
Systems Engineering Laboratories

Reference Manual·
eEL 8109

General Purpose Computer

301-095118-004

Price: $10.00

Systems Engineering Laboratories

Reference Manual
eEL B1DB

General Purpose Computer

NoveITlber, 1968

This publication supersedes SEL 95l18D,
SEL 810B General Purpose Computer
Reference Manual, dated April, 1968.

6901 West Sunrise Blvd., Fort Lauderdale, Florida 33310
Area Code 305 587-2900

<01968, Systems Engineering laboratories
PrintDti I" II c::. A

I

A

I

LIST OF EFFECTIVE PAGES I

Page Number

The total num.ber of pages in this manual is 116,
consisting of the following:

Issue Page Number

Title •• •••..•....•.. Original
A
i thru vi
1-1 thru 1- 10.
2-1 thru 2-26.
3 - 1 thru 3 - 12. •
4- 1 thru 4- 6 .•
5-1 thru 5-8 ••
6-1 thru 6-20.
7-1 and 7-2 ••
A-I and A-2 •
B-1 thru B-4.
C-l and C-2
D-l and D-2 •
E-l and E-2 .•
F-l thru F-lO
G-l and G-2 •

• Original
· Original
· Original
• Original
· Original
· Original
· Original
· Original
· Original

. ••• Original
· Original
· Original
· Original
• Original
• Original
· Original

Issue

Section

II

TABLE OF CONTENTS

GENERAL DESCRIPTION

Introduction
General Characteristics

8l0B Computer ...
Computer Options .•
Standard Software ..
Peripheral Devices.
Applications Programming.

Computer Organization.
Memory Unit
Control Unit .•...
Input/Output Unit ..

SEL 8l0B Software System ..
SEL 810B Assembly Program •.
SEL 810B Loader •....
SEL 810B FORTRAN IV.
SEL 8l0B Debug ...••.
SEL 8l0B Update •....
SEL 8l0B Library Package.
SEL 8l0B Maintenance Routines
Power Fail Safe ..•.....•.•

Title

MACHINE LANGUAGE PROGRAMMING

Introduction .•.•...•.......
Memory Reference Instructions •••
Augmented Instructions•...
Machine Language Instruction Set ••

Arithmetic Instructions ..
Load/Store Instructions .•
Branch/Skip Instructions.
Logical Instructions ...•
Registers, Change Instructions
Shift Instructions .•.
Control Instructions ••..•..

Input/Output Instruction •••. ' •.••

III ASSEMBLY LANGUAGE PROGRAMMING

General Description.
Location Field .••...••.••.•
Operation Field .••.••.•••••
Address Field (Variable Field) .•
Comments Field ••..•..•.
Identification Field•••.•

Mnemonic Computer Instructions.
Absolute Notations for Variable Fields.
Pseudo- Operation Instructions ••••••

Summary of Pseudo-Operation Instructions.
Macro System ...•.

Macro Prototype •..•...........•..

,.

Page

1-1
1-1
1-1
1-1
1-2
1-2
1-2
1-2
1-3
1-4
1-5
1-7
1-8
1-8
1-8
1-8
1-9
1-9
1-9
1-9

2-1
2-1
2-4
2-5
2-5
2-8
2-9

2-13
2-14
2-17
2-19
2-20

3-1
3-1
3-1
3-1
3-2
3-3
3-3
3-6
3-6
3-9

3-10
3-11

TABLE OF CONTENTS (Cont'd)

Section Title

IV INPUT/OUTPUT

General Description.
Input/Output Processor.

Input/Output Bus .•
Block Transfer Control Unit.

General Capabilities ...
BTC Operation .•.•..••

'.

V PRIORITY INTERRUPT SYSTEM

General Description .•
Detailed Description ...•...
Interrupt Connections .•..••
Interrupt Enabling/Disabling.
Interrupt Level Logic ..•...
Interrupt Routine Programming

VI PERIPHERAL DEVICES

Introduction. . . . • . . . • • . •••...•.•..
Console Typewriter (Model No. 81-711-02.1\, Device No. I) .

ASR- 33 Programming ..••..••.••.••....••
Paper Tape Reader (Model No. 8l-5l0A, 300 cps - Device No.2)
Paper Tape Punch (Model No. 8l-520A, 110 cps - Device No.2) .
Perforated Paper Tape Spooler (Model No. 80-530A) ...•.•.••
High Speed Paper Tape Punch/Reader System (Model No. 8l-525A, Device No.2)
Magnetic Tape (Model No. 80-615 Series, Device No. 6 and 7)

ii

Magnetic Tape Programming. • . • . . . • • . • • • • • • • . • • • ••...
High Speed Printer (Model No. 80-700 Series, Device No.5). • . ••••.

High Speed Line Printer Programming. • • • • • . • • • . •••••
Punched Card Reader (Model No. 8l-450A 400 cpm - Device No.4) •..•.•

Punched Card Reader Programming .••..••....••.•.••••..•
X- Y Incremental Plotter (Model No. 81-8l0A and 81-8I2A, Device No. 11)

X- Y' Plotter Programming •.....•.•..••••••••.•••
Movable Head Disc Storage (Model No. 8l-653A, Device No. 13)

Movable Head Disc Storage Programming .•.•.....•••
Fixed Head Disc Storage (Model No. 81-654A, Device No. 13).

Fixed Head Disc Storage Programming •
Priority Interrupts for Fixed Head Disc .••..••••.•••

VII OPTIONS

Program Protect and Instruction Trap (Model 8l-080B)
Va;riable Base Register (Model 8l-042B)
Stall Alarm (Model 81-043B) .
Auto Start (Model 81-04lB) .•..••
Table Top (Model 81-057B) ..•..•
Input/Output Parity (Model 8l-2l0B)
Index Register (Model 8l-006B) .•.
60 Hz Real-Time Clock (Model 8l-03lB) .

I'

APPENDIX A. SEL 8l0B Computer Word Formats ••

APPENDIX B. SEL Peripheral Device Octal Character Codes

APPENDIX C. SEL 810 Peripheral Device Command and Test Code Formats

.. ,

.'

Page

4-1
4-2
4-5
4-5
4-5
4-5

5-1
5-.3
5-3
5-3
5-4
5-4

6-1
6-1
6-1
6-3
6-4
6-4
6-5
6-5
6-6

6elO
6-11
6-12
6-13
6-13
6-14
6-15
6-15
6-18
6-19
6-19

7-1
7-1
7-2
7-2
7-2
7-2
7-2
7-2

A-I

B-1

C-l

Section

Figure

1-1
1-2
2-1
2-2
2-3
2- 4
3- 1
4-1
4-2
4- 3
5-1

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8

Table

2-1
3-1
3-2
3-3
3-4
4-1
4-2
5-1
5-2
5- 3
5-4
6-1

TABLE OF CONTENTS (Cont'd)

Title

APPENDIX D. SEL 810 Paper Tape Formats

APPENDIX E. SEL 810 Assembler Output Formats.

APPENDIX F. Numerical Information ..•.•.....

APPENDIX G. SEL 810B Instruction List Summary

LIST OF ILLUSTRA TIONS

Title

SEL 810B Block Diagram ..••...•..•.....••••.•...•
810B Computer Basic Data Formats .•...•••..........
Typical Memory Reference Instruction Word Format Diagram.
Input/Output: Instruction Word Format Diagram.
AIP/AOP Instruction Execution Flow Chart.
I/O Instruction Word Format••...•..
Example of Assembler Coding ••.•....••••
Connection of Peripheral Units to the Computer.
Input/Output Configuration and Computer Interface.
Peripheral Device Bus Connections ••••.•••..•
Sample Program for Two Typewriters on the Same Standard
Output Interrupt Level•.••..
Paper Tape Data Flow Diagram .•.
Magnetic Tape Format 0 Data Word.
Track and Sector Layout ••.
Movable Head Arrangement - Recording Surface
Head Position .•.•••.••..•....
Typical Head Positioning Time Chart .•.••••
Fixed Head Track and Sector Layout .••.•••
Fixed Head Arrangement - Recording Surface.

LIST OF TABLES

Sample Listing •••..•••••.••
Example Address Field Entries .
SEL 810B Mnemonic Instructions

Title

SEL 810B Absolute Notation Formats.
Summary of SEL 810B Pseudo-Operations
I/O Control Signals •••......
Executive Times .•••......••.
Priority Interrupt Assignments •••.
BTC Memory Location Assignments
Standard Interrupt CEU Bit Functions.
Sample Assembler Interrupt Routine.
Model 81-711-02A Console Typewriter Specifications.

Page

D-1

E-1

F-1

G-1

Page

1- 3
1- 6
2- 3
2-5

2-21
2-22

3- 1
4-1
4-3
4- 4

5-5
6-3
6-7

6-16
6-16
6-16
6:"16
6-19
6-19

Page

2-2
3-2
3-3
3-6
3-9
4-4
4-6
5-1
5-3
5-3
5-4
6-1

iii

Table

6-2
6-3

6- 4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-l3
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26

iv

LIST OF TABLES (Cont'd)

Title

Bit Coding for the CEU Comm.and •••••••••••••••••••.
Programm.ing Routine for Console Keyboard Input and Console
Printer Output .•••.••.••..••.••.••••••
Model 81-510A Paper Tape Reader Specifications
Model 81-520A Paper Tape Punch Specifications
Model 80-530A Paper Tape Spooler Specifications
Programm.ing Routine for Copying Paper Tape ••.••
Model 80-615 Magnetic Tape Transport Specifications
CEU, For:mat 0, Second Word, Bit Functions
CEU, Format 1, Second Word, Bit Functions ••••
TEU, Second Word, Bit Functions ••••..••••••
Programm.ing Routine for Magnetic Tape With BTC
CEU and TEU Second Word Bit Format for High Speed Printer.
Model 80-700 Series, High Speed Printer Modifications •
Programm.ing Routine for High Speed Printer ••••••••
Model No. 81-450A Punched Card Reader Specifications.
Programm.ing Routine for Punched Card Reader ••••..•
Model No. 81-810A and 81-812A X-Y Plotter Specifications.
CEU Second Word Bit Forma t for X- Y Plotter ••••••.•••
X- Y Plotter Comm.ands and Bit Configuration in CEU Second Word .•••.•.•.•.•
Diagnostic Routine for X- Y Plotter • • • • • • • • . • . . • • •• • •••••
Movable Head Disc Storage, Movement Comm.ands ••••..•••••••
Model 81-654A Fixed Head Disc Storage Specifications • ~ ••••••••
Model 81-654-l28A Disc Storage Capacity Specifications (One Disc) •
Fixed HeadDisc TEU Second Word For:mat.
Fixed Head Disc CEU Second Word Format .•.••.••••••••••••

Page

6-2

6-3
6-4
6-4
6-4
6-5
6-6
6-6
6-7
6-8

6-10
6-11
6-11
6-12
6-12
6-l3
6-13
6-14
6-14
6-14
6-17
6-18
6· 18
6-20
6-20

LIST OF RELATED PUBLICATIONS

The following publications contain infor:mation not included in this :manual but
necessary for a co:mplete understanding of the 810B Co:mputer Syste:m.

Publication Title

Technical Manual 810B General Purpose
Co:mputer

Reference Manual 8l0A/8l0B Asse:mbler

Technical Manual 8l0A/8l0B Loader
Progra:m

Technical Manual 810/840 Co:mputer Series
Library Subroutines

Technical Manual 810A/810B Diagnostic
Progra:ms

Technical Manual 8l0A/8l0B FORTRAN IV
Co:mpiler

Technical Manual 8l0A/8l0B Operator

Reference Manual 8l0A/8l0B Operating

Technical Manual 8l0A/8l0B Asse:mbler
Progra:m

Drawings Manual 8l0B General Purpose
Co:mputer

Design Manual 8l0B Input/Output Interface

Publication No.

303-095019-000

323-095052-001

322-095055-001

322-095057-001

322- 095061- 001

322-095062-001

302- 096064- 002

312- 095071- 000

322-095094-001

304-095116- 000

310- 095117- 000

v/vi

SECTION I
GENERAL DESCRIPTION

INTRODUCTION

The SEL BlOB Computer shown in the frontispiece,
is a fast, general-purpose, l6-bit binary computer.
The low cost, speed, and highly flexible input/
output structure of this computer make it especially
well suited to real-time data collection, processing,
and control applications. The BlOB computers are
designed to meet field requirements such as the
following:

Industrial process control (Direct Digital
Control)

Factory test automation

Missile and aircraft test data collection

Data logging and display

Real-time and post-test data processing

Telemetry data processing and simulation

Flight simulation

In addition to the basic computer, the SEL BlOB
system consists of a large variety of standard
peripheral devices, data acquisition and display
subsystems, and a comprehensive software pack­
age.

GENERAL CHARACTERISTICS

BlOB COMPUTER

All silicon monolithic integrated logic circuits

Sixteen-bit word length plus parity

B192-word memory

750-nanosecond full cycle time

Memory parity bit with parity generator /
checker

Fully parallel operation

Computation time including access and
indexing;

Add, Subtract
Multiply
Divide

1. 5 microseconds
4. 5 microseconds
B.25 microseconds

Double-length Accumulator

Hardware index register (lower B-Accumulator)

I/O structure capable of handling 64 peripheral
device controllers (drivers and terminators for 16
controllers supplied with the basic computer)

Two separate levels of priority interrupt

Sixteen sense switches

Switch-addressable program halt

Power fail safe

ASR- 33 typewriter with paper tape reader
and punch mounted on stand be side the computer

Computer size - 24 inches wide, 62 inches
high, 30 inches deep (45 inches deep including
optional desk top)

Typewriter size - 22 inches wide, 35 inches
high, lB inches deep

Temperature Environment, Operating:

BlOB Computer (excluding Teletypewriter) -
0° to 55 0 C (32 0 to 131 0 F)

Teletypewriter - 10 0 to 35° C (50 0 to 95° F)

COMPUTER OPTIONS

Up to eight automatic block transfer control
units capable of transferring up to 1',333,000 words
per second

Additional hardware index register

Memory expandable to 32K

Program protect and instruction trap feature
for guarding blocks of memory against modification
and for preventing execution of privileged instruc­
tions

Up to 9B individual levels of priority interrupts

1-1

Variable base register-increases direct
addressing capability

ASR- 35 console typewriter in place of ASR- 33

I/O parity checker and generator

Real-time clock

Computer graphic s proce s sor

Stall alarm

Auto start

STANDARD SOFTWARE

Full ASA FOR TRAN compiler - operates in
8K memory

FORTRAN library

Assembler - relocatable object format,
Macro capability, and extensive set of pseudo­
operations

Compiler/assembler loader

Utility routines - debugging aids, I/O handlers,
tape editor

Maintenance routines - complete set for com­
puter and peripheral units

PERIPHERAL DEVICES

Card reader - 200 and 400 card/minute

Card punch - 100 cards /minute

Paper tape reader (photoelectric) - 300
characters/second

Paper tape punch - 110 characters/second

Magnetic tape control unit - handles up to
eight tape units

Magnetic tape units - 45, 75, 120, 150 inches/
second; 200, 556, 800 characters/inch; 7 and 9
track

Movable head disc file - 1. 5 million words
storage, 150 ms maximum track access time
(track 00 to track 99)

Fixed head disc files - up to 909K 16-bit word
storage, 8.3 ms average access time

Typewriters - ASR-33,KSR-33,ASR-3S,
KSR-3S, RO-33, RO-35, 10 characters/second

1-2

Line printers - 300, 600, 1000 lines/minute,
120 columns/line

Incremental plotter s - 12 inch-chart width
(300 steps/second) and 3l-inch chart width (200
steps/ second)

CRT display - 10 x lO-inch display area in­
cluding vector generator with the following options:

Alphanumeric character generator
Function switche s
Light pen
Line texture control

Interval timer

Interface subsystem components

Multiplexer - low-level and high-level, solid­
state and relay switching

Sample and hold units

Analog/digital converter - up to 15 bits binary.
Word rates to SOK words/ second

Digital/analog converter - up to 12 bits binary

Customer interfaces

APPLICA TIONS PROGRAMMING

The Systems Engineering Laboratories Programm­
ing Group has developed both total and basic sets
of applications programs for many 810B systems.
Capability and experience exists in the areas of:

Real-time executives - monitor systems

Data collection, corrections, recording and
logging

Industrial process control

Time- shared operations

Data di s pIa y

Data analysis and scientific computation

COMPUTER ORGANIZATION

The SEL 8l0B Computer is formed by four major
units: memory, control, arithmetic and input/
output (see figure 1-1). The memory unit stores
the instruction words which define the operation of
the computer and the data words on which the com­
puter operates. The control unit calls up the in­
struction words, decodes them and issues commands

to operate the computer. The arithmetic unit per­
forms computation with data words supplied by the
input/ output unit and the memory unit under the
direction of the control unit. The input/output unit
transmits data words, commands, and status re­
ports between the computer and peripheral equip­
ment. The computer operates on, and from, 16-
bit binary words which are transferred in parallel
between the computer units. Arithmetic operations
are performed using two's complement binary
arithmetic with negative words stored in the two's
complement form. The combined control and
arithmetic units are often called the mainframe
section.

MEMORY UNIT

The memory unit is composed of one, two, three
or four separate modules. Each module has 8192
addressable storage locations. Each location
consists of one 16-bit data or instruction word plus
a parity bit. The total number of storage locations
can range from 8192 provided by the basic 8K mo­
dule to 32,768 available with four 8K modules.

Individual modules are composed of these four ele­
ments:

a. 8K x I 7 - bit Magnetic Core Memory

b. 13- bit Memory Addre ss Register

c. 17-bitDataRegister

d. Self-contained Timing and Control

Instruction words and data words are loaded into
specific addresses prior to the program execution.
Loading may be performed manually through the
panel controls or automatically from peripheral
units through the use of the supplied loader program.
Each input word is transferred to the memory data
register and the accompanying storage address is
transferred to the memory address register. When
both registers have been loaded, a "write" command
is issued by the program control unit and the 17
bits in the memory data register are written into
the 17 magnetic cores addressed by the memory
address register.

When the entire group of instruction words forming
a program is loaded and execution is started,
addresses selected by the control unit are sent to
the memory address register and a "read" com­
mand is issued. The state of each core at that
address is sensed and transferred to the memory
data register. The sensing of the cores sets
them all to the same state, so the memory word
now in the memory data register is immediately
rewritten into its original memory location so as
to be available for later use. The word is also
transferred to the control unit to be decoded or to

r-----T----T------- - T--------------,
.L .L .L I

BUS BUS II MEMORY INPUT BUS

I
I
I

INDEX

I
B_

PROGRAM
REGISTER ADDER

A- ACCUMU LA TOR
COUNTER ACCUMULATOR INDEX (OPTIONAL)

I REGISTER

I
~ I/O PROCESSOR

I PERIPHERAL 1-- ---1
DEVICES OR
PERIPHERAL BLOCK I MEMORY

I DEVICE TRANSFER I
AND ADDER INPUT BUS

CONTROLLERS (g~;;6~~tl I
CONTROL

1 TO 04

I----+---t I I
I

CONTROL I
1

T

I REGISTER
REGISTER

I
I
I

I BUS I BUS I MEMORY OUTPUT BUS , I , , I

Q5117A. II

Figure 1-1. SEL 810B Block Diagram

1-3

the arithmetic unit for computation. The memory
read and write cycles are completely automatic
so that only the memory address and source or
destination must be supplied by the program.

CONTROL UNIT

The control unit contains a 15-bit binary PROGRAM
COUNTER capable of directly addressing 32,768
memory locations. This counter supplies the ad­
dresses of the instruction words from which the
computer operates. The counter is initially set
to the address minus one of the first instruction
of a program when the computer is started. It is
then automatically advanced by each instruction
until a Halt, Branch or Conditional Skip instruction
is read from memory. The Halt instruction stops
the computer while the Branch instructions change
the contents of the program counter to the operand
address contained in the instruction. The Skip in­
structions cause the program counter to be ad­
vanced by either one or two locations, depending
on the vaiue of the Skip condition specified by the
instructions.

The instruction words are read from memory into
the INSTRUCTION REGISTER and automatically
restored in memory. The binary digits forming
the instruction word are then applied to the OPERA­
TION CONTROL circuits. The unique codes as­
signed to each instruction are then decoded and
used to provide timing and gating signals to the
remainder of the machine. The signals from
switches on the CONTROL CONSOLE are also
connected to the OPERATION CONTROL circuits.
External PRIORITY INTERRUPTS will cause the
control circuits to switch the program counter to
programs designed to process the external demand.

The memory cycle during which instruction words
are read and decoded is referred to as the "Instruc­
tion Cycle". Some instructions, called memory
reference instructions, contain a memory address
which specifies the location of an "operand" which
is to be operated on by the computer. For these
instructions, one or more additional memory
cycles, called "Execution Cycles", are required.
During the instruction cycle, the memory address
is supplied in part by the "operand address" con­
tained in the instruction word and by the program
counter. The operand is read from memory and
operated upon according to signals provided by the
operation code. Most memory reference instruc­
tions are accessed and executed in a total of two
cycles. However, instructions such as multiply
and divide require more than one execution cycle.

Many instruction words require no operand from
memory and are executed completely within the
instruction cycle. Others, while requiring no

1-4

operand from memory, do require one or more
execution cycles for completion. Chief among
this latter group are the shift instructions. For
these instructions, a group of bits within the in­
struction word defines the number of shifts to be
performed while the operation code of the word de­
fines the type of shifting to be done. Other instruc­
tions, notably the input/output control instructions,
are composed of two instruction words; one defin-
ing the type of operation and the unit and the other
defining the actual operand or the operand memory
location. The words forming these input/ output
instructions are automatically unloaded from memory
in the proper sequence.

ARITHMETIC UNIT

The arithmetic unit consists of a 16-bit adder and
several accessory storage registers. Two of these
registers, the A-ACCUMU LA TOR and the B­
ACCUMULATOR, may be loaded and unloaded by
program control. The A-ACCUMULATOR is the
primary arithmetic register and derives its name
from its function of accumulating results of the
arithmetic operations. Because only one word may
be taken from the memory and input/output units by
each instruction, the second operand in add and
subtract operations must be loaded in a register
prior to the add and subtract instructions. The A­
ACCUMU LA TOR fulfills this function and also pro­
vides temporary storage for the result of the
arithmetic operation. The B-ACCUMULATOR
!J.olds the multiplier during multiply operations arid
stores the least significant bits of the product. in
addition to these strictly arithmetic functions, the
two accumulators provide a convenient storage area
for rearranging data words through shifting and
logical operations.

A third register connected to the adder is the T­
REGISTER which holds the operand unloaded from
the memory. This 16-bit register plus the 16-bit
A and B-ACCUMU LA TORS supply inputs to the 16-
bit binary ADDER. When an add instruction is per­
formed, the data words are simply added accord­
ing to the rules of two's complement binary arith­
metic.

The basic data format of the 810B computer is a
16- bit binary single- precision fixed point word.
(See figure l-~). This format contains the sign
bit in bit position 0, with bit po sition 1 holding the
most significant data bit and bit position 15 holding
the least significant bit. Two's complement repre­
sentation is used for negative numbers. This format
is defined as an integer with an imaginary binary
.point located to the right of bit position 15. The
8l0B set of library integer subroutines. aSE;umes
this representation. The programmer can, of
course, scale single-precision words in any desired

m.anner and utilize the extensive shift and test
instruction repertoire to m.aintain the binary point
location.

The 810B Com.puter also accom.m.odates double­
precision data words (figure l-ZB) of 30 bits plus a
sign through the use of the extended B-Accum.ulator.
Each double-precision data word is norm.ally
stored in two adjacent m.em.ory locations with the
m.ost significant half stored in the first (lower)
address. The product generated by a single­
precision m.ultiply is located in the A and B­
Accum.ulators in this form.at. The dividend is
assum.ed to be in this double-precision form.at
prior to the execution of the DIVIDE instruction.

Three floating point data form.ats are utilized by
the 810B Com.puter library. The single-precision
floating point form.at consists of two words (fig­
ure l-ZC). The first word contains the sign and
15 m.ost significant bits of the fractional m.antissa;
the second word contains the six least significant
m.antissa bits and the signed 8-bit exponent. The
words are stored in adjacent m.em.ory locations
with the first word located in the lower m.em.ory
address. Both the m.antissa and the exponents
carry separate signs so that the m.antissa can be
positive or negative independent of the sign of the
exponent. Two's com.plem.ent representation is
used for negative num.bers.

Double-precision floating point form.at consisting
of three m.em.ory words is provided for use with the
set of double-precision floating point library sub­
routines (figure l-ZD).

The third floating point data form.at (com.plex float­
Lng point data) is provided for the set of FORTRAN
[V subroutines dealing with com.plex num.bers
[figure 1- ZE).

The arithm.etic unit includes two single-bit registers
which are addressable by the program.. The first
of these is the OVERFLOW latch which can be set
during addition, subtraction and division operations.
The overflow for an add or subtract occurs when
the result exceeds the accum.ulator capacity. A
divide overflow occurs if the divisor is equal to or
sm.aller than the dividend. This latter overflow is
due to the fact that the m.achine treats all divide
argum.ents as double-precision num.bers by scaling
the single-precision divisor by Z15 If the dividend
is larger than the scaled divisor, the quotient will
necessarily be a num.ber greater than Z15. Such a
num.ber exceeds the capacity of the 15-bit A­
Accum.ulator in which the quotient is to be stored;
this produces a false divide. The overflow latch
lights the OVERFLOW indicator on the control con­
,>ole and rem.ains set until tests, and reset, by an

SOF [skip no overflow) instruction. Because the
latch remains set until tested, such a test should
be made imm.ediately following an arithmetic pro­
cess when an overflow condition could result. This
prevents the possibility of a second overflow being
undetected by the already set latch. The overflow
latch can also be set with an OVS in struction.

The second addressable arithm.etic latch is the
CARRY latch which connects to the least significant
bit of the parallel adder. This latch is set in the
regular arithm.etic processes to produce a two's
com.plement number (one's complem.ent of the num.­
ber plus one). The latch is used in the addition and
subtraction of double-precision num.bers formed in
the A and B-Accumulators. The least significant
words of the double-precision num.bers are pro­
cessed and stored in the B-Accumulator. If a carry
or borrow is generated, it will cause the sign of
the B-Accumulator to change. A CSB (copy sign
of B) instruction is used to set the carry latch to the
state of the B-Accum.ulator sign bit and then reset
the B sign bit to zero (as required in the double­
precision format). If the operation is addition, the
True output of the carry latch is added together
with the most Significant word; if a subtract opera­
tion is in process the False output of the carry latch
is added to the m.ost significant word (effectively
subtracting the borrow).

The CSB instruction should be followed immediately
by the AMA or SMA instruction which operates on
the most significant half of the double-precision
operand, since the carry latch is cleared at the
end of the execution of all instructions except CSB.

INPUT/OUTPUT UNIT

The basic input/output unit contains an input/output
processor that communicates with peripheral device
control units over 64 parallel direct information
channels. Each device control unit is assigned a
unit number that corresponds to the number of the
direct inform.ation channel that is used as a com­
munication path between the computer and the de­
vice control unit. Each device control unit can
control or com.municate with several peripheral
devices; therefore, the number of individual
peripheral devices that can comm.unicate with the
com.puter, or be under the control of the computer,
is virtually unlimited.

Data transfer instructions are provided that enable
word transfers directly between the com.puter mem­
ory (or the A-Accumulator) and the peripheral de­
vice, through the device control unit. In addition,
external unit com.mands and test instructions are
provided.

The I/O instruction set is particularily powerful
because each instruction causes several functions

1-5

A Single-Precislon Fixed Point Data

.15 Data BU. :

q

B Double-Precision Fixed Point Data

Word I

\ S \,29 15 Molt Significant Data BU.

11

Word Z

\. \,14 15 Leut SiJlniCicant Data Bit.
,

c Single-Precision Floating Point Data

Word 1

,-I MOlt SllnUicant 15 BU, or Manti ... ,-I
11

Word Z

8· Bit ElCponent ,.
11

D Double-Precision Floating Point Data
Wnrd 1

Moat Sisnificant IS BiU 01 ManU ...

11

Word Z

\ . \'-" Manti ... ,- 211 s 1 ,7 • 8·Sit Exponent

11

Word 1

o 2. 12: 15 Lea.t 51 n!.ticant 6itl of Manti ... ,-'
11

E Complex Floating Point Data
Word I

S Z·I Moat Slliniflcanl II) BU. or ManU .. " .-1
11

,.
11

Warn j

,-1 MOlt 5i.niCkant 11) liit. or Manthu

11
Worrl 4

8 - BU ElCpon .. nt ,.
11

Figure 1-2. 8l0B Computer Basic Data Formats

1-6

to be per formed. Fir st, execution of each I/O
instruction causes a device to be connected to the
computer. The device (unit) number (direct infor­
mation channel number) is contained in each I/O
instruction.

Second, an automatic test is made of the device
which determine s if the device can execute the
instruction. Third, the data or command transfer
is made if the device is "ready". Fourth, the
device is disconnected. If the device is not ready
when tested, the computer will either wait until
the device is ready and then transfer, or it will
disconnect the device and advance the program
counter to a "reject" location. A "Wait Flag" is
provided in each I/O instruction, except the test
instruction (TEU), to enable the programmer to
specify the "Wait" or "Skip" mode of execution.
The normal time required to perform the com­
plete connect, te st, tran sfer, and di sconnect
operation is only four machines cycles plus wait.

In addition to the basic I/O structure, up to eight
fully buffered, block transfer units can be added
to the computer. These units permit transfer of
blocks of data up to 32,768 words in length be­
tween the computer and peripheral device s. Block
transfer is made under hardware control at rates
up to 1,333, 000 words per second. A single cycle
is stolen per word transfer. An automatic reinitia­
lization feature is provided which enables chaining
of block tran sfers. Also up to six Computer
Graphics Processors (CGP) may be added to the
SEL 810B Computer. The CGP is similar to the
BTC with the exception of its specialized operat­
ing characteristics and added control functions.
Unlike the BTC, the CGP examines each word
from memory and either interprets the word as
data or as an instruction.

A priority interrupt system is provided which en­
ables the computer to have up to 98 individual levels
of priority interrupt. Programmable interrupts
can be selectively enabled and disabled under pro­
gram control. A unique memory location is
assigned to each level.

An ASR- 33 typewriter, paper tape punch and reader
are supplied with the basic computer. The reader
operates at 20 characters per second and the punch
and printer operates at 10 characters per second.
The ASR-33 can be operated either on-line of off­
line. When operating on-line, the input and output
unit operate independently, which enables, for
example, a paper tape to be read and a separate
set of characters to be printed at the same time.
Other console typewriters, such as the ASR- 35,
can be supplied in place of the ASR- 33.

SEL 810B SOFTWARE SYSTEM

A comprehensive, fully-integrated, well-documented
and completely checked..out program preparation,
library, debugging and utility system is supplied
with the SEL 8l0B Computer system.

Specific features of this standard package are
described in detail but a briefing in regard to the
philosophy behind the software system package de­
sign is mentioned in the following paragraphs.

In determining the optimum software package for
the type of equipment under consideration, the
following factors were deemed to be of prime im­
portance:

a. The large variety of equipment configura­
tion which will be delivered.

b. The type of application which will be
programmed for the equipment.

c. The large amount of programming person­
nel time which will be involved in developing and
debugging operational programs.

d. The need to utilize programs and routines
which may already exist on other equipment.

e. The quality and completeness of the docu­
mentation supplied with the software and library
routines.

In order to satisfy these objectives, two Lasic
types of program preparation systems are pro­
vided; a symbolic Macro assembler and a full
FORTRAN IV compiling system. Depending upon
the specific requirements of a specific portion of
an operational package, these two progran1n1ing
systems provide the user with an optimum capability
where tradeoffs between coding and checkout lime
and progranl running time are involved.

The fact that a specific portion of a program can
be coded in either language is most significant to
the user. The loader will accept both FORTRAN
and assembler generated coding in any sequence.

This feature together with the very comprehensive
debug package will significantly reduce the coding
and checkout time required to produce operational
programs.

The FOR TRAN IV language specified for this sys­
tem is the standard ASA FORTRAN IV language;
thus, the FORTRAN IV supplied will provide direct
compatibility with the majority of other manufac­
turer supplied FOR TRAN IV systems.

1-7

In order to satisfy the requirements that all of the
supplied software system will operate on a wide
variety of computer configurations, especially in
the area of peripheral equipment, all ofthe supplied
packages are written in a modular form with a
standard program interface specification.

SEL 810B ASSEMBLY PROGRAM

All computer instructions are accepted by the
assembler and addresses can be expressed -in
symbolic, decimal, or octal formats, including
address arithmetic with combinations of these.

The following special pseudo-ops are also process­
ed:

BSS

BES

EQU

ORG

ZZZ

REL

ABS

CALL

NAME

DATA

MOR

END

FORM

FDAT

DAC

EAC

NOLS

LIST

MACR

1- 8

Reserve block of storage name
at start

Reserve block of storage name
at end

Define symbolic name

Set next storage addre s s

Set instruction bits to zero

Set assembly mode to relative

Set assembly mode to absolute

Call library subroutine

Define subroutine name

Define octal, decimal (fixed or
floating) or alphanumeric data

Pause in assembly process

End of program

Sets bit assignment for "FDAT"
pseudo-op

Same as "Data" with bits
assigned by "Form

U sed to generate direct address
constant

U sed to generate extended
address constants

U sed to stop program listing

U sed to continue program listing

U sed to name a Macro

EMAC U sed to terminate a Macro.

A symbolic side- by- side listing complete with error
messages is output (operator option) along with the
object output tape.

SEL 810B LOADER

The SEL 810B object program loader is designed
to be compatible with the FOR TRAN IV Compper
and the Assembly program.

The program provides for relocatable and absolute
instructions. The capability of using pre-compiled
subroutine libraries is included in a manner which
allows that a given routine will only be loaded
once, regardless of the number of times it is re­
ferenced in the program.

The system has been designed with the joint aims
of (a) minimizing indirect addressing for those
program elements which will operate most fre­
quently; (b) establishing uniform subroutine con­
struction and linkage; (c) relieving the user from
over-concern with any complexities introduced
by the MAP addressing scheme.

SEL 810B FOR TRAN IV

Ease of use was a prime consideration in the de­
sign of this compiler. As a result, programmers
are free of the restrictions often found in other
systems. Convenience features include:

a. One-pass Operation - From source lang­
uage to machine language object code is a standard
feature.

b. No Reserved Identifiers - All names are
available for use as identifier s.

c. Optional Tracing - This feature allows
selective object code tracing for diagnostic purposes.

d. Optional Mapping - This feature provides
a listing of the subprograms required for execution
and the names or values and relative location
assignments of all variable-array names and con­
stant values used by the program.

e. Optional Chaining - This feature provides
for sequential loading and execution of segmented
programs.

SEL 810B DEBUG

The debug program is a utility program designed
to help a programmer debug a program while it
is in memory. The following functions are pro­
vided:

a. Type the contents of specified memory in
octal or commam format.

b. Modify the specified memory; input being
in octal format.

c. Dump specified memory areas onto paper
tape in a format (non-relocatable) that can be
loaded using the loader resident in Debug.

d. Enter breakpoints in order to "leap-frog"
trace a program.

e. Clear specified areas of memory to zero.

f. Search memory for references to speci­
fied areas.

g. Initiate branches (or Halt and Branch) to
any part of memory.

h. Load a binary tape that was dumped using
Debug.

Each of these functions are initiated by typing a
keyword through the console typewriter keyboard.

SEL 8l0B UPDATE

Correction of errors in card decks is a relatively
easy procedure, consisting of pulling out the bad
cards and inserting new cards. However, symbolic
source programs on paper tapes or magnetic tapes
are not so easily corrected or modified.

The UPDATE program is designed to allow the
computer operator to easily correct or modify a
symbolic source program tape by providing the
following functions:

a.

line s.

b.
line s.

Deletion of a specified line or group of

Insertion of a new or replacement line or

All references to the symbolic source tape are
made by referring to a sequence number. This
number is present on all assembly listings.

SEL 8l0B LIBRARY PACKAGE

The SEL 8l0B library package includes the com­
plete set of ASA FOR TRAN subroutines in the
following categories:

Single-Precision Floating Point Functions

Double-Precision Floating Point Functions

Complex Floating Point Functions

Integer Functions

Input/Output Functions

Control Functions

SEL 810B MAINTENANCE ROUTINES

The SEL 810B Checkout Program is a complete
package designed to give the operator the ability
to exercise the memory, the mainframe logic, the
input/ output channels and associated peripheral
equipment.

The memory exerciser routine generates various
types of worst case bit patterns and exercises the
memory with these patterns while monitoring for
errors. Provisions are made for automatic re­
locating of the exerciser program to allow the en­
tire memory to be included in all tests. Also in­
cluded are certain branch/ skip instructions which
are sequenced and executed through each location
in the memory.

The mainframe exerciser routine executes the en­
tire instruction repertoire individually in a large
variety of sequence while monitoring the results
for errors. Errors are indicated by halts. Per­
tinent information concerning the instruction that
failed and the nature of the failure can be obtained
from the A and B-Accumulator displays, the pro­
gram counter and certain selected memory loca­
tions.

The programs for the I/O channels and associated
peripheral equipment te st the ability of the various
I/O units to generate or receive all acceptable char­
acters. A selected input is used and visual monitor­
ing of the control panel or output unit is required
by the operator for verification of proper operation.
Equipment tested includes standard Teletypewriter
output, input, punch and reader as well as optional
card punch, card reader, line printer, high- speed
paper tape equipment, magnetic tape units and other
units as needed for a particular application.

POWER FAIL SAFE

The power fail safe feature provides an "override"
interrupt to allow program storage of the contents
of all data registers in the event that power drops
below 80 volts. This standard feature assures
that no information will be destroyed when power
is disrupted. The program can be conveniently
resumed after power is restored either manually
or automatically by means of the optional Auto
Start feature.

1-9/1-10

SECTION II
MACHINE LANGUAGE PROGRAMMING

INTRODUCTION

The Sl DB Computer is operated by a series of in­
struction words stored in the magnetic core mem­
ory. The instruction words are successively read
from memory locations addres sed by the program
counter. Each word specifies one operation; trans­
fer ring a data word from an input unit to a memory
location, adding a memory word to the word in the
A-Accumulator, shifting the contents of the A-Accu­
mulator, etc. The program counter is normally
advanced one count after each instruction to acces s
the instruction word located in the next sequential
memory address. The program counter may be
preset to any count by Branch/Skip instructions,
which detect certain conditions such as A-Accumula­
tor sign positive, overflow condition, input word
ready, etc. The program counter then continues
its sequential advance, but starts from the new
address until again preset. The branch may be to
either a higher or lower count so that portions of
a program may be repeated until the branch condi­
tion is no longer present.

A list of instructions is provided for the Sl DB Com­
puter that includes Load/Store instructions which
transfer words between the memory and the ac­
cumulators, Arithmetic instructions, Shift in­
structions which allow moving of the bits within
words, Logical instructions (AND, OR, NEGATE,
etc.), Control instructions (HALT, etc.), Branch/
Skip instructions to provide program modification
and Input/ Output instructions to command peripheral
devices and transfer data into and out of the com­
puter.

Each instruction word is formed by 16 bits, each
of which performs a particular function; defining
the operation to be performed, addressing a memory
location, defining the number of shifts, etc. The
function of a particular bit will vary in different
types of instructions. For example, in some words,
bit 14 forms part of a memory address; in others,
bit 14 forms part of the operation code. The func­
tion of the bits depends on the instruction word type
defined by the four-bit operation code located in bits
o - 3 of the fir st word of each instruction.

There are two types of instruction words used by the
SEL SlOB; those containing memory addresses
within the instruction word and those containing
additional code bits in lieu of the address bits.

MEMORY REFERENCE INSTRUCTIONS

The memory reference instructions access the
magnetic core memory for an operand. These
words contain a four-bit binary operation code, a
nine-bit partial memory address and three address
modifiers.

.operation I I I I

. Code X 1M

I , 5 I 7 15

Memory Reference Instruction Word

The four-bit binary operation codes for the memory
reference instructions vary from 0001 (0 IS) to 1110
(16), not including 1011 (13 S)' Codes ODS, 13S and
17 RSare reserved for augmented instructions (des­
cribed in later paragraphs). The 13-memory re­
ference instructions contain a nine-bit operand ad­
dress field (m) that may be coded to obtain 512
unique locations. The memory, whether it is form­
ed by a single memory module or by several
mociules, is divided into 512-address memory ad­
dress partitions (MAPs) for addressing purposes.
Each MAP extends from memory address XXOOOS
to XX777 S' where XX consists of the six most signif­
icant address bits defining the MAP address. In a
memory with S, 192 addresses, there are 16

MAPs beginning with MAP ODS and extending through
MAP l7S. In a maximum memory of 32, 76S ad­
dresses, the MAP designations range from ODS to
77 S with the addresses arranged in the following
sequence:

MAP ODS

MAP DIS

MAP 02S

MAP 77 S

OOOOOS - 00777 S

OlOOOS - 01777S

02000 S - 02777 S

77000 S - 77777 S

The state of the MAP designator bit (shown as M
in the word format diagram) determines the MAP
that will contain the operand address. 1£ the MAP
designator bit is a ZERO, the operand address will
be in MAP 00 . 1£ the MAP designator bit is a O~E.
the operand a~dress will be in th~ MAP containing

2-1

the instruction word currently being executed. The
MAP addre s s of the instruction is supplied by the
program counter which advances sequentially a­
cross the imaginary MAP boundaries. The pro­
gram count ranges from 00000 8 in MAP 00 8 to
777778 in MAP 778 thus including all possible MAP
designations. The upper six bits (two octal digits)
of the program counter can therefore, add the
necessary MAP designation to the nine-bit (three
octal digits) operand address to provide a complete
I5-bit memory address. The addressing of MAP
008 requires only that zeros be put in the upper six
bit positions of the I5-bit address to produce ad­
dresses 000008 to 007778 from the basic nine-bit
operand address.

The significance of the MAP 00 8 address lies in
the fact that these addresses are directly address-
ab le by all instructions irre spective of the MAP lo­
cation of tho se instructions. This allows the stor­
age of constants, input/output locations, subroutines,
etc., to be stored in this common address area
where they can be directly accessed by any portion
of the program.

The index flag, shown as X in bit position 4 of the
memory reference instruction word format dia­
gram (figure 2-1), is set to one to cause the I5-bit
concatenated MAP and operand addresses to be
added to the contents of the current index register.
The current index register can be either the B­
Accumulator, or the optional hardware index reg­
ister, depending on the condition of the index pointer.
The index count can be any 15 -bit binary number
ranging from 000008 to 777778. The addition of
this number to the concatenated address allows the
addres sing of any memory location within the full­
size 32, 768-address memory. If, for example,

the instruction being executed is in MAP 128, and
the index count is 020228, the 9-bit operand ad­
dress is 7248 and both the MAP designator and
index flag are ones; the resulting effective address
is 127248 + 020228 (X) = 147468. If the MAP des­
ignator were a zero and the index flag a one, the
resulting effective address is 007248 + 020228
(X) = 027468.

The B-Accumulator when used as an index register
serves another important function in that the reg­
ister can be incremented by one with an instruction.
The optional hardware index register can be in­
cremented by any quantity from zero to fifteen.
The incrementing instructions also test the register
for negative signs and generate a skip (an extra
advance count) to the program counter if the reg­
ister is not negative. This feature allows the pro­
grammer to load a basic negative number into the
B-Accumulator or the hardware index register,
append the index flag to the instruction and create
an iterative subroutine that will access a series of
sequential memory addresses. Such a subroutine
or "loop" using the B-Accurnulator as the index
register and written in assembly language is shown
in table 2-1. In assembly language a "1" is used
to indicate an indexed instruction, an apostrophe
'(') indicates an octal number and either absolute
(220) or symbolic (LOOP, input) addresses can be
used. A complete description of the assembly
language is presented in Section III.

This series of indexed instructions beginning with
location LOOP serves to add 20 pairs of numbers
and to store the resulting sums in 20 memory
locations. The routine assumes that the index
pointer has been set to the B-Accumulator. The
first pair of numbers is taken from locations 200

Table 2-1. Sample Listing

Location Operation

INDX LBA

LOOP LAA

AMA

STA

IBS

BRU

PROG LAA

2 -2

Address

=-20

220, 1

320, 1

420, 1

LOOP

INPUT

Comments

Load an index count of -20 in the B-Accumulator.

Load the A-Accumulator with data word from
location (220 + index count).

Add to the contents of the A-Accumulator to the
contents of location (320 + index count).

Store the sum from the A-Accumulator in loca­
tion (420 + index count).

Increment B-Accumulator, test for index count
of zero, skip next instruction if zero.

Take next instruction from location LOOP.

(Next instruction after index loop.)

added to the index count by the illS instruction.
The resulting -19 count does not equal zero, so
the next instruction is executed. This instruc­
tion is an unconditional branch instruction which
sets the prog ram counter to location LOOP. The
next two arguments are taken from locations 201
and 301 and stored in location 401 and the cycle is
repeated.

Address flag (bit 5.) When present, this bit
causes the address, contained in the instruc­
tion, as modified by the index and MAP bits,
to be interpreted as the location in which the
operand address is contained, rather than
as the location of the operand itself.

14-lIit Acldre91

15

Indirect Address Word

After adding 20 sets of numbers, the final IBS in­
struction reduces the index count to 00. This
causes the next instruction (BRU to LOOP) to be
skipped. The program counter now calls a new
set of instructions from memory beginning with
location PROG.

The third address modification flag contained in
all memory reference instructions is the Indirect

The indirect address word (shown above) contains
14 address bits which are merged with the most
significant bit from the program counter. The
indirect address may be in the same memory half
(of 16K) as the program counter.

LAA
Operation
Mnemonic

LO)jA~D~A~A~C~~CU;M~U~L~A~T~~OR~::~~::~~~~~~::~~~~Ol
.- Octal equavalent

of binary operation
code

NOTE:

A "1" in bit position
4 algebraically adds
the contents of the
current index register
to the concatenated
MAP and m addresses.

All three address modifiers
(X, I and M) must be considered
to determine the destination
(effective) address, e.g., if the
MAP FLAG and INDEX FLAG
are used together, the resultant
address may not be in the same
MAP. The computer pe rforms
MAP, INDEX and INDIRECT
address functions in that order.

8 9 10 11 12 13 14 15

address within
urrent MAP or MAP~O

INDIRECT FLAG

MAP FLAG

A "I" in bit position 6 causes the
(m) address to be appended to the
current MAP address contained
in the program counter. A "0"
in this position causes address
(m) to designate a location in
MAP-O.

A "1" in bit position
5 makes the effective
address indirect (con­
tains the operand
address). A "0" makes
the effective address
direct (contains the
operand).

Figure 2-1. Typical Memory Reference Instruction Word Format Diagram"

QS118A.20

2-3

The indirect word format also contains an index
flag which, if a one, adds the index count to the
indirect address. The index count may be added
to the address in the instruction word, and/or
the indirect address depending on the presence
or absence of an index bit in the instruction and
indirect words. The indirect address also in­
cludes an indirect flag bit permitting multi-level
indirect addressing.

Memory reference descriptions consist of the
three-letter mnemonic and a two-character octal
operation code. The permissible address modi­
fiers are also shown. An example for a memory
reference instruction (LAA) is shown on figure 2-1.

AUGMENTED INSTRUCTIONS

Augmented instructions contain no memory ad­
dress bits in the first word but do contain addi­
tional (augmenting) operation code bits. The aug­
mented instructions have operation codes of 00,13
or 00,17.

10 0 0 0 10 01 ~UGMENT
~~~~~. ~~.~~~~--~~~----~ CODE 

3458 .10 15 

Augmented 00 Instruction Word 

The detection of the 00 operation code in the in­
struction register gates the six augment code bits 
into a special decoding matrix. 

The other augmented operation codes, the 138 and 
the 178 codes, are also augmented with additional 
code bits. These instructions have word formats 
that vary slightly and some include two words to 
complete the instruction. Two-word instructions 
are stored in sequential memory locations with the 
second word called automatically by the machine. 
If the indirect flag in the first word is a zero, the 
second word is interpreted as the operand itself. 
If the indirect flag is a one, the second word is 
coded in the indirect address word format and is 
interpreted as the address of the operand. If the 
MAP bit is a one, the most significant bit of"the 
program counter becomes the 15th bit of the in­
direct address when the indirect flag is used; if 
the MAP bit is a zero, the 15th bit of the indirect 
address is set to zero. 

The augmented 138 operation code words are used 
for disabling and enabling interrupts, testing the 
condition of the sense switches and testing and 

2-4 

commanding of external I/O units. The augmented 
178 operation code words are used for Input/Out­
put instructions only. 

Augmented instruction octal codes consist of a 
two-digit operation code 00, 13, or 17 followed by 
a hyphen and one or two-digits showing the aug­
menting code. For example: 

SAN 00-23 

SKIP IF A-ACCUMULATOR IS NEGATIVE 

NOTE 

All Augmented 00 instructions 
contain the augment code in 
bit positions 10-15. 

Shift instruction words use bit position 6 through 9 
to hold the number of shifts to be performed by 
the instruction. For example: 

LSA -1. 

LEFT SHIFT A-ACCUMULATOR 

Number of shifts 
to be performed 
(in binary code) 

00-11 

Input/Output Instructions contain both 138 and 178 
operation codes. The augmenting code bits for 
these instructions appear as shown in figure 2 -2. 
Bits 10 through 15 always contain the peripheral 
unit number in binary code. 

In the IMMEDIATE MODE, the second instruction 
word is treated as the operand. In executing MOP, 
CEU and TEU instructions, the contents of the 
instruction's second word are transferred to the 
specified unit. MIP execution consists of trans­
ferring a word or character from a specified unit 
into the instruction's second word location. 

In the ADDRESS MODE, the instruction's second 
word is interpreted as the operand address. The 
indirect address format is used in the instruction's 
second word. Therefore, indexing and indirect 
chaining may be used in addressing the operand. 



MEMOR Y WORD INPUT FROM UNIT N 

MIP 

INDIRECT FLAG 

A "I" in bit position 
5 IT1eans that word 2 
of this instruction con­
tains the address of 
the data (in indirect 
address forIT1at). A 
"0" IT1eans that word 
2 contains the data 
itself. These two 
conditions are 
referred to as the 
IMMEDIATE mode 
and the ADDRESS 

(Functions only if 
Indirect Flag is 
A" 1 " ) A" 1" in bit 
position 6 adds the 
MSB of the program 
counter to the Indirect 
address. A "0" sets 
the MSB of the indirect 
address to O. 

Word 1 

WAIT FLAG 

A "1" in bit position 
9 causes the computer 
to wait until the unit is 
ready for data transfer. 
A "0" causes the com­
puter to" skip" the next 
instruction if the data is 
transferred or to execute 
the next instruction if the 
unit is not ready. 

mode. 
~1I~'~ls~1 ~~~~~1_5~D_a~t_a~B~it_s~~ ____ ~ 

Word 2 
(IIT1mediate Mode) 

345 B J 8 9101112131415 

OR OR 

14 Bit Address , IxlI I 
o 1 345 B J 8 9101112131415 

Word 2 
(Addre s s Mode) 

'l5!IHA . .!.i 

Figure 2-2. Input/Output Instruction Word Format Diagram 

The addressing mode is specified in the instruc­
tions first word by the value of the Indirect Ad­
dress Flag (I). If I is a ONE, the Address Mode 
is executed. In this mode the most significant pro­
gram counter bit is appended to the most signifi­
cant end of the l4-bit indirect address if the MAP 
Flag is a ONE, and ZERO is appended to the IT10st 
significant end of the indirect address if the MAP 
Flag is a ZERO. 

MACHINE LANGUAGE INSTRUCTION SET 

The instruction words causing the various SEL 
8l0B machine operations are described in detail 
on the following pages. The descriptions include 
the operation-mnemonic and octal IT1achine code in 
bold type. The binary word format shows bit as­
signments for operation code, augment code, 

operand address and flags (MAP, INDEX, INDI­
RECT, WAIT, etc.). A brief explanation of the 
functions, register(s) affected, memory cycles 
required, indicators (if any) and special notes 
comjjlete the description. 

ARITHMETIC INSTRUCTIONS 

All arithmetic functions of the computer are per­
formed by this group of seven instructions. The 
AMA (add) instruction calls a word from memory 
and adds it to the word previously loaded into the 
A -Accumulator. The memory word called in the 
SMA (subtract) instruction is two's con,plen,ented 
and added to the A, Accumulator word. The MPY 
(multiply) instruction repeatedly adds the memory 
and the A -Accumulator words according to the 
value of the word in the B-Accumulator. The DIV 

2 -5 



(divide) instruction repeatedly subtracts (adds the 
complement of) the memory word from the double­
length word in the A- and B-Accumulators. The 
results of these operations are stored in the 
A -Accumulator (sum, difference, quotient and most 
significant half of the product) and the B-Accumulator 
(remainder and least significant half of the product). 
The augmented 008 RNA (Round A -Accumulator) 
instruction is used to round-off the most significant 
half of the product in the A -Accumulator according 
to the value of the least significant half of the prod­
uct in the B-Accumulator. The AMB (add) instruc­
tion calls a word from memory and adds it to the 
word previously loaded into the B-Accumulator. 
The OVS (set overflow) instruction causes the over­
flow latch to be set. 

AMA 05 

ADD MEMORY TO A-ACCUMULATOR 

10 1 olixlIIMI m 
3 4 5 & 15 

The contents of the effective memory addres s 
(addend) are algebraically added to the contents of 
the A-Accumulator (augend). The sum replaces 
the previous contents of the A -Accumulator with 
the sign of the A -Accumulator set to the algebraic 
sign of the sum. 

Timing: 

NOTE 

The augment must be located in the 
A-Accumulator prior to the AMA 
instruction. This may be accom­
plished through a preceding LAA 
instruction or the augend may 
already be properly located as a 
result of a prior operation. 

2 cycles 
Indicators: OVERFLOW if the sum 

exceeds 15 bits plus sign 
A -A ccumulator Registers Affected: 

AMB 16 

ADD MEMORY TO B-ACCUMULATOR 

m 

3 4 5 I 7 15 

The contents of the effective memory address 
(addend) are algebraically added to the contents of 
the B-Accumulator (augend). The sum replaces 
the previous contents of the B -Accumulator with 
the sign of the B-Accumulator set to the algebraic 
sign of the sum. 

2-6 

Timing: 

NOTE 

The augend must be located in the 
B-Accumulator prior to the AMB 
instruction. This may be accom­
plished through preceding LBA 
instruction or the augend may 
already be properly located as a 
result of a prior operation. 

2 cycles 
Indicators: OVERFLOW if the sum 

exceeds 15 -bits plus sign 
B-Accumulator Registers Affected: 

SMA 06 

SUBTRACT MEMORY FROM A-ACCUMULATOR 

10 o I xl 11M! m 
3 4 5 & 7 15 

The contents of the effective memory address (sub­
trahend) are algebraically subtracted from the con­
tents of the A -Accumulator (minuend). The differ­
ence replaces the previous contents of the A­
Accumulator and the sign of the A -Accumulator 
is set to the sign of the algebraic difference. 

Timing: 

NOTE 

The minuend must be located in 
the A -Accumulator prior to the 
SMA instruction. This may 
already be properly located as a 
result of a prior operation. 

2 cycles 
Indicators: OVERFLOW if the algebraic 

difference exceeds 15 -bits 
plus sign 

Registers Affected: A -Accumulator 

MPY 07 

MULTIPLY 

I ~O~l~l~l~lx~II~I=M~I~~~m~~~~ 
3 4 5 & 15 

The contents of the effective memory addres s 
(multiplicand) are multiplied by the contents of the 
B-Accumulator (multiplier). The most significant 
half of the product replaces the previous contents 
of the A -Accumulator. The least significant half 
of the product replaces the previous contents of 
the B-Accumulator. The sign of the A -Accumulator 
is determined by the algebraic sign of the product; 
the sign of the B-Accumulator is set to plus. The 
contents of the memory are unchanged. 



Timing: 

NOTE 

If the multiplier and the multi­
plicand are considered to be in­
tegers (binary point to the right 
of bit IS), the product is a double­
precision integer (binary point to 
the right of bit 1 S in the B­
Accumulator). If the multiplier 
is scaled left by Za and the multi­
plicand is scaled left by Zb, then 
the product is scaled left by Z a+b. 

6 cycle s 
Indicators: OVERFLOW if both 

multiplier and multi­
plicand are equal to 
minus full scale. 

Registers Affected: A -Accumulator, 
B-Accumulator 

DIV 10 

DIVIDE 

11 : 0 ,0 0 I xl I IMI m 
3 4 5 & 15 

The contents of the A - and B-Accumulators (double 
length dividend) are divided by the contents of the 
effective memory address (single length divisor). 
The quotient is stored in the A -Accumulator and 
the remainder is stored in the B-Accumulator. 
The sign of the quotient is set to the algebraic sum 
of the divisor and dividend signs. The sign of the 
remainder is set to the sign of the original dividend. 
The contents of the memory are unchanged. 

NOTE 

The dividend is assumed to be a 
double-precision quantity (30 bits 
and sign) which is to be divided by 
a single -precision quantity (IS -bits 
and sign). The resultis two single­
precision quantities, the quotient 
and the remainder. If the part of 
the dividend contained in the 
A -Accumulator is greater than or 
equal to the divisor, an "overflow" 
will result. The quotient of two 
single -precision quantities is ob­
tained by the instructions shown 
below. 

CLA 
LBA 

DIV 

Clear A -A ccumulator 
DVND Load Dividend into 

B-Accumulator 
DVSR 

Timing: 

NOTE (Cont'd) 

After the divide instruction is exe­
cut ed, the quotient and remainder 
are stored in the A - and B­
Accumulators, respectively. No 
"overflow" can occur except when 
the divisor is equal to zero. 

Divide scaling is performed by the 
simple algorithm given below. 
Considering the binary point of 
the operands to be located between 
the sign bit and the most signifi­
cant bit, that is at Bo in single­
precision and Co in double­
precision quantities, the binary 
point in the quotient is determined 
by the relationship: 

C(M) dividend - B(N) divisor 
B(M-N) quotient 

where - 305M 5 30 and 
-lS5N5lS 

If the scale factor is greater 
than BlS an overflow will 
result. 

Indicators: 
11 cycles 
OVERFLOW if the 
divisor is the por­
tion of the dividend 
contained in the 
A -Accumulator 

Registers Affected: A -Accumulator, 
B -Accumulator 

RNA 00-01 

ROUND A-ACCUMULATOR 

3 4 9 10 15 

The contents of the A -AccUInulator are increased 
by one if the second most significant bit of the 
B-Accumulator (BI) is a one. 

Timing: 
Indicators: 

Registers Affected: 

I cycle 
OVERFLOW if the result 
in the A -Accumulator 
exceeds IS-bits. 
A -Accumulator 

Z-7 



OVS 00-37 

SET OVERFLOW LATCH 

10, 0,0,0 10 ,0,0,0,0,010, I, 1 , I, 1,1 I 
3 4 9 10 15 

The overflow latch is set by the execution of this 
instruction. 

Timing: 

NOTE 

This instruction is used at the exit 
of interrupt routines to set the over­
flow latch if it was set when the 
interrupt occurred. 

Indicators: 
1 cycle 
OVERFLOW is set 
None Registers Affected: 

LOAD/STORE INSTRUCTIONS 

This group of five standard and two optional instruc­
tions handles the transfer of data words within the 
computer. One pair of instructions - LAA (Load 
A -Accumulator) and STA (Store A -Accumulator) -
transfers data between the memory and the 
A-Accumulator. A second pair - LBA (Load 
B-Accumulator) and STB (Store B-Accumulator) -
communicates between memory and the- B ... 
Accumulator. All four words are memory address 
instructions and, as such, contain MAP, index 
and indirect address modifiers. The instructions 
are used primarily to transfer data to the accumu­
lators for use in arithmetic operations and then to 
store the results of those operations. The B­
Accumulator, however, also functions as a hard­
ware index register/ counter so that the LBA and 
STB instructions serve to load and store the index 
count. 

The LCS (Load Control Switches) instruction is an 
augmented 008 word. This instruction is used to 
transfer the information set into the front panel con­
trol switches by the operator 10 the A -Accumula:tor. 
The switches can be used to modify the program in 
response to external requirements by using the data 
brought to the accumulator by the LCS instruction 
to change branch destinations, etc. 

The two optional load/ store instructions are in­
cluded as part of the hardware index register 
option. This pair of instructions is mnemonically 
labeled LIX and STX. The LIX (Load Index Reg­
ister) instruction loads data from memory into the 
hardware index register. The STX (Store Index 
Register) instruction stores data fro.m the hardware 

2-8 

index register into memory. Both of the s e ins true -
tions are two word instructions, with the first word 
of each an augmented 008 word. If the indirect bit 
(bit 5) af the first ward is a zero. the secand ward 
is the instruction operand (Immediate Made). If 
the indirect bit is a ane, the second ward is the 
address, in indirect address format, of the aperand 
(Address Made). 

LAA 01 

LOAD A-ACCUMULATOR 

3 4 5 • 

The cantents of the effective memary address re­
place the previous contents of the A -Accumulatar. 
The cantents of the memory are unchanged. 

Timing: 

NOTE 

The A -A ecumulatar must be loaded 
with the augend, minuend and mast 
significant bits af the dividend priar 
to. add, subtract and divide instruc­
tions. 

Indicatars: 
2 cycles 
None 

Registers Affected: A -Accumulator 

LBA 02 

LOAD B-ACCUMULATOR 

I 0 0 1 0 I X I I IMI m 
3 4 5 I 7 15 

The contents af the effective memory address re­
place the previaus cantents of the B-Accumulator. 
The cantents of the memary are unchanged. 

Timing: 

NOTE 

This instruction is used to load the 
index count when the B-Aecumulator 
is to function as the hardware index 
register. The B-Accumulator must 
also be loaded with the least signifi­
cant half of a dividend and the multi­
plier prior to divide and multiply 
instructions. 

2 cycles 
Indicator s: None 

B-Accumulator Registers Affected: 



LIX 00-45 

LOAD INDEX (OPTIONAL) 

Word 1 

I 0, 0 ,0 ,0 10 I I IMlo ,0 ,0 11 ,0 ,0: 1 ,0 ,I I 
5 6 10 15 

(Address Mode) Word 2 

14_ BIT ADDRESS 
! I ! , I 

o 1 2 15 

The contents of the effective m.em.ory addres s re­
place the previous contents of the index register. 
The contents of the m.em.ory are unchanged. 

Tim.ing: 

Indicator s: 

Registers Affected: 

Operand Address 
Mode: 

LCS 00-31 

2 cycles (Im.mediate Mode) 

None 

Index Register 

Im.m.ediate -1=0, Address­
i= I (in Word 1) 

LOAD CONTROL SWITCHES 

10 0 0 010 0 0 0 0 010 1 1:0 0 11 
3 • • II 15 

The positions of control panel switches 0-15 are 
sensed as bits (up-I, center-O) and transferred 
to the A -Accum.ulator. 

Tim.ing: 1 cycle 

Indicators: None 

Registers Affected: A-Accum.ulator 

STA 03 

STORE A -ACCUMULA TOR 

3 • 5 • 1 II 

The contents of the A -Accum.ulator replace the 
previous contents of the effective m.em.ory address. 
The contents of the A -Accum.ulator are unchanged. 

Tim.ing: 

Indicators: 

Registers Affected: 

2 cycles 

None 

None 

STB 04 

STORE B-ACCUMULATOR 

10 1,0 01 xl I IMI m. 
3 • 5 • 1 15 

The contents of the B-Accum.ulator replace the 
previous contents of the effective m.em.ory addres s. 
The contents of the B-Accum.ulator are unchanged. 

Tim.ing: 
Indicator s: 
Registers Affected: 

STX 00-44 

2 cycles 
None 
None 

STORE INDEX (OPTIONAL) 

Word 1 

10 ,0,0,0 10 I I IMI 0,0 ,0 II ,0,0: 1 ,0 ,01 

(Address Mode) Word 2 

14-BIT ADDRESS 
I I , , , 

o 1 Z 15 

The contents of the index register replace the 
contents of the effective m.em.ory address. The 
contents of the index register are unchanged. 

Tim.ing: 
Indicators: 
Registers Affected: 
Operand Address 
Mode: 

2 cycles (Im.m.ediate Mode) 
None 
None 
Im.m.ediate -1=0, Address-
1=1 (Word 1) 

BRANCH/SKIP INSTRUCTIONS 

This group of thirteen standard and two optional 
instructions provides the decision-m.aking capability 
of the com.puter. Only four of these instructions -
the BRU (Unconditional Branch), SPB (Store Place 
and Branch), IMS (Increm.ent Mem.ory and Skip) 
and CMA (Com.pare Mem.ory to A-Accum.ulator) 
are m.em.ory reference instructions. The re­
m.ainder, all skip instructions, are augm.ented 
008 instruction words with the single exception of 
the SNS instruction which is an augm.ented 138 
code word. 

The three branch instructions, BRU, LOB and 
SPB, specify a new address that will be transferred 
to the program. counter to m.ove the program to a 
new address in the core m.em.ory. The ten skip 
instructions are all dependent on the presence or 
absence of a specific condition such as the sign of 
the A -Accumulator, set overflow latch or memory 

2-9 



word sign. If the specific condition is present (or 
absent depending on the instruction as presented 
below) the next instruction (NI) , is skipped and the 
second successive instruction (NIH) is executed. 
The NI is usually a BRU or SPB which branches 
the program to a new section of the memory. Thus, 
an SOF instruction would skip a BRU that enters a 
corrective subroutine. if the overflow latch were 
not set. If the latch were set (indicating an invalid 
arithmetic operation), the NI would not be skipped 
and the corrective subroutine would be entered. 

The LOB (Long Branch) instruction consists of 
two memory words. The first word is an aug­
mented 008 operation code word; the second con­
tains a memory address. The second word is 
automatically read from memory as part of the 
normal execution cycle. 

The two optional skip instructions (SXB and IXS) 
are included as part of the index register option. 
They are used to test the index register and index 
pointer, respectively. 

BRU 11 

UNCONDITIONAL BRANCH 

m 
3 4 5 I 7 11 

The effective address replaces the contents of the 
program counter. 

Timing: 

NOTE 

If the Program Protect and 
Instruction Trap option is in­
cluded (and the Protect Mode 
switch is ON), when the BRU 
indirect instruction is executed 
following a TOI instruction to 
exit from a priority interrupt 
routine, bits 2 through 15 of 
the effective address replace 
the contents of program counter, 
and the Protect Latch is set to 
the state of bit "0" of the effec­
tive address. 

Indicators: 

1 cycle 

None 

Registers Affected: Program Counter 

2-10 

SPB 12 

STORE PLACE AND BRANCH 

3 4 I I 7 15 

The contents of the program counter plus one re­
place the previous contents of the effective memory 
address and the effective memory address plus one 
replaces the previous contents of the program 
counter. 

Timing: 

NOTE 

Execution of this instruction 
is modified when caused by a 
priority interrupt in that the 
contents of the program counter 
are unchanged when trans­
ferred to the effective memory 
address. If the Program Pro­
tect and Instruction Trap option 
is included (and the Protect 
Mode switch is ON), when the 
SPB indirect instruction is 
caus ed by a priority inter-
rupt' the status of the Protect 
Latch at the time of the inter­
rupt is stored in bit 0 of the 
effective memory address. 

Indicator s: 
2 cycles 
None 

Registers Affected: Program Counter 

IMS 14 

INCREMENT MEMORY AND SKIP 

m 
3 4 5 • 7 15 

The contents of the effective memory address are 
increas ed by one. If the contents of that addres s 
then equal zero, the next instruction is skipped. 

Timing: 

NOTE 

This instruction allows any 
memory cell to be used as 
an auxiliary index register. 

Indicators: 
3 cycles 
None 

Registers Affected: Program Counter 



CMA 15 

COMPARE MEMORY AND A -ACCUMULATOR 
(3-WAY) 

11 1 0 1 I X I I IMI In 
3 4 5 I 1 15 

The contents of the effective IneInory address are 
algebraically cOInpared to the contents of the 
A -Accumulator. 

If A M, the program proceeds to the next succes- . 
sive instruction. 

If A M, the next instruction is skipped. 

If A M, the next two instructions are skipped. 

The contents of the Inemory and of the A -Accumulator 
are unchanged. 

Timing: 
Indicators: 
Registers Affected: 

SNS 1304 

3 cycles 
None 
Program Counter. 

SENSE NUMBERED SWITCH Binary 

IL....:.o(...::o:...,. • ...:,1 ...... .:.JIIL..:o:......::.o....:o~IL..;:I:.....~O....:o~1 0~0.L..1 __ ..... :4-..;;;;:.J Switch 
3 4 & 1 • 10 11 12 15 No. 

Tests to see if a specific control panel switch 
(0-15) is set; if switch is NOT set, the next instruc­
tion is skipped. 

Timing: 
Indicator s: 
Registers Affected: 

IBS 00-26 

1 cycle 
None 
Program Counter 

INCREMENT B-ACCUMULATOR AND SKIP 

10:0.0 010 0 0.0 0 010.10:1 01 
3 4 15 

The contents of the B-AccuInulator are increased 
by one. If the contents of the B-AccuInulator are 
then zero or positive, the next instruction is 
skipped. 

NOTE 

This instruction can be used as 
part of an indexing loop in which 
the contents of the B-Accumulator 

Timing: 

NOTE (Cont'd) 

(index register) are used to modify 
the operand address of an instruc­
tion, then IBS and branch back to 
repeat the loop. If the index 
number has a negative sign, the 
IBS instruction will eventually de­
crease the absolute value to zero 
(positive sign) and will then skip 
the branch instruction and proceed 
with the remainder of the pro­
gram. 

Indicators: 
1 cycle 
None 

Registers Affected: B~Accumulator, Program 
Counter 

SAS 00-21 

SKIP ON A-ACCUMULATOR SIGN (3-WAY) 

I 0: 0, 0 010 0 0 0 0 010 1 0: 0 0 1 I 
3 4 • 10 15 

If the sign of the A -Accumulator is negative, the 
next successive instru'ction is executed. 

If the contents of the A l"Accumulator are zero, the 
next instruction is skipped. 

If the sign of the A-Accumulator is positive and 
the contents are greater than zero, the next two 
instructions are skipped. 

Timing: 
Indicators: 
Registers Affected: 

SAZ 00 -22 

1 cycle 
None 
Program Counter 

SKIP IF A-ACCUMULATOR IS ZERO 

10:0,0010 000 0 010,10:0 101 
3 4 I 10 15 

If the' contents of the A -Accumulator are zero, the 
next instruction is skipped. 

Timing: 
Indicators: 
Registers Affected: 

1 cycle 
None 
Program Counter 

2-11 



SAN 00-23 

SKIP IF A-ACCUMULATOR IS NEGATIVE 

10:0001000,000100:0 II 
3 4 9 10 15 

If the sign of the A -Accumulator is negative, the 
next instruction is skipped. 

Timing: 
Indicators: 
Registers Affected: 

SAP 00-24 

1 cycle 
None 
Program Counter 

SKIP IF A-ACCUMULATOR IS POSITIVE 

10:0001000,00010 0:1001 
3 4 9 10 15 

If the sign of the A -Accumulator is positive, the 
next instruction is skipped. 

Timing: 
Indicators: 

1 cycle 
None 

Registers Affected: Program Counter 

SOF 00-25 
SKIP NO OVERFLOW 

I 0: 0 0 0 I 0 0 0 , 0 0 01 0 
3 4 I 18 15 

If the arithmetic overflow latch is set, it is reset 
and the next instruction is executed; if the latch 
is reset, the next instruction is skipped. 

Timing: 

NOTE 

This instruction is used as a pro­
gram check on the magnitude of 
the results of arithmetic opera­
tions. The next instruction (NI) , 
executed in the case of an overflow, 
is usually a BRU to a corrective 
subroutine. The second sequential 
instruction (NI+l) is the next in­
struction of the normal program. 

1 cycle 

Indicators: OVERFLOW is reset 

Registers Affected: Program Counter 

2-12 

SNO 00-32 

SKIP NORMALIZED A-ACCUMULATOR 

100,00100000010,11:0101 
3 4 I 10 15 

If bit Al does not equal bit AO of the A~Accurnulator, 
the next instruction is skipped. 

NOTE 

This instruction is used in 
conjunction with the left 
arithmetic shift instruction 
to normalize the contents 
of the A -Accumulator. 

Example: 

Loc. Oper. 

NORM LSA 
SNO 

BRU 

STA 

PROG LAA 

Timing: 

Address 

NORM 

Comments 

left shift 1 test 
for AO = Al 

shift again if 
AO = Al 

store normalized 
word 

remainder of 
program 

Indicators: 
1 cycle 
None 

Registers Affected: Program Counter 

LOB 00-36 
LONG BRANCH 

Word 1 

10:00,010000001011:1101 
3 4 • 10 15 

Word 2 

10 I !5-Bit 4ddress 
• I 15 

Bits 1 through 15 of the second word replace the 
contents of the program counter. 

NOTE 

This instructions allows a branch 
to any of the 32,768 memory 
locations available with the full 
complement of four memory 
modules. This instruction is 



Timing: 

NOTE (Cont'd) 

extremely useful as a "return" 
branch from a subroutine inti­
ated by a Store Place and Branch 
instruction when the stored pro­
gram count is in the upper 
16,384 memory addresses and 
the subroutine is operating in 
the lower 16,384 memory ad­
dresses. If the Program Pro­
tect and Instruction Trap option 
is included (and the Protect 
Mode switch is ON), when the 
LOB instruction is used fol­
lowing a TOI instruction to exit 
from a priority interrupt rou­
tine, the Protect Latch is set 
to the state of bit "0" of the 
effective address. 

Indicators: 
2 cycles 
None 

Registers Affected: Program Counter 

SXB 00-50 
SKIP IF INDEX POINTER IS SET TO 
B-ACCUMULATOR (OPTIONAL) 

10,0,0,010,0,0,0,0,011,0,1:0,0,01 
3 4 9 10 15 

The next instruction is skipped if the index pointer 
is set to the B-Accumulator. 

Timing: 
Indicator s: 
Registers Affected: 

IXS 00-N-51 

1 cycle 
None 
Program Counter 

INCREMENT INDEX BY N AND SKIP IF 
POSITIVE (OPTIONAL) 

10 ,0 ,0 ,0 I 0,0 10 ! 0 (0 ! 0 11 ,0 ,~~ ~IJ 
3 4 5 & 9 10 15 

The value ofN (0-15, contained in bits 6-9) is added 
to bits 12 -15 of the index register to increase the 
index register contents by the positive value of N. 
If the contents of the index register are equal to 
zero or positive, after the value of N is added, the 
next instruction is skipped. 

NOTE 

The option of the IXS instruction 
is identical to that of the IBS 

Timing: 

NOTE (Cont'd) 

instruction for the special case 
where N = 1. The IXS instruc­
tion contains the added flexibility 
of the variable N field. If an N 
value of zero is specified, only 
a test of the index register is 
accomplished. 

Indicators: 

1 cycle if no skip 
2 cycles if skip 
None 

Registers Affected: Index Register, Program 
Counter 

LOGICAL INSTRUCTIONS 

The five logical instructions, all augmented 008 
words, affect only the A - and B-Accumulators. 
These instructions are provided to allow the 
logical modification of instruction and data words. 

The ABA and OBA instructions are used to mask 
(logically remove) portions of a single word and 
merge (logically combine) portions of two words. 
The contents of the A -Accumulator can be two's 
complemented through the NEG instruction, while 
the sign bit of the A!,"Accumulator can be comple­
mented by the ASC instruction. Sign magnitude 
forITl numbers (true binary form with either + or -
sign to show polarity) can be converted to two's 
complement form and the reverse operation can be 
performed by use of the CNS instruction (Refer to 
page 2-14). The NEG; ASC, and CNS are used 
primarily in the arranging of data formats to satisfy 
input/output requirements, but also find use in 
creating special flag, indicator and constant words. 

ABA 00-27 

AND A- AND B-ACCUMULATORS 

10000\000000\010:1111 
3 4 I ID II 

The contents of the B-Accumu1ator form a logical 
product with the contents of the A -Accumulator. 
The product is stored in the A-Accumulator and 
the contents of the B -Accumulator are unchanged. 

NOTE 

This instruction is used as a 
masking instruction as follows: 

A-Acc. (0000000011111111) MASK 
B-Acc. (1010101010101010) DATA 

A-Acc. (0000000010101010) LOG. 
PROD. 

2-13 



Timing: 
Indicators: 
Registers Affected: 

OBA 00-30 

1 cycle 
None 
A -Accumulator 

OR A- AND B-ACCUMULATORS 

10'0001000,00010 
3 4 9 10 15 

The contents of the B -Accumulator form a logical 
sum with the contents of the A -Accumulator. The 
sum is stored in the A-Accumulator and the con­
tents of the B-Accumulator are unchanged. 

NOTE 

This instruction is used as a 
merging instruction as follows: 

A-Acc (0000000010101010) DATA 
B-Acc (1010101000000000) DATA 

A-Acc (1010101010101010) LOG. 

Timing: 
Indicators: 
Registers Affected: 

NEG 00-02 

1 cycle 
None 

SUM 

A -Accumulator 

NEGATE THE A-ACCUMULATOR 

10 0,0,010 000 0 010 0 0 0 1 01 
3 4 9 10 15 

The contents of the A -Accumulator are two's com­
plemented. 

Timing: 
Indicators: 

Regi~ters Affected: 

ASC 00-20 

1 cycle 
OVERFLOW if operand is 
minus full scale 
A -Accumulator 

COMPLEMENT SIGN OF A-ACCUMULATOR 

10:00 010 00:0001010:0001 
3 4 I 10 15 

The sign bit of the A-Accumulator is comple­
mented. 

Timing: 
Indica tor s: 
Registers Affected: 

2-14 

1 cycle 
None 
A -Accumulator 

CNS 00-34 

CONYER T NUMBER SYSTEMS 

10:0,00100 0:0 0 010 11:10 01 
3 4 I 10 15 

The least significant bits of a negative -signed 
number in the A-Accumulator are two's comple­
mented while the sign bit remains unchanged. 
Positive-signed numbers are not affected. 

Timing: 

NOTE 

This instruction is used to con­
vert sign-magnitude numbers to 
two's complement numbers and 
two's complement numbers to 
sign-magnitude numbers. Posi­
tive-signed numbers are not 
affected because the form is 
the same for both number 
systems. 

1 cycle 
Indicators: OV ERFLOW if operand 

is minus full scale 
Registers Affected: A -Accumulator 

REGISTERS CHANGE INSTRUCTIONS 

The five standard instructions are used primarily 
to manipulate data, create specific formats and 
perform routine operations connected with double­
precision arithmetic. These instructions are also 
extremely useful in rearranging data in conjunc­
tion with shift instructions to achieve necessary 
word formats. 

There are eight optional register change instruc­
tions (TBP, TPB, TAX, TXA, TBV, TVB, XPX 
and XPB). The TBP and TPB instructions are in­
cluded as part of the memory protect option. The 
TAX, TXA, XPX and XPB instructions are in­
cluded as part of the hardware index register 
option. The TBV and TVB are included as part of 
the variable base register option. 

CLA 00-03 
CLEAR A-ACCUMULATOR 

10:0 0'0100 0,0 0010 0 0:0 
3 4 I II 15 

The contents of the A -Accumulator are replaced 
with all zeros. 

Timing: 
Indicators: 
Registers Affected: 

1 cycle 
None 
A -Accumulator 



TBA 00-04 

TRANSFER B-ACCUMULATOR TO 
A -ACCUMULATOR 

1000010000001000:1001 
3 4 9 10 15 

The contents of the A -Accumulator are replaced 
by the contents of the B-Accumulator. The con­
tents of the B-Accumulator are unchanged. 

Timing: 1 cycle 

Indicators: None 

Registers Affected: A -Accumulator 

TAB 00-05 
TRANSFER A-ACCUMULATOR TO 
B-ACCUMULATOR 

10: 0,0 ,0 10 ,0 ,0 ,0 ,0 ,0 I 0,0,0: 1,0, 11 

9 10 15 

The contents of the B-Accumulator are replaced 
by the contents of the A -Accumulator. The con­
tents of the A -Accumulator are unchanged. 

Timing: 1 cycle 

Indicators: None 

Registers Affected: B-Accumu1ator 

lAB 00-06 

INTERCHANGE A - AND B-ACCUMULA TORS 

10',0,0,010,0,0,0,0,010,0,0:1 1,01 

10 15 

The contents of the A -Accumulator are replaced 
by the contents of the B-Accumulator and the con­
tents of the B-Accumulator are replaced by the 
contents of the A-Accumulator. 

Timing: 

Indicators: 

Registers Affected: 

1 cycle 

None 

A -Accumulator 
B-Accumulator 

(SB 00-07 

COPY SIGN OF B-ACCUMULATOR 

10 : 0 ,0 , 0 I 0 , 0 , 0 ,0 ,0 ,0 10· , 0 , 0 : 1 ,1 1 I 
9 10 15 

The CARRY latch is set to the sign of the B­
Accumulator and the B-Accumulator sign bit is then 
set to 0 (plus). 

Timing: 

NOTE 

This instruction is used to store 
the carry gene rated during double­
precision addition. If the sign of 
the B-Accumulator is a one fol­
lowing execution of an AMB in­
struction, the execution of the 
CSB causes the one in Bo to be 
transferred to the carry latch. 
An AMA, SMA or NEG instruc­
tion must be executed next to 
insure that the carry bit is added 
to the contents of A15. No instruc­
tion may be executed between the 
CSB and AMA, SMA or NEG be­
cause (1) the carry latch is reset 
at the end of the execution of all 
instructions except CSB and (2) 
the contents of the carry latch 
are added to the contents of A15 
as part of the execution of many 
instructions. 

1 cycle 
Indica tor s: None 

B-Accumulator Registers Affected: 

TBP 00-40 

TRANSFER B-ACCUMULATOR TO PROTECT 
REGISTER (OPTIONAL) 

I 0 : 0 ,0 ,0 I 0,0,0 ,0 , 0,0 11 ,0,0 : 0 , 0,0 

·3 10 15 

The contents of the Program Protect register are 
replaced by the contents of the B-Accumulator. The 
contents of the B-Accumulator are unchanged. 

Timing: 

NOTE 

See "Program Protect and In;­
struction Trap (Model 81-080B)" 
in SECTION VII, OPTIONS, for 
program protect description. 

Indicators: 
1 cycle 
None 

Registers Affected: Program Protect Register 

2-15 



TPB 00-41 

TRANSFER PROTECT REGISTER TO 
B-ACCUMULATOR (OPTIONAL) 

10 :0,0,010,0,0,0,0,011,0,0:0,0,1 

3 4 9 10 15 

The contents of the B-Accumulator are replaced by 
the contents of the Program Protect register. The 
contents of the Program Protect register are un­
changed. 

NOTE 

See "Program Protect and In­
struction Trap (Model 81-080B)" 
in SECTION VII j OPTIONS, for 
program protect description. 

Timing: 
Indicators: 

1 cycle 
None 

Registers Affected: B -A ccurnulator 

TAX 00-52 
TRANSFER A-ACCUMULATOR TO 
INDEX REGISTER 

I 0 ,0 ,0 ,0 10 ,0 ,0 ,0 , 0, 0 11 , 0,1 : 0 , 1 ,0 I 
3 4 I 10 15 

The contents of the index register are replaced 
by the contents of the A -Accumulator. The con­
tents of the A -Accumulator are unchanged. 

Timing: 
Indicators: 
Registers Affected: 

TXA 00-53 

1 cycle 
None 
Index Register 

TRANSFER INDEX REGISTER TO 
A-ACCUMULATOR (OPTIONAL) 

10 ,0 ,0,010 ,0,0,0,0,011,0 ,1: 0,1 ,I 1 
3 4 I 10 11 

The contents of A -Accumulator are replaced by the 
contents of the index register. The contents of the 
index register are unchanged. 

Timing: 
Indicators: 
Registers Affected: 

2-16 

1 cycle 
None 
A -Accumulator 

TBV 00-42 

TRANSFER B-ACCUMULATOR TO VARIABLE 
BASE REGISTER (OPTIONAL) 

10:0 0 010 0 0:0 0 01100:0 01 
3 4 • 11 \I 

This instruction transfers bits 1 through 6 of the 
B-Accumulator to bits 1 through 6 of the variable 
base register. The contents of the B-Accumulator 
are unchanged. 

Timing: 
Indicator s: 
Registers Affected: 

TVB 00-43 

1 cycle 
None 
Variable base register 

TRANSFER VARIABLE BASE REGISTER TO 
B-ACCUMULATOR (OPTIONAL) 

10:0 0 0100 0:0 0 olr 0 0:0 111 
3 4 • 10 15 

This instruction transfers the 6 -bit contents of the 
variable base register to bit positions 1 through 6 
of the B-Accumu1ator. B-Accumulator bits 0 and 
7 through 15, are set to zero. The contents of the 
variable base register are unchanged. 

Timing: 
Indicator s: 
Registers Affected: 

XPX 00-46 

1 cycle 
None 
B-Accurnulator 

SET INDEX POINTER TO INDEX REGISTER 
(OPTIONAL) 

10,0,0,010,0,0,0,0,011,0,0:1,1,01 
3 4 9 10 15-

The index pointer flip-flop is set by the execution 
of this instruction. When this flip-flop is set, the 
presence of an index flag bit (X=l) in an instruction 
or indirect address word causes the contents of the 
index register to be added to the operand address. 

Timing: 
Indicators: 

Registers Affected: 

1 cycle 
Index Pointer 
Light ON 
None 



XPB 0047 

SE'J- Il\TIEX POINTER TO B-ACCUMULATOR 
(OF C :-JAL) 

~L ,0 ,0 I 0 , 0 10 10 10 ,0 11 10 ,0 : 1 , 1 I 1 I 
3 4 9 10 15 

The index pointer flip-flop is reset by the execution 
of this instruction. When this flip flop is reset, 
the presence of an index flag bit (X=l) in an in­
struction or indirect address word causes the con­
tents of the B-AccuITlUlator to be added to the 
operand address. 

Timing: 

NOTE 

Operation of the MASTER CLEAR 
switch resets the index pointer 
flip-flop. 

1 cycle 
Indicators: Index Pointer Light OFF 

None Registers Affected: 

SIUFT INSTRUCTIONS 

The eight instructions forming the shift group are 
augmented 008 instructions with bits 6 through 9 
containing the binary shift count. While the actual 
count is in binary code, the number of shifts to be 
performed by the instruction is usually specified 
in decimal in symbolic coding. Up to 15 (178) 
shifts can be specified for each instruction. 

There are two types of shift instructions; arith­
metic shifts which bypass the sign bit and logical 
shifts which move all 16 bits. Right arithmetic 
shifts move bits from position 1 to 2, 2 to 3, 
3 to 4, etc., with bit 1 always set to the same 
state as the sign bit. The bit originally located 
in position 15 is shifted off. In left arithmetic 
shifts, the bits are moved from 15 to 14, 14 to 13, 
13 to 12, etc., with zeros peing loaded into posi­
tion 1. The sign bit remains intact. 

In right logical shifts, the sign is shifted to posi­
tion 1, 1 to 2, 2 to 3, etc., and zeros are loaded 
into the sign bit position. If left logical shifts, 
final zeros are loaded into position 15 and bit 1 
shifted to the sign position with the sign bit 
shifted off. 

RSA 00-10 

RIGHT SHIFT A-ACCUMULATOR 

10:0 001001 n 10 0 10 0 01 
3 4 5 I I 11 15 

Bits Al through A1S are shifted right n number of 
places. The sign bit is unchanged, but supplies 
the bits (l's if negative, D's if positive) shifted 
into Al as the original bits are shifted from AlS. 

Timing: 

Indicators: 
Registers Affected: 

FRA 00-12 

If n = 1 - 4 2 cycles 
n = 5 - 8 3 cycles 
n = 9 - 12 4 cycles 
n = 13 - 15 5 cycle s 

None 
A -Accumulator 

FULL RIGHT ARITHMETIC SHIFT 

10:00 010 01 n 10 0 1 0 1 0 I 
I 4 5 I • I. 15 

Bits A 1 through Al sand B1 through B 15 ar e 
shifted right n places. Both sign bits are un­
changed. A sign supplies bits to Al (1' s if nega­
tive' D's if positive) while A15 supplies bits to B1. 
The original B -Accumulator bits are shifted off 
from B15. 

Ir--T"s E---rJ L::..ls...L-I ____ --'~ 
AO Al 

Timing: 

Indicators: 
Registers Affected: 

RSL 00-15 

If n = 1 - 4 2 cycles 
n = 5 - 8 3 cycles 
n = 9 - 12 4 cycles 
n = 13 - 15 S cycles 

None 
A -A ccumulator, 
B-Accurnulator 

RIGHT SHIFT LOGICAL A-ACCUMULATOR 

10:0 0 010 01 n 10011011 
3 4 5 I • 1. 15 

Bits AD through A15 are shifted right n places. 
Zeros enter AD as the original bits are shifted 
off AlS. 

B 15 

2-17 



Timing: If n= 1 4 2 cycles 
n= 5 8 3 cycles 
n = 9 - 12 4 cycles 
n = 13 - IS 5 cycles 

Indicators: None 
Registers Affected: A -A ccurnula tor s 

LSA 00-11 

LEFT SillFT A-ACCUMULATOR 

10:0 0 010 01 n 
3 4 5 I I 10 15 

Bits A 1 through A 1 S are shifted left n number of 
places. The sign bit is unchanged. Zeros are 
shifted into bit A1S as the original bits are shifted 
from AI. 

~~_S~ __________ ~~ZEROS 
AO Al AI5 
Timing: If n = 1 - 4 

S - 8 
9 - 12 

Indica tor s: 

n= 
n = 
n=13-1S 

None 

2 cycles 
3 cycles 
4 cycles 
S cycles 

Registers Affected: A -Accumulator 

FLA 00-17 
FULL LEFT ARITHMETIC SHIFT 

10 0 0 010 01 n 10 0 1: 1 
3 4 5 • I 10 15 

Bits A 1 through A IS and Bl through BlS are 
shifted left n places. The signs of the A- and 
B-Accumulators are unchanged. Zeros are sup­
plied to BlS. The output of Bl is applied to AlS' 
and the original A -Accumulator bits are shifted 
off from AI. 

"< r--.,-L-I -----I 1 
lSi ~ 

Timing: 

Indicators: 
Registers Affected: 

2-18 

If n= 1 - 4 2 cycles 
n= S - 8 3 cycles 
n = 9 - 12 4 cycles 
n = 13 - IS S cycles 

None 
A -Accumulator, 
B -A ccumulator 

LSL 00-16 

LEFT SillFT LOGICAL A -ACCUMULATOR 

10 0 0 010 01 n 10 0 1 1 1 0 I 
4 5 I • 11 15 

Bits AO through AlS are shifted left n places. 
Z eros enter A IS as the original bits are shifted 
off AO. 

Timing: 

Indicators: 
Registers Affected: 

FRL 00-14 

If n = 1 - 4 2 cycle s 
n = S - 8 3 cycles 
n = 9 - 12 4 cycles 
n = 13 - IS S cycles 

None 
A -Accumulator 

FULL ROTATE LOGICALLY 

100001001 10011001 
4 5 • I 10 15 

Bits AO through A IS and BO through B1S are ro­
tated to the left n number of places. The bits 
from AO enter BlS and the bits from BO enter 
AlS. 

k 

Timing: 

Indicators: 
Registers Affected: 

FLL 00-13 

'-1 S~I----;=J 

If n = 1 - 4 2 cycles 
n = S - 8 3 cycles 
n = 9 - 12 4 cycles 
n=13-IS Scycles 

None 
A -Accumulator, 
B-Accumulator 

FULL LEFT LOGICAL SillFT 

I 4 5 I I 10 15 

Bits AO through AIS and BO through BlS are 
shifted left n places. The bits from BO enter 
AlS, the original A-Accumulator bits are shifted 
off from AO and zeros enter BIS. 



Tim.ing: If n = 1 
n = 5 
n = 9 
n = 13 

4 

- 8 
- 12 
- 15 

2 cycles 
3 cycles 
4 cycles 
5 cycles 

Indicators: None 
Registers Affected: A -Accum.ulator, 

B -Accum.ulator 

CONTROL INSTRUCTIONS 

The five instructions in this group are used for 
general "housekeeping" functions required by the 
program.. The HLT (Halt) instruction stops the 
com.puter after loading the next instruction into the 
instruction register. the NOP (No Operation) in­
struction perform.s no function other than to reserve 
a program. slot for a future addition or to delay the 
program. to m.atch real-tim.e input. The TOI (Turn 
Off Interrupt), PIE (Priority Interrupt Enable) and 
PID (Priority Interrupt Disable) allow program. con­
trol of the priority interrupt circuits as described 
in the following paragraphs. 

The HLT, NOP, and TOI instructions are single­
word augm.ented 008 operation code words. The 
PIE and PID instructions are augm.ented 138 words 
and both include a second word containing the 
priority interrupt channel num.bers. The second 
words are autom.atically read from. m.em.ory as 
part of the norm.al execution cycle of the instruc­
tion. 

HLT 00-00 
HALT 

I 0: a a a loa a a 0 al a a a' a 0 a I 
3 4 , 10 

Halts the operation of the com.puter. 

Tim.ing: 

NOTE 

The com.puter stops with the ad­
dress of the next instruction in 
the program. counter. The START 
switch is closed to initiate the 
I cycle of the addressed instruc­
tion. The program. counter m.ay 
be m.anually reset and set to a 
new starting address prior to 
closing the START switch. 

n.a. 
Indicators: HALT 

None Registers Affected: 

NOP 00-33 

NO OPERA TION 

la:o 0,010 a a a 0 ala 11 alII 
3 4 5 I 10 15 

No operation is perform.ed. 

NOTE 

This instruction is used to reserve 
m.em.ory locations for instructions 
to be added within the program. en­
com.passing that m.em.ory location. 
It m.ay also be used to delay a pro­
gram. to m.atch a real-tim.e input 
or output transfer rate. 

Tim.ing: 
Indicator s: 
Registers Affected: 

TOI 00-35 

1 cycle 
None 
None 

TURN OFF INTERRUPT 

I a : a a al a a a a a a I all: 1 a 1 I 
3 4 I 11 15 

Sets a control latch as sociated with the highest 
active priority interrupt so that the interrupt will 
be reset by the next Long Branch or indirectly 
addressed Unconditional Branch instruction. 

Tim.ing: 
Indicators: 
Registers Affected: 

PIE 1306 

1 cycle 
None 
None 

PRIORITY INTERRUPT ENABLE 

Word 1 

11:a 1 11 a 0 0 11 1 0: 0 ,0 0: 0 ,0 ,0 I 
3 4 I 7 15 

Word 2 

Unitary Channel No. 
IZ 11 10 q 8 7 6 5 4 ] Z I 

I 1 3 4 15 

Enables any com.bination of the 12 priority inter­
rupt levels belonging to the selected priority 
interrupt group. Bits 15 through 4 of the second 
word are set to ONES to enable interrupt levels 
1 through 12. 

2-19 



NOTE 

This instruction allows a selected 
number of 96 priority interrupt 
levels (12 levels / group x 8 groups) 
to be enabled for operation. 

Timing: 2 cycles 
None 
None 

Indicator s: 
Registers Affected: 

PID 1306-01 

PRIORITY INTERRUPT DISABLE 

Word 1 

1 0 1 1100 OJ1 10'0 00 '0 0 11 
3 4 6 1 15 

Word 2 

Unitary Chclnncl Nu, 
12 II 10 1:1 7 l, :. 4 3 2 I 

• 1 3 4 15 

Disables any combination of the 12 priority inter­
rupt levels belonging to the selected priority inter­
rupt group. Bits 15 through 4 of the second word 
are set to ones to disable levels 1 through 12. 

NOTE 

This instruction allows a selected 
number of 96 priority interrupt 
levels (12 levels/group x 8 groups) 
to be disabled. 

Timing: 2 cycles 
None 
None 

Indicators: 
Registers Affected: 

INPUT/OUTPUT INSTRUCTION 
Input/ output instructions contain 138 or 178 opera­
tion code s. Several of the input/ output instructions 
are two word instructions. The two instruction 
words are stored in sequential memory locations 
with the second word called automatically by the 
810B computer. The six I/O instructions are: 

COMMAND EXTERNAL UNIT (CEU) 

TEST EXTERNAL UNIT (TEU) 

ACCUMULATOR WORD OUTPUT TO 
PERIPHERAL (AOP) 

MEMORY WORD OUTPUT TO 
PERIPHERAL (MOP) 

ACCUMULATOR WORD INPUT FROM 
PERIPHERAL (AlP) 

2-20 

MEMORY WORD INPUT FROM 
PERIPHERAL (MIP) 

Two instructions, A Input (AlP) and A Output 
(AOP) are provided to enable words or characters 
to be transferred between the A -Accumulator and 
peripheral units. These instructions provide a 
convenient character assembly/disassembly capa­
bility. Each of these instructions occupies a 
single memory location. The two instructions, 
Memory Input (MIP) and Memory Output (MOP), 
enable words or characters to be transferred di­
rectly between specified memory locations and 
peripheral units. The instruction Command 
External Unit (CEU) enables all system devices 
connected to the computer to be controlled by the 
program. The CEU instruction is used to initiate 
Block Transfer Control units as well as to control 
computer peripheral devices and special system 
units. The Test External Unit (TEU) instruction 
is provided to enable system devices to be tested 
by the computer. The test result causes the in­
struction following the TEU to be either executed 
or skipped. Two memory locations are required 
to store the MIP, MOP, CEU and TEU instructions. 

Data or command word transfer instructions can be 
executed in either of two modes - Wait Mode or 
Skip Mode, as defined in the following paragraphs. 

a. Wait Mode - In this mode, the transfer is 
not made until the unit sends a "Ready" signal to 
the computer. The computer contiriues to test for 
the Ready signal each machine cycle and then exe­
cutes the transfer during the first cycle following 
the recognition of the Ready signal. After the 
transfer, the device is disconnected and the next 
instruction in sequence is executed. The specific 
meaning of the Ready signal is defined in each I/O 
instruction description. 

b. Skip Mode - In this mode, the Ready signal 
is tested only once. If the Ready signal is present, 
the transfer is executed. The Program Counter is 
then advanced to cause the next instruction to be 
skipped. If the device indicates "Not Ready", the 
device is disconnected and the Program Counter 
is advanced to cause the next instruction to be 
executed. This conditional skip features enables 
all I/O instructions (except TEU) to perform the 
total function of "Connect Unit, Test for Ready, 
Transfer if Ready, and Disconnect Unit". 

The flow chart showing the execution of the AlP and 
AOP instructions is shown in figure 2-3. As shown 
in the flow chart, the value of the Wait Flag deter­
mines whether the instruction is executed in the 
Wait or Skip Mode. The MIP, MOP and CEU in­
structions are executed in the same manner, except 
that the Program Counter is advanced by one before 
the transfer is made in order to obtain the operand 
address. 



START I/O 
INSTRUCTION 

EXECUTION 

PLACE DEVICE 
ADDRESS AND 
I/O COMMAND 

ON I/O BUS 

TRANSFER 
WORD TO/FROM 

DEVICE 

ADD TWO 

TO PROGRAM 

COUNTER 

YES 

ADD ONE 

TO PROGRAM 

COUNTER 

SEN:Q DISCONN 
COMMAND TO 

DEVICE 

EXECUTION 

Figure 2-3. AIP/AOP Instruction Execution Flow Chart 

NO 

9S118A. Zl 

2-21 



Execution of the TEU instruction requires no Ready 
Test. An on-line unit is always "Ready" to be 
tested. The Test word is always transferred to the 
device and a Test Return signal is tested. The re­
sult of the test is a conditional skip of the next in­
struction. 

In addition to providing selectable execution modes, 
the two-word I/O instructions (MIP, MOP, CEU, 
and TEU) provide two selectable operand addressing 
modes, Immediate Mode and Address Mode as de­
fined in the following paragraphs. 

a. IITlITlediate Mode - In this mode, the second 
instruction word is treated as the operand. In exe­
cuting MOP, CEU, and TEU instructions, the con­
tents of the second instruction location are trans­
ferred to the specific unit. MIP execution consists 
of transferring a word or character from a specified 
device into the second instruction location. 

b. Address Mode - In this mode, the second 
instruction word is interpreted as the operand 
address. The indirect address format is used in 
the second instruction word. Therefore, indexing 
and indirect chaining may be used in addressing the 
operand. The addressing mode is specified in the 
first instruction word by the value of the Indirect 
Address Flag (I). If I is a ONE, the Address Mode 
is executed. 

The format of the I/O instruction words is in fig­
ure 2-4. The specific coding used in each instruc­
tion is defined in the individual instruction descrip­
tions. Bit definitions are given in table 2 -2. 

FIRST WORD 

lei h Ie, Ie, I R II I M I AI hi w lUI Iu, I u, I u, h I u.1 
• I 2 3 4 5- I 1 • I 10 II 12 13 14 Ii 

SECOND WORD, ADDRESS MODE 

14 BIT MEMORY ADDRESS 

• I 2 

SECOND WORD, IMMEDIATE MODE 

10 BIT OPERAND 

15 

Figure 2-4. I/O Instruction Word Format 

2 -22 

Table 2-2. Bit Definitions 

Symb. Definition Contained In 

C Command Code All I/O 
Instructions 

R Character Merge Flag AlP 

I Indirect Address Flag MIP, MOP, 
CEU, TEU 

M Map Bit MIP, MOP, 
CEU, TEU 

A Augmented Command 
Code All 

W Wait Flag All except 
TEU 

U Unit Number (008 - 778) All 

X Index Flag MIP, MOP, 
CEU, TEU 

CEU 1300 Immediate - Skip Mode 

1301 Immediate - Wait Mode 

1320 Address - Skip Mode 

1321 Address - Wait Mode 

1330 Address - Map - Skip Mode 

1331 Address - Map - Wait Mode 

COMMAND EXTERNAL UNIT 

Word 

1101110IMIo o Iwi DEVICE (UNIT) NUMBERI 

3 4 I 1 I I II 15 

(Address Mode) Word 2 

I xl II 14-Bit Address 
• I 2 15 

Transfer the command (up to 16 bits) contained in. 
the specified memory location to unit n. 

Operand Address 
Modes: 

Immediate - I = ° 
Address - I = 1 
(First Word) 

NOTE 

M functions only if the Indirect 
Flag (bit 5) is a "1 ". If bit 5 and 
bit 6 are both "1" bits the MSB 



NOTE (Cont'd) 

of the program counter is merged 
with the Indirect Address. If 
bit 5 is a "1" and bit 6 is a "0" 
the MSB of the Indirect Address 
is set to a "0". This feature 
allows the program to be exe­
cuted in upper memory (MAP 40 
or greater) in the same manner 
as it is executed in lower memory'. 

Execution Modes: Skip (W = 0), Wait (W = 1) 

Transfer Criterion: A unit answers "Ready" to 
a CEU test if the unit can 
immediately start execu­
tron of any new function 
command. 

Timing: 

NOTE 

The bits in most unit command 
codes are micro-programmed. 
Hence, either one or several 
function commands may be trans­
fer red to a unit by execution of a 
single CEU instruction. Refer to 
Section VI for the definition of the 
standard unit command codes. 

Indicator s: 
4 cycles + wait 
1/0 WAIT 

Registers Affected: None 

TEU 1302 

1322 

1332 

Immediate Mode 

Address Mode 

Address. Map Mode 

TEST EXTERNAL UNIT 

Word 1 

11 : 0 ,1 1 I 0 I MI 0 1 o I DE;ICE (UNIT) NUMBER I 
3 4 I 1 • 10 15 

(Address Mode) Word 2 

Ixi II ~4-Bit ..(\ddres~ 
D I 15 

Transfers the test code (up to 16 bits) contained in 
the specified memory location to unit n. A return 
signal from the unit is then tested, and the pro­
gram counter is advanced accordingly. If the re­
turn signal indicates a "Ready" or "Go" condition, 
the next instruction in sequence is skipped. A re­
turn signal indicating a "Not Ready" or abnormal 
condition causes the next instruction to be executed. 

Operand Address 
Modes: 

Immediate - I = 0 
Address - I = 1 
(First Word) 

NOTE 

M functions only if the Indirect Flag 
(bit 5) is a "1 ". If bit 5 and bit 6 
are both "1" bits the MSB of the 
program counter is merged with the 
Indirect Address. If bit 5 is a "1" 
and bit 6 is a "0" the MSB of the 
Indirect Address is set to a "0". 
This feature allows the program to 
be executed in upper memory 
(MAP 40 or greater) in the same 
manner as it is executed in lower 
memory. 

Execution Modes: This instruction is always 
executed in the same 
mode. An on-line unit 

Timing: 
Indicator s: 
Registers Affected: 

AOP 1700 

1701 

is always "Ready" to 
accept a test code. 
Therefore, the code 
is always transferred 
and the return is always 
tested. The Wait Flag 
is not used. 

4 cycles + wait 
None 
None 

Skip Mode 

Wait Mode 

ACCUMULATOR WORD OUTPUT TO PERIPHERAL 

1100010 o Iwi DEVICE (U~lTl NUMBER I 
3 4 I 1 I • 10 15 

Transfers a word from the A -Accumulator to 
unit n. Character oriented units accept only bits 
AO - A 7 • 

Execution Modes: 

Transfer Criterion: 

Timing: 
Indicators: 
Registers Affected: 

Skip (W = 0), Wait (W = 1) 

A unit answers "Ready" to 
an AOP test if the unit can 
immediately receive a new 
word or character. 

4 cycle s + wait 
1/0 WAIT 
None 

2-23 



MOP 1704 I.rrunediate. Skip Mode 

1705 Inunediate. Wait Mode 

1724 Address. Skip Mode 

1725 Address. Wait Mode 

1734 Address. Map. Skip Mode 

1735 Address, Map, Wait Mode 

MEMORY WORD OUTPUT TO PERIPHERAL 

Word 1 
11: 1 1,110 I Mil OIWIDEVICE(UliIT)NUMBERI 

j ~ I 8 g Ii) 15 

(Address Mode) Word 2 

Ix I II I~-Bit Address: 
D 1 2 15 

Transfers a word from the specified memory loca­
tion to unit n. Character oriented units accept 
only bits mO - m7 from the specified memory 
location. 

Operand Address: Immediate - I = 0 
Address - I = 1 
(Fir st Word) 

Modes: 

NOTE 

M functions only if the Indirect Flag 
(bit 5) is a "1 ". If bit 5 and bit 6 
are both "1" bits the MSB of the 
program counter is merged with 
the Indirect Address. If bit 5 is a 
"1" and bit 6 is a "0" the MSB of 
the Indirect Address is set to a 
"0". This feature allows the pro­
gram to be executed in upper mem­
ory (MAP 40 or greater) in the 
same manner as it is executed in 
lower memory. 

Execution Modes: Skip (W = 0), Wait (W = 1) 

Transfer Criterion: 

Timing: 
Indicators: 
Registers Affected: 

2-24 

A unit answers "Ready" 
to an MOP test if the unit 
can immediate receive a 
new word or charac-
ter. 

4 cycle s + wait 
1/0 WAIT 
None 

AlP 1702 Skip Mode 

1703 Wait Mode 

1742 Merge. Skip Mode 

1743 Merge. Wait Mode 

ACCUMULATOR WORD INPUT FROM PERIPHERAL 

11 : 1 llR 10 0 I 0 11 WI DEVICE (U~IT) NUMBERI 
3 4 5 I 1 19m ~ 

Transfers a word or character from unit n into 
the A-Accumulator. Character oriented units 
transfer characters into' bits AS - A I 5' 

NOTE 

This instruction contains 
a convenient provision for 
character assembly in 
the A-Accumulator. If 
the optional Merge Flag 
(R) is a ONE. the input 
character is added to 
the contents of the A­
Accumulator. If (R) is 
zero, the A -Accumulator 
is cleared prior to the 
input of a character or 
word. Therefore, an 
S -bit character can 
be read, with R = 0, 
shifted left S bit posi­
tions then merged with 
the next character read 
with an R = 1. 

Execution Mode s: Skip (W 0), Wait (W 1) 

Transfer Criterion: 

Timing: 

Indicators: 

Registers Affected: 

A unit answers "Ready" 
to an AlP test if the 
unit has a word or 
character ready for 
immediate transfer. 

4 cycles + wait 

1/0 WAIT 

A -Accumulator 



MIP 1706 Immediate. Skip Mode 

1707 Immediate. Wait Mode 

1726 Address. Skip Mode 

1727 Address. Wait Mode 

1736 Address. Map, Skip Mode 

1737 Address, Map, Wait Mode 

MEMORY WORD INPUT FROM PERIPHERAL 

Word 1 

11 : 1 1 1 10 I Mil 1 [WI DEVICE (UNIT) NUMBERI 

3 • 1 8 i IU 

(Address Mode) Word 2 

Ix II I 14~Bit Address 
o I 

Transfers a word or character from unit n to the 
specified memory location. Character oriented 
units transfer characters into bits ms - mlS of 
the specified memory location. 

Operand Address 
Modes: 

Immediate - I = 0 
Address - I = 1 
(First Word) 

NOTE 

M functions only if the Indirect Flag 
(bit S) is a "I". If bit 5 and bit 6 are 
both "1" bits the MSB of the program 
counter is merged with the Indirect 
Address. If bit 5 is a "I" and bit 6 
is a "0" the MSB of the Indirect Ad­
dress is set to a "0". This feature 
allows the program to be executed 
in upper memory (MAP 40 or greater) 
in the same manner as it is executed 
in lower memory. 

Execution Modes: 

Transfer Criterion: 

Timing: 
Indicators: 
Registers Affected: 

Skip (W = 0), Wait (W = 1) 

A unit answers "Ready" to 
an MIP test if the unit has 
a word or character ready 
for immediate transfer. 

4 cycles + wait 
I/O WAIT 
None 

2-25/2-26 





SECTION III 
ASSEMBLY LANGUAGE PROGRAMMING 

GENERAL DESCRIPTION 

The general fonnat of the SEL 810B Assembly 
symbolic instruction input (source input) consists 
of five major fields. These fields are the Location, 
Operation, Address and Comments::" Identification 
fields. Figure 3-1 shows a sample coding format 
that may be used for writing source programs in 
symbolic assembly language. The following para­
graphs describe the coding format. 

I 
73 80 

I I I I I I I I I I 

IDENTIFICATION 

LOC. OPER. ADDRESS. INDEX 

1 6 11 25 7 

• BIN ARY-OCTAL co N - I 
I 

* VERS ION AND TYPEOUIT 
I ." 

RE L I 
I ... 

N A MoE BINOCT B I 
I 

B DAC • * I 
'" 

TAB I 

L I X I 
I '" 

DATA - 6 

CLA I 
I 

FLL 1 1 
I 

BRU * + 2 

LOOP FLL • 3 

AMA - , 2 6 0 ADD AS C I I 

L S L 8 
I 

AOP 1. W. 
I 

I X S 
I 

BRU LOOP 
I 

BRU* B I 
I .. , 

END 
I 

_1 
I 

I 

I 

9S118A. 31 

Figure 3-1. Example of Assembler Coding 

LOCATION FIELD 

The Location field (columns 1 - 4, in figure 3-1) 
may consist of a symbolic label for the instruction 

line when it becomes necessary to refer to this 
location elsewhere in the program. The symbolic 
label consists of 1 to 4 characters; the first charac­
ter must be a letter and the remaining characters 
may be either letters or digits. If no reference 
to the instruction line is necessary, the Location 
field may be left blank. 

OPERATION FIELD 

The Operation field (columns 6 - 9, in figure 3-1) 
consists of a mnemonic computer instruction or 
pseudo-operation. A list of mnemonic instructions 
and pseudo-operations is given in tables 3-2 and 
3-4. 

Mnemonic computer instructions consist of 3letters. 
The mnemonic instruction must be "left - justified" 
in the Operation field, i. e., written in columns 6, 
7 and 8. If the instruction addre s s is to be made 
indirect, the 3-letter mnemonic is followed by an 
asterisk (':') written in column 9. 

Pseudo-operations consist of 3 or 4 letters and 
represent either data definition or instructions 
to the assembly program. 

ADDRESS FIELD (VARIABLE FIELD) 

Memory reference instructions use the variable 
field to define the ope rand addre s s which maybe 
followed by a comma and a one (, 1), to signify 
indexing. Some other instructions, such as shift 
and I/O machine operations and some pseudo­
operations, have special formats for the variable... 
field which are defined in tables 3-1. 3-2, 3-3 and 
3-4. If no address field definition is required the 
addre s s field is left blank. 

Operand Address Formats 

No Address. The address field may be left blank 
if no operand address is required. 

Symbolic Address. Consists of 1 to 4 characters 
starting ~ith a lette r. 

External Symbolic Address. An external symbolic 
address consists of a dollar sign ($) followed by 
1 to 6 characters, the first of which is a letter. 
This external variable is presumed not defined 

3-1 



within the program in which it is contained but 
refers to a subroutine or item located in a differ­
ent subprogram or located on the library tape. 
No address arithmetic may be performed on 
External Symbolic Addresses. 

Absolute Address. When reference to a fixed mem­
ory location is required or when the address 
represents a count (such as in a shift instruction). 
The address consists of digits only and is pre­
sumed decimal. Octal addresses are prec~ded 
by an apostrophe ('). 

Current Location. The location of this instruction 
is used as the instruction's address if a single 
asterisk (*) appears in the address sub-field. This 
allows for reference to this or nearby instructions 
without having to assign a symbolic name to that 
instruction. 

Address Arithmetic. Any current location (*), 

symbolic (NAME), or absolute ('1234) address 
may be joined with a constant, current locations 
(*), symbolic (NAME) or absolute (1234) address 
by an intervening plus (+) or minus (-) operator 
to define an effective address (NAME + 4). The 
above may be extended to more than two operands 
(A - B + 2). 

Literal Address. Literal addresses allow a con­
stant to be defined, as signed to a memory cell 
and that assignment location used as the address 
for this instruction. All constants defined in 
literal addresses will optimize storage so that all 
identical constants (regardless of their format) 
will be assigned only once. A literal address con­
sists of an .equal sign (=) followed by the constant. 
Any decimal integer, octal number, single asterisk 
(current location), previously defined symbolic 
name or combination of these formats joined by a 
+ or - may follow the equal sign in a literal address. 

Location To Be Filled. A double asterisk (**) 
indicates the address portion of this instruction is 
to be filled in by the object program at run time 
and is identical to an absolute address of 000. 

The assembly program presumes the computer 
has a l5-bit address and, therefore, does not 
attempt to reduce the argument addre s s to a 9 - bit 
address. When the resulting object tape is loaded 
by the loader into memory starting at a location 
deterITlined by the operator, these l5-bit addresses 
are modified as follows: 

(a) If the arguITlent address is located in MAP 
zero, the address is truncated to 9 bits and the 
MAP bit is set to zero. 

(b) If the argument addre s s is located in the 
same MAP as the instruction in which it is 

3-2 

contained, the address is truncated to 9 bits and 
the MAP bit is set to one. 

(c) Otherwise, truncate the l5-bit address to 
14 bits and store the l4-bit address and its indirect 
and index bits automatically into a cell in MAP 
zero, set the 9-bit address' of this cell in the instruc­
tion being loaded, and set the MAP bit to zero and 
the indirect bit to one. 

Table 3-1 lists examples of address field entries. 

Table 3-1. Example Address Field Entries 

Field Entry 

0, 1 

ALPH 

ALPH, 1 

519 

'1067,1 

NAME+4 

COMN-2,1 

ALPH-PHPA+2,1 

=100 

='41237 

*-3, 1 

$SQRT 

COMMENTS FIELD 

Description 

No Address 

Absolute Zero Address, 
Indexed 

SYITl bolic Addre s s 

SYITlbolic Address and 
Index 

Absolute Decimal Address 

Absolute Octal Address, 
Indexed 

Addre s s Arithmetic 

Address Arithmetic, 
Indexed 

Symbolic Addre s s Arith­
metic Indexed 

Literal Decimal Constant 

Literal Octal Constant 

Current Location 

Near-by Address, Indexed 

Addre s s to be Filled 

Indexed Addre s s to be 
Filled 

External SYITlbolic Address 

The comments field starts immediately after the 
first space in the variable address field. This field 
has no effect on the assembler but is printed out on 
the symbolic listing if a listing is requested. 



Any line which has an asterisk (,~) in the first 
character position of that line will be considered 
a line of comments. (See line 1 in figure 3-1. ) 

Because of width limitations on the typewriter ,. 
comments appearing after colurrm 50 will be 
output only on the line printer. 

IDENTIFICATION FIELD 

This field is not checked and is considered as part 
of the comments. It is provided as a programmers 
aid. For example, it may be used to identify a card 

or cards in a card deck or for sequencing the card 
deck. It is located in columns 73 thru 80. 

MNEMONIC COMPUTER INSTRUCTIONS 

The computer instructions listed in table 3-2 will 
be accepted by the SEL 8l0B assembly program. 
All permissible fields are shown in the Allowable 
Fields column with all required fields underlined. 
Any of the described symbolic notations in this 
manual may be used in the variable fields, pro­
viding they are defined. 

Absolute notations for the variable fields are 
shown in table 3- 3. 

Table 3-2. SEL 8l0B Mnemonic Instructions 

MNEMONIC 
Instruction Allowable Fields Description 

AMA AMA'~ Addr, 1 Add Memory to A-Accumulator 

AMB AMB* Addr, 1 Add Memory to B-Accumulator 

SMA SMA~' Addr, 1 Subtract Memory from A-Accumulator 

MPY MPY~' Addr, 1 Multiply B-Accumulator times Memory 

DIV DIV* Addr, 1 Divide A and B_Accumulator by Memory 

RNA RNA RoundA-Accumulator by MSB in B-Accumulator 

OVS OVS Overflow Set 

LAA LAA* Addr, 1 Load A-Accumulator from Memory 

LBA LBA':' Addr, 1 Load B-Accumulator from Memory 

STA STA* Addr, 1 Store Memory from A-Accumulator 

STB STB* Addr, 1 Store Memory from B-Accumulator 

LIX LIX Load Index 
DATA (Immediate Mode) 

LIX'~ 
or 

DAC* Addr, 1 (Address Mode) 

STX STX Store Index 
DATA (Immediate Mode) 

STX* 
or 

DAC~' Addr, 1 (Address Mode) 

LCS LCS Load Control Switches in A-Accumulator 

BRU BRU* Addr, 1 Unconditional Branch 

SPB SPB'~ Addr, 1 Store Place and Branch 

3-3 



MNEMONIC 
Instruction 

SNS 

IMS 

CMA 

IBS 

SAZ 

SAP 

SAN 

SOF 

SAS 

SNO 

LOB 

SXB 

IXS 

ABA 

OBA 

NEG 

ASC 

CNS 

CLA 

TAB 

lAB 

CSB 

TBA 

TAX 

3-4 

Table 3-2. SEL 810B Mnemonic Instructions (Cont'd) 

Allowable Fields 

SNS Switch no. 

CMA*Addr, 1 

IBS 

SAZ 

SAP 

SAN 

SOF 

SAS 

SNO 

LOB 

EAC Addr, 1 

SXB 

IXS 

ABA 

OBA 

NEG 

ASC 

CNS 

CLA 

TAB 

lAB 

CSB 

TBA 

TAX 

De scription 

Skip if Console Switch Not Set 

Increment Memory and Skip 

Compare Memory and A-Accumulator (3 way) 
n+1(-), n+2 (0), n+3 (+) 

Increment B-Accumulator (Index) and Skip 

Skip if A-Accumulator is Zero 

Skip if A-Accumu'lator is Positive 

Skip if A-Accumulator is Neg&.tive 

Skip NO Overflow 

Skip on A-Accumulator sign (3 way) 
n+1 (-), n+2 (0), n+3 (+) 

Skip if A-Accumulator is not Normalized 

Long Branch 

Skip if Index Pointer is Set to B-Accumulator 

Increment Index and Skip if Positive 

AND A-Accumulator and B-Accumulator 

OR A-Accumulator and B-Accumulator 

Negate A-Accumulator 

Complement A-Accumulator Sign 

Convert Number System 

Clear A-Accumulator 

Transfer A-Accumulator to B-Accumulator 

Interchange A-Accumulator and B-Accumulator 

Transfer B-Accumulator Sign to Carry and Clear 
B-Accumulator Sign to Positive 

Transfer B-Accumulator to A-Accumulator 

Transfer A-Accumulator to Hardware Index 
Register 



MNEMONIC 
Instruction 

TXA 

TAP 

TPA 

TBV 

TVB 

XPX 

XPB 

RSA 

LSA 

FRA 

FLA 

RSL 

FRL 

LSL 

FLL 

HLT 

NOP 

TOI 

PIE 

PID 

AOP 

AlP 

Table 3-2. SEL BlOB Mnemonic Instructions (Cont'd) 

Allowable Fields 

TXA 

TAP 

TPA 

TBV 

TVB 

XPX 

XPB 

RSA Count ---
LSA Count ---

FRA Count ---
FLA Count ---
RSL Count ---
FRL Count ---
LSL Count ---
FLL Count ---

HLT 

NOP 

TOI 

PIE 
DATA GrouE & Level 
PIE~' 

DAC':' Addr, 1 
--

PID 
DATA Group & Level 
PID':' 
DAC~' Addr, 1 --

AOP Unit, Wait 

AlP Unit, Wait, 
Merge 

Description 

Transfer Index Register to A-Accumula­
tor 

Transfer B-Accumulator to Protect Register 

Transfer Protect Register to B-Accurnulator 

Transfer B-Accumulator to Variable Base 
Register (VBR) 

Transfer Variable Base Register (VBR) to B­
Accumulator 

Set Index Pointer to X Index Regis­
ter 

Set Index Pointer to B-Accumulator 

Right Shift A-Accumulator 

Left Shift A-Accumulator 

Right Shift A-Accumulator and B-Accumulator 

Left Shift A-Accumulator and B-Accumulator 

Right Logical Shift A-Accumulator 

Logical Rotate A-Accumulator and B-Accumula­
tor 
Left Logical Shift A-Accumulator 

Log;ical Left Shift A-Accumulator and B­

Accumulator 
Halt 

No Ope ration 

Turn Off Interrupt 

Priority Interrupt Enable 

Priority Interrupt Disable 

A- Accumulator Out to Unit (n) (Without wait, 
skip on ready) 

A-Accumulator Input from Unit (n) (Without 
wait, skip on ready) 

3-5 



Table 3-2. SEL 8l0B Mnemonic Instructions (Cont'd) 

MNEMONIC 
Instruction Allowable Field 

MOP MOP Unit, Wait 

DATA 
OR 

MOP* Unit, Wait, 
MAP 

DAC* Addr, 1 

MIP MIP Unit, Wait, 

DATA 
OR 

MIP~' Unit, Wait, 
MAP 

DAC':' Addr, 1 

CEU CEU Unit, Wait, 

DATA 
OR 

CEU* Unit, Wait 
MAP 

DAC* Addr, 1 

TEU TEU Unit, 
DATA 

OR 
TEU* Unit, MAP 
DAC* Addr, 1 

ABSOLUTE NOTATIONS FOR VARIABLE FIELDS 

Table 3-3 lists the absolute notations for the 
variable fields. 

Table 3-3. SEL 8l0B Absolute Notation Formats 

Variable Field Absolute Notation 

Addr 5 octal digits ('00000-'77777) 
5 decimal digits (00000-

32767) 

Count 2 octal digits ('00-'17) 
2 decimal digits (00-15) 

Switch No. 2 octal digits ('00-'17) 
2 decimal digits (00-15) 

Group 1 octal digit (0-7 = bits 1-3) 

Level 4 octal digits (0001-7777= 
bits 4-15) 

Unit 2 octal digits ('01- '77 rep-
resenting units 1 to 63) or 
2 decimal digits (1 to 63) 

3-6 

Description 

Memory Out to Unit (n) 

(Immediate Mode) 
OR 

(Address Mode) 

Memory Input from Unit (n) (Without wait, 
skip on ready) 

(Immediate Mode) 
OR 

(Address Mode) 

Command External Unit (n) (Without wait, skip 
on ready) 

(Immediate Mode) 
OR 

(Address Mode) 

Test External Unit 
(Immediate Mode) 

OR 
(Address Mode) 

Table 3-3. SEL 8l0B Absolute Notation 
Formats (Cont'd) 

Variable Field Absolute Notation 

Wait 1 binary bit (0, No Wait or 
1, Wait = bit 9) 

Merge 1 binary bit (0, No Merge or 
1, Merge = bit 4) 

PSEUDO-OPERATION INSTRUCTIONS 

This group of instructions is used to instruct the 
SEL 8l0B Assembly Program and are not executed 
by the computer. A description of each pseudo­
operation is given in the following paragraphs. 

ABS Set the mode of the assembly program to 
ABSolute. When in this mode, all symbolic 
addresses will be assigned relative to 
location 00000 and output in a non-relocat­
able format. 

REL Set the mode of the assembly program to 



ORG 

EQU 

DAC 

EAC 

DATA 

RELative. When in this mode, all 
symbolic addresses will be assigned 
relative to the start load address (as­
signed when loading the program into 
memory) and output in a relocatable 
fonnat compatible with the loader. 
The assembly program is initialized 
to the absolute mode and will remain 
in this mode until changed by an REL 
pseudo-op). 

The variable field specifies an address. 
When the assembly is in absolute mode, 
this address specifies the location of 
the next instruction. When the assembly 
is in relative mode, this address will 
be added to the start load addre s s 
(assigned when loading the progratn 
into tnetnory) in order to specify the 
location of the. next instruction. In 
either case, all following instructions 
will be stored sequentially in tnetnory 
until another ORG pseudo-op is given. 

The sytnbol in the location field will be 
assigned tho&! address or value specified 
in the variable field. Constant values 
tnay not exceed 15 bits. 

This pseudo-op is used to generate 
Direct Address Constants used as argu­
tnent addresses for subroutine calling 
sequences, or referred to by indirect 
instructions. The address in the 
variable fieldtnay be in any of the for­
mats shown previously (variable field 
fortnats for instructions). The address 
will be truncated to 14 bits and will 
occupy bit s 2 to 15 of the re sulting word. 
The address may be indexed and the 
pseudo-op tnay be tagged indirect if 
required. (Setting bits 0 and 1. ) 

This pseudo-op is used to generate 15-
bit Extended Address Constants used 
as argutnents of Long Branch instruc­
tions. Any of the Fortnats shown 
previously are acceptable in the vari­
able field, except that the instruction 
may not be indexed nor made indi­
rect. 

The variable field of this pseudo-op 
tnay contain any number and any tnixture 
of the following data item formats. If 
the location field contains a sytnbol, it 
will be assigned the location of the first 
data item. If more than one data item 
is present (separated by commas), they 
will be assigned sequential storage locations. 

a. Octal Data Item - Format: An optional 
sign (+ or -l, followed by an apostrophe 
character ('), followed by 0 to 6 octal 
digits (0 through 7). If less than 6 digits 
are present, the number will be right­
justified with leading zeros added. If a 
tninus sign is present, the number will 
be 2' s cotnpletnented; a plus sign is ignored. 

b. Decitnal Integer - Format: An optional sign 
(+ or -) followed by 0 to 5 decimal digits 
(0 through 9). The number will be con­
verted to binary and stored at a scale of 
B15. The number will be stored positively 
unless a tninus sign is present. A minus 
sign will cause the 2' s completnent of the 
nutnber to be stored. 

c. Fixed-Point Single Precision Decimal Data -
Fortnat: An optional sign (+ or -), 0 to 5 
decitnal digits (0 through 9), tnixed with 
an optional decimal point, ,the letter B, 
followed by a decitnal nutnber between +15 
and -15. Example: -3.14157B6. A minus 
sign will cause the 2' s complement of the 
number to be stored. One word will be 
generated. 

d. Fixed-Point Double Precision Data - Format: 
An optional sign (+ or -), 0 to 10 digit s tnixed 
with an optional decimal point, the letter 
C, followed by a decimal number between 
+30 and -30. Example: 103.637942C10. 
A minus sign will cause the 2' s complement 
of the number to be stored. Two words will 
be generated. 

e. Floating Point Data - Fortnat: An optional 
sign (+ or -), 0 to 7 decimal digits (0 through 
9), mixed with an optional decimal point, 
and optionally followed by a decimal expon­
ent consisting of the letter E, preceding a 
decimal nutnber between +75 and -75. 
(Either the decimal point, the letter E, or 

the sign of the exponent must be present. ) 
Two sequential memory cells are generated 
for each floating point data item using the 
following format: 

I : I 
·Fl· 

Examples: o. 1 
5. 03Z5EZ 

-1. E-l = 
-503.25 = 

+63146+31775 
+7672.0+00011 
-14631+47775 
-01060+00011 

3-7 



3- 8 

f. Floating Point Double Precision Data -
Format: An optional sign (+ or -), a to 11 
digits mixed with an optional decimal point, 
the letter D, followed by a decimal number 
between +75 and -75. Three sequential 
memory cells are generated for each 
double-precision floating point item using 
the following format: 

·Fl· 

·F3· 

E = Characteristic (2' s complement if 
negative). 

Fl, F2, F3 = Double-Precision Fraction 
(2' s complement if negative). 

g. Alphanumeric Data - Format: Two apostro­
phe characters (' ') followed by any number 
of characters (including blanks) until an­
other pair of apostrophes is read. The 
character s within the apostrophe pair s are 
stored 2 per word (last character left­
justified, if necessary). 

Example: "ALPHA TEST" is to be stored 
into memory starting at 10 cation 
2000. 

1 100 000 III 001 100 2000 AL 
2001 

2002 

2003 
2004 

1 

1 

1 
1 

101 000 

100 000 

101 010 
101 001 

all 001 

110 100 

all 000 
III 010 

000 

000 

10 1 
100 

PH 

A­

TE 
ST 

The above example is in ASR-33 code (FULL 
ASCII code). This code will be used inter­
nally by the assembler to represent alpha­
numeric data. The I/O handling subroutines 
will translate from external to internal code 
and vice versa when necessary depending 
upon the I/O device in use. 

h. Symbolic Address Data - Format: Any 
symbolic address optionally followed by 
address arithmetic. The effective address 
will be stored in memory a s a 15 - bit ad­
dress (similar to that generated by the 
EAC pseudo-op). The address may not 
be tagged as indexed or indirect. 

FORM This pseudo-op is used to setup the 
format for the FDAT pseudo-op. There 
is no data generated and no memory 
locations are used. This pseudo-op al­
lows the programmer to define the bit 
assignments of 16-bit words generated 

FDAT 

BSS 

BES 

by the FDAT statement. Up to 8 fields are 
allowed but the total number of bits must 
not exceed 16. All FDAT statements that 
follow a FORM will be in the same format 
until another FORM is encountered. 

Example: 

FORM 6, 4, 3, 1, 2 

This as signs the FDAT bits a s follows: 

Field 1 - 6 bits (bits 0-5) 
Field 2 - 4 bits (bits 6-9) 
Field 3 - 3 bits (bits 10-12) 
Field 4 - 1 bit (bit 13) 

Field 5 - 2 bits (bits 14-15) 

This pseudo-op is used to generate data 
in a format which has been previously de­
fined by a FORM statement. The variable 
field for this instruction will accept 
decimal, octal, and alphanumeric data, 
but will mask off the most significant bits 
not defined by the previous FORM state­
ment. Multiple FDAT statements may be 
placed on a card separated by slashes (/). 
If the location field contains a symbol, it 
will be as signed the location of the fir st 
data item. Example (using the FORM 
defined above): 

FDAT "A",8,7,0,1/'75, '13,4,1,3 

This will generate the following two 
consecutive octal words: 

'003071 
'173347 

Reserve a block of memory storage 
starting at the current location and 
extending for the number of words 
specified in the variable field. (If 
the variable field is symbolic, it 
must h;'l.ve been defined by a previous 
input line). The location field is 
optional but if a symbol is inserted 
in this field, it will refer to the first 
word in the block. 

Same as BSS except that if the location 
field is occupied, it refers to the last+1 
word in the block. 



CALL This pseudo-op will generate the nec­
essary coding and actions to call in a 
subroutine from a library tape into 
memory. The CALL pseudo-op is then 
replaced by a subroutine transfer in­
struction (SPB) to the subroutine. The 
variable field contains the subroutine 
name. The location field, when occu­
pied, refers to the resulting SPB in­
struction. Logic is contained within 
the loader to assure that only one copy 
of a subroutine is called into memory 
from the library tape regardless of 
the numbe r of CALL's for that sub­
routine. The sub routine s name must 
start with a letter and may contain 
from 1 to 6 characte rs. An equally 
good way to call external subroutines 
would be with a leading dollar sign 
on the sub routine's name. 

Example s : SPB $SQR T 

or CALL SQRT 

NAME When writing subroutines for inclusion 
into a library tape, the name by which 
the subroutine must be called as speci­
fied by the NAME pseudo-op. This 
must appear as the sub routine's fir st 
instruction line{s). The variable field 
consists of two symbolic names. The 
first is the name of the subroutine and 
is 1 to 6 characters long (FORTRAN 
compatible). The second name is the 
symbolic entry location for the sub­
routine and is 1 to 4 characters long, 
the first character being a letter. 
More than one NAME pseudo-op may 
be included in a subroutine if alternate 
names for the subroutine exist with 
either the same or different entry 

zzz 

MOR 

END 

LIST 

NOLS 

points. Also, external variables are 
defined by the NAME pseudo-op. 

The instruction bits (0 to 3) are set 
to 0000. The rest of the instruction 
is determined by the variable field 
and the presence of an indirect indica­
tor (,:') following the pseudo-op (ZZZ':'). 

Same as ZZZ but indicates the instruc­
tion will be filled at run time. 

This pseudo-op causes a pause in the 
assembly process useful when the 
source program is on more than one 
tape, and a pause is needed to change 
tapes. 

This pseudo-op must appear as the 
last instruction in any program or 
subroutine being assembled and tells 
the assembly program that assembly 
is complete. If the variable field is 
not blank, it should specify the start­
ing location of the program just as­
sembled. 

Set the mode of the symbolic output 
routine to list the output provided 
sense switch one is not ON. The as­
sembler assumes the LIST mode un­
til otherwise directed. 

Set the mode of the symbolic output rou­
tine to suppress the listing of output 
unless an error is detected. This 
pseudo operation remains in control until 
a LIST pseudo-operation is encountered. 

SUMMARY OF PSEUDO-OPERATION INSTRUCTIONS 

Table 3-4 summarizes the SEL BlOB pseudo-opera­
tion instructions and gives specific examples for 
their use. 

Table 3-4. Summary of SEL BlOB Pseudo-Operations 

Symbolic Pseudo-
Location Operation Variable Field Entry Description 

ABS Set Mode Absolute 

REL Set Mode Relative 

MAP Set Single Map Mode 

ORG '1000 Set Origin of Program 

ALPH EQU BETA+Z Set Symbol Equal to Symbol 

3-9 



Symbolic 
Location 

IND 

OCT 

MIX 

FLOT 

ALPA 

TABL 

AD2 

ADl 

AD3 

MACRO SYSTEM 

Table 3-4. Summary of SEL 810B Pseudo-Operations (Cont'd) 

Pseudo­
Operation 

EQU 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

DATA 

FORM 

FDAT 

BSS 

BES 

CALL 

NAME 

zzz 

MOR 

END 

END 

DAC 

DAC>~ 

EAC 

EAC 

LIST 

NOLS 

Variable Field Entry Description 

2 Set Symbol Equal to Numbe r 

'12734, -'21, +'6470 Octal Data 

9876, -3000, +24 Decimal Integer Data 

23.456BIO, -3B6, 12CO Fixed Point Data 

22. 3344EO,. 12345D2 Floating Point Data 

"HELP", "12-34, A. E2" Alphanumeric Data 

X4, TEST +2, A- DLT A+1 Symbolic Address Data 

3, '77, 1. 23B4, -1233E-3, X4 Mixed Format Data 

6, 4, 3, I, 2 Defines FDAT Format 

"A", 8,.1, Q, 1/'75, '13,4,1,3 Mixed Formatted Data 

100 Block Storage Skip (Front Label) 

5 Block Storage Skip (End Label) 

SIN Library Tape Call 

SIN, S21 Library Subroutine Name 

ALPHA Instr. Bits::: 0000 

** Word to be filled at run Time 

Pause When Assembling 

STRT End of Program 

End of Sub routine 

TIME, 1 Direct Address Constant, Indexed 

LEVL Indirect Address Constant 

MEM2 Extended Address Constant 

MEM2, 1 Extended Address Constant, Indexed 

List 

No List 

according to the respective prototype and parameter 
list assigned to a given Macro call name. 

The Macro System generates in-line coding The generalformofa Macro prototype is as follows: 

3-10 



Loc. Oper. 

NAME MACR} 

EMAC 

Columns 1-4 

Column 5 

Columns 6-9 

Column 10 

Columns 11- 72 

Address, Index 

A SET OF DETAIL STATE-
MENTS 

The call name of the Macro 
which can be any combina­
tion of legal characters, 
blanks included. 

Blank 

To denote the beginning of 
a prototype code MAC or 
MACR. To denote the end 
of a prototype code EMA 
or EMAC. 

Blank 

Can be used as comments. 

SPECIAL NOTE 

Do not use an END or a $ end of job statement in 
a Macro prototype. 

MACRO PROTOTYPE 

The prototype is a set of detail statements which 
can contain elements to be supplied either inter­
nally or from a list of parameters. Elements are 
of three basic types as follows: 

• Internal to a given Macro prototype 
• Parameter supplied by user 
• Fixed element name 

The internal assignment applies only to labels and 
must be of the form @Xwhere the at sign (ASCII 
300) must be the first character of the label. The 
X is a decimal value from one through 16 and can 
be assigned in any order (not necessarily monotoni­
cally) per Macro. Leading zeros are suppressed, 
@009 is the same as @9. Each call of the same 
Macro which contains internal labels will generate 
a unique respective set increased by the last as­
sembler assigned label plus one. The assembler 
will not allow more than 999 internal labels to be 
generated. All assignments in excess of 999 will 
be flagged as an error. 

Example of internal label: 

Loc. Oper. Address, Index 

WAIT MACR NAME AND BEGIN PRO-
TOTYPE 

@l NOP INTERNAL LABEL FIXED 
OP 

NOP FIXED OPERATION CODE 
NOP FIXED OPERATION CODE 
BRU @l FIXED OP CODE, INTER-

NAL LABEL 
EMAC END OF WAIT PROTO-

TYPE 

Every call to WAIT will generate @1 into a unique 
label for each wait loop. 

The user supplied parameter can apply to any field 
of a valid assembler statement. The form of a 
user parameter is #X where the number sign (ASCII 
243) may appear anywhere in a label or value to be 
specialized and must be immediately followed by a 
decimal value from one through 16 rep re s enting 
the correct parameter number to be concatenated 
into the generated element. Leading zeros are 
suppressed on parameter number assignments. 
Parameters which are requested but omitted from 
the list are replaced by a single blank character. 
Parameter numbers in excess of 16 will not be pro­
cessed and will be flagged as an error. 

Example of user supplied parameter: 

Loc. Oper. Addre s s, Index 

FILL MACR NAME AND BEGIN 
PROTOTYPE 

LAA =#1 CHARACT ER TO FILL 
AREA 

LBA =#2 SIZE OF AREA IN 
DECIMAL 

STA #3+#2,1 AREA PLUS SIZE 
MINUS INDEX 

IBS INCREMENT INDEX 
BRU >:'-2 LOOP TO FILL AREA 
EMAC END OF MACRO PRO-

TOTYPE 

~ THE GENERAL FORM OF THE CALL 

f:< STATEMENT IS 
, MFILL DAT A, SIZE, AREA 
:'SAMPLE 

MFILL '240,80, TABL, 
:'FILL WITH A SPACE 
~80 LOCATION TABLE 
~LEFT ADDRESS IS CALLED TABL 

To call a Macro prototype code a M in column 5 fol­
lowed by the name of the Macro in columns 6-9 with 
the parameter list in columns 11-72. 

3-11 



Parameter elements in the main program call list 
are separated by a single level of delimiter which 
can be a comma, left parenthesis, or right paren­
thesis. The parameter list may be terminated bv 
one of the three delimiters. Extra sets of paren­
thesis can be added for clarity but each must be 
counted when assigning values to the elements of 
a detail entry. Elements can be as signed in any 
order or any set of digits provided a parameter 
exist for the desired elements. 

Example: 

Loc. 

PAR 

Oper. 

MACR 

DATA 
EMAC 

MPAR 

Addre s s, Index 

USE ONLY EVEN NUM­
BERED PARAMETERS 
#2, #4, #6, #8, #10 

(13) (6) ("A") (3B5) ('377) 

,~ THE ABOVE IS NOT THE SAME AS THE 
,~ FOLLOWING 

MPAR 13, 16, "A", 3B5, '377, 
* THE ABOVE NEEDS A PROTOTYPE OF THE 

* FORM 

PAC MACR 

DATA 
EMAC 

USE SEQUENTIALLY NUM­
BERED PARAMETERS 
#1, #2, #3, #4, #5 

* NOTE THAT A, () MAY NOT BE USED AS 
* DATA IN A PARAMETER LIST, IF NEEDED, 
* SUPPLY AS OCTAL DATA 

The fixed element name is any field in which the 
detail statement supplie s the value, operation code, 
operand or any portion of a statement. 

3-12 

Example: 

Loc. Oper. 

LDB1 MACR 

CLA 

LBA 
EMAC 

, USAGE OF LDB1 

MLDBI 

Address, Index 

LOAD DOUBLE PRE-
CISION CONST ANT 1 
CLEAR THE MSB TO 
ZERO 

=1 LOAD A 1 IN LSB 
END OF MACRO PRO 
TOTYPE 

NOTE THAT NO 
~ PARAMETERS ARE NEEDED ALL DATA IS 
~ SUPPLIED BY THE PROTOTYPE 

Comments may be entered in a prototype; however, 
only the asterisk and the next 24 positions will be 
retained when the prototype is specialized. If a 
detail line has comments as a continuation of a 
statement, they will not be processed at the time 
of specialization. 

The MACRO storage area is normally 700 10 words 
with a name table capacity of 30 names. The for­
mula for computing the exact number of words 
needed to store a prototype is as follows: 

Sum of words for each statement +1. 

The words for each statement = 1 + (number of char­
acters in location field + number of characters in 
op code field + number of characters in variable 
field) -;- 2 + 0 if the remainde r is I, 1 if the re­
mainde r is o. Count inte rnal and paramete r 
supplied labels as 2, that is, #003 + #02 + 6 is 
counted as 7 characters. A general safe rule-of­
thumb would be to multiply the number of detail 
lines by 5 to obtain the storage requirements for 
a Macro prototype. 



SECTION IV 
INPUT I OUTPUT 

GENERAL DESCRIPTION 

The 810B Computer Input/Output (I/O) structure is 
designed particularly to meet the requirements of 
the on-line, real-time computer user. This com­
puter application area imposes the most severe 
requirements on computer I/O capabilities due to 
the wide variety of peripheral devices required and 
the time-sharing mode of operation encountered. 
Many Systems Engineering Laboratories real-time 
systems not only have standard data processing 
peripherals such as card, paper tape, magnetic 
tape, disc and keyboard/printer devices, but also 
have a number of interface devices such as data 
acquisition systems, displays and control and com­
munication units. Therefore, the I/O structure 
must enable connection of a large number of peri­
pheral devices to the computer and must enable 
several devices to time -share communication with 
the computer. 

The standard 8l0B Computer I/O structure consists 
of an Input/Output Processor (I/OP), which provides 
"party line" communication with peripheral devices 
or device controllers. Data is supplied over 64 
direct information channels. Figure 4-1 shows how 
peripheral units are connected to the I/OP by means 
of the I/O Bus. 

The standard I/OP alone is capable of meeting the 
I/O requirements of many systems. It is ideally 

I 
I INPUT/ ~ 

I OUTPUT 

I 
PROCESSOR 

L ____ I 
SEL 810B PERIPHERAL 

COMPUTER DEVICE 
I 

I 
PERIPHERAL 

DEVICE 
I 

suited to real-time applications in that each I/O 
instruction causes the device addressed by the 
instruction to be connected to the computer, the 
data transfer to be made, and then the device to 
be disconnected. Therefore, the succes sive trans­
fer of data words to/from two or more different 
peripheral devices requires no intervening house­
keeping operations such as channel and device 
te sting and connection. 

The time-sharing capability of the I/OP is further 
enhanced by the fact that all Systems Engineering 
Laboratories peripheral devices contain their own 
data buffers. Hence, the I/op which contains no 
buffer, is never busy buffering data to be trans­
ferred to/from a device. As a result a two word 
data transfer instruction can be executed in 3.0 
microseconds + wait and the I/OP released imme- . 
diately for data transfer to/from a different device. 

In addition to the r/op, Block Transfer Control 
(BTC) units can be added to the 810B to provide 
a fully-buffered data transfer capability between 
computer memory and peripheral units. BTC 
channels enable a block of words up to 32,767 in 
length to be transferred to or from a peripheral 
device. One memory cycle is stolen per word 
transferred. 

~ 
INPUT/OUTPUT flUS 

I I 
PERIPHERAL 

DEVICE PERIPHERAL 

CONTROLLER DEVICE 

2 64 

1 
CONTROLLER I/O llUS 

I I 
PERIPHERAL PERIPHERAL 

DEVICE DEVICE 
2 16 

C}SIIKA.41 

Figure 4-1. Connection of Peripheral Units to the Computer 

4-1 



The predominant reason for adding BTC units to 
the computer is to free the mainframe to perform 
internal processing functions while data is being 
transferred between memory and peripheral devices 
at high rates. For example, using two BTC units, 
a continuous stream of data words can be read into 
computer memory, blocked, and recorded on 
magnetic tape in gapped format, resulting in a 
loss of only slightly over two machine cycles (one 
for input, one for output) per word transferred. 
For a typical word rate of 20 KC, only an average 
of 1.50 microseconds of machine time is used per 
50 microseconds of elapsed time to accomplish a 
single word input and output transfer function. The 
remainder of the time is available for performing 
such functions as scaling or limit checking of the 
data. 

The optional Computer Graphics Processor (CGP) 
Model 84-235B is a high-speed data transferring 
control unit designed to satisfy the specialized 
needs of the SEL Computer Graphics Systems. The 
control unit is similar to the 81 DB optional Block 
Transfer Control (BTC) with the exception of its 
specialized operating characteristics and added con­
trol functions. A BTC, when outputting data, is 
unmindful of the nature of this data. However, the 
CGP examines each word as it comes from memory 
and either interprets the word as data and sends it 
to the Computer Graphics System or as an instruc­
tion and takes appropriate action. 

The instructions allow the CGP to operate on its 
address counters, thereby freeing the 810B Com­
puter from much of the control unit servicing, and 
allowing it more time to operate on the buffer areas 
of the system. This feature allows the use of sub­
routines to generate frequently used patterns. 

The CGP is us ed in conjunction with the SEL 816A 
Computer Graphics System to provide the most 
efficient method of transferring data from the 810 B 
Computer to the display unit. Using the CGP mini­
mizes the amount of computer memory and trans­
fer time required to support the display. The CGP 
also provides a high degree of flexibility in display 
format generation since the CGP contains the capa­
bility of executing the following instruction: (1) 
Branch Unconditionally, (2) Store Place and Branch, 
and (3) Stop. The first two instructions (which have 
the same execution capabilities as the corresponding 
computer instructions) enable the contents of non­
contigous memory areas to be transferred auto­
matically to the display. This capability enables 
display programs to be organized to provide maxi­
mum usage of closed subroutines that are stored in 
memory a single time and used as often as required 
in a given display format. The stop command en­
ables the display unit to automatically control the 
refresh rate, and maintain a fixed rate regardless 
of the amount of data being displayed. 

4-2 

INPUT OUTPUT PROCESSOR 

Figure 4-2 illustrates a more detailed block dia­
gram of the SEL 810B I/O structure. It shows the 
connection of both the I/O structure to the com­
puter and the peripheral units to the I/O Bus. 
Three of the five devices shown have additional 
connections to BTC units. However, all five de­
vices shown and additional devices up to a total of 
64 can be commanded by and can communicate 
with the computer under single-word program con­
trol. The additional, fully-buffered transfer capa­
bilities of the units connected to the BTC units are 
described in the Block Transfer Control Unit 
section. 

The I/OP provides a positive synchronization con­
trol for data flow between the computer and peri­
pheral units. It can synchronize data transfer be­
tween a peripheral unit and either memory or the 
A-Accumulator. The data path for each word or 
character transferred is controlled by a program 
executing an input/ output instruction. 

The basic, automatic execution sequence for all 
I/O instructions consists of three steps: 

1. Connect the device specified by the 
instruction to the I/O bus. 

2. Execute the transfer directly between the 
device and the A-Accumulator or memory. 

3. Disconnect the device from the I/O bus. 

Three very significant features of this execution 
sequence are: 

1. The device is always specified by the I/O 
instruction. 

2. The device is always connected to and 
disconnected from the computer by the execution 
of the instruction. 

3. Data transfers are always made directly 
between the specified device and the computer 
with no intermediate buffering. 

The result of these three features is that the com­
puter I/O structure is always available for use 
without testing. It is never "busy", except 
during the times that I/O instructions are being 
executed. No channel testing or selection is 
ever required. In addition, no unit selection in­
structions are required, since each I/O instruc­
tion causes the unit specified by the instruction 
to be selected for transfer. 



SEL 810B ~ MEMORY ---- MEMOJlY DATA 
C 

I 0 
M 

I I/O BUS AV AILADLE p M.F. 
U 

I IN~~~~~~E T MEMORY AVAILABLE E 
I CONTROL I/O BUS REQUEST BLOCK . 

MEMORY 
TRANSFER 

I ADDRESS ACCESS MEMORY REQUEST CON"TROL 
TRANSFER SYNC T 

CONTROL 
PRIOIHTY 

L_ MEMORY AVAILABLE ADDRESS LOGIC T I MEMORY REQUEST T I -- FOR M.F. T I I T I I r-
CATINC CONTROL ADDRESS CWA OR INITIALIZE 

J J ,j. ,j. T I ,j. J. 
--

BLOCK 
TRANSFER START nANSFER START 

TRANSFER tRANSFER SYNC; 
BLOCK 

T TRANSFER SYNC TRANSFER 
MAINFRAME CONTROL 

11 II" 
CONTROL 

I I 
arc BTC .Te 

PERIPHERAL PERIPHERAL INTERFACE INTERFACE INTERFACE 
DEVICE DEVICE 

INPUTI PERIPHERAL PERIPHERAL PERIPHERAL ,--- I/o BUS AVAILABLE OUTPUT DEVICE DEVICE DEVICE 
PROCESSOR 

T T T T T T TTTDEVICETTT I PRO~~SSOR SYNC NUMBER T T T 
M.F. DATA I ,j. I ,j. I J. COMMANDS, I .. TES:- CODES I ,j. I INTERFACE 

DATA ,j. J. CONTROL, J. TRANSFER .L SYNC, TEST ,j. RETUlI:H 

9511711.41 

Figure 4-2. Input/Output Configuration and Computer Interface 

The I/O Bus connects all peripheral devices to the 
I/OP in a "daisy-chained" manner, as shown in 
figure 4-3. The I/O Bus contains 16 data lines, 
six unit number lines, and numerous control lines. 

The 16 data lines provide two-way communication 
paths. All data, CEU command words and TEU 
test words are transferred over these lines. Word­
oriented units such as acquisition subsystems con­
tain a full set of 16 cable drivers and terminators 
for the data lines. Character-oriented devices 
having character assembly buffers such as magnetic 
tape control devices also contain a full set of cable 
drivers and terminators. Character-oriented 
devices having character buffers such as paper tape 
punches and readers contain only eight to ten cable 
drivers and/or terminators. In this case, data 
commands and test codes are always received from 
the computer on the eight lines corresponding to 
computer bit positions 0 -7. Some units also re­
ceive commands from bits 8 to 15. Single charac­
ters are always transferred to the computer on the 
data lines corresponding to bit positions 8-15. 
Characters having less than eight bits are right­
justified in the eight-bit field. The data lines con­
nected to each peripheral unit are defined in Sec­
tioit VI. 

The six unit number lines connected to each unit 
permit up to 64 individual units to be addres sed 
by the computer. 

The control lines consist of the signals named in 
table 4-1. 

These lines are used to enable I/O instructions to 
be executed in the following basic sequence (TEU 
differs). 

(1) The computer initiates execution by sending 
out the device (unit) number contained in the in­
struction. The computer also sends out the Instruc­
tion Sync and instruction command (Data, Command, 
Test, Input/Output) signals. 

(2) The addressed device responds by sending 
the Unit Sync Return and Unit Test Return signals 
to the computer. 

(3) After recogmzmg the Unit Sync Return 
signal, the computer tests the Unit Test Return 
signal for the unit status ("Ready" to execute 
command or "Not Ready"). 

4-3 



Table 4-1. I/O Control Signals 

Signal Computer Commands 

Instruction Sync ALL I/O INSTRUCTIONS 

Data Instruction AlP, AOP, MIP, MOP 

Command Instruc-
tion CEU 

Test Instruction TEU 

Input/Output AlP, AOP, MlP, MOP 

Wait Flag AlP, AOP, MIP, MOP, CEU 

Unit Test Return ALL I/o INSTRUCTIONS 

Unit Sync Return ALL I/O INSTRUCTIONS 

Computer Data 
Here AOP, MOP, CEU, TEU 

Computer Data 
Accepted AlP, MlP 

Unit Data Accepted AOP, MOP, CEU, TEU 

Computer Clock 

Master Clear 

SEL BlOB 
COMPUTER 

PERIPHERAL 
DEVICE 

(4) If the device indicates "Ready", the data 
transfer is made. The Data Here and Data Ac­
cepted signals synchronize the transfer. For 
computer input transfer, the unit "Ready" signal 
also indicates "Data Here". 

(5) After the transfer is completed, the com­
puter tests the control lines from the device to 
insure that they have returned to the "Off" level. 
The next instruction is started in the following 
machine cycle. 

The normal execution time for each immediate 
mode I/O instruction is four machine cycles. 
In addition, presence of the Wait Flag in an I/O 
instruction delays completion of instruction 
execution until the device indicates a "Ready". 
(The operation of the Wait Flag is described in 
Section II. ) 

The execution sequence is similar for all instruc­
tions except TEU. When a TEU instruction is 
executed, no "Ready" test is made before trans­
fer of the test word. Transfer is made following 
recognition of the Unit Sync Return signal. The 
Test Return line is tested after the test word has 
been transferred to the device. The return signal 
is a particular unit status gated on the Test Re­
turn line by the value of the test word transferred 
to the device. 

PERIPHERA 
DEVICE 

PERIPHERAL 
DEVICE 

TERMINATOR 
PLUGS 

Q511HA.43 

Figure 4-3. Peripheral Device Bus Connections 

4-4 



INPUT /OUTPUT BUS 

The Basic 81 DB Computer is supplied with cable 
drivers and terminators which enable 16 units to 
be connected to the computer on one "daisy-chained" 
cable. Additional drivers, terminators and con­
nectors are available if more than one cable chain 
is required. 

BLOCK TRANSFER CONTROL UNIT 

GENERAL CAPABILITIES 

The SEL Block Transfer Control (BTC) unit is an 
optional computer input/ output control unit which 
enables fully-buffered transfer of data between 
peripheral units and computer memory. The 
salient features of this unit are listed below: 

Bits per Transfer 

Maximum Words per 
Block 

Full computer word 

32,767 

Maximum Transfer Rate 1,333,000 words per 
second 

Memory Cycles Stolen 
per Transfer 

Block Transfer 
Reinitialization 

Maximum Number of 
BTC's per Computer 

One 

Automatic or program 
controlled 

8 

Maximum Number of 6 
CGP's per Computer 

Maximum Number of 16 
Peripheral Devices 
per BTC 

BTC OPERA TION 

The BTC contains two binary counters plus trans­
fer initialization and synchronization logic. One of 
the counters stores the current word address (CWA) 
and the second stores the word count (WC). CWA 
defines the storage location for each word trans­
ferred to/from memory and WC defines the number 
of words to be transferred. The initial values for 
CWA and WC are obtained from two fixed locations 
in computer memory by the BTC each time a new 
block transfer is initiated (see table 5 -2 for BTC 
memory location assignments). Each time a word 
is transferred between memory and the selected 
peripheral unit, CW A is incremented and WC is 
decremented. The block transfer is completed and 
an interrupt is generated when WC = O. After a 

block transfer is completed, the BTC automatically 
initiates a new block transfer by obtaining a new 
initial set of CWA and WC values from the two 
dedicated memory locations. The block transfer 
sequence is ended by placing a terminate code in 
the WC word. The terminate code is a ONE in 
bit 0 (sign bit). 

NOTE 

The initial value of CW A is 
identified as the First Word 
Address (FWA). This allows 
the BTC starting address to 
be defined and distinguished 
from any other CWA. 

The CWA value may be transferred from the BTC 
to the dedicated memory location by execution of 
a CEU command addressed to the device and con­
taining a ONE in bit 13 of the command code. 
(See Appendix C. ) 

BTC Initialization and Data Flow 

The BTC is initialized through the peripheral de­
vice to/from which the block transfer is to be 
made. Figure 4-2 shows the data and control path 
involved. The figure shows two peripheral devices 
connected to one BTC and a third peripheral de­
vice connected to a second BTC. These devices, 
as previously described, may communicate with 
the computer through execution of any of the I/O 
instructions. In addition, they may transfer data 
under BTC control, rather than under single-word 
program control. 

Execution of the proper Command External Unit 
(CEU) instruction causes the device specified by 
the instruction to s end an Initialize signal to the 
BTC to which it is cabled. In many peripheral 
devices, this instruction also causes the unit to 
initiate action to produce/accept data. When the 
BTC receives the Initialize signal from the device, 
it reque sts a memory cycle through the Memory 
Access Control (MAC). It also generates the ad­
dress of the CWA memory location assigned to it. 
When the memory cycle is granted, the CW A value 
is transferred from the memory to the CW A counter 
in the BTC. A request for a second cycle is then 
made by the BTC and the address of the memory 
location containing WC is placed on the addres s 
lines by the BTC. When the second cycle occurs, 
WC is transferred from memory to the WC counter 
in the BTC. The terminate bit (bit 0) contained in 
the WC word is also tested and a latch is set if the 
terminate bit is a ONE, which signifies that no 
more block transfers are to be made after comple­
tion of the one being initialized. The maximum 
time for the entire initialization is four cycles for 

4-5 



the CEU execution, plus 2 cycles for the CWA and 
WC transfers, which occur immediately following 
CEU execution. 

After BTC initialization, words are transferred 
between the selected peripheral device and memory 
over the I/O data lines under the joint control of 
the BTC, the BTC Priority Control and the MAC. 
A word transfer is initiated by the device which 
sends a Data Transfer Request line to the BTC. 
The Data Transfer Request signal causes the BTC 
to request a memory cycle through the MAC. When 
the MAC determines that the next cycle can be 
granted, a Memory Available signal is sent to the 
BTC. The BTC, in turn, sends a signal to the 
peripheral device which causes it to connect to the 
Unit I/O data lines, execute the data transfer, and 
then disconnect from the data lines. After comple­
tion of a word transfer, the CWA value is incre­
mented and the WC value is decremented in the 
BTC counters. All words are transferred by 
repetition of this cycle, which is always initiated 
by the peripheral device. 

When the value of WC is decremented to zero, the 
block transfer is terminated. If the terminate 
latch in the BTC had not been set by the terminate 
bit in the last WC word acquired from memory, a 
new block transfer is automatically initiated by 
the BTC. Re-initialization consists of acquiring 
new CWA and WC values from the memory locations 
assigned to the BTC. After re-initialization, an 
interrupt is generated which signifies that the trans­
fer of the last block is completed and a new block 
transfer is initialized. The interrupt processing 
routine can then store in the dedicated locations 
the CW A and WC values for the next block transfer 
anytime prior to the completion of the current block 
transfer. This re-initialization technique reduces 
the problem of re -initializing block transfers under 
program control between the times of occurrence 
of two successive words in a continuous data stream. 

If the terminate latch in the BTC had been set by 
the terminate bit in the last WC word acquired 
from memory, an interrupt is generated when the 
value of WC is decremented to zero and no new 
transfer is initialized by the BTC. In addition, 

4-6 

the Data Transfer Request line from the peripheral 
signal is received. Hence, the BTC disconnects 
from the peripheral device. 

BTC Priority and Timing 

BTC's are granted memory cycle requests on a 
priority basis. The priority ordering function is 
performed by the BTC Priority Control. A unique 
priority is as signed to each BTC. The priority 
logic is structured similar to that of the interrupt 
priority logic, insuring that higher priority BTC's 
are always serviced before lower priority units. 
However, once a word transfer is initiated, it is 
not interrupted by a request from a higher priority 
BTC. In addition, BTC requests for memory 
cycles always take precedence over mainframe 
requests and can effectively "lock out" the main­
frame if the peripheral transfer rate is high 
enough. BTC and P.I. Assignments are shown in 
table 5-3. 

The maximum collective transfer rate for a BTC 
(or group of BTC's) is 1,333,000 words per second. 
Cycle stealing (or lockout) from the program is 
automatic and each BTC word transferred removes 
one cycle from the program. The BTC can gain 
access to the memory after a delay of one cycle 
except during the time of execution of the instruc­
tions listed in table 4-2 (the number of cycles 
refers to the number of consecutive cycles during 
which time the BTC cannot gain memory access). 
When these instructions are executed, the main 
program will hold out the BTC transfer for a 
maximum of the number of cycles indicated. 

Table 4-2. Execution Times 

Two Cycles Four Cycles (or More) 

lMS CEU MOP 

AOP MlP 

AlP TEU 



SECTION V 

PRIORITY INTERRUPT SYSTEM 

GENERAL DESCRIPTION 

The SEL 8l0B Computer can have up to 98 individual 
levels of priority interrupts. Each level can be 
selectively enabled and disabled under program 
control except for two special interrupts (Power 
Fail Safe and Stall Alarm). Two standard levels 
plus the special power fail safe level are supplied 
with the basic computer. Additional, optional levels 
are available in groups of 12 levels each, except 
the first optional group contains ten levels. 

Assignment of interrupts is highly flexible. Internal 
signals such as Overflow and Memory Parity can be 
connected to interrupt levels. BTC, End of Block 
signals and external signals from peripheral units 
and custom system components are connected to 
the levels which best fit the operation of each 
system. 

Two special interrupts, Power Fail Safe/Auto Start 
and Stall Alarm, are provided. These levels are 
always enabled. Interrupt signals at these levels 
override all other computer functions, including 
Halt, I/O Wait and indirect address chaining. The 
Stall Alarm and Auto Start features are options 
described in Section VII. 

A unique location in memory is assigned to each 
interrupt level. These locations are assigned in 
MAP 1 to keep the entire MAP 0 available for pro­
gram usage. Location 1,0028 is assigned to the 
highest priority -programmable level, location 
1,0038 to the second highest level, etc. Tables 5-1 
and 5-2 shows the assignment of interrupt loca­
tions and BTC locations. 

When an interrupt signal is recognized by the main­
frame, a wired-in instruction SPB*L (Store Place 
and Branch Indirect) is executed, where L is the 
address of the memory location assigned to the 
interrupt level. By storing the starting location 
of the interrupt processing routine in L, a linkage 
is provided to any point in memory. Since the 
address of the next instruction to have been executed 
in the interrupted program is stored in the interrupt 
routine entry point by the SPB instruction, a means 
for returning to the point of interrupt is provided. 
If the Program Protect and Instruction Trap option 
is included (and the computer is in the protected 
mode), the status of the Protect Latch is also stored 
in bit 0 of the interrupt routine entry point by the 

SPB instruction. When the program returns to the 
point of interrupt, the protect latch returns to the 
status present at the time of the interrupt. 

The mainframe may be interrupted by a particular 
interrupt level provided that: 

(a) the level has been previously enabled 

(b) no higher level interrupt is active. 

If a higher level interrupt is active when an inter­
rupt signal occurs, the interrupt will be stored 
until the completion of execution of the higher level 
interrupt processing routine. The lower level 
routine will then be initiated. It will continue until 
completed or until interrupted by a higher level 
interrupt signal. In this case, the lower level 
routine will be completed after completion of the 
higher level routine. Program control will then 
be returned to the original point of interrupt. The 
priority logic enables any number of interrupt 
levels to be active at the same time. Routine 
execution is always performed in the order of 
priority of the active interrupts. 

Table 5-1. Priority Interrupt Assignments 

(Octal) Memory Interrupt 
Location As s ignme nt 

1000 Power Fail Safe/Restore 

1001 Stall Alarm 

1002 PI Group, Level 0, 1 (Highest) 

1003 0,2 

1004 0,3 

1005 0,4 

1006 0,5 

1007 0,6 

1010 0,7 

1011 0,8 

1012 0,9 

1013 0, 10 

1014 0, 11 (Std) 

1015 0, 12 (Std) 

1022 1, 1 

5 -1 



Table 5-1. Priority Interrupt Assignments (Cont'd) (Octal) Memory Interrupt 

(Octal) Memory Interrupt 
Location As s ignment 

Location As s ignrneht 1124 4, 3 

1023 1,2 1125 4,4 

1024 1, 3 1126 4,5 

1025 1,4 1127 4,6 

1026 1, 5 1130 4,7 

1027 1,6 1131 4,8 

1030 1,7 1132 4,9 

1031 1, 8 1133 4,10 

1032 1,9 1134 4,11 

1033 1, 10 1135 4, 12 

1034 1, 11 1142 5, 1 

1035 1, 12 1143 5, 2 

1042 2, 1 1144 5,3 

1043 2,2 1145 5,4 

1044 2, 3 1146 5,5 

1045 2,4 1147 5,6 

1046 2,5 1150 5,7 

1047 2,6 1151 5,8 

1050 2,7 1152 5,9 

1051 2,8 1153 5, 10 

1052 2,9 1154 5, 11 

1053 2,10 1155 5, 12 

1054 2,11 1162 6, 1 

1055 2, 12 1163 6, 2 

1102 PI Group, Level 3, 1 1164 6, 3 

1103 3, 2 1165 6,4 

1104 3, 3 1166 6,5 

1105 3,4 1167 6,6 

1106 3, 5 1170 6,7 

1107 3,6 1171 6, 8 

1110 3,7 1172 6,9 

1111 3,8 1173 6, 10 

1112 3,9 1174 6, 11 

1113 3, 10 1175 6, 12 

1114 3,11 1202 7, 1 

1115 3, 12 1203 7,2 

1122 4,1 1204 7,3 

1123 4,2 1205 7,4 

5-2 



Table 5-1. Priority Interrupt Assignments (Cont'd) 

(Octal) Memory Interrupt 
Location Assignment 

1206 7,5 

1207 7,6 

1210 7,7 

1211 7,8 

1212 7,9 

1213 7, 10 

1214 7,11 

1215 7, 12 

Table 5-2. BTC Memory Location Assignments 

Memory BTC or Interrupt 
Location Assignment 

1060 BTC 1 FWA 

1061 1 WD CNT 

1062 2 FWA 

1063 2 WD CNT 

1064 3 FWA 

1065 3 WD CNT 

1066 4 FWA 

1067 4 WD CNT 

1070 5 FWA 

1071 5 WD CNT 

1072 6 FWA 

1073 6 WD CNT 

1074 7 FWA 

1075 7 WD CNT 

1076 8 FWA 

1077 8 WD CNT 

DETAILED DESCRIPTION 

The following paragraphs describe the priority 
interrupt system hardware and software in detail. 

INTERRUPT CONNECTIONS 

Two levels of interrupts are supplied with the basic 
computer. The priority levels of these interrupts 
are Group 0, Levels 11 and 12. The levels of the 
standard interrupts are placed at the bottom of 
Group 0 to make optional levels available of both 
higher and lower priorities. 

The two standard levels are connected through the 
I/O cable to all peripheral units, as required. 
Interrupt signals in each unit are connected to one 
or the other of the two levels under program con­
trol. 

Connection of a unit interrupt to a standard priority 
level is performed by execution of the CEU instruc­
tion. The format of the second word of the CEU 
instruction for the peripheral units contain three 
bits used to connect and disconnect the standard 
unit interrupts. The interpretation of the three 
bits is given in table 5 -3. 

Table 5-3. Standard Interrupt CEU Bit Functions 

Bit Function 

1 = ONE Connect Levels Designated in 
Bits 2 and 3 

2 = ONE Connect/ Di sconnect Level 11, 
Group 0 

3 = ONE Connect/ Disconnect Level 12, 
Group 0 

1 = ZERO Disconnect Levels De signated 
in Bits 2 and 3 

2 = ZERO Leave Level 11, Group 0 in 
Present State 

3 = ZERO Leave Level 12, Group 0 in 
Present State 

Refer to Appendix C 

INTERRUPT ENABLING / DISABLING 

Interrupt levels can be selectively enabled and dis­
abled, one group (up to 12 levels) at a time, by the 
two instructions: 

PIE (Priority Interrupt Enable) 

PID (Priority Interrupt Disable) 

The second word of these two-word instructions has 
a three-bit group field and a l2-bit level field which 
designate the group and the one to twelve levels 
within the group to be affected by the instruction. 
The bit assignment is shown below: 

a 1 3 4 15 

The group field is binarily coded, group 00 being 
the highest priority group. The level field is uni­
tarily coded, a ONE in bit 15 is signifying the 

5 -3 



highest priority level within a group (level 1). An 
instruction which will cause the five highest levels 
in group TWO to be enabled is written in assembly 
language as: 

PIE 
DATA '20037 

Execution of this instruction leaves the seven lower 
levels within group TWO (if present) unaffected. 
They remain either enabled or disabled. 

INTERRUPT LEVEL LOGIC 

The logic for each interrupt level consists of three 
latches and associated gates. The latches are desig­
nated Request (R), Enable (E) and Active (A). The 
R latch is set by the external interrupt signal. It 
provides storage for the signal until the level be­
comes active and the interrupt routine is executed. 
The R latch is reset by execution of the two instruc­
tions which normally terminate each interrupt 
routine: 

TO! 
BRU* 

Turn Off Interrupt 
Unconditional Branch Indirect 

The R latch is also reset for all designated levels 
each time the PID instruction is executed. 

The E latch is set by the proper group and level bits 
in the PIE instruction. It is reset by the same bit 
pattern in the PID instruction. 

The logic expression for the signal (In) which inter­
rupts the mainframe from interrupt level n is 

In = Rn En (AI + A2 + --- + An-l) 

where Al in the "active" signal for the highest 
interrupt level. The mainframe tests for the 
presence of any I signal after fetching each in­
struction from memory, but prior to execution. 
If In is present, An is set and the instruction 

SPB'~ 10018 + n (n < 46), 

is executed in two machine cycle times. 

The A latch is reset by the signal generated by the 
execution of the TOI, BRU':' instruction pair. Each 
time this instruction pair is executed, both the 
highest level A and R latches are reset, releasing 
the channel to accept a new interrupt signal. 

A special interrupt card is available which provides 
an alternate means of effectively disabling inter­
rupts. When this card is inserted at any interrupt 
level, the level can be made active under program 
control by execution of a PIE instruction specifying 
that level. Making the special level active inhibits 
any lower level from becoming active. Therefore, 
the lower levels are effectively disabled. Execution 
of the PID instruction addre s sing the special level 
causes the active (A) latch for that level to be reset. 

5-4 

If the special interrupt card is inserted at the high­
est level (Group 0, Levell), a means is provided 
for keeping higher priority levels from becoming 
active while lower priority levels are being pro­
cessed. An interrupt processing routine at any 
level can be executed without interruption by having 
a PIE 1,0 immediately after the entry location and 
a PID 1,0 immediately before the exit (BRU*) loca­
tion. 

INTERRUPT ROUTINE PROGRAMMING 

The Assembly language coding for the typical inter­
rupt routine is shown in table 5-4. 

Table 5-4. Sample Assembler Interrupt Routine 

Loc. Operation Address Comments 

INT4 ZZZ *** Storage Loca-
tion for Re-
turn Address 

(Interrupt Processing Routine) 

TO! Turn off Inter-
rupt 

BRU~' INT4 Return to 
Point of Inter-
rupt 

Since an interrupt can occur at any time during the 
execution of the program, the interrupt routine has 
no method of determining which registers are being 
used by the interrupted program. Therefore, the 
interrupt routine must save and restore any regis­
ters which it uses, in order to allow the interrupted 
program to continue upon return: Example: 

Loc. Operation Address Comments 

INT4 ZZZ ** 

STA ASAV SAVE A-Acc 

STB BSAV SAVE B-Acc 

(Interrupt Processing Routine) 

LAA ASAV Restore A-Acc 

LBA BSAV Restore B-Acc 

TOI 

BRU'~ INT4 



There are five instructions that do not allow 
an interrupt to be serviced until the next in-
struction is executed: 

Tal (Turn off Interrupt) 
PID (Priority Inte rrupt Disable) 
PIE (Priority Interrupt Enable) 
SPB (Store Place and Branch) 
CSB (Copy Sign of B-Acc. ) 

The Tal instruction inhibits servicing the interrupt 
for one instruction to allow the BRU* to be executed 
at the exit of the interrupt routines. This is to 
insure that the proper active latch (A) is reset. 

The PID is included to allow the execution of a PIE 
immediately following the PID in order to reset 
any possible requests on the selected levels be­
fore enabling them. The inclusion of the PID also 
permits the disabling of higher level interrupts as 
the first instruction of an interrupt routine. How­
ever, this should be used with caution, because the 
PID instruction resets the request latches (R) on 
its second cycle. The duration of an interrupt 
signal must be greater than the longest non-inter­
ruptable instruction chain to guarantee that the in­
terrupt is not erased when a PID instruction is ex­
ecuted. 1£ this condition cannot be met, the special 
interrupt card (described later) is recommended. 

When it is desired to use the .same subroutine at 
more than one interrupt level, it must be allowed 
to complete the execution for the lower levels or 
be made re-entrant. The following example 
shows a method to allow the lower levels to com­
plete. 

LOC. OPER. ADDRESS. INDEX 

I 6 II 25 

I" I E EN A B LEI INT.E.R.RUJ'J' 

IOAToA , 4 0 0 0 GROUPO LEV.E L 12 

SUBR ZZZ ;:,:~~~ 

PID Disable all higher 
DATA XYZ levels 

(Sub rou tine) 

PIE Enable same levels 
DATA XYZ 
BRU~' SUBR 

The fact that the SPB instruction, used to enter the 
subroutine, and the PIE, used immediately preced­
ing the BRU'~ are non-interruptable, allows therou­
tine to complete before a possible re-entry. The 
SPB instruction being non-interruptable also allows 
the coding of re-entrant subroutines, in that the exit 
location can be saved before an interrupt (which can 
also use the routine) can occur. 

The CSB instruction is non-interruptable to allow 
the execution of an AMA, SMA; or NEG immediately 
following the CSB. This is necessary because the 
CSB instruction must always be followed by an AMA, 
SMA, or NEG instruction because the carry latch is 
reset at the completion of execution of all instruc­
tions except CSB. 

When multiple interrupt signals are connected to 
the same interrupt level, a certain amount of test­
ing is necessary to determine the source of the in­
terrupt. The following example in figure 5-1 shows 
the use of two typewriters on the same standard out­
put interrupt level. 

The first portion of the coding is executed at a 
lower priority level. 

l 73 80 . I I I I I I I I 

IDENTIFICATION 

50 n 

I 

LAA I.N T R S.E,T - UP INTE.RoRUJ'J' LaC A T 1-'p1'I ~ 
SToA , I 0 1 5 

.-
~ 

LAoA CNTI TEST FIOR MESS,A.PE I N PROGRES~ 

SAZ ON T Y PIE W R I ;r E oR I 

,R.n, A.S,T, ,C:H,A.RoA,C,T.ER .N,OT 
I 

• _ 2 ST RTED 

LAA - - I 0 S.E T CHIARoACToER COUNT I TO - 1 0 I 

ST.A 
I 

~ C N T I 

LAoA M,ES I SoET - UPI ,LAST ADDRESS+I INDEXED I 

5 T.A I A WI INTO TYPEWRITER I OUTPUT 

CEU T PI W CONNECT T Y PEW R I T E,R I INTERRUPT 
I 

ID...LT,A '50000 

Ql)llflA.51 

Figure 5-1. Sample Program for Two Typewriters on the Same Standard Output Interrupt Level 

5-5 



5-6 

I 73 80 
I I I I I I I I I 
IDENTIFICATION 

LOC. OPER. ADDRESS. INDEX 

I 6 II 25 50 7Z 

I ; 
I 

LAA C N T 2 TEST FOR MESSAGE IN PROGRESS 

SAZ ON T Y PIE W R I T E R 2 

BRU • _ 2 LAST CHARAr.T.F.R NOT STARTED .. 
AoA = - 2 0 S.E.T CHIARAC!l'·F.·R C·o.U NT 2 TO - 2 0 .. 

STA C N T 2 
( 

LoA A IM.E S 2 SET - U P L.A S T ADDRES S + I INDE.xED 

ST.A I A W 2 I NT 0 TIYPE,W,RI'r ER, 2 QUIT.PUT I 

CEU TP2 .W CONNECrr TYPEWRITER 2 INTERRUPT I 
I 

DATA = , 5 o 0 0 0 
I I 

I 

I 

LAA C N T I T.E.S T FIOR M,ESSAGE I N PoROG.RoESS I 

SAZ ON TyPEW,R.ITER I 

BRU * - 2 LAST CIH A R ACT E oR NOT START,E,D 
I T 

LAA - - 3 0 SET CHARACTER COUNT I TO - 3 0 

STA CNTI , 
LAA ME S 3 SET - U P LAST ADD.R,ESS+I INDEXED 

S T A IAWI INTO TIYPEWRITE.R I OUTPUT 

CEU l' PI. W CONNECT TYPEWRITER I INTERRUPT 

DATA 1500aO 

I 
IN T ZZZ * • I NT E,R RIU P T RETURN STORAGE 

A SoA V AICCUM,ULATO.RS 
T 

STA SAVE 

S T B BSAV : 
AA .N.T I T E SX TYPEWRIT ER I FOR ACTIVE 

I 

AZ 
I 

BRU T Y PI TYPEWRIITER I ACTIVE 

'.v .•. r.N.'1'.?, • '1'." .• ~.'1', .'1'IV.P,".W.D. "'1' .".D . 2 .F.O.R, .'.r.'1'.' V.E, 

SAZ I I 

ISR U T Y P I TYPEWRITER 2 .ACTIVE 
I 

EXIT IL AA A S.A V RESTO.RIE ACCUM ULATOR S 

I".~ .V 

I ; BA 

IT,O,I T.U.R.N .OIF F INTE.R.RU.PT 

LBoR U • I NT RET U R.NI TO IN T E·R.R U oP X oE D PoR.o.c.RoAM I 

T Y P I TAB SET loNlDEX W.o.R D LOCATOR 

1M,0oP * C,P,I .T,R,Y ,O,UIT,P,U,T .T.O •• T.V.P.E.W. R. I.T.E,R 

IAINI Z Z Z •• FILLED WITH LA S T ADDRESS+ I INDEXED 

BRU T Y 2 BU SY DID NOT CAU SE INTERRUPT 

A C C E P TIED INC.REMENT 
I 

1M S CNTI CHARACTER C IOU N T I 

BRU EXIT • c.0 U.N T NOT ZERO. EXIT I 

CEU T PI W COUoNT ZERO DI SCONNECT I NTERRUPtr 

10,ATA , I 0 o 0 0 I 
T 

BR U IE.X I T EX I T 

T Y P 2 TAB SET I NIDEX WORD L 0 C.A T O.R 

Figure 5-1. Sample Program for Two Typewriters on the Same Standard Output Interrupt Level 
(Cont'd) 

CJS1I8A. Sl 



I 
73 BO 

I I I I I I I ' , 
IDENTIFICATION 

LOC. OPER. ADDRESS. INDEX 

1 6 II 25 50 12 

MO.P. IT.P,2 .T,R,Y .O.UIT.P,U,T T.O, .T,y,P,E,W.R, r,T ,E.R 2 

IAW2 ZZZ · . FILLED WI T H LAST ADDRESS+l I N D E1X E D 

BRU EXIT BUSY, DID NOT CAUSE INTERRUPT 
I 

1M,S C N T 2 A C C E P T EJ) INC R E,M,E N T CHARACTER CIO UN T 2 

BRU EXIT COUNT NOT ZERO, ,E,X IT 
I I 

!r.,F.,TJ, • P,2 .w . ,r.O,IT.N:" 17,.F.~ ,0, ,n, .<,r.o.N>NLE.C.T .1 .N,'" .... ~ .~ .IT,p Ir 

ID.A.T, · .0.0.0.0 I 

BRU E X IT .£ox I T I 

I NT R Iu,A C IN D INTERRUPT ROUT I NE ENTRY ADDRESS 
I 

CNT 1 Iz. Z Z * * CHAR,ACITE,R COUNTE,R FOR TYPEWRITER 1 

,r:.,..F.~ I 

i.c..NJT. Iz.~ * • .r" ." ,r,n.T!, . .,. £oR .F.O.R •• T.y,p£.W.R :;r .ElR .2 • 

A SAV Z Z Z · . SAVE ,LOCAT I ON FOR ,A, RE.a. 
I 

BSAV Z Z Z • • SAVE .LlOCATION FOR B REG I 

M,E S 1 DAC M,S 1 + 1 0 1 

M.E S 2 DAC M.S 2 + 2 0 1 I 
I I 

M.E S 3 DAC M,S 3 + 3 0 , 1 

IM,S 1 DATA "ABCDEF,GiiI J " I I 

IMS Z "ABCDE.F.GoHI 
I 

~ DATA JKLMNOPQRST" 

S 3 DATA "ABCDE.FoGHI J K L M N 0 P.O.R S T U VW X Y Z o 1 2 3 11 I 

I 

I 
I : 

'1')11~A. ">1 

Figure 5-1. Sample Program For Two Typewriters on the Same Standard Output Interrupt Level 

(Cont'd) 

5-7/5-8 





SECTION VI 
PERIPHERAL DEVICES 

INTRODUCTION 

This section contains brief descriptions of the 
standard peripheral devices available with the 
SEL 800 series of computers. Although part of each 
description consists of physical characteristics, 
the primary emphasis is on the programming 
aspects of the equipment. 

CONSOLE TYPEWRITER (MODEL NO. 81- 711- 02 A 
DEVICE NO.1) 

The standard console typewriter (Model 8l-7ll-02A) 
provided with the 8l0B Computer is a modified Tele­
type Model ASR-33 send/receive typewriter. The 
modifications introduced by Systems Engineering 
Laboratories include the interface and control 
electronics that make the basic device more flexible 
when used with the computer. 

The unit responds to the following commands: 

a. Select Reader Mode 

b. Select Keyboard Mode 

c. Reader and Keyboard Off 

The Model 8l-7ll-02A consists of a typewriter 
keyboard and printer plus an eight-level paper 
tape punch and reader. It is supplied as standard 
equipment with 8l0B Computers and is mounted 
on a stand adjacent to the computer. A manual 
switch is provided to enable either on-line or 
off-line operation. Specifications for the Model 
8l-711-02A are defined in table 6-1. 

Table 6-1. Model 8l-711-02A Console Typewriter 
Specifications 

Characteristics Specification 

Paper Tape Input 20 characters per second 
Speed 

Output tipeed 10 characters per second 
for print and punch 

Code ASCII 

Table 6-1. Model 8l-7ll-02A Console Typewriter 
Specifications (Cont'dl 

Characteristic s 

Number of Printable 
Characters 

Characters per Line 

Paper Tape 

Dimens ions 

Power 

ASR-33 PROGRAMMING 

Spe c ification 

63 

72 

Standard 1- inch roll 

22 inches wide x 35 
inche s high x 18 inche s 
deep including stand 

115 VAC, 60 cps, 
single phas e . dc 
voltages required by 
the interface and con­
trol electronic s are 
supplied by the com­
puter power supplies. 

When the ASR-33 is operated on-line, the input de­
vices (keyboard and reader) operate separately 
from the output devices (printer and punch). As a 
result, the paper tape reader can operate indepen­
dently at the rate of 20 characters/ second. If print­
ing and punching of input characters are desired, 
each character read into the computer is transferred 
back to the output devices under program control. 
Both printing and punching occur unless the punch 
is turned off manually. Printing and punching can 
be performed at rates up to 10 characters/ second. 

The ASR-33 coupler contains two character buffers, 
one for input and one for output. The presence of 
two buffers plus the separation of the input and out­
put devices enables both input and output data trans­
fers to occur, both at the maximum rate. For ex­
ample, a paper tape can be read at 20 characters/ 
second while an independent set of characters is 
printed at 10 characters/second. The presence of 
the buffers in the ASR-33 also results in the com­
puter and I/O bus being "busy" for only four machine 
cycles each time a character is transferred between 
the computer and the ASR-33. 

The two standard peripheral unit interrupt levels 
can be connected in the associated buffer by program 

6-1 



control. Each tim.e the input buffer, which stores 
characters from. the keyboard and reader, receives 
a new character it generates an interrupt at Group 
0, Level 11. Each tim.e the output buffe r, which 
stores characters for printing and punching, is 
em.ptied it generates an interrupt at Group 0, Level 
12. 

The CEU com.m.ands sent to the ASR-33 select the 
de sired input m.ode and connect/ disconnect the two 
interrupts. The single output m.ode is selected by 
the on-line switch and requires no CEU com.m.and 
execution. As a result, any tim.e an AOP or MOP 
instruction having a unit 1 address is executed, a 
character will be printed. The character will also 
be punched if the punch is turned on. 

Bit coding for the CEU second word function codes 
are shown in table 6-2. Bit num.bering corresponds 
to the positions (0-15) in a com.puter word. 

Table 6-2. Bit Coding for the CEU Com.m.and 

Function Bit (=1) 

Priority Interrupt Connect 1 

Com.puter Input Interrupt 2 

Com.puter Output Interrupt 3 

Reader Mode 4 

Keyboard Mode 5 

Mode Clear 6 

Bits 1-3 perm.it the two ASR-33 interrupts to be 
selectively connected to the two standard peripheral 
unit interrupt levels. The input interrupt, used 
with keyboard and reader entry, is connected to PI 
Level 11, Group 0 by execution of the instruction: 

CEU 
DATA '60000 

It is disconnected by execution of the instruction: 

CEU 
DATA '20000 

The corresponding instructions which connect and 
dis connect the output m.ode inte r rupt to PI Level 12, 
Group 0 are: 

Connect 

Disconnect 

6-2 

CEU 
DATA 

CEU 
DATA 

'50000 

'10000 

Execution of this instruction causes an interrupt to 
be generated im.m.ediately so that the first as well 
as all succeeding characters can be transferred by 
the sam.e interrupt processing routine. The con­
nect com.m.ands m.ust be p receded by a PIE instruc­
tion to enable the com.puter to be interrupted. 

Execution of the input m.ode select com.m.ands, Which 
contain bits 4, 5, or 6 cause the input buffer to be 
cleared as well as the specified input unit to be 
selected. In transferring between reader and key­
board m.odes, it is not necessary to m.ode clear. 
This m.ode clear signal allows turning both m.odes 
off. 

Reader or keyboard operation is controlled by 

"select reader m.ode" or "select keyboard m.ode" 
bits in the CEU instruction. The reader control 
operates on an autom.atic character call-up philos­
ophy. As a re sult of each AlP or MIP instruction, 
a data character is transferred to the com.puter and 
action is initiated to start calling up the next charac­
ter on the tape. This feature sim.plifies the pro-
g ram.m.ing by turning the reade r on and off (with 
CEU instructions) only once for each group of 
characters desired. 

NOTE 

Each tim.e a character is read, the tape 
advances, and the character cannot be 
read again. The program.rner m.ust in­
sure that a CEU to clear the reader m.ode 
("select keyboard m.ode", or "select 
m.ode clear") and turn the reader off is 
generated within 10 m.s after each de­
sired group of characters is accepted 
by the com.puter. Otherwise, the next 
character on the tape will be read, stored 
in the input data buffer, and subsequently 
lost when the buffer is cleared or loaded 
with new data. 

No test unit (TEU instruction) hardware is required 
on the ASR-33 coupler. A test for "busy" is built 
in each instruction. It can becom.e desirable to 
perform. this te st without attem.pting to com.m.and 
the ASR- 33 coupler. To accom.plish this, an I/O 
instruction to unit one, with no bits set in the se­
cond word, will skip when not busy wi thout changing 
the unit. 

For the m.ost part, the input section and the output 
section operate com.pletely independently under one 
unit num.ber. For reference, the busy tim.es are 
approxim.atelyas follows: 



Reader 
Keyboard 
Output Devices 

50 milliseconds * 
100 milliseconds 
100 milliseconds 

~'First 10-12 milliseconds of each cycle 
left open to allow turn-of£, 

The reader control switch is not used for on-line 
operation and can be left in either the Start or the 
Neutral pos ition while running. 

Useful Keyboard Feature s are as follows: 

a. Here is Key - Punches all zeros. Can 
be used to generate leader or spaces for 
off-line operation. Recommended way 
of pulling tape into punch. Will not in­
put into computer. 

b. Rub Out Key - Punches all ones. 

c. Repeat Key - Repeats characters as long 
as a character key and the repeat key are 
depressed. 

d. Line Feed, Carriage Return Keys - Self 
explanatory. 

e. Control Key - Used to generate special 
functions (such as WRU, BELL and TAB) 
which appear on the top portion of the 
character keys. The control (CTRL) key 
must be held down to transmit these func­
tions when depressing the character keys. 

NOTE 

The bell is a convenient, audible alarm 
that can be generated by the program. 

The correspondence between computer bit positions 
and paper tape levels is shown in the data flow 
diagram (figure 6-1). 

PAPER TAPE 

COMPUTER 'CTOP VIEW) COMPUTER 

BITS. :=B~UF:F~ER==~~3 ci31R~S~Ar-_t==B!UfFFlE:R=:BITS PUNCH 00000 READ 8 

000 9 
00 ~ 
0000 11 

o 0 0 .. • • • • • J=:a3:=: .. 13 
__ r-L __ '" 0000 14-

-~C}--~-20~0~0~0~_}--~J--.15 

MOTION 

9S118A. 61 

Figure 6-1. Paper Tape Data Flow Diagram 

A programming routine for keyboard input and printer 
output is shown in table 6-3. This routine inputs, 
packs and stores a pair of characters. It also prints 
the characters as they are typed in. 

Table 6-3. Programming Routine for Console Key­
Board Input and Console Printer Output 

Operation Address Comments 

CEU 1 Select Keyboard 

DATA '2000 

BRU ':'-2 Not Ready 

AlP 1 Input Character 

BRU ~'-I Not Ready 

LSL 8 Shift to Output 

AOP 1 Print Keyed Char-
acter 

BRU ,~- 1 Not Ready 

AlP 1, R Input Characte r, 
Merge 

BRU ~'-I Not Ready 

STA WORD 

LSL 8 

AOP 1 Print Keyed Char-
acter 

BRU >:<:-1 Not Ready 

NOTE 

This routine is interruptable because no 
wait flags are used. 

PAPER TAPE READER (MODEL NO. 8t·5tOA, 300 CPS- DEVICE NO.2) 

The SEL Model 8I-5IOA series paper tape reader 
reads eight-level one-inch paper or mylar tapes at 
synchronous speeds of up to three hundred char­
acters per second in the forward direction. The 
paper tape reader responds to the following com­
mands: 

a. Reader Enable 

b. Reader Disable 

6-3 



Specifications for the Model 81-5IOA Paper Tape 
Reader are defined in table 6-4. 

Table 6-4. Model 81-5IOA Paper Tape Reader 
Specifications 

Characte ristic 

Speed 

Levels 

Operation 

Size 

Sensing 

Drive 

Power 

Temperature 

Controls 

Specifications 

300 characters per second 

8 

Asynchronous start/ stop 

19-inches wide x 7-inches 
high x 24-inches deep 

Photocell 

Pinch roller 

115 volts, 60 cps ± 100/0, 
1.4 amp. nominal 

100 C to 35 0 C 

Power on/off Run/load 

PAPER TAPE PUNCH (MODEL NO. 81·520A, lUI CPS- DEVICE NO.2) 

The SEL Model 81-520A Paper Tape Punch punches 
eight-level paper or mylar tapes at speeds up to 
110 tape characters per second. A sprocket hole 
is punched with each character. Punch power may 
be turned on or off under computer program con­
trol. 

The unit responds to the following commands: 

a. Turn punch, tape feed power on 

b. Turn punch, tape feed power off 

Specifications for the Model 81-520A Paper Tape 
Punch are defined .in table 6-5. 

Table 6-5. Model 81-520A Paper Tape Punch 
Spec ifications 

Characte ristic Specifications 

Speed 110 characters per second 

Levels 8 

Operation Asynchronous start/ stop 

6-4 

Table 6-5. Model 81-520A Paper Tape Punch 
Specifications (Continued) 

Characte ristic Specifications 

Size 19-inches wide x 14-inches 
high x 24- inche s deep 

Punches High-carbon steel pins 

Drive Sprocket 

Power 115 volts, 60 cps ± 100/0, 
2 amps. nominal 

Temperature 100 C to 35 0 C 

Controls Power on/off and tape feed 

Other features include built-in tape storage reel, 
tape cutter and transparent chad box. 

PERFORATED PAPER TAPE SPOOLER (MODEL NO. 80-530A) 

The SEL Model 80-530A Paper Tape Spooler supplie~ 
and spools 5, 6, 7 or 8 level paper tapes at rates 
up to 40,0 characters per second. The tape is re­
wound by a manually controlled switch at a 1000 
character s per second rate. 

No command or test functions are required from 
the computer. Specifications for the Model 80-530A 
paper tape spooler are defined in table 6-6. 

Table 6-6. Model 80-530A Paper Tape Spooler 
Specifications 

Characteristic 

Feed Speed 

Rewind Speed 

Tape Channels 

Reel Hubs 

Reel Diameter 

Reel Capacity 

Inte rlock 

Mounting 

Size 

Specifications 

40 inches per second 

100 inches per second 

5, 6, 7 or 8 levels, inter­
changeable 

Standard NAB reel dimen­
sions 

8-inch O. D. 

400 feet of 4-rni1 tape 

Tape break or no tape 

Any upright position 

19 - inche s wide x 10- 1/2 inches 
high x 8- 5/8- inche s s deep 



Table 6 -6. Model 80 -530A Paper Tape Spooler 
Specifications (Cont'd) 

Characteristic Specifications 

Power 115 V AC ± 10%, 60 cps, 
single phase 

Tem.pe rature 50 C to 45 0 C 

Controls Power on/off Rewind-

HIGH SPEED PAPER TAPE PUNCH/READER SYSTEM 
(MODEL NO. 81·525A....,;OEVICE NO.2) 

The paper tape system. consists of a high-speed 
photoelectric reader and a high-speed punch. The 
photoelectric reader is capable of reading 6, 7, 
or 8-1evel paper tape at rates of 300 characters 
per second. The punch punches 8-level tape at a 
m.axim.um.rate of 110 characters per second. 

Since both the punch and the reade r are given the 
sam.e unit num.ber, they can be considered, from. 
the software standpoint, as one unit with both in­
put and output capabilities. Since they each have a 
separate buffer, they can be operated at m.axim.um. 
speed sim.ultaneously. 

There are two CEU com.m.ands that can be given 
the paper tape reader. These com.m.ands are "Reader 
Enable" and "Reader Disable". When the reader 
enable com.m.and is issued, the buffer will be filled 
with a character and the tape will advance one char­
acter position. This will occur only if the buffer 
is initially clear. While the reader is enabled, the 
tape will advance one position and the buffer will 
be filled each tim.e an ALP or MIP is serviced by 
the reade r. When the reade r disable com.m.and has 
been issued, the reader will not advance when an 
ALP or MIP is serviced. 

There are two CEU com.m.ands that can be given to 
the punch. They are "Punch Feed Power ON" and 
"Punch Feed Power OFF". The punch feed power 
on com.m.and m.ust be given before transferring data 
to the punch. After punch tape feed power has been 
turned on, the punch will punch the tape and advance 
one character position each tim.e an AOP or MOP 
is serviced. 

There are two standard interrupts furnished with 
the System.s Engineering Laboratories high-speed 
paper tape system.. One is the "Buffer Ready" 
interrupt from. the punch and the other is the "Buffer 
Ready" interrupt frorrt the reader. A routine for 
copying paper tape is given in table 6-7. 

Table 6-7. Prograrrtrrting Routine for Copying 
Paper Tape 

Operation Address Com.m.ents 

CEU 2, W 

DATA '5000 Punched Feed Power 
On/ Reader Enable 

ALP 2, W Input Character from. 
Reader 

LSL 8 

AOP 2, W Output Cha racte r to 
Punch 

BRU ,~- 3 

MAGNETIC TAPE (MODEL NO. 80-615 SERIES- DEVICE NO. 6 AND 7) 

The SEL Model 80 -615A rrtagnetic tape transports 
use 1/2 -inch rrtylar tape and have either 7 or 9 
tracks. Specifications for the transports are 
given in table 6-8. The 7-track units are IBM 729 
corrtpatible and the 9 -track units are IBM 2400 
corrtpatible. The tape control unit (unit 6 or 7) 
acts as a coupler for up to eight rrtagnetic trans­
ports. Any standard SEL m.agnetic tape unit can 
be coupled to the com.puter by the tape control 
unit (TCU). 

The control panel for the TCU contains the following 
indicators: 

a. CRC Error (option on 9-track systerrt only) 

h. Ready 

c. Parity Error (Lat/Long) 

d. Read/Write Status 

e. Busy 

f. End-of-Tape 

g. Load Point 

h. Density (200/556/800) 

1. Binary Mode 

6-5 



Table 6 B Model BO-6l5 Magnetic Tape Transport Specifications -
Start or 

Model Tape Speed Stop Time'~ 

615-07 45 ips 9 msec. 

615-09 75 ips 6 msec. 

615-11 120 ips 3.B msec. 

615-12 150 ips 3.5 msec. 

*Nominally +20% 
+Time between the writing of the last character 

character in the next record. 

j. BCD Mode 

k. EOF 

1. Characters/Word 

m. Transport Number Selected 

The control panel for the TCU also contains a three­
position switch that allows the characters in the 
Write, Read or LRCC registers to be displayed. 

MAGNETIC TAPE PROGRAMMING 

CEU Instruction 

In order to allow optimum programming of the 
magnetic tape system,a quasi-unitary bit assign­
ment is used for the CEU data words. In order to 
represent all of the functions, two data word for­
mats, called FORMAT 0 and FORMAT I, are used. 
The desired format is selected by placing a 0 or 
a ~ in bit position 4 of the data word. 

The quasi-unitary bit assignment allows more than 
one set-up or command function to be executed 
with one CEU instruction provided the selected bits 
are logical and do not contradict each other. 

Format 0, CEU 

The first tape operation command must be a CEU 
instruction using the format 0 data word which 
includes the set-up bits to select BCD or Binary 
tape density (200, 556, BOO), transport number 
(0-7) and characters per word. These set-up bits 
must be entered in every CEU FORMAT 0 data 
word. Control bits are also provided to enable or 
disable one or both selectable interrupts, to re­
wind the tape, to erase four inches of tape, and 
to input the current word address of the BTC. 

6-6 

Minimum Gap Spanning Time ~,,+ 

7 Track 9 Track 

25.4 msec. 21. 7 msec. 

16.4 msec. 14.2 msec. 

10.2 msec. B.9 msec. 

9.2 msec. B.l msec. 

in one record to the writing of the first 

Table 6-9 hsts the blt functlOns for the second wo·rd 
of the format 0, CEU command. 

Table 6-9. CEU, Format 0, Second Word, 
Bit Functions 

Bits 

o 

1 = ONE 

Function 

Must be ZERO. 

Connects the interrupt selected 
with bits 2 and 3. If bits 2 and 3 
are ZERO,bit 1 is 19nored. 

1 = ZERO Disconnects the interrupt selected 
with bits 2 and 3. If bits 2 and 3 
are ZERO, bit 1 is ignored. 

2 = ONE Selects word transfer ready inter­
rupt for enable or disable. 

3 = ONE Selects end of record interrupt for 
enable or disable. 

4 = ZERO Selects the FORMAT 0 CEU data 
word. 

':'5 = ONE Rewinds selected tape transport. 
Bits 10-12 must contain desired 
transport number. 

'~6 = ONE Erase s four inche s of tape. 

7 = ONE Sets-up the TCU to transfer BCD 
data with even parity. 

7 = ZERO Sets-up the TCU to transfer Binary 
data with odd parity. 



Table 6-9. CEU. Format 0, Second Word, 
Bit Functions (Cont'd) 

Bits Function 

8 & 9 

10-12 

13 = ONE 

14 & 15 

Selects tape density 
00 2 - 200 bpi 
01 2 - 556 bpi 
10 2 - 800 bpi 

Selects tape transport (0 -7) 

Inputs current word address of 
BTC into the corresponding de­
dicated locations. 

Selects characters' per word 
01 2 
10 2 
112 
00 2 

- 1 char/word 
2 char/word 
3 char/word 
4 char /word 

'~Bits 5 and 6 cannot both be ONE in the 
same CEU Format 0 instruction (only logical 
bit combinations should be selected). 

Tape Format 

Figure 6- 2 shows the magnetic tape format for a 
format 0 data word. 

Format 1, CEU 

The Format 1 CEU data word is completely unitary. 
Care must be taken to assure that only logical bit 
combinations are selected. Table 6-10 lists the 
bit functions for the second word of the format 1, 
CEU command. 

!III TAPE MOTION 
7 TRACK 

~ ~ 
7 P P P P 
6 0 6 12 X 
5 I 7 13 X 
4 2 8 14 X 
3 3 9 IS X 
2 4 10 X X 
I S II X X 

i 
f f 

I 
MSC LSC 

I I 
,-----A----,.,---A----,.~ 

MSBlo II > > 14 > :61 7 : 8 : 911O:11:12113:14:lsILSB 

.,-,.~J -u 
2 CHAR/WORD 

3 CHAR/WORD 

Table 6-10. CEU, Format 1, Second Word, 
Bit Functions 

Bits Function 

o = ONE Initializes Block Transfer. (Must not 
be used if Bit 13 is ONE). 

1 = ONE (Same as Format 0) 

1 = ZERO (Same as Format 0) 

2 = ONE 

3 = ONE 

4 = ONE 

':":'5 = ONE 

~"~6 = ONE 

!III 
9 TRACK 

9 
8 
7 
6 
S 
4 
3 ) 
2 
I 

MfC 

I 1\ 

(Same as Format 0) 

(Same as Format 0) 

Selects the Format 1 CEU data 
word. 

Write Record - the tape will 
move forward as the information 
being sent from the computer re­
places the previous information on 
the tape . When this information 
ceases to corne from the computer, 
a longitudinal check character is 
written and a record gap is gene­
rated. 

In the case of a 9 track system, 
the CRC character is written 4 
character times previous to the 
LRCC character and follows the 
last data character by 4 character 
times. 

Approximately 3-1/2 inches of tape 
are erased and an EOF mark is 
written. 

TAfE MQTIQ~ 

4 12 X X l 6 14 X X 
0 8 X X 
I 9 X X 
2 10 X X ) 
P P P P 
3 II X x 
7 IS X X 
S 13 X X 

f f 
\1 ~J 

\ 

MSBlo II > :31 4 : 5 :61 7 : 8 :911O:1I:12113:14:lsILSB 

CICHAR/WORD.-J ~ 
2 CHAR/WORD 

9511HA. 62 

Figure 6-2. Magnetic Tape Format 0 Data Word 

6-7 



Table 6-10. CEU, Format 1, Second Word, 
Bit Functions (Cont' d) 

Bits Function 

~"~7 ::: ONE 

*'~8 ::: ONE 

*'~9 ::: ONE 

12 

13 ::: ONE 

6-8 

Read Record - the tape will 
move forward to the next re­
cord gap leaving the data on the 
tape undisturbed. When the 
tape is in motion, the data is 
transferred to the computer as 
it is encounte red on the tape. 
This transfer will continue to 
take place until the next record 
gap is reached or until the com­
puter stops requesting the data. 
If the computer stops request­
ing the data before the next re­
cord gap is encountered, a 
data ove rflow condition exists. 
This condition can be tested. 
A read operation should not 
follow a write, erase four 
inches of tape or write EOF 
ope ration. ,~ 

Advances tape forward one re­
cord, leaving the read/write 
heads in the middle of the next 
record gap. The data on the 
tape is undisturbed. 

Advance s tape one file, leaving 
the read/write heads in the 
middle of the record gap follow­
ing the next end of file mark. 
The data on the tape is undi s­
turbed. * 

Backspaces one record, leaving 
the read/write heads in the 
middle of the previous record 
gap. The data on the tape is 
undisturbed. 

Backspaces one file, leaving the 
read/write heads in the gap 
preceding EOF mark. The data 
on the tape is undisturbed. 

Not Used 

Inputs current word address of 
BTC into the corresponding 
dedicated location (Must not 

Table 6-10. CEU, Format 1, Second Word, 
Bit Functions (Cont'd) 

Bits Function 

be used if bit 0 is at ONE). 

14 & 15 Unused 

'~These commands should not follow an erase 
four inches of tape, write record or write end of file 
operation. This is not a hardware restriction, but 
if one of these commands is executed and there is 
no more data on the tape, the transport will run all 
of the tape off of the reel unless it is manually 
halted. 

~":'Only one motion command, represented 
by bits 5 through 11 in Format 1 can be used in a 
single CEU data word. Two or more motion com­
mands in the same instruction are contradictory. 

At the termination of an "erase four inches of tape", 
"write record", or "write end-of-file" operation 
the TCU is left in write status. All other opera­
tions will leave the TCU in read status. 

~------------------------------------------.--
TEU Instruction 

This instruction is used to query the status of a 
given unit. With the magnetic tape system all 
status conditions are reset by every motion com­
mand issued to the TCU. The transport tested is 
always the one that is set up at the time the TEU 
instruction is executed. The TEU codes are set up 
to skip on the "GO" condition. 

The TEU data word is completely unitary, in that 
each status condition has a single bit assignment. 
If more than one status condition is que ried with 
a single TEU instruction, anyone status condition 
being a "NO GO" will inhibit the instruction from 
skipping. The te sts that may be initiated by the 
TEU instruction are listed in tab Ie 6 -11. 

Table 6-11. TEU, Second Word, Bit Functions 

Bits Function 

0::: ONE Skip On Not Busy - When the TCU is 
capable of executing a motion com-
mand, the next instruction is skipped. 
If the TCU is not capable of execut-
ing a motion command, the next in-
struction is executed. 

1 ::: ONE Skip On No End-OI-File - When no 
EOF status is present, the next in-
struction is skipped. When an EOF 



Table 6.-11. TEU, Second Word, Bit 
Functions (Cont'd) 

Bits Function 

2 = ONE 

3 = ONE 

4 = ONE 

5 = ONE 

6 = ONE 

7 = ONE 

status is present the next in­
struction is executed. 

Skip On No Overflow - When no 
overflow status is present, the 
next instruction is skipped. 
When an overflow status is pre­
sent, the next instruction is ex­
ecuted. An overflow occurs 
when the data request froITl the 
cOITlputer is dropped before an 
end-of-record gap is reached 
on the tape. (Occurs only when 
reading ITlagnetic tape. ) 

Skip On Load Point - If the read/ 
write heads are positioned at load 
point the next instruction is skipp­
ed. If the read/write heads are 
not positioned at load point, the 
next instruction is executed. 

Skip On End-Of-Record Interrupt­
If the ITlagnetic tape end-of- record 
causes an interrupt, the next 
instruction is skipped. If the 
m.agnetic tape end-of-record did 
not cause an interrupt the next 
instruction is executed. 

Skip On No Parity Error - When 
no parity error status is present 
the next instruction is skipped. 
When a parity error status is 
present, the next instruction is 
executed. 

Skip On Write Ring In - When the 
write 'ring (file protect ring) is 
in the reel, the next instruction 
is skipped; when the write ring 
is not in the reel, the next in­
struction is executed. The ab­
sence of the write ring prevents 
the destruction of data on tapes, 
such as library tapes. The 
write ring m.ust be in the reel 
in order to write on the tape. 

Skip On No End-Of-Tape .: If the 
end of tape m.arker has not been 
sensed, the next instruction is 
executed. The tape transports 
will not stop when the end-of­
tape is sensed. 

Table 6-11. TEU, Second Word, Bit 
Functions (Cont'd) 

Bits Function 

8 = ONE 

9 = ONE 
(9-Track 
only) 

10-15 

Skip On Rew~nding - If the transport 
that is selected is m.echanically re­
winding, the next instruction is 
skipped. If it is not rewinding, the 
next instruction is executed. (When 
a rewind com.m.and is issued to the 
TCU, the rewind status does not 
exit until the m.echanical m.otion has 
started. Therefore, before discon­
necting a tape transport which has 
been given a rewind com.m.and, it is 
neces sary to test for the rewind 
status. Once the m.echanica1 m.otion 
has started, the tape transport can 
be deselected and the rewinding will 
continue while another tape transport 
is being com.m.anded. ) 

Skip On No CRC Error - If no cy.cle 
Redundancy Check error exists the 
next instruction is skipped. If a 
Cycle Redundancy Check error ex-
ists the next instruction is executed. 
The 9-track tape system., when writ­
ing tape, generates a cycle redundancy 
character (CRC) and writes it on the 
tape after each record. When the 
tape is being read back into the com.­
puter, the cycle redundancy character 
is generated again and is com.pared 
with the one written on the tape. If 
the two characters do not com.pare, 
a CRC error exists and can be tested 
for with a TEU instruction. 

Unused 

BTC With Magnetic Tape 

The automatic block transfer control (BTC) unit is 
an optional computer input/ output control unit which 
ena ble s a fully- buffered transfer of data between 
peripheral units and computer m.em.ories. All m.ag­
netic tape control units are designed to operate 
with a BTC unit and over the standard I/O bus with­
out BTC. However, a BTC unit is norm.ally used 
with all tape control units, except in some low 
usage or low transfer rate applications. The I/O 
handlers in the standard software assum.e the 
presence of a BTC unit connected to the TCU. 

Word Transfer (No BTC) With Magnetic Tape 

This m.ethod of transfer can be used }N'ith any m.ag­
netic tape unit available with the SEL 810B. When 

.6-9 



using this method of transfer, the data is output 
by means of an AOP or MOP instruction or input 
by means of an AlP or MIP. In this mode, end­
of-record is generated when the data flow to the 
tape unit ceases. When reading, EaR is sensed 
in the normal manner. 

Care must be taken when outputting to the TCU 
without the BTC, to insure that the data is avail­
able to the TCU in the time required by the speed 
of the tape transport and the recording dens ity. 
The same considerations must be made when 
reading tape or data will be lost. 

Interrupts With Magnetic Tape 

There are two standard interrupts available with 
SEL tape transports. One interrupt is an "end­
of-record" interrupt that occurs when an EOR is 
written or sensed. The second standard interrupt 
available is the "Word" interrupt which is used 
if no BTC is available. 

In the condition of output, or writing on the tape, 
the TCU will interrupt (starting with the second 
word) anytime its word buffer is ready to receive 
data. In the condition of input, or reading from 
the tape, the TCU will interrupt (starting with 
the first word) anytime its word buffer is ready 
to s end data. 

Other interrupts such as EOF interrupt, parity 
error interrupt, end-of-tape interrupt, and infor­
mation overflow interrupts are optionally avail­
able. 

Tape Transport Selector Switches 

The tape transport selector switches should not 
be changed on any of the tape transports unles s the 
transport is in the local mode. 

Sample Magnetic Tape Program for BTC 

Table 6-12 gives a routine that will read one record 
from tape and will te rminate the B T C with the 
completion of that transfer since the terminate bit 
was set in the block length word. 

Table 6-12. Programming Routine for Magnetic 
Tape With BTC 

Loc. Oper. Address Comments 

READ ZZZ ,~,:, 

STA SAVA Save A-Accumu-
lator 

6-10 

Table 6-12. Programming Routine for Magnetic 
Tape With BTC (Cont'd) 

Loc. Oper. Address Comments 

LAA LaC 

STA FWA Set up First Word 
Address 

LAA SIZE 

STA BL Set up Block 
Length 

CEU 6 Set up Tape Deck 
1 

DATA '113 Read/556/Binary/ 
3 Char. Per Word 

BRU ~'- 2 

CEU 6 Initialize BTC/ 
Enable EaR Intr/ 
Start Tape Mo-
tion 

DATA '156000 

BRU ,~- 2 

LAA SAVA Restore A-Accu-
mulator 

BRU':' READ Exit 

SAVA ZZZ ** 
LaC DAC BLOCK Address of Buffer 

SIZE DATA '101750 Buffer Size, 1000 
Words 

HIGH SPEED PRINTER (MODEL NO. 80-700 SERIES- DEVICE NO.5) 

Three models of line printers are available which 
differ in printing speeds and type printer used. 

Model 8l-731A - 600 LPM 

Model 81-732A - 1000 LPM 

Model 8l-733A - 300 LPM (Shuttle) 



The printers use plain or pre-printed standard 
perforated multi-part, fan-folded paper stock. 
Horizontal formatting is computer controlled 
while vertical format can be determined by either 
computer commands or a vertical control loop. 

The printer responds to the CEU and TEU command 
and test functions listed in table 6-13. 

Table 6-13. CEU and TEU Second Word Bit 
Format for High Speed Printer 

CEU Commands 

Bits Function 

9 Fill Buffer 
or Format Tape Chan-
nel # if Bit 4 is a one 

8 Clear Buffer 

7 Print 

5 Paper Advance One Line 

4 Paper Advance to Loop Channel N 

6 Paper Advance to Top of Form 

TEU Commands 

Bits Function 

9 Test Printer Inoperable 

8 Test Bottom of Form 

6 Test Parity Error 

4 Test Busy 

Specifications for the high- speed line printers are 
defined in table 6-14. 

Table 6-14. Model 80-700 Series, High Speed 
Printe r Specifications 

Characte ristic Specification 

Speed 300, 600 or 1000 lines per 
minute 

Characters per Up to 120 
Line 

Paper Width Up to 20 inches 

Print Area Horizontal - 10 Characters/ 
inch; Vertical - 6 lines/ 
inch 

Table 6-14. Model 80-700 Series, High Spee(! 
Printer Specifications (Cont'd) 

Characteristic Spec ification 

Type Face Open Gothic 

Number of Characters 64 

Code Wheel Sensing Photocell 

Vertical Form Control 8 Channel 

Power Requirements 115V, 60 cps, 
single phase 

Size 56-inches wide x 
34-inche s high x 
30-inches deep 

Controls a. Powe r on/ off 
b. Master clear 
c. Single space 
d. Top of form 
e. Index tractors 
£. Format control 
g. Parity error 

HIGH SPEED LINE PRINTER PROGRAMMING 

Systems Engineering Laboratories line printers 
have a 120-character buffer. This buffer must be 
filled in the order that the characters are to appear 
in the printed line. If the entire buffer is not to be 
filled, it must be cleared prior to filling. When a 
function is is sued to c lear the buffer, space s are 
loaded into the buffer by the printer logic. Since 
the buffer holds only 120 characters, the printer 
logic will not reply to an attempt to send the 121st 
character, and the program will "hang up" if a 
wait flag is used with the AOP or MOP. 

The Systems Engineering Laboratories printer logic 
is designed to accept simultaneous commands as 
long as they are not in mechanical or logical con­
flict. For example, no two mechanical commands 
such as "Print" and "Advance Paper One Line" can be 
given at the same time. Also the bu££e r cannot be 
commanded to clear and fill at the same time. The 
third type of conflict that must be avoided is trying 
to combine the command "Advance to Format N" 
with anything else, since another command code 
would make the function ambiguous. 

There are three modes for advancing paper on the 
line printer. One mode is to advance the paper 
only one line. Another is to advance the paper to 
the top of form, which is the logical top of page 
(where the printing is to begin). The third mode is 

6-11 



to advance to form.at N. This can be only one line or 
as m.uch as a full page, depending on where the 
next punch is in the channel specified by N. N = 0 
corresponds to top of form.. 

.An exam.ple of program.m.ing the line printer is 
shown in table 6-15. This routine prints one line. 
It assum.es that the data has been stored one 
character per word. 

Table 6-15. Program.m.ing Routine for High 
Speed Printer 

Loc. Oper. Address Com.m.ents 

SPB LINE 

DAC FWA First Word Ad-
dress 

DATA WC Character Count 

LINE ZZZ >10:': Enter 

STA SAVA 

STB SAVB Save Registers 

LAA~' LINE 

STA ADRS Setup FirstWord 
Address 

IMS LINE 

LAA* LINE 

NEG 

TAB Set up Negative 
Character Count 

IMS LINE Set up Exit Ad-
dress 

CEU 5, W 

DATA '2200 Clear Buff/ Ad-
vance one Line 

CEU 5,W 

DATA ' 100 Fill Buff 

LAA':' ADRS 

AOP 5, W Output Charac-
ters 

6-12 

Table 6-15. Program.m.ing Routine for High 
Speed Printer (Cont'd) 

Loc. Oper. Address Com.m.ents 

IMS ADRS 

IBS 

BRU ~:::-4 Character Count 
not Zero 

CEU 5, W 

DATA '400 Print Line 

LAA SAVA 

LBA SAVB Restore Regis-
ters 

BRU'~ LINE Exit 

SAVA ZZZ ~~::::: 

SAVB ZZZ ~::: ~:" 

ADRS ZZZ ~:, >l:: 

PUNCHED CARD READER (MODEL NO. 81-450A 400 CPM­
DEVICE NO.4) 

The SELModel 81-450A Card Reader reads standard 
80-colum.n cards at a m.axim.um. rate of 400 cards 
per m.inute. Reading is colum.n by colum.n. The bi­
nary values of all 12 rows are transferred to the 
com.puter for each colum.n read. Specifications for 
the punched card reader are defined in table 6-16. 

Table 6-16. Model No. 81-450A Punched Card 
Reader Specifications 

Characte ristic Spe cificat ion 

Speed 400 cards/m.inute 

Read Mechanism. Photoelectric 

Hopper Capacity 1000 cards 

Dim.ension 22_inches wide x 52-inches 
high x 30-inches deep 

Power 115 VAC ±100/0, 60 cps, 
±3 cps 



PUNCHED CARD READER PROGRAMMING 

The unit responds to a Feed a Card CEU command. 
This command also functions as a test. If a unit 
is ready and no Wait flag is used, the program 
counter will skip to the next sequential address. 
If it is not ready, the program executes the next 
sequential address. If a Wait flag is used, the 
computer will wait until the unit is ready before 
it execute s the CEU. 

Table 6-17 gives a "CARD INPUT" subroutine for 
reading a card. 

Table 6-17. Programming Routine for Punched 
Card Reader 

Loc. Oper. Address Comments 

CARD ZZZ ~:dr: Entry 

LAA'~ CARD 

STA lADD Store IBUF Add-
ress 

LBA =-BO 

CEU 4,W Feed A Card 

DATA '4000 

WDIN AlP 4,W Input Characte r . 

STA~' lADD Store in Input 
Buffer 

IBS Increment B (In-
dex) and Skip 

BRU WDIN Not Last Word 

IMS CARD Setup Exit 

BRU~' CARD Exit to L + 2 

IADD ZZZ ~~:.:::: 

This routine is called by the sequence: 

L SPB 
DAC 

CARD 
IBUF 

It stores BO characters, right-justified into BO 
consecutive memory locations starting at loca­
tion IBUF. Control is returned to L + 2. 

Jt.y INCREMENTAL PLOnER (MODEL NO. 81·810A AND 
81·812A-DEVICE NO. 11) 

The SEL Models Bl-B10A and B1-812A incremental 
plotters are high-speed digital, two-axis plotters. 
The actual plot is produced py the movement of a 
pen over the surface of the chart paper. 

The units responds to the following command and 
test instructions: 

a. - Y (Drive carriage right) 

b. +Y (Drive carriage left) 

c. -x (Rotate drum up) 

d. +X (Rotate drum down) 

e. -X- Y (Rotate drum up and drive carriage 
right) 

f. +X- Y (Rotate drum down and carriage 
right) 

g. -X+Y (Rotate drum up and drive carriage 
left) 

h. +X- Y (Rotate drum down and drive carriage 
left) 

i. Pen up 

j. Pen down 

Specifications for the X- Y Incremental Plotters are 
defined in table 6-lB. 

Table 6-18. Model No. 81- 810A and Bl-B12A 
X- Y Plotter Specifications 

Mode1Bl-B10A Mode1Bl-B12A 
Characteristic Specifications Specifications 

Chart Width 12 inches 31 inches 

Speed (X, Y IB,OOO steps/ 12,000 steps/ 
direction) minute minute 

O. 005 inches. 

12, 000 steps/ 
minute 
0.01 inches. 

Pen Up/Down 600 move- 600 movements 
ments per per minute 
minute 

6-13 



Table 6-1S. Model No. SI-SIOA and SI-SI2A 
X- Y Plotter Specifications (Cont'd) 

Model SI-S10A Model Sl-S12A 
Characte ristic Specifications Specifications 

Resolution 

Plot Width 

Chart Drive 

Power 

Tempe rature 

Manual Con­
trols 

0.005 inches 
(SI- Sl 0 - 01 A) O. 01 inche s 
or O. Olinches 
(Sl-SIO-02A) 

11 inches 29.5 or 11 
inches 

Sprocket Sprocket 

11 5 volt s ,±I 0 %, Same as 
60 cp s, 1. 6 Sl- Sl 0 A 
amps nominal 

Drum forward/ 
reverse 
Carriage right/ 
left 
Pen up/down 
Single step and 
continuous 
modes 
Power on/off 

The Y -axis plot is produced by lateral movements 
of the pen carriage and the X-axis plot by rotary 
motion of the chart drum. Provisions for Z-axis 
modulation are also incorporated; The plotter re­
sponds to the CEU command functions listed in 
table 6-19. 

The basic movements on each axis (X or Y) are at 
o degrees and 90 degrees, and the X, Y combina­
tions yield 45-degree angles. The remaining two 
movements are pen up and pen down. 

Table 6-19. CEU Second Word Bit Format for 
X- Y Plotter 

Bit Function 

4 Pen Down 

5 Pen Up 

6 Drum Down 

7 Drum Up 

S Carriage Left 

9 Carriage Right 

6-14 

The Plotter can be made to move manually (off­
line) by means of knobs on a continuous or on a 
single step basis. 

Under computer control (on-line) only step move­
ments are provided. 

X- Y PLOTTER PROGRAMMING 

Plotter addre s sing is handled by means of the CEU 
instruction. Six bits of the second word of the CEU 
command are used as control bits. The list of all 
the possible commands and their bit configurations 
is shown in table 6-20. 

Table 6-20. X- Y Plotter Commands and Bit 
Configuration in CEU Second Word 

Bit Bit 
Command Configuration Command Configuration 

Pen Up ('2000) X+ Y+ ('1200) 

Pen Dowr ('4000) X+ Y- ('1100) 

X+ ('1000) 
X-Y- ('500) 

Y+ ('200) 

X- ('400) 
X-Y+ ('600) 

Y- ('100) 

Program example s: 

CEU 'II, W Unit 'II Wait 
DATA '2000 Pen Up 

CEU 'II Unit 'II 
DATA '2000 Pen Up 

BRU BUSY Calcomp Busy 

Table 6-21 shows a Calcomp visual diagnostic rou­
tine. It plots a polygon using all the possible move­
ments including pen up and pen down at a prede­
termined scale factor. The calling sequence is: 
SPB CDIA. The A-Accumulator is loaded with 
the desired scale factor. This program lowers 
the pen, draws an octagon using the eight move­
ments and raises the pen before halting. 

Table 6-21. Diagnostic Routine for X-Y Plotter 

Loc. Oper. Address Comments 

CDIA ZZZ :::~ :::' Calcomp Visual 
Diagnostic 



Table 6- 21. Diagnostic Routine for X- Y Plotter (Cont'd) 

Lac. Oper. Address Comments 

NEG Set Scale Factor 
Counter 

STA HOWN Save It 

STA TIMS 

LBA MEIG (-8) No. of Dif-
ferent Movements 

CEU 'II, W Pen Down, Wait 

DATA '4000 

GO CEU'~ 'II, W 

DAC MEIG 
+9,1 

IMS TIMS Completed Scale 
Factor 

BRU GO No, Output Same 
Command 

IBS Yes, Test for all 
Movements Done 

BRU *+4 No, Do Next One 

CEU 'll,W Yes, Bring Pen 
Up 

DATA '2000 

BRU* CDIA Exit 

LAA HOWM 

STA TIMS 

BRU GO 

HOWM ZZZ *:::1== 

TIMS ZZZ ** 
MEIG DATA -8 

DATA '200 

DATA '1200 

DATA '1000 

DATA '1100 

Table 6-21. Diagnostic Routine for X- Y Plotter 
(Cont'd) 

Loc. Oper. Address Comments 

DATA 'lOa 

DATA '500 

DATA '400 

DATA '600 

MOVABLE HEAD DISC STORAGE (MODEL NO. 81·653A­
DmCE NO. 13) 

The SEL Model 81-653A Disc Storage System (DSS) 
consists of a Disc Control Unit (DCU) and a Disc 
Storage Drive. 

The DSS is a random access, bulk storage device 
with a Storage capability of 1,536, 000, 16-bit words. 
The disc is subdivided into tracks, surfaces and 
sectors. Each recording surface of the disc is 
accessed by a moveable head. The head can be 
moved to any of 100 tracks. Each track contains 
16 sectors. Figure 6-3 shows the track and sector 
layout of a recording surface. 

The ten recording surfaces of the disc pack are 
addressed by the moveable head assembly. Each 
surface is read/written by an individual head. 
Figures 6-4 and 6-5 show the head arrangement 
in relation to the recording surface s. 

Each sector will store 96 words, thus each track 
of a recording surface will store 1,536 words and 
an entire recording surface will store 153,600 
words. 

Considering a disc pack as 100 cylinders, 15,360 
words can be written/read in each cylinder without 
moving the head assembly. 

The disc rotates at 2400 RPM. This gives a maxi­
mum latency time of 25 milliseconds. Figure 6 - 6 
shows the time required to move the head "n" posi­
tions. The data transfer rate of the disc system is 
78.125 KHz, or one word every 12.8 microseconds. 

MOVEABLE HEAD DISC STORAGE PROGRAMMING 

The CEU instruction is used to command the DCU. 
There are two tyPes of CEU second word formats, 
DISC SEEK and DISC DATA. The disc seek com­
mand is used to position the head assembly to the 
required track. Refer to Appendix C for the CEU 
second word formats for the disc. 

6-15 



SECTOR SECTOII 

9S11HA. 63 

Figure 6-3. Track and Sector Layout 

DISC 

4 
5 

6 
7 

8 
9 

6 

1 •••• 11111 
TRACk NUMIER 00 

Figure 6-4. Movable Head Arrangement -

Recording Surface 

6-16 

qSllRA. 6S 

Figure 6-5. Head Position 

~ 

./ ~ 

/ 
l/ V-

0 145 ~JiI 
..:IQ 140 
I-<;J 
1-<..:1 
Jill) 
Ul:z: 
Q~-

< I-< iii 120 
IiIOj§ 
:t:Z:1-< 

I 
V 

I 

UlUl:>o 
1iI1iIl) 
QO:z: 100 
;JQIiI 
..:IE-tE-t 
U;J< 
e.~..:1 

80 
/ 

/ 1 60 

j U 
iii 

I 
Ul 
:::s 

40 tJ 
:::s 
(:: 
0 
~ lO 

~ 
E Ul 
0 
p.. 

I 0 ~O lO 40 50 60 70 ~O 90 100 

Tracks to be Moved ... 
fl<;118A. tit> 

Figure 6-6. Typical Head Positioning Time Chart 



The Disc Control Unit accepts a total of five com­
mands from the computer which define all permiss­
able disc operations. These commands are: 

a. 

b. 

c. 

d. 

e. 

Seek Track Zero } 

Seek N Tracks Forward 

Seek N Tracks Reverse 

Write Sector I, Head J } 

Read Sector I, Head J 

Disc Seek Mode 

Disc Data Mode 

The threE. seek commands enable the ten physi­
cally connected heads to be positioned to any 
desired track number. The program can keep 
track of the current head assembly position and 
command the head assembly to be moved a speci­
fied number of tracks in either direction to posi­
tion the heads to a new track number. The posi­
tioning mechanism is quite reliable, but an ab­
solute verification of the new head position can 
be obtained by recording track and sector identi­
fication in one or all sectors per track and reading 
a sector containing 1. D., each time the heads are 
repositioned. 

An alternate method of track accessing consists of 
sending the heads to track zero after each disc 
transfer is completed. Use of this technique en-
ab le s ab solute rathe r than relative track addre s sing 
but it does increase the minimum time between 
successive disc operations. 

The read and write commands enable any sector 
on the ten tracks currently under the disc heads 
to be written or read. 

To seek track 00 (when the current track is un­
known) the following CEU is executed: 

CEU '13 
DATA '10 
BRU'~-2 

CEU '13, W 
DATA '10 

Once the head is positioned at any track, motion 
commands specify the number of tracks to be 
moved, and the direction of movement (forward 
or reverse). 

For example, asSume if the head assembly is at 
track 50 and the new positions are to be, success­
ively, track 55, track 71, track 38 and track 43. 
The instructions listed in table 6-22 must be exe­
cuted to move the head assembly to the required 
tracks. 

Table 6-22. Moveable Head Disc Storage, 
Movement Commands 

Command Movement 

CEU'13, W 
DATA '132 Forward, 5 tracks 

CEU '13, W 
DATA '412 Forward, 16 tracks 

CEU '13, W 
DATA '1031 Reverse, 33 tracks 

CEU '13, W 
DATA '132 Forward, 5 tracks 

Note that in a disc seek command bit 12 of the 
CEU second word is always a ONE. 

Head and sector selection are performed by ex­
ecuting the CEU with the disc data second word 
format. 

For example, to read sector 12, head 5 the CEU 
instruction would be; 

CEU '13, W 
DATA '6121 

and to write sector 7, head 7 the CEU instruction 
would be; 

CEU '13, W 
DATA '3562. 

The two standard interrupts can be connected/dis­
connected by the execution of the CEU instruction 
with the appropriate combination of bits 1, 2 and 
3 of the CEU second word. The seek error inter­
rupt occurs when a motion command occurs that 
cannot be executed; for example, the heads are at 
track 70 and a "forward 70 tracks" command is 
given. The .seek complete interrupt occurs when 
the heads are at the selected track. 

The TEU instruction can be used to test for seek 
complete, seek error, disc pack on line, read 
overflow, write overflow, checksum error, DCU 
ready and unit busy. 

Data is transferred between the disc and the com­
puter one word at a time, in not more than 96 words 
(1 sector) blocks. 

6-17 



When using the Block Transfer Control Unit with 
the disc, the BTC is initialized with bit 0 of the 
Disc Data CEU. If more than one sector of data 
is to be read or written, the terminate bit should 
be set in the word count location so that the inter­
rupt p roce s sing routine can handle the bookkeeping 
functions (sector and head modification, first word 
address of buffers, etc.). 

For non-BTC ope.ration, a data word must 
be presented to the disc each 12.8 microseconds. 
Otherwise data will be dropped during the transfer. 
This transfer rate restricts other operations that 
can be performed concurrently in the computer. 
Therefore, all transfers are normally made be­
tween disc and computer via BTC units. The I/O 
disc handler routines assume BTC operation. 

FIXED HEAD DISC STORAGE (MODEL NO. 81·654A­
DEVICE NO. 13) 

The Fixed Head Disc Storage Unit (DSU) provides 
random-access bulk storage of output data from 
any SEL Series 800 computer. Storage capacity, 
when used with a SEL 810B Computer, is up to 
909,312 16-bit words. Units with from one to 
eight recording surfaces are available. There are 
64 fixed recording heads per surface (refer to 
figure 6-7). Each surface contains 64 recording 
tracks with each track divided into 16 sectors 
(refer to figure 6-8). Each sector provides stor­
age for Ill, sixteen bit data words. Ave rage 
access time for data recording or retrieval is 8.3 
milliseconds. Maximum access time is 17 milli­
seconds. Word transfer rate to or from the stor­
age unit is 112.5 KHz for 16-bit word storage. 
The data format is completely under program con­
trol and can take any required form. The Disc 
Control Unit (DCU) regulates data transfer be­
tween the DSU and the computer. The DCU also 
performs all track and sector selections required 
to store and retrieve data from specified disc loca­
tions. A checksum is generated and written at the 
end of each recorded sector. A checksum is also 
generated from the data read from a sector and 
compared to the checksum written at the end of that 
recorded sector. Additional specifications are 
listed in tables 6-23 and 6-24. 

Table 6-23. Model 81-654A Fixed Head Disc 
Storage Specifications 

Characte ristic Specification 

Speed 3600 RPM, 16. 7 milli-
seconds / revolution :l:S%'~ 

Capacity Bits - 3,637,248 16-Bit 
Words - 227,328 

6-18 

Table 6-23. Model 81-654A Fixed Head Disc 
Storage Specifications (Cont'd) 

Characte ristic 

Word Rate 

Bit Rate 

Number of Tracks 

Access Time 

Time Between 
Sectors 

Error Detection 

Interrupts (2) 

Recording Dens ity 

Disc Coating 

Prerequisitor 

Options 

Specification 

112.5 KHz 

1.8 MHz 

64 per surface 
128 per disc 

Average - 8.3 milli­
seconds Maximum 
16.7 +S* milliseconds 

App roximatel y 37. 2 
microseconds +S,~ 

Checksum 

1. Program Error or 
Checksum Error 

2. Read and Write 
Overflow 

1000 BPI 

Nickel- Colbalt Magnetic 
Plating 

Connection to Computer 
BTC unit. 

Expansion of storage 
capacity to 14,548,992 
bits by increasing num­
ber of discs to four and 
number of heads to 512. 

~'S=:Induction Motor Slippage, approximately 
3 to 4% 

Table 6-24 lists the fixed head disc capacity. 

Table 6-24. Model 81-654-128A Disc Storage 
Capacity Specifications (One Disc) 

Sur-
Bits Words Sector Track faces 

Per 
Word 16 - - - -
Per 
Sector 1776 III - - -

Per 
Track 28,416 1776 16 - -



Table 6-24. Model 8l-654-l28A Disc Storage 
Capacity Specifications (One Disc) (Cont'd) 

Sur-
Bits Words Sector Track faces 

Per 
Sur-
face 1,818,624 113,664 1024 64 -

Total 3,637,248 227,328 2048 128 2 

FIXED HEAD DISC STORAGE PROGRAMMING 

TEU and CEU word formats for the 8l0B are in­
cluded in tables 6-25 and 6-26. During on-line 
operation, commands for te sting and transfe rring 
data to the DCU from the computer are generated 
by instructions within the .computer program. 
Test function are performed by TEU (Test Ex­
ternal Unit) instruction. Data transfer is ac­
complished by AOP (Accumulator Out to Periphe­
ral), MOP (Memory out to Peripheral), ALP 

• ECTa. 'I:CTOII 

1J511RA, 67 

Figure 6-7. Fixed Head Track and Sector Layout 

(Accumulator In from Peripheral) or MIP (Memory 
in from Peripheral). 

The DCU accepts a total of five command instruc­
tions (CEU). 

The DCU accepts a total of seven te st instructions 
(TEU) used to verify the status of the disc storage 
system. Each of the se instructions test circuits 
in the DCU which have two conditions, set or re­
set. II the reset state is detected when the parti­
cular test is performed, a program skip is ini­
tiated. Conversely, if the set state is detected, 
no skip is initiated. 

PRIORITY INTERRUPTS FOR FIXED HEAD DISC 

The DCU is equipped with two priority interrupts 
designated # 1 and #2. The interrupt circuits are 
enabled or disabled by CEU command instructions 
in the computer program. A single CEU command 
instruction can enable or disable one or both inter­
rupts . 

~ UItEADS"\ 

/ UMEADI I 

\ .4MEADI \ 

/ .. MU .. I 

, UMUDS I 

1111111111 
n,u:alnlllllau'" U 

qI)IIKA. btl 

Figure 6-8. Fixed Head Arrangement - Recording 
Surface 

6-19 



Table 6-25. Fixed Head Disc TEU Secono Word Format 

Bits 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Skip On No Program Error 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Skip On Disc On Line 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Skip On No Disc Read Overflow 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Skip On No Disc Write Overflow 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Skip On No Parity Error 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Skip On No Disc File Area 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Protected 

Skip On Disc Controller Not 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Busy 

Table 6-26. Fixed Head Disc CEU Second Word Format 

Bits 0 1 2 3 4 5 6 I 7 I 8 9 10 11 12 13 14 15 

J I r -r 
P/I Enable P/I P/I Select 

BTC 
Track Number 

Track Disable No.1 No.2 256 128 64 T 32 1 16 8 4 2 1 BTC 1 1 

Write 
BTC 

P/I Enable Pil P/l Sector Write 
Sector N Disable No.1 No.2 Not Used 8 4 2 1 BTC 1 0 

Read 
BTC 

P/l Enable Pil PiI Sector Read 

Sector N Disable No.1 No.2 Not Used 8 4 2 1 BTC 0 1 

Write 
Starting At 

BTC 
piI Enable Pil PiI Seq. Starting Sector Write 

Sector N Disable No.1 No.2 1 Not Used 8 4 2 1 ETC 1 0 
Sequential 

Read 
Starting At BTC 

PiI Enable piI l'lI Seq. Starting Sector Read 
Sector N Disable No. I No .. ~ 1 Not Used 8 4 2. 1 BTC 0 1 
Sequential 

6-20 



SECTION VII 
OPTIONS 

PROGRAM PROTECT AND INSTRUCTION TRAP (MODEL 81·0808) 

When the program protect option is included in an 
810B Computer, the memory is divided into 16 areas 
of 1024 (-lB option) or 2048 (-2B option) words each. 
A 16-bit protect register is included in the computer 
which stores the protect status of each memory area. 
The protect logic causes an interrupt to be generated 
if an instruction attempts to write into a protected 
memory area when the computer is operating in the 
"Unpriviledged" state. Instructions are provided 
for loading and storing the contents of the protect 
registe r. 

The status of the program protect mode ("Privi­
ledged" or "Unpriviledged") is malntained by the 
"protect latch" (PL). 

The protect latch operates as follows: 

a. The protect latch is set ON ("Priviledged" 
state) when the mode key switch is turned 
from disable to enable. Thereafter, it is 
turned ON each time a priority interrupt 
occurs. 

b. When the protect latch is ON, any instruc­
tion in a protected memory area can be 
executed. 

c. Any instruction in an unprotected memory 
area can also be executed provided that 
no attempt is made to write into a pro­
tected memory area. However, execu­
tion of any legal instruction in an unpro­
tected area causes the protect latch to 
be turned OFF. 

d. When the protect latch is OFF, any at­
tempt to execute an instruction which 
attempts to write into a protected area 
will generate a protect violation inter­
rupt, regardless of whether the instruc­
tion is stored in a protected or unpro­
tected area. This feature prevents un­
protected programs from randomly en­
tering protect programs. 

e. Any priority interrupt will turn ON the 
protect latch and any instruction within 
the interrupt subroutine which is not in 

a protected area will turn OFF the pro­
tect latch. To insure that the protect 
status that was present at the time of 
the interrupt is returned after the inter­
rupt subroutine is completed, the pro­
tect latch status is stored as follows: 
after the interrupt has occurred, when 
the wired SPB instruction is executed, 
the status of the protect latch is stored 
in bit 0 of the effective address defined 
to store the program counter contents. 
When the TO! and BRU indirect (or LOB) 
instructions are executed following the 
interrupt subroutine, the protect latch 
is returned to the status present a t the 
time the interrupt occurred. 

There are two control panel indicators associated 
with the program protect feature. One indicator 
displays the status of the protect latch, and the 
other indicator (located adjacent to the A-Accumula­
tor display indicators) is lit when the protect reg­
ister is selected for display on the row of indicators 
that normally displays the A-Accumulator contents. 

VARIABLE BASE REGISTER, (MODEL 81- 042B) 

The variable base register is a 6-bit register which 
allows any MAP to be used as a reference or base 
MAP. Whenever the MAP and index bits of an in­
struction are set to logical zero, the contents of 
the VBR are treated as the most significant bits of, 
and appended to, the nine-bit operand address. If 
the MAP bit is set to a logical ONE, the most sig­
nificant six bits of the operand address are defined 
by the most significant six bits of the program 
counter. If the VBR is set to zero, the 8l0B op­
rates just as if no VBR were present. 

The contents of the VBR are not appended to mem­
ory reference instructions having a ZERO MAP 
bit when indexing is specified in the instruction 
(Index Bit =: 1). This feature permits relative ad­
dressing by indexing to be performed independently 
of the VBR contents. For example, execution of 
the instructions, 

LBA '1000 

LAA 0, 1 

causes the contents of '1000 to be loaded into 
A -Accumulator regardless of the VBR contents. 

7-1 



STALL ALARM (MODEL 81-0438) 

The stall alarITl is designed to correct, or inforITl 
the cOITlputer operator of, the stalling or "hanging 
up" of cOITlputer operations. If after 32 ITlachine 
cycles (0:79 ITlicroseconds per cycle), the cOITlputer 
prograITl counter has not advanced, an "Override" 
interrupt is generated. This override interrupt is 
capable of interrupting an indirect chain, an Ilo 
instruction, or even a Halt condition. The inter­
rupt routine as signed to this level can take the ITlost 
suitable corrective action. 

AUTO START (MODEL 81-0418 

The auto start feature provides the capability of 
the cOITlputer to return to a "run" condition auto­
ITlatically in the event that, after being "lost", 
power is restored. An "override" interrupt is 
provided which allows return to the regular pro­
graITl or to a recovery routine. 

TABLE TOP (MODEL 81·057B) 

This option provides a table-height writing surface 
ITlounted on the front of the cOITlputer cabinet for 
the convenience of the operator. 

INPUT/OUTPUT PARITY (MODEL 81·210B) 

This option is ITlade available for use with special 
cOITlputer interfaces such as serial cOITlITlunication 
links in which a parity bit is transITlitted with each 
word. This option consists of a ITleans to transfer 
the parity bit stored in ITleITlory with each COITl­
puter word output transfer, and to check the parity 
bit accoITlpanying each cOITlputer input word transfer. 

The operation of the 1/0 Parity unit is controlled 
by the external interface unit which ITlust send a 
request for parity checking/transfer with each 
input/ output word reque st. If a parity error is 
detected for an input transfer, the error signal is 
transferred to the external unit. 

7-2 

INDEX REGISTER (MODEL 81·006B) 

The optional index register can be used to perforITl 
the saITle indexing functions as those perforITled 
using the B-AccuITlulator. This additional, pro­
graITlITlable register is ITlade available to ITlake the 
SEL 8l0B COITlputer even ITlore powerful in applica­
tions involving extensive operand and address 
ITlanipulation. Two single precisiop, or one double 
precision operand can be ITlanipulated in the A-
and B -AccuITlulators and the optional index register 
can be used for address ITlanipulation without dis­
turbing the contents of the B-AccuITlulator. 

A prograITl controlled flip-flop is supplied with the 
optional index register which acts as an index reg­
ister pointer. When this flip-flop is set to one 
state, the execution of an instruction containing 
the Index Flag causes the contents of the B­
AccuITlulator to be added to the operand address. 
When the flip-flop is set to the other state, the 
presence of an Index Flag in an instruction causes 
the contents of the optional index register to be 
added to the operand addre s s. 

Instructions are provided to change and to test the 
state of the index pointer flip-flop. Therefore, 
either the B-AccuITlulator or the optional index 
register can be used for indexing in a prograITl, 
or both can be used in the saITle prograITl for double 
indexing operations. 

The eight instructions provided with the optional 
index registers are: LIX, STX, SXB, IXS, TAX, 
TXA, XPX, and XPB. Refer to the SEL 8l0B 
Instruction List SUITlITlary and to Section II of this 
ITlanual for description of these instructions. 

60Hz REAL·TlME CLOCK (MODEL 81·031B) 

This option provides interrupt signals at the fre­
quency of the ac input power supplied to the COITl­
puter. 



APPENDIX A 
SEL 810B COMPUTER WORD FORMATS 

Integer Data Indirect Address Word 

: : 
" .. " 

Double-Precision Fixed Point Data 
~~--~----~----~--~~--~ -------~----~--~----~--~ 

5 Il.lq ZIS I Q IlJ4 zr, I 
IS 0 I 1'; 

Word J Word Z 

Single-Precision Floating Point Data 
~~----------------~------~ ---~--------~~----------~ Is 11,,1 MAN TIS 5 A 2-11 I 0 1z:"16 MAN TIS 5 A 2:,, 211 s 121 EX PO N £: N T Z 0 I 

Word 1 
• 7 
Word Z " 

Double-Precision Floating Point Data 
~ls-'12--~I-------M--A-N--T-I--S-S-A----------------'-_~151 ~I-O~r---I'-M--A-N-T-I-S-S-A--'--'~11-s-rlz-7--E--X-P-O-N-E--N-T------,7101 

Is ~-I 

I s 1,-1 

Word 1 

MAN'rISSA 

Word 1 

MANTISSA 

Word 3 

o I • 7 
Word Z 

I 0 p-" MANTISS'A 
, , 

Word 3 

Complex Floating Point Data 

I 0 Iz .. 16 MAN TIS 5 A 2-211 5 127 EX P 0 N E N T 

15 

(Rea 1 Part) Word Z 

I 0 12 .. 16 MAN TIS ~ A z .. 21 5 127 EXPONENT , 

" (Imaginary Part) Wo,d. 

Memory Acce!,s Instruction Augmented 008 Instruction 

Input/Output Instructions 

Icllc, Ic,lc.1 R 111M IAI hi W IUllu,lu,lu.lu, lu.1 
51 1101112131411 

14 BIT MEMORY ADDRESS 
, 

2· 
OR 

16 BIT OPER.AND 

11 

9 10 

:First Word 

Second Word 
(Address Mode) 

OR 

Second Word 
(Immediate Mode) 

15 

" 

,0 
15 

,6 

15 

" 

9511BA. Al 

A-l/ A-2 





Teletype 
Character ASR-33 &: ASR-35 

A 301 

B 302 

C 303 

D 304 

E 305 

F 306 

G 307 

H 310 

I 311 

J 312 

K 313 

L 314 

M 315 

N 316 

0 317 

P 320 

Q 321 

R 322 

S 323 

T 324 

U 325 

V 326 

W 327 

X 330 

Y 331 

Z 332 

APPENDIX B 
SEL PERIPHERAL DEVICE OCTAL CHARACTER CODES 

ALPHABETIC CHARACTERS 

Line Printer 
(Truncated ASCII) IBM/BCD 

01 61 

02 62 

03 63 

04 64 

05 65 

06 66 

07 67 

10 70 

11 71 

12 41 

13 42 

14 43 

15 44 

16 45 

17 46 

20 47 

21 50 

22 51 

23 22 

24 23 

25 24 

26 25 

27 26 

30 27 

31 30 

32 31 

Hollerith Card Code 
Octal Code Card Rows 

4400 12-1 

4200 12-2 

4100 12-3 

4040 12-4 

4020 12-5 

4010 12-6 

4004 12-7 

4002 12-8 

4001 12-9 

2400 11-1 

2200 11-2 

2100 11-3 

2040 11-4 

2020 11-5 

2010 11-6 

2004 11-7 

2002 11-8 

2001 11-9 

1200 0-2 

1100 0-3 

1040 0-4 

1020 0-5 

1010 0-6 

1004 0-7 

1002 0-8 

1001 0-9 

".,ll~A. HI 

B-1 



APPENDIX B (CONT'D) 
SEL PERIPHERAL DEVICE OCTAL CHARACTER CODES 

NUMERIC CHARACTERS 

Teletype Line Printer Hollerith Card Code 

Character ASR-33 & ASR-35 (Truncated ASCII) IBM/BCD Octal Cod"e Card Rows 

0 260 60 12 1000 0 

1 261 61 01 0400 1 

2 262 62 02 0200 2 

3 263 63 03 0100 3 

4 264 64 04 0040 4 

5 265 65 05 0020 5 

6 266 66 06 0010 6 

7 267 67 07 0004 7 

8 270 70 10 0002 8 

9 271 71 11 0001 9 

SPECIAL SYMBOLS OR FUNCTIONS 

Symbol Or Teletype Line Printer Hollerith Card Code 
Function ASR-33 & ASR-35 (Truncated ASCII) IBM/BCD Octal Code Card Rows 

@ 300 00 57 2006 11-8-7 

[ 333 33 75 4022 12-8-5 

\ 334 34 36 1012 0-8-6 

] 335 35 55 2024 11-8-5 

t 336 36 32 1202 0-8-2 

- 337 37 77 4006 12-8-7 

Space 240 40 20 - -
I 241 41 52 3000 11-0 

" 242 42 37 1006 0-8-7 

# 243 43 35 1022 0-8-5 

$ 244 44 53 2102 11-8-3 

% 245 45 - - -
& 246 46 - - -

95118A,B2 

B-2 



APPENDIX B (CONT'D) 

SEL PERIPHERAL. DEVICE OCTAL CHARACTER CODES 

SPECIAL SYMBOLS OR FUNCTIONS 

Symbol Or Teletype Line Printer Hollerith Card Code 
Function ASR-33 & ASR-35 (Truncated ASCII) IBM/BCD Octal Code Card Rows 

I 247 47 14 0042 8-4 

( 250 50 34 1042 0-8-4 

) 251 51 74 4042 12-8-4 

* 252 52 54 2042 11-8-4 

+ 253 53 60 4000 12 

, 254 54 33 1102 0-8-3 

255 55 40 2000 11 -
256 56 73 4102 12-8-3 

/ 257 57 21 1400 0-1 

: 272 72 15 0022 8-5 

; 273 73 56 2012 11-8-6 

< 274 74 76 4012 12-8-6 

= 275 75 13 0102 8-3 

> 276 76 16 0012 8-6 

? 277 77 72 5000 12-0 

Carriage 
Return 215 

Line 
Feed 212 

Bell 207 

Delete 377 

')511~A.IH 

B-3/B-4 





o 
I 

0 

Magnetic 0 Tape 
Format 0 

Ma~netic 
BTC 

Tape 
Format I 

Initialize 

ASR_33/35 

Paper Tape 
Reader and 
Punch 

Card 
Reader/ 
Pu ... ch 

X-y 
Plotter 

Line 
Printer 

Moveable 
Head Disc 
Seek 

Moveable 
Head 
Disc Data 

Fixed Head 

Disc 
Select 
Track 

Fixed Head 
Disl:: Read 

Fixed Head 
Disl:: Write 

CRT 

*lnterrupt Levels: 
Bit Z '" Group 1. Level I 
Bit 3 '" Group 1, Level Z 

2* 3* 4 6 6 7 8 9 10 11 
P.l. Word Erase I I I 
Connect" 1 Transfer Record Rewind 4 Inches BCD ~ 1 
Disconn = 0 Ready Interrupt 0 of Tape Binary" 0 Density** Tape Transport 

Interrupt 

Word 
Advance! Backspace Transfer End of 

Ready 
Write Write End Advance End of Backspaec End of 
Record of File Record File File Interrupt Interrupt 

In Out Reader Koy Clear 
Mode 

In Out Reader 
Feed Enable Disable 

Read Eject Punch Feed Feed 
In Out Card 

Stacker 
CU'd 

Card Stacker 

Reader 
Offset 

Punch 
(Punch) Offset 

Process Pon Pon Drum CU'risj;le Carriage 
Complete Down Up Down Up Left Rij!;ht 

Advance Clear Fill 
End of Buffer Paper To Advance I Top of Buffer Buffer 

Not Busy Format Line Form 
Tape Chan_ 

nel**:4-
Or Format "n" if Bit 4 

Number of Tracks to be Moved 
Seek Seek 

Complete 
64 3Z 16 

Seek Seek 
Sector Number Head Number 

Error Complete 

Checksum R<ad 
Track Number 

Error or Overflow or 
Program Program 

256 128 64 " 16 

Checksum Read 
Error or Overflow 

Starting Sector 

Program or Write 
Read 

Ertor Overflow 
Sequential 

Checksum Read Starting Sel::tor 
Error or Overflow Write 
Program or Write Sequential 
Error Overflow 

Display Display 
Overfl!lw Stop On Off 

*"Ma(!l"l'tk 1"'apl' Densitv' **1I-When a one is present in bit position ****Tn seck track 00 both bits must be ~ero. 
Bits Uen511~ Jjits ~haral::lers 4. advance to the format tape channel 

number (e-xpressed in octal I represenl(."d 
by the bits present in positions 7. 8 and 9. 

8 9 14 15 Per Wnr..l 

o 0 WOBPI 011 
o I 556 BPI 1 0 
1 0 800 BPI 1 I 

o 0 

12 13 14 15 
Current 

I 
Word Charactera 
Address Per Word 

h> 

Current 
Word 
Address 
h> 

en .... .... 
~ 
CO 

""CI .... :::a 
=a 
::c .... :::a 
:Po .... 
CI 

"" .... .., :s = n 

'" 
.... .., n :Po "" CO = == ~ :z ~ ... == 1"1"1 
:Po :z: ~ :z -= = = :::a >< ... :Po 
:z n ..., = FWD REV = **** - :::a -t 

!iii: .... en :r- -t .... 
n 

0 Write Read CO = .... 
.... 
CO 
:::a 
:I: 
:Po 

~ 

0 

Write 

0 



n 
I 

N 

Card 
Reader 

and 
Punch 

Movable 

Head 
Disc 

Fixed 
Head 
Disc 

Magnetic 

Tape 

Line 
Printer 

Inte rval 
Timer 

0 

Skip on No 
Program 
Error 

Skip on 
Not Busy 

2 3 

Skip on Skip on :'\0 Skip on ~o 

Disc on Disc Read Disc Write 

Line Overflow Overflow 

Skip on ~o Skip on );0 Skip on 

End of Fill' Ove rflow Load POint 

4 6 6 

Skip Skip No Skip on 
Seek Seek Beginnin!! 
Complete Error of Disc 

Skip on :-';0 Skip on No Skip on 
Check sum Disc File Disc 
Error Area Control 

Protected :--;ot Busy 

Skip on 

End of Sl< ip on ;-";0 Skip on 

Rpcord Panty Write 

lnt<:>rrupt Error Ring In 

Skip Skip :\0 

:\ot Pa.rlty 
Busy Error 

en ..... 
r-

7 8 9 10 11 12 13 14 US ~ 
Q 

-a 
Skip No ..... 
Punch :::leI 

Error =a 
:c ..... 
:::leI 

Skip on Skip Skip No Skip No Skip ;\1'0 Skip No Skip Skip 
> r-

Beginning Pack Read Write Checksum File Deu Not 
CO 

of Sector on Line Overflow Overflow Error Unsafe Ready Busy .... -I -< > ..... c:; -C = ..... -C 
V> n 1"'1"1 ..... z: C"> Q 
0 3: CII 
:z: 3: >< CI > 
::IE :z: n 

Skip on ;-';0 0 CO 

Skip on No eRC Error "" > c=; 
End of Skip on (q Track 

CI :z: CII 
Tape Rewindin~ Only) 

..., CO z: C> 
-I -f 

"" == 
..... S en 

>- -I 
Skip No Skip if -< 
Bottom of Printer n 
Form Ope ra.bl{> Q 

CO ..... 
Disable ..... 
!'ero 

Q 
:::leI 

Count 3: 
lnt("rrupt > 

-I en 



APPENDIX 0 
SEL 810 PAPER TAPE FORMATS 

CARRIAGE RETURN­
START CODE----i 

BJ,..OCK OF 36 
Z4-BIT WOllDS 

BLOCK OF 36 
l.4-BIT WORDS 

CARRIAGE RETURN 
START CODE ----HI! 

CARRIAGE u-rnR,N---t 

LEADER 

LINE FEED 

CHECK SUM 
__ --LI"E FEED 

END OF PROGRAM 

WORns OF 
ZEROS 

TO 
COMPLETE 

BLOCK 

CHECK SUM 

1----Ln" FEED 
END OF JOB WORD 

" 

FEED 

SEL BlOB ASSEMBLER AND COMPILIER 
OBJECT PROGRAM OUTPUT 
T APE. MUST BE LOADED 
WITH THE SEL MNEMBLER 
LOADER PROGRAM. 

---'CAJ<RIAGE RETURN 

~---CARIRIAGERETURN 

lIIla-'----CAJ<RIAGE RETURN 

r--CAl<RL'GE RETURN 

r-----CAllRIACE RETURN 

STRT 
CARRIAGE RETURN 

LINE 
... R-'---CAl.RIAGE RETURN 

I. 
LINE FEED 

CARRIAGE RETURN 

OUT 

LINE FE,ED,---I: CARRIAGE RETURN 

END 

ASC II CODE ASSEMBLER 
SOURCE INPUT IN CARD 
FORMAT IMAGE. MUST 
BE LOADED BY ASSEMBLER. 

9S118A.Dl 

D-l/D-2 





APPENDIX E 
SEL 810 ASSEMBLER OUTPUT FORMATS 

I 0 , 0 I 0 ! 0 ! 0 ! 0 ! 0 ! 0 I ! ! ! ! ! ! ~A ~ A! ! ! ! ! 
DIRECT LOAD: Data or Non-:me:mory-referencing instructions. 

ADDRESS 
, I I I 

MEMOR Y REFERENCING INSTRUCTIONS: R = Relocation flag 
(DAC) OP = '13, 14-bit address constant 
(EAC) OP = '17, IS-bit address constant 

LITERAL 
I ! , 

LITERAL REFERENCING INSTRUCTIONS: 

1 0 R I OP CODE IX I 

C D 0 0 0 0 o 0 N 0 0 0 

SI 

S4 

SUBROUTINE OR COMMON: 
CD = 10: Co:m:mon defn. 

Address = length 

= II: Co:m:mon request 
Address = reI. to block. 
N = negation flag 

CODE 
I I 

SPECIAL ACTION: 
Code = 00, Establish Load Point 

= 01, END Ju:mp 
= 02, STRING 
= 03, 9-Bit ADD-TO 
= 04, 14-Bit ADD-TO (DAC) 
= OS, IS-Bit ADD-TO (EAC) 

0 

S2 

S5 

ADDRESS LENGTH 

0 01 SIZE 

S3 

S6 

CD = 00: Subroutine definition (NAME) 
Address = relative entry point. 

= 01: Subroutine call (CALL) 
Address = 0 

ADDRESS 
, , I 

06, Turn on CHAIN flag 
= 07, Turn on Load flag 
= 10, END-OF-JOB 

9S118A.El 

E-l/E-2 





APPENDIX F 

NUMERICAL INFORMATION 

NUMERICAL OCTAL TO DECIMAL CONVERSION 

OCTAL MULTIPLICATION 

~ 1 

1 1 

2 2 

3 3 

4 4 

5 5 

& 6 

7 7 

10 10 

X 1 

1 2 

2 3 

3 4 

4 5 

5 6 

6 7 

7 10 

10 11 

s~ = 1 
SI = 8 
8Z = 64 
83 = 51Z 
84 = 4096 
85 = 3Z768 

lI.n or n·1I 

2 3 4 5 & 7 

2 3 4 5 & 1 

4 6 10 12 14 16 

6 11 14 17 22 25 

10 14 20 24 30 34 

12 17 24 31 36 43 

14 22 30 36 44 52 

16 25 34 43 52 61 

20 30 40 50 60 70 

OCTAL ADDITION 

m.n or 0+11 

2 3 4 5 6 7 

3 4 5 6 7 10 

4 5 6 7 10 11 

5 6 7 10 11 12 

6 7 10 11 12 13 

7 10 11 12 13 14 

10 11 12 13 14 15 

11 12 13 14 15 16 

12 13 14 15 16 17 

10 

10 

20 

30 

40 

50 

60 

70 

100 

10 

11 

12 

13 

14 

15 

16 

17 

20 

q::'l[sA.Fl 

F-I 



APPENDIX F (CONT'D) 

NUMERICAL INFORMATION 

TABLE OF POWERS OF TWO 

2· 71 2'a 

1 0 LO 
2 1 0.5 
4 2 0.25 
8 3 0.125 

16 4 0.062 5 
3Z 5 0.031 25 
64 6 0.015625 

128 7 0.007 812 5 

256 8 0.003 906 25 
512 9 0.001 953 125 

1. 024 10 0.000 976 562 5 
2048 11 0.000488281 25 

4096 12 0.000244140625 
8 192 13 0.000 122070 312 5 

16384 14 0.000061 035156 25 
32768 15 0.000 030 517 578 125 

65536 16 0.000 015 258 789 062 5 
131 072 17 0.000 007 629 394 531 25 
262 144 18 0.000003 814697 265625 
524 288 19 0.000 001 907 348 632 812 5 

1 048 576 20 0.000000 953 674 316 406 25 
2097152 21 0.000 000 476 837 158 203 125 
4 194 304 22 0.000000238418579101 5625 
8 388 608 23 0.000 000 119 209 289 550 781 25 

16777 216 24 0.000 000 059 604 644 775 390 625 
33 554432 25 0.000000029802322387695 l12 5 
67 108 864 26 0.000000014901 161 19384765625 

134 217 728 27 0.000 000 007 450 580 596 923 828 125 

268435456 28 0.000 000 003 725 290 298 461 914 062 5 
536870 912 29 0.000000001 862645149 230 957031 25 

1. 073 741 824 30 0.000000000 931 322574 615 478 515625 
2147483 648 31 0.000 000 000 465661 287 307 739 257 812 5 

4 294 967 296 3Z 0.000000000 232830643653 869628 906 25 
8 589 934 592 33 0.000 000 000 116 415 HI 826 934 814 453 125 

17 179 869 184 34 0.000 000 000 058 207 660 913 467407 226 562 5 
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 

68 719476 736 36 0.000000000014 551 915 228366851 806640625 
137438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 
274 877 906 944 38 0.000 000 000 003 637 978 807091 712 951 660 156 25 
549 755 813 888 39 0.000000000001 818 989403 545856475830078125 

1 099 511 627 776 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5 
Z 199 023 2.55 552 41 0.000 OJO 000 000 454 747 350 886 464 118 957 519 531 25 
4398046 511 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765625 
8 796 093 022 208 43 0.000 000 000 000 113 686 837 721 616 029 739 379 882 812 5 

17592186044416 44 0.000000000000056843418860808014869689941 406 25 
35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 
70 368 744 177 664 46 0.000000000000014 210 854 715 202003 717422485351 5625 

140 737488 355 328 47 0.000000000000007 105427 357601 001 858711 242675781 25 

281 474 976 71 0 656 48 0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625 

''i II~A. F'~ 



0000 \ 0000 to to 
0777 0511 

'0"01) (Dec; .. ol) 

O.tal Decimcil 
\0000- 4096 
20000. 8192 
30000· 12288 
40000· 16384 
50000 • 20480 
60000·24576 
70000-28672 

1000 I 0512 
'0 10 

1777 1023 
(0"01) (o.c; .. ol) 

0 I 

0000 0000 0001 
0010 0008 0009 
0020 0016 0017 
0030 0024 0025 
0040 0032 0033 
0050 0040 0041 

~~~~ I~~~: 0049 
0057

0100 0064 0065
0110 0072 0073
0120 0080 0081
0130 0088 0089
0140' 0096 0097
0150 0104 0105
0160 0112 0113
0170 0120 0121

0200 0128 0129
0210 0136 0137
0220 0144 0145
0230 0152 0153
0240 0160 0161
0250 0168 0169
0260 0176 0177
0270 0184 0185

0300 0192 0193
0310 0200 0201
0320 0208 0209
0330 0216 0217
0340 0224 0225
0350 0232 0233
0360 0240 0241
0370 0248 0249

0 1

1000 0512 0513
1010 0520 0521
1020 0528 0529
1030 0536 0537
1040 0544 0545
1050 0552 0553
1060 0560 0561
1070 0568 0569

1100 0576 0577
1110 0584 0585
1120 0592 0593
1130 0600 0601
1140 0608 0609
1150 0616 0617
1160 0624 0625
1170 0632 0633

1200 0640 0641
1210 0648 0649
1220 0656 0657
1230 0664 0665
1240 0672 0673
1250 0680 0681
1260 0688 0689
1270 0696 0697

1300 0704 0705
1310 0712 071S
1320 0720 0721
1330 0728 0729
1340 0736 0737
1350 0744 0745
1360 0752 0753
1370 0760 0761

2 3

0002 000)
0010 0011
0018 0019
0026 0027
0034 0035
0042 G043
0050 0051
0058 0059

0066 0067
0074 0075
0082 0083
0090 0091
0098 0099
0106 0107
0114 0115
0122 0123

0130 0131
0138 0139
0146 0147
0154 0155
0162 01S3
0170 0171
0178 0179
0186 0187

0194 0195
0202 0203
0210 0211
0218 0219
0226 0227
0234 0235
0242 0243
0250 0251

2 3

0514 0515
0522 0523
0530 0531
0538 0539
0546 0547
0554 05>5
0562 0563
0570 0571

0578 0579
0586 0587
0594 0595
0602 0603
0610 0611
0618 0619
0626 0627
0634 0635

0642 0643
0650 0651
0658 0659
0666 0667
0674 0675
0682 0683
0690 0691
0698 0699

0706 0707
0714 0715
0722 0723
0730 0731
0738 0739
0746 0747
0754 0755
0762 0763

APPENDIX F (CONT'D)

NUMERICAL INFORMATION

OCTAL·DECIMAL INTEGER CONVERSION TABLE

4 $ 6 7

ooo~ OOO~ 0006 0007 0400
0012 0013 0014 0015 0410
0020 0021 0022 0023 0420
0028 0029 0030 0031 0430
0036 0037 0038 OG39 0440
OG44 0045 0046 0047 0450
0052 0053 0054 G055 0460
0060 0061 0062 0063 0470

0068 0069 0070 0071 0500
0076 0077 0078 0079 0510
0084 0085 0086 0087 05~0

0092 0093 0094 0095
0100 0101 0102 010'l
0108 0109 0110 0111
0116 0117 0118 0119
0124 0125 0126 0127

0530
0540
0550
0560
0570

0132 0133 0134 0135
0140 0141 0142 0143

0600
0610

0148 0149 0150 0151
0156 0157 0158 01~9
0164 0165 0166 0167
0172 0173 0174 0175
0180 0181 0182 0183
0188 0189 0190 0191

0620
0630
0640
0650
0660
0670

0196 0197 0198 0199 0700
0204 0205 0206 0207 0710
0212 0213 0214 0215 0720
0220 0221 0222 0223 0730
0228 0229 0230 0231 0740
0236 0237 0238 0239 0750
0244 0245 0246 0247 0760
0252 0253 0254 0255 0770

4 5 6 7

0516 0517 0518 0519 1400
0524 0525 0526 0527 1410
0532 0533 0534 0535 1420
0540 0541 0542 0543 1430
0548 0549 0550 0551 1440
0556 0>57 0558 0559 1450
0564 0565 0566 0567 1460
0572 0573 0574 0575 1470

0580 0581 0582 0583 1500
0588 0.89 0590 0591 1510
0596 0597 0598 0599 1520
0604 060S 0606 0607 1530
0612 0613 0614 0615 1540
0620 0621 0622 0623 155.0
0628 0629 0630 0631 1560
0636 0637 0638 0639 1570

0644 0645 0646 0647 1600
0652 0653 0654 0655 1610
0660 0661 0662 0663 1620
0668 0669 0670 0671 1630
0676 0677 0678 0679 1640
0684 0685 0686 0687 1650
0692 0693 0694 0695 1660
0700 0701 0702 .0703 1670

0708 0709 0710 0711 1700
0716 0717 0718 0719 1710
0724 0725 0726 0727 1720
0732 0733 0734 0735 1730
0740 0741 0742 0743 1740
0748 0749 0750 0751 1750
0756 0757 0758 0759 1760
0764 0765 0766 0767 1770

0 I 2 3 4 5 6 7

0256 0257 0258 0259 0260 0261 0262 0263
0264 0265 0266 0267 0268 0269 0270 0271
0272 0273 0274 0275 0276 0277 0278 0279
0280 0281 0282 0283 0284 0285 0286 0287
0288 0289 0290 0291 02g2 0293 0294 0295
0296 0297 0298 0299 0300 0301 0302 0303
0304 0305 0306 0307 0308 0309 0310 0311
0312 0313 0314 0315 0316 0317 0318 0319

0320 0321 0322 0323 0324 0325 0326 0321
0328 0329 0330 0331 0332 0333 0334 0335
0336 0337 0338 0339 0340 0341 0342 0343
0344 0345 0346 0347 0348 0349 0350 0351
0352 0353 0354 0355 0356 0357 0358 0359
0360 0361 0362 0363 0364 0365 0366 0367
0368 0369 0370 0371 0372 0373 0374 0375
0376 0377 0378 0379 0380 0381 0382 0383

0384 0385 0386·0387 0388 0389 0390 0391
0392 0393 0394 0395 0396 0397 0398 0399
0400 0401 0402 0403 0404 0405 0406 0407
0408 0409 0410 0411 0412 0413 0414 0415
0416 0417 0418 0419 0420 0421 0422 0423
0424 0425 0426 0427 0428 0429 0430 0431
0432 0433 0434 0435 0436 0431 0438 0439
0440 0441 0442 0443 0444 0445 0446 0447

0448 0449 0450 0451 0452 0453 0454 0455
0456 0457 0458 0459 0460 0461 0462 0463
0464 0465 0466 0467 0468 0469 0470 0471
0472 0473 0474 0475 0476 0477 0478 0479
0480 0481 0482 0483 0484 0485 0486 0487
0488 0489 0490 0491 0492 0493 0494 0495
0496 0497 0498 0499 0500 0501 0502 0503
0504 0505 0506 0507 0508 0509 0510 0511

0 I 2 3 4 5 6 7

0768 0769 0770 0771 0772 0773 0774 0775
0776 0777 0778 0779 0780 0781 0782 0783
0784 0785 0786 0787 0788 0789 0790 0791
0792 0793 0794 0795 0796 0797 0798 0799
0800 0801 0802 0803 0804 0805 0808 0807
0808 080~ 0810 0811 0812 0813 0814 0815
0816 0817 0818 0819 0820 0821 0822 0823
0824 0825 0826 0827 0828 0829 0830 0831

0832 0833 0834 0835 0836 0837 0838 0839
0840 0841 0842 0843 0844 0845 0846 0847
0848 0849 0850 0851 0852 0853 0854 0855
0856 0857 0858 0859 0860 0861 0862 0863
0864 0865 0866 0867 0868 0869 0870 0871
0872 0873 0874 0875 0876 0877 0878 0878
0880 0881 0882 0883 0884 0885 0886 0887
0888 0889 0890 0891 0892 0893 089(0895

0896 0897 0898 0899 0900 0901 Og02 0903
0904 0905 0906 0901 0908 0909 0910 0911
0912 0913 0914 0915 0916 0917 0918 0919
0920 0921 0922 0923 0924 0925 0926 0927
0928 0929 0930 0931 0932 0933 0934 0935
0936 0937 0938 0939 0940 0941 0942 0943
0944 0945 0946 0947 0948 0949 0950 0951
0952 0953 0954 0955 0956 0957 0958 0959

0960 0961 0962 0963 0964 0965 0966 0967
0968 0969 0970 0971 0972 0973 0974 0975
0976 0977 0978 0979 0980 0981 0982 0983
0984 0985 0986 0987 0988 0989 0990 0991
0992 0993 0994 0995 0996 0997 0998 0999
1000 1001 1002 1003 1004 1005 1006 1007
1008 1009 1010 1011 1012 1013 1014 1015
1016 1017 lOIS 1019 10:~ 1021 1022 1023

9511BA.F3

F-3

0 I 2 3 4 5 6

2000 1024 1025 1026 1027 1028 1029 1030
2010 1032 1033 1034 1035 1036 1037 1038
2020 1040 1041 1042 1043 1044 1045 1046
2030 1048 1049 1050 1051 1052 1053 1054
2040 1056 1057 1058 1059 1060 1061 1062
2050 1064 1065 1066 1067 1068 Hl69 1070
2060 1072 1073 1074 1075 1076 1077 1078
2070 1080 1081 1082 1083 1084 1085 1086

2100 1088 1089 1090 1091 1092 1093 1094
2110 1096 1097 1098 1099 1100 1101 1102
2120 1104 1105 1106 1107 1108 1109 1110
2130 1112 1113 1114 1115 1116 1117 1118
2140 1120 1121 1122 1123 1124 1125 1126
2150 1128 1129 1130 1131 1132 1133 1134
2160 .JI36 1137 1138 1139 1140 1141 1142
2170 1144 1145 114G 1147 1148 1149 1150

2200 1152 1153 1154 1155 1156 1157 1158
2210 1160 1161 1162 1163 1164 1165 1166
2220 1168 1169 1170 1171 1172 1173 1174
2231) 1176 1177 1178 1179 1180 1181 1182
2240 1184 1185 1186 1187 1188 1189 1190
2250 1192 1193 1194 1I95 1196 1197 1198
2260 1200 1201 1202 1203 1204 1205 1206
2270 1208 1209 1210 1211 1212 1213 1214

2300 1216 1217 1218 1219 1220 1221 1222
2310 1224 1225 1226 1227 1228 1229 1230
2320 1232 1233 1234 1235 1236 1237 1238
2330 1240 1241 1242 1243 \244 1245 \246
2340 1248 1249 1250 1251 1252 1253 1254
2350 1256 1257 \258 1259 1260 1261 1262
2360 1264 \265 \266 1267 1268 1269 1270
2370 1272 1273 1274 1275 1276 1277 1278

a I 2 3 4 5 6

3000 1536 1537 1538 1539 1540 1541 1542
3010 1544 1545 1546 1547 1548 1549 1550
3020 1552 1553 1554 1555 1556 1557 1558
3030 1560 1561 1562 1563 1564 1565 1566
3040 1568 1569 1570 1571 1572 1573 1574
3050 1576 1577 1578 1579 1580 1581 1582
3060 1584 1585 1586 1587 1588 1589 1590
3070 1592 1593 1594 1595 1596 1597 1598

3100 1600 1601 1602 1603 1604 1605 1606
3110 1608 1609 1610 1611 1612 1613 1614
3120 1616 1617 1618 1619 1620 1621 1622
3130 1624 1625 1626 1627 1628 1629 1630
3140 1632 1633 1634 1635 1636. 1637 1638
3150 1640 1641 1642 1643 1644 1645 1646
3160 1648 1649 1650 1651 1652 1653 16;'4
3170 1656 1657 1658 1659 1660 1661 1662

. 3200 1664 1665 1666 1667 1668 1669 1670
3210 1672 1673 1674 1675 1676 1677 1678
3220 1680 1681 1682 1683 1684 1685 1686
3230 1688 1689 1690 1691 1692 1693 1694
3240 1696 1697 1698 1699 1700 1701 1702
3250 1704 1705 1706 1707 1708 1709 1710
3260 1712 1713 1714 1715 1716 1717 1718
3270 1720 1721 1722 1723 1724 1725 1726

3300 1728 1729 1730 1731 1732 1733 1734
3310 1736 1737 1738 1739 1740 1741 1742
3320 1744 1745 1746 1747 1748 1749 1750
3330 1752 1753 1754 1755 1756 1757 1758
3340 1760 1761 1762 1763 1764 1765 1766
3350 1768 1769 1770 1771 1772 1773 1774
336U 1776 1777 1778 1779 1780 1781 1782
3370 1784 1785 1786 1787 1788 1789 1790

APPENDIX F (CON1'0)

NUMERICAL INFORMATION

OCTAL·DECIMAL INTEGER CONVERSION TABLE

7 0 I 2 3

1031 2400 1280 1281 1.282 1283
1039 2410 1288 1289 1290 1291
1047 2420 1296 1297 1298. 1299
1055 2430 1304 1305 1306 1307
1063 2440 13\2 1313 1314 1315
1071 2450 1320 1321 1322 1323
1079 2460 1328 1329 1330 1331
1087 2470 1336 1337 1338 1339

1095 2500 1344 1345 1346 1347
1103 2510 1352 1353 1354 1355
1111 2520 1360 1361 1362 1363
1119 2530 1368 1369 1370 1371
1127 2540 1376 1377 1378 1379
1135 2550 1384 1385 1386 1387
1143 2560 1392 1393 1394 1395
1151 2570 1400 1401 1402 1403

1159 2600 1408 1409 1410 1411
1167 2610 1416 1417 1418 1419
1175 ' 2620 1424 1425 1426 1427
1183 2630 1432 1433 1434 1435
1191 2640 1440 1441 1442 1443
1199 2650 1448 1449 1450 1451
1207 2660 1456 1457 1458 1459
1215 2670 1464 1465 1466 1467

1223 2700 1472 1473 1474 1475
1231 2710 1480 1481 1482 1483
1239 2720 1488 1489 1490 1491
1247 2730 1496 1497 1498 1499
\255 2740 1504 1505 1506 1507
1263 2750 1512 1513 1514 1515
1271 2760 i520 1521 1522 1523
1279 2770 1528 1529 1530 1531

7 0 I 2 3

1543 3400 1792 1793 1794 1795
1551 3410 1800 1801 1802 1803
1559 3420 1808 1809 1810 IS II
1567 3430 1816 1817 1818 1819
1575 3440 1824 1825 1826 1827
1583 3450 1832 1833 1834 1835
1591 3460 1840 1841 1842 1843
1599 3470 1848 1849 1850 1851

1607
1615

3500 1S56 1857 1858 1859
3510 1864 1865 1866 1867

1623 3520 1872 1873 1874 1875
1631 3530 1880 1881 1882 1883
1639
1647

3540 1888 1889 1890 1891
3550 1896 1897 1898 1899

1655
1663

3560 1904 1905 1906 '907
3570 1912 1913 1914 1915

1671
1679

3600 1920 .1921 1922 1923
3610 1928 1929 1930 1931

1687
1695
1703

3620 1936 1937 1938 1939
3630 1944 1945 1946 1947
3640 1952 1953 1954 1955

1711
1719
1727

3650 1960 1961 1962 1963
3660 1968 1969 1970 1971
3670 1976 1977 1978 1979

1735
1743
1751
1759
1767
1775
1783
1791

3700 1984 1985 1986 1987
3710 1992 1993 1994 1995
3720 2000 2001 2002 2003
3730 2008 2009 2010 2011
3740 2016 2017 2018 2019
3750 2024 2025 2026 2027
3760 2032 2033 2034' 2035
3770 2040 2041 2042 2043

4 5 6

1284· 1285 1286
1292 1293 1294
1300 1301 1302
1308 1309 1310
1316 1317, 1318
1324 1325 1326
1332 1313 1334
1340 134\ 1342

1348 1349 1350
1356 1357 1358
1364 1365 1366
1372 1373 1374
1380 1381 1382
1388 1389 1390
1396 1397 1398
1404 1405 1406

1412 1413 1414
1420 1421 1422
1428 1429 1430
1436 1437 1438
1444 1445 1446
1452 1453 1454
1460 1461 1462
1468 1469 1470

1476 1477 1478
1484 1485 1488
1492 1493 149~
1500 1501 1502
1508 1509 1510
1516 1517 1518
1524 1525 1526
1532 1533 1534

4 5 6

1796 1797 1798
1804 1805 1806
1812 1813 1814
1820 1821 1822
1828 1829 1830
1836 1837 1838
1844 1845 1846
1852 1853 1854

1860 1861 1862
1868 1869 1870
1876 1877 1878
1884 1885 1886
1892 1893 1894
1900 1901 1902
1908 1909 1910
1916 1917 1918

1924 1925 1926
1932 1933 1934
1940 1941 1942
1948 1949 1950
1956 1957 1958
1964 1965 1966
1972 1973 1974
1980 1981 1982

1988 1989 1990
1996 1997 1998
2004 2005 2006
2012 2013 2014
2020 2021 2022
2028 2029 2030
2036 2037 2038
2044 2045 2046

7

1287
1295
1303
1311
1319
1327
1335
1343

1351
1359
1367
1375
1383
1391
1399
1407

14\5
1423
1431
1439
1447
1455
1483
1471

1479
1481
1495
1503
1511
1519
1527
1535

7

1799
1801
ISIS
1823
1831
1839
1847
1855

18153
1871
1879
1887
1895
1903
1911
1919

1927
1935
1943
1951
1959
1967
1975
1983

1991
1999
2007
20i5
21123
2031
2039
20H

2000 102,
to 10

2777 1$35
10,1011 ID .. imoll

Octal Decimal
10000. 4096
20000· 8192
30000. 12288
40000 • 16384
50000 • 20480
60000·24576
70000· 28672

~ooo 1536
to ,.

~777 20'7
10Clol) IDe,imol)

'lSl18A.F4

.000 I 2048
to to

.777 2559
10CloII (D.dmol,

Oclal Decimal
10000. ""096
20000· 8192
30000· 12288
",,0000· 16384
50000 • 20480
60000·24576
70000 • 28672

'000 I 2560
10 to

"" 3071
(OClol) (D«;moll

4000
4010
4020
4030
4040
4050
4060
4070

4100
4110
4120
4130
4140
4150
4160
4170

4200
4210
4220
4230
4240
4250
4260
4270

4300
4310
4320
4330
4340
4350
4360
4370

5000
5010
5020
5030
5040
5050
5060
5070

5100
5110
5120
5130
5140
5150
5\60
5170

5200
5210
5220
5230
5240
5250
5260
5270

5300
5310
5320
5330
5340
5350
5360
5370

0 I

2048 2049
2056 2057
2064 2065
2072 2073
2080 2081
2088 2089
2996 2097
2104 2105

2112 2113
2120 2121
2128 2129
2136 2137
2144 2145
2152 2153
2160 2161
2168 2169

2176 2177
2184 2185
2192 2193
2200 2201
2208 2209
2216 2217
2224 2225
2232 2233

2240 2241
2248 2249
2256 2257
2264 2265
2272 2273
2280 2281
2288 2289
2296 2297

0 I

2560 2561
2568 2569
2576 2577
2584 2585
2592 2593
2600 2601
2608 2609
2616 2617

2624 2625
2632 2633
2640 2641
2648 2649
2656 2657
2664 2665
2672 2673
2680 2681

2688 2689
2696 2697
2704 2705
2712 2713
2720 2721
2728 2729
2736 2737
2744 2745

27S2 2753
2760 2761
2768 2769
2776 2777
2784 2785
2792 2793
2800 2801
2808 2809

APPENDIX F (CONT'D)

NUMERICAL INFORMATION

OCTAL·DECIMAL INTEGER CONVERSION TABLE

2 3 4 5 G 7 0 I 2

2050 2051 2052 2053 2054 2055 4400 2304 2305 2306
2058 2059 2060 2061 2062 2063 4410 2312 2313 2314
2066 2067 2068 2069 2070 2071 4420 2320 2321 2322
2074 2075 2076 2077 2078 2079 4430 2328 2329 2330
2082 2083 2084 2085 2086 2087 4440 2336 2337 2338
2090 2091 2092 2093 2094 2095 4450 2344 2345 2346
2098 2099 2100 2101 2102 2103 4460 2352 2353 2354
2106 2107 2108 2109 2110 2111 4470 2360 2361 2362

2114 2115 2116 2117 2118 2119 4500 2368 2369 2370
2122 2123 2124 2125 2126 2127 4510 2376 2377 2378
2130 2131 2132 2133 2134 2135 4520 2384 2385 2386
2138 2139 2140 2141 2142 2143 4~30 2392 2393 2394
2146 2147 2148 2149 2150 2151 4540 2400 2401 2402
2154 2155 2156 2157 2158 2159 4550 2408 2409 2410
2162 2163 2164 2165 2166 2167 4560 2416 2417 2418
2170 2171 2172 2173 2174 2175 4570 2424 2425 2426

2178 2179 2180 2181 2182 2183 4600 2432 2433 2434
2186 2187 2188 2189 2190 2191 4610 2440 2441 2442
2194 2195 2196 219~ 2198 2199 4620 2448 2449 2450
2202 2203 2204 2205 2206 2207 4630 2456 2457 2458
2210 2211 2212 2213 2214 2215 4640 2464 2465 2466
2218 2219 2220 2221 2222 2223 4650 2472 2473 2474
2226 2227 2228 2229 2230 2231 4660 2480 2481 2482
2234 2235 2236 2237 2238 2239 4670 2488 2489 2490

2242 2243 2244 2245 2246 2247 4700 :1.496 2497 2498
2250 2251 2252 2253 2254 22S5 4710 '2504 2505 2506
2258 2259 2260 2261 2262 2263 4720 2512 2513 2514
2266 2267 2268 2269 2270 2271 4730 2520 2521 2522
2274 2275 2276 2277 2278 2279 4740 2528 2529 2530
2282 2283 2284 228S. 2286 2287 4750 2536 2537 2538
2290 2291 2292 2293 2294 2295 4760 2544 2545 2546
.2298 2299 2300 2301 2302 2303 4770 2552 2553 2554

2 3 4 5 6 7 0 1 2

2562 2563 2564 2565 2566 2567 5400 2816 2817 2818
2570 2571 2572 2.573 2574 2575 5410 2824 2825 2826
2578 ·2579 2580 2581 ~5'82 2583 5420 2832 2833 2834
2586 2587 2588 2S8Y 2590 2591 5430 2840 2841 2842
2594 2595 2596 2597 2598 2599 5440 2848 2849 2850
2602 2603 2604 2605 2606 2607 5450 2856 2857 2858
2610 2611 2612 2613 2614 2615 5460 2864 2865 2866
2618 2619 2620 2621 2622 2623 5470 2872 2873 2874

2626 2627 2628 2629 2630 2631 5500 2880 2881 2882
2634 2635 2636 2637 2638 2639 5510 2888 2889 2890
2642 2643 2644 2645 2646 2647 5520 2896 2897 2898
2650 2651 2652 2653 2654 2655 5530 2904 2905 2906
2658 2659 2660 2661 2662 2663 5540 2912 2913 2914
2666 2667 2668 2669 2670 2671 5550 2920 2921 2922
2674 2675 2676 2677 2678 2679 5560 2928 2929 2930
2682 2683 2684 2685 2686 .2687 5570 2936 2937 2938

2690 2691 2692 2693 2694 2695 5600 2944 2945 2945
2698 2699 2700 2701 2702 2703 5610 2952 2953 2954
2706 2707 2708 2709 2710 2111 5620 2960 2961 2962
2714 2715 2716 2717 2718 2719 5630 2968 :969 2970
2722 27Z3 2724 2725 2726 2727 5640 2976 2977 2978
2730 2731 2732 2733 2734 2735 5650 2S84 2985 2986
2738 2739 ·2740 2741 2742 2743 5660 2992 2993 2994
2746 2747 2148 2749 2750 2751 5670 3000 3001 3002

2754 2755 2756 2757 2758 2759 ~700 3008 3009 3010
2762 2763 2764 2765 2766 2767 5710 3016 3017 3018
2770 2771 2772 2773 2774 2775 5720 3024 3025 3026
2778 2779 2780 2781 2782 27~3 5730 3032 3033 3034
2786 2787 2788 2789 2790 2791 5740 3040 3041 3042
2794 2795 2796 2797 2798 2799 5750 3048 3049 3050
2802 2803 2804 2805 2806 2807 5760 3056 3057 3058
2810 2811 2812 2813 28\4 2815 5770 3064 3065 3066

3 4 5 6 7

2307 2308 2309 2310 2311
2315 2316 2317 2318 2319
2323 2324 2325 2326 2327
2331 2332 2333 2334 2335
2339 2340 2341 2342 2343
2347 2348 2349 2350 2351
2355 2356 2357 2358 2359
2363 2364 2365 2366 2367

2371 2372 2373 2374 2375
2379 2380 2381 2382 2383
2387 2388 2389 2390 2391
2395 2396 2397 2398 2399
2403 2404 2405 2406 2407
2411 2412 2413 2414 2415
2419 2420 2421 2422 2423
2427 2428 2429 2430 2431

2435 2436 2437 2438 2439
2443 2444 2445 2446 2447
2451 2452 2453 2454 2455
2459 2460 2461 2462 24q3
2467 2468 2469 2470 2471
2475 2476 2477 2478 2479
2483 2184 2485 2486 2487
2491 2492 2493 2494 2495

2499 2500 2501 2502 2503
2507 2508 2509 2510 2511
2515 2516 2517 2518 25\9
2523 2524 2525 2526 2521
2531 2532 2533 2534 2535
2539 2540 2541 2542 2543
2547 2548 2549 2550 2551
2555 2556 2557 2558 2559

3 4 5 6 7

2819 2820 28?1 2822 2823
2827 2828 2829 2830 2831
2835 2836 2837 2838 2839
2843 2844 2845 2846 :847
2851 2852 2853 2854 2855
2859 2860 2861 2862 2863
2867 2868 2869 2870 2£71
2875 2876 2877 2878 287~

2883 2884 2885 2886 2887
2891 2892 2893 2894 289S
2899 2900 2901 2902 2903
2907 2908 2909 2910 2911
2915 2916 2917 2918 2919
2923 2924 2925 2926 2921
2931 2932 2933 2934 2935
2939 2940 2941 2942 2943

2947 2948 2949 2950 2951
2955 2956 2957 2958 2959
2963 2964 2965 2966 2967
2971 2972 2973 2974 2975
2979 2980 2981 2982 2983
2957 2988 2989 2990 2991
2995 2996 2997 2998 2999
3003 3004 3005 3006 3007

3011 3012 3013 3014 3015
3019 3020 3021 3022 3023
3027 3028 3029 3030 3031
3035 3036 3037 3038 3039
3043 3044 3045 3046 3047
3051 3052 3053 3054 3055
3059 3060 3061 3062 3063
3067 3068 3069 3070 3071

'JSI18A. F5

F-5

a 1 Z 3 4 5 6

6000 3012 3073 3074 3075 3076 3077 3078
6010 3080 3081 3082 3083 3084 3085 3086
6020 3088 3089 3090 3091 3092 3093 3094
6030 3096 3097 3098 3099 3100 3101 3102
8040 3104 3105 3106 3107 3108 31093110
6050 31\2 3113 3114 3115 3116 3117 3118
6060 3120 3121 3122 3123 3124 3125 3126
6070 3128 3129 3130 3131 3132 3133 3134

6100 3136 3137 3139 3139 3140 3141 3142
6110 I 3144 3145 3146 3147 3148 3149 3150
612013152 3153 3154 3155 3156 3157 3158
6130 3160 3161 3162 3163 3164 3165 3166
6140 3168 3169 3170 3171 3172 3173 3174
6150 3176 3177 3178 3179 3180 3181 3182
6160 3184 3185 3186 3187 3188 3189 3190
6170 3192 3193 3194 3195 3196 3197 3198

16200 3200 3201 3202 3203 3204 3205 3206
6210 3208 3209 3210 3211 3212 3213 3214
6220 3216 3217 3218 3219 3220 3221 3222
6230 3224 3225 3226 3227 3228 3229 3230
6240 3232 3233 3234 3235 3236 3237 3238
6250 3240 3241 3242 3243 3244 3245 3246
8260 3248 3249 3250 3251 3252 3253 3254
6270 3256 3257 3258 3259 3260 3261 3262

6300 3264 3265 3266 3267 3268 3269 3270
6310 3272 3273 3274 3275 3276 3277 3278
6320 3280 3281 3282 3283 3284 3285 3286
6330 3288 3289 3290 3291 3292 3293 3294
6340 3296 3297 3298 3299 3300 3301 3302
6350 3304 3305 3306 3307 3308 3309 3310
6360 3312 3313 3314 3315 3316 3317 3318
6370 3320 3321 3322 3323 3324 3325 3326

a 1 2 3 4 5 6

7000 3584 3585 3586 3587 3588 3589 3590
7010 3592 3593 3594 3595 3596 3597 3598
1020 3600 3601 3602 3603 3604 3605 3606
7030 3608 3609 3610 361\ 3612 3613 3614
7040 361u 3617 3618 3619 3620 3621 3622
7050 3624 3625 3626 3627 3628 3629 3630
7060 3632 3633 3634 3635 3636 3637 3638
7070 3640 3641 3642 3643 3644 3645 3646

7100 3648 3649 3650 3651 3652 3653 3654
7110 3656 3657 3658 3659 3660 3661 3662
7120 3664 3665 3666 3667 3668 3669 3670
7130 3672 3673 3674 3675 3676 3677 3678
7140 3680 3681 3682 3683 3684 3685 3686
U50 3688 3689 3690 3691 3692 3693 3694
7160 3696 3697 3698 3699 3700 3701 3702
7110 3704 3705 3706 3707 3708 3709 3710

7200 3712 3713 3714 3715 3716 3717 3718
7210 3720 3721 3722 3723 3724 3725 3726
1220 3728 31129 3730 3731 3732 3733 3734
1230 3736 3737 3738 3139 3740 3741 3742
7240 3744 3745 3746 3747 3748 3749 3750
7250 3752 3753 3754 3755 3756 3757 3758
7260 ~750 3761 3762 3763 3764 3765 3766
7270 3168 3769 3770 3771 3772 3773 3774

7300 3776 3777 3778 3779 3780 3781 3782
7310 3784 3785 3786 3787 3788 3789 37~0

7320 3792 3793 3794 3795 3796 3797 3798
7330 ~800 3801 3802 3803 3804 3805 3806
7340 3808 3809 3810 381\ 3812 3813 3814
735~ 3816 3817 3818 3819 3820 3821 3822
7360 3824 3825 3826 3827 3828 3829 3830
7370 3832 3833 3834 3835 3836 3837 3838

F-6

APPENDIX F' (CONT'D)

NUMERICAL INFORMATION

OCTAL·DECIMAL INTEGER CONVERSION TABLE

1 0 I 2 3 4 5 6 7

3079 6400 3328 3329 3330 '3331 3332 3333 3334 3335
3067 6410 3336 3337 3338 3339 3340 3341 3342 3343
3095 6420 3344 3345 3346 3347 3348 3349 3350 3351
3103 6430 3352 3353 3354 3355 3356 3357 3358 3359
3111 6440 3360 3361 3362 3363 3364 3365 3366 3367
3119 6450 3368 3369 3370 3371 3372 3373 3374 3375
3127 6460 3376 3377 3378 3379 3380 3381 3382 3383
3135 6470 3384 3385 3386 3387 3388 3389 3390 3391

3143 6500 3392 3393 3394 3395 3396 3397 3398 3399
31:;1 6510 3400 3401 3402 3403 3404 3405 3406 3407
3159
3167
3175

6520 13408 3409 3410,3411 3412 3413 3414 3415
6530 3416 3417 3418 3419 3420 3421 3422 3423
6540 3424 3425 3426 3427 3428 3429 3430 3431

3183 6550 3432 3433 3434 3435 34~6 3437 3438 3439
3191 6560 3440 3441 3442 3443 3444 3445 3446 3447
3199 6570 3448 3449 3450 3451 3452 3453 3454 3455

3207 6600 3456 3457 3458 3459 3466 3461 3462 3463
3215 6610 3464 3465 3466 3467 3468 3469 3470 3471
3223 6620 3472 3473 3474 3475 3476 3477 3478 3479
3231 6630 3480 3481 3482 3483 3484 3485 3486 3487
3239 6640 34811 3489 3490 3491 3492 3493 3494 3495
3247 6650 3496 3497 3498 3499 3500 3501 3502 3503
3255 6660 3504 3505 3506 3507 3508 3509 3510 3511
3263 6670 3512 3513 3514 3515 3516 3517 3518 3519

3271 ,6700 3520 3521 3522 3523 3524 3525 3526 3527
3279 6710 3528 3529 3530 3531 3532 3533 3534 3535
3287 6720 3536 3537 3538 3539 3540 3541 3542 3543
3295 6730 3544 3545 3546 3547 3548 3549 3550 3551
3303 6140 3552 3553 3554 3555 3556 3557 3558 3559
3311 6750 3560 3561 3562 3563 3564 3565 3566 3567
3319 6760 3568 3569 3570 3571 3572 3573 3574 3575
3327 6770 3576 3577 3578 3579 3580 3581 3582 3583

7 a 1 2 3 4 5 6 7
.--I--

3591 7400 3840 3841 3842 3843 3844 3845 3846 3847
3599
3607
3615
3623
3631
3639
3647

7410 3848 3849 3850 3851 3852 3853 3854 3855
7420 3856 3857 3858 3859 3860 3861 3862 3863
7430 3864 3865 3866 3867 3868 3869 3870 3871
7440 3872 3873 3874 3875 3876 3877 3878 3879
7450 3880 3881 3882 3883 3884 3885 3886 3887
7460 3888 3889 3890 3891 3892 3893 3894 3895
7470 3896 3897 3898 38~9 3900 3901 3902 3903

3655
3663
3671
3679
3687
3695
3703
3711

7500 3904 3905 3906 3907 3908 3909 3910 3911
7510 3912 3913 3914 3915 3916 3917 3918 3919
7520 3920 3921 3922 3923 3924 3925 3926 3927
7530 3928 3929 3930 3931 3932 3933 3934 3935
7540 3936 3937 3938 3939 3940 3941 3942 3943
7550 3944 3945 3946 3947 3948 3949 3950 3951
7560 3952 3953 3954 3955 3956 3957 3958 3959
7570 3960 3961 3962 3963 3964 3965 3966 3967

3719
3727
3735
3143
3751
3759
3767
3775

7600 3968 3969 3970 3971 3972 3973 3974 3975
7610 3976 3977 3978 3979 3980 3981 3982 3983
7620 3984 3985 3986 3987 3988 3989 3990 3991
7630 3992 3993 3994 3995 3996 3997 3998 3999
7640 4000 4001 4002 4003 4004 4005 4006 4007
7650 4008 4009 4010 4011 4012 4013 4014 4015
7660 4016 4017 4018 4019 4020 4021 1022 4023
7670 4024 4025 4026 4027 4028 4029 4030 4031

3783
3791
37~9
3807
3815
3823
3831
3839

7700 4032 4033 4034 4035 4036 4037 4038 4039
1710 4040 4041 4042 4043 4044 4045 4046 4047
7720 4048 4049 4050 4051 4052 4053 4054 4055
7730 4056 4057 4058 4059 4060 4061 4062 4063
7740 4064 4065 4066 4067 4068 4069 4070 4071
7750 4072 4073 4074 4075 4076 4077 4078 4079
7760 4080 4081 4082 4083 4084 4085 4086 4087
7770 4088 4089 4090 4091 4092 4093 4094 4095

6000 I 3072
to to

6777 3583
(0"01) (D.,;.,ol)

Oclal Decimal
10000· 4096
20000· 8192
30000· 12288
40000· 16384
SOOOO • 20480
6000t)·24576
70000·28672

7000 I 35U
to to

7777 .095
(Octol) (D.,;.,ol)

l'jllHA.Fr,

APPENDIX F (CONT'D)

NUMERI CAL INFORMA nON

OCTAL·DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL ut:c.

.000 .000000 .100 .125000 .200 .250000 .300 .375000

.001 .001953 .101 .126953 .201 .25"53 .301 • 37G953

.002 .~03906 .102 .128906 .202 .253906 .302 .378!1Or.

.003 .005859 .103 .130859 .203 .255859 .303 .380859

.004 .007812 .104 .132812 .204 • 25i812 .304 .382812

.005 .009765 .105 .134165 .205 .259165 .305 .384765

.006 .011718 .106 .136718 .206 .261118 .306 , .386718

.007 .013671 .107 .138671 .207 .263671 .307 .388671

.010 .015625 .110 .140625 .210 .265625 .310 .390625

.011 .011578 .111 .142578 .211 .267578 .311 .392578

.012 .019531 .112 .144531 .212 .269531 .312 .394531

.013 .021484 .113 .146484 .213 .271484 .313 .396484

.014 .023437 .114 .148437 .214 .273437 .314 .398437

.015 .025390 .115 .150390 .215 .275390 .315 .400390

.016 .027343 .116 .152343 .216 .277343 .316 .402343

.011 .029296 .117 .154296 .217 .279296 .317 .404296

.020 .031250 .120 .156250 .220 .281250 .320 .406250

.021 .033203 .121 .158203 .221 .283203 .321 .408203

.022 .035156 .122 .160156 .222 .285156 .322 .410156

.023 .037109 .123 .162109 .223 .287109 .323 .412109

.024 .039062 .124 .184062 .224 .289062 .324 .414062

.025 .041015 .125 .166015 .225 .291015 .~25 .416015

.026 .042968 .126 .167968 .226 .292968 .326 .417968

.027 .044921 .127 .169921 .227 .294921 .327 .419921

.030 .046875 .130 .171875 .230 .296875 .330 .421875

.031 .048828 .131 .173828 .231 .298828 .331 .423828

.032 .050781 .132 .175781 .232 .300781 .332 .426781

.033 .052734 .133 .117734 .233 .302734 .333 .427734

.034 .054687 .134 .179687 .234 .304687 .334 .429687

.035 .056640 .135 .181840 .235 .306640 .335 .431640
'.036 .058593 .136 .183593 .236 .308593 .336 .433593
.037 .060546 .137 .185546 .237 .310546 .337 .435546
.040 .062500 .140 .187500 .240 .312500 .340 .437500
.041 .064453 .141 .189453 .241 .314453 .341 .439453
.042 .066406 .142 .191406 .242 .316406 .342 .441406
.043 .068359 .143 .193359 .243 .318359 .343 .443359
.044 .070312 .144 .195312 .244 .320312 .344 .445312
.045 .072265 .145 .197265 .245 .322265 .345 .447265
.046 .074218 .146 .199218 .246 .324218 .346 .449218
.047 .076171 .147 .201171 .247 .326171 .347 .451171
.050 .078125 .150 .203125 .250 .328125 .350 .453125
.051 .080078 .151 .205078 .251 .330078 .351 .455078
.052 .082031 .152 .207031 .252 .332031 .352 .457031
.053 .083964 .153 .208984 .253 .333984 .353 .458984
.054 .085937 .154 .210937 .254 .335937 .354 .460937
.055 .087890 .155 .212890 .255 .337890 .355 .462890
.056 .089843 .156 .214843 .256 .339843 .356 .464843
.057 .091796 .157 .216196 .257 .341196 .357 .466'196
.060 .093150 .160 .218750 .260 .343750 .360 .468150
.061 .095703 .161 .220703 .261 .345703 .361 .470703
.062 .097656 .162 .222656 .262 .347656 .362 .472656
.063 .099609 .163 .224609 .263 .349609 .363 .474609
.064 .101562 .164 .226562 .264 .351562 .364 .416562
.065 .103515 .165 .228515 .265 .353515 .365 .478515
.066 .105468 .166 .230468 .266 .355468 .366 .480468
.067 .107421 .167 .232421 .267 .357421 .367 .482421
.070 .109375 .110 .234375 .270 .359375 .370 .484375
.071 .111328 .111 .236328 .271 .361328 .371 .486328
.072 .113281 .172 .238281 .272 .363281 .372 .4882111
.073 .115234 .173 .240234 .273 .365234 .373 .490234
.074 .117187 .174 .242187 .274 .367187 .374 .492187
.075 .119140 .175 .244140 .275 .369140 .315 .494140
.076 .121093 .116 .246093 .216 .371093 .376 .49~093
.077 .123046 .177 .248046 .277 .373046 .377 .498046

95I18A.F7

F-7

APPENDIX F (CONT'D)

NUMERICAL INFORMATION

OCTAL·DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC •

.0000.00 .000000 • 000100 .000244 .000200 .000488 .000300 .000132

.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736

.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740

.000003 .000011 .000103 .000255 .000203 .000499 .000303 .000743

.000004 .000015 .000104 .000259 .000204 .000503 .000304 .000747

.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751

.000006 .000022 .000106 .00D267 .000206 .000511 .000306 .000755

.000007 .000026 .000107 .000270 .000207 .000514 .000307 .000759

.000010 .000030 ,000110 .000274 .000210 .000518 .000310 .000762

.000011 .000034 .000111 .000278 .000211 .000522 .000311 .000766

.000012 .000038 .000112 .000282 .000212 .000526 .000312 .000770

.000013 .000041 .000113 .000286 .000213 .000530 .000313 .000774

.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778

.000015 .000049 .000115 .000293 .000215 .000537 .000315 .0007k2

.000016 .000053 .000116 .000297 ,000216 .000541 .000316 .000785

.000017 .000057 .000117 .000301 .000217 .000545 .000311 .000789

.000020 .000061 .000120 .000305 .000220 .000549 .000320 .000793

.000021 .000064 .000121 .000308 .000221 .000553 .000321 .000797

.000022 .000068 .000122 .000312 .000222 .000556 .000322 .000801

.000023 .000012 .000123 .000316 .000223 .000560 .000323 .000805

.000024 .000016 .000124 .000320 .000224 .000564 .000324 .000808

.000025 .000080 .000125 .000324 .000225 .000568 .000325 .000812

.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816

.000027 .000081 .000127 .000331 .000227 .000576 .000327 .000820

.000030 .000091 .000130 .000335 .000230 .000579 .000330 .000823

.000031 .000095 .000131 .000339 .000231 .000583 .000331 .000827

.000032 .000099 .000132 .000343 .000232 .000581 .000332 .000831

.000033 .000102 .000133 .000347 .000233 .000591 .000333 .000835

.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839

.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843

.000036 .000114 .000136 .000358 .000236 .000602 .000336 .000846

.000031 .000118 .000137 .000362 .000237 .000606 .000331 .000850

.000040 .000122 .000140 .000366 .000240 .000610 .000340 .000854

.000041 .000125 .000141 .000370 .000241 .000614 .000341 .000858

.000042 .000129 .000142 .000373 ,000242 .000617 .000342 .000862

.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865

.000044 .000137 .000144 .000381 .000244 .000625 .000344 .000869

.000045 .000141 .000145 .000385 .000245 .000629 .000345 .000873

.000046 .000144 .000146 .000389 .000246 .000633 .000346 .000877

.000047 .000148 .000141 .000392 .000247 .000637 .000347 .000581

.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885

.000051 .000156 .000151 .000400 .000251 .000644 .000351 .000888

.000052 .000160 .000152 .000404 .000252 .000648 .000352 .000892

.000053 .000164 .000153 .000408 .000253 .000652 .000353 .000896

.000054 .000167 .000154 .000411 .000254 .000656 .000354 .000900

.000055 .000171 .000155 .000415 .000255 .000659 .000355 .000904

.000056 .000175 .000156 .000419 .000256 .000663 .000356 .000907

.000057 .000179 .000157 .000423 .000257 .000667 .000357 .000911

.000060 .000183 .000160 .000427 .000260 .000671 .000360 .000915

.000061 .000186 .000161 .000431 .000261 .000675 .000361 .000919

.000062 • Q00190 .000162 .000434 .000262 .000679 .000362 .000923

.000063 .000194 .000163 .000438 .000263 .000682 .000363 .000926

.000064 .000198 .000164 .000442 .000264 .000686 .000364 .000930

.000065 .000202 .000165 .000446 .000265 .000690 .000365 .000934

.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938

.000061 .000209 .000167 .000453 .000267 .000698 .000367 .000942

.000070 .000213 .000170 .000457 .000270 .000701 .000370 .000946

.000071 .000217 .000171 .000461 .000271 .000705 .000371 .000949

.000072 .000221 .000172 .000465 .000272 .000709 .000372 .000953

.000073 .000225 .000173 .000469 .000213 .000713 .000373 .000951

.000074 .000228 .0001-74 .000473 .000214 .000717 .000374 .000961

.000075 .000232 .000175 .000476 .000215 .000720 .000375 .000965

.000076 .000236 .000176 .000480 .000276 .000724 .000376 .000968

.000011 .000240 .000171 .000484 .000277 .000728 .000377 .000972

9SIHIA.F!l

F-8

APPENDIX F' (CONT'D)

NUMERICAL INFORMATION

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.

,000400 .000976 .000500 .001220 .000600 .001464 .000700 .001708
,000401 .000980 .000501 .001224 .000601 .001468 .000701 .001712
,000402 .000984 .000502 .001226 .000602 ~001472 .000702 .001716
,000403 .000988 .000503 .001232 .000603 ,001476 .000703 ,001720
,000404 .000991 .000504 .001235 ,000604 ,001480 ,000704 .001724
.000405 .000995 .000505 .001239 .000605 ,001483 .000705 .• 001728
.000406 .000999 .000506 .001243 .000606 .001487 .000706 .001731
,000401 .001003 .000507 .001247 .000607 .001491 ,000707 .001735

,000410 .001007 .000510 .001251 .000610 .001495 .000710 .001739
,000411 .001010 .000511 .001255 .000611 .001499 .000711 .001743
,000412 .001014 .000512 .001258 .000612 ,001502 .000712 .001747
.000413 .001018 .000513 .001262 .000613 ,001506 .000713 .001750
.000414 .001022 .000514 .001266 .000614 .001510 .000714 .001754
.000415 .001026 .000515 .001270 .000615 .001514 .000715 .001758
,000416 .001029 ,000516 .001274 .000616 .• 001518 .000716 .001762
,000417 .001033 .000517 .001277 .000617 .001522 .000717 .001766

,000420 ,001037 .000520 .001281 .000620 .001525 .000720 .001770
,000421 ,001041 .000521 .001285 .000621 .001529 • 000721 .001773
,000422 .001045 .000522 .001289 .000622 .001533 .000722 .001777
,000423 .001049 .000523 .001293 .000623 .001537 .000723 .001781
.000424 .001052 .000524 .001296 .000624 .001541 .000724 .001785
.000425 .001056 .000525 .001300 .000625 .001544 .000725 .0017K9
,000426 .001060 ,000526 .001304 .000626 .001548 .000726 .001792
,000427 .001064 .000527 .001308 .000627 .001552 .000727 .001796

,000430 .001068 .000530 .001312 .000630 .001556 .000730 .00lBOO
,000431 ,001071 .000531 .001316 .000631 .001560 .000731 .001804
,000432 ,001075 .Oa0532 .001319 .000632 .001564 .000732 .001808
,000433 .001079 .000533 .001323 ,000633 .001567 .000733 .001811
.000434 .001083 .000534 .001327 .000634 .001571 .000734 .001815
.000435 .001087 .000535 .001331 .000635 .001575 .000735 .001819
.000436 .001091 .000536 .001335 .000636 .001579 .000736 .001823
.000437 .001094 .000537 .001338 .000537 .001583 .• 000737 .001827

.000440 .001098 .000540 .001342 .000640 .001586 .000740 .001831
,000441 ,001102 .000541 .001346 .000641 .001590 .000741 .001834
.000442 .001106 .000542 .001350 .. 000642 .001594 .000742 .001838
.000443 .001110 .000543 .0'01354 .000643 .001598 .000743 .001842
.000444 .001113 .000544 .001358 .000644 .001602 .000744 .001846
.000446 ,001117 .000545 .001361 .000645 .001605 .000745 .001850
.000446 .001121 .000546 .001365 • 000646 .001609 ,000746 ,.001853
.000447 .001125 .000547 .001369 .000647 .001613 .000747 .001857

,000450 .001129 .000550 .001373 .000650 .001611 .000750 .001861
.000451 .001132 .000551 .001377 .000651 .001621 .000751 .001865
.00OfS2 .001136 .000552 .001380 .000652 .001625 .000752 .001869
.000453 .001140 .000553 .001384 .000653 .001628 .000753 .001873
,000454 .001144 .000554 .001388 .000654 .001632 ,000754 .001876
,000455 .001148 ,000555 .001392 .000655 .001638 .000755 .001880
.000456 ,001152 .000556 .001396 .000656 .001640 .000756 • 001884
,000457 .001155 ,000557 .001399 .000657 .001644 .000757 .001888

.000460 .001159 .000560 .001403 .000660 .001647 .000760 .001892

.000461 .001163 ,000661 .001407 .000661 .001651 .000761 .001895

.000462 .001167 .000562 .001411 .000662 .001655 ,000762 .001899

.000463 .001171 .000563 .001415 .000663 .001659 .000763 .001903

.000464 .001174 .000564 .001419 .000664 .001663 .000764 .001907
,000465 .001178 .000565 .001422 .000665 .001661 .000785 .001911
.000466 .OOl1~2 .000566 .001426 .000666 .001670 .000766 .001914
.000467 .001186 ,000567 .001430 .000667 .001674 .000767 .001918

.000470 .001190 .000570 .001434 .000670 .001678 .000770 .001922

.000471 .001194 .000571 .001438 .000611 .001682 .000771 .001926
,000472 .001191 .000572 .001441 .000672 .001686 ,000772 .001930
.000473 .001201 .000573 .001445 .000673 .001689 .000773 .001934
.000474 .001205 .000574 .001449 .000674 .001693 .000n4 .001937
,000475 .001209 .000575 .001453 .000675 .001697 .000775 .001941
,000476 .001213 .000576 .001457 .000676 .001'ID1 ,000776 ,001945
.000417 .001216 .000577 .001461 .000677 .001705 ,OOO17T .001949

'}51IHA.FQ

F-9

APPENDIX F (CONT'D)

NUMERICAL INFORMATION

MATHEMATICAL INFORMATION

POWERS OF TEN (lO±n) IN OCTAL

IOn n 10-n

1 a 1. 000 000 000 000 000 000 00
12 1 O. 063 146 314 631 463 146 31

144 2 O. 005 075 341 217 270 243 66
1 750 3 O. 000 406 111564570 651 77

23 420 4 O. 000 032 155 613 530 704 15
303 240 5 O. 000 002 476 132 610 706 64

3 641 100 6 o. 000 000 206 157 364 055 37
46 113 200 7 O. 000 000 015 327 745 152 75

575 360 400 8 O. 000 000 001 257 143 561 06
7 346 545 000 9 O. 000 000 000 104 560 276 41

112 402 762 000 10 O. 000 000 000 006 676 337 66
1 351 035 564 000 11 O. 000 000 000 000 537 657 77

16 432 451 210 000 12 O. 000 000 000 000 043 136 32
221 411 634 520 000 13 O. 000 000 000 000 003 411 35

2 657 142 036 440 000 14 O. 000 000 000 000 000 264 11
34 327 724461 500 000 15 O. 000 000 000 000 000 022 01

434 157 115 760 zoo 000 16 O. 000 000 000 000 000 001 63
5432 127413 542 400 000 17 O. 000 000 000 000 000 000 014

67405 553 164 731 000 000 18 O. 000 000 000 000 000 000 00 1

VARIOUS CONSTANTS IN OCTAL NOTATION

7T = 3.11037552421 e = 2.55760521305

7T/z = 1. 04417665210 lie = 0.27426530661

117T = 0.24276301556 re = 1.51411230704

./1i = 1. 61337611067 log 10 e = 0.33626754251

In 7T = 1.11206404435 ~ = 1.32404746320

../lO = 3.12305407267 In 10 = 2.23273067355

lISIIKA.FIO

F-10

APPENDIX G

SEL 81 DB INSTRUCTION LIST SUMMARY

CYCLES
CLASS MNEMONIC OP CODE 750 NANOSECONDS FUNCTION PAGE

ARITHMETIC: AMA 05 Add Memory to A 2_6
AMB I6 Add Memory to B 2_6

SMA 06 Subtract Memory from A 2_6

MPY 07 6 Sec. Multiply B times Memory 2_7

DIY 10 11 Sec. Divide A and B by Memory 2-7
RNA' 00-01 1 Round A by MSB in B 2_8

OVS' 00-37 Set OverIlow 2_8

LOAD/STORE: LAA 01 Load A from Mernory 2_8

LBA 02 Load B from Memory 2-8
STA 03 Store Memory from A 2-9
STB O. Store Memory from B 2-9
Les' 00_31 Load Control Switches in A 2-9
LIX' 00-45 Load Hardware Index 2-9

Register
STX' 00-44 Store Hardwa.re Inde" 2-9

Register

BRANCH/SKIP: BRU II Unconditional Branch 2-10
SPS 12 Store Place and Branch 2_10

SNS 13-4 Skip if Control Switch Not
Set 2_10

IMS I. Increment Memory It-nd 2._10
Skip if 0

CMA 15 Compare Memory and A
(3 Way) 2-10

n+l if (A)_(M) 0
ntZ if (A)=(M)
n+3 if (A)-(m) 0

IBS' 00_2.6 Increment B (Index) anc!
Skip if 0 2-11

SAZ' 00_22 Skip·if A is Zero 2-11
SAP' 00_24 Skip if A is Positive 2_12
SAN' 00_23 Skip if A is Negative 2_11
SOF' 00-25 Skip No Overflow 2-12
SAS' 00_21 Skip on A Sign (3 Way) 2_11

n+1(-), n+2(0). n+3(+1

SNO' 00_32 Skip if A is Normahzed 2_12
LOB' 00-36 Long branch 2-12
SXB' 00_50 Skip if Index Pointer ,.

Set to B 2-13
IXS' 00-51 Increment Index and

Skipif~O 2-13

LOGICAL: ABA' 00_27 AND A and B 2_13
OBA' 00.30 ORAandB 2-13
NEG' 00-02 Negate A 2_14
ABC' 00_20 Complement A Sign 2-14
CNS' 00-34 Convert Number System 2-14

REGISTER CLA' 00-03 Clear A 2_14

CHANGE: TAB' 00-05 Transfer A to B 2_15
lAB' 00-06 Interchange A and B 2_15
CSB' 00-07 Transfer B sign tn Carry

and Clear B Sign to Positive 2-15
TBA' 00-04 Transfer B to A 2-14
TBP 00-40 Transfer B_Accumulator to

Protect Reg:ister 2-15
TPB 00-41 Transfer Protect Register

to B_Accumulator 2-15
TAX' 00-52 Transfer A_Accumulator to

Hardware Index Register 2_16
TXA' 00_51 Transfer Hardwarc Index

Register te, A_Accumulator 2-16
XPX' 00-46 Set Index Pointer to

Index Regibter 2_16
XPB' 00-47 Set Index Pointer to B-Ac-

cumulator 2.-16
TBY' 00-42 Transfer B-Acc. to VBR 2_16

!.Y!!.' 00-43 Transfer YBR to B-Acc. 2-16

SHIFT: RSA' 00-10 Time for Shifts Right Shift A 2-17
LSA' 00-11 vary as follows: Left Shift A 2-17
FRA' 00-12 Shifts ~

Right Shift A and B 2_17
F,LA' 00-17 Left Shift A and B 2_18
RSL' 00_15 1-' Right Logical Shift A 2_17
FRL' 00-14 5-8 Full Rotatc Logical A and B

Left 2-18
LSL' 00-16 9_12 Left Logical Shift A 2_18
FLU 00_13 13-15 Left LORical Shift A and B 2_18

CONTROL: HLT' 00-00 Halt 2_19
NOP' 00_33 No Operation 2-19
TOI' 00_35 Turn· off Interrupt 2-19
PIE' 130600 Enable Interrupt 2-19
PIO' 130601 Disable Interrupt 2-19

INPUT/OUTPUT CEU' 13. OIM. 0 4 + wait Command External Unit 2_22
TEU' 13. DIM. 2. 4 + wait Test External Unit 2-2;3
AOP' 1700 4 + wait Accumulator Word Out to

Unit 2-23
AlP' 1702 4 + wait Accumulator Word In from

Unit z- 2 ~
MOP' 17.0IM.4 4 + wait Memory Word OUt to Unit 2_24
MIP' 17.01M.6 4 + wait Memory Word In from Unit 2-24

Notes: .. Underlined instructions require optional hardware .

b. ' '" Au~mented.

9BIIBA.BC

q-l/G-2

