
Instruction Manual
Model SCP400B,C

Multi-port

Serial Card

For the S-100 Bus

Rev. B,C
~-eattle Computer Products, Inc. ~ 1114 Industry Drive, Seattle, WA. 98188

(206) 575-1830

TABLE OF CONTENTS

Features . • 3

Summary of Switches and Jumpers. • 3

Programming and Using the Multi-port Serial Card • 4

I/0 Ports. 4

Serial Input/Output. • 5

Mode Instruction Definition 5
I

Command Instruction Definition. 6

Status Read Definition. 7

The DTR/CTS Input . 8

Write Restrictions. • 8

I/0 Connections . 9

Configuring the DIP-Headers. .10

Setting the Baud Rates . • 11

Interrupt Controller .11

Operation of the Interrupt Controller12

Interrupt Vectoring. .12

Interrupt Priorities • 13

Interrupt Triggering .21

Interrupt Status .21

Interrupt Cascading. .23

Programming the Interrupt Comtroller. • 25

Initialization Command Words25

Operational Command Words.27

Theory of Operation. .29

One-Yenr Limited Warranty. • 30

..

- 2 -

}

)

Features

> Available in 2 or 4 channel versions.

> The configuration of each channel is fully programmable.

> Four handshaking lines per channel -- two input, two output.

> Headers allow configuration as "modem" or "terminal".

> lndependant baud rate generator for each channel -- sixteen software selectable baud
rates from 50 to 19200 baud.

> Eight level vectored interrupt controller handles receive & transmit interrupt requests
from each channel.

> Interrupt controller may be slaved to our CPU Support Card for fully vectored operation
or it may be used in the "polled mode" retaining the interrupt masking and priority rotation
features of the interrupt controller.

Summary of Switches and Jumpers

THE 8 POSITION DIP-SWITCH

Positions 1 through 4 set the highest 4 bits of the 1/0 port address base (the low four bits
select a particular function on the board). Position 1 sets A7, position 2 sets A6, 3 sets AS,
and 4 sets A4. CLOSED represents a one, and OPEN a zero.

Position 5 (M-S) selects whether the 8259A interrupt controller is acting as master or slave.
CLOSED selects slave mode, OPEN selects master mode. Note that this switch doesn't
actually program the 8259A, it only configures the 8259A 's support circuitry to match the
master or slave mode as programmed.

Position 6 (P-V) selects whether the 8259A operates in the polled or vectored mode.
CLOSED selects the vectored mode and OPEN selects the polled mode. The switch should
only be OPEN if the 8259A on the Multiport Serial card is not to respond to interrupt
acknowledges from the CPU.

Positions 7 and 8 control the wait state generator. To disable wait states entirely, OPEN
position 8 (position 7 doesn't matter). To always insert one wait state, CLOSE position 8 and
OPEN position 7. In systems in which pin 98 of the S-100 bus indicates processor speed, such
as the Seattle Computer Products 8086 CPU board, closing both positions 7 and 8 will enable
a wait state only when the processor is at high speed. Generally, wait states are not needed
in 8080 and Z80 systems; SCP recommends a wait state only when used with our 8086 CPU at
8 MHz.

THE INTERRUPT JUMPER

The set of 10 pairs of pins near the lower left corner of the board selects which S-100
interrupt lines is driven by the "INT" output of the 8259A interrupt controller. To choose one
of the eight VI lines, NMI, or. INT, set the connector block over the pair of pins below the
silk-screened legend corresponding to the desired interrupt line. If interrupts aren't used, set
the connector over two pins in the TOP row. (Don't connect to any of the pins in the
bottom row!)

- 3 -

THE DIP-HEADERS

For normal operation, each pin on the dip-headers should be connected to the pin on the
opposite side, i.e., pin 1 to pin 14, pin 2 to pin 13, etc. Wiring the dip-headers tor any other
mode of operation is too complex to be included in this summary, refer to the section
"CONFIGURING THE DIP-HEADERS".

Programming and Using the Multi-port Serial Card
l!OPorts

The Multiport Serial card requires a total of fourteen 1/0 ports for communication with the CPU.
These fourteen ports can be set on any sixteen port boundary called the BASE. The BASE is selected
using the first four positions of the 8 position dip-switch. These first four positions correspond to
A7 -A4 from left to right. Turning a switch on (closed) selects a one and turning it off (open)
selects a zero.

SW-1 SW-2 SW-3 SW-4 I /0 port address BASE

OFF OFF OFF OFF
OFF OFF OFF ON
OFF OFF ON OFF
OFF OFF ON ON
OFF ON OFF OFF
OFF ON OFF ON
OFF ON ON OFF
OFF ON ON ON

ON OFF OFF OFF
ON OFF OFF ON
ON OFF ON OFF
ON OFF ON ON
ON ON OFF OFF
ON ON OFF ON
ON ON ON OFF
ON ON ON ON

The 1/0 ports are assigned as follows:

iJASE+O, Channel O 8251A data port.

00 hex
10 hex
20 hex
30 hex
40 hex
50 hex
60 hex
70 hex
80 hex
90 hex
AO hex
BO hex
CO hex
DO hex
EO hex
FO hex

BASE+1, Channel O 8251A control/status port.
BASE+2, Channel 1 8251A data port.
BASE+3, Channel 1 8251A control/status port.
l:3ASE+4, Channel 2 8251A data port.
BASE+S, Channel 2 8251A control/status port.
BASE+6, Channel 3 8251A data port.
BASE+ 7, Channel 3 8251 A control/status port.
BASE+8 output only, Channel O baud rate port.
8ASE+9 output only, Channel 1 baud rate port.
BASE+10 output only, Channel 2 baud rate port.
BASE+11 output only, Channel 3 baud rate port.
BASE+12, 8259A interrupt controller (AO :::: 0).
BASE+13, 8259A interrupt controller (AO :::: 1).

Ports BASE+14 and BASE+15 are not used by the Multiport Serial Card and are free for use by other
devices in the system.

- 4 -

i
j

Serial Input/Output

The Multiport Serial card has either two or four 8251A-type USARTs for RS-232 communication.
The two channel version uses ports O and 1, the four channel version uses ports O through 3 •. The
transmit and receive baud rates are always the same on any given channel, but each channel is
independently programmable. See the section on baud rate generators for complete details on how
to program the desired baud rate for each channel.

Each 8251A USART requires two 1/0 ports to communicate with the processor, the data port and
the control/status port. The table below shows where these ports are with respect to the Multiport
Serial card's base port address (BASE).

BASE+O -- channel O data < '(' ((/,/
BASE+1 -- channel O control/status J
BASE+2 - - channel 1 dat.a -z, I' . ,
BASE+3 -- channel 1 control/status J ,, L'-

1
'

1:3ASE+4 - - channel 2 data
BASE+S -- channel 2 contro I/status
BASE+6 -- channel 3 data
11ASE+7 -- channel 3 control/status

Before the 8251A can be used it must be initialized by sending the desired operating parameters to
the control/status port. A total of four bytes are required, the first two reset the 8251A so that it
can accept the Mode and Command instructions. The first write to the control/status port after
reset programs the Mode instruction. All subsequent writes to the control/status port program
Command instructions.

l:3yte 1 - 10110111 (B7 hex)
i3yte 2 - 01110111 (77 hex)
Byte 3 - Mode instruction.
l:3yte 4 - Command instruction.

MODE INSTRUCTION DEFINITION

M7

51

M6

so

MS

PE/0

M4

PEN

M3

L1

M6-M7 50-51 number of transmitter stop bits
00 = Invalid
01 = 1 stop bit
10 = 1.5 stop bits
11 = 2 stop bits

MS PE/0 Parity Even/Odd
0 = Odd parity
1 = Even parity

M4 PEN Parity Enable
0 = No parity bit
1 = Parity bit enabled

M2

LO

M2-M3 LO-L 1 character length (number of data bits)
00 = 5 bits
01 = 6 bits
10 = 7 bits
11=8bits

- 5 -

I
i

M1

B1

MO

BO

MO-M1 BO-B1 baud rate factor
00 = Sync mode, see an 8251 A data sheet.
01 = 1 X
10 = 16 X
11 = 64 X

SO-S1 programs the number of stop bits sent by the transmitter. The receiver never requires
more than one stop bit.

PE/0 selects even or odd parity.

PEN selects whether or not a parity bit is transmitted by the transmitter and expected by the
receiver. If parity is enabled, even or odd parity is selected by PE/0. If no parity is selected,
PE/0 has no effect.

LO-L 1 selects the number of data bits transmitted by the transmitter and expected by the
receiver. The start, stop, and parity bit (if any) are not counted in the number of data bits •

. BO-B1 The baud rate factor selects how many clocks per transmitted or received bit. 16 Xis
almost universally used but 64 X provides a simple way to switch between two baud rates a
factor of four apart (1200 and 300 for example). The baud rates given in the "SETTING THE
BAUD RATES" section assume 16 X baud rate factor. 1 X should only be used for transmission
because slight differences in baud rate between two devices can cause serious reception
errors if 1 X is used. B0-81 = 00 selects the synchronous mode of operation, see an 8251A
data sheet for more information.

COMMAND INSTRUCTION DEFINITION

C7

X

C6

IR

cs

DSR

C7 X = don't care.

C4

ER

C3

SBRK

C2

RxE

C1

CTS

This bit is used with the sync mode. See an 8251A data sheet.
C6 IR Internal Reset

0 = No operation
1 = Reset the 825J A.

CS OSR/RTS Data Set l<eady /Request To Send
i O = DSR or RTS line inactive (-12 volts)

1 = DSR or RTS line active (+12 volts)
C4 ER Error Reset

0 = No operation
1 = Reset error flags (PE, OE, FE)

C3 SBRK Send BReaK
0 = Normal operation

co

TxE

1 = Send break (continuous space [-12 volts] from transmitter output)
C2 RxE Receiver Enable ·

0 = disable receiver
1 = enable receiver

C1 CTS/DTR Clear To Send/Data Terminal Ready
0 = CTS or DTR line inactive (-12 volts)
1 = CTS or DTR line active (+12 volts)

CO TxE Transmitter Enable ·
0 = disable transmitter
1 = enable transmitter

IR = 1 puts the 8251A into an "idle" mode waiting for a new Mode instruction. After reset the
8251A must be reinitialized before it can be used.

- 6 -

j

DSR/RTS controls the level on either the DSR line or the RTS line depending on whether the
channel is configured as a "modem" (computer) or a "terminal". If configured as a "modem"
the DSR line (RS-232 pin 6) is driven, if configured as a "terminal" the RTS line (RS-232 pin 4)
is driven. See the section on "CONFIGURING THE DIP-HEADERS" to configure the channel as
a "modem" or "terminal".

ER resets the three error flags PE, OE, and FE.

SBRK sends a continuous space level (-12 volts) on the data output line. If configured as a
"modem" (computer) the data output line is the RxD line (RS-232 pin 3), if configured as a
"terminal" the data output is the TxD line (RS-232 pin 2).

RxE = 0 turns off the receiver. In the off state the RxRDY status bit is inhibited as well as the
RxRDY lnterupt Request to the 8259A interrupt controller.

CTS/DTR controls the level on either the CTS line or the DTR line depending on whether the
channel is configured as a "modem" (computer) or a "terminal". If configured as a "modem"
the CTS line (RS-232 pin 5) is driven, if configured as a "terminar the DTR line (RS-232 pin
20) is driven. See the section on 'CONFIGURING THE DIP-HEADERS" to configure the channel
as a "modem" or "terminal".

TxE = 0 turns oft the transmitter. In the off state the TxRDY lnterupt Request to the 8259A
interrupt controller is inhibited immediately but the transmitter will still accept a character to
fill its buffer although it will not transmit it until the transmitter is turned back on.

ST A TUS READ DIFIN ITION

The status of the 8251A can be read from the control/status port. The various bits indicate the
condition on the receiver, transmitter, and error conditions.

S1 SO S7

RTS/DSR

S6

BO

55

FE

S4

OE

S3

PE

S2

TxE RxRDY TxRDY

S7 RTS/DSR Request To Send/Data Set Ready
0 = RTS or DSR line is inactive (-12 volts)
1 = RTS or DSR line is active (+12 volts)

56 BO Break Detect
0 = Receiver is receiving normal data
1 = Receiver is receiving a break level

(continuous space, -12 volts)
SS FE Framing Error

0 = No error
1 = A valid stoµ bit was not received after the last character

54 OE Overrun Error
0 = No error
1 = The last character overran the previous one.

S3 PE Parity Error
0 = No error
1 = The last character received had incorrect parity.

S2 TxE Transmitter Empty
0 = Transmitter not empty
1 = Transmitter has sent all characters out

51 RxRDY Receiver ReaDY
O = No character has been received
1 = Receiver has a character to read

- 7 -

SO TxRDY Transmitter ReaDY
0 = Transmitter is not ready to accept a character
1 = Transmitter can accept a character

RTS/DSR indicates the level on either the RTS line or the DSR line depending on whether the
channel is configured as a "modem• (computer) or a "terminal". If configured as a "modem"
the level on the RTS line (RS-232 pin 4) is indicated, if configured as a "terminalw the level on
the DSR line (RS-232 pin 6) is indicated. See the section on "CONFIGURING THE
DIP-HEADERS" to configure the channel as a "modem• or ~terminal".

BD is high when the 8251A detects a continuous break level (-12 volts) on the data input
line. If configured as a "modem" (computer) the data input line is the TxD line (RS-232 pin 2),
if configured as a "terminal" the data input line is the RxD line (RS-232 pin 3).

FE indicates framing error. If this bit is high, the receiver didn't detect a valid stop bit after
the data and parity bits.

OE indicates overrun error. If this bit is high, the CPU didn't read the character received
before the last character.

PE indicates parity error. If this bit is high, parity of the last character didn't match its parity
bit.

TxE = 1 indicates the transmitter is empty. It has sent all the data given to it.

RxRDY = 1 indicates the receiver has a character to read.

TxRDY = 1 indicates the transmitter is ready to accept a character for transmission.

THE DTR/CTS INPUT

The DTR/CTS input can't be read as part of the status as the RTS/DSR input can. Instead, the
DTR/CTS input has direct control over the operation of the transmitter. It has the same effect as
the Transmitter Enable bit of the Command instruction. When this line goes inactive (-12 volts) the
transmitter will stop transmitting after it transmits the contents of its buffer. The transmitter will
accept a character to fill its buffer although it will not transmit it till DTR/CTS goes active once
more. When the channel is configured as a "modem" (computer) the DTR line (RS-232 pin 20)
controls the transmitter, when the channel is configured as a "terminal" the CTS line (RS-232 pin 5)
controls the transmitter. See the section on "CONFIGURING THE DIP-HEADERS' for more
information.

WRITE RESTRICTIONS

1 > Data may only be written to the 8251A when TxRDY = 1.
2> Mode and Command instructions require 4uS recovery time between writes. This could be a
problem because inline code can possibly output faster than.this.

MOV
OUTB

AL, OB7H
BASE+7

4 cycles
10 eye I es 14 cycles total

For example, the MOV & OUTB instructions shown require 14 clock cycles for execution minus one
cycle for the write pulse width gives a total time between writes of 13 cycles or 1.625uS for an
8MHz 8086 with 16 bit memory. We therefore need to add 2.375uS or 19 more clocks to meet the
requirement. Any instruction requiring 19 or more clocks could be placed between writes to
provide the delay. The only one byte instruction which meets this requirement is CMPB which takes
22 clocks. This instruction could cause problems if the SI, DI, OS, and ES registers aren't properly
set because it would do two random address reads. If two bytes are allowed a register PUSH & POP

- 8 -

)

J

takes 19 clocks but requires a valid stack. Possibly the. least offensive instruction is an AAD
instruction. This requires two bytes and only modifies the AX register. AAD requires 60 clocks
which is a bit excessive but does meet the requirement. With a 4MHz 8086 only 3 clocks are
required. A NOP fills the requirement nicely. If you are ever planning to upgrade to an 8MHz 8086
it's a good idea to make the software 8MHz compatible so it won't have to be modified in the
future. Possibly the best solution is to use a loop to initialize:

MOV CX,4
MOV S I , I N I TAB L E

IN I TLOOP: SEG cs
LODB
OUTB BASE+7
LOOP INITLOOP

The actual loop takes 41 clocks (5.125uS @ 8MHz) which solves the write recovery time
requirement. The whole routine requires only 16 bytes including the table compared to 22 bytes for
inline code with two-byte delays.

A 4MHZ ZBO doesn't require any delays because 18 clocks satisfy the requirements (including two
for the write pulse). lnline requires 18 clocks, seven for the load and eleven for the output. OTIR
requires 21 per loop.

1/0 CONNECTIONS

Each channel has its own connector at the top of the board. Channel O uses JO, channel 1 uses J1,
etc. A cable with appropriate connectors to extend the connector at the top of the board to the
back panel of the computer is required for each channel. The cable should have a 26 pin female
socket transition connector on one end to connect to the connector on the board and a 25 pin
female "D" connector on the other end to mount on the back panel of the computer. Cables are
available from Seattle Computer Products.

Serial pinouts:

Dl325S abbr. name JO-J3

1 AA CG Chassis Ground 1
2 BA TxD Transmitter Data 3
3 BB RxD Receiver Data 5
4 CA RTS Request To Send 7
5 CB CTS Clear To Send 9
6 cc DSR Data Set Ready 11
7 AB SG Signal Ground 13
8 CF DCD Data Carrier Detect 15
9 17

10 19
11 21
12 23
13 25
14 2
15 4
16 6
17 8
18 10
19 12
20 CD DTR Data Terminal Ready 14
21 16
22 18

- 9 -

23
24
25

no connection

20
22
24
26

Configuring the DIP Headers

Each channel has a 14 pin dip-header which allows the channel to be configured as a "modem" or a
'terminal". If the channel is to be connected to a terminal it should be configured to be a "modem".
If the channel is to be connected to a modem it should be configured as a "terminal".

Configuring a channel as a "modem".

Connect pin 1 to pin 14
2 13
3 12
4 11
5 10
6 9
7 8

Configuring a channel as a "terminal":

Connect pin 1 to pin 13
2 14
3 11
4 12
6 8
7 9

Custom configurations -- the functions of the various pins are given below so that the user may
reconfigure the channel to solve various non-standard connection problems.

Dip-header pin

1
2

3
4
5
6
7
8
9

10
11
12
13
14

function

serial data input to receiver \ IA r J l~ +L~ /,, .
serial data output from transmitter • 1.,\,\-y '-'t J:,,fv'~'­

(~

output handshaking line (controlled by DSR/RTS bit of Command Instruction)
input handshaking line (read as RTS/DSR bit of Status byte)
+12 volts for tying unused inputs and RS-232 lines high
input handshaking line (DTR/CTS input for controlling transmitter)
output handshaking line (controlled by CTS/DTR bit of Command Instruction)
CTS (RS-232 pin 5)
DTR (RS-232 pin 20)
DCD (RS-232 pin 8)
RTS (KS-232 pin 4)
DSR (RS-232 pin 6)
RxD (RS-232 pin 3)
TxD (RS-232 pin 2)

- 10 -

Setting the Baud Rates

Each of the four channels has its own software controlled baud rate generator. The baud rate for
each channel is set by sending four bits to the channel's baud rate port. The 1/0 port address of the
baud rate ports relative to the Multiport Serial card's base port number (BASE) is given in the table
below:

Channel

0
1
2
3

Baud Rate Port

BASE+8

BASE+9
BASE+lO
BASE+ll

The baud rate is determined by the low 4 bits of the byte sent to the baud rate port (the upper four
bits have no effect). These baud rates assume 16X baud rate factor (see the "MODE INSTRUCTION
DEFINITION" section).

bit 0-3 baud rate

0 hex 50

1 hex 75
2 hex 110
3 hex 134.5
4 hex 150
5 hex 300
6 hex 600
7 hex 1200
8 hex 1800
9 hex 2000
A hex 2400
B hex 3600
C hex 4800
D hex 7200
E hex 9600
F hex 19200

Interrupt Controller

The Multiport Serial card has an 8259A type interrupt controller to provide interrupt masking,
vectoring, and priority rotation for the eight possible interrupt request sources from the board. It
can operate in one of three modes as described briefly below. A full description of these modes as
well as the subtle nuances of operation of the 8259A are included in the pages ahead.

Vectored Mode. When the board is used in a system which provides correct interrupt acknowledge
status (slNT A) during all two or three bytes of the interrupt acknowledge sequence it can be used in
the vectored mode in which each of the eight interrupt request sources listed below automatically
vector to the proper interrupt handler routine. Systems which provide correct interrupt
acknowledge status include those which use the Seattle Computer Products 8086 CPU and/or the
CPU Support card (Rev. F or higher). Most 8080 and Z80 CPUs do NOT provide correct interrupt
acknowledge status during the second and third bytes of the three byte CALL sequence used by the
8259A and the system must include a CPU Support card to provide correct interrupt acknowledge
status if vectored operation is required. If used with a CPU Support card, the Multiport Serial card
can be slaved to the CPU Support card's 8259A il'lterrupt controllers to provide complete software
priority structuring of all the interrupting devices in the system. In this mode "P-V" switch should be
ON so that the 8259A can operate in the vectored mode. The "M-S" switch should be ON if the
8259A is slaved to a CPU Support card, and OFF otherwise.

- 11 -

Z80 Mode 1. If the Multiport Serial card is to be used in a Z80 system, interrupt driven operation
can be acheived without a CPU Support card by using the Z80 interrupt mode 1. In this mode the
Z80 automatically CALLs location 0038 hex without the need for an interrupt acknowledge
sequence. The interrupt handler routine at 0038 hex must poll the 8259A to find out which interrupt
request was responsible for the interrupt and act accordingly. In this mode the "P-V" switch should
be OFF because interrupt vectoring isn't used. Since the 8259A can't be used as a slave in this
position; the "M-S" switch should be OFF.

Polled Mode. If interrupt driven operation isn't possible or isn't desired, the 8259A can still be used
in the polled mode. In this mode all the masking, priority rotation, and other special features of the
8259A are available to simplify the software drivers for the Multiport Serial card. The "P-V" switch
should be OFF because interrupt vectoring isn't used. The "M-S" switch should also be OFF because
the 8259A can't be used as a slave in this mode.

The eight interrupt request inputs to the 8259A interrupt controller are as follows:

IRO - RxRDY O (Receiver Ready from channel 0).
IR1 - RxRDY 1.
IR2 - RxRDY 2.
IR3 - RxRDY 3.
IR4 - TxRDY O (Transmitter Ready from channel 0).
IRS - TxRDY 1.
IR6 - TxRDY 2.
IR7 - TxRDY 3.

The 8259A requires two of the Multiport Serial card's sixteen 1/0 ports for communication with the

processor.

BASE+12 (AO = 0)
BASE +13 (AO = 1)

OPERATION OF THE INTERRUPT CONTROLLER

Interrupt operation of the 8259A falls under five main categories: vectoring, priorities, triggering,
status, and cascading. Each of these categories use various modes and commands. This section will
explain the operation of these modes and commands. For clarity of explanation, however, the
actual programming of the 8259A isn't covered in this section but in "PROGRAMMING THE
INTERRUPT CONTROLLER".

INTERRUPT VECTORING

Each IR input of the 8259A has an individual interrupt-vector address in memory associated with it.
Designation of each address depends upon the initial programming of the 8259A. The interrupt
sequence and addressing of an 8080 system differs from that of an 8086 system. Thus, the 8259A
must be intially programmed in either the 8080 or 8086 mode of operation to insure the correct
interrupt vectoring.

8080 MOOE

This mode applies to 8080, 8085, and Z80 microprocessors. After an interrupt request in the 8080
mode, the 8259A will output to the data bus the opcode for a CALL instruction and the address of
the desired routine. This is in response to a sequence of three INT A (Interrupt Acknowledge) pulses
issued by the CPU after the master 8259A has activated the INT line of the S-100 bus.

- 12 -

The first INT A pulse to the 8259A enables the CALL opcode CD hex onto the data bus. It also
resolves IR priorities and effects operation in the cascade mode, which will be covered later.

During the second and third INT A pulses, the 8259A conveys a 16-bit interrupt-vector address to
the 8080. The interrupt-vector addresses for all eight levels are selected when initially programming
the 8259A. However, only one address is needed for programming. Interrupt-vector addresses of
IRO-IR7 are automatically set at equally spaced intervals based on the one programmed address.
Address intervals are user definable to 4 or 8 bytes apart. If the service routine for a device is
short it may be possible to fit the entire routine within an 8-byte interval. Usually, though, the
service routines require more than 8 bytes. So, a 4 byte interval is used to store a Jump intruction
which directs the CPU to the appropriate routine. The 8-byte interval maintains compatibility with
current 8080 Restart (RST) instruction software, while the 4-byte interval is best for a compact
jurrp table. If the 4-byte interval is selected, then the 8259A will automatically insert bits AO-A4.
This leaves AS-A15 to be programmed by the user. If the 8-byte interval is selected, the 8259A will
automatically insert bits AO-AS. This leaves only A6-A15 to be programmed by the user.

The LSB of the interrupt-vector address is placed on the data bus during the second INT A pulse.

The MSB of the interrupt-vector address is placed on the data bus during the third INTA pulse.

8086 MODE

Upon interrupt in the 8086 mode, the 8259A will output a single interrupt-vector byte to the data
bus. This is in response to two INT A (Interrupt Acknowledge) pulses issued by the 8086 after the
master 8259A has activated the INT line of the S-100 bus.

The first INT A pulse is used only for set-up purposes internal to the 8259A. As in the 8080 mode,
this set-up includes priority resolution and cascade mode operations which will be covered later.
Unlike the 8080 mode, no CALL opcode is placed on the data bus.

The second INT A pulse is used to enable the single interrupt-vector byte onto the data bus. The
8086 uses this interrupt-vector byte to select one of 256 interrupt "types" in 8086 memory.
Interrupt type selection for all eight IR levels is made when intially programming the 8259A.
However, reference to only one interrupt type is needed for programming. The upper 5 bits of the
interrupt vector byte are user definable. The lower 3 bits are automatically inserted by the 8259A
depending upon the IR level.

Contents of the interrupt-vector byte for 8086 type selection is put on the data bus during the
second INT A pulse.

INTERRUPT PRIORITIES

A variety of modes and commands are available for controlling interrupt priorities of the 8259A.
All of them are programmable, that is, they may be changed dynamically under software control.
With these modes and commands, many possibilities are conceivable, giving the user enough
versatility for almost any interrupt-controlled application.

FULLY NESTED MODE

The fully nested mode of operation is a general purpose priority mode. This mode supports a
multilevel-interrupt structure in which priority order of all eight IR inputs are arranged from highest
to lowest.

Unless otherwise programmed, the fully nested mode is entered by default upon intialization. At
this time, IRO is assigned the highest priority through IR7 the lowest. The fully nested mode,
however, is not confined to this IR structure alone. Once past initialization, other IR inputs can be
assigned highest priority also, keeping the multilevel-interrupt structure of the fully nested mode.

- 13 -

Further explanation of the fully nested mode, in this section, is linked with information of general
8259A interrupt operations. This is done to ease explanation to the user in both areas.

In general, when an interrupt is acknowledged, the highest priority request is determined from the
IRR (Interrupt Request Register). The interrupt vector is then placed on the data bus. In addition, the
corresponding bit in the ISR (In-Service Register) is set to designate the routine in service. This ISR
bit remains set until an EOI (End-Of-Interrupt) command is issued to the 8259A. EOl's will be
explained in greater detail shortly.

In the fully nested mode, while an ISR bit is set, all further requests of the same or lower priority
are inhibited from generating an interrupt to the microprocessor. A higher priority request,
though, can generate an interrupt, thus vectoring program execution to its service routine.
Interrupts are only acknowledged, however, if the microprocessor has previously executed an
"Enable Interrupts" instruction. This is because the interrupt request pin on the microprocessor gets
disabled automatically after acknowledgement of any interrupt. The assembly language instruction
used to enable interrupts is "El". Interrupts can be disabled by using "DI". When a routine is
completed a "return" instruction is executed, "RET" for 8080 and "IRET" for 8086.

The figure below illustrates the correct usage of interrupt related instructions and the interaction
of interrupt levels in the fully nested mode.

IR3
INTERRUPT

MAIN PROGRAM

Fully Nested Mode Example

IR1
INTER·

RUPT

IR3 SERVICE
ROUTINE

'--------1 RET OR IRET

- 14 -

IR1 SERVICE
ROUTINE
---,

El OR STI

EOI

,__ ___ RET OR IRET

)

)

Assuming IRO has the highest priority and IR7 the lowest, the sequence is as follows. During the
main program, IR3 makes a request. Since interrupts are enabled, the microprocessor is vectored
to the IR3 service routine. During the IR3 routine, IR1 asserts a request. Since IR1 has higher
priority than IR3, an interrupt is generated. However, it is not acknowledged because the
microprocessor disabled interrupts in response to the IR3 interrupt. The IR1 interrupt is not
acknowledged until the "Enabled Interrupts" instruction is executed. Thus the IR3 routine has a
"protected" section of code over which no interrupts (except non-maskable) are allowed. The IR1
routine has no such "protected" section since an "Enable Interrupts" instruction is the first one in its
service routine. Note that in this example the IR1 request must stay active until it is acknowledged.
This is covered in more depth in the "Interrupt Triggering" section.

What is happening to the ISR register? While in the main program, no ISR bits are set since there
aren't any interrupts in service. When the IR3 interrupt is acknowledged, the ISR3 bit is set. When the
IR1 interrupt is acknowledged, both the ISR1 and the ISR3 bits are set, indicating that neither routine
is complete. At this time, only IRO could generate an interrupt since it is the only input with a
higher priority than those previously in service. To terminate the IR1 routine, the routine must
inform the 8259A that it is complete by resetting its ISR bit. It does this by executing an EOI
command. A "return" instruction then transfers execution back to the IR3 routine. This allows
IRO-IR2 to interrupt the IR3 routine again, since ISR3 is the highest ISR bit set. No further interrupts
occur in the example so the EOI command resets ISR3 and the "return' instruction causes the main
program to resume at its pre-interrupt location, ending the example.

A single 8259A is essentially always in the fully nested mode unless certain programming conditions
disturb it. The following programming conditions can cause the 8259A to go out of the high to low
priority structure of the fully nested mode.

The automatic EOI mode

The special mask mode

A slave with a master not in the special fully nested mode

These modes will be covered in more detail later, however, they are mentioned now so the user
can be aware of them. As long as these program conditions aren't inacted, the fully nested mode
remains undisturbed.

END OF INTERRUPT

Upon completion of an interrupt service routine the 8259A needs to be notified so its ISR can be
updated. This is done to keep track of which interrupt levels are in the process of being serviced
and their relative priorities. Three different End-Of-Interrupt (EOI) formats are available for the
user. These are: the non-specific EOI command, the specific EOI command, and the automatic EOI
Mode. Selection of which EOI to use is dependent upon the interrupt operations the user wishes to
perform.

Non-Specific EOI Command

A non-specific EOI command sent from the microprocessor lets the 8259A know when a service
routine has been completed, without specification of its exact interrupt level. The 8259A
automatically determines the interrupt level and resets the correct bit in the ISR.

To take advantage of the non-specific EOI the 8259A must be in a mode of operation in which it
can predetermine in-service routine levels. For this reason the non-specific EOI command should
only be used when the most recent level acknowledged and serviced is always the highest priority
level. When the 8259A receives a non-specific EOI command, it simply resets the highest priority
ISR bit, thus confirming to the 8259A that the highest priority routine of the routines in service is
finished.

- 15 -

The main advantage of using the non-specific EOI command is that IR level specification isn't
necessary as in the "Specific EOI Command", covered shortly. However, special consideration
should be taken when deciding to use the non-specific EOI • Here are two program conditions in
which it is best not used:

Using the set priority command within an interrupt service routine.

Using a special mask mode.

These conditions are covered in more detail in their own sections, but are listed here for the users
reference.

Specific EOI Command

A specific EOI command sent from the microprocessor lets the 8259A know when a service routine
of a particular interrupt level is completed. Unlike a non-specific EOI command, which
automatically resets the highest priority ISR bit, a specific EOI command specifies an exact ISR bit
to be reset. One of the eight IR levels of the 8259A can be specified in the command.

The reason the specific EOI command is needed, is to reset the ISR bit of a completed service
routine whenever the 8259A isn't able to automatically determine it. An example of this type of
situation might be if the priorities of the interrupt levels were changed during an interrupt routine
("Specific Rotation"). In this case, if any other routines were in service at the same time, a
non-specific EOI might reset the wrong ISR bit. Thus the specific EOI command is the best bet in
this case, or for that matter, any time in which confusion of interrupt priorities may exist. The
specific EOI command can be used in all conditions of 8259A operation, including those that
prohibit non-specific EOI command usage.

Automatic EOI Mode

When programmed in the automatic EOI mode, the microprocessor no longer needs to issue a
command to notify the 8259A if it has completed an interrupt routine. The 8259A accomplishes this
by performing a non-specific EOI automatically at the trailing edge of the last INT A pulse (third
pulse in 8080, second in 8086).

The obvious advantage of the automatic EOI mode over the other EOI command is that no
command has to be issued. In general, this simplifies programming and lowers code requirements
within interrupt routines.

However, special consideration should be taken when deciding to use the automatic EOI mode
because it disturbs the fully nested mode. In the automatic EOI mode the ISR bit of a routine in
service is reset right after it's acknowledged, thus leaving no designation in the !SR that a service
routine is being executed. If any interrupt request occurs during this time (and interrupts are
enabled) it will get serviced regardless of its priority, low or high. The problem of "over nesting" is
when an IR input keeps interrupting its own routine, resulting in unnecessary stack pushes which
could fill the stack in a worst case condition. This is not usually a desired form of operation!

So what good is the automatic EOI mode with problems like those just covered? Well, again, like
the EOls, selection is dependent upon the application. On the Multiport serial card, all the IR inputs
are connected to TxRD.)' o'l RxRDY outputs from the 8251A USARTs. Usually these interrupt
requests are serviced a~'d thus turned off before executing an "El" instruction so that the "over
nesting" problem doesn't happen.

AUTOMATIC ROT A TION - EQUAL PRIORITY

Automatic rotation of priorities serves in applications where the interrupting devices are of equal
priority, such as communications channels. The concept is that once a peripheral is serviced, all
other equal priority peripherals should be given a chance to be serviced before the original

- 16 -

.\

J

peripheral is serviced again. This is accomplished by automatically assigning a peripheral the lowest
priority after being serviced. Thus, in worst case, the device would have to wait until all other
devices are serviced before being serviced again.

There are two methods of accomplishing automatic rotation. One is used in conjunction with the
non-specific EOI, "non-specific EOI with priority rotation command". The other is used with the
automatic EOI mode, "rotate in automatic EOI mode".

Non-specific EOI with priority rotation command

When the non-specific EOI with priority rotation command is issued, the highest ISR bit is reset as
in a normal non-specific EOI command. After it's reset though, the corresponding IR level is
assigned lowest priority. Other IR priorities rotate to conform to the fully nested mode based on
the newly assigned low priority.

The figures below show how the non-specific EOI with priority rotation command effects the
interrupt priorities. Let's assume the IR priorities were assigned with IRO the highest and IR7 the
lowest, as in the top figure. IR6 and IR4 are already in service but neither is completed. Being the
higher priority routine, IR4 is necessarily the routine being executed. During the IR4 routine a
non-specific EOI with priority rotation command is executed. When this happens, bit 4 in the ISR is
reset. IR4 then becomes the lowest priority and IRS becomes the highest as in the lower figure.

IS7 IS6 I SS IS4 IS3 I S2 IS1 ISO
In-Service Register: 0 1 0 1 0 0 0 0 before

Priority: 7 6 5 4 3 2 1 0 command

• • lowest highest
priority priority

157 IS6 ISS IS4 IS3 IS2 IS 1 ISO
In-Service Register: 0 1 0 0 0 0 0 0 after

Priority: 2 1 0 7 6 5 4 3 command

• • highest lowest
priority priority

Example of Non-Specific EOI with Priority Rotation

Automatic EUI with Priority Rotation

The automatic EOI with priority rotation mode works much like the rotate on non-specific EOI
command. The main difference is that priority rotation is done automatically after the last INT A
pulse of an interrupt request. To enter or exit this mode, "enable rotation at automatic EOI" and
"disable rotation at automatic EOI" commands are provided. After that, no commands are needed
as with the normal automatic EOI mode. However, it must be remembered that when using any
form of the automatic EOI mode, special consideration should be taken. Thus, the problem with
"over-nesting" in the automatic EOI mode also applies to the automatic EOI with priority rotation
mode.

SPECIFIC ROTATION - SPECIFIC PRIORITY

Specific rotation gives the user versatile capabilities in interrupt controlled operations. It serves in

- 17 -

those applications in which a specific device's interrupt priority must be altered. As opposed to
automatic rotation which automatically sets priorities, specific rotation is completely user
controlled. That is, the user selects which interrupt level is to receive lowest or highest priority.
This can be done during the main program or within interrupt routines. Two specific rotation
commands are available to the user, the "set priqrity• command and the "specific EOI with priority
rotation" command. '

Set Priority Command

The set priority command allows the programmer to assign an IR level the lowest priority. All other
interrupt levels will conform to fully nested mode based on newly assigned low priority.

An example of how the set priority command w9rks is shown in the figures below. These figures
show the status of ISR and the relative priorities of the interrupt levels before and after the set
priority command. Two interrupt routines are shown to be in service in the top figure. Since IR2 is
the highest priority, it is necessarily the routine being executed. During the IR2 routine, priorities
are altered so that IRS is the highest. This is done simply by issuing the set priority command to the
8259A. In this case, the command specifies IR4 as being the lowest priority. The result of this set
priority command is shown in the bottom figure. Even though IR7 now has higher priority than IR2,
it won't be acknowledged until the IR2 routine is finished (via EOI). This is because priorities are
only resolved upon an interrupt request or an interrupt acknowledge sequence. If a higher priority
request occurs during the IR2 routine, then priorities are resolved and the highest will be
acknowledged.

IS7 IS6 ISS IS4 IS3 IS2 IS1 ISO
In-Service Register: 1 0 0 0 0 1 0 0 before

Priority: 7 6 5 4 3 2 1 0 comnand

A A
lowest highest

priority priority

IS7 IS6 ISS IS4 IS3 IS2 IS1 ISO

In-Service Register: 1 0 0 0 0 1 0 0 after
Priority: 2 1 0 7 6 5 4 3 comnand

• • highest lowest
priority priority

Example of the Set Priority Comnand

When completing a service routine in which the set priority command is used, the correct EOI must
be issued. The non-specific EOI command shouldn't be used in the same routine as a set priority
command. This is because the non-specific EOI command resets the highest ISR bit, which, when
using the set priority command, is not always the most recent routine in service. The automatic
EOI mode, on the other hand, can be used with the set priority command. This is because it
automatically performs a non-specific EOI before the set priority command can be issued. The
specific EOI command is the best bet in most cases when using the set priority command within a
routine. By resetting the specific ISR bit of a routine being completed, confusion is eliminated.

Specific EOI with priority rotation command

The Specific EOI with priority rotation command is literally a combination of the set priority
command and the specific EOI command. Like the set priority command, a specified IR level is

- 18 -

assigned lowest priority. Like the specific EOI command, a specified level will be reset in the ISR.
Thus the specific EOI with priority rotation command accomplishes both tasks in only one
command.

If it is not necessary to change IR priorities prior to the end of an interrupt routine, then this

command is advantageous. Since an EOI command must be executed anyway (unless in the
automatic EOI mode), why not do both at the same time?

INTERRUPT MASKING

Disabling or enabling interrupts can be done by other means than just controlling the
microprocessor's interrupt request pin. The 8259A has an IMR (Interrupt Mask Register) which
enhances interrupt control capabilities. Rather than all interrupts being disabled or enabled at the
same time, the IMR allows individual IR masking. The IMR is an 8-bit register, bits 0-7 directly
correspond to IRO -IR7.

There are various uses for masking off individual IR inputs. One example is when a portion of a
main routine wishes only to be interrupted by specific interrupts. Another might be disabling higher
priority interrupts for a portion of a lower priority service routine. If you have a two channel
version of the Multiport Serial card, the unused IR inputs to the 8259A can be masked off. The
possibilities are many.

When an interrupt occurs while its IMR bit is set, it isn't necessarily forgotten. For, as stated earlier,
the IMR acts only on the output of IRR. Even with an IR input masked it is still possible to set the
!RR. Thus, when resetting an IMR, if its IRR bit is set it will then generate an interrupt. This is
providing, of course, that other priority factors are taken into consideration and the IR request
remains active. If the IR request is removed before the IMR is reset, no interrupt will be
acknowledged.

Special Mask Mode

In various cases, it may be desirable to enable interrupts of a lower priority than the routine in
service. Or, in other words, allow lower priority devices to generate interrupts. However, in the
fully nested mode, all lR levels of priority below the routine in service are inhibited. So what can be
done to enable them?

Well, one method could be using an EOI command before the actual completion of a routine in
service. ~ut beware, doing this may cause an "over nesting" problem, similar to in the automatic
EOI mode. In addition, resetting an ISR bit is irreversible by software control, so lower priority IR
levels could only be later disabled by setting the IMR.

A much better solution is the special mask mode. Working in conjunction with the IMR, the special
mask mode enables interrupts from all levels except the level in service. This is done by masking
the level that is in service and then issuing the special mask mode command. Once the special mask
mode is set, it remains in effect until reset.

The figure below shows how to enable lower priority interrupts by using the Special Mask Mode
(Slv\M). Assume that IRO has highest priority when the main program is interrupted by IR4. In the IR4
service routine an enable interrupt instruction is executed. This only allows higher priority interrupt
requests to interrupt IR4 in the normal fully nested mode. Further in the IR4 routine, bit 4 of the
IM R is masked and the special mask mode is entered. Priority operation is no longer in the fully
nested mode. All interrupt levels are enabled except for IR4. To leave the special mask mode, the
sequence is executed in reverse.

- 19 -

MAIN PROGRAM

~
EIOP

IR4- I

~
I

I
I

IR4 SE.RVICE
ROUTINE

1

~·

I
l

l
I MASI IR4

SET SMM I
1

[
L

I
RESET SMM

L
UNMASK IR4

C
l

EOI

l
RET OR IRET

IR0-3 ENABLED
IR4-7 DISABLED

IR0-3, 5- 7 ENABLED
IR4 DISABLED

IR0-3 ENABLED
IR4-7 DISABLED

Example of Special Mask Mode

Precautions must be taken when exiting an interrupt service routine which has used the special
mask mode. A non-specific EOI command can\ be used when in the special mask mode. This is
because a non-specific won't clear an ISR bit of an interrupt which is masked when in the special
mask mode. In fact, the bit will appear invisible." If the special mask mode is cleared before an EOI
command is issued a non-specific EOI command can be used. This could be the case in the example
shown in the figure above, but, to avoid any confusion it's best to use the specific EOI whenever
using the special mask mode.

- 20 -

)

it must be remembered that the speciai mask mode applies to all masked levels when set. Take, for
instance, IR1 interrupting IR4 in the previous example. If this happened while in the special mask
mode, and the IR1 routine masked itself, all interrupts would be enabled except IR1 and IR4 which
are masked.

INTERRUPT TRIGGERING

There are two classical ways of sensing an active interrupt request: a level sensitive input or an
edge sensitive input. The 8259A gives the user the capability for either method with the edge
triggered mode and the level triggered mode. Selection of one of these interrupt triggering
methods is done during the programmed initialization of the 8259A.

LEVEL TRIGGERED MODE

When in the level triggered mode the 8259A will recognize any active level on an IR input as an
interrupt request. If the IR input remains active after an EOI command has been issued (resetting its
ISR bit), another interrupt will be generated. This is providing, of course, the processor INT pin is
enabled. Unless repetitous interrupt generation is desired, the IR input must be brought to an
inactive state before an EOI command is issued in its service routine.

Caution should be taken when using the automatic EOI mode and the level triggered mode
together. Since in the automatic EOI mode an EOI is automatically performed at the end of the
interrupt acknowledge sequence, if the processor enables interrupts while an IR input is still active,
an interrupt will occur immediately. To avoid this situation interrupts should be kept disabled until
the end of the service routine or until the IR input goes inactive.

EDGE TRIGGERED MODE

\
) When in the edge triggered mode, the 8259A will only recognize interrupts if generated by an

inactive to active transition on an IR input. The edge triggered mode incorporates an edge lockout
method of operation. This means that after the rising edge of an interrupt request and the
acknowledgement of the request, the active level of the IR input won't generate further interrupts
on this level. The user needn't worry about quickly removing the request after acknowledgement in
fear of generating further interrupts as might be the case in the level triggered mode. Before
another interrupt can be generated the IR input must return to the inactive state.

Like the level triggered mode, in the edge triggered mode the request on the IR input must remain
active until after the falling edge of the first INTA pulse for that particular interrupt. Unlike the
level triggered mode, though, after the interrupt request is acknowledged its IRR latch is disarmed.
Only after IR input goes inactive will the IRR latch again become armed, making it ready to receive
another interrupt request (in the level triggered mode, the IRR latch is always armed).

One possible advantage to the edge triggered input mode is that it can be used with the automatic
EOI mode without the cautions in the level triggered mode. Overall, in most cases, the edge
triggered mode simplifies operation for the user, since the duration of the interrupt request at a
positive level is not usually factor.

INTERRUPT STATUS

By means of software control, the user can interrogate the status of the 8259A. This allows the
reading of the internal interrupt registers, which may prove useful for interrupt control during
service routines. It also provides for a modified status poll method of device monitoring, by using
the poll command. This makes the status of the internal IR inputs available to the user via software
control. The poll command offers an alternative. to the interrupt vector method, especially when
used in a system in which the interrupt vector method doesn't work due to incorrect interrupt
acknowledge status provided by the CPU.

- 21 -

READING INTERRUPT REGISTERS

The contents of each 8-bit interrupt register, !RR, ISR, and IM R, can be read to update the user's
program on the present: status of the 8259A. This can be a versatile tool in the decision making
process of a service routine, giving the user more control over interrupt operations. Before
delving into the actual process of reading the registers, let's briefly review their general
descriptions:

IRR (Interrupt Request Register)

ISR (Interrupt Service Register)

IMR (Interrupt Mask Register)

Specifies all interrupt levels requesting service.

Specifies all interrupt levels which are being serviced.

Specifies all interrupt levels that are masked.

To read the contents of the IRR or !SR, the user must first issue the appropriate read register
command (read IRR or read ISR) to the 8259A. Then by applying a RD pulse to the 8259A (an input
instruction), the contents of the desired register can be acquired. There is no need to issue a read
register command every time the IRR or ISR is to be read. Once a read register command is
received by the 8259A, it "remembers" which register has been selected unless a Poll command is
issued. Thus, all that is necessary to read the contents of the same register more than once is the
RD pulse and the correct addressing (AO=O, explained in "PROGRAMMING THE INTERRUPT
CONTROLLER"). Upon initialization, the selection of registers defaults to the IRR. Some caution
should be taken when using the read register command in a system that supports several levels of
interrupts. If the higher priority routine causes an interrupt between the read register command and
the actual input of the register command and the actual input of the register contents, there's no
guarantee that the same register will be selected when it returns. Thus it is best in such cases to
disable interrupts during the operation.

Reading the contents of the IMR is different than reading the IRR or ISR. A read register command is

not necessary when reading the IMR. This is because the IMR can be addresses directly for both
reading and writing. Thus all that the 8259A requires for reading the IMR is a RD pulse and the
correct addressing (A0=1, explained in "PROGRAMMING THE INTERRUPT CONTROLLER").

POLL COMMAND

There are two methods of servicing peripherals: status polling and interrupt servicing. For most
applications the interrupt service method is best. This is because it requires the least amount of
CPU time, thus increasing systems throughout. However, for certain applications, the status poll
method may be desirable or even necessary (when it's used in an 8080 system without a CPU
Support card to provide correct status during interrupt acknowledge, for example).

For this reason, the 8259A supports polfing operations with the poll command. As opposed to the
conventional method of polling, the poll command offers improved device servicing and increased
throughput. Rather than having the processor poll each peripheral in order to find the actual device
requiring service, the processor polls the 8259A. This allows the use of all the previously mentioned
priority modes and commands. Additionally, both polled and interrupt methods can be used within
the same program.

Before the poll command can be used, something must be done to stop the 8259A from rece1vmg
INT A pulses from the CPU. This can be done by disabling interrupts with the •or• instruction or by
turning OFF the "P-V" switch on the Multiport Serial card. Once the poll command is issued, the
8259A will treat the next RD pulse issued to it (an input instruction) as an interrupt acknowledge. It
will then set the appropriate bit in the ISR, if the"re was an interrupt request, and enable a special
word onto the data bus. This word shows whether an interrupt request has occured and the highest
priority level requesting service. The figure below shows the contents of the "poll word" which is
read by the processor. Bits 0-2 convey the binary code of the highest priority level requesting

- 22 -

I
I

}

service. Bit 7 designates whether or not an interrupt request is present. If an interrupt request is
present, bit 7 will equal 1. If there isn't an interrupt request at all, bit 7 will equal O and bits 0-2 will
be set to ones. Service to the requesting device is achieved by software decoding the poll word
and branching to the appropriate service routine. Each time the 8259A is to be polled, the poll
command must be written before reading the poll word.

Po 11 word:
07 06 D5

I
04 03 02 01

W2 W1

I = 1 if and interrupt occurred

DO
WO

WO - W2 = binary code of highest priority level requesting service

The poll command is useful in various situations. For instance, it's a good alternative when
memory is very limited, because an interrupt-vector table isn't needed. Another use for the poll
command is when more than 64 interrupt levels are needed (64 is the limit when cascading 8259As).
The only limit of interrupts using the poll command is the number of 8259As that can be addressed
in a particular system. For those cases when the 8259A is using the poll command only and not the
interrupt method, each 8259A must still receive an intialization sequence. This must be done even
though the interrupt vector features of the 8259A are not used. In this case, the interrupt vector
specified in the initialization sequence could be a "fake".

INTEKRUPT CASCADING

As mentioned earlier, more than one 8259A can be used to expand the priority interrupt scheme to
up to 64 levels without additional hardware. This method for expanded interrupt capability is called
"cascading". The 8259A supports cascading operations with the cascade mode. Additionally, the
special fully nested mode is available for increased flexibility when cascading 8259As in certain
applications.

CASCADE MODE

When programmed in the cascade mode, basic operations consists of one 8259A acting as a master
to the others which are serving as slaves. The 8259A on the Multiport serial card can act as a slave
to the master 8259A on a Seattle Computer Products CPU Support card.

A specific hardware set-up is required to establish operation in the cascade mode. The INT output
pin of each slave is connected to an IK input pin of the master. Inputs IRO and IR2 - IR7 of the
master are connected to VIO and Vl2 - Vl7 respectively. If the Multiport Serial card is to be used as
a slave to the CPU Support card, its "INT" output should be connected to one of the VI lines which
are cascadable (VIO and Vl2 - Vl7). This is done by setting the interrupt jumper in the lower left
corner so that it corresponds to the desired VI number on the silk-screened legend. The three
"CAS" lines provided by the master must be connected to the CAS inputs on the slaves. The CPU
Support card (Kev. F or higher) drives the 5-100 lines AO-A2 with the data from the CAS lines
during interrupt acknowledge. To enable the Multiport Serial card's slave 8259A to read these CAS
lines, the "M-5" switch should be ON to enable the cascade address drivers. The "P-V" switch should
also be on so that the Multi po rt Serial card's 8259A receives INT A pulses during interrupt
acknowledge.

Besides hardware set-up requirements, all 8259A's must be software programmed to work in the
cascade mode. Programming the cascade mode is done during the initialization of each 8259A. The
8259A that is selected as master must receive SJ?ecifications during its initialization as to which of
its IR inputs are connected to a slave's INT pin. Each slave 8259A, on the other hand, must be
designated during its initialization with an ID (0 thru 7) corresponding to which of the master's IR
inputs its INT pin is connected to. This is all necessary so the three CAS lines from the master will
be able to address each individual slave. Note that as in normal operation, each 8259A must also

- 23 -

be initialized to give IR inputs a unique interrupt vector. More detail on the necessary programming
of the cascade mode is explained in "PROGRAMMING THE INTERRUPT CONTROLLER".

Now, with background information on both hardware and software for the cascade mode, let's go
over the sequence of events that occur during a valid interrupt request from a slave. Suppose a
slave IR input has received an interrupt request. Assuming this request is higher priority than other
requests and in-service levels on the slave, the slave's INT pin is driven high. This signals the master
of the request by causing an interrupt request on a designated IR pin of the master. Again, assuming
that this request to the master is higher priority than other master requests and in-service levels
(possibly from other slaves), the master's INT pin is pulled high, interrupting the processor.

The interrupt acknowledge sequence appears to the processor the same as the non-cascading
interrupt acknowledge sequence; however, it's different among the 8259As. The first INT A pulse is
used by all the 8259As for internal set-up purposes and, if in the 8080 mode, the master will place
the CALL opcode on the data bus. The first INT A pulse also signals the master to place the
requesting slave's ID code on the CAS lines and hence on AO-A2 of the S-100 bus. This turns
control over to the slave for the rest of the interrupt acknowledge sequence, placing the
appropriate pre-programmed interrupt vector on the data bus, completing the interrupt request.

During the interrupt acknowledge sequence, the corresponding ISR bit of both the master and the
slave get set. This means two EOI commands must be issued (if not in the automatic EOI mode),
one for the master and one for the slave.

Special consideration should be taken when mixed interrupt requests are assigned to a master

8259A; that is, when some of the master's IR inputs are used for slave interrupt requests and some
are used for individual interrupt requests. In this type of structure, the master's IRO must not be
used for a slave. This is because when an IR input that isn't initialized as a slave receives an
interrupt request, the three CAS lines won't be activated, thus staying in the default condition
addressing for IRO (slave IRO). If a slave is connected to the master's IRO when a non-slave interrupt
occurs on another master IR input, erroneous conditions may result. Thus IRO should be the last
choice when assigning slaves to IR inputs.

SPECIAL FULLY NESTED MODE

Depending on the application, changes in the nested structure of the cascade mode may be desired.
This is because the nested structure of a slave 8259A differs from that of the normal fully nested
mode. In the cascade mode, if a slave receives a higher priority interrupt request than one which is
in service (through the same slave), it won't be recognised by the master. This is because the
master's ISR bit is set, ignoring all requests of equal or lower priority. Thus, in this case, the higher
priority slave interrupt won't be serviced until after the master's ISR bit is reset by an EOI
command. This is most likely after the completion of the lower priority routine.

If the user wishes to have a truly fully nested structure within a slave 8259A, the special fully nested
mode should be used. The special fully nested mode is programmed in the master only. This is done
during the master's initialization. In this mode the master will ignore only those interrupt requests
of lower priority than the set ISR bit and will respond to all requests of equal or higher priority.
Thus if a slave receives a higher priority request than one which is in service, it will be recognized.
To insure proper interrupt operation when using the special fully nested mode, the software must
determine if any other slave interrupts are still in service before issuing an EOI command to the
master. This is done by resetting the appropriate slave ISR bit with an EOI and then reading its ISR.
If the ISR contains all zeros, there aren't any other interrupts from the slave in service and an EOI
command can be sent to the master. If the ISR isn't all zeros, an EOI command shouldn't be sent to
the master. Clearing the master's ISR bit with an EOI command while there are still slave interrupts
in service would allow lower priority interrupts tQ be recognized at the master.

- 24 -

PROGRAMMING THE INTERRUPT CONTROLLER

Programming the 8259A interrupt controller is accomplished by using two types of command
words: Initialization Command Words (ICWs) and Operational Command Words (OCWs). All the
modes and commands explained in the previous section, "OPERATION OF THE INTERRUPT
CONTROLLER", are programmable using the ICWs and OCWs. The ICWs are issued from the

) processor in a sequential format and are used to set up the 8259As in an initial state of operation.
· The OCWs are issued as needed to vary and control 8259A operation.

Both ICWs and OCWs are sent by the processor to the 8259A via output commands from the
processor. The 8259A distinguishes between the different ICWs and OCWs by the state of its AO pin,
the sequence they're issued in (ICWs only), and some dedicated bits among the ICWs and OCWs. The
state of the AO pin is defined by which port the ICW or OCW is sent to. For the Multiport Serial
card, AO = 0 corresponds to BASE+12 and AO = 1 corresponds to BASE+13. Those bits which are
dedicated are indicated so by fixed values (0 or 1) in the corresponding ICW or OCW programming
formats which are covered shortly. Note: when issuing either ICWs or OCWs, the interrupts should
be disabled at the processor (using the DI function of the CPU).

INITIALIZATION COMMAND WORDS

Before normal operation can begin, each 8259A in the system must be initialized by a sequence of
four ICWs. Note that once initialized, if any programming changes within the ICWs are to be made,
all four ICWs must be reprogrammed in sequence.

Certain internal set up conditions occur automatically within the 8259As after the first ICW has
been issued. These are:

1 > The In-Service Register and Interrupt Mask Register are both cleared. (Clearing the IMR
enables all eight interrupt request inputs).

2> The special mask mode is reset.

3> Rotation at Automatic End Of Interrupt is disabled.

4> The Interrupt Request Register is selected for the read register command.

5> The fully nested mode is entered with an initial priority assignment of IRO highest through
IR7 lowest.

6> The edge sense latch of each IR input is cleared thus requmng an active transition to
generate an interrupt if the edge triggered input mode is chosen in ICW1.

- 25 -

The ICW programming format below shows bit designations. A complete description of each bit
follows the table.

ICW1
AO=O

07

A7

06

A6

05

AS

04

1

03

LTIM

02

ADI

ICW2

A0=1 A15/T7 A14/T6 A13/T5 A12/T4 A11/T3 A10

ICW3 (Master)

A0=1 57

I CW3 (S I ave)

A0=1 0

ICW4

A0=1 0

56 55

0 0

0 0

54 53 52

0 0 102

SNFM 1 M/S

01

0

A9

51

101

AEOI

DO

1

AB

so

100

uPM

ICW1 & ICW2

ICW3

ADI: The ADI bit is used to specify the address interval for the 8080 mode. If a four byte

address interval is to be used, ADI must equal 1. For an eight byte address interval, ADI must
equal zero. The state of ADI is ignored when the 8086 mode is selected.

L TIM: The LTIM bit is used to select between the two interrupt request input triggering modes.
If L TIM = 1, the level triggered input mode is selected. If L TIM = 0, the edge triggered input
mode is selected.

A5-A15: The A5-A15 bits are used to select the interrupt vector address when in the 8080
mode. There are two programming formats that can be used to do this. Which one is
implemented depends upon the selected address interval (ADI). If ADI is set for the four-byte
interval, then the 8259A will automatically insert AO-A4 (AO-A1 = O, A2-A4 = interrupt
request number). Thus A5-A15 must be user selected by programming the A5-A15 bits with
the desired address. If ADI is set for the eight-byte interval, then AO-AS are automatically
inserted (AO-A2 = 0, A3-A5 = interrupt request number). This leaves A6-A 15 to be selected
by programming the A6-A15 bits with the desired address. The state programmed for AS is
ignored in the latter format.

T3-T7: The T3-T7 bits are used to select the interrupt type when the 8086 mode is used. The
programming of T3-T7 selects the upper five bits of the interrupt type (interrupt vector).
The lower three bits are automatically inserted corresponding to the interrupt request level
causing the interrupt. The state of bits AS -A 10 will be ignored when in the 8086 mode.
Computing the actual memory address of the interrupt is done by multiplying the interrupt
type (i.e. the interrupt vector) by four. Thus T3 corresponds to AS, T4 to A6, etc.

S0-57: If the 8259A is initialized to be the Master (if it is to be polled only or it's the only

one in the system operating in the vectored mode), then 50-57 in ICW3 define which
interrupt request inputs have Slaves on them. A 1 designates a Slave, a O means no Slave (i.e.
a normal interrupt request input). This description of the function of the 50-57 bits is
provided for informational purposes only, in practice the 8259A on the Multiport Serial card
can't have any slaves on it's IR inputs since .these are dedicated to the eight IR sources on the
board. Thus 50-57 should all be programmed as zeros.

100-102: If the 8259A is being initialized as a Slave, then 100-102 in ICW3 identify which of
the Master's interrupt request lines the Slave is connected to. If the Multiport Serial card is

- 26 -

)

ICW4

being used as a slave to the master on a CPU Support card, then IDO-ID2 would be
programmed to correspond to the S-100 VI line the Multiport Serial card is connected to
(see the section on the Cascade Mode).

uPM: The uPM bit allows for selection of either the 8080 or 8086 mode. If set as a 1, the
8086 mode is selected, if a O, the 8080 mode is selected.

AEOI: The AEOI bit is used to select the automatic end of interrupt mode. If AEOI = 1, the
automatic end of interrupt mode is selected. If AEOI = O, it isn't selected; thus an EOI
command must be used during a service routine.

M/S: The M/S bit defines whether the 8259A is the Master or a Slave. When M/S is set to a 1,
the 8259A operates as the Master; when M/S is O, it operates as a Slave. Unless the 8259A on
the Multiport Serial card is actually functioning as a slave to the master 8259A on a CPU
Support card, it should be progarmmed as a master.

SFNM: The SFNM bit designates selection of the special fully nested mode. Only the Master
should be programmed in the special fully nested mode to assure a truly fully nested structure
among the Slave interrupt request inputs. If SFNM is set to 1, the special fully nested mode is
selected; if SFNM is 0, it is not selected.

OPERATIONAL COMMAND WORDS

Three OCWs are available for programming various modes and commands. Unlike the ICWs, OCWs
needn't be in any type of sequential order. Rather, they are issued by the processor as needed
within a program.

The OCW programming format below shows the bit designation for each OCW. With the OCW
format as reference, the functions of each OCW will be explained individually.

D7 06 05 04 03 02 01 DO
OCW1
A0=1 M7 MG M5 M4 M3 M2 M1 MO

OCW2
AO=O R SL EOI 0 0 L2 L1 LO

OCW3
AO=O 0 ESMM SMM 0 1 p RR RIS

OCW1

OCW1 is used solely for 8259A masking operations. It provides a direct link to the Interrupt Mask
Register. The processor can write to or read from the Interrupt Mask Register via OCW1. The
OCW1 bit definition is as follows:

MO-M7: The MO-M7 bits are used to control the masking of the interrupt request inputs. If an
M bit is set to a 1, it will mask the corresponding interrupt request input. A O clears the
mask, thus enabling the interrupt request input. These bits convey the same meaning when
being read by the processor for status update.

Note that to change the value of a single mask bit it is simplest to read the current mask, force the
desired bit high or low using OR or AND instructions, and write the new mask back.

- 'P -

OCW2

OCW2 is used for end of interrupt, automatic rotation, and specific rotation operations.
Associated commands and modes of these operations (with exception of AEOI initialization), are
selected using the bits of OCW2 in a combined fashion as explained below. A complete explanation
of the different modes and commands is given in the previous section "OPERATION OF THE
INTERRUPT CONTROLLER".

OCW3

R SL EOI

0 0 0 Disable rotation at automatic end of interrupt (AEOI).
0 0 1 Non-specific end of interrupt.
0 1 0 No operation.
0 1 1 Specific end of interrupt. LO-L2 is the ISR bit to reset.
1 0 0 Enable rotation at automatic end of interrupt (AEOI).
1 0 1 Non-specific end of interrupt with priority rotation.
1 1 0 Set priority using LO-L2.
1 1 1 Specific end of interrupt with priority rotation.

R: The R bit is used to control all 8259A rotation operations. If the R bit is set to a 1, a form
of priority rotation will be executed depending on the state of the SL and EOI bits. If R is 0,
rotation won't be executed.

SL: The SL bit is used to select a specific level for a given operation. If SL is set to a 1, the
LO-L2 bits are enabled. The operation selected by the EOI and R bits will be executed on the
specified interrupt level. If SL is O, the LO-L2 bits are disabled.

EOI: The EOI bit is used for all end of interrupt commands (not automatic end of interrupt
mode). If set to a 1, a form of an end of interrupt command will be executed depending on
the state of the SL and R bits. If EOI is 0, an end of interrupt command won't be executed.

LO-L2: The LO-L2 bits are used to designate an interrupt level (0-7) to be acted upon for the
operation selectedby the EOI, SL, and R bits of OCW2. The level designated will either be used
to reset a specific Interrupt Service Register (ISR) bit or to set a specific priority. The LO-L2
bits are enabled or disabled by the SL bit.

OCW3 is used to issue various modes and commands to the 8259As. There are two main categories
of operation associated with OCW3: interrupt status and interrupt masking. Bit definition of OCW3
is as fo flows:

ESMM: The ESMM bit is used to enable or disable the effect of the SMM bit. If ESMM is set to a
1, SMM is enabled. If ESMM is 0, SMM is disabled. This bit is useful to prevent interference of
mode and command selections in OCW3.

SMM: The SMM bit is used to set the special mask mode. If SMM is set to a 1, the special mask
mode is enabled. If it is O, it is disabled. The state of the SMM bit is only honored if it is
enabled by the ESMM bit.

P: The P bit is used to issue the poll command. If P is set to a 1, the poll command is issued.
If it is 0, the poll command isn't issued. The poll command will override a read register
command if set simultaneously.

RR: The RR bit is used to execute the read register command. If RR is set to a 1, the read
register command is issued and the state of RIS determines the register to be read. If RR is 0,
the read register command isn't issued.

- 28 -

)

RIS: The RIS bit is used to select the ISR or IRR for the read register command. If RIS is set to
a 1, the In-Service Register is selected. If RIS is O, the Interrupt Request Register is selected.
The state of the RIS bit is only honored if the RR bit is a 1.

Theory of Operation

The functions of this card are implemented with MOS LSI microprocessor support chips, with TIL
used for S-100 bus interface. Most of the circuitry is very straight forward and requires no
explanation, so only selected portions of the circuit are discussed below.

Wait State Generator

When a wait state is to be generated, the circuit simply gates inverted pSYNC from the CPU onto
the ROY line with a driver wired for open-collector operation. The use of pSYNC to generate a
wait state may not work with all CPU cards, although it should according to the IEEE S-100
standard. It does work with the SCP 8086 CPU card, which when run at 8 MHz is the only card we
know of that needs the wait state.

Pulse Stretcher

This circuit is formed primarily by U19, pins 1 - 7 and 15, U20 pins 8 - 13, and U21 pins 8 - 10. Its
purpose is to stretch the RD (read), WR (write), and INT A (interrupt acknowledge) pulses to meet
the minimum pulse width requirements of the MOS LSI parts.

When pSTVAL goes high during pSYNC, one of the flip-flops of U19 is cleared. This allows inverted
copies of slNP, sOUT, and slNT A to be gated through as the control lines RD, WR, and INT A,
respectively. One of these control lines stays active until the trailing edge of either pWR* or pDBIN
clocks the flip-flop and gates it off. The "trailing edge" means the rising edge of pWR* or the falling
edge of pDBIN. Thus the control pulse terminates just about the time it would have if pDBIN or pWR
had been used, but it starts considerably earlier.

The "M -S" Switch

When the 8259A interrupt controller on the Multiport Serial card is slaved to the master 8259A on a
SCP CPU Support card (Rev. F or higher), the CPU Support card provides three "cascade" address
lines to indicate which of the up to eight slaves is enabled during interrupt acknowledge. The data
from the three "cascade" lines is available on the lowest three bits of the address bus. When the M-S
switch is on, three sections of U24 drive the three "CAS" inputs of the 8259A with data from
AO-A2. If the 8259A is used as a master, the M-S switch should be off to disable the three CAS
drivers since the 8259A will be trying to drive these lines as outputs.

The Uaud Rate Generators

The Multiport Serial card uses a pair of Western Digital BR1941L-5 or BR2941L-5 dual baud rate
generator chips to provide the four baud rates required by the four channels. The baud rate is
programmed into the generators by setting the binary combination desired on the "R" or "T" inputs
and strobing the "ST" input with a positive pulse. The output baud rate is available on the "F" output
which connects to the RxC and TxC clock in'puts of the 8251A USARTs. The "X" inputs are
two-phase clock inputs which are driven by a 4.9152 MHz crystal oscillator.

- 29 -

Ones Year Limited Warranty

WARRANTEE AND WARRANTY PERIOD

The Seattle Computer Products (hereinafter referred to as SCP) warranty for this product
extends to the original purchaser and all subsequent owners of the product for a period of one
year from the time the product is first sold at retail and for such additional time as the product
may be out of the owner's possession for the purpose of receiving warranty service at the factory.

WARRANTY COVERAGE

This product is warranted to be free from defects of material and workmanship and to
perform within its specifications as detailed in the instruction or operating manual during the
period of the warranty.

This warranty does not cover damage and is void if the product has been damaged by
neglect, accident, unreasonable use, improper repair, or other causes not arising out of defects in
material or workmanship.

WARRANTY PERFORMANCE

During the warranty period, SCP will repair or replace defective boards or products or
components of boards or products upon written notice that a defect exists. Certain high value
parts may have to be returned to SCP prior to replacement. Other components will be replaced
without the part having to be returned to the factory with the exception the SCP retains the right
in all cases to examine the defective board or other products prior to the items replacement under
the warranty. In the event the return of the board, product, or component is requested by SCP
under this warranty, the owner shall ship the item prepaid to the SCP factory. SCP will pay for
shipment of replacement items back to the owner. All repairs or replacements under this warranty
will be performed by SCP within five working days of receipt of notice of defect or return of
components as called for under this warranty.

WARRANTY DISCLAIMERS

While high reliability was a major design factor for this product and care was used in its
manufacture, no certainty can be achieved than any particular product will operate correctly for
any specific time. No representation is made by SCP that this product will not fail in normal use.
Because of the inability to guarantee 100% reliability, SCP shall not be liable for any consequencial
damange the user may suffer because the products fails to fu,ction reliably 100% of the time. Any
implied warranties arising from the sale of this product are limited in duration to the warranty
period defined above.

LEGAL REMEDIES

This warranty gives the purchaser specific legal rights. He may have additional rights which
vary from state to state.

SHIPPING INSTRUCTIONS

In the event it becomes necessary toreturn the product or component to SCP, also return a
written explaination of the difficulty enco4ntered along with your name, address and phone
number. Package the items in a crushproof container with adequate packing material to prevent
damage and ship prepaid to:

- 30 -

Seattle Computer Products
1114 Industry Drive
Seattle, Washington 98188

(

