Systems Engineering Laboratories

SEL 8I0A/840A FORTRAN |1V
Reference | Manual ‘

Systems Engineering Laboratories

Reference Manual

SEL 8IOA/840A
FORTRAN IV

This publication supersedes the SEL 810A and
840A FORTRAN IV Reference Manual Dated

December 15, 1966.

SEL 35054A 6801 West Sunrise Blivd., Fort Lauderdale, Florida 33310
Price: $5.00 Area Code 305 587-2900

©19¢7. Systems Engineering Loboratories

Section

TABLE OF CONTENTS

INTRODUCTION . . . v v v v v e o o o o o o o o o o o o o o o s
ELEMENTS OF 810A/840A FORTRAN . . . ¢ v v v v v v o .
2.1 Quantities .+ ¢ ¢ o v ¢ v vt e e e e e e e e e e e e e e
2.2 Constants . . .0 v v v v v v 6 e e e e e e e e e e e e
2.3 Variables v v v v i i i i e e e e e e e e e e e
2.4 Statements 0 0 0 0 v e e e d e e e e e e e
2.5 Expressions 0000000 0.
SPECIFICATION STATEMENTS e e e e e e e e e e e
3.1 Type o s e s e e e e e s e e e e e e e e e
3.2 DIimension o o« o ¢ o o o o o o o ¢ o o o o o o 0 e 0 . .
3.3 Common e e e e e e e e e e e e e e
3.4 Equivalence ¢ v v v v it e e e e e e e e e
3.5 Data e e e e e e e e e e
EXPRESSIONS . & ¢t v v v v v v e v o o e o o o o o o o o o o .
4.1 Arithmetic Expressions « + « « « o« . .
4.2 Logical Expressions. e e s e e e e e e e e
CONTROL STATEMENTS ¢ ¢ ¢ v v v v v v v v o v o o
5.1 Unconditional Go To Statement
5.2 Computed Go To Statement o ..
5.3 Assign Statement 00000000000
5.4 Assigned Go To Statement ¢ ¢ . ..
5.5 Arithmetic If Statement o e e .
5.6 Logical If Statement « . . v ¢ . o v 00
5.7 Do Statement.00 0. e e e e e e
5.8 Continue Statement e e e e e e e
5.9 Pause Statement 000000
5.10 End Statement 0L 0 0 0 0 e e e e e e
5.11 Stop Statement 0000000000
5.12 Return Statement ¢ o0 000 v e e e ..
5.13 Sense Light Subroutine
5.14 Sense Light Test Subroutine. « . . . « . « « ¢ « « « . .
5.15 Sense Switch Test Subroutine
5.16 Accumulator Overflow Test Subroutine

ii

lo oo oo oo o a
1
N d N T VU D WWNN -

Section

6

TABLE OF CONTENTS (Continued)

SUBROUTINES, FUNCTIONS AND SUBPROGRAM

STATEMENTS e e e e e e e e e e e e e e e e
6.1 Naming Subroutines « . « « ¢ ¢ o « . .

6.2 Arithmetic Statement Functions.
6.3 Library Functions « « v v v v v v v v v v o o W
6.4 Function Subprogram ¢« ¢ ¢ ¢ ¢« v« v v 4 4 0.
6.5 Subroutine Subprogram0 0000 ..
6.6 The Call Statement « ¢ v v v v v v v v v o o
6.7 Block Data Subprogram « « ¢« ¢ « 4 o v 0 0o .
INPUT/OUTPUT . &+ v v v v v vt e et e e e vt o e e e e
7.1 Input/Output Lists v v v v v v o v o o v o o o s
7.1.1 Short-List Notation.0 oo
7.2 General Input/Output Statements « « « . .
7.3 Format ¢ ¢ v v v v v v i v i e s e e e e e e
1.4 Conversion Specifications . . . « . . . ¢« « v ¢ ¢ 4 ¢« .
7.4.1 I(Integer) Conversion « « v o v ¢ ¢ ¢ v v ¢ o o
7.4.2 F (Fixed - Point Decimal) Conversion. . . « « « « . . .
7.4.3 E (Explicit Exponent) Conversion « « « « « . .
7.4.4 G (Generalized E or F) Conversion « « « « « . .
7.4.5 L (Logical) Conversion« v ¢ v ¢« o o ¢ v o o o o
7.4.6 A (Alphanumeric) Conversion . . « « « « « « o« o « « « &
7.4.7 D (Double-Precision) Conversion . « « « « « « « « « & .
7.4.8 Complex Conversion. e e e e e e e e e e e e
7.5 Editing Specifications00 000
7.5.1 H (Hollerith) Conversion « ¢ ¢ v v v v v o« o« &
7.5.2 X (Blank) Conversion . . . « ¢« ¢« + ¢ o o o o o o o o «
7.5.3 New Record . . . v v v v v v v v v v v v v v o o o o o
7.6 nP Scale Factor« ¢ v v v v v v v v v e 0.
7.7 Repeated Format Specifications.
7.7.1 Multiple-Record Formats ¢« o ¢ o o . .
7.8 Variable Format. . . « « . ¢ ¢ v v v v v v v v v v e e
7.9 Carriage Control e e e e e e e e e
7.10 Manipulative Statements. . . . ¢ . . . 0000 0. .
7.10.1 End File Statement e e e e e e e e e
7.10.2 Rewind Statement « e e e e e e e
7.10.3 Backspace Statement 00000 . .

iii

3 i 1 1 1 1 1

ECRRS R RS RGNS B IS IS IS B EES EECEES B IR IS
1
— = OO 0 00~~~ OUlR W N

~
[|
P
— O O O

7-12
7-12
7-13
7-14
7-14
7-14
7-14

TABLE OF CONTENTS (Continued)

APPENDIX A SEL 810A and 840A Character Codes and Word Structure
APPENDIX B Statement Index

APPENDIX C Library Functions

APPENDIX D Trace

APPENDIX E Chaining

APPENDIX F Operator Communications

APPENDIX G In-Line Coding

iv

LIST OF FIGURES

Two-Dimensional Array, Storage Sequence of Elements

Three-Dimensional Array, Storage Sequence of Elements

LIST OF TABLES

oooooooo

Arithmetic Operators (except exponentiation)

oooooooooo

Exponentiation Combinations

Library Functions

Mathematical Subroutines .

SECTION 1
INTRODUCTION

This manual describes the combined features of 810A
FORTRAN and 840A FORTRAN. The FORTRAN compiler on both these
machines meets the ASA FORTRAN IV specifications.

This manual is written as a reference manual for programmers
using the 810A/840A FORTRAN compiler. The manual assumes a basic
knowledge of the FORTRAN language, it is not written as a text for beginning
FORTRAN programmers.

SECTION 2
ELEMENTS OF 810A/840A FORTRAN

The eléments of 810A/840A FORTRAN discussed in this section
are Quantities, Constants, Variables, Statements and Expressions. Word
formats may be found in Appendix A.

2.1 QUANTITIES

810A/840A FORTRAN manipulates floating point and integer
quantities. Logical and alphanumeric words are treated as integer. Floating
point quantities have an exponent and a fractional part. The following classes of
numbers are floating point quantities:

REAL 810A Exponent and sign 9 bits; fraction and sign 22 bits;
range of number: 1077 with 6 significant digits.

840A Exponent and sign 9 bits; fraction and sign 38 bits;
range of number: 1077 with 11 significant digits.

DOUBLE PRECISION 810A Exponent and sign 9 bits; fraction and sign 37 bits;
11 significant digits.

840A. Exponent and sign 9 bits; fraction and sign 61 bits;
18 significant digits.

COMPLEX Two reals as defined above.

Integer quantities do not have a fractional part. The following
classes of numbers are integer quantities.

INTEGER 810A Represented by 16 bits; first bit is the sign;
magnitude of constant must be less than 32768;
5 digits.

840A Represented by 24 bits; first bit is the sign;
magnitude of constant must be less than 8388608;
7 decimal digits.

LOGICAL Requires full word of storage. 1 bit represents TRUE;
0 bit represents FALSE.
HOLLERITH Alphanumeric information treated as an integer number.

2.2 CONSTANTS

Five basic types of constants can be used in 810A/840A
FORTRAN: integer, floating point, Hollerith, logical and alphanumeric. Complex
and double precision constants can be formed from floating point constants. The
type of constant is determined by its form and context.

.

INTEGER

FLOATING POINT

REAL

DOUBLE
PRECISION

COMPLEX

HOLLERITH

Integer constants may contain up to 7 decimal digits on the
840A or 4 digits on the 810A (single precision). Double
precision may be used to give a maximum of 10 digits.

Examples: 17432 -0
. 53 8388670
-24739 2

Real constants may be expressed with a decimal point or
with a fraction and an exponent representing a power of
ten.

Examples: 3.1415768 31. 415768E-01
314.15768E-2 0.0314E2
31452E-4

If the decimal point is omitted when expressing a real
number in exponential form, the decimal point is
assumed to be at the right side of the number.

Double precision constants assume the same
characteristics as real data with the advantage of
increased significance. Double precision constants
contain a decimal exponent.

Examples: -1.0D 3.141592654D
314D-2 4863.792D05

A double precision symbolic data name must be
declared in a DOUBLE PRECISION type statement.

Complex constants are represented by pairs of real
constants separated by a comma and enclosed in
parentheses (R1, R2). Rl represents the real part of
the complex number and R2, the imaginary part. Either
constant may be preceded by a minus sign.

Examples:

FORTRAN Representation Complex Number
(3.5E-2, -4.26E3) 0.035 - 4260.1
(-5.38E, 3.2) -5.38 + 3.2i

A Hollerith constant is a string of alphanumeric
characters. The form for a Hollerith constant is LHf
where L is the length of field f including imbedded blanks.
Any character of the FORTRAN character set may appear
in a HOLLERITH field - letters, numbers, or special
characters. The FORTRAN character set is listed in
Appendix A. Blanks are valid and significant. The
Hollerith word is left-justified with spaces (blanks)

filling the remainder of the last word if the number of
characters is not a multiple of 4 on the 840A or of 2 on

the 810A.
LOGICAL Logical constants have the value of TRUE or FALSE.
ALPHANUMERIC Alphanumeric constants are strings of alphanumeric

characters. The form for an alphanumeric constant is
Aw, where w is the field width. Alphanumeric constants
are typed in integer form and are left-justified in the
word.

2.3 VARIABLES

Simple and subscripted variables are recognized. A simple
variable represents a single quantity; a subscripted variable represents an array
or a single element within an array. A variable is identified by an alphanumeric
name of 6 or less characters, the first of which must be alphabetic. Variables
are typed implicitly by name if the variable does not appear in a TYPE statement
(see Section 3.1, Type Declarations). If the first letter of the variable name is
an I, J, K, L, M, or N the variable is typed integer. Any other first letter
indicates a floating point variable.

(1) Sample

General Form

1-6 alphanumeric characters,
first of which must be alphabetic.

Examples: SAM VICTOR
J57B1 DOUGH
MONEYS N

N1 M5
(2) Subscripts

A variable may be made to represent a one-, two-, or
three-dimensional array by the use of subscripts
enclosed in parentheses following the variable name.
The variable then becomes a subscripted variable. The
subscript may be integer constants, variables or
expressions.

(3) Form of Subscripts
General Form: A subscript may take one of the following

forms where C and K are any unsigned integer constants
and V is an unsigned, non-subscripted integer variable:

C 2

v I

v C I 2
C*xV 2 %1
C*V K 2 *x1 1

(4) Subscripted Variables

General Form: A subscripted variable consists of a
variable name followed by one, two or three subscripts
enclosed in parentheses.

Examples: SAM (I, 7J) AL+ 2, J+ 3, 5% M)
VICTOR (I) B(I, 2 * K+ 1)

(5) Array Structure

Elements of an array are stored by columns in ascending
order of storage locations. The array may have one, two,
or three dimensions. The storage for a two-dimensional
array is shown in Figure 2-1.

THREE-BY-FOUR ARRAY NAMED A

ARRAY ELEMENT

NOTE: Arrows and Circled Numbers Indicate Storage Sequence.

Figure 2-1. Two-Dimensional Array, Storage Sequence of Elements

Elements of an array are stored in sequential positions in
memory. A two- or three-dimensional array is stored in consecutive locations
such that its first subscript expression (i.e., the left most one) varies most
rapidly and its last subscript expression varies least rapidly.

Figure 2-2 shows the storage sequence for a three-dimensional
array. Planes are stored sequentially, with each plane stored in the same
sequence as a two-dimensional array. As indicated by the numbering sequence
in the diagram, the first column of the second plane follows the last column of
the first plane, and the first column of the third plane follows the last column of
the second plane.

PLANE 3

THREE-BY-FOUR-
BY-THREE-ARRAY

PLANE 2

PLANE 1
(1,1,1)

(2,1,1)

(3,1,1)

Figure 2-2. Three-Dimensional Array, Storage Sequence of Elements

2.4 STATEMENTS

Two types of statements are recognized by the FORTRAN
compiler, executable and nonexecutable. An executable statement performs a
calculation or directs the flow of the program. The executable statements are
divided into the following groups:

(1) Arithmetic Statements which specify a numerical or
logical calculation.

(2) Control Statements which govern the flow of the control in
the program.

(3) Input/Output Statements which provide the necessary
input/output routines and the input/output formats.

(4) Subprogram Statements which enable the programmer to
define and use subprograms.

A nonexecutable statement is used to communicate to the
compiler information regarding storage location, variable structure and storage
sharing requirements. The specification statements (Section 3) fall under this
basic type of statement.

2.5 ' EXPRESSIONS

Expressions are computational sequences that determine a
value, either numeric or logical.

2-6

SECTION 3
SPECIFICATION STATEMENTS

The specification statements are: DATA, EQUIVALENCE,
COMMON, DIMENSION, and TYPE. These statements provide information to the
compiler about the constants and variables used in the program and also provide
information about storage allocation. All specification statements are
nonexecutable and must appear before the first executable statement in the
program.

3.1 TYPE

There are six TYPE statements. All but EXTERNAL may be
used to override the implicit typing of the FORTRAN compiler.

General Form '

REAL Vy, Vy, o o 0 0V

INTEGER Vi, Vo, V,

LOGICAL V4, V,,V,

.DOUBLE PRECISION V3, V,, V,
COMPLEX Vi, Vo,V,

EXTERNAL Vi, Vp, Vy

where:

Each V may be a variable name, an array name,
a function name or an array declaration.

Examples:
REAL INDEX, NAME
INTEGER DOG, XIV
EXTERNAL SIN, MATH, LOGSI

. Once declared, data types remain constant throughout the

program and cannot be changed. Variables that are subprogram names must
appear in an EXTERNAL type statement. A variable may appear in two type
statements only if one is the EXTERNAL type. The type statement must
precede the first use of a name in any executable or DATA statement in the
program.

3.2 DIMENSION

General Form

DIMENSION Vj (ij), V, (ip), V3 (i3) , V(i)
where:
each V, is a subscripted variable, and

each i, is composed of 1, 2 or 3 unsigned integer
constants and/or variables.

Examples:
DIMENSION A(l10, 10), B(5, 15, 20), C(100)
The DIMENSION statement provides the compiler with the
necessary information to allocate the correct number of computer words for
storage of the named arrays. The DIMENSION statement defines the maximum

size of the arrays. If an array element is addressed which is larger than the
specified maximum, the computational results will be erroneous.

In many subprograms, such as matrix manipulation, it may be
necessary to vary the dimensions of an array each time the subprogram is
called. This is done by including the array name and its dimensions as formal
parameters in the FUNCTION or SUBROUTINE statement. The maximum
dimension given any array must not exceed the actual dimension of the calling
program.

Examples:

MAIN PROGRAM:
DIMENSION A(l0, 10), B(l0,10), C(10,10)

1 D(5,5), E(5,5), F(5,5)
CALL ADDER (A, B, C, 10, 10)
CALL ADDER (D, E, F, 5, 5)

CALL ADDER (B, C, A, 10, 10)

SUBROUTINE:
SUBROUTINE ADDER (X, Y, Z, N, M)
DIMENSION X (N, M), Y (N, M), Z (N, M)

DO 10I=1, M

DO 10J=1, N

10 Z(1,J) = X(1,J) + Y(I,J)
END RETURN

3.3 COMMON

General Form

COMMON a, b, c... /r/d, e, £, ../ [/ g h..
where:
a, b, ... are variables or array names, and

~/r/ is a variable that is a block name.

Examples:
COMMON A, B, C/T/D, E/SAM/ F, G, H
COMMON /BLOCK/I, J, S, T// BIG, SMALL

There are two types of COMMON storage. When no block name
is given, or two slashes appear together, the array names or variables are said
to be in blank, or unlabeled, COMMON. All unlabeled COMMON is stored
together in the order of its appearance in the COMMON statements. Block, or
labeled, COMMON is stored as separate blocks of data. All blocks given the
same name occupy the same space.

If dimension specification appears in a COMMON statement, it
need not appear in a DIMENSION statement.

Example:

COMMON A(4, 4, 4)

3.4 EQUIVALENCE

General Form

EQUIVALENCE (a,b,c, ...), (d,e,f, ...) ...
where:

a, b, c;d, e, f; ... are variables or array names that
are to share the same storage location.

Example:
EQUIVALENCE (A (2,3, 5), C(5), D)

An element of a multi-dimensional array may be expressed as
the equivalent single dimensioned subscript.

Example:
Element A(2, 1, 2) of the three-dimensional array A(2, 2, 2)
may be written as A(6) and equivalenced to variable C(5)
as follows:

EQUIVALENCE (A(6), C(5))

The correspondence of a multiple subscripted variable to a
single subscripted variable is:

A(i, j, k) = A (the value of (i + (j-1) * I + (k-1)*I*7J))
where:

i, j, k are integer constants and I, J are the integer constants
appearing in DIMENSION A(I, J, K)

Storage allocation is different for equivalenced arrays
depending on whether the storage area is a COMMON block or not.

If two arrays, not in COMMON, are equivalenced:
DIMENSION A(3), B(5), C(4)

EQUIVALENCE (A(3), C(2))

Storage allocations are assigned as follows:

L A(1)
L+1 A(2) Cc(1)
L+2 A(3) C(2)
L+3 C(3)
L+4 C(4)
L+5 B(1)
L+6 B(2)
L+7 B(3)
L+8 B(4)
L+9 B(5)

However, if the arrays are in COMMON
COMMON A(3), B(5), C(4)
EQUIVALENCE (A(3), C(2))

Storage is assigned as follows:

L A(l)
L+1 A(2) C(1)
L+2 A(3) C(2)
L+3 B(1) C(3)
L+4 B(2) C(4)
L+5 B(3)
1L+6 B(4)
L+7 B(5)

Variables brought into a COMMON block through the use of an
EQUIVALENCE statement may increase the size of the block. The COMMON
block may only be increased beyond the last storage assignment for that block.

Example:
COMMON A, B, C
DIMENSION D (3)
EQUIVALENCE (D(1), B)
L A
L+1 B D(1)

L+2 C D(2)
D(3)

Illegal equivalencing:
COMMON A, B, C
DIMENSION D (3)

EQUIVALENCE (B, D(3))

D(1)
Origin --- L A D(2)
L+1 B D(3)

L+2 C

The above example is illegal as the COMMON block is
increased upwards.

3.5 DATA

General Form

DATA list/literals/, listy/literalspy/,

where:

list is a list of variables being defined and
literals is a list of associated constants

Examples:

DATA A, B, I/14.314, 7.2, 3HEND/, C, D/5.0, 3.2/

The literals in a data statement may be integer, real, double
precision, complex, or alphanumeric. An alphanumeric field is written as nH
followed by n alphanumeric characters. Each group of 4 characters forms a
word (2 characters on the 810). If n is not a multiple of 4 (or 2), the characters
are left-justified and the remainder of the word is filled with blanks.

Variables used in a DATA statement may not appear in a
COMMON statement. To enter variables in a COMMON block, the BLOCK DATA
subprogram must be used (see Section 6. 7).

3-6

SECTION 4
EXPRESSIONS

This section details the two types of statements allowable in
810A/840A FORTRAN, arithmetic expressions and logical expressions.

4.1 ARITHMETIC EXPRESSIONS
An arithmetic expression may be a constant, a variable (simple
or subscripted) or an evaluated function. Arithmetic operators may be combined
with constants, variables and functions to form complex expressions.
Arithmetic operators are:
+ addition

- subtraction

/ division

¥*

multiplication

*% exponentiation

Tables 4-1 and 4-2 show which constants, variables and
functions may be combined by the arithmetic operators to form valid expressions.
Table 4-1 gives the valid combinations with respect to the arithmetic operators +,
-, %, /. Table 4-2 gives valid combinations with respect to the arithmetic
operator *¥, In these tables, Y indicates a valid combination and N indicates an
invalid combination,

Table 4-1. Arithmetic Operators (except exponentiation)

Double

tg- %/ Real Integer Complex Precision Logical
Real Y N Y Y N
Integer N Y N N N
Complex Y N Y N N
Double Precision Y N N Y N
Logical N N N N N

Table 4-2. Exponentiation Combinations

Double

Ak Real Integer Complex Precision Logical
Real Y Y N Y N -
Integer N Y N N N
Complex N Y N N N
Double Precision Y Y N Y N
Logical N N N N N

Any real constant, variable or function name combined with a
complex or double precision quantity will result in a complex or double precision
quantity.

Certain operators may not appear in sequence. The expression
A * % B * % C is not permitted; it must be written as either A * * (B * * C) or
(A * * B) * * C, whichever is intended, whereas A * B * C is permissible.
Basic rules of algebra are used. ‘

The hierarchy of operations may be altered by the use of
parentheses to specify operations to be done first. Where parenthescs are omitted,
the order of operations is: :

(1) W% exponentiation
(2) * and / multiplication and division
(3) + and - addition and subtraction

Expressions are scanned from left to right.
In the following examples, R indicates an intermediate result.
Examples:

A * (B-(C/(D+E)))

D+ E ---= Rl

C/Rl --= R,

B-Rp --= Rj3

*R3 --= Ry

evaluation complete

5. % (3. % % SPC + SQRT (A * * 2)) /4. * (B * * ABS (X))
A%%2 --+ Rj

SQRT(R{) --= R

3. #%SPC ---= R3

R,+R3 --= Ry

B##ABS(X) -- -+ Rg

5%Ry --= Ry
R6/4 - - - R7
R7%R5 --= Rg

evaluation complete
4.2 LOGICAL EXPRESSIONS

A logical expression consists of certain sequences of logical
constants, logical variables, references to logical functions, and arithmetic
expressions separated by logical operation symbols or relational operation
symbols. When evaluated, a logical expression always has the value . TRUE, or
. FALSE. .

The logical operation symbols are as follows: (a and b
represent logical expressions): '

LOGICAL OPERATOR DEFINITION

.NOT. a Has the value . TRUE, if a has the value . FALSE.,
or has the value . FALSE. if a has the value . TRUE. .

a . AND. b Has the value . TRUE, if a and b both have the value
. TRUE., or has the value ., FALSE. if either aorb
have the value . FALSE.,.

a.OR. b Has the value . TRUE, if either a or b have the value
. TRUE., or has the value ., FALSE. if a and b both
have the value . FALSE..

Two logical operators may not appear adjacent to each other
unless the second logical operator is ., NOT..

NOTE: The logical operators shown above and relational
operators shown below must be preceded and
followed by a period.

Logical comparison may be effected by use of.the
following relational operators:

RELATIONAL

OPERATOR DEFINITION

. EQ. Equal to

. GE, Greater than or equal to
. GT. Greater than

. LE, Less than or equal to
.LT. ‘ Less than

. NE. Not equal to

The value of a logical relation is . TRUE, if satisfied, . FALSE.
if not satisfied. In the absence of parentheses indicating a hierarchy of
operations, logical expressions are evaluated as follows:

(1) Arithmetic expressions are evaluated

(2) Logical relations are determined:

.EQ., .GE., .GT., .LT., .LE., .NE.

(3) .NOT.
(4) .AND.
(5) .OR.

Logical Statements have the general form:

General Form

a=>b
where:

a is a logical variable or analog element
b is a logical expression

The logical expression is evaluated and the previous value of
the logical variable on the left of the equals sign is replaced with , TRUE. or
.FALSE, . '

In the following examples it is assumed that all variables on the
left of the equals sign are typed logical and all other variables are typed real.

LOGICAL STATEMENT

A

1

B =

@
I

LOGIC = . TRUE. . AND., 400.GE. X

A(l) = .NOT., (X.EQ, 50, /Y**2)

us|
n

o
1

. FALSE,

X. LE. 5.

X.GT.5. .OR. Y.LT. Z

X .AND. .NOT. Y

X . GT. (50, *Y*W(X-2.))

INTERPRETATION

The previous value of A is replaced by the
logical constant . FALSE. .

If X is less than or equal to 5, B has the
value . TRUE., otherwise B is set equal
to . FALSE. .

Determine a value of . TRUE. or . FALSE.
for X. GT. 5. (itis.TRUE. if X is .GT. 5
and . FALSE, if X is less than or equal to
5). Determine a value of , TRUE, or

. FALSE, for Y.LT. Z. If the value of
either relation is . TRUE., replace the
previous value of C with , TRUE., ;
otherwise replace the previous value of C
with . FALSE,.

If 400 is greater than or equal to X, store
. TRUE, in LOGIC; otherwise store
. FALSE,.

If X equals 50, divided by YZ, store
. FALSE. in logical array element A(1l);
otherwise store , TRUE, in A(l).

If Yis ,FALSE, and X is . TRUE, store
the value , TRUE, in B; otherwise store
. FALSE, in B.

The arithmetic expression is evaluated in
the conventional manner (innermost
parenthesis is evaluated first).

If X is greater than the final result,
. TRUE, is stored in D; otherwise
. FALSE, is stored in D.

SECTION 5
CONTROL STATEMENTS

The control statements are used to alter the normal flow of
control of statements from the sequential mode. Control may be transferred to
an executable statement only.

5.1 UNCONDITIONAL GO TO STATEMENT

General Form

GO TOn
where:

n is a statement number

Example:
GO TO 25

This statement causes control to be transferred to statement
number 25.

5.2 COMPUTED GO TO STATEMENT

General Form

GO TO (n}, njp, ng...... n), i
where:
nj, Np, N3 cenn.. n_ are statement numbers, and

iis a nonsubscripteﬁainteger variable.

Example:
GO TO (40, 20, 30, 45), K

This statement causes control to be transferred to statement
number 40, 20, 30, 45, depending on whether the value of Kis 1, 2, 3, or 4,
respectively, at the time of execution of the statement. In the example, if Kis 3
at the time of execution, control would transfer to the third statement number in
the list; statement number 30.

5.3 ASSIGN STATEMENT

General Form

ASSIGN n to i
where:

n is a statement number, and
iis an integer variable

Examples:
ASSIGN 17 to J
ASSIGN 9 to JA

This statement causes a subsequent GO TO nj (ml, my,

msz, .., m;) to transfer control to statement number i, where i is one of the
statement numbers included in the series mj, mp, ms, ..., m;j.
5.4 ASSIGNED GO TO STATEMENT

General Form

GO TO n, (ml, my, m3, e o ey m_])

where:
n is a non-subscripted integer variable appearing in a

previously executed ASSIGN statement, and
mj, My, M3, ..., mj are statement numbers.

Example:
GO TO J,(5, 17, 3, 9, 24)
This statement causes control to be transferred to the statement

number last assigned to n by an ASSIGN statement. 5, 17, 3, 9, 24 are a list of
statement numbers that J may assume. ‘

5.5 ARITHMETIC IF STATEMENT

General Form

IF (A) nj, ny, ng
where:

A is an arithmetic expression, and
ni, n,, n3 are statement numbers.

Examples:
IF (A (1, J) - B) 10, 15, 2
IF (X#% 2 + 3.) 3, 3, 10
This statement causes a branch to statement number nj, n,
or n3 if the value of the arithmetic expression is less than, equal to, or greater

than zero, respectively.

5.6 LOGICAL IF STATEMENT

General Form

IF (L) S
where:
L is a logical expression, and

S is any executable statement, except a DO statement or
another logical IF statement.

Examples:
IF (A.LE. B) GO TO 7
IF (A .AND. B) CALL BOTH
IF (L) X =SIN Y
If the value of the logical expression L is ., TRUE,, statement S
is executed. Control is then transferred to the next statement following the
logical IF unless S is a GO TO statement or an arithmetic IF, in which case

control is transferred as indicated.

If the value of the logical expression L is .FALSE., the
statement following the logical IF is executed.

5.7 DO STATEMENT

General Form

DOmi= ny, np, ng3

where:

m is a statement number

iis a non-subscripted integer variable |

nj, n,, n3 are unsigned integer constants or.
integer variables.

If n3 is not stated, it is assumed to be 1.

Examples:
DO30I=5, 20, 5
DO251I=1, K

The DO statement is a command to execute repeatedly the
statements between the DO statement and m. As shown in the general form, n;
is the initial setting of i; np is the terminal value of i and n3 is the increment by
which i is raised on each pass through the DO loop. A DO loop will be executed
at least once.

The range of a DO is that set of statements between the DO
statement and statement m. After the last pass through the DO loop, the DO is
said to be satisfied. The index of the DO, i, is available throughout the range of
the DO for use in computations but it can never be altered in any way. The DO
parameters, nj, nj, and n3 also may not be altered in any way while in the range
of DO loop.

DO .- DO LOOPS
DO 1 4 ‘ 1, 2, 3 are permitted
— transfers.
4, 5, 6 are illegal
transfers.
—— 2
,< 5

—)s) ¢

The DO loop may contain within it other DO loops, provided that
each DO loop is completely contained within the range of the outer loop. Such a
configuration is called nested DOs. Control may be transferred freely while
inside the range of a DO; it is also permissable to transfer control out of the
range of a DO or to another DO statement. It is illegal to transfer into the range
of a DO from outside.

A DO loop cannot end on an IF or GO TO type statement.

5.8 CONTINUE STATEMENT

General Form

CONTINUE

The CONTINUE statement is a dummmy statement and does not
alter the normal sequencing of the program. Itis classified as an executable
statement. The main use of the CONTINUE statement is as a reference point
and as a last statement in the range of a DO.

5.9 PAUSE STATEMENT

General Form

PAUSE or

PAUSE n

where:

n is an unsigned octal integer constant of 1 to 5 octal digits

The PAUSE statement is used to halt the program at some time
during execution to allow some external set-up, such as the changing of tapes.
Operator action is necessary to restart the program. Once restarted, the
program resumes at the first executable statement after the PAUSE. The
identification constant, n, indicates the particular PAUSE statement which caused
the delay, since the identification is displayed. The identification constant may be
1 to 5 octal digits.

5.10 END STATEMENT

General Form

END ~

The END statement terminates compilation of a program. The
END statement must be the last physical statement in a source program.

5.11 ' STOP STATEMENT

General Form

STOP or STOP n

The STOP statement causes a final termination of the program.
The constant, n, when included indicates the particular STOP statement that
ended execution of the program.

5.12 RETURN STATEMENT

General Form

RETURN

RETURN is the normal exit from any subprogram to the calling
program.

5.13 SENSE LIGHT SUBROUTINE

General Form

CALL SLITE (i)
where:

i is an integer constant corresponding to sense light numbers.

This subroutine turns on the sense light designated by the
argum.ent, i. If the argument is zero, all sense lights are set to OFF.

The sense lights are simulated by reserving a word in memory
in which all bits are set to zero for OFF, or the bits are set to one, simulating
ON.

5-6

5.14 SENSE LIGHT TEST SUBROUTINE

General Form

CALL SLITET (i, K)

where:

i is the sense light number, and
k = 1 if light is ON, or

k = 2 if light is OFF

This subroutine checks the status of the sense lights indicated
by the first argument, i. If the sense light is ON, the second argument, k, is
equal to one; if the sense light is OFF, k is equal to two.

5.15 SENSE SWITCH TEST SUBROUT INE

General Form

CALL SSWTCH (i, k)
where:
i is the sense switch number, and

k is the status of the sense switch

This subroutine is used to check the status of the sense switches
designated by the first argument, i. If the sense switch is ON, k returns with a
value of one; if the sense switch is OFF, k returns with the value of two.

5.16 ACCUMULATOR OVERFLOW TEST SUBROUTINE

General Form

CALL OVERFL (j)
where:

j is the status of the overflow indicator

If an overflow has occurred in the accumulator register, a call
to this subroutine turns OFF the overflow indicator and returns with a value of
one for the argument, j; otherwise j will return with a value of two.

SECTION 6
SUBROUTINES, FUNCTIONS AND SUBPROGRAM STATEMENTS

There are four classes of subroutines in FORTRAN: arithmetic
statement functions, built-in functions, FUNCTION subprograms and
SUBROUTINE subprograms. The first three classes are grouped as functions.
Functions differ from subprograms as they are always single-valued (they return
a single result) and they are referenced by an arithmetic expression.
Subprograms are referenced by a CALL statement and can return more than one
value. :

6.1 NAMING SUBROUTINES

All four types of subroutines are named in the same manner. A
subroutine name consists of 1-6 alphanumeric characters, the first of which must
be alphabetic.

The type of a function, which determines the type of the result,
may be implicitly typed by the function name. In the case of an arithmetic
statement function, the name may be placed in a type statement to override the
implicit type; a FUNCTION subprogram type may be written preceding the word
FUNCTION to override the type implied by the function name. The type of a
built-in, or library, function is indicated within the FORTRAN processor and
does not have to appear in a type statement (see Table 6-1).

The type of a SUBROUTINE subprogram is immaterial, as the
type of the results are dependent only upon the type of the variable names
appearing in the calling sequence.

6.2 ARITHMETIC STATEMENT FUNCTIONS

Arithmetic statement functions are defined by a single arithmetic
expression and are applicable only to the source program in which they are defined.

General Form

a(ARG), ARGy) =b
where:

a is a function né.rne,
ARG), ARG are

the dummy arguments of the function,
and b is an arithmetic expression

TABLE 6-1

LIBRARY FUNCTIONS

TYPE
NUMBEROF | yame
FUNCTION DEFINITION ARCUMENTS roonent 1 Foncrion
ABSOLUTE VALUE IARG| 1 ABS REAL REAL
IABS INTEGER | INTEGER
DABS DOUBLE | DOUBLE
TRUNCATION SIGN OF ARL? TIMFS LARGEST 1 AINT REAL REAL
INTEGER < |ARG INT REAL INTEGER
= IDINT DOUBLE | INTEGER
REMAINDERING* ARG (MOD ARG,) 2 AMOD REAL REAL
MOD INTEGER | INTEGER
CHOOSING LARGEST VALUE | WAX (ARG, ARG,) > 2 AMAXO0 | INTEGER | REAL
2 AMAX1 | REAL REAL
MAX0 INTEGER | INTEGER
MAXI REAL INTEGER
| DMAX! | DOUBLE | DOUBLE
CHOOSING SMALLEST VALUE | MIN (ARG, , ARG, =) >2 AMINO INTEGER | REAL
e AMIN REAL REAL
MINO INTEGER | INTEGER
MIN] REAL INTEGER
DMINI DOUBLE | DOUBLE
FLOAT CONVERSION FROM INTEGER 1 FLOAT | INTEGER | REAL
T0 REAL
FIX CONVERSION FROM REAL TO 1 IFIX REAL INTEGER
INTEGER
TRANSFER OF SIGN SIGN OF ARG, TIMES |ARG, | 2 SIGN REAL REAL
! ISIGN INTEGER | INTEGER
DSIGN DOUBLE | DOUBLE
POSITIVE DIFFERENCE ARG, ~ MIN (ARG, , ARG,) 2 DIM REAL REAL
IDIM INTEGER | INTEGER
OBTAIN MOST SIGNIFICANT 1 SNGLE | DOUBLE | REAL
PART OF DOUBLE~PRECISION
ARG.
OBTAIN REAL PART OF 1 REAL COMPLEX | REAL
COMPLEX ARG.
OBTAIN IMAGINARY PART 1 AIMAG | COMPLEX | REAL
OF COMPLEX ARG.
EXPRESS SINGLE—PRECISION 1 DBLE REAL DOUBLE
ARG. IN DOUBLE~PRECISION
FORM
EXPRESS TWO REALARGS. |ARG, + ARG, /=1 2 CMPLX | REAL COMPLEX
IN COMPLEX FORM 1 2
OBTAIN CONJUGATE OF A FOR ARG=X +iY, 1 CONJG | COMPLEX | COMPLEX
COMPLEX ARG C=X~iY

* The function MOD (ARG,

ARGZ) is defined as ARG1 - [ARGl/ARGZ] ARG

6-2

29

where [x] is the integral part of x.

Examples:
ROOT (A, B, C) = (-B * SQRT (B** 2-4, * A * C)/(2. *A)
FIRST (X) = A% X + B |
Z (X, Y) = 7. 3%SIN(X) + 4.7 * COS (Y)

During compilation, the statement function definition is inserted
in the code wherever the statement function reference appears as an operand in
an expression. The statement function name must not appear in a COMMON,
DIMENSION, EQUIVALENCE or EXTERNAL statement. All statement functions
must appear before the first executable statement in the program or subprogram,
but they must follow all specification statements. The arguments of the function
are symbolic names that are replaced by the actual call arguments when the
function is used.

Example:
DIMENSION X(5), Y (5), Z (5)
ROOT (A, B, C) = (-B*SQRT (B** 2-4. 0%A*C) /2. 0%A)

APPLE - ROOT (X(I), Y(I), Z(I)) * BIG/AVG

The dummy arguments assume the values of X(I), Y(I), and Z(I),
respectively and the statement function expression is executed.

APPLE = (-Y(I) * SQRT (Y(I) ** 2-4.0 * X(I) * Z(I))/ (2.0 #*k X(I) * BIG/ AVG
6.3 LIBRARY FUNCTIONS

Library functions are pre-defined subroutines within the
FORTRAN processor. A list of available library functions is given in Table 6-1.

6.4 FUNCTION SUBPROGRAM

General Form

FUNCTION name (ARGj. ARG, ARG3,...... ARG n) or
type FUNCTION name (ARG), ARGjy..... ARG n)
where:

Name is the symbolic name of a single-valued function, and
ARG], ARG2,.... ARG n are variable names or the dummy
name of a SUBROUTINE or FUNCTION subprogram, and type
is a data type name, i.e., INTEGER, REAL, etc.

Examples:
FUNCTION SAM (X, Y, A)
REAL FUNCTION IBAR (TEMP, ALT)
INTEGER FUNCTION JOE (IX, JOKE, SAT)
DOUBLE PRECISION FUNCTION DP (A, C, X)
COMPLEX FUNCTION ABLE (BMIX, AMIX)
LOGICAL FUNCTION TRFAL (S, T, U)
The first statement of a FUNCTION subprogram must be a
FUNCTION statement; the last statement must be an END statement. There must
be at least one RETURN statement. The name of the function must appear on the
left side of an arithmetic statement or in an input statement.

Example:

FUNCTION SAM (X, Y, A)

SAM = A %% 2+ B

RETURN
END

The FUNCTION subprogram may contain any FORTRAN
statement, except SUBROUTINE or another FUNCTION statement.

There must be at least one argument in the FUNCTION
statement. Dummy arguments may not appear in an EQUIVALENCE statement in
the FUNCTION subprogram. The arguments of a FUNCTION statement may be
considered dummy names which are replaced at execution time by the actual
arguments in the calling program. The actual arguments must agree in number,
order, and type with the dummy arguments.

When the dummy argument is an array name, a DIMENSION or

COMMON (with dimensions) statement must appear in the FUNCTION subprogram;
also the corresponding actual argument must be a dimensioned array name.

6-4

A FUNCTION subprogram is referenced by using its name as an
operand in an arithmetic or logical expression.

When the name of a FUNCTION subprogram is used as an
actual argument, the name must appear in an EXTERNAL statement.

The FUNCTION subprograms that are available with FORTRAN
are given in Table 6-2,

TABLE 6-2
MATHEMATICAL SUBROUTINES

TYPE
FUNCTION DEFINITION NUMBER OF NAME
ARGUMENTS ARGUMENT | FUNCTION
EXPONENTIAL ARG 1 EXP REAL REAL
e DEXP DOUBLE DOUBLE
_ CEXP COMPLEX | COMPLEX
NATURAL LOGARITHM LOG_(ARG) 1 ALOG REAL REAL
e DLOG DOUBLE DOUBLE
CLOG COMPLEX | COMP
COMMON LOG LOG, , (ARG) 1 ALOGIL0 REAL REAL
DLOGIO DOUBLE DOUBLE
TRIGONOMETRIC SINE SIN(ARG) 1 SIN REAL REAL
DSIN DOUBLE DOUBLE
CSIN COMPLEX | COMPLEX
TRIGONOMETRIC COSINE COS(ARG) 1 cos REAL REAL
- DCOS DOUBLE DOUBLE
cCOs COMPLEX | COMPLEX
HYPERBOLIC TANGENT TANH (ARG) 1 TANH REAL REAL
SQUARE ROOT AR G)VZ 1 SORT REAL REAL
DSQRT DOUBLE DOUBLE
CSQRT COMPLEX | COMPLEX
ARCTANGENT ARCTAN(ARG) 1 ATAN REAL REAL
1 DTAN DOUBLE DOUBLE
ARCTAN(ARG, / ARG) 2 ATAN2 REAL REAL
2 DATAN2 DOUBLE DOUBLE
REMAINDERING* ARG1 (MOD ARG)) 2 DMOD DOUBLE DOUBLE
MODULUS 1 CABS COMPLEX REAL

* The function MOD (ARGl, ARGz)isdefined as ARG, = [ARGI/ARGZ] ARQZ,where [x] is the integral part of x,

6.5 SUBROUTINE SUBPROGRAM

General Form

SUBROUTINE name (ARGj, ARG,....ARGn)
where:
Name is the symbolic name of a subprogram, and,

each argument, if any, is a variable name or the dummy:
name of a SUBROUTINE or FUNCTION subprogram.

Examples:

SUBROUTINE MAYBE (A, B, X, BIG)
SUBROUTINE SORT

The SUBROUTINE statement must be the first statement of a
SUBROUTINE program. The SUBROUTINE returns values, if any, either through
one or more of the arguments listed or through COMMON storage.

The actual arguments in the calling program must agree in
order, type and number with the dumymy arguments in the subroutine. If a dummy
argument is an array name, a DIMENSION or COMMON (with dimensions)
statement must appear in the SUBROUTINE subprogram; also the corresponding
actual argument in the CALL statement must be a dimensioned array name. No
dummy argument may appear in an EQUIVALENCE statement in the SUBROUTINE
subprogram.

The SUBROUTINE subprogram must have at least one RETURN
statement. It may contain any FORTRAN statement except FUNCTION or
another SUBROUTINE statement.

If the name of a FUNCTION or another SUBROUTINE subprogram
is used as an argument, the name must first appear in an EXTERNAL statement.

Example:
EXTERNAL SIN
CALL ANGLE (A, X, SIN)
6.6 THE CALL STATEMENT

The CALL statement transfers control to the subprogram and
gives it the actual arguments. The arguments may be:

(1) Any type of constant

(2) Any type of subscripted or non-subscripted variable.

6-6

(3) An arithmetic or logical expression.
(4) Alphanumeric characters, written as Hollerith fields, nH.

The arguments of the subroutine in the CALL statement must
agree in order, number and type with the corresponding dummy arguments in the
SUBROUTINE statement in the called program.

6.7 BLOCK DATA SUBPROGRAM

To enter data from a DATA statement into a COMMON block
during compilation, the BLOCK DATA subprogram must be used. This
subprogram contains only the DATA, COMMON, DIMENSION and TYPE
statements associated with the data being entered. The BLOCK DATA subprogram
may not contain any executable statements. The first statement must be the
BLOCK DATA statement.

Egample:
BLOCK DATA
DIMENSION B(5), X(10)
COMMON / ALPHA/ A, B, C/ RLM/ X, Y, Z
INTEGER B
DATA (A, B(1) / 5.3, 7/, X (1), X (3)/ 3.14, 10.93/
Note in the example above that all elements in the COMMON

block must be listed even though they do not appear in the DATA statement. Data
may be entered into more than one COMMON block in a single BLOCK DATA

statement.

SECTION 7
INPUT/OUTPUT

The statements that control the input and output of information
to or from the computer may be grouped as follows:

General I/O statements: The READ and WRITE statements that
transmit data between core storage and I/O devices.

Manipulative I/O statements: Statement such as END FILE,
BACKSPACE, and REWIND which manipulate I/O devices.

Format specifications: The FORMAT statement, which is
non-executable, gives a description of the incoming or outgoing data.

7.1 INPUT/OUTPUT LISTS

An I/O list is a list of items, separated by commas, which
contains the names of the variables or arrays to be transmitted by a general I/O
statement. The list may contain subscripted variables or an implied DO, single
or nested. The following example shows the use of nested DO's in an I/O list.

A, (B(D), I=1, 3), (C(J), D(J), T=1, 3), ((E (I,»J'), =1, 10, 2,), J=1, 2)

This list implies that the information in the external I/O device
is arranged as follows:

A, B(1), B(2), B(3), C(1), D(1), C(2), D(2), C(3), D(3), E(1, 1), E(3, 1),
E(5, 1), E (9, 1), E(1, 2), E(3, 2)..... E(9, 2)

The input list K, A(K), or K, (A (), I =1, K) is valid, as K is
read in prior to its use as an index or as an indexing parameter.

Any number of quantities may appear in a single list, however,
each quantity must have the correct format corresponding to it. The list
controls the quantity of data read.

7.1.1 Short-List Notation

An array that has been previously dimensioned in a COMMON,
DIMENSION, or data type statement may be transmitted without subscripts.

Example:
DIMENSION A (5)
READ (5, 10) A

The entire array, A, is read in, that is, 5 quantities of A are
read and stored.

7.2 GENERAL INPUT/OUTPUT STATEMENTS

There are two types of input statement used by 810A/840A
FORTRAN. The basic forms are:

READ (i) List (Non-Formatted)
READ (i, n) List (Formatted)
where:

i is a code number identifying the input device (logical
unit number). It may be an unsigned integer constant
or integer variable.

n is a statement number of a FORMAT statement or the
name of an array in which the necessary format
information is stored.

LIST is an optional list of the names of variables, array,
and/or array elements that are to receive input
values at execution time by this particular READ
statement. '

A non-formatted READ statement causes the information or
logical unit i to be read in as binary information. A formatted READ is executed
under control of a FORMAT statement (n). The decimal and/or alphanumeric
data read is then converted into internal form.

Output statements are identical to the input statements:

WRITE (i) List (Non-Formatted)

WRITE (i, n) List (Formatted)

If no list is included any Hollerith information and/or line
spacing instruction in the FORMAT statement is executed.

7.3 FORMAT

General Form

n FORMAT (S;, Sp, Sm) or
n FORMAT (S1, S2, +vv.e Sm/S'1s

S'2s e S'm/S"ys vt S"m)
where:

each S; is a format specification, and n is a statement
number.

1-2

Examples:

FORMAT (1lH1, 5X, 12, 2X, F10.3/5X, 14, F7.3)
FORMAT (6F10. 2)

FORMAT (15, 3(2X, F17.2))

FORMAT statem=ants are non-executable and may be placed
anywhere in the source program. Each FORMAT statement must have a unique
statement number, by which it is referenced.

Slashes (/) in the FORMAT statement are used to signify record
terminators. When writing on an off-line printer, the maximum record length
corresponds to the length of one printed line. When punching a card, the
maximum record length is 80 characters if the card is to be read on-line.

During input/output of data, the program scans the FORMAT
statement specified by the READ or WRITE statement. When a format specifica-
tion is found for numeric field and there are still items in the list to be
transmitted, the input/output of the numeric data takes place according to the
format specification, and the program continues the scan of the FORMAT
statement. If no items remain to be transmitted, execution of that particular
I/O statement ceases. Thus, a FORMAT statement is repeated until the list
associated with it is exhausted.

7.4 CONVERSION SPECIFICATIONS
The data elements in an I/O list are converted from external to
internal or from internal to external representations. The FORMAT

specifications may also contain editing codes.

Conversion Codes

Dw.d Double-precision floating point with exponent
Ew.d - Single-precision floating point with exponent
Fw.d Single-precision floating point without exponent
Gw.d Single-precision floating point without exponent
C (Zw. d,

Zw. d) Complex; Z may be E or F conversion

Iw Decimal Integer

Aw Alphanumeric

Lw Logical

nP Scaling factor

within the field.

7.4.1

Editing Codes

wX

wH

/

Intra-line spacing
Heading and labeling

Begin new record

Both w and d are unsigned integer constants; w indicates the
field width and d specifies the number of digits to the right of the decimal point

I (Integer) Conversion

Form: Iw

(1)

(2)

Input: The input field w may contain only the characters
+, -, 0 through 9, or blank. When a sign is included, it
must precede the first digit in the field. Blanks are
interpreted as zeros.
Input Examples:
READ (1, 10)1, J, K, L, M
10 FORMAT (13, 14, 213, I2)

Input Card:

I contains 123
J contains -15
K contains 101
L contains 2
M contains 30

Output: The I conversion is used to output decimal
integer values. In the output data field, digits are right-
justified.

Output Examples:

WRITE (2,10) 1, J, K, I=-123
10 FORMAT (315) J =45
K = +7942

1-4

Output Record:

A-123 AAAAD AT 942
-~ 55— |——5 5 —=
7.4.2 F (Fixed - Point Decimal) Conversion

Form: Fw.d

(1)

(2)

Input: The input field consists of an integer and a
fraction subfield. A decimal point supplied by the input
data overrides the decimal point indicated by d.

Examples:
Input Field Format Converted Remarks
Values

127.394 F7.3 127.394 Integer and
fraction field

127394 F7.3 127.394 No fraction
subfield. Input
converted as
127394 x 10-3

1.27394 F7.3 1.27394 Decimal point

overrides d.

Output: On output, the corresponding list element must

be in floating point. The number is output as a right-
justified decimal number in the field w. The field, w,
must be large enough to allow for a sign, even if the
number is positive. For numbers less than 1.0 the field
must allow room for a leading zero and a decimal point.
Examples:
WRITE (2, 10) A A contains 127. 394
10 FORMAT (F10.3)

RESULT: 127.394

WRITE (2, 11) A
11 FORMAT (F8. 3)

RESULT: 127.394

7-5

WRITE: (2,12) A A contains 127. 394
12 FORMAT (F7.3)

RESULT: $27.394 No provision made for the sign
of the number, so $ is printed
followed by as many digits as
possible. If number is negative,
an equal sign precedes the
digits printed.

7.4.3 E (Explicit Exponent) Conversion

Form Ew.d

(1)

(2)

Input: An E field specification consists of a decimal
number, with or without a fractional subfield, and an
exponent. The general form of the exponent is E T XX,
where XX is the numeric exponent. Blanks appearing in
the exponent field are ignored, therefore blanks may be
deleted. If the sign of the exponent is omitted, itis
considered to be positive; if the sign of the exponent is
used, the E may be omitted.

Examples:

INPUT:

127394-3

12.7394E1

1273.94E+01
As in F conversion, if the data field being read contains a
decimal point, the actual position of the decimal
overrides d.
Output: The output form of an E conversion consists of a
space for a sign followed by a mantissa and an exponent.
The mantissa is a signed decimal fractionpreceded by a
blank and a decimal point; the exponential part consists of
the letter E followed by a sign and a two digit exponent.
If the exponent is positive, the sign is omitted and a blank
space is printed.
For format scaling it is necessary to add seven to the
number of digits in the field width, w, to format an E
conversion correctly.

One space for sign of the number

One blank space

7-6

7.4.4

7.4.6

One space for decimal point
One space for letter E

One space for sign of exponent
Two spaces for exponent

The output number is right-justified when the field width
is wider than necessary.

G (Generalized E or F) Conversion

Form: Gw.d

(1) Input: The G-conversion may be used in place of the
F-conversion since the processing of the G- and
F-conversion codes are identical. The incoming number
is stored internally as if an E-conversion code had been
used.

(2) Output: The G-conversion output is a real constant
expressed without an exponent, as in F-conversion, if the
number is between 1 and 10 inclusive. Otherwise,
E-conversion is used.

L(Logical) Conversion

Form: Lw

(1) Input: On input, the L-conversion allows logical
quantities to be entered (i.e., . TRUE, or . FALSE.).
The first non-blank character of the input field must be
either a T (for . TRUE.) or an F (for . FALSE,). If the
T or F are not right-justified in the field, all other
letters are ignored.

A (ALPHANUMERIC) Conversion

Form: Aw

(1) Input: The A-conversion reads a list containing any
allowable FORTRAN Characters. On the 810A, a word is
filled with two 8-bit characters. On the 840A, a word is
filled with four 6-bit characters. The input data is left-
justified in the word, and the remainder of the word is
filled with blanks. (4 corrections).

(2) Output: If the I/O list element specifies an entire array
(i.e., an array name without subscript) the characters
specified are stored continuously starting at the first
word of the array and upward until the entire alphamumeric
string has been stored. When separate array elements are

7-1

specified, either by the use of an implied DC-loop or
directly by specifying a particular element; each element
requires a new FORMAT term.

(3) I/O Example:
DIMENSION A(10)
INTEGER A
READ (ID, 10) A
WRITE (OD, 11) A
STOP
810A
10 FORMAT (10A2)
11 FORMAT (1HC, 10A2)
840A
10 FORMAT (10A4)
11 FORMAT (1HC, 10A4)
where C is carriage control character 0, 1, +, or blank.

7.4.7 D (Double-precision) Conversion

Form: Dw.d

(1) Input: The basic form of D-conversion is the same as for
real conversion, except that the data is stored in two
words, instead of one word, for better accuracy.

(2) Output: The form of D-conversion of output is the same
as the output of E-conversion except that a character D,
replaces the character E in the exponent.

7.4.8 Complex Conversion
Form: Ew.d, Ew.d

Ew.d, Fw.d

Fw.d, Ew.d

Fw.d, Fw.d

Complex data consists of a pair of separate real data, the first
of which supplies the real part of the complex number, the second supplies the
imaginary portion of the complex number.

7-8

7.5 EDITING SPECIFICATIONS

The following specifications are used for editing of input and
output. When used with input, they allow the programmer some flexibility in
preparing coding sheets. For output, they allow the labeling of the results, and
also allow for the arrangement of the output quantities.

7.5.1 H (Hollerith) Conversion

Form: wH

(1)

(2)

Input: This specification allows for the input of any set of
characters, including blanks, in the form of comments,
headings, and titles. When a Hollerith field is referenced
by an input statement, the field is replaced by whatever
characters appear in the field of the input record. When
the same FORMAT statement is later referenced by an
output statement, the new field of characters is
transferred to the output record.

Example:
Source Program:
READ (1, 10)
10 FORMAT (2ZHXXXXXXXXXXXXXXXXXXXXXX)
Input Record: |
INPUT RECORD

A THIS IS A NEW HEADING
22 columns

A later call for the same FORMAT statement number:
WRITE (2, 10) produces this output record: THIS IS A
NEW HEADING.

Note that characters read by a Hollerith specification are
used only for input/output. They may not be manipulated
in any way.

Output: On output the field width, w, specifies the number
of characters to the right of H that are transmitted. The
first characters of each line is considered a carriage
control character and does not print.

The comma following the H specification is optional.

7-9

7.5.2 X (Blank) Conversion

Form: wX

(1) Input: The X specification causes a column of the input
record to be skipped.

(2) Output: The X specification in an output field causes w
spaces to be inserted in the output record.

1X may be written as X. The comma following the X
specification field is optional.

7.5.3 New Record

The slash, (/), signals the end of a record. Successive slashes
may be used to skip lines, cards, or tape records.

7.6 nP SCALE FACTOR

To permit more general use of the D-, E-, F-, and G-
conversion, a scale factor may be used. The scale factor for input is defined as
follows: 10-scale factor x external quantity = internal quantity. The scale factor
for output is: external quantity = internal quantity x 10scale factor,

For input, the scale factor has an effect only on F-conversion.
When using D-, E-, or G-conversion with a scale factor on input, the value of
the exponent is modified to compensate for the shift of the decimal point.

When using G-conversion for output, the scale factor is taken
into consideration in the formula for determing whether F- or E-conversion is
used. If F-conversion is used, the actual value of the number is changed when
the decimal point is shifted, as if F~conversion had been originally specified. If
E-conversion is used, because the value does not fit into the output field under
F-conversion, the scale factor has the same effect as if E-conversion had been
specified.

The general form of a scale factor is:

nPEw. d
nPFw.d
nPGw. d
nPDw. d
where n is a signed integer constant.

Examples of F w . d Scaling:

The input quantity 314.1593 read under the specification
2PF 8. 4 would produce the internal value of 314. 1593 x 102 = 3,141593.

7-10

Output Examples:

Specification Output Representation
F8.5 3.14159
1PF8.5 31. 4159
3PF8.5 3141.59
-1PF8.5 . 314159

Examples of Ew. d Scaling

Specification Output Representation
E15.2 3, 14E+00
1PE15.2 31.42E-01
3PE15. 2 3141.59E-03
-1PE15.2 . 314E+01

‘When no scale factor is present in a FORMAT statement, the
scale factor is assumed to be zero. However, once a scale factor is given in a
FORMAT statement, it applies to all following field specifications involving
D-, E-, F-, and G-conversion within the same FORMAT statement until a new
scale factor is given. To reset the scale factor within a FORMAT statement,
OP must be used. »

Examples:
3PF8.4, A2, 15, 3PF5.2
is equivalent to:
3PF8.4, A2, 15, F5.2

If the field specification contains a repeat count, the scale
factor precedes the repetition constant.

3P5F8.4, A2, OPF5.2, 2P3F6.0
7.7 REPEATED FORMAT SPECIFICATIONS

Any FORMAT specification except X, H, and nP may be
repeated by using an unsigned non-zero integer constant preceeding the field
specification.,

FORMAT (17, 17, 17, F4.1, E6.3, Eb6.3, E6.3, E6.3, E6.3) is

—~

equivalent to:

FORMAT (317, F4.1, 5Eé6. 3)

7-11

When a group of FORMAT specifications are repeated, as in:

FORMAT (15, F6.2, 15, F6.2, 13, F5.0, F5.0)
using a repetition constant produces:

FORMAT (2(15, F6.2), 13, 2F5.0)

7.7.1 Multiple-Record Formats

) On input, a slash (/) in a FORMAT statement causes a new
record (i.e., card) to be read. If n slashes are used, n-1 records are skipped.

Example:
READ (1, 100 A, B, C, D, E, F, G
10 FORMAT (3F8.2/F5.3, 3F6.2)

This FORMAT statement reads one card containing three fields
of data that are stored in A, B, and C. The remainder of the card is not read;
the next card contains four fields of data to be stored in D, E, F, and G.

If the FORMAT statement reads:
10 FORMAT (3F8.2//F5.3, 3F6.2)
one entire record is skipped and D, E, F and G are read on the following record.

On output, n consecutive slashes in a FORMAT statement
cause n-1 blank lines to be written, except when the slashes are unscanned. In
that case, an additional blank line is printed.

In a multiple-record FORMAT statement, it is possible to
specify that the first record has one format and that all following records have
another format by enclosing the last record specification in parentheses.

Example:
FORMAT (515/ (3F10.2, 3E10. 6))

When this FORMAT statement is executed, the first record is
printed under control of the 5I5 field specification and all subsequent records are
printed under control of the other two field specifications, until the output list is
satisfied.

7.8 VARIABLE FORMAT

FORMAT lists may be specified at the time of execution. The
specification list including left and right parentheses, but not the statement
number nor the word FORMAT, is read into a dimensioned array under control
of an A (Alphanumeric) field specification. The name of the array containing
the specification may then be used in place of a FORMAT statement number.

7-12

Example:
Assume the following FORMAT specification:
(F10.2, 13, F6.0, F9.2)
This information is read:
DIMENSION INP(5)
READ (1, 10) (INP(I), I =1, 5)
10 FORMAT (5A4)

This input record places in storage the following
elements:

INP : (F10
INP+1: .2, 1
INP+2: 3, Fé6
INP+3: .0, F
INP+ 4: 9.2)

A subsequent output statement in the same program could refer
to these format specifications as:

WRITE (2, INP) A, I, B, C
This would write A, I, B, C, in the following format:
F10.2, 13, F6.0, F9.2
7.9 CARRIAGE CONTROL
The first character on every line of output is considered a
carriage control indicator. Below is a list of carriage control indicators and

their significance.

Carriage Control

Indicator Significance
blank Single space prior to printing current line.
0 Double space prior to printing current line.
1 Space to top of form prior to printing
current line.
+ Do not advance form prior to printing

current line.

7-13

7.10 MANIPULATIVE STATEMENTS

7.10.1 END FILE Statement

General Form

END FILE i
where:

iis an unsigned integer or integer variable specifying
the device code of a peripheral unit.

When addressing a magnetic tape unit, the END FILE statement
causes an end-of-file record to be written on the designated tape unit.

If i is an integer variable, it must be assigned a value
corresponding to a peripheral unit prior to the execution of this statement.

7.10.2 REWIND Statement

General Form

REWIND i
where:

iis an unsigned integer variable specifying the
device code of a peripheral magnetic tape unit.

This statement is used to rewind to the beginning of the tape
mounted on tape unit i. Ifiis an integer variable, it must be assigned a value
corresponding to a peripheral tape unit prior to the execution of this statement.

7.10.3 BACKSPACE Statement

General Form

BACKSPACE i
where:

i is an unsigned integer or integer variable specifying the
device code of a peripheral magnetic tape unit.

This statement causes the tape mounted on the magnetic tape
unit i to move backward one logical record. Ifi is an integer variable, it must
be assigned a value corresponding to a peripheral tape unit prior to the execution
of this statement.

7-14

APPENDIX A

SEL 810A AND 840A CHARACTER CODES AND

CHARACTER CODES

WORD STRUCTURE

CHARACTER | CARD |ASR-33 | ASR-35 | Ascll E%MD"F CHARACTER | CARD [ASR-33 | ASR-35 | ASCII | (Eb
0 o | 20 | os0 | 60| 12 A -1 | o | 1w | ow | el
1 1o et | o2 | e | oo B 12-2 | 32 | w2 | 02| 62
2 2 | w2 | % | 62 | w c 12-3 | 303 | 303 | 03| 63
3 3| % | w3 | 63| @ D -4 | 304 | 104 | 04 | e
! s e | s | oer | oos E 12-5 | 305 | 305 | o5 | 65
5 5 | 25 | o5 | 65 | 05 F 12-6 | 306 | 306 | 06 | 66
6 6 | 6 | o6 | 65 | 06 G -7 | 30 | w | o | e
7 7| % | w | er | oo H 12-8 | 30 | 1o | 10 | 70
8 8 | 20 | | w0 | 10 | -9 | | s | 1|
g s | | | n|u J -1 | 312 | 312 | 12| a4

BLANK | BLANK | 200 | 240 | 40 | 20 K -2 | a3 | m3 | 1|«
= =3 | s | s | 5|13 L -3 | 3 | s | 1| a3
' Bt | 2w | o | w7 |1 M -4 | 315 | us | 15 | a4
+ 2 | 2 | 3 | s |60 N -5 | 36 | 16 | 16 | 45
. 12-8-3| 256 | o | s | 7@ 0 -6 |37 | w7 | 1|
) 12-8-4 | 251 | 2w | s |7 p -7 | a0 | 120 | 20 | @
- 1| 25 | o | s | a0 Q -8 |3 | s | 2 |50
$ 1-8-3 | 204 | o | 4 |5 R -9 | 322 | 2 | 2 |s
. n-8-4 | 22 | 22 | 52 |5 s -2 |33 | w3 | 8|2
: 0-8-3 | 254 | 254 5 | 33 T 0-3 | 32 324 24 | 23
(0-8-4 | 250 | os0 | s0 |34 u -4 |35 | 15 | 25| n
/ -1 | 7 | 2 | 5 |2 v 05 | 36 | 126 | 26 |2

W -6 |37 | 3 | o |
X 0-7 {330 | 30 | 30 |2
Y 0-8 {331 | 131 | 31 |30
z -9 |32 | 1w | % |3

WORD STR

UCTURE

840A FLOATING POINT QUANTITIES

SINGLE-PRECISION FLOATING POINT DATA

S gt FRACTIO 923
i | | 1 | 1)]) 1 ' 1] (] 1 I 1 | i 1 1
01 2 3 4 5 6 7 8 9 10 1112 13141516 1718 192021 22 23
: WORD 1
-2 -37 s |of v
OB & . . L FRAQTION, , , , 2 2 [EXPONENT | 2
WORD 2
DOUBLE-PRECISION FLOATING POINT DATA
S ot FRACTION 5 23
(N 1 i A 1 1 1] 1 1 L 1 [] 1 [1 t 1] L]
0 1 2 3 4 5 6 7 8 9 1011 12 13 1415 16 17 18 19 20 21 2 23
WORT 1
0]224 FRACTION 23|s |27 ExpoNENT 20
01 2 34 5 6 7 8 9 10 1112 13141516 17 18 192021 2223
WORD 2
O 2_138|]] 1) (] 2-6 ’
0 12 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 2122 23
WORD 3
INTEGER QUANTITIES
INTEGER DATA
22 0
S 2 (]] i A1 1 1 1 1 1] 1 1 [4 1 1 (] 1 1 1 1 |2
012 3 4 5 6 7 8 9 10 111213141516 17 18 192021 2223
DOUBLE-PRECISION FIXED POINT DATA
S 24L5 [[] 1 1 (] (] N (] [A 1 1 1 1 1 s 1 1 1 1 2‘23
0 12 3 4 5 6 7 8 9 101112 1314151617 18 19 2021 22 23
WORD 1
22 0
O 2 1 1 [l 1 1 1 1 [[} 1 - | 1 1 1 1 3. L | - | 1 1 '2
01 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 21 22 23
WORD 2

WORD STRUCTURE ¢4 FLOATING POINT QUANTITIES

SINGLE-PRECISION FLOATING POINT DATA

s |27 FRACTION 2™ worn 1
1 L 1 1L vl 1 1 (] 1 1 L 1
16 21
0|2 FRACTION 2 S 27 EXPONENT 20 WORD 2
1 [] 1 1 1 1 1 1] 1 1 1
0 1 6 7 8 15
COMPLEX FLOATING POINT DATA
-1 ~15
s |2 FRACTION 7] WORD 1
1 1 1) 1] 1 1 1 [] L 1
-16 21 7
0 |2 FRACTION 271 s |2 EXPONENT 20 1 worD 2
1 L 1 1 1 A [] (] 1 1 [1
01 ' 6 7 8 15
(REAL PART)
s |27 FRACTION 7151 WorD 3
1 i] i 3 1 1 L} 1 - 1 1
» _ :
0 |7 rracmion 7% s |2 EXPONENT 2% | woro 4
1 1 1 L 1 1 1 1 1 1) 1
0 1 15

(IMAGINARY PART)
"~ DOUBLE~PRECISION FLOATING POINT DATA

T T
- ’ 15
S |2 FRACTION 2 WORD 1
o b1 72 s | EXPONENT 2 | woRD 2
0 |74 FRACTION 7| worp3
1 1 1 1 [} [} i 1 1 (] o L 1 1
0 1 6 7 8 _ 15

INTEGER QUANTITIES
INTEGER DATA

T T
5 ptt 2!
0 1 15
LOGICAL
1 UNUSED
1 i] 1] [1 1 . | 1 1 A .
0 15

APPENDIX B
STATEMENT INDEX

SPECIFICATION STATEMENTS

COMPLEX List

DOUBLE PRECISION List

INTEGER List

LOGICAL List

REAL List
STORAGE ALLOCATIONS

DIMENSION Vis V25 Vzree

COMMON / Ii / List

EQUIVALENCE (a, b, ¢, ..), (d, e, f, ..)

DATA LIST / a, b, ¢, ... /,
Listp / d, e, £, ..) a

SUBPROGRAM STATEMENTS
Entry Points

SUBROUTINE Name
SUBROUTINE Name (py, p2, ..)
FUNCTION Name (p;, pp, -.)
REAL FUNCTION Name (p;, py, --)
INTEGER FUNCTION Name (py, p2, ..)
COMPLEX FUNCTION Name (pl, P2 -.)

LOGICAL FUNCTION Name (py, p2, ..)

s
I

Z 2 2 2z Z

Z 2 2 2 2 2Z Z Z

DOUBLE PRECISION FUNCTION Name (p;, pp, --

Inter-Subroutine

EXTERNAL Name1 , Narne2

Non-executable
Executable

%
z
o

B-1

~

PAGE

Transfer Statements

CALL Name . E 6-6
CALL Name (py, pps ..) E 6-6
RETURN E 5-6

ARITHMETIC STATEMENT FUNCTION
Function (p}, py, ... p,) = EXPRESSION E 6-1

SYMBOL MANIPULATION, CONTROL

Replacement
V=E - Arithmetic E 4-1
Logical/Relational E 4-3
Multiple - E 4-2
Inter-program GO TO n E 5-1
Transfers GO TO n, (ml, my, ... mn) E 5-2
| GO TO (mj, my, ... mn) n | E 5-1
IF (A) nj, ny, ng E 5-3
IF (L) s E 5-3

MISCELLANEOUS PROGRAM CONTROL

ASSIGN I TO N E 5-2
CALL SLITE (I) E 5-6
CALL SLITET (I, K) E 5-7
CALL SSWTCH (I, K) E 5-7
CALL OVERFL (1 E 5-7
CONTINUE E 5-5
PAUSE ; PAUSE n E 5-5
STOP ; STOP n E 5-6
DOni =mj, my, mg E 5-4

I/O STATEMENTS PAGE

FORMAT (specy, Specy, ...) N 7-2
READ (n, F) LIST E -2
READ (n, F) E 7-2
READ (n) LIST E -2
READ (n) E 7-2
WRITE (N, F) LIST E 7-2
WRITE (N, F) E 7-2
WRITE (n) E -2
I/O Tape Handling
END FILE I E 7-14
REWIND I E 7-14
BACKSPACE I E 7-14
TERMINATION
END N/E 5-5

APPENDIX C

LIBRARY FUNCTIONS

MODE OF
FORM DEFINITION
ARGUMENT| RESULT
ABS (X) REAL REAL
CABS (Q) INTEGER INTEGER
DABS (D) DOUBLE DOUBLE Absoﬂ‘xgglalue
IABS (I) COMPLEX COMPLEX
AIMAG (C) COMPLEX REAL Obtain imaginary part of
complex number
AINT (X) REAL REAL Truncation
INT (X) REAL INT Sign of ARG Times
IDINT (D) DOUBLE INT Largest integer < |ARG]
ALOG (X) REAL REAL Natural Log
DLOG (D) DOUBLE DOUBLE LOG, (ARG)
CLOG (C) COMPLEX COMPLEX
ALOGIO (X) REAL REAL Common Log
DLOGIO (D) DOUBLE DOUBLE LOG, (ARQ)
AMAXO (I3, I, ..) INTEGER REAL
AMAX1 (X1, X5y enn) REAL REAL Determine
MAXO (I1,I,...) INTEGER INTEGER Maximum
MAXI1 (X1, Xos e) REAL INTEGER Argument
DMAX1 (D, Dy, ...)| DOUBLE DOUBLE
AMINO (I1,1Ip,...) INTEGER REAL
AMINI (X1, X5,) REAL REAL Determine
MINO (Il’ I,...) INTEGER INTEGER Minimum
MIN1 (X7, X5,....) REAL INTEGER Argument
PNIN1 (D3, Dy, ...) DOUBLE DOUBLE
AMOD (X, X3) REAL REAL Remaindering
MOD (I3, I,) INTEGER INTEGER ARG -(ARG;/ ARG))
ARG, where (X) is the
integral part of X.
ATAN (X) REAL REAL -~
| DATAN (D) DOUBLE DOUBLE Arctangent (ARG)
ATAN2 (X, X5) REAL REAL
DATAN2 (D1, D5) DOUBLE DOUBLE Arctangent (ARGL/ARG2)
CMPLX (Xj, X3) REAL COMPLEX Form complex number
X1+ X, |41 ~

MODE OF

FORM DEFINITION
ARGUMENT RESULT
COS (X) REAL REAL
DCOS (D) DOUBLE DOUBLE Cosine (ARQG)
CCOS (C) COMPLEX COMPLEX (Radians)
CONJG (C) COMPLEX COMPLEX Complex Conjugate for
ARG = X +iY
C=X-1iY
DBLE (X) REAL DOUBLE Convert Single
Precision
Argument to Double
DIM (X, X>5) REAL REAL Positive Difference
IDIM (I, 12% INTEGER INTEGER ARG) - MIN (ARG,
: ARG))
EXP (X) REAL REAL Exponential
DEXP (D) DOUBLE DOUBLE eARG
CEXP (QC) COMPLEX COMPLEX
FLOAT INTEGER REAL Convert Integer to REAL
IFIX (X) REAL INTEGER Convert REAL to Integer
REAL (C) COMPLEX REAL Obtain REAL part of
complex number
SIGN (X1, X,) REAL REAL Transfer of sign
ISIGN (I, 12) INTEGER INTEGER Sign of ARGZ times
DSIGN (D, Dy) DOUBLE DOUBLE |ARG|
SIN (X) REAL REAL
DSIN (D) DOUBLE DOUBLE Sine (ARG) Radians
CSIN (C) COMPLEX COMPLEX
SNGL (D) DOUBLE REAL Double to REAL Conversion
SQRT (X) REAL REAL Square Root
DSQRT (D) DOUBLE DOUBLE 1/2
CSQRT (C) COMPLEX COMPLEX ARG
TANH (X) REAL REAL Hyperbolic Tangent

APPENDIX D
TRACE
There are two types of TRACE statements available. The first
is used for tracing only selected variables, and the second is used for tracing all

variables within a specified area.

NOTE: If sense switch 4 is on, no TRACE is executed.

1. Item Tracing

The TRACE statement used for item tracing specifies a list of
variables and/or array names. The format is:

X

TRACE X 30 e
n

1 X X
where X is any variable or array name. Whenever any of these variables or
array elements becomes redefined by an arithmetic expression, coding is
inserted into the object program by the TRACE routine which causes a line of
TRACE information to be typed. A description of the output format appears in
paragraph (4). A TRACE statement of this type may be placed anywhere in the
source program. As many TRACE statements as desired may be included in
the program.

2. Area Tracing

The TRACE statement used for area tracing specifies a single
statement number. The format is:

TRACE n

where n is any statement number not yet defined. This type of TRACE
statement inserts coding into the object program which causes the results of all
arithmetic expressions (including IF statements) that follow the TRACE
statement inclusive to statement n, to output a line of TRACE information as
described in paragraph 4. This group of statements is called the TRACE Range.
In addition to tracing all arithmetic and IF statements within the TRACE Range,
all statement numbers within this range are also output as a line of TRACE
information.

An area TRACE statement should not be placed within the
TRACE Range of another area statement unless all such TRACE statements refer
to the same statement number.

3. Unconditional TRACE

If a TRACE of the entire source program is required, the
format:

TRACE 99999

~

traces all arithmetic statements, IF statements, and statement numbers at run
time.

4. TRACE Listing Format

At execution time of the object program, any TRACE coding
inserted by the compiler causes a line to be typed consisting of a variable name,
an array name, or a statement number, followed by an equal sign, followed by
the current decimal value just assigned to that name. The decimal value is typed
in either integer, floating point or complex format. Array names are followed
by a subscript indicating the element within the array first modified, as if it
were a single dimensioned variable. (For converting double and triple
dimensions to single. See Section 3. 4.)

5. Sample TRACE Program

DIMENSION A (3, 3)
TRACE Y, A

X =3.24
Y=X+1.5
Z:Y;{okz

DO481=1, 3
A(l, 2) = Y/2.0
48 Y=Y+1.0

X =0.0
K=2
TRACE 62

50 X =X+1.0
IF (X - 3.0) 51, 53, 53
51 K = K*K
GO TO 50
53 IF (X.LE Y) X = X + 100. 0
63 X =X-1.0
z

2.0%X

Y =20.0

The output generated by this program would appear as:

Y = 60.4740000000E601

A (4) = 60.2370000000E601

X = 60.5740000000E601

A (5) = 60.2870000000E601)

Y = 60.6740000000E601

A (6) = 60.3370000000E601

Y = 60.7740000000E601

(50)

X = 60.1000000000E601

(IF) = -0.2000000000E601

(51)

K = =——6b—4

(50)

X = 60.2000000000E601

(IF) = -0.1000000000E601
(51)

K

(50)

X = 60.3000000000E601

(IF) = 60.0000000000E600

(53)

(IF) =—=—6b —=1

X = 60.1030000000E603

(62) =

X = 60.1020000000E603

Y = 60.0000000000E600

APPENDIX E
CHAINING

The CHAINING feature of SEL 810A/840A FORTRAN IV allows
a FORTRAN object program that is too large to fit into the available memory
space to be divided into segments. Each segment is run separately and inter-
segment communication of data is done through COMMON storage.

Control is transferred from link-to-link by means of the
statement "CALIL CHAIN', which is the last executable statement of each link.

All blank or labeled COMMON areas used for communication
between segments of the chain must be declared with a COMMON statement at
the beginning of each segment. The declaration order and size of each area
must agree in each chain segment.

Chain Program Example

C LINK NO. 1
COMMON A, B
WRITE (4, 1)
1 FORMAT (15H THIS IS LINK 1)
A = 2.%B
CALL CHAIN

END

C LINK NO. 2
COMMON X, Y
WRITE (4, 1)
1 FORMAT (15H THIS IS LINK 2)
Y = 2, %X
CALL CHAIN

END

LINK NO. 3

COMMON E, F

WRITE (4, ‘1)

1 FORMAT (15H THIS IS LINK 3)
E = 2. %F

STOP

END

APPENDIX F
OPERATOR COMMUNICATIONS

FORTRAN IV Diagnostics for 840A

More than 50 different error diagnostics can be indicated.
They will appear on the line following a FORTRAN statement in which an error
has occurred, for example; ERROR DETECTED AT COLUMN.,

The following list contains the different diagnostic codes and
their meaning.

CODE ROUTINE MEANING

ADDR ILLEGAL ADDRESS CONSTRUCTION

ADJD SCo1 ILLEGAL ADJUSTABLE DIMENSIONS

AMOD ILLEGAL MODE FOR ADDRESS (MUST BE
INTEGER)

ASOV * ASO3 ASSIGNMENT TABLE OVERFLOW

ASTO X301 ASSIGN TO SPELLING ERROR

BLKD - W500 NO CODE GENERATED BY A BLOCK DATA
PROGRAM

CERR # Al00 CHARACTER NO A C/R

CICD CANNOT INITIALIZE COMMON DATA

COMM NMO1 ERRONEOUS COMMON USAGE

CRET * THO2 C/R WITHIN HOLLERITH STRING

DDST NRO1 DOUBLY DEFINED STATEMENT

DPFL * B500 DATA POOL FULL

DPOF DATA POOL OVERFLOW

DUMM NDO1 ERRONEOUS DUMMY USAGE

EQCN C310 ERRONEOUS EQUIVALENCE CONSTRUCTION

EQIV C309 IMPOSSIBLE EQUIVALENCE GROUP

EQMS * C901 DO EQUALS (=) IS MISSING

ERDO * C900 ILLEGAL DO-TYPE STATEMENT

ERTN * R903 RETURN STATEMENT IN MAIN PROGRAM

" EXS= * EX66 NOT FIRST EQUALS, OR EQUALS WITH

PARENTHESIS, OR EQUALS NOT ALLOWED

FUNV W501 FUNCTION NAME NEVER ASSIGNED

FRST * R205 NOT FIRST STATEMENT OF PROGRAM

FWAR * R203 FUNCTION HAS NO ARGUMENTS

HOLL ILLEGAL HOLLERITH STRING

CODE

IDOL
IF(2
ILBD
ILEG
ILIF
IL.SN
INDT
IUSE
LDOP
MODE
MULT
NAME
NARR
NCBS
NEXT
NINT
NNAM
NOIM
NOIT
NPTH
NOC

OPER
OPOS

PATH
RLOP
SBIG
SBSC
SPEC
SPEL
STNO
TAG
TYPE
TMDT

3

3

.
e

AL,
v

ROUTINE MEANING

V516 IMPROPER IMPLIED DO LOOP

V307 IF (ITEM HAS OVER 6 CHARACTERS

R301 ILLEGAL BLOCK DATA STATEMENT

A900 NOT LEGAL FORTRAN STATEMEN T
ILLEGAL LOGICAL IF CONSTRUCTION

1504 ILLEGAL STATEMENT NUMBER
DATA CONSTRUCTION ERROR

NU00 INCORRECT USAGE

EX79 IMPROPER LEADING OPERATOR

oMZ5 MODE MIXING ERROR

NP02 MULTIPLE DEFINED ITEM
CONSTANT ILLEGALLY USED

ATO0 ITEM NOT AN ARRAY

Cc315 NEGATIVE COMMON BASE

C604 IMPROPER DO NEST

I1T00 ITEM NOT AN INTEGER

NCOO ILLEGAL USE OF CONSTANT
OPERAND MISSING
MUST HAVE INTEGER TYPE

V219 NO FORMAT STATEMENT NUMBER |
ILLEGAL USE OF SUBROUTINE OR ARRAY
NAME

EX25 UNACCEPTABLE OPERATOR

EX60 OPERATOR NOT ALLOWED AT THIS
POSITION

NP06 PATH CANNOT EXECUTE THIS STATEMENT

EX70 TWO RELATIONAL OPERATORS IN A ROW

DN57 DIGIT STRING TOO LARGE

1L01 WRONG NUMBER OF SUBSCRIPTS

NP00 STATEMENT CLASS OUT OF ORDER

A903 FORTRAN STATEMENT MISSPELLED

cr02 STATEMENT NO. CONSTRUCTION
ILLEGAL INDEX CONSTRUCTION

A304 IMPROPER USE OF TYPE STATEMENT

TOO MUCH DATA

CODE

V/SP
XARG
JERR
(ERR
/ERR
, ERR

ot
<

AL
w

ROUTINE MEANING

NSO1 ILLEGAL USE OF SUBPROGRAM NAME
EXCESSIVE NUMBER OF ARGUMENTS

TSO01 CHARACTER NOT A)

TS02 CHARACTER NO A (

TS03 CHARACTER NOT A /

TS04 CHARACTER NOT A,

#*IRRECOVERABLE ERROR. ENTIRE RECORD IS IGNORED.

APPENDIX G
IN-LINE CODING

To provide additional flexibility in the SEL 810A and 840A
FORTRAN systems, MNEMBLER code may be interspersed with FORTRAN
statements. Permissable operation codes are listed at the end of this Appendix.

The location field is either blank or may contain only a
FORTRAN statement number. The statement number may appear anywhere
within columns 1 - 5.

The operation code appears in columns 7 - 9.
The variable field may consist of:

(1) FORTRAN names - variables, array names, function
names.

(2) FORTRAN constants - (interpreted as literal constants).

(3) FORTRAN statement numbers preceded by the
character)",

- At least one blank character must separate the operation code
field and the variable field. If column 10 is an asterisk, indirect addressing is
indicated.

The index field may use only constants of one, two, or three
and is separated from the address portion of the instruction by a comma.

NOTE: If a dummy variable or array is addressed, the
indirect bit in the instruction is set by using an MEA
instruction, (note, if also column 10 contains an
asterisk (*), the MEA command negates the
indirect bit).

The following operation codes are the only allowable assembly

language.
NOTE: Instructions with an asterisk cannot be done on the
810A.

ARITHMETIC:
AMA (05) - ADD (M) TO (A) RESULT IN A
SMA (06) - SUBTRACT (M) FROM (A)
AAM (31) - ADD (A) TO (M) RESULT IN M
MPY (07) - MULTIPLY
DIV (10) - DIVIDE

Q
1

LOAD:

LAA (01)
LBA (02)

STORE:

STA (03)
STB (04)

LOGICAL:
*MAA (27)
*MEA (26)
*MOA (30)

BRANCH:

BRU (11)

*BAZ (22)

*BAP (24)

*BAN (23)

SPB (12)
INDEX:

*LIX (32)

(M) TO A
(M) TO B

(A) TOM
(B) TOM

(M) AND (A)

(M) EXCLUSIVE OR (A)

(M) OR (A)

BRANCH TO M

BRANCH IF (A) =0

BRANCH IF (A) POSITIVE
BRANCH IF (A) NEGATIVE
STORE PLACE AND BRANCH

(M) TOX

