
ZBOIBOB6

Cross Assembler
Release 1

PRELIMINARY

REV. A
As.ottl. (omput.r Products, Inc.
~ 1114 Industry Drive, Seattle, WA. 98188

(206) 575-1830

Introduction

Copyright.

Rights Being Offered

Registration Non-Disclosure.

Problem Reporting.

Updates.

Why a Cross Assembler?

Hardware Requirements.

Format

Sample Assembly.

Cal I ing the Assembler.

Source Program Format.

Operands

Pseudo-Ops

Opcode Classifications

Error L st

Opcode Index

- 2 -

C~TENTS

3

3

3

3

3

3

4

4

4

4

5

6

7

9

.11

.16

.17

Introduction

The Seattle Computer Products l80/8086 Cross Assembler runs on the l80 processor under
CP/M or its derivatives. It accepts as input a text file (as 'M)uld be produced by CP/M's ED) of 8086
source code using mnemonics similar or identical to Intel's ASM-86. It produces an Intel hex format
object file" and a listing.

This manual is meant to be used in conjunction with the Intel MCS-86 User's Manual which
describes the opcodes common to this cross assembler and to Intel. The Opcode Index at the back
of this manual is cross referenced to the Intel manual.

Copyright

The software described in this manual is owned and copyrighted by Seattle Computer Products
Inc. and the right to copy or distribute it is expressly prohibited without the written permission of
Seattle Co mputer Products.

Rights Being Offered

The rights being offered to purchasers of this software are limited to the right to use the
software at the purchaser's place of business (or residence) and the right to make copies solely for
the purpose of ·backup·. Specifically not being offered is the right to sell, give, disclose, or distribute
the software to persons outside the purchaser's place of business (or residence).

Registration - Non-Disclosure

The software described in this manual is sold only on the conditk>n that the enclosed
'Registratk>n - Non-Disclosure Agreement' is executed by the purchaser and returned to Seattle
Co mputer Products Inc.

Problem Reporting

This manual includes ·Problem Reporting Forms' (located in the back) for use by the purchaser
to notify Seattle Computer Products of any problems discovered while using the software. It is urged
that any problems discovered be reported in order that they may be corrected and other purchasers
notified.

Updates

This cross assembler is in its evolutionary infancy. It is expected that it will be updated and
enhanced from time to time. Registered purchasers will be notified when updates are available and
they may purchase them for a nominal fee not to exceed $25.

- 3 -

Why a Cross Ass.f!mbler?

During the early life of a new processor, a cross assembler offers the user certain advantages
over a resident assembler. Chief among these is the ready availability of low cost software for the
older host computer. For the Z-80, this software includes editors, operating systems, and utUity
packages. Using a cross assembler also allo\\5 the user to write maching language code for the new
processor even before the hardware is available.

Hardware Requirements

To use this cross assembler, your computer must have a CP/M compatible operating system
and a minimum of 16K of memory. To assemble the 8086 monitor program (the sample assembly
referenced below), 13K of free memory is required w,ich \\Quid be provided by a 24K CP/M system.

Formaft

The SCP Z -80/8086 Cross Assembler is available in 5- soft-sectored, 5- North Star, and 8-
soft-sectored (IBM) formats. When ordering, please specify the format desired on the registratbn
sheet.

Sample Assembly

Included on the disk with the cross assembler is the source file for the monitor used in our
8086 CPU card set. Assembling this source file will give the user an example of how the cross
assembler input and output files should appear.

- 4 -

Calling the Assembler

The assembler is invoked with the command ASM86 FILENAME ,which will assemble the 8086
source file named FILENAME.A86. The extension IA861 is always assumed and may not be
overridden. This is the simplest form of the command. It assumes FILENAME.A86 resides on the
current drive, and will write the Intel hex object file, named FILENAME.HEX, and the assembler Usting,
FILENAME.PRN, to the current drive.

The first variation of this form is to precede the file name with a drive specifier and a colon,
such as ASM86 B:FILENAME ,which will cause the specified drive to be searched for the source
file, but the object and listing files will still be written to the current drive.

The most general form is ASM86 FILENAME.<DRIVE ASSIGNMENT). <DRIVE ASSIGNMENT) is
a 3 -letter extension not related to the actual extensbn to the source file, which is always A86.
Instead, it is used as follows:

1. The first letter is the name of the drive on which the source file will be found. This
overrides a disk specifier which precedes the file name (IB:I).

2. The second letter is the name of the drive to \\hich the hex object file will be written, or IZI
if no object file is desired.

3. The third letter is the name of the drive to which the listing file will be written, or IXI to
send the listing to the console, or IZ' if no listing file is desired. Assembling with no listing is much
faster since the source file will not be read from disk a second time.

Examples:

AS\i86 FILENAME.ABA
Source - Drive A
Object - Drive B
Listin g - Dr ive A

ASM86 FILENAME.AAZ
Source - Drive A
Object - Drive A
No Listing

ASM86 FILENAME.BZX
Source - Drive B
Object - None
Listing - Console

Several errors will cause the assembler to print an error message and abort:

FILE NOT FOUND - The source file was not found on the specified disk. Probably a misspelling or
wrong disk.

BAD DISK SPECIFIER - The file name's extensbn contained an illegal character. Only IAI-IWI and
possibly IXI or IZ' are legal.

NO DIRECTORY SPACE - The object or listing file could not be created.

DISK WRITE ERRO R - Probably insufficient space on disk for object or listing files.

INSUFFICIENT MEMORY - Memory requirements increase with source program size due to storage
required by the symbol table and by the intermediate code. Requirements can be reduced by using
shorter labels, by defining labels before they are used, and by reducing the total number of program
lines.

- 5 -

Source Program Format

Input to the assembler is a sequence of lines, where each line is terminated \\ith ASCII carriage
return and linefeed characters. The assembler accepts lines of any length, but does no list formatting
so line length may be Ii~ited by your list device. Upper and lower case characters are completely
equivalent and may be mixed freely.

Each line may include up to four fields, which may be separated from each other by any
number of spaces or tabs (control-I). Fields must appear in order, as follows:

1. Label field (optbnal) - If present, it must either begin with the first character on the line or
be followed immediately by a colon. A label begins with a letter and may be followed by any number
of letters or digits, up to a total length of 80 characters, all of which are significant.

2. Opcode field (optional) - If present, it must begin AFTER the first character on the line
(otherwise it \\Ould be mistaken fo r a label).

3. Operand field - This field is present only as required by the opcode field.
4. Comment field (optbnal) - If present, it must begin with a semicolon (;).
Since all fields are optional, lines may be blank, may have labels only, may have comments

only, etc.
Bus lock (LOCK), string repeat (REP), and segment override (SEC) prefixes are treated as

separate opcodes and must appear on the line preceding the opcode they are to prefix.

- 6 -

Operands

Each operand is one of the following types:

1. REG - A register: AX, BX, CX, OX, Al, AH, Bl, BH, Cl, CH, Ol, OH, 01, 51, 01, SP, BP, CS,
OS, ES, sse Most instructions have limitations on which registers may be used.

2. VALUE - An expression involving additon or subtraction of constants or labels. Terms of
the expression ·may be:

a) A decimal constant (14861) •
. b) A hex constant, which must begin with a digit from 0 to 9, and end with an IHI (·OF9H").
c) A string constant. In general, this is any number of characters enclosed by either single C)

or double (") quotes. Since the opening and closing quotes must be the same, the other type may
appear in the string freely. If the same quote as opened the string needs to appear within it, it must
be given as mo adjacent quotes. Examples:

ATEST" is the same as ITESTI

III is the same as 1111

Co ntrol characters except control-Z (1 AH) may appear in the string, but this may have a strange
effect on the listing.

Note that multi-character strings are meaningful only for the DB, OM, and DW pseudo-ops. All
other expressbns are limited to one character strings.

d) A label. No more than one undefined label may appear in an expressbn, and undefined
labels may only be added, not subtracted. An undefined label is one which has not yet appeared in
the label field as the souce code is scanned from the beginning to the current line.

Generally, a VALUE consists of:
a) An optional leading + 0 r -.
b) A term.
c) Zero or more additbnal terms, each preceded by a + 0 r -.

An exception to this is that no terms may precede a multi-character string in an expression. Terms
may follow the string, in which case whey will be added to or subtracted from the value of the last
character. Examples:

legal: "Time" + 80H

Illegal: -aTime" or 80H + "TimeN

3. [AODR] - A valid 8086 address expressbn enclosed within brackets. The address expression
may be:

a) A VALUE, as defined .above.
b) A base register (BP or BX).
c) An index register (51 or 01).
d) The sum of any of the above, as limited by valid 8086 addressing modes.

- 7 -

EXAMPLES OF OPERANOS

Legal:

Illegal:

-3+ 17H

SCOPE+4

[bx + COUNT-2]

[SI+ARRAY+.BX-OFFSET] ;OFFSET must have already been defined

[01]

[NEXT]

12+BX ;Register not allowed in VALUE

9C01 ;Needs trailing IHI

[Count - BX] ;Can't subtract register

[BX+BP] ;Only one base register at a time

[ARRAY+BX+OFFSET] ;Both labels are forward referenced (Note 1)

COUNT-OIF ;OIF is forward referenced (Note 2)

Note 1. This problem could be corrected like this:

MOV AX,[BX + ARRAYPLUSOFFSET]

ARRAY:

OFFSET:

ARRAYPLUSOFFSET: EQU ARRAY + OFFSET

Note 2. This problem could be corrected like this:

MOV AX, COUNT + MINUSOIF

OIF:

MINUSDIF:EQU -OIF

- 8 -

Pseudo-Ops

ALIGN

ALIGN assures that the next location counter address is even, i.e., aligned on a \\Ord
boundary. If the location counter is currently odd, both it and the PUT address are incremented;
otherwise they are unchanged. See PUT and ORG for an explanation of these terms.

DB VALUE
DB VALUE, VALUE, VALUE, ••• , VALUE

DB (Define Byte) is used to tell the assembler to reserve one or more bytes as data in the
object code. Each value listed is placed in sequence in object code, where a multi-character string is
equivalent to a sequence of one-character strings. Values must be in the range -256 to +255.
Example:

DB 'Message in quotes',ODH,OA H,-1

OM VALUE
OM VALUE, VALUE, VALUE, ••• , VALUE

OM (Define Message) is nearly identical to DB, except that the most significant bit (bit 7) of the
last byte is set to one. This can be a convenient way to terminate an ASCII message since this bit
would not otherwise be significant. Example:

OM 'Message in quotes',ODH,OAH
is equivalent to

DB 'Message in quotes',ODH,OAH+80H

OS VALUE

OS (Define Storage) is used to tell the assembler to reserve VALUE bytes of the object code as
storage. Any labels appearing in the expression for VALUE must have already been defined.

OW VALUE
OW VALUE, VALUE, VALUE, ••• , VALUE

OW (Define Word) is used to tell the assembler to reserve one or more 16-bit words as data in
the object code. It is very similar to DB, except that each value occupies two bytes instead of one.
Since a multi-character string is equivalent to a sequence of one-character strings,

OW 'TEST'
is equivalent to

DB 'T',O, 'E ',0, 'S',O, 'T',O
because the high byte of the 16-bit constant represented by 'T' is always zero.

- 9 -

LABEL: EQU VALUE

EQU (Equate) assigns the VALUE to the label. The label MUST be on the same line as the EQU.
Three common uses of this operation are: .

1. To assign a name to a constant, for convenience and documentation. For example:
CR: EQU 13
LF: "EQU 10
The program could now refer to ASCII carriage return and linefeed with symbols CR and LF,
respectively.

2. To -parameterize- a program. I/O ports and status bits, for example, could be set by
equates at the beginning of the program. Then to r"eassemble the program for a different I/O system
would require editing only these few lines at the beginning.

3. To bypass expressions that \\Ouldhave t\\Q or more undefined labels or that \\Quid subtract
an undefined label. See examples under OPERANDS.

IF VALUE
ENDIF

IF allows portions of the source code to be assembled only under certain conditions.
Specifically, that portion of the source code between the IF and ENDIF will be assembled only if the
operand is NOT zero. This is particularly useful when producing different versions of the same
program. IFs may not occur within an IF /ENDIF pair.

ORG VALUE

ORG sets the assembler's location counter, which is subsequently incremented for each byte of
code produced or space allocated. The value of the location counter should always be equal to the
displacement from the beginning of the segment to the next byte of code or data, since it is used to
establish the value of labels. ORG may be used any number of times in a program. Any labels
appearing in the expression for VALUE must have already been defined.

PUT VALUE

The assembler writes object code to the disk in Intel hex format. This format includes
information which specifies the addresses at which the object file will be later loaded into memory by
a hex loader such as DDT •.

PUT is used to specify this load address. Intially, the load address is 100H, that is, -PUT 100H­
is assumed before assembly begins. Each time a PUT occurs, all subsequent code \\Quid be loaded
starting at the specified address until the next PUT is encountered. This allo'M modules to be placed
in specific areas of memo rYe Note that the load address is not related to the location counter (see
a RG), although PUTs and 0 RGs will often occur together. Any labels appearing in the expression for
V ALU E must have already been defined.

- 10 -

Opcode Classifications

TWO OPERAND ALU

AOC, ADD, AND, CMP, MOV, OR, SBB, SSC, SUB, TEST, XCHG, XOR

Operand Forms:

REG,REG Register to register

[ADDR],REG Register to memory

REG,[ADDR] Memory to register

REG,VALUE Immediate to register

B,[ADDR], VALUE Byte immediate to memory

W, [ADDR], VALUE Word immediate to memory

[ADDR], VALUE Immediate to memory defaults to \\Ord

Specific Notes:

SBC is the same as SBB.

The order of operands for TEST and XC HG is irrelevant.

XCHG may not use immediate operands.

ONE OPERAND ALU

DEC, DIV, ESC, IDIV, IMUL, INC, MUL, NEG, NOT, POP, PUSH

Operand Forms:

REG

B,[ADDR]

W,[ADDR]

[ADDR]

Specific Notes:

Register

Memory byte

Memory 'M)rd

Default to word

POP, PUSH, and ESC only operate on \\Ords.

- 11 -

INPUT/OUTPUT

IN, INB, INW, OUT, OUTB, OUTW

Operand Forms:

VALUE

OX

Specific Notes:

Input/output to fixed port

Input/output to port number in OX

IN, INB, OUT, OUTS transfer bytes.

INW, OUTW transfer \\Ords.

SHIFT/ROTATE .

RCL, RCR, ROL, ROR, SAL, SAR, SHL, SHR

Operand Forms:

REG

REG,CL

B,[ADDR]

B, [ADOR], CL

Shift/rotate register one bit

Shift/rotate register C L bits

Shift/rotate memory byte

W,[ADDR] Shift/rotate memory \\Ord

W,[AOOR],CL

[ADOR] Default to \\Ord

[ADDR],CL

Specific No tes:

SHL and SAL are the same.

- 12 -

SHORT JUMPS

JA, JAE, JB, JBE, JC, JCXl, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNG E, JNL,
JNLE, JNO, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ, LOOP, LOOPE, LOOPNE, LOOPNZ, LOOPZ

Operand Fo rm:

VALUE Direct jump

Specific Notes:

VALUE must be within -126 to +129 of instruction pointer, inclusive.

JP is NOT Jump on Parity. JP is the unconditional short direct jump.

JC, JNC are Jump on Carry and Jump on Not Carry, respectively.

LONG JUMPS/CALLS

CALL, JMP

Operand Forms:

VALUE Intra-segment direct

VALUE, VALUE Inter-segment direct

REG Intra-segment indirect through register

[ADDR] Intra-segment indirect through memory

L,[ADDR] Inter-segment indirect through memory (ILongl)

Specific Notes:

JMP does NOT include the short direct jump. Its mnemonic is JP and is included under IShort
Jumpsl.

RETURN

RET

Operand Fo rms:

(none) In tr a -s eg ment

L

VALUE Intra-segment and add VALUE to SP

L,VALUE Inter-segment and add VALUE to SP

- 13 -

STRING OPERATIONS

CMPB, CMPW, LODB, LODW, MOVB, MOVW, SCAB, SCAW, STOB, STOW

No operand. These mnemonics replace Intel's CMPS, LODS, SCAS, STOS. The ending 'B' or IVV'
distinguishes between byte and ~rd operations, respectively.

INTERRUPT

INT

Operand Form:

VALUE

A DDRESS MANIPULATION

LDS, LEA, LES

Operand Fo rm:

REG,[ADDR) Put effective address in register

SEGMENT OVERRIDE PREFIX

SEG

Operand For m:

REG Must be a segment register (CS, OS, ES, SS)

Specific Notes:

This opcode should appear on the line immediately preceding the line to be prefixed.

STRING REPEAT PREFIXES

REP, REPE, REPNE, REPNZ, REPZ

No operand. Conditbnal repeats should be read as 'Repeat while •• :, e.g., REPE is Repeat
While Equal. For those string operations which affect the flags, REP, REPE, REPZ, all repeat while the
zero flag is set; REPNZ, REPNE repeat while the zero flag is clear. This opcode should appear on the
line immediately preceding the string operation to be prefixed.

- 14 -

ALL OTHER OPCOOES

AAA, AAO, AAM, AAS, CBW, CLC, CLO, CLI, CMC, CWO, OAA, OAS, 01, DOWN, EI, HL T, INTO,
IRET, LAHF, LOCK, Nap, POPF, PUSHF, SAHF, STC, SlO, STI, UP, WAIT, XLAT

No operand.

Specific Notes:

01 is the same as CLI.

EI is the same as STI.

UP is the same as CLO.

DOWN is the same as STD.

N<?P is the same as XCHG AX,AX.

LOCK is treated as a separate opcode and should appear on the line immediately preceding the
opcode it is to prefix.

- 15 -

Error List

When a non-fatal error occurs in the source code, the next line of the listing will have an
error message which will include a error number in hex. The- following table lists the cause associated
with the given error number.

01 Register field not allowed·
02 Only BP, BX, 51, DI allowed
03 Only one base register (BP, BX) allowed
04 Only one index register (51, DI) allowed
05 Subtraction of register or undefined label not allowed
06 Only one undefined label per expression allowed
07 Illegal digit in hex number
08 Illegal digit in decimal number
OA Illegal character in label or opcode
OB l:X>uble defined label
OC Opcode not recognized
14 Invalid operand
15 .,. expected·
16 Register mismatch
17 Immediate not allowed here
18 "]. expected
19 Memory-to-memory not allowed
1 A Immediate may not be destination
1 B Register-to-register not allowed here
1 C Must specify segment register
1 D load only
1 E Constant must be defined
1 F Value error
20 Flag must be set only once
21 Label never defined
22 ·EQU· must have label on same line
23 Zero length string illegal
24 ENDIF without IF
25 One-character strings only
26 Expression may not precede multi-character string
64 Undefined label
65 Value error

- 16 -

I NDEX TO OPCODE S

This I ist includes al I opcodes recognized by the assembler
plus those used by Intel but not used by Seattle Computer Products
(SCP). Each has the page number on which it wi I I be found in this
manual, where a t denotes an Intel opcode NOT recognized by the cross
assembler. Also I isted is the page number on which a description of
the operation wil I be found in the Intel MCS-86 User's Manual, where
the • means Intel uses a different mnemonic for that operation.
Opcodes with no entry under GROUP will be found under ·AII Other
Opcodes· •

OPCODE GROUP MANUAL INTEL REMARKS
PAGE PAGE

AAA 15 4-10
AAD 15 4-15
AAM 15 4-13
AAS 15 4-12
ADC Two Operand ALU 11 4-9
ADD Two Operand ALU 11 4-9
AND Two Operand ALU 11 4-18
CALL Long Jumps/Cal Is 13 4-23
CSW 15 4-15
CLC 15 4-29
CLD 15 4-29
CL I 15 4-30
CMC 15 4-29
CMP Two Operand ALU 11 4-12
CMPS String Operations 14 4-22· Intel uses CMPS
CMPS String Operations 14t 4-22 Use CMPS, CMPW
CMPW String Operations 14 4-22· Intel uses CMPS
CWO 15 4-15
DA~ 15 4-10
DAS 15 4-12
DEC One Operand ALU 11 4-11
DI 15 4-30· Intel uses CL I
DIV One Operand ALU 11 4-14
DONN 15 4-29· Intel uses STD
EI 15 4-30· Intel uses ST I
ESC One Operand ALU 11 4-30
HLT 15 4-30
IDIV One Operand ALU 11 4-14
IMUL One Operand ALU 11 4-13
IN Input/Output 12 4-7 SCP/lntel different
INS Input/Output 12 4-7· Intel uses IN
INC One Operand ALU 11 4-10
INT Interrupt 14 4-28
INTO 15 4-28
INW Input/Output 12 4-7· Intel uses IN
IRET 15 4-29
JA Shor t Jumps 13 4-26
JAE Short Jumps 13 4-26
JB Short Jumps 13 4-25
JSE Short Jumps 13 4-25

- 17 -

OPCODE CROUP MANUAL INTEL REMARKS
PAGE PAGE

JC Shor t Jumps 13 Intel does not use
J CXZ Shor t Jumps 13 4-28
J E Shor t Jumps 13 4-24
JC Shor t Jumps 13 4-26
JGE Shor t Jumps 13 4-26
J L Shor t Jumps 13 4-25
J L E Shor t Jumps 13 4-25
JMP Long J umpsjCa I Is 13 4-23 SCPjlntel different
JNA Shor t Jumps 13 4-25
JNAE Sho r t Jumps 13 4-25
JNB Shor t Jumps 13 4-26
JNBE Shor t Jumps 13 4-26
JNC Short Jumps 13 Intel does not use
JNE Short Jumps 13 4-26
JNC Shor"t Jumps 13 4-25
JNGE Shor t Jumps 13 4-25
JNL Shor t Jumps 13 4-26
JNLE Sho r t Jumps 13 4-26
JNO Short J u"1>s 1,3 4-27
JNS Short Jumps 13 4-27
JNZ Shor t Jumps 13 4-26
JO Short Jumps 13 4-25
J P Shor t Jumps 13 4-25 SCPj I nte I different
J PE Shor t Jumps 13 4-25
J PO Shor t Jumps 13 4-27
J S Shor t Jumps 13 4-26
JZ Shor t Jumps 13 4-24
LAHF 15 4-8
LDS Address Manipulation 14 4-7
LEA Address Manipulation 14 4-7
LES Address Manipulation 14 4-8
LOCK 15 4-31
LODS St r in g Operations 14 4-22· Intel uses LODS
LODS String Operations 14t 4-22 Use LODB, LODW
LODW String Operations 14 4-22· Intel uses LODS
LOOP Shor t Jumps 13 4-27
LOOPE Short Jumps 13 4-27
LooPNE Shor t Jumps 13 4-28
LOOPNZ Shor t Jumps 13 4-28
LooPZ Sho r t Jumps 13 4-27
MOV Two Operand ALU 11 4-5
MOVB String Operations 14 4-21· Intel uses MOVS
MOVS String Operations 14t 4-21 Use MOVB, MOW!
MOW! String Operations 14 4-21· Intel uses MOVS
MUL One Operand ALU 11 4-13
NEG One Operand ALU 11 4-12
NOP 15 4-31
NOT One Operand ALU 11 4-15
OR Two Operand ALU 11 4-19
OUT Input/Output 12 4-7 SCP/I n te I different
OUTB Input/Output 12 4-7· Intel uses OUT
OUTW In pu t/Ou tput 12 4-7· Intel uses CUT
POP One Operand ALU 11 4-6

- 18 -

Z80 TO 8086 TRANSLATOR

The Seattle Computer Products Z80 to 8086 Translator runs on the zao
under CP/M~ It accepts as input a Z80 source file written using Zilog/Mostek
mnemonics and converts it to an 8086 source file in a format acceptable to
our 8086 Cross Assembler.

To translate a file, simply type TRANS86 <filename>.<ext> •
Regardless of the original extension, the ouput file will be named
<filename>.A86 and will appear on the same drive as the input file. A file
named TRNTEST.Z80 is included to demonstrate the translator.

The entire Z80 assembly language is not translated. The following
opcodes will result in an "opcode error":

CPD
CPI
1M
IND
INDR
INI
INIR
LDD
LDI
OTDR
OTIR
OUTD
OUTI
RLD
RRD

Only the following pseudo-ops are allowed:

DB
DM
DS
DW
EQU
IF/END IF
ORG

Any others will generate an "opcode error".

TRANSLATION NOTES

IX, IY, and the auxilIary register set are mapped into memory
locations but these locations are not defined by the translator. If a file
using these registers is translated and assembled, "undefined label" errors
will result. The file must be edited and the memory locations defined as
follows:

IX: DS 2
IY: DS 2

BC: DS 2 ;Auxillary register set definition
D~: DS 2
HL: DS 2

Since IX and J (are mapped into memory locations [IX] and [IY], a
memory load or store uf IX or IY will translate into a memory-to-memory move.
LD IX, (LOC) would bec'JiTIt~ MOV [IX], [LaC]. This is easily corrected by editing
and using a register: M0V DI,[LOC]; MOV [IX],DI.

All referenc~:; to the I (interrupt) and R (refresh) registers will
generate an error when the translated file is assembled. The "I" and "R"
designations are passed straight through, so that LD I,A becomes MOV I,AL,
which would appear to be an attempt to move AL into an undefined immediate.

Blank spaces must not occur within operands. Blanks are equivalent to
commas in separating operands.

The input file is assumed to assemble without errors with a Z80
assembler. Errors in input may cause incorrect translation without an error
or warning message.

The BIT, SET, and RES instructions require the bit number to be a
single digit, 0-7. Use of a label for a bit number, for example, will result
in "cannot determine bit number" error.

DJNZ is translated into a decrement followed by jump-if-not-zero.
DJNZ, however, does not affect the flags while the decrement does. This is
flagged as a warning in the output file and may require special action in
some instances.

The parity flag of the 8086 will always be set according to 8080
rules and therefore may not be correct for the Z80. Any jump on parity is
flagged with this warning.

ASSEMBLY NOTES

It is likely that a translated program will be flagged with some
errors when assembled by our 8086 Cross Assembler. These errors are usually
caused by out-of-range conditional jumps. Since all 8086 conditional jumps
must be to within 128 bytes, this type of error is corrected by changing the
conditional jump to a reverse-sense conditional jump around a long jump to
the target. For example:

JZ FARAWAY

becomes

JNZ SKIP1
JMP FARAWAY

SKIP 1 :

Other assembly errors may occur because the cross assembler does not
have all the features found in some Z80 assemblers, particularly in
expression handling, where the only operations are + and -. These errors can
only be corrected by finding a way not use the missing feature.

OPCODE GROUP MANUAL INTEL REMARKS
PAGE PAGE

POPF 15 4-9
PUSH One Operand ALU 11 4-5
PUSHF 15 4-8
RCL S h i f t / Ro tat e 12 4-17
RCR Shift/Rotate 12 4-18
REP St r in g Repea t Prefixes 14 4-21 Not fu II y defined by Intel
REPE String Repeat Prefixes 14 4-21 Not fu I I y defined by Intel
REPNE String Repeat Prefixes 14 4-21 Not fu II y defined by Intel
REPNZ String Repeat Prefixes 14 4-21 Not fu II y defined by Intel
RE PZ String Repeat Prefixes 14 4-21 Not fu II y defined by Intel
RET Return 13 4-24
ROL Shift/Rotate 12 4-17
ROR Shift/Rotate 12 4-17
SAHF 15 4-8
SAL Shift/Rotate 12 4-16
SAR Shift/Rotate 12 4-16
SBB Two Operand ALU 11 4-11
SBC Two Operand ALU 11 4-11- Intel uses SBS
SCAB String Operations 14 4-22- Intel uses SCAS
SCAS String Operations 14t 4-22 Use SCAB, SCAW
SCAW String Operations 14 4-22- Intel uses SCAS
SEG Segment Override Prefix 14 4-3 Intel uses no opcode
SHL Shift/Rotate 12 4-16
SHR Shift/Rotate 12 4-16
STC 15 4-29
STD 15 4-29
STI 15 4-30
STOB St r in g Operations 14 4-22- Intel uses STOS
STOS St ring Operations 14t 4-22 Use STOB, STOW
STOW String Operations 14 4-22- Intel uses STOS
SUB Two Operand ALU 11 4-11
TEST Two Operand ALU 11 4-19
UP 15 4-29- Intel uses CLD
WAIT 15 4-30
XCHG Two Operand ALU 11 4-6
XLAT 15 4-7
XOR Two Operand ALU 11 4-20

- 19 -

