CUST - 1
CUSTOMIZING MS-DOS version 1.23 and later

Setting the Special Editing Commands
The escape codes used by Function 10, buffered console input, can be set for

the convenience of the user, using a table starting at address 0003 in MS-DOS.
The beginning of MS-DOS looks like this:

0000 JMP INIT
ESCCHAR:

0003 DB 1BH 3ASCII value to use for escape character
ESCTAB:

0004 DB "s" ;Copy one character from template

0005 DB A ;Skip over one character in template

0006 DB T ;Copy up to specified character

0007 DB "W ;Skip up to specified character

0008 DB "g" ;Copy rest of template

0009 DB "E" ;Kill line with no change in template (Ctrl-X)

000A DB "J" s;Cancel line and update template

000B DB "D" ;Backspace (same as Ctrl-H)

000C DB "p" sEnter Insert mode

000D DB Q" ;Exit Insert mode

00O0E DB "R" ;Escape sequence to represent escape character

000F DB "R" sEnd of table--must be same as a previous byte

For example, the character sequence ESC S will copy one character from the
template to the new line. The next to last entry in the table is the escape
sequence to be used to pass the escape character. In the standard table shown
here, this is done by typing ESC R, but it could also be set up for any other
escape sequence, including ESC ESC (hitting escape twice).

Customizing the I/0 system

In order to provide the user with maximum flexibility, the disk and simple
device I/0 handlers of MS-DOS are a separate subsystem which may be configured
for virtually any real hardware. This I/0 system is located starting at
absolute address 400 hex, and may be any length. The DOS itself is completely
relocatable and normally starts immediately after the I/0 system.

Beginning at the very start of the I/0 system (absolute address 400 hex) 1is a
series of 3-byte jumps (long intra-segment jumps) to various routines within
the I/0 system. These jumps and their starting offsets (relative segment 40H)
look like this:

0000 JMP INIT ; System initialization
0003 JMP STATUS ; Console status check
0006 JMP CONIN ; Console input

0009 JMP CONOUT ; Console output

000C JMP PRINT 3 Printer output

00OF JMP AUXIN s Auxiliary input

0012 JMP AUXOUT ; Auxiliary output

’

0015 JMP READ Disk read

CUST - 2

0018 JMP WRITE 3 Disk write

001B JMP DSKCHG ; Return disk change status
001E JMP SETDATE ; Set current date

0021 JMP SETTIME ; Set current time

0024 JMP GETDATE ; Read time and date

0027 JMP FLUSH ; Flush keyboard input buffer
002A JMP MAPDEV ; Device mapping

The first jump, to INIT, is the entry point from the system boot. All the
rest are entry points for subroutines called by the DOS. Inter-segment calls
are used so that the code segment is always 40 hex (corresponding to absolute
address 400 hex) with a displacement of 3, 6, 9, etc. Thus each routine must
make an inter-segment return when done.

The function of each routine is as follows:

INIT - System initialization

Entry conditions are established by the system bootstrap loader and should be
considered unknown. The following jobs must be performed:

A. All devices are initialized as necessary.

B. A local stack 1s set up, DS:SI are set to point to an initialization table,
and DX is set with the number of paragraphs (l6-byte units) of total memory.
If DX is set 0001, then MS-DOS will perform a memory scan to determine size.

Then an inter-segment call is made to the first byte of the DOS, using a
displacement of zero. For example:

MOV AX,CS 3 Get current segment

MOV DS, AX

MOV $S,AX

MOV SP,OFFSET STACK

MOV SI,OFFSET INITTAB

MOV DX,1 s Use automatic size determination

CALL DOSSEG:0

The initialization table provides the DOS with information about the disk
system. The first entry in the table is one byte with the number of disk I/0

drivers, N. This byte is followed by N 3-byte entries, each of which consists
of:

1. 1 Byte. The physical drive number this entry refers to.

2. 2 Bytes. The offset of this drive”s Drive Parameter Table (DPT) in
DS—--see below. Similar drives may share a DPT.

Each entry in this table is considered a separate 1/0 driver, numbered from 0
to N-1. Each physical disk drive may have more than one I/0 driver, thus
allowing more than one format/density/configuration for each drive. Each drive

has only one File Allocation Table in memory, which is equal in size to the
largest table needed for any configuration specified for that drive.

For example, if a system has two disk drives, both of which may contain either
single or double density diskettes, then the table might look like this:

DB 4 34 1I/0 drivers

CUST - 3

DB 0 sDrive O

DW SDRIVE ;Single density DPT

DB 0 3Sti1l1l drive O

DW DDRIVE ;Double density DPT

DB 1 sRepeat it all for drive 1
DW SDRIVE

DB 1

DW DDRIVE

The Drive Parameter Table, or DPT, has the following entries:

1. SECSIZ. 2 Bytes. The size, in bytes, of the physical disk sector.
The minimum value is 32 bytes, the maximum practical value is 16K. This
number need not be a power of 2.

2. CLUSSIZ. 1 Byte. The number of sectors in an allocation unit. This
number must be a power of 2. This limits it to the values 1, 2, 4, 8, 16, 32,
64, and 128. By making the allocation unit small, less disk space is wasted
because the last allocation unit of each file is only half full on the
average. By making the allocation unit large, less space is taken up both on
the disk and in memory for the File Allocation Table. A good choice is to
make the allocation unit approximately equal to the square root of the disk
size (to the nearest power of 2). For example, a standard floppy disk with
256K would use an allocation unit of 512 bytes, or 4 physical sectors. A 2D

floppy disk with 1K sectors has 1.2 Mbytes, and would use an allocation unit
of 1K, or 1 physical sector.

3. RESSEC. 2 Bytes. The number of reserved sectors at the start of
the disk. At least one sector is usually reserved for a disk bootstrap loader

and more may be reserved to place the I/0 system or all of MS-DOS imn this
reserved area.

4. FATCNT. 1 Byte. The number of File Allocation Tables. This is
noramlly two, to provide one backup.

5. MAXENT. 2 Bytes. The number of directory entries. This may be any
number less than 4080. For maximum efficiency, however, it should be a
multiple of the number of directory entries that can fit in one physical
sector, at 32 bytes per directory entry.

6. DSKSIZ. 2 Bytes. The number of physical disk sectors. Being
represented with only 16 bits, this number clearly must be less than 64K. 1If
a large disk has more physical sectors than this, the size of the physical
sector seen by MS-DOS must be increased by using multiples of the physical
sector. Every time the I/0 system documentation says "physical sector,”
consider this to mean, for example, two physical sectors. Then the size of
this new "physical sector,” SECSIZ, is twice as big as before, DSKSIZ is half

as big, and the READ and WRITE routines must work in terms of these new
sectors.

Below are the Microsoft standard Drive Parameter Tables for the most popular
floppy disk formats. The FAT identification byte is placed in the first byte
of the FAT when the disk directory 1s cleared by FORMAT, and may be used by
MAPDEV to support mulitple formats. If your format is not listed and you wish
to be interchange compatible with other manufacturers, contact Microsoft.

CUST - 4

8" IBM 3740 format, singled-sided, single~density, 128 bytes per sector, soft
sectored:

DW 128 ;128 bytes/sector

DB 4 ;4 sectors/allocation unit

DW 1 sReserve one boot sector

DB 2 32 FATs - one for backup

DW 68 317 directory sectors

DW 77%26 ;Tracks * sectors/track = disk size

FAT identification byte is FE hex.

8" Double-sided, double-density, 1024 bytes per sector, soft sectored:

DW 1024
DB 1

DW 1

DB 2

DW 192

DW 77%8%2

FAT identification byte 1is FE hex. Multiple sectors are to be transferred by
transferring all sectors on side O of a track, then all sectors of side 1 on
that track, then stepping to the next track. From the beginning of the disk,

the order is: Track 0, side O, sectors 1 - 8; track O, side 1, sectors 1 - 8;
track 1, side 0, sectors 1 - 8; track 1, side 1, sectors 1 - 8; etc.

5" Single-sided, double-density, 512 bytes per sector, soft sectored:

DW 512 ;512 bytes/sector

DB 1 ;1 sector/allocation unit

DW 1 ;Reserve one boot sector

DB 2 32 FATs - one for backup

DW 64 34 directory sectors

DW 40%8 ;Tracks * sectors/track = disk size

FAT identification byte 1s FE hex.

5" Double~sided, double-density, 512 bytes per sector, soft sectored:

DW 512 ;512 bytes/sector

DB 2 ;2 sectors/allocation unit

DW 1 ;Reserve one boot sector

DB 2 32 FATs - one for backup

DW 112 37 directory sectors

DW 40%8%2 ;Tracks * sectors/track * sides = disk size

FAT identification byte is FF hex. The sector order is the same as for
double-sided, double-density 8" disks above.

C. When the DOS returns to the INIT routine in the I/0 system, DS has the
segment of the start of free memory, where a program segment has been set up.
The remaining task of INIT is to load and execute a program at 100 hex in this

segment, normally COMMAND.COM. The steps are:
1. Set the disk transfer address to DS:100H.
2. Open COMMAND.COM. If not on disk, report error.

3. Load COMMAND using the block read function (Function 39). If end-of-file
was not reached, or if no records were read, report an error.

CUST - 5

4. Set up the standard initial conditions and jump to 100 hex in the new
program segment.

An example of code which performs this task is given:

MOV DX, 100H
MOV AH,26
INT 21H sSet transfer address to DS:100H
MOV CX,WORD PTR DS:6 ;Get maximum size of segment
- Mov BX,DS ;Save segment for later
s DS must be set to CS so we can point to the FCB
MOV AX,CS
MoV DS,AX
MOV DX,0FFSET FCB sFile Control Block for COMMAND.COM
MOV AH,15
INT 21H sOpen COMMAND.COM
OR AL, AL
JNZ COMERR sError if file not found
MOV WORD PTR FCB+l4,1 ;Set record length to 1 byte
MOV AH, 39
INT 21H sBlock read
JCXZ COMERR sError if no records read
CMP AL,1 ; '
JNZ COMERR sError if not end-of-file .
MOV DS,BX 3All segment reg.s must be the same
MoV ES,BX
MOV SS,BX
MOV SP,5CH sStack must be 5C hex
XOR AX,AX
PUSH AX sPut zero of top of stack
MoV DX, 80H
MOV AH, 26
INT 21H ;Set transfer address to default
PUSH BX :
MOV AX, 100H
PUSH AX
RET sFAR return - jump to COMMAND
COMERR:
MOV DX, BADCOM
MoV AH,9
INT 21H sPrint error message
STALL: JMP STALL s;Don“t know what to do
BADCOM: DB 13,10,"Bad or missing Command Interpreter”,13,10,"$"
FCB: DB 1,"COMMAND COM"
DB 25 DUP (0)

STATUS - Console input status

If a character is ready at the console, this routine returns with the zero
flag cleared and the character in AL, which is still pending. Once a character
has been returned with this call, that same character must be returned every
time the call is made until a CONIN call is made. In other words, this call
leaves the character in the input buffer, and only CONIN can remove it. If no
character is ready, the zero flag is set. No registers other than AL may be

CUST - 6

changed.

CONIN - Console input

Wait for a character from the console, then return with the character in AL.
No other registers may be changed.

CONOUT - Console output

Output the character in AL to the console. No registers may be affected.

PRINT - Printer output

Output the character in AL to the printer. No registers may be affected.

AUXIN = Auxiliary input

Wait for a byte from the auxiliary input device, then return with the byte in
AL. No other registers may be affected.

AUXOUT = Auxiliary output

Output the byte im AL to the auxiliary output device. No registers may be
affected.

READ - Disk read
WRITE - Disk write

On entry,
AL = I/0 driver number (starting with zero)
AH = Verify flag (WRITE only) O=no verify, l=verify after write
CX = Number of physical sectors to transfer
DX = Logical sector number

DS:BX = Transfer address.

The number of sectors specified are transfered using the given I/0 driver at
the transfer address. "Logical sector numbers"” are obtained by numbering each
sector sequentially starting from zero, and continuing across track
boundaries. Thus for standard 8" floppy disks, for example, logical sector O
is track O sector 1, and logical sector 53 is track 2 sector 2. This
conversion from logical sector number to physical track and sector is done
simply by dividing by the number of sectors per track. The quotient is the
track number, and the remainder is the sector on that track. (If the first
sector on a track is 1 instead of 0, as with standard floppy disks, add one to

CUST - 7
the remainder.)

"Sector mapping"” is not used by this scheme, and is not recommended unless
contiguous sectors cannot be read at full speed. If sector mapping is desired,
however, it may be done after the logical sector number is broken down into
track and sector. The 8086 instruction XLAT is quite useful for this mapping.

All registers except the segment registers may be destroyed by these routines.
If the transfer was successfully completed, the routines should return with
the carry flag clear. If not, the carry flag should be set, and CX should have
the number of sectors remaining to be transfered (including the sector in
error). A code for the type of error should be returned in AL, which will be
used to print one of the following messages: '

AL Error type

0 Write protect (disk writes only, of course)

2 Not ready

4 Data

6 Seek

8 Sector not found

10 Write fault :
12 Disk - This 1s a catch-all for any other errors

DSKCHG —~ Disk change test

This routine takes as input a disk drive number in AL and AH is zero. It
returns ‘

AH = -1 if disk has been changed.
AH = 0 if it is not known whether the disk has been changed.
AH =1 if disk could not have been changed.

and AL = I/0 driver number to use for this diskette and drive.

Carry flag clear

If this routine requires a disk read and the read is unsuccessful, it should
return with carry set and error code in AL (same as READ or WRITE). This will
invoke normal hard disk error handling, except the error can not be ignored.

This routine is called whenever a directory search has been made and the disk
could legally have been changed. The purpose is to minimize unnecessary
re-reading of disk directory information if the disk has not been changed, and
to provide configuration information if it has. If, for example, a drive will
be required to read both single and double density disks, this routine will
make the determination of which format is currently present, and provide the
corresponding I1/0 driver number.

Examining this example more closely, suppose the initialization table appeared
as follows: '

DB 4 34 1/0 drivers
DB 0 sDrive O
DW SDRIVE sSingle density DPT

DB 0 sStill drive O

CUST - 8

W DDRIVE ;Double density DPT

DB 1 ;Repeat it all for drive 1
DW SDRIVE

DB 1

DW DDRIVE

If a directory search is to be made on drive B, this routine will be called
with AH=0, AL=l. If the routine determines that a single-density disk is
presently in the drive, it will return with AL=2; 1f a double density disk,
AL=3. If this is a change from the previous density used in this drive, is
should also set AH=-1; otherwise, AH=0.

One way to determine density is to simply try to read the disk with the same
~density as last time; if that doesn”t work, switch densities and try again. If
neither can be read (after suitable re-tries), the routine should return with
the carry flag set and the error code (same as READ or WRITE, above) in AL.
Other systems will always have track 0 formatted single density, with a flag
indicating what the rest of the disk is formatted like. Again, if a hard disk

error occurs attempting to read this information, return the same error
indicator as READ or WRITE would.

Eight-inch double sided disks have their index hole punched in a different
place from the single-sided disks, and some drives provide a "two-side" status

signal to indicate which 1s being used. This provides an easy way to
distinguish format.

If there is a one-to-one mapping between physical disk drives and I/0 drivers,
then AL may be left unchanged. AH must still return disk change information,
if available.

Floppy disk systems with no way to know if the disk has been changed will
simply return AH = 0 whenever this routine is called. Some floppy disk drives
provide a disk change signal, which simply latches the fact that the drive
door has been opened since the last disk access. Another way to tell is if
the head of the drive 1is still loaded from the last disk command, then one may
assume the disk has not been changed. (In this case, the head not loaded does
not mean the disk has been changed, it means unknown.) A non-removable hard
disk should always return that disk is not changed.

SETDATE - Set date

On entry, AX has the count of days since January 1, 1980. If the system has

time-keeping hardware, the date should roll over at midnight. Otherwise, it
should simply be stored for return by GETDATE.

. SETTIME ~ Set time

On entry, CX and DX have the current time:

CH = hours (0-23)

CL = minutes (0-59)

DH = seconds (0-59)

DL = hundredths of seconds (0-99)

CUST - 9

Each of these is a binary number that has been checked for proper range. If

time~keeping hardware 1s not used, the time should simply be stored for return
by GETDATE.

GETDATE - Read date and time
Returns the following information:

AX = count of days since 1-1-80.

CH = hours

CL = minutes

DH = seconds

DL = hundredths of seconds

No other registers may be affected.

FLUSH - Flush keyboard buffer

If the console input keyboard has a hardware or software type—ahead buffer,
the buffer should be cleared with this call. If there is no buffer, this
routine should simply return. :

MAPDEV - Map disk I/O drivers

This routine can be used to map physical disk drives with their I/O drivers.
It is called AFTER the File Allocation Table is read (which 1s after the
DSKCHG call), which means that DSKCHG must have returned an I/0 driver which
could properly read the disk, and for which the File Allocation Tables are the
same number of sectors and in the same place on the disk. Then, the first byte
of the FAT is used to determine the rest of the disk format. This byte may
legally be in the range OF8 hex to OFF hex, and is normally set at format
time.

On entry,
AL = I/0 driver used to read the FAT
AH = First byte of FAT (range F8 to FF)
on exit,
AL = I/0 driver for this diskette and drive.

This routine is particularly suited for distinguishing between double-sided
and single-sided disks. For example, the double-sided drive might use an
allocation unit twice as large as the single-sided, so the allocation table

will be the same size. The first byte of the FAT could be FF for single-sided,
FE for double sided. The I/0 driver for double sided would use an

initialization table with more directory entries and more sectors; the driver
itself could interleave sides of the disk between stepping the head, provided
all of the FATs fit in one track. DSKCHG could return the I/O driver for the

single-sided disks, which would be adequate for reading the FAT from

double-sided disks. Then MAPDEV could use the least significant bit of the

-CUST - 10

first byte of the FAT to return the correct I/0 driver.

The advantage of using MAPDEV over returning the completely correct 1/0 driver

in DSKCHG is that thelr are no extra disk accesses, since the FAT will be read
anyway .

In most systems, the entire input range F8 to FF will not be meaningful. This
routine, however, should always return a valid I/0 driver number of the drive.

CUST - 11
FORMAT - formats a new disk, clears the FAT and DIRECTORY and

optionally copies the SYSTEM and COMMAND.COM to this new disk.
Command syntax:
FORMAT [drive:][/switchl][/switch2]...[/switchl6]

Where "drive:"” is a legal drive specification and 1f omitted
indicates that the default drive will be used. There may be
up to 16 legal switches included in the command line.

The OEM must supply four (NEAR) routines to the program along with 4 data
items. The names of the routines are INIT, DISKFORMAT, BADSECTOR, and DONE,
and theilr flow of control (by the Microsoft module) is like this:

—— et 2 et Sy ot e e i sy

|-This loop is done
| BADSECTOR | | for each group of
| bad sectors

-This loop done once for
each disk to be
formatted.

A4

The INIT, DISKFORMAT, and BADSECTOR routines are free to use any MS5~DO5 systen
calls, except for file I/0 and FAT pointer calls on the disk being formatted.
DONE may use ANY calls, since by the time it is called the new disk has been
formatted.

The following data must be declared PUBLIC in a module provided by the OEM:

SWITCHLIST -~ A string of bytes. The first byte is count N,
followed by N characters which are the switches to
be accepted by the command line scanner. Alphabetic
characters must be in upper case. The switch to
indicate that you want a system transferred, normally
"S", must be the last switch in the list. Up to 16
swlitches are permitted. Normally a "C" switch is
specified for "Clear". This switch should cause the
formatting operation to be bypassed (within DISKFORMAT
or BADSECTOR). This is provided as a time-saving
convenience to the user, who may wish to "start fresh”
on a previosly formatted and used disk.

FATID - BYTE location containing the value to be used in the
first byte of the FAT. Must be in the range F8 hex to
FF hex. This byte may be used to differentiate between

CUST - 12

various formats for the same physical drive (like single-
or double-sided).

STARTSECTOR — WORD location containing the sector number of the
first sector of the data area.

FREESPACE - WORD location which contains the address of the start
of free memory space. This i1s where the system will be
loaded, by the Microsoft module, for transferring to the
newly formatted disk. Memory should be available from this
address to the end of memory, so it is typically the
address of the end of the OEM module.

The following routines must be declared PUBLIC in the OEM-supplied'module:

INIT - An initialization routine. This routine is called once
at the start of the FORMAT run after the switches have
been processed. This routine should perform any functions
that only need to be done once per FORMAT run.
An example of what this routine might do is read the boot
sector into a buffer so that it can be transferred to
the new disks by DISKFORMAT. If this routine returns with
the CARRY flag set it indicates an error, and FORMAT will
print "Fatal format error” and quit. This feature can be
used to detect conflicting switches (1like specifying both

single and double density) and cause FORMAT to quit without
doing anything.

DISKFORMAT - Formats the disk according to the options
indicated by the switches and the value of FATID must
be defined when it returns (although INIT may have
already done it). This routine is called once for EACH
disk to be formatted. If neccessary it must transfer
the Bootstrap loader. If any error conditions
are detected, set the CARRY flag and return to FORMAT.
FORMAT will report a “Format failure” and
prompt for another disk. (If you only require a clear
directory and FAT then simply setting the appropriate

FATID, if not done by INIT, will be all that DISKFORMAT
must do.)

BADSECTOR - Reports the sector number of any bad sectors
that may have been found during the formatting of
the disk. This routine is called at least once for EACH
disk to be formatted, and is called repeatedly until
AX is zero or the carry flag is set. The carry flag is
used just as in DISKFORMAT to indicate an error, and
FORMAT handles it in the same way. The first sector in
the data area must be in STARTSECTOR for the returns from
this routine to be interpreted correctly. If there are
bad sectors, BADSECTOR must return a sector number in
in register BX, the number of consecutive bad sectors
in register AX, and carry clear. FORMAT will then
process the bad sectors and call BADSECTOR again. When
BADSECTOR returns with AX = 0 this means there are
no more bad sectors; FORMAT clears the directory
and goes on to DONE, so for this last return BX
need not contain anything meaningful.

CUST - 11}

FORMAT processes bad sectors by determining their
corresponding allocation unit and marking that unit with
an FF7 hex in the File Allocation Table. CHKDSK understands
the FF7 mark as a flag for bad sectors and accordingly
reports the number of bytes marked in this way.

NOTE: Actual formatting of the disk can be

done in BADSECTOR instead of DISKFORMAT on a "report as
you go" basis. Formatting goes until a group of bad sectovrs
is encountered, BADSECTOR then reports them by returning
with AX and BX set. FORMAT will then call BADSECTOR again
and formatting can continue.

DONE - This routine is called after the formatting is complerte,
the disk directory has been initialized, and the system
has been transferred. It is called once for EACH disk to
be formatted. This gives the chance for any finishing-up
operations, if needed. If the OEM desires certain extra
files to be put on the diskette by default, or according
to a switch, this could be done in DONE. Again, as in
BADSECTOR and DISKFORMAT, carry flag set on return means
an error has occurred: “Format failure” will be printed
and FORMAT will prompt for another disk.

The following data is declared PUBLIC in Microsoft”s FORMAT module:

SWITCHMAP - A word with a bit vector indicating what switches
have been included in the command line. The correspondence
of the bits to the switches is determined by SWITCHLIST.
The right-most (highest—addressed) switch in SWITCHLIST
(which must be the system transfer switch, normally "S")
corresponds to bit 0, the second from the right to bit 1,
etc. For example, if SWITCHLIST is the string "5, AGI2S87"
and the user specifies "/G/S" on the command line, then
bit 4 will be O (A not specified), bit 3 will be 1
(G specified), bits 2 and 1 will be O (neither T nor
specified), and bit O will be 1 (S specifled).

Bit 0, the system transfer bit, i1s the only switch used in
Microsoft”s FORMAT module. This switch is used 1) after INIT
has been called, to determine if it is necessary to load the
system; 2) after the last BADSECTOR call, to determine if the
system is to be written. INIT may force this bit set or reset
if desired (for example, some drives may never be used as
system disk, such as hard disks). After INIT, the bit may be
turned off (but not on, since the system was never read) if
something happens that means the system should not be
transferred.

After INIT, a second copy of SWITCHMAP is made internally
which is used to restore SWITCHMAP for each disk to be
formatted. FORMAT itself will turn off the system bit if

bad sectors are reported in the system area; DISKFORMAT a:iu
BADSECTOR are also allowed to change the map. However, thuue
changes affect only the current disk being formatted, since’
SWITCHMAP is restored after each disk. (Changes made to
SWITCHMAP by INIT do affect ALL disks.)

CUST - 14

DRIVE - A byte containing the drive specified in the
command line. 0=A, 1=B, etc.

Once the OEM-supplied module has been prepared, it must linked with
Microsoft”s FORMAT.OBJ module. If the OEM-supplied module i1s called INIT.OBJ,
then the following linker command will do: '

LINK FORMAT+INIT;

This command will produce a file called FORMAT.EXE. FORMAT has been designed
to run under MS-DOS as a simple binary .COM file. This conversion is performed
by EXE2BIN with the command

EXE2BIN FORMAT .COM [Note the space between "FORMAT" and ".COM"]

which will produce the file FORMAT.COM. (If the ".COM" had been omitted, the
result would have been named FORMAT.BIN.) FORMAT.COM should be ready to run.

khkkhhkhhhhhhhkhhhrrhhhhbhihhhhhhhhhiridsd

A Sample OEM module

we We we e Ve

shkkkkdhhhhhhhhihhhhhhhhhhhhhhhhhrhhhkhihk

CODE SEGMENT BYTE PUBLIC “CODE~” ;This segment must be named CODE
sAnd it must be PUBLIC

ASSUME CS:CODE,DS:CODE,ES:CODE
sMust declare data and routines PUBLIC

PUBLIC FATID,STARTSECTOR,SWITCHLIST,FREESPACE
PUBLIC INIT,DISKFORMAT,BADSECTOR,DONE

;This data defined in Microsoft-supplied module

EXTRN SWITCHMAP:WORD,DRIVE:BYTE
INIT:

sRead the boot sector into memory
CALL READBOOT

sSet FATID to double sided if "D" switch specified
TEST SWITCHMAP,4
JNZ SETDBLSIDE

RET

DISKFORMAT:

;Use the bit map in SWITCHMAP to determine what switches are set

CUST - 15

TEST SWITCHMAP,2 ;Is there a "/C"?

JNZ CLEAR ;Yes —— clear operation requested

3 jump around the format code

< format the disk >
CLEAR :

sTransfer the boot from memory to the new disk
CALL TRANSBOOT

RET

;Error return - set carry

ERRET:
STC
RET
BADSECTOR:
RET
DONE :
RET
FATID DB OFEH sDefault Single sided
STARTSECTOR DW 9
SWITCHLIST DB 3,"DCS" 3"S" must be the last switch in the
list
FREESPACE DW ENDBOOT
BOOT DB BOOTSIZE DUP(?) ;Buffer for the boot sector
ENDBOOT LABEL BYTE
CODE ENDS

END

RENDIR.COM

RENDIR allows you to rename directories. The syntax is:

RENDIR oldname newname

The directory being renamed must be in the current directory--full path names
are not allowed. Wildcard characters "*" and "?" are allowed in the oldname
to rename more that one directory at a time. Wildcard characters in the
newname take the characters from the corresponding positions of the original
name. (Use of wildcards is identical to the normal REN command).

FUNKEY .EXE

FUNKEY allows you to assign each of the MS-D0S template editing actions to a
function key on your terminal or to any desired escape sequence. Each editing
action action 1is initiated by a two-character sequence: the '"lead-in"
character followed by a character defining which editing action you want. The
lead-in character must be the same for all editing actions, and is usually the
ASCII ESCAPE code, 1B hexadecimal (27 decimal), although it need not be. The
second character may be anything.

Many terminals provide function keys which produce just such a two-character
sequence. FUNKEY allows you to select an editing action, then simply type the
function key you wish to perform that action. If you do not have enough
suitable function keys to assign all editing actions, you can enter a
two-character sequence that you will use (remembering that the first character
must be the same for all editing actions).

FUNKEY requires you to have a system disk in the default drive. It will read
the current assignment of the editing keys from the hidden file MSDOS.SYS on
this disk. When you exit FUNKEY, it will update the currently running MS-DOS
in memory with the new editing key assignments. It will also prompt you to
see 1f you would like this change put back on the disk. If you exit FUNKEY
with Control-C, no changes will be made to disk or memory.

BACKUP .COM

BACKUP is included to simplify the day-to-day keeping of file backup copies.
It performs an "incremental" backup--copying only those files which have been
changed since the 1last backup operation. Then by keeping on disk' an
alphabetical listing of all files, the backup disk for any file can be located
quickly by its volume (disk) identification.

BACKUP runs in three phases, and may be stopped with an appropriate switch
after any phase. The first phase is to produce an index of disk contents,
which requires traversing the entire directory tree. The result of this phase
is the file INDEX.NEW in the root directory of the disk being backed up. The
file will contain, for each directory on the disk: 1) The path name of the
directory; 2) All sub-directories of this directory, listed in alphabetical
order, each name indented with two blanks; 3) All files within this directory,
listed alphabetically with date, time, and size, indented with one blank.
Following the listing for any directory are similar listings for each of its
sub-directories.

This first phase can be useful by itself, since it produces an alphabetical
listing of the entire disk contents organized by directory. To stop BACKUP at
this point, use the /I switch (for Index). For example,

BACKUP /I

produces the index file INDEX.NEW for and on the default drive, while
BACKUP C: /I

makes an index for drive C, leaving it on drive C.

Phase two of BACKUP is to determine which files in the index must be backed
up. For speed, this phase actually runs concurrently with phase one if it has
not been disabled with the /I switch. BACKUP assumes there is a file named
INDEX (no extension) in the root directory of the disk being backed up, which
has the index of the disk when it was backed up last. Any file listed in
INDEX.NEW which does not match in path name, date, time, and size with a file
listed in INDEX will be marked for backup. This marking consists of an
asterisk ("*") replacing the blank that is normally in front of the file name.
Any file which does match have will have the volume ID of 1its backup copy
listed in INDEX.NEW. If the file INDEX is not found, all files will be marked
for backup.

BACKUP may be stopped at the end of this phase by specifying the /N switch (No
backup). This allows seeing what files would be backed up if the copying were
allowed to take place.

Phase three of BACKUP is to actually perform the copying operations. The file
INDEX.NEW will be read back in so that those files marked with the "*'" can be
backed up. As each file is copied, INDEX.NEW is updated by deleting the "*"
and adding the volume ID of the backup disk. If a backup disk fills up,
BACKUP will prompt for another. Every disk used for backup MUST have a volume
ID so that the index will know where to find the backed up file. No file can
be split across disks.

When performing a complete backup, BACKUP uses two drive specifiers: the first
for the disk to be backed up (source), the second for the disk on which to
make the copies (destination). The destination drive may be omitted if it is

vthe default drive. For example,
BACKUP C: B:

backs up drive C onto drive B, while
BACKUP B:

backs up drive B onto the default drive.

Files are copied into the root directory of the backup disk. This means that
if two or more files In different directories have the same name, then as each
is copied, it will overwrite the previous one. Thus only the last file of any
given name 1s backed up. This is good if the same file has been copied into
more than one directory. However, it is very important for different files to
have different basic names, i.e., some difference in the 8-character file name
or 3~character extension.

When backup copying is complete, the updated file INDEX.NEW is also copied to
the last backup disk. The old INDEX is deleted, and INDEX.NEW is renamed to
replace it. '

SHIPZONE.COM

SHIPZONE moves the head of the hard disk to the shipping zone, which 1is
cylinder 522 on the MiniScribe 4020. This procedure is ESSENTIAL before a
hard disk equipped Gazelle 1is shipped or moved a significant distance.
Failure to do so may damage the drive and will invalidate your warranty.
SHIPZONE halts the computer when 1t 1s done to be sure no further activity
will move the disk heads off the shipping zone. The computer should be turned
off after running SHIPZONE.

MS-DOS DISK CONFIGURATION AND BOOTSTRAP LOADING DISK - 1

MS-DOS disks are divided into four areas:

1. Reserved
2. File allocation tables
3. Directory
4. File data

The size of the reserved area is specified by the OEM and should be as small
as possible. Normally, only one sector is needed for a bootstrap loader. In
systems where the first track is formatted single density while the rest of
the disk is double density, it may be simplest to include the entire first
track in the reserved area. Sectors in the reserved area need not be the same
size as the sectors on the rest of the disk since they are never accessed by
the file system.

The size of the File Allocation Tables and the directory are computed during
initialization from the OEM”s Drive Parameter Table. The size of the data area
is simply everything that”s left, truncated to whole Allocation Units. (Any
gsectors so truncated are never used.)

MS-DOS and the OEM”s I/0 system reside in the data area of the disk. They are
each in their own file, properly recorded in both the directory and the File
Allocation Table. However, in order to simplify bootstrap loading of these
files, they can be guaranteed to be in fixed locations on the disk, on
consecutive sectors. Specifically, the file I0.SYS always starts on the first
sector of the data area. The file MSDOS.SYS always starts on the first
allocation unit immediately after 10.SYS. Thus the bootstrap loader need only

deal with loading consecutive sectors beginning at a fixed location on the
disk.

In order to ensure these .SYS files are in their proper locations, the files
are hidden from all ordinary directory operations by an attribute bit in the
directory. This means the files cannot be seen with the DIR command nor copied
with the COPY command. Instead, the program SYS.COM is provided to allow

copying these files from disk to disk. SYS will only perform the copy 1if
either:

1) The destination disk has no files on it (this is the basic
requirement for locating the .SYS files in the right place).

2. The destination already has both .SYS files (which are assumed

to be in the right place, so the copy operation will just overwrite
them).

The primary purpose of for putting MS-DOS and the I/0O system in the data area
is to allow "system disks", from which MS-DOS can be loaded, and "data disks",
which have more data space. It also allows the size of MS-DOS or the I/0
system to change, instead of locking them into a fixed size reserved area.
(NOTE: If either MS-DOS or the I/0 system grow to exceed the number of
allocation units they have been assigned on the disk, then previous system
disks can NOT be updated with the larger version. The solution for the user is
to create a new system disk, and copy files to it. The 0ld system disk may
then be used to load an old system, or it may be used as a data disk. This is
the price paid to have a simple bootstrap loader for consecutive sectors.)

Writing the bootstrap loader requires knowing where the data area starts,

DISK - 2

since I0.SYS is the first thing in the data area. Here are the starting
locations for Microsoft standard formats:
Sector number

FORMAT dec hex track,side,sector
8" single side, single density 30 1E - 1,0,5
8" double side, double density 11 0B 0,1,4
5" single side, double density 7 7 0,0,8
5" double side, double density 10 0A 0,1,3

If you are not using one of Microsoft”s standard formats, you can figure out
the start of the data area using the drive initialization table. The approach

is simply to determine the size of each component preceding the data area, and
add it up.

First, the size of the reserved area. This appears directly in the
initialization table.

Next the size of the directory. Divide the sector size by 32 to find the

number of entries per sector. Divide this result into the number of directory

entries, rounding up if there is any remainder. This is the number of
directory sectors.

The number of sectors in the File Allocation Tables depends on the size of the
data area, which in turn depends on the size of the FAT. Start by assuming a
FAT size of one sector. Compute the start of the data area with

[(FAT size) * (number of FATs)] + (number of directory sectors) -+
(number of reserved sectors) = start of data area

then figure the size of the data area with
(size of disk) - (start of data area) = size of data area.

The number of allocation units on the disk is what actually determines the
size of the FAT. This is simply

(size of data area) / (sectors per allocation unit) = number of allocation
units

Each allocation unit requires 1.5 bytes in the FAT, plus three extra bytes are
needed because allocation units O and 1 are reserved.

[(number of allocation units) * 1.5] + 3 = FAT size (round up if not
integer)

This is a good estimate of the FAT size, but it is still only an estimate.

Now go back and do it all over again, except this time when computing the size
of the data area, use this estimate of FAT size instead of 1. This

re—computation should be repeated until the estimate of FAT size is the same
twice in a row.

If the final calculation of the number of allocation units (a division)
results in a remainder, these are sectors that will go completely unused,
since there are not enough to make a whole allocation unit. To prevent this

DISK - 3

from being a total waste, the number of sectors in the directory can be
adjusted so there are just enough sectors left to fill out the last allocation
unit. For example, the initial selection for single density 8" disks was 64
directory entries. This, however, leaves one sector unused; so instead, one
sector was added to the directory, and the allocation units come out with an
exact number of sectors. This added sector in the directory 1s still not used
very often, but it is available if needed.

STARTING THE TEST

This program tests either the 16K "8/16 RAM" or the 64K RAM from Seattle
Computer Products. It can test up to sixteen 16K or 64K boards in any mix.
The test prompts the user for information on up to sixteen boards to test.

ADDRESS - enter the beginning address (in hexadecimal) of the board. If
you don”t know the addresses of your boards, you can use your memory
board manuals to interpret the settings of the address switches on the
boards.

SIZE - enter eilther "16" or "64" as appropriate for the board.

DELAY - enter a delay time (0 to 9, A to F seconds) to be used between
the write and read passes of the Memory Chip_Test. The delay is designed
to find errors in static memory chips which act "dynamic" and forget data
shortly after it 1s written.

There are some restrictions on the addresses of boards which can be tested.
MEMTEST is a regular MS-DOS program and runs wherever MS-DOS loads it.
Therefore, the test will not allow you to test any memory in which MS-DOS or
MEMTEST are residing. To test all the memory in a system, the bottom 32K will
have to be swapped with some memory at a higher address. The addresses must
also be on a sixteen—byte boundary (i.e. the last digit of the address must be
zZero).

1f less than sixteen boards are to be tested, just enter RETURN when prompted
for the address of the next board to start the test. If sixteen boards are
‘tested, the test will start automatically when information for all sixteen
boards is entered.

TESTS PERFORMED

Read Only Test — The purpose of this test is to check the data path from the
memory chip through the board”s output buffers to the bus. It also checks the
enabling circuits of the board which allow a memory read operation to take
place.

The test operates by assuming the memory board contains random data when the
test begins. Each block is scanned to see if any data bits are always high or
always low. If the condition is found, an error message is displayed. 1In
case the board happened to have bits all high or low, a word of all zeros and
a word of all ones is written to the board to see if both ones and zeros can
be read from each bit.

Data Line Test - This test checks the data path into the board from the bus,
through the input buffers, to the memory chips, then back out to the bus as
does the Read Only Test. The write circuitry is also checked.

This test and the Read Only Test complement one another. The Read Only Test
checks the data path out of the board, this one checks the data path entering
the board.

The test attempts to write and read back every combination of sixteen bits

into selected locations. If no location is found that passes this simple
test, a check is made for data bits that are always high, always low, or
shorted together.

Address Line Test — This test checks the address path from the S-100
connector, through the address buffers, to the memory chips.

The address lines are tested by writing a pattern to each memory location
which is derived from that locations”s address. This makes the test sensitive
to addressing problems such as shorted or open address lines, and allows
identification of the line(s) with a fault.

Memory Chip Test — The purpose of this test is to detect and isolate defective
or marginal memory chips on the board under test.

The test is performed by writing a test pattern into memory and then checking
it immediately. After the pattern has been written to the entire board, the
program waits for the user specified delay (from O to 15 seconds) and then
checks the entire board again. The pattern is then "rotated” and the test is
performed for a total of 17 times. Then, the pattern is complemented and the
test is repeated. After this, a pattern of either all zeros or all ones is
written to every location of the board. Next time the Memory Chip Test checks
the board, the first thing it does is check this pattern for bits that have
changed. This test is intended to find "soft" errors caused by alpha
particles.

TEST SEQUENCE

For each of the boards to be tested, the Read Only Test, Data Line Test, and
Address Line Test are performed. After these tests have been performed on all
boards, the Memory Chip Test is done to each board. The test then loops
indefinitely doing the Memory Chip Test over and over until stopped.

STOPPING THE TEST and READING TEST RESULTS

Any errors which occur while the test is running are stored so they can be
printed later. If control-C is typed anytime during the test, the entire
history of successes or failures for each board is printed and control is
returned to the MS-DOS. Anytime during the Memory Chip Test, MEMTEST will
also accept ESCAPE which will print the success/failure history and resume the
test.

INTERPRETATION OF TEST RESULTS

MEMTEST indicates errors in terms of "bits" and "blocks" which correspond to
the bits and blocks of the SCP 16K "8/16 RAM" and 64K Static RAM boards as
defined in the Trouble-Shooting sections of these board”s manuals.

These boards each have two blocks of memory chips. For the 16K "8/16 RAM" the
blocks are 8K bytes (or 4K words) long, and for the 64K Static RAM the blocks
are 32K bytes (or 16K words) long. All the blocks are sixteen bits wide. The
block number defines the tens digit of a memory chip”s IC number. The bit
number defines the ones digit of a memory chip”s IC number. For example, if
an error is indicated in bit "E" of block "2", U2E would be the bad chip.

When interpreting test results, it must be remembered that the memory test is
a sequential test consisting of several sub-tests. The significance of this
fact is that the validity of sub-tests late in the sequence is dependent upon

successful earlier sub-tests. For this reason, the earliest sub-test in which
a fault is detected can be the most significant. Examples:

If the board fails the Read Only Test, the results of the rest of the tests
can’t be believed since they depend on the data path from the memory chips out
to the data bus to work.

I1f the board fails the Address Line Test, the Memory Chip Test will not
produce reliable results because the address problems will usually cause all
bits of all blocks to fail the Memory Chip Test.

