
ROUGH DRAFT
Art Rosenberg
2/7/67

Introduction

The Sigma 7 computer has been designed to provide for maximum exploitation of

computer technology. However, hardware facilities merely provide the environment

for software systems which must reflect practical implementation of computer utili­

zation techniques. To this end, the Sigma 7 software provides the Universal Time- ,

Sharing (UTS) Nonitor System, which encompasses those facilities and servicE!s appro-

priate for general-purpose, multi-programmed on-line, time-shared operations. As

such, the UTS Honitor extends the operating capability of the Sigma 7 from the Batch

Processing mode to a more flexible and dynamic form of computer processing~

I. CONCEPTS OF THE UNIVERSAL TIME-SHARING HONITOR

The UTS Monitor has been designed to provide multi-progranunin~ services for on­

line (interactive):., user programs, in addition to batch-mode production jobs, sym­

biont I/O, and critical real-time processes.

To clarify the operational environments which the UTS Monitor is designed to

service, it is appropriate to define a number of terms which will be used in this

manual.

Multiprogramming:

Time-Sharing:

A. technique for maximizing the efficient use of a computer system

by ,overlapping computation with I/O operations. In particular,

where one processing job cannot provide maximum ove'rlap, other

jobs are operated concurrently to achieve such system efficiency

at a reasonable cost in overhead.

The sharing of computer system resources to provide processing

service for several user functions (related or independent),

where an individual job does not require all of the computer's

time. The allocation of such resources is based upon satisfying

the response-time needs of the participating tasks. Thus, critical

on-line processes can be interleaved with on-line, interactive

Time-Sharing
(Cont'd)

Interactive
(Conver sa tiona 1)
Processing:

Remote Access:

Reentrant
: Processes:

Recursive
Processes:

2

operations, and non-priority production jobs can absorb a'ny

remaining computer time.

One of the major benefits of the time-sharing approach to computer

utilization. Direct access to computational processes affords

convenient, personalized services for a variety of new users and

applications. The needs of interactive computation include a

satisfactory response time for non-machine dialogue (e.g., 1-5

seconds), comprehensive, easy-to-use service facilities, ~nd system

reliability.

The physical extension of computer system access via communication

lines. Remote access may be provided for interactive, production,

and critical real-time operations.

Those processes which permit independent users (or user programs)'

to execute them concurrently or in an interruptable ,sequence.

Reentrant processes are in "pure procedure" form, where instruc-

tions are never modified and user-dependent context is separable

from the process through isolable data and machine-register storage

areas. The scheduling and switching of user environments is per­

formed by an external proceis, i.e., an operating system Executive.

, Processes which must control successive use by preserving user

contexts themselves. Recursive routines may be those which call

upon themselves in a nested fashion (last-in, first-ou~, LIFO) or

may be first-level, ma~hine-dependent routines (i.e., interrupt

routines) which cannot expect context to be preserved by other

processes.

3

The UTS Monitor is designed to provide a spectrum of services ranging from

Batch operations through real-time tasks. For each functional level, there exists

. certain fundamental differences in scheduling logic as well as certain services

which must be rendered.

Batch Level

User jobs are organized in a stack fashion, where the stack is a first-in,

first-out queue ordered by explicit priority. Batch jobs are considered as Back-
,

ground operations, with the lowest implicit priority in the system. However, opera-

tional efficiency for production jobs will not be jeopardized unnecessarily because

of priority levels, specifically in the area of system facility allocations. At

System Generation time, or by operator action, resources may be permanently or temp-

orarily allocated for batch operations so that implicit priority operations 'will not

impede production throughput. Once a production job in the background has been

initiated, its allocated facilities (I/O devices, secondary storage) will not be

'preempted except by a foreground task or operator action. Actual Monitor service

'for compute time and I/O operations will, however, be given to a batch job at the

,.:lowest leve~ of implicit priority. unless compute time is explicitly 4edicated for

,such operations.

At the Background level, there does exist a second level of priority, which is

explicit. Normally, jobs can be entered into the stack with whatever administrative

priority is appropriate. However, this will not cause a current Background job to be

suspended. Operator action or a service call from a foreground process can cause a

checkpoint of the current background job (with "draining" of current I/O .operations)

so that an important Background job can be initiated as soon as possible. In the

worse case, the, current Background job c~n be terminated (abort) immediately and

r{~initiated completely at a, later point in time.

4

By definition, Batch jobs are unattended operations. As such, run parameters

must be provided. to the UTS system which define maximum operating limits which should

no~ be exceeded; if such limits are violated, the job will,be te~minated. Where such

limit parameters are not provided by the user, system limits are imposed by default.

Similarly, in the event of system-detected program errors, the default case will be a

job abort. Hmvever, provision is made for user recovery or "end-action", whereby, if

expressly indicated, a user-supplied recovery routine will be given information con­

cerning the type of error detected and the user-program's environment (registers,

status double-word) at the time of error detection. This capability is particularly

useful for run-time debugging.

It is possible to have user programs which are designed to operate in either a

production mode or conversational mode. Similarly, productiqn programs can be initiated

. from a job stack or on-line from a user terminal. In the first ca~e, the user program

must be designed to determine its mode of operation from the type of control device used.

This is set by the UTS Monitor when it loads the program, i.e., from an on-line terminal

or a control card file in the production stack. In· the former'case, however, the user

can also initiate a batch job ,from a remote terminal using the BATCH command, which will

set the mode to production~ not conversational. The program, designed for. both types

of use, will organize its elements to respond iriteractively or process batch inputs and

outputs; this may be done by having two types of "front ends".

User programs can also be designed through the above medium to' switch their mode

of operation from conversational to production, but not the reverse. One should not

confuse the choice of output media with the scheduling queue for a user's job. Once a

job has been assigned to the Batch queue" it cannot be communicated with by the user

tllthough its status can be controlled as any other job in the stack •. If, however,

voluminous output is not desired at a low-speed terminal, the output can be shunted

to <1 secondary storage file, magnetic tape, high-speed printer, etc. The job ~an still

remnin in one of the on-line queues ,for input control' purposes.

5

Interactive Processing

The most significant extension of computer utilization which is accommodated by

Siglna 7 and the Universal Time-Sharing Monitor is in the area of Interactive Processing.

For this environment, the UTS Monitor recognizes the more dynamic needs of interactive

. users as well as certain implicit priorities of their operations.

Interactive users impose an implicit priority upori a computer system by the simple

fact that they are "on-line" to the system. In providing this direct access to the

computer, it is necessary to satisfy the user with a response time geared to a'man­

machine dialogue. Actually, the interactive user can expect two levels of responsive-

ness:

"Conversational"
Response:

"On-Line"
Computation:

When the interactive user makes simple data entries, issues Control

Commands, or requests a simple computational process,' he expects a

rapid acknowledgment of his input or (in the last case) a computa­

tional result.

It is possible for the interactive user to initiate a long and in­

volved computer process of indeterminate length. Obviously, a

response time for: completion of this process cannot be guarjanteed,

but the operating system must do the best it can 'on an equitable

basis for all such users.

By defining system performance goals, the conversational response-time cycle can

be made secure. That is, by establishing the maximum number of users, the cut-off

point in CPU time allocation for a "conversational" process (the "conversational ·quantumll),

etc., it is possible to insure the proper turnaround time to a conversational input.

for 3 general-purpose time-sharing system, it is not possible to make assurances for

turnaround-time of any user computational process; however ,. for special applications

l.Jh(,(,t:· the process is a known quantity, system design can account for some guarantee of

rt ~iponse time a t this leve 1.

6

The UTS Monitor provides a Scheduling package for general interactive users

with installation-dependent parameters to govern the user service at the conversational

and on-line computing level. Special application needs can be accommodated by modifica­

tion or extensions to this scheduling logic.

To accommodate effective interactive processing, the UTS Monitor explo~ts the

Sigma 7 Map feature for dynamic relocation of user programs and/or data. This facility

permits users to share memory easily, not only in terms of preserving virtual memory.

addressing, but in allowing th~ use of non-contiguous physical core memory. ~his is

essential for maximized efficiency in a time-sharing environment, where secondary

storage (disc) is used for inactive program residency and swapp~ng.

Selective memory protection is also provided through the Sigma 7 Map, to insure

the integrity of the operating system and individual user processes and data in a time­

shared environment. User programs cannot accidentally (or otherwise) gain illegal access

to virtual and physical memory areas not specifically allocated for their use.

The Map feature is of great value for reentrant programs, which are of major utility

in a time-shared environment. Common processes can be shared by several users concurrently,

since their unique data areas appear identical in virtual memory, but are actually dif­

ferent in physical memory. By simply changing the user's map and program status double­

word (registers, program counter, etc.), a common process c·an inuitediately start (or con­

tinue) operating for a different user.

Real Time

Critical Real-Time processes are given privileged services as in the Batch Process-

ing Monitor. These include:

Master mode operation

Dedication of core memory space, I/O devices, I/O channels, CALL trap locations,

External Interrupts, cloc~s, fast register blocks, etc.

I/O priority servicing

Interrupt service

Data and Command Chaining

End-Action I/O service

7

In addition, for the UTS environment, the following services are possible:

Clock-watching service (synchronous scheduling)

Virtual memory space dedicated in all user maps

Automatic swapping for non-resident foreground tasks

Non-mapped operation (for critical, resident foreground tasks)

Real-time processes fall into two general categories, as far as responsiveness

is concerned:

Critical .Real-Time

Tolerant Real-Time

In the first case, responsiveness must be insured by constant core residency,

direct connection to interrupts, dedication of system facilities; etc. In short,

system overhead must be reduced to a minimum. Tolerant real-time processes are those

which can afford some reasonable delay between the activating signal and the time

for process execution. In this case, the real-time process can be dynamically serviced

by the UTS Monitor without unnecessary dedication of all operating facility needs,

particularly core memory. However, the implicit priority of any real-time process is

higher than a background job (production) or interactive users and are classed as

"foreground" operations.

Foreground processes can be either permanently installed for continual operation

at System Generation ·time or dynamically loaded as a new job by the Operator! In both

cases, once the real-time.task has been properly loaded into the .system and activated,

it can utilize the privileged services provided by the UTS Monitor. A foreground task

can operate either in the Ma'ster Mode or in the Slave Mode, depending upon its operating

requirements. This facility will require that any user-supplied foreground task which

operates in the Master Mode must be thoroughly checked out before it can be safely

operated in the full UTS environment.

Although the· UTS Monitor will provide a maximum of generalized services and facili­

ties for real-time operations, it cannot, by definition, protect the user from himself.

Most specifically, in a time-shared environment it is quite tempting and easy to over­

load the system. In attempting to operate several foreground tasks concurrently, it is

8

essential to provide sufficient system resources if proper responsiveness is to be

maintained.

Peripheral Processing I
I

One of the important facilities available and important to the Universal Time-

Sharing Monitor is the capability of performing concurrent bulk-input-output transfers

, between various peripheral devices (particularly to and from disc storage) with minimal

interference to other computations. To accomplish this, two types of service functions

, are provided by the UTS Monitor:

SYMBIONTS

COOPERATIVES

In essence, peripheral processing consists primarily of I/O transfers with a

small amount of computational effort to drive the peripheral devices. Symbionts are

the driving routines for peripheral processing and there can be input and output Sym­

bionts for every Sigma 7 I/O device. They operate on the basis of bulk transfers,

independent of any user program needs.

To accommodate'format needs of a user program, the Cooperative routine is employed

, . to feed I/O data to and from a Symbion.t. On input, a Cooperative will break down ,(unpack)

the data for the user program; for output, a Cooperative would pack the data for the
I

, :Symbiont.

Symbionts have an implicit priority higher than background production jobs, but

lower than interactive or foreground tasks. Symbiont operations are initiated by Opera­

'tor action and can be terminated by the Operator as well. Symbionts are also auto­

'matically activated for normal Batch job operations, e.g., printer output via the disc.

User programs use Symbionts in conjunction with Cooperatives'for interfacing, as des­

cribed above.

9

Multi-Processing

Several features of the Sigma 7 compute~ coupled with the UTS Monitor, could be

used for a multi-processing environment. The hardware map, tasking service, reentrant

routines of the Monitor, etc., lend themselves to task-oriented multi-processing.

The UTS Monitor does, not provide for multi-processing, however, since additional

extensions are required for this purpose, primarily in the scheduling logic 'to permit

execution of more than one process at a time. In addition, control would have to be

exercised over the bookkeeping tables of the Monitor such that only one CPU could

modify common data at any given time. Other complications would be caused by I/O and

external interrupt configurations which could require CPU-to-CPU communications not

provided for in the UTS Monitor.

10
Resource Allocation

The fundamental requirement for the UTS system is to perform effective resource

allocation to concurrent system users on a ~ynamic basi~. The iesources are varied

in type, number and mode of allocation; some are more static allocations, others, very

dynamic. Certain resources are very critical to system loading capability and must be

governable by a user installation.

Resources Available to a User Program Under UTS

1. Core memory space for execution

2. Compute time (CPU)

3. I/O channel time. and/or assignment (depending on type)

4. I/O peripheral devices

5. Active swapping storage on fast-access disc

6. Permanent file storage on ~igh-~apacity disc

7. Trap location

8. Interrupt lines

9. Communication channels

10. Last memory blocks

11. Map space (virtual memory space)

The above resources affect users in the following areas:

1. Convenient access for loadi~g (time)

2. Convenient access for execution (time)

3. Restrictions on entry into the system (executable or not)

4. Restrictions on program execution (size, time, facilities) and priority

Those resources whi~h are sharable (i.e., core storage, auxiliary random-access

storage, CPU time) will be controlled by System Generation and Operator Key-in para­

meters so that anyone user or user program cannot freely degrad system performance

or preempt service from other users. Through the use of such parameters, a system

may allocate maximum amount of these resources, special-case (privileged) allocations,

or first-come, first-serve unrestricted use of such resources.

Non-sharable resources will be allocated on a first-come, first-served basis

and/or by dedication to privileged foreground programs. This will be done either by

specific assignment at System Generation time or upon user program demand.

11

II. VTS STRUCTURE

The Universal Time-Sharing Monitor encompasses all of the features of the Sigma 7

Batch Processing Monitor, since a comprehensive time-sharing environment includes pro­

duction job processing as a background operation. As such, the UTS Monitor is 'actually

structured upon the functional elements of the Batch Processing Monitor with several

, notable extensions.

, .

Core residency and overlay organization of the Monitor is different because
f

of the more dynamic environment for interactive users and· additional !Executive

services.

The Sigma 7 map facility is used to advantage wherever possible for dynamic

relocatibility, context switching, core space management, etc.

Provision is made for automatic swapping between core memory and fast disc

storage to provide maximum computation and I/O overlap.

Scheduling is provided for the multi-user and multi-task environment.

File management control is extended to cover the on-line multi-user operating

environment.

The accounting mechanism is extended for the on-line multi-user operating

environment.

Management of public subroutine virtual memory space is provided 'for.

Dynamic core space allocation is provided through the Sigma 7 map.

Provision is made for character-oriented. communications processing and inter-

active user console services.

A conversational Executive Control Language processor is added to supplement

the normal Batch-Mode Control Card Interpreter.

12

The UTS Monitor is composed of a number of functional modules all of which are

pure procedures and therefore reentrant. Those processing modules which are not

required to be permanently in core can therefore always be restored with a fresh copy

from disc instead of being saved each time. The monitor processing modules are linked

together by cent'ral communication and bookkeeping data tables. Any Monitor process may

be interrupted before completion and reentered,providing the common bookkeep~ng tasks

have been completed, or if the interrupting task is independent of the central bookkeeping

functions (i.e., a real-time foreground process with dedicated facilities). In only a

few strategic areas will the i~terrupt problem be regularly forestalled by int~rrupt

disabling while critical bookkeeping is performed; that is, pushing machine register

contents.

Privileged Functions

In the UTS Monitor system, all machine controls are considered to be privileged

to the Monitor and those real-time tasks which require such privileges. Thus, a user,

program can normally only exercise a machine operation (other than computation) indirectly

by asking the Monitor to perform such a function. This applies also to making changes

to data located in Monitor-controlled storage areas in a program's virtual memory. This

is necessary to minimize or eliminate any accidental catastrophic system hang-up due to

a software error. ,By centralizing pr~vileged operations as much as possible, even within

the Monitor area 'itself, system maintenance, extensibility, and modularity is greatly

enhanced.

Executive Functions

Executive functions of the UTS Monitor are distinguished from the more fundamental

Monitor services by the fact that they involve the administrative tasks, initialization

or termination functions, secondary operations for user program operations, or non­

critical yet useful functions for system bsers. The Executive elements of the UTS Monitor

do not themselves perform any privileged tasks directly, but cause the main Monitor

'elements to do so when necessary. Data associated with Executive functions can often

be made non-resident in core memory because of less-frequent use or lower priority for

response when c,ore space is .at a premium.

13

Executive services of the UTS Moni-tor include the following:

Accounting

Job Scheduler (Batch)

Error processing and abort service

I/O resource allocation

Storage allocation (secondary storage)'

File security

User information services (system status, etc.)

Checkpoint service (save for restart),

Console Communications services

Overlay loader

Public subroutine control

Main Monitor

The hard core of the UTS Monitor consists of those Monitor functions'which are

constantly required to be in core memory for program execution •

• ' I/O Dispatcher

I/O Handlers (standard peripher~ls)

Task Scheduler

Interrupt processing

Clock processing

Trap processing

Secondary storage access control

Operator communication

Communications handler (for interactive users)

Symbionts and cooperatives (when. active)

Real-time service routines

Swap module

Map Maintenance (core alloqation)

File Management Basic Tables

14

Service Subsystems

The UTS Monitor provides the operating environment for user programs which can:

be system service programs or private programs. System services are public programs,

designed for multi-use (reentrant) in the interactive case, or any installation pro­

gram for the batch mode of operation. Such programs are available from secondary

storage and are recognized in the UTS Executive command list. (Private programs re­

quire specific file management service for loading and operation.) Service subsystems

are often in high demand for convenient response to interactive usage and can, at

System Generation time, be made permanent core residents. However, in gener~l, the

Service Subsystems are basic programs for system users which are treated as user pro­

grams when operating.

The following subsystems are currently available in the UTS system:

Symbol

Meta~Symbo1

FORTRAN IV (Debug' and High-Efficiency)

SYMBUG (DDT)

EDITOR

HELP

COBOL (Batch mode only)

1401 Simulator (Batch mode only)

Other service supsystems can be added to the System at System Generation time to

serve particular application needs of a Sigma 7 installation. Such subsystems must be

carefully administered as far as becoming public system, services, since they should be

properly checked out, documented, and be appropriate ,for installation needs. Other

'useful routines and programs can be made available to all users by being entered into

a public library and loaded as a private program through the file management facility.

Map-Sharing

All programs and routines, including the UTS Monitor, which will be operating

together in'core memory, must share a common virtual memory, i.e., the same hardware

map. This affords maximum operating efficiency under the hardware architecture of

Sigma 7. Public functions must be consistently allocated the same virtual memory areas

to allow for concurrent use by multiple users. This means that a user's memory map

15

will include all public, reentrant routines of the UTS system that are required for

the user's operation and these routines will always be in the same ~irtual address

locations. For public library routines, which are available to the user but not on

a reentrant basis (or for popular multi-use), any available virtual space is used

at load time.

Map-sharing should not be confused with the sharing of physical core memory.

Routines and/or data used by a program may be in physical core memory but not neces­

sarily in the program's map. Thus a program which uses overlays may have the, overlay

segments in core memory and the overlay'action consists of simply changing the physical

addresses in the memory map. Programs designed for Sigma machines withou~ the map

'hardware and smaller core memories will be operable in a more efficient manner by using

the map in UTS for virtual memory overlays.

F

Map assignments of virtpal memory will typically appear as,follows:

i
F Monitor Area F Monitor 'Area

luser Context User Context
t

F Isystem Public F System Public
Routine Area Routine Area

I
I

F [erVice Subsystem F
(e. g., Ed i tor)

OR *

Standard Run-Time
Package (e.g. , Fortran)

User Program
!

F Iservice Subsystem
(e. g., Fortran IV. Use;r Dynamic Data

Area
User Dynamic Data

I Area

I
-----~-

fixed" virtual memory locations in all users' maps.

F IMonitor Area
. --~-------t

User Context

User Program r

User Dynamic
Data Area'

overlayable processes iri virtual memory; but resident in actual core memory.

I ;.

Certain functions are assigned to permanent physical locations. Such functions

are tied to the hardware (interrupts, traps) and, because they are not relocated, can

oper a te 'vi thou t the map. A dedica ted foreground proces s can be so trea ted and avoid

map-sharing of virtual memory. (Physical core memory, of course, is still being shared.)

Public Subroutines

A significant facility of the UTS System is the ability to provide useful sub­

routines (reentrant) (e.g., mathematical routines, byte string routines, etc.) for con­

current utilization by several user programs. This feature minimizes core storage

requirements in a shared memory environment as well as. swapping overhead.

For Sigma 7, the public subroutine area is a dedicated portion of the 'virtual

memory space. This space is dedicated in each users' map, as is the Monitor space,

since program addressing within the public subroutines must remain constant. Inasmuch

as it is uncertain how much of this "public" space should be allocated for a given

installation, it. becomes a System Generation parameter. Furthermore, each installation

may require different subroutines to be resident and therefore only those administrativ~ly

identified for public residency will be loa~ed into the public space.

Public Routine virtual space is selective, depending upon installation needs.

At System Generation time, a specific set of subroutines is permanently established

in the public space. These will. never be changed during system operation and any other

subroutines from the system library will be loaded as a private copy in a user's program.

There is no demand swapping of public subroutines because of the impracticality of

dynamically moving routines in virtual memory.

For these users who wish to utilize the maximum amount of virtual memory' space

in their maps, they may ask for all subroutines to be priva~e copies and the public

sub-routine space in their map will be made available for private use. This permits

a user program which uses few public subroutines to gain more' virtual memory than

normally available.

17

User Program Context

The UTS Monitor is structured along the lines of distributed centralization.

That is, although various 'data must be maintained by the Monitor for an individual

user program, such data is not centralized in Monitor~re/.Memory space. Rapher,

each user program will carry within its addressing space areas devoted to Monitor-

.C~ntrolled data storage. Thu~when a user is not active in memory, it is possible

to liberate a maximum amount of his physical core memory (swapping) for other users.

The size of this context space is variable, depending on the user program's operating

needs and it can expand dynamically during execution by linking the user's virtual

memory pages.

The contents of the user's context area includes the following: (See Appendix

-)

Map Image

Task Control Blocks

Data Control Blocks

Program Status Doubleword

Simulated Sense Switches

Program status indicators (Monitor-set)

Temporary storage pointer

Communication Echo table (private version)

The context block information is selectively protected so that only the UTS

Monitor can modify its contents. However, the user program can read the information

therein (those set by the user or Monitor at known locations) or use the data for

indirect addressing. Furthermore, changes can be made to context block contents

through Monitor service calls.

III

CAL Traps

Since user programs are prohibited from going directly to the Monitor core

memory area by the memory protection hardware of the Sigma 7 ~omputer, the CAL

instruction provides the 'mechanism for user programs - Monitor intercommunication.

By executing a CAL instruction, one of sixty-four memory locations will be reached

where control reverts to the Master mode (XPSD) and the user's service request is

examined further.

Not all the CAL locations are used by the UTS Monitor and the available ones

can be employed by user foreground programs for various privileged functions (Real­

Time)S~rvices). They can also be used by an installation to extend the UTS Monitor

services to user programs (System Generation).

Selective Memory Protection

The UTS Monitor allocates core memory according to operating needs and by memory

protection needs. That is, the number of memory pages required is governed by the total

memory size required as well as selective part{tioning into different memory protection

areas.

Monitor:

Public Routines:

Context Area:

User Program (Instructions):

User Data:

No Access

Read and Execute Only

Read Only

Read and Execute Only

All Access, Read Only

User programs must provide indications at load time of their process and data

partitioning, otherwise an "All Access" protection will be assigned. "No Access"

protection is assigned to any dedicated virtual memory space (i.e., to a critical

real-time process) while it is not active, thereby minimizing environment switching

(no map changes).

Lock and key protection is used to guarantee the integrity of the Monitor and

Executive areas from foreground tasks operating in the Master mode. It will restrict

such tasks from violating areas other than its own.

19

Reentrancy

The map feature of Sigma 7 has been designed to provide reentrancy capabilities

for UTS programs. By changing the user's map, a common program process can be applied

to'a different user context and dataarea, even though virtual addresses in the connnon

process are the same. The requirement for reentrant process is that it be "pure pro­

cedure", never modifying any instructions, only data. Since it is difficult to verify

whether a program has indeed been implemented for reentrancy when written in assembly

language, and since "public" service programs should be properly controlled, the

assumption will be made that a program is ~ reentrant 4nless administrativ~ly

entered into the system.

The UTS system requires reentrancy for all programs and subroutines which will be

public and used concurrently by multiple users. By definition, reentrant programs
t,e. ')

must be pure procedure;~no modification of instructions and.separation of process

(instructions) and context data from data, temporary storage, and context on a page-

protected basis. All reentrant programs will utilize the map to switch from user to

user for a reentrant program.

Subroutines, both for the standard System Public Subroutine area and for the

standard Run-time package for a language processor, must be organized by the loader

to have any local storage separated from the process into independent pages. To

accomplish this, the standard subroutines must be organized into two blocks; one

block of ~\ pages will have the processes (instructions and constant data only), the

other block of 1v. pages will contain all - local storage for the subroutines. The

loader will adjust all addresses in the subroutines to access the relocated temporary

storage. Every user map will have the same virtual space dedicated to these public

subroutines and/or run-time ~ackages .. Thus, by switching the map, only the subroutine

storage areas will have to be changed to' reflect a new user's context location in

phys ica I core memory. This scheme will not permi t dynamic storage, to be used; any

subroutine requiring dynamic storage will have to beo.private copy in the user's program.
;\

A user program must indicate at load time whether or not the standard subroutine

package(s) should be used or only private copies should be loaded.

20

III. UTS FUNCTIONS

Core Memory Management

The UTS system allocates-core memory on a dynamic basis in order to support the

multi-programming environment. It is required that sufficient core memory be avail­

able during system operation to accommodate enough user processes so that program

execution can take place while I/O and swapping are being performed.

A System Generation parameter, which can be overridden by the,Operator during

system operation is the maximum size of physical core memory which will normally be

made available to a user program. This is necessary in order to avoid having a

particular user program degrade system performance for other users. If a larger pro-

gram (and/or data) is required by a user, a logical overlay at that program's ex-

pense will be performed.

Physical core memory areas will be allocated on a dynamic basis to all processes

requiring such storage, based on implicit and e~plicit priority. 'When physical pages

are necessary, low-priority processes (non-reentrant) or data areas will be purged to

secondary storage (swapped). Reentrant processes will not be saved, since a fresh'

!" 'copy will be brought in when' necessary. For I/O operations in progress for a user's

program, the I/O buffer pages, will be retaine~,in core ~long with, its context blocks

~ontinuing the DCB's, etc. If no operation 'is being performed for a user program, all

of that program's core space will be purged, leaving only queue information for future

activation.

To control core space ~llocation, a bit map of core memory pages is maintained by

the UTS Monitor. In a,ddition, the scheduling queues with their implicit and explicit

priorities are used to fi~d what must be brought in and what can be swapped out. Each

program's context area will contain a map image used to both establish the hardware map

\~h{!"o~ccuting llncl to reset the bit map for memory when core space is released by swapping.,

21

Core memory management of the UTS system will recognize special needs for user

programs. These include:

Core space dedica~ion for foreground residency

Specific core memory addressing space required for special hardware processors.

This would include restricting the use df this space for proce~ses which could

not easily be preempted, (i.e., "sensitive" areas). This informa~ion will be

, defined at System Generation time.

Hhen necessary, depending upon priority, the required available space will be

derived by swapping out the curr~nt residents. If time permit~, special core needs will

be accommodated by moving current occupants in core memory.

efficiency point-of-view, physical core

are also co-located.

Swapping

be

For example, all

more dynamic, swappable ele-

As part of the dynamic scheduling of user programs in the UTS system, a swapping

function is used. Swapping involves the removal from physical core memory of a user's

program and/or data to make room for another user. It is closely tied to the scheduling

logic of the UTS system in that practical decisions must be made for the following:

Who executes next

Who is transferred in next

Who is removed from core next (purg·e)

The logic of scheduled, swapp~ng is to always have a user process available for

execution while other user processes are being swapped. This requires sufficient core

momory space to be available so that enough users can be resident to guarantee maximum

ovcrl~p of swapping (I/O) time by user 'execution time. Resident user execution times

"rust be equal to or greater than the ti~e to get other users ready (swa~ped) for execu­

tion.

22

Part of tile efficiency in swapping chores will be derived from being judicious

about \vhat has to be swapped. By being selective, physical core space can be made

available \vith minimal overhead or with more practical pay-off in scheduling operations.

User core space will not be released unless required for other users or if the

user program action explicitly calls for a release function, e.g., program termination.

Given that a scheduling decision requires physical core space to be made available to an

inbound user process or an existing one, the following logical selections for swapping

will take place:

1. If a resident user process is not operating; but is awaiting execution in the

current queue (priority level) it will not be swapped out before less "appro-

priate" user space has been exhausted.

2. "Appropriate" user space for swapping is determined by selecting a user process

which is not ready for execution and is awaiting a Monitor service or input

(i.e., suspended).

3. Among all user processes in item 2, the choice of space to be made .available

I
j is selected in the following order:

Protected space (non-modifiable) unique to a single user (not a 'common

process or data area).

" ~. Protected space (non-modifiable) common to several users, but not currently

*: NoYr:: .k ~ required for execution.
f(r:.r::,.r[(i..tIP"f ' (d .) d
C:.~'I'i1":IJ..J fF.o:f:5';J(-:s • Unprotected space' mo ifiable belonging to a suspen ed user process. Sus-
nru!. f:·(U/1.sfL> (='/P.·S -r
t •• Ih!-f..iJ ,i/.t SCfh:.1>vL.~
(:.'I~.(-':~D-rf> I~!..i.. USk/t~

pended will refer to most recently suspended, e.g., having just been executed

0/:: :;.: LX:/-: /\ t>~:>c:..;:!';) . wi thin the current queue cycle.
I: ;) (.:. ~ { .. x) f'. I;./-I J 11-,,-,.u/lf.J

:7hl'1' /-I,) o:>L:f..~ (::J;:.I'! ~f:,:
p/'4" J~ -:.<;, fU.I·u1//.J) 'It> ~t", t.t51cy..,(. £. aVc("/E, •
,,'~::: ltli) l)<JIU;":C, r p , ~

~~~~ . A use counter for process or data elements will be required for users sharing 

conunon elements, based on 'load-time information, ·to satisfy retention of multi-use 

elements. 

Reentrant elements are appropriate for available space, since saving is not required 

(no full swap), but only some bookkeeping is necessary. However, such bookkeeping will 

include map maintenance for users and if~reentrant element is moved, it will cause many 
/\ 

maps to be modified. 



23 

Since hard\vare facilities are not available to handle actual d'f' core mo ~ ~Iations 

or references, software checking of such history will be a source·of overhead 'for 

questionable pay-off. 

Swapping storage will be assigned only on fast, random-access storage. It will 

,consist of space for all active, unique user elements and common processes (reentrant) 

or common data (active). In order to maintain efficient swapping transfers, it is 

necessary to compromise the amount of selectivity in saving user process elements. That 

is, it may be ~ore expedient to save large blocks of user elements than to pick out 

',little pieces for transfer to and from the high-spee~ disc. For example, all data pages' 

should be swapped, if modifiable and protected elements are intermixed. 

Logical Page-Turning 

The UTS Monitor will offer a facility for a user program to operate within a 

smaller amount of physical core storage when the virtual addressing memory is large. 

This facility can be used where there is a maximum limit set upon a user's physical 

core space allocation or where 'there just is not enough physical memory available. 

[~>be deed "ili""'iftft~_ ... 1."~""l!a9""'.~:cw.... 
......... ,,~"os<n..to- . ......-op~'ttg-... Hi:e;,e....",·.· • 'f1J:9't~ An overlay 

structure will be required from the user's program at load-time which will describe 

program segments for physical rather than virtual memory. That is, although the program 

will be written as if it had sufficient core space available to it, a tree structure 

will show what logical pieces do indeed have to be resident at any given time. 

The Batch system overlay mechanism can be used to provide this form of logical 

page-turning, since the organization requirements are similar. The tree structure 

will show which ,pieces must always be resj.dent, which pieces must be in core concur­

rently, and which pieces can be removed at certain times. By ma~ing a reference to 
. VI t~;-rufll.. 

an unavailableAlocation, the overlay tree will be consulted to determine what overlay 

action is to be followed. 

The UTS Monitor will employ the map to make changes in the user's physical memory 

relative to the virtual space'. Thus, a limited number of physical core memory pages 

Clln be used to service a larger number of virtual memory pages. This approach will 



24 

afford a reasonable and practical method for efficient core space utilization without 

dangerous guessing and excessive system overhead. 

In addition to the above method of "reference loading", explicit overlays can be 
IH, 

called for by an executi~ program. This is an overlay in the virtual memory space 

and consequently in the physical space as well. 

Auxiliary Storage Organization foi UTS 
, 

Auxiliary storage requirements for the UTS system are greater than,for those of 

the Batch Processing Monitor 'for a number of reasons: 

1. UTS System is larger in size. 

2. Additional forms of storage required. 

3. Volume of storage requirements significant. 

Auxiliary storage in the UTS environment is divided into th~ee fundamental categories: 

1. Active random-access storage 

2. Permanent random-access storage 

3. Permanent external storage 

Active Random-Access Storage 

This storage requires the SDS high-performance rapid-access disc for maximizing 

multiprogramming efficiency in the UTS system. Contained in this storage are, the fol­

lowing types of files: 

1. UTS Main Monitor and Executive Routines 

2. System Bookkeeping data (e.g., file management· directions) 

3. Service programs 

4. Swap storage for active programs 

5. Scratch storage for user programs 

6. Active non-core resident foreground programs 

7. Overlay elements for active user programs (active load modules) 

This storage is a critical resource for the UTS system and is a limiting factor 

on system performance and loading. It must be kept relatively unclogged by e,xcessive 

t~~ns~e~ requests and priority for residency goes to the storage items listed above. 
/Jc,et'·:',,;' -I-t~~\.lt IS /'.i~.IA// ... .cI/ZI'~O 4S O;:J;5'O.5¥J) ?,v ~/I#.f~I(!~ ;7;(1' £..,... .r,.;-:/c(~:~ ~/d.f'r 

. .A...... ... ,/ ~.,,;,~ . ...,./rf>~ ,(~.r.l/'" r"'J ~ ••. ..,. I I . ,<"~ 1 - .... )/.' 
,"., ,.,. ",' "}" ,:'tj/l.;~ l::~,(~ /;~/ ,q'4~J"t/y ...• r";:~I'f';'~j-' 1/,,:rr~;v..I/·"'·;,r;.~, ('..:..".0 ';'.;:. 1;,)''''<'''' ,,"'fllf ..... ... 

'»,'3 {;',/:/-:'::.I ~·?~iA;~"' ... \:~-,::.(./:;" fir ;;)/<~ t. ,AJ,:' rllj)/.I) 1/ ;::J) Ya tJ,;tJ 7/jI./)"? L' ""-.-);(1 S t.A..JAlP.:.!'_'Pr. A~·;d .r:- ...... -



25 

Perm3nent Random-Access Storage 

This type of storage must be random-access in nature but speed of accessibility 

need not be as great as the Active Random Access storag~. E4.-e-he-t'-h-i-gfr::p-erfU'rnmn~ .flrii'EA 1/~{.-
.r ~,'''i~ ~I l?\ S,c.. rr:.(~'{"<"""'(cJ;. :. h 

)\(('t'.lII:..·.iRADTs or high-capacity ~ can be used, although the lat~er is reconnnenae"d. Residency 
1\ 

in this storage includes the following: 

1. Public libraries,(programs, subroutines) 

2. Private libraries (user-owned) 

3. Batch jobs awaiting execution (Job Stack) 

4. *User permanent input 'and output files 

5. Symbiont buffering for 1/0 peripherals 

6. Accounting data 

7~ Save-for-Restart (check point) programs 

*User data files for input or output to an activated program will not be moved 

to Active Storage u'nless explicitly called for by the program. This is done 

(for input files) by a request for file movement (copy) fro~ Permanent Storage 

to Active,scratch storage. Output files generated by a user program in Active 

scratch storage must be explicitly "saved" before termination in order for them 

to be preserved in the system. Otherwise, inp~t and output files will be 

accessed by a user progra~ directly from Permarient Storage. 

57stem Generation parameters are used to define the ~llocation of all random-access 

storage available in the s'ystem, inc,luding maximum limits for individual users, both 

Permanent and Active storage. The all~cation of Permanent and Active storage will have 

a more significant effect·on UTS syste~ configurations that have high-sp~ed discs and 

high-capacity discs;' where only high-speed discs are used, movement from Permanent to 

Active storage'will not be necessary. 

Permanent External Storage 

Magnetic tape is required to back-up random-access storage and will be used for 

purge storage when Permanent Random-Access storage becomes full or when permanent copies 

of programs or data are required 0' • Purging will be under' Computer Operator ,eontrol in 

terms of selecting files to be purged ~Age of files (when last used)' as well as priority 

\Jill be taken' into consideration according to instal1at."ion administrative rules. The 

,tiTS File Management system will provide inventory display,of current files on Permanent 
r 



26 

random storage and will purge to tape either specific files or files selected by 

age of use or owner criteria. 

J~5~\ A 
Scheduling 

Two forms of scheduling are operative in the UTS system; Job Scheduling and Task 

Scheduling. The former applies to a user job operating in the Batch Mode, while the 

latter refers to elements of jobs (of any kind) for the,multiprogramming environment, 

i.e., interactive processing. 

Job Scheduling 

Job scheduling is performed as under the Batch Processing Monitor,i.e., a job 

stack is maintained on the disc which is organized on a rank-ordered priority basis. 

This priority is an administrative number assigned externally to incoming jobs. 

In addition, a foreground or interactive job can activate a background job by 

placing it in the stack (via a monitor service call). An interactive job can blace 

itself (or be placed by the user) on the production stack, so that it is no longer 

interactive. In this la~t instance, the job is in save-for-restart form for subse-

'querit execution. 

Job Scheduling in the UTS (and BPM) system operates one job at a time from the 

production stack. From a practical point of view, it does not assume special situa-

tions where more than one background job is active or provide sophisticated scheduling 

rules (e.g., automatic priority upgrading based on elapsed time and deadliness). How­

ever, users can, if they so wish, tailor job scheduling to their o~n needs by installing 

their own job scheduling modules at System Generation time. 

Task Scheduling 

Task scheduling applies to the dynamic scheduling of user jobs in the multi-

programmed environment of a time-sharing system. Based on user service needs and the 

,load on the system, the task scheduling function determines the operational behavior 

:of any given system. Because such needs will vary from installation to installation, 

, the UTS system recognizes that the task scheduling logic must be'highly flexible for 



27 

'proper adjustment and tailoring. Consequently, the major scheduling elements have 

been made installation parameters which can be specified Bt System Generation time 

, and/or while the system is in operation. 

The scheduling logic which can be so adjusted lies primarily in the area of 

'interactive use. Overall scheduling consists of three user areas: 

1. Foreground (real-time) 

2. Interactive users 

3. 'Background (Batch) jobs 

Foreground jobs are assigned priority in absolute rank-order, based on priority 

interrupts. "Synchronous" foreground jobs have higher priority than interactive users, 

and are activated when clock "timer" runs out. (The UTS Monitor does the clock watching.) 

The time allo~ation for foreground activities should be preplanned by the user installa­

tion to insure against overloading the system. 

The interactive user level is the area where great 'variations can occur and 

scheduling can be tuned accordingly. Within this level are two types of' operations: 

1. Conversational Processing 

2. On-Line Computation 

Dynamic parameters for conversational processing are: 

1. Maximum number of interactive users allowed in the system. 

2. Conversational ti~e quantum (maximum amount of time allowed for conversational 

mode). 

3. Conversational duty. cycle. 

Parameters for on-line cOmputation are: 

1. Number of queue levels (multi-level queue) 

2. Time quantum for each level 



28 

Nulti-level queues are functionally useful for the on-line compute mode of 

interactive pr6cessing for several reasons. First, it is difficult to ascertain the 

length of compute time required to service this mode for all users in order to produce 

the response output. Second, since time ~ust be equitably shared (normally), it is 

appropriate in the system to "feel" its way in a dynamic and uncertain environment. 

Finally, it allows a finer categorization of interactive use in a generalized system 

such as UTS; e.g., large-size processes may be inunediately relegated to a lower priority 

queue \vhen in the on-line compute mode. 

The multi-level scheme can be employed either as a fixed assignment method for 

'knmvn types of processes (which is difficult without installation experience) or, as 

, has been done with several prototype time-sharing systems, programs can be "pushed 

down" to lower priority levels (with accompanying longer time "quanta") as r~quired 

dynamically. The goal of such scheduling is to favor conversational response 'and fast, 

short on-line'"computatio~ as opposed to longer on-line computing. 

Needless to say, ihe algorithm for scheduling can and should be adjusted to an 

ins talla tion 's needs after such needs have become empirically determine'd. For this 

: reason, maximum modularity and flexib~lity to make such changes are provided in the 

UTS design. 

The rules for a user to move from one queue level to any other (including the 

conversational queue) are also variable for installations and can be changed by assembly 

and ~stem generation loading.' They are not dynamically changeable during system opera-
I=::: =-

tion. 

Effectively, queue management logic for the interactive level involves the decision 

rules for the following known events: 

1. Time quantum exceeded 

2. Program return for "ariou's monitor services (I/O calls, interactive input 

or output, overlay, linking, etc.) 



29 

Another parameter, specifiable at System Generation time and during system 

operation, is the amount of time to be allocated for batch jobs. This time is 

essentially ~l guaranteed' portion of the interactive duty cycle which is always 

given over to background jobs. It, therefore, will implicitly limit the maximum 

number of inti'rac tive users which can be served simul taneous ly. The amount of 

time allocatvd to a Batch operation is cumulative; that is, if I/O is requested, 

CPU time is still available to it during the interactive duty cycle. Thus, a Batch 

job can operate intermittantly within the duty cycle to drive I/O rapidly. However, 

the requirement for accommodating Batch operations in this manner is that core space 

for a Batch job must be pre-allocated so that no swapping interference takes place. 

The Batch job must be resident while it is active (getting CPU time) all during the 

duty cycle. It may be removed only when its CPU time is exhausted; however, ~ 
I ~ v(:(o.\j U/I::'../1 0,,!l, '/<; , / - r;/ "1. d" , ~J~ 

.t:rG::l> this 'G'J;~j-not~~ht.J ~ 0 w-"'iQ.1~ /1 'V I 

Shifting Between Conversation and On-Line Compute Modes 

One of the difficulties encountered with interactive time-sharing systems has , 
been to differentiate between the conversational and on-line compute~ phases of an 

interactive process. Early systems simply used compute~ time utilized as a measure 

of this differential. However, other clues can be employed effectively. 

The following ground rules are follwed by the UTS system to determine the status 

of an interactive process: 

1. 

2. 

3. 

Any I/O call for interactive input, i.e., keyboard with a WAIT optipn, will 

be considered as a sign that ,the program is indeed in a conversational phase. 
(£.. h~~~ ~.~ -;:',/0 

Any I/O reques~, except input or output to the interactive terminal, will be 

considered as a sign that the program has shifted to an on-line compute mode. 

When the time quantum for the conversational queue has been exceeded, the 

program is dropped to the on-line compute mode. 

Needless to say, such ground rules for scheduling can and should be modifiable 

to hllt'ldle special cases or for an installation's environmental requirements. 



30 

The UTS Monitor provides a Queue Status module which will be activated every 

time an interactive user program makes a service call to the Monitor or is trapped 

by the system. This mod~le will determine, by a parameterized decision table, 

whether or not the user's queue status should be changed. This decision is taken 

before any monitor service is rendered. 

System Scheduling 

Above and beyond the scheduling control described above for user execution, the 

UTS system services programs on an implicit sCheduling priority. This applies to all 

Monitor functions required by user programs. That is, services 'are rendered according. 

to the following implicit priorities: 

First Level 

1. Real-Time foreground tasks (by interrupt level) 

a. Interrupt connected 

b. Resident or non-resident in core' 

2. Synchronous Foreground tasks 

a. Serviced by Monitor clock-watching function 

Second Level 

1. Interactive Programs - Conversational Mode 

2. Interactive Programs - On-Line Compute ~ode 

Third Level 

1. Batch Job~ (by explicit priority) 

The second level, interactive pr~cessing, is broken down further into the fol-

lowing priorities for UTS servicing: 

1. Executive Connnand Processi,ng 

2. User Program Ready for interactive output 

3. User Program Ready to execute and in core (conversational mode) 



31 

4. User Program Ready to execute and in core (on-line compute mode) 

5. User Program Ready to execute and not in core (conversational mode) 

6. User Program Ready to execute and not in core (on-line compute mode) 

Executive Command Processor 

In the UTS environment, Executive Commands are processed in an interactive man-
. a./ho 

nero (For Batch Jobs, the normal Control Card Interpreter is used.) The UTS Execu-

" tive will use the same communication input buffer that the user's program employs. 

When the user has explicitly or implicitly set the communication mode to Executive, 

the Executive Command Processor will then process the input message using its own 

echo table (System Generation). 

Every Executive Command will be treated as a priority interactive input which 
~f:~ 

must be processed immediately. It is not of higher priority than normal"I/O func-

tions. For every Executive Command, full conversational features must be used. This 

means that a response to the user will be made immediately « 3 seconds). The response 

may be a '~AIT" to indicate that it will take some time for the Executive Request to 

. be serviced, such as loading a user program. If an Executive Command format is in 

error, a diagnostic specifically indicating the error type will be returned. Those 

Executive Commands which do not produc~ any particular output will respond with a 

simple acknowledgement showing that the request has been received and that the user MAJ.{ 

issue another Executive Command (or other input) .. 

The Executive Command processor uses free formats and will minimize any unneces-

. sary user input. To this end, an ~ction routine to scan incoming characters and complete 

the printing of implicit portions of a Command input is used. This feature will be dis­

abled if the user has informed the system that he is an "expert". In the "expert" mode, 

only the minimal characters necessary for explicit command definition will be recog-

. nized by the Executive Command processor. The user can leave the "expert" mode at any 

time by informing the system that he wants a "fill" for his inputs. The Executive 

CO~land processor can process input messages in both abbreviated or completed input 

form. 



32 

The Executive mode for inputs is explicitly entered anytime the ! sign detected 

upon input. Once in this mode, it remains there until an Executive Command which will 

start executing the user's program is given; the ~ser mode will then automatically be 
~h;::;'~ . 

entered. To explicitly enter the gser mode, ~~a) character will be used. This mode 

is illegal unless there is an executing user program and any messages sent in this mode 

are rejected accordingly. 

Identification of Input Requests 

Any conversational input will be logically terminated on the basis of a ~ew Line 

character code. Acknowledgement of message receipt would be simply the echo back of 

a New Line code and the physical Carriage Return with Line Feed movement of the console 

printer. However, it is essential to identify the source of the process which is 

acknowledging the input and requesting further input. Thus, in addition to any output 

messages which may be generated, the UTS Executive Command pr07essor will always start 

a new line followed by an· ! to indicate to the user that Executive Command input is 

currently being expected and that the terminal is in the Executive input mode. This 

approach will also be used by any public service program, such as the basic Text Editor, 

Debug, Help, etc., where, not only is the fact that input requested, but what process 

is expecting it. This is particularly useful when dealing with process-to-process 

linking and it may not be clear to the user which process is in control. 

Calling Service Systems 

The Executive Command processor will recognize all requests for Executive action 

as defined in Appendix (). In addition, it will recognize, by name, the user's request 

for a system service program to be loaded and initiated. 

Executable Command Files and Program Calls to the Executive Command Processor 

The UTS system provides a flexible mechanism for allowing a user program to gen­

erate an executable file for system processing. The user program can set up, in symbolic 

text form, the same commands that can be typed into the Executive Command processor. 

An Executive Command file "reader" then scans the input text, executing each request 
(),4 ~ ~ weo..t. G.. Slk 1> CJn;/t.Ae c.i..t..J24 I 0 Jr ~ 1 J1 £ 

sequentially until the file end) The executable file may also be .create~ by the user 
1'\ 

and given as a canned package or "cliche" to the Executive Command processor for execu-

tion. This facility permits complex operations to be "wrapped up" for repeated execu­

tions and it also allows program to generate a linked set of system processes for batch­

mode operations. 



33 

Program- to-Program Intercommunica tion, 

The UTS system will permit programs to call for the execution of other programs. 

This mechanis~ will utilize the Load and Link facility whereby the program being called 

is treated as a subroutine. This means that a return to the calling program is antici­
~- s~,~ .. t)·{<"~4&<J.t~{J..A-. 

pated ~up~~ completion of the called program's operation. Communication between the two 

programs is accomplished by the registers and a communication file on secondary storage 

or in comnlon dynamic storage (top). The calling program is assumed to be stopped while 

the called program is executing and mayor may not be removed from physical core memory 

(swapped). There is no automatic copying of the calling program's context data for the 

, called program; the called programs will initialize its own operating needs, based upon­

information transferred via the communication file or data area. There is no sharing 

of virtual memory other than the common dynamic storage area~~~. 

A program which is to be used in a linked manner must be organized with ,a speci~l 

front end (convention) as opposed to the normal program structure, which will determine 

if it has been linked or loa'ded by the usert L. the first case it must preserve the 

registers used for arguments and will control the exit of the program for returning to 

the calling program. Return will be accomplished by the UTS Monitor providing the 

identity and the next program location of the calling program at the time of linking. 

This information is given in the registers, along with ,the parameters for communication. 

data (file on disc or in common core). If the check reveals that the program has been 

directly loaded by the user, input will be handled in the normal way and the normal 

exit (i.e., return to the Monitor) will take place. 

This mode of program intercommunication will be used initially for UTS instead 

of the tasking service required for PL/I. Tasking may be i~plemented at some later 

time when the PL/l language is supported under UTS. 

Intervention and Error Recovery 

User programs, which under the Batch system would normally be aborted because of 

an error, will merely be suspended (stopped) if the process i~ an interactive one. 

Control is given either to the user (console control, Executive Mode) or to a recovery 

routine specified by the controlling proce~s' or the object program itself. 



34 

If, during the execution of the user's program, an error occurs which is trapped 

by the system or the user intervenes with an Executive Command to stop execution and 

perform some Debug operation, an entry point for erro~ recovery 'and for manual inter-

vention must be made known to the UTS system prior to execution. The routines at 

these entry points must be giv~n the current user program status and register environ­

ment preserved for subsequent processing. An error-type code will also be passed to 

the error-recovery routine. 

oP-- f.,} ~_.1'It\f.. 

Given the case of a control programJfnd a user's program, such as the Debug service 

program and the user's object program, provision must be made for proper.return to a 

control point upon user intervention or an error condition. If the user's program is 

being modified by the run-time control program (Debug), then it must be loaded as part 

of the control program and treated as data. They must share virtual memory. 

Accounting 

The Accounting function under UTS will take into consideration the fact that 

multiple users are using system resources concurrently. This means ~hat for each user 

and job, the time and space utilized by a user will be specifically accounted for. 

A common process will be charged to a user only when actually being used. By definition, 

all elements in the user's map which 'are actually in core memory will be chargeable 

(except for the Monitor and, where necessary, a critical foreground process in all maps). 

All secondary storage being held for a user will be charged, 'including swap storage. 

Wherever possible, Monitor service for a user program will be clocked on the user's 

time. That is, if a user program executes a service call to the Monitor, the time will 

continue to be charged to the user until he is no longer executing £E being serviced. 

In addition to those items accounted for under the Batch Processing Monitor, 

elapsed-time must be recorded for terminal usage. Core residency will not be recorded 
I 

when the user's program or parts of his program are not required to be in core memory 

(i.e., they are eligible to be swapped out). Actual swapping costs are not ~hargeable 

to the user)~t r ~~~ 



35 

The UTS accounting package will provide recording of all chargeable resources 

on a summary count basis. This data will optionally be dumped onto secondary storage, 

according to System Generation parameters. The reduction of such data is delegated 

to an optional, user-supplied process to produce an accounting report for adminis­

trative purposes. The on-line user will be able to retrieve current account1ing 

data through a UTS information service command. 

Start-Up and Shut-Down 

The UTS system operation will utilize a start-up and shut-down procedure, for 

iterative use which maintains maximum operational continuity for on-line system users. 

The start-up and shut-down procedure will apply to a system which is going on or off 

the air completely or when scheduled interactive use begins and ends while other func­

tions (e.g., batch and foreground) may still operate. 

At start-up time, all local terminals will be turned on to receive a "system on" 

message, after which the terminals will be turned off until a user begins' normal opera-

tions. 

No other Executive actions will take place other than normal set-up for inter­

active (and other) requests; ~hat is, communication processing and buffering for 

'Executive requests will be provided. (User program communication buffers are not 

required until the user's process is loaded and active.) 

At shutdown time, a system message to all active users will precede actually 

shut-down operations. No new users will be accepted into the system for the interval 

between the initial shut-down announcement and system shut-down. After the interval 

(System Generation, an operator-controlled parameter), all currently active users still 
~r . 

executing will have their processes automatically saved-for-rest~t or'terminated 

(System Generation parameters or user option). 

Communications Service (Low-Speed) 

The UTS system includes a comprehensive and flexible communications package to 

service interactive operations. It is dependent around character-oriented, full­

duplex hardware facilities which, via the software, provides message-oriented input 

and output functions for user programs and user terminals (ASR, KSR;J Teletypes,' SDS 

Keyboard Display device). 



36 

The UTS conm1unications service consists of the following elements: 

Terminal Status Management 

Lo,~-speed, character-oriented communications handlers (input, output) 

Inter-terminal service (Dial, Link) 

Dial~up service (from the computer) 

JOIN service for multi-user programs 

Character-Oriented Communications Handler 

The fundamental software.module for UTS connnunications service are the Character-

Oriented Communications Handlers. They perform the following functions: 

Input 

The normal status of all UTS terminals will be Active (waiting for char­

acters) unless the power is turned off or the station is disconnected (remote). 
c.'t(;Cu"'llI~ hO!JG. MtEsSI/-t;6S (.,.V1t/... rl-tw,f.-,/S Bt:... !1C.(!./!:'P'l£'j)j Usret<.. I-to!>~ M~S.S/l4f!S 
Cio 'n·(-E c...1!J.t::/~I.s. pr..or:;t...A-~) ClJILf., 0 N~Y .:at? dc.d./~~.PT$() I.4JHfE/; TIllE PJ20 filZ.AM r<..&~rJt:~7~ IllfJ.Jj, 

On external interrupt, the handler examines a connnon input table for new 

characters which have arrived since the last inspection. The common input 

table is designed as a data-chained double buffer· so that even if characters 

are not emptied from one half, the other half can be used for further inputs. 

It also causes character processing to be done at least at the critical point 

when one of the buffers is full, 'if not earlier. A pointer is maintained to 

indicate the word location where new, unprocessed characters begin. 

Each input word contains a single character and an identification number of 
/.-INe. 

the user's • ne:l. The handler checks an "echo" table associated with the 
L./ AJ e. 

given ~ arid generates an output character or no output according to 

the echo table indication for the input character. 

A check, using the echo table, to determine if the input character is a 

control character is also made. Control characters either indicate a change 

to characters already received (backspace, cancel), a mode switch for the 

UTS Monitor (Executive Command, user program input), or an end-of-message 

signal. If a control character is found, the appropriate action routine 

is activated, i.e., move user buffer pointer, select user 'or system input 

flag, set message complete flag, etc. 



37 

The handler makes a conversion from ASCII code to EBCDIC (unless the 
r:t<O{;!X,~t ' 

user's ~he-nne1 does not wish conversion) and places the character in the 

user's fixed length input buffer. Message assembly in the user's buffer 

continues until an end~of-message charac~er i~ received or the buffer is 

full. If the user's buffer is full, a NAK character is generated to the 

console to lock out further inputs and the user program "input complete" 

flag is set. For end-of-message control characters, the NAK output is 

optionally generated for locking the keyboard as per the echo table indi-

cations. 

When the incoming character has been properly processed, the handler 'clears 

its interrupt level and exits. 

Paper-tape input is treated as keyboard input except that' a rub-out code 

(DELETE) is recognized as a character to be ignored. Furthermore, the 

Teletype requirements for remote paper tape input are that start and stop 

paper tape reader functions (XON, XO~F) be provided. This permits proper 

computer control of paper-tape reading. The handler (in paper-tape mode) 

will generate a Stop Reader (XOFF) code in response to an end-of-message 

control character or buffer full condition and a Start Reader code when 

an Input Request is made (always). 

Output 

The communications handler for output accepts characters stored in a user 

program output buffer of fixed ~ength for the given output channel. Char-

acters are converted to ASCII code from EBCDIC before' transmission by' the 
. I 

handler. Illegal transmission characters such as EOT are. detected and cause 
().; . .l..Jvv.o1..,., 
~ program -to he !j eilI'l'e~L (Requests affecting communication lines must be 

, 

explicitly made to the Executive for proper bookkeeping.) 

The user program calls for output with a buffer full of characters in the 

program's virtual memory. As the handler takes control, the buffer is emptied 

into a Monitor buffer with conversion to ASCII. Characters are transmitted 

for output until an internal end-of-message is detected (DEL) or the record 

count has been reached, whichever comes first. The buffer will be released 



38 

to the user program when empty, making it available for reloading .. The 

llser program will test the DCB to determine when the buffer is empty. In 

this manner, the user program may keep a steady output flow going at a 

maximum rate. It will be held up as long as the buffers are full. 

Carriage Return Standard Convention for UTS 

The standard physical message length for the UTS termi~als will be a line 

of 72 characters, not including the NEW LINE code. The NEW LINE code will 

indicate a logical End-of-Message. A Carriage Return code will be e9hoed 
AS 

back u:i:&h a New Line code and will be considered as a text character at all 
e,oN V &.1( Ei> 

times. It will ,also be 86 lI'et...8.Q to a New Line code when detected in an 

output message te~t. 

New Line codes will not be automatically generated by the Communications Out-

put Handler at the end of a message. However, an output character count will 

be cumulatively made and if 72'spacing characters (graphics) have been trans­

mitted without any New Line characters (or carriage return), a New Line code 

will be sent out if the 73rd character is not one. 

Terminal Status Management 

An important part of the communications package deals with maintaining proper 

bookkeeping of each user terminal. Each user software "channel tt is activated when 

a connection is made by dial-up or when power is turned on at a terminal. ~ mode 

flag indicates whether the user is currently talking to the Executive or a user pro­

gram. This flag is changed by an input c~ntrol character (!) and ( ) or automatically 

by a GO Executive Command. User identification by name is kept for each channel'for 

information purposes in using the interconsole communication services. Input or output 

activity status is maintained to avoid conflict between inter-console messages or Monitor 

messages and user program input or output. Inter-console link status and a conversa­

tional communication mode flag is maintained for each user channel. Whenever a User 



39 

Termination Command is received (i.e.) LOGOUT), the terminal will be disconnected 

or pmver turned off (EOT). Provision will be made for installation assigment of 

special consoles for message addressing, privilege functions, and/or priority ser-

vice. 

Inter-Console Service 
·0 r:="('"c1,) 

It is ~.£.~ useful and ~ essential to provide direct communications between 

user term~nals in an interactive time-sharing system. This capability lS provided by 

the UTS~{nter-terminal service and consists of two user functions and a p~ogramfunc­

tion. The first user function is a simple store-and-forward message-switching opera-
Co 11 }J E/:J( f,J) . 

tion, DIAL, whereby a user may address any other terminal, expecially the operator's 
1\ 

console for delivery of a text message. The second service provides linkage of two 

or more terminals to a single user program, where the program normally operates for 

only a single user terminal. This feature is extremely useful for training, demon-
"r;~" / oJ! 

strations, group debugging, etc. The program function involves,,~J}:1~)t.IG two or more 
\ . 

terminals to it, under controlled circumstances. 

For both of the first two services above, it is necessary to have the addressed 

terminal indicate acceptance of a message or linkage. Thus each such terminal must 

alert the system via an Executive Command (ENABLE) that it is ready for receipt of 

messages or linkage. If a terminal is not active, it will be turned on by the system 

'(if a direct, internal communication line) for the duration of the output. Addressing 

of terminals is by ~~~~~ number; the system's user identification can be used to 
_~/M.e:, 

locate the proper ~'number by querying the UTS Executive as to the ~vhereabouts 

.. 

or existance of an active user. No remote dial-up (if suc~ hardware exists) will be 

performed for DIAL or LINK; remot'e users must be active in the system. If, during the 

course of a linked operation,.a remote user disconnects, the linkage will ,be automaticalJ 

unlinked by the UTS system. 

DIAL Service 

A user may send a message of a fixed maximum length to any single console other 

than his own that is active and enabled (indicated acceptance of messages). Carriage 

Returns within the message may be used, since the New Line code is placed in the text 

ins tead and...a T ±!re;::::E:eiH~ echoed back. The end of the ~essage text is indicated by a 

New Line character. 



40 

The receive~'s terminal will nat receive the message if it is in the process 

of input or output. At the first opportunity where either has just been compl~ted, 

the message will be delivered, with the sender's channel number appended to it. If 

. a terminal has not indicated message acceptance, a DIAL command will be rejected. 

A special case of the DIAL function is available to the Computer Operator's 

console whereby he may dial all active terminals for public notices of importance. 

The operator's console is addressed by DIAL. 0 (OH) and his terminal mar be assigned 

to any terminal during system operation. 

Terminal Linking 

Linking of several terminals is initiated by a logged-in user, whether or not a 

program is loaded or operating or not (on that terminal); linking can be initiated at 

,any time. Any Active linked terminal can cause a program to be loaded, executed, stopped, 

or terminated. Linked consoles can be made Passive or Active by the link originator; 

that is they may either be received only for any program output or they may input and 

receive output as well. All terminals may always issue Executive Commands. While 

any Active linked terminal is inputting in the User Mode (to the program), all other 

Active terminals cannot input to the program. This is necessary to avoid confused input 

to the program input buffer. All inputs from every linked terminal are seen by all the 

.others, as well as all outputs to any terminal. 

As any terminal links a terminal to his (or vice versa) a message will be issued 

by the VTS system indicating who is linked to whom and the type of linkage on both 

terminals. A terminal or group of terminals may be linked 'to only one active user pro~ 

gram at a time. 

A linlxed t8~al may tktliJilk any. ~f tbliil otb~~i'illted-t.-eFflli.fl-a,l-a--k.om itse1.£... 

Any linked terminal may unlink by giving the UNLINK command to the VTS system at which 

point a message to the remaining linked terminals and the unlinked one will confirm 

the Executive request. It should be noted that each linked terminal is not independently 

in the Executive or User Mode according to the mode switch last used by a terminal; the 

current mode is applicable to all linked terminals no matter which one set,it. 



41 

All linked terminals can conveniently converse directly without using the DIAL 

command. All that is necessary is that each line of input be terminated with a Cancel 

character (CAN) which will be echoed with a New Line. 

JOIN Function 

The JOIN function is exercised by an operating user program for a group operation, 

via input from the Originator console. The Originator terminal; which activated the 
/-/ tIJ If: . 

program, provides the program with the terminal ~QQno~ numbers which are to be used in 

the Monitor service calls. 

Active or Inactive terminals (except Inactive Remote stations which would have to 

be dialed-up) can be joined. Active stations must be enabled for the JOIN function 

and cannot have any program currently in operation. Inactive stations may always be 

joined and the JOIN function starts up those terminals. 

Only the originator terminal may Join or Unjoin other terminals, or issue any 

Executive Commands which may affect the common program. The only Executive Commands 

which a Joined terminal may exercise are the DIAL and QUIT commands. Once a terminal' 

has Quit or been Unjoined, that terminal reverts to normal usage. When the Originator 

terminal terminates the~mmon program, all Joined terminals are released and turned 

off. 

Joined terminals cannot link or' be linked to. Inputs and outputs to and from each 

Joined terminal are not seen by the other terminals; each has its own communication 

buffers in the common program. Each terminal thus must be specifically ~ddressed by 

the program. The originating terminal is the only one im~licitely addressed, i.e., 

. any input or output calls not naming the terminal (channel number) will refe~ to the 

Originator terminal. 

Checkpoint and Save for Restart 

User programs which are in operation may be stopped and saved on secondary storage 

for resumed operation in the future. This facility is operable in two modes,. Check- . 

point and Save-for-Restart. 



42 

Checkpoint 

Checkpoint is a mechanism for a long computational program (Batch Mode) to 

periodically snapshot all elements of its current operation so that the program need 

not be completely reinitiate~ because of a system,hardware or software failure. Every 

snapshot will include core memory contents and secondary storage files as well as the 

program's environmental context data (registers, DCB's, etc.). The conditions for 

checkpointing can be based on time or at logical phases of the program's operation. 

Successive snapshots of a program's operation will always replace the one last saved. 

The checkpointed program will be contained in a permanent file, identified by 

the user's account number and a unique user-supplied file name (not the name of the 

original program, which has its own file name). If the checkpointed program is to be 

activated, it is ,run as a new job. Furthermore, unless explicitly preserved, the 

checkpoint file is automatically deleted from permanent storage when it is executed. 

An operating program can call for. checkpointing itself directly by an Executive 

service call or it can have a run-time routine which will respond to periodic time 

interrupts and call upon the checkpoint service. 

At the time of checkpointing, anyon-going I/O operations will be completed and 

all I/O status information preserved in the program's context area. In restarting a 

checkpointed program, a restart routine location must be provided which will reinitiate', 

all environmental conditions (such as open files, magnetic tape po~sitioning, etc.). 

It is assumed that the self-checkpointing program maintains the proper restart informa­

tion for itself at all times. The UTS Monitor will provide the'proper communication to 

the Restart Module at load-time to activate the re-initiatioh information. 

Save-for-Restart 

A program, which is stopped externally for future continued operation, will be 

saved for restart. In effect, it is a dump of the program apd its operating environ­

ment. A save-for-rest'art may be ge'nerated by an operaton~by a high-priority real-, 

time program. It is as~umed that the program will be resumed exactly a~ saved' ~-

~r.e;.;---no_~t.Q;t;.na.l-I-/·O-~p~e-i-n~ed....:w.b.ic.h...J:.e.qJlj,re p-l:ep.os.~iening,")--i"':'e-' •. , 
" "/t..""/"~ I ,,~~,,~ " .. J~ .. ~; •. ~ _ .,,/ /" ' 

• 4- ~~..l ~~~.(i.,4.'", ~~u.r'~"a..4.~""'~~.~~p-v 
tmagne,t,l.c'1Tf't.;oa,pe'"Il' r .. - ..' " ~(/ 

• .! ).. I I. ' ,.._ 
·'~""~"}"'i~'·l"'''''·'-''';''''-'''''''··;-0ri, '" , J l.t- •. i ... ~)·'" ('.4,... L. \.. 4 .• ' 411 I i 

f) 



43 

A save-for-restart pre-emption by a high-priority program in the DTS system is 

accomplished by simple swapping to secondary swap storage. Resumption of the programts 

operation is automatically caused by the exit of the priority program. Files are not 

closed for the saved program, since continuation of execution will take place relatively 

quickly. (I/O transactions will be allowed to complete, if they are in process.) 

On the other hand, a program which is manually saved-for-restart, will not neces­

sarily be expecte~ to be continued for a while. Shut-down procedures will be necessary 

to preserve the environment indefinitely. This' means that open files must be, closed J 

current I/O trans'actions completed, and scratch storage saved, .not released. A unique 

identification must be provided for future restart, since it will not be a fresh copy 

of the program. The restart procedure will require the DTS Executive to recognize that 

it is a restart version in t4e user's accoun~ file and reopens all data files and DCB's 

that were active at the time of shutdown. Program execution will resume exactly from 

the point of shut-down or at the location supplied with the execution command from the 

user (GO). There will be a maximum limit established at System G.eneration tim~~~oIJ 
~ '~ o;~ C#..v. 1-e ~-~~if·· . 

~;:,j.t,"':,~re(.,~~(:,f(:Sf'Vi5(l.J2l' • .9f'~, S<~ 7 . 
System Generation Processor and System Modification 

Since time-sharing systems lend themselves to being highly vari~ble in terms ~f 

configuration sizes, number of users, types of user processes, response needs, etc., 

it becomes critical to a user installation to be able to specify particular, operating 

needs for its specific system configuration.'The mechanisms for this capability are 

, provided primarily through System Generation parameters. For those parameters which 

do not involve structural changes in the system (i.e., space allocation), additional 

changes in parameter values are made dynamically from the Operator Console. 

The System Generation processor will operate in the minimal system configuration, 

taking advantage of auxiliary storage., Where more 'core memory is available, time benefits 

dd
' '. 1 S PA-ee , are derived from the a l.tl.ona 3~tEia 2CRuzses. 



44 

All changes to a UTS system, which can normally be expected to occur on a day­

to-day basis, will not only be changeable via the System Generation processor, but 

through UTS service routines. Such routines operate under the UTS Monitor and enable 

the system to con~inue normal operations a~ well as avoiding time consumption for a 

complete System Generation process. The following system modifications are provided 

under both the System Generation processor and the urs Monitor: 

Subroutine Library maintenance 

New (additions, deletions, replacements) Public'Service Programs 

Scheduling parameter changes 

- Quantum values for user queues 

Number of interactive users in system C J+!t1..IHilH) 

- Response-time duty cycles 

- Batch job time allocation 

- Interactive status change conditions, (for various Monitor service requests) 

Foreground identification and resource allocation 

Peripheral device availability 

Auxiliary storage allocation changes 

Limits on user resource allocations, 

User priorities 

Terminal directory changes (e.g., system operator's station number) 

Changes which aie made only at System Generation time include: 

Total system hard,ware configuration 

UTS system core organization and overlay structure 

Public Subroutine space assignments' 

Scheduling queue structures (number of queues, decisio'n rules) 

Executive commands 

Accounting items 

UTS service extensions 



45 

IV. 

UTS System Configuration Considerations 

The UTS sys tern will ,require sufficient core residency for Moni tor elements to 

execute in order to minimize time overhead for interactive and foreground operations. 

This means that any UTS service required by an executing interactive (c~nversational 

mode) or foreground process must be core resident and should not be overlayed. This, 

applies also to any bookkeeping tables~ Administrative functions for initiating or 

terminating a process can be non-resident. Likewise, service functions which may be 

required in the on-line compute mode or Batch mode are candidates for overlay. 

User programs which are swapped will also be handled to minimize response time. 

That is, user program areas (e. g., context data), which are necessa,ry for on-going 

Monitor's processing of users, will be the last elements to be swapped or never 

swapped (e.g., communication buffers, parts of context area). 

The minimal amount of core space required for an ef'ficient UTS system (Inter­

active plus Batch) will be that space for resident monitor 6r processes and data, 

monitor overlay ar'ea(s}, user resident areas (dynamically proportional to the number 

of active users currently on the system), and sufficient available space for submerging 

interactive sw~pping overhead. The latter factor is dependent upon the typical con­

versational process and/or context size which must be swapped, plus the typical Batch 

job size (in core at one time) and any foreground residency. The size and number of 

such spaces will be determined by actual interactive process sizes and execution times. 

This will be the conversational FORTRAN plus the Text Editor facility. The minimal 

core memory for a reasonable UTS system will be 48-65K; however, until the ~pecific 

sizes and times for interactive process~s are known, capacity and performance figures 
. -r"'..tJ - ~ 4J-aP-4I.At ~~ 6e. ~A .. t' ~ /<. : ~ uAM... 

cannot be established. I ~ V .~_ . . .\ . VA . 

r:;/) .. c.~4{.~ ~f C't-A ~t ~ ~ ~.d:e,WI<I) ~ . 
$"0 -/00 ~t.$e~ t 'tw...~"'£ ~ • 



46 

Auxiliary storage for a minimal UTS system will be based upon UTS system storage 

and the number of active users acconnnodated concurrently (which is a function of core 

space and system efficiency). This latter number dictates the amount of: 

Swap s tor age ~ 
fast RAD 

Scratch storage 

Permanent files~ High-capacity disc 

Library files j 

tCJ..) 
Magnetic tapes are required for system generat~)~ystem entry of user inputs 

(programs, data) on to the discs, disc purging and spill, direct user access (where 

necessary for user processes). The minimum requirement at present appears to 'be at 

: .. leas t two magnetic tapes (9-channel). 

I. ! , ' 

Other hardware requirements are: 

2 Fast Memory Blocks 

2 Clocks 

Communications Interface (Character-orien~ed) including interrupts 

1 Multiplexor lOP 

2 Selector lOP 

Memory Protect (Lock and Key) 

MAP 

Decimal and Floating Point options 

Card Reader 

Typewriter 

Printer 

At the present time' the memory. module or.ganiza tion and number. Of. ports c'7nno~t I, " 

; .. JI. _ 111 ........ --~ ~~A._t/J'... r .. "k'4"4.:#k.-~"-o~(}t.;I.~ 
be spec1f1ed. ~I ~ q I I V 

I Ii ~ . 
• ·'·O'1~ •. 4t' C ... ;JtJ Wf.'J.-t.ff~ I 

Performance 

The performance characteristics for the UTS system are: 

1. Monitor overhead for disc and core storage management, scheduling, accounting, 

context switching, I/O control, and Executive command processing will not 

exceed 5% of the total operating time (CPU) of the system. This includes 

overlay of Executive functions where necessary, but does not include user­

requested I/O transfer time. 



47 

2. Interactive communications processing (character-oriented) will not 

exceed 5% of the total operating time of the systemwdt..J tAtL C;J V, 

3. S\vapping time ,will be masked by having enough "user spaces" in core 

memory such that one (or more) users, executing their full conversational 

quantun, will equal the time to make a swap of two other conversational 

processes. The "user space" size is the size of a typical conversational 

process and/or user context data. 

4. The core residency for the UTS Monitor will not exceed 20% of the total 

minimum core space configuration. This does not include user context 

storage. 

5. A conversational process is an interactive process which will have a 

maximum response time of 3 seconds from the time of receipt of an end-of­

message character to the start of the response output. This response time 

is not guaranteed for a user interactive pro~ess which requires any I/O 

service other than console I/O and normal system swapping (one swap). 

The 3-second time interval is a system parameter and may be change~ by the 

customer installation. It is only valid for. a maximum number of users in 

a g'iven configuration, depending upon whether a worst case or a probablistic 

loading environment is anticipated. 

6. Performance will be based on SDS standard configurations and typical user 

software sizes. Any variations in configurations or user software behavior 

(e.g., sizes, scheduling, 'etc.) will affect performance figures and are the 

responsibility of the customer's installation. 



48 

Debug Service 

The UTS system provides an interactive Debug service program for use with Asscmblu 
. . J 

language user programs. When loading a program for debuggirig, the user's map will share 

virtual memory between the object program and the Debug program. Both will be loaded 

into core memory for execution. 

The Debug program will provide the following services: 

Dump memory locations in hexadecimal, 'octal, decimal, instruction mnemonics
f 

and symholically (global symbols). 

Locations will be referenced relatively to global symbols. 

New symbols may be defined for the object program. 

Location contents c~n be altered. 

Program insertions can be made. 

Conditional selective snapshot dumps can be inserted and removed. 

Conditional, selective trace of program areas. 

Start execution at any program location. 

Dump or trace program environment data, i.e., registers, temp stack. 

Modify program environment data. 

Search program or data areas ,for masked values' 

Save a modified binary program 

The interactive Debug program will utilize both ~he Teletype Keyboard/Printer 

or the Keyboard/Display devices. It will operate under the UTS Monitor service for 

any privileged functions. These include: 

Error recovery control 

User interrupt control 

I/O service 

Change of protection for user program areas 

File changes (replacing or saving a binary program file) 



49 

Modifications to a user program or patching the program for Debug calls requires 

that the program protection (map) be set to ALL ACCESS. 

Provision must be made for Master mode access to be made, for checkout out 

Executive or foreground functions. .Such access must be guarded so that only system 

programmers can use this facility at proper times (e.g., Operator control over when 

such access is permitted, "privileged". consoles, passwords,. etc.). 

Editor Service 

The VTS system will provide a basic, general text editor which will operate both 

in a batch mode and conversationally. It is usable to create text files and ~ill link 

to language processors for conversational programming. It will be reentrant for multi­

ple users. 

The text editor will provide the following services: 

Initialization of a·new symbolic file (via File Management service). 

Modifying an existing text file (insertion, deletion, replacement, addition); 

Line number referencing. 

Line number insertion (using decimal system). (Line numbers will be provided 

by user) 

Automatic resequencing (removing decimal point values) upon user request. 

List with or without line numbers {line numbers will not be considered 

necessarily as part of the text. 

Rename a current symbolic file. 

Merge symbolic files into one file. 

Tab input lines by filling with spaces according to software tab settings.' 

Provide in-line editing (character editing). 

The Text Editor will b~ called by an. Executive Command. Further commands are 

. processed by the Editor itself. 

When operating in the Batch mode, inputs are card images. No interactive response 

is given for any input request. If any error occurs with the input, the error message' 

is logged and the process will abort. 



50 

Editing and the SDS Keyboard/Display 

The SDS Keyboard/Display device has implicit requirements for editing service 

above and beyond normal terminal input and output. The first level handler functions 

for K/D device are based upon the standard Sigma character-oriented communications 

equipment with several differences. 

A different "echo" table is required, since new control characters are used. 

Message-mode capability of the K/D requir~s identific.;ltion of a "message" 

(leading ETX character), and no echo of the message characters. (Dynamic 

switching of echo table pointer.) 

Output message generation requires control character buffering with NULL 

characters for timing purposes. 

The above functions require that the K/D devices be serviced by a superset routine 

which has as a base the normal communication so.itware. Identification of a K/D "channel" 

must be made dynamically, since a remote station could be either a Teletype or K/D. 

A second-level K/D processor will be provided as a system routine for servicing 

mechanical editing functions. This routine will specifically provide for page-turning 

and line-rolling of a user program-supplied text buffer. Other text editing functions 

which change text conten~such as insertion, deletions, addition, etc., must be handled 

directly by the user process such as the UTS Text Editor. The user process will also 

be required to maintain the buffer for text page-turning or line rolling when the terminal'~ 

request requires a new buffer full (end of buffer reached, top or bottom). 



User File Types 

In the UTS environment, user files will be of several types, which can contain 

different forms of the same entity.· Specifically, the following types of files can 

exist for a user program: 

1. User-generated source symbolic code 

2. Processor (FORTRAN) - generated symbolic code 

3. Binary object code (load module) 

(4. Save-for-restart executable code) 

Clearly, these file types can co-exist and must be identifiable., The user cannot 

be expected to create unique special names for each of these forms of a single program. 

Provision must he made in the File Management facility to acconnnodate a file type ident­

ifier. This identifier can be explicitly employed directly by a user or implicitly 

through a processor. For example, if the user wishes his program to be loaded for execu­

tion, it must be the binary object file. If it is to be compiled, it must be in the 

processor-acceptable form. If editing is required, the user-generated 'form is called 

for. 

When files are modified or deleted, again there must be some control for assuring 

across-the-board coordination. For ~xample, when a user-generated source ·file is up­

dated, the processor-formatted source file must likewise qe ch~nged. 



Foreground Servicing 

The UTS Monitor will provide the same services to foreground tasks as specified' 

for the Batch Processing Monitor. However, because the map hardware is available, 

certain factors must be considered. 

Foreground tasks, both resident arid non-resident, can be efficiently operated in , 

the non-mapped mode. Non-resident foreground tasks are assumed to be "tolerant" in 

terms of response time and can afford to wait for physical core space to be made avail­

able and to be relocated to that space for execution. If a non-resident task is not 

tolerant, it should be made resident. Furthermore, once a non-resident task starts 

executing, it should not be suspended (swapped out) and then resumed. 

Unless a foreground task requires the connnon use of public reentrant subroutines, 

the map mode should not be used for foreground tasks. Private copies of any required 

subroutines will be provided by the load~r. If connnon reentrant subroutines are to 

be used, then the map mode must be employed. In this case, it will be an appropriate 

real-time service to dedicate virtual memory space in all maps, so that map-switching 

is eliminated (except for FORTRAN subroutine local storage). 

Foreground tasks can preempt core storage of all Background (Batch) and Interactive 

users, except for I/O buffers in 4se. However, other foreground tasks (of lower priority) 

will not be moved out of core memory unless they are mapped. A foreground task, operating 

in the Master mode, can abort all I/O service to other users and take over the machine, 

but it is normally an indication pf system overload when foregr'ound tasks cannot'. complete' 

their executions. 

Every foreground task connected to a~ interrupt will be responsible for preserving 

and restoring the current operational environment (registers, program status doubleword). 

This will be done directly, if the ,foreground task includes' its own interrupt routine, 



(kOl.hlatt ) 
and by a centralized interrupt handler when the foreground process is serviced by the 

1\ 
system. The latter approach is required for non-resident foreground tasks. 

A resident foreground task must be activated by an interrupt within 100 micro­

seconds after the occurrence of the interrupt.' This means that a foreground task will 

not be delayed by any UTS Monitor overhead or current service function for more than 

that amount of time. After the foreground task starts execution, it may be interrupted 

by Monitor )fervice functions (i.e., I/O interrupts) which will only execute minimal 
k 

bOQkeeping tasks before returning control to the foreground task. If the foreground 

, 'task cannot tolerate any interruption from the Monitor, it must be at a higher interrupt 
FO/!.. 

level than the I/O and cornmunicatio~s. In such cases, the amount of time required~the 

foreground task (frequency of interrupt within a response duty cycle, process time for 

the task) must be considered as additional system overhead to be subtracted from the 
olJ 

:conversational duty cycle, and will impose additional limits ~ the number of inter-

active users accorrrrnodated by the system. 

If a foreground task uses any ~onitor service, it must do so by a normal request 

(CAL). The priority of its interrupt level will be recognized by the ~onitor for 
AI.L./IW,el) 

queuing purposes. Unless the foreground task interrupt has been r-eJ ,,1IiJr:b*ed to interfere 

with ~onitor bookkeeping operations by not permitting a safety disabling (minimal) of 

all interrupts of the ~onitor, ~onitor'service can always be requested at any time via 

the normal CAL. 

All assignable system resources will be dedicated to a foreground task when it is 

active, resident or not, except for core memory when it is not a resident foreground. 

This will be done at System Generation time or when the foreground task is initiated. 

It 'll b 0 f· b of.. h k· I ... b' d W~ e an perator unct10n to a ort 4 c ec p01nt any ower pr1or1ty JO 1n or er 

to satisfy the resource allocation needs of a newly-activated foreground task; this does 

not apply to core memory. 

Foreground tasks will not be normally timed out for execution, but will run until 

complete or waiting for I/O. As a special service for debugging parts of a foreground 

operation, a quantum time setting may be requested such that if the task has not returned 

to the ~onitor within a given period of time, it will be su~pended as an error condition. 

The foreground tasks associated interrupt will be disarmed. It will be required that 
~ 

such~foreground task be in the Slave mode. (at least that part which is being checked 
,11 0 RPEe, 

out,) and that the ~onitor be called prior to executionAto set' the timer. In effect, it' 

will be treated as a user program with additional privileges of dedicated resources. 



Every foreground task is considered to be an independent job with its own context 

requirements, tem,'tack, etc. For economic reasons, it is appropriate to organize 

resident foreground tasks t~ appear to the ~onitor as one job sharing a common temp 

stack. This is possible because of the first-in, last-out order of absolute priority. 

Unless so organized, ind~pendent foreground tasks will require independent job-associated 

storage. 

In the UTS (and BPM) environment, there exists an accounting problem where 

. foreground tasks cannot be properly charged for CPU time. This occurs when such tasks 
()F 

service their own interrupts and do not allow for proper "stopping" the clock for the ,., 

interrupted job or user. If this time is significant and known (by· being static), it 

may be accounted for administratively.on a percentage basis, i.e., every user job will 

have a percentage of its compute time deducted because of foreground interference. 

Alternatively, if foreground tasks are aperiodically initiated, they should be required 

to clock thems'elves (or 'allow the monitor to do so) upon entry and exit. This 
a;: 

differential can then be used to adjust the interrupted j.ob~ a~counting information. 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	_00
	_01
	_02
	_03

