated from the highest available virtual page

down to the upper limit of the dynamic area. The pages obtained in this manner are called

common dynamic data. The memory management routines do not permit overlapping of dyncinic

and common dynamic memory.

Installation parameters set at SYSGEN time and modified by operator KEYIN'S separately

regulate the amount of core storage available to on-line or batch users.

Specific allocation allows user programs to request or release any virtual memory page between

the first available virtual page and the last available virtual page, but the two forms of memory

management may not be used within the same :program (ot the same time). A sample virtual

memory layout is shown below.
I'

Job

Monitor
dynam i c data

l'
first
available
virtual
page

)
common dynamic shared

data <\ processors.

;% . . /-'
/ //

./ / /

avai lable
virtL:a I
page

Seven monitor service calls described below allow user manipulation of memory. They are divided

into two groups: 1) CAL's analygous to BPM memory requests for getting and freeing dynami c and

common memory, and 2) ·New UTS CAL's which request and release specific virtual memory pages.

The user must confine his memory request to either group 1 or group 2 with an error resulting from

mixed usage. A single program may use both groups of allocation commands so long as all memory

is re leased to the mon itor between command groups.

A. Get Limits

DRAWIt'-.IG NO. 702489
SHEET /{,c~ OF /~,!j ib

M:GL The G L routine is used to obtain the absolute hexadecimaladdressas of common

dynamic core storage. The lower limit is returned in SR.l and the upper limit, in SR2.

The M:G L procedure ca II is of the form

M:GL

Ca lis generated by the M:G L procedure have the form

CAL1,8 FPT

FPT is the address of a word as shown below.

1 X'OB' 10------------- 0

o 7 8 31

B. Get Common Pages

M:GCP The GCP routine is called to extend the lower limit of common dynamic storage

by a specified number of pages. If the required pages are available, condition code (i. e. ,

bit 1 of CC) is set to '0. If the reguired number of pages· are not available, condition code 1

is set to 1 and the number of pages actually available is returned in SR 1. In either case, SR2

contains the address of the first avai lab Ie common page (lowest address va lue). If specific

allocation is in effect, SRl and SR2 will be set to zero and eCl is set to 1, that is the request

is denied. The M:GCP procedure call is of the form

MGCP pages

Pages specifies the number of memory pages by which common dynamic storage is to be ex­

tended.

Ca lis generated by the MGC P procedure have the form

CAL1,8 FPT

F PT is the address of a word as shown be low.

I X'OC' \0--01 Number of pages required

o 7 8 14 15 31

C. Free Common Pages

DRAVVING NO. ?'}24~9
SHEET / t'7 OF /' b" .~.~

M:FCP The FCP routine is called to free a specified number of pages from the loy~~r. iii

of the current dynamic common storage area. The freed pages, are not available for':use by

the user's program (access protection is set to 11) and any attempt to use freed pages wi II

resu It in a trap.

If the specified pages are not part of the user's dynamic storage area, or if in specific

allocation is in effect, no pages are affected and condition code 1 is set to 1; otherwise

it is set to O.

The M:FCP procedure call is of the form

M:FCP pages

Pages spec ifies the number of pages to be freed.

Calls generated by the M:FCP procedure have the form

CAL1,8 FPT

F PT is the address of a word as shown be low.

I X'OD' 10---0 1 Number of pages to be freed

o 7 8 14 15

D. Get N Pages

M:G P The G P r~utine extends the dynamic area of core storage that may be used b),

3

the user's program. If the specified number of additional pages of memory are available,

CC1 (i. e., bit 1 of the CPUls condition code register) is set to 0 and the access protection
\

on the allocated pages is set to 00; otherwise, CCl is set to a land the number of availabl

pages is returned in SRl with th~ access protection set to 00 on those pages allocated. In

any case, SR2 contains the address of the first avai lable page. If specific allocation is in

effect no allocation is made: SRl and SR2 are set to zero and CCl is set to 1.

The M:G P procedure ca I!' is of the form
~

M:GP pages

Pages specifies the number of additional pages requested.

Calls generated by the M:G P procedure have the form

CAL1,8 FPT

FPT is the address of a word as shown below.

0-------,

DRAWING NO. 7024t!9
SHEET ItiJ OF / ;~; (,.

Number of pages required I
~0--------~~------------~~1~5--------------------------:----~3f'

E. Free N Pages

M:FP The FP routine frees a specified number of dynamic pages from the high end of

the area of core storage that may be used by theuser's program. The pages fre~d are no

longer avai lable for use by the user's program, and an attempt by the user's program to

access any of the freed pages wi II result in a trap. If the specified pages ore not port of

the user's dynamic storage area or if specific allocation is in effect, no pages are affected

and condition code 1 is'-;set to 1; otherwise, it is set to O.

The M:FP procedure call is of the form

M:FP pages

Pages specifies the number of pages to be freed from use ,by the user's program.

Calls generated by the M:FP procedure have the form

CAL1,8 FPT .

F PT is the address of a word as shown be low.

10---0 1
Number of pages to be freed I X'09'

o 7 8 14 15

F. Get Virtual Page

31

M:GVP The GVP routine' is called to make a virtual page of memory available to the

operating program. If the requested page is in use, or if physical memory limits have been

exceeded or if rela'tive allocation has been used, no pages are a,ffected and condition code

'1 is set to 1; otherwise, it is set to zero and the monitor sets the access projection to 00 on

the requested virtual page.

The M:G VP procedure ca II is of the form

M:GVP virtual address

Virtual address speclfies the address of the first word in the virtual page desired.

Calls generated by the M:GVP procedure have the form

CAL 1,8 FPT

F PT is the address of a word as shown be low.

I X'05'

o 7 8 14 15

G. Free Virtual Page

DRAWING NO. 702489
SHEET I~ 9 OF /' /1' (~:'

Virtual Address

M:FVP The FVP routine is called to free a specified virtual page of memory. If the

page to be released is not a data page, or if relative allocation is in effect, no pages ore

affected and condition code 1 is set to 1; otherwise, it is set to zero and the Monitor sets

the access protection to 11 (no access) on the released virtual page.

M :FVP procedure ca II is of the form

M:FVP virtual address

Virtual address specifies the address of the first word on the virtual page to be released.

Calls generated by the MFVP procedure have the form

CAL1,8 FPT

F PT is the address of a word as shown below.

Virtual Address

31

10 X'05'
7 8 14 15 31

NEW UTS SERVICE CALs

DRAWING NO. 70;~4B9
SHEET /7DOF I '-~' (:?

Three new calls have been added to UTS in order to provide setup of'commu'nication with

the DELTA debugger, and the terminal I/O handler. They may only be issued by on-line

user's program and are ignored if issued by a batch program. '

A. Set DELTA Breakpoint

Communication between the user's program and the DELTA debugger is via the M:DELTA

routine. Prima"ry use is by DELTA in planting calls to itself in the user1s program in response tc

instruction breakpoint requests. On execution the monitor stores the PSD and general registers

in a 19 word block of user's memory (on a doubleword boundary) and places a pointer to that

block in register 1. The Ic;>cation given in the FPT is then entered. Return to the user's

program is via the TRTN routine.

The M:DELTA procedure is of the form

M:DELTA address

Address is DELTA's breakpoint entry location.

The calls generated have the form

CAL1,8 FPT

FPT is the address of a word as shown below.

I X'OF'

o
J: ------1: t

B. Set Prompt Character

DELTA breakpoint entry

31

The on-line user's keyboard is proprietary: either he has control for purposes of input or

UTS has control for carrying out requests and for purposes of output. Who or what is

controlling the keyboard must be made clear at all times. On-line processors are assigned

a prompt character which is issued to the user whenever control of the terminal is returned

to him for input. This allows the user to know at all times to whom he is talking; who talked

to him last and when he can type. A user program may set the prompt character to key his

input requests if he wishes. Ordinarily when the control is turned over to the user a null

prompt is assigned.

Current: assignment of prompt ,characters is:

'"Monitor

Edit *
PCl <
LINK

BASIC >
Assembler +

FORTRAN $

DELTA bell

SYMCOM

FDP /
user null

DRAWING NO. 7(124·89
SHEET / '-. OF .; :.-~)';

/,,' ,r ~? ~,

M:PC The Set prompt call allows the user1s program to set the terminal prompt

character (identification mark). This prompt character if non null, will be output (usually

at the left margin) whenever input is requested from the user's terminal (UC device.)

The procedure ca II is of the form

M:PC character

I'

I!

Character specifies the EBCDIC prompt character {identification mark) which is tp be

associated with the user. An EBCDIC 00 (Null) means no prompt character is desired.

Calls generated by the M:PC procedure call have the form

CAL 1, 1 FPT

FPT is the address of a word as shown below.

I I I
' EBCDIC: I

X l 2C' 0 ------------- 0 Prompt Characte~
~O--~----~7~8~----------------------~2~3~~24~--~--------~3~1

c. Change Terminal Activation and Translation Table

DRAWING NO. 702489
SHEET /?:) OF ! d (,

Translation of characters appearing on'the user terminal input lines to the EBCDIC ihternal

Sigma 7 standard, translation of EBCDIC to the proper output form for the temlinol, and the

determination of which characters are to be considered end-of-message or activation charact

when received are all controlled by tables resident in the cac I/O handling routines. A

Monitor CAL allows the user to switch among the tables available in the system.

The procedure is of the form:

M:CT n

n specifies the number of the desired table 0 < n < 5.

The procedure generates a

CAL1,8 FPT

F PT is the address of a word as shown be low.

I X'06'

o 78

n

31

The current tables translate for Model 33 and 35 Teletypes, and SDS Keyboard Displays.

Additional tables are contemplated for Model 37 teletypes, IBM 2741 IS, and Frieden 7100·s.

Since translation tables are assigned to lines at SYSGEN time it is unnecessary for users of fi:

location consoles to use this command. Dial-up lines are another matter.

The current assignments for the n parameter are:

n

o
1

2

3

4

5

Meaning

Use DELTA activation set'.(/ = t cr If tab)

Use standard Mod, 33,35 TTY table (cr If and ESC)

Use the standard KID table (all cursor movements, hard copy signais, mode

changes, and ro II commands activate)

Reserved for Mode I 37 TTY

Reserved for IBM 2741

Reserved for Frieden 7100

DRAWING NC). 702489
SHEET;' 73 OF l/ Ii ~

ON-LINE BATCH DIFFERENCES

The monitor has different actions to certain CAL's deperid'i~g on which they~ereissued by an

on-line or a batch program. The CAL's which depend on the calling"environment are descr:ibed

below.

A. Exit Return (M:EXIT}

Batch

On-line

The monitor performs any PMDI dumps that have been specified for the program

and then reads the C device ignoring everything up to the next control carel.

The monitor returns control to the on-line executive program, which prompts

with an 'II at the terminal (UC device) for the input message.

B. Error Return (M:ERR)

Batch

On-line

The monitor outputs the message,

I f JOB id ERRORED BY USER AT xxxxx

where xxxxx is the address of the last instruction execut~d in the program. The

message plus the contents of the current register block and program status double·

word (PSD) are listed on the LL and DO devices. 'The monitor also lists the

message

I J JOB id ERRORED

on the operator's conso Ie (OC device). Post-mortem dumps are performed, and

the C device is read ignoring everything up to the next control card.

The monitor outputs the message M:ERR AT xx xxx where xxxxx is the address of

the last instruction executed in the program on the UC and DO devices, if diffen

The monitor then returns control,.t~ the on-line executive, which prompts for the

next user message wi th an I! I.

C. Abort Return (M:XXX)

Batch The monitor outputs the message I ! JOB id ABORTED BY USER AT xxxxx where

xxxxx is the address of the last instruction executed. This message plus the

contents of the current register block and program status doubleword (PSD) are

listed on the LL and DO device~, if different.

On-line

The monitor also lists the message

I JOB id ABORTED

DRAWING NO. 702489
SH EET /7 if OF /J;-:' (:~

on the operator's console (OC device). The M:XXX procedure call is of the

form:

M:XXX

when a job is aborted, any specified postmortem dumps· are performed, but no

further control commands eire honored untj I a JOB or FIN control command is

encountered.

The monitor outputs the message M:XXX AT xxxxx where xxxxx is the address of
/

the/last instruction executed in the program. This message is listed on the, UC

a~~ DO devices, if different. The monitor then returns control to th~ on.:line

e?<ecutivewhich, prompts for the next user action with an '! I.

D. Type a Message (M:TYPE)

. Batch

On-line

The monitor outputs the specified message on the OC device •

The monitor outputs the specified message on the UC deyicre.

E. Request a Key-in (M:KEYIN)

Batch The monitor outputs the specified message on the OC device and enables the

operator1s reply to be returned to the user's program.

On-line The monitor outputs the specified message on the UC ~evice and enables the user1s

reply to be returned to the program. A prompt character is sent if one was specifi i

by a M:PC.

F. Connect to Interrupt or 8REAK key (M:INT)

The purpose of this procedure is to allow execution of the Pl"?gram to be controlled from the

terminal or console.", When control is ,given to the INT routine, the PSD cnd general registers

are stored ,n a 19-word block of user's memory (on a doubleword boundary) and a pointer to

word 0 of that bloc~,~ is placed in current general register 1. The TRTN routine may be used

to restore control from a cQnSQle or terminal interrupt.

DRAWING NO. 702489
SHEET! 7.5- OF ,.' .. ;:'.' '-/ i..::J

Bat~h
J

The monitor enables the user's program to be connected to a console interrupt

On-line

(key-in addressing the program). This enables the user1s program to be ccritrollel

from the operator's console.

The monitor enables the user's program to be connected to a teletype inter:tupt

(Break key). This enables the user's program to be controlled from the terh1inol.

The monitor INT routine is called by an on";line program to set the address of a routine. to be

entered when the user presses the BREAK key on his terminal. The execution of this procedur

causes the monitor to store the PSD and general registers into a 19","w~rd block of user's

memory (on a doubleword boundary) and a pointer to word 0 of that block is placed in currenl

register 1. The TRTN routine (see M:TRTN) may be used to restore control to the user's

program.

The M:INT prQcedure cqll is of the form:

M:INT address

Address specifies the location of the entry to the programs BREAK response routine. Colis

generated by the M:INT procedure have the form

CALl,S FPT

FPT is the address of a word ds::shown'below:

I X'OE' I 0 -:----~---O I address of BREAK routine J
~O----~----~7~8~~--------~1~4~1~5--------------~----------~31

ERROR AND ABNORMAL MESSAGES

All error or abnormal conditions which normally result in the Ijotch mpnitor continuing to the next

job step will be processed for on-line users as follows:

The monitor outputs two messages. The first message has the form

mrnmm .••

where mmmm ... is the specific message identifying the error or abnormal conditions. Ther message

reside in the system file (:MESS). The keys to the error text records are the codes establisqed by th

monitor for the error or abnormal conditions ..

DRAWING NO. 702489
SHEET ,. ""/,/' OF .".~ ,J

:-' (.I~ : i:~~ r.-.~~ .

The second messag~ has the form

EXEC U~ION~TO.PPPED AT xxxxx

where xxxxx is the location of' the last instruction exe,cuted.

The,se ,messages·are I isted on the UC and DO dev'i'ces, if different. The monitor then returns contro I

to the On-I ine Executive, which prompts for the ne~t user action with an '! I.

SUMMARY OF CALis

There are four CALL instructions (CALl, CAL2, CAL3, and CAL4) provided by the Sigma 5/7 hard­

ware. Execution of a CAL instruction causes the executing program to trap to the monitor where a

check is made for the va lidity. CALL instructions ore used for requesting monitor services~: The

requester may be a user, processor, real-time task, or the monitor. Each CAL trap is decoded to

determine the service requested (if any) and the requestor. If val id, the requested service is

performed. If invalid in either type of CALL or type of service requested, the request is not honored

and the user is informed.

Of the four CAL·s provided by the Sigma 5/7, CAL3 and CAL4 are reserved for the installations or

users; CAL2 is reserved for monitor use and CAL 1 is divided into user, real-time and monitor

services.

The CAL's currently assigned are listed below in five categories: 1) On-line, Batch, and Real­

Time; 2) Batch only; 3) On ... line only; 4) Real-tim~ only; and 5) monitor only.

A~ . On-line, Batch, Real-Time

CAL

CAL, 1

address FPT CODE

FPT X'Ol"
X'02'
X'03'
X'04'
X'OS'
X'06'
X'OB'
X'OC'
X'OD'
X'OF'
X'lO'
X'll'
X'12'
X'14'
X'l5'
X'lC'
X'lD'
X'20'
X'21'
X122'
X'23' .
X'24'
X125'
X'26 1

X'27'
X'28'
X'29
X'2A'
X'2B'

DRAWING NO~ 702489
SHEET 17?OF /' d C.

FUNCTION

M:REW
M:WEOF
M:CVOL
M: DEVICE (PAG E)
M:DEVICE (VFC/NOVFC)
M:SETDCB
M:DEVICE (DRC/NODRC)

. M:RELEC
M:DELREC
M:TFILE
M:READ
M:WRITE
M:TRUNC.
M':OPEN
M:CLOSE

. M:PFIL
M:PRECORD
M:DEVICE (LINES)
M:DEVICE (FORM)
M:OEVICE (SIZE) .
M:DEVICE (DATA)
M':DEVICE (COUNT)
M:DEVICE (SPACE)
M:DEVICE (HEADER)
M:DEVICE (SEQ)
M:DEVICE (TAB)
M:CHECK
M:DEVICE (NLINES)
M:DEVICE (CORRES)

DRA WING f'.!O, 7::2489
SHEETIJ~OF' ~'.' , '_.' l ~:; '-,....:~.~

CAL address FPT CODE FUNCTION
I

(~AL 1,2 FPT XIOll M:PRINT
X'02 1 M:TYPE
XI04' M:KEYIN
XllOI M:MERC

CAL1,3 FPT X'OO' M:SNAP
X'Ol' M:SNAPC
X'02' M:IF
XI03 1 M:AND
X'04' M:OR
X'05' M:COUNT

. CALl,S FPT X'Ol' M:SEGLD
X'04' M:GVP
X'05' M:FVP
XIOB I M:GP
X'09' M:FP

X'OA' M:SMPRT
XIOBI M:GL
XIOCI M:GCP
XIODI M:FCP
XIOEI M:INT

X'1O' M:TIME
X'll' M:STIMER
X'12' M:TTIMER
X1141 M:TRAP

CAL 1,9 1 M:EXIT
! 2 M:ERR

3 M:XXX
4 M:STRAP
5 M:TRTN

B. Batch Only

CAL address
-,..--

CAL1,4 FPT

CAL1,8 FPT

C. On-Line Only

CAL 1, 1 FPT
CAL 1,8 FDT
CAL 1,8 FPT

D. Real-Time Only

CAL 1,5 FPT

CAL1,9 7
8
9
A
B

CAL1,A FPT

FPT CODE

X·OO·
X·01 1

X'02'
X·03

X'2C'
X·06'
X·OF'

X·OO'
X'Ol'
X'02'
X'03'
X'04'
X'05'
X'06'
X'07'
X·OB'
X·09'
X'OA'
X1OB'
X'OC·

X'OO'

'X~Ol'

DRA WIl'-IG NO. 7024139
SHEET / /i'> OF /~g G

~UNCTION

M:CHKPT
M:RESTART

M:LINK
M:LDTRC

M:PC
M:CT
M:DELTA

M:TRIGGER
M:DISABLE
M:ENABLE
M:DISARM
M:ARM
M:DCAL
M:CAL
M:SLAVE
M:MASTER
M:SBACK
M:RBACK
M:TERM
M:RXC

Reserved for
real-time
extensions

Save Monitor's interrupted
environ~nt
Restore onitor's interrupted
~nvironment

DRAWING NO. 70:::·~\39

SHEET 186 OF l .. S C,

E. Monit'or' Only ,

CAL address- ' .. FPT CODE , FUNCTION

CAL 1, 1 X'16 1 Direct Disc Read
X·17~ Direct Disc Write

CAL1,9 6 C lose Cooperative Fi Ie

CAL 1, B Event Mark
Event Count Reserved for
Event Time generalized e\'
Event Auto- measurements
Display Contro I

CAL2, ° Branch to overlay
segment (OB)

CAL2,O Branch and save
segment number Used fe

(OBAL) i~ternc

i\I\onHc

CAL2,2 Restore segment and overlo;

B*SR4 (OBSR4)

CAL2, 3 code
1

System Recovery

CAL2,4 code
1

Reserved for internal debug routine

1 The code appears in the address fields of the CAL instruction and is internally assigned.

NJMERICAL LIST OF CAL·s

DRAWING NO. 702.:"';9
SHEET / ~ I OF / ~3 ,;.,.

The following list gives all UTS CAL in numerical order with the M: proc name for invoking

the routine and a brief description of the function performed. Restrictions on usage to on­

line, batch, and real-time are given in the use code column on the left.

m restri cted to mon itor use

o restricted to on-line use

r restri cted to rea I-ti me use

b restricted to batch use

usable in all environments

If a CAL is given which is illegal for the current user it is treated in the same way as an

illegal instruction.

CAL·s marked with an asterisk (*) are new to UTS or have different or extended functions

relative to BPM.

DRA 'NING i"-l(). 70:2489
SHEiT 18.:J.OF /.0 ~;:'l

Numerical List Of Monitor CAL's

j

USE FPT M:
CODE CAL he" c:bde NAf~E UTS Description

.
CAL1,1 FPT 1 REW

2 WEOF
3 CVOl
4 DEVICE (PAGE)
5 DEVICE (VFC)
6 SETDCB·

B DEVICE -(DRC)
C RElEC
D DElREC

F TFIlE
10 READ
11 WRITE
12 TRUNC

14 OPEN
15 CLOSE

m 16 Direct disc read
m 17 Direct disc write

1C PFIl
1D PRECORD

20 DEVICE (lINES)
21 DEVICE (FORM)
22 DEVICE (SIZE)
23 DEVICE {DATA}
24- DEVICE (COUNT)
25 DEVICE (SPACE)
26 DEVICE (HEADER)
27 DEVICE (SEQ)
28 DEVICE (TAB)
29 CHECK
2A DEVICE (N LINES)
2B DEVICE (CORRES)

0 2C PC * Set prompt character

CAll,2 FPT 1 PRINT
2 TYPE * Type message to operator

(or user)

4- KEYIN * Type message and await
response

DRAWING NO. ~r024B9
SHEET ! B, OF {' .":)~

USE FPT M:
CODE

:
CAL hex' code NAME UTS Description

,. , ... _" CAL1,2 FPT 10 MERC

CAL1,3 FPT 0 SNAP
1 SNAPC
2 IF
3 AND
4 OR
5 COUNT

b CAL1,4 FPT 0 CH~PT
b 1 RESTART

r CAL1,5 FPT 0 TRIGGER
r 1 DISABLE

i--r 2 ENABLE
r 3 DISARM
r 4 ARM
r 5 DCAL
r 6 CAL
r 7 SLAVE
r 8 MASTER
r 9 SBACK
r A RBACK
r B . TERM
r C RXC

CAL1,6 unused
CAL1,7- unused

;;.i

CAL1,8 FPT 1 SEGLD Load overlay segment
Ib 2 LINK
b 3 LDTRC

4 GVP * Get virtual page
5 FVP * Free virtual page

0 6 CT * Change cae Table
\.

8 GP * Get core page i
9 FP * Free core page
A SMPRT
B GL * Get available core limit
C GCP * Get core page in commp
D FCP * Free core page in commc
E INT * Connect to interrupt of

BREAK key
0 F DELTA * Return to DELTA Debugg

10 'TIME
I 11 STIMER -

12 TTIMER

- -. 14 TRAP

l,JSE
CODE CAL

CAL1,9 1
2
3

-4
5

m 6
r 7
r 8
r 9
r A
r B

r CALl, A FPT
r

m CAL 1, B code
m CAL.1,'.C code
m CALl, D code
m CALl, E code

m CAL2,O
m CAL2,1

m CAL2,2

m CAL2,3 code
m CAL2,4 code

FPT
hex code ,

o
1

N,AME

EXIT
ERR
XXX
STRAP
TRTN

Event marker
Event counter
Event timer
Display

OB
OBAL

OBSR4

I

DRAWING NO. 70i;..~89

SHEET IA¥OF I&r;;.,

VTS

*
*
*

'"
*
*
*

Description

Norma I program term i notol

Error termination of iob sti:
Error term i nation of iob

Close cooperative file

Reserved for real-time

Save monitor environment
Restore monitor environmer

Monitor performance
measurement

Branch to overlay segment
Branch to overlay and save
return
Restore segment and return
·SR4

Reserved for error recovery and diagnosis
Entry to executive DELTA

All remaining CAL?, x instructions are reserved to monitor use.

i " fll CAL3,x and <;:AL4,x instructions are available for installation assignment.

OPERATIONAL LABELS FOR ON-LINE USE

DRAWING NO. 70~Ui89
SHEET /8~'~OF /l~ (~

An operational label is a name (and a set of monitor records) used to identify a logical

input/output function. All I/O activity (Reads and Writes) take place through the information

in a DeB. One piece of information there is the device address or, alternately, on operational

label which in turn is connected to the device. The connection of devices to DCB'sthrough

operational labels allows the installation the capabi IHy of changing the device assignment of

a particular I/O class. The batch user may change the assignments for the duration of the job

by using I STDLB cards or the operation may make permanent changes using! SYST key-ins.

For on··dine operation the operational label assignments are kept separatel}' from batch and ark not

changeable by the user. Change by the operator is a possibi lity and is left as an open question.

Table 1 below lists the assignments of op labels for on-line.

Label

DRAWING NOo .: 02489
SHEET /~OF /60

TABLE 1. Monitor Operational Labels for On-Line Users

Standard Use Assigned Device ./0 Function

J--~--B-I------~--B-i-n-a~~.-------+---D-is-e-------+--R-e-~ad~n-um--be-r-o-f-'b-~-e-s-s-pe--C-if-ied----------t

input

C

CI

Control
input (same
as UC)

Compressed
input

Terminal

Disc

Read number of bytes spec ified
or to messag, complete

Read number of bytes specified

----------~~--------------+------------+----------~~--~------------~

51

Element
input

Source
input

Disc Read number of bytes $pec 'fied

Disc Read number of bytes spec ified

1---------+--------:---4-------+---------------.... -~ .. -.-... -..
BO

co

Binary
output

Compress8(f
output

Disc . Write number of byte~ spec ified

Disc Write number of bytes specified.

~-----...:.....-+----------+-------+---~------------.-.. --.. ~--
~o

so

PO

Element
output

Sour~e ' , ,
output

Punch
output.

Dbc Write number of bytes ~cified

Dtsc Write number of bytes specified

Dtsc Write number of bytes specified

1--.----.-----+--~------.-~4---_,._~-_+--=---------O---......... -------_t
UC

DO

LO

Users
Terminal

Diagnostic
Output

Listing
output

Terminal

Terminal

" Line Printer

RelJd or write numbpr of ~ytes
specified .

BreokhtQ carrioge ... si~e records,
insert carriage returns, and type up
to'132characten.

Write number of bytes specified up to
one lin., 1 < '

	001
	002
	003
	004_01
	005
	006
	006a
	007
	008
	009
	010
	011
	012
	013
	014_02
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026_03
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038_04
	039
	040
	041
	042
	043
	044
	045_05
	046
	047
	048
	049_06
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077_07
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093_08
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128_09
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147_10
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163_11
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186

