Programmer’s Manual

Version 0.3

86-DOS™

| Disk Operating System for the 8086

. ZSeottle Computer Products, Inc.

1114 Industry Drive, Seattle, WA. 98188
(206) 575-1830

Preliminary

86-DOS™®

Programmer’s Manual

Page 2

TABLE OF CONTENTS

PROGRAMMING GUIDE « o o o o o o o o o o o o o o o o
Operating System CallSe « o o o« o o o o o o o o o &
Summary of 86-DOS FunctionSe o o o o o ¢ o o o o
Interrupt Table USages « « « o o o o o o o o o &
Requesting a Functione « « o o o« o o o o o o o &
Simple Device I/0 FunctionSe o o« o o o o o o o o
Miscellaneous FunctionSe « o o o o o o o o o o &
Using Operating System FunctionS. o o« o« o« o o o o o
Running a User Program. « « « « o o o o o o o o o o

CUSTOMIZING 86‘DOS. ¢ & & o o e s o & o o o 8 e o @
Setting the Special Editing Commands . . « o . .
Customizing the I/0 Sectione « o o o o o o o o

BOOTSTRAP LOADER LISTINGs « o o o o o o o o o o o o

I/O SECTION LISTING ® o o 8 e o o s o o 6 e 8 e e @

COPYRIGHT 1980 by Seattle Computer Products Inc.
All rights reserved.

Programming Guide

'Operathlng System Calls

The purpose of the operating system core is to provide a high-level, hardware
independent interface between a user program and its hardware environment.
Most functions that the user may request can be grouped into two categories:

simple device I/0 and disk file I/0.
The simple I/0 functions are:

Input console character

Output console character

Input from auxiliary

Output to auxiliary

Output to printer

Output character string to console
Input Buffered line from comsole

Check console for input character ready

The disk I/0 functions include:

Reset disk system

Select default disk

Scan disk directory
Create file

Open file

Close file

Delete file

Rename file

Read/Write file record(s)
Set disk transfer address

Page 3

Summary of 86-DOS Functions

No.

10

11

13

14

15

16

17

18

19

20

21

22

23

25

26

Function

Program terminate
Console Input
Console Output
Auxiliary Input
Auxiliary Output
Printer Output

Direct Console I1I/0

Ouput String
Input String

Check Console Status

Disk System Reset
Select Default Drive
Open File

Close File

Search for First
Search for Next
Delete File
Sequential Read
Sequential Write
Create File
Rename File

Get Default Drive

Set Disk I/O Address

Page 4

Inputs

None
None

DL

Character

None

DL Character

DL Character

DL OFFH

or
DL = Character

DS:DX = String
DS:DX = Buffer

None

None

DL = Drive

DS:DX = FCB

DS:DX = FCB

DS:DX = FCB

DS:DX = FCB

DS:DX = FCB

DS:DX = FCB

DS:DX = FCB

DS:DX = FCB

DS:DX = Modified FCB
None

DS:DX = I/0 address

BB B B BB BB

Outputs

None

B

B
]

2
@]
=]
o

Character

Character

Char. if ready
0 if'not ready

No. of drives

Error

Error

Found

Found

Found

Error

Error

Error

Found

Default drive

= OFFH if ready
= 0 if not ready

flag
flag
flag
flag
flag
flag
flag
flag

flag

Page

15

11
11
11
11
12
12
12
12

12

13
13

13

SUMMARY OF 86-DOS FUNCTIONS (Continued)

27

31

33

34

35

36

37

38

39

40

41

Allocation Address

Parameter Address
Random Read
Random Write

Get File Size

Get File Address

Set Vector

Create Segment

Random Block Read

Random Block Write

Parse File Name

None

None

DS:DX = FCB

DS:DX = FCB

DS:DX = FCB

DS:DX = FCB

DS:DX = Vector address

AL, = Interrupt type
DX = Segment number

DS:DX = FCB
CX = Record count

DS:DX = FCB
CX = Record count
DS:SI = Input line
ES:DI = FCB

AL, = 0 (no pre-scan)
AL = 1 (scan separators)

DS:BX = Address
DX = Disk size
AL = Block size

DS:BX = Address

AL = Error flag
AL = Error flag
AL = Error flag
None

None -

AL = Error flag
Al, = Error flag
ST updated

13

13
13
13
13
14

15

15

14
14

15

vPage 5

Interrupt Table Usage

The first 1K of memory, absolute address 00000 to O03FF hex, is reserved by the
8086 for the interrupt table. Within this table, locations 00080 to 000FF, which
correspond to interrupt types 32 to 63 hex, are reserved for 86-DOS. Specific
interrupt types have been defined as follows:

32 ~ Program ‘terminate. The Terminate and Ctrl-C Exit addresses are restored to the
values they had on entry to the terminating program. All file buffers are flushed,
but files which have been changed in length but not closed will not be recorded
properly in the disk directory. Control transfers to the Terminate address.

33 - Function request. See '"Requesting a Function", below.

34 - Terminate address. On entry to a program, this is the address to which control
will transfer when the program terminates. This address is copied into low memory
in the program segment when it is created by Function 38. A program may change this
address, but this does not affect what happens when it terminates, since the

Terminate address is restored from the copy in the program segment. If the program
executes a second program, it must set the Terminate address to the location that
the second program will transfer to on termination. :

35 - Ctrl-C Exit address. If the user at the console types Ctrl-C during console
input or output, an interrupt type 35 hex is executed. If the Ctrl-C routine
preserves all registers, it may end with a return-from-interrupt instruction (IRET)
to continue program execution. If the Ctrl-C handler does nothing but an "IRET",

Ctrl-C will appear to have no effect.

If the program executes a second program which itself changes the Ctrl-C Exit

address, then on termination of the second program and return to the first, the
Ctrl-C address is restored to value it had before the second program changed it.

36 - Hard Disk Error Exit address.

37 - Absolute disk read. Control transfers directly to the I/O system disk read
routine. On return, the original flags are still on the stack (put there by the INT
instruction), which is necessary because return information is passed back in the
flags. Be sure to pop the stack to prevent uncontrolled growth,

38 - Absolute disk write. See above.

Page 6

Requesting a Function

The user program requests a function by putting a function number in the AH
register, possibly setting another register according to the function
specifications, and performing an interrupt type 33. The user’s stack must have a
total of 16 levels (32 bytes) of space available before performing the interrupt,
which will insure compatibility with future multi-user versions of 86-D0S. When
86~D0S takes control it saves all the user’s registers except AL and switches to an
internal stack. Thus all registers, including the flags but excepting AL, will be
unchanged on return unless noted otherwise in the function specification.

Those functions whose numbers are 36 or less are also available through a different
call mechanism. The function number is placed in the CL register, any other
registers are set in their usual way according to the function specifications, and
a normal 3-byte (intra-segment) "call" is made to location 5 in the current code
segment. Register AX is always destroyed by this calling method, but otherwise it
is the same as the normal (interrupt) method. This form is provided to simplify
translation of 8080/Z80 programs into 8086 code, and is not recommended for new
programs.

Simple Device I/O Functions

1 - Console input. Waits for a character to be typed on the console, then echos the
character (as in Function 2) and returns it in AL. The character is checked for a
control function as described in Function 2 below.

2 - Console output. The character in register DL is output to the console. The
parity bit (bit 7) must be zero unless a special terminal function is desired. Tabs
are expanded in columns of 8. Rubout (7F hex) is output but 1is not counted in tab
counting. After output, the console is checked for a control function:

Ctrl-S suspends everything until any key is typed.

Ctrl-P sends all console output to the printer also.

Ctrl-N stops sending output to the printer.

Ctrl-C causes an interrupt to the Ctrl-C address.

3 - Auxiliary input. Waits for a character from the auxiliary input device, then
returns that character in AL.

Page 7

SIMPLE DEVICE I/0 FUNCTIONS (Continued)

4 - Auxiliary output. The character in DL is output to the auxiliary output device.

5 — Printer output. The character in DL is output to the printer.

6 - Direct Console I/0. If DL is FF hex, then AL returns with a console input
character if one is ready, otherwise 00. If DL is not FF hex, then DL is assumed to
have a valid character which is output to the console.

9 - Print string. On entry, DS:DX must point to a character string in memory

terminated by a "$" (24 hex). Each character in the string will be output to the
console in same form as Function 2, including subsequent status check.

10 - Buffered console input. On entry, DS:DX point to an input buffer. The first
byte must not be zero and specifies the number of characters the buffer can hold.
Characters are read from the console and placed in the buffer beginning with the
third byte. Reading the console and filling the buffer continues until carriage
return is typed. If the buffer fills to one less than maximum, then additional
console input is ignored until a carriage return is received. The second byte of
the buffer is set to the number of characters received excluding the carriage

return (OD hex), which is always the last one.
A number of control functions are recognized while reading the console:

Tab, Ctrl-S, Ctrl-P, Ctrl-N, Ctrl-C have the same effects as listed
under Function 2.

Rubout, delete, backspace, Ctrl-H (7F hex or 08 hex): Backspace. Removes
the last character from the input buffer and erases it from the console.

Linefeed, Ctrl-J (10 hex): Physical end-of-line. Outputs a carriage
return and linefeed but does not effect the input buffer.

Ctrl-X (18 hex): Cancel line. Outputs a back slash, carriage return, and
linefeed and resets the input buffer to empty. The template used by the
special editing command is unchanged.

SPECIAL EDITING COMMANDS. A number of special editing commands are available
to the user entering a line at the console. All of these involve a
"template", which is a valid input line available to the user for
modification. There are two ways to obtain a template.

If the input buffer already contained a valid input lime on entry to Function
10, then this is a template. A valid input line is one in which the character

Page 8§

SIMPLE DEVICE I/0 FUNCTIONS (Continued)

count at the second byte of the buffer is less than the buffer length, and a
carriage return (0D hex) immediately follows the text in the buffer. Note
that a buffer that has previously been used for input and has not been
modified will meet these requirements.

The user at the console may also create a template. One of the editing

commands is to convert that part of the line entered so far into the
template, and restart the line entry. This allows an error near the start of
a line to be corrected without retyping the rest of the line.

Each editing command is selected by typing ESCAPE and a letter. Since many
terminals provide keys which produce such an "escape code" with a single
keystroke, the letter used after the ESCAPE may be set for each command
during 86-DOS customization. The standard escape sequences correspond to the
special function keys of a VI-52 or similar terminal, as noted in each case

by parentheses.

ESC S (Fl) - Copy one character from the template to the new line.

ESC T (F2) - Must be followed by any character. Copies all characters
from the template to the new line, up to but not including the next
occurrence in the template of the specified character. If the specified
character does not occur, nothing is copied to the new line.

ESC U (F3) - Copy all remaining characters in the template to the new
line.

ESC V (F4) - Skip over one character in the template.

ESC W (F5) - Must be followed by any character. Skips over all

characters in the template, up to but not including the next occurrence
in the template of the specified character. If the specified character
does not occur, no characters are skipped.

ESC P (BLUE) - Enter insert mode. As additional characters are typed,
the current position in the template will not advance.

ESC Q (RED) - Exit insert mode. The position in the template is advanced
for each character typed. When editing begins, this mode is selected by
default.

ESC R (GRAY) - Make the new line the template. Prints an "@", a carriage
return, and a line feed. Buffer is set to empty and insert mode is
turned off.

11 - Check console status. If a character is waiting at the console, AL
will be FF hex on return. Otherwise, AL will pe 00.

Page 9

Disk i/0O Functions

Disk files are identified by a disk drive code, a file name of up to 8
characters, and an extension of up to 3 characters. The drive code may
explicitly specify a drive, or the default drive may be used. Case is
irrelevent in the file name or extension, since only upper case is used
internally. If the file name or extension includes a question mark ("?")
in any position, then that position will match any character. Thus a
single file name with embedded question marks may match more than one
directory entry. '

Generally, functions operating on disk files will use a>File Control
Block, or FCB. The FCB is a 33- or 36-byte segment of memory with
information about a file, formatted as follows:

BYTE O - Drive Code. Zero specifies the default drive, l=drive A,
2=drive B, etc. Note that other functions which use a drive number use
0=drive A, l=drive B, etc. :

BYTES 1-8 - File Name. If the file name is less thanA8 characters, the
name must be left justified with trailing blanks.

BYTES 9-11 - Extension. If less than 3 characters, must be left
justified with trailing blanks. May also be all blanks.

BYTES 12-13 - Current Block. This word (low byte first) specifies the
current 16K block, relative the start of the file, in which sequential
disk reads and writes occur. If zero, then the first 16K of the file is
being accessed; if one, then the second 16K; etc. Combined with the
current record field, byte 32, a particular 128-byte record is
identified.

BYTES 14-31 - Reserved for system use once the file is opened and until
it is closed.

BYTE 32 - Current Record. Identifies the record within the current 16K
block that will be accessed with a sequential read or write function.

BYTES 33-35 - Random Record. This 24-bit number (low byte first) need be
present only when the file is accessed with a random read or write
function. It is the position in the file of a 128-byte record.

Notice that there are two ways to address a record within a file. The
Current Block and Current Record fields together address a record when
the file is accessed with the sequential read and write functions. The
Random Record field addresses a record'when the file is accessed with
the random read and write functions. The appropriate fields may be set
before either a sequential or random transfer to select the next record
to be accessed.

Page 10

DISK I/0 FUNCTIONS (Continued)

An unopened FCB is one in which only the first 12 bytes have been filled
in, i.e., name and drive code. An opened FCB is one that has been
through a successful open or create operation (Functions 15 or 22) and
has its Random Record or Current Block/Current Record fields set as
necessarye.

13 - Disk reset. Selects drive A as the default drive, sets the disk
transfer address to DS:80 hex, and flushes all file buffers. Files which
have been changed in size will not be properly recorded in the disk
directory until they are closed. This function need not be called before
a disk change if all files which have been written to are closed.

14 - Select disk. The drive specified in DL (0=A, 1=B, etc.) is selected
as the default disk. If the DL does not represent a valid drive number,
then the default drive is not changed. In either case, AL returns with
the number of drives.

15 - Open file. On entry, DS:DX point to an unopened FCB. The disk
directory is searched for the named file and AL returns FF hex if it is
not found. If it is found, AL will return a 00 and the FCB is filled as
follows:

If the Drive Code was zero (default disk), it is changed to actual disk
used (A=1l, B=2, etc.). This allows changing the default disk without
interfering with subsequent operations on the file.

The Current Block field is set to zero.

All remaining fields, up to but not including the Current Record field,
are filled with system information. It is the calling program’s
responsibility to set the Current Record or Random Record fields as
necessary.

16 - Close file. This function must be called after file writes to \
insure all directory information is updated. On entry, DS:DX point to an
opened FCB. The disk directory is searched and if the file is found, its
position is compared with that kept in the FCB. If the file is not found
in its correct position in the directory, it is assumed the disk has
been changed and AL returns FF hex. Otherwise, the directory update is
completed and AL returns 00.

Page 11

DISK I/0 FUNCTIONS (Continued)

17 - Search for first entry. On entry, DS:DX point to an unopened FCB.
The disk directory is searched for the first matching name and if none
is found, AL returns FF hex. Otherwise, the first 33 bytes at the
current disk transfer address are filled with the dirctory entry and AL
returns 00. The first byte is the drive number (A=l, B=2, etc.) and the
next 11 bytes are the 8-character file name and 3-character extension.
Note that this is the format of an unopened FCB.

18 - Search for next entry. After Function 17 has been called and found
a match, Function 18 may be called to find the next match in the
directory. Additional matches will be found because of duplicate names
or because of "?"s appearing in the file name. Return information is the
same as Function 17. DS:DX must point to the same FCB used earlier by
Function 17, and this FCB must be unchanged (including no OPEN or CREATE
operations on it) because it includes information necessary to continue
the search.

19 - Delete file. On entry, DS:DX point to an unopened FCB. All matching
directory entries are deleted. If no directory entries match, AL returns
FF, otherwise AL returns 00.

20 - Sequential read. On entry, DS:DX point to an opened FCB. The
128-byte record addressed by the Current Block and Current Record fields
is loaded at the disk transfer address, then the record address in
incremented. If end-of-file in encountered, AL returns 01, otherwise AL

returns 00.

21 - Sequential write. On entry, DS:DX point to an opened FCB. The
128-byte record addressed by the Current Block and Current Record fields
is written from the disk transfer address, then the record address in
incremented. If the disk is full, AL returns 01, otherwise AL returns
00.

22 - Create file. On entry, DS:DX point to an unopened FCB. The disk
directory is searched for a file of the same name, or failing that, any
empty entry, and AL returns FF hex if none is found or the file name is
invalid (such as imbedded "?"). Otherwise, the entry is initialized to a
zero-length file, the file is opened (see Function 15), and AL returns
00.

Page 12

DISK I/0 FUNCTIONS (Continued)

23 - Rename file. On entry, DS:DX point to a modified FCB which has a
drive code and file name in the usual position, and a second file name
starting 6 bytes after the first (DS:DX+l7) in what 1s normally reserved
area. Every matching occurence of the first file name is changed to the
second name. If question marks (3F hex) appear in the second file name,
then the corresponding positions in the original name will be unchanged.
AL returns FF hex if no match was found, otherwise 00.

25 - Current disk. AL returns with the code of the current default drive
(O=A, 1=B, etCl).

26 - Set disk transfer address. The disk transfer address is set to
DS:DX.

27 - Allocation table address. On return, DS:BX point to the allocation
table for the current drive, DX has the number of allocation units, and
AL has the number of records per allocation unit. This function 1is
intended only for system utilities written by SCP.

31 - Disk parameter address. On return, DS:BX point to an internal table
of parameters for the current default disk. This function is intended
only for system utilities written by SCP.

33 - Random read. On entry, DS:DX point to an opened FCB. The Current
Block and Current Record are set to agree with the Random Record field,
then the 128-byte record addressed by these fields is loaded at the disk
transfer address., If end-of-file is encountered, AL returns 01,
otherwise AL returns 00.

34 - Random write, On entry, DS:DX point to an opened FCB. The Current
Block and Current Record are set to:'agree with the Random Record field,
then the 128-byte record addressed by these fields is written from the
disk transfer address. If the disk is full, AL returns 0l, otherwise AL
returns 00.

35 -~ File size. On entry, DS:DX point to an unopened FCB. The disk
directory is searched for the first matching entry and if none is found,
AL returns FF hex. Otherwise the Random Record field is set with the
size of the file (in 128-byte records) and AL returns 00.

Page 13

DISK I/0 FUNCTIONS (Continued)

36 - Set Random Record field. On entry, DS:DX point to an opened FCB.
This function sets the Random Record field to the same file address as
the Current Block and Current Record fields.

39 - Random block read. On entry, DS:DX point to an opened FCB, and CX
contains a record count which must not be zero. The specified number of
records are read from the file address specified by the Random Record
field into the disk transfer address. If end-of-file is reached before
all records have been read, then AL returns 0Ol. If wrap-around above
address FFFF hex in the disk transfer segment would occur, as many
records as possible are read and AL returns 02. If all records are read
successfully, AL returns 00. In any case, CX returns with the actual
number of records read, and the Random Record and Current Block/Current
Record fields are set to address the next record (the first record NOT
read).

40 - Random block write. On entry, DS:DX point to an opened FCB, and CX
contains a record count. The specified number of records are written
from the disk transfer address to the file address specified by the
‘Random Record field. If successful, AL returns 00. If there is
insufficient space on the disk, AL returns 0l, no records are written,
but CX returns the maximum number of records that could be written. If
wrap—around above address FFFF hex in the disk transfer segment would
occur, no records are written and AL returns 02.

A special case of this function is invoked when CX=0 on entry. This
causes the file size to be set to length specified by the Random Record
field--upon completion, the Random Record field will point to the first
record beyond the end-of-file. The file will be extended or shortened as
necessary to achieve the requested length. This provides a means to
pre-allocate files, or to shorten existing files. If there is
insufficient disk space to extend the file as requested, then AL returns
01 and the file size is not changed. Otherwise, AL returns O.

Page 14

DISK I/0 FUNCTIONS (Continued)

41 - Parse file mname. On entry, DS:SI point to a command line to parse,
and ES:DI point to an empty portion of memory to be filled in with an
unopened FCB. If AL = 1, then leading separators are scanned off the
command line at DS:SI. If AL = 0, then no scan-off of leading separators
takes place.

The command line is parsed for a file name of the form x:filename.ext ,
and if found, a corresponding unopened FCB is created at ES:DI. If no
drive specifier is present, then the default drive is assumed. If no
extension is present, it is assumed to be all blanks. If the character
"%*" appears in the file name or extension, then all remaining characters
in the file name or extension are set to "?".

If either a "?" or "*" appears in the file name or extension, then AL
returns 01, otherwise 00, DS:SI will return pointing to the first

character after the file name. If no valid file name was present,
ES:DI+1l will point to a blank.

Miscellaneous Functions

0 - Program terminate. The Terminate and Ctrl-C Exit addresses are,
restored to the values they had on entry to the terminating program. All
file buffers are flushed, but files which have been changed in length
but not closed will NOT be recorded properly in the disk directory.
Control transfers to the Terminate address. ’

37 - Set vector. The interrupt type specified in AL is set to vector to

the address DS:DX. See the section on interrupt table usage for a list
of certain pre-~defined interrupt types.

38 - Create new program segment. On entry, DX has the segment number at
which to set up a new program segment. The entire 100 hex area at
location zero in the current program segment is copied into location
zero of the new program segment. The memory size information at location
6 is updated, and the current Terminate and Ctrl-C Exit addresses are
saved in the new program segment starting at 0A hex.

Page 15

Using Operating System Functions

Disk File Reading and Writing

It is strongly recommended that all disk I/O use the block read and
block write functions, Functions 39 and 40, rather than Functions 20,
21, 33, or 34, Since the block read and write functions update the
Random Record field of the FCB, they may be used for sequential access
as well as random, or any intermixing. Programs which would ordinarily
sequentially read or write one record at a time might experience
considerable improvement in performance if several records were buffered
instead of just one. The block I/0 functions allow this buffer size to
be variable, depending, for example, on available memory size.

The Line Editor: Function 10

The most straighforward use of the editing features provided by Function
10, buffered console input, is allowing the user to correct mistakes in
the line currently being entered. However, their are two other important
uses, both of which take advantage of the fact that a template may
already be present in the input buffer before the system call is made.

The simpler of the two is used by COMMAND and all other standard 86-DOS
programs. By simply re-using the same buffer each time an input line is
requested, then the previous line entered becomes the template for the
new line. This allows the user to easily repeat a command, or to correct
an error in the previous command. Or when used with a BASIC interpreter,
for example, the user could correct the last program line entered (since
the line number insures the old line will be replaced), or the line
number could be changed so that several similar lines could be entered
easily.

If the program wishes to actively use the editing features, it may load
any arbitrary text into the buffer before requesting Function 10. Note
that the second byte of the buffer must be set with the character count
and an ASCII carriage return must immediately follow the text in the
buffer. EDLIN, the text editor provided with 86-D0S, uses this method to
provide editing within a line. A BASIC interpreter with an EDIT command
could load the specified line into the buffer and let Function 10 do the
rest. Any program in which there is a "typical response" at a given
moment could make the template this response to allow the user to select.
it easily.

It is important for any program that wishes to provide line editing to
use the features of Function 10 to do so. This provides the user with a
set of editing operations that are consistent from program to program,
and that have been tailored in one step to match the user’s terminal
(during 86-DOS customizing).

Page 16

Running a User Program

The operating system core provides no direct means to run user programs.
Instead, to run a given program represented by a disk file, the file
must be opened and read into memory using the normal system functions.
These functions are requested by the user program that is currently
running.

The first user program to run is the initialization routine that follows
a system boot, which normally loads and executes the file COMMAND.COM.
This is a user program that accepts commands from the console and
translates them into system function calls. COMMAND includes the
capability to load and execute other program files; when these other
programs terminate, COMMAND regains control. Thus COMMAND is responsible
for the initial conditions that are present when a program is executed.

A standard set of initial conditions is provided by COMMAND on entry to
another program. It is possible for programs other than COMMAND to load
and execute program files, and they must also provide the same initial
conditions so that a consistent interface may be assumed by the newly
executing program. These initial conditions are as follows:

All four segment registers have the same value, and the corresponding
absolute memory address is the base of a "program segment'". The program
is loaded and begins execution at location 100 hex in the program
segment. Other assignments in the program segment are:

00 - Ol: Termination point. Contains an interrupt type 20 hex, which
returns control to the originating program. Thus a JMP 0 or INT 20H are
the normal ways to terminate a program.

02 - 03: Memory size. Contains the first segment number after the end of
MEemory .

05 - 05: Alternate function request entry point. See 'Requesting a
Function".

06 - 07: Segment size. This is the number of bytes available in the
program segment. '

08 - 21: Reserved.

22 - 5B: Default stack. The stack pointer is initially 5A hex, with a
word of zeros on the top. Thus executing a '"return" instruction will
cause a transfer to location 0 and the program will terminate normally.
This stack may be used as-is, or a new one may be set up. Remember that
32 bytes of stack space are required to perform system calls.

5C - 67,
6C - 77: Formatted parameters. Each of these areas may contain a

Page 17

RUNNING A USER PROGRAM (Continued)

parameter, usually a file name. The first byte of each area is zero
unless a disk drive is being specified, in which case l=drive A, 2=drive

B, etc. The rest is blanks if no parameter is present. No lower-case
letters are allowed in these fields--they must be converted to upper
case. If the parameter is a file name, then the next 8 bytes have the

name, followed by the 3-character extension. Thus each parameter is
properly formatted as an unopened FCB, except that the reserved area of
the first overlaps onto the second. If both parameters are used as file
names, the second one must be moved to a different area or it will be
destroyed when the first is opened.

80 - FF: Unformatted parameters. Any information to be passed may be
placed in this area. The disk transfer address is initially set to 80
hex.

COMMAND prepares the parameter areas from the console input line that
specified the program to be executed. For example, if COMMAND sees an
line of the form

<progname> <filel> <file2>

this is a request to execute the file <progname>.COM. <filel> and
<file2> each may or may not include a disk specifier or a file name
extension, but in any case they appear in the formatted parameters at 5C
hex and 6C hex. In addition, the entire input line after the last letter
of <progname> appears in the unformatted parameter area beginning at 81
hex, with the number of characters placed at 80 hex.
Suppose the input line is

COPY T.BAK B:TEST.ASM
The formatted parameter at 5C hex will contain

00 "T BAK"
at 6C hex will be

02 "TEST ASM"
and at 80 hex will be

17 " T.BAK B:TEST.ASM"

where the 17 is decimal.

Page 18

Customizing 86-DOS

Setting the Special Editing Commands

The escape codes used by Function 10, buffered console input, can be set for

the convenience of the user. For each special editing command, two escape
codes are allowed. They are set in a table starting at address 0003 in

86-DOS. The beginning of 86-D0OS looks like this:

0000 JMP INIT

0003 ESCTAB:

0003 DB "sc" 3Copy one character from template

0005 DB ""yN" ;Skip over one character in template

0007 DB "TA" ;Copy up to specified character

0009 DB "WB" ;Skip up to specified character

000B DB "ug" ;Copy rest of template

000D DB "HH" 3Kill line with no change in template (Ctrl-X)
000F DB "R1" ;Cancel line and update template

0011 DB "pp" sBackspace (same as Ctrl-H)

0013 DB "p@" sEnter Insert mode

0015 DB "QL" sExit Insert mode

0017 DB 1BH, 1BH ;Escape sequence to represent escape character

For example, the character sequences ESC S or ESC C will copy one character
from the template to the new line. Note that there are three entries with the
same letter for both codes. This is simply a way to make only one code

available for that function.

The last entry in the table is the escape sequence to be used to pass the ESC
character (1B hex). In the standard table shown here, this is done by typing
ESC twice, but it could also be set up for any other escape sequence.

Page 19

Customizing the I/O Section

In order to provide the user with maximum flexibility, the disk and simple

device I/0 handlers of 86-DOS are a separate subsystem which may be
configured for virtually any real hardware. This I/0 system is located
starting at absolute address 400 hex, and may be any length. The DOS itself
is completely relocatable and normally starts immediately after the I/0
system,

Beginning at the very start of the I/0 system (absolute address 400 hex) is a
series of 3-byte jumps (long intra-segment jumps) to various routines within
the I/0 system. These jumps look like this:

0000 JMP INIT 3 System initialization
0003 JMP STATUS ; Console status check
0006 P CONIN ; Console input

0009 JMP CONOUT ; Console output

000C JMP PRINT s Printer output

00OF JMP AUXIN 3 Auxiliary input

0012 JMP AUXOUT ; Auxiliary output

0015 JMP READ s Disk read

0018 JMP WRITE s Disk write

001B JMP FLUSH ; Empty disk buffers

The first jump, to INIT, is the entry point from the system boot. All the
rest are entry points for subroutines called by the DOS. Inter-segment calls
are used so that the code segment is always 40 hex (corresponding to absolute
address 400 hex) with a displacement of 3, 6, 9, etc. Thus each routine must
make an inter-segment return when done (RET L with our assembler),

The function of each routine is as follows:

INIT - System initialization

Entry conditions are established by the system bootstrap loader and should be
considered unknown. The following jobs must be performed:

A, All devices are initialized as necessary.

B. A local stack is set up and DS:SI are set to point to an initialization
table. Then an inter-segment call is made to the first byte of the DOS, using
a displacement of zero. For example:

MOV AX,CS 5 Get current segment
MOV DS,AX

MOV SS,AX

MOV SP,STACK

MOV SI,INITTAB

CALL 0,DOSSEG

The initialization table provides the DOS with information about the disk
system. The first byte is the number of drives (16 or fewer), followed by two
2-byte entries for each drive. The first of the two entries for each drive is
the address (in the same data segment) of a disk drive parameter table (DPT).
Similar drives may point to the same DPT.

Page 20

CUSTOMIZING THE I/0 SECTION (Continued)

Below is a brief description of each entry of the DPT. The format of the DPT

will be significantly different (easier to change) in Version 1.0 of 86-D0S,
and more information will be available then.

1. Number of 128-byte records per physical sector. 1 byte.
2. Number of 128-byte records per allocation unit. 1 byte.
3. Number of reserved 128-byte records at beginning of disk. 2 bytes.

4, Size of allocation table, in 128-byte records. Each allocation urntt
(item 7) requires 1.5 bytes in the allocation table. 1 byte.

5. Number of allocation tables kept on the drive. 1l byte.

6. Number of 128-byte records devoted to the directory. There are 8
directory entries per record. 1 byte.

7. Number of allocation units on the drive. 2 bytes.

The second of the two entries for each drive is the displacement of the
allocation table for that drive. Normally, the first drive will be given a
displacement of zero, and each subsequent drive will be assigned a space
immediately after the previous drive’s table ends. The size of the table for
any drive is 128 bytes times the number of records specified in item 4 above.
Note that no space need be provided by the I1/0 system for the allocation
tables; this space is assigned by the DOS during initialization.

On the next page is a sample of an initialization table.

Page 21

CUSTOMIZING THE I/0 SECTION (Continued)

Below is a sample of a complete initialization table for four single-density
IBM format disk drives: p

INITTAB:
DB 4 3 Number of drives
DW DRIVEO
W ATO
DW DRIVEL
DW AT1
DW DRIVE2
DV AT2
DW DRIVE3
DW AT3
DRIVEO:
DRIVE1L:
DRIVE2:
DRIVE3:
3 All drives are defined the same
DB 1 s Records/sector
DB 4 ; Records/allocation unit
DW 52 ;5 Reserved records (two tracks)
DB 6 5 Allocation table size, records
DB 2 ; Number of allocation tables (1 backup)
DB 8 3 Number of directory records (64 entries)
v 482 ; Number of allocation units (512 bytes ea.)
ORG 0 ; Allocation tables are in their own segment
ATO: DS 3001 s Six 128-byte records
AT1: . DS 300H
AT2: DS 300H
AT3: DS 300"

C. When the DOS returns to the INIT routine in the I /0 system, DS has the
segment of the start of free memory, where a program segment has been set up.
The remaining task of INIT is to load and execute a program at 100 hex in
this segment, normally COMMAND.COM. The steps are:

l., Set the disk transfer address to DS:100H.

2. Open COMMAND.COM. If not on disk, report error.

3. Load COMMAND using the block read function (Function 39). If
end-of-file was not reached, or if no records were read, report an
error.

4. Set up the standard initial conditions and jump to 100 hex in the new
program segment.

Page 22

CUSTOMIZING THE I/0 SECTION (Continued)

An example of code which performs this task is given:

MOV DX, 100H
MOV AH, 26
INT 21H ;Set transfer address to DS:100H
MOV BX,DS sSave segment for later
3 DS must be set to CS so we can point to the FCB
MOV AX,CS
MOV DS, AX
MOV DX, FCB ;File Control Block for COMMAND,.COM
MOV AH, 15
INT 21H sOpen COMMAND,COM
OR AL, AL
JNZ COMERR sError if file not found
MOV [FCB+33],0 ;Set Random Record field
MOV B, [FCB+35],0
MOV CX,200H sLoad maximum records
MOV AH, 39
INT 21H sBlock read
JCXZ COMERR sError if no records read
cMp AL,1
JNZ COMERR sError if not end-of-file
MOV DS,BX sAll segment reg.s must be the same
MOV ES,BX
MOV SS,BX
MOV SP, 5CH 3Stack must be 5C hex
XOR AX,AX
PUSH AX sPut zero of top of stack
MOV DX, 80H
MOV AH, 26
INT 21H ;Set transfer address to default
PUSH BX
MOV AX, 100H
PUSH AX
RET L sJump to COMMAND
COMERR:
MOV DX, BADCOM
MOV AH, 9
INT 21H sPrint error message
STALL: JMP STALL sDon’t know what to do
BADCOM: DB 13,10,"Bad or missing Command Interpreter',13,10,"$"
FCB: DB 1,"COMMAND cOM"
DS 24

STATUS - Console input status

If a character is ready at the console, this routine returns a non-zero
value in AL and the zero flag is clear.- If no character is ready, AL
returns zero and the zero flag is set. No registers other than AL may be
changed.

‘Page 23

CUSTOMIZING THE I/0 SECTION (Continued)
CONIN - Console input

Wait for a character from the console, then return with the character in
AL. No other registers may be changed.

CONOUT - Console output

Output the character in AL to the console. No registers mayvbe affected.

PRINT - Printer output

Output the character in AL to the printer. No registers may be affected.

AUXIN - Auxiliary input

Wait for a byte from the auxiliary input device, then return with the
byte in AL, No other registers may be affected.

AUXOUT - Auxiliary output

Output the byte in AL to the auxiliary output device. No registers may
be affected. _ ' :

READ - Disk read
WRITE - Disk write

On entry,
AL = Drive number (starting with zero)
AH = Directory flag (WRITE only)
CX = Number of 128-byte records to transfer
DX = Logical record number

DS:BX = Transfer address.

The number of records specified are transfered between the given drive
and the transfer address. "Logical record numbers" are obtained by
numbering each record sequentially starting from zero, and continuing
across track boundaries. Thus for standard floppy disks, for example,

Page 24

CUSTOMIZING THE I/0 SECTION (Continued)

logical record 0 is track O sector 1, and logical record 53 is track 2
sector 2. This conversion from logical record number to track and sector
is done simply by dividing by the number of records per track. The
quotient is the track number, and the remainder is the record on that
track. (If the first sector on a track is 1 instead of 0, as with
standard floppy disks, add one to the remainder.)

- "Sector mapping' is not used by this scheme, and is not recommended
unless contiguous sectors cannot be read at full speed. If sector
mapping is desired, however, it may be done after the logical record
number is broken down into track and sector. The 8086 instruction XLAT
is quite useful for this mapping.

All registers except the segment registers may be destroyed by these
routines. If the transfer was successfully completed, the routines
should return with the carry flag clear. If not, the carry flag should
be set, and CX should have the number of records remaining to be
transfered (including the record in error).

On disk writes only, register AH is zero for normal writes and non-zero
for directory writes. Thus if disk I/0 is being buffered in memory, as
would be the case if physical sector size is greater than 128 bytes,
then this memory buffer must be flushed to disk when AH is non-zero to
insure the directory is updated. Version 1.0 of 86-DOS will
automatically handle physical sector sizes larger than 128 bytes and
buffering in the I/0 area will no longer be necessary.

FLUSH - Empty disk buffers

This routine is called when a file is closed or when the disk system is
reset. It may be used to write to disk any disk buffers that have been
kept in memory. On entry, AL has the drive number whose buffers should
be flushed, or if AL = -1, then flush all buffers. All registers may be
destroyed except the segment registers. If memory buffering is not used,
this routine may simply return (inter-segment).

Version 1.0 of 86-DOS will automatically handle physical sector sizes
larger than 128 bytes and this routine will no longer be used.

Page 25

Bootstrap Loader Listing

sThis is a disk boot routine for the 1771/1791 type disk
;controllers. It would normally reside on track 0,
ssector 1, to be loaded by the "B" command of the
smonitor at address 200H. By changing the equates -
;below, it may be configured to load any size of
;program at any address. The program is assumed to
;occupy consecutive sectors starting at track 0, sector
32, and will begin exection at its load address (which
smust be a 16-byte boundary) with the Instruction
;Pointer set to zero.

Variations are available for the Cromemco 4FDC with
large disks, the 4FDC with small disks, the Tarbell
ingle-density controller, and the Tarbell double-

H
5
3 s
s density controller. Select one.

CROMEMCOSMALL: EQU 0

CROMEMCOLARGE: EQU 0

TARBELLSINGLE: EQU 1

TARBELLDOUBLE: EQU 0

LOAD: EQU 400H ;Address to load program

SEG: EQU 40H sLOAD /10H

SECTOR: EQU 51 sNo. of 128-byte sectors to load
BOOTER: EQU 200H 3"B" command puts booter: here

3 ThkhhhrhAR AR AR A AR AR A A A hArhdhhhhhhhhhhhhhhhhhdhhhhhhhhhdhhhihix

CROMEMCO:: EQU CROMEMCOLARGE+CROMEMCOSMALL
TARBELL: EQU TARBELLSINGLE+TARBELLDOUBLE
WD1771: EQU CROMEMCO+TARBELLSINGLE
WD1791: EQU - TARBELLDOUBLE
SMALL: EQU CROMEMCOSMALL
LARGE: EQU CROMEMCOLARGE+TARBELL
IF SMALL
MAXSECT: EQU 18
ENDIF
IF LARGE
MAXSECT : EQU 26
ENDIF
IF TARBELL
DONEBIT:EQU 80H
DISK: EQU 78H
ENDIF
IF CROMEMCO
DONEBIT:EQU 1
DISK: EQU 30H
ENDIF

Page 26

BOOTSTRAP LOADER LISTING (Continued)

IF

READCOM : EQU
ENDIF

IF

READCOM: EQU
ENDIF

IF
WAITBYTE:EQU
ENDIF

IF
WAITBYTE : EQU
ENDIF

ORG
PUT

XOR
MOV
MOV
MOV
MOV
up
MOV
MOV
MOV
SECT:
MOV
ouT
AAM
CMP
JNZ
MOV
CALL
MOV
NOSTEP:

MOV
OUTB

IF
MOV
ouT
ENDIF

INB
NOT
AND
Jz

MOV

WD1771
88H

Wp1l791
80H

CROMEMCOLARGE

0B1H

CROMEMCOSMALL

OAlH

BOOTER
100H

AX,AX
DS, AX
ES,AX
SS,AX
SP,BOOTER

DI,LOAD
DX, SECTOR
BL, 2

AL, ODOH
DISK

BL,MAXSECT+1
NOSTEP

AL, 58H

DCOM

BL, 1

AL,BL
DISK+2

CROMERMCO

AL,WAITBYTE
DISK+4

DISK
AL

AL, 20H
OUTCOM
AL, 4

sFor debugging purposes

sForce Interrupt command
sTo force Type I status

sStep in with update

sTurn on hardware wait

;Get head load status

Page 27

BOOTSTRAP LOADER LISTING (Continued)

OUTCOM:
OR AL, READCOM
OUTB DISK
MOV CX,128
PUSH DI
READ:
INB DISK+4
TEST AL,DONEBIT
IF TARBELL
JZ DONE
ENDIF
IF CROMEMCO
JNZ DONE
ENDIF
INB DISK+3
STOB
LOOP READ
DONE:
POP DI
CALL GETSTAT
AND AL, 9CH
JNZ SECT
ADD DI, 128
INC BL
DEC DX
JNZ SECT
JMP 0,SEG
DCOM:
oUT DISK
AAM
GETSTAT:
INB DISK+4
TEST AL,DONEBIT
IF TARBELL
JNZ, GETSTAT
ENDIF
IF CROMEMCO
JZ GETSTAT
ENDIF
IN DISK
RET

Page 28

I/O Section Listing

s I/0 System for 86-DOS.

Assumes a CPU Support card at FO hex for character 1/0,

5
; with disk drivers for Tarbell or Cromemco controllers.

s Select disk controller here

TARBELL : EQU 1
CROMEMCO:EQU O

; For either disk controller, a custom drive table may be defined

CUSTOM: EQU 0

; If Tarbell disk controller, select one-sided or two-sided drives

; and single or double density controller

DOUBLSIDE:EQU O

DOUB2SIDE: EQU 0
SNGL1SIDE:EQU 1

s If Cromemco disk controller, select drive configuration

SMALLCRO:EQU 0 33 small drives
COMBCRO: EQU 0 32 large drives and 1 small one
LARGECRO:EQU 0 34 large drives

;Use table below to select head step speed. Step times for 5" drives is double
sthat shown in the table. Times for Fast Seek mode (Cromemco controller with
;PerSci drives) is very small - 200-400 microseconds.

;5 Step value 1771 1791

H 0 6ms 3ms
H 1 6ms 6ms
3 2 10ms 10ms
3 3 20ms 15ms
STPSPD: EQU 1

;Some drives require a delay between writing and stepping so that the tunnel
;erase operation does not smear across data. If needed, set ERASE to 1 and
;set WRTDLY for the amount of the delay (software loop). For a given delay in
smicroseconds, WRTDLY = (delay * 8) / 18.

ERASE: EQU 1
WRTDLY: EQU 236 3530 microseconds

Page 29

I/0 SECTION LISTING (Continued)

;Some disk drives cannot be driven at full speed (6 tracks/sec), even if the
s;full head step delay is used. To slow them down, a "verify" can be performed
safter each head step during a continuous read or write operation. Select by
s;setting VERIFY to VERON, disable with VEROFF.

VERON: EQU STPSPD+4
VEROFF: EQU 0
VERIFY: EQU VERON

H 33 P T T e T e I TR T T T T Y T

.

WD1791: EQU DOUB 1SIDE+DOUB2SIDE
WD1771: EQU CROMEMCO+SNGL 1SIDE
IF WD1791
READCOM : EQU 80H
WRITECOM:EQU OAOH
ENDIF
IF WD1771
READCOM : EQU 88H
WRITECOM:EQU 0A8H
ENDIF
IF - TARBELL
DONEBIT :EQU 80H
DISK: EQU 78H
ENDIF
IF CROMEMCO
DONEBIT:EQU 1
DISK: EQU 30H
ENDIF
DOSSEG: EQU 80H
ORG 0
PUT 1001
BASE: EQU OFOH
STAT: EQU BASE+7
DAV: EQU 2
TBMT: EQU 1
DATA: EQU BASE+6
PSTAT: EQU BASE+0DH
PDATA: EQU BASE+OCH
JMP INIT
JMP STATUS
JMP INP
JMP OUTP
QP PRINT
JMP AUXIN

Page 30

I/0 SECTION LISTING (Continued)

JMP AUXOUT
JMP READ
JMp WRITE
JMP RETL sFlush buffers
INIT:
MOV AX,CS ;Get current segment
MOV DS,AX
MOV SS,AX
MOV SP,STACK
MOV SI,INITTAB
CALL 0,DOSSEG
MOV DX, 100H
MOV AH, 26 sSet DMA address
INT 21H
MOV BX,DS ;Save segment for later
;DS must be set to CS so we can point to the FCB
MOV AX,CS
MOV DS,AX
MOV DX, FCB sFile Control Block for COMMAND.COM
Mov AH,15 :
INT 21H sOpen COMMAND.COM
OR AL, AL
JNZ COMERR sError if file not found
MOV [FCB+33]1,0 ;Set 3-byte Random Record field to
MOV B, [FCB+35]1,0 : beginning of file
MOV CX,200H sLoad maximum records
MOV AH, 39 sBlock read
INT 21H ‘
JCXZ COMERR sError if no records read
CMP AL,1 ‘
JNZ COMERR sError if not end-of-file
sMake all segment registers the same
MOV DS, BX
Mov ES,BX
MOV S§S,BX
MOV SP, 5CH ;Set stack to standard value
XOR AX,AX
PUSH AX sPut zero on top of stack for return
MOV DX, 80H
MOV AH, 26
INT 211 ;Set default transfer address (DS:0080)
PUSH BX ;Put segment on stack
MOV AX, 100H :
PUSH AX sPut address to execute within segment on stack
RET L sJump to COMMAND
COMERR::
MOV DX, BADCOM
MOV AH,9 sPrint string
INT 21H
EI
STALL: JP STALL

Page 31

I/0 SECTION LISTING (Continued)

BADCOM: DB 13,10,"Bad or missing Command Interpreter",13,10,"$"
FCB: DB 1,"COMMAND COM"
DS 24
STATUS:
IN STAT
"~ AND AL,DAV
RET L
AUXIN:
INP:
IN STAT
AND AL,DAV
JZ INP
IN DATA
AND AL, 7FH
RET L
AUXOUT:
OUTP:
PUSH AX
OUTLP:
IN STAT
AND AL, TBMT
JZ OUTLP
POP AX
ouT DATA
RET L
PRINT:
PUSH AX
PRINLP:
IN PSTAT
AND AL, TBMT
JZ PRINLP
POP AX
ouT PDATA
RET L
READ:
CALL SEEK sPosition head
JC ERROR
RDLP:
PUSH CcX .
CALL READSECT sPerform sector read
POP CX
JC ERROR
INC DH sNext sector number
ADD S1,128 sBump address for next sector
LOOP RDLP sRead each sector requested
OR AL, AL
RETL: RET L

Page 32

I1/0 SECTION LISTING (Continued)

WRITE:

CALL
JC

WRTLP:

PUSH
CALL
POP
JC
INC
ADD
LOOP
OR
RET

ERROR:

SEG
MOV
RET

SEEK:

Inputs:
AL
BX
CcX
DX

Function:

Seeks to proper track.

Outputs:
AH
DL
DH
ST
DI
CX unchange

nnn

MOV
CBW
MOV
SEG
MOV
ouT

IF
OR
ENDIF

MoV
XCHG
MOV

IF
TEST
JNZ
julods

SEEK
ERROR

cX
WRITESECT
cX

ERROR

DH

SI,128
WRTLP
AL,AL

L

CS
B, [DI],~1

Drive number

sPosition head

;Perform sector write

sBump sector counter
sBump address
sWrite CX sectors

Disk transfer address in DS
Number of sectors to transfer
Logical record number of transfer

Drive select byte

Track number
Sector number

Disk transfer address in DS
pointer to drive’s track counter in CS

d.
SI,BX

BX,AX

CS

AL, [BX+DRVTAB]
DISK+4

CROMEMCO
AL, 80H

AH, AL
AX,DX
DL, 26

CROME}NMCO
DH, 10H
BIGONE
DL, 18

s Save transfer address

3 Prepare to index on drive number

Select drive

-e

sSet auto-wait bit

sSave for later

326 sectors per track

sCheck if small disk

318 sectors on small disk track

Page 33

I1/0 SECTION LISTING (Continued)

BIGONE:
ENDIF
DIV AL,DL ;Compute track and sector
XCHG AX,DX '
INC DH ;First sector is 1, not zero
. SEG CS
MOV BL, [BX+TRKPT] ;Get this drive’s displacement: into track table
ADD BX, TRKTAB :BX now points to track counter for this drive
MOV DI,BX
MOV AL,DL
SEG CS
XCHG AL, [DI] ;Xchange current track with desired track
ouT DISK+1 ;Inform controller chip of current track
CMP AL,DL
JZ ONTRK
MOV BH, 3 sSeek retry count
CMP AL,~1 sHead position known?
JINZ NOHOME sIf not, home head
TRYSK: '
CALL HOME
NOHOME:
MOV AL,DL
ouT DISK+3
MOV AL, 1CH+STPSPD
CALL MOVHEAD
AND AL, 98H
Jz ONTRK
DEC BH
JNZ TRYSK
STC
ONTRK:
RET
SETUP:
MOV AL, ODOH ;Force Interrupt command
ouT DISK ;so Type I status will be available
PUSH AX
AAM sPause 10 microseconds
POP AX
IF CROMEMCO : ~
TEST AH, 10H sCheck for small disk
JNZ CHKSTP _
CMP DH, 18 ;Only 18 sectors/track on small ones
JA STEP
CHKSTP:
ENDIF
CMP DH, 26 ;Check for overflow onto mnext track
JBE PUTSEC

Page 34

I1/0 SECTION LISTING (Continued)

STEP:
INC DL
MOV DH, 1
MOV AL, 58H+VERIFY 3Step in with update
CALL STPHEAD
SEG CS :
INC B, [DI] sUpdate track counter
PUTSEC:
MOV AL,DH
OUT DISK+2
IF CROMEMCO
MOV AL,AH
ouT DISK+4 sTurn on auto-wait
ENDIF ‘
IN DISK sGet head load bit
NOT AL .
AND AL, 20H sCheck head load status
JZ CHKDRV
MOV AL, 4
CHKDRYV:
3 Turn on 15ms head load delay if selecting a different drive
SEG CS
CMP AH, [CURDRV]
SEG Cs
MOV [CURDRV] , AH
Jz RET
MOV AL, 4
RET
READSECT:
CALL SETUP
MOV BL,10
RDAGN:
OR AL ,READCOM
ouT DISK
MOV CX, 80H
PUSH SI
RLOOP:
IN DISK+4

TEST AL,DONEBIT

IF TARBELL
JZ - RDONE
ENDIF

IF CROMENCO
JNZ RDONE
ENDIF

IN DISK+3
MOV [SI],AL
INC SI

LOOP RLOOP

Page 35

I/0 SECTION LISTING (Continued)

RDONE ¢
POP SI
CALL GETSTAT
AND AL, 9CH
JZ RET
MOV AL,0
DEC BL
JNZ RDAGN
STC
RET
WRITESECT:
CALL SETUP
MOV BL, 10
WRTAGN:
OR AL,WRITECOM
ouT DISK
1oV CX, 80H
PUSH ST
WRLOOP:
IN DISK+4
TEST AL ,DONEBIT
IF TARBELL
JZ WRDONE
ENDIF
IF CROMEMCO
JNZ WRDONE
ENDIF
LODB
ouT DISK+3
LOOP WRLOOP
WRDONE :
POP ST
CALL GETSTAT
AND AL, OFCH
JZ RET
MOV AL, O
DEC BL
JNZ WRTAGN
STC
RET
HOME
IF CROMEMCO
TEST AH, 40H ;Check seek speed bit
JNZ RESTORE
ENDIF
MoV BL,3

Page 36

1/0 SECTION LISTING (Continued)

TRYHOM:

MOV
CALL
AND
Jz
MOV
CALL
DEC
JNZ
RET

MOVHEAD:
IF
TEST
JNZ

ENDIF

STPHEAD:
IF
PUSH
MOV
DLYLP:
DEC
JNZ
POP
ENDIF

DCOM:
ouT
PUSH
AAM
POP
GETSTAT:
IN
TEST

IF
JNZ
ENDIF

IF
JZ
ENDIF

IN
RET

IF
RESTORE:
MOV
ouT
MOV
ouT

AL, OCH+STPSPD

STPHEAD

AL, 98H

RET

AL, 58H+STPSPD sStep in with update
DCOM

BL

TRYHOM

CROMEMCO
AH, 40H sCheck seek speed bit
FASTSK

ERASE
AX
AX,WRTDLY

AX
DLYLP
AX

DISK
AX

sDelay 10 microseconds
AX

DISK+4
AL,DONEBIT

TARBELL
GETSTAT

CROMEMCO
GETSTAT

DISK

CROMEMCO

AL, 0C4H ;sREAD ADDRESS command to keep head loaded

DISK

AL,77H
4

Page 37

I1/0 SECTION LISTING (Continued)

CHKRES:
IN
AND
Jz
IN
TEST
Jz
IN
JP

RESDONE:
MOV
ouT
CALL
MOV
ouT
RET

FASTSK:
MOV
ouT
MOV
CALL

SKWAIT:
IN
TEST
JNZ
MOV
ouT
MOV
RET
ENDIF

DS
STACK:

LFAT: EQU
SFAT: EQU

CURDRV: DS

LDRIVE:
DB
DB
DW
DB
DB
DB
oW

Page 38

4
AL,40H
RESDONE
DISK+4 ‘
AL,DONEBIT
CHKRES

DISK
RESTORE sReload head
AL, 7FH
4
GETSTAT
AL,O
DISK+1

AL, 6FH

AL, 18H
DCOM

4
AL, 40H
SKWAIT
AL, 7FH
4
AL,0

20H

300H
200H

1 ;Records/sector

4 sRecords/cluster
52 sReserved records

6 sFAT size (records)
2 sNumber of FATs

8
4

sNumber of directory records
82 sNumber of clusters on drive

3Tell 1771 we’re now on track O

I1/0 SECTION LISTING (Continued)

SDRIVE:

DRVTAB:

TRKPT:

TRKTAB:

DRVTAB:
TRKPT:
TRKTAB:

DRVTAB:
TRKPT:
TRKTAB:

DB
DB
DW
DB
DB
DB
DW

IF
DB
DB
DB

ENDIF

IF
DB
DB
DB

ENDIF

IF
DB
DB
DB

ENDIF

IF

INITTAB:DB

FATO:
FAT1:
FAT2:
FAT3:

We Ve we Ve we Ve e Ve we

DV
DW
DW
DW
DW
DW
bW
DW

ORG
DS
DS
DS
DS

ENDIF

Bit
Bit
Bit
Bit
Bit
Bit
Bit
Bit

o= nNLENEUONN

Woo NP~y -

25

DOUB1SIDE

0, 10H, 20H, 30H

0,1,2,3
-1,-1,-1,-1

DOUB2SIDE

0,40H, L0H, 50H

0,0,1,1
-1,-1

SNGL1SIDE

OF2H, OE2H, 0D 2H, 0COH

0,1,2,3
-1,-1,-1,-1

TARBELL

4 sNumber of drives

LDRIVE
FATO
LDRIVE
FAT1
LDRIVE
FAT2
LDRIVE
FAT3

0

LFAT
LFAT
LFAT
LFAT

0

= 1 (motor on)

]

0 for 5", 1 for 8" drives

= 1 for drive

nou

1 for drive
1 for drive
1 for drive

Cromemco drive select byte is derived as follows:

=1 if fast seek (PerSci)

w

O~ N

Page 39

1/0 SECTION LISTING (Continued)

IF LARGECRO
3 Table for four large drives
DRVTAB: DB 71H,72H,74H,78H
TRKPT: DB 0,0,1,1
TRKTAB: DB -1,-1
INITTAB:DB 4 sNumber of drives
DW LDRIVE
DW FATO
bW LDRIVE
DW FAT1
bW LDRIVE
DW FAT2
W LDRIVE
DW FAT3
ORG 0
FATO: DS LFAT
FAT1: DS LFAT
FAT2: DS LFAT
FAT3: DS LFAT
ENDIF
IF COMBCRO
3 Table for two large drives and one small one
DRVTAB: DB 71H,72H,248
TRKPT: DB 0,0,1
TRKTAB: DB -1,-1
INITTAB:DB 3 sNumber of drives
DW LDRIVE
DW FATO
DW LDRIVE
DW FAT1
DW SDRIVE
DW FAT2
ORG 0
FATO: DS LFAT
FATI1: DS LFAT
FAT2: DS SFAT
ENDIF

Page 40

I/0 SECTION LISTING (Continued)

IF SMALLCRO
s Table for 3 small drives
DRVTAB: DB 21H,22H,24H
TRKPT: DB 0,1,2
TRKTAB: DB -1,~1,~1
INITTAB:DB 3

o) SDRIVE

DW FATO

DW SDRIVE

Dy FAT1

DW SDRIVE

Dy FAT2

ORG 0
FATO: DS SFAT
FAT1: DS SFAT
FAT2: DS SFAT

ENDIF

IF CUSTOM
s Table for 2 large drives without fast seek
DRVTAB: DB 31H, 320
TRKPT: DB 0,1
TRKTAB: DB -1,~1
INITTAB:DB 2

DW LDRIVE

DV FATO

DW LDRIVE

bW FAT1

ORG 0
FATO: DS LFAT
FATI1: DS LFAT

ENDIF

Page 41

