User’s Manual

Version 0.3

86-DOS™®

Disk Operating System for the 9086

Preliininary | éScottle Computer Products, Inc.

1114 Industry Drive, Seattle, WA. 98188
(206) 575-1830

86-DOS™ User’s Manual

TABLE OF CONTENTS

Introductione o o o o o ¢ o o o o o o o o o o o o s o 3
COMMAND - The Command Interpreter « « o« « « » o o o o 5
Control FunctionSe « o o o o o o o o o o o s o o o 6
Special Editing Commands « « « ¢ s o o » « o o o o 6
File Names « o o o o o o o o s o o o o o o o o o o 1
Internal CommandSe « o o o o o o o o o o o o o o o 8
External CommandSe » o o o oo ¢« o o o o o s o o o 9
EDLIN -~ The Line EditOT o o o o o o o o o o o o o o 13
Parameters o« o o o o o o o o o o o o o o o o o o 14
Commands o« o o o o o o s o o o o o o o o o s o o 15
Error Messages o« o« s ¢ o s o o s « o o o o o o o 19
ASM - The Resident Assemblere o« o« o ¢ o o o o o o o o21
Calling the AssembleTre o o o o o o ¢ o o o o o o 222
Source Program FOTrmate o« o o o o o o o o o o o o 23
Operands o o o o o o o o o o ¢ o o 6 6 o o o 0 o 24
PseudO"OpS e 6 o o6 o o 8 8 6 o o 5 6 6 o o o e 027
Opcode Classifications « « o« o o o o o o« s o o o 30
EXror LisSt o o o o o o o o o o o s o o ¢ o o o o o43
Index to OpcodeS « « o o s o o o s o o o o o« o o o4t
TRANS - The Z80 to 8086 Translatore. o« o « o o o o o o47
Translation NOt@Ss o o « o o o o o o ¢ o o o o o o48
Assembly NOEES o o o o o o o o o o o o o o o o« o 49
DEBUG - The Resident Debugger . « « « o s o o o o & 51
Introduction « o « o o o o o o o o o o o o o o o 51
Parameters o« o o o o o o o 2 o o o s s o o o o o 52
Commands ® e o o o o 8 e o 8 o 6 o 6 6 o o o o o 053
Hard Disk EXYOrSe o« o o o o o o o - o o o« s o o o o 59

COPYRIGHT 1980 by Seattle Computer Products Inc.

All rights reserved.

Page 2

SCP 86-DOS®

A single-user disk operating system for the 8086

Introduction

86-DOS provides the tools needed to develop programs for the 8086, as well as
a hardware~independent environment in which to run these programs. It is a
very modular system. At its core is the disk file manager and I/0 device
handler, and -everything else is considered a "user program". This allows the
system to be easily tailored to any custom requirements,

The disk file manager allows programs to create and access disk files by
name. Files may be read or written sequentially or randomly, any number of
records at a time. File space on the disk is allocated dynamically, so that
no "compaction" phase is ever required.

A program called COMMAND provides the interface between the user at the
console and the file manager. COMMAND allows the user to display the disk
directory, rename, destroy, or copy files, and execute other programs, such
as the assembler, editor, or source code translator.

The assembler reads a source file of Intel-like 8086 mnemonics from disk, and
produces a listing file and an Intel hex format object file. The program
HEX2BIN may be used to convert the hex file to executable binary form.

The editor is line oriented, suitable for creating and maintaining program
files. "Dynamic" line numbers, which are not actually present in the text,
are used to identify lines to be listed, deleted, edited, etec. Global
searching and global text replacement are also provided. After editing a
file, the original file (before editing) is preserved as a back-up.

The source code translator can translate most Z80 source code into 8086
source code acceptable to the assembler after minor manual correction. This
provides a relatively quick and easy way to transport programs between the
processors.

The debugger allows programs to be tested under careful control. It also
provides direct access to disk files by name or to any physical location on
the disk.

SPECIAL NOTE: 86-DOS is not related to the popular CP/M operating system of
Digital Research. Disk directory formatting and space allocation are
completely different and incompatible. 86-DOS does, however, provide a
utility called RDCPM which will transfer files from CP/M disks to 86-DOS
disks. Further, operating system calls- and calling conventions have been
provided which make possible automatic translation of Z80 programs written
for CP/M into 8086 programs that run under 86-DOS.

Intrdduction - Page 3

COMMAND — The Command In terpreter

TABLE OF CONTENTS

Control Functions « « « o o o o o ¢ o o«
Special Editing CommandSe o« o« o« o o o @
File NameSe « « o o o o o o o o o o o o
Internal Commands « « o o o o ¢ o ¢ o &
DIRectory. ® o s e & o & o o o o e
RENAME 4 o o ¢« o o o o o o o o o o o
ERASE:e o o o o ¢ o o o o o o o o o @
COPY ¢ o o o o o o o o 6 ¢ o o o o o
TYPE o o o o o o o o s o ¢ o o o o o
CLEARe ¢ & o o ¢ o o o s s o o o o &
External Commands « « « o « o o o o o »
RDCPMe o« o o o o o o o o o o o o o @
MAKEDCPM o o o o o o o o o o s o o &
HEX2BINe ¢ o o ¢ o o s ¢ o o o o o o
CHKDSK &« o o o o o o o o o o o o o o

SYS. . e o o ° e o o o o ® o o o L]

L]
O OWOWOVOEOO~y N

e o []
——
OO Vv

.10
.11

When 86-DOS is first initialized after the "system boot'", a program called
COMMAND is loaded and executed. COMMAND provides the interface between the
user and the operating system by accepting lines of input from the console

and converting them to system calls.

COMMAND prompts with a letter indicating the "default" disk drive, followed
by a colon. Up to 15 drives are allowed in the system, labeled "A" through
"0". The default drive is the one that will be used by any disk operation
that does not specify a drive explicitly. Initially, the default drive is A,
but the user may change this by entering a line consisting of a valid drive

letter followed by a colon.

COMMAND - Page 5

Control Functions

While typing in a command from the console, a number of control functions
will be recognized (note that ALL standard 86-DOS programs recognize these
functions when giving them commands):

Ctrl-S suspeﬁds everything until any key is ﬁyped.
Ctrl-P sends all console output to the printer also.
Ctrl-N stops sending output to the printer.

Ctrl-C causes an exit from the current function.

Rubout, delete, backspace, Ctrl-H (7F hex or 08 hex): Backspace. Removes
the last character from the input buffer and erases it from the console.

Linefeed, Ctrl-J (10 hex): Physical end-of-line. Outputs a carriage
return and linefeed but does not effect the input buffer.

Ctrl-X (18 hex): Cancel line. Outputs a back slash, carriage return, and
1inefeed and resets the input buffer to empty. The template used by the
special editing commands is not affected.

Special Editing Commands

These special editing commands involve a "template'", which is an input line
available to help construct the line currently being entered. There are two
ways to obtain a template.

All standard 86-DOS programs automatically provide the last command entered

as the template for the next command. This allows the command to be repeated
easily, or an error in it to be corrected before the command is retried.

In addition, one of the editing commands is to convert that part of the line
entered so far into the template, and restart the line entry. This allows an

error near the start of a line to be corrected without retyping the rest of
the line.

Each editing command is selected by typing ESCAPE and a letter. Since many
terminals provide keys which produce such an "escape code" with a single
keystroke, the letter used after the ESCAPE may be set for each command
during 86-DOS customization. The standard escape sequences correspond to the
special function keys of a VI-52 or similar terminal, as noted in each case
by parentheses.

ESC S (Fl) - Copy one character from the template to the mew line.
ESC T (F2) - Must be followed by any character. Copies all characters

from the template to the new line, up to but not including the next
occurrence in the template of the specified character. If the specified

Page 6 - COMMAND

CONTROL FUNCTIONS (Continued)

character does not occur, nothing is copied to the new line.

ESC U (F3) - Copy all remaining characters in the template to the new
line.

ESC V (F4) - Skip over one character in the template.

ESC W (F5) - Must be followed by any character. Skips over all
characters in the template, up to but not including the next occurrence
in the template of the specified character. If the specified character
does not occur, no characters are skipped.

ESC P (BLUE) - Enter insert mode. As additional characters are typed,
the current position in the template will not advance.

ESC Q (RED) - Exit insert mode. The position in the template is advanced
for each character typed. When editing begins, this mode is selected by
default. .

ESC R (GRAY) - Make the new line the template. Prints an "@", a carriage

return, and a line feed. Buffer is set to empty and insert mode is
turned off. '

The general form of an input line for COMMAND is a command name followed by
zero or more parameters. These parameters may be separated from the command
name and each other by blanks, tabs, commas, semicolons, or '"equals" signs.
The number and meaning of the parameters is entirely dependent on the
individual command.

File Names

Many commands accept a file name as a parameter. File names may have up to
three parts: 1) an optional disk drive specifier; 2) the name; 3) an optional
extension. The drive specifier, if present, consists of a valid drive letter
followed by a colon. The name consists of 1 to 8 characters. The extension,
if present, is a period followed by 1 to 3 characters. If the name or
extension include a "?" in any position, then that position will match any
character when a directory search is made for the file name. If a "#" appears
in the name or extension, then the rest of the name or extension is filled in
with "?", For example, the following pairs of names are equivalent:

%% 22272222.772
*,COM ?22722727.C0M
PROG. * PROG.???

FILE*.A% FILE??777.A7?

COMMAND - Page 7

Internal Commands

The commands themselves are of two types. The "internal commands" are built
in to COMMAND and are executed immediately upon recognition. The "external
commands", on the other hand, are kept on disk as program files and must

first be loaded into memory before they can be executed. Any file on the disk
with an extension of "COM" is considered to be a valid external command.

The internal commands are the following:
DIR List directory entries‘
RENAME Rename files |
ERASE Delete files
COPY Copy a file
TYPE Display the contents of a file
CLEAR Format a disk directory, erasing all files
Eaéh is described below, with all valid forms of their parameters shown. In

this list, "drive" means a valid disk specifier (a drive letter followed by a
colon), while "file" means a file name as described above.

DIR
DIR drive
DIR file

If no parameters are present, all directory entries on the default disk are
listed at the console. If a drive specifier is present, then all entries on
specified disk are listed. If a file name is given, then only matching files
are listed. Files are listed with their size in bytes.

RENAME filel file2

Every matching occurence of the first file name is changed to the second
name. A disk drive specifier on the second file name is ignored. If "?" or
"#'" characters appear in the second file name, then corresponding positions
in the original name will be unchanged. Care should be taken not to give two
files the same name.

Page 8 - COMMAND

INTERNAL COMMANDS (Continued)

ERASE file

All files matching the given file name are deleted from the disk directory.

COPY filel
COPY filel drive -
COPY filel file2

Each file matching filel is copied to another file. If a second file name is
not given, then a copy with the same name is made on the specified (or
default) drive. If a second file name is given, then the copy will be given
this name. If the second file name has "?" or "*" characters in it, then
corresponding positons in will be the same as the original file name. If the
destination file already exists, it will be overwritten; otherwise, a new
file will be created. Do not attempt to copy to a file of the same name on
the same disk--the flle will be destroyed.

TYPE file

The specified file is transfered from the disk to the console. Tab characters
are expanded with blanks to every eighth column, but otherw1se no formatting
is performed.

CLEAR drive

Before any disk medium may be used with 86-DOS, its directory must be
initialized to empty. If it is not, a "Bad FAT" message will probably result.
To prevent catastrophe, the user will be prompted before formatting takes
place. A "Y" response is required to continue.

External Commands

RDCPM filel
RDCPM filel drive
RDCPM filel file2

Very similar to COPY, except that the source, filel, is assumed to be on a
disk formatted by a CP/M-compatible system. The destination file must be on a
different drive, assumed to be formatted by 86-DOS.

COMMAND -~ Page 9

EXTERNAL COMMANDS (Continued)

MAKRDCPM file

This program is used to modify RDCPM to handle the varying formats possible
with CP/M 2. The specified file must contain drive parameter tables and a
copy of RDCPM must be present on the same drive. Any existing parameter
tables in RDCPM will be deleted and the new tables will be merged into RDCPM.

The file with the parameter tables has three parts. The first word (2 bytes)
is the length of the tables. Next come 16 words which are the addresses of
the parameter table for each drive. Any drive not in the system or not
defined for CP/M use should have a word of zero. Last come the tables
themselves, which are of two types: drive parameter tables and sector
translation tables. Any drives with the same parameters may share the same
tables.

The drive parameter tables are very similar to those used within CP/M 2. In
fact, if a listing of the CP/M 2 Disk Parameter Blocks used is available,
these may be used directly, with the addition of one parameter at the end.
The added parameter is the address of the sector translation table, which in
CP/M 2 is found in the Disk Parameter Header. (There is no equivalent to the
Disk Parameter Header in the RDCPM tables.) The sector translation tables
also perform the same function as in CP/M 2, except that RDCPM performs the
translation rather than a user-written SECTRANS routine. The sector
translation table must contain one-byte entries if there are less than 256
sectors per track, and two-byte entries if there are 256 or more sectors per
track., Also, the sector translation table must have entries starting with
zero, even if the sectors on the disk are numbered starting with one. Thus,
to make a translation table for IBM disks, 1 must be subtracted from each
entry in a CP/M translation table.

HEX2BIN file

The specified file is assumed to be in Intel hex format, as produced by the
Assembler. If no extension is given, "HEX" is assumed. A file of the same
name but with an extension of "COM" is produced which is the absolute binary
equivalent of the hex input file, offset downward by 100 hex.

CHKDSK
CHKDSK drive

The directory of the specified (or default) drive is scanned and completely
checked for consistency. If any errors are found, they are reported and
corrective action is attempted. The following messages are possible:

"Error in allocation table for file <name>" - the file had a data block

allocated to it that did not exist. To correct, the file is truncated short
of the bad block.

. Page 10 - COMMAND

EXTERNAL COMMANDS - CHKDSK (Continued)

"Non-recoverable directory error--file deleted: <name>" - Similar to above,

except that no valid data blocks remained allocated to the file, so there is
no point in keeping it in the directory.

"Files cross-linked: <name> <name>" - The same data block has been allocated
to both files. One of the files could still be 0.K., but the only way to tell
is to view the data. No corrective action is taken automatically. The
recommended procedure is to make copies of both files, then delete the
originals. The copies must be checked to see if either are valid. Deleting
one of the originals will permanently damage the other, so both must be
copied before either are deleted. '

"Directory error--incorrect size of file <name>" - The size of the file as
kept in the directory did not correspond to the actual amount of space
allocated. The size is readjusted to equal all of the allocated space. Note
that the size is kept in bytes, while the allocation unit is much larger
(several hundred bytes, typically). Thus a file may be shorter than the new
adjusted size, since all of the last data block may not be used.

"xxxxxx bytes unallocated disk space freed" - Disk space was marked as
allocated, yet a check showed it belonged to no file. The space is freed.

After any error messages, a status report appears, listing the number of disk
files, the size of the disk, the amount of free space left on the disk, the
total size of central memory, and the amount of memory available to a running
program. It is recommended that CHKDSK be run on each diskette occasionally
to verify the integrity of its directory structure.

SYS drive

Transfers a copy of the 86-D0OS system from Drive A to the specified drive.

The system is assumed to occupy 52 128-byte records at the beginning of the
disk, which corresponds to all of tracks 0 and 1 on single-~density IBM format
diskettes. This size is kept in the fourth byte of SYS, and may be changed

(with DEBUG) to any value desired.

Note that the "system" refers only to the core of 86-D0OS, and not to any of

the files also on the disk. At least the program COMMAND.COM must also be
copied in order to boot from this disk.

COMMAND - Page 11

EDLIN — The Line Editor

TABLE OF CONTENTS

PArameterSe o o o o o o o o o s s o o o o o o o o o o olb
CommandSe « o o o o o o s o o o o o o o s o o s o o o ol5
Control FUNCLionSe o« « o« o o o o o o o o o o o o o ol5
Special Editing Commands « « o o o o o o o o o o o o153
EAit Linee « o o o ¢ o o o s s o o o o o o o o o o o17
Delete LinN€e « o o o o o o o o o o o o o o s o o o o17
List TeXte o o o o o o o o o o o o s o o o o o o o o17
Insert TeXte o o« o o o o o o o o o o o s o o s o o o1l7
Search TeXte « o o o s o o s o s o « o o o o o o o 18
Replace TeXt o o o o o o o o o o« o o o o o o o o o +18
End Editinge o o o o o o o o o o o s s s o o o » o+ +18
Error lMessages. .
Errors While Starting Up « « o =« o o s o o o o o o +19
Errors While Editing « « ¢ « ¢ o o o o o ¢« o o o « 19

. e o o 0‘. e o o e o e ° LI] « s o 019

The text editor is called with the command EDLIN <file>. If the file already

exists, EDLIN will load it into memory. Otherwise, a new file will be created
and the message '"New file'" will be displayed.

The text is divided into lines, each of which ends with an end-of-line mark
and has less than 255 characters. Each line has a number, which represents
the position of that line in the file. If lines are inserted or deleted at

any point, then the numbers of all lines after that point will increase or
decrease so that consecutive numbering is maintained. The line numbers are
not actually present in the text.

EDLIN - Page 13

Parameters

Each of the seven commands accepts some optional parameters. The standard

forms for these parameters is given below, although their meaning is
dependent upon the individual command.

<line>
This parameter references a numbered line of text. It appears on the command
line BEFORE the command itself, and may be separated from other parameters

and the command by commas or spaces. A <line> may be specified in any of the
following ways:

l. By a line number (an integer less than 65534). If the number is
greater than the largest existing line number, then the parameter will
reference the first point after all existing text.

2. By a period ("."), which means the "current line". The current
line is marked by an asterisk ("*") when lines are listed, and is generally
set to the last line edited, as noted in the command descriptions below.

3. By a "#", which means "after the last line". (This is the same as
specifying a line number greater than any existing one.)

If nothing is entered when a <line> parameter is called for, each command has
a standard default value as specified in the command descriptions below.

<>

This parameter may appear on the line before the Search or Replace commands
to cause Edlin to ask the user if the correct text string has been found.
This parameter is specified by the presence of the "?" character.

<string>

This parameter may be any text terminated by a Ctrl-Z or <return>. The
termination character is not considered part of the text. Ctrl-L may be used
within the text to refer to the end-of-line mark. <string> is used only in
the Search and Replace commands, appearing immediately after the letter
specifying the command or immediately after the previous <string>.

Page 14 - EDLIN

Commands

Each editing command is specified by a single letter, except for the Edit
Line command, which is specified by the absence of any other command letter.
The command letter may optionally be preceded by <line> and <?> parameters
(whose meaning is dependent upon the command). For the Search and Replace

commands, the command letter is immediately followed by one or two <string>s.
For the other commands, everything after the command letter is ignored.

Control Functions

While entering the command line, a number of control functions are
recognized:

Ctrl-S suspends everything until any key is typed.
Ctrl-P sends all console output to the printer also.
Ctrl-N stops sending output to the printer.

Ctrl-C causes an exit from the current function.

Rubout, delete, backspace, Ctrl-H (7F hex or 08 hex): Backspace. Removes
the last character from the input buffer and erases it from the console.

Linefeed, Ctrl-J (10 hex): Physical end-of-line. Outputs a carriage
return and linefeed but does not effect the input buffer.

Ctrl-X (18 hex): Cancel line. Outputs a back slash, carriage return, and
linefeed and resets the input buffer to empty. The template used by the
special editing commands is not affected.

Special Editing Commands

These special editing commands involve a "template", which is an input line
available to help construct the line currently being entered. There are two
ways to obtain a template.

All standard 86-DOS programs automatically provide the last command entered

as the template for the next command. This allows the command to be repeated
easily, or an error in it to be corrected before the command is retried.

In addition, one of the editing commands is to convert that part of the line
entered so far into the template, and restart the line entry. This allows an
error near the start of a line to be corrected without retyping the rest of
the line.

EDLIN - Page 15

COMMANDS - Special Editing Commands (Continued)

Each editing command is selected by typing ESCAPE and a letter. Since many

terminals provide keys which produce such an "escape code" with a single
keystroke, the letter used after the ESCAPE may be set for each command
during 86-DOS customization. The standard escape sequences correspond to the-

special function keys of a VI-52 or similar terminal, as noted in each case
by parentheses.

ESC S (Fl) - Copy one character from the template to the new line.

ESC T (F2) - Must be followed by any character. Copies all characters

from the template to the new line, up to but not including the next
occurrence in the template of the specified character. If the specified
character does not occur, nothing is copied to the new line.

ESC U (F3) - Copy all remaining characters in the template to the new
line.

ESC V (F4) - Skip over one character in the template.

ESC W (F5) - Must be followed by any character. Skips over all

characters in the template, up to but not including the next occurrence
in the template of the specified character. If the specified character

does not occur, no characters are skipped.

ESC P (BLUE) - Enter insert mode. As additional characters are typed,
the current position in the template will not advance.

ESC Q (RED) - Exit insert mode. The position in the template is advanced

for each character typed. When editing begins, this mode is selected by
default.

ESC R (GRAY) - Make the new line the template. Prints an "@", a carriage
return, and a line feed. Buffer is set to empty and insert mode is
turned off.

All commands may terminated by typing Ctrl-C at any time. If the Edit Line
command is aborted in this manner, no changes will be made to the line. If
the Insert Text command is aborted, the line currently being entered will not
be saved but any previously entered lines will.

Page 16 - EDLIN

COMMANDS (Continued)

Edit Line: <line>

If no line number is specified (i.e., the command line is blank), the line
after the current line is edited.

First the line to be edited will be displayed with its line number, then
below it its line number will appear as a prompt for corrections. If no
changes are desired, simply type <return>. Otherwise, a new line may be
entered with the old one as a "template'. All editing operations listed above
for commands apply.

Delete Lines: <line>,<line> D

Deletes the specified lines, and everything between. If the first <line> is
omitted, it is assumed to be the current line. If the second <line> is
omitted, it is assumed to be the same as the first (i.e., one line is
deleted). The line immediately after the deleted text will become the current
line (it will now have the same line number as the first line deleted).

List Text: <line>,<line> L

Lists the specified range of lines. If the first <line> is omitted, the
current line is assumed. If the second <line> is omitted, then 23 lines are
listed, from 11 above the first parameter to 11 below it. The current line is
not changed, but if the current line is listed, it is marked with an asterisk
("*") after the line number.

Insert Text: <line> I

New lines of text will be entered immediately before the specified line.
After entering this command, each new line will be prompted by a line number.
To exit this insert mode, type a Ctrl-Z as the first character of a line, or
simply type Ctrl-C. The line immediately following the new text will become
the current line. If <line> is not specified, the default is the current line
number. If <line> is greater than the total number of lines of text (as with
"#"), then the lines are appended to the end.

EDLIN - Page 17

COMMANDS (Continued)

Search Text: <line>,<line> <?> S<string>

If the first <line> is omitted, 1 is assumed. If the second <line> is
omitted, then "#" is assumed. If the <string> is omitted (or has zero
length), the command is terminated immediately.

The specified range of lines is searched for the specified string. If the
string is not found within the range, a message to that effect is displayed;
otherwise, the line with the match is displayed. If the <?> parameter does
not appear, the line of the match becomes the current line and the command
terminates. Otherwise, the user is asked if this is the correct occurence.
The one-letter response may be a "Y" or <return> for yes, or anything else
for no, in which case the search continues.

Replace Text: <line>,<line> <?> R<string><string>

If the first <line> is omitted, 1 is assumed. If the second <line> is
omitted, then "#" is assumed. If the first <string> is omitted (or has zero
length), the command is terminated immediately. If the second <string> is
omitted, then it is considered to be '"null", which will effectively delete
proper occurences of the first <string>.

If the <?> is not specified, then all occurences of the first <string> within
the range are replaced by the second, and for each replacement, the line is
displayed.

If the <?> is specified, then the specified range is searched for the first
<string>. If found, the line is displayed with the matching <string> replaced
by the second <string>. The user is then asked if this is correct. A "Y" or
<return> may be entered if so, or any other key if not, and the change is or
is not made permanent as appropriate. In either case, the search then
continues for the next occurence, and the process is repeated.

All text is saved on the disk and EDLIN terminates. The original file, before
editing, is retained on the disk but its extension is changed to "BAK".

Page 18 - EDLIN

Error Messages

Errors While Starting Up

"Cannot edit .BAK file--rename file" - Files with an extension of BAK cannot
be edited because that extension is reserved for backup copies. The file must
be renamed with any other extension.

"No room in directory for file" - This means the system returned an error
when an attempt to create the file was made. Besides a full directory, this

could also mean an illegal disk drive or file name was used, since these will
also return an error when a create file request is made.

"File too big to fit into memory" - Currently, the entire file to be edited
mst fit into available memory. EDLIN will not use memory outside the 64K
segment in which it resides, so the maximum file size is 64K minus size of
EDLIN, regardless of how much memory is actually present.

"No end-of-file mark found in file" - After loading the file, EDLIN scans
from the end for an end-of-file mark (lA hex), and truncates the file after
that point. If no end-of-file mark is found, there is nothing to edit.

Errors While Editing

"Entry error" - There is a syntax error in the last command entered.

"Memory full" - Causes Insert Text mode to abort because there is
insufficient space left in memory for the last line entered.

"Line too long'" -~ Causes the Replace command to abort because performing the
requested replacement would have made a line longer than 254 characters,
which is not allowed.

EDLIN - Page 19

ASM — The Resident Assembler

This resident assembler allows programs written in 8086 mnemonics to be
assembled for running on the 8086 processor. The input file of Intel-like
8086 mnemonics is read from disk; and optional object file is written to disk
in Intel hex format, and the print listing may be sent to the disk, to the
console, or it may be suppressed. Mnemonics differ from Intel’s only to
provide sufficient information to assemble a source line independent of
context. Pseudo-ops provided are ALIGN, DB, DM, DS, DW, EQU, IF/END IF, ORG
and PUT. The assembler automatically takes full advantage of the 8086°s
addressing modes, using special short forms wherever possible.

TABLE OF CONTENTS

Calling the Assember. « o« o « o o o o ¢« s o o o o o o o o 22
Source Program FOrmat o« o o o ¢ s s o o s s o o o o o o « 23
OperandSs « o o o o o o o o o o o o o s o o o o o o o o« & 24
RegisSter « o o o o o o o o o o o o ¢ o o o o o o o o o 24
Valu@e o ¢ o ¢ s o o o o o o o o s o o o s o o o o o o 24
Addresse « ¢ e o o o 4 o o o s o o o o s s o s e s o 25
Operand EXamples « « o « o o o o o o o o o o o o o o o 26
Pseudo—0pSe « o o o o o o o o o o s s s 0 o o o o o s s o 27
ALIGN. L] L] L] L] [] L] L[] L] L] L] L] L] . L L] L] L] L] L] L L] L] L L] 27
DB L] L] L] L] L] L] L] L] L] L] L] L) L] L] L] . L] L] L] L] L] L] . L] L] L 27
DM o o o o o o o o o o o o o o s o s s o s o o s o o o 27

DS @ 6 6 6 o 0 ¢ o o o e+ & s ° ¢ O o e o o o e o o o o 27

Dw...l......’.......I.....Q.zs
EQUe o o o o o o o o o o o o 5 o o o o o s o o o o o o 28
IF/END IFe o 28
ORGe 4 4 o o o ¢ o o o o ¢ o o o o o o o o o o o o s & 29
PUTe o o o o o o o o o o o o o o o s o s o o o o o o o 29
Opcode ClassificationsS: « o o o « o o o o o o o o o o o o« 30
Two Operand ALUe o « o o o o o s o o s o o o o o o s & 30
One Operand ALUs o« o« ¢« « o o o o o o o o o o o o« o o o« 31
INpUt/OUtPUL « o o o « o o o o o o o ¢ o o o o o o o o 32
Shift/ROLALE ¢ « « o o o o o o s o s o o o o o o o o & 33
Short JumpSe o« « o o o o o o o o o o o a o o s o o o o 34
Long Jumps/Calls o« o o o o o o s o o o o o o o o o « & 35

REEUIT o o o o o o 6 o o o o o o o o s o o o o o o o o 36
String OperationSe o « o o o o o o o o o o o o o o o o 37
INterrupte « « o o « o o o o 5 o o o o o o o o s ¢ o o 38
Address Manipulation « o« « o s+ o s s.¢ o o o o o o ¢ o 39
Segment Override PrefiXe o« o o o o o o ¢ o o o o o o o 40
String Repeat PrefiXes o+ « o o o o o o o o o o o o o o 41
All Other OpcodeSe « « o o s o o o o o o o o o o o o o &2
Error LisSte o o o o o ¢ o o o o o o o s s o o o o o o o & 43

Index tO OPCOdeS. * o o o o & o e o o o o o ¢ o e o o o o 44

ASM - Page 21

Calling the Assembler

The assembler is invoked with the command ASM FILENAME , which will
assemble the 8086 source file named FILENAME.ASM. The extension "ASM" is
always assumed and may not be overridden. This is the simplest form of the

command. It assumes FILENAME.ASM resides on the current drive, and will write
the Intel hex object file, named FILENAME.HEX, and the assembler listing,
FILENAME.PRN, to the current drive.

The first variation of this form is to precede the file name with a drive
specifier and a colon, such as ASM B:FILENAME , which will cause the

specified drive to be searched for the source file, but the object and
listing files will still be written to the current drive.

The most general form is ASM FILENAME.<DRIVE ASSIGNMENT>. The <DRIVE
ASSIGNMENT> is a 3=letter extension not related to the actual extension to
the source file, which is always ASM. Instead, it is used as follows:

l. The first letter is the name of the drive on which the source file will be
found. This overrides a disk specifier which precedes the file name ("B:").

2:“Th9 second letter is the name of the drive to which the hex object file
will be written, or "Z" if no object file is desired.

3., The third letter is the name of the drive to which the listing file will
be written, or "X" to send the listing to the console, or "Z" if no listing

file is desired. Assembling with no listing is much faster since the source
file will not be read from disk a second time.

If a listing is selected, then an alphabetical symbol table dump may be
appended to it by typing "S" after the file name and extension.

Examples:

ASM FILENAME.ABA
Source - Drive A
Object - Drive B
Listing - Drive A

ASM FILENAME.AAZ
Source - Drive A
Object = Drive A

No Listing
(

ASM FILENAME.BZX S

Source - Drive B
Object —~ None

Listing (with symbol table dump) - Console
Several errors will cause the assembler to print an error message and abort:

FILE NOT FOUND - The source file was not found on the specified disk.
Probably a misspelling or wrong disk.

Page 22 - ASM

CALLING THE ASSEMBLER (Continued)

BAD DISK SPECIFIER - The file name’s extension contained an illegal
character. Only "A"-"W" and possibly "X" or "Z" are legal.

NO DIRECTORY SPACE - The object or listing file could not be created.

DISK WRITE ERROR ~ Probably insufficient space on disk for object or listing
files.

INSUFFICIENT MEMORY - Memory requirements increase with source program size
due to storage required by the symbol table and by the intermediate code.
Requirements can be reduced by using shorter labels, by defining labels
before they are used, and by reducing the total number of program lines.

Source Code Format

Input to the assembler is a sequence of lines, where each line is terminated
with ASCII carriage return and linefeed characters. The assembler accepts

lines of any length, but does no list formatting so line length may be
limited by your list device. Upper and lower case characters are completely
equivalent and may be mixed freely.

Each line may include up to four fields, which may be separated from each
other by any number of spaces or tabs (control-I). Fields must appear in
order, as follows:

1. Label field (optional) - If present, it must either begin with the
first character on the line or be followed immediately by a colon. A
label begins with a letter and may be followed by any number of letters
or digits, up to a total length of 80 characters, all of which are

significant.

2. Opcode field (optional) - If present, it must begin AFTER the first
character on the line (otherwise it would be mistaken for a label).

3. Operand field - This field is present only as required by the opcode
field.

4. Comment field (optional) - If present, it must begin with a semicolon
(). :
Since all fields are optional, lines may be blank may have labels only, may

have comments only, etc.

Bus lock (LOCK), string repeat (REP), and segment override (SEG) prefixes are

treated as separate opcodes and must appear on the line preceding the opcode
they are to prefix.

ASM - Page 23

Operands

Each operand is one of the following types: l. A Register

2. A Value
3. An Address

l. REG - A register:

AX, BX, CX, DX, AL, AH, BL, BH, CL, CH, DL, DH, DI, SI, DI, SP, BP, CS, DS,
ES, SS. Most instructions have limitations on which registers may be used.

An expression involving additon or subtraction of constants or labels. Terms
of the expression may be:

a) A dec1mal constant ("486")

b) A hex constant, which must begin with a digit from O to 9, and end
with an "H" ("OF9H"). '

c¢) A string constant. In general, this is any number of characters
enclosed by either single (’) or double (") quotes. Since the opening

and closing quotes must be the same, the other type may appear in the
string freely. If the same quote as opened the string needs to appear

within it, it must be given as two adjacent quotes. Examples:

"TEST" ‘is the same as ‘TEST’

mnen rr e

is the same as
Control characters except control-Z (lAH) may appear in the string, but
this may have a strange effect on the listing.

Note that multi-character strings are meaningful only for the DB, DM,
and DV pseudo-ops. All other expressions are limited to one character
strings.

d) A label. No more than one undefined label may appear in an
expression, and undefined labels may only be added, not subtracted. An
undefined label is one which has not yet appeared in the label field as
the source code is scanned from the beginning to the current line.

e) "$"., This special symbol means the value of the location counter at
the start of this instruction. - -

f£) "RET". This special symbol means "the address of a nearby RETurn

instruction'". The purpose of this is to allow conditional returns
without requiring a label to be put on the RETurn instruction. For
example,

CMP AL, 20H
Jc RET

Page 24 - ASM

OPERAMDS - Value (Continued)
The jump instruction effectively means "return if carry", yet no label
named RET need appear--in fact, a label would be ignored. If no RETurn
instruction appears within the range of the jump, then a "value error",

number 65 hex, will occur., Only RETurn instructions with no operands
will be the target of the jump (intra-segment return without adding to

stack pointer).

Generally, a VALUE consists of:
a) An optional leading + or -.
b) A term.

c) Zero or more additional terms, each preceded by a + or -.
An exception to this is that no terms may precede a multi-character
string in an expression. Terms may follow the string, in which case whey
will be added to or subtracted from the value of the last character. ’
Examples:

Legal: "Time" + 80H

Illegal: ~"Time" or 80H + "Time"

A valid 8086 address expression enclosed within brackets. The address
expression may be:

a) A VALUE, as defined above.
b) A base register (BP or BX).
¢) An index register (SI or DI).

d) The sum of any of the above, as limited by valid 8086 addressing
modes.

ASM - Page 25

Examples of Operands

Legal:
. -3+ 17
SCOPE+4
{ bx + COUNT-2]
[SI+ARRAY+BX-0FFSET] sOFFSET must have already been defined
[pI]
[NEXT]
Illegal:
124BX : sRegister not allowed in VALUE
9c01 sNeeds trailing "H"
[Count - BX] ;Can’t subtract register
[BX+BP] sOnly one base register‘at a time
[ARRAY4+BX+OFFSET] sBoth labels are forward referenced (Note 1)
COUNT-DIF sDIF is forward referenced (Note 2)

Note 1. This problem could be corrected like this:

MOV AX, [BX + ARRAYPLUSOFFSET]

ARRAY:

OFFSET:

ARRAYPLUSOFFSET: EQU ARRAY + OFFSET
Note 2. This problem could be corrected like this:

MOV AX, COUNT + MINUSDIF

DIF:

MINUSDIF:EQU -DIF

Page 26 - ASM

Pseudo-Ops

ALIGN assures that the next location counter address is even, i.e., aligned
on a word boundary. If the location counter is currently odd, both it and the
PUT address are incremented; otherwise they are unchanged. See PUT and ORG
for an explanation of these terms.

DB VALUE
DB VALUE, VALUE, VALUE, . . ., VALUE

DB (Define Byte) is used to tell the assembler to reserve one or more bytes
as data in the object code. Each value listed is placed in sequence in object
code, where a multi-character string is equivalent to a sequence of
one-character strings. Values must be in the range =256 to +255. Example:

DB "Message in quotes",ODH, OAH, -1
DM VALUE
DM VALUE, VALUE, VALUE, . . ., VALUE

DM (Define Message) is nearly identical to DB, except that the most
significant bit (bit 7) of the last byte is set to ome. This can be a
convenient way to terminate an ASCII message since this bit would not
otherwise be significant. Example:

M ‘Message in quotes’,ODH,OAH
is equivalent to

DB ‘Message in quotes’,0DH, 0AH+80H
DS VALUE

DS (Define Storage) is used to tell the assembler to reserve VALUE bytes of
the object code as storage. Any labels appearing in the expression for VALUE
must have already been defined. »

ASM - Page 27

PSEUDO-OPS (Continued)

DW VALUE
DW VALUE, VALUE, VALUE, . . ., VALUE

DW (Define Word) is used to tell the assembler to reserve one or more 16-bit
words as data in the object code. It is very similar to DB, except that each
value occupies two bytes instead of one. Since a multi-character string is
equivalent to a sequence of one-character strings,

DW “TEST’
is equivalent to
DB ‘r,0,’£’,0,°s“,0,°T*,0

because the high byte of the 16-bit constant represented by ‘T’ is always
zero.

LABEL: EQU VALUE

EQU (Equate) assigns the VALUE to the label., The label MUST be on the same
line as the EQU. Three common uses of this operation are:

l. To assign a name to a constant, for convenience and documentation. For
example:

CR: EQU 13

LF: EQU 10

The program could now refer to ASCII carriage return and linefeed with
symbols CR and LF, respectively. -

2. To "parameterize" a program. 1/0 ports and status bits, for example, could
be set by equates at the beginning of the program. Then to reassemble the

program for a different I/0 system would require editing only these few lines
at the beginning.

3. To bypass expressions that would have two or more undefined labels or that
would subtract an undefined label. See examples under OPERANDS.

IF VALUE

IF allows portions of the source code to be assembled only under certain
conditions. Specifically, that portion of the source code between the IF and
ENDIF will be assembled only if the operand is NOT zero. This is particularly
useful when producing different versions of the same program. IFs may not
occur within an IF/ENDIF pair.

Page 28 - ASM

PSUEDO-OPS (Continued)

ORG VALUE

ORG sets the assembler’s location counter, which is subsequently incremented
for each byte of code produced or space allocated. The value of the location
counter should always be equal to the displacement from the beginning of the
segment to the next byte of code or data, since it is used to establish the
value of labels. ORG may be used any number of times in a program. Any labels
appearing in the expression for VALUE must have already been defined.

The assembler writes object code to the disk in Intel hex format. This format

includes information which specifies the addresses at which the object file
will be later loaded into memory by a hex loader.

PUT is used to specify this load address. Intially, the load address is 100H,
that is, "PUT 100H" is assumed before assembly begins. Each time a PUT
occurs, all subsequent code would be loaded starting at the specified address
until the next PUT is encountered. This allows modules to be placed in
specific areas of memory. Note that the load address is not related to the
location counter (see ORG), although PUTs and ORGs will often occur together.
Any labels appearing in the expression for VALUE must have already been
defined.

ASM - Page 29

Opcode Classifications

TWO OPERAND ALU

ADC, ADD, AND, CMP, DIV

TEST, XCHG, XOR

Operand Forms:
REG,REG
[ADDR],REG
REG, [ADDR]
REG, VALUE
B,[ADDR],VALUE
W, [ADDR], VALUE
[ADDR] , VALUE

Specific Notes:

Register to register
Register to memory
Memory to register
Immediate to register
Byte immediate to memory
Word immediate to memory

Immediate to memory defaults to word

SBC is the same as SBB.

The order of operands for TEST and XCHG is irrelevant.

XCHG may not use immediate operands.

» IDIV, IMUL, MOV, MUL, OR, SBB, SBC, SUB,

For DIV, IDIV, MUL, and IMUL, the first operand must be AL or AX and
the second operand may not be immediate.

Page 30 ~ ASM

OPCODE CLASSIFICATIONS (Continued)

ONE OPERAND ALU

DEC, ESC, INC, NEG, NOT, POP, PUSH

Operand Forms:

REG Register

B, [ADDR] Memory byte

W, [ADDR] Memory word
[ADDR] Default to word

Specific Notes:

POP, PUSH, and ESC only operate on words.

ASM - Page 31

OPCODE CLASSIFICATIONS (Continued)

INPUT/OUTPUT

IN, INB, INW, OUT, OUTB, OUTW
Operand Forms:

VALUE Input/output to fixed port

DX Input/output to port number in DX
Specific Notes:

IN, INB, OUT, OUTB transfer bytes.

INW, OUTW transfer words.

Page 32 - ASM

OPCODE CLASSIFICATIONS (Continued)

SHIFT/ROTATE

RCL, RCR, ROL, ROR, SAL, SAR, SHL, SHR

Operand Forms:

REG Shift/rotate register one bit
REG,CL Shift/rotate register CL bits
B, [ADDR] Shift/rotate memory byte

B, [ADDR],CL
W, [ADDR] Shift/rotate memory word
W, [ADDR],CL
[ADDR] Default to word
[ADDR],CL

Specific Notes:

SHL and SAL are the same.

ASM - Page 33

OPCODE CLASSIFICATIONS (Continued)

JA, JAE, JB, JBE, JC, JCXZ, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB,
JNBE, JNC, JNE, JNG, JNGE, JNL, JNLE, JNO, JNS, JNZ, JO, JP, JPE, JPO, JS,
JZ, LOOP, LOOPE, LOOPNE, LOOPNZ, LOOPZ
Operand Form:

VALUE Direct jump
Specific Notes:

VALUE must be within -126 to +129 of instruction pointer, inclusive.

JP is NOT Jump on Parity. JP is the unconditional short direct jump.

JC, JNC are Jump on Carry and Jump on Not Carry, respectively.

Page 34 - ASM

OPCODE CLASSIFICATIONS (Continued)

LONG JUMPS/CALLS

CALL, JMP
Operand Forms:

VALUE

VALUE, VALUE

REG

[ADDR]

L, [ADDR]

Specific Notes:

Intra~segment direct
Inter-segment direct
Intra-segment indirect through register

Int:a-segmentvindirect through memory

Inter-segment indirect through memory ('Long'")

JMP does NOT include the short direct jump. Ité mnemonic is JP and is
included under "Short Jumps". '

ASM -~ Page 35

OPCODE CLASSIFICATIONS (Continued)

RETURN

RET

Operand Forms:

(none) Intra-segment

L Inter-segment ('Long")

VALUE Intra-segment and add VALUE to SP
L, VALUE Inter-segment 'an& add VALUE to SP

Page 36 - AS!M

OPCODE CLASSIFICATIONS (Continued)

STRING OPERATIONS

CcMpPB, CMPW, LODB, LODW, MOVB, MOVW, SCAB, SCAW, STOB, STOW
No operand. These mnemonics replace Intel’s CMPS, LODS, SCAS, STOS.

The ending "B" or "W" distinguishes between byte and word operations,
respectively.

ASM - Page 37

OPCODE CLASSIFICATIONS (Continued)

— o o 2 -

INT
Operand Form:

VALUE

Page 38 - ASM

OPCODE CLASSIFICATIONS (Continued)

ADDRESS MANIPULATION

LDS, LEA, LES
Operand Form:

REG, [ADDR]

Put effective address in register

ASM - Page 39

OPCODE CLASSIFICATIONS (Continued)

SEGMENT OVERRIDE PREFIX

SEG
Operand Form:

REG © Must be a segment register (CS, DS, ES, SS)
Specific Notes: |

This opcode should appear on the line immediately preceding the line
to be prefixed.

Page 40 -~ ASM

OPCODE CLASSIFICATIONS (Continued)

STRING REPEAT PREFIXES

REP, REPE, REPNE, REPNZ, REPZ
No operand. Conditional repeats should be read as "Repeat while . .
s> €.8., REPE is Repeat While Equal. For those string operations which
affect the flags, REP, REPE, REPZ, all repeat while the zero flag is set;

REPNZ, REPNE repeat while the zero flag is clear. This opéode should appear
on the line immediately preceding the string operation to be prefixed.

ASM - Page 41

OPCODE CLASSIFICATIONS (Continued)

ALL OTHER OPCODES

AAA, AAD, AAM, AAS, CBW, CLC, CLD, CLI, CMC, CWD, DAA, DAS, DI, DOWN,
EI, HALT, HLT, INTO, IRET, LAHF, LOCK, NOP, POPF, PUSHF, SAHF, STC, STD, STI,
UP, WAIT, XLAT

No operand.
Specific Notes:
DI is the same as CLI.
EI is the same as STI.
UP is the same as CLD.
DOWN is the same as STD.
HALT is the same as HLT.
NOP is the same as XCHG AX,AX.

LOCK is treated as a separate opcode and should appear on the line
immediately preceding the opcode it is to prefix.

Page 42 - ASM

Error List

When a non-fatal error occurs in the source code, the next line of the

listing will have an error message which will include a error number in hex.
The following table lists the cause associated with the given error number.

01 Register field not allowed

02 Only BP, BX, SI, DI allowed

03 Only one base register (BP, BX) allowed
04 Only one index register (SI, DI) allowed
05 Subtraction of register or undefined label not allowed
06 Only one undefined label per expression allowed -
07 1Illegal digit in hex number

08 1Illegal digit in decimal number

0OA 1Illegal character in label or opcode

0B Double defined label

0C Opcode not recognized

14 1Invalid operand

15 "," expected

16 Register mismatch

17 Immediate not allowed here

18 "]" expected

19 Memory-to-memory not allowed

1A Immediate may not be destination

1B Register-~to-register not allowed here

1C Must specify segment register

1D Load only

1E Constant must be defined

IF Value error

20 Flag must be set only once

21 Label never defined

22 "EQU" rust have label on same line

23 Zero length string illegal

24 ENDIF without IF

25 One-character strings only

26 Expression may not precede multi-character string
64 Undefined label

65 Value error

ASM - Page 43

Index to Opcodes

This list includes all opcodes recognized by the assembler plus those used by
Intel but not used by Seattle Computer Products (SCP). Each has the page
number on which it will be found in this manual, where a "+" denotes an Intel
opcode NOT recognized by the cross assembler. Also listed is the page number
on which a description of the operation will be found in the Intel 8086
Family User’s Manual, where the "*'" means Intel uses a different mnemonic for
that operation. Opcodes with no entry under GROUP will be found under "All
Other Opcodes'.

OPCODE GROUP MANUAL INTEL REMARKS
PAGE PAGE
AAA 42 2-35
AAD 42 2-37
AAM 42 2-37
AAS 42 2-36
ADC Two Operand ALU 30 2-35
ADD Two Operand ALU 30 2=-35
AND Two Operand ALU 30 2-38
CALL Long Jumps/Calls 35 2-43
CBW 42 2-38
CLC 42 2-47
CLD , 42 2-47
CLI 42 2-48
CMC 42 2-47
CMP Two Operand ALU 30 2-36
CMPB String Operations 37 2-42% Intel uses CMPS
CMPS String Operations 37+ 2-42 Use CMPB, CMPW
CMPW String Operations 37 2-42% TIntel uses CMPS
CWD 42 2-38
DAA 42 2-36
DAS 42 2-36
DEC One Operand ALU 31 2-36
DI ’ 42 2-48* Intel uses CLI
DIV Two Operand ALU 30 2-37
DOWN 42 2-47% Intel uses STD
EI 42 2-48* Intel uses STI
ESC One Operand ALU 31 2-48
HALT 42 2-48% Intel uses HLT
HLT 42 2-48 :
IDIV Two Operand ALU 30 2=37
IMUL Two Operand ALU 30 2-37
IN Input/Output 32 2-32 SCP/Intel different
INB Input/Output 32 2-32 . Intel uses IN
INC One Operand ALU 31 2-35
INT Interrupt 38 2=-46
INTO 42 2=47
INW Input/Output 32 2-32*% Intel uses IN
IRET ‘ 42 2-47
JA Short Jumps 34 2-45
JAE Short Jumps 34 2-45
JB Short Jumps 34 - 2=45

Page 44 - ASM

INDEX TO OPCODES (Continued)

JBE
JC
JCXZ
JE
JG
JGE
JL
JLE
JMP
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNS
JINZ
Jo
JP
JPE
JPO
Js
Jz
LAHF
LDS
LEA
LES
LOCK
LODB
L0ODS
LODW
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ
MOV
MOVB
MOVS
MOVW
MUL
NEG
NOP
NOT
OR
ouT
OUTB
OUTHW
POP

Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Long Jumps/Calls
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps.
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps
Short Jumps

Address Manipulation
Address Manipulation
Address Manipulation

String Operations
String Operations
String Operations
Short Jumps

Short Jumps

Short Jumps

Short Jumps

Short Jumps

Two Operand ALU
String Operations
String Operations
String Operations
Two Operand ALU
One Operand ALU

One Operand ALU
Two Operand ALU
Input/Output
Input/Output
Input/Output
One Operand ALU

34
34
34
34
34
34
34

35
34
34
34
34
34
34
34
34
34
34

34
34
34
34
34
34
34
34
42
39
39
39
42
37
37+
37
34
34
34
34
34
30
37
37+
37
30
31
42
31
30
32
32
32
31

2-45
2-45
2-46
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-45
2-32
2-32
2-32
2-32
2-48
2-43%
2-43
2-43%
2-45
2-45
2-46
2-46
2-45
2-31
2-42%
2-42
2-42%
2-36
2-36
2-48
2-38
2-38
2-32

. 2=32%

2-32%
2-31

Intel uses JB.

SCP/Intel different

Intel uses JNB

SCP/Intel different

Intel uses LODS
Use LODB, LODW
Intel uses LODS

Intel uses MOVS

Use MOVB, MOWW

Intel uses MOVS

SCP/Intel different

Intel uses OUT
Intel uses OUT

ASM ~ Page 45

INDEX TO OPCODES (Continued)

POPF
PUSH
PUSHF
RCL
RCR
REP
REPE
REPNE
REPNZ
REPZ
RET
ROL
ROR
SAHF
SAL
SAR
SBB
SBC
SCAB
SCAS
SCAW
SEG
SHL
SHR
STC
STD
STI
STOB
STOS
STOW
SUB
TEST
Uup
WAIT
XCHG
XLAT
XOR

One Operand ALU

Shift/Rotate
Shift/Rotate

String Repeat Prefixes
String Repeat Prefixes
String Repeat Prefixes
String Repeat Prefixes
String Repeat Prefixes
Return

Shift/Rotate
Shift/Rotate

Shif t/Rotate
Shift/Rotate

Two Operand ALU

Two Operand ALU

String Operations
String Operations
String Operations
Segment Override Prefix
Shift/Rotate
Shift/Rotate

String Operations
String Operations
String Operations
Two Operand ALU
Two Operand ALU

Two Operand ALU"

Two Operand ALU

Page 46 - ASM

42
31
42
33
33
41
41
41
41
41
36
33
33
42
33
33
30
30
37
37+
37
40
33
33
42
42
42
37
37+
37
30
30
42
42
30
42
30

2-33
2-31
2-33
2-40
2-40
2-42
2=42
2=42
2-42
2-42
2=45
2-39
2-40
2-33
2-39
2-39
2-36
2-36%
2-43%
2=-43
2-43%
2-32
2-39
2-39
2-47

2-47

2-48
2-43%
2-43
2-43%
2-36
2-39
2-47%
2-48
2-32
2-32

2-38

Intel uses SBB
Intel uses SCAS
Use SCAB, SCAW
Intel uses SCAS
Intel uses no opcode

Intel uses STOS
Use STOB, STOW
Intel uses STOS

Intel uses CLD

TRANS — The Z80 to 8086 Translator

TABLE OF CONTENTS

TranslationNOteS...-....o..........48
AssemblyNOtESooo'occtooto'oooo'oo49

The Seattle Computer Products Z80 to 8086 Tramslator accepts as input.a 280
source file written using Zilog/Mostek mnemonics and converts it to an 8086
source file in a format acceptable to our 8086 Assembler.

To translate a file, simply type TRANS <filename>.<ext> . Regardless of the
original extension, the ouput file will be named <filename>.ASM and will
appear on the same drive as the input file.

The entire Z80 assembly language is not translated. The following opcodes -
will result in an "opcode error':

CPD
CPI
™
IND
INDR
INI
INIR
LDD
LDI
OTDR
OTIR
oUTD
OUTI
RLD
RRD

Only the following pseudo-ops are allowed:

DB
DM

DS

DW

EQU
IF/ENDIF
ORG

Any others will generate an "opcode error".

TRANS - Page 47

Translation Notes

IX, IY, and the auxillary register set are mapped into memory locations but
these locations are not defined by the translator. If a file using these
registers is translated and assembled, "undefined label" errors will result.
The file must be edited and the memory locations defined as follows:

IX: DS 2
IY: DS 2
BC: DS 2 sAuxillary register set definition
DE: DS 2
HL: DS 2

Since IX and IY are mapped into memory locations [IX] and [IY], a memory load
or store of IX or IY will translate into a memory-to-memory move. LD IX, (LOC)
would become MOV [IX], [LOC]. This is easily corrected by editing and using a
register: MOV DI, [LOC]; MOV [IX],DI.

All references to the I (interrupt) and R (refresh) registers will generate

an error when the translated file is assembled. The "I" and "R" designations
are passed straight through, so that LD I,A becomes MOV I,AL, which would
appear to be an attempt to move AL into an undefined immediate.

Blank spaces must not occur within operands. Blanks are equivalent to commas
in separating operands.

The input file is assumed to assemble without errors with a Z80 assembler.
Errors in input may cause incorrect translation without an error or warning

message.

The BIT, SET, and RES instructions require the bit number to be a single
digit, 0-7. Use of a label for a bit number, for example, will result in
"cannot determine bit number" error.

DJNZ is translated into a decrement followed by jump-if-not-zeroc. DJNZ,
however, does not affect the flags while the decrement does. This is flagged
as a warning in the output file and may require special action in some

instances.

The parity flag of the 8086 will always be set according to 8080 rules and

therefore may not be correct for the Z80. Any jump on parity is flagged with
this warning.

Page 48 ~ TRANS

Assembly Notes ‘

It is likely that a translated program will be flagged with some errors when
assembled by our 8086 Cross Assembler. These errors are usually caused by

out-of-range conditional jumps. Since all 8086 conditional jumps must be to
within 128 bytes, this type of error is corrected by changing the conditional

jump to a reverse-sense conditional jump around a long jump to the target.

For example:

JZ FARAWAY
becomes

JNZ SKIP1

JMP FARAWAY

SKIP1:

Other assembly errors may occur because the cross assembler does not have all
the features found in some Z80 assemblers, particularly in expression
handling, where the only operations are + and -. These errors can only be
corrected by finding a way not use the missing feature. '

TRANS - Page 49

DEBUG — The Resident Debugger

TABLE OF CONTENTS

Introduction. e o o 6 o o o & 8 ° o o 6 o 6 o & s s e o 051
ParameterSe o o o o o o s o o o o o o s o o o o o o o o o552
CommandSo 8 & o.0 o o 6 & o 6 6 o o o 5 6 6 & ° & 8 e o n53
Dump . «53
ENCETe o o o o o o o o o o o o o o o o s o o o o o o 53
Fill L] L] L] . L] L] [] (] [] L] L] L] * [] [] (] L] L] L] [] L] L] . [] .54

GO e o o o o o o e o o e o o o o ® o o e o o o o e o ‘54

HeXe o o o o o o o o o o o o o o o s o o s o o o o o o54
Input. ® & o o o s & s o e s o o s e s o e s s s o » « 54
Load o o o o o o o o s o o ¢ o o 0 0 e o o o o o o 35
MOVE o o o o o s o o o o o o o o s o o o o« o o o o o o555
Name o o o o o o o o o o o o o o ¢ o o o o s s o o o o456
Output e o o ¢ o o o o s & s 8 o s s e e e e e s s e 56
Quit ® © o o ° & e o o e o & 8 6 e e o e s & e e o @ 056
RegiSEerSe « o o o o o o o o o o o o s o s o o o o o o537
Search o o o o o o o o o s o o o o o o o o s o o o o 58
Tracee o58
Writee o o o o o o o o o o o o o o o o o s o o o o o o58
Error Summary ¢ o o 8 o o e s s o s s s e 8 s e s s s e 59

Introduction

Debug is executed with a command of the form DEBUG <FILENAME>. Debug will
load the specified file at 0100 hex in the lowest available segment, and CX
will be set to the number of records loaded (see Register command).
Currently, Debug will not perform conversion of HEX files; these must have
been already converted by HEX2BIN.

Debug commands are available to display, alter and search memory; to do
inputs and outputs; to read and write disk files or physical sectors; and to
aid in debugging 8086 programs. The debugging commands allow the user to
execute a program in a controlled manner, observing its behavior. This

controlled execution may be done either by single-stepping or through
execution with breakpoints.

Single-stepping is done with Debug’s Trace command. By using 8086 hardware
trace mode, a single instruction can be executed, and the resulting effects
on the registers or memory displayed. Even ROM may be traced, and every
instruction is traced correctly (unlike 8080 or Z80 debuggers).

DEBUG - Page 51

INTRODUCTION (Continued)

Execution with breakpoints (Go command) allows the user to quickly execute
previously tested program portions but stops program execution if a

breakpoint is reached. Breakpoints require more care than single-stepping
since they can only be used in RAM at the address of the first byte of an

8086 opcode.

Both methods of "controlled execution" allow the user to modify or examine
CPU registers. A '"register save area'" is maintained in memory: just before
execution, all registers are set with values from this area; and when control
is returned to the monitor, all registers are saved back in this area. The
Register command allows this area to be displayed or modified.

Execution of any command may be aborted by typing Control-C. Typing Control-S

during output will cause the display to pause so it may be read before
scrolling away; any key (except Control-C) may be typed to continue.

Parameters

All commands of Debug accept one or more parameters on the line following the
command letter. These parameters MAY be separated from each other and the
command letter by spaces or commas, but one these delimiters is REQUIRED only
to separate consecutive hex values. Most parameters are one of the following
types:

<DRIVE>, <BYTE>, <RECORD>, <HEX4>, <ADDRESS> - A hexadecimal number with no
more than 1, 2, 3, 4, or 5 digits, respectively. If too many digits are
entered or a non-hex character is typed, the error arrow will point to the
mistake. Hex A-F must be in upper case.

<RANGE> - A <RANGE> is either <ADDRESS> <ADDRESS> or <ADDRESS> L <HEX4>.
The first form specifies the first and last addresses affected by the
command. The second form specifies a starting address and a length. For
either form, the maximum length (first address - last address + 1) cannot
exceed 10000H, and this limit may be as low as OFFF1H due to limitations of
working within a segment. (Specifically, [starting address modulo 16] +
length must be <= 10000H.) An "RG Error" results if the length is too large.
To specifiy a length of 10000H with only four digits, use a length of zero.
Note that the "L" in this form must be upper case.

<LIST> - This is always the last parameter on a line and may extend to the
end of the input buffer. It is actually a series of one or more parameters,
each of which is either a <BYTE> or a <STRING>.

A <STRING> is any number of characters enclosed by either single (“) or
double (") quotes. Since the opening and closing quotes must be the same, the
other type may appear in the string freely. If the same quote as opened the
string needs to appear within it, it must be given as two adjacent quotes.
The ASCII values of the characters in the string are used as a list of bytes.

Page 52 -~ DEBUG

Commands

A command is executed by typing the first letter of its name (upper case
only) followed by any parameters. If a syntax error occurs in a command line,
then an arrow followed by the word "Error" will appear under the first bad
character. Note that all editing functions listed for the Command Interpreter

apply to Debug as well. Commands are listed below in alphabetical order, with
the forms of all parameters shown.

D <ADDRESS> -
D <RANGE>

Dump - Displays memory contents in hex and ASCII. If only a starting address
is specified, 80H bytes are dumped; otherwise the specified range is
displayed. To help pinpoint addresses, each line (except possibly the first)
begins on a l6-byte boundary, and each 8-byte boundary is marked with a "-'".
Non-printing characters are shown as a "." in the ASCII dump.

E <ADDRESS> <LIST>
E <ADDRESS>

Enter - In the first form, the list of bytes 1is entered at the specified
address, with the command being executed and completed upon hitting <carriage
return>. If an error occurs, NO locations are changed.

The second form puts Debug into "Enter Mode'", starting at the specified
address. After hitting <carriage return>, the address and its current
contents will be displayed. The user now has several options:

1) Replace the displayed value with a new value. Simply type in the new value

in hex, using <backspace> or <delete> to correct mistakes. If an illegal hex
digit is typed or more than two digits are typed, the bell will sound and the
character will not be echoed. After entering the new value, type either
<space>, "-", or <carriage return>, as defined below.

2) Type <space> to display and possibly replace the next memory location.
Every 8-byte boundary will start a new line with the current address.

3) Type "-" to backup to the preceding memory location. This will always
start a new line with the address.

4) Type <carriage return> to terminate the command.

DEBUG -~ Page 53

COMIMANDS (Continued)

F <RANGE> <LIST>

Fill - The specified range is filled with the wvalues in the list. If the list
is larger than the range, not all values will be used; if the range is
larger, the list will be repeated as many times as necessary to fill it. All
memory in <RANGE> must be valid for this command to work properly. If bad or
non-existent memory is encountered, the error will be propagated into all
succeeding locations.

G
G <ADDRESS> . . . <ADDRESS>

Go - Sets all registers from the register save area. Since this includes the
Code Segment and Instruction Pointer, this implies a jump to the program
under test,

This command allows setting up ten breakpoints. Attempting to set more than
ten will cause a "BP Error". Breakpoints may be set only at an address
containing the first byte of an 8086 opcode. A breakpoint is set by placing
an interrupt opcode (OCCH) at the specified address. When that opcode is
executed, all registers are saved and displayed, and all breakpoints
locations are restored to their original value. If control is not returned to
Debug by a breakpoint, the breakpoints will not be cleared.

The user stack pointer must be valid and have 6 bytes available for this
command to work. The jump to the user program is made with an IRET
instruction with the user stack pointer set and user Flags, Code Segment
register, and Instruction Pointer on the user stack. Thus if the user stack
is not valid, the system will "crash". '

H <ADDRESS> <ADDRESS>

Hex - Performs hexadecimal arithmetic on the two parameters. Two results are

returned: the sum of the parameters, and their difference (the first minus
the second).

Input - Inputs a byte from the specified port and displays it. A 16-bit port
address is allowed.

Page 54 - DEBUG

COMMANDS (Continued)

L
L <ADDRESS> <DRIVE> <RECORD> <RECORD>

Load - The first form loads a file into memory. The name of the file must
appear in the normal format of a file control block at CS:005C. This
requirement is met by a file name typed as the first parameter of the command
that started Debug, or the Name command will format a file name properly. The
file will be loaded at CS:0100, and the CX will be set to-the number of
records read.

The second form performs a read of any physical disk sector into any memory
area. The first <RECORD> parameter is the logical record number of the first
sector to be read. Logical record numbers start at zero and increase
sequentially for each sector on the disk, regardless of track boundaries. For
example, with standard IBM format single-density disks, logical record zero
corresponds to track 0, sector 1, while logical record 37 hex corresponds to
track 2, sector 4. The last parameter is the number of records to read.

M <RANGE> <ADDRESS>

Move = Moves the block of memory specified by <RANGE> to <ADDRESS>.
Overlapping moves are always performed without loss of data, i.e., data is
moved before it is overwritten. To do this, all moves from higher addresses
to lower ones are done front-to-back, while moves from lower ‘addresses to
higher ones are done back-to-front.

DEBUG - Page 55

COMMANDS (Continued)

N <FILENAME>

Name - The file name is set up in the proper format of an unopened file
control block at CX:005C. An optional second file name is similarly set up at
€S:006C. In addition, all characters typed after the command letter "N" are
copied into CS:0081, and CS:0080 is set to the number of characters copied.

Thus this command may be used to set up a file name for use with the Load or
Write commands, but it also formats all standard parameter areas as if the
parameters had been part of a command line that executed a COM program. For
example, if file PROG.COM is being debugged, it may be desirable to test it
as though it had been executed with the command

PROG FILEl FILE2 OTHERSTUFF

To do this start with

DEBUG PROG.COM

which will execute the debugger and load PROG.COM in to memory. Then use

N FILElL FILE2 OTHERSTUFF

and the parameters for PROG.COM will be formatted correctly.

0 <HEX4> <BYTE>

Output - <BYTE> is sent to the specified output port. A 1l6-bit port address
is allowed.

Quit - Terminate the debugger.

Page 56 - DEBUG

COMMANDS (Continued)

R
R <REGISTER NAME>

Register - with no parameters, this command dumps the register save area.

Giving a register name as a parameter allows that register to be displayed
and modified. The register name may be AX, BX, CX, DX, SP, BP, SI, DI, DS,
ES, SS, CS, IP, PC, or F (upper case only); anything else will result in an
"BR Error". IP and PC both refer to the Instruction Pointer and F refers to
the Flag register. For all exept the Flag register, the current l16-bit value
will be printed in hex, then a colon will appear as a prompt for the

replacement value. Typing <carriage return> leaves the register unchanged;
otherwise type a <HEX4> to replace.

The Flag register uses a system of two-letter mnemonics for each flag, as
shown below:

FLAG SET CLEAR

Overflow OV Overflow NV No Overflow
Direction DN Down (Decrementing); UP Up (Incrementing)
Interrupt EI Enabled Interrupts DI Disabled Interrupts
Sign NG Negative PL Plus

Zero ZR Zero NZ Not Zero

Auxillary Carry AC Auxillary Carry NA No Auxillary Carry
Parity PE Parity Even PO Parity 0dd

Carry - CY cCarry ' NC No Carry

Whenever the Flag register is displayed, all flags are displayed in this
order. When the F register is specified with the R command, the flags are
displayed and then Debug waits for any replacements to be made. Any number of
two-letter flag codes may be typed, and only those flags entered will be
modified. If a flag has more than one code in the list, a 'DF Error" (Double
Flag) will result. If any code is not recognized, a "BF Error" (Bad Flag)
will occur, In either case, those flags up to the error have been changed,
and those after the error have not.

On start-up, all registers are set to zero except the segment registers,
which are set to the bottom of free memory, the Instruction Pointer, which is
set to 0100H, and the Stack Pointer, which is set to O003EH. Flags are all
cleared.

DEBUG - Page 57

COMMANDS (Continued)

S <RANGE> <LIST>

Search - The range is searched for a byte or string of bytes specified by‘
<LIST>. For each occurence the first address of the match is displayed.

Trace - The number of instructions specified (default 1) are traced. After
each instruction, the complete contents of the registers and flags are
displayed. (For the meaning of the flag symbols, see Register command.) Since
this command uses the hardware trace mode of the 8086, even ROM may be
traced.

W
W <ADDRESS> <DRIVE> <RECORD> <RECORD>

Write -~ The first form writes a portion of memory to a disk file. The name of
the file must appear in the normal format of a file control block at CS:005C.
This requirement is met by a file name typed as the first parameter of the
command that started Debug, or the Name command will format a file name
properly. CX must be set to the number of records to be written, and the file
will be saved starting at address CS:0100. Note that if a. file is loaded and
modified, the name, length, and starting address are all set correctly to
save the modified file as long as the length has not changed. If the Trace or
Go commands are used, CX may be modified by the executing program and then
must be reset before using the Write command.

The second form performs a write to any physical disk sector from any memory
area. The first <RECORD> parameter is the logical record number of the first
sector to be written. Logical record numbers start at zero and increase
sequentially for each sector on the disk, regardless of track boundaries. For
example, with standard IBM format single-density disks, logical record zero
corresponds to track 0, sector 1, while logical record 37 hex corresponds to
track 2, sector 4. The last parameter is the number of records to write.

DEBUG - Page 58

ERROR SUMMARY

BF

Bad Flag
BP - Too many BreakPoints
BR - Bad Register

DF

Double Flag (Flag occurs twice)

RG

RanGe too large

Hard Disk Errors

Should a hard disk error occur, one of the messages 'Disk:read error" or

"Disk write error" will appear on the console. The system then waits for one
of the following responses to typed on the console:

"A" - Abort. Terminate the program requesting the disk transfer.

"C" - Continue. If the bad sector is in the File Allocation Table, then the
transfer is attempted on a spare allocation table. If no spare allocation
tables can be read, the message "All FATs on drive are bad" appears. If the
sector is not in the File Allocation Table, then this is similar to Ignore,
below.

"I" - Ignore. Pretend the error did not occur.

"R" - Retry.

Another type of error may or may not be related faulty disk transfer. The
message 'Bad FAT" means the copy in memory of one of the allocation tables

has pointers to non-existent disk blocks. This may be caused by using a disk
which has not been CLEARed.

. | Page 59

