Z80 TO 8086 TRANSLATOR TRANS - 1

The Seattle Computer Products Z80 to 8086 Translator accepts as input a Z80
source file written using Zilog/Mostek mnemonics and converts it to an 8086
source file in a format acceptable to ASM, the Seattle Computer Products
assembler,

To translate a file, simply type TRANS <filename>.<ext> . Regardless of the
original extension, the ouput file will be named <filenameD>.ASM and will
appear on the same drive as the input file.

The entire Z80 assembly language is not translated. The following opcodes
will result in an "opcode error":

CPD
CPIL
M
IND
INDR
INI
INIR
LDD
LDI
OTDR
OTIR
0oUTD
OUTI
RLD
RRD

Only the following pseudo-ops are allowed:

DB

DM

DS

DW

EQU
IF/ENDIF
ORG

Any others will generate an "opcode error”.

TRANSLATION NOTES

IX, TY, and the auxillary register set are mapped into memory locations but
these locations are not defined by the translator. If a file using these
registers is translated and assembled, "undefined label” errors will result.
The file must be edited and the memory locations defined as follows:

IX: DS 2
IY: DS 2
BC: DS 2 y Auxillary register set definition
DE: DS 2

HL: DS 2

TRANS - 2

Since IX and IY are mapped into memory locations [IX] and [IY], a memory load
or store of IX or IY will translate into a memory-to-memory move. LD IX,(LOC)

would become MOV [IX],[LOC]. This is easily corrected by editing -and using a
register: MOV DI,[LOC]); MOV [IX],DI.

All references to the I (interrupt) and R (refresh) registers will generate an
error when the translated file is assembled. The "I" and "R" designations are
passed straight through, so that LD I,A becomes MOV I »AL, which would appear
to be an attempt to move AL into an undefined immediate.

Blank spaces must not occur within operands. Blanks are equivalent to commas
in separating operands.

The input file is assumed to assemble without errors with a Z80 assembler.

Errors in input may cause incorrect translation without an error or warning
message.

The BIT, SET, and RES instructions require the bit number to be a single

digit 0-7. Use of a label for a bit number, for example, will result in
“cannot determine bit number" error.

DJNZ is translated into a decrement followed by jump-if-not-zero. DJNZ,
however, does not affect the flags while the decrement does. This is flagged

as a warning in the output file and may require special action in some
instances.

The parity flag of the 8086 will always be set according to 8080 rules and

therefore may not be correct for the Z80. Any jump on parity is flagged with
this warning.

ASSEMBLY NOTES

It is likely that a translated program will be flagged with some errors when
assembled by ASM. These errors are usually caused by out-of-range conditional
jumps. Since all 8086 conditional Jjumps must be to within 128 bytes, this
type of error is corrected by changing the conditional jump to a reverse-~sense
conditional jump around a long jump to the target. For example:

JZ FARAWAY
becomes

JNZ SKIP1

JMP FARAWAY
SKIPIL:

Other assembly errors may occur because the assembler does not have all the
features found in some Z80 assemblers. For example, ASM can”t handle logical

operators in expressions. These errors can only be corrected by finding a way
not use the missing feature.

ASM -1

ASM - The Small Assembler

This assembler is presented as an alternative to Microsoft”s MASM. It is much
smaller and faster, but has far fewer features as well (no macros, for
example). It also has full 8087 opcode support, unlike the present version of
MASM. It can be recommended for smaller assembly-language jobs or if 8087
opcodes are needed. Also, I0.ASM is in this syntax and the Z80-to-8086
translator produces this format.

This assembler uses a syntax slightly different from MASM and Intel”s ASM-86.
It is not strongly typed, which means that sometimes an explicit type
designator is required. For the 8086-only subset, B is used for byte
operations, W for word. When also programming the 8087, S 1s used for short
(32-bit), L for long (64-bit), and T for ten-byte (temporary real). While
almost all mnemonics are the same, the section on Operands should be carefully
reviewed for other differences.

This manual attempts no explanation of the 8086 architecture or instruction
set. Intel reference manuals will be required for this, such as the iAPX
86,88 User”s Manual.

ASM - 2

CALLING THE ASSEMBLER

The assembler is invoked with the command ASM FILENAME » which will
assemble the 8086 source file named FILENAME.ASM. The extension "ASM" is
always assumed and may not be overridden. This is the simplest form of the
command. It assumes FILENAME.ASM resides on the default drive, and will write
the Intel hex object file, named FILENAME.HEX, and the assembler listing,
FILENAME.PRN, to the default drive.

The first variation of this form is to precede the file name with a drive
specifier and a colon, such as ASM B:FILENAME , which will cause the
specified drive to be searched for the source file, but the object and listing
files will still be written to the default drive.

The most general form is ASM FILENAME.<DRIVE ASSIGNMENT>. The <DRIVE
ASSIGNMENT> is a 3-letter extension not related to the actual extension to the
source file, which is always ASM. Instead, it is used as follows:

l. The first letter is the name of the drive on which the source file will be
found. This overrides a disk specifier which precedes the file name ("B:").

2. The second letter is the name of the drive to which the hex object file
will be written, or "Z" if no object file is desired.

3. The third letter is the name of the drive to which the listing file will be
written, or one of the following special characters:
P - Send the listing directly to the printer (TABs are NOT expanded). Lines
with errors and their error messages are still displayed on the console.
X - Send the listing to the console.
Y - No listing file is produced, except that lines with errors and their
error messages are displayed on the comsole.
Z — No listing file is desired. Error messages are still sent to the console,
including address and line number in error, but the actual source text of the
line in error is not listed. This option is much faster than any of the
others since the source file is not read from disk a second time. Since it
provides less diagonostics than the other options, it is normally used only if
you are assembling a file which probably has no errors in it.

If a listing is selected, then an alphabetical symbol table dump may be
appended to it by typing "S" after the file name and extension.

Examples:

ASM FILENAME.ABA
Source - Drive A
Object - Drive B
Listing ~ Drive A

ASM FILENAME.AAZ
Source - Drive A
Object - Drive A
No Listing

ASM FILENAME.BZX S
Source - Drive B
Object -~ None
Listing (with symbol table dump) — Console

ASM - 3
CALLING THE ASSEMBLER (Continued)

Several errors will cause the assembler to print an error message and abort:

FILE NOT FOUND - The source file was not found on the specified disk. Probably
a misspelling or wrong disk.

BAD DISK SPECIFIER - The file name”s extension contained an illegal character.
Only "A"-"0" and possibly "P", "X", "Y" or "Z" are legal.

NO DIRECTORY SPACE -~ The object or listing file could not be created.

DISK WRITE ERROR - Probably insufficient space on disk for object or listing
files.

INSUFFICIENT MEMORY - Memory requirements increase with source program size
due to storage required by the symbol table and by the intermediate code.
Requirements can be reduced by using shorter labels, by defining labels before
they are used, and by reducing the total number of program lines.

SOURCE PROGRAM FORMAT

Input to the assembler is a sequence of lines, where each line is terminated
with ASCII carriage return and linefeed characters. The assembler accepts
lines of any length, but does no list formatting so line length may be limited
by your list device. Upper and lower case characters are completely equivalent
and may be mixed freely.

Each line may include up to four fields, which may be separated from each
other by any number of spaces or tabs (control-I). Fields must appear in
order, as follows:

1. Label field (optional) - If present, it must either begin with the first
character on the line or be followed immediately by a colon. A label begins
with a letter and may be followed by any number of letters or digits, up to a
total length of 80 characters, all of which are significant.

2. Opcode field (optional) - If present, it must begin AFTER the first
character on the line (otherwise it would be mistaken for a label).

3. Operand field — This fleld is present only as required by the opcode field.
4. Comment field (optional) — If present, it nust begin with a semicolon (;).

Since all fields are optional, lines may be blank, may have labels only, may
have comments only, etc.

Bus lock (LOCK), string repeat (REP), and segment override (SEG) prefixes are
treated as separate opcodes and must appear on the line preceding the opcode
they are to prefix.

ASM - 4
OPERANDS
Each operand is one of the following types: l. A Register

2. A Value
3. An Address

l. REG - A register:

AX, BX, CX, DX, AL, AH, BL, BH, CL, CH, DL, DH, SI, DI, SP, BP, CS, DS, ES, SS
are the 8086 registers; ST(0) through ST(7) refer to 8087 registers, where
ST(0) may be referred to as simply ST. Most instructions have limitations on
which registers may be used.

- e e s e e e

s ey o o e o s

An expression involving constants or labels. The operators may be "*", "/",
"+", and "-" for multiplication, division, addition, and subtraction,
respectively. "*" and "/" have theilr usual higher precedence over "+" and
"=", but order of evaluation may be forced with parentheses. Terms of the
expression maybe:

a) A decimal constant ("486").

b) A hex constant, which must begin with a digit from O to 9, and end with an
"H“ ("0F9H") .

c) A string constant. In general, this is any number of characters enclosed
by either single (”) or double (") quotes. Since the opening and closing
quotes must be the same, the other type may appear in the string freely. If
the same quote as opened the string needs to appear within it, it must be
given as two adjacent quotes. Examples:
f
"TEST" 1is the same as “TEST” :

", P

is the same as

Control characters except control-Z (1AH) may appear in the string, but this
may have a strange effect on the listing.

Note that multi-character strings are meaningful only for the DB, DM, and DW
pseudo—ops. All other expressions are limited to one character strings.

d) A label. No more than one undefined label may appear in an expression, and
undefined labels may only be added. An undefined label is one which has not

yet appeared in the label field as the source code 1s scanned from the
beginning to the current line.

e) "$". This special symbol means the value of the location counter at the
start of this instruction.

ASM - 5
OPERANDS ~ Value (Continued)

f) "RET". This special symbol means "the address of a nearby RETurn
instruction”. The purpose of this is to allow conditional returns without
requiring a label to be put on the RETurn instruction. For example,

CcMP AL,20H
Jc RET

The jump instruction effectively means "return if carry”, yet no label named
RET need appear—-in fact, a label would be ignored. If no RETurn instruction
appears within the range of the jump, then a "value error”, number 65 hex,

will occur. Only RETurn instructions with no operands will be the target of
the jump (intra-segment return without adding to stack pointer).

e e o e e s o

A valid 8086 address expression enclosed within brackets. The address
expression may be:

a) A VALUE, as defined above.
b) A base register (BP or BX).
c) An index register (SI or DI).

d) The sum of any of the above, as limited by valid 8086 addressing modes.

ASM - 6

Examples of Operands

Legal:
-3+ 178
SCOPE+4
| [bx + COUNT#*2] ;COUNT must have already been defined‘
[SI+ARRAY+BX~OFFSET] ;OFFSET must have already been defined
[DI]
['NEXT]
Illegal:
12+4+BX ' sRegister not allowed in VALUE
9c01 sNeeds trailing "H"
[Count - BX] ;Can”t subtract register
[BX+BP] ;Only one base register at a time
[ARRAY+BX+OFFSET] ;Both labels are forward referenced (Note 1)
COUNT-DIF sDIF .is forward refereﬁced (Note 2)

Note 1. This problem could be corrected like this:

MOV AX, [BX + ARRAYPLUSOFFSET]

ARRAY:
© OFFSET:

ARRAYPLUSOFFSET: EQU ARRAY + OFFSET
Note 2. This problem could be corrected like this:

MOV AX,COUNT + MINUSDIF

DIF:

.

MINUSDIF:EQU =DIF

ASM - 7
PSEUDO-0PS

- e =

ALIGN

ALIGN assures that the next location counter address is even, i.e., aligned on
a word boundary. If the location counter is currently odd, both it and the PUT
address are incremented; otherwise they are unchanged. See PUT and ORG for an
explanation of these terms.

DB VALUE o
DB VALUE, VALUE, VALUE, . . ., VALUE

DB (Define Byte) is used to tell the assembler to reserve one or more bytes as
data in the object code. Each value listed is placed in sequence in object
code, where a multi-character string is equivalent to a sequence of
one-character strings. Values must be in the range —-256 to +255. Example:

DB "Message in quotes",0DH,0AH,-1
DM VALUE
DM VALUE, VALUE, VALUE, . . ., VALUE

——— - an

DM (Define Message) is nearly identical to DB, except that the most
significant bit (bit 7) of the last byte is set to one. This can be a
convenlent way to terminate an ASCII message since this bit would not
otherwlse be significant. Example:

DM “Message in quotes”,0DH,OAH
is equivalent to :
DB “Message 1in quotes”,0DH, OAH+80H
DS VALUE

. et e e e o e S

DS (Define Storage) 1s used to tell the assembler to reserve VALUE bytes of
the object code as storage. Any labels appearing in the expression for VALUE
must have already been defined.

ASM - 8

PSEUDO-OPS (Continued)

DW VALUE
DW - VALUE, VALUE, VALUE, . . ., VALUE

v

DW (Define Word) is used to tell the assembler to reserve one or more 16-bit
words as data in the object code. It is very similar to DB, except that each
value occupies two bytes instead of one. Since a multi-character string is
equivalent to a sequence of one-character strings, :

DW “TEST”
is equivalent to

because the high byte of the 16-bit constant represented by “T” is always
Zeroe.

LABEL: EQU VALUE

EQU (Equate) assigns the VALUE to the label. The label MUST be on the same
line as the EQU. Three common uses of this operation are:

l. To assign a name to a constant, for convenience and documentation. For
example:

CR: EQU 13

LF: EQU 10

The program could now refer to ASCII carriage return and linefeed with symbols
CR and LF, respectively.

2. To "parameterize" a program. I/0 ports and status bits, for example, could
be set by equates at the beginning of the program. Then to reassemble the
program for a different I/0 system would require editing only these few lines
at the beginning.

3. To bypass expressions that would have two or more undefined labels or that
would subtract an undefined label. See examples under OPERANDS.

IF VALUE
ENDIF

IF allows portions of the source code to be assembled only under certain
conditions. Specifically, that portion of the source code between the IF and
ENDIF will be assembled only if the operand is NOT zero. This is particularly
useful when producing different versions of the same program. IFs may be
nested up to to 255 deep.

ASM - 9

PSEUDO-0PS (Continued)

ORG VALUE

ORG sets the assembler”s location counter, which is subsequently incremented
for each byte of code produced or space allocated. The value of the location
counter should always be equal to the displacement from the beginning of the
segment to the next byte of code or data, since it 1s used to establish the
value of labels. ORG may be used any number of times in a program. Any
labels appearing in the expression for VALUE must have already been defined.

PUT VALUE

The assembler writes object code to the disk in Intel hex format. This format
includes information which specifies the addresses at which the object file
will be later loaded into memory by a hex loader.

PUT is used to specify this load address. Intially, the load address is 1O0H,
that is, "PUT 100H" is assumed before assembly begins. Each time a PUT occurs,
all subsequent code would be loaded starting at the specified address until
the next PUT is encountered. This allows modules to be placed in specific
areas of memory. Note that the load address 1s not related to the location
counter (see ORG), although PUTs and ORGs will often occur together. Any
labels appearing in the expression for VALUE must have already been defined.

ASM - 10

8086 OPCODE CLASSIFICATIONS

TWO OPERAND ALU

ADC, ADD, AND, CMP, DIV, IDIV, IMUL, MOV, MUL, OR, SBB, SBC, SUB,
TEST XCHG, XOR _

" Operand Forms:

REG,REG Regiéter to»regiéter,
[ADDR] ,REG Regis;er to memory
REG, [ADDR] Memory to register
REG,VALUE Immediate to register

B, [ADDR],VALUE Byte immediate to memory
W, [ADDR],VALUE Word immediate to memory
',[AbDR],VALUE Immediate to memory‘defaults to word
Specific Notes: |
SBC is the séme as SBB.
The ordér of operands for TEST and XCHG is irrelevant.
XCHG may not use immediate operands.

For DIV, IDIV, MUL, and IMUL, the first operand must be AL or AX and
the second operand may not be immediate.

ASM - 11

8086 OPCODE CLASSIFICATIONS (Continued)

ONE OPERAND ALU

DEC, INC, NEG, NOT, POP, PUSH

Operand Forms:

REG Register
B,[ADDR] Memory byte

W, [ADDR] Memory word
[ADDR] Defauit to word

Specific Notes:

POP and PUSH only operate on words.

IN, INB, INW, OUT, OUTB, OUTW
Operand Forms:

VALUE Input/output to fixed port

DX Input/output to port number in DX
Specific Notes:

IN, INB, OUT, OUTB transfer bytes.

INW, OUTW transfer words.

ASM - 12

8086 OPCODE CLASSIFICATIONS (Continued) .

SHIFT/ROTATE

RCL, RCR, ROL, ROR, SAL, SAR, SHL, SHR , .

Operand Forms:
REG
REG,CL
B, [ADDR]
B, [ADDR],CL
W, [ADDR]
W, [ADDR],CL
[ADDR]
[ADDR],CL

Specific Notes:

Shift/rotate register one bit
Shift/rotate register CL bits
Shift/rotate memory byte

Shift/rotate memory word

Default to word

SHL and SAL are the same.

o o o s 2 o s

— o e o ot s e iy i o

JA, JAE, JB, JBE, JC, JCXZ, JE, JG, JGE, JL, JMPS, JLE, JNA, JNAE,
JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, JNLE, JNO, JNS, JNZ, Jo, JP, JPE, JPO,.
JS, JZ, LOOP, LOOPE, LOOPNE, LOOPNZ, LOOPZ

Operand Form:
VALUE

Specific Notes:

Direct jump

VALUE must be within =126 to +129 of instruction pointer, inclusive.

JP is NOT Jump on Parity. JP is the unconditional short direct jump.
It is retained for historical reasons only and should not be used for new

code. Use JMPS instead.

JMPS is the unconditional short jump.

ASM - 13
8086 OPCODE CLASSIFICATIONS (Continued)

LONG JUMPS/CALLS

CALL, JMP

Operand Forms:

VALUE" Intra-segment direct

VALUE,VALUE ~ Inter-segment direct (offset, segment)

REG Intra—segmént indirect through register

[ADDR] Intra-segment indirect through memory

L, [ADDR] Inter-segment indirect through memory ("Long")

Specific Notes:

JMP does NOT include the short direct jump. Its mnemonic is JMPS and
is included under "Short Jumps”.

RET

Operand Forms:

(no operand) Intra-segment
L Inter—-segment ("Long")
VALUE Intra-segment and add VALUE to SP

L,VALUE Inter-segment and add VALUE to SP

ASM - 14

8086 OPCODE CLASSIFICATIONS (Continued) -

STRING OPERATIONS

CMPB, CMPSB, CMPSW, CMPW, LODB, LODSB, LODSW, LODW, MOVB, MOVSB,
MOVSW, MOVW, SCAB, SCASB, SCASW, SCAW, STOB, STOSB, STOSW, STOW

No operand. Those mnemonics with an "S" as their 4th letter are Intel
standard and should be used for all new code. Those operands without the "S"
as the 4th letter are retained for historical reasons, and generate the same
code as the corresponding Intel standard mnemonic. For example,

CMPB is the same as CMPSB

CMPW is the same as CMPSW

- e i e i e i

INT
Operand Form:

VALUE

ADDRESS MANIPULATION

LDS, LEA, LES
Operand Form:

REG,[ADDR] = ' Put effective address in reglister

SEGMENT OVERRIDE PREFIX

SEG
Operand Form:

REG Must be a segment register (CS, DS, ES, SS)
Specific Notes:

This opcode should appear on the line immediately preceding the line
to be prefixed.

ASM - 15

8086 OPCODE CLASSIFICATIONS (Continued)

PROCESSOR ESCAPE OPERATION

ESC

Operand Forms:
VALUE, [ADDR]
VALUE, VALUE

- Specific Notes:

The first value is a number in the range 0 to 63 which is internally
represented by 6 bits. The leftmost 3 bits from the last part of the first
byte of the ESC opcode (the first 5 bits are always 11011). The rightmost 3
bits form the middle section (bits 3,4,5) of the second byte of the ESC
opcode. The rest of the second byte of the ESC opcode is determined by the
second operand.

If the second operand is [ADDR], then the second byte of the ESC
opcode is set up for the correct addressing mode and possibly a one or two
byte displacement is appended to the two opcode bytes. If the second operand
i1s a VALUE, it must be in the range O to 7, which is internally represented by
3 bits. These 3 bits are placed in bits 0,1,2 of the second byte of the ESC
opcode and bits 6 and 7 are both set to 1.

"t o e Gt 1 8 o i s b et p s > a® o

e b 2 o et et s o et s et e®

REP, REPE, REPNE, REPNZ, REPZ

No operand. Conditional repeats should be read as "Repeat while ...",
e€.3., REPE is Repeat While Equal. For those string operations which affect the
flags, REP, REPE, REPZ, all repeat while the zero flag is set; REPNZ, REPNE
repeat while the zero flag is clear. This opcode should appear on the line
imnediately preceding the string operation to be prefixed.

ASM - 16

8086 OPCODE CLASSIFICATIONS (Continued)

ALL OTHER OPCODES

AAA, AAD, AAM, AAS, CBW, CLC, CLD, CLI, CMC, CWD, DAA, DAS, DI, DOWN,
EI, HALT, HLT, INTO, IRET, LAHF, LOCK, NOP, POPF, PUSHF, SAHF, STC, STD, STI,
UP, WAIT, XLAT

No operand.
Specific Notes:

DI is the same as CLI.

EI is the same as STI.

UP is the same as CLD.

DOWN is the same as STD.

HALT is the same as HLT.

LOCK is treated as a separate opcode and should appear on the line
immediately preceding the opcode it is to prefix.

ASM - 17

8087 OPCODE CLASSIFICATIONS

All 8087 opcodes normally generate a WAIT instruction before the actual
operation code. This wait may be suppressed on any instruction by adding a "N"
to the mnemonic as the second letter, after the leading "F". For example, the
no-wait form of FCLEX is FNCLEX.

TWO-OPERAND ARITHMETIC

FADD, FDIV, FDIVR, FMUL, FSUB, FSUBR

Operand Forms:

ST,ST(1) ST := ST op ST(i)
ST(1i),ST ST(1) := ST(1) op ST
S,[ADDR] ST := ST op Short Real
L, [ADDR] ST := ST op Long Real

(no operand) ST(1) := ST(l) op ST; pop stack
Specific Notes:

For FDIVR and FSUBR, operation is "reverse division"” and "reverse
subtraction”, respectively. For example, FDIVR ST,ST(2) is ST := ST(2) / ST.

FADD is same as FADDP ST(1),ST. Likewise for other mnemonics.

- ~- -

TWO~OPERAND ARITHMETIC WITH POP

e a2 -

FADDP, FDIVP, FDIVRP, FMULP, FSUBP, FSUBRP
Operand Form:
ST(i),ST ST(1) := ST(i) op ST; pop stack
Specific Notes:
For FDIVRP and FSUBRP, operation is "reverse division" and "reverse

subtraction"”, respectively. For example, FDIVRP ST(2),ST is ST(2) := ST /
ST(2); pop stack.

ASM - 18

8087 OPCODE CLASSIFICATIONS (Continued)

LOAD/STORE

— s v et S g e vy e

FLD, FST, FSTP

Operand Forms:

ST(1)

S,[ADDR] Short Real

L, [ADDR] Long Real

T, [ADDR] Temporary Real (illegal for FST)

Specific Notes:

FST may not be used to store the temporary real type.

INTEGER OPERATIONS

FIADD, FICOM, FICOMP, FIDIV, FIDIVR, FILD, FIMUL, FIST, FISTP, FISUB,
FISUBR

Operand Forms:

W, [ADDR] Word Integer
S, [ADDR] Short Integer
L, [ADDR] Long Integer (FILD, FISTP only)

Specific Notes:

Long integer can only be used with FILD and FISTP.

ASM - 19

8087 OPCODE CLASSIFICATIONS (Continued)

ONE ADDRESS OPERATIONS

FBLD, FBSTP, FLDCW, FLDENV, FRSTOR, FSAVE, FSTCW, FSTENV, FSTSW

Operand Form:

[ADDR] Operand size 1s implicit in instruction

REAL COMPARE

- 4t et e et e e e e

FCOM, FCOMP

Operand Forms:

ST(1)
S, [ADDR] Short Real
L, [ADDR] Long Real

(no operand) Compare ST and ST(1)

ASM - 20

8087 OPCODE CLASSIFICATIONS (Continued)

ONE REGISTER OPERATIONS

FFREE, FXCH
Operand Forms:

ST(1)

(no operand) ST and ST(1) (FXCH only)
Specific Notes:

Only FXCH has no operand form.

ALL OTHER OPCODES

FABS, FCHS, FCLEX, FCOMPP, FDECSTP, FDISI, FENI, FINCSTP, FINIT,
FLDLG2, FLDLN2, FLDL2E, FLDL2T, FLDPI, FLDZ, FLDl, FNOP, FPATAN, FPREM, FPTAN,
FRNDINT, FSCALE, FSQRT, FTST, FWAIT, FXAM, FXTRACT, FYL2X, FYL2XPl

No operand.

Specific Notes:

FWALIT is the same as WAIT. FNWAIT is not allowed.

HEX2BIN filespec [offset]

The specified file is assumed to be in Intel hex format, as produced by the
SCP Assembler. If no extension is given, ".HEX" is assumed. A file of the
same name but with an extension of ".COM" is produced which is the absolute
binary equivalent of the hex input file, offset by the optional offset
parameter or by the default offset of —100 hex if no offset is specified.

To use the offset, it 1s necessary to understand just what HEX2BIN does:

First, as large a segment as possible (limited to 64K and available memory) is
set aside as the load segment. This segment is filled with zeros. Then the
".HEX" file is read piece by piece and decoded. Each time a load address is
encountered in the ".HEX" file, the offset is added to it modulo 64K and
loading continues at that point. The highest location loaded is also kept
track of. The loading process is aborted if the load address (with offset
added to it) exceeds available memory. After loading, the file is saved
starting at location O in the segment, up to the highest location loaded.

Normally, a program intended to become a ".COM" file will be assembled with a
"PUT" address of 100 hex, since this is where it will execute. However, the
program must actually be written starting right at the beginning of the ".COM"
file because the file itself is loaded at 100 hex. This requires a load
offset of ~100 hex, which is the default offset if none is specified. That
is, 1f no offset is specified (no second parameter to HEX2BIN), the file will
be loaded (and saved) at location 0. When the file is later loaded as a
command, it will load at 100 hex which is its proper execution address.

The offset parameter is particularly useful when converting a file not
intended as an MS-DOS ".COM" file. The parameter has an optional "+" or "-"
then a hex number with one to four digits. Note that if an offset of O is
desired, it must be specified explicitly since the default is =100 hex.

’

