
ISAM FOR UTS

F. Haney
D.· Heying
R. Sharpe

Distribution: D. Cote
R. Spinrad

AD-72-0868
November 10, 1972

-1-

I. SUMMARY

. The add i ti on of ISAM fi Ie capab i Ii ty to UTS wi II requi re

12 man-months of effort, t9tal, for design, implementation

and checkout.

The work wi II take six months.

UTS is organized to permit clean additi on of the ISAM

fi Ie access method. Each access method is implemented

by a self-contained content manager. Several access

methods have been added recently at a cost of a few man­

months effort each.

UTS ISAM will be equivalent to XOS ISAM in performance.

UTS ISAM will provide all functional capabilities available

in XOS ISAM.

UTS ISAM will provide automatic increase in file size {extends},

as required, a feature not available in XOS ISAM.

-2-

II. INTRODUCTION

The ISAM facility in UTS is a functional adiunct to the conventional

multi -level keyed fi Ie capabi lity which provides superior performance

and requires less direct access storage for a special class of file mani­

pulation. Current multi -level keyed fj les support all of the functional

capabilities of ISAM (except for incidental differences involving the

location of the key field and maximum key length). Enhanced perfor­

mance is provided for sequential access of ISAM files by combining

the IImaster-index II (of conventional keyed fi les) with the data. Thus,

ISAM combines the space and sequential access speed advantages of

consecutive files with the random access by keys of keyed files.

A new file organization, I for ISAMr is provided as a new modular

(isolatable) facility i~ UTS. This new file organization may be accessed

either sequentially or randomly (by key). ISAM files must be created

sequentially (sorted-key order), but may be updated randomly (by key).

The KEYED files do not constrain keys to be within the data record and

(currently) constrain key length to 31 byi'es. The ISAM files requi re keys to

be containecT ~ithin the data record, but allow keys to be up to 255 bytes

in length.

III. FUNCTIONAL DESCRIPTION OF ISAM FOR UTS

The ISAM file organization may be accessed via the standard file CALs

M:READ, M:WRITE and M:DELREC. Extensions are provided in three dis­

tinct system areas:

A modular file access routine for ISAM supplements the current

set (individual modules currently manage consecutive, keyed, and

random fi Ie organizations).

The user control language is incidentally extended in batch (Cel)

and on-line (TEL) to reflect the new organization (indexed) and the

key length and key oosition within the data record.

-3-

System procedures (for Meta Symbol) are expanded to include

. the new organization and the key length and key position

within the data record.

Changes to the system procedures, CCI and TEL are ~nly cosmetic additions

to existing parameterized facilities and hence are essentially trivial. The

. only significant development is concentrated in the provision of a new, modular

access routi ne.

-The control language extensions to CCI (Batch) and TEL (on-line) are as

follows:

TEL
!SET dcb paramsilND~XED ;BLKL=I I I iKEYP=mmmi KEYL=nnn

CCI
IASSIGN dcb params;INDEXED, (BLKL, 11I),(KEYP,mmm), (KEYL,nnn)

INDEXED is a new organization and supplements the current set which are

CONSECutive, KEYED and RANDOM.

The value associated with KEYP indi cates the key position relative to byf'e 0

of the data record, while the value associated with KEYL indicates the

key length from 1 to 255 bytes. The value ofBLKL indicates block length*

in bytes and wi II be rounded up to an integral number of 2048 byte pages for

system use.

The syStem procedures (reflected in the Metasymbol SYSTEM BPM) are extended

as follows:

M:DCB dcb, (IN DEXED), (KEYP,mmm), (I< EYL, nnn), (BLKL,III)

M:OPEN deb, (INDEXED), (KEYP,mmm), (KEYL,nnn), (BLKL,III)

No cosmeti c changes are required for the procedures:

M:READ

M:Vv'RITE

M:DELREC

(read record)

. (write record)

(delete record)

* The block length is assumed to be 2048 bytes (the curreni' s},stem si'ondard) if
unspecified. This value allows user blocking factor control up to 8192 bytes;
logical records, however, con.be as large as user memory as contrasted to the
xes limit of 32,767 bytes. .

-4-

The I<EYL (key length) value of INDEXED would be treated exactly

as KEYM (key max. length) is now for KEYED fi les.

The index will automatically "prefer" RAD and the data will automatically

"prefer" DISC, however, the space for each is allocated dynamically and

no user file space specification is required for public files. No special

utility is required for "reorganization II to eliminate overflow blocks; a

standard PCl (peripheral control language) COpy will move an INDEXED

file to any device, including OVER itself, to effect reorganization. Also,

a standard LIMIT card specification for FPOOl (file pool) and IPOOl

(index pool) will provide (and allow) space to hold high-level index blocks

in core and minimize redundant (wasteful) reloading of index blocks.

The I~AM file space may be (optionally)" preallocated with a suitable

specification of the RSTORE parameter (available via SET, ASSIGN,

M:DCB and M:OPEN).

IV. PERFORMAt'-JCE

There are several dimensions of performance which can be examined relative

to ISAlV\ in UTS. First the data structures in ISAM data blocks are approxi­

mately equivalent to those in UTS consecutive files. Thus, the read/write

CPU time for UTS consecutive files {about 1.7ms} is an upper bound on the

CPU time required per read/write in ISAM files.

The second maior factor to consider in performance is elapsed time due.

to I/O accesses. There are sev~ral subfactors to consider here: First, the

No-wait I/O capability that exists in UTS will be avai lable to allow users

to overlap CPU and compute time. To consider other factors; a tabular list

of differences between Keyed and ISAM files wi II be illustrative.

Feature

1. Variable (Large)
Block Sizes
vs. fixed Block
Size

2. Pre-Allocati on
vs. Dynamic
Allocation

3. Key in data vs.
Keys separate from
data

-5-

Advantage ISAM

Sequential Processing Requires
fewer accesses to second ary
storage due to larger b10ck
sizes.

Data kept proximate thus re­
quiring less arm movement; File
Deleting is faster.

Fewer I/O accesses for sequential
processing. Less storage occupied
if Key is naturally part of data.

Advantage Keyed

Random Processing requires
less channel and program
wait time due to smaller
amount of extraneous data

transferred. Less mai n memory
requi red to process file.

I

Wasted Secondary Space
kept to minimum.

Restructuring required much
less frequently. Files may be
created with Keys in any order.
Easier to update with better
representation of updates in the
i nd ex struc ture •

The above advantages in favor of ISAM wi II be provided by UTS ISAM. The

number of accesses will be reduced to the same as XOS ISAM for sequential

processing because data blocks will be variable sized and no index need be
I

consulted. The arm motion wi II be the same for UTS ISAM as for XOS ISAM

if pre-allocation is requested. If pre-allocation is not requested, groups of

several thousand bytes will be allocatedr keeping the data relatively close

together while retaining the space efficiency of dynamic allocation. In addition,

any UTS ISAM file can be increased in size without explicit request. Deleting

fi les will be as fast in UTS ISAM as in XOS ISAM as a concise record is kept

of. all space in the fj Ie.

-6-

v. DESIGN APPROACH

The UTS file management system provides a convenient vehicle for

addition of new access methods. Much the same approach would be

used for adding ISAM as was used in adding the Random,Consecutive,

and ANS tape access methods. This approach is represented graphically

in Figure Y.l.

Figure Y.I shows that user programs request system servi ces via CAL's

which are uniform across access methods. CAL decoding transfers

control to the appropriate monitor routine. If the request is an open

or close request the common cat'alog is consulted and the data set is prepared

for accessing. If the request is an access request {read, write, position, etc.},

the appropriate content manager is called to do any access-method-dependent

processi~g. Each of the content managers wi II call IOQ for any physical data

transfers required. They wi II also call the File Space Allocator for any needs

to allocate secondary storage.

ISAM, an independent module, would be added as a content manager in the

same" manner as the above mentioned content managers were added. A

Content Manager Environment Simulator is available to assist in the deve­

lopment of the above mentioned content managers. This simulator, which was

used in development of consecutive AM and ANS AM, provides the interfaces

depicted in the chart (namely CAL decodes interface, physical I/O interface,

and Allocati on interface). Thus, new content managers can be debugged as

user programs from a terminal and then integrated into the system as a working

entity.

Content Managers

.-~--- -.

I ,;----------,-
Device

: Access Method
I

- - _.-
'ir

ANS
tape AM

-- - - -. -
,,;'

Labetfed
tape AM

Physical I/O Request

" loa &'Hdlrs
~ueuing, Dis­
patching

-7-

User Progra'!l

serv i ce req uests

CAL Decoding

Read,
Write,
etc.

--
,,/

r-

,v

Random
Access
Method

~

OPEN,CLOSE ,
/'

-- ----- -
,,,..

Consecutive
AM

Catalog
Consul tati on

- '---- - -
'/ \Y

Keyed
AM ISAM

~

- - ,-- - - - -- - - I-- - - - _. -.-- '-- "'- - -

\/

FIGURE Y.I

(,
\.

Fi Ie Space Reques

File Space
Allocator

-8-

The ISAM structure would be bui It as outlined in Appendix B.

Block sizes \\Ould be variable with secondary storage space used

determined by rounding block sizes to·the next multiple of 2048

bytes.' The complexity of the struci'ure is estimated as approximately 30-40010

greater than that of UTS consecutive fi les. Thus, the amount of new

code required for the content manager is estimated at approximately

. 900 words. Sequential processi ng of ISAM files wi II not require any

accesses for index blocks.

Neither IOQ nor the Ale Space Allocator would require any modi­

fication as they are sufficiently general to handle the ~equirements of

ISAM. CAL decoding and Catalog routines would be modified to

recognize the new access method ..

ISAM would be added to UTS as an option avai lable to programs whose

data are a good fj t to the ISAM structure - i.e., they can avai I themselves

of the potential performance gains and can tolerate the concomitant de­

crease in flexibility. Keyed files would be retained for their greater flexi­

bility and function and (in some cases) superior performance

VI. COSTS

These cost estimates are developed by conside.ring the size and complexity

of the tasks involved and by comparing this development with simi lar ones

which have been complet'ed recently.

The major development areas are:

1) The ISAM access method itself

2) The automatic recovery interface to assure no loss of updates

in the event of a crash

3) Changes to the JCL decoding in eCI and TEL to provide for new

parameters

-9-

Changes are not required to file backup and peL utility processors

since organization information is accurately carried on file to tape and

tape to fj Ie operations.

Costs are:

Design, development, debugging, and technical documentation - 12mm

Availability time after start of project including integration - 6 months

with a new system version

These costs do not inc lude standard overhead burden.

Similar projects completed in the last two years which, are of similar com­

plexity and scope are:

Random fi les in EOO BPM

True consecutive fi les in COO UTS

ANS Tape facilities including
both the access method and label
validation

deve I opment

3mm

4mm

24mm

elapsed

4 months

7 months

10 months

APPENDICES

The following two appendices show:

Functional Description of UTS Keyed files as per the

,UTS Reference Manual.

'Functional Description of XOS ISAM as per the XOS

Reference Manual.

The keyed file description is presented here merely to indicate the similarity

to ISAM and to show that ISAM contains no major function or architectural

aspect that is not presently supported in UTS.

APPENDIX A

UTS KEYED FILES

APPENDIX D. FILE ORGf'tNIZATION

/\ file is an organized collection of inFormation that may
only be created, modified, or deleted through the Manitor
system. A fi I e has one base name Gut may have other names
synonymous with it.

Information is retrieved from a file by specifying the File
name, password, account, and the desired record with in
the file.

The Monitor maintains a directory of accounts that have
file~ '...-hieh are maintained between jobs. This is called an
Account Directary, and contains, wi th each account r",'r'­
!:-'?~I -:::" ~~'~""C_~: :.:;; ~ ~:1~..:.r0ry vi l'jiGS Vermed a File Direc­
tory} for that account. A File Directory contains, with
each file name, an add.ress of a tabl e containing file attri­
butes and disc locations for that file. The table is called
a File Information TobIe. To summarize, the Monitor has
a singl e Account Directory I which in turn points to a Fil e
Directory For each account. Each File Directory, in turn,
points to a File Information Table (FIT) for each file.

Each file has associated with it (in the FIT) information
control I ing who may access it an dhow it may be accessed.
A password and a I ist of whieh accounts may read or update
the file is recorded. Protection from unauthorized dis-
closure is attained by checking the inFormation carried with
the fil e" against the information suppl i ed by the user.

Changes to the file are allowed or disallov/ed based on the
user's password and account. No accidental changes can
occur.

A file may be shared among several users providing that none
of them updates the file or attempts to replace the file.

A job cannot create a file in an account other than its own.

FILE ORGf.\N!ZATION

KEYED FILES

Keyed files are those in which each record has em identi­
fying key associat~d with it. A key consists of Cl byte string,
the first byte of which states the number of bytes in the
string. The contents of each byte may be a binary number
or a character.

As the file is being created, a master index is also created
with an entr}' for each ke}'ed record in the fil e. ,The entry
contains such information as the key, disc address of the
record, size of the record, and posi tion of the record
within the blocking buffer.

The records are automat; eel I)' packed into blocking buffers
vlith the last portion of the lu~t rccxd extending into an­
other buffer as necessary. If th0 record is large, it is
written dircctl), from the user's area instead of being
packed info a buffer. Keyed fi I (!s rna)' be accessed by
direct or seq'Jcntiol accesi.

CONSECUTIVE FILES

Consecutive files are files whose records are organized in a
consecutive manner; i. e., the user is aware of no identi-
fying keys associated with the records. The records may
only be accessed sequentially.

As :ith Keyed fil es, a master index is created along with
the file. The master index contains information similar
to thar for keyed fi I es. The key wi /I be a three-byte
'dummy' key, created by the NI0nit:)r, but ~rans~arent t:J

H~c ...;s:r. As l:,':H:;;1 new record is created in a consecutive
file, the Monitor binarily incremenrs the last dummy key
to obtain a new dummy key.

The records in consecutive files are bbcked identically to
keyed fil es.

MULTI-LEVEL INDEX STRUCTURES

A multi-level index struct"ure is a collection of hierarchical
levels of index blocks, where the entries in a higher level
point to index blocks at the next lower leve! and the entries
in the lowest level (called level 0) point to data records.
This is best illustrated byanexample assh0wn inFigure D-l.

Both keyed and consecutive files have level 0 index blocks.
Only keyed files can have a multi-level index structure.
The multi-level structure is initially built during a CLOSE
if a keyed file has more than three level 0 index blocks.

In the example shown in Figure D-l, the keyed fi I e has

o 15,570 records and the keys at level 0 paint to these
data records. Based on an l1-bytemaximum keylength,
there are 40 keys in each I evel a block and 127 keys
in each higher-level block.

f) 390 index blocks at level 0, four index blocks at levell,
and one ind~x block at level 2. The next higher-I evel
is built if the last level has more than three index blocks.

Each entry in a higher-level index block contains the disc
address of an index block at the next lower level, and the
key of the first key in that block.

The multi-level index structure can considerably speed up
the direct access of a large keyed file, at only a small cost
of secondary storage space. Since the keys are ordered in
ascending sequence, at most it would take three index block
accesses to locate a dolo record as shown in the example.
Without the higher-level index structure, it could take up
to 390 index block accesses.

The user has no conlr:)1 over the initiol creotian of the
multi -Icvel index structure but he Call s;)t>c:fy" when and
if the higher-level slructure should be I·~built. This can

, ,
.~. f

Appendix D 193

level 0

390 Index Blocks

~ KEY 1 -
KEY2

~
4 Index Blocks j ..

.~
~ KEY J t--- Data aroc!.:.s

KEY40

KfY41 n
~ I

~~
KEY 4J

KEY 5041 KEY 42 W
, ,

Level 2
~ KEY 5081 ~

W

I Ind~x Block KEY 80

KEY 5121

+ KEY 1 i-

KEY 5081 KEY 81 j j

.'
KEY 10161

KEY 82 KEY 10121

r KEY 15241 t--

J j
</ .

',:..:'«.,":'. :.' :::::. :\:.,:' L-;>. KEY 10161
KEY 120 I·j".·' :':.:';:,.;.

I~EY 10201 I

'I

KEY 15201

1
r-'>

.~ KEY 15241
J

KEY 15281

J , ,
V

KEY 15561 KEY 15561

I .. :"';': .'. KEY 15562

J

KEY 15570

I"':;':"
:.;:<:: .,'

:- .

Figure 0-1. L'>:arnplc of Multi-lc!vcl Index Sfwcture

194 Appendi>(D

c. ~r'ccified by using the NEWX option on the ! ASSIGN
---,nt'fol COII"r.:.::lnd or tile lvi:UPEr j and t,\:DCi> FTocc&Jrcs.

~.::;? space required to hold a given file can be estimated by
:::,;)lying the following rules:

!>ATA BLOCKS

.~ i. Each c!":'~G b! od~ contains 2048 bytes.

1- " /.. Each cda grcnule contains one data block.
, - j

;3. Each oota bloc!": is c::n-:1p:lct, except that all records
start on word boundari es.

.
" ... -:;. Each record or record segment (if a record resides in

more than one data block) has a level 0 index entry
associated with it. •

j lEVEL 0 l~":DEX BLOCKS

j 1. Each index block contains 1024 bytes.
i
i

2. Each index granul e contains two index blocks.

3. Each index block is compact except that 12 bytes are
preempted and spare space may be reserved at user
request,.

I;' 1
!

4. Each index entry occupies KEY0 plus 14 bytes.

-..
1 '.ii HIGHER-LEVEL INDEX BLOCKS

1. Each higher-level index block contains 20·18 byfes.

2. Each higher-I evel index granul e contains one higher­
level index block.

3. Each higher-I evel index block is compact except that
12 bytes are reserved.

4. Each higher-level index entry occupies KEYM plus
five bytes. .

The following two examples show the cost to build the multi­
level index structure, i. e., disc accesses to bui Id it and
disc storage required to contain it, and the saving in lime
when accessing it.

Example

Number of records

Record size

Key size (KEYfy'\)

Spare space

40/000

60 b),t'es

3 bytes

. 1

(40,000)(60)
-zols- 1172

Keys/Level 0 Index block
(1024-12-102)

17
53

(1024 x .1 == 102; 14 + 3 .7; 17 KEYM)

Level 0 Index blocks

Level 0 Index granul es

(758 -;. 2 = 379)

Level 1 Index blocks

(KEYM + 5 = 8)

level 1 Index granules

40,000
53 = 758

379 (RAD or disc)

758
=

(2048-12)/8
3

= 3

This fi:.:: Icq~lrc~ :: t.:;~:;! ';)c 1554 granules of stor'ag~ of which
three are required to store the multi-level index. It would '
cost 761 disc accesses to build the structure when the file is
closed. With the mul ti -I evel structure, each random record
fetch requires 3-2/3 device accesses, whereas without it
each fetch would be 254 accesses.

Exampl e 2

Number of data records

Record size

Key size (KEYM)

Spare space

Keys/Index block

Keys/higher-I evel
Index block

Item

Number of data
records.

Level a gra!1ul es.

Level 1 granul es.

Level 2 granules.

maximum for each de-
vice (see below).

1024 bytes

15 bytes

= 0

= (1024-12)
34 29

(2048-12) = 101 -~

7242
7232 RAD Disk Packs

6144 24000

91 353

2 7

1

The cost to build the multi-level structure in the 7242
ex~mpre is 714 device accesses. Without the multi­
level structure a random felch could take 707 device
accesses in the worst case; wi th it, four accesses ere
required.

The reader CW) easily see that the co.;t of storing the multi­
level inde>~ !;truclure is triviClI and the one time cost to build
it can be insignificant br a large file which ViiI! be read or
updated frequently.

Appendix D 195

The following refinen~cnts of the build and rebuild logic have
been made to better accommodate on-I inc s}"stc~ u~age.

1. If the higher-level structure is being built on-line,
only the first three level 1 blocks will be built, thus
limiting the cr.1 :;,';.,mt of time token to build the higher­
level struclure on-I ine.

2. The higher-I evel structure will never be rebuilt on-/ ine.

3. When a record is acce~sed in a file for which only a
partial higher-I evel occurs, and the record is beyond
the end of the c~rrcnt higher-level, then level J is
extended as the search for the desired key takes place.

RECORD BL.OCKING

The system will autoMatically block record;; fer keyed end
consecuti ve fil es in 5.1 2-word blocks to pravi de more effi­
cient use of disc space. The user has no knowledge of this
blocking and, when reading, will receive the o?pr-:>priote
record within ~he block and not the entire biock.

Vlhen updating a keyed fi I e, the user may re'.vri te a record
in (l size lo:"ger or sma1ler than the original r~cc .. cJ size. Ii
necessary, the Monitor \\'ill allocate additional disc space
to accommodate the larger size.

A write with a 0 byte count will result in a master index
entry for the record with fields in the entry pertaining to
disc address, record size, and displacement into the block­
ing buff.er all set to zero.

RANDOM FI LES

Random files provide an organization for those users desiring
to manage their own files or who do not wish to incur the over­
head imposedbysystem file management. Random oiganiza­
tion differs from keyed and consecutive organization as foil OVlS:

.1. A Random file is simply a colledion of contiguous
granules on the specified device type. The number of
granules is specified at the time the file is opened (and
may not be expanded after it has been opened). If the
requested number of granules are not available con­
tiguously, an abnormal code (major code X I 01 1

, sub­
code X'OB') is returned to the user and the file is not
opened.

2. The user must specify a relative starting granule num­
ber with each read or write and a byte count (the de­
fault byte count in the DCB may be used). If the
starting granule number docs not fall between 0 and
the total number of granules allocated at "OPEN" -1,
inclusive, on error code of Xl 42 1 is then returned to the
user. If the byte count exceeds granule size, the oper­
arion will continue in the next contiguous grcnule{s)
unti I all requested bytes have been transferred. The sys­
tem \',ill r('turn the next available relative 9ranule num­
ber to t he user (in the KI3UF fi el d of the DCS) at the
completion of cClch read/write. If there arc n:)t suffi­
cient granules to occommocbte the $peciiicd byte co~nt,
on error c~dc (:~'ai'JI c:d..: >:'57', subcodc X··~·~') is re­
turned to the user and the oct~)al number of bytes trans­
milled is plac<.>d in the RV.'S ond ARS ficlds of the DeB.

196 Appendix D

·3. Each write/read consumes the entire specified g'~
The c(mknts of tht:: 9j~;iiUlc includes no system ii,:
tion. Management of the user's data is the respcr::,'.
bility of that user.

4. Function has the following meaning for Random fi: ...
when any random file is opened it is first checked k~

. existence.

e If the file does not exist and Function is IN Or

INOUT, an abnormal code of X'03' is given.).
the file does not exist andOUTorOUTINisspeci_
fied, a new Random file is allocated unless the
associated account number differs from the US~. ~
aCCO'Jr1t r.1.II""'t'~nr r:., ~!:!S c-:::r~, ~!:~ r:!;:; ' .. ;;:, /1ui ,-,e

opened and an abnormal code of X' 14 1 wi II b-::
returned).

c If the fil e does exist, the user is checked for a::::"
pricte access permission (read/write acco...,ot 11-'.' -

bers, password), and an abnormal code X' 14' :~
rel·urned if there is a violation. If fhere is ,.
violarion, the user may proceed to read (unless
opened oun or wrHe (unless opened IN), If·
fi Ie is opened OUT or OUTIN, the function is
changed to INOUT. Note that the user may WI; t~
in a granule in which he has already written, ere.:
may also read a granule in which he has not wli'"

Thus, the.Monitor provides allocation of granules, securi:,,.
checks and normal I/O queuing service and clean up. ~.
user is responsible for record management.

FILE ACCESS

DIRECT ACCESS

Direct access may be used only on fi les with keyed
organ ization.

OUTPUT FILES

When a WRITE is given, a key must be specified. The kc:,~
do not need to be given in a sorted order. They will be cr~
dered as they are stored on disc.

Unlike sequential output files, a WRITE never causes for­
ward information to be deleted.

Reading is not all owed.

SCRATCH FILES

A scratch file is identical to an output file, except thot
reading is permitted before the file is closed. /\s for out­
put files, a key must be specified on each \'Irite. The
keyed record is merged into the fi Ie.

A Rcod mayor may not specify a key. If a key is
specified, a search i5 made of the file until the ke,' is
found and the record is Ihen Icad. If the key is. nor

" i

APPENDIX B

XOS ISAM FILE

the case of direct-=access media the actual physical disposi­
tion of information is determined solely by the system and
thus is transparent to the user. (The use of the basic direct
access method, BD;:\M, implies no file structure or organi­
zation whatever, and can only be used with private or non­
standard disk packs.)

The four possible fife organizations, and the media to which
they apply, are

o Sequential (C) - all media.

o Indexed-Sequential (I) - direct-access only.

o Partitioned (P) - direct-access only.

o Direct (D) - direct-access only.

Although, in general, each file organization corresponds to
a particular access method for file creation, several access
methods may apply for subsequent access to a file of given
organization. For example, a partitioned file can be
read by the assisted sequential, assisted partitioned, virtual
sequential, and virtual direct access methods.

SEQUENTIAL (C) ORGANIZATION

The sequential file organization permits sequential access
to the records or blocks of a file. It is created by either
ASAM or VSAM, and is the only organization applicoble
to nonmagnetic device files as well as to files on magnetic
media.

Dependi ng upon fi I e media restri ctions, any of the three
record formats, F , V, or U, are allowed with use of the
assisted sequen~ial access method. Although a sequential
file c(m be written or read at the logical-record level by
ASAM, it can be read (or i .. ;:. ~.l) _,.i), :"~ j,1e block level
by VSA/,,~. . - - ... -.

Existing sequential files on magnetic tepe are always ex­
tendable - at the cost of 105ing any subsequent files on the
same volume .. On dlrect-accc5:; :-ncdia, they may be ex­
tended up to the limits of the possible space allocation; also
individual records may be deleted, or modified if the record
length is not changed.

INDEXED-SEQUENTIAL (I) ORGANIZATION

The i ndcxed-sequenti 01 fi Ie organi zation permits either
direct access to individual logical records identified by
record key, or sequential access to records in ascending
order of their keys, starting wilh a specified record. A
record key is a dolo item \vi thi n the record body, pro­
vided by t'he user, v,hich serves to uniquel>, identify the
record. The location of a record specified by key is deter­
mined (b}' the system} via on index mechanism that is con­
structed ond maintained by the system as port of the file.

Indexed-sequential organization is applicable only to direct­
access media. Either F- or V-format records are allowed.
An indexed-sequential fi Ie is created using the assisted
indexed access method (AIAM).

The indexed-sequential organization is shown schematically
in Figure 6-9. The file is composed of data blocks, index
blocks, and (possibly) overflow blocks. Upon creation, the
file will consist of one or more data blocks, and at least Oile

i,!1dex block. The index may be multilevel, as illustrated
in Figure 6-9 (1st and 2nd level index blocks). The numbe~
of index blocks and number of levels thereof is a function
of block size, number of data blocks, and record-key lengtn
(as described below).

Prior to fi Ie creation, the user must request allocation of
sufficient file space to allow for all of the data, index, and
overflow blocks that may eventually be needed. The metho:!
for calculating this space requirement is described below
under IlSpace Allocation". AI so prior to creation, he must
describe to the system both the beginning byte posi.tion,
relative to byte Oof the record body, and the length of the
record key by means of the DCB parameters KYP and KYL
respectively.

6-12

During file creation',· the user must create the record keys
and write the logical records in ascending record-key
order (binary collating sequence); if a record is presented
out of ascending key order it is not accepted and an ab­
normal condition occurs.

For each base data block written, a record-index entry i:
automati cally created. It is composed of the record key
corresponding to that of the last record in the data block
and a pointer to the beginning of that block. The recorc­
index entries are blocked as are user records, and the set of
these blocks constitute the first-level index.

:.~

For each first-level index block written an index entry is
created. It is composed of the record key correspondins
to that of the last record-index entry in the first-level
index block and a pointer to the beginning of that block.
These index entries are blocked, similarly, into the second­
level index.

Given eno1Jgh dolo blocks, the above process appl i os re­
cursively with third, fourth, ... , 255th level indices pro­
duced. In general, at Icast one (partial) index block exi~:j
at an)' level when Iwo or more blocks exist at the next lowe:
level - including the "data block level".

Overflow data blocks are created if, during subsequen!. up­
dating, either inserted or lengthened records cause origin.J~
records to be "pushed down" beyond the boundary of a dol::
block. The resulting overflow is automati cally moved to c"

overflow block '",hich is linked between the two data b!oc~1
as shown in Figure 6-9. Two or more overflow blocks cc:'\
be linked between two data blocks in this manner. !,-!oti!
that ovc.rflow blocks do not appear explicitly in the index.
and are undesirable from the viewpoint of access speed :;:'.:
storage space utiliz.ation. A utility processor, REORGI, ;\
provided to effect (J rcorgani z.ation of overflowed i ndcx('(:
sequential files. {Sec the XDS Utilities Reference Mcnuoi .

o'
f'" ;

AZ

FZ

FZ --
PZ KZ

LZ -I-

. VZ

PZ

•
•
•

VZ 1>--1-

2nd level 1st level

L ______________ ~ ____ ._~~-----,--------~

Index Blocks

AA

AZ

•
•
•

SA

FZ

•
•
•

GA

JZZ

Lf.

LZ

MA

PZ

QA

VZ

I
KZ

n iT

1.--_---->1

.~ !

~---'
Base Data blocks

----..--------'
Overflow Data blocks

\
~--~

figure 6-9. Indexed-Sequential Organization

! ~-13
~ ~ . ~ I" •

. -. ~,

/.1 the end of the file crr'':)tion process, the system auto­
matically inserts a dummy record hoving the maximum
possible key value (X'FF .•. r'). This permits subsequent
insertion of records with keys 9reater than that of the last
record originally written, eifectivl2ly allowing file exten­
sion. The dumm)' last record cannot be accessed by thc
user program, however.

Care must be taken that the key field docs not overlap the
dc!e~ion control charC'lctcr (byt'3 0', if the latter is s~eci­
fied; a program abort on fil.;; opening will occur if KYP -:-: 0
(ut:fuult vu:ut: C) :n :: .. ::; c:;:;c.

If the ICY \indeX copy) option or Ii1t!. I',,\:uici-l PiQC~JU't:
is sp(;cified, th~ s),s!o.o:-r. , iii O'JL-::;':;l;cal!,' cep,' tlw index
portion of an existing file to a temporary filc in secondary
storage. This will generally rcsul t in faster di rect-access
processing time, especially if the secondary-storage media
is appreciably faster than the media upon which the entire
file resides, c. g., RAD vs. disk pack.

PARTITIONED (P) ORGANIZATION

The partitioned organization permits ~ither sequential
access to the records of a file, or direct positioning to the
beginning of a named partition of a file for subsequent
sequential access to the records the~eof. This organization
is essentially an arrangement of a sequential file into
uniquely locatable subfi les.

A partitioned file is created with the assisted partitioned
access method (APAM). It is applicable onl}, to direct­
access media. Either F or V record format rna)' be uti lized.

The partitioned organi zation is shown schematically in
Figure 6-10. Note that the user's data blocb arc preceded
by, and possibly interspersed wi th, system-constructed
partition key (name) and a pointer to the first logical record
in the associ°cited partition. The directory blocks are,
howevcr, trcnsparent to the uscr's program as they are
not accessible via assisted access methods. For example,
if either APA/vl or ASAt\/\ is used to read a partitioned filc,

they will "skip over" thc directory blocks. However, the

user must, prior to fi Ie creation, request allocation of
sufficient file space to a Ilow for both data and directory
blocks. The method for calculating and specif),ing this
space requirement is described below under "Space
Allocation" •

To creote a partitioned filc, the user must begin by assign­
ing a pori ition key (with the M:STOW procedure); that is,
the file must contoin at least one partition. During crea­
tion, the user may creole as mClny partitions 05 desired. In
addition \0 principal (i. c., fir~.t-GSsigncd) F~rtition keys,

the user mo>' as::ign s}'nonym I~t!ys, i. c., alia5cs of a
given pOiotil ion nome. The kr~ys may be lip to 7.55 bytes in

length.

Duri~g SubSNluent processing of the fil e, synonym keys
may be adced, any kt,y m·:;/ be d(,lt::to~d, ~·~d new part;­

tions created. 1n addition, c>xisting records rr:oy be deler o,­

or be modificd if the record length is not changed.

It is important to note that when reading a partitioned fi Ie
(either with APAM or ASAM), the system does not detect
an end-of-partition condition: the user moy read to eno­
of-file, across partition boundaries, whether starting from
a partition boundary or from beginning-of-file. A partiti:~

key locates the bfOginning of 0 p::Jrtition I but r.ot the e~= :'
the preceding one: therefore a partitioned fi Ie may be
given a hierarchical, or "nested", structure by i'he appro­
priate orderinl1 of subsumed partitions. (End-of-portitk",
may, of course, be signaled by a user datum cer.:!cted oy
the program, e. g. I a zero-length record in '/-format.)

The pointer portion of a dircctory entry contains the rela­
tive block numoer of the block in which the associc7 ::~o
partition begins, ond the bl'h.:! displocernent of that part:-'
tion's first record. (Syno'"\ym entries contain, in addition.

a synonym indicator.) The partition keys ore sorted, wt'oe:­
necessary, and maintained in ascending order of key VO'\.J2

within the directory block chain.

D1RECT (D) ORGANIZATION

The direct organization permits direct access to blocks of :::
file by relative block number (in relation to the beginnir~

° of the file, block 0), via the VDAM access method ani)" Ii
is an "unmanaged \I organization relative to the C, 1, and?
organizations.

6-1-1

A direct-organization file is composed of blocks of BKl
defined (or default 1024-byte) length, and transmission
must begin on a block boundary. However, the length of
the data actually transmitted is specified in the M:READ cr
M:V/RlTE procedure by the transfer-Iengtoh (TRL) option
(default = 1 block). The length of data transmitted may te
less than the block length, or may extend over several co~­
tiguous blo~.k.s, but it is limited by the maximurn-transfer­
length (MXL) parameter of the DCB associated wi th the fi '~.

No block header is c~eated in D organization; no logicc '
record structure within the block-is recognized by VDAM.

Files created by VDAM are accessable by'VSAM and also
by ASAM using U record format.

1"EMP011ARY f"l'm PEI1MAUEHT fiLES

Files on magnetic media con be either temporary or per­
manent files. (The distinction is not relc"ont for nonr.l'::~­
netic dcvice files, lor a number of reasons.) 1n princip!':'.
a pcrmcmcnt file is one thot continues to (~>:jst in c rc­
tricVClbl!: fonn after the execution of the job that cr('C~"!
iti a temporar), fi Ie doc:; nol. That is, a permanent

.."' ·f"

- ..

for file reference, only the STS option - with OLD or
MOD sp~cificd - need b~_ cddcd.

Space is allocated for the creation of a new disk or RAI)
fiic occorcing to tne specified or default values of the
SiZ parameler or the !ASSIGN control command (or of
ihe M:ASSIGN procedure, if used). The syntax of the SIZ
parameter is described in Chapter 3.

The meaning and effect of the SIZ poran)l'~ter valL!e~ Vf'Jrv

uccolUlng 10 rnc orgcmization of the fi Ie to be created.
Thc}' me c\;scribc':'; f'-'r eacn organization in the following
subsections.

Note that no new space allocation can be made for a disk/
RAD file that is to be rewritten, i. e., a file replacing on
existing identi cal iy-named one wi II occupy the some
S?QCC olloc~h:8 to tne original file. (Status OLD; Output
processing mode.)

CGrJSECUTIvE OnGAfJIZAnmJ

Value 1 of the SIZ parameter specifies, in quanta of 8K
bytes, the initial amount of space to be allocated to the
new file. Value2 specifics the size of the increments -to
be added 10 the fi Ie in case of either overflow of the initial
allocation during creation, or extension of the fi Ie during
subsequent status-MOD, Output-mode processing.

If all of the space specified by valuel is not available on
the first of a series of volumes specified, the remainder will
be allocated on succeeding volume(s).

nWE1tED-SEUUEfJnp.l OnGAWZATIOrJ

For an indexed~sequential file:

value 1 specifies, in quanTa, the space to be
allocated for base data blocks.

value2 specifies in quanta, the space to be
allocaled for (1) the creation of index blocks, and
(2) overflow blocks.

Note that unlike C and P organization files, the entire
and final amount of file space - including possible over­
flow space - is allocated at fi Ie creation time; no sub­
sequent e>-:tcnsions are allo· ... ·ed.

If valuc2 is omi ttod or given a zero vo rue, the s}-,stem
reserves index-block space 05 if all of Ihe file- were to
be alloeal c:l for lK:_': data blocks (I ess index space), and
does. not allow ony space for uvcrfiow.

METHOD OF CALCULATING THE NUMBER OF INDEX
BLOCKS REQUiRED

Since the indexed-sequent-ial organization is relatively COm­

plex, a method is presented for the calculation of the num­
ber of index blocks tha~ will be needed (assuming that the
substantive file grows to full size), given a specified
amount of space for base data blocks (value 1 - value2 X
8, 192 bytes).

Preliminary Definitions. BKL defines the block length of
base cute Llocks, overiiow data blocks, and index blocks,
in bytes. Since blocks of on indexed-sequential file, re­
C''"!~:'k-'~ ('f r:-::,:~:! ::;:-;;-.:..:, .:.::ili iil '-' ..;.-~tit:: UiOCK neader
and a 4-byte linkage field, the usable block size, b, is
defined as follows:

b = BKL - 8

KYL defines the record key length, in bytes.

Both BKL and KYL are specified in the DCB corresponding
to the fi I e to be created.

Values to be computed:

6-30

N , the number of base data blocks.
o .

E , the number of index entries per index block.
x

N l' the number of fi rst-Ievel index blocks.

N., the number of ith level index blocks.
I

Eguations. Assuming that (value l-value 2) > 0, the value
N is derived as follows:

o

N = inte~er [(value l:volue 2)Jx 8192
o JX>rtton of BKl

Any index, entry is comp~sed of a record key plus a
3-b>,te pointer to a late block. Therefore, the index-entry
length, 1, is given by

I = KYL + 3

and the number of entries per index block, E ,by
x

Ex ; integer [~]

The numb;;r of nth level incex blocks, N n, is given by
the number of base data blocks divided b}, tiH! number of

('~trics in an index block, the result being rounded
upwards to an integer, i. e.,

I •

intege.[~j

Similarly

Therefore, the total number of index blocks, Nt that will
be created is

N ~N.
I I

and ~he tol'al amount of space that wi II be reserved there­
fore, is in bytes

N x BLK

The excess of value2 x 8, 192 over the amount of space
derived above will be available for overflow blocks. By
making a prel iminar}' esfir.-;ote of value 1 and value 2, based
on the prediction size of the data Fortior) of the file, and
then performing the calculations described ab:Jve, the values
of value 1 and value 2 may be adjusted to produce the
most efficient allocation. "

Caution: Since blocks on direcf-access media always
being on a sector boundary and take up as
many fu II sectors as are requi red to accommodate
the" block length, the user must carefully relate
BKL and the sector size of the device involved
in order not to waste di rect-acces~ media space.
Specifically, if BKL is not equal to of a multi­
ple of sector size, the equation given above
for deriving No' and thus the entire calcula­
tion, is invalidated.

rM'.TITiOi~£O ORGMlIZATlOt!

Value 1 of the 51Z p::lramcter ~recifics, in quanta, the
initial amount of sp:Jce 10 be allocated to the new fi Ie.
Valuc2 5pccifics the size of the increments to be added

;!o the fi Ie in case of ci th(~r overflow during creation, or
extension <luring subscgucnt status-MOD, Output-mode
proccs$i ng.

To arrive at appropriate SIZ parameter values for a parti-"
tioned fi Ie the user should note that

1. The directory entries and the data records are kept
in separate blocks and that in both cases the effective
block length is BKL-8.

2. To compute the number of partition key entries a
block can contain, Ed' one must consider that the
length of each entry is, in bytes

6··31

KYL + 5

Thus

The probable maximum number of partition keys, both
principal and synonym, to be stowed is therefore a factor in
estimating the best allocal"ion.

DIRECT OnGArJlZATION

Value 1 is the total" amount of space, in CJuanta, to be
allocated to the direct-organization file. Value2 is not
significant for this organization; i. e., a direct-orgonization
file is not extendable beyond its creation-time allocation.

RULE FOR AllOCATION OF MULTIVOLUME
DIRECT·ACCESS FILES

For all files necessitating parallel mounting, i. e., multi­
volume direct-access fi les (I, P, or D organization), the
amount of space specified by value 1 of the SIZ parameter
must be available exclusively on the volumes specified for
mounting or the allocation request will be refused.

PASSWORD PROTECTION

When creating a file that is to be pass\vord protected, or
when accessing a fi I e that has been password protected,
an X l-class abnormal return occurs at OPEN time. The
abnormal return routine must detect abnormal code X'19'
and must then load registers 6 and 7 wi th a value represent­
ing the password before executing an f,,~:RETURN. If the
fi Ie is being created, the password is entered into the HDR3
label. If on existing file is not being accessed, then the
value is compared with the file's password in the HDR3 lobel;
and if the values are identical, processing continues nor­
mall),. Whcn the passwords do not match, the job step is
aborted.

At fi Ie creation time, the user informs the systt:>m that a r,ass­
word is fo be opplicd to the file by means of the PAS o;:)lial)
of the PRT (protection) field of the !ASSIGN command.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06

