ROUGH DRAFT
Art Rosenberg
2/7/67

Introduction

The Sigma 7 computer has been designed to provide for maximum exploitation of

computer technology. However, hardware facilities merely provide the environment

for software systems which must reflect practical implementation of computer utili-

zation techniques.

To this end, the Sigma 7 software provides the Universal Time- .

Sharing (UTS) Monitor System, which ehcompasses those facilities and services appro-

priate for general-purpose, multi-programmed on-line, time-shared operations. As

such, the UTS Monitor extends the operating capability of the Sigma 7 from the Batch

Processing mode to a more flexible and dynamic form of computer processing.

I. CONCEPTS OF THE UNIVERSAL TIME-~SHARING MCNITOR

The UTS Monitor has been designed to provide multi-programming services for on-

¢ line (interactive) .. user programs, in addition to batch-mode production jobs, sym-

biont I/0, and critical real-time processes.

To clarify the operational environments which the UTS Monitor is designed to

service, it is éppropriate to define a number of terms which will be used in this

manual.

Multiprogramming:

Time-Sharing:

A technique for maximizing the efficient use of a computer system'

by overlapping computation with I/0 operations. In particular,

where one processing job cannot provide maximum overlap, other

jobs are operated concurfently to achieve such system efficiency

at a reasonable cost in overhead.

The sharing of computer system resources to provide processing

service for several user functions (related or independent),

where an individual job does not require all of the computer's
time. The allocation of such resources is baséd upon satisfying
the response-time needs of the participating tasks. Thus, critical

on-line processes can be interleaved with on-line, interactive

Time-Sharing
(Cont'd)

Interactive
(Conversational)
Processing:

Remote Access:

~ - Reentrant
.- . Processes:

¢+ Recursive
~ Processes:

operations, and non-priority production jobs can absorb éhy

remaining computer time.

One of the major benefits of the time-sharing approach to computer
utilization. Direct access to computational processes affords
convenient, personalized services for a variety of new users and
applications. The needs of interactive computation include a

satisfactory response time for non-machine dialogue (e.g., 1-5

" seconds), comprehensive, easy-to-use service facilities, and system

reliability.

The physical extension of computer system access via communication
lines. Remote access may be provided for interactive, production,
and critical real-time operations.

Those processes which permit independent users (or user programsf

. to execute them concurrently or in an interruptable sequence.

Reentrant processes are in '"pure procedure" form, where instruc-
P P P ’

tions are never modified and user-dependent context is separable
from the process through isolable data and machine-register storage
areas. The scheduling and switching of user environments is per-

formed by an external process, i.e., an operating system Executive.

"Processes which must control successive use by preserving user

contexts themselves. Recursive routinés may be those which call
upon themselves in a nested fashion (last-in, first-out, LIFO) or
may be first-lejél, machine-dependent routines (i.e., interrupt

routines) which cannot expect context to be preserved by.other |

processes.

The UTS Monitor is designed to provide a spectrum of services ranging from
 Batch operations through real-time tasks. For each functional level, there ekists
. certain fundamental differences in scheduling logic as well as certain servicés

'fwhidh must be rendered.

Batch Level

User jobs are organized in a stack fashion, where the stack is a first-in,
first-out queue ordered by explicit priority. Batch jobs are considered as Back-
ground operations, with the lowest implicit priority in the system. However, bpera-
tional efficiency for production jobs will not be jeopardized unnecessarily because
of priority levels, specifically in the area of system facility allocations. At
System Generation time, or by operator action, resources may be permanentiy or temp-
orarily allocated for batch operations so that implicit priority‘operations'will not
impede production throughput. Once a production job in the background has been
‘initiated, its allocated facilities (I/0 deviceé, secondary storage) will not be
;preempted except by a foreground task or operator action. Actual Monitor service
géfor compute time and I/0 oper;tions will, however, be given to a batch job at the
filowest level of implicit priority unless compute time is exﬁlicitly dedicated for

- such operatioms.

At the Background level, there does exist a second level of priority, which is
explicit. Normally, jobs can be entered into the stack with whatever administrative
5~priority is appropriate. However, this will not cause a current Background job to be
fsuspended. Operator action or a service call from a foreground procesé can cause a
15checkpoint of the current background job (with "draining" of current I/0 operations)
50 that an important Background job can be initiated as soon as possible. In the
worse case, the.current Background job can be termlnated (abort) 1mmed1ate1y and

vreinitiated completely at a. 1ater point in tlme.

By definition, Batch jobs are unattended operations. As such, run parameters
must be provided to the UTS system which define maximum operating limits which should
not be exceeded; if such limits are violated, the job will.be terminated. Where such
‘limit parameters are not provided by the user, system limits are imposed by default.
Similarly, in the event of system-detected pfogram errors, the default case will be a
job abort. However, provision is made for user recovery or "end-action', whereby, if
expressly indicated, a user-supplied recovery routine will be given information con-
cerning the type of error detected and the user-program's environment (registers,
status double-word) at the time of error detection. This capability is particularly

useful for run-time debugging.

It is possible to have user programs which are designed to operate in einher a
production mode or conversational mode. Similarly, production programs can be initiated
- from a job stack or on-line from a user terminal. In the first case, the user program
must be designed to determine its mode of operation from the type of control device used,
This is set by the UTS Monitor when it loads the program, i.e., from an on-line terminal
or a control card file in the production stack. In the former case, however, the user
can also initiate a batch job from a remote terminal using the BATCH command, which will
set the mode to production, not conversational. The program, designed for both types
of use, will organize its elements to fespond interactively or process batch inputs and

~outputs; this may be done by having two types of '"front ends'.

User programs can also be designed through the above‘medium‘t0'switch'their mode
of operation from conversational to production, but not the reverée.' One should not
confuse the choice of output media with the scheduling queue for a uoer's job. Once a
job has been assigned to the Batch queue, it cannot be communicated with by the user
although its status can be confrolled as any other job in the stack. If, however,
voluminous output is not desired at a low-speed terminal, the outout,can be shunted
“to a secondary storage file, magnetio tape, high—speéd printer, etc. vThe job can stiii

remain in one of the on-line queues for input control purposes. -

Interactive Processing

The most significant extension of computer utilization which is accommodated by
Sigma 7 and the Universal Time-Sharing Monitor is in the area of Interactive Processing.
For this environment, the UTS Monitor recognizes the more dynamic needs of interactive

" users as well as certain implicit priorities of their operationms.

Interactive users impose an implicit pridrity upon a computer system by the simple
fact that they are '"on-line'" to the system. In providing this direct access to the
computer, it is necessary to satisfy the user with a response time geared to a’ man-

machine dialogue. Actually, the interactive user can expect two levels of responsive-

ness:
"Conversational" When the interactive user makes simple data entries, issues Control
Response: . . :

P Commands, or requests a simple computational process, he expects a
rapid acknowledgment of his input or (in the last case) a computa-
tional result.

"On-Line" It is possible for the interactive user to initiate a long and in-
Computation:

volved computer process of indeterminate length. Obviously, a
response time for:completion of this process cannot be guarranteed,
but the operating system must do the best it can on an equitable

basis for all such users.

By defining systemvperformance goals, the conversational response-time cycle can
be made secure. That is, by establishing the maximum number of users, the cut-off
point in CPU time allocation for a "conversational' process (the '"conversational quantum'),
- ete,, it is possible to insure the proper turnaround time to a conversational input.
bFor a general-purpose time-sharing systeﬁ, it is not possible to make assurances for
turnaround-time of any user computational process; however, for special applications

where the process is a known quantity, system design can account for some guarantee of

tesponse time at this level.

The UTS Monitor provides a Scheduling package for general interactive users
with installation-dependent parameters to govern the user service at the conversational
and on-line computing level. Special application needs can be accommodated by modifica-

tion or extensions to this scheduling logic.

To accommodate effective interactive processing, the UTS Monitor exploits the
Sigma 7 Map feature for dynamic relocation of user programs and/or data. This facility
permits users to share memory easily, not only in terms of preserving virtual memory
addressing, but in allowing the use of non-contiguous physical core mémory. Ihis is
- essential for maximized efficiency‘in a time-sharing environment, where secondary

storage (disc) is used for inactive program residency and swapping.

Selective memory protection is also provided through the Sigma 7 Map, to insure
the integrity of the operating system and individual user processes and data in a time-
shared environment. User programs cannot accidentally (or otherwise) gain illegal access

to virtual and physical memory areas not specifically allocated for their use.

The Map feature is of great value for reentrant programs, which are of major utility
in a time-shared environment. Common processes can be shared by several ﬁsers concurrently,
since their unique data areas appear identical in virfual memory, but are actually dif-
ferent in physiéal memory. By simply changing the user's map and program status double-
word (registers, program counter, etc.), a common process can immediately start (or com-
tinue) operating for a different user. | | '

Real Time

Critical Real-Time processes are given privileged sérvices as in the Batch Process-
ing Monitor. Theée include:

. Master mode operatiomn

; Dedication of core memory space, 1/0 devices,.I/O channels, CALL trap locatioms,

External Interrupts, clocks,kfast register blocks, etc. o

. I/0 priority servicing ' -

. Interrupt service

. Data and Command Chaining

End-Action I/0 service

" In addition, for thé UTS environment, the following services are possible?
‘-[.v Clock-watching service (synchronous scheduling) '
':. Virtual memory space dedicated in all user maps
. Automatic swapping for non-resident foregfound tasks

. Non-mapped operation (for critical, resident foreground tasks)

Real-time processes fall into two general categories, as far as responsiveness
‘" is concerned:
. Critical Real-Time - ‘ ' ') .

. Tolerant Real-Time

In the first case, responsiveness must be insured by constant core residency,
direct connection to interrupts, dedication;of system facilities; etc. 1In short,
system overhead must be reduced to a minimum. Tolerant real-time processes are those
which can afford some reasonable delay between the activating sigﬁal and the time
for process execution. Iﬁ this case, the real-time process can be dynamically serviced.
by the UTS Monitor without unnecessary dedication of ali operating facility needs,"
‘particularly core memory. However, the implicit priority of any feal—time process is
higher than a background job (production) or interactiverusefs an&-are classed as

~ "foreground'" operations. .

Foreground processes can be either permanently installed for continual operation
at System Generation time or dynamically loaded as a new job by the Operator:' In both
cases, once the real-time .task has been properly loaded into the system and activated,
it can utilize the privileged serVices'provided by the UTS Monitor. A foregfound taék

can operate either in the Master Mode or in the Slave Mode, depending upon its operating

.requirements. This facility will require that any user-supplied foreground task which

operates in the Master Mode must be thoroughly checked out before it can be safely

operated in the full UTS environment.

Although the UTS Monitor will provide a maximum of generalized services and facili-
ties for real-time operations, it cannot, by definition, protect the user from himself.
Most specifically, in a time-shared environment it is quite tempting and easy to over-

load the system. In attempting to operate several foreground tasks concurrently, it is

essential to provide sufficient system resources if proper responsiveness is to be

maintained.

Peripheral Processing . ‘

One of the important facilities available and imﬁortant to the UniVersaLITime-
 sharing Monitor is the capability of performing concurrent bulk-input-output ﬁransferg

}libetwee“ various peripheral devices (particularly to and from disc storagé) wi#h minimal
“interference to other computations., To accomplish this, two types of service functiOnsb

E;:éré provided by the UTS Monitor: ‘ o B - '

: ~ SYMBIONTS o

. COOPERATIVES

In essence, peripheral processing consists primarily of I/0 transfers with a
.small amount of computational effort to drive the peripheral devices. Symbionts are
the driving routines for péripheral processing and there can Be input and output Sym-
bionts for every'Sigma 7 1/0 device. They Operate on the basis'of bulk trénsfers,

independent of any user program needs.

To accommodate format needs of a user program; the Cooperative routine is‘employed-‘
ffto feed I/0 data to and from a Symbiont. On input, a Cooperative will break down (unpack) -
“'the data for the user program;‘for output, a Cooperative would pack the data for the ‘

' ‘Symbiont.

‘Symbionts have aﬁ implicit priority higher than background production jobs, but
t 1Qwer than interactive or foreground tasks. Symbiont operations‘are iﬁitiated by Opera-
_ftor action and can be terminated by theIOperator as well, SymBionts are also auto-

“ matically activated for normal Batch job operations, e.g., printer output via the disc.
QeUser programs use Symbionts in conjunction'with Cooperatives for interfaéing, as des-

f:cribed above.

Multi-Processing

Several features of the Sigma 7 computer, coupled with the UTS Monitor, could be
used for a multi-processing environment. The hardware map, tasking service, reentrant

routines of the Monitor, etc., lend themselves to task-oriented multi-processing.

The UTS Monitor does. not provide for multi-processing, however, since additional
extensions are required for this purpose, primarily in the scheduling logic to permit
execution of more than one process at a time, In addition; control would have to be
exercised over the bookkeeping tables of the Monitor such that'only one CPU could
modify common data at any given time. Other complications would be caused by'I/O and

external interrupt configurations which could require CPU-to-CPU communications not

provided for in the UTS Monitor.

. 10
Resource Allocation

The fundamental requirement for the UTS system is to perform effective resource
allocation to concurrent system users on a dynamic basis. The resouroes are varied.
~in type, number and mode of allocation; some are more static allocations; others, very
“dynamic. Certain resources are very critical to system 1oading capablllty and must be

" governable by a user 1nstallat10n.

Resources Available to a User Program Under UTS

1. Core memory space for execution
2. Compute time (CPUj_
3. 1I/0 channel time. and/or assignment (depending‘on type)
4, 1/0 peripheral devices |
5. Active swapping storage on fast-access disc
6. Permanent file storage‘on high;Capacity disc -
7. Trap location |
8. Interrupt lines
9. Communication channels
10. Last memory blocks

11, Map space (virtual memory space)

The above resources affect users in the following'éreas:

1. Convenient‘accéss for loading (time) |

2. Convenient access for execution (time)

3. Restrictions on entry ihto the éystem (executable or not)

4., Restrictions on program execution (size, time, facilities) and priority

Those resources which are sharable (i.e., core storage, auxiliary random-access
storage, CPU time) will be controlled by System Generation and Operator Key-in para-
meters so that any one user or user program cannot freely degrad system performance
or preempt service from other users. Through_the use of such parameters, a system
may allocate maximum amount of these resources, special-case (privileged) allocations,

~or first-come, first-serve unrestricted use of such resources,

Non-sharable resources will be allocated on a first-come, first-served basis
5:and/or by dedication to privileged foreground programs. This will be done either by

'-bpe01flc assignment at System Generation time or upon user program demand.

11

II. UTS STRUCTURE

The Universal Time-Sharing Monitor encompasses all of the features of the Sigma 7
Batch Processing Monitor, since a comprehensive time-sharing environment includes pro-
duction job processing as a background operation. As such, the UTS Monitor is -actually
structured upon the functional elements of tﬁe Batch Processing Monitor with several
‘notable extensions.

.. Core residency and overlay organization of the Monitor is different Qecause
of the more dynamic environment for interactive users and‘additionalgExecutivé
services. | ’

 ;,. The Sigma;7 map facility is used to advantage wherever possible for dynamic
reldcatibility, context switching, core space management, etc.
 , Provision is made for automatic swapping between core memory and fast disc
storage to provide maximum combuﬁation and I/0 overlap.

. Scheduling is provided for the multi-user and multi-task environment.

.~ File management control is extended to cover the on-line multi-user operating
environment.

. The accounting mechanism is extehded for the on-liﬁe multi-user operating
environment. |

. Managemeﬁt of public subroutine virtual memory space is provided for.

. Dynamic core space allocation is provided through the Sigma 7 map.

. Provision is made for chafacter-oriented commuﬂicati6hsiproceséing and inter-
active user console services. |

. A conversational Executive Control Language processor‘is added to supplement

the normal Batch-Mode Control Card Interpreter.
_' The UTS Monitor occupies a portion of the total virtual memoryvspace (128K) avail-
:fable to each user. This sharing of the map permits the UIS Monitor itself to take ad-
.. vantage of dynamic relocation for greater organizational flexibility. It also enables
" more efficient Monitor interaction with a user's program by providing a common virtual

. memory reference between them at all times.

12

The UTS Monitor is composed of a number of functional modules all of which are

“pure procedures and therefore reentrant. Those processing modules which are not

required to be permanently in core can therefore always be restored with a fresh coéy
from disc instead of being saved each time. The monitor processing modules are linked
together by central communication and bookkeeping data tables. Any Monitor process may
be interrupted before completion and reéntered,providing fhe common bookkeeping tasks
have been completed, or if the interrupting task is independent of the central bookkeeping
~functions (i.e., a real-time foreground process with dedicated facilities). 1In only a
- few strategic areas will the'interrupt problem be regularly forestalled by interrupt
 disab1ing while critical bookkeepihg iskperformed;'that is, pushing machine register

contents,

Privileged Functions
" In the UTS Monitor system, all machine controls are considered to be privileged

. to the Monitor and those real-time tasks which require such privileges. Thus, a user
program can normally only exercise a machine operation (other than computation) indirectly
- by asking‘the Monitor to perform such a function. This applies also to making changes
'ﬁo,data located in Monitor-controlled sﬁorage areas in a program's virtual memory. This
bis‘necessary to minimize or eliminate any accidental catastrophic sysfem hang-up due to

a software error. .By centraliZing privileged operations as much as possible, even within

the Monitor area ‘itself, éystem maintenance, extensibility, and modularity is greatly -

enhanced.

Executive Functions

Executive functions of the UTS Monitor are distinguished from the more fundamental
Monitor services by the fact that they involve the administrative tésks, initialization
or termination functions, secondary operations for user program operations, or non-
‘critical yet useful functions for system users. The Executive elements of the UTS Monitor.
do not themselves perform‘any privileged tasks directly, but cause the main Monitor
éﬁelements to do so when necessary. Data associated with Exécutive fﬁnctions can often
fibe made non-resident in core memory because of less?frequeqt‘use or lower priérity for

- /response when core space is at a premium.

13

Executive services of the UTS Monitor include the following:
. Accounting

Job Scheduler (Batch)

Error processing and abort service
. 1/0 resource allocation

Storage allocation (secondary storage)-

File security '

. User information services (system status, etc.)

Checkpoint service (save for restart).
. Console Communications services
Overlay loader

. Public subroutine control

Main Monitor

The hard core of thg‘UTS Monitor.conéists of those Monitor functiOQS‘which are
constantly required to be in core memory for progrém execution,

.- I/0 Dispatcher |

| I/0 Handlers (standard peripherals)

. Task Scheduler '

. Interrupt processing

. Clock processing

. Trap processing

. Secondary storage access control

. Operator communication

. Communications handler (for interactive users)

. Symbionts and cooperatives (when.active)

- Real-time service routines | '

. Swap module

. Map Maintenance (core éilocation)

. File Management Basic Tables

14

Service Subsystems

The UTS Monitor provides the operating environment for user programs which can'
be system service programs or private programs. System services are public‘programs,
‘designed for multi-use (reentraﬁt) in’the interactive case, or any installaﬁion pro-
“gram for the batch mode bf operation. Such programs are available from secondarj
,'storage and are recognized in the UTS Executive command list. (Private programs re-
~quire specific file management service for loading and operation.) Service subsystems
are often in high demand for convenient respomse to interactive usage and can, at
System Generation time, be made permanent core residehts. However, in genergl, the
Service Subsystems are bésic programs for system users which ére'tieated as user. pro-

grams when operating.

The following subsystems are currently available in the UTS system:
. Symbol ' " |
. Meta-Symbol
. FORTRAN IV (Debug and High-Efficiency)
SYMBUG (DDT) ‘ '
EDITOR
. HELP A |
. COBOL (Batch mode only)

1401 Simulator (Batch mode only)

Other service subsystems can be added to the System at System Generation time to
serve particular application needs of a Sigma 7 installation. Such subsystems must be
carefully administered as far as becoming public system services, since they should be
properly checked out, documented, and be appropriate for installation needs. Other

‘useful routines and programs can be made available to all users by being entered into

a public library and loaded as a private program through the file management facility.

Map-Sharing

All programs and routines, including the UTS‘Monitor, which will be operating
together in core memory, must share a common virtual memory, i.e., the same hardware
map. This affords maximum operating efficiency under the hardware architecture of
Sigma 7. Public functions must be consistently allocated the same virtual memory areas

to allow for concurrent use by multiple users. This means that a user's memory map

15

will include all public, reentrant routines of the UIS system that are required for
the user's operation and these routines will always be in the same virtual address
locations. For public library routines, which are available to the user but not on
a reentrant basis (or for popular multi-use), any available virtual spéce is used

at load time.

Map~sharing should not be confused with the éharing of physical core memory.
Routines and/or data used by a program may be in physical core memory but not neces-
"sarily in the program's map. Thus a program which uses overlays may have the overlay
segments in core memory and the overlay action consists of simply changing the physicalh

addresses in the memory map. Programs designed for Sigma méchines without the map
 hardware and smaller core memories will be operable in a more efficient manner by using

the map in UIS for virtual memory overlays.

Map assignments of virtual memory will typically appear as.follows:

F [Monitor Area v F |Monitor Area , - F |Monitor Area
User Context User Context o ﬂi‘4 User Context
F |System Public ;. F System Public - |". |User Program°
Routine Area ; Routine Area o
F |Service Subsystem|: =~ F |Standard Run-Time
(e.g., Editor) - Package (e.g., Fortran)
OR 3 . R

= User Progr
e e - = - — — — L o8 a0 —| - |User Dynamic

Data Area

F |Service Subsystem , 7
(e.g., Fortran IV} = . |User Dynamic Data
‘ Area ’

User Dynamic Data
Area

T

[l

fixed- virtual memory locations in all users' maps.

%

1

overlayable processes in virtual memory, but resident in actual core memory.

16

Certain functions are assigned to permament physical locations:. Such functiong
are tied to the hardware (interrupts, traps) and, because they are not relocated, can
operate without the map. A dedicated foreground process can be so treated and avoid
map-sharing of virtual memory. (Physical core memory, of course, is still being shared.):

Public Subroutines

A significant facility of the UTS System is the ability to provide useful sub-
routines (reentrant) (e.g., mathematical routines, byte string routines, etc.) for con-
current utilization by several user programs. This feature minimizes core storage

requirements in a shared memory environment as well as swapping overhead.

For Sigma 7, the publié subroutine area is a dedicated portidn of the 'virtual
memory space. This épaceyis dedicated in each users' map, as is the Monitor space,
since program addressing within the public subroutines must remain constant. Inasmuch
as it is uncertain how much of this "p;blic“ space should be allocated for a given
installation, it becomes a System Geheration paramefef. Furthermore, each installation

may require different subroutines to be resident and therefore only those administratively

identified for public residency will be loaded into the phblic space.

Public Routine_viftual‘space is selectiﬁe, depending upon installation needs.
At System Generation time, a specific set of subroutines is permanently established
in the public space. These will never be changed during system operation and any other
subroutines from the sysfem library will be loaded as a privéte copy in a user's ?rogram.
There is no demand swapping of public subroutines because of the impfacticality of |

- dynamically moving routines in virtual memory.

For these users who wish to utiliZe the maximum amount pf virtual memory’ space
in their maps, they may ask for allysuBroutines to be private copies and the public
sub-routine space in their map will Be made available for private use. This permits
a user program which uses few public subroutines to gain more virtual memory than

normally available.

3

17

User Program Context

The UTS Monitor is structured along the lines of distributed centralization,
That is, although various data must be maintained by the Monitor for an individual
user program, such data is not centralized in Monitor,ZGre/Memory space, Rther,
each user program will carry within its addressing space areas devoted to Mohitor-
JQSntrolled data stofage. Thus, when a user is not active in memory, it is poSsible
to liberate a makimum amount of his physical core memory (swapping) fof other users,
J‘The size of this ébntext space is variable, depending on the user program's operating
‘needs and it can expand dynamically during execution by linking the user's vitrtual

memory pages.

The contents of the user's context area includes the following: (See Appendix

)

. Map Image
. Task Control Blocks
Data Coﬁtrol Blocks
. Program Status Doubleword
. Simulated Sense Switches
Program status indicators (Monitor-set)
. Temporary storage pointer

N

. Communication Echo table (private version)

The context block information is selectively protected so that only.the UTs

- Monitor can modify its contents. However, the user program can readvthe information
therein (those set by the user or Monitor at known locations) or use the data for
indirect addressing. Furthermore, changes can be made to coﬁtext block contents

~through Monitor service calls.

I

CAL Traps

Since user programs are prohibited from going directly to the Monitor core
“‘memory area by the memory protection hardware of the Sigma 7 computer, the CAL
~instruction provides the mechanism for user programs - Monitor intercommunication.
By executing a CAL instruction, one of sixty-four memory locations will be reached
where control reverts to the Master mode (XPSD) and the user's service request is

examined further.

Not all the CAL locations are used by the UTS Monitor and the available ones
can be employed by user foreground programs for various privileged functions (Real-

:Time/sérvices). They can also be used by an installation to extend the UTS Monitor

services to user programs (System Generation).

Selective Memory Protection

The UTS Monitor allocates core memory according to operating needs and by memory
protection needs. That is, the number of memory pages required is governed by the total

memory size required as well as selective partitioning into different memory protection

areas.
Monitor: k ‘ " No Access
Public Routines: ‘ ’ Read and Execute Only
Context Area: Read Only
User Program (Instructions):' Read and Execute Only
User Data: All Access, Read Only

r : . : '
User programs must provide indications at load time of their process and data

partitioning, otherwise an "All Access'" protection will be assigned. "No Access'"
pLOLCCLlon is assigned to any dedicated v1rtua1 memory space (i.e., to a critical

real-time process) while it is not actlve, thereby mlnlmlzing environment switching

(no map changes).

Lock and key protection is used to guarantee the integrity of the Monitor and
Executive areas from foreground tasks operating in the Master mode. It will restrict

- such tasks from violating areas other than its own.

19

Reentrancy

The map feature of Sigma 7 has been designed to provide reentrancy capabilities
for UTS prograﬁs. By chénging the user's map, a common program process can be applied
to'a different user context and dataarea, even though virtual addresses in the common
process are the same. The requirement for reentrant process is that it be '"pure pro;
cedure", never modifying any instructions, oﬁly data. Since it is difficult to verify
whether a program has indeed been implemented for reentfancy when written in assembly
language, and since "public" service programs should be properly controlled, the
assumption will be made that a program is not reentrant unless administratively

entered into the system.

The UTS system requires reentrancy for all programs énd subroutines which will be
public and used concurrgntly by multiple users. By definition, reentrant prégrams
must be pure procedure;ﬁ%% modification of instructions and . separation of process
(instructions) and context data from data, temporary storage, and context on a page-
protected basis. All reentrant programs will utilize the m&p to switch from user to

user for a reentrant program.

Subroutines, both for thé standard System Public Subroutine area and for the
standard Run-time package(for a language processor, must be organized by the loader
to have any local storage separated from the process into independent pages. To
~accomplish this, the standard subroutines must be organized into two blocks; one
block of jﬂ pages will have the processes (instructions and constant data only), the
other block of b pages will contain all- jlocal storage for the subroutines. The
loader will adjust all addresses in the subroutines to access tﬁe relocated temporary
storége. Every user map will have the same virtual space dedicated to these public
subroutines and/or run-time packages. .Thus, by switching the map, only the subfoutiﬁe
storage areas Qill have to be changed to reflect a new user's context location in
physical core memory. This scheme will not permit dynamic storage to be used; any

subroutine requiring dynamic storage will have to bgiprivate copy 1in the user's program.

A user program must indicate at load time whether or not the standard subroutine

package(s) should be used or only private copies should be loaded,

20

III. UTS FUNCTIONS

Core Memory Management

The UTS system allocates core memory on a dynamic basis in order to support the
multi-programming environment. It is required that sufficient core memory be avail-
able during system operation to accommodate enough user processes so that program

:,:execution can take place while I/0 and swapping are being performed.

A System Generation parameter, which can be overridden by the‘Operator during
"fsystem operation is the maximum size of‘physical core memory whiéh will normally be
"made available to a user program. This is necessary in order to avoid having a
particular user program degrade systeﬁ performance for other users. If a larger pro- ' :
“gram (and/or daté) is required.by a user,aa logical overlay ét that program's ex-

pense will be performed.

Physical core memory areas will be allocated on a dynamic basis to all processes
requiring such storage, based on implicit and explicit priority. When physical pages
- are necessary, low-priority processes (non-reentrant) or data areas will be purged to

J*fsecondafy storagev(swapped).‘ Reentrant processes will not be saved, since a fresh:

fcbpy will be brought.in when necessary. For I/0 oberations in progress for a user's
“program, the I1/0 buffer pageé‘will be fetained.iﬁ core along with its context blocks
f‘rcbntinuing the DCB'S,FEtC. If no operation is being performed for a user program,'all:
ﬂ of Lhat program's core Space will be purged, leaving‘oniy queue information for future

-“activation.

To control core space allocation, a bit map of core memory pages is maintained by
the UTS Monitor. In addition, the sdheduling queues with their implicit and explicit
priorities are used to find what must be Brought in and what can be-swapped out. Each

‘?;‘Program's context area will contain a map image used to both establish the hardware map

‘;fwh@n‘cxecuting and to reset the bit map for memory when core space is released by swapping.

21

Core memory management of the UTS system will recognize special needs for user
programs. These include: |
. Core space dedication for foreground residency
. Specific core memory addreésing space required for special hardware processors,
This would include réstricting_the use of this space for processes which could
.not easily be preémpted, (i.e., "sensitive" areas). This information will be
,defined at System Generation time.
When nécessary, depending upon priority, the required‘available space wili be
derived by swapping out the current residents. If time bermité, special core needs will

be accommodated by moving current. occupants in core memory.

a system efficiency point-of-view, physical i:;ftfiﬁiiz.iilgEEEEQDfmey-be .
profitably organi so that protection types are ogether. For example, all

reentrant processes are phystT

eértain areas of core, user context areas in

"~ others, foreground s are physically to and the more dynamié, swappable ele- '

ments 0L user programs are also co-located.

Swappin

As part of the dynamicfscheduling of user programs in the UTS system, a swapping
function is used. Swapping involves the removal from physical core'ﬁemory of a user's
'program and/or data to make room for another usef? It is‘ciosely tiéd to the schedulingv
logic of the UTS system in that practical deciéions mﬁst be‘méde for the following:

. Who executes next |

. Who is transferred in next

. Who is removed from core next (pufgé)

The logic of scheddled,swapping is to always have a user process available for
{gxecution while: other user processes are being swapped. This requires sufficient core
ihmmory space to be available so that enough users can be resident to guarantee maximum
;bverlnp of swapping (I/0) time by user ‘execution time. Resident user execution times

‘must be equal to or greater than the time to get other users ready (swapped) for execu-
“tion, ' L ;

.

22

Part of the efficiency in swapping chores will be derived from being judicious
about what has to be swapped. By being selective, physical core space can be made

available with minimal overhead or with more practical pay-off in scheduling operatioms.

User core space will not be released unless required for other users or if the
user program action explicitly calls for a release function, e.g., program termination.
Given that a scheduling decision requires physical core space to be made available to an
inbound user process or an existing one, the followiﬁg logical selections for swapping

v

will take place:
1. 1If a resident user process is not operating, but is awaiting execution in the
current queue (priority level) it will not be swapped out before less "appro-

priate" user space has been exhausted.

)

2. "Appropriate' user space for swapping is determined by selecting a user process
which is not ready for execution and is awaiting a Monitor service or input

(i.e., suspended).

3. Among all user processes in item 2, the choice of space to be‘made,available
is selected in the following order: ‘ !

. Protected space (non-modifiable) unique to a single user (not a common

process or data area).
j7. Protected space (non-modifiable) common to several users, but not currently

%uwg?ﬁiak required for execution.
fl EEMTALT
Corprmenrs PlotE JS(a;

pre CELEASED FligA . ‘ :

W M mwzsqmbwcﬂ pended will refer to most recently suspended, e.g., having just been executed

Fop G TES ALL USERS '

o gwe IR 4y PEDTESS within the current queue cycle.

RS GEal Tiirs 10950RES

-—w:"“ Mo UsER FRA F”"E

Py fA
. M}fiah?ﬁ%aﬁrﬁ 5 RESPWSE @HCLE «

A use counter for process or data elements will be required for users sharing

. Unprotected space (modifiable) belonging to a suspended user process. Sus-

‘common elements, based on load-time information, to satisfy retention of multi-use

elements.

Reentrant elements are appropriate for available space, since saving is not required

(no full swap), but only some bookkeeping is necessary. However, such bookkeeping will
include map maintenance for users and if;%eentrant element is moved, it will cause many

.

méps to be modified.

23

Since hardware facilities are not available to handle actual core modifications

or references, software checking of such history will be a source of overhead: for !

f questlonable pay-off.

Swapping storage will be assigned only on fast, random-access storage. It will

~.consist of space for all active, unique user elements and common processes (reentrant)

wf.or common data (active). In order to maintain efficient swapping transfers, it is
?fenecessary to compromise the amount of selectivity in saving userbprocess elements. Tﬁat
{ﬂ_is, it may be more expedient to save large blocks of user elements than to pick out
'i,little pieces for transfer to and from the high-speed disc, For example, all éata pages ’

" should be swapped, if modifiable and protected elements are intermixed.

Logical Page-Turning

The UTS Monitor will offer a facility for a user program to operate within a
smaller amount of physical core storage when the virtual addressing memory is large.
‘D This facility can be used where there is a maximum limit set upon a user's physical

" ;eore space allocation or where there just is not enough physical memory available.

ew——— .

v O T gia-pagembaeb&wmémuA»
’bthﬂ&mhﬂ@mﬂmhownmtowbe—d&eaeev0uswtnwsystemweperatwng~ei@rcmeneyn-mEnsteEé:] n overlay
structure will be required from the user's program at load-time which will describe
program segments for physical rather than virtual memory. That is, aithough the program
" will be written as if it had sufficient core spece available to it, a tree structure

5;iwi11 show what logical pieces do indeed have to be resident at any given time.

The Batch system overlay mechanism can be used to provide this form of logical
. page-turning, since the organization requirements are Similar. The tree structure
will show which pleces must always be resident, which pieces must be in core concur-
rently, and which Fleces can. be removed at certain times, By maklng a reference to
{rufle

an unavallablehlocatlon, the overlay tree will be consulted to determine what overlay

action is to be followed.

The UTS Monitor will employ the map to make changes in the user's physical memory
telative to the virtual space. Thus, a limited number of physical core memory pages

can be used to service a larger number of virtual memory pages} This approach will

i

24

afford a reasonable and practical method for efficient core space utilization without

dangerous guessing and excessive system overhead.
In addition to the above method of 'reference loading", explicit overlays can be
S o
called for by an executiwe program. This is an overlay in the virtual memory space

and consequently in the physical space as well.

Auxiliary Storage Organization for UTS

Auxiliary storage requirements for the UTS system are greater than.for those of
the Batch Processing Monitor for a number of reasons: |

1. UTS System is larger .in size.

2. Additional forms of storage required.

‘3. Volume of storage requirements significant.

Auxiliary storage in the UTS environment is divided into three fundamental categories

1. Active random-access storage
2. Permanent random-access storage

3. Permanent external storage

Active Random-Access Storage

This storage requires the SDS high-performénce rapid-access disc for maximizing
multiprogramming efficiency in the UTS system. Contained in this storage are. the fol-
lowing types of files: |

1. UTS Main Monitor and Executive Routineé

System Bookkeeping data (e.g., file management directions)

. Service programs

2

3

4. Swap storage for active programs

5. Scratch storage for user‘prograﬁs

6. Active non~core resident foreground programs
7

. Overlay elements for active user programs (active load modules)

This storage is a critical resource for the UIS system and is a limiting factor
on system performance and loading. It must be kept relatively unclogged by excessive

Lransfer requests and priority for residency goes to the storage items listed above.
7//4/w7 ’8 /j';/l///cf/",c-& iy Orposild 7o ;f/-w"/f’i// s /‘/ S AroL T
Gl g O NN - A TR WL, RAD Ca Gsd b g IR

g T R e s RS S B TIAII o Pan SsmRADRI

oo

At 2~

25

Permanent Random-Access Storage

This type of storage must be random-access in nature but'speed of accessibility
need not be as great as the Active Random Access storage. Etther—h&gh—perfurmance(LnERTWf
, lhengit. D oh- it g g et d ; ,
; YRAD"s or high capac1ty.E§&-can be used, although the latter ie«recommen ed. Res1dency,
in this storage includes the following:. :

1. Public lihraries»(programs, subroutines)

2. ‘Private libraries (user—owned)v

3. Batch jobs awaiting'execution (Job Stack)

4. *User permanent input and output files - T ’

5. Symbiont buffering for I/0 peripherals

6. Accounting data |

7. Save-for-Restart (check p01nt) programs

*User data files for input- or output to an activated program will not be moved
to Active Storage unless explicitly called for by the program. This is done
v(for input files) by a request for file movement (cooy) from Permanent Storage
to Active-scratCh storage. Output files generated by a user program in Active

scratch storage must be explicitly 'saved" before term1nat10n in order for them

to be preserved in the system. Otherwise, inpqt and output files will be

accessed by a user program directly from Permanent Storage.

Swstem Generation parameters are used to define the allocation of all random-access
storage available in the system, including maximum 1imits for individual users, both
Permanent and Active storaée. The allocation of Permanent and Active storage will have"
a more significant effect on UTS system cohflgurations that have high-spee&,discs and
high-capacity discs; where only high-speed discs are used, movement from Permanent to

Activevstorage'will not be necessary.

Permanent External Storage

Magnetic tape is required to back-up random-access stotage ahd will be used for
purge storage when Permanent Random-Access‘stotage becomes full or when oermanent copies
of programs or data are required. Purging will be under-Computer Operator Lontrol in
terms of selecting files to be purged:. Age of files (when last used) as well as priority
vill be taken'into consideration aceording to installation administrative rules. The

UTS File Management system will prbvidelinventory display of current files on Permanent

26

random storage and will purgé to tape either specific files or files selected by
age of use or owner criteria.
INSELT - A
Scheduling
Two forms of scheduling are operafive in the UTS system; Job Scheduling and Task
Schéduling The former applies to a user job 0perating in the Batch Mode, while the
latter refers to elements of Jobs (of any kind) for the multiprogrammlng environment,

i.e., interactive processing.

Job Scheduling

Job scheduling is performed as under the Batch Proce551ng Monltor, i.e., a job
stack is maintained on the disc which is organized on a rank-ordered priority ba51s.

This priority is an administrative number assigned externally to incoming jobs.

In addition, a foregrouﬁd or interactive job can activate a background job by
placing it in the stack (via a monitor service call).i An interactive job can blace
itself (or be placed by tﬁe user) on the prbduction stack, so that'it is no lohger
interactive. In this 1aSt instance, the job is in save-for-restért'form:for spbse—

‘quent execution.

Job Scheduling in the UTS (and BPM) system operates one job at a time from the
production stack. From a practical point of view, it does not assuﬁe special situa-
fions where more than one background job is active or provide sophisticated scheduling
rules (e.g., automatic priority upgrading based on elapsed time and deadliness). How-
Ever, users can, if they so wish, tailor job scheduling to thelr own needs by installing

‘their own job scheduling modules at System Generation time.

Task Scheduling

Task scheduling applies to the dynamic scheduling of.user jobs in the multi-
‘programmed environment of é time-sharing system. Based on user SerVice needs and the
‘load on the system, the task schedullng function determines the operat10na1 behav1or
fof any given system. Because such needs will vary from 1nsta11ation to 1nstallat10n,

.the UTS system recognizes that the taék scheduling logic must be'highly flexible for

27

“proper adjustment and tailoring, Consequently, the major scheduling elements have
been made installation parameters which can be specified at System Generation time

“and/or while the system is in operation.

The scheduling logic which can be so adjusted lies primarily in. the area of
‘interactive use. Overall scheduling consists of three user areas: ‘
- 1. Foreground (real-time) ,;b ' |

2. Interactive users

3. ‘Background (Batch) jobsf

Foreground jobs are assigned priority in absolute rank-order, based on priority
interrupts. "Synchronous" foreground jobs have higher priority than interactive users.
and are activated when clock "timer" runs out. (The UTS Monitor does the clpck watching,)
The time allocation for foreground activities should be‘preplanned by the user installa-

tion to insure against overloading the system.

The interactive user level is the area where great variations can occur and
scheduling can be tuned accordingly. Within this level are two types offoperations::
1. Conversational Processing '

2. On-Line Computation

Dynamic parameters for conversational processing are:

1. Maximum number of interactive users allowed in the system.

2. Conversational time quantum (maximum amount of time allowed for conversational
mode) . | | |

3. Conversational duty. cycle.

Parameters for on-line computation are:
1. Number of queue levels (multi-level queue)

2., Time quantum for each level

28

Multi-level queues ere functionally useful for the on~line compute mode of
interactive processing for several reesons. First, it is difficult to ascertain the
length of compute time required to service this mode for all users in order to produce
the response output. Second, since fime must be equitably'shared (normally), it is
appropriate in the system to "feel"jits way in a dynamic and uncertain environment.
Finally, it allows a finer_categorization of interactive use inAa generalized system
such as UTS; e.g., large-size processes may be immediately relegated to a lower priority
queue when in the on-line compute mode. | |

The multi-level scheme can be employed either as a fixed 3581gnment method for
“known types of processes (which is dlfflcult without 1nsta11at10n experience) or, as
. has been done with several prototype time-sharing systems, programs can be "pushed
down" to lower priority levels (with accompanying longer time "quanta") as required
dynamically. The geal of‘such scheduling is to favor conversational respohse'aﬁd fast,

short on-line-computation as opposed to longer on-line computing.

Needless to say, the algorithm for scheduling can and should be adjusted to an
installation's needs after such needs have become empirically determined. For this
reason, maximum modularity and flexibility to make such changes are provided in the

UTS design.

The rules for a user to move from one queue level to any other (including the
conversational queue) are also variable for installations and can be changed by assembly
and system generation 1oading;> They are not dynamically changeable during system opera-

tion.

Effectively, queue management logic for the intereetive 1eve1‘involves the decision
rules for the following known events: ' | |

1. Time quantum excéeded

2. Program return for various monitor services>(I/O calls, interactive input

or output, overlay, 1inking,'etc.)

29

Another parameter, specifiable at System Generation time and during system
operation, is the amount éf time to be allocated for batch jobs. This time is
essentially a guaranteed portion of the interactive duty cycle which is always
given over to background jobs. 1It, therefore, will implicitly limit the maximum
number of interactive users which can be served simultaneously. The amount of
time allocated to a Batch operation is cumulative; that is, if I/0 is requested,

CPU time is still available to it during the interactive duty cycle. Thus, a Batch
job can operate intermittantly within the duty cycle to drive I/O rapidly. However,
the requirement for accommodating Batch operations in this manner is that core space
for a Batch job must be pre-allocated so that no swapping interference takes blace.
The Batch job must be resident while it is active (getting CPU time) all during the

duty cycle. It may be removed only when its CPU time is exhausted; however, ew<w

L VR EARIC g Clans » "
o this eapenot bowpmpebde] v %bbnu 7{‘%A+$M«#a~b 4%4V.

Shifting Between Conversation and On-Line Compute Modes

One of the difficulties encountered with interactive time-sharing systems has
4
been to differentiate between the conversational and on-line compute? phases of an
interactive process. Early systems simply used computeé time utilized as a measure

of this differential. However, other clues can be employed effectively.

The following ground rules are follwed by the UIS system to determine the status
of an interactive processi
1. Any I/0 call for interactive input, i.e., keyboard with a WAIT optipn, will
be considered as_a sign that the program is indeed in a conversational phase.
0 Morsdvefaiat A9Qet T/0
2. Any I/0 reques;r except input or output to the interactive terminal, will be
considered as a sign that the program has shifted to an on-line compute mode.

3. When the time quantum for the conversational queue has been exceeded, the

program is dropped to the on-line compute mode.

Needless to say, such ground rules for scheduling can and should be modifiable

to handle special cases or for an installation's environmental requirements.

(&3

30

The UTS Monitor provides a Queue Staﬁus moduie which will be activated every
time an interactive user programAmakes a service call to the Monitor or is trapped
By the system. This module will determine, by a parameterized decision table,
whether or not the user's queue status should be changed. This decision is £aken

before any monitor service is rendered.

System Scheduling

Above and beyond the scheduling control described above for user execution, the
UTS system services programs on an implicit scheduling pribrity; This applies to all
Monitor functions required by user programs. That is, services are rendered according.

"to the following implicit priorities:

First Level ‘
1. Real-Time foreground tasks (by interrupt level)
a. Interrupt connected | s '

b. Resident or non-resident in core’

2. Synchronous Foreground tasks

~a. Serviced by Monitor clock-watching function

'

Second Level

1. Interactive Pfograms - Conversational Mode -

2. Interactive Programs - On-Line Compute Mode

Third Level

1. Batch Jobs (by explicit priority)

The second level, interactive processing, is'broken down further into the fol-
lowing priorities for UTS servicing: | | |

1. Executive Command Processing

2. User Program Ready for interactive output

3. User Program Ready to execute and in core (conversational mode)

31

4, User Program Ready to execute and in core (on-line compute mode)
5. User Program Ready to execute and not in core (conversational mode)

6. User Program Ready to execute and not in core (on-line>compute mode)

Executive Command Processor

In the UTS environment, Executive Commands are processed in an interactive man-
. ner. (For Batch Jobs, the normal Control Card Interpreter iiﬂdged.) The UTS Execu-
tive will use the same communication input buffer that the user's program employs.
When the user has explicitly or implicitly set the communication mode to Executive,
:the Executive Command Processor ﬁill then process theAinput message using its own

echo table (System Generation).

Every Executive Command will be treated as a priority interactive input which
must be processed immediately; It is not of higﬁer priority than norma1;¥7g func-
tions. ‘For every Executive Command, full conversational features must be used. This
means that a response to the user will be made immediately (£ 3 seconds). The response
may be a '"WAIT" to indicate that it will take some time for the Executive Request to
" be serviced, such as loading a user program. If an Executiye Command format is in
| error, a diagnostic specifically indicating the error type will be returned. Those
‘ExeCutive Commands which do not produce any particular output will respond with a
simple acknowledgement showing that the request has been received and that the user MAM
issue another Executive Command (or other input)..

The Executive Command processor uses free formats and will minimize any unneces- a
sary user input. To this end, an action routine to scan incoming characters and complete
che printing of implicit portions of a Command input is used. This feature will be dis-
.~abled if the user has informed the system that he is an "expert". In the "expert"‘mode,,
fonly the minimal characters necessary for explicit command definition will be recog-
fnized by the Executive Command pfocessor. - The user can‘leave the "experf" mode at any
Etime by informing the system that he wants a "£ill" for his inputs. The Executive

~Command processor can process input messages in both abbreviated or completed input

form,

32

The Executive mode for inputs is explicitly entered anytime the ! sign detected
~upon input. Once in this mode, it remains there until an Executive Command which will
start executing the user's program is given; the user mode will then automatlcally be

entered. To explicitly enter the user mode, eheMTB character will be used. This mode

is illegal unless there is an executlng user program and any messages sent in this mode

are rejected accordingly.

Identification of Input Requests

Any convergational input will be logically terminated on the basis-of a:New Line
character code. Acknowledgement of message receipt would be simply the echo back of
a New Line code and the physical Carriage Return with Line Feed movement of the console
printer. However, it is essential to identify the source of the process which is
‘acknowledging the input and requesting further input. Thus, in addition to any output
" 'messages which may be generaéed, the UTS Executive Command processor will always start
1 a new line followed by an ! to indicate to the user that Executive Command input is
 current1y being expected and that the terminal is in the Executive input mode. This
approach will also be used by any public service program, such as the basic Text Editor,
- Debug, Help, etc., where, not only is the fact that input requested, but what process
| is expecting it. This is particularly useful when dealing with process-to-process

 1inking and it may not be clear to the user which process is in control.

Calling Service Systems

The Executive Command processor will recognize all requests for Executive action
as defined in Appendix (). In addition, it will recognize, by name, the user's request

for a system service program to be loaded and initiated.

Executable Command Files and Program Calls to the Executive Command Processor

The UTS system provides a flexible mechanism for allowing a user program to gen-
erate an executable file for system processing. The user program can set up, in symbolic
text form, the same commands that can be typed into the Executive Command processor.

An Executive Command file "reader!' then scans the input text, executing each request
04 ¢ Mu’ua&ktéwduecm p- mc
sequentially until the file endJ The executable file may also be created by the user
A
and given as a canned package or ''cliche' to the Executive Command processor for execu-

- tion, This facility permits complex operations to be '"wrapped upﬁ‘for repeated execu-

‘ tlons and it also allows program to generate a linked set of system processes for batch-

wode operations.

33

Program-to-Program Intercommunication

The UTS system will permit programs to call for the execution of other programs.
This mechanism will utilize the Load and Link facility whereby the program being called
is treated as a subroutine. This means that a return to the calling program is antici-

St sevd At a e
pated -upon completion of the called program's operation. Communication between the two
programs is accomplished by the registers and a communication file on secondary storage
or in common dynamic storage (top). The calling program is assumed to bg stopped while
. the called program is executing and may or may not be removed from physical core memory
* (swapped). There is no automatic copying of the calling program's context data for the

Lcalled program; the called programs will initialize its own operating needs, based upon-

information transferred via the communication file or data area. There is no sharing

- of virtual‘memory other than the common dynamic storage area7§n,thiucﬁwAuMMAAJ*MN\ '

A program which is to be used in a linked manner must be organized with a special
front end (convention) as opposed to the normal program struéture, which will determine
if it has been linked or loaded by the useré_I; the first case it must preserve the
registers used for arguments and will control the exit of the program for returning to
~the calling program. Return will be accomplished by the UTS Monitor providing the
identity and the next program location of the calling program at the time of linking.
This information is given in the registers, aldng with .the paraméters for communicationt '
data (file on diéc or in common coré). If the check reveals thaﬁ the program has beenv '
directly loaded by the user, input will be handled in thé normal‘way‘énd the normalf

exit (i.e., return to the Monitor) will take place.

This mode of program intercommunication will be used initiélly for UTS instead
of the tasking service required for PL/1. Tasking may be implemented aﬁ some later

time when the PL/1 language is supported under UTS.

Intervention and Error Recovery

User programs, which under the Batch sysﬁem would normally be aborted because of
. an error, will merely be suspended'(étopped) if~the‘pfocess is an iﬁteractive oné,

~ Control is given either to the user (console control, Executive Mode) or to a recovery

- Toutine specified by the controlling process or the object program itself.

1

34

I1f, during the execution of the user's program, an error occurs which is trapped
‘ by the system or fhe user intervenes with an Executive Command to stop execution and
perform some Debug operation, an entry point for error recovery and for maﬁual inter-
vention must be made known to the UTS system prior to execution. The routines at
these entry points must be given the current user program status and register environ-
ment preserved for subsequént processing. An error-type code will also be passed to
the error-recovery routine.
| | nﬂ_tdﬂ‘““e

Given the case of a~control programAand a user's program, such as the Debug service
program and the user's object program, provision must be made for proper .return to a
‘control point upon user intervention or an error condition. If the user's program is’
 vbeing modified by the run-time control program (Debug), then it must be loaded as part

of the control program and treated as data. They must share virtual memory.

Accounting

The Accounting function under UTS will take into consideration the fact that
multiple users are using system.resources concurrently. This means that for each user
and job, the time and space utilized by a user will be specifically accounted for.

A common process will be charged to é user only when actually being used. By definition,
all elements in the user's map which -are actually in core memory will be chargeable
(except for the Monitor and, where necessary, a.critical foreground process in all maps).

All seéondary storage being held for a user will be charged, including swap storage.

Wherever possible, Monitor service for a user program will be clocked on the user's
‘time. That is, if a user program executes a service call to the Monitor, the time will

continue to be charged to the user until he is no longer executing or being serviced.

In addition to those items accounted for under the Batch Processing Monitor,
elapsed-time must be recorded for terminal usage. Core residency will not be recorded
' |
when the user's program or parts of his program are not required to be in core memory

(i.e., they are eligible to be swapped out). Actual swapping costs are not chargeable

to the usersﬂféo-%“* {f“ GW“:XW° | ; ‘ : , |

35

The UTS accounting package will provide recording of‘all chargeable resources
on a summary count basis. This data will optionally be dumped onto secondary storage,
according to System Generation parameters. The reduction of such data is delegated
to an optional, user-supplied process to produce an accounting report for adminis-
trative purposes. The on-line user will be able to retrieve current accounging ;

data through a UTS information service command.

Start-Up and Shut-Down

The UTS system operation will utilize a start-up and shut-down procedure, for
iterative use which maintains maximum operational continuity for on-line system users.
The start-up and shut-down procedure will apply to a system which is going on or off
the air completely or whén scheduled interactive use begins and ends while other func-

tions (e.g., batch and foreground) may still operate.'

At start-up time, all local terminals will be turned on to receive a '"system on"
message, after which the terminals will be turned off until a user begins normal opera-

tions.

No other Executive actions will take place other than normal set-up for inter-
active (and other) requestsg that is, communication processing and buffering for
‘Executive requests will be provided. (User program communication buffers are not

required until the user's process is loaded and active.)

At shutdown time, a system message to all active users will precede actually
shut-down operations. No new users will be accepted into the system for the interval
between the initial shut-down announcement and system shut-down. After the interval
(System Generation, an operator-controlled parameter), all currently active users still
executing will have their processes automatically saved-fox-rest%:t 6r'terminated

(System Generation parameters or user option).

Communications Service (Low-Speed)

The UTS syétem includes a comprehensive and flexible communications package to
service interactive operatidns. It is dependent around character-oriented, full-
duplex hardware facilities which, via the software, provides message-oriented input
and output functions for user programs anﬂ user terminals (ASR, KSR;fTeletypes,'SDS

Keyboard Display device).

36

The UTS communications service consists of the following elements:

. Terminal Status Management

. Low-speed, character-oriented communications handlers (input, output)

. Inter-terminal service (Dial, Link)

. Dial-up service (from the computer)

. JOIN service for multi-user programs

Character-Oriented Communications Handler

The fundamental software module for UTS communications service are the Character-

Oriented Communications Handlers. They perform the following functions:

Input

.

The normal sfatus of all UTS terminals will be Active (waiting for char-
acters) unless the powef is turned off or the station is disconnected (remote).
CyACUTIVE MoDE MESSAGES WHLL ALwaYS Bl ACoffrEDLs USRR HoDé HESSAQES
(7o THE LSl S PROGRANM) WILL ©MLY BE AedEPTED Wwpey THAE PROGILAM REDIFLTS /1PYIT.

On extermal interrupt, the handler examines a common input téble for new
characters which have arrived since the last inspection. The common inbut
table is designed as a data-chained doublé buffer so that even if characters
are not emptied from one half, the other half can be used for further inputs.
It also causes character processing to be done at least at the critical point

when one of the buffers is full, 'if not earlier., A pointer is maintained to

indicate the word location where new, unprocessed characters begin.

Each input word contains a single character and an identification number of

LINE :
the user's whenmmed, The handler checks an "echo! table associated with the
LA o)
given ehangyd and generates an output character or no output according to

the echo table indication for the input character.

A check, using the echo téble, to determine if the input character is a
control character is also made. Control characters either indicate a change
to characters already received (backspace, cancel), a mode switch for the
UTS Monitor (Executive Command, user program input), or an end-of-message
signal, If a control character is found, the appropriate action routine

is activated, i.e.; move user buffer pointer, select user or system input

flag, set message complete flag, etc.

37

. The handler makes a conversion from ASCII.code to EBCDIC (dnless the
user's cgﬁggzyrdoesAnot‘wish converéion) and places the character in the
user's fixed length input buffer. Message assembly in the user's buffer
continues until an end-of-message character is received or the buffer is
full. TIf the uéer's buffer is full, a NAK_character is generated to the
console to lock out further inputs and the user program "input complete"
flag is set. For end-of-message control characters, the NAK output is
optionally geherated for locking the keyboard és per the echo table indi-
cations. | ,

. When the incoming character has been properly processed, the handler clears

its interrupt level and exits.

. Paper-tape input is treated as keyboard input except that' a rub-out code"
(DELETE) is recognized as a character to be ignored. Furthermore, the
Teletype requirements for remote paper tape inpdt are that start and stop
paper tape réader,funcfions (XON, XOFF) be provided. This permits proper
computer control of paper-tape reading. The handler (in paper-tape mode)
will generate a Stop Reader (XOFF) code in responée to an end-of-message
control character of buffgr full condition and a Start Reader code when

an Input Request is made (always).

OQutput

The communications handler for output accepts characters stored in a user

program output buffer of fixed length for the given output channel. Char-

acters are converted to ASCII code from EBCDIC before' transmission by the

handler. Illegal transmission characters such as EOT are detected and cause
Q-o QS 5., 1, ¢ PN)

+he program te=he—gtopmed. (Requests affecting communication lines must be

explicitly made to the Executive for proper bookkeeping.)

The user program calls for output with a buffer full of chafacters in the
program's virtual memory. As thé handler takes control, the buffer is emptied
into a Monitor buffer with conversion to ASCII. Characters aré transmitted
for output until an internal end-of-message is detected (DEL)‘or the record

- count has been reached, whichever comes first. The buffer will be released

38

to the user program when empty, making it available for reloading. . The
user program will test the DCB to determine when the buffer is empty. 1In
this manner, the user program may keep a steady output flow going at a

maximum rate. It will be held up as long as the buffers are full.

Carriage Return Standard Convention for UTS

The standard physical message length for the UTS terminals will be a line
of 72 characters, not including the NEW LINE code. The NEW LINE code will
indicate a logical End-of-Message. A'Carriége Return code will be eghoed
back mggh a New Line code and will be considered as a text character at all
times. It will also be gﬁzggggggbto a New Line code when detected in an

output message text,

New Line codes will not be automatically generated by the Communications Out;
put Handler at the end of a message. However, an output character count will
be cumulatively made and if 72 spacing characters (graphics) have been trans-
mitted without any New Line characters (or carriage return), a New Line code

will be sent out if the 73rd character is not one.

Terminal Status Management

An important part of the communications package deals with maintaining proper

bookkeeping of each user terminal. Each user software ''channel" is activated when

a connection is made by dial-up or when power is turned on at a terminal.¥TR mode
flag indicates whether the user is currently talking to the Executive or a user pro-
gram. This flag is changed by an input cpntrol.character (!) and () or automatically
by a GO Executive Command. User identification by name is képt for each channel' for
information purposes in using the interconsole communication services. Input or output
activity status is maintained to avoid conflict between inter-console messages or Monitor
messageé and user program input or output. Inter-console link status and a conversa-

tional communication mode flag is maintained for each user channel. Whenever a User

ER Lt
Tile USERIS AUTURL LINE WOMBER 1S IMOEPEMIDENT OF ;4/%’ % /;;‘;’I MA‘Z;//&?
S OcH TERT IE A REMITE USER 1S ACHAIILY /s HsCoNLELT D, HE

; LINE C%%VW?ZYA [rer BEL
e WNESTED iEn) DIfLs w o AT THER
ﬁz;;ﬂ ;.J&lj:;/ ﬂ;j') JDENTIEIE) BY TR NS H1SSTOR L TYRE, A FO Rt Grerdl W e
7 ER |

: UE 7P
g DI =@ CARRBILITY EX[STS THE O grtre YurAdeR |

¢

39

Termination Command is received (i.e., LOGOUT), the terminal will be disconﬁected
or power turned off (EOT). Provision will be made for installation assigment of
special consoles for message addressing, privilege functions, and/or priority ser-

vice.

Inter-Console Service

o= erd

It is eftem useful and somghimes essential to provide direct communications between
user terminals in an interactive time-sharing system. This capability ﬂs provided by
the UTS Ihter term1na1 service and consists of two user functions and a program func-
tion. The flrst user function is a simple store-and-forward message sw1tch1ng opera-

. Col PECTED

”tlon, DIAL, whereby a user may address any othefdtermlnal, expecially the operator's
~console for dellvery of a text message. The second service provides linkage of two
“or more terminals to a single user program, where the program normally operates for .

‘ i‘only a single user terminal. ' This feature is extremelybuseful for training, demon-

‘strations, group debugging, etc. The program function 1nvolves fgING two or more

- terminals to it, under controlled circumstances.

For both of the first two services above, it is necessary to have the addressed
terminal indicate acceptance of a message or linkage. Thusieach such terminal must
alert the system via an Executive Command (ENABLE) that it is ready for receipt’of
messages or linkage. If a terminal is not active, it will be turned on by the system.
(if a direct, internal communication line) for the duration of the output. Addressing
of terminals is by d%éé%%; number; the system's user identification can be used to
locate the proper eﬁ%gggi-number by querying the UTS Executive as to the whereabouts
or existance of an active user. No remote dial-up (if such hardware exists) will be
performed for DIAL or LINK; remote users must be active in the system. If, during the
course of a 1ihked oﬁeratiod,‘a remote user disconnects, the linkage will be automaticall

unlinked by the UTS system.‘

DIAL Service

A user may send a message of a fixed maximum length to any‘sihgle console other
than his own that is active and enabled (indicated acceptance of messages). Carriage
Returns within the message may be used, since the New Line code is placed in ﬁhe text
instead and&n&n&xﬁﬂﬁﬂﬁbﬁz echoed back The end ef the message text is indicated by a

New Line character,,_

40

The receiver's terminal will not receive the message if it is in the process
of input or output. At the first opportunity where either has just been completed,
the message will be delivered, with the sender's channel number appended to it., If

‘a terminal has not indicated message acceptance, a DIAL command will be rejected.

A special case of the DIAL function is available to the Computer Operator's

console Whereby he may dial all active terminals for public notices of importance.

The operator's console is addressed by DIAL. 0 (OH) and his terminal may be assigned

to any terminal during system operation.

Terminal Linking

Linking of several terminals is initiated by a logged-in user, whether or not a
‘program is loaded or 0pera£ing or not (on that terminal); linking can be initiated ét'v
,ény time. Any Active linked terminal can cause a program to be loaded, executed, stopped,
’ébr terminated. Linked consoles can be made Passive or Active by the link originatbr; .
- that is they may either be received only for any program output or they may input and
‘receive output as well. Ali terminals may always issue Executive Commands. While
any Active linked terminal is inputting in the User Mode (to the program), all other
‘Active terminals cannot input to tbe program. This is necessary to avoid confused input
to the program input buffer. All inputs from every linked términai ére,seen by all the -

:others, as well as all outputs to any terminal.

As any terminal links a terminal to his (or vice versa) a message will be issued
by the UTS system indicating who is linked to whom and the type of linkage on both
terminals. A terminal or group of terminals may be linked to only one active user pro-

gram at a time.

A-linked-terminat-may-Halink—diywdfathoothot~uid-inled=terminale~fron.itselie
Any linked terminal may‘unlink by giving the UNLINK command to the UTS system at which
point a message to the remaining linked terminals and the unlinked one will confirm
the Executive request. It should be noted that -each linked terminal is not independently
in the Executive or User Mode according to the mode switch last used by a terminal; the

current mode is applicable to all linked terminals no matter which one set it.

41
All linked terminals can conveniently converse directly'without using the DIAL
command. All that is necessary is that each line of input be terminated with a Cancel

character (CAN) which will be echoed with a New Line.

JOIN Function

The JOIN function is exercised by an operating user program for a group operatlon,‘
via input from the Orlglnator console. The Originator termlnal which activated the
program, provides the program with the terminal dﬁgééﬁg numbers which are to be used in

’the Monitor service calls.

Active or Inactive terminals (except Inactive Remote stations which would have to
be dialed-up) can be joined. Active stations must be enabled for the JOIN function °
"and cannot have any program currently in operation. Inactive stations may always be

joined and the JOIN function starts up those terminals.

Only the originator terminal may Join or Unjoin other terminals, or issue any
Executive Commands which may affect the common program. The only Executive Commands
which a Joined terminal may exercise are the DIAL and QUIT commands. Once a terminal';
haé Quit or been Unjoined, that terminal reverts to normal usage. When the Originator
terminal terminates the{?émmon program, all Joined terminals are released and turned

off.

Joined terminals canhot link or be linked.to. Inputs and outputs to and from each
Joined terminal are not seen by the other terminals; each has its own communication
buffers in the common program. Each terminal thus must be specificaily addressed by"
the program. The originating terminal is the only one implicitely.addressed,'i.e.,
 ;}any input or output calls not naming the terminal (chaqnei number) willvrefer to the

Originator terminal.

Checkpoint and Save for Restart

~ User programs which are in operation may.be stopped and saved on secondary storage
for resumed operation in the future. This facility is operable in two modes, Check-

point ‘and Save-for-Restart.

42

Checkpoint

Checkpoint is a mechanism for a long computational program (Batch Mode) to
periodically snapshot all elements of its current operation so that the program need
not be completely reinitiated because of a system hardware or software failure. Every
snapshot will include core memory contents and secondary storage files as well as the.
program's environmental context data (registers, DCB's, etc.). The conditions for
checkpointing can be based on time or at logical phases of the program's opefation.
Successive snapshots of a pregram's operation will always replace the one last saved.

The checkpointed program will be contained in a permanent file, identified by
the user's account numbervand a unique user-supplied file name (not the name of the
original program, which has its own file name). If the checkpointed program is to be
activated, it is run as a new job. Furthermore, unlese explicitiy preserved, the

checkpoint file is automatically deleted from permanent storage when it is executed.

An operating program can call for checkpointing itself directly by an Executive
service call or it can have a run-time routine which will respond to periodic time

interrupts and call upon the checkpoint service.

At the time of checkpointing, any on-going I/0 operations will be completed and
all I1/0 status information preserved in the program's context area. In restartiﬁg a
checkpointed program, a restart routine location must be provided which will reinitiate’
:.all environmentel conditions (such as open files, magnetic fape quEitioning; etc.).
EIt is assumed that the self-checkpointing program maintains the proper restart informa—
“tion for itself at all times, The UTS Monitor will provide the proper communication to

the Restart Module at load-time to activate the re-initiation information.

Save-for-Restart

A program, whicﬁ is'stopped externally for future continued operation, wiil be
saved for restart. 1In effect, it is a dump of the program and its operating environ-
ment. A save-for-restart may be generated by an operatoyw?% by a h1gh-pr10r1ty real-
time program. It is assumed that the program will be resumed exactly as savedﬂ’bhere-

~£@£&¢;ng.extennaiwl%0~per&phefe&s~oen—be—&nvoluedmuhlnhmxe wireprepositioningy—ive:,

Dao.y \Qn: /\A PP ““M‘“‘M—%"WWMM o :‘R

sy

‘magneLLcmﬁapeme#

) CAR A sy OAI'\)\/ o e /am&"-
ﬁ:‘:‘.‘,*‘j{/j T RS R4 e e 7 7) :

43

A save-for-restart pre-~emption by a high-priority program in the UTS system is'
accomplished by simple swapping to secondary swap storage. Resumption of the program's
operation is automatically caused by the exit of the priority program. Files are pot ”
closed for the saved program?‘since continuation of executioﬁ Will take place relatively

quickly. (I/0 transactions will be allowed to complete, if they are in process.)

On the other hand, a program which is manually saved-for-restart, will not neces-
“sarily be expected to be continued for a while. Shut-down procedures will be necessary '
to preserve the environment indefinitely. This means that open files must be closed, H
current I/0 transactions completed, and scratch stotage saved, nét released. A unique'
~identification must be provided for future restart, since it will not be a fresh copy
‘l.of the program. The restart procedure will require the ULS Executive to recognize thattf
it is a restart version in the user's account file and reopens all data files and DCB's '
"that were active at the time of shutdown. Program execution will resume exactly from
the point of shut-down or at the location supplied witﬁ the execution command from the‘.:

user (GO). There will be a maximum 11m1t established at System Gegﬁgatlon tlmtﬂ
‘user saye for-restart f;la;.S%Tukgjbj 5*“‘ub sath 7 o 6VL4
Lend oo F2 a/m NI o X7 ém.u.J

System Generation Processor and System Modlflcatlon

Since time-sharing systems lend themselves to being highly variable in terms of
1 configuration sizes,”numberﬂof users, types of user prdcesses, tesponse needs, etc.,
E it becomes criticai»to a user installation to be able to specify particﬁlar.operating'
- needs for its specific system configuration. The mechanisms for this capability are
i?provided primarily through System Generation parameters. For those patameters which
do not involve structural changes in the system‘(i.e., space allocation), additional

‘changes in parameter values are made dynamically from the Operator Console.

The System Generation pfocessor will operate in the minimal system configuration,

taking advantage of aux111ary storage.- Where more core memqryfis available, time benefits

1 .
~are derived from the addltlonal'§¥Ztg§aécemeaeev.

b4

All changes to a UTS system, which can normally be expected to occur on g day-

to-day basis, will not only be changeable via the System Generation processor, but

through UTS service routines. Such routines operate under the UTS Monitor and enable

~the system to continue normal operations as well as avoiding time consumption for a

éomplete System Generation process. The following system modificationé are provided>ﬁg

under both the System Generation processor and the UTS Monitor:

.

.

-Subroutine Library maintenance

New (additions, deletions, replacements) Public'Service ?rog:ams
Scheduling parameter changes L .

- Quénfum values for user queues

- Number of interactive users in system C?%ﬂﬁlHUHS_

- Response-time duty cycles

Batch job time allocation -

- Interactive status change conditions (for varioug-Mopitor service rgqueéts)
Foreground'identification and resource allocation “

Periphefal device availability ao |

Auxiliary-storage allocation changes

Limits on user resource allocations .

User priorities

Terminal directory changes (e.g., system operator's station number)

Changes which are made only at System Generation time include:

Total system hardware configuration '

UTS system core organizatioq and overlay strdcture

Public Subroutine sbace‘assignmentsL _

Scheduling queuebstructures (number of queueé, decision rules)
Executive commands ' | g
Accountiﬁg items

UTS service extensions

45

Iv.

-

UTS System Configuration Considerations

The UTS system willvrequire'sufficient core residency for Monitor elements to
execute in order to minimize time overhead for interactive and foreground operationms, .
This means that any UTS‘service required by an executing interactive (cqnversational
mode) or foreground process must be core resident and should not be overlayed. This.
applies also to any bookkeeping tables. Administrative functions for initiating or
terminating a process can be non-resident. Likewise, service functions whicﬁ may be

required in the on-line compute mode or Batch mode are candidates for overlay.

User programs which are swapped will also be handled to minimize response time.
That is, user program areas (e.g., context data), which are necessary for on-going
Monitor's processing of users, will be the last elements to be swapped or never

swapped (e.g., communication buffers, parts of context area).

The minimal amount of éore space required.for an efficient UTS system (Inter-
'actiﬁe plus Batch) will be that space for resident monitor or processes and data,
monitor overlay afea(s), user resident areas (dynamically proportional to the number
of active users currently on the syétem), and sufficient available space for submerging
interactive swapping overhead. The latter factor is dependent upon the typical con-
versational process and/or context size which must be swabped, plus the typical Batch
job size (in core at one time) and any foreground residency. The size and number of
such spaces will be determined by actual interactive process sizes and execution times.
This will be the conversational FORTRAN plus the Text Editor facility. The minimal
core memory for a reasonable UTS system will be 48-65K; however, until the $pecific

sizes and times for interactive processes are known, capacity and performance figures

MEY a.vwwé;p A shautd] fo Qo BIS oo st
cannot be establlshed
U: »uWw’udwﬁ?fr M WP/HL CM Wwwz o Qowepton W ’/ywﬂ:&!d } V.Mf

570 /00 /Ca:ecﬂw’/; f\' Vs WMWQ W

46

‘Auxiliary storage for a minimal UTS system will be based upon UTS system stor;gc
and the number of active users accommodated concurrently (which is a functxon of core
- space and system efficiency). This latter number dictates the amount of ;
. Swap storage
fast RAD
. Scratch storage
"+ Permanent files;» High-capacity disc
Library files
. . roM) | |
Magnetlc tapes are required for system generatiwg system entry of user inputs :
e(programs, data) on to the discs, disc purging. and sp111 dlrect user access (where |

lfnecessary for user processes) The minimum requirement at present appears to be at

l~least two magnetic tapes (9- channel)

HvOther hardware requirements are:
2 Fast Memory Blocks
2 Clocks
Communications Interface (Characﬁer-orién;ed)»includieg interrupts
1 Multiplexor IOP AR |
2 Selector IOP
Memory Protect (Lock and Key).
MAP
Decimal and Floating Point options
- Card Reader - | o

“ Typewriter

Printer

:fi ; At the present time the memory module organlzatlon and number of ports canno

fﬁ”be specified. M"WWW W Yernsst M)ﬁa Mﬂ/fM 0""’5""‘;
ond CHAL wvﬁ’-«ﬁw:

Performance

The performance characteristics fer the UTS System are:

1. Monitor overhead for disc and core storage management, scheduling, accounting,
context switching, I/0 control, and Executive command processing will not
exceed 5% pf the total operating time (CPU).of the éystem, This includes
overlayvof Executive,functions where neceséary, but does not include user-

requested I/0 transfer time.

47

Interactive communications processing (character-oriented) will not

exceed 5% of the total operating time of the systemeasyte On Cﬂ(/. ,

N

Swapping time will be masked by having enough "user spaces" in core
memory such that one (or more) users, executing their full cohversational
quantun, will equal the time to make a swap of two other conversational
processes. The "user space" size is thelsize of a typicai conversational
process and/or user context data.

The core residency.fo: the UTS Monitor will not.exceed 20% of the total
minimum core space configuration. This does not include user context

storage.

A conversational process is an interactive process which will have a

maximum response time of 3 seconds from the time of receipt of an end-of-

message character to the start of the response output. This response time

is not guaranteed for a user interactive process which requires any I/0
service other than console I/0 and normal system swapping (one swap).

The 3-second time interval is a system parameter and may be changesl by the
customer installationm. It is only valid for a maximum number of users in
a given configuration, depending upon whether a worst case or a probablistic

loading environment is anticipated.

Performance will be based on SDS standard configurations and typical user
software sizes. Any variations in configurations or user software behavior
(e.g., sizes, scheduling, etc.) will affect'performance‘figures and are the

responsibility of the customer's installation.

48

Debug Service

The UTS system provides an interactive Debug service program for use with Assembiy
language user programs. When loading a program for debugging, the user's map will share
virtual memory between the bbject program and the Debug program. Both will be loaded

into core memory for execution.

The Debug program will provide the following services:

. Dump memory locations in hexadecimal, octal, decimal, instruction mnemoniés,';‘
and symbolically (global symbols). | | | '
Locations will be referenced relatively to global symbols. - S o o
New symbols may be defined for the object progtam. '
Location contents can be altered.

Program insertions can be made. ;

Conditional selective snapshot dumps can be inserted and removed.
Conditional, selective trace of program aréas.'

Start execution at any program location.

Dump or trace program environment data, i.e.;.registeré,vtemp stack,
Modify program environment data. . |

Search program or dataareas for masked values

. Save a modified binary program

The interactive Debug program will utilize both‘thekTeletype Keyboard/Printer =
or the Keyboard/Display deviées. It will opérate‘uﬁder the UTS Monitor service for
any privileged functions. These include: LR |

Error fecovery con;rol |
User interrupt control
I/0 service |

Change of protection for user program areas

. TFile changes (replacing or saving a binary program file)

49

Modifications to a user program or patching the program for Debug calls requires

that the program protection (map) be set to ALL ACCESS.

Provision must be made for Master mode access to be made; for checkout out
Executive or foreground functions. .Such access must be guarded so that only system
programmers can use this facility at proper times.(e.g., Operator control over when
such access is permitted, 'privileged" consoles, passwords,‘etc;).

’

Editor Service

The UTS system will provide a basic, general text editor which will operate both
in a batch mode and cohversationally. It is usable to create text files and Yill link
to language processors for conversational programming. It will be reentrant for multi-
ple users. ' . * . |

. : i
" The text editor will provide the following services:

. Initialization of a new symbolic file (via File Management service).

. Modifying an existing text file (insertion, deletion, replacement, addition);

. Line number referencing. 2 ' | ' |

. Line number insertion (using decimal system). (Line numbers will be provided
by user) -

. Automatic resequencing (removing decimal point values) upon user request.
List.with or without line numbers (1ine numbers wilivnot be considered
necessarily as part of the text. .

. Rename a current symbolic file.

. Merge symbolic files into one file. .

Tab iﬁput lines by filling‘with spaces according to software tab settings.'
Provide in-line editing (character editing). . |
| The Text Editor will be célled‘by an Executive Command. Further commands are

processed by the Editor itself.

When operating in the Batch mode, inputs are card images. No interactive response
is given for any input request. If any error occurs with the input, the error message

is logged and the process will abort.

50

Editing and the SDS Keybbard/Display

The SDS Keyboard/Display device has implicit requirements for editing servicé
above and beyond normal terminalbinput andAoutput. The first level handlef functionsg
for K/D device are based upon the standard Sigma characferForiénted communications

f:equipment with several differgnces.

';”f. 'A different "echo'" table is required, since new control characﬁers éfe dsed.‘. v

| .: Message-mode capabiiity of the K/D requires identificafion'of a "message"
(leading ETX character), and no echo of the message characters. (Dynamic
switching of echo table pointer.) | | '

. Output message generation requirés‘control character bufférihg with NULL

characters for timing purposes.

The above functions require that the K/D devices be serviced by a superset routine
“which has as a base the normal communication software. Identification of a K/D '"channel"

"must be made dynamically, since a remote station could be either a Teletype or K/D.

A second-level K/D ﬁrocessor will be provided as a system routine for servicing
mechanical editing functions. This routine will specificglly provide . for page-turning»i
and line-rolling of a user program-supplied text buffer. Other text editing functions
which change text conteng)such as ingertion; deletions, addition, etc., must be handled
directly by the user process such as the UTS Text Editor. The user process will also

be required to maintain the buffer for text page-turning or line rolling when the terminal's

request requires a new buffer full (end of buffer reached, top or bottom).

—

Tne K

User File Types

In the UTS environment, user files will be of several types, which can contain
different forms of the same entity. Specifically, the following types of files can
exist for a user prbgram:

1. User-generated source symbolic code

2. Processor (FORTRAN) - generated symbolic code

3. Binary object code (load module)

4. Save-for-restart executable code)

Clearly,‘these file types can cb-éxist and must be ideﬁtifiable._ The user cannot
be expected to create unique special names for each of these forms of a single program.
Provision must be made in the File Management facility to accommodate a file type ident~
ifier. This identifier can be explicitly employed directly by a user or implicitly
through a processor. For exaﬁple, if the user wishes his program to be loaded for execu-
tion, it must be the binary object file. If it is to be compiled, it must be in the
processor-acceptable form. 1If editing is required, the.user—generéted‘férm is called

for.

When files are modified or deleted, again there must be some control for assuring
across-the-board coordination: For example, when a user-generated source file is up=-

“ dated, the processor-formatted source file must likewise be changed.

O(L& ' n‘n ¥ L@Jﬁ&:ﬁ.&m@ i

urs %F,z.o_ ’-"z‘vmz(?m_

| | | eanly 1967

Foreground Servicing

The UTS Monitor will provide the same services to foreground tasks as specified -
for the Batch Processing Monitor. However, because the map hardwafe'is available,

' certain factors must be considered.

Foreground tasks, both‘resident and non-resident, can be efficienﬁly operated in .

" the non-mapped mode. Non-resident foreground ﬁasks‘are'assumed to be "tolerant' in

térms of response time and can‘afford to wait for physical core space to be made avail-
able and to be relocated to that space for execution., If a non-resident task is not '
tolerant, it should be made resident. Furthermore, once a non-resident task starts |

executing, it should not bé‘suspended (swapped out) and then resumed.

Unless a foreground task requires.the commnon use of public reentrant subroutines,
 the map mode should not be used for foreground tasks: Private copies of ény required
}subroutines will be provided by the loader. If common reentrant subroutines are to |
‘be used, then the map mode must be employéd. In this case, it will be an appropriate
real-time service to dedicate virtual memory space in all maps, so that map-switching

is eliminated (except for FORTRAN.subroutine local storage).

Foreground tésks can preempt core storage of all Background (Batch) and Interactive
users, except for I/0 buffers in use. However, other foreground tasks (of lower priority)
will not be moved out of core memory unless they‘are mapped. A foreground task, operating
in the Master mode, can abort all I/0 service to other users and take over the maChine,
but it is normally an iﬁdication of system overload when_fbregrbund tasks cannotf complete’

their executions.

Every foreground task connected to an interrupt will be responsible for preserving
and restoring the current operational enviromment (registers, program status doubleword).

This will be done directly, if the,foreground,task includes its own interrupt routine,

(Moniter)

and by a centralizedainterrupt handler when the foreground process is serviced by the

system. The latter approach is required for non-resident foreground tasks.

A resident foreground task must be activated by en interrupt within 100 micro-

' seconds after the occurrence of the interrupt. This means that a foreground task will
' not be delayed by any UTS Monitor overhead or current service function for more than
“that amount of time. After the foreground task starts execution, it may be interrupted
.by Mon1tor)§érv1ce functions (i.e., 1/0 interrupts) which will only execute mlhlmal
: bodkeeplng tasks before returning control to the foreground task. If the foreground

-task cannot tolerate any 1nterruptlon from the Monitor, it must be at a hlgher interrupt
level than the I/0 and communications. In such cases, the amount of time requlredjﬁze
‘onoreground task (frequency of interrupt withinva response duty cycle, process time for

n; the task) must be considered as additional system overhead to be subtracted from the

f?lconversational duty cycle, and will impose additional limits gg-the number of inter-
~‘active users accommodated by the system. |

| If a foreground task uses any monitor service, it must do so by a normal request

,(CAi). The priority of its interrupt level will be recognized by the monitor for

queuing purposes. Unless the foreground task interrupt has been §gﬁE¥g%ed to interfere
with monitor bookkeeping operations by not permitting a safety disabling (minimal) of

all interrupts of the monitor, monitor service can always'Be requested at.any time via
the normal CAL.) |

All ass1gnable system resources will be dedicated to a foreground task when it is
'Hkactlve, resident or not, except for core memory when it is not a resident foreground
'>‘Thls will be done at System Generation time or when the foreground task is initiated.
xf‘It will be an Operator function to abort Jacheckp01nt any lower priority Job in order
;dto satlsfy the resource allocatlon needs of a newly actlvated foreground task; this does
d not apply to core memory.
| Foreground tasks will not be normally.timed out for execution, but will run until‘
complete or waiting for I/0. As a special service for debugging parts of a foreground
‘operation, a quantum rime setting may be requested such that if the task has not returned
to the monitor within a given period of time, it will be suspended as an error conditionm.
The foreground tasks associated interrupt will be disarmed. It will be required that
_suchmforeground task be in the Slave mode. (at least that@ggrt which is belng checked
N 0 EDE

out,) and that the monltor be called prior to execution,to set the timer. In effect, it

will be treated as a user program with additional privileges of dedicated resources.

Every foreground task is considered to be an independént jbb with its own context
requirements, tempétack, etc. For economic reasons, it is apprdpriate.to organize
‘resident foreground tasks tq'appear to the monitor as one job sharing a common temp
stack. This is possible because of the first-in, last-out order of absolute priority.
‘Uniess so organized, indépendent foréground tasks will require independent job-associated
stofage.

In the UTS (and BPM) environment, there exists an accountingbproblem where
. foreground tasks cannot be properly charged for CPU time. .This occurs when such tasks
service their own interrupts and do not allow for proper "stoppingﬁjihe clock for the
interrupted job or user. If this time is significant and known (by being stétic); it
may be accounted for administratively on a percentage basis, i.e,, every user jqb will
have a percentage of its compute time deducted because of foreground interference.
Alternatively, if foreground tasks are aperibdically initiated, they should be reﬁuired

to clock themselves (or allow the monitor to do so) upon entry and exit. This

differential can then be used to adjust the interrupted ibbg.accounting information.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	_00
	_01
	_02
	_03

