ENGINEERING LABORATORIES

REFERENCE MANUAL

32/70 SERIES

Computer

January 1979

e Specifications Subject to Change Without Notice e © 1979 Systems Engineering Laboratories, Incorporated e Printed in USA
e Publication Number 301-320070-000

—de

-—e

8808
8800
8800

0800
0808

EZFFEECER

“EEE

ANMB
ANMH
ANMW

ANR

32/70 SERIES INSTRUCTIONS BY CATEGORY

DESCRIPTION
LOAD INSTRUCTIONS

LOAD BYTE
LOAD HALFWORD
LOAD WORD

LOAD DOUBLEWORD

LOAD MASKED BYTE

LOAD MASKED HALFWORD

LOAD MASKED WORD

LOAD MASKED DOUBLEWORD

LOAD NEGATIVE BYTE

LOAD NEGATIVE HALFWORD

LOAD NEGATIVE WORD

LOAD NEGATIVE DOUBLEWORD
LOAD IMMEDIATE

LOAD EFFECTIVE ADDRESS

LOAD EFFECTIVE ADDRESS REAL
LOAD ADDRESS*

LOAD EXTERNAL MAP

CONVERT EXTERNAL MAP ADDRESS*
LOAD FILE

STORE INSTRUCTIONS

STORE BYTE

STORE HALFWORD

STORE WORD

STORE DOUBLEWORD

STORE MASKED BYTE
STORE MASKED HALFWORD
STORE MASKED WORD
STORE MASKED DOUBLEWORD
STORE FILE

STORE EXTERNAL MAP*

ZERO INSTRUCTIONS

ZERO MEMORY BYTE

ZERO MEMORY HALFWORD
ZERO MEMORY WORD

ZERQ MEMORY DOUBLEWORD
ZERO REGISTER

TRANSFER INSTRUCTIONS

TRANSFER SCRATCHPAD TO REGISTER
TRANSFER REGISTER TO SCRATCHPAD
TRANSFER REGISTER TO REGISTER .
TRANSFER REGISTER TO REGISTER MASKED
TRANSFER REGISTER TO PROTECT REGISTER
TRANSFER PROTECT REGISTER TO REGISTER
TRANSFER REGISTER NEGATIVE

TRANSFER REGISTER NEGATIVE MASKED
TRANSFER REGISTER COMPLEMENT
TRANSFER REGISTER COMPLEMENT MASKED
EXCHANGE REGISTERS

EXCHANGE REGISTERS MASKED

TRANSFER REGISTER TO PSWR

MEMORY MANAGEMENT INSTRUCTIONS

SET EXTENDED ADDRESSING
CLEAR EXTENDED ADDRESSING

. LOAD MAP*

TRANSFER MAP TO REGISTER*
WRITABLE CONTROL STORAGE INSTRUCTIONS

WRITE- WRITABLE CONTROL STORAGE
READ WRITABLE CONTROL STORAGE
JUMP TO WRITABLE CONY=DL STORAGE

BRANCH INSTRUCTIONS

BRANCH UNCONDITIONALLY

BRANCH CONDITION FALSE

BRANCH CONDITION TRUE

BRANCH FUNCTION TRUE

BRANCH AND LINK

BRANCH AFTER INCREMENTING BYTE
BRANCH AFTER INCREMENTING HALFWORD
BRANCH AFTER INCREMENTING WORD
BRANCH AFTER INCREMENTING DOUBLEWORD

COMPARE INSTRUCTIONS

COMPARE ARITHMETIC WITH MEMORY BYTE
COMPARE ARITHMETIC WITH MEMORY HALFWORD
COMPARE ARITHMETIC WITH MEMORY WORD
COMPARE ARITHMETIC WITH MEMORY DOUBLEWORD
COMPARE ARITHMETIC WITH REGISTER
COMPARE IMMEDIATE

COMPARE MASKED WITH MEMORY BYTE
COMPARE MASKED WITH MEMORY HALFWORD
COMPARE MASKED WITH MEMORY WORD
COMPARE MASKED WITH MEMORY DOUBLEWORD
COMPARE MASKED WITH REGISTER

LOGICAL AND INSTRUCTIONS

AND MEMORY BYTE

AND MEMORY HALFWORD

AND MEMORY WORD

AND MEMORY DOUBLEWORD
AND REGISTER AND REGISTER

LOGICAL OR INSTRUCTIONS

OR MEMORY BYTE

OR MEMORY HALFWORD

OR MEMORY WORD

OR MEMORY DOUBLEWORD

OR REGISTER AND REGISTER

OR REGISTER AND REGISTER MASKED

LOGICAL EXCLUSIVE OR INSTRUCTIONS

EXCLUSIVE OR MEMORY BYTE

EXCLUSIVE OR MEMORY HALFWORD

EXCLUSIVE OR MEMORY WORD

EXCLUSIVE OR MEMORY DOUBLEWORD

EXCLUSIVE OR REGISTER AND REGISTER
EXCLUSIVE OR REGISTER AND REGISTER MASKED

PAGE

0P _CODE MNEMONIC DESCRIPTION

SHIFT INSTRUCTIONS

6000 NOR NORMALIZE

6400 NORD NORMALIZE DOUBLE

6800 scZ SHIFT AND COUNT ZEROS

6C40 SLA SHIFT LEFT ARITHMETIC

7040 SLL SHIFT LEFT LOGICAL

7459 SLC SHIFT LEFT CIRCULAR

7840 SLAD SHIFT LEFT ARITHMETIC DOUBLE
7C40 SLLD SHIFT LEFT LOGICAL DOUBLE
6C00 SRA SHIFT RIGHT ARITHMETIC

7000 SRL SHIFT RIGHT LOGICAL

7400 SRC SHIFT RIGHT CIRCULAR

7800 SRAD SHIFT RIGHT ARITHMETIC DOUBLE
7C00 SRLD SHIFT RIGHT LOGICAL DOUBLE

BIT MANIPULATION INSTRUCTIONS

9808 SBM SET BIT IN MEMORY
1800 SBR SET BIT IN REGISTER
9c08 ZBM ZERO BIT IN MEMORY
1c00 2BR ZERO BIT IN REGISTER
A008 ABM ADD BIT IN MEMORY
2000 ABR ADD BIT IN REGISTER
A408 TBM TEST BIT IN MEMORY
2400 TBR TEST BIT IN REGISTER

FIXED-POINT ARITHMETIC INSTRUCTIONS

8808 ADMB ADD MEMORY BYTE

B80O ADMH ADD MEMORY HALFWORD

B80O ADMW ADD MEMORY WORD

B800 ADMD ADD MEMORY DOUBLEWORD

3800 ADR ADD REGISTER TO REGISTER

3808 ADRM ADD REGISTER TO REGISTER MASKED
£808 ARMB ADD REGISTER TO MEMORY BYTE
£800 ARMH ADD REGISTER TO MEMORY HALFWORD
€800 ARMW ADD REGISTER TO MEMORY WORD
E800 ARMD ADD REGISTER TO MEMORY DOUBLEWORD
c8o1 ADI ADD_IMMEDIATE

8C08 SUMB SUBTRACT MEMORY BYTE

BCOO SUMH SUBTRACT MEMORY HALFWORD

BCOO SuMW SUBTRACT MEMORY WORD

8C00 SUMD SUBTRACT MEMORY DOUBLEWORD
3C00 SUR SUBTRACT REGISTER FROM REGISTER
308 SURM SUBTRACT REGISTER FROM REGISTER MASKED
€802 SUI SUBTRACT IMMEDIATE

Coos MPMB MULTIPLY BY MEMORY BYTE

€000 MPMH MULTIPLY BY MEMORY HALFWORD
€000 MPMW MULTIPLY BY MEMORY WORD

4000 MPR MULTIPLY REGISTER BY REGISTER
€803 MPI MULTIPLY IMMEDIATE

ca08 DVMB DIVIDE BY MEMORY BYTE

C400 DVMH DIVIDE BY MEMORY HALFWORD

Ca00 DvM DIVIDE BY MEMORY WORD

4400 DVR DIVIDE REGISTER BY REGISTER
€804 ovI DIVIDE IMMEDIATE

0004 ES EXTEND SIGN

0005 RND ROUND REGISTER

FLOATING-POINT ARITHMETIC INSTRUCTIONS

E008 ADFW ADD FLOATING-POINT WORD

£008 ADFD ADD FLOATING-POINT DOUBLEWORD
E000 SUFW SUBTRACT FLOATING-POINT WORD

£000 SUFD SUBTRACT FLOATING-POINT DOUBLEWORD
£408 MPFW MULTIPLY FLOATING-POINT WORD

E408 MPFD MULTIPLY FLOATING-POINT DOUBLEWORD
E400 DVFW DIVIDE FLOATING-POINT WORD

E400 DVFD DIVIDE FLOATING-POINT DOUBLEWORD

CONTROL INSTRUCTIONS

F900 BRI BRANCH AND RESET INTERRUPT

F980 LPSD LOAD PROGRAM STATUS DOUBLEWORD
FAB0 LPSDCM LOAD PROGRAM STATUS DOUBLEWORD AND CHANGE MAP
0803 LCS LOAD CONTROL SWITCHES

807 EXR EXECUTE REGISTER

€807 EXRR EXECUTE REGISTER RIGHT

A800 EXM EXECUTE MEMORY

0000 HALT HALT

0001 WAIT WAIT

0002 Nop NO OPERATION

3000 CALM CALL MONITOR

€806 SVC SUPERVISOR CALL*

209 SETCPU SET CPU MODE

0009 RDSTS READ CPU STATUS WORD*

0008 EAE ENABLE ARITHMETIC EXCEPTION TRAP*
000E DAE OISABLE ARITHMETIC EXCEPTION TRAP*

INTERRUPT INSTRUCTIONS

FCoo EI ENABLE INTERRUPT

Fcoz RI REQUEST INTERRUPT

FCo3 Al ACTIVATE INTERRUPT

FCO1 DI DISABLE INTERRUPT

FCO4 DAL DEACTIVATE INTERRUPY

FC77 ACI ACTIVATE CHANNEL INTERRUPT*
FC67 ECI ENABLE CHANNEL INTERRUPT*
FC6F 0CI DISABLE CHANNEL INTERRUPT*
FC7F DACI DEACTIVATE CHANNEL INTERRUPT*
0006 BEI BLOCK EXTERNAL INTERRUPTS*
000E UEI UNBLOCK EXTERNAL INTERRUPTS*

INPUT/OUTPUT INSTRUCTIONS

FCO6 () COMMAND DEVICE
FCO5 0 TEST DEVICE

FC17 SI0 START 1/0*

FC1F TI0 TEST 1/0%

FC27 STPIO STOP 1/0%

FC2F RSCHNL RESET CHANNEL*
FC37 HIO HALT 1/0*

FC3F GRIO GRAB CONTROLLER
Fca7 RSCTL RESET CONTROLLER*
FCAF ECWCS ENABLE CHANNEL WCS LOAD*
FCSF Wewes WRITE CHANNEL WCS*

*PSD mode instructions only

PAGE

LIST OF EFFECTIVE PAGES

The total number of pages in this manual is 378 consisting of
the following:

Page

Title

Instructions

iii
iv

v through xiv
Frontispiece

1-1

2-1
3-1
4-1
5-1
6-1
7-1
8-1
A-1
B-1
C-1
D-1
E-1
F-1
G-1
op

through
through
through
through
through
through
through
through
through
through
and C-2
and D-2
and E-2
and F-2
and G-2
Codes

1

OONNNO-&&

1-
2-1
3-1
4-2
5-2
6-2
7-1
8-6
A-6
B-8

6

Issue

Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Original
Origiani
Original

REVISION INSTRUCTIONS AND MANUAL HISTORY

EQUIPMENT: 32/70 Series Computers : PUBLICATION NO. 301-320070-000

PURPOSE: Original Printing
Supersedes the 32/75 Computer Reference Manual, publication number 301-320075-000

REVISION INSTRUCTIONS: Delete and add pages as shown on the following table.

ADD

NA) NA

MANUAL HISTORY

CONTROL « REV. REV. DATE

REV. REV. DATE
TYPE. NO. ISSUED

1st Ptg 1/79

CONTROL

ECL

DOC. NO. ECL TYPE NO. ISSUED DOC. NO.

R= INTERIM REVISION
F= FORMAL REVISION

iv

TABLE OF CONTENTS

SECTION | GENERAL DESCRIPTION

Page
LT 1 Ton T 1-1
Y OmM DV PV W, o oo it tii ittt ittt ittt ittt ettt it et e et 1-1
General Characteristics......vuiiiiiiiniini ittt ittt iienennenn. 1-1
Standard and Optional Features.............coiiiiiirriniineriinnnneennnnnnenns 1-4
General Purpose Features.ouiiiiinininniiiiiireiiiiienerinannennns 1-5
Real-Time Features.............oiiviiiininnnnnnnnnn. et eeser ittt 1-6
Multiusage Features.......ueunnuiiiniii i it i eee e 1-7
Multiprocessing Features............iiiiiiiiiiiiiiiii it iiiiiiiiiiiiiinanennes 1-8
Functional Descriphion.uuiiiiiiiiir ittt ettt 1-8
Major System Elements.ovuiriiiiiiiiiiiii ittt iiiiiiee e eeiinnnnenn. 1-8
SelBUS. .ot H et ettt bt e e e e 1-11
Central Processor Unit.ttt it et i iernnnnns 1-11
General Purpose Registers.........ovieiiiiiiiniiiieenennnennnenneeeennannns 1-11
Floating-Point Arithmetic Processor..........coviiuieeeiierreenrennnnnnnnns 1-11
CPU Modes............... e s s e s aeeecese s e aaeaoat et ana e renaaeaeans 1-11
Control Modes.oiiiiiiiiiit ittt ettt 1-13
Addressing Modes......................... eeeeeececcsecscecanesenansaranans 1-13
Address SUbmMOdes.oiviuiiiiiii i i it et e e 1-13
Hardware Memory Management.............. et eetenee s 1-14
Lo T T - | o 1-14
Write Protection.t i i i it i ittt 1-14
Optional Writable Control Storage..........co.iiiiiiiiiiiiiiiiiiiinnnnnnn. 1-15
Optional High-Speed Floating-Point Unit..............ciiiiiiniiniinnnnnnnn. 1-15
Real=-Time Option Module.ttt ittt teenerreaneeennneennnns 1-15
DL B I 1T 1-15
Main Memory. . .cvieeiner e iiiieriereeennnnanennnn et eaeceeaiieseeaeae e 1-15
Memory Unit. ..o i i i ittt it ittt ettt itaaaane e 1-15
MemOry ModUT@. ¢ .ttt it ittt i ettt ettt e, 1-16
Memory Interleaving........coiiiinnuniiiiiiiiiiiii it iierenrinnneneerennnnannns 1-16
Memory Unit Address Identity........ccoiiiuiiiuiiiiiiiiiiiiiiiiiiiiaennn. 1-16
Memory Bus Controllers.oeuniie it iiieneeienreeeeennnaesessnnnaaennns 1-16
Memory Lock and UnToCK. .. .oiiintiiiiiiieiiie it iie e tiee i iteeneeesanennnns 1-17
Private Memory.ueeuni ittt ieeeereeeerereneeanannnns I 1-17
Input/Output Subsystem...........c.oiiviiiiiiiiiiiiiiireeennannnnnn eeeeaeaen. 1-17
0 T 1-17
Regional Processing Unit...... ... iiiiunniiiiiiiiiiiiiiiiiiiieiiiannnnnnnn 1-17
General Purpose Multiplexer Controller...... ccuuiiiiiiiiiiinnennnnanens 1-18
SECTION Il CENTRAL PROCESSOR
Introduction........... ..., S PN 2-1
Instruction Repertoire.ot it ittt eiieieeneaannn 2-1
General Purpose Registers...... ... iiiiiiiiiiiiiii ittt iitieeeeetniianennnn. 2-2
CPU Control Modes.cuuuniiiiiriiiiiiiieiittneeeteenneeenennnaseeeesnnnaannns 2-2

vi

TABLE OF CONTENTS (Contd)

SECTION Il CENTRAL PROCESSOR (Cont'd)

Page
Program Status Word.ceuuuiiiiiiiiiiii i ittt ittt 2-2
Program Status Doubleword......... ..ottt ittt 2-2
Condition Codes.iiuriiiiiiiiirieai i iieiiisnutsonsesasansssncssasacannnsa 2-2
Privileged and Unprivileged Operation.............ccoiiiiiiiiiiiiiiiiiiii i, 2-2
CPU Addressing Modes.coviiiniiiiniiiiinrrrnnsansoneneecessaceannasnananns 2-6
L T Y T U 2-7
512 KB EXtended MOde.uuuieieeeieeeneunrrososososerassoonsennnsnnncsnnens 2-7
512 KB Mapped Mode.oivtiiiiii ittt it i ittt iea e 2-7
Mapped Extended Mode.coiiiiiniiiii it iiiieeiirrenareiecsnennannnns 2-7
CPU Major Elements.cvtiiiiuniiiniriiiieiieinieenneeeasecansennasennnsnns 2-7
CPU Data StruCtuUre. . .c.viriiiiiiieteiererieeennecennrensenenonenns Merasereaae 2-7
CPU Microprogrammable ProCessor.c.veeveniiineenrenesaneaneensonsnsensanaans 2-9
Implementation LOGiC.viiiiiniiii i it i iiiitiirieeerennrnensnennans 2-9
SelBUS Interface.cooiiiiiiii ittt ittt iiieeeennrrnesaanacencannannns 2-9
Optional Writable Control Storage.........ccvvriiiiiineniierneineennaannnnnnn 2-9
Optional High-Speed Floating-Point Unit.........ccoiiininiiiiiiiiiiiiiiinas 2-12
SECTION Il TRAPS AND INTERRUPTS
LR ARToYo (¥ o o 1+ o J PO 3-1
L 1 T3S 3-1
Interrupts..... ..o ittt Cetesieesareeesencnacecaaatittocsnssas 3-1
Operating Modes.ooiieiiviiiiniiiiiiineennnnnnnnanns et eeeceeseaaeesaeaaea 3-1
oy I 10 Yo L= PP 3-3
])T 1 o - O 3-4
IVE @nd T0B. .ottt ettt ittt ie et ee et tateceanasasesasenosesassnasnssnasnans 3-5
T0B FOrMALS. .ot veiie ettt it ieeeeneaeooaacaasocsseouncenuneannsennsenssnsnns 3-5
01d and NeW PO .. ivirir it iie e iiteeeaescoaaeecaeecancnseseansennaannnns 3-5
External and Non-Class F Format...........ciiuiiiiiiiiiiiiiiiiiieinnnennnnn 3-5
Trap Format.ooii i i i i i e it sttt e ee e 3-5
Class F I/0 Format.................. et emeaeeeaece et e e 3-7
Supervisor Call Format.........o.oiiinniiiniiniiii it iiiiiea e iaiaiatasnaaaann 3-7
PSD Macro Instructions.cou.iiieitiieeeineennnensocnnenessconsaennannnns 3-9
Automatic Trap Halts................. et e teeeecaieeeat ettt et 3-9
PSW Trap Halts. .. coiiinni ittt i i et ittt ieannnnenas reeeeaees 3-9
PSD Trap HAalBs. . uouiuenieeeeeeeoaaeieeacinaesasnosueseeessnnnensonanssoasans 3-9
Machine Check Trap. ...ooviviiiiiiiiiiiiiiiiiitiirnenennnnnanannns e 3-10
System Check Trap......civiininiiiiiineeiieeeneasnerennnsancsooassnssenns 3-10
Block Mode Time=0Uut Trap.....ooevevieenneeunnnnnneinieenoneesaeenannnnns3-10
PSD Trap Halt Implementation...........ccooviviiiiiiniiisy e eeeieasaneaas 3-10

TABLE OF CONTENTS (Cont'd)

SECTION IV MEMORY MANAGEMENT

Page
0118 oo L1702 I T T 4-1
0T R 4-1
MOS and Core MemOry. .. .ottt ittt ieieetteettaeecnaannaeasnaennannnnens 4-1
600/900 ns Core Memory Modules.ccovviiineneninniieiiiennnnnnnnnnnn. 4-2
Mixed Memory RUTES.ttt i ittt et ittt ae e, 4-2
Memory Reference Instructions............oiiiiiii i, 4-3
F=and C-Bits......oiiimiiiii it ittt ittt e eeetecaeaas 4-4
Direct Addressing.......................... F et eeec ittt 4-4
Indirect and Indexed Addressing...........coiiiiiiiiiinniineieeeiinennnnnnns 4-5
Indexed Addressing.................... et eaeeeeaeeeeeeeee e, 4-5
Indirect Addressing.couiniiiiiiinineeriieieiieieneeensnneeenannnenn 4-6
Words, Halfwords, and Bytes............cccoiiiiiiina... heeeereaaa e 4-6
Word and Doubleword Operands.c.ouiiiinieenninrnneneneeenneeenaeenneenns 4-6
Hardware Memory Management.ttt it et itetneananennnn. 4-8
AddressTng Modes.ttt ittt ittt et e 4-8
512 KB Mode. . .ottt ittt it it ettt ettt 4-8
512 KB Extended Mode.ttt ittt ietee et eenanannnns 4-8
512 KB Mapped Mode.coiuiiiiiiiitii ittt eiiieieetiittaaaseaanans 4-9
Mapped Extended Mode................. ettt iiiiiieieieaeaaas e 4-9
Memory MapDing. ...t i i it ittt i, 4-9
Memory Protection.t i i it et 4-12
Program Status Doubleword.ciiiiiniiiiiiiiiii ittt 4-12
LTV T U (A 4-12
Condition Codes.oiiiiuiiiiet ittt eetieeerreeaeeeennseeeesnnnnnnns 4-14
L LT o] v T T 4-15
Master Process List......c.ooiiimiiimiiiiiiiiiiiii ittt iereeiineannn 4-15
Address Generation. ... ittt ittt i ittt e e . 4-17
SECTION V INPUT/OUTPUT SYSTEM
|13 oo {1 Ton 7 ' 5-1
)TN T o A T 5-1
I/0 Processor Classifications...........uuvvvivinriiiiiiieienreteeeaaaananan. 5-4
Operation With Class 0, 1, 2, and E I/0 Processors.......ooueuiiieiiennnnnnnnnn. 5-4
Command Device Instruction....... i, 5-5
Transfer Control Word.oiiiiiinriiiiiiiein i iiiieieieiiensaanannns 5-5
Test Device Instruction.......... ... oo, Cee e e aeaa 5-10
InpUt/OULPUL PrOCeSSOP. .ottt ettt et e iiiiiieeeeeeannnnnanenneenns 5-10
SeTBUS TNt el aC . o i ittt ittt e e e e, 5-10
Trans er ReSPONSES. ..ttt ittt ittteeeertiiie e ttaeaeeenanaaennnns 5-11
IOM Data Structure.ttt ittt e et etneanenn 5-11
Arithmetic Logic Unit. i e 5-11
Data Structure Control............c.ciiiiiiiiiiinnn.... fetedeciacecneananans 5-11

Test SErUCHUIe. . i it it ittt ittt e et tenaneaananns 5-11

viii

TABLE OF CONTENTS (Cont'd)

SECTION V INPUT/OUTPUT SYSTEM (Cont'd)

Page
1 A 1+ 5-11
Class F I/0 Operation.......ocueeveeeenninunneeeeeesansonsaeeosesaeneneeseeeanes 5-11
£1aSS F I/0 ProCeSS0r. . vuueeeeeeeneeoeeearansossossasanssssssansasansananancas 5-13
Memory Addressing Method.............c.omiiiiiiiuiiiiiiiiiiiiiiiniineenns 5-13
PSD Mode I/0 INStruCtions. .. oueeeeennneeieioeneereerunneeensnnnasrsonnnnonns 5-16
Start I/0.....iiieriiiiii i @ttt eeeseereceanastotntaatiennesinennons 5-16
B XX A0 7/ J P 5-16
- Y I R 7 Z ¢ S P 5-16
Enable Channel WES Load.coiiienneeeenennennrenesnoronsensonnanacanoans 5-16
Write Channel WlS. ...ttt ie ittt i iiiteeennerssnnnossoasossroncaanans 5-16
Enable Channel Interrupt...............cu..n. et eeeeteeeeesees e 5-16
Disable Channel Interrupt......... feetetaceeeataceasasetassneranateanneosnns 5-17
Activate Channel Interrupt........coiuniimririiiniiveeieeenaneencsocsncnns 5-17
Deactivate Channel Interrupt.......cociiiririimmiiiiii ittt 5-17
Reset Channel Interrupt......ccoiiiiniiiiiiiiiiii ittt iiiiirtitenennnns 5-17
L3 1 T 7 5-17
TR A 11 A o« X - 5-17
Grab CoNEroTTer. ittt ittt it ieateceseareroenoeanenaasnasnacossans 5-17
Input/Output Command List Address...........cooiiiiiiiiiiiiiiiieertiininnnn. 5-17
Input/Output Command DoubTeword............ceeieiiiieieiinnininncereeneeenannns 5-17
Input/0utput COMMANGS. ... vovueeeiiteireeeeaneennoeeoaneeeanaeeesnnanannns 5-18
e - Y T 5-18
Y- U 1R e 5-18
Read BaCKWOTd. ..ottt iiiiiiiieiiieineeresoncnesassonssosnosnaasnnsaacassaans 5-18
(0011 1+ R U P e 5-18
Lo =) 1 - 7 e 5-18
Transfer In Channel.ceuenniiiiintioainiireesneneneeosaencaacnsasascans 5-18
“Channel Control. iieeneeeeeeeeeeeatoceeesoesosnsosacsasasasasssssnasoaes 5-18
Input/Output Termination...............cciiiiiiiiiae.. eeeereeieaes PP 5-18
Input/Output Status WOrds.........oueeeeiiminiineieineanniiinnniennnnennnns 5-20
Input/Output Interrupts............. et iiaietiaeiaeeeneneieaaesasaasesans 5-20
SECTION VI INSTRUCTION REPERTOIRE
TNt rOdUCETON. « ot ittt ittt e ieaeeaeeesaceesuanssoesssseosnasnsosossesasasasasanns 6-1
TV 7o) 1 5 o3 6-1
Instruction Name.ccoiiieeneiiiiitiieeneneroeeoennncaanonncosns e 6-1
Operation Code......oouuuemiiiiiitienenenueeecteeeineneneeecesasennnneaneanns 6-1
10X 7 & AR 6-1
Definition. .o veee i ii i ittt reeaaaaaas @ eeeeeeeecenanas 6-1
Summary Expression............. S PPN 6-1
Assembly Coding Conventions...........oiiiuiinuueeeieniennueeeieiinnnenennenenns 6-1
4

Condition Code ReSUTES. .. .ovr ittt ieneeeeeeneeeeeaessoscscsssccsnsssoonsscnnnss 6~

TABLE OF CONTENTS (Cont'd)

SECTION VI INSTRUCTION REPERTOIRE (Cont'd)

Page
Examples. ...t i i i it it et e eesieeat it e 6-4
Instruction Mnemonics...........ciiiiiiiii it iiieiiinann, e eeeeeeeeaaaas 6-4
Assembler Coding Conventions.ottt iiiiiiininineeeenennneaaneennnnnn 6-5
Instruction Definition Format....... ittt it iiiieinennanens 6-5
Load/Store Instructions. iiiiiii it ittt e eeeeeeaanaanennnanns 6-7
Register Transfer Instructions.............ooiuiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnn. 6-44
Memory Management Instructions.............c.iiiiiiiiiiieiineneennenacenenannnn 6-58
Writable Control Storage (WCS) Instructions...........ciiiiiiriininenennnnnnn. 6-63
Branch Instructions.ot it ieieetaereeraneaacaacaanann. 6-68
Branch Programming.c.ooe et intneniieiieneneneeeeneeenesesseeesssesesasnsaens 6-69
Compare INSErUCtIONS. ... ittt i it ittt ieeenesaasnannaenannn 6-81
Logical Instructions..........oiiiiiiiiiiiiiiiiiiieinenannnnnnn e eeeeeeaeaaa 6-94
Shift Operation Instructions........coiiuiiiiiniiiiiiiiiiiiiiiineranennnanannnn 6-112
Bit Manipulation Instructions....... ... il iiiiiieiiennesn 6-126
Fixed=Point Arithmetic Instructions......... ...ttt iiiiiiiiiiiiiiniannnnn. 6-136
Floating-Point Arithmetic Instructions......... ... iiiiiiiiiiiiiiiiiiineennnnn. 6-170
Control Instructions..........coiviieiiiiiiinnnnnn... e eeeseceaaae e, 6-180
Interrupt Instructions.......c.oouiiiuiiiiiiii ittt iiereeenaanannacannnas 6-198
Input/0utput InStruCtions. ... ittt ittt it iiiieeerreernerannnnnnnnns 6-212
Class F 1/0 Instructions......... L SO S 6-213
I0CD Format for Class F I/0 WCS.couniiiiietiiiiiiietieeeenneennesnnasnnnns 6-226
SECTION VII CONTROL PANEL
1T T o ORIt 7-1
PanE] LOCK. ..o ittt i e i ettt e et e e e aaaaan 7-1
PO . L i ettt e iieee ettt et 7-1
Run/Halt......c.oiviniiiiiiiiiian... ottt e teeatteetttet et et e, 7-1
System Reset. i it it ittt racansetasncasosannnnn 7-1
T A T ' T TGO AP 7-1
Initial Program Load.iuiiiiiiiiiiii ittt enerreneecnnnsncannannnnn 7-1
L Tl 1T o T 7-1
Operation/Mode Indicators........c.oiiiiiiimiiiiiiiiiii ittt tieaneeeennnnnn 7-1
Parity Error. ... i i i ittt ieeaaa ke eeeeeeiereaeeaaaaaas 7-1
Interrupt Active. i il i i i i ittt ea i e taenaareeraanaans 7-3
O Tod 0 Y] ' =AU PN 7-3
RUN. L i i it i it ittt ittt eteeteaataneetnaeetaettaaaaaaaan, 7-3
-) I g 7-3
L PO 7-3
Keyboards. . ..couuiiiiiiiiiiiii ittt ettt e aaaaaeaaaaaan 7-3
Hexadecimal Keyboard.ttt ittt et eieeeneeeensaensnannns 7-3
Function Keyboard................... @ttt eeecececaaeeetete ettt 7-4

ix

TABLE OF CONTENTS (Cont’d)

SECTION VII CONTROL PANEL {(Cont'd)

Page
WRITE K@Y, . oioiiiietiieeneeneeoeaeouasscosanensasensssnnseansesbosonnsnnns 7-4
5
READ KOY .\ttt ettt ettt eeeeaeeeeoaaaceaeoassceeasasneccasesonssenneanns 7-4
X
WRITE & INC 'A' Key........ it e eeaaeereseea ettt et e 7-4
INC "A' & READ KeY...oioiiiitiieiiieeceaaeooneroassaeaassassonsassansannnoes 7-4
EXT FUNCT KeY...ovroreernieneiiecenoannaonnnns e eeeereeieceaeeeneaanenaanns 7-5
INSTR STOP KoY. .ovtiirtineeeenneeonaeenaeecesasoeosassosssssansosoaassnnnons 7-5
OPRND R STOP KOY..iiviitieienneeenesecaeasosasassssaesosnnasnanscnssannans 7-5
OPRND W STOP Key.....ovveueeernenrenconococnns e eesseedassvenssrasrsenanans .7-5
INSTR STEP KoY. ..ovuiieeineeeneeeeueeceaeasoasoonasoasscsosooasacsacsnancans 7-5
KEYBOARD KeY. .. iittitiieitiiiieteeeeeaneacencasosrcsssosasasosssanssssnans 7-5
Pane] DASPIaYS. oo ti ittt ittt ittt teerae ettt ettt 7-6
) E-1 o I 1Y 7-6
R 1 =] o) I N 2 U 7-7
Odd/Even Indicators.ouuniiiiii it iiieeeineeenenroosacncaroneasoaasoasoanas 7-8
EVEN REGISTER Indicator.......coiiuiiiiriiiiiiiiiiiitesnocnnrnncecenacnannns 7-8
ODD REGISTER Indicator........cuiieirireeiiioennoenoecaarcnncocaseennnenanns 7-8
Miscellaneous Indicators.o.iiiiiiiiiiieiieieeaeernecaarcascsnaasossnnn 7-8
MEMORY ADDRESS Indicator........cciiuiiiiiiiiiiiiieneerenanencnaneonenennns 7-8
PSW Indicator.........cccoiiiiiiiiiiia.. e eseceacesenossosasoenoanantananan 7-8
PROGRAM COUNTER Indicator........cciiuiiiinmiiuninoeoenoaronnonacnsonssannns 7-8
OPERATOR FAULT INdicator......uieeeeieieneeeenannearacanncnnnccaacannaononns 7-8
MEMORY DATA Indicator........cuuieiuiiuiierereennereoenoeanecnaconncennnnns 7-9
EFFECTIVE ADDRESS Indicator........c.cuieeeieinnieceaeeonoarocaaonaanannanns 7-9
ERROR INdicator. .c.ioitiiiiiiier i iiieiatenoneannonaacoeoncesncosnsonnncnnnns 7-9
CONTROL SWITCHES Indicator........iiuiiniiiiiiiiiieieeenrnecaacsacncnaansss 7-9
KEYBOARD Indicator. ..ovivtiriiininiiiiiiiiiieeneeeeecneoaeecacoacanasnonsnns 7-9
“INSTRUCTION INndicator. ...iieiieetiiiiieooaneroneeeeneaennaacnsaesaceansnss 7-9
STOP INdiCatOr. .ottt tiiiitiieeeeneeceeaeaasonceoassonsasananaacaaacnns 7-9
INSTR STOP Indicator........ e eeceeterenaas ottt eateeeseeeaaeattan e 7-10
OPERAND READ STOP Indicator....c.oieuiieenneeeinoeoeeeosasnoanscannanansanns 7-10
OPERAND WRITE STOP Indicator......c.uiiiiuiiiiiiniioniinennennenronecnnnns 7-10
OPERATOR FAULT Indicator......cccciiniinineeneieinsesnvonsosnsosnssoocnnas 7-10
ERROR Indicator...........ccovviiiinnnnn... @ttt teeterneareeaeteeateaeeneans 7-10
Miscellaneous Indications........c.couiiiiiiniiiiiiiiiiiiinneeiernnenaennennns 7-11
Operating INstructions. ittt iiiiitiitrnseierncronennnnnes 7-11
" Load B-Display From Hex Keyboard...........ouuiiiuniiiiiiiiiiiniiiniinennannns 7-11
~Load A-DISPlaY.eeee it ittt i ittt et teterecacscrsnsaaes 7-11
Write Memory Address........ciiiiriieiiieiiieeeerisoesansoncassassoacnnnns 7-12
Write PSW............. U 7-12
Read POW. ..ottt ittt iiieeeieseeeeeeacatecnsancncnsoconsncacanannnsons 7-12
Write POD 2. . ittt ittt teeeeeearooacncaaoacacsaosaaaasnanannann 7-13
Read PO 2. .. ittt ittt iieeteaaaneaasasatsasssecnesataasnassanacan 7-13
Write Program Counter.o iiiiiiiiii ittt ittt iicteeenaneannns 7-13
Read Program Counter.ttt it itieerencnenaasonsasennens 7-13
‘Write Memory (Single Address)..........iiuiiiiiiniiiieienniinrenoensnnennnans 7-14
Read Memory (Single Address)........ccuiiiiiiiiiiiiinreenirenncennennncenns 7-14
BELTR A o T Ton A T 4 T3 - T A AR 7-15

Read Effective Address......cveiiiiiiiiiiiieeeeenneeneneeaoasensansanns e 7-15

TABLE OF CONTENTS (Cont’d)

SECTION Vil CONTROL PANEL (Cont'd)

Page
Convert Address........... ettt et te e e e eaae ettt e, 7-16
SLOP SEQUENCE. ...ttt e e 7-16
Control Switches SequenCe.o.uuiiiiiiiiiiii ittt e 7-17
Write Control SwitChes.ttt e e e e e e 7-17
Read Control SwitcChes.ttt e e e 7-17
Initial Program Load Sequence..............uuueiiiininn e, 7-18
SECTION VIII SYSTEM INITIALIZATION
Initial Program Load (IPL).......uuuiumiiiiii ittt e, 8-1
Formats of the Initial Configuration Load (ICL)........covvueerrrnnennnnnnnnn. 8-1
FOrmat . .. e e e 8-2
Format 2. . o e ettt 83
Format 3. .. e e e 8-3
Examples of Initial Configuration Load (ICL) Records)........uuuuuuununnennnn.. 8-3
APPENDICES
APPENDIX A Instruction Set (Functionally Grouped)..........coeuuueeeeennnnnnnn. A-1
APPENDIX B Hexadecimal-Decimal Conversion Table.......coeeirineenennnnnnnnnnn. B-1
APPENDIX C Hexadecimal Conversion Table......ooueeueeeinennennnnnnnnnn e C-1
APPENDIX D Hexadecimal Additions..........ccoiiiunnninerneeiemsnenenannnns D-1
APPENDIX E Numerical Information...........c.oeiiimnnineeronmein i, E-1
APPENDIX F Table of Powers of Sixteen and Tables of Powers of Ten........... e |
- APPENDIX G ASCII Interchange Code Set with Card Punch Codes.................... G-1

xi

Xii

LIST OF ILLUSTRATIONS

Figure
1-1
1-2

2-1

2-2

]
OO NO O W

b
NHO

CHU'ILDL:'IO'IU'IO"

(e NS M3 NE)
[I |

?\J

Page .
System Block Diagram Example: Typical 32/70 Series System with
COre MemOTY. ..ttt ieeeenineseenseaaeasossosesssnanasssssasssssstecsosssnonn 1-18
System Block Diagram Example: Typical 32/70 Series System with
MOS MEMOTY. i v eveeeeesesienesannsssssossnnssesesesassssansssssscsnssnansonss 1-19
Program Status Word (PSW) Format...........cceiieiiiiiiniiiiiniiininennns 2-4
Program Status Doubleword (PSD) Format............c.oooiiiiiocinnnniiiinnnns 2-6
CPU - Simplified Block Diagram............ U 2-8
Microinstruction FOrMAt.coveeiienieeniiirioneanaacaacescasaascsosnannnns 2-10
Functional Interrelationship: CPU, WCS, and High-Speed FPU................ 2-11
Optional High-Speed Floating-Point Unit.............. e teeeececeseeiaeen 2-13
Interrupt Context Block Format - External Interrupts and Non-Class
F I/0 INEerrUPLS . uueereeeeiieninnerananaaocaasseoeennns e eeetenaeaeaana 3-6
Trap Context Block Format..........conueinnmiinmiiniinniieintnniiennnnn 3-6
Interrupt Context Block Format - Class F 1/0 Interrupts.................... 3-8
Supervisor Call (SVC) Trap Context Block Format..................... P 3-8
Information Boundaries in Memory.ceiieiemianiioienirtennienneananes 4-7
Map Image Descriptor LTSt e it e ettt iiiireaaeaacsasecaaasssanasnanaancsens 4-10
Memory Management Components..............iiiiiiiniieiiinineieiteiannnn. 4-11
Formats for PSD1 and PSD2.t iiiuiiieennnnenaoeoetnnieonnnannaancecns 4-13
Map Segment Control Descriptor (MSCD).........c.oviineiiiiineeinennenennnn 4-18
Map Segment Descriptor (MSD).......co.uiinniinniiiiiiiiiiiniiniiinnannns 4-18
Map Image Descriptor (MID).........coueiuiiniininnennaaneecenennenncennnnns 4-18
Address Generation (512 KB Mode)...........ccoaann. W eeeeeaeneatacaacesaraen 4-19
Address Generation (512 KB Extended Mode)..........ccooeiiiiiiiniieennnan..t -20
Address Generation (512 KB Mapped Mode).........cocoimiiiiniiiinnnieannn. 4-21
Address Generation (Mapped, Extended Mode).............coiuuniiiiiiieaennn. 4-22
32/70 Series Input/Output Organization.....................onn [5-2
Block Diagram - Regional Processing Unit (RPU)............. e veeeieeiees 5-3
Class 0, 1, 2, and E I/0 Organization..........cceeiiiinininnnninnnaennnnnnn 5-6
Command Device Instruction Format..........ccoviemieeieiiiinineniennnnnn, 5-6
Command Device Function Bit Format for Peripheral Devices.................. 5-7
Transfer Control Word Format.........cceuiimieaiaieeniennnen e eeeeeceesans 5-8
Test Device Instruction Format........ciieniimiiiiiiiiiiiiiireiennannn. 5-9
Test Device 2000 Status Information...................coenn. e reeeeeieeaes 5-9
Block Diagram - I/0 Microprogrammable PrOCESSOT . s e veeerennaaacacaaneeeesaaid=]l2
System Configuration With Class F I/0 Processor...............coevuennnnen 5-14
1/0 Control Words (C1ass F).eeurneeiiiiiinieiineaeeneaaieeienennneenecncns 5-15
Input/Output Command Doubleword (IOCD)..........cconiininininineeeeenennanns 5-19
Positioning of Information Transferred Between Memory and Registers........ 6-9
32/70 Series Serial Control Panel........coeemuiieeinnnnaaeroneccnaecnnannns 7-2
System Initial Configuration Load (ICL) Deck............. ereeerenaaeaneann 8-8

LIST OF TABLES

Table Page
1-1 Relationship of CPU Modes.coiuinitiiiiii ittt iaiteeaeeaennannnnnn 1-12
2-1 PSW and PSD Modes: Functional Differences....... cciiiiiiiiniinnnnn.. 2-3
3-1 -PSW/PSD Mode Relative Trap/Interrupt Priorities................cu.ouon. .32
5-1 Transfer Control Word Format Code......... ... coiiiiiiiiiiiiiiiiiannnsann- 5-8
6-1 Symbol Definitions. . ..coovuniiiiiiiiiiiiiiiiiiiiiieeltiieeeneennnacsanannnn 6-2
6-2 Assembler Coding Symbols.cieiiiriiniiininnerieeenneernananennns 6-6
6-3 32/70 Series Relative Trap/Interrupt Priorities...........cccevveiiiinnnnn. 6-199

xiii/xiv

Typical 32/70 Series Computer System N6786

INTRODUCTION

SYSTEM

OVERVIEW

RAL _CHAR-

ERISTICS

SECTION |

GENERAL DESCRIPTION

The 32/70 Series computer systems are high-speed, general purpose,
digital systems that are designed for a variety of scientific, data
acquisition, and real-time appliications. A basic system includes a
central processor, main memory subsystem, and microprogrammed input/
output controllers. Each major system element operates semi-independ-
ently with respect to the other elements.

The basic system can be readily expanded to accommodate the user's
requirements. Main memory (Core or MOS) has addressing space for 16
million bytes. 1In a multiprocessor environment, memory can be con-
figured with up to 20 access routes. Input/output capability can be
increased by adding more I/0 Micro-programmable Processors (IOMs),
Regional Processing Units (RPUs), multiplexers, device controllers, and
1/0 devices.

The CPU has a large instruction set that includes fixed- and floating-
point arithmetic instructions. A special lookahead feature enables. the
CPU to overlap instruction execution with memory accessing, thereby
reducing program execution time. A large main memory of up to 16 million
bytes (4M words)is available. The memory can consist of up to 16 module

increments on each of up to 16 memory buses. Memory can be shared
by up to eight CPUs and their associated I/0 processors.

Each memory module operates independently of all others and address
interleaving can be provided between adjacent modules. This multiaccess
memory subsystem with interleaving provides system performance far
superior to other design concepts. A 32/70 Series system can support
up to 16 independent I/0 processors of four types - IOMs, RPUs, multi-
plexers, and high-speed data interfaces - with a maximum aggregate data
transfer rate of up to 16.67 million bytes per second, concurrent with
CPU instruction execution.

The existing 32/35 and 32/55 programs can be run on a 32/70 Series
computer in the PSW mode. The upward compatibility of the software
(assemblers, compilers, mathematical and utility routines, and appli-
cation packages) virtually eliminates reprogramming.

A1l 32/70 Series computer systems contain features and functional char-
acteristics that promote efficient operation in general purpose, multi-
processing, real-time, and multiusage environments.

° Byte-oriented memory (8-bit byte plus one parity bit) which can be
addressed and altered as bit, byte (8-bit), halfword (2-byte), word
(4-byte), and doubleword (8-byte) quantities.

° 600- or 900-nanosecond core memory.

° 900-nanosecond MOS memory with error checking and correction.

1-2

Both core and MOS memory expandable to 16,777,216 (16M) bytes in
some models.

Indexed addressing capability (PSW or PSD mode with extended ad-
dressing) of entire memory.

Multilevel indirect addressing with indexing at each level.

Immediate operand instructions for greater storage efficiency
and increased speed.

Eight general purpose registers that may be used for arithmetic,
logical, and shift operations, as well as masking, linking, and
indexing

Hardware memory mapping to reduce memory fragmentation and to
provide dynamic program relocation.

Memory write protection to prevent inadvertent destruction of
critical areas of memory

Real-time priority interrupt system of up to 112 levels with auto-
matic identification and priority assignment; external interrupt
levels which can be individually enabled, disabled and requested
by program.

Automatic traps (for error or fault cond1t1ons) that have masking
capability and maximum recoverability under program control.

Power fail-safe for automatic shutdown in the event of power fail-
ure and resumption of processing after power is restored.

Multiple interval timers with a choice of resolutions for in-
dependent time bases.

Privileged instruction logic for program integrity in multiusage
environments.

A complete instruction set that includes the following:
- Bit, byte, halfword, word, and doubleword operations.

- Register-to-register operations with halfword instructions to
improve program execution time.

- Fixed-point integer arithmetic operations on byte, - halfword,
word, and doubleword operands.

- Floating-point arithmetic operations in single and double pre-
"~ cision formats.

- Full complement of logical operations (AND, OR, Exclusive OR)
for bytes, halfwords, words, and doublewords.

- Comparison operations for bit, byte, halfword, word, and double-
word operands.

- Call Monitor and Supervisory Call instructions that allow a pro-
gram access to operating system functions. :

- Shift operations (left and right) of word or doubleword, in-
cluding logical, circular, and arithmetic shifts.

Built-in reliability and maintainability features:
= Full parity checking of all memory accesses.

- Address stop feature that permits operator or maintenance per-
sonnel to:

Stop on any instructidn address.
Stop on any memory read reference address.
Stop on any memory write reference address.

- CPU traps, which provide for detection of a variety of CPU and
system fault conditions, designed to enable a high degree of
system recoverability.

Independently operating I/0 system with up to 16 I/0 processors
per CPU.

Genera] Purpose Multiplexer Controller (GPMC) that provides for
the concurrent operation of up to 16 devices on one I/0 processor

High-Speed Data interface (HSD) for use with high-speed dev1ces,
that allows data transfer rates of up to 3.2 million bytes per
second.

Comprehensive software that 1is upward program compatible with
the 32/35 and 32/55 computers.

- Expands in capability and speed as system grows.
- Real-Time Monitor (RTM and Mapped Programming Executive (MPX32)).

- Language processors that include: Extended FORTRAN IV, ANS
COBOL, BASIC, assembler, utilities, and applications software
for real-time and scientific users.

Standard and special purpose peripheral equipment:*

- Cartridge Disc Units - 10 million byte capacity per unit, peak
transfer rate of 312K bytes per second, average access t1me of
35 milliseconds.

- Moving-Head Fixed Media Disc - 24 million byte capacity per
unit, transfer rates of 1.2 million bytes per second, average
access time of 40 milliseconds.

- Moving-Head Disc - Units available with 40, 80, or 300 million
byte per unit capacity, transfer rates of 1 2 m1111on bytes per
second, average access time of 30 milliseconds.

1-3

STANDARD AND
OPTIONAL

1]

Magnetic Tape Units 9-track, 800/1600 bpi, IBM compatible,
high-speed units operating at 75 inches per second with transfer
rates up to 120,000 bytes per second; other units operating at 45
inches per second with transfer rates up to 72,000 bytes per
second.

Card Equipment Reading speéds up to 1,000 cards per minute.

Line Printers Fully buffered with speeds up to 900 lines per
minute, 132 print positions with 64 characters.

Keyboard/Printers 30 characters per second.

Paper Tapé Equipment Readers with speeds up to 300 characters
per second, punches with speeds up to 120 characters per second.

Data Communications Equipment Asynchronous, synchronous, and
bisynchronous communications equipment to connect remote user
terminals to the computer system via common carrier lines and
local terminals directly.

* Some packaged 32/70 Series systems are
restricted in regard to peripherals due
to environmental requirements.

A basic 32/70 Series System has the following standard features:

o

A

CPU that inc]udes:

Floating-point arithmetic

Memory map with access protection
Memory write protection

Power fail-safe

Real-Time Option Module that includes:

A real-time clock
A programmable interval timer
Sixteen interrupt levels

Core or MOS memory (maximum amount and type varies. depending on
model). :

Teletype, Line Printer, and Card Reader (TLC) controller with three

subchannels.

A 32/70 Series system can have the following optional features:

High-Speed Floating-Point option with up to four times the perfor-
mance of the standard unit for both single and double precision
operands.

GENERAL
U
FEATURES

° Six additional Real-Time Option Modules

® Writable Control Storage (WCS): up to 4,096 64-bit words.
° An additional 96 external priority interrupts per CPU.

e Up to 13 High-Speed Data interfaces (HSD)

o Up to five General Purpose Multiplexer Controllers (GPMCs).
] Memory shared by up to eight CPUs. |

° Up to 16 device controllers with each GPMC.

) Up to 13 user-microprogrammable General Purpose 1/0 modules (GPIOs)
and Regional Processing Units (RPUs).

e Up to 13 high-speed controllers, such as magnetic tape and disc.

A11 32/70 Series Computer systems include the following general purpose
features: :

Floating-point instructions are available in both single (32-bit) and
double ?64-bit) precision formats.

Indirect address1ng_fac111tates table linkages and permits keeping data
sections of a program separate from procedure sections for ease of
maintenance

The large instruction set (up to 189 instructions in some mode]s)
permits short, highly optimized programs to be written that minimize
both program space and execution time.

Monitor and Supervisory Call instructions permit access to specified
operating system services.

A four-bit condition code simplifies the checking of results by
automatically providing information on instruction execution. It
includes indicators for arithmetic exception, zero, minus, and plus, as
appropriate.

%_g1ona] Processing Units (RPU) implement intelligent I/0 controllers.

nce initialized, an RPU operates independently of the CPU, leaving it
free to provide fast response to system needs. The RPU requires minimal
interaction with the CPU. Thus, many I/0 devices can operate 51mu1-
taneously without overloading the CPU.

The High-Speed Data Interface (HSD) is a single channel parallel
controller that interfaces directly to the SelBUS. Once initiated, I/0
operations proceed independently of the CPU. The HSD sustains a data
transfer rate of up to three million bytes per second.

1-5

REAL-TIME

FEATURES

Hardware Memory Management of 32/70 Series core or MOS memory - which is
available in sizes up to 16 million bytes and provides the needed

capacity while assuring the potential for expansion - makes efficient

use of available memory. The memory map hardware permits storing a
user's program in segments of 8,192 words, wherever space is available.

A1l segments appear as a single, contiguous block of storage at

execution time. The memory map also automatically handles dynamic

program relocation so the program appears to be stored in a standard way
at execution time. Actually, it can be stored in a different set of

locations each time it is brought into memory.

Real-time applications require: (1) hardware to respond quickly to an
external environment, (2) speed to keep up with the real-time process
and (3) input/output flexibility to handle a wide variety of data types
at varying speeds. A 32/70 Series system provides the following real-
time computing features:

Multilevel, Priority Interrupt Structure of the real-time oriented 32/70
Series systems provides a quick response to interrupts with a maximum of
112 interrupt Tlevels. The source of each interrupt is automatically
identified and responded to according to its priority. For further
flexibility, each level can be individually disabled to discontinue
input acceptance and to defer responses.

The way interrupt levels are programmed is not affected by the
priority assignment.

Programs that deal with interrupts from special purpose devices often
require checkout before the equipment 1is actually available. To
simulate special equipment, any external interrupt Tlevel can be
requested by the CPU by executing a single Request Interrupt (RI)
instruction. This capability is also useful in establishing a modified
hierarchy of responses. For example, when servicing a high-priority
interrupt and the urgent processing is finished, it is often desirable
to assign a lower priority to the rest of the service routine so that
the interrupt system can respond to other critical stimuli. A service
routine can do this by requesting a lower-priority interrupt level, and
thereby process the remaining data after other interrupts have been
serviced.

Real-Time Clocks are needed to handle the real-time functions that must
be timed to occur at specific instants. Other timing information is also
needed, such as elapsed time since a given event or the current time of
day. Clocks also allow easy handling of .separate time bases and
relative time priorities. A 32/70 can support up to seven real-time
clocks synchronized to a line frequency of 50 Hz or 60 Hz. The clocks
can also run at twice the line frequency, 100 Hz or 120 Hz, or on an
external source. '

Programmable Interval Timers can be set to request an interrupt after
any specified time period with a 300-nanosecond resolution. In addition

- to the real-time clocks, the system can support seven programmable

interval timers.

Context Switching must be done quickly with a minimum of time overhead.
When responding to a new set of interrupt-initiated circumstances, a
computer system must preserve the current operating environment, so the
program can continue later, while setting up the new environment. 1In a
32/70 Series system, all relevant information about the current
environment (instruction address, privilege state, condition codes,
address modes, etc.) is kept in a 32-bit Program Status Word (PSW) or
64-bit Doubleword (PSD).

MULTIUSAGE

FEATURES

When an interrupt occurs, the CPU stores the current PSW or PSD in the
memory location(s) selected by the interrupt level and loads a new PSW
or PSD to establish a new environment. :

Every 32/70 Series system also includes a Load File and Store File
instruction so that the entire set of general purpose registers can be

loaded or stored with one instruction. These instructions help make

context switching fast and easy.

Quick Response is a 32/70 Series feature which involves the following
combination: rapid context switching, store file and 1load file
instructions, and a priority interrupt system. These features benefit
all users because more of the system's resources are available for
usesful work at any given time.

Memory Protection features that protect each user from every un-

privileged user also guarantee the integrity of programs essential to
cr1t1ca1 real-time applications.

Input/Output requirements are available for a wide range of capacities
and speeds. The 32/70 Series I/0 system satisfies the needs of many
different application areas economically and efficiently in terms of
equipment and programming.

A 32/70 Series system can run programs from two or more computer appli-
cation areas concurrently. The most difficult general computing problem
is the real-time application because it has several requirements. The
most difficult multiusage problem is a terminal-oriented application
that includes one or more real-time processes. Because the 32/70 Series
systems have been designed on a real-time base, they are uniquely qual-
ified for a mixture of applications in a multiusage environment. Many
hardware features that prove valuable for one application area are useful
in others, although in different ways. This multiple capability makes a
32/70 Series system particularly effective in multiusage applications.

The Instruction Set is 1large enough to provide the computational and

data~handling capabilities required for widely differing application
areas. This allows user programs to be short and fast.

Memory Protection makes it possible to run both real-time and batch

programs concurrently in a 32/70 Series system. Real-time programs are
protected against destruction by unchecked batch programs. Under Real-
Time Monitor Control, the memory write-protection feature prevents
destruction of information in protected memory.

Variable Precision Arithmetic is important in real-time systems where

the data encountered is often 16 bits or less. To process this data
efficiently, as well as the data in a batch environment, the 32/70
Series computers provide bit, byte, halfword, word, and doubleword
arithmetic. ‘

Priority Interrupts are especially useful because they make it possible

for many elements to operate simultaneously and asynchronous]y An
interrupt system allows the computer to respond qu1ck1y and in proper
sequence to.the many demands made upon it.

1-7

MULTIPROCESSING
T FEATURES

1-8

S

FUNCTIONAL

-DESCRIPTION

MAJOR SYSTEM

ELEMENTS

Every 32/70 Series computer is designed to function as a shared-memory,
multiprocessor system. It can support up to 20 Central Processor Units
that share memory, and may have up to 16 Input/Output Microprogrammable
Processors per CPU. All processors in a 32/70 Series system can address
shared memory using identical addresses.

The 32/70 Series computers have the following major features that allow
expansion of a single processor to a multiprocessor system:

Multiprocessor Interlock. In a multiprocessor system, a Central
Processor Unit (CPU) often needs exclusive control of a system resource.
This resource can be a region of memory, a particular peripheral device,
or in some cases, a specific software routine. The 32/70 Series com-
puters have a special set of instructions to provide this required
multiprocessor interlock. The special instructions are Set Rit in
Memory, Reset Bit in Memory, Test Bit in Memory, and Add Bit in Memory.
The Set Bit in Memory instruction sets a bit in the selected position of
the referenced memory location before other CPUs are allowed to access
that memory location. If this bit had been previously set by another
CPU, the interlock is set and the testing program proceeds to another
task. On the other hand, if the bit of the tested location is a zero,
the resource is allocated to the testing CPU. Simultaneously, the
interlock can be set to lock out any other CPU.

Private Memory. Each CPU in a multiprocessor system must retain some

private memory for its trap and interrupt locations, I/0 communication
locations, and other dedicated locations. This private memory consists
of at least 8,192 words for each CPU. This private memory must begin
with real address zero. The implicitly assigned trap locations and
interrupt locations occupy the first 1,096 words of private memory. The
remaining words in private memory can be used as private, independent
storage by the CPU.

The major elements of a typical 32/70 Series computer system include:
the SelBUS, a Central Processor Unit, a Real-Time Option Module, main
memory, an input/output subsystem, and a System Control Panel (see
Figures 1-1 and 1-2 for system block diagram examples). The overall
computer system can be viewed as a group of program-controlled sub-
systems communicating with a common memory. Each subsystem operates
semi-independently with automatic overlap of subsystem operation oceur-
ring when conditions permit. This overlap greatly enhances the speed of
operation. The major elements are listed below along with a brief func-
tional description.

1. SelBUS - provides for high-speed communication between
the major system elements.

2. Central Processor Unit - performs overall control and
data reduction tasks.

3. Real-Time Option Module - implements internal and external
interrupts and traps.

4. Main Memory - provides for private and shared storage.

6-1

—
<™
L= N
—te (D)
O cC
3
- D
W
N
~ =
~N
o
wv N
0 <
S w»n
—e o+
]
3
lo~]
—
o
(2]
=
o
-

9] dwex3 weube

.
.

AJOWBY 340 'YILM Wa1SAS S3

CORE CORE CORE CORE CORE
MEMORY MEMORY MEMORY MEMORY MEMORY
MODULE (YY) MODULE eee MODULE MODULE seseccee MODULE

NO 1 NO 4 NO 16 NO 17 NO 32

WRITABLE CONTROL
I 3 I STORAGE (WCS) t I
4 MEMORY BUS NO 1 HIGHSPEED (HSFP! MEMORY BUS NO 2
FLOATING-POINT OPTION I
MEMORY BUS SERIAL CENTRAL
CONTROLLER CONTROL PROCESSOR ggNMf:guB_:sR
(MBC) PANEL UNIT (MBC)
(cPU)
SELBUS I SELBUS I SELBUS
INPUT/OUTPUT
TTY.LP.CR MICROPRO- REGIONAL RANDOM REAL-TIME REAL-TIME
CONTROLLER GRAMMABLE PROCESSING R ACCESS OPTION OPTION
(TLC) PROCESSOR UNIT (RPU) MEMORY MODULE oeo MODULE
(1om) (RTOM) (RTOM)
I (X Y] [X X]
USER 6 EXT 16 EXT
TTY LP CR @ STANDARD PERIPHERAL DEVICES FURNISHED INTERRUPTS INTERRUPTS
® DATA ACQUISITION SYSTEMS DEVICE
® COMMUNICATIONS EQUIPMENT
©® MULTIPLEXED 1/0 BUSES

01-1

*¢-1 dunbL4

9 dwex3 weaberLqg 3ooLg walsAs

Aaowsl{ SOW Y3 LM WweSAS saLuds 0//2€ Leotdh)

(300 CPM)

2048 KB MAX N y 2048 KB MAX \
—_———— —————n ————— —————
wos - r MoS - 1 | mos | Mos : wos
1 i | MEMMOD | MEM MOD MEM MOD
MEM MOD MEM MOD e o o | MEMMoOD i | 286KB | o o o 256 KB | = 256K8 |
256 KB 256 KB { soKe | i H I i
'
) @ ! @) i)b ol 1 ®
b LY 5 B S J
K A CONTROL 4
PANEL
v MEMORY BUS v W/HEX DISP MEMORY BUS v
* —_— —_— R _—— —_—
A — e e e I P e e o Y e e e e
- - . 1 r 1
M CENTRAL WRITABLE mMOS
MEMORY BUS HIGH SPEED PROCESSOR CONTROL ! { mMEMORY BUS |
CONTROLLER FLOATING POINT {4, UNIT [P STORAGE } ! CONTROLLER =
- [4
h h A - F Y
v + SELBUS (26.67 MB/SEC)
A A A A b A
Ao TIONAL l FIRST MAGNETIC e CARTRIDGE REGIONAL RANDOM 1'
- REAL-TIME DISC PROCESSING ACCESS
OPTION MODULE = OPTION MODULE CONTROLLER CONTROLLER CONTROLLER UNIT 4> MEMORY =
| NI | i - S |
Y A 'y
o0 0 0 00 LN
v
16 EXT 6 EXT 2 USER
INTERRUPTS INTERRUPTS o) o FURNISHED
\\ P Y DisC DEVICE
) i [} (1)
W v
a0 R -
(3) A, L —
K LETT
LINE
PRINTER CARD e OPTIONAL EQUIPMENT
CRT (600 LPM) READER

Se1BUS

CENTRAL PRO-
CESSOR_UNTT

GENERAL
PURPOSE
REGISTERS

FLOATING-POINT
ARITHMETIC
PROCESSOR

CPU MODES

5. Input/Output Subsystem - enables information exchange
between memory and selected peripheral devices.

6. System Control Panel - provides for user interaction
with the system.

The SelBUS .is a 184-1ine bidirectional bus that sends and receives data
between the CPU, the memory subsystem, the Regional Processing Unit (RPU),
the Input/Output Microprogrammable Processors (IOMs) on 32 data lines at
a continuous data rate of 26.67 million bytes per second. Twenty-four
address 1ines are used to address the selected IOM or memory interface
for a read or write operation. - Both data and address lines operate
concurrently, and the transfers occur every 150 nanoseconds.

In a multiprocessor or special system configurations, remote memory sub-
systems, dual-processor shared-memory options, and memory ports may be
connected to the SelBUS to support remote, shared, or private memory.

The 32/70 Series Central Processor Unit (CPU) is contained on three
plug-in circuit boards. Two of the boards are the Micro Arithmetic/
Logic Unit. The third board is the Micro Control Unit, which is some-
times referred to as the personality board.

Instructions on a 32/70 Series computer are continuously and auto-
matically fetched for processing. This occurs concurrent]y with ex-
ecution and decoding of previous instructions. Decoding is by pro-
prietary parsing logic which employs parallel Read-Only Memories (ROMs)
for high-speed decoding.

Eight dintegrated-circuit, 32-bit general purpose registers (GPRs) are
used by the CPU. These eight registers of fast memory are referred to
as the general purpose file.

Each general purpose register is identified by a 3-bit code in the range
000 through 111 (0 through 7 in decimal). Any general purpose register
can be used as a fixed-point accumulator, floating-point accumulator, or
temporary data storage location. A register can also contain control
information such as a data address, count, or pointer. General purpose
registers 1 through 3 can be used as index registers. Register 4 can be
used as a mask register. Register 0 is a link register.

A firmware floating-point arithmetic processor 1is standard with the
Central Processor Units. The firmware floating-point arithmetic pro-

‘cessor executes all floating-point instructions s1gn1f1cant1y faster

than normal software floating-point routines.

A 32/70 Series computer can operate in eight different modes: four
control modes (PSW-Privileged, PSW-Unprivileged, PSD-Privileged, PSD-
Unprivileged) and four addressing modes (512 KB, 512 KB Extended, 512
KB Mapped, Mapped Extended).

The Extended mode can mean either 1 megabyte or 16 megabytes depending

on the mapping mode. Table 1-1 shows the 1nterre]at1onsh1ps among the
control and address modes.

1-11

Table 1-1. Relationship of CPU Modes.

Control
Modes PSW PSD
Addressing
Modes Privileged Unprivileged Privileged Unprivileged
Unmapped
512 KB . X : X X X
512 KB Extended X X X X
Mapped
512 KB NA NA X X
Extended NA | NA X | X

1-12

Control Modes The basic control mode is designated either Program Status Word (PSW) or
' Program Status Doubleword (PSD) mode. The PSW mode allows a 32/70
Series computer to emulate the environment required to run the Real-Time
Monitor (RTM); whereas the PSD mode makes it possible to create the
environment required to run the Mapped Programming Executive (MPX).

The CPU, when in the PSW mode or PSD mode, can run in either the Priv-
ileged or Unprivileged mode.

Privileged operation allows the CPU to perform all of its control func-
tions and to modify any part of the system. It is assumed that the -
resident operating system (operating in the Privileged mode) controls
and supports the execution of other programs (which can operate in the
Privileged or Unprivileged mode).

Unprivileged operation is the problem-solving mode of the CPU. In this
mode, memory protection is in effect, and all privileged operations are
prohibited. Privileged operations are those relating to input/output
and to changes in the basic control state of the computer. A1l priv-
ileged operations are performed by a group of privileged instructions.
Any attempt by a program to execute a privileged instruction while the
computer is in the Unprivileged mode results in a trap.

The Privileged/Unprivileged mode control bit can be changed when the
computer is in the Privileged mode. An Unprivileged mode program can
gain direct access to certain executive program operations by means of
Supervisory Call or Call Monitor instructions. The operations available
through these instructions are established by the resident operating
system.

Addressin The basic addressing modes are designated either Unmapped or Mapped. Ad-
Modes dressing submodes are 512 KB or extended addressing (refer to Table 1-1).

Unmapped addressing establishes a one-to-one relationship between the
effective virtual address of each operand or instruction and the physi-
cal address in memory.

Mapped addressing uses the memory management hardware to convert effec-
tive virtual operand and instruction addresses into physical (real)
memory addresses Tlocated anywhere in up to 16 megabytes of physical
memory. The memory management hardware -contains a MAP which allows
the privileged user to define how virtual addresses are converted to
real addresses.

The MAP contains thirty-two 16-bit registers; the first 16 registers
contain the Primary MAP to define a 512 KB primary logical address
space, and the second 16 registers contain the Extended Operand Map
to define an additional 512 KB extended operand address space for
additional data storage.

Addressin The addressing submodes are 512 KB and extended addressing. 512 KB
Submodes addressing allows direct addressing of 512K bytes (128K words) of memory.
In the 512 KB mode, this address space consists of the first 512K bytes
in memory. In the 512 KB Mapped mode, this address space is the 512K

bytes of primary logical address space for each user.

1-13

HARDWARE MEMORY

MANAGEMENT

Memory Map

WRITE
PROTECTION

Extended Addressing allows a program through indexing to extend the
address space beyond 512K bytes. In the Unmapped Extended mode, the
extension is to 16 megabytes. In Mapped-Extended mode, provision is
made for up to 1 megabyte of logical address space for each user. The
mapping hardware can locate this 512 KB space in 8,192-word segments
anywhere in up to 16 megabytes of physical memory.

The Hardware Memory Management feature of 32/70 Series computers use
dynamic Memory Allocation and Protection (MAP) This allows programs to
be loaded in one area of physical memory, rolled out to disc, rolled
back into another area of memory, and to continue execution without
requiring time-consuming software relocation biasing. In addition,
user programs may be write protected and distributed throughout physical
memory in 32K-byte blocks. Thus, the full utilization of available
memory is a practical possibility. .

A memory map deals with virtual and real addresses. A virtual address
pertains to the logical space used by a machine-level program and is
normally derived from programmer-supplied labels through an assembly
(or compilation) process followed by a loading process. Virtual ad-
dresses may be used to designate an element of data, the location of
an instruction, and either an indirect or immediate (explicit) address.
A real (physical) address is the address a processor sends to the memory
address register to access a specific physical memory Tlocation for
storage or retrieval of information. Real addresses are determined
by the hardware, whereas virtual addresses include all addresses.

The memory map provides dynamic program relocation into discontiguous
segments of memory. When the CPU is operating in Mapped mode, a program
can be segmented into an integral number of 8,192-word blocks and dis-
tributed throughout memory in whatever space is available. The memory
map transforms virtual addresses, as seen by the individual program,
into real addresses, as seen by the memory system.

When the CPU is not in the Mapped mode, as determined by a control bit
in the Program Status Doubleword (PSD), all virtual addresses are used
by the CPU as real addresses. When the CPU is operating in the Mapped
mode, all virtual addresses are transformed into real addresses by
replacing the high-order four or five bits (dependent upon extended
addressing) of the virtual address with a 9-bit value obtained from the
memory map register.

The memory protection system provides write protection for individual
memory pages. When the CPU is in the Mapped mode (either 512 KB or
Extended), each 32 KB memory block of logical program address space may
be write protected. Write protection for a 32 KB memory block is se-
lected by setting the protect/unprotect bit that is stored, along with
the block address, in the MAP register of the CPU.

When the CPU is in either the Unmapped or Mapped mode (either 512 KB or
Extended), 512-word memory pages may be write protected. Up to 256
pages (128K words) can be protected at a time. Sixteen 16-bit Page
Protect registers are provided in the CPU for write protection in the
Unmapped or Mapped mode.

Write protection may be overridden by a CPU operating in the Privileged
mode.

OPTIONAL The optional Writable Control Storage (WCS) may be used to ex-

WRITABLE pand the 32/70 Series computer instruction repertoire and to enhance
CONTROL the performance of user programs. By microprogramming a 32/70 Series
STORAGE computer with firmware subroutines, the optional Writable Control Stor-

age (WCS) can tailor the computer to perform specific applications such
as Fourier transforms, coordinate transformation, polynomial eva1uat1on,
and number system conversion.

Further improvement in overall performance is achieved by using micro-
programs for frequently executed subroutines in the FORTRAN Run-Time
Package, the FORTRAN Compiler, the BASIC Interpreter, and the 32/70
operating system. A1l high-speed firmware subroutines can be invoked
from main memory for execution as needed.

Up to 4,096 64-bit words of Writable Control Storage (WCS) can be added
to a 32/70 Series computer in increments of 2,048 64-bit words. Each
increment plugs into the SelBUS for power and clock. However,
communication with the CPU is independent of SelBUS operation.

OPTIONAL The optional High-Speed Floating-Point Unit functions as an extension of
HIGH-SPEED the 32/70 Series central processor to perform high-speed execution
FLOATING-POINT of floating-point arithmetic instructions. Addition, subtraction, multi-
UNIT plication and division of single-precision (32-bit) or double-precision

(64-bit) operands are possible with execution times that are signifi-

cantly greater than with the standard floating-point feature of the CPU.

REAL-TIME The first RTOM in the system provides the 10 basic interrupts and traps
OPTION MODULE which comprise the system integrity features. These basic interrupts and
traps include: Power Fail-Safe, System Override, Memory Parity, Non-
present Memory, Undefined Instruction, Privilege Violation, Attention,

Call Monitor, Real-Time Clock, and Arithmetic Exception.

The first RTOM also provides the six highest external interrupt levels,
one of which may be used for the standard interval timer.

INTERVAL The programmable interval timer provides a 32-bit counter that can be
TIMER loaded examined, started, or stopped by way of a Command Device (CD)
instruction. The Command Device (CD) enables the counter at one of four
program-selectable rates. When the counter is decremented to zero, the

interval timer requests a priority interrupt.

MAIN MEMORY An introduction to the basic organization and operation of the main mem-
ory subsystem is provided in the paragraphs that follow.

A 32/70 Series system may have either core or MOS memory. Packaged sys-
tems are sold with one or the other but not both for the same system.
The user may elect to mix the two types of memory, but only if it is
done in accordance with the configuration rules specified in Section III
of this manual.

MEMORY UNIT The main memory for a 32/70 Series system is physically organized as a
group of units. A memory unit is the smallest logically complete part of
the system, and the smallest part that can be logically isolated from
the rest of the memory system. A memory unit consists of 1 or 2 memory
chassis, a power supply, 1 to 4 Memory Bus Controllers (MBCs), and 1 to
16 memory modules. Memory units. with MOS memory also include a
Refresh board.

1-15

MEMORY MODULE

MEMORY
INTERLEAVING

MEMORY UNIT
ADDRESS
IDENTITY

.~ MEMORY BUS
CONTROLLERS

1-1¢€

A memory module is the basic functionally independent element of the
memory system. Each module can operate concurrently with all others
in a memory unit. A memory module consists of storage elements, drive
and sense electronics, control timing, and data registers. Core and MOS
memory modules are described separately, as follows:

1. Core memory modules have either 8,192-word (32K-byte)
locations with a 600-nanosecond cyc]e time or 16,384-word
(64K-byte) locations with a 900-nanosecond cycle time.
Each word contains a total of 36 bits: 32 data bits
and 4 parity bits (1 parity bit per byte). Byte,
halfword, word, or doub]eword addresses may be used
to access memory.

2. MOS memory modules have either 65,536-word (256K-byte)
or 131,072-word (512K-byte) locations; both have a
cycle time of 900 nanoseconds. MOS memory is
organized into 39-bit words: 32 data bits plus 7
error checking and correction (ECC) bits. The
seven error correction bits report and correct
single-bit errors. The ECC bits also detect and
report (but do not correct) double-bit errors.

When a system consists of two memory modules (or a multiple thereof),
memory can be two-way interleaved. If a system has four modules (or a
multiple thereof), memory can be four-way interleaved. Memory inter-
leaving is a built-in hardware feature that distributes sequential
addresses into independently operating memory modules. Interleaving
increases the probability that a processor can gain access to a given
memory location without encountering interference from other processors.
Thus, interleaving significantly reduces cycle time and increases the
throughput rate.

With two-way interleaving, even addresses are assigned to even-numbered
memory modules and odd addresses to odd-numbered memory modules. Four-
way interleaving assigns every fourth address to its respective memory
module and can occur when a multiple of four memory modules are included
in a unit.

Each memory unit in a 32/70 Series system is provided with an individual
identity by means of address range switches. These switches define the
range of addresses to which the unit responds when servicing memory re-
quests. A1l addresses, including the starting address, for a given unit
should be the same for all Memory Bus Controllers (MBCs) in that unit;
that is, the address of a given byte remains the same regardless of the
MBC used to access the byte. The-starting address of a unit must be on a
boundary equal to a multiple of the size of the memory modules in the
unit. If the unit is interleaved, the unit must contain a multiple of
the memory modules'size times the number of interleaves.

The Memory Bus Controllers (MBCs) in a memory unit act as an interface
between the processing units (CPUs, IOMs, and RPUs) on the $elBUS and
the memory modules. Each memory unit can have from one to four MBCs.
Each MBC 'is capable of managing up to 16 memory modules with overlapped
operation. A1l memory modules assigned to one MBC must be of the same
type (either MOS or core but not both) and have the same cycle and
access time.

MBCs examine incoming addresses to determine if the request is for a
memory module within the memory unit. In addition, an MBC determines
the priority of memory requests that are rece1ved simultaneously.
Computer memory requests can be initiated every 150 nanoseconds due to
the overlapped memory design.

MEMORY LOCK
AND UNLOCK

PRIVATE MEMORY

INPUT/OUTPUT
SYSTEM

I0M

REGIONAL
PROCESSING
UNIT

The 32/70 Series systems can include from one to eight MBCs per SelBUS.
A11 processors, either CPUs or 1/0 processors, must interface to memory
by way of an MBC. MBCs are located, along with the memory modules, in a
separate chassis from the CPU and I/0 processors. Depending on the
particular system and the needs of the user, an MBC may be configured in
a variety of ways. For—example, an MBC can connect directly to the
SelBUS; or, a Memory Interface Adapter (MIA) and/or Memory Bus Adapter
(MBA) may be employed to provide indirect connection between the SelBUS
and an MBC.

MBCs can be locked and unlocked by a CPU. A Memory Lock signal can bé
sent to the MBC in conjunction with a read transfer, and a Memory Unlock

signal can be sent during a write transfer. The Read and Lock transfer .

is used to access a word instruction in memory and to lock out all other
processors from the MBC. A Write and Unlock transfer causes information
to be written into memory and enables access to the MBC by other Se1BUS
devices. Only CPUs can use the Lock and Unlock feature.

When a Read and Lock transfer 1is received, the MBC involved is
temporarily inhibited from accepting any additional transfer requests.
However, all transfer requests already accepted by the MBC, but not yet
completed, will be processed normally.

In a 32/70 Series multiprocessing system, all processors address memory
in the same manner. The CPUs do not share the same interrupt or trap
systems. Thus, it is necessary to provide private storage for each CPU
to contain its trap and interrupt locations, I/0 communication loca-
tions, and scratchpad locations. This private memory must begin at 0
and extend at least to 2,048 memory locations (bytes).

" The Input/Output Microprogrammable Processor is the basic hardware

structure of the I/0 processor and consists of a SelBUS interface, a
microprocessor, and interface logic for an external device.

The Sel1BUS interface provides for communication between the IOM and the
CPU, or between the IOM and memory. - The microprocessor has a Control
Read-Only Memory (CROM) that contains the microprogram (firmware) for
controlling the SelBUS interface, microprocessor, and device interface
logic. The device interface logic may consist of some control logic for
operating the I/0 interface and the receivers/drivers necessary to
communicate with the I/0 device or external interface.

There are three classes of I/0 processors in a 32/70 Series system: the
IOM, the RPU, and the General Purpose Multiplexer I/0 processor. The I1/0
processor can also be used to provide a General Purpose Input/Output
interface (GPI0). The customer must design the device interface logic
and supporting firmware to make the I/0 processoor and device dependent
interface operate as an I/0 processor for some specific type of I1/0
device(s).

The IOM is the basic I/0 processor which contains the microprogrammable
processor, the SelBUS interface, and the device interface on a single
logic card.

The Regional Processing Unit (RPU) serves as a General Purpose Input/
Output interface (GPIO) for the peripheral device(s). The RPU connects
directly to the SelBUS, the major artery for transmitting information.
The RPU consists of three individual elements which are self-contained
on separate modules: the regional processor, the device interface, and
optional high-speed Random Access Memory (RAM). The major characteristic
of the RPU is that it supports Random Access Memory or Writable Control
Storage that can be programmed to suit the user's requirements.

1-17

1-18

GENERAL

PURPOSE
MUTIPLEXER
CONTROLLER

A third type of I/0 processor is the General Purpose Multiplexer Con-
troller (GPMC) which controls a number of individual controllers that
are located at various distances from the processor. The GPMC can
schedule requests for main memory between several controllers. The GPMC
also connects each dependent controller to the CPU for initiation or
termination of an I/0 operation.

INTRODUCTION

INSTRUCTION -

REPERTOIRE

SECTION i

CENTRAL PROCESSOR

This section of the manual describes the 32/70 Series Central Processor
Unit (CPU). 1Included are an introduction to the instruction reperto1re
and descriptions of the modes of operation, their format, and the major
functional elements of the CPU.

The functional classifications and corresponding number of 1nstruct1ons
for the 32/70 Series computer are as follows:

Classifications Number
Fixed-Point Arithmetic 30
Floating~Point Arithmetic 8
Boolean 17
Load/Store 29
Bit Manipulation 8
Zero 5
Shift 13
Interrupt 13
Compare . 11
Branch : 9
Register Transfer 13
Input/Output 10
Control 16
Hardware Memory Management 4
Writable Control Storage 3

Total , 189

Of particular significance are the bit manipulation and floating-point
instructions. The eight bit manipulation instructions provide the capa-
bility to selectively set, zero, add, or test any bit in memory or
register.

The eight floating-point instructions are unique because they can either
be executed by the firmware in the CPU, or by the optional High-Speed
Floating-Point Arithmetic Unit. Except for the execution speed, the
presence or absence of the optional Floating-Point Arithmetic Unit is
transparent to the user.

A1l of the instructions in the repertoire are classified as either being
halfword instructions (16 bits) or word instructions (32 bits). The
word instructions primarily reference memory locations; the halfword
instructions primarily deal with register operands. Because approxi-
mately one-third of the instructions are halfword instructions, program
core space can be conserved by packing two consecutive instructions into
one memory location.

The 32/70's use instruction lookahead for fast instruction execution.
Instruction fetches are made concurrently with instruction execution and
with decoding a previously fetched instruction.

2-1

GENERAL PURPOSE
REGISTERS

CPU CONTROL
MODES

PROGRAM STATUS
WORD

PROGRAM STATUS
DOUBLEWORD

CONDITION
CODES

PRIVILEGED AND
UNPRIVILEGED
OPERATION

2-2

The 32/70 Series CPU has a set of eight high-speed, general purpose
registers for use by the programmer for arithmetic, logical, and shift
operations. Three general purpose registers - R1, R2, and R3 - can also
be used for indexing operations. Register RO can also be used as a 1link
register. Register R4 can be used as a mask register.

The CPU operates in either of two basic control modes: the PSW mode or
the PSD mode. The PSW mode provides an environment to run the Real-Time
Monitor (RTM) Operating System. The PSD mode provides an environment to
run the optional Mapped Programming Executive (MPX-32) Operating System.
The functional difference between the PSW and PSD modes are outlined in
Table 2-1.

A Program Status Word (PSW) is used to record all machine conditions
that must be preserved prior to context switching when in the PSW mode
of operation. The PSW supports only the Class 0,1,2,3, and E I/0 devices
using the Command Device (CD) and Test Device (TD) instructions. The
format of the PSW is shown.in Figure 2-1.

A Program Status Doubleword (PSD) is used to record all machine
conditions that must be preserved prior to context switching when in the
PSD mode of operation. The format of the PSD is shown in Figure 2-2.
Execution of any Branch-and-Link instruction replaces the contents of
bits 13-30 of the PSD with the effective address specified by the
instruction. In addition, if the Branch instruction specifies an
Indirect Branch operation, the contents of bits -1-4 of the PSD are
replaced by the contents of the corresponding bit positions in the
indirect address location.

A 4-bit Condition Code is stored in the PSW or PSD upon comp1étion of

- the execution of most instructions. These conditions may be tested to

determine the status of the results obtained.

CCl is set if an Arithmetic Exception occurs
CC2 is set if the result is greater than Zero
CC3 is set if the result is less than Zero
CC4 is set if the result is equal to Zero

The Branch Condition True (BCT), Branch Condition False (BCF), and the
Branch Function True (BFT) instructions allow testing and branching on
the condition codes.)

The CPU is capable of either privileged or unprivileged operation in
both the PSW and PSD modes. Privileged operation allows the CPU to
perform all of its control functions and to modify any part of the
system. Privileged operation relates to input/output and to changes
in the basic control state of the computer. Unprivileged operation
is the problem-solving mode of the CPU. In this mode, memory protection
is in effect and all privileged operations are prohibited.

One bit in the Program Status Doubleword (PSD) or Program Status Word
(PSW) is designated as the Privileged State bit. If the Privileged State
bit is set, privileged instructions can be executed. If the Privileged
State bit is reset, any attempt to execute a privileged instruction will
cause a Privileged Violation trap.

Table 2-1. PSW and PSD Modes: Functional Differences
Characteristics PS¥ Mode* PSD Mode**
Program Status Word DoubTeword
Number of Instructfons 160 189
Integrity Features Interrupts on first Traps

RTOM
Memory Addressing
Nonmapped '
Nonextended 512 KB 512 KB+
Extended 16 MB 16 MB+
Mapped
Nonextended None 512 KB per user
Extended None 1 MB per user
CD I/0 Yes Yes
Addressing 512 KB 512 KB
Extended I/0 No Yes
Addressing None . 16 MB

* RTM supported
** MPX supported

+ No software support

2-3

T T T »l‘ L T
Cq Cy Cacylenlsf0 0 0 0 00 PROGRAM COUNTER clo

1 1 1 [1 1 1 3 1 N 1 1 I 1 1 [[[1 1 1 1 1

o

Hn—T

0 1 23 456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BITO DESIGNATES THE PRIVILEGED STATE BIT
BIT 1-4 DESIGNATE THE CURRENT CONDITION CODE
BITS DEFINES THE EXTENDED ADDRESSING MODE

BIT 5=0 NONEXTENDED ADDRESSING
BIT 5=1 EXTENDED ADDRESSING

BITS 6 DEFINES THE POSITION OF THE LAST INSTRUCTION EXECUTED

BIT6=0LEFT HALFWORD OR FULLWORD
BIT 6 =1 RIGHT HALFWORD

BITS 7-12 UNASSIGNED, MUST BE ZERO

BITS 13-29 CONTAIN THE WORD ADDRESS (PC) COUNT OF THE NEXT
INSTRUCTION TO BE EXECUTED

BIT 30 DEFINES THE POSITION OF THE NEXT INSTRUCTION
(LEFT OR RIGHT INSTRUCTION)

BIT 30=0 LEFT HALFWORD
BIT 30=1 RIGHT HALFWORD

Figure 2-1. Program Status Word (PSW) Format

T Y ¥ T Y
? 1 conormion [|H| £ M % N[
| copes |X|s|x g A / PROGRAM COUNTER Rk
Y [TIT|P}" 77 N S NN N N R N YOI A W U S S G W U
0 1 2 345 6 7 8 9 101112131415 16 17 18 19 20 2122 23 24 2526 27 28 29 30 31
1 L] T T |
EXT
GRAN BPIX 0 3 INT CPIX oo
1 g 9 41) ¢ 2 3 ¢ 1 F}_‘\G [VN U SR WY W W NN U SR |

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

BITO =0 UNPRIVILEGED MODE
=1 PRIVILEGED MODE
BITS 1-4 ARE CONDITION CODES
BIT1 = CC1
2 = CC2
3 =cc3
4 = cca
BIT5 =0 EXTENDED MODE (OFF)
=1 EXTENDED MODE (ON)
BIT6 =0
=1
BIT7 =0
=1
BIT8 = 0
=1
BIT9 =0
=1
BITS 10-12 ARE NOT USED
BITS 13-29 ARE LOGICAL WORD ADDRESS
BIT 30
BIT 31
BITS 32-33
BITS 34-45
BIT 46 NOT USED
BIT 47
BITS 48-49 INTERRUPT CONTROL FLAGS
BITS
48 | 49
ol o
o] 1
110
1] 1
BITS 50-61
NOT USED

BITS 62-63

RETAIN CURRENT MAP CONTENTS

NEXT INSTRUCTION IS A RIGHT HALFWORD

BLOCKED (DISPLAYED PSD ONLY) *

INDICATE MAP GRANULARITY, 00=UNMAPPED AND ALL OTHERS =8K MAP GRANULARITY
PROVIDE A WORD INDEX INTO THE MASTER PROCESS LIST (MPL) FOR THE BASE PROCESS

OPERATE WITH UNBLOCKED INTERRUPTS
OPERATE WITH BLOCKED INTERRUPTS
RETAIN CURRENT BLOCKING MODE
RETAIN CURRENT BLOCKING MODE

LAST INSTRUCTION EXECUTED WAS NOT A RIGHT HALFWORD
LAST INSTRUCTION EXECUTED WAS A RIGHT HALFWORD

ARITHMETIC EXCEPTION TRAP MASK (OFF)
ARITHMETIC EXCEPTION TRAP MASK (ON)

COMPUTER IS IN PSW MODE (DISPLAYED PSD ONLY)*
COMPUTER IS IN PSD MODE (DISPLAYED PSD ONLY) ™

UNMAPPED (DISPLAYED PSD ONLY) *
MAPPED (DISPLAYED PSD ONLY) *

PROVIDE WORD INDEX INTO MASTER PROCESS LIST (MPL) FOR CURRENT PROCESS

* THESE BITS ARE USED FOR DISPLAY ONLY AND ARE NOT PRESENT IN THE PSD STORED IN MEMORY.

‘Figure 2-2.

Program Status Doubleword (PSD) Format

2-5

CPU ADDRESSING

2-6

MODES

The following instructions are privileged:

1. A1l interrupt related instructions such as Enable
Interrupt or Request Interrupt.

2. A1l dinstructions that can modify the memory mapping
registers.

3. A1l Input/Output instructions.

4. A1l instructions that can place the machine in a state
that requires operator intervention to continue
processing, such as Halt.

5. A1l instructions that modify Writable Contro] Storage.

User programs operating in the unprivileged state should use the Call
Monitor (CALM) or Supervisor Call (SVC) instruction with the appropriate
program flags to use the system features guarded by the privileged/
unprivileged system.

Certain events can change the processor from the unprivileged to the
privileged state by loading a new Program Status Word or Doubleword.
These are:

1. An interrupt from an external event or the I/0.system.

2. A hardware trap caused by addressing nonpresent memory,
executing undefined instruction, executing privileged
instruction by nonprivileged program, or writing to
protected memory.

3. A hardware trap caused by a nonrecoverable condition
such as an uncorrectable error on a memory read, or an
arithmetic exception.

4. The execution of the Call Monitor or Supervisof Call
instruction by a user requesting monitor services.

In all cases, traps or interrupts are vectored to monitor routines for
proper handling. Both the interrupt/trap vectors and the monitor service
routines are in protected memory. This insures that an unprivileged
user has no way to become privileged or to alter protected state.
The execution of the Branch and Reset Interrupt (BRI) or the Load Pro-
gram Status Doubleword (LPSD) instruction can cause the system to change
from the privileged to the unprivileged state.
The operator can push the SYSTEM RESET button to initialize a 32/70
Series computer. SYSTEM RESET clears the eight general purpose registers,
resets all memory protection, and sets the Privileged State bit.
The 32/70 Series CPU has four modes for accessing memory:

1. 512 KB mode

2 512 KB Extended Mode
3. 512 KB Mapped mode
4

‘Mapped, Extended mode

512 KB
MODE

512 KB
EXTENDED
MODE

512 KB
MAPPED

MAPPED
EXTENDED

CPU
MAJOR
ELEMENTS

CPU
DATA
STRUCTURE

The 512 KB addressing mode allows the 32/70 Series CPU to access in-
structions or operands (bit, byte, halfword, word, or doubleword) in the
first 512K bytes of memory directly without mapping, indexing, or
address modification. A 19-bit Address field is provided in memory
referencing instructions for that purpose.

Bit addressing is accomplished by using the Register (R) field in the
instruction word to select a bit in the byte specified by the 19-bit
address. Therefore, any bit in the first 512K bytes of memory can be
directly addressed by the Bit Manipulation instructions.

The 512 KB Extended mode provides the same capabilities as the 512 KB
mode described above, and, in addition, it permits operand addressing
beyond the first 512K bytes of memory. The effective address can
reference any bit, byte, halfword, word, or doubleword residing any-
where within 16 megabytes of physical memory.

The 512 KB Mapped mode allows a 32/70 Series CPU to access any instruc-
tion or operand (bit, byte, halfword, word, or doubleword) within a
logical primary address space. This space consists of 512K bytes of
logical memory, distributed within 16 megabytes of physical memory.

The 32/70 Series CPU allows multiple primary address spaces. A user can
access instructions and operands within the logical primary address
space in which his program resides. Physical blocks of memory can be
common to many logical primary address spaces; thus, users in different
spaces can share common blocks of memory.

The 512 KB Mapped addressing mode can be used only when the CPU is in
the PSD control mode. '

\ ‘ .
The Mapped Extended mode provides all the capabilities of the 512 KB
Mapped mode, plus access to a logical extended operand address space.

This space consists of 512K bytes of memory beyond the logical primary.

address space and allows users additional memory space to store data
(operands). Each logical extended operand address space can be 512K
bytes long, dispersed anywhere within 16 megabytes of physical memory.
The combination of Tlogical primary address space and the logical
extended operand address space supports programs up to one megabyte
long. The executable code must 1ie within the logical primary address
space, but operands can be in either the logical primary or extended
operand address space.

The Mapped Extended addressing mode can be used only when the CPU is in
the PSD control mode.

A brief description of some major elements of the CPU are provided in
the paragraphs that follow. They include: the data structure, a micro-
programmable processor, the implementation logic, and the SelBUS inter-
face. A simplified block diagram of the CPU is shown in Figure 2-3. For
a more comprehensive discussion of the CPU, refer to the 32/70 Series
Computer Technical Manual.

The data structure contains the eight general purpose file registers and
10 hardware registers organized around an Arithmetic Logic Unit (ALU).
Key circuits in the data structure include the following:

2-7

IMPLEMENTATION CONTROL

LOGIC ¢
DATA (LITERALS)
DATA CONTROLS } MICROPROGRAMMABLE
STRUCTURE PROCESSOR
ADDRESS DATA
(LDT00-23)l I(LDoo-31) CONTROL
)
‘ SELBUS INTERFACE
SELBUS
- -

EXTERNAL UNITS:
IOMS
RTOM, MEMORY

Figure 2-3. CPU Simplified Block Diagram

2-8

cpy
MICRO-
PROGRAMMABLE
- PROCESSOR

IMPLEMENTATION

LOGIC

SelBUS
INTERFACE

OPTIONAL
WRITABLE
CONTROL
STORAGE

1. Arithmetic Logic Unit (ALU)
2. A-Multiplexer

3. B-Multiplexer

4. Literal Multiplexer

5. General File Register

6. Memory Address Register

7. Program Counter Register

8. N-Counter Register

9. Shift Register

10. Temporary Register/Data Output Register
11. Data Input Register

12. Instruction Register 0

13. Instruction Register 1

The Microprogrammable Processor of the CPU is on board C of the three
CPU circuit boards. The logic circuit board which contains the Micro-
programmable Processor is commonly referred to as the personality board.

The Microprogrammable Processor wutilizes Read-Only Memory (ROM)
integrated circuits which house the CPU's Elementary Operations (EO).
The EOs, with the associated circuitry, control the CPU operations by
testing, controlling, and directing the various functions to be
performed. The format for the EOs (also referred to as microinstruc-
tion) is shown in Figure 2-4.

The Implementation Logic includes the. ALU Decode PROM, a Scale circuit,
the Floating-Point Assist PROMs, and a Multiply Assist PROM, all of
which serve to implement CPU functions.

The SelBUS interface logic is implemented on all three of the CPU cir-
cuit boards and provides control and temporary storage for information
being output to and input from the SelBUS. Since the SelBUS is the
high-speed communication link between system modules external to the CPU,
the SelBUS interface logic plays a vital role in CPU operation.

Writable Control Storage is an option which may be used with the 32/70
Series CPU to expand the instruction set, to enhance the performance of
user programs, or to tailor the computer to specific user needs.

Up to 4,096 64-bit words of Writable Control Storage (WCS) can be added
to a 32/70 Series computer in increments of 2,048 64-bit words. Each
increment plugs into the SelBUS for power and clock. However,
communication with the CPU is independent of SelBUS operation.

The block diagram in Figure 2-5 shows two optional WCS units as they
could be implemented in conjunction with a 32/70 Series CPU and the
optional High-Speed Floating-Point Unit.

2-9

T B M A B * D R Y

CROMO00-03 CROMO04-06f CROMO7-09,CREG10-12 |CREG13-15 | CREG16-19 CROM20-23 CREG24-26 CREG27-31

SEQUENCEJCONTROL A B

CONTROL VEXTENDED] MUX MU X ALU DESTINATION |FILE READ| . Y-ORDER

TEST

0O}l1]12|3 456789101112 |13}14]15(|16 18 |19 120 |21 {22 |23 |24 {25 |26 |27 |28 |29 |30

HARDWARE

FLOATING- HARDWARE FLOATING-POINT CONTROL

PT. CONTROL
(74
7”7

X P C H
CREG32-36
X-ORDER 12-BIT BRANCH ADDRESS HARDWARE FLOATiNG-POINT CONTROL

321331341351 36]37 |38 |39 | 4014114243144 {45 146 14748149 | 5051152 |53 | 541 55|56 | 57 |58 |59 | 60 [67 {62

W-TEST Z-TEST 8-BITBRANCH ADDRESS
fl CREG CREG
STEST EXTENDED TEST : 4-BIT
CROM BRANCH ADDR
U-ORDER cc's” SHIFT * CONDITIONAL
: CREG CREG (ORDER CREG
HDWR FPT

S-ORDER FILE NUMBER ROM PAGE ORDER

8-BIT LITERAL

FLIP/FLOP 1

*,
FLIP/ELOP 2 ROM ALTERNATE SOURCE

FLIP/FLOP 3

13-BIT WRITABLE CONTROL STORAGE JUMP

HARDWARE
F.P. ORDER . NOTES: 1. BITS0-47 OF EACH MICROINSTRUCTION
ARE IN THE CPU'S CONTROL ROM.

2. PORTIONS OF THE FORMAT DESIGNATED
FOR HARDWARE FLOATING-POINT APPLY
TO THE OPTIONAL HIGH-SPEED FLOATING-
POINT-UNIT (FPU).

3. BITS 48-63 ARE PHYSICALLY PART OF
A CONTROL ROM IN THE OPTIONAL
HIGH-SPEED FPU.

Figure 2-4. Microinstruction Format

2-10

SELBUS

"Q- >
13-8IT MICROINSTRUCTION ADDRESS
CPU CPU CPU WCS WCS
A-BOARD B-BOARD C-BOARD OPTION OPTION
MICROPROCESSOR} DATA [MICROPROCESSOR CROM NO 1 NO 2
148 BITS) (64 BITS) (64 BITS)
32-BIT | t— |
DATA
32.81T DATA]CONTROL LINES l 48-BIT MICROINSTRUCTION
HIGH-SPEED HIGH-SPEED
FPU FPU
PROCESSOR
D/E PROM ¢

t

16-BIT MICROINSTRUCTION

Figure 2-5.

Functional Interrelationship of the CPU, WCS, and

16-BIT MICROINSTRUCTION

High-Speed Floating-Point Unit

2-11

OPTIONAL
HIGH-SPEED

FLOATING-POINT

UNIT

The High-Speed Floating-Point Unit (FPU) is an option that may be used

with a 32/70 Series CPU to increase the speed of floating-point arith-

metic operations. The unit consists of two circuit boards which may be

plugged in adjacent to the CPU. No alternations in the software are .
required.

If the High-Speed Floating-Point Unit (FPU) is installed, addition,
subtraction, multiplication, and division of single-precision (32-bit)
or double-precision (64-bit) operands can be executed much faster than
with the CPU's standard floating-point feature.

An operand in floating-point format has three parts: a sign bit, a
fraction, and an exponent. The sign bit indicates whether the fraction
is a positive or negative value. The fraction is a binary number with
an assumed radix point immediately to the left of its most significant
bit. The exponent is a 7-bit binary power to which the base 16 is
raised. The quantity that the floating-point number represents can be
determined by multiplying the fraction by the numbeer 16 raised to the
power represented by)the exponent.

Two operands of the same format and length are received by the FPU for
each arithmetic operation. One operand is input from a CPU general
purpose register (GPR), whereas the other operand is input from memory.
The precise GPR and memory location are specified in the floating-point
instruction. Upon completion of an operation, the result is returned to
the CPU general purpose register.

Figure 2-6 illustrates the major functional elements of the FPU, the
general routing of operands, and the relationships between the FPU, the
CPU, and the SelBUS.

SELBUS

I

N o

-

FLOATING-POINT UNIT

|
|

32-OR 64-BIT
REGISTER OPERAND
CENTRAL Pk OPERAND
PROCESSOR UNIT ’
l' ADDRESS
| orDERS
INPUT
| oo
I CONTROL | |
! } '
4 EXPONENT FRACTION .8
4 I CONTROL CONTROL 4
I ¥ ¥
l FRACTION EXPONENT
LOGIC LOGIC
|] 8
l CONDITION OUTPUT
| CODES MUX
32-OR 64-BIT

| REsuLT I

Figure 2-6. Optional High-Speed Floating-Point Unit

]

2-13/2-14

INTRODUCTION

TRAPS

INTERRUPTS

OPERATING
MODES

SECTION Il

TRAPS AND INTERRUPTS

Traps and interrupts report asynchronous or synchronous events to the
software. Traps are error conditions that are generated internally
and interrupts are requests that are generated externally. The events
that caused the trap or interrupt can be generated asynchronously by
hardware or synchronously' scheduled by software when an interrupt con-
trol instruction is executed. The trap or interrupt causes a transfer
of control to unique vector locations in main memory (see Table 3-1).

The traps for the PSW mode (in order of priority) are:
Power Fail

Memory Parity

Nonpresent Memory

Undefined Instruction

o &> w bd o=

Privileged Violation

‘Six additional traps are present in the PSD mode. They are:

Supervisor Call Trap

Machine Check Trap

MAP Fault Trap

1.

2

3. System Check Trap
4

5 Block Mode Timeout (Watchdog) Trap
6

Arithmetic Exception Trap
Interrupts consist of the following:

1. Any external event scheduled through the Real-Time Option
Module (RTOM) :

2. Input/Output (I/0) termination interrupts
3. Software request interrupt control instruction

The 32/70 Series CPU is capable of operating in two modes: the PSW mode
and the PSD mode. The two modes identify the firmware routing required
to operate with a PSW, thereby allowing existing 32/55 software to
operate on a 32/70 Series CPU without modifications. The PSD mode is
the default at system reset and remains in effect until a Set CPU Mode
macro instruction is executed or an Initial Program Load (IPL) sequence
is set up to force the CPU into PSW mode of operation.

3-1

Table 3-1.

PSW/PSD Mode Relative Trap/Interrupt Priorities

INTERRUPT INTERRUPT
AND. TRAP INTERRUPT VECTOR TCW 10CD
RELATIVE LOGICAL LOCATION ADDRESS | ADDRESS
PRIORITY PRIORITY (IVL) ** ** DESCRIPTION
00 OF4 Power Fail Safe Trap
01 OFC System Override Trap (Not used)
02 OE8* Memory Parity Trap
03 190 Nonpresent Memory Trap
04 194 Undefined Instruction Trap
05 198 Privilege Violation Trap
06 180 Supervisor Call Trap
07 184 Machine Check Trap
08 188 System Check Trap
09 18C MAP Fault Trap
0A «Not Used
0B Not Used
0C Not Used
0D Not Used _
)3 OE4 Block Mode Timeout (Watchdog) Trap
OF 1A4* Arithmetic Exception Trap
10 00 0F0 Power Fail Safe Interrupt
11 01 OF8 System Override Interrupt
12 12 OE8* ***Memory Parity Trap
13 13 OEC Attention Interrupt
14 14 140 100 700 I/0 Channel 0 Interrupt
15 15 144 104 708 I/0 Channel 1 Interrupt
16 16 148 108 710 1/0 Channel 2 Interrupt
17 17 14C 10C 718 I/0 Channel 3 Interrupt
18 18 150 110 720 I/0 Channel 4 Interrupt
19 19 154 114 728 1/0 Channel 5 Interrupt
1A 1A 158 118 730 I/0 Channel 6 Interrupt
1B 1B 15C 11C 738 I/0 Channel 7 Interrupt
iC 1C 160 120 740 I/0 Channel 8 Interrupt
1D 1D 164 124 748 I/0 Channel 9 Interrupt
1E 1E 168 128 750 I/0 Channel A Interrupt
1F 1F 16C 12C 758 I/0 Channel B Interrupt
20 20 170 130 760 I/0 Channel C Interrupt
21 21 174 134 768 I/0 Channel D Interrupt
22 22 178 138 770 I/0 Channel E Interrupt
23 23 17C. 13C 778 I/0 Channel F Interrupt
24 24 190* ***Nonpresent Memory Trap
25 25 194* ***Undefined Instruction Trap
26 26 198* ***Privilege Violation Trap
27 27 19C Call Monitor Interrupt
28 28 1A0 Real-Time Clock Interrupt
29 29 1A4* ***Ar1thmet1c Exception Interrupt
2A 2A 1A8 ' External/Software Interrupts
2B 2B 1AC External/Software Interrupts
2C 2C 180 External/Software Interrupts
2D 2D 1B4 External/Software Interrupts
2E 2E 1B8 -External/Software Interrupts
2F 2F 1BC External/Software Interrupts
30 30 1C0 External/Software Interrupts
31 31 1C4 External/Software Interrupts
THRU THRU THRU THRU
7E 7E 2F8 External/Software Interrupts
7F 7F 2FC External/Software Interrupts

3-2

* Vector Locations Shared With Traps

** For Nonextended I/0 Devices
**% PSW Function-Now External/Software Interrupts-For PSD Mode

A1l Interrupts Are Externally Generated

PSW MODE

The PSW mode identifies-traps and interrupts on a prioritized, scheduled
basis No distinction is made between traps and interrupts, and both are
scheduled by some mechanism external to the CPU (i.e., IOM or RTOM).
The trap conditions that are created internally within the CPU are
scheduled by the firmware on an RTOM board if the following requirements
are met:

1. Trap level is enabled.
2. Trap level is not active.
3. Any other higher priority level is not active or requesting.

If any of the above requirements are not met, the firmware will reset
the condition that caused the trap and continue to the next sequential
instruction as if the trap never occurred.

Traps and interrupts in the PSW mode require the participation of three
component levels in order to function properly. The three component
levels are the IOM or RTOM, the CPU, and the software.

The IOM or RTOM schedules a hardware- or software-initiated interrupt
service request. When the requesting 1level becomes the highest
contending level, the CPU acknowledges the interrupt request. In order
to enqueue the associated software processing, the IOM or RTOM advances
from requesting to active, blocking interrupt requests from Tower pri-
ority levels. When the software interrupt handler completes its
processing, the software dequeues itself by executing a Deactivate
Interrupt (DAI) or Branch and Reset Interrupt (BRI) instruction which
allows the currently active level and all other lower priority levels to
resume requesting for interrupts. This operating mode is also referred
to as Block with Activate. In summary, the six steps shown below are
required to enqueue or dequeue an interrupt process:

1. The IOM, RPU, or RTOM réquests an interrupt.

2 The CPU acknowledges the.interrupt.

3. The IOM or RTOM goes active, blocking lower priority interrupts.
4

The software handler is given control. (First instruction is
noninterruptible)

5. The software executes a Deactivate Interrupt (DAI) or Branch and
Reset Interrupt (BRI). ’

6. The IOM or RTOM deactivates, allowing lower priority levels to
resume requesting.

3-3

- 3-4

PSD MODE

Two types of software trap and-:interrupt queueing methods exist in the
PSD mode. The first method is identical to the queueing described as
the PSW mode, where the requesting level advances to active state,
blocking all Tlower priority levels to insure that software is not
interruptible by its level or any lower priority levels during the
interrupt processing. This method applies to all classes of 1/0
interrupts and external (RTOM) interrupts.

The second method applies to traps, I/0 interrupts and external
interrupts. The enqueueing of the software interrupt and trap handlers
does not rely on the active state of the applicable channel or RTOM to
prevent interrupts or traps for the specific or Tlower priority levels.
The enqueueing function blocks externally generated interrupt requests
(channel or RTOM) from being sensed by the CPU firmware. Software must
now explicitly dequeue its process with an Unblock External Interrupts
(UEI) or a Load PSD (LPSD) macro instruction. The general sequence is:

1. The IOM, RPU, or RTOM requests an I/0 interrupt.

2. When the requesting level becomes the highest contending level, the
CPU acknowledges the interrupt request and blocks all interrupts
until the UNBLOCK command is received (if bits 48 and 49 of the
PSD are 0 and 1, respectively).

3. The channel does not go active and is now free to continue I/0
related processing.

4. The software is given control with all interrupts blocked.

5. When the software interrupt handler completes its enqueued- pro-
cessing, it will execute an Unblock External Interrupt (UEI) or
a Load Program Status Doubleword (LPSD) macro instruction which
will allow externally generated interrupts to be sensed by the
CPU firmware. This operating mode is also referred to as Block
without Activate.

IVL AND ICB

ICB
FORMATS

OLD AND NEW
PSD

EXTERNAL
AND
NON-CLASS F
FORMAT

\

TRAP
FORMAT

Each trap or interrupt that may occur in the PSD mode has an associated
Interrupt Vector Location (IVL) and an Interrupt Context Block (ICB).
The IVL contains a 24-bit real address that points to the starting
memory address of the ICB. Table 3-1 includes a list of the memory
locations dedicated for IVLs.

Generally speaking, an ICB consists of six consecutive memory words.
However, for some types of ICBs only four or five words are required.
The four different ICB formats are listed as follows:

1. External and Non-Class F I/0 Format

N

Trap Format

3. Class F I/0 Format

4. Supervisor Call Format
Figures 3-1 through 3-4 illustrate the four ICB formats.

The first four words of all ICB formats are identical in that they
contain the old PSD followed by the new PSD.

The old PSD is stored in the ICB whenever a trap or interrupt occurs and
is acknowledged. The old PSD locations provide storage for hardware and
software CPU context information current at the time a particular trap
or interrupt occurs. Normally, when the software interrupt processing is
completed, a BRI, LPSD or LPSDCM instruction will be used to restore the
old PSD context information.

The new PSD information must be loaded in the ICB by software before a
trap or dinterrupt occurs. The new PSD must contain the necessary
information to set up the hardware and software in the appropriate
context for servicing the interrupt.

The External and Non-Class F ICB format type (see Figure 3-1) is used
with all RTOM interrupts and all CD and TD I/0 interrupts. RTOM inter-
rupts include: Console Interrupt (Panel Attention), Call Monitor Inter-
rupt, and Real-Time Clock-Interrupt.

Words 1 through 4 contain the old and new PSDs.

Words 5 and 6 of this ICB format type are optional and may be omitted.
The Trap ICB format type (see Figure 3-2) is used for PSD mode traps.
Words 1 through 4 of the Trap ICB cdntain the old and new PSDs.

Word 5 of the Trap ICB contains the CPU hardware status word. This is
stored in the ICB at the time a trap occurs. The CPU status word may
provide additional descriptor bits for defining the error condition.

For a detailed description of the CPU status word, refer to the 32/70
Series Technical Manual.

Word 6 of the Trap ICB is optional.

3-5

0 IVL

31 ICB

VECTOR ADDRESS

31

v o

OLD PSD WORD

Figure 3-1. Interrupt Context Block Format - External Interrupts and Non-Class F I/0 Interrupts

0 IVL

OLD PSD WORD

NEW PSD WORD

NEW PSD WORD

NOT REQUIRED

NOT REQUIRED

31 0 ICB

[VECTOR ADDRESS

M OLD PSD WORD

e

3-6

OLD PSD WORD

NEW PSD WORD

NEW PSD WORD

CPU STATUS WORD

NOT REQUIRED

Figure 3-2. Trap Context Block Format

+4

+8

+12

+16

+20

+4

+8

+12

+16

+20

CLASS F 1/0
FORMAT

SUPERVISOR
CALL
FORMAT

The Class F I/0 format type (see Figure 3-3) requires the use of all six
ICB words.

Words 1 through 4 contain the old and new PSDs.

Word 5 of the Class F I/0 ICB provides the Input/Output Command List (IOCL)

address for the associated Class F I/0 channel. This word must be set
up in the ICB by software prior to the execution of either a Start I/0
or Write Channel WCS instruction. The ICL address is transmitted to
the I/0 channel by the CPU during the Start I/0 or Write Channel WCS
Sel1BUS sequences. The IOCL address must be in a 24-bit real address
format.

Word 6 of the Class F I/0 ICB contains the 24-bit real address of the
channel status word. Whenever the channel reports status to the CPU
(and software), the channel stores the channel status word in memory.
The CPU then stores the memory address of the channel status word into
word 6 of the ICB.

The channel may report status when any one of the following events
occur:

1. An interrupt is acknowledged (a hardware event).
2. A Start I/0 instruction is executed.
3. A Test I/0 instruction is executed.
4. A Halt 1I/0 instruction is executed.

When status 1is stored during a Start I/0, Test 1/0, or Halt I1/0
instruction, the channel rejects the instruction, and the CPU Condition
Codes are set to reflect the Status Stored condition. Under the Status
Stored condition, the channel clears its status pending flags, as well
as any interrupt pending flags that are relative to the status just
reported.

The Supervisor Call (SVC) instruction is provided with up to 16 dif-
ferent ICBs. These multiple ICBs are provided to reduce the amount
of time required for a user program to request service from the op-
erating system program. The address of a specific ICB is obtained by
adding a 4-bit word index value from bits 16-19 of the SVC instruction

to the 24-bit address that is in the SVC Interrupt Vector Location (IVL).

The sum of these values provides a 24-bit real address of a Secondary
Vector Location. The contents of the Secondary Vector Location is the
24-bit real address of the appropriate Supervisor Call ICB. Reference
Figure 3-4.

gords 1 through 4 of the Supervisor Call ICB contain the 01d and New
SD. '

Word 5 of the ICB 1is available for use by the software SVC Trap
processor as an index (call number) for the requested operating system
service. Bits 20 through 31 of the SVC instruction are used by the CPU
to format word 5 of the Supervisor Call ICB.

Word 6 of the Supervisor Call ICB is optional.

3-7

3-8

0 VL

31

VECTOR ADDRESS

icB

31

Figure 3-3. Interrupt Context Block Format - Class F I/0 Interrupts

OLD PSD WORD

OLD PSD WORD

NEW PSD WORD

NEW RSD WORD

IOCL ADDRESS

STATUS ADDRESS

L 31 1CBO 31
VECTOR ADDRESS 4BIT INDEX OLD PSD
FROM SVC BITS
16-19 OLD PSD
l]
NEW PSD
SECONDARY NEW PSD
0 VECTOR BLOCK 31
_.[VECTOR 0 +0 SVC CALL NO.
—DI VECTOR 1 +4 NOT REQUIRED
——-il . VECTOR 2 g T T T 1
A L - - i
T F s | icB1 31
—.f VECTOR 14 +56 "" |
-) ! OLD PSD
\——'l VECTOR 15 +60 1| |
;! | OLD PSD
2 ,
¢ ! NEW PSD
| v
| NEW PSD
v
SVC CALL NO.

Figure 3-4. Supervisor Call (SVC) Trap Context Block Format

NOT REQUIRED

+8

+12

+16

+20

FS

+12

+16

+20

FS

+12

+16

+20

PSD MACRO
INSTRUCTIONS

AUTOMATIC
TRAP HALTS

PSW_TRAP
— HALTS

PSD_TRAP
HALTS

The eight PSD interrupt and trap related macro instructions are:
Block External Interrupts (BEI)

Unblock External Interrupts (UEI)

Load Program Status Doubleword (LPSD)

Load Program Status Doubleword Change Map (LPSDCM)

Set CPU Mode (SETCPU)

Supervisor Call (SVC)

Enable Arithmetic Exception Trap (EAE)

8. Disable Arithmetic Exception Trap (DAE)

A11 of the above macro instructions, except SVC, can be executed only in
the privileged state and BEI, UEI, LPSD, EAE, DAE, and SVC will be valid
instructions only if the CPU mode is set to other than the PSW mode. If
the PSW mode is set, an undefined instruction trap will occur.

In the PSD mode, traps cannot be inhibited by the Blocked mode or by the
activation of any high level interrupt.

A 1list of the traps, interrupts, and vector addresses is presented
in Table 3-1.

The 32/70 Series CPU provides for automatic trap halts in both the PSW
and PSD modes of operation.

A PSW mode trap halt* can occur under any of the following conditions:

1. A Memory Parity Error or Nonpresent Memory Error, while handling
the dedicated memory locations associated with an interrupt level.
This error must occur during the firmware interrupt Store, Place,
and Branch sequence or the Branch and Reset Interrupt (BRI)
sequence.

2. An I/0 communication protocol violation during the interrupt or
BRI communication sequence.

*Implementation of the PSW trap halt is the same as described in the
PSD trap halt discussion.

A PSD mode trap halt only occurs if the software has not enabled the
PSD mode traps by the SETCPU Enable Trap instruction. The PSD mode
traps that arm the Trap Halt logic are:
1. Memory Parity Error

Nonpresent Memory

Undefined Instruction

Machine Check Trap

2
3
4. Privileged Violation Trap
5
6 System Check Trap

7

MAP Fault Trap

3-9

MACHINE
CHECK TRAP

SYSTEM
CHECK TRAP

BLOCK MODE

TIME-OUT TRAP

PSD TRAP HALT
IMPLEMENTATION

The PSD mode traps that do not arm the Trap Halt logic are:
1. Supervisor Call Trap

2. Arithmetic Exception Trap

3. Call Monitor Interrupt Trap

A Machine Check trap is a hardware/firmware failure that has occurred
during an interrupt or context switch. These failures include Memory
Parity error, Nonpresent Memory error, or I/0 and Interrupt SelBUS
protoco] violations. The specific' type of error that causes the trap
is described by the CPU Status Word that is stored in the interrupt
(trap) context block.

A System Check trap is primarily a software failure that attempted to
force the CPU into an illogical sequence. The specific type of error
that caused the trap is described by the CPU status word stored in the

“interrupt (trap) context block.

The Block Mode Time-Out trap occurs under the following conditions:

1. If a Wait instruction is executed with interrupts blocked.

2. If the Block Mode Time-Out trap has been enabled by a SETCPU in-
struction and more than 128 instructions have beén executed with
interrupts blocked.

The detection of a PSD trap condition causes the following events to
occur:

1. The CPU is halted.

2. . The Interrupt Active 1light on the Serial Control Panel is
turned on.

3. The PC portion of the PSW (PSD1l) contains the dedicated memory
address for the trap causing the halt.

4. The CPU halfword indicator (PSD1, bit 5) may or may not be on.

5. Starting at memory location 530,4, the following error infor-
mation is stored: : ,

Location Contents

530 Error PSW (PSD1)

534 Error PSD2 (PSD mode only)

538 - CPU Status Word

53C R(RDEV) Device Table Entry

540 R(INTRTAB) Device Interrupt Entry

INTRODUCTION

OVERVIEW

MOS AND CORE
MEMORY

SECTION IV

MEMORY MANAGEMENT

This section provides information that includes the rules for configur-

ing MOS and core memory, as well as memory management programming methods
and formats. For a functional description of the major elements in a

32/70 Series Memory Subsystem, the reader should refer to Section I of

this manual.

A1l memory subsystems in the 32/70 Series are configured with a Memory
Bus Controller (MBC) that communicates with the SelBUS and controls the
memory bus to which the memory modules are attached. The MBC and CPU
provide for byte, halfword, or word accesses of memory. The Memory Bus
Controller is capable of managing up to 16 overlapped memory modules
which operate asynchronously on their bus. Computer memory requests can
be initiated every 150 nanoseconds due to the overlapped memory design.
A1l modules under one Memory Bus Controller have the same cycle and
access time; however, other MBCs may manage up to 16 fully overlapped
modules.

Depending on the model, 32/70 Series systems can have either core or MOS
memory. ~Core memory systems are organized into 36-bit words: 32 data
bits plus 4 parity bits. MOS memory systems are organized with 39-bit
words: 32 data bits plus 7 error checking correcting (ECC) bits. The
MOS memory module corrects single-bit errors and has the capability of
detecting and reporting double-bit errors.

Core memory packages include the following components:

1. Core memory modules

2. Memory chassis

3. Power supply

4. Memory Bus Controller

Core memory for 32/70 Series computers is ‘available in the following
forms:

1. The basic 32,768-byte core memory modules with a full memory cycle
time of 600 nanoseconds

2. 65,536-byte core memory packages of 600-nanosecond memory

3. 131,072-byte core memory packages of 600-nanosecond memory

4. 65,536~byte core memory modules with a full memory cycle time of

900 nanoseconds

5. 131,072 core memory packages of 900-nanosecond memory

4-1

4-2

600/900
NANOSECOND
CORE_MEMORY
MODULES

bt et

MIXED MEMORY
ULE

MOS memory packages include the fo]lowing‘components:

5.

How b

128 KB or 256 KB 900-nanosecond MOS memory modules(s)
Memory chassis

Power supply

Refresh board -

Memory Bus Controller (MBC)

The 32/70 Series computers will support both 600- and 900-nanosecond
core memory modules if they are not intermixed with one memory interface.
Since the individual memory modules connected to the memory interface
have a full cycle time of 600 or 900 nanoseconds, and the SelBUS op-
erates synchronously with full 32-bit word transfers occurring every 150
nanoseconds, the memory chassis handles the following combinations of

- overlapped memory operations:

1.

a. Four memory write operations (26.67M bytes/second)
(for 600 ns memory) .

b. §ix memory write operations (26.67M bytes/second)
(for 900 ns memory)

a. One memory read and two memory write operations
(19.99M bytes/second) (for 600 ns memory)

b. One memory read and two memory write operations
(22.22M bytes/second) (for 900 ns memory)

a. Two memory read operations (13.33M bytes/second)
(for 600 ns memory)

b. Three memory read operations (10.00M bytes/second)
(for 900 ns memory)

MOS and core memory may be mixed on 32/70 Series systems. However,
it should be done only in accordance with the rules 1listed below:

1.
2.
3.

Mixed memory can be accomplished on 32/70 Series systems only.

The higher speed memory must be the low order address space.

Separate MBCs, chassis, and power supplies must be used for the

different memory types.
The core memory should occupy the low order address space.

The total amount of core memory in the low order address hange
must be equal to or a multiple of the MOS memory module size.

An amplification of the preceding rules is provided in the paragraphs
that follow.

Mixing MOS and core memory should not be attempted on systems other than
the 32/70 Series. For example, the 32/35 and 32/55 cannot support MOS
memory. The 32/30 and 32/57 cannot have mixed memory because they use
a split backplane.

Separate MBCs, chassis, and power supplies are necessary because MOS and
core memory units have different requirements in this regard. When
adding core memory to a Model 32/77 processor, it is necessary to add
Model 2332 Memory Carriage for 900 ns core memory. The Memory Carriage
includes the chassis, power supply, and MBC required to support the
core memory. This MBC will not support MOS memory. To add MOS memory
to a Model 32/75 processor, a Model 2375 or 2380 Memory Package is re-
quired and provides the chassis, power supply, MBC, and memory.

Core memory should occupy the low order address space. This is to
ensure that register save areas are in nonvolatile memory locations. If
a customer is unconcerned about the state of the processor at the time
of a power failure, then the core memory could be high address
locations.

Assuming the core memory is in the low order address space, it is
necessary to protect the memory from unwanted discontiguous memory
locations (holes). The amount of memory on the first MBC will be
dictated by the incremental granularity of the MOS memory modules on
successive MBCs. Since the smallest granularity of the MOS memory
boards is 32 KW, there would have to be at least 32 KW of core on the
first MBC. If the MOS memory module used contained 64 KW, the amount of
core on the first MBC would have to be 64 KW. After the first MOS
memory board size is established, any additional boards must be of the
same size. An example would be a Model 32/75 CPU with four 8 KW, 600 ns
core memory modules (Model 2152). If a customer wished to add the 64 KW
MOS Memory Package (Model 2380) to the CPU, a prerequisite would be to
add four additional 8 KW, 600 ns core memory modules (2152) to the first
MBC. This establishes the memory on the first MBC (64 KW) and .is equal
to the granularity of the MOS Memory Package of 64 KW. Additional 64 Kw
memory modules (Model 2381) can then be added to the MOS Memory Package.

MEMORY Bits 9-31 have the same format in every memory reference instruction

REFERENCE whether the effective address is used for storage or retrieval of an
INSTRUCTIONS operand, as an indirect address operand, or to alter program flow.

The Memory Reference instruction format is shown below:

v] 4 1] T

OP CODE R X |1} F WORD ADDRESS . c
I N T B B E I R A N NN N SN NN DS WON TN AR TR W WU DOV N B B B

0 1 23 4 5 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 9 and 10 specify the general purpose register (GPR) to be used as
an index register, bit 11 is the indirect bit, and bits 12-31 define
the word address and data type. The effective address of the instruc-
tion depends on the values of I, X, and bits 12-31. If I and X are
both Zero bits 12-31 address the data type defined by bits 13-29.

| L] T ¥

C
1

// x[1}F WORD ADDRESS ‘
K / :é L "N R (R WA SR NN YUY DU TV S WA R TN NN T
01

2 3 465 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F- AND C-BITS

4-4

DIRECT
ADDRESSING

The format of the F- and C-bits have been selected so that any selected
data type (byte, 16-bit halfword, 32-bit word, or 64-bit doubleword) can
be conviently indexed by that data type. The possible combinations of F-
and C-bits are as follows:

F c . Data Type

0 00 32-bit word

0 01 16-bit Teft halfword (bits 0-15)

0 10 64-bit doubleword

0 11 16-bit right ha]fwo;d (bits 16-32)
1 00 Byte 0 (bits 0-7)

1 0l Byte 1 (bits 8-15)

1 10 Byte 2 (bits 16-23)

1 11 Byte 3 (bits 24-31)

When an X is equal to Zero (no indexing), and I is equal to Zero (no
indirect), the effective memory address is taken directly from bits
13-29 of the Memory Reference instruction.

The Store Word instruction is coded:

STW 0,0
and is assembled as hexadecimal D4000000. When executed, this instruc-
tion stores the contents of General Purpose Register 0 directly into
memory byte location 0.
The Store Byte instruction is coded:

STB 0,1
and is assembled as hexadecimal D4080001. Note that the F- and C-fields
of the instruction have been altered. When executed, this instruction

stores the least significant byte of General Purpose Register 0 directly
into memory byte location 1.

INDIRECT AND
INDEXED
ADDRESSING

INDEXED
ADDRESSING

Indirect addressing can be combined with indexing at any indirect 1eve1.

An example of indirect addressing with indexing follows:

Location | Machine Byte Label Operation Operand
Counter | Instruction Address

PROGRAM
P00000 REL
P00000 €9800004 STRT LI 3,4
P00004 AC90000C PO00GC LW 1,*L0C1
P00008 3055 CALM X'55'
POO00A 0002 ,
P000OC 00100010 P00010 LOC1 ACW *1.0C2
P00010 00700014 P00014 Loc2 ACW *10C3,3
P00014 00000000 LOC3 DATAW 0
P00018 0000001C P0001C ACW LOC4
P0001C 0000FFFF L0C4 DATAW X' O000FFFF'
P00020 P00000 END STRT

The first executable instruction is a Load Immediate (LI) to load a
value of 4 into GPR3 (index register). The next instruction to be
executed is the Load Word (LW). This instruction directs the machine to
Toad GPR1, indirectly using the contents of LOC1 as the operand address.
The address in LOCl, however, has the indirect bit on; the machine uses
this address to fetch the contents of LOC2. The contents of LOC2 has an
indirect bit on, but it also points to GPR3 for indexing. The machine
then takes the address contents of LOC2 and adds to it the contents of
GPR3 (which increases the address by four bytes). The resulting address
points to LOC4. The address stored in LOC4 has the indirect bit off.
The machine then uses the address P0001C stored in LOC4 as the final
operand logical address and loads GPR1 with the hexadecimal value

O0COFFFF. The ACW statement is a Macro Assembler directive used to
generate an address constant. The DATAW 1is also a Macro Assembler
directive.

Any data type may be indexed by adding a bit at the bit position corres-
ponding to the displacement value for each data type. These are as
follows:

Data Type Bit Position
Byte | 31
Halfword 30
Word 29
Doubleword 28

If X is nonzero (specifying indexing), bits 13-31 are used to produce a
memory address by adding it to the contents of the general purpose
register specified by X. Only General Purpose Registers 1, 2, and 3
function as index registers.

For selective or indexed addressing, the displacement is a two comple-
ment integer within one of the general purpose registers used for in-
dexing. For word indexing, bit 29 of the index register is the least
significant bit of the address. If bit 29 of GPR3 is set to One to
provide a displacement of one word, the indexed Store Word instruction
is coded:

STW 0,0,3

This now stores the contents of GPRO in memory indexed by the contents
of GPR3. The instruction would assemble as D4600000. The calculated
logical effective word operand address (after indexing) would be 00004.
Therefore, the contents of GPRO will be stored in memory location 00004.

4-5

INDIRECT
ADDRESSING

WORDS, HALF-

WORDS, AND
BYTES

WORD AND
DOUBLEWORD
OPERANDS

If I is equal to Zero, addressing is direct, and the address already
determined from X and bits 12-31 is the effective address used in the
execution of the instruction.

If I is equal to One, addressing is indirect, and the processor re-
trieves another address specified by the operand address. In this
new address, bits 9 and 10 select the index register and bit 11 is
the indirect bit; bits 12-31 specify the effective address as in the
memory reference instructions. To use the indirect addressing cap-
ability the instruction would be coded:

STW 0,*0

which causes bit 11, the indirect bit, to be set to One. When executed,
this instruction stores the contents of GPRO in the memory location
whose address is stored in memory location 0.

Multilevel indirect addressing can be performed when each new address
taken from memory has the indirect bit (bit 11) set to One. The process
of fetching indirect addresses continues until an address has bit 11
equal to Zero. This address is the logical effective operand address.

Each fullword instruction (32 bits) must be stored in memory on a word
boundary (bits 30 and 31 equal to Zero). Memory information boundaries
are illustrated in Figure 4-1.

Halfword instructions are stored two per word. When a halfword is
followed by a word instruction, the Assembler positions the instruction
in the left half of the word and stores a No Operation (NOP) instruction
in the right half of the word. This maintains the word boundary dis-
cipline.

Memory Reference instructions which address a byte in memory do not
alter the other three bytes in the memory word containing the specified
byte. Memory instructions which address a halfword do not alter the
other halfword of the memory location. The exeception to the preceding
is that the Add Bit in Memory instruction may propagate a carry to the
most significant bit of the word containing the specified bit.

Word operands must be stored in memory on a word boundary. The most
significant word of a doubleword operand must be stored in a memory
location having an even word address with the least significant word
stored in the next sequentially higher (i.e., odd word) location. Some
examples of memory addressing follow:

Byte Halfword Word Doubleword
00000 00000 00000 00000
00001

00002 00002

00003

00004 00004 - 00004

00005

00006 00006 ‘
00007 :

00008 00008 00008 00008
00009

0000A 0000A

00008

0000C 0000C 0000C

0000D

0000E . | 000OE

0000F

00010 00010 00010 00010

32-8IT WORDS

BITS

32-BIT WORDS

BITS

WORD ADDRESS WORD ADDRESS
N (EVEN) N+1 (ODD)
/\ A
/ \ r~ \
0-7] {8-—-15] |16--23} |24--31 o7 {8--15} J16--23] |24--31

N P

)
|
[
|
|

1
' I
| |
o 1] 2 3
| |
| |
|
|
lo
/|

| BYTE BYTE | BYTE BYTE BYTE BYTE | BYTE BYTEI

| 0 1] 2 3

| I

\ v \ / \ 4 \ /

l \'4 v \"4 I "4

| LEFT RIGHT LEFT RIGHT

| HALFWORD HALFWORD HALFWORD HALFWORD

I N

I\O 1 31
\"2

MOST SIGNIFICANT WORD

|

I

|

|

|

|

[

\Y 4
|
LEAST SIGNIFICANTWORD |
]

|

|

|

0 63
\ /
'
DOUBLEWORD
WORD ADDRESS WORD ADDRESS
N+2 (EVEN) N+3 (ODD)
A /N

Va \ r N
0--7 8--15 16---23]]24---31 0--7 8--15 16--23] |24---31

r\._v_/_v_/_v_/_v_/

N— _V_li‘_"—, |

BYTE |

evre svre | BYTE BYTE | BYTE BYTE | BYTE
0 1] 2 3 0 1 2
I |
\ Il\ / \ I'\ /
\% v v M
LEFT RIGHT LEFT RIGHT
HALFWORD HALFWORD HALFWORD HALFWORD
0 31
\ / /

A4

MOST SIGNIFICANT WORD

-/ "

LEAST SIGNIFICANT WORD

|
I
|
|
|
I
0 31
|
|
|
|
I
|

0 63
\ /
\' 2
DOUBLEWORD
Figuré 4-1. Information Boundaries in Memory

HARDWARE
MEMORY
MANAGEMENT

ADDRESSING
~ MODES

512 KB MODE

512 KB
EXTENDED MODE

The 32/70 Series computer features Hardware Management that provides
full utilization of all available memory. The memory management hardware
includes: hardware Memory Allocation and Protection (MAP), extensions to
the interrupt, I/0, and memory subsystems. This feature also allows
programs to be loaded in one area of physical memory, rolled out to
disc, rolled back into another area of memory, and to continue execution
without requiring time-consuming software relocation biasing.

In addition, these programs may be distributed throughout physical
memory 1in 32K-byte blocks to take complete advantage of available
memory. Hardware Memory Management, including automatic context
switching, is accomplished through the processing and control of the
MAP. The MAP consists of up to thirty-two 16-bit halfwords. The first
16 halfwords (the Primary MAP) are used to define a 512K-byte Tlogical
primary address space into which may be loaded either data or executable
programs. The second 16 halfwords (the Extended Operand MAP) are used
to define a 512K-byte logical extended operating address space into
which only data may be loaded.

By using the MAP, a 512K-byte 1logical primary address space may be
distributed in 32K-byte blocks throughout the 16,777,216 bytes of
physical memory and may contain data or instructions. The 32/70 Series
computer can access and execute programs up to 512K bytes in size,
located anywhere within physical memory (16M bytes). The user can also
use an additional 512-K byte logical extended operand address space for
data storage. The combination of the logical primary address space and
the additional extended operand address space provides support through-
out physical memory, provided that the executable code lies entirely
within the logical primary address space.

The 32/70 Series computer provides the capability of accessing memory in
any of the following modes:

1. 512 KB mode

2. 512 KB Extended mode
3. 512 KB Mapped mode

4. Mapped, Extended mode

The 512 KB mode of memory address allows the 32/70 Series Central Pro-
cessor Unit to directly access any byte, halfword, word, or doubleword
in the first 512K bytes of memory without mapping, indexing, or address
modification. A 19-bit address field is provided in all Memory Ref-
erence instructions for this purpose.

Bits are addressed by using the R (register) field of the instruction
word to designate a bit in the byte specified by the 19-bit address.
Therefore, any bit in 512K bytes of memory can be directly addressed by
the Bit Manipulation instructions.

The 512 KB Extended mode of memory addressing provides the same cap-
abilities as the 512 KB mode plus operand addressing beyond the first
512K bytes of memory to reference all bits, bytes, halfwords, words,
and doublewords residing anywhere within 16 megabytes of- physical memory,
This mode of addressing combines the contents of an index register
with the 19 bits of locical address in the Memory Reference instruction
to produce a 24-bit physical memory address anywhere in the 16 megabytes
of memory. All memory above the first 512K bytes is usable only for
data storage and retrieval and not for executable instructions. This
mode of memory addressing is applicable to both the PSW and the PSD
modes of operation.

512 KB
MAPPED MODE

MAPPED/
EXTENDED
MODE

MEMORY
MAPPING

The 512 KB Mapped mode of memory addressing allows a 32/70 Central Pro-
cessor Unit to access any byte, halfword, word, or doubleword within
16 megabytes of memory through memory mapping. In this mode, the memory
management hardware supports up to 16 logical address pages (a page is
32K bytes) distributed throughout 16 megabytes of physical memory by
providing mapping and automatic context, MAP, and protection switching.
A11 16 pages of logical address pages may be used for executable code
instructions or for data storage and retrieval. Physical blocks of
memory may . be common to multiple address spaces, providing a way for
users in different address spaces to share common blocks of memory.

The Mapped/Extended mode of memory addressing allows a 32/70 Series
Central Processor Unit to access any byte, halfword, word, or doubleword
within 16 megabytes of memory through memory mapping. In this mode, the
memory management hardware supports up to 32 logical address pages (a
page is 32K bytes) distributed throughout 16 megabytes of physical
memory by providing mapping and automatic context, MAP, and protection
switching. The first 16 pages of logical address pages may be used for
executable code or data, and the last 16 pages of logical address pages
must be used for data storage and retrieval only. Multiple-user
programs may be loaded into any or all of the first 16 pages of logical
address pages. A 32/70 Series Computer allows each of these users to
directly address any bit, byte, halfword, word or doubleword within the
address space in which it resides. Physical blocks: of memory may be
common to multiple address spaces, providing a way for users in dif-
ferent address spaces to share common blocks of memory.

The 32/70 Series computer includes thirty-two 16-bit (halfword) loca-
tions, the Primary MAP, and the Extended Operand MAP. The Primary
MAP and the Extended Operand MAP are used to map the 512K-byte logical
primary address space and the 512K-byte logical extended operand address
space, respectively, onto physical memory addresses. Each of the 16-bit
MAP locations associates 32K bytes of the logical primary address space
or logical extended operand address space with 32K bytes (8K words) of
physical memory. Logical address spaces are defined by building MAP
Image Descriptor Lists (MIDL) as shown in Figure 4-2.

Each MIDL contains up to 32 halfword page entries (a page is 32K bytes
or 8K words), which contains a 12-bit Page Entry, a Page Valid or
Nonvalid bit, and a Write Protect/Unprotect bit. Any or all of the 32
pages may be designated as Write Protected. The first 16 page entries
(logical primary address space) may be used for executable instructions
or for data storage and retrieval. The second 16 page entries (Extended
Operand MAP Image) may only be used for data storage and retrieval
purposes.. For a complete description of the Memory Mapping, refer to
the Memory Addressing section of the Instruction Repertoire.

A Tlogical representation of the components invo1ved‘ in the memory
management process of a 32/70 Series system are depicted in Figure 4-3.

4-9

01-¥

*2-% dunbL4

3s17 403dLudsaq abewl dyi

IVIP] IVIPY
\ BIT I A RI I AR |
\ L,0 L0
\ | | Tl | | |
Inlel L |
D plE
c
\\ | T! EVEN HALFWORDS | T = ODD HALFWORDS
WORD;g \JO |1]213 4 5 6 7 8 9 10 11 12 13 14 15161718119 20 21 22 23 24 25 26 27 28 29 30 31
T 1
0 ! ! ! PRIMARY MAP PAGE 0 l | PRIMARY MAP PAGE 1
LR 1)
1 PRIMARY MAP PAGE 2 PRIMARY MAP PAGE 3
2 111 PRIMARY MAP PAGE 4 | | PRIMARY MAP PAGE 5
3] ! l PRIMARY MAP PAGE 6 l | PRIMARY MAP PAGE 7
4 | | PRIMARY MAP PAGE 8 { | PRIMARY MAP PAGE 9
5 { | 1 PRIMARY MAP PAGE 10 | | | PRIMARY MAP PAGE 11
6 | | | PRIMARY MAP PAGE 12 I | | PRIMARY MAP PAGE 13
| L | R | :
7 | PRIMARY MAP PAGE 14 : | PRIMARY MAP PAGE 15
| | |
8 . . EXTENDED OPERAND MAP PAGE 0 . EXTENDED OPERAND MAP PAGE 1
L L [l
9 ! EXTENDED OPERAND MAP PAGE 2 H i | EXTENDED OPERAND MAP PAGE 3
A EXTENDED OPERAND MAP PAGE 4 | EXTENDED OPERAND MAP PAGE 5
i i
B | | EXTENDED OPERAND MAP PAGE 6 | | | EXTENDED OPERAND MAP PAGE 7
i -
c | EXTENDED OPERAND MAP PAGE 8 { [EXTENDED OPERAND MAP PAGE 9
D i | EXTENDED OPERAND MAP PAGE 10 ! 1 EXTENDED OPERAND MAP PAGE 11
v T - T ’
E | | EXTENDED OPERAND MAP PAGE 12 | EXTENDED OPERAND MAP PAGE 13
F : i EXTENDED OPERAND MAP PAGE 14 lr EXTENDED OPERAND MAP PAGE 15
| | |

PROGRAM STATUS DOUBLEWORD (PSD) SCRATCHPAD
cc's PROGRAM COUNTER | x'g3’
' . ' MPL BASE ADDRESS
; : MAP SEGMENT
BPIX CPIX DESCRIPTOR LIST (MSDL)

- | MIDL
a ‘ l SpC POINTER
[=

=
(] spC MIDL
IS POINTER
1
w + ’

: WORD 0

SDC MAP

-

""" BORROW BIT

DESCRIPTORS

&

=

5

<

= | 2

f=7)

= MSDL
& sbc POINTER
3

1)

=

ot

e

E| MAP

S SEGMENT CONTROL
g

t

(72]

SEGMENT DESCRIPTORS

SDC = SEGMENT DESCRIPTOR COUNT
SPC = SEGMENT PAGE COUNT

MSDL
»] 0 |sbc POINTER

MASTER PROCESS LIST

(MPL)

11-%

V4

Y

MAP SEGMENT
DESCRIPTOR LIST (MSDL)

MIDL

MAP IMAGE
DESCRIPTOR LIST (MIDL)

PAGE PAGE
ENTRY ENTRY
PAGE PAGE
ENTRY ENTRY

MAP
IMAGE DESCRIPTORS

(MIDL)

PAGE PAGE
ENTRY ENTRY

MAP
IMAGE DESCRIPTORS

(MIDL)

SPC POINTER

MAP
ISEGMENT DESCRIPTORS

A 4

PAGE PAGE
ENTRY ENTRY

MAP
IMAGE DESCRIPTORS

MEMORY
PROTECTION

PROGRAM STATUS
~ DOUBLEWORD

4-12

L

PSD FIELDS

The memory protection system provides write protection for individual
memory pages. When the CPU is in the Mapped mode (either 512 KB or
Extended), each 32 KB memory block of logical program address space may
be write protected. Write protection for a 32 KB memory block is
selected by setting the protect/unprotect bit that is stored, along with
the block address, in the MAP register of the CPU.

When the CPU is in either the Unmapped or Mapped mode (either 512 KB or
Extended), 512-word memory pages may be write protected. Up to 256
pages (128K words) can be protected at a time. The sixteen 16-bit Page
Protect registers are provided in the Unmapped or Mapped mode.

Write Protection may be overridden by a CPU operating in the Privileged
mode. ‘

The Program Status Doubleword (PSD) provides information relating to the
operation that was interrupted or trapped (01d PSD), and the mode and
instruction address that is to be given control during context switching
(New PSD). The format of the PSD is shown in Figure 4-4.

Execution of any Branch or Branch-and-Link instruction replaces the
contents of bits 13-30 of the PSD with the effective address specified
by the instruction. "In addition, if the Branch instruction specifies an
Indirect Branch operation, the contents of bits 1-4 of the PSD are
replaced by the contents of the corresponding bit positions in the
indirect addresss location.

The PSD fields are coded as follows:
1. PRIV (bit 0) indicates the Privileged mode.

0 = Nonprivileged
1 = Privileged

2. CCs (bits 1-4) indicate the condition codes.

Bit 1 = CC1
Bit 2 = CC2
Bit 3 = CC3
Bit 4 = CC4

3. EXT (bit 5) indicates Indexing mode.

0 = Off
1=0n

4. HIST (Bit 6) indicates last instruction was a right halfword
(01d PSD only).

5. AEXP (Bit 7) indicates Arithmetic Exception Trap Mask.

0 = OFF (Do not generate Arithmetic Exception Trap)
1 = ON (Generates Arithmetic Exception Trap)

6. PSD (Bit 8) indicates PSD mode.

0 = PSD mode off (Displayed PSD only)
1 = PSD mode on (Displayed PSD only)

P T TTA T —y \j T T
g | conoimion [E [ET RN ‘ N E
1| cooes |X|s|x|3|F PROGRAM COUNTER Rl
\Y, L g g dTiT]P T R U N AN NN M TN S VUNE TN VN SN NN S G W S
0123 45 6 7 8 9101112131415 16 17 1819 20 2122 23 24 2526 27 28 29 30 31
v L) | ¥]]
R] EXT
GRAN BPIX 0 $ INT CPIX 0lo
3 [T WIS SENNS W TUNNY SR UH SN VEAN [| FLAG [YR WO WY WS VNN UU S N S |

32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

BITO = 0 UNPRIVILEGED MODE
=1 PRIVILEGED MODE
BITS 1-4 ARE CONDITION CODES
BIT1 = CC1
2 = CC2
3 =cc3
4 = cC4

EXTENDED MODE (OFF)
EXTENDED MODE (ON}

LAST INSTRUCTION EXECUTED WAS NOT A RIGHT HALFWORD
LAST INSTRUCTION EXECUTED WAS A RIGHT HALFWORD

BIT5 =0
1
0
1
BIT7 =0 ARITHMETIC EXCEPTION TRAP MASK (OFF)
1
0
1
0]
1

BIT6 =

ARITHMETIC EXCEPTION TRAP MASK (ON)

COMPUTER IS IN PSW MODE (DISPLAYED PSD ONLY)*
COMPUTER:IS IN PSD MODE (DISPLAYED PSD ONLY)*

UNMAPPED (DISPLAYED PSD ONLY) *
MAPPED (DISPLAYED PSD ONLY) *

BITS 10-12 ARE NOT USED
BITS 13-29 ARE LOGICAL WORD ADDRESS

BITS8 =

BIT9 =

BIT 30 NEXT INSTRUCTION IS A RIGHT HALFWORD
BIT 31 BLOCKED (DISPLAYED PSD ONLY) *
BITS.32-33 INDICATE MAP GRANULARITY, 00=UNMAPPED AND ALL OTHERS =8K MAP GRANULARITY
BITS 34-45 PROVIDE A WORD INDEX INTO THE MASTER PROCESS LIST (MPL) FOR THE BASE PROCESS
BIT 46 NOT USED
BIT 47 RETAIN CURRENT MAP CONTENTS
BITS 4849 INTERRUPT CONTROL FLAGS
BITS
48 | 49
0 0 OPERATE WITH UNBLOCKED INTERRUPTS
0 1 OPERATE WITH BLOCKED INTERRUPTS
1 0 RETAIN CURRENT BLOCKING MODE
1 1 RETAIN CURRENT BLOCKING MODE

BITS 50-61 PROVIDE WORD INDEX INTO MASTER PROCESS LIST (MPL) FOR CURRENT PROCESS
BITS 62-63 NOT USED

* THESE BITS ARE USED FOR DISPLAY ON LY AND ARE NOT PRESENT IN THE PSD STORED IN MEMORY.

Figure 4-4. Formats for PSD1 and PSD2

4-14

CONDITION
CODES

10.
11.

12.

13.
14.

15.

MAP (Bit 9) indicates Mapped mode

0 = Unmapped mode (Displayed PSD only)
1 = Mapped mode (Display PSD only)

PROGRAM COUNTER (Bits 10-29) indicate the logical program counter
(Word Address).

Bits 10-12 are reserved for possible later use. (They must be
zero)

Bits 13-29 are the logical address.

NR (Bit 30) indicates next instructibn_is a right halfword.

Blocked (Bit 31) indicates Blocked mode (Displayed PSD only).
MAP MODE (Bits 32-33) indicate the Granularity as:

00 = Unmapped

01 = Mapped 8K Granularity

10 = Mapped 8K Granularity

11 = Mapped 8K Granularity

BPIX (Bits 34-46) provide a word index into the Master Process List
(MPL) for the base process. (Bit 46 is ignored.)

Bit 47 = Retain current MAP contents. (New PSD only)
EXT INT FLAG (Bits 48 and 49) indicate external interrupt state.

Bits

48 | 49

0| 0 |= Operate with Unblocked interrupts (interrupt level active)

0|1 |= Operate with Blocked interrupts (interrupt level not
active)

1|0 |= Retain Current Blocking Mode (New PSD only)

1|1 |= Retain Current Blocking Mode (New PSD only)

CPIX (Bits 50-63) provide a word index into the Master Process List
(MPL) for the current process. Bits 62 and 63 are ignored.

A 4-bit Condition Code is stored in the PSD on compietion of the execu-
tion of most instructions. These conditions may be tested to determine
the status of the results obtained.

CC1 is set if an Arithmetic Exception occurs
CC2 is set if the result is greater than zero
CC3 is set if the result is less than zero
CC4 is set if the result is equal to zero

The Branch Condition True (BCT), Branch Condition False (BCF), and the
Branch Function True (BFT) instructions allow testing and branching on
the Condition Codes.

MAP The second word of the PSD contains two 12-bit fields whose primary
DESCRIPTION purpose is to provide the linkage from that PSD to the correct map
entries for execution of the process associated with that PSD. The
CPU MAP consists of a RAM with 32 locations, and the firmware will
locate the appropriate entries for this RAM in main memory through a
set of software-maintained tables which are interpreted by firmware on

these two values from the PSD.

The‘lz-bit fields are named as follows:
1. BPIX - Base Process Index
2. CPIX - Current Process Index

The software maintains a Master Process List in memory. The base address
is kept in a known (scratchpad) location. It contains one entry for
every value which can appear in either the BPIX or CPIX fields, and it
is quite reasonable for PSDs to exist where the CPIX and BPIX are iden-
tically equal. This Master Process List is maintained by the most
privileged code of the system, and destruction of its contents will
surely Tead to immediate disaster.

MASTER PROCESS The address of the MPL is set by the CPU firmware at System Reset time
LIST (MPL) by the loading of a predetermined scratchpad cell with the 24-bit physi-

cal MPL address. The MPL entries contain the physical address of the

MAP Segment Descriptor List (MSDL) and a 6-bit count of the number of

Map Segments which concantenates to form the appropriate map contents.

When a PSD is being entered into the CPU, the firmware is faced with one
of three possible actions relating to the map:

1. The PSD being loaded has its mode set to Unmapped, which basically
means that it is going to operate with physical rather than logical
memory addresses. Firmware action when loading this type of PSD is
simply to leave the map contents as they are, and cause them to
become inactive for the duration of this PSD execution.

The Unmapped indication in the PSD overrides the Load Program
Status Doubleword And Change Map (LPSDCM) instruction. ’

2. The PSD is being loaded as a result of the software instruction
LPSD. In this event, firmware is being assured by the software that
the map contains the appropriate contents and the only firmware
action necessary is to reactivate the map circuitry. The basic
function of this is to avoid the cost of reloading the map when
returning from an excursion into an unmapped function, and software
will insure that no other mapped process has intervened.

3. With the exception of the two preceding cases, the entry of a new
PSD into the CPU always results in a. total initialization of the
map cirucit.

The MAP RAM will be loaded from page 0 up with values obtained from
main memory.

The PSD being loaded contains sufficient information for the firmware to
make its way through the series of software-maintained tables in main
memory to assemble the information necessary to initialize the map cir-
cuit. The objective of the table design is to provide for the assemb-
lage of an addressability for that PSD from three distinct types of
elements:

4-15

4-16

1. Private data which is unique to that process.

2. Statically shared data which is shared between several processes.

This sharing is known at load (map creation) time. Since there
exists in reality only a single copy of the data, it is important
to software that a single physical copy of its logical/physical map
exists, and that all PSDs using this shared data are funnelled
through that copy for both software sanity and usage statistics.

3. Data that is shared by means of dynamic invocation. This data
(like a Task Service Area (TSA)) is logically "owned" by a part-
icular process, but needed by a variety of other processes which
are invoked by the original process in the course of its execution.
This data is generally of the type that it is a "per process
global" set of data where any number of Operating System (0S)
services need a random subset of the information which defies the
organization as a reasonable parameter package, and is 1likely
unalterable directly by the "owning" process. The 0S services
which need this data essentially have a partial map in memory
covering their private code and data, which must be completed by
adding this invocation page for them to correctly perform their
functions.

It would be possible to accomplish this dynamic completion of the 0S
service map by moving into the service map image in memory, but the
complexity of maintaining a stack of these invocations and returns
(which are totally unsequenced due to the dispatching strategy) is
large, and a dynamic 1ink through the PSD relieves both complexity
and overhead in this area.

The key elements of the PSD which provide firmware with the ability to
satisfy these requirements are two 12-bit fields in the second word of-
the ng, the CPIX (Current Process Index), and the BPIX (Base Process
Index).

These two fields are both direct word indices into a software-maintained
Master Process List (MPL) which is located in physical memory. It is
both reasonable and frequent that the BPIX and CPIX fields of a PSD
contain the identical number. The MPL is maintained by the most
privileged 0S code and any destruction will result in immediate
disaster.

When the firmware must initialize the map circuit during the loading of
a PSD, the following procedure is followed:

1. Using CPIX, locate the MAP Segment Control Descriptor (MSCD) in the
MPL. This word is the controlling factor in map initialization.
This word consists of three fields (see Figure 4-5):

a. Borrowed Bit (Bit 0) - Tells the firmware (1) that the first
set of map entries are to be obtained from the BPIX MSCD to
satisfy the invocation sharing time of creation of this entry,
and (2) the numeric value of the BPIX was unknown (and there
exists a multiplicity of BPIXs).

b. Segment Descriptor Count (SDC) - The count of the number of
Segment Descriptors which are required to describe the ad-
dressability of the PSD.

c. MAP Segment Descriptor List (MSDL) Pointer - The physical ad-
dress in main memory of the first (or second if the borrowed
bit was set) CPIX Segment Descriptor.

A MAP Segment Descriptor (MSD) is a single word entry which has two
fields (see Figure 4-6):

1. Segment Page Count (SPC) - A count of the number of pages (map
locations) which this Segment Descriptor covers.

2. Map Image Descriptor List (MIDL) Pointer - The starting physical
address of the map cell block which contains the MAP Image Descrip-
tors (MID). A MAP Image Descriptor is a single word with one or
two halfword page entries (see Figure 4-7).

If the borrowed bit is set when the firmware locates the MSCD, the first .
segment descriptor is taken from the segment 1ist which is described by
the BPIX, and the second and subsequent segment descriptors are taken
from the 1ist described by this MSCD. When this indirection has been
completed, the only noticeable impact on further processing is that the
first map cell to be loaded from this list is "n" rather than "0" (if
the borrow bit had not been set).

The variable length of pages described by each segment descriptor word
are concantenated into the map until the segment count from the MPL is
exhausted. The initialization is complete.

ADDRESS Address generation is accomplished by adding the contents of the in-
GENERATION struction to the contents of the index register to form a logical ad-
dress. In the Unmapped modes, the logical address is the same as the

physical address. In Mapped modes, a portion of the logical address

is used to address the MAP, while the remaining portion is used in the

physical address. A graphical representation of the address generation

process for each of the four modes is presented in Figures 4-8 to 4-11.

4-17

4-18

SEGMENT ! T Y ¥ T

DE%%FS";{_OR MAP SEGMENT DESCRIPTOR LIST POINTER
P 4 1 44 2 ¢ & 2 2 2 & 4 & 3 ¢ & 3 2 2 2 0 2 % 2.1

0 1234656 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

NOT USED
BORROWBIT=0 IGNORE BPIX

* =1 SATISFY BPIX MAP SEGMENT CONTROL DESCRIPTOR FIRST.
(IGNORED IF CONTAINED IN MSDC, POINTED TO BY BPIX)

Figure 4-5. MAP Segment Control Descriptor (MSCD)

géghET MAP IMAGE DESCRIPTOR LIST POINTER

[N W W N - 3 & 1 ¢ 0 & ¢ 0 2 2 & 3 2 2 &) 2 Q2 2

SEGMENT ! ! ! v ! l
2 a2 I}

0 123 456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BITS0-7 NUMBER OF MAP PAGES TO BE LOADED
BITS 831 MAIN MEMORY LOCATION OF MAP IMAGE DESCRIPTORS (MID'S)

Figure 4-6. MAP Segment Descriptor (MSD)

) 1 L (, T i T
' PAGE ENTRY \ PAGE ENTRY
[T WY S T N TN WA SO DR S S R VN T T WO . WY WS WY WY V|

0 12345 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BITSO+16 = NOT USED

BITS1+17 =0 INVALID PAGE ENTRY
=1 VALID PAGE ENTRY

BITS2+18 0 NOT WRITE PROTECTED

1 WRITE PROTECTED
(NOT PRIVILEGED CONNECTED)

Figure 4-7. MAP Image Descriptor (MID)

INSTRUCTION

(X)

X ADDRESS I INDEX
9 10 13 31 13 31
00000 LOGICAL ADDRESS
1213 32
N~ -
00000 PHYSICAL ADDRESS

1213

3

NOTE: THIS METHOD MAY ADD OR SUBTRACT INDEXED ADDRESSES DEPENDING ON THE SIGN OF

THE INSTRUCTION.

" Figure 4-8.

Address Generation (512 KB Mode)

4-20

INSTRUCTION (X)

ZERO « INDEX
EXTENDED ADDRESS

13 : 32 8 31

LOGICAL ADDRESS

PHYSICAL ADDRESS

NOTE: THE INSTRUCTION BEING ZERO EXTENDED DOES
NOT ALLOW SUBTRACTION OF INDEXED ADDRESSES.

Figure 4-9. Address Generation (512 KB Extended Mode)

INSTRUCTION (X)
X ADDRESS INDEX
g 10 13 1 13 31
00000 LoGiICAL ADDRESS
8 131617]
8
PRIMARY MAP PRIMARY MAP | i
PAGE 0 PAGE 1 g
PRIMARY MAP PRIMARY MAP j
PAGE 2 PAGE 3 O
<
! =
! <
MAP IMAGE s
DESCHIPTOR =
LIST 3
(PRIMARY MAP)
!]
(]
1
1
1
[}
PRIMARY MAP PRIMARY MAP 9-BIT MAP ADDITION
PAGE 14 PAGE 15 p
- b &
PHYSIJAL ADDRESS
8 16 17 31
Figure 4-10. Address Generation (512 KB Mapped Mode)

4-21

4-22

INSTRUCTION (x)
ZERO
E
EXTENDED ADDRESS INDEX
13 21 8 31
DON'T -
- LOGICAL ADDRESS
CARE
8 11 12 1617 3
N
[72]
PRIMARY MAP PRIMARY MAP N\ @
PAGE 0 PAGE 1 =
0 [a]
MAP IMAGE <
DESCRIPTOR w
LIST 2
(PRIMARY MAP)]l S
<
PRIMARY MAP PRIMARY MAP i =
PAGE 14 PAGE 15 H -
' @
P
EXTENDED OPERAND | EXTENDED OPERAND i ﬁ-BIT PRIMARY MAP ADDITION OR
MAP MAP - - “';
PAGE 0 PAGE 1 :
]
MAP IMAGE “P§>,«i
DESCRIPTOR 9.81T EXTENDED 0%~ Y. Y
LIST MAP ADDITION
(EXTENDED OPERAND MAP) H
: PHYSICAL ADDRESS
EXTENDED OPERAND EXTENDED OPERAND H
MAP MAP 16 17 3
PAGE 14 PAGE 15

Figure 4-11.

Address Generation (Mapped, Extended Mode)

INTRODUCTION

DEFINITIONS

SECTION V

INPUT/OUTPUT SYSTEM

Input/Output (I/0) operations consist of transferring blocks of bytes,
halfwords, or words between core memory and peripheral devices. Trans-
fers are performed automatically, requiring minimal CPU involvement.

A1l system components which participate in the execution of an I/0

operation are illustrated in Figure 5-1. The peripheral device(s) shown
may be either data processing devices such as disc files, magnetic tape
units, line printers, card readers, and card punches; or they may be
real-time system devices such as data acquisition subsystems, communi-
cations control units, or system control units.

There are two modes of I/0 operation possible, the first being the
Program Status Word (PSW) mode which responds only to Class 0, 1, 2, 3,
and E I/0 processors. The second is the Program Status Doubleword (PSD)
mode, which will respond to all of the preceding I/0 processors as well
as Class F I/0 processors.

The I/0 processors used in a 32/70 Series computer are available in
three types. The first type is the standard Input/Output Micropro-
grammable Processor (IOM) containing a SelBUS interface, Micropro-
grammable Processor, and Device Dependent logic. The second type of I/0
processor is the Integrated Channel Controller, also known as the
Regional Processing Unit (RPU) (Figure 5-2) which combines the functions
of a channel and a controller into one unit. The function of a channel
is to schedule the requests for main memory between a number of con-
trollers. The channel also interfaces the controller with the CPU to
initiate or terminate an I/0 operation. The third type of I/0 processor
is the General Purpose Multiplexer Controller (GPMC) and General Purpose
Device Controller (GPDC) combination. The GPMC functions as the SelBUS
jnterface, and as the decode and control logic for up to 16 device
addresses. The GPMC also controls a number of independent device con-
trollers that are located some distance from itself. The independent
device controllers (GPDCs) function as device interface logic for one or
more devices per GPDC.

The following definitions are presented to aid in understanding the
Input/output operations.

1. 1/0 Processor-The ‘entire subsystem that interfaces the SelBUS and
provides 1/0 ports to the devices.

2. External Media-A general term for punched cards, printed forms,
magnetic tape, or discs.

3. Input/Output Devices-The peripheral devices interfaced to a 32/70
Series computer, e.g., card reader, card punch, paper tape reader,
paper tape punch, line printer, and magnetic tape drives.

5-1

5-2

MEMORY MODULES

Figure 5-1. 32/70 Series Input/Output Organization

MEMORY
RTOM BUS
CPU CONTROLLER
IMEMORY
SELBUS BUS SELBUS
_—
INTEGRATED INTEGRATéD
CHANNEL CHANNEL CHANNEL
CONTROLLER CONTROLLER
(RPU) (RPU)
TN T .
\ “ , \ v / CHANNEL BUS
1/0 DEVICES 1/0 DEVICES —
10M CONTROLLER CONTROLLER CONTROLLER
RERR [TTT] [|
" V' — /
I/O DEVICES 1/O DEVICES 1/0 DEVICES 1/0 DEVICE

SELBUS INTERFACE

7\

4

B-REG DATA DEST TAGS BITS (LBIN 00-15)

Figure 5-2.

Block Diagram - Regional Processing Unit (RPU)

. \
4 ALU BRANCH ADDRESS BITS (08-19) 4
STATUS
* BRANCH SIGNALS—l
TEST
TEST STRUCTURE CONTROL MEMORY PROGRAM BRANCH
LOGIC | BITSO7M | 32 BiTs X 4096 WORDS COUNTER - MUX s
64 BITS (150NS CYCLE) (2:1 MUX) I
(=]
@ INTERRUPT v + CROM T B -
LI <
z ENABLE BRANCH als] 2
5 BRANCH CONTROL CROM ADDRESS | SELECT > elel m
© LOGIC ENABLE - ORDER - 2lel &
g o gl 3|s|p
o z n =l w
S 5 2 slaf e
BRANCH SIGNALS 8 @ afo| g
I
ORDER ENABLE CONTROL z 5 <
v}
! " REGISTER « = a2
cE (CREG) <] @ 2
ORDER 0l z 5 <
STRUCTURE 2l w
LOGIC < ‘a
32BITS 'g“ 1 z
{ 4 i Y
[
<
B % A
MUX 3 MUX |
<
RB (BKO) RB (8K1) ALU RA (BKO) RA (BK1}
16x16 16x16 DATA AND 16x16 16x16
REG. REG. cc REG. REG.
LATCH
5 vyl v 4
o) ALU RAM DATA
o N
£ 3 16 BITS RA&"OTJ':‘[;?E‘SS INPUT DRIVERS
X z) (SCRATCHPAD) W
2 < ~
7 - = (=3
E 2) n 1
o 8 & 5 £l
1= o iy
S o = - Q I RAM
g 2 > 5 <je CONTROL
= 4] = i = &
2 [=) = gE
g > 3 3 =
(]
5 5 | 1
o o
% g wcs RAM
RAM *i. OUTPUT DRIVERS
| 32 BITS X 4096 WORDS '
v v
~ J
N HRAMDATA (00-31)
EXTERNAL DEVICE
INTERFAGE
(LAIN 00-15) AND (LBIN 00-15)
(LEXT 00-15)
*OPTIONAL ACCESSORY

5-3

4. Direct Access Devices-A type of storage device wherein access to
the next position from which information is to be obtained is in
no way dependent on the.position from which information was pre-
viously obtained. Magnetic disc drives and magnetic drums are
examples of direct access devices.

5. Communications Devices-Real-time devices, such as teletypewriters
and process control devices, that interface to a 32/70 Series
computer.

6. Controllers-A general term used to describe the peripheral device
interface logic. One controller may handle several devices.

7. Channel-That portion of an I/0 processor containing the logic to
interface the SelBUS and to control the device interface logic.
One channel may handle one or more controllers. S

8. Commands-Commands are directives that are decoded and executed by
the channel, controller, and 1/0 device to initiate the I/0 op-
eration.

9. Instructions-Directives to the CPU that are decoded and executed by
the CPU. TnStructions»are a part of the CPU program.

10. Command List-One or more commands arranged for sequential execution.

11. Data Chaining-Data Chaining is specified by a flag in the IOCD and
causes a channel to fetch the next IOCD when the byte count in the
current IOCD reaches zero. v

12. Local Store-Another name for the CPU scratchpad memory.

13. Channel End-A termination condition that indicates all information
associated with the operation has been received or provided, and
that the channel and controller are no longer needed. This condi-
tion resets all conditions in the CPU scratchpad pertaining to
the specific channel and controller.

14. Device End-An indication from the controller to the channel that an
I/0 device has terminated execution of its operation.

15. Controller End-Operations that keep the controller busy after
reporting a Channel End cause Controller End reporting (at the
end of its operation) indicating that the controller is available
for initiation of another operation.

1/0 PROCESSOR 1/0 processors are classified as types 0, 1, 2, 3, E, and F. The type
CLASSIFICATION 0, 1, and 2 I/0 processors are associated with the teletype, line
printer, and card reader respectively, and are contained on a single
IOM. The type 3 I/0 Processor is the RTOM Interval Timer. A type E I/0
processor is one which is controlled by the use of the Command Device
(CD) and Test Device (TD) instructions and has the capability of only
addressing 512 KB of memory. The type F I/0 processor responds to the
32/70 Series I1/0 instructions, has the capability of addressing memory
throughout a 16 MB -range, and in some cases supports an optional
Writable Control Storage (WCS) unit.

OPERATION WITH Input/Output (I/0) operations with the Class 0, 1, 2, and E I/0 pro-
CLASS cessors consist of transferring blocks of bytes, halfwords, or words

0,1,2, ANDE between core memory and peripheral devices. Core memory locations ad-

1/0 PROCESSORS = dressed by these I/0 processors are limited to the first 128K words
, (512K bytes) of contiguous memory. Transfers are possible at rates up

to 1.2 million bytes per second. The system components which participate

in the execution of an I/0 operation are illustrated in Figure 5-3.

5-4

COMMAND
“DEVICE
INSTRUCTION

TRANSFER
CONTROL WORD

A 32/70 Series system will support a total of 16 I/0 processors. Each
I/0 processor may in turn support as many as 16 device addresses,
allowing as many as 128 separate addressed devices to be connected to
a 32/70 Series computer at one time.

Two types of I/0 instructions, Command Device (CD) and Test Device (TD),
are executable by Class 0, 1, 2, and E I/0 processors.

Transfer of a block of information is initiated by execution of a
Command Device instruction in the CPU. This instruction, illustrated
in Figure 5-4, specifies the device, the direction of transfer, and
other control parameters required to condition the device to generate
or accept data. The control parameters are defined in Figure 5-5. The
I/0 processor, consisting of an IOM and Device Dependent logic, accepts
the Command Device from the CPU, routes the device control parameters to
the device specified in the instruction, and initializes the transfer of
a block of data. A Transfer Control Word contains the starting memory
address and the number of transfers to be made, and is contained in a
memory location dedicated to each device address.

The Transfer Control Word (TCW) contains a 20-bit address which defines
the memory location for each transfer. It also contains a positive
12-bit binary Transfer Count (TC). The Transfer Count plus the Format
Code (FC) permits transfers of blocks of information having any number
of bytes, halfwords, or words up to 4,096. The format of the Transfer

Control Word (TCW) is shown in Figure 5-6.

The presence of the Format Code in the TCW permits transfers of bytes,
halfwords, or words. The Format Code is designed such that when F is
equal to One in a given TCW, the address is incremented in bit position
31 each time a transfer occurs. Therefore, each transfer is stored in
or read from a consecutive byte in memory in this order:

Word N : Word N+1
---Byte 0,Byte 1,Byte 2,Byte 3 Byte 0,Byte 1,Byte 2,Byte 3---

The proper binary value of Format Code for accessing consecutive
halfwords in memory is F equal to 0, C equal to Y1, where Y equal to
Zero designates left halfword and Y equal to One designates right
halfword. With this value of Format Code, the address is incremented in
bit position 30 each time a transfer is made. This results in the
desired accessing of consecutive halfwords.

The proper value of Format Code for consecutive word accéssing is TCW
equal to 000. When this value is present in a given TCW, the I/0
processor increments the TCW in bit position 29 each time a transfer
occurs.

. The Format Code values discussed above are summarized in Table 5-1.

Each time the address is incremented, the Transfer Count is decre-
mented. Therefore, the block length is always defined by the number of
memory accesses and not by the number of words transferred. For specific
1/0 processors (i.e., GPMC, HSD, ADI, and FMS), the TCW address field
js used to supply an Input/ Output Command Doubleword (IOCD) address.

The dedicated memory addresses used with the 16 I/0 Processors are
included in the 1ist of Relative Trap/Interrupt Priorities (reference
Table 3-1).

5-5

MEMORY MEMORY
CENTRAL PROCESSOR MODULE MODULE
UNIT (CPU) :
; ~ I I
REAL-TIME MEMORY BUS
OPTION P CONTROLLER
MODULE SELBUS (MBC)
(RTOM)

r————————-l=-gzc——--

1/0 CONTROLLER

_ [inpuTrOUTPUT
MICRO-
PROGRAMMABLE : SELBUS
PROCESSOR INTERFACE
(1lom)

A

MICROPROGRAMMABLE

|
|
|
I
PROCESSOR (MP) |
I
|
I

DEVICE DEPENDENT

I
|
|
I
I
I FIRMWARE (PROMS)
|
|
|

DEVICE DEPENDENT
INTERFACE LOGIC

1-—1-—1 J
— e — — v — — - — e — ——— — e ——
c D S
0] A T
N T A
T A T
R U
(¢ S

L

] 2]
PERIPHERAL
DEVICE(S)

Figure 5-3. Class 0, 1, 2, and E I/0 Organization

1 1 1 1 1 1]DEVICE ADDRESS 110 COMMAND CODE
NN NS NS I TN NSNS T G N TSN T NN NN TR N A NN (N TSN NN N TR VN WA NN SENN NN NN N U |

0 123 45 6 7 8 9101112131415 1617 1819 20 21 22 23 24 25 26 27 28 29 30 31

-/
FC 6 REFER TO FIGURE 5-5

BiT16=0 BIT POSITIONS 20 THROUGH 31 OF THE FUNCTION CODE ARE UNIQUE TO THE DEVICE
BIT POSITIONS 18 AND 19 PROVIDE THE FOLLOWING INFORMATION:

BIT 18 =1 TRANSFER CURRENT WORD ADDRESS
BIT 19= 1 TERMINATE

BIT16=1 A TRANSFER IS TO BE INITIALIZED AND BITS 18 AND 19 OF THE FUNCTION CODE WILL
PROVIDE THE FOLLOWING INFORMATION:

BIT 19=00UTPUT TRANSFER
BIT 19 =1 INPUT TRANSFER

Figure 5-4. Command Device Instruction Format

L-S

*G-G dunbL4

0 |e48ydLddd 404 7euw404 2Lg UOLIOUNG BDLAS(] pURWWO)

S3JLAS

UNIQUE TO THE DEVICE

T

v

BIT .
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
DEVICE . .
0 TERMINATE
NONDATA N.U. 0 -
CARD
READER -
' | PROGRAM BINARY AUTO
RD/WR Y. 0 vioL - 0 MODE MODE * IF ZEROS - TRANSLATE MODE
INPUT = 1 *
o TERMINATE
NONDATA NU. ° =1
LINE .
PRINTER OoUTPUT FORMAT FORMAT ADV LINE
1 =0 ADVANCE a 2 OR
PRINT NU. 0 FORM . * FORMAT 1 *FORMAT MEANS USE PAPER ADVANCE BY VERT FORMAT LOOP CHAN 0002 1112
PROG VIOL = 1 .
o TERMINATE
NONDATA N.U. [=1
TELETYPE
OR
CO%':;LE ' INPUT = KEYBOARD
ROMR NU. 0 ECHO
OUTPUT = 0
BACKSPACE | ERASE 3.5” ADV TO
o TRANSFER | reaminaTE | one RECORD TAPE EOF * REWIND COMMAND BITS 20,21, AND 22 = 1
NONDATA N.U. CURRENT =1 ** WRITE EOF RECORD BITS 21 AND 22 =1
ADDR =1 . soe - [SPQ *++ BACKSPACE TO EOF RECORD BITS 20 AND 22 = 1
MAGNETIC i
TAPE (9-TK) 1 U1
RDMWR N.U. !
OUTPUT =0
TRANSFER TERMINATE | BACKSPACE ERASE 3.5 ADV TO 800 BPI = 0
o CURRENT <1 ONE RECORD TAPE EOF 556 BPI = 1 *REWIND COMMAND BITS 20,21, AND 22 = 1 R
NONDATA N.U. ADDR =1 * **WRITE EOF RECORD BITS 21 AND 22 =1
i v e +**BACKSPACE TO EOF RECORD BITS 20 AND 22 = 1
MAGNETIC
TAPE (7-TK
APE (7-TK) , INPUT =1 INTER- EVEN
RDMWR NU. 1 3‘(‘)’[‘)";0_5 PARITY =1
OUTPUT =0 =1
0 TRANSFER | reppNATE RECAL SEEK TRACK TRACK TK128 TKe4 TK32 TK 16 K8 K4 TK2 K1
NONDATA N.U. CURRENT - 512 256 I
ADDR = 1 NEGATIVE OFFSET = 1
CARTRIDGE HEAD OFFSET CONT. = 112 DIRECT =1 RESET =0 4
Disc READ TK 0 HEAD INHIBIT
#9008 1 INITIALIZE INPUT =1 HEAD 0 AND HEADER HEAD SECTOR SECTOR SECTOR SECTOR
RD/WR NU. PLATTER SECTOR 0 SECTOR CHECK on 8 4 2 1
OUTPUT =0
0 TRANSFER TERMINATE RECAL SEEK TK 512 TK 256 TK 128 TK 64 TK 32 TK 16 TK8 TK4 TK2 TK 1
NONDATA N.U. CURRENT =1
ADDR = 1 SET READ SET READ STROBE STROBE OFFSET OFFSET
MOVING- MARGINS MARGINS LATE EARLY MINUS - PLUS +
HEAD DISC INITIALIZE
- WR/RD WR/RD SECTOR SECTOR SECTOR
#9010 1. PACK INPUT = 1 o rsjosnc SEC/T el 128 4 32 SECTOR SECTOR SECTOR SECTOR SECTOR
. RD/WR N.U. READ TR HEAD 16 8 4 2 1
)
RDSEC =1 OUTPUT = 0 i g
. SECTOR O, F = 11
0 TRANSFER TERMINATE
NONDATA NU. CURRENT =1 SEEK TRACK = BITS 16 - 19 = 0 AND TRACK ADDRESS IN BITS 20 - 31
FIXED- ADDR =1
HEAD DISC T
WRITE
#9014 1 RELEASE RELEASE DISC PORT = BITS 15 AND 22 = 1 WRITE SECTOR = BITS 18 AND 21 = 1 AND SECTOR NUMBER IN BITS 27 - 31
RO/WR N.U. SECTOR = 1 RESERVE DISC PORT = BITS 18,19, AND 22 = 1 READ SECTOR = BITS 18,19, AND 21 = 1 AND SECTOR NUMBER IN BITS 27-31

PL EOO‘{ READ TK 0, SEC'YOR 0=BITS18-21=1
1

READ RELEASE SECTOR = BITS 18 AND 19 = 1 AND SECTOR NUMBER IN BITS 27 - 31

TC ‘ F - ' WA . ' c
1 [l 1 1 1 1 1 (] 1 1 1 1 [(] 1 1 [} [1 [i 3 1 1 I 1 1

0 1 2 3 4 5 6 7 8 910 111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

BITS 0-11 DESIGNATE THE NUMBER OF TRANSFERS TO BE MADE BETWEEN MEMORY AND THE

DEVICE CONTROLLER CHANNEL.
BITS 12,30,31 SPECIFY THE FORMAT CODE FOR EACH TRANSFER (SEE TABLE 5-1).
BITS 13-29 DESIGNATE THE MEMORY LOCATION FOR EACH TRANSFER.
NOTE

THE WA FIELD IS INTERPRETED AS A 24-BIT REAL ADDRESS BY THE 1/0
PROCESS. THEREFORE, THE ADDRESS RANGE IS LIMITED TO THE FIRST
512 KB OF MEMORY. "

Figure 5-6. Transfer Control Word Format

Table 5-1. Transfer Control Word-Format Code

Information Format FC
Byte ' 1XX
Halfword oY1
Word 000
XX = Byte number
Y = 0 designates left halfword:

Y = 1 designates right halfword

DEVICE ADDRESS 1

T
TEST CODE

1111 11 0 1 000O0O0OOOOOOGOTU OO
1]) [] [[l] § [1] 1 1 1 l_ 1 1 'l 2 1 1 i 1 3 ['y 2 1
0 1234567 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
\ 'v assw” \-.-w ’
FC 5
—
| i
8000, TEST cc cCc2 cc3 cca IF CC1-4=F,
L UNDEFINED CHANNEL oM DEVICE CHANNEL (IOM)
¢ N ACTIVE ERROR STATUS NOT PRESENT
4000, TEST » PRESENT (OFF-LINE)
2000, TEST INVALID MEMORY PROGRAM UNDERFLOW
MEMORY PARITY VIOLATION OR
ACCESS ERROR OVERFLOW

L

CAUSES A TRANSFER OF 16-BITS OF CONTROLLER STATUS INFORMATION TO THE MEMORY
LOCATION SPECIFIED IN THE TCW DEDICATED LOCATION. THE MEANING OF EACH BIT IN
THE 16-BIT STATUS HALFWORD DIFFERS ACCORDING TO DEVICE TYPE. SEE FIGURE 5-8.

CC2=0 STATUS TRANsFER WAS PERFORMED

-CC2=1 STATUS TRANSFER WAS NOT PERFORMED
CC4=1 CONTROLLER IS ABSENT OR POWERED OFF

Figure 5-7. Test Device Instruction Format
UPPERHW | O 1 2 3 4 5 6 7 8 9 10 1 12 13 14 1%
LOWER HW | 16} 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
LINE 0 {PROG| DEV 0 0 0 0 0 [} BOF 0 0 (V] DEV 0 0
PRINTER VIOL | INOP BUSY
MAG 0 {PROG| DEV VRC 0 REW CRC 0 0 EOT BOT EOF L] DEV FILE [o]0]0]
TAPE VIOL | INOP | ERROR IN LRC BUSY PROT REC
. PROG VIO LGT

MOVING- 0 |PROG!| DEV | UNCORR | 0 FILE SEEK CORR 0 0 ADDR 0 0] 0 SEEK
HEAD VIOL | INOP DATA UN- IN DATA ERROR TRACK
DISC ERROR SAFE PROG ERROR ERROR
FIXED- 0 |PROG| DEV CHK » (V] 0 V] 0 0 0 SECTOR] MUX 0 FILE SEEK
HEAD VIOL | INOP SUM ERROR BSY PROT | TRACK
DISC (DUAL VIO | ERROR

- . CPU)
CARD 0 0 FILE READ 0 | STACKER PUNCH HOPPER 0 PICK TRANSMIT INCORRECT UNWS ILLEGAL INT CHAN
READER/ MARK| CHECK ~ FULL CHECK EMPTY FAILURE ERROR LENGTH, CHAN END PEND END
PUNCH RD END

THE STATUS HALFWORD IS STORED IN THE MEMORY HALFWORD SPECIFIED BY THE ASSOCIATED
TRANSFER CONTROL WORD (TCW).

Figure 5-8.

Test Device 2000 Status Information

5-9

TEST
DEVICE

INSTRUCTION

INPUT/QUTPUT
PROCESSOR

5-10

Sel1BUS
INTERFACE

The Test Device (TD) instruction is used to acquire status information
from the Input/Output processor and the associated device(s). Three
levels of the TD instruction (8000, 4000 and 2000) may be used to ac-
quire this information. The status information is in the form of four
condition code bits for each level of test. The TD instruction does
not initiate any action in the device. The TD 8000 instruction is
used by the CPU to test the general status of the addressed device and
associated I/0 processor. The TD 4000 instruction is used by the CPU to
allow further definition of the errors indicated in the TD 8000. The
TD 2000 instruction is used by the CPU to obtain 16 bits of status in-
formation from the device/processor. This instruction causes the ad-
dressed I/0 processor to transfer a 16-bit status word to the memory
address specified by the TCW. The 16-bit status word may be placed in
memory in either the right or left halfword position, depending on bits
30 and 31 of the TCW address. A TCW used with a TD 2000 should always
specify halfword memory addressing. Figure 5-7 provides a breakdown of
the Test Device instruction format. Figure 5-8 provides the status in-
formation returned from standard peripheral devices upon execut1on of
TD 2000 instructions.

Each Input/Output processor consists of an Input/Output Micropro
grammable Processor (IOM) and Device Dependent Interface logic. The
Microprogrammable Processor (MP) and the Device Dependent Interface
logic are customized for each device. The firmware for a given
Input/Output processor is contained in a set of PROMs that p]ug into the
processor board. The information contained within the PROMs is device
dependent.

This design technique provides extreme flexibility for custom designed
interfaces since the basic MP and SelBUS interface are also available as
a. General Purpose 1/0 Processor (GPIO). Al11 that is needed to convert
the GPIO processor into a special purpose I/0 processor is the Device
Dependent Interface logic and the firmware microprogram.

The maximum throughput of an Input/Output processor is 1.2 million bytes
per second.

There are two types of Input/Output processors:
1. Multiple Device Controller (MDC)
2. Multiple Controller Controller (MCC)

The MDC controls like devices, such as four magnetic tapes.- The MCC
emulates multiple controllers such as the TLC Input/Output processor
that controls a teletype, a card reader, and a printer. MCC Input/
Output processors are multiplexed processors handling more than one
device simultaneously accessing memory. The Asynchronous Data Set
Interface (ADS) 1is an example of a multiplexed processor. The ADS
handles . four half- or full-duplex 1lines directly to memory on a
message basis. Four memory input buffers and four output buffers
can be active at one time.

The Input/Output SelBUS interface contains the registers and SelBUS
drivers for a full 32-bit data transfer. The main function of this
logic is to receive and drive communications on the SelBUS. A1l the
interface control 1logic, including processor address recognhition,
interrupt polling, and data transfer to and from the SelBUS, are in-
cluded in the interface.

The bus priority logic is controlled by the interface control Tlogic.
It polls for the SelBUS, determines when it wins the poll, and then
drives the transfer on the bus. Priorities are set through physical
switches in the Input/Qutput processor.

TRANSFER
RESPONSES

I0M DATA
STRUCTURE

"ARITHMETIC
LOGIC UNIT

DATA STRUCTURE
CONTROL

TEST STRUCTURE

INTERRUPTS

CLASS F

1/0 OPERATION ‘

An Input/Output processor will reSpond td all bus transfers that it
receives. It has three immediate responses:

1. Retry
2. Busy
3. Transfer Acknowledge

The sending bus device can determine the status of its transfer to the
Input/ Output processor by monitoring these lines. A Retry answer means
that the Input/Output processor of the MCC type is temporarily busy. A
Busy means to set the busy condition code bit in the software instruc-
tion and proceed with the next instruction. An Input/Output processor
of the MDC type would generate such a return. A Transfer Acknowledge
indicates that the transfer was accepted and is being processed. If
no answer is present in the bus cycle following the transfer, a non-
present Input/Output processor was addressed.

The IOM data structure provides for the transfer of data, arithmetic and
logical manipulation of data, storing of device and processor status,
decoding of commands, and data buffering. Figure 5-9 provides a block
diagram of the IOM.

Two 16- by 16-bit word register groups, RA and RB, are available as
working read/write memory. The output for each register pair is the
input to the Arithmetic/Logic Unit.

The destination address and the most significant 16 bits of the data bus
are directed to the RA register group. The program counter and the ALU
output are also directed to the RA register group. The least signif-
jcant 16 bits of the data bus and 16 bits of data from the peripheral
devices are directed to the RB register group. The ALU output and a
16-bit 1literal from the control register are also input to the RB
register group.

The data structure includes a full 16-bit Arithmetic/Logic Unit which
inputs from RA and RB. The ALU is equipped with a 3-bit status register
which contains previous carry, all zeros condition, and the most signif-
icant bit.

A 32-bit by 1,024-word microprogrammed control memory and a 48-bit test
structure (32 implemented) control the flow of data and commands between
the SelBUS and peripheral devices.

The IOM test structure is used with the Wait and Conditional Branch

operations to control the sequencing and timing of instructions.

The IOM has a single Master Intérrupt line. For device controllers
requiring more interrupts, the necessary mask register and Priority
Decode logic is included in the Device Interface logic.

The following discussions refer to the organization and operation of
Series Class F I/0 processors.

Class F Input/Output operations consist of transferring blocks of bytes,
halfwords, or words between core memory and the peripheral devices.
Transfers are performed automatically requiring a minimum of CPU in-
volvement.

A typical configuration for Class F I/0 operation is illustrated
in Figure 5-10. The I/0 devices include card readers, line printers,
discs, magnetic tapes, and telecommunications equipment. The controller
provides the logical and buffering capabilities necessary to operate an
1/0 device. The controller is attached to a channel. The channel's
function is to schedule the requests for main memory between a number
of controllers. The channel alsc connects the controlier to the CPU to
initiate or terminate an I/0 operation.

SELBUS INTERFACE

BRANCH
SELECT
ORDER

SNLVLS NV

BRANCH SIGNALS

INTERNAL
CONTROL
SIGNALS

HeemssisTnEm

BITS 00,01, 03

-

ORDER ENABLE

mTRD)
O W
SNLVIS nv Eps8
©
G¥c2

BRANCH
SiGNALS

R L

ble Processor

icroprogramma

1/0 M

DEVICE DEPENDENT INTERFACE

jagram

Block D

Figure 5-9.

5-12

The integrated channel controller, also known as the RPU, combines the
. functions of a channel and a controller into an indistinguishable unit.

CLASS F An I/0 processor consists of two or more distinct logic subassemblies
1/0 PROCESSOR which are: '

‘1. The Channel-which interfaces with the SelBUS to send and receive
Tnformation between the channel, the CPU, and/or memory. The other
side of the channel interfaces with one or more controllers to
provide control signal and data paths to/from the controllers.

2. The Controller-which interfaces between the channel and the device
jtself. The purpose of the controller is to provide the proper
protocol for the device and to convert that protocol to a standard
protocol for use by the channel. :

3. Writable Control Storage-which interfaces the channel, provides
a source of Read/Write memory for the channel. The use of the
Writable Control Storage is to customize an 1/0 processor for
specific uses. The Writable Control Storage is loaded by special
software instructions and may contain any program the user
requires.

The main subassemblies common to all Class F I/0 processors are the
controller and channel, with the Writable Control Storage being an
option. *

Dedicated memory locations are associated with each I/0 processor and
provide main memory locations to transmit or receive control information
required to initiate or terminate an I/0 operation. The control
information consists of:

1; Service Interrupt Vector Address

2 Input/Output Command Doubleword (IOCD) Address
3 Status Address

4. New Program Status Doubleword (PSD)

5. 01d Program Status Doubleword (PSD)

A graphic representation of the I/0 control words is shown in
Figure 5-11. ;

MEMORY Memory addresses are transferred to the channel when a Start 1/0 (SIO)
ADDRESSING or Write Channel Write Control Storage (WCWCS) instruction is executed
METHOD by the CPU. Prior to the execution of the I/0 instruction, the software
stores the address of the first Input/Output Command Doubleword (IOCD)
to be executed into the word indicated by adding 20 (decimal) to the
contents of the Service Interrupt Vector (SIV). The word indicated is

referred to as the Input/Output Command List Address (IOCLA).

The memory addressing method used for Class F I/0 is real addressing.
Real addressing 1is the capability to directly address any memory
location within the 16 MB maximum capacity of the system without any
address translation. This method of addressing differs from the method
normally used by the software programmer, who relies on a hardware
address conversion to transform the logical address to a real address in
order to address memory locations greater than 512K bytes.

5-13

MEMORY MODULES
A

MEMORY
BUS
cPU RTOM
: CONTROLLER
T SELBUS
i 2 v
INTEGRATED INTEGRATED
CHANNEL CHANNEL
CONTROLLER CONTROLLER
(RPU) (RPU)
FETETTTT TTTTTTT]
/\ V4 N Vi
N N
1/0 DEVICES 1/0 DEVICES

5-14

Figure 5-10.

System Configuration with Class F I/0 Processor

T T
SI0 R
[S WS W | [

¥ L v Ll

CONSTANT
[U B N G | [WS W TS W NN VA WA NN BN BN W N S |

0 1 23 45 6 7 8 9101112131415 16 17 1819 20 2122 23 24 25'26 27 28 29 30 31

\/
IF R £0 |
GENERAL
REGISTERS m
Rn >\+f
L 1]
LOGICAL SuB-
CHANNEL ADDRESS
O, 4 3 4 34 4 4 PURY W WY S WO W

16 17 18 19 20 21 22 23 24 25 26 27 28 28 30 3

TN WV

i I

LOCAL
STORE T " T v
FLAG CLASS INTERRUPT LEVEL . PHYSICAL SuUB-
DEVICE ENTRY » F (ONES COMPLEMENT) CHANNEL ADDRESS
'y [1 5 1) T | 3 1 1 4 0l | N S B S | ' 31 g 2 4 1 ¢

0 123456 7 8 9 10 111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
\ J/

N4

SI LOCATIONS

VECTOR ADDRESS

N y __y
hd
I DESTINATION \
BUS 023 7

oLD r DATA BUS (8-31) >
PSD \
L Y
NEW r y Y T T -1
PsSD 0 > 0 REAL I0CD ADDRESS
sTATUs ADDRESS Il 'l 'l I 1 Il Il L i 'l 'l il 1 s I 'l 2 ' ' 12 ' 2 Il I 2 1 a2 2 'y |-
10CD LIST ADDRESS \0 1 23 4 56 7 8 9101112131415 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31]
. -
COMMAND REAL DATA ADDRESS AND FLAGS 0 0 BYTE COUNT
D ——
[4] 7 8 31 37 38 47 48 63

Figure 5-11. 1I/0 Control Words (Class F)

5-15

PSD MODE 1/0 When operating in the PSD mode, a set of special instructions augments

INSTRUCTIONS

START 1/0 (SIO0)

TEST 1/0 (TIO)

HALT 1/0 (HI0)
ENABLE CHANNEL
WCS LOAD
(ECWCS)

WRITE CHANNEL
WCS (WCWCS)

ENABLE CHANNEL
INTERRUPT (ECI)

5-16

or replaces those used for the PSW mode of operation. The PSD I/0
instructions include the following: '

1. Start I/0 (SIO)

Test 1/0 (TIO)

Halt I/0 (HIO)

Stop I/0 (STPIO)

Grab Controller (GRIO)

Reset Controller (RSCTL)

Reset Channel (RSCHNL)

Enable Channel WCS Load (ECWCS)
Write Channel WCS (WWCS)

-
g

Enable Channel Interrupt (ECI)

-t
=

Disable Channel Interrupt (DCI)

[
[

Activate Channel Interrupt (ACI)
13. Deactivate Channel Interrupt (DACI)

For all Class F I/0 instructions, the 7logical channel and device
addresses are specified by bits 16-31 of the instruction plus the
contents of the General Purpose Register (GPR) specified by the
instruction (if the GPR specified is nonzero). The channel will ignore
the subaddress for operations that pertain only to the channel.

The Class F I/0 instructions can be executed only when the CPU is in
privileged mode and operating in the PSD mode.

The Start I/0 initiates an I/0 operation. If the necessary channel,
subchannel or controller is available, the SI0 is accepted and the CPU
continues to the next sequential instruction. The channel/controller
independently governs the I/0 device specified by the instruction.

The Test I/0 interrogates the current state of the channel, subchannel,
controller and device and may be used to clear pending interrupt
conditions. :

The Halt 1/0 terminates a channel, controller, and/or device oberation.
The Enable Channel WCS Load conditions the channel to have its WCS
Toaded.

The Write Channel WCS is the second part of a two-instruction sequence

and causes the specified channel's WCS to be loaded.

The Enable Channel Interrupt allows the channel to request interrupts
from the CPU.

DISABLE
CHANNEL
INTERRUPT
(DCI)

ACTIVATE
CHANNEL
INTERRUPT
(ACI)

DEACTIVATE

CHANNEL

INTERRUPT
(DACI)

RESET CHANNEL

- (RSCHNL)

STOP 1/0
(STPIO)

- RESET
CONTROLLER
(RSCTL)

 GRAB
CONTROLLER
(GRIO)

INPUT/QUTPUT

COMMAND LIST
ADDRESS

The Disable Channel Interrupt prohibits the channel from requesting an
interrupt. Pending status conditions can only be cleared by the ex-

ecution of a Start I/0, Test I/0, or Halt I/0 if the channel is disabled.

The Activate Channel Interrupt causes the channel to actively contend
for interrupt priority except that the channel never requests an in-
terrupt. The instruction has no effect on pending status conditions ex-
cept that it can be cleared by a Start I1/0, Test I/0, or Halt I/0.

The Deactivate Channel Interrupt causes the channel to suspend con-
tention for interrupt priority. If an interrupt request is queued, the
channel may then request interrupt.

The Reset Channel resets all activity in the channel.
and pending conditions are cleared.

A11 requesting

The Stop I/0 terminates the operation in the controller after the com-
pletion of the current IOCD. The termination is orderly. The channel
will suppress command and data chaining.

The Reset Controller resets a specific controller if the resetting
channel maintains ownership. The reset is immediate.

The Grab Controller takes‘away control of a controller which is re-
served to another channel. The grabbing channel is assigned as the
reserving channel.

Successful execution of the SI0 and WCWCS causes the CPU to transmit
the Input/Output Command List Address (IOCLA) to the channel/controller.
The IOCLA is located in main memory at locations specified by the ser-
vice interrupt vector plus 16 (decimal). Each of the 16 channels has a
corresponding service interrupt vector. The format for the IOCLA in-
dicated by the contents of the service interrupt vector 11 is:

000 O O0O0O

1 . ¥ 1 T ¥ ¥

REAL I0CD ADDRESS

. 4 3 4 1 1t 3 9 2 1 ¢ ¢ 9 1 ¢ 1 | & 1 & & i ot

INPUT/QUTPUT
T COMMAND
DOUBLEWORD
{10ty

]

23 456 7 8 910111213 141516 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

The real IOCLA 1is passed to the channel/controller on the data bus.

The address indicated in the IOCLA specifies the word address of the
first I0OCD to be executed. The IOCD format is shown in Figure 5-12.

‘The SI0 is the only instruction that is able to cause the Channel/
Controller to fetch an IOCD. One or more IOCDs create an Input/Output
Command List (IOCL).

The command field specifies one of the following seven commands:

Write

Read

Read Backward
Control ’

Sense

Transfer in Channel
Channel Control

5-17

INPUT/OUTPUT
COMMANDS

WRITE

_READ

READ BACKWARD

5-18

CONTROL

SENSE

TRANSFER IN

CHANNEL

CHANNEL
CONTROL

INPUT/QUTPUT

E

TERMINATION

If more than one IOCD is specified, the IOCDs are fetched sequentially
except when Transfer in Channel (TIC) is specified. Search (compare)
commands can cause the skipping of the next sequential IOCD if the
condition becomes true (i.e., Search Equal, Search Low, or Search High).
The channel or controller will then increment by 16 rather than 8.

The real data address specifies the starting address of the data area.

The data address will be a byte address and the channel will internally
align the information transferred to or from main memory. Exclusions to

the byte alignment may be required by the lower priced channel(s).
operating in Burst mode in high performance controllers.

The byte count specifies the number of bytes that are to be transferred
to or from main memory. The actual number of memory transfers performed
by the channel will be dependent upon the channel implementation.

The Write command causes a Write (output) operation to the selected I/0
device from the specified main memory address.

The Read command causes a Read (input) operation from the selected 1/0
device to the specified main memory address.

The Read Backward command causes a Read (input) operation from the
selected I/0 device to the specified main memory address in descending
order.

The Control command causes control information to be passed to the
selected device. A Control command may provide a data address and byte
count for additional control information that may be stored in main
memory.

Control information is device dependent and may instruct a magnetic tape
to rewind or a printer to space a certain number of lines.

The Sense command causes the storing of controller/device information in
the specified location of main memory. One or more bytes of information
will be transferred depending upon the device. The sense information
provides additional device dependent information not provided in the
status flags.

The Transfer in Channel (TIC) command specifies the address of the next
I0CD to be executed. The TIC command allows the programmer to change
the sequence of the IOCDs executed. The IOCLA cannot specify a TIC as
the first IOCD in a command 1ist nor can a TIC specify another TIC
command.

The Channel Control command causes the transfer of information to or
from a specific location in main memory. One or more bytes of infor-
mation will be transmitted or received from the channel. The channel
control provides for the passing of information required to initialize
all channels.

An I/0 operation terminates when the channel, controller, and/or device
indicates the end of an operation. A1l I/0 operations accepted by the
channel will always terminate with at least one termination status being
presented to software.

An I/0 operation can also fail to be accepted by the channel during 1/0
initiation. Conditions that prevent 1/0 initiation are: (1) channel or
subchannel busy, (2) channel not operational or nonexistent, or (3)
pending termination status from a previously initiated I/0 operation.

10CD MSW

L) L 1 T

COMMAND REAL DATA ADDRESS cCC
AR N WO WO NN NN W SN VN W NN NN VN SR S NS VNN WA VAN U W TR U T SN SN0 VNN NN T N |
0 1 23 45 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
10CD LSW
Y " T T T T
FLAGS 0 0 0JO OO OO OO OOPW BYTE TRANSFER COUNT
Pt 0 0 1 1 1 llllllllllllllllll‘llll
01 2 3 4 56 7 8 9101112131415 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31

BIT ASSIGNMENTS IN THE COMMAND ARE:

CHANNEL CONTROL
SENSE
TRANSFER IN CHANNEL
READ BACKWARD
WRITE

READ

CONTROL

EEZ2EIXEX
ETEEETEIXEX
E=E==EX=EX
EET=ETEIXEX
EEg~r=00
f22g—=r0=0
- a 00000
- 0= 00O0O0

FLAG BIT ASSIGNMENTS ARE:

100000 DATA CHAIN

010000 CMD CHAIN

601000 SUPPRESS INCORRECT LENGTH
000100 SKIP

000010,

POST PROGRAM CONTROLLED INTERRUPT

C - BIT ASSIGNMENTS ARE:

BIT 30 BIT 31
0 0 BYTE 0 OR FULLWORD
(] 1 BYTE 1 OR FIRST HALFWORD
1 0 BYTE 2 OR DOUBLEWORD*
1 1 BYTE 3 OR SECOND HALFWORD

*IF DOUBLEWORD IS INDICATED TO A CHANNEL, AMBIGUOUS RESULTS
MAY OCCUR.

Figure 5-12. Input/Output Command Doubleword (IOCD)

5-19

1/0 initiation failures are reported to software by the setting of
condition codes and, where applicable, the storing of status.

INPUT/OUTPUT The status words are maintained and stored by the channel. The address
STATUS_WORDS of the status words is transmitted to the CPU when an interrupt is

acknowledged or when another I/0 instruction is executed. The status
words contain information relating to the execution of the last IOCD or
from an asynchronous condition requiring software notification (i.e.,
tape loaded, disc pack mounted). The status words are in the following
format:

STATUS WORD 1

SUBADDRESS

T L]

REAL I0CD ADDRESS

[] 1 1 'l 1 1

L

0 O
Ll

0 1

STATUS WORD 2

2 3456 7 8 9101112131415 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31

STATUS FLAGS

RESIDUAL BYTE COUNT

[N S SRS SN SN NN WU SANNE NN TUNN WU TN WA VU SN U NN NN NN SR NN WO NN U N SR SR M

0 1 23456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The status flags contain termination information pertaining to both the
channel and controller. I0Ms that function as integrated channel
controllers will maintain both sections.

The address of the status is stored in main memory and can be located by
adding 8 to the contents of the service interrupt vector.

INPUT/OUTPUT Input/Output interrupts can be caused by a response to a probe instruc-
INTERRUPTS tion (i.e., TIO) by the termination of an I/0 operation, by operator in-

tervention at the I/0 device, or when a post program controlled
interrupt is requested by an IOCD. The associated I/0 interrupt causes
the status address, and the current PSD to be stored in the memory
location specified by the service dinterrupt address. The new PSD
(specified by the contents of the service interrupt vector +8) is then

loaded.

An I/0 interrupt can be caused by the device, controller, or channel.
If a channel or controller has multiple I/0 interrupt requests pending,
it establishes a priority sequence for them before initiating an 1/0
interrupt request to the CPU. This priority sequence is maintained when
the channel stores the status and reports the status address to the CPU.

The mode in which the channel operates during the software interrupt
processing is determined by the mode setting of the channel and the
implementation of the channel. The software may use bits 48 and 49 of
the new PSD to select one of two options: Unblocked or Blocked
operation.

Unblocked operation specifies that the CPU, upon receipt of an
interrupt, causes the channel to go active and block all interrupts of a
lower priority. The channel services the interrupt, and the software in
turn issues a DACI or BRI command to restore the interrupt processing.

5-20

Blocking specifies that the CPU, upon receipt of an interrupt, causes
the channel to deactivate. The CPU blocks all incoming interrupts and
services the pending interrupt. The software in turn issues an UEI
command or a BRI, LPSD, or LPSDCM to the CPU, thereby restoring
interrupt processing. The target PSD of the BRI, LPSD, or LPSDCM
instruction should specify Unblocked operation in bits 48 and 49.

5-21/5-22

INTRODUCTION

'MNEMONIC

INSTRUCTION
NAME

OPERATION CODE

FORMAT

DEFINITION

SUMMARY
EXPRESSION

ASSEMBLY CODING
CONVENTIONS

SECTION VI

INSTRUCTION REPERTIORE

This section contains the description of each computer instruction.
The following paragraphs list the standard information given with
each instruction. ’ :

A two- to six-letter symbolic representation of the instruction name
accepted by the assembler program.

A title that indicates the function performed by the instruction.

The Operation Code for each instruction is given in left-justified hexa-
decimal format. This format is presented in a 16-bit skeleton form and
takes into consideration the Augmenting Code and the format bit used with
byte-oriented instructions.

A 16- or 32-bit machine language representation of the instruction. The
operation code and all other fixed bits are given in their binary value.

The function performed by the instruction is described following the in-
struction format. All registers or memory locations which are modified
are defined. Special considerations are given in notes following the
basic functional description.

This expression supplements the verbal description of most instructions
by symbolically showing the function performed by execution of the in-
struction. The symbols are defined in Table 6-1. The abbreviations are
listed in Table 6-2.

Summary expression examples are given below:

(spg-31) —~ (dpg_31)

The contents of bits 24-31 of GPR d are replaced with the contents of bits
24-31 of GPR s.

[zeros;_,3, byte operand] — (d)

The byte operand is appended with zeros in positions 0-23 and the resulting
word replaces the contents of GPR d.

(m), (m+1) is a doubleword effective memory address.
(d), (d+1) is a doubleword even/odd GPR pair.

A symbolic representation of the assembler coding format. Table 6-2 lists
all abbreviations and symbols used in the operand coding format.

6-1

Table 6-1.. Symbol Definitions N

Symbol Definition

- Logical NOT function, for example (S) is the ones
complement of the GPR number s.

Replaces§ the data to the left of the symbol replaces

- data to the right. For example, (s) - (d) means the
contents of GPR number s replaces the contents of GPR
number d.

+1 The register number or memory address is incremented
by one register number or one memory word.

> Greater Than.

< Lesser Than.

+ Algebraic Addition.

- Algebraic Subtraction.

X (or no symbol) Algebraic Multiplication.

/ Algebraic Division.

& Logical AND.

B-n Bits m through n of a computer word.

Bn Bit n of a computer word where B, always refers to the
most significant bit of a computgr word (the letter n
is also used to indicate scaling; e.g., L5 indicates a
1 scaled at bit position 15).

CCn Condition Code bit n.

: Comparison Symbol.

. Concatenation Sign (e.g., R, R+l indicates a doubleword
consisting of (Rg and %R+1), where R must be an even
numbered register).

EA Effective Address of an operand or ihstruction stored in
memory.

EBA Effective Byte Address.

EBL Eight-Bit Location in memory specified by the EBA.

~ EDA Effective Dbub]eword Address.

EDL Sixty-four bit location in memory consisting of an even
numbered word location and the next higher word location,
specified by the EDA.

EHA Effective Halfword Address.-

EHL Sixteen-bit location in memory specified by the EHA.

EWA Effective Word Address.

6-2

Table 6-1. Symbol Definitions (Cont'd)
Symbol Definition
EWL Thirty-two bit lTocation in memory specified by the EWA.
I Indirect Address bit.
ISI Is Set If, used to indicate conditions which set
referenced bit locations.
IW Instruction Word.
() Contents of.
® Exclusive OR.
MIDL Memory Image Descriptor List.
\PSDR‘ Program Status Doubleword Registers.
PSWR Program Status Word Register.
R General Register 0-7 (RO-R7).
Rm-n Bits m through n of General Register R.
Rn Bit n of General Register R.
SBL Specified Bit Location with a byte (used as a subscript
to designate that the bit location is specified in the
Instruction Word).
scC Sets Condition Code bits.
SE Used as a subscript to denote a sign extended halfword.
v Logical OR.
X Index Register:
X Value GPR Used for Indexing
00 None
01 R1
10 R2
11 R3
-Y Twos complement of Y.
Y Ones completion of Y, logical NOT function.

6-3

CONDITION CODE An interpretation of the resulting 4-bit Condition Code in the Program Status

RESULTS Doubleword register. This code defines the result of the operation. The
circumstances in which these Condition Codes are set (i.e., equal to One) are
noted with each instruction.

EXAMPLES Included in the examples with many of the instructions are memory and register
contents before and after execution.

INSTRUCTION The 32/70 Series instruction mnemonics follow a very simple format. The
MNEMONICS basic types are: .

L Toad or LM load masked
ST store or STM store masked
AD add

ADM add memory to register

ARM add register to memory

SU subtract

SUM subtract memory from register

Mp multiply

DV divide

ADF

SUF floating-point arithmetic

MPF

DVF

B branch

AN AND

OR logical OR

EO exclusive OR

C compare

These basic mnemonics are then augmented to define the operand data type. (A
special set of instructions are provided for bit manipulation.) The five
basic data types are:

B Byte (8 bits)

H Halfword (16 bits)
W Word (32 bits)
D Doubleword (64 bits)
I Immediate (16 bits)

Therefore, the resulting instruction mnemonics have the form:

LB Load Byte

LMH Load Masked Halfword

STMW Store Masked Word

ADI Add Immediate to Register
SUMD Subtract Memory Doubleword

A complete summary of the 32/70 Series instructions is presented in the
Appendix of this manual.

6-4

ASSEMBLER
CODING
CONVENTIONS

INSTRUCTION
DEFINITION
FORMAT

The basic assembler coding format for memory reference instructions is:

XXXXXX

s) s *m, X
df

which translates to

XXXXXX
s)
ldj

*

m

X

Instruction mnemonic

Source or destination General Purpose Register

Indirectly (optional)
Memory operand

Indexed by register number Xx

Nonmemory reference instruction coding is similar to the memory reference

format.
formats.

Table 6-2 lists all codes used in defining the Assembler coding

Each instruction definition includes the following information:

Instruction
Name

Op Code

Assembler
Coding
Format

Instruction
Definition

Summary
Expression

Condition
Codes

“executing an instruction,

The full name of the instruction.

The four most significant hexadecimal digits of the instruction
word are listed. Additional bits in the op code are set when
the instruction is coded to address a General Purpose Register
(GPR), for indirect addressing, or for byte addressing.

The coding format used by the 32 Macro Assembler. Table 6-2
includes all the abbreviations and symbols used in the
operand coding format,

A definition of the operation performed by executing the
instruction.

A symbolic or graphic description of the operation performed
by the instruction. Summary expressions use the same abbre-
viations used in the assembler coding format, Table 6-2. In
addition, Table 6-1 lists the codes and symbols used in the

summary expressions,

The Condition Codes are set based on the results obtained by
The circumstances in which these
condition codes are set (i.e., equal to one) are noted with
each instruction.

6-5

Table 6-2. Assembler Coding Symbols

Code Description
Capital Letters - Instruction Mnemonic

b Bit number (0-31) in a General

‘ Purpose Register

c Bit number (0-7) within a byte

d . Destination General Purpose Register
number (0-7)

f Function

m Operand Memory -Address

n Device Address

S Source General Purpose Register
number (0-7)

v Value for Immediate Operands,
number of shifts, etc.

X Index register number 1, 2, or 3.
Optional

* Indirect Addressing. Optional

, ‘ Assembler Syntax

z Special register field for

instructions requiring three
register fields

LOAD/STORE
INSTRUCTIONS

GENERAL
DESCRIPTION

INSTRUCTION
FORMATS

- MEMORY
REFERENCE

The Load/Store instruction group is used to manipulate data between memory
and General Purpose Registers. In general, Load instructions transfer
operands from specified memory locations to General Purpose Registers; Store
instructions transfer data from General Purpose Registers to specified memory
locations. Provisions have also been made to Mask or Clear the contents of
General Purpose Registers, memory bytes, halfwords, words, or doublewords
during instruction execution.

The Load/Store instructions use the following three formats:
The format for most memory reference instructions is defined below. These

instructions contain two addresses: a register number R and a memory address
with a 20-bit format.

| 1 .] 1 [1
OP CODE ! Rl X 1 |F ! WA ! ' ' [
L1111 Ll] A T N T I T I N O NN S S A O
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bits 0-5 define the Operation Code.
Bits 6-8 designate a General Purpose Register address (0-7).
Bits 9-10 designate one of three General Purpose Registers to be

used as an index register.

X =00 designates that no indexing operation is to
be performed.

X=01 designates the use of Rl for indexing.
X =10 designates the use of R2 for indexing.
X =11 designates the use of R3 for indexing.

Bit 11 designates whether an indirect addressing operation is to
be performed. :

1=0 designates that no indirect addressing operation
is to be performed.

I=1 designates that an indirect addreésing operation
is to be performed.

Bits 12-31 specify the address of the operand when the X and I fields are
equal to zero.

6-7

IMMEDIATE

INTERREGISTER

6-8

In immediate operand instructions, the right halfword of the instruction
contains the 16-bit operand value. The format for these instructions is
given below. ‘

I I' Taue I | I
OP CODE R 0 0 0 o0 CODE OPERAND VALUE
I I I L] Lt | L1 NS N I SR I N N T I A
601 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bits 0-5 define the Operation Code.

Bits 6-8 designate a General Purpose Register address (0-7).
Bits 9-12 unassigned.

Bits 13-15 define Augmenting Operation Code.

Bits 16-31 contain the 16-bit operand value.

Arithmetic operands are assumed to be represented in two's complement with
the sign in bit 16.

Interregister instructions are halfword instructions and as such may be stored
in either the left or right half of a memory word. The format for inter-
register instructions is given below.

(LEFT HALFWORD) | | { (RIGHT HALFWORD)
AUG
!
OP CODE Ry Ry |cope OP CODE Ry R, ICODE
Lt 1 1 | |1 L1 L.l 1 L1 1 I | Ll I I T I |
0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 256 26 27 28 29 30 31

Left Halfword Right Halfword

Bits 0-5 16-21 define the Operation Code.

Bits 6-8 22-24 designate the register to contain the
result of the operation.

Bits 9-11 25-27 designate the register which contains
the source operand.

Bits 12-15 28-31 define the Augmenting Operation Code.

CONDITION CODE
UTILIZATION

MEMORY_TO
REGISTER

TRANSFERS

A Condition Code is set during most Load instructions to indicate if the
operand being transferred is greater than, less than, or equal to zero.
Arithmetic exceptions are also reflected by the Condition Code results. All
Store instructions leave the Condition Code unchanged. '

Figure 6-1 depicts the positioning of information for transfer from

memory to any General Purpose Register.

MEMORY CELL

F-=—ar-=—-r=--7
) 'r h |
Iy Iy |

J

'
I P | S,
0

23 24 31

REGISTER

(A) BYTE TRANSFERS

MEMORY CELL

MEMORY CELL

LEFT RIGHT
HALFWORD HALFWORD

0 15 16 31

rF=—==="
| I
1 |
I |
0 15 16 31

REGISTER

(8) HALFWORD TRANSFERS

EVEN MEMORY ODD MEMORY

REGISTER

(C) WORD TRANSFERS

WORD WORD
0 31 0 31
31 0
EVEN OoDD 3
REGISTER REGISTER

(D) DOUBLEWORD TRANSFERS

Figure 6-1. Positioning of Information Transferred Between

Memory and Registers

LB

d,*m,x LOAD BYTE
AC08
1 1 | 1] 1
] 1 | 1 1 1
1 o 1 0 1t 1 R X I]1 BYTE OPERAND ADDRESS
| I N O | L1] [N VS TN N N N OO NN S N NN TN N AU OO O |
0O 1 2 3 4 5 6 7 8 9 10 11 .12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
DEFINITION The byte in memory specified by the Effective Byte Address (EBA) is accessed
and transferred to bit positions 24-31 of the General Purpose Register (GPR)
specified by R. Bit positions 0-23 of the GPR specified by R are cleared
to zeros.
SUMMARY (EBL) — Roy_
EXPRESSION) 24-31
0 — Rg-23
CONDITION CODE CCl: Always zero
RESULTS CC2: 1SI Rg-31 is greater than zero
CC3: Always zero
CC4: 1ISI Ry_3p is equal to zero
EXAMPLE 1 Memory Location: 01000
Hex Instruction: AC 88 11 01 (R=1, X=0, I=0)
Assembly Language Coding: LB 1,X'1101'
Before PSWR GPR1 Memory Byte 01101
Execution 00001000 517CD092 B6
After PSWR GPR1 Memory Byte 01101
Execution 20001004 000000B6 B6
Note The contents of memory byte 01101 are transferred to bits 24-31 of GPR1,
bits 0-23 of GPR1 are cleared. CC2 is set because the contents of GPR1 are
greater than zero. '
EXAMPLE 2 Memory Location: 01000
Hex Instruction: AD 28 14 00 (R=2, X=1, I=0)
Assembly Language Coding: LB 2,X'1400',1
Before PSWR GPR1 GPR2 Memory Byte 01603
Execution 10001000 00000203 12345678 Al
After PSWR GPR1 GPR2 Memory Byte 01603
Execution 20001004 00000203 000000A1 Al
Note The contents of memory byte 01603 are transferred to bits 24-31 of GPRZ.

Bits 0-23 are cleared, and CC2 is set.

6-10

DEFINITION

SUMMARY

EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

LOAD HALFWORD LH

d,*m,x
ACO0
| | | | | 1
1 T _ 1 1 | 1
1 0 1 0 1 1t R X 1]0 HALFWORD OPERAND ADDRESS 1
L1 1 11 1 1] O N N T T TN NN TN TN TR N T O |
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and the sign bit (bit 16) is extended left 16 bit positions to
form a word. This word is transferred to the GPR specified by R.

(EHL)SE— R

CCl: Always zero

CC2: ISI Ry_5; is greater than zero
CC3: ISI Ry 37 is less than zero
CC4: ISI Ry 3y is equal to zero

Memory Location: 00408
Hex Instruction: AE 00 05 03 (R=4, X=0, I=0)
Assembly Language Coding: LH 4,X'502'

PSWR GPR4 - Memory Halfword 00502
10000408 5C00D34A 930C

PSWR GPR4 Memory Halfword 00502
1000040C FFFF930C 930C

The contents of memory halfword 00502 are transferred to bits 16-31 of
GPRA. Bits 0-15 of GPR4 are set by the sign extension, and CC3 is set.

6-11

LW
d,*m,x

CONDITION CODE

After Execution

6-12

LOAD WORD
ACO0
[,]] | l]
1 1 1 1 1 I
1 0 0o 1 1 R X } 0 WORD OPERAND ADDRESS oj]o
L1 1 1 1 L1 | I N N T O N T TS SO N S T I I |

DEFINITION

EXPRESSION

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is
accessed and transferred to the GPR specified by R.

(EWL) —R

CCl1:

Always zero

CC2: 1ISI Rg-31 is greater than zero
CC3: ISI Rg-37 is Tess than zero
CC4: 1ISI Rg_37 is equal to zero
Memory Location: . 02390

Hex Instruction:

AF 80 27 A4 (R=7, X=0, I=0)

Assembly Language Coding: LW 7,X'27A4"

PSWR GPR7 Memory Word 027A4
00002390 0056879A 4D61A28C

PSWR GPR7 Memory Word 027A4
20002394 4D61A28C 4D61A28C

The contents from memory word 027A4 are transferred to GPR7, and CC2 is

set.

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After
Execution

Note

LOAD DOUBLEWORD

d,*m,x
ACO0
| { | |
1 I |)
t 01 0 1 1 X 1 0 WORD OPERAND ADDRESS 0] o0
L1 11 1 | O U W I I I I T |
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and transferred to the GPR specified by R and R+l. R+l is the
GPR one greater than specified by R. The least significant memory word is
accessed first and transferred to the GPR specified by R+l. The most
significant memory word is accessed last and transferred to the GPR
specified by R.

The GPR specified by R must have an even address.

(EWL+1) — R+1

(EWL) -~ R

CCl1:
cC2:
cC3:
cc4:

Always zero

ISI (R,R+1) 1is greater than zero
ISI (R,R+1) is less than zero
ISI (R,R+1) is equal to zero

281C4
AF 02 8B 7A
LD 6,X'28B78'

Memory Location:
Hex Instruction:
Assembly Language Coding:

(R=6, X=0, I=0)

PSWR GPR6 GPR7 Memory Word 28B78
400281C4 03F609C3 39BB510E FO5B169A

Memory Word 28B7C

137F8CA2

PSWR GPR6 GPR7 Memory Word 28B78
100281C8 FO5B169A 137F8CA2 FO5B169A

Memory Word 28B7C
137F8CA2

The contents of memory word 28B78 are transferred to GPR6 and the contents
of memory word 28B7C are transferred to GPR7. CC3 is set.

6-13

LMB
d,*m,x

- DEFINITION
SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-14

LOAD MASKED BYTE

BOO8
1 | 1 |] H
I 1 1 I | 1
1 0 1 1 0 O R X 111 BYTE OPERAND ADDRESS
| I I | L1 1 | N N N T I T TN N SN I TN N T N I T |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and masked (Logical AND function) with the least significant byte (bits 24-31)
of the Mask register (R4). The result of the mask operation is transferred
to bit positions 24-31 of the GPR specified by R. Bit positions 0-23 of

the GPR specified by R are cleared to zeros.

(EBL)&(RA)4_31)~ (Rpg_31)

0~ Ry_23

CCl: Always zero
CC2: ISI Ry_3; is greater than zero

CC3: Always zero
CC4: ISI Ry_3; is equal to zero

Memory Location: 00900 ,
Hex Instruction: BO 88 00 A3 (R=1, X=0, I=0).
Assembly Language Coding: LMB 1,X'A3' :

PSWR GPR1 ' GPR4 Memory Byte 000A3
00000900 AA3689B0 000000F0 29

PSWR GPR1 GPR4 Memory Byte 000A3
20000904 00000020 000000F0 29

The contents of memory byte 000A3 are logically ANDed with the rightmost
byte of GPR4, and the result is transferred to bits 24-31 of GPRl. Bits
0-23 of GPR1 are cleared, and CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
' RESULTS

EXAMPLE

Before
Execution

After Execution

Note

LMH

*
LOAD MASKED HALFWORD d,*m,x
B0O0O
] ! l | | |
|] | 1 | |
1 01100 R x |t]o HALFWORD OPERAND ADDRESS 1
L1t 1 ! 1 l AN AN IO T N SO T T IO TN Y T I O |
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed, and the sign bit (bit 16) is extended 16 bit positions to the
left to form a word. This word is then masked (Logical AND Function) with
the contents of the Mask register (R4). The resulting word is transferred
to the GPR specified by R.

(EHL)SE&(R4)—» R

CCl: Always zero

CC2: ISI Ry_3q is greater than zero
CC3: ISI Ry 37 is less than zero
CC4: 1ISI Ry 37 is equal to zero

Memory Location: 00300

Hex Instruction: B2 80 03 Al (R=5, X=0, I=0)

Assembly Language Coding: LMH 5,X*3A0"

PSWR GPR4 GPR5 Memory Halfword 003A0
08000300 OFFOOFFO C427B319 A58D

PSWR GPR4 GPR5 Memory Halfword 003A0 ’
20000304 OFFOOFFO 0FF00580 A58D

The contents of memory halfword 003A0 are accessed, the sign is extended
16 bit positions, the result is logically ANDed with the contents of GPR4,
and the final result is transferred to GPR5. CC2 is set.

6-15

LMW
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-16

LOAD MASKED WORD

B00O
] ! | l 1 }
1 T T I T I
10 1 1 00 R X Jt]o WORD OPERAND ADDRESS ojo
I T 1] | U Y N N N S S A T OO B BN
01 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is accessed
and masked (Logical AND Function) with the contents of the Mask register (R4).
The resulting word is transferred to the GPR specified by R.

(EWL)&(R4) - R

CCl: Always zero ‘
CC2: ISI Ry_3q is greater than zero
CC3: ISI Ry 37 is less than zero
CC4: ISI Ry 37 is equal to zero

Memory Location: " 00F00

Hex Instruction: B3 80 OF FC (R=7, X=0, I=0)
Assembly Language Coding: LMW 7 ,X'FFC'

PSWR GPR4 GPR7 Memory Word OOFFC
00000F00 FFO0007C 12345678 8923F8E8

PSWR GPR4 GPR7 Memory Word OQOFFC
10000F04 FF00007C 89000068 8923F8E8

The contents of memory word OOFFC are ANDed with the contents of GPR4.
The result is transferred to GPR7, and CC3 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE

RESULTS

EXAMPLE

Before
Execution

After Execution

Note

LMD

LOAD MASKED DOUBLEWORD d.%m. x
9 s
BO0O
] |]]] l
1) 1 I | I
1 6 11 0O R X 110 DOUBLEWORD OPERAND ADDRESS oj1]0
| I I | L1] | I N N I T N T N A N I S v
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
js accessed, and the contents of each word are masked (Logical AND Function)
with the contents of the Mask register (R4). The least significant memory

word is masked first. The resulting masked doubleword is transferred to the
GPR specified by R and R+l. R+l is the GPR one greater than specified by R.

(EWL+1)&(R4) — R+1

(EWL)&(R4) — R

CCl: Always zero

cC2: 1ISI (R,R+1) is greater than zero
CC3: ISI (R,R+l) is Tess than zero
cc4: ISI (R,R+l) is equal to zero

Memory Location: 00200
Hex Instruction: B3 00 02 F2 (R=6, X=0, I=0)

Assembly Language Coding: LMD 6,X'2F0’

PSWR GPR4 GPR6 GPR7
00000200 3F3F3F3F 12345678 9ABCDEFO
Memory Word 002F0 Memory Word 002F4
AE69D10C 63B208F0

PSWR GPR4 GPR6 GPR7
20000204 3F3F3F3F 2E29110C 23320830

Memory Word 002FO0
AE69D10C

Memory Word 002F4
63B208F0

The contents of memory word 002F4 are ANDed with the contents of GPR4, and
the result is transferred to GPR6. CC2 is set.

6-17

LNB LOAD NEGATIVE BYTE

d,*m,x
B408
1 l l l | « l
1 1 1 T 1 1
1 0 1 1 0 1 R X | 1 BYTE OPERAND ADDRESS
S N T I A I] N N T N T T O Y TN O O T O N A O
0 1 2 3 4 656 6 7 8 9 10 11121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DEFINITION The byte in memory specified by the Effective Byte Address (EBA) is
accessed, and 24 zeros are appended to the most significant end to form a
word. The two's complement of this word is then taken and transferred to the
GPR specified by R.

SUMMARY - [00-23, (EBL)] —-R
EXPRESSION

CONDITION CODE CCl: Always zero
RESULTS CC2: Always zero

CC3: ISI Rp.37 is less than zero

CC4: ISI Ry_3; is equal to zero

EXAMPLE Memory Location: 0D000 v
Hex Instruction: B4 88 D1 02 (R=1, X=1, I=0)
Assembly Language Coding: LNB 1,X'D102'
Before PSWR GPR1 Memory Byte 0D102
Execution 0000D000 00000000 3A
After Execution PSWR GPR1 Memory Byte 0D102
1000D004 FFFFFFC6 3A
Note The contents of memory byte 0D102 are prefixed with 24 zeros to form a

word; the result is negated and transferred to GPR1. CC3 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

LNH

d,*m,x

LOAD NEGATIVE HALFWORD
B400

1 | | 1 | 1

1 1] 1 1 i
1 o 1t 1 0 1 R X | 0 HALFWORD OPERAND ADDRESS 1

Ll 1 1.1 L 1 N S T NN SN DN NN Y N N N N N B O

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed, and the sign bit (bit 16) is extended 16 bit positions to the left
to form a word. The two's complement of this word is then transferred to the
GPR specified by R. :

- [(EHL)SE] ~R

CCl: Always zero

CC2: ISI Ry 5y is greater than zero
CC3: ISI Ry 37 is less than zero
CC4: 1ISI Ry 31 is equal to zero

Memory Location: 08000
Hex Instruction: B6 00 84 03 (R=4, X=0, I=0)
Assembly Language Coding: LNH 4,X'8402'

PSWR GPR4 Memory Halfword 08402
40008000 12345678 960C -

PSWR GPR4 Memory Halfword 08402
20008004 000069F4 960C

The contents of memory halfword 08402 are sign extended and negated. The
result is transferred to GPR4, and CC2 is set.

6-19

LNW
d,*m,x

DEFINITION

SUMMARY

EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-20

LOAD NEGATIVE WORD

B400
1 1 | 1 |]
| I 1 1 1 I
10 1 1 0 1 R X 1{o WORD OPERAND ADDRESS ojo
Lt 1 11 L1 | U S N Y N Y A AN O N N N |
01 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is
accessed, and its two's complement is transferred to the GPR specified by R.

-(EWL) = R

CCl: ISI Arithmetic Exception
CC2: ' ISI Rg-31 is greater than zero
CC3: ISI Ry_37 is less than zero
CC4: ISI Rp_37 is equal to zero

Memory Location: 00500
Hex Instruction: B6 80 06 C8 (R=5, X=0, I=0)
Assembly Language Coding: LNW 5,X'6C8’

PSWR GPR5 Memory Word 006C8
08000500 00000000 185E0D76
PSWR GPR5 Memory Word 006C8
10000504 E7A1F28A 185E0D76

The contents of memory word 006C8 are negated and transferred to GPR5, and

- CC3 1is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

LOAD NEGATIVE DOUBLEWORD LND

d,*m,x
B400
| l |]] l
I 1 I I ! 1
1.0 1 1t 0 1 R X ! 0 | DOUBLEWORD OPERAND ADDRESS oj1]o0
L1 111 [] EEE N N TN OO N N N NN N O A O O
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

_The doubleword in memory specified by the Effective Doubleword Address

(EDA) s accessed and its two's complement is formed. The least significant
memory word is complemented first and the result is transferred to the GPR
specified by R+l. R+l is the GPR one greater than specified by R. The
most significant memory word is complemented, and the result is transferred
to the GPR specified by Rl.

-(EDL)=R,R+1

CCl: 1ISI Arithmetic Exception

CC2: ISI (R,R+l) 1is greater than zero
CC3: ISI {R,R+1) is less than zero
cC4: ISI (R,R+l) is equal to zero

Memory Location: 02344

Hex Instruction: B5 00 24 A2 (R=2, X=0, I=0)
Assembly Language Coding: LND 2,X'24A0'

PSWR GPR2 GPR3

00002344 01234567 89ABCDEF

Memory Word 024A0 Memory Word 024A4

00000000 00000001

PSWR GPR2 GPR3

10002348 FFFFFFFF FFFFFFFF

Memory Word 024A0
00000000

Memory Word 024A4
00000001

The doubleword obtained from the contents of memory words 024A0 and 024A4 is
negated, and the result is transferred to GPR2 and GPR3. CC3 is set.

6-21

LI
d,v

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-22

LOAD IMMEDIATE

€800
l l : l

I I 1
110 0 1 0 R {0 0 o0]Jojo 0 ©

N T N O I N Y T | L1 1 1 11

IMMEDIATE OPERAND

01 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3]

transferred to the GPR specified by R.
(INjg_31)ge =R

CCl:
cc2:

Always zero
ISI §R0_31) is greater than zero

CC3: ISI R0_31g is less than zero
CC4: 1ISI (R is equal to zero
0-31 ‘
Memory Location: 0630C .
Hex Instruction: C8 80 FF FB (R=1)
Assembly Language Coding: LI 1,-5
PSWR GPR1
0000630C 12345678
PSWR GPR1
10006310 FFFFFFFB

-The halfword immediate operand in the Instruction Word (IW) is sign-extended
(bit 16 extended 16 positions to the left) to form a word.

This word is

The halfword operand is sign-extended and the result is transferred to

GPR1. CC3bis set.

DEFINITION

“Notes

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After
Execution
(PSD Mode)

§

LOAD EFFECTIVE ADDRESS

d,*m,x
D000
- Ll kI AJ T 1 T ¥
110100 R ' OPERAND ADDRESS ofo
|] 1 [l [] b | (] I]] [[l 1 1 1 [1 1 1 1 1 1 1 /]
0 12345 6 7 8 9101112131415 1617 1819 20 2122 23 24 5 26 27 28 29 30 3

The effective address (bit 12-31) of the LEA instruction is generated in the
same manner as in all other memory reference instructions and then is trans-
ferred to bit positions 12-31 of the GPR specified by R.

In PSD mode or PSW mode extended, bits 2-7 are cleared and bits 8-31 indicate
results of EA.

1. If 1=X=0, the entire 32-bit Instruction Word is transferred to the GPR
specified by R. (512 KB mode only)

2. If I=0 and X=0, bit pbsitions 0-11 of the GPR specified by R will contain
the sum of bit positions 0-11 of the Instruction Word and bit positions
0-11 of the index register specified by X. (512 KB mode only)

3. If I=1, bit positions 0-11 of the GPR specified by R will contain the
sum of bit positions 0-11 of the last word of the indirect chain and
bit positions 0-11 of the index register specified (if any) in the last
word of the indirect chain. (512 KB mode only)

4. In cases 2 and 3 above, an additional bit may be added to bit position
11 of the GPR specified by R as a result of overflow in the sum of the
address and the index values. (512 KB mode only)

EA=~Ryp.31

CCl: No change
CC2: No change
CC3: No change
CC4: No change.

1000
DO 804000 (R=1, X=I=0)
LEA 1,X'4000'

Memory Location:
Hex Instruction:
Assembly Language Codings:

PSWR GPR1 Memory Word 4000
08001000 00000000 AC881203

PSWR GPR1 Memory Word 4000
08001004 D0804000 AC881203
08001004 €0004000

AC881203

6-23

LEAR LOAD EFFECTIVE ADDRESS REAL
d,*m,x
8000

1 00000 R X I|F OPERAND ADDRESS c|cC

01 23 456 7 8 9101112131415 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31

DEFINITION This instruction causes the Effective Real (nonmapped) Address of the
referenced operand to be transferred to bit positions 7-31 of the GPR
specified by R.

NOTE The format of the 25-bit Effective Real Address transferred to the GPR
is as follows:

I 1 L) L] 1 ¥

ZERO ‘F EFFECTIVE ADDRESS c|C
) I I T T N S TN TN TR N N SN A N U U N N N T TR NN SR NN N |

0 1234567 8910 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SUMMARY ERA — R7_31
EXPRESSION

0— R0-6

CONDITION CODE CC1l: No change
RESULTS CC2: No change
CC3: No change
CC4: No change
Assembly Language Coding: LEAR d,*m,x
NOTES 1. Privileged Instruction

2. Attempt to execute in PSW mode will result in an undefined
instruction trap.

3. This instruction may not be the target of an execute instruction.

6-24

DEFINITION

CONDITION CODE
RESULTS

LOAD ADDRESS LA
d,*m,x
3400

1 T T v 1 T

00110 1 RD X I'|F EFFECTIVE ADDRESS
L.l 1 L 1 1 1 - | [A 1 [[1 Il | | 1 -] L i L [—

0 123 456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

Loads the Effective Address (EA) into R,. Bits 0-7 are cleared in RD'
Bits 8-11 receive the results of Extendgd Indexing (if active). Bit 12
is the F-bit if 512 KB mode and is an Effective Address (EA) bit

if in 512 KB Extended mode.

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: LA d,*m,x

6-25

.5,d,z LOAD THROUGH EXTERNAL MAP
€809

¥ L] il

AUG CODE NOT USED
1100 10 Rp Rs 1t 00 1/0 000 0O0O0OOOUO O O0O00O Rz
Il i 'l L 1 [[['} 1 I [l [1 [[[1 1] [1 1 1 e 1

01 2 3 4 6 6 7 8 9101112131415 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31

DEFINITION This instruction will Toad the content of memory as defined by the Effective
Address (EA) which is calculated from the content of Rg (PSD Physical Address)
and RZ (Logical Address) into Register Rp- y

CONDITION CODE CCl: No change
RESULTS .CC2: ISI greater than zero
CC3: ISI Tless than zero
CC4: ISI equal to zero

Assembly Language Coding: LEM RgsRp RZ
NOTES 1. Privileged instruction.

2. If the MAP described by the Logical and PSD addresses is not found,
a system check trap will be generated.

3. If the MAP described by the Logical and PSD addresses is found and
the Invalid bit is set, a MAP invalid trap will be generated.

4. This instruction will cause an undefined instruction trap, if attempt
~is made to execute it in PSW mode or if it is the target of an Execute
instruction.

5. This instruction loads bytes, halfwords, words, and doublewords as
designated by the contents of the F and C bits in RZ' (Doublewords
are loaded into R, and Rp + 1.)

R, FORMAT

v T L] T

0 00O0OOOUO|FLOOOOUO LOGICAL ADDRESS . ccC
| I I T R N | I - F IS TN W (RO TN TN TN AN TOUNON T NN N NN NN NN RN | 1

0 123 45 67 8 910 111213141516 17 1819 20 2122 23 24 25 26 27 28 29 30 31

Bits 0-06 Not Used

Bits 07 F-Bit

Bits 08-11 Not used

Bits 12 Extended Addressing Bit
Bits 13-29 Logical Address

Bits 30-31 C-Bits

" Note: This format can address bytes, halfwords, words, or doublewords
as per the F- and C-bit convention.

6-26

CEMA

CONVERT THROUGH EXTERNAL MAP ADDRESS - . s,d,z
C80A
¥ 1 . L) 1 \
AUG CODE NOT USED
11001 0| Pp Rs |1 01 0lo 00000000000 of 2
3 1 1 1 I)] ;¢ | N T | y 3 40 1 3 ¢ 2 1 1 1 1 3 1

0 123 4 56 7 8 9101112131415 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

DEFINITION This instruction will convert the Logical Address (R7), as defined by

the Effective Logical Address, to the Physical Address. The Physical
Address will be loaded in RD' RS supplies the physical address of a PSD
that describes the external map,

CONDITION CODE * CC1: No change
RESULTS CC2: No change

CC3: No change

CC4: No change

Assembly Language Coding: CEMA RS’RD’RZ
NOTES 1. Privileged Instruction.

2., If addressed PSD has a block size (granularity) of zero, or if the
memory MAP register has an invalid state, a MAP Addressing Fault
will be generated.

3. This instruction will cause an undefined instruction trap, if attempt
is made to execute it in PSW mode or if it is the target of an Execute
instruction.

R; FORMAT

T T L 1 L

000000 o0|lFloooo LOGICAL ADDRESS c c
] | 1]] 1 [[) | [1 1 1 1 ['l 1 4 [l 11 []] [

0 12345 6 7 8 9101112131415 16 17 1819 20 2122 23 } 25 26 27 28 29 30 31-
Bits 0-06 Not Used

Bit 07 F-Bit

Bits 08-11 Not used

Bits 12 Extended Addressing Bit
Bits 13-29 Logical Address

Bits 30-31 C-Bits

Note: This format can address bytes, halfwords, words, or doublewords
as per the F- and C- bit convention.

6-27

P LOAD FILE
d’* t]
X CC00

1] i | 1
1 i 4 |
1 1 0 0 1 1 R X 1]0 OPERAND ADDRESS ofojojojo

L1t 1 1 1 1 11 N U N TN T Y N NS A O N
0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DEFINITION This instruction is used to load from one to eight GPR's. The word in memory
specified by the Effective Word Address (EWA) in the Instruction Word is
accessed and transferred to the GPR specified by R. Next, the EWA and the
GPR address are incremented. The next sequential memory word is then
transferred to the next sequential GPR. Successive transfers continue until
GPR7 is Toaded from memory.

NOTE The EWA must be specified such that, when incremented, no carry will be
propagated from bit position 27. Therefore, if all eight registers are to
be Toaded, bit positions 27-29 must initially be equal to zero.

SUMMARY (EWL) —-R
EXPRESSION
(EWL)+1 —R+1

(EWL+N) —R7

CONDITION CODE CCl: No change
RESULTS CC2: No change

CC3: No change

CC4: No change

EXAMPLE Memory Location: 00300
Hex Instruction: CE 00 02 00 (R=4, X=0, I=0)
Assembly Language Coding: LF 4,X'200'
Before PSWR GPR4 GPRS GPR6 GPR7
Execution 08000300 00000000 00000000 00000000 00000000
Memory Word 00200 Memory Word 00204 Memory Word 00208
00000001 00000002 » 00000003
Memory Word 0020C
00000004
After Execution PSWR GPR4 GPR5 GPR6 GPR7
08000304 00000001 00000002 00000003 00000004
Memory Word 00200 Memory Word 00204 Memory Word 00208
00000001 00000002 00000003
Memory Word 0020C
00000004
Note The contents of memory word 00200 are transferred to GPR4, of memory word
00204 to GPR5, of memory word 00208 to GPR6, and of memory word 0020C to
GPR7.

DEFINITION

SUMMARY -

EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

STORE BYTE STB

D408
! _] l | !

1 1 0 1 0 1 R X (1]t

! I | I] 1
BYTE OPERAND ADDRESS

| I T N U N N N T | I N N N TN T N N TN T IO A T T By |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 256 26 27 28 29 30 31

The least significant byte (bits 24-31) of the GPR specified by R is
transferred to the memory byte location specified by the Effective Byte
Address (EBA) in the Instruction Word. The other three bytes of the memory
word containing the byte specified by the EBA remain unchanged.

(Rpg_31) —~EBL

CC1: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 03708
Hex Instruction: D4 88 3A 13 (R=1, X=0, I=0)
Assembly Language Coding: STB 1,X'3A13'

PSWR GPR1 Memory Byte 03A13
10003708 01020304 78
PSWR GPR1 Memory Byte 03Al3
1000370C 01020304 04

The contents of bits 24-31 of GPR1 are transferred to memory byte 03A13.

6-29

STH STORE HALFWORD

Sy m,x
D400
1 | |] 1 |
| I T i T |
1 1.0 1 0 1 R X rjo HALFWORD OPERAND ADDRESS 1
B T | L1] N S N T O T N Y T Y T Y O O N
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DEFINITION The least significant halfword (bit 16-31) of the GPR specified by R is
transferred to the memory halfword location specified by the Effective
Halfword Address (EHA) in the Instruction Word. The other halfword of the
memory word containing the halfword specified by the EHA remains unchanged.

SUMMARY (R, .)— EHL
EXPRESSION 16-31

CONDITION CODE CCl: No change
RESULTS CC2: No change

CC3: No change

CC4: No change

EXAMPLE Memory Location: 082A400
Hex Instruction: D6 00 83 13 (R=4, X=0, I=0)
Assembly Language Coding: STH 4,X'8312"
Before PSWR GPR4 Memory Halfword 08312
Execution 000082A4 01020304 A49C
After Execution PSWR GPR4 Memory Halfword 08312
000082A8 01020304 0304

Note The contents of the right halfword of GPR4 are transferred to memory
hal fword 08312.

6-30

DEFINITION

SUMMARY
EXPRESSTON

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

STORE WORD

STW
S,*m,X
‘D400
] | | |] |
I 1 1 4 I 1
1t 1 0 1 0 1 R X 1o WORD OPERAND ADDRESS 0] 0
L1 1 11 11] | I DN O U N N N IO T N T S I A |
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is transferred to the memory word Tocation
specified by the Effective Word Address in the Instruction Word.

(R) —EWL

CCl: No change
CC2: No change
CC3: No change
CC4: No change

03904
D7 00 3B 3C (R=6, X=0, I1=0)
STW 6,X"'3B3C"

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR GPR6 Memory Word 03B3C
10003904 - 0485A276 00000000
PSWR GPR6 Memory Word 03B3C
10003908 0485A276 0485A276

The contents of GPR6 are transferred to memory word 03B3C.

6-31

STD
S, *m, X

DEFINITION -

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

6-32

STORE DOUBLEWORD

D400
l] 1 l !]

I | I I | I
11 0 1 0 1 R X J11o0

| T N I O O | | I T NN N N T O N TN SN N N I |

DOUBLEWORD OPERAND ADDRESS o]

0

01 2 3 4 5 6 7

The doubleword in the GPR specified by R and R+l (R+l is the GPR one
greater than specified by Rg is transferred to the memory doubleword
Tocation specified by the Effective Doubleword Address (EDA). The word
in the GPR specified by R+l is transferred to the least significant word
of the doubleword memory location first.

(R+1) — EWL+1
(R) — EWL

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CC1:

ccz:
CC3:
CCa:

No change
No change
No change
No change

Memory Location:
Hex Instruction:

Assembly Language Coding:

PSWR
2000596C

GPR6

Memory Word 05C48

E24675C2

0596C
D7 00 5C 4A (R=6, X=0, I=0)
STD 6,X'5C48'

GPR7
5923F8E8

Memory Word 05C4C

0A400729 8104A253
PSWR GPR6 GPR7
20005970 E24675C2 5923F8E8

Memory Word 05C48
E24675C2

Memory Word 05C4C
5923F8E8

The contents of GPR6 are transferred to memory word 05C48,
and the contents from GPR7 are transferred to memory word 05C4C.

DEFINITION

SUMMARY
EXPRESSION

"CONDTTION CODE

RESULTS

EXAMPLE

Before
Execution

After Execution

Note

Sy *M,X
D808
1 |] |] |
1 T T T T T
11 0 1 1.0 R X i 1 BYTE OPERAND ADDRESS
L1 1 1.1 L1 1 | A I N N N T AN NN NN TN A N T Y IO I
0 1t 2 3 4 5 6 7 8 9 10 11t 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

The least significant byte (bits 24-31) of the GPR specified by R is masked
(Logical AND Function) with the least significant byte of the Mask register
(R4). The resulting byte is transferred to the memory byte location
specified by the Effective Byte Address (EBA) in the Instruction Word. The
other three bytes of the memory word containing the byte specified by the
EBA remain unchanged.

(Rpg.31)8(Rdpq_3;) —EBL

CC1l: No change
CC2: No change
CC3: No change
CC4: No change

01D80
D8 08 1E 91 (R=0, X=0, I=0)
STMB 0,X'1E91'

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR GPRO GPR4 Memory Byte 01E91
10001D80 AC089417 000QFFFC 94
PSWR GPRO GPR4 Memory Byte 01E91
10001D84 AC089417 000CFFFC 14

The right-hand byte of GPRO is ANDed with the right-hand byte of GPR4. The
result is transferred to memory byte 01E91.

6-33

STMH
Sy *m, X

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-34

STORE MASKED HALFWORD

D800
l 1 }] | !
! 1 1 S | 1
1 1.0 1 10 R X 1jo HALFWORD OPERAND ADDRESS 1
L1 1 1 L1 | N N Y TN N [N TN O T N TN T T T Y |
0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

- The Teast significant halfword (bits 16-31) of the GPR specified by R is

masked (Logical AND Function) with the least significant halfword of the
Mask register (R4). The resulting halfword is transferred to the memory

‘halfword location specified by the Effective Halfword Address (EHA) in the

Instruction Word. The other halfword of the memory word containing the
halfword specified by the EHA remains unchanged.

(Ryg-31)&(R 5 39) — EHL

CCl: No change
CC2: No change
CC3: No. change
CC4: No change

Memory Location:) 01000
Hex Instruction: DA 80 11 AF (R=5, X=0, I=0)
Assembly Language Coding: STMH 5,X'11AE*

PSWR GPR4 GPR5 Memory Halfword 011AD
20001000 00003FFC 716A58AB 0000
PSWR GPR4 GPR5 ‘Memory Halfword 011AD
20001004 00003FFC 716A58AB - 18A8

The right-hand halfword of GPR5 is ANDed with the right-hand halfword of
GPR4, and the result is transferred to memory halfword 011AD.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

STORE MASKED WORD

STMW
S,*m,X
D800
L |] 1 I
| 1 1 1
1 1t 01 1 0 R X 1]0 WORD OPERAND ADDRESS oj]o
L
| 11 11 1 1] | I N I T O N N Y S O O O
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is masked (Logical AND Function) with the

contents of the Mask 'register (R4).
the memory word Tocation specified by the Effective Word Address.

(R)&(R4) — EWL

CCl: No change

CC2: No change
-CC3: No change
CC4: No change

Memory Location:
Hex Instruction:

Assembly Language Coding:

04000
DB 00 43 7C (R=6, X=0, I=0)
"STM W 6,X'4376"

PSWR GPR4 GPR6 Memory Word 0437C
08004000 O0OFFOOFF 718C3594 12345678
PSWR GPR4 GPR6 Memory Word 0437C
08004004 O0FFOOFF 718C3594 008C0094

The contents of GPR6 are ANDed with the contents of GPR4.
The result is transferred to memory word 0437C.

The resulting word is transferred to

6-35

STMD
S,*m, X

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE

RESULTS

EXAMPLE

Before

Execution.

After Execution

Note

6-36

STORE MASKED DOUBLEWORD

D800
] l]] l]
! 1 | 1 1 1
1101 10 R x li1]oe DOUBLEWORD OPERAND ADDRESS of1]o.
I I N S I N | Lt 11 1t 111t 1111
0 1 2 3 4.5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Each word of the doubleword in the GPR specified by R and R+l is masked
(Logical AND Function) with the contents of the Mask register (R4). R+l is
GPR one greater than specified by R. The resulting doubleword is transferred
to the memory doubleword location specified by the Effective Doubleword
Address (EDA) in the Instruction Word.

(R+1)&(R4) ~ EWL+1
(R)&(R4) — EWL

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 0A498 _
Hex Instruction: DB 00 A6 52 (R=6, X=0, I=0)
Assembly Language Coding: STMD 6,X'A650'

PSWR GPR4 GPR6 GPR7
1000A498 0007FFFC AC88A819 988B1407
Memory Word 0A650 Memory Word 0A654

51CD092 ' AE69D10C

PSWR GPR4 GPR6 GPR7
1000A49C 0007FFFC AC88A819 988B1407

Memory Word 0A650
0000A818

Memory Word 0A654
00031404

The contents of GPR6 are ANDed with the contents of GPR4, and the result is
transferred to memory word OA650. The contents of GPR7 are ANDed with the
contents of GPR4, and the result transferred to memory word 0A654.

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

STORE FILE STF
Ss*m,X
DCOO
1 1]] 1
i 1 1 1 |
1 1 0 1 1 1 R X 1 0 OPERAND ADDRESS 0] ojojojo
L1111 L 1] [T I I I O I I
0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This instruction is used to transfer the contents from one to eight GPR's to

the specified memory locations.

The contents of the GPR specified by R are

transferred to the memory location specified by the Effective Word Address

(EWA).
memory location.
memory.

The next sequential GPR is then transferred to the next sequential
Successive transfers continue until GPR7 is Toaded into

The EWA must be specified such that, when incremented, no carry will be

propagated from bit position 27.

Therefore, if all eight General Purpose’

Registers are transferred, bit positions 27-29 must initially be equal to

zero.
(R) — EWL
(R+1) —~ EWL+1

(R7) — EWL+N

CCl: No change
CC2: No change
CC3: No change
CC4: No change

"Memory Location:

Hex Instruction:
Assembly Language Coding:

02000

DE 00 21 00 (R=4, X=0, I=0)

STF 4,X'2100'

PSWR - GPR4 GPR5 GPR6 GPR7
40002000 11111111 22222222 33333333 44444444
Memory Word 02100 Memory Word 02104

00210000 00210400

Memory Word 02108 Memory Word 0210C

00210800 00210C00

PSWR GPR4 GPR5 GPR6 GPR7
40002004 11111111 22222222 33333333 44444444

Memory Word 02100

11111111 Y,

Memory Word 02108
33333333

Memory Word 02104
22222222

Memory Word 0210C
44444444

The contents of GPR4 are transferred to memory word 02100, of GPR5 to 02104,

~of GPR6 to 02108, and of GPR7 to 0210C.

6-37

DEFINITION

CONDITION CODE

6-38

RESULTS

NOTES

STORE THROUGH EXTERNAL MAP
€808

T
AUG CODE NOT USED

110010 PRp Rs |1 ooolooooooooooo0 oo Rz
1 0 ¢ & . ¢ ¢ 03 9 00 9 ¢ 0 0 1 4 3 2 1 1 1 2 1 3 3 1 1

0 1 2 3 456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29

This instruction will store the contents of Register RD in the memory
location defined by the Effective Address (EA). The Logical Address
is supplied by RZ' RS supplies the Physical Address of the PSD that
describes the external map.

CC1l: No change

CC2: No change

CC3: No change
CC4: No change

Assembly Language Coding: SEM RS’RD’RZ

1. This instruction will store bytes, halfwords, words, or doublewords

30 31

as designated by the contents of the F- and C-bits in Ri. (Doublewords

RD and RD + 1 are stored in memory locations M and M = 1.)
2. This is a privileged instruction.

3. If the MAP described by the Logical and PSD addresses is not found,
a system check trap will be generated.

4, If the MAP described by the Logical and PSD addresses ié found and
Invalid bit is set, a MAP invalid trap will be generated.

5. This instruction will cause an undefined instruction trap if attemp

the

t

is made to execute it in PSW mode or if it is the target of an Execute
instruction.
R; FORMAT
L] L} L] L)
00000OT O|Floo 00 , LOGICAL ADDRESS cc
1 (] [l H [l [l § I I} 1 1 1 [l 1] 1 1 1]) — | -} 1] i 1
0 12345 67 8 9101112131415 1617 1819 20 2122 23 24 25 26 27 28 29 30 31
Bits 00-06 Not Used
Bit 07 F-Bit
Bits 08-11 Not Used
Bit 12 Extended Addressing Bit
Bits 13-29 Logical Address
Bits 30-31 C-Bits
Note: This format can address bytes, halfwords, words or doublewords

as per the F- and C-bit convention.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

ZERO MEMORY BYTE ' MB

*myX
F808
|] l 1 1]
T] ; T I 1
1t 1 1 1t 1t 0jJO0 0 O X {1 BYTE OPERAND ADDRESS
L 11 11 L1 | [OO VOO N O N (NN (N TS VO T TN TN N [T |
o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is cleared
to zero. The other three bytes of the memory word containing the byte
specified by the EBA remain unchanged.

0 —EBL

CC1:
CcC2:
CC3:
cca:

No change
No change
No change
No change

Memory Location:
Hex Instruction:

Assembly Language Coding:

00308
F8 08 04 9F
ZMB X'49F'

PSWR Memory Byte 0049F
10000308 6C ‘
PSWR Memory Byte 0049F
1000030C 00

The contents of memory byte 0049F are cleared to zero.

6-39

IMH
*m, X

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-40

ZERO MEMORY HALFWORD
F800

I 1 I 1 1 I
1 1 1 1 100 0 0 X 0 HALFWORD OPERAND ADDRESS 1

Lt 1 1111 Y Y Y T T T TN T N N O O A O A |

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
cleared to zero. The remaining halfword containing the 16-bit location in
memory specified by EHA remains unchanged.

0— EHL

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 2895C
Hex Instruction: F8 00 2A 42 7 (X=0, I=0) .

Assembly Language Coding: IMH X'2A426'
PSWR Memory Halfword 2A426
0802895C 9AE3

PSWR Memory Halfword 2A426
08028960 0000 ' :

The contents of memory halfword 2A426 are cleared to zero.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

ZERO MEMORY WORD ZMW

*m, X
F800
[1 1 | [|
1 | | | | |
1 1 1 1 1 0|0 O O X 1{o WORD OPERAND ADDRESS ojo
L1 1 11 L1 l NN W U A NN VN (NN O TN U OO A T I
O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) 1is cleared
to zero. :

0 —EWL

CCl: No change
Cc2: No change
cc3: No change
CC4: No change

Memory Location: 05A14 :
Hex Instruction: F8 00 5F 90 (X=0, I=0)

Assembly Language Coding: ZMW X'5F90'
PSHR Memory Word 05F90
00005A14 12345678

PSWR Memory Word 05F90
00005A18 00000000

The contents of memory word 05F90 are cleared to zero.

6-41

ZMD
*m, X

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-42

ZERO MEMORY DOUBLEWORD

F800

0

0

0

X

1

T 1 ¥ T

0 DOUBLEWORD OPERAND ADDRESS 0

1 1 1 1 L 1 1 1 [l 1 1 1 L L il

1

0

01

The doubleword in memory specified by the Effective Doubleword Address
(EDA) is cleared to zero.

0 — EWL

0 — EWL+1

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:

Assembly Language Coding:

PSWR
10015B3C

PSWR
10015B40

Memory Word 15D68
617E853C

Memory Word 15D68
00000000

15B3C
F8 01 5D 6A (X=0, I=0)
ZMD X'15D68'

Memory Word 15D6C
A2976283

Memory Word 15D6C
00000000

The contents of memory words 15D68 and 15D6C are cleared to zero.

2 34 56 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

ZERO REGISTER ' , 7R

d
0Co0
] |
I
o0 0 01 1 A R 0 00 o/AééZV
| I I O O N T S [O O O |
© 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R (bits 6-8) is logically Exclusive ORed
with the word in the GPR specified by R (bits 9-11) resulting in zero. This
result is then transferred to the GPR specified by R. The contents of the
two R fields must specify the same GPR.

(RBAR) R

CC1l: Always zero
CC2: Always zero
€C3: Always zero
CC4: Always one

Memory Location: 309A6

Hex Instruction: 0C 90 (R=1)
Assembly Language Coding: ZR 1

PSWR GPR1

100309A6 8495A6B7

PSWR - GPR1

080309A8 00000000

The contents of GPR1 are cleared to zero, and CC4 1is set.

6-43

REGISTER -

TRANSFER
INSTRUCTIONS

GENERAL
DESCRIPTION

INSTRUCTION
FORMATS

INTERREGISTER

CONDITION CODE
UTILIZATION

 6-44

The Register Transfer instruction group provides the capability to perfom
a transfer or exchange of information between registers. Provisions have
also been made in some instructions to allow two's complement, one's com-
plement, and Mask operations to be performed during execution,

The following basic instruction format is used by the Register Transfer
instruction group.

]] ,
!] AUG
I N I L1 | P 1t
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bits 0-5 define the Operation Code.

Bits 6-8 designate the register to contain the result of
the operation.

Bits 9-11 designate the register which contains the source
operand.

Bits 12-15 define the Augmenting Operation Code.

A Condition Code is set during execution of most Register Transfer
instructions to indicate whether the contents of the Destination register
(RD) are greater than, less than, or equal to zero.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

NOTES

TRANSFER SCRATCHPAD TO REGISTER TSCR

s,d
0 0 10 1 1]Rp Rs 11 1 1 ///////
o I Ll L1 L1 1
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the Scratchpad specified Rg, bits 8-15, is transferred
to the GPR specified by Rp. The contents of Rg is not modified and
only bits 8-15 are used by the instruction.

Scratchpad addressed by Rs = Rp

CC1l: .No change

CC2: No change

CC3: No change

CC4: No change

Assembly Language Coding: TSCR RS,RD

1. TSCR is a halfword privileged instruction.
2. The valid address range for Rg to address

the 256 Scratchpad locations is
XX0OXXXXy to XXFFXXXXH.

6-45

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

NOTES

6-46

TRANSFER REGISTER TO SCRATCHPAD
2COE

01 2 3 45 6 7 8 9 1011ﬁ21314.15161718192021”22232425262728293031

o

The word Tocated in the General Purpose Register (GPR) specified by Rg
is transferred to the Scratchpad location specified by RD bits 8-15.
The contents of RD is not modified by the instruction and only bits 8-15
are used by the instruction. '

(R5) — Scratchpad addressed by Ry o ..

CCl1: No change
CC2: No change
CC3: No change

CC4: No change
Assembly Language Coding: TRS RS’RD

1. TRSC is a halfword privileged instruction.
2. The valid address range for RD to address the 256 Scratchpad

Tocations is XXOOXXXXH to XXFFXXXXH.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

TRANSFER REGISTER TO REGISTER ‘ TRR

s,d
2C00
L] _
1 1 7
c 0 1 0 1 1 RD Rs 0 0 0O
L1 1 1.1 11 L1 1 1 i
01 2 3 4°'5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 256 26 27 28 29 30 31

The word in the GPR specified by Rg is transferred to the GPR specified
by Rp.

(Rs) =Rp

CCl: Always zero

CC2: 1ISI (Rp) is greater than zero
cc3: ISI (Rp).is less than zero
cC4: ISI (Rp) is equal to zero

Memory Location 00206
Hex Instruction 2C A0 (Rp=1, Rg=2)

Assembly Language Coding: TRR 2,1
PSWR GPR1 GPR2
00000206 00000000 000803AB
PSWR GPR1 GPR2
20000208 000803AB 000803AB

The contents of GPR2 are transferred to GPR1 and CC2 is set.

6-47

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-48

TRANSFER REGISTER TO REGISTER MASKED

2C08

R
|

D

R

S
|

1

0 0 o0
L1 |

il

The word in the GPR specified by R
the contents of the Mask|register
to the GPR specified by R

(Rg)&(R4) —~R,

CC1:
cc2:
CC3:
CC4:

2 3 4 5 6 7

Always zero
ISI (R.) is greater than zero
) is less than zero
) is equal to zero

ISI (R
ISI (R

D
D

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR

00000206

PSWR

20000208

The contents of GPR2 are ANDed with the contents of GPR4, and the result is
transferred to GPR1.

89 10 11 12 13 14 15716 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

GPR1
00000000

GPR1
000003A9

D’

is

00206
2C A8 (R
TRRM 2,1

GPR2
000803AB

GPR2
000803AB

CC2 is set.

Tra).

D=1, RS=2)
GPR4
0007FFFD

GPR4
0007FFFD

masked (Logical AND Function) with
The resulting word is transferred

_ DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

TRANSFER REGISTER TO PROTECT REGISTER TRP

S,p
FBOO
]] 1 | I} | |
] ! 1 |] 1 I
1 1 1 1 1 0f1 1 0 |PROT.REG. R UNASSIGNED
L 111 1 L 11 [T SN T WO N TR T N N N NN OO S A M
0O 1 2 3 4 5 6 7 8 9 10 111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is transferred to the Protect register
specified by the Protect register field (bits 9-12) in the Instruction
Word. The Protect register address is the same as the four high order
memory address bits used to specify all memory locations within a

given module.

(R) = PR

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 0050C

Hex Instruction: FBOF (R=7, Protect Register=1)
Assembly Language Coding: TRP 7,1

PSWR GPR7 Protect Register 1

800005C0 OO0O0OFFFE 0000

PSWR GPR7 Protect Register 1

80000510 0000FFFE FFFE

The contents of bits 16-31 of GPR7 are transferred to Protect Register 1.
The protection status of Memory Module 1 is established such that a program
operating in the unprivileged state can store information only 1in locations
8000 through 87FF without generating a Privilege Violation trap.

6-49

TPR
d,p

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-50

TRANSFER PROTECT REGISTER TO REGISTER

FB80 .
| l | 1 | l

| I 1 1 I . 1
1 1 1 1 1 0] 1 1 1]PROT.REG. R UNASSIGNED

01 23 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the Protect register specified by the Protect register field
(bits 9-12) is transferred to the GPR specified by R. The Protect register
address is the same as the four high order memory address bits used to
specify all memory locations within a given module.

(PR) =R

CC1l: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 0050C
Hex Instruction: FBSF. (R=7, Protect Register=1)
Assembly Language Coding: TPR 1,7

PSWR GPR7 Protect Register 1
0000050C 00000000 FFFE
PSWR GPR7 Protect Register 1
00000510 0000FFFE FFFE

The contents of Protect Register 1 are transferred to bits 16-31 of GPR7.
This value defines the protection status of Memory Module 1.

TRANSFER REGISTER NEGATIVE TRN

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DEFINITION The word in the GPR specified by R is two's complemented and transferred to
the GPR specified by RD.
SUMMARY -(Rs) - Ry
EXPRESSION ‘

CONDITION CODE CCl: ISI Arithmetic exception
RESULTS cc2; 1ISI (RD) is greater than zero
€C3: 1ISI (RD) is less than zero
cc4: 1ISI (RD) is equal to zero

EXAMPLE Memory Location: 00AAE
Hex Instruction: 2F E4 (RD=7, RS=6)
Assembly Language Coding: TRN 6,7
Before PSWR GPR6 GPR7
Execution 00000AAE 00000FFF 12345678
After Execution PSWR GPR6 GPR7
: 10000AB0O 00000FFF FFFFFOO1

Note

The contents of GPR6 are negated and transferred to GPR7. CC3 is set.

- 6-51

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-52

TRANSFER REGISTER NEGATIVE MASKED

2c0c

0o o
]

1 1 / 7 ,
11 on 111 |R°| 1Rs| 1:110|o (LTI T T T T, 4%

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 256 26 27 28 29 30 3

The word in the GPR specified by Rg is twe's complemented and masked
(Logical AND Function) with the contents of the Mask register (R4). The
resulting word is transferred to the GPR specified by Rp.

-(Rs)&(R4) =~ Rp

CCl: 1ISI Arithmetic exception

CC2: ISI (Rp) is greater than zero

CC3: ISI (Rp) is less than zero

CC4: ISI (Rp) is equal to zero

Memory Location: 00AAE

Hex Instruction: 2F EC (Rp=7, Rg=6)
Assembly Language Coding: TRNM 6,7

PSHR GPR4 GPR6 GPR7
00000AAE JFFFFFFF 00000FFF 12345678
PSWR GPR4 GPR6 GPR7
20000ABO 7FFFFFFF 00000FFF 7FFFF001

The contents of GPR6 are negated; the result is ANDed with the content
of GPR4 and transferred to GPR7. CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execdtion

Note

TRANSFER REGISTER COMPLEMENT TRC
s,d

2C03

| l .
0 0 1 0' 1 1 RDl RS 0o 0 1 1 V/////
0O 1 2 3 A 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RS is one's complemented and transferred to
the GPR specified by RD'

Rg) —= Ry

CCl: Always zero

cc2: ISI (RD) is greater than zero
cc3: 1ISI (RD) is less than zero
cc4: 1ISI (RD) is equal to zero

Memory Location: 01001
Hex Instruction: 2F E3 (RD=7, R5=6)
Assembly Language Coding: TRC 6,7
PSWR GPR6 , GPR7
" 0800100A 55555555 00000000
PSWR GPR6 GPR7
1000100C - 55555555 AAAAAAAN

The contents of GPR6 are complemented and transferred to GPR7. CC3 is set.

6-53

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-54

TRANSFER REGISTER COMPLEMENT MASKED
2C0B

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by Rg is one's complemented and masked
(Logical AND Function) with the contents of the Mask register (R4). The
result is transferred to the GPR specified by Rp.

(R5)&(R4) Ry

CC1l: Always zero

CC2: ISI (R,) is greater than zero
CC3: 1ISI (Ry) is less than zero
CcC4: 1ISI (RD) is equal to zero

Memory Location: 0100A ‘

Hex Instruction:) 2F EB (RD=7, RS=6)
Assembly Language Coding: TRCM 6,7

PSWR GPR4 GPR6 GPR7
0800100A 00FFFFO0O0 55555555 00000000
PSWR GPR4 GPR6 GPR7
2000100C 00FFFFOO0 55555555 00AAAAQO

The content of GPR6 are complemented and ANDed with the contents of GPR4.
The result is transferred to GPR4. The result is transferred to GPR7.
CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

EXCHANGE REGISTERS XCR

2C05 5»d
] [_
] | ///AW
(1] o 1t 0o 1 1 R R o 1t 0 1
L1111 1 %) 15 L1 /

'cC3: ISI Original (R

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RS is exchanged with the word in the GPR
specified by RD'

(Rs) - RD

CCl: Always zero
CC2: ISI Original (RD) is greater than zero
) is less than zero

CC4: ISI Original (RD) is equal to zero

Memory Location: 02002

Hex Instruction: 2C A5 (RD=1, RS=2)
Assembly Language Coding: XCR 2,1

PSWR GPR1 GPR2

40002002 00000000 AC8823C1

PSWR GPR1 GPR2

08002003 AC8823C1 00000000

The contents of GPR1 and GPR2 are exchanged. CC4 is set.

6-55

XCRM
s,d

CONDITION CODE

After Execution

6-56

EXCHANGE REGISTERS MASKED

DEFINITION

EXPRESSION

2C0D
|
1
o 0101 1| R R 110 1l /
) s
Lttt 1 1 1 & ¢ 8 t 1§ 1 1
0 1.2 3 4 6 6 7 8 9 1011 12 13 14 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the GPR specified by Rg and Rp are each masked (Logical AND
Function) with the contents of the Mask register (R4). The results of both

"masked operations are exchanged.

(RS)&(R4) -’RD
(Rp)&(R4) —Rg

CC1: Always zero

€C2: 1ISI original (RD) and (R4) is greater than zero
CC3: 1ISI original (RD) and (R4) is Tess than zero
CC4: 1ISI original (RD) and (R4) is equal to zero

Memory Location: 02002

Hex Instruction: 2C AD (RD=1, RS=2)
Assembly Language Coding: XCRM 2,1

PSWR GPR1 GPR2 GPR4
40002002 6B000000 AC8823C1 OOOFFFFF
PSWR GPR1 GPR2 GPR4
08002004 000823C1 00000000 OOOFFFFF

The contents of GPR1 and GPR2 are each ANDed with the contents of GPR4. The
results of the masking operation are exchanged and transferred to GPR2 and
GPR1, respectively. CC4 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

Bit positions 1-4 and 13-30 ef the General Purpose Register (GPR)
specified by R are transferred to the corresponding bit positions
of the Program Status Word Register (PSWR).

Ri-2, 13-30

cci: ISI (Ry)
cc2: ISI (R,)
cC3: ISI (Ry)
cca: ISI (R,)

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR
6000069E

PSWR
20000B4C

— PSWRy 4, 13-30

is equal to one
is equal to one
is equal to one
is equal to one

0069E
28 00 (R=0)
TRSH 0

GPRO

AO000B4C

GPRO

AO00OB4C

1. The contents of GPRO, bits 1-4 and 13-30 are transferred to the PSWR.
PSWR bits 0, 5-12, and 31 are unchanged.

2. This instruction can be used in PSD mode to modify CC and PC portions

of PSWI.

6-57

MEMORY
MANAGEMENT
INSTRUCTIONS

GENERAL The 32/70 Series Computer provides the capability of access1ng memory in
DESCRIPTION any of the following four modes:

1. 512 KB Mode

2. 512 KB Extended Mode
3. 512 KB Mapped Mode

4, Mapped, Extended Mode

The format for the Memory Management instructions vary to the extent that no
single format can represent them., The instructions are presented on the
following pages.

6-58

DEFINITION

CONDITION CODE
RESULTS

NOTES

SET EXTENDED ADDRESSING . SEA

000D

0 123 45 6 7 8 91011121314151617181920212223’2425 S 27 28 29 30 31

The CPU enters the Extended Addressing mode.
CCl: No change

CC2: No change

CC3: No change

CC4: No change

Assembly Language Coding: SEA

1. This is a nonprivileged instruction.
2. Sets bit 5 in PSD, word 1.

6-59

CEA

DEFINITION

CONDITION CODE
RESULTS

NOTES

6-60

CLEAR EXTENDED ADDRESSING

- 000F

01 23 46566 7 8 9101112131415 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31

The CPU enters the Normal (Nonextended) Addressing mode.

"CC1: No change

CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: CEA

1. This is a nonprivileged instruction.
2. Clears bit 5 in PSD, word 1.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

NOTES

LMAP
d

LOAD MAP
2007
¥ | 1 T
0 01 o]1 1]Rp 00001110000000000000000
1 1 1 L1 | ;g 1 | T N T WU N N N SN SO NN IO N N

0 1 2 3456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 26 26 27 28 29 30 31

Loads the MAP Image Descriptor List (MIDL) from main memory into the CPU

- MAP Registers. RD contains the Real Address of a PSD to be used in the

MAP loading process.

(MIDL) — MAP Registers

CCl: No change -

CC2: No change

CC3: No change

CC4: No change

Assembly Language Coding: LMAP RD

1. This instruction primarily used for diagnostic purposes.
. The CPU must be unmapped.

2
3. - Only MAP Load functions are performed, with no context switching.
4

Attempts to execute this instruction in PSW mode will result in an
undefined instruction trap.

5. This is a privileged instruction.

6. This is a fullword instruction.

6-61

TMAPR
s,d

DEFINITION
SUMMARY
EXPRESSION
CONDITION CODE
RESULTS
NOTES

6-62

TRANSFER MAP TO REGISTER
2COA

01 23 456 7 8 9101112131415 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31

This instruction causes the even and odd map entries, specified by Rg
bits 27-31 to be transferred to the GPR specified by Ry. The least
significant map address bit (Rg bit 31) is ignored by the instruction.

MAP addressed by Rg 27-31 — Rp

CC1l: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: TMAPR RS’RD

1. If this instruction is executed in the PSW mode, an undefined
instruction trap will occur.

2. This is a halfword privileged instruction.

3. The format for Rg is as follows:

T T L) ¥ 1] L)

NOT USED MUST BE ZERO MAP ADDRESS

lIllllllllllllllllllllllIlllll

0 12 3 456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4. The CPU must be Unmapped.

WRITABLE
CONTROL STORAGE
(WCSs)
INSTRUCTIONS

GENERAL
DESCRIPTION

CPU ASSOCIATED
WCS FORMAT

Writable Control Storage (WCS) is an option available for use with the CPU
or Class F I/0 controller. The WCS consists of one or two Random Access
Memory (RAM) logic boards, each containing 2K- x 64-bits of RAM memory. The
WCS is used to supplement the firmware in the CPU or the Class F I/0
controller.

There are two instruction formats used for WCS 1nstructions; one for the CPU
associated WCS, and one for the Class F I/0 Controller associated WCS. The
formats are as follows:

T T Y
OP CODE Rp ' Rg AUG CODE
PR S B R Ll L1 P

0123 45¢6 7 8910Mn 12 13 14 15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

Bits 0-5 Define the Operation Code.
Bits 6-8 Varies in usage as follows:
Instruction Usage
WWCS Specifies the register containing the

WCS address.

RWCS Specifies the register containing the
Logical Address in main memory that is
to receive the WCS contents.

Bits 9-11 Varies in usage as follows:
Instruction Usage
WWCS Specifies the register containing the

Logical Address in main memory containing
the information to be loaded into WCS.

RWCS Specifies the register containing the
WCS address.

Bits 12-15 Define the Augmenting Operating Code.

Bits 16-31 Not used. This is a halfword instruction.

6-63

- CLASS F I/0

CONTROLLER
ASSOCIATED o ' | aue ' ' '
WCS FORMAT OP CODE R CWCS CODE | cope CONSTANT
1 - Lol 1 1] 1 1 1 1] 1 | —] 1 L el Ll 1 1] Ll

0 12345678910 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 6-8 Specify the GPR, when nonzero, whose contents will be added
to the constant to form the logical channel and subaddress.

Bits 9-12 Specifies the Channel WCS Operation Code.
Bits 13;15 Define the Augmenting Operation Code.

Bits 16-31 Specifies a constant that will be added to the contents of R
to form the logical Channel and subaddress. If R is zero,
only the constant will be used to specify the logical Channel
and subaddress.

CONDITION CODE The Condition Codes remain unchanged when using the CPU associated WCS. When
UTILIZATION using the class F I/0 controller associated WCS, the Condition Codes are
changed in accordance with the WCS instructions. Refer to the individual
Class F I/0 controller WCS instructions for details.

WCS PROGRAMMING Programming the CPU associated WCS is accomplished by the use of the Write
WCS (WWCS) instruction. The contents of the WCS are in the form of micro-
instructions, which are used to augment the firmware in the CPU. It is be-
yond the scope of this publication to provide the microinstruction tech-
niques used in the implementation of WCS.

The WCS is organized in 64 bits by 2K modules, allowing up to two modules to
be used (4K x 64 bits). Reading or writing WCS is accomplished by alternately
placing the first 32-bit word in the first 32 bits and then the second 32-bit
word in the second 32 bits. A graphic representation of the Read/Write
sequence is shown as follows:

4K A 8K Af

2K
FIRST 6K ? SECOND

2K 2K 6K 4 2K
BY BY

1 64 3 64
0 4K 1§ /
@——— 32 bits i ~-@—— 32 bits ———p
3 i i T a—

I 1 I 2 I 3 ! 4 I
1ST EXECUTABLE 2K BY 64

Accessing the CPU associated WCS is accomplished through the use of the Jump
to WCS (JWCS) instruction. More complete information of the programming of
the WCS is contained in the Writable Control Storage Technical Manual.

Programming of the Class F I/0 controller associated WCS is presented in the
individual I/0 Processor publications.

6-64

DEFINITION

CONDITION
CODE
RESULTS

WRITE WRITABLE CONTROL STORAGE WWCS
0oocC

0O 1 2 3456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This privileged instruction causes the WCS to be written with a single 64-bit
word at the location specified by the contents of R;, with two words in main

memory specified by the logical addresses contained in~RS.

The contents of RS must contain a logical word address that specifies the
first word of a two-word pair. F- and C-bits, if specified, are ignored and
the address will be interpreted as a word address.

The contents. of RD must contain a right-justified, zero-filled address of
the WCS location that is to be written.

If the WCS option is not present or if the WCS address is greater than 4095:

CC1l will be set, an Undefined Instruction Trap will occur, and no writing
into WCS will take place.

CCl: WCS option not present or address out of range
CC2: Zero
CC3: Zero
CC4: Zero

Assembly Language Coding: WWCS RS’RD

6-65

RWCS
s,d

DEFINITION

CONDITION CODE

6-66

RESULTS

READ WRITABLE CONTROL STORAGE
000B

0 123 4586 7 8 9101112131415 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

-t

This privileged instruction causes the contents of a single 64-bit location
of WCS specified by the contents of RS to be written into main memory at
the Tocation specified by the logical address contained in RD'

The contents of RD must contain a logical word address that specifies the
first word pair. F- and C-bits, if specified, are ignored and the address
will be interpreted as a word address.

The contents of RS must contain a right-justified, zero-filled address of

the WCS Tocation that is to be read.

If the WCS option is not present or if the WCS address is greater than 4095:
CCl will be set, an Undefined Instruction Trap will occur, and no information
will be stored into main memory.

CCl: WCS option not present or address out of range

CC2: Zero
CC3: Zero
CC4: Zero

Assembly Language Coding: RWCS RS’ RD

DEFINITION

NOTES

CONDITION CODE
RESULTS

JUMP
FAGO

. JWCS
TO WRITABLE CONTROL STORAGE *m, X

-

A7

01 234567 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This

instruction causes an Unconditional Branch to the location specified by

the resolved Effective Address. The rules for the Effective Address are as
follows:

Nonindirect - the least significant 6 bits of the Effective Address
(index and address) will be used as the WCS entry point address

Indirect - the least significant 6 bits of the final resolved Effective
Address after the resolution of all indirect addresses will be used as
the WCS entry point address.

Only the least significant 6 bits of the Effective Address are used and all
other bits will be ignored.

When

execution in WCS is complete, control will be returned to the next

sequential instruction after this instruction.

1.

CCl:

Since no registers can be specified by this instruction, the authors
of the WCS instructions and the software instructions must mutually
agree upon the parameter registers. In general cases, registers 0

and 1 can be used. If the WCS facility is not supported, an Undefined
Instruction Trap will occur.

If indirect accesses are used, the F-bit must be present in each
indirect word.

€C2:{A11 condition code settings will be
CC3:(determined by the WCS routines.

cca:

Assembly Language Coding: JWCS X'WCS Branch Addr'

6-67

BRANCH
INSTRUCTIONS

GENERAL
DESCRIPTION

)

INSTRUCTION
FORMAT

MEMORY REFERENCE

CONDITION CODE
UTILIZATION

6-68

Branch instructions provide the capability of testing for certain conditions
and branching to another address if the conditions specified by the in-
struction are satisfied. Branch instructions permit referencing subroutines,
repeating segments of programs, or returning to the next instruction within
a sequence.

The Branch instruction group uses the following instruction format:

OP CODE R/D X I|F BRANCHADDRESS [
| I N N N T S N T | W Y VO TS TN T W N W SN NN G SN SN NN N

01 2 3 456 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3i

Bits 0-5 define the Operation Code.
Bits 6-8 vary in usage as follows:
Instruction Contents/Usage
BU, BFT 000
BCT, BCF D field
BIB, BIH, Register Number
BIW, BID
BL 001
BRI 010
Bits 9-10 designate one of three index registers.
Bit 11 indicates whether an indirect addressing operation
is to be performed.
Bit 12 is zero. ,
Bits 13-30 specifies the branch address when X and I fields are zero.
Bit 31 is zero.

Condition Code results during branching operations are unique because they
reflect the state of the indirect bit of the instruction and the state of
bits 1, 2, 3, and 4 of the indirect address obtained from the specified
memory location. ‘

BRANCH The usual procedure for calling a subroutine is to execute a Branch and Link

PROGRAMMI NG (BL) whose effective address is the starting location of the routine. Since
PC+1 is saved in GPRO, a subsequent return can be made to the location following
the BL by executing a TRSW 0. The PSW including the PC+l word is saved in GPRO.
Hence, the subroutine can be reentrant (pure); i.e., memory is not modified
by calling it. If we wish to use GPRO in the subroutine, we can store the
return address in a convenient location in memory, location B, with an
STW 0, B, and then return with a BU *B.

Consider a move subroutine to move 50 words beginning at TAB. The routine
begins at MOVE, whose address is stored in C.MOVE. The main program would
contain:

BL *C.MOVE

.o 3 Return here
GPR1 is used as an Index register for counting through the table and GPR5
is used to output the data. The starting address of the table is in TAB 1.

The subroutine is as fo]lows:

COUNT EQU 50
MOVE LI 1, -COUNT Negative of table length

LOOP LW 5, TAB+COUNT,1 Get next word
STW 5, TAB1+COUNT,1 Store in new buffer
BIW 1, LOOP Increment and test for end
TRSW O Return

Argument Passing

Given an arithmetic subroutine that operates on arguments in GPR5 and GPR6,
leaving the result in GPR6, the subroutine call is as follows:

BL SQRT Call with arguments in GPR5 and GPR6

The subroutine is as follows:

SQRT Arithmetic operations

.

fRSN 0 Return to Call + 1 word

In the preceding example, the calling program must load the General Purpose
Registers before calling the subroutine. It is often convenient for the
program to supply the arguments (or the addresses of the locations that
contain them) with the call, and for the subroutine to handle the data
transfers. With this method, the program gives the arguments in the two
memory locations following the BL.

BL SQRT

cee Argument 1

.o Argument 2

eee Return here with result in GPR6

6-69

The return is made to the location following the second argument with the
result in GPR6.

SQRT TRR 0,1
LD 6,0,1 Pick up Arguments 1 and 2 -
ADi 0,8 Increment return address by 2 words

TRSW 0 Return to Call + 3 words

An alternate method which allows up to six arguments to be passed per
instruction utilizes the Load File instruction as follows:

SQRT TRR 0,1
- LF 2,0,1 Pick up Arguments 1-6
ADi 0,24 Increment return address by 6 words
TRSW 0 Return to Call + 7 words

The next method passes an address list instead of arguments following
the BL; otherwise, it is identical to the method described above.

BL SQRT
.. Address of Argument 1
.. Address of Argument 2

SQRT TRR 0,1

: LW 6,%0,1 Pick up Argument 1

ADI 1,4
LW 7,*%0,1 Pick up Argument 2
ADI 0,8 Increment return address by 2 words
TRSW 0 ‘Return to Call + 3 words

The next method is the same as the previous example except that argument 1
is a table, and the result replaces the second argument in memory:

BL SQRT
. Address of Argument 1
cen Address of Argument 2 and result
SQRT TRR 0,3 Pick up base address of table, Argument 1
TRR 0,1
ABR 25,1 Increment return address by 4 words
6,%0,1 Pick up Argument 2

LW

6-70

The final method is similar to the previous versions except that GPR1-GPR7

are not disturbed:

SQRT

SAVE

STF
TRR
LW
ADI
LW

ST
LF
ADI
TRSW
REZ

0, SAVE

Save General Purpose Registers

Pick up Arguments

Store result

Restore General Purpose Registers
Increment return address by 2 words

Return to Call + 3 words

Eight zero-filled words on a file boundary

6-71

BU BRANCH UNCONDITIONALLY

*m, x
ECO0
] | 1 1]]
! 1 T] : 1]
1 1 10 1 170 0 O X rjo BRANCH ADDRESS 0‘
L1 1 11 L1 | | T I IO T Y T T S O O O O I

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DEFINITION The Effective Address (bits 13-30) in the instruction is transferred to the
corresponding bit positions in the Program Status Word Register (PSWR). This
causes program control to be transferred to any word or halfword location
in memory. Bit positions 1-12 of the PSWR remain unchanged if the indirect
bit is equal to zero. If the indirect bit of the Instruction Word is equal
to one, bit positions 1-4 of the last memory word in the indirect chain are
transferred to the corresponding bit positions of the PSWR. Bit 0 (priv-
ileged state bit) of the PSWR remains unchanged. The Extended mode bit
remains unchanged. Bits 0 and 5 are changed only by a BRI indirect.

SUMMARY EA —~PSWR; 5 4ns IF I=0
EXPRESSION 13-30 13-30
(EWL;_, and 13 30) —PSWR) , and 15 51, IF I<1

CONDITION CODE If the indirect bit is equal to zero, the Condition Code remains unchanged.

RESULTS
CCl: 1ISI (I) is equal to one and (Ele) is equal to one
CC2: 1ISI (I) is equal to one and (EWLZ) is equal to one
CC3: ISI (I) is equal to one and (EWL3) is equal to one
CC4: 1ISI (I) is equal to one and (EwL4) is equal to one
EXAMPLE 1 Memory Location: 01000
Hex Instruction: EC 00 14 14 (X=0, I=0)

Assembly Language Coding: ~ BU X'1414'

Before PSWR
Execution 20001000

After Execution PSKR

20001414
Note The contents of bits 13-30 of the instruction replace the corresponding
portion of the PSWR. The Condition Code remains unchanged.
EXAMPLE 2 Memory Location: 01000
Hex Instruction: EC 10 14 14 (X=0, I=1)
Assembly Language Coding: BU *X'1414'
Before PSWR Memory Word 01414
Execution 80001000 700015AC ,
After Execution PSWR Memory Word 01414
FO0015AC 700015AC
Note The contents of bits 1-30 of memory word 01414 replace the previous

contents of bits 1-4 and 13-31 of the PSWR.

6-72

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

BRANCH CONDITION FALSE . BCF
v,*m, X

FOO0O0

| i] l

i | I 1
X 1} o BRANCH ADDRESS

-
-
-
-
o
(=]
l— O —-

I I I S | S N T N TN TN (N (U N N OO T N O

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

The Effective Address (bits 13-30) in the instruction is transferred to

the corresponding bit positions in the Program Status Word Register (PSWR),
if the condition specified by the D field (bits 6-8 of the instruction) is
present. The seven specifiable conditions are tabulated below. If the
condition is not as specified, the next instruction in sequence is executed.
If the indirect bit of the Instruction Word is equal to one, and the branch
occurs, bit positions 1-4 of the last memory word in the indirect chain are
transferred to the corresponding bit positions of the PSWR. Bits O, and 5-15
are unchanged.

D Field (Hex) Branch Condition (Branch if):

CCl=zero

CC2=zero

CC3=zero

CC4=zero

CC2 and CC4 both = zero

CC3 and CC4 both = zero

cc1, cC2, CC3, and CC4 all = zero

NOYOTH WM

The resulting Condition Code remains unchanged if the indirect bit {(bit 11)
is equal to zero.

CCl: ISI (I) is equal to one and (EWLl) is ‘equal to one
CC2: ISI (I) is equal to one and (Esz) is equal to one
€C3: ISI (I) is equal to one and (EWL;) is equal to one
cC4: ISI (I) is equal to one and (EwL4) is equal to one

Memory Location: 02094
Hex Instruction: F1 00 21 4C (CIC2C3=2,X=O,I=0)
Assembly Language Coding: BCF 2,X'214C'

PSWR
10002094

PSWR
1000214C

Condition Code bit 2 is not set. The Effective Address (in this case
bit 13-30 of the instruction) is transferred to the PSWR.

6-73

DEFINITION

' CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

6-74

BRANCH CONDITION TRUE

ECO0
] l 1]

I 1 1 I
X 1§10 BRANCH ADDRESS

-
-
-
[~}
py
-
v

Lt 41 11 11 1 | I I N N TN Y O U N JN N N O SO O T S |

0 7T 2 3 4 5 6 7 8 9 10 11 12 13714 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Effective Address (bits 13-30) in the instruction is transferred to the
corresponding bit positions in the Program Status Word Register (PSWR), if the
condition specified by the D field (bits 6-8) is present. The seven specifiable
conditions are tabulated below. If the indirect bit of the Instruction Word

is equal to one, bit positions 1-4 of the last memory word in the indirect

chain are transferred to the corresponding bit positions of the PSWR. Bits

0 and 5-12 are unchanged.

D Field (Hex) Branch Condition (Branch‘if):

CCl=one

CC2=one

CC3=one

CC4=0ne

CC2 v CC4=one

CC3 v CCd=one

CC1l v CC2 v CC4=one

~NoO YO AW

The resulting Condition Code remains unchanged if the indirect bit (bit 11)
is equal to zero.

CCl: ISI.(I) is equal to one and (EWLI) is equal to one
CcC2: ISI (I) is equal to one and (ENLZ) is equal to one
€C3: ISI (I) is equal to one and (EWL3) is equal to one
CC4: ISI (I) is equal to one and (ENL4) is equal to one

Memory Location: 01000
Hex Instruction: EC 80 14 14 (Condition=1, X=0, I=0)
Assembly Language Coding: BCT, 1,X'1414"

PSWR
50001000

PSWR
50001414

The contetns of bits 13-30 of the instruction are transferred to bits 13-30
of the PSKR.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

" Before
Execution

After Execution

Note

BRANCH FUNCTION TRUE BET

*m,X
FO00
| | | | | |
1 _ 1 | I | |
1 1 1 10 0/0 0 o] X I1{o BRANCH ADDRESS
Lt 1 1.1 {1 | | I T OO T T A NN N (S N (N T T N [T I |
0t 2 3 4 5 6 7 8 9 10 11 12 13 .14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Effective Address (bits 13-30) in the instruction is transferred to the
corresponding bit positions in the Program Status Word Register (PSWR) if
the function bit in the mask register (R4) for the Condition Code, 1 of

the 16 possible combinations of the 4 Condition Code bits which corresponds
to the current condition code, is equal to one. The function F is defined
by the 16 least significant bits of the mask register. A11 16 Condition
Codes of the 4 variables A=CCl, B=CC2, C=CC3, D=CC4 are defined below.

F = RBCD Ra;gv ABCD R4q7v ABCD Ré1gv ABCD Répg
RBCD Rd,qv ABCD Répqv ABCD RézpV ABCD Rép3
ABTD RdpqV ABCD Répgv ABCD RdpgY ABCD Rép7
ABCD Rdog ABCD Riqv ABCD Rézgv ABCD Ré3y

Therefore, any logical function of the four variables stored in the
Condition Code register can be evaluated by storing the proper 16-bit
function code in the mask register. The next instruction in sequence
is executed if the function is equal to zero. If the Indirect bit of
the instruction word is equal to one, bit positions 1-12 of the last
memory word in the indirect chain are transferred to the corresponding
bit positions of the PSWR. Bits 0 and 5 are unchanged.

If F=0 PSWR13.30 * 129 - PSWR13.3q

The resulting condition code remains unchanged if the indirect bit (bit 11)
is equal to zero.

CCl: ISI (I) is equal to one and EA; is equal to one

CC2: ISI iI; is equal to one and EAy is equal to one
CC3: ISI (I) is equal to one and EA3 is equal to one
CC4: ISI (I) is equal to one and EA, is equal to one

Memory Location: 01000

Hex Instruction: FO 00 20 00 (X%=0, I=0)
Assembly Language Coding: BFT X'2000'

PSWR GPR4

70001000 00000002

PSWR GPR4

70002000 Q0000002

Bit 30 of GPR4 defines a function for which CC1=CC2=CC3=1,CC4=0. This
function is true, so a branch is effected.

6-75

BL
*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-76

BRANCH AND LINK

by one word and transferred to General Purpose Register 0.

F880
| 1 | 1]]
I I J ! ! 1
11 1.1 1 00 01 X Ji]o BRANCH ADDRESS
N T L1 1 SN N O NN NN U TN T N N T T O SN A T |
01 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the Program Status Word Register (PSWR) are incremented

If the indirect
bit of the Instruction Word is equal to zero, the Effective Address (bit 13-30)
is transferred to the corresponding bit positions of the PSWR. Bit positions
1-12 of the PSWR remain unchanged. If the indirect bit of the Instruction
Word is equal to one, bit positions 1-4 of the last memory word in the indirect
chain are also transferred to the corresponding bit positions of the PSWR.

Bit 0 (privileged state bit), and bits 5-12 of the PSWR remain unchanged.

(PSWR) — RO
EA — PSWRy3_3q» 1f I=zero
EWLy 100 EA = PSWRy 4 5ng 13-307 1f 170me

If the indirect bit is equal to zero, the Condition Code remains unchanged.

CCl: (ISI) (I) is equal to one and (EWL;) is equal to one
CC2: (ISI) (I) is equal to one and (EWL)) is equal to one
CC3: (ISI) (I) is equal to one and (EWL3) is equal to one
CC4: (ISI) (I) is equal to one and (EWLZ) is equal to one

Memory Location: 0894C

Hex Instruction: F8 80 A3 78 (X=0, I=0)
Assembly Language Coding: BL X'A378'

PSWR GPRO

1000894C 12345678

PSWR GPRO

1000A378 10008950

The contents of the PSHR are transferred to GPRO. The contents of bits 13-30
of the instruction are transferred to bits 13-30 of the PSWR.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Notes

BRANCH AFTER INCREMENTING BYTE BIB

d,*m
F400 -
1]] l l]
T 1 1 1 | |
1 11 1 01 R oofi]o BRANCH ADDRESS
| I S T T I I O A | | I W S OO IO (N AN NN U N (NN O O N N O N |
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the GPR specified by R are incremented in bit position 31.
If the result is nonzero the Effective Address (EA) is transferred to the
Program Status Word Register (PSWR) bit positions 13-30 and bit positions
1-4 of the PSWR remain unchanged. If the result is equal to zero after
incrementing, the next instruction is executed. Bits 0 and 5 are unchanged.

(R) +13; — R

EA — PSWR13_30, if result # 0

CC1l: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 1B204
Hex Instruction: F4 01 Bl A8 (R=0, I=0)
Assembly Language Coding: BIB 0,X'1B1A8'

_PSWR GPRO
2001B204 FFFFFFFF
PSWR GPRO
2001B208 00000000

1. The contents of the GPRQ are incremented by one at bit position 31.
Since the result is zero, no branch occurs.

2. Indexing is not allowed.

| 3. If the indirect bit of the Instruction Word is equal to one, and the

branch occurs, bit positions 1-4 of the last memory word in the indirect
chain are transferred to the corresponding bit positions of the PSWR.
Bits 0 and 5-12 are unchanged.

4, The instruction following may not be the target of the System Control
Panel or Serial Control Panel Halt.

6-77

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Notes

6-78

BRANCH AFTER INCREMENTING HALFWORD

F420 ’
1 | L 1 | 1
T T T T 1 |
1 1 11 0 1t R 0o 111 0 BRANCH ADDRESS
L1 1 1.1 L1] | AN VOO NN (Y TN N (GO AN NN NN N NN NN NN NN O |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the GPR specified by R are incremented in bit position 30.
If the result is nonzero the Effective Address (EA) is transferred to the
Program Status Word Register (PSWR) bit positions 13-30 and bit positions
1-4 of the PSWR remain unchanged. If the result is equal to zero after
incrementing, the next instruction is executed.

(R) + 135 = R

EA — PSWRi3 39 if result # 0

CCl: No change
CC2: No change
CC3: No change
CC4: No change

039A0

F5 20 39 48 (R=2, I=0)
BIH 2,X'3948'

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR GPR2
100039A0 - FFFFD72A
PSWR GPR2
10003948 FFFFD72C

1. The contents of GPR2 are incremented by one in bit position 30. The
result is replaced in GPR2 and a branch occurs to address 03948.

2. Indexing is not allowed.

3. If the indirect bit of the Instruction Word is equal to one, and the
branch occurs, bit positions 1-4 of the last memory word in the indirect
chain are transferred to the corresponding bit positions of the PSWR.
Bits 0 and 5-12 are unchanged.

4. The instruction following may not be the target of the System Control
Panel or Serial Control Panel Halt.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Notes

BIW
d,*m
BRANCH AFTER INCREMENTING WORD
F440 ;
| | 1] 1 1
1 | |]
11 1 1 0 1 R 1 0}1 0 BRANCH ADDRESS
L1111 L1] [N W (NS WU N N TN TN N NN Y VO (N N T N
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 .31

The contents of the GPR specified by R are incremented in bit position 29.

If the result is nonzero, the Effective Address (EA) is transferred to the
Program Status Word Register (PSWR) bit positions 13-30 and bit positions 1-4
of the PSWR remain unchanged. If the result is equal to zero after incre-
menting, the next instruction is executed.

(R)+129 - R
EA — PSWRy3_3q» if result # 0

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 04A38

Hex Instruction: 07 40 4B 2C (R=6, I=0)
Assembly Language Coding: BIW 6,X'4B2C'

PSWR GPR6

60004A38 FFFFDC18

PSWR GPR6

60004B2C FFFFDC1C

1. The content of GPR6 is incremented by one at bit position 29, and the
result is transferred to GPR6. The Effective Address of the BIW instruction,
(04B2C), replaces the previous contents of the PSWR, bits 12-30.

2. Indexing is not allowed.

3. If the indirect bit of the Instruction Word is equal to one, and the
branch occurs, bit positions 1-4 of the last memory word in the direct
chain are transferred to the corresponding bit positions of the PSHWR.
Bits 0 and 5-12 are unchanged.

4. The instruction following may not be the target of the System Control
Panel or Serial Control Panel Halt.

6-79

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Notes

6-80

BRANCH AFTER INCREMENTING DOUBLEWORD

F460
1 L ' L § l 1

I i I 1 I 1
1 1.1 10 1 R 1 1j1]o0 BRANCH ADDRESS

| N I T O N N I I U N T OO NN N N T N T N N B |

01 2 3 4 5 6 7 8 9 1011 12 13 14 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31

The contents of the GPR specified by R are incremented in bit position 28.

If the result is nonzero the Effective Address (EA) is transferred to the
Program Status Word Register (PSWR) bit positions 13-30 and bit positions
1-4 of the PSWR remain unchanged. If the result is equal to zero after
incrementing, the next instruction is executed.

(R) + lyg —-R

EA — PSWR 3 34, if result # 0

CCl: No change
CC2: No change
CC3: No change
CC4: No change

0930C
F5 EO 91 A6 (R=3, I=0)
BID 3,X'91A6"

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR GPR3
0800930C FFFFFFF8
PSWR GPR3
08009310 00000000

1. The content of GPR3 is incremented by one at bit position 28 and repl
Since the result is zero, no branch occurs.

2. Indexing is not allowed.

3. If the indirect bit of the Instruction Word is equal to one, and the

aced.

branch occurs, bit positions 1-4 of the last memory word in the direct

chain are transferred to the corresponding bit positions of the PSWR.
Bits 0 and 5-12 are unchanged.

4, The instruction following may not be the target of the System Control
- Panel or Serial Control Panel Halt.

COMPARE
INSTRUCTIONS

GENERAL
DESCRIPTION

INSTRUCTION

FORMAT

MEMORY
REFERENCE

Note

IMMEDIATE

Compare instructions provide the capability of comparing data

in memory and General Purpose Registers.
performed on bytes, halfwords, words, or doublewords.

These operations can be
Provisions have

also been made to allow the result of compare operations to be masked
with the contents of the Mask register before final testing.

The Compare instruction group uses three instruction formats.

l
T 1 1 1 |]
OP CODE R X I |F WORD ADDRESS Cc
Lt 11 (| 1 I W N TR NN T N T N B N O N L

01 2 3 4 5.6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bits 0-5 define the Operation Code.
Bits 6-8 designate a General Purpose Register address (0-7).
Bits 9-10 designate one of three index registers.
Bit 11 indicates whether an indirect addressing operation is to

be performed.

Bit 12-31 specify the address of the operand when the X and I fields

equal to zero.

Additional information on the Memory Reference instruction format is
included with the Load/Store instruction formats.

| 1 | |]

1
OP CODE

1 T AUG I I 1
R 0 0 0 0fcope OPERAND VALUE

(N IS O O I Y T (N TN N N Y (N T N U O T A e A |

01 2 3 4 5
Bits 0-5

Bits 6-8
Bits 9-12
Bits 13-15
Bits 16-31

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31

define the Operation Code.

designate a General Purpose Register address (0-7).
unassigned.

define Augmenting Operation Code.

contain the 16-bit operand value.

6-81

INTERREGISTER

CONDITION CODE

6-82

UTILIZATION

1 | 7 1
OP CODE Ry Ry é‘;ﬁ; W
| 11 L1 1 L1
0123456789101112131415161718192021222324252627'28293031
Bits 0-5 define the Operation Code.
Bits 6-8 designate the register to contain the result of the
operation.
Bits 9-11 designate the register which contains the source
operand.

Bits 12-15 define the Augmenting Operation Code.

A Condition Code is set during most Compare instructions to indicate

equal to zero.

whether the operation produced a result greater than, less than, or

DEFINITION

. SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

COMPARE ARITHMETIC WITH MEMORY BYTE CAVMB

d,*m,x
9008

l 1 | 1 [l]
LI 1 | I I]
1 0 0 1 0 O R X 11 BYTE OPERAND ADDRESS
| I T I | L1 1 [N N DN (NS NN (NN PR AN O T N O N Ty S |
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed,
right justified, and subtracted algebraically from the word in the GPR
specified by R. The result of the subtraction causes one of the Condition
Code bits (2-4) to be set. The contents of the GPR specified by R and the
byte specified by the EBA remain unchanged.

CCl: Always zero)

cc2: ISI (R) is greater than (EBL)
€C3: ISI (R) is less than (EBL)
cC4: ISI (R) is equal to (EBL)

Memory Location: 01000
Hex Instruction: 90 88 10 B5 (R=1, X=0, I=0)
Assembly Language Coding: CAMB 1,X'10B5'

PSWR GPR1 - Memory Byte 010B5
08001000 00000086 7
PSWR GPRL Memory Byte 010B5
10010004 00000086 c7

CC3 is set, indicating that the contents of GPR1 are less than the contents
of memory byte 010B5.

6-83

CAMH
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-84

COMPARE ARITHMETIC WITH MEMORY HALFWORD

9000
| | 1 1 L 1
| T T I | 1
1.0 0 1 00 R x Ji]o HALFWORD OPERAND ADDRESS 1
L1t 11 L1 | | I N TN N T T (O T O O T A O O |
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed, and the sign bit is extended 16 bits to the left to form a word.
The resulting word is subtracted algebraically from the word in the GPR
specified by R. The result of the subtraction causes one of the Condition
Code bits (2-4) to be set. The word in the GPR specified by R and the
halfword specified by the EHA remain unchanged.

(R) - (EHL)SE = SCCy_4

CCl: Always zero
CC2: ISI (R) is greater than (EHL)SE

CC3: ISI (R) is less than (EHL)SE
CC4: ISI (R) is equal to (EHL)SE

Memory Location: 0379C
Hex Instruction: 92 00 39 77 (R=4, X=0, I=0)
Assembly Language Coding: CAMH 4,X'3976"

PSWR GPR4 Memory Halfword 03976
0800379C 00008540 8640
PSWR GPR4 Memory Halfword 03976
200037A0 00008540 8640

CC2 is set indicating that the contents of GPR4 are greater than the contents
of memory halfword 03976 (a negative value).

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before -

Execution

After Execution

Note

COMPARE ARITHMETIC WITH MEMORY WORD CAMW

d,*m,X
9000
1 | | | |]
| 1] 1 | I
1 0 0 1 0 O R X I 0 WORD OPERAND ADDRESS 0}jo
L1 11 1.1] | OO N N A N N O N D O I I |
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is
accessed and subtracted algebraically from the word in the GPR specified
by R. The result of the subtraction causes one of the Condition Code
bits (2-4) to be set. The word in the GPR specified by R and the word
specified by the EWA remain unchanged.

(R) - (EWL) — SCCp_ga

CC1l: Always zero

CC2: ISI (R) is greater than (EWL)
€C3: ISI (R) is less than (EWL)
CC4: ISI (R) is equal to (EWL)

Memory Location: 05B20
Hex Instruction: 93 00 5C 78 (R=6, X=0, I=0)
Assembly Language Coding: CAMW 6,X'5C78'

PSWR GPR6 Memory Word 05C78
40005820 9E03B651 A184F207
PSWR GPR6 Memory Word 05C78
10005B24 9E03B651 A184F207

CC3 is set indicating that the contents of the GPR6 are less than the
contents of memory word 05C78.

6-85

CAMW
dy*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before

Execution

After Execution

Note

6-86

COMPARE ARITHMETIC WITH MEMORY' DOUBLEWORD

9000
1] 1] 1 1
! 1 l ! I I
1 0 0 1 00O R X I]o WORD OPERAND ADDRESS ojo
I - L} 1 N T N T TN U N Y TOUN (O T N oy |
01 2 3 4 65 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and subtracted algebraically from the doubleword in the GPR
specified by R and R+l. R+l is the GPR one greater than specified by R. The
result of the subtraction causes one of the Condition Code bits (2-4) to be
set. The doubleword in the GPR specified by R and R+l, and the doubleword
specified by the EDA remain unchanged.

(R, R¥1) = (EDL) — SCCy_,

. CCl: Always zero

cC2: 1ISI (R, R+l) is greater than (EDL)
€C3: ISI (R, R+l) is less than (EDL)
cC4: 1ISI (R, R+l) is equal to (EDL)

Memory Location: 27C14
Hex Instruction: 92 02 7F 52 (R=4, X=0, I=0)
Assembly Language Coding: CAMD 4,X'27F50"

PSWR GPR4 GPR5
20027C14 7AE0156D 47B39208
Memory Word 27F50 Memory Word 27F54
.7AE0156D 47B39208

PSWR GPR4 GPR5
08027C18 7AEQ156D 47B39208

Memory Word 27F50
7AE0156D

Memory Word 27F54
47B39208

CC4 is set indicating that the doubleword obtained from GPR4 and GPR5 is
equal to that obtained from the memory words 27F50 and 27F54.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

COMPARE ARITHMETIC WITH REGISTER AR

s,d
1000
L l ’
1 1
0o 0 0 1t 0 O RD Rs 0000//////////.// /
Lt 11 L1 | L1 {
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by Rg is subtracted algebraically from the
word in the GPR specified by Ry. The result of the subtraction causes one
of the Condition Code bits (2-4) to be set. The words specified by RS and
RD remain unchanged.

(Ry) - (Rg) — sSCC

2-4

CCl: Always zero
€cc2: 1ISI (RD) is greater than (RS)

cCc3: ISI (RD) is less than (RS)
cc4: 1ISI (RD) is equal to (RS)

Memory Location: 0B3C2

Hex Instruction: 10 10 (RD=O, RS=1)
Assembly Language Coding: CAR 1,0

PSWR GPRO GPR1

0800B3C2 58DF620A 6A92B730

PSWR GPRO GPR1

1000B3C4 58DF620A 6A92B730

CC3 is&set indicating that the contents of GPRO are less than the contents
of GPRI. ,

6-87

CI
d,v

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-88

COMPARE IMMEDIATE

€805

L] | | |

I ! I I |
1100 10 R 0 0 0JoOo 1 0 1 IMMEDIATE OPERAND
IS T T TN S T U R U A S N N N O T Y s s
01 2 3 4 5 6 7 8 9 101 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The sign bit (bit 16) of the immediate operand is extended 16 bit positions
to the left to form a word. This word is subtracted from the word in the
GPR specified by R. The result of the subtraction causes one of the
Condition Code bits (2-4), to be set. The word in the GPR specified by R
and the immediate operand (bit 16-31) remain unchanged.

(R) - = Sy

(IWy6_31)sE

CCl: Always zero
CC2: ISI (R) is greater than (TWy6_31)sE

CC3: ISI (R) is Tess than (IWj¢ a1)ep
CC4: 1ISI (R) is equal to (IW16_31)SE

Memory Location: - 0A794
Hex Instruction: (8 85 71 A2 (R=1)
Assembly Language Coding: CI 1,X'71A2'

PSWR GPR1
4000A794 00005719
PSWR GPR1
1000A798 00005719

CC3 is set, indicating that the contents of GPR1l are less than the
immediate operand.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

COMPARE MASKED WITH MEMORY BYTE CMMB
d,*m,x
9408
1 1] 1 |
1 1 | 1 i
1001 0 1 x || BYTE OPERAND ADDRESS
| [1 1 | | IS Y (S N N I N N AN S N N O N I |
01 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is
accessed, and 24 zeros are appended to the most significant end to form a
This word is logically compared (Exclusive OR Function) with the

© word.
word in the GPR specified by R.
AND Function) with the contents of the Mask register (R4).
is tested and Condition Code bit 4 is set if all 32 bits equal zero.

The resulting word is then masked (Logical
The masked result

The

word in the GPR specified by R and the byte specified by the EBA remain
unchanged. :

[(R) ® 0y_p35 (EBL)]

& (R4) —

SCC4

CCl: Always zero
CC2: Always zero
CC3: Always zero
CC4: ISI Result is equal to zero

00800 ,
94 08 09 17 (R=0, X=0, I=0)
CMMB 0,X'917’

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR GPRO GPR4 Memory Byte 00917
10000800 000000A1 000000FQ A9
PSWR GPRO GPR4 Memory Byte 00917
08000804 000000A1 000Q00F0 A9

The contents of GPRO and memory byte 00917 are identical in those bit
positions specified by the contents of GPR4. CC4 is set.

6-89

CMMH
dy*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-90

COMPARE MASKED WITH MEMORY HALFWORD
9400

LB I I 1 1 I
t 00 1 0 1 R X |1lo] HALFWORD OPERAND ADDRESS 1

| N I T OO U T A | I T T TN TN N N (Y O T N T IO

0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 26 26 27 28 29 30 31

‘The halfword in memory specified by the Effective Halfword Address (EHA) is

accessed, and the sign (bit 16) is extended 16 bits to the left to form a
word. The resulting word is logically compared (Exclusive OR Function) with
the word in the GPR specified by R. The resulting word is then masked
(Logical AND Function) with the contents of the Mask register (R4). The
masked result is tested and Condition Code bit 4 is set if all 32 bits

equal zero. The word in the GPR specified by R and the halfword specified
by the EHA remain unchanged.

[(R) @ (EHL)g] & (R4) -~ SCCy

CCl: Always zero
CC2: Always zero
CC3: Always zero
CC4: ISI result is equal to zero

Memory Location: 061B8
Hex Instruction: 95 00 62 93 (R=2, X=0, I=0)
Assembly Language Coding: CMMH 2,X'6293'

PSWR GPR2 GPR4 Memory Halfword 06292
100061B8 09A043B6 00004284 46FC

PSWR GPR2 GPR4 Memory Halfword 06292
080061BC 09A043B6 00004284 46FC

The contents of GPR2 and memory halfword 06292 are identical in those bit
positions specified by the contents of GPR4. CC4 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

COMPARE MASKED WITH MEMORY WORD ‘ CMMW

d,*m,x
9400
l 1 i |]]
1 T 1 | 1 1
1 0 0 1 0 1 R X 1]o0 WORD OPERAND ADDRESS 0 0
L1141 L1 | [N T N N AN NN OO NN N O IO NN OO WO I

0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is

accessed and logically compared (Exclusive OR Function) with the word in the
GPR specified by R. The result of the comparison is then masked (Logical
AND Function) with the contents of the Mask register (R4). The masked
result is tested and Condition Code bit 4 is set if all 32 bits equal

zero. The word in the GPR specified by R and the word specified by the EWA
remain unchanged. ‘

[R) ® (EWL)] & (RA) — SCC,

CCl: Always zero
CC2: Always zero
CC3: Always zero

CC4: 1ISI result is equal to zero

13A74
97 01 3C 94 (R=6, X=0, I=0)
CMMW 6,X'3C94"

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR GPR4 GPR6 Memory Word 13C94
08013A74 Q00FFFF0O0 132A1C04 472A3D04
PSWR GPR4 GPR6 Memory Word 13C94
00013A78 OOFFFFOQ 132A1C04 472A3D04

The contents of GPR6 and memory word 13C94 are not equal within the bit
positions specified by the contents of GPR4.

€-91

MHD

Sm’

X

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE

RESULTS

EXAMPLE

Before
Execution

After Execution

6-92

Note

COMPARE MASKED WITH MEMORY DOUBLEWORD
9400

T) N) T] 1

1 0 0 1 0 1 R X 110 DOUBLEWORD OPERAND ADDRESS v ofj1]o
1 I 1 1 L 1 [l [i 1] 1 1 (1 L 1 1 L L 1 1 1 1

01 2 3 465 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and compared (Exclusive OR Function) with the doubleword in the
GPR specified by R and R+l. R+l is the GPR one greater than specified by R.
Each result from the comparison is then masked (Logical AND Function) with
the contents of the Mask register (R4). The doubleword masked result is
tested and Condition Code bit 4 is set if all 64 bits equal zero. The
doubleword in the GPR specified by R and R+l and the doubleword specified
by the EDA remain unchanged.

[(R) @ (ew)] & (R4), [(R¥1) ® (EWL+1)] & (R4) ~— scc,

CCl: Always zero

'CC2: Always zero

CC3: Always zero
CC4: ISI result is equal to zero

Memory Location: 03000

Hex Instruction: 97 00 31 BA (R=6, X=0, I=0)
Assembly Language Coding: CMMD 6,X'31B8'

PSHR GPR4 GPR6 GPR7
10003000 000FFFFF FFF3791B 890A45D6
Memory Word 031B8 Memory Word 031BC
00037918 890A45C2

PSWR GPR4 GPR6 GPR7
00003004 000FFFFF FFF3791B 890A45D6
Memory Word 031B8 Memory Word 031BC
00037918B 890A45C2

The contents of GPR7 and memory word 031BC differ within the bit positions
specified by the contents of GPR4.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

COMPARE MASKED WITH REGISTER CMR

The word in the GPR specified by R, is logically compared (Exclusive OR
Function) with the word in the GPR"specified by R.. The result of the
comparison is then masked (Logical AND function) %ith the contents of the
Mask register (R4). The result is tested and Condition Code bit 4 is

set if all 32 bits equal zero. The words specified by Rg and Ry remain
unchanged.

[(Ry) ® (R)] & (R4) —~ scC,

CCl: Alwayé zero
CC2: Always zero
CC3: Always zero
CC4: ISI result is equal to zero

Memory Location: 050D2
Hex Instruction: XXXX14 A0 (Rp=1, Rg=2)

Assembly Language Coding: CMR 2,1

PSWR GPR1 GPR2 GPR4
1000502 583C94A2 0C68C5F6 ARAAAAAA
PSR GPR1 GPR2 GPR4
08005004 583C94A2 0C68C5F6 AMAAAAAA

The contents of GPR1 and GPR2 are identical within the bit positions
specified by the contents of GPR4. CC4 is set.

6-93

LOGICAL
INSTRUCTIONS

GENERAL
DESCRIPTION

INSTRUCTION

FORMATS

MEMORY
REFERENCE

INTERREGISTER

CONDITION CODE

UTILIZATION

6-94

. The Logical lnstructlon group prov1des the capab111ty of performing AND, OR,

and Exclusive OR operations on bytes, halfwords, and doublewords in memory

and General Purpose Registers. Provisions have also been made to allow the
result of Register-to-Register OR and Exclusive OR operations to be masked

with the contents of Mask register (R4) before final storage.

The Logical instruction group uses the following two instruction formats:

1 1 - 1 1 1 1
OP CODE R X I |F WA (o4
Ll 1 11 L1] I I I T T N N N A Y R N O |]
0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22.23 24 25 26 27 28 29 30 31
Bits 0-5 define the Operation Code.
Bits 6-8 designate a General Purpose Register address (0-7).
Bits 9-10 designate one of three index registers.
Bit 11 indicates whether an indirect addressing operation is to
be performed.
Bits 12-31 specify the address of the operand when the X and I fields

are equal to zero.

T T]
OP CODE R Ry AUG CODE // /
| | [|] | | | A /Y AN LA 4 1411 747744774747, A

01 2 3 4 5 6 .7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bits 0-5 ~ define the Operation Code.
Bits 6-8 designate the register to contain the result of the operation.
Bits 9-11 designate the register which contains the source operand.
Bits 12-15 define the Augmenting Operation Code.

A Condition Code is set during execution of most Logical instructions to
indicate whether the result of that operation was greater than, less than,
or equal to zero.

DEFINITION

SUMMARY

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

~ AND MEMORY BYTE ANMB

d,*m,x
8408

| | . | ! }]
1 I 1 L | {
10 0 0 0 1 R X ||t BYTE OPERAND ADDRESS
I I | L1 1 1 | N IS N T N T Y SO T G OV N A B
0 1 2 3 4 6 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte.in memory specified by the Effective Byte Address (EBA) is accessed
and logically ANDed with the least significant byte (bits 24-31) of the

GPR specified by R. The result is transferred to bit positions 24-31 of

the GPR specified by R. Bit positions 0-23 of the GPR specified by R remain
unchanged.

(EBL)&(Ry4_31) — Rog-31

Ry_p3 Unchanged

CCl: Always zero

CC2: ISI Ry, s 1s greater than zero
CC3: Always zero

CC4: ISI Ry, 51 is equal to zero

Memory Location: 00200
Hex Instruction: 84 88 03 73 (R=1, X=0, I=0)
Assembly Language Coding: ANMB 1,X'373'

PSWR GPR1 Memory Byte 00373
00000200 36AC718F c7
PSWR GPR1 Memory Byte 00373
20000204 36AC7187 Cc7

The contents of memory byte 00373 are ANDed with the right-hand byte of GPRI1,
and the result replaces the byte in GPRl. CC2 is set.

 6-95

ANMH
d,*m,x

DEFINITION

SUMMARY
~ EXPRESSION

CONDITION CODE

RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-96

AND MEMORY HALFWORD

8400
]] 1] []
]] I 1 | I
1 0 0 0 0 1 R X 1]o HALFWORD OPERAND ADDRESS 1
| I T . 11 | IR N NN TN IS NS TSN TN T N S AN N N N
01 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and logically ANDed with the least significant halfword (bits 16-31)
of the GPR specified by R. The result is transferred to bit positions

16-31 of the GPR specified by R. Bit positions 0-15 of the GPR specified

by R remain unchanged.

(EHL)&(Ryg_31) . Rig-31
R0_15 Unchanged

CCl: Always zero
CC2: ISI Ryg_3q is greater than zero

CC3: Always zero
CC4: ISI Ryg_3q is equal to zero

Memory Location: 01000
Hex Instruction: 87 00 12 A3 (R=6, X=0, I=0)
Assembly Language Coding: ANMH 6,X'12A2°*

PSWR GPR6 Memory Halfword 012A2
40001000 4F638301 70F6
PSWR GPR6 Memory Halfword 012A2
08001004 4F630000 70F6

The contents of memory halfword 012A2 are ANDed with the right halfword
of GPR6, and the result replaces the halfword in GPR6. CC4 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

AND MEMORY WORD ANMW

d,*m,x
8400
1 1 | l i]
i i | 1 1
1 0O 0 0 o0 1 Rl X | 0 WORD OPERAND ADDRESS ofjo
| I T I L] | NG N I N N NN N NS IO N O N |
01! 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is accessed
and logically ANDed with the word located in the GPR specified by R.

(EWL)&(R) =R

CCl: Always zero

CC2: ISI Ry 4, is greater than zero
CC3: ISI Ry 37 is less than zero
CCA: ISI Ry 37 is equal to zero

Memory Location: 00F1C
Hex Instruction: 87 80 OF DO (R=7, X=0, I=0)
Assembly Language Coding: ANMW 7,X'FDO'

PSWR GPR7 Memory Word 0OFDO
08000F1C FOFOFOFOQ 9ED13854
PSWR GPR7 Memory Word COFDO
10000F20 90D03050 9ED13854

The contents of memory word OOFDO are ANDed with the contents of GPR7, and
the result replaces the contents of that register. CC3 is set.

6-97

ANMD

d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE

RESULTS

EXAMPLE

Before
Execution

After Execution

6-98

Note

AND MEMORY DOUBLEWORD

8400
1 l] | l }
1 I I | 1 I
1.0 0 0 0 1 R x {i1lo DOUBLEWORD OPERAND ADDRESS ol1]o0
1 11 1 | | SN N N T N IS N S [[y B | :
0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and Togically ANDed with the doubleword in the GPR specified by
R and R+l1. R+l is the GPR one greater than specified by R. The resulting
doubleword is transferred to the GPR specified by R and R+l.

(EWL+1)&(R+1) — R+1

(EWL)&(R) = R

CCl: Always zero

CC2: ISI (R,R+l) is greater than zero

CC3: ISI (R,R+l) is less than zero
CC4: ISI (R,R+l) is equal to zero

Memory Location: 00674

Hex Instruction: 86 00 08 1A (R=4, X=0, I=0)
Assembly Language Coding: ANMD 4,X'818'
PSWR GPR4 GPR5

00000674 9045C64A 32B08F00

Memory Word 00818 Memory Word 0081C
684A711C 8104A2BC

PSWR GPR4 ~ GPRS5

20000678 00404008 00008200

Memory Word 00818 Memory Word 0081C
684A711C 8104A28C

The contents of memory word 00818 are ANDed with the contents of GPR4, and
the result replaces the contents of GPR4. The contents of memory word
0081C are ANDed with the contents of GPR5, and the result replaces the
contents of GPR5. CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before

Execution

After Execution

Note

AND REGISTER AND REGISTER ANR

s,d
0400
[l 1
D S
L4111 L1 11 L1 1
012345678910111213141516171819202122232425262728293031

The word in the GPR specified by Rp is logically ANDed with the word in the
GPR specified by RS' The resulting word is transferred to the GPR specified
by R;.

D

(Rg)&(Ry)— Rp

CCl: Always zero
cc2: 1ISI (RD) is greater than zero

€C3: ISI (R,) is less than zero

cc4: ISI (RD) is equal to zero

Memory Location: 03812

Hex Instruction: 04 FO (RD=1, RS=7)
Assembly Language Coding: ANR 7,1

PSWR GPR1 GPR7

40003812 AC881101 00OFFFFF

PSWR GPR1 GPR7

20003814 00081101 O00OFFFFF

The contents of GPR1 and GPR7 are ANDed, and the result is transferred to

GPR1. CC2 is set.

6-99

ORMB
d,*m,x

DEFINITION

SUMMARY

EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-100

OR MEMORY BYTE

8808
H | 1 |] i
) T 1] 1] |
1 0 0 0 1 0 R X [BYTE OPERAND ADDRESS
I I I | | | I T T T N TN N M M O I O I
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and logically ORed with the least significant byte (bits 24-31) of the GPR
specified by R. The resulting byte is transferred to bit positions 24-31

of the GPR specified by R. Bit positions 0-23 of the GPR specified by R
remain unchanged.

(EBL)V(Ry4.31) - Roy.31

Rp-p3 Unchanged

CC1: Always zero

CC2: ISI Ry 5y is greater than zero
CC3: ISI Ry 37 is less than zero
CC4: ISI Ry 37 1s equal to zero

Memory Location: 00600
Hex Instruction: 88 88 08 A3 (R=1, X=0, I=0)
Assembly Language Coding: ORMB 1,X'8A3'

PSWR GPR1 Memory Byte 8A3
00000600 40404040 3C
PSWR GPR1 Memory Byte 8A3
20000604 4040407C 3

The contents of memory byte 8A3 are logically ORed with the right-hand byte
of GPR1, and the result replaces that byte in GPR2. (C2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

OR MEMORY HALFWORD ORMH
d,*m,x
8800

| | { { | |

T 1 T 1

1 000 1.0 R x Ji}]o HALFWORD OPERAND ADDRESS 1
| I 11 | | I N (N N N T N O A N N NN N N N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and logically ORed with the least significant halfword (bits 16-31)
of the GPR specified by R. The resulting halfword is transferred to bit
positions 16-31 of the GPR specified by R. Bit positions 0-15 of the GPR
specified by R remain unchanged.

(EHL)V(Ryg_31) — Ryg_31
Rg-15 Unchanged

CCl: Always zero

CC2: ISI Ry 3, is greater than zero
CC3: ISI Ry 37 is less than zero
CC4: ISI Ry_37 is equal to zero

Memory Location: 018AC

Hex Instruction: 8B 00 19 45 (R=6, X=0, I=0)
Assembly Language Coding: ORMH 6,X'1944'

PSWR GPR6 Memory Halfword 01944
000018AC BD71A4C6 45F3

PSWR GPR6 ' Memory Halfword 01944
100018B0 BD71E5F7 45F3

The contents of memory halfword 01944 are ORed with the right halfword from
GPR6, and the result replaces that halfwerd in GPR6. CC3 is set.

6-101

ORMM
d,*m,

COND

After

6-102

X

DEFINITION

SUMMARY
EXPRESSION

ITION CODE
RESULTS

EXAMPLE

Before
Execution

Execution

Note

OR MEMORY WORD
8800

] ! | l 1 d
! I 1 . I 1 1
1t 0 0 0 1 O R X 110 WORD OPERAND ADDRESS ' oo

0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is accessed
and logically ORed with the word in the GPR specified by R. The result is
transferred to the GPR specified by R.

(EWL)V(R)=~ R

CCl: Always zero

CC2: ISI Ry 49 is greater than zero
CC3: ISI Ry 37 is less than zero
CC4: ISI Ry 37 s equal to zero

Memory Location: 05000

Hex Instruction: 89 80 52 0C (R=3, X=0, I=0)
Assembly Language Coding: ORMW 3,X'520C'

PSWR GPR Memory Word 0520C

40005000 88888888 0EDC4657

PSWR GPR3 Memory Word 0520C

10005004 8EDCCEDF OEDC4657

The contents of memory word 0520C are ORed with the contents of GPR3, and
the result is transferred to GPR3. CC3 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

OR MEMORY DOUBLEWGORD ' ORMD

d,*m,x
8800
] 1 I 1 1 L
] | 1 L T 1
1 0 0 0 1 O R X 1 |O DOUBLEWORD OPERAND ADDRESS o} 1]0
L1t 11 Ll | [N S T WO T A N N OO I T A O | -
o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24-25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and logically ORed with the doubleword in the GPR specified by
R and R+l. R+1-is the GPR one greater than specified by R. The result is
transferred to the GPR specified by R and R+l.

(EWL+1)v(R+1) = R+1
(EWL)v(R) =R

CCl: Always zero

¢c2: 1ISI (R,R+1) is greater than zero
€cC3: ISI (R,R+1) is less than zero
cc4: ISI (R,R+1) is equal to zero

Memory Location: 00868
Hex Instruction: 88 00 0C 32 (R=6, X=0, 1=0)
Assembly Language Coding: ORMD 6,X'C30"

PSWR GPR6 GPR7

10000B68 002A0031 001D0039

Memory Word 00C30 Memory Word 00C34
18004C00 09002400

PSWR GPR6 GPR7

20000B6C 182A4C31 091D2439

Memory Word 00C30
18004C00

Memory Word 00C34
09002400

The contents of memory word 00C30 are ORed with the contents of GPR6, and
the result is transferred to GPR6. The contents of memory word 00C34 are
ORed with the contents of GPR7, and the result is transferred to GPR7.
CC2 is set.

6-103

ORR
s,d

DEFINITION
SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-104

OR REGISTER AND REGISTER

The word in the GPR specified by Rp is logically ORed with the word in the
GPR specified by RS' The result is transferred to the GPR specified by RD'

(RS)v(RD)—~ Ry

CCl: Always zero

cc2: 1ISI (RD) is greater than zero
cC3: 1ISI (RD) is less than zero
cc4: 1ISI (RD) is equal to zero

Memory Location: 00F8A

Hex Instruction: - 08 A0 (RD=1, Rs=2)
Assembly Language Coding: ORR 2,1

PSWR GPR1 GPR2

40000F8A 0001D63F 88880000

PSWR GPR1 GPR2

10000F8C 8888D63F 88880000

The contents of GPR1 and GPR2 are ORed, and the result is transferred to
GPR1. CC3 is set.

DEFINITION

- SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

OR REGISTER AND REGISTER MASKED ORRM

s,d
0808
]] i
| 1
0O 0 0 0 1 0 RD Rs 1000/////
[| L1 L1 L1
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by Rp is 1og1ca11y ORed with the word in the
GPR specified by R The resulting word is then masked (Logical AND
Function) with the contents of the Mask register (R4). The result is then
transferred to the GPR specified by R

(Rg)V(Rp)&(R4) — Ry

CC1l: Always zero

cc2: 1ISI (RD) is greater than zero
CC3: ISI (Rn) is less than zero
cC4: 1ISI (RD) is equal to zero

Memory Location: 03956
Hex Instruction: 0B 58 (R =6, R =5)

Assembly Language Coding: ORRM 5, 6

PSWR GPR4 GPR5 GPR6
08003956 EEEEEEEE 37735814 2561CA95
PSWR GPR4 GPR5 GPR6
10003958 EEEEEEEE 37735814 2662CA84

The contents of GPR5 and GPR6 are ORed; the result is ANDed with the
contents of GPR4 and transferred to GPR6 CC3 is set.

6-105

EOMB
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-106

EXCLUSIVE OR MEMORY BYTE
8C08

I | | I ! I
1 0 0 0 1 1t R X 1 BYTE OPERAND ADDRESS -

0O 1 2 3 4 6 6 7.8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is
accessed and logically Exclusive ORed with the least significant byte
(bits 24-31) of the GPR specified by R. The result is transferred to bit
positions 24-31 of the GPR specified by R. Bits 0-23 of the GPR specified
by R remain unchanged.

(EBL) ® (Ryy_31) Rpq_3;

CCl: Always zero

CC2: ISI Ry 4, is greater than zero
CC3: ISI Ry 37 is less than zero
CC4: ISI Ry 37 1s equal to zero

Memory Location: 012F8
Hex Instruction: 8C 08 13 Al (R=0, X=0, I=0)
Assembly Language Coding: EOMB 0,X'13A1’

PSWR GPRO Memory Byte 013A1
000012F8 D396F458 A9
PSWR GPRO Memory Byte 013Al
100012FC D396F4F1 A9

The contents of memory byte 013A1 are Exclusive ORed with the right-hand
byte of GPRO; the result replaces that byte in GPRO. CC3 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

EXCLUSIVE OR MEMORY HALFWORD EOMH

d,*m,x
8C00
1 [1 1 {]
] | | I | 1
1 0o o 0o 1 1 R X ijo HALFWORD OPERAND ADDRESS 1
L1 11 L1 1 [S TN N U WU TN Y YOO N AN N N T N IO |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and logically Exclusive ORed with the least significant halfword
(bits 16-31) of the GPR specified by R. The result is transferred to bit
positions 16-31 of the GPR specified by R. Bit positions 0-15 of the GPR
specified by R remain unchanged.

(EHL) @ (Rpg_31) « Ryg 3
Rg-15 Unchanged

CCl: Always zero

CC2: ISI Ry 5, is greater than zero
CC3: ISI Ry 37 is Tess than zero
CC4: ISI Ry 37 is equal to zero

Memory Location: 00958
Hex Instruction: 8E 80 OA 41 (R=5, X=0, .I=0)
Assembly Language Coding: EOMH 5,X'A40° '

PSWR GPR5 Memory Halfword 00A40
40000958 96969696 5CAB
PSWR GPR5 Memory Halfword 00A40
1000095C 9696CA3D - 5CAB

The contents of memory halfword 00A40 are Exclusive ORed with the right
halfword of GPR5, and the result replaces that halfword in GPR5. CC3 is set.

6-107

EOMW
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Executioh

Note

6-108

EXCLUSIVE OR MEMORY WORD

8C00
|]] | | - L
l I 1 1
1000 11 R x li]o WORD OPERAND ADDRESS ojo
L1 1 1 ! 11] | N TN Y N N (OO N TN I T A OO T A N |
01 2 3 4565 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is accessed

and Togically Exclusive ORed with the word in

the GPR specified by R. The

result is transferred to the GPR specified by R.

(EWL) ® (R)—=R

CCl: Always zero
CC2:

CC3: ISIR

CC4: 0-31

Memory Location:
Hex Instruction:

Assembly Language Coding:

ISI Ry_3; is greater than zero
is Tess than zero
IST Ry_37 s equal to zero

185BC
8F 81 86 94 (R=7, X=0, I=0)
EDMW 7,X'18694'

PSWR GPR7 Memory Word 18694
~ 010185BC 13579BDF 22222222

PSWR GPR7 Memory Word 18694

200185C0 3175B9FD 22222222

The contents of memory word 18694 are Exclusive ORed with the contents of

GPR7.

The result replaces the contents of GPR7.

CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

EXCLUSIVE OR MEMORY DOUBLEWORD EOMD

d,*m,x
8C00
| | | | | {
l 1 I T 1
1 0 06 0 1t 1 R X | 1 DOUBLEWORD OPERAND ADDRESS ofj1]o
L1111 1 1 | | I T TN T N T T TN O T I O I |

01 2 3 4 5 6 7 8 91Q'11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and logically Exclusive ORed with the doubleword in the GPR
specified by R and R+1. R+l is the GPR one greater than specified by R.

The result is transferred to the GPR specified by R and R+l.

(EWL+1) (® (R+1) —R+1

(EWL) ® (R)—=R

CCl: Always zero

€C2: 1ISI (R,R+1) is greater than zero

€C3: ISI (R,R+1) is less than zero
CC4: ISI (R,R+1) is equal to zero

Memory Location: 00448

Hex Instruction: 8F 00 05 3A (R=6, X=0, I=0)
Assembly Language Coding: EOMD 6,X'538"
PSWR GPR6 ~ GPR7

00000448 00FFFFOQO OOFFF000

Memory Word 00538 Memory Word 0053C
482144C0 2881433A

PSWR GPR6 GPR7

2000044C 48DEBBCO 287EB33A

Memory Word 00538 Memory Word 0053C
482144C0 2881433A

The contents of memory word 00538 and GPR6 are Exclusive ORed and the
result is transferred to GPR6. The contents of memory word 0053C and
GPR7 are Exclusive ORed and the result is transferred to GPR7. _CC2 is set.

6-109

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-110

EXCLUSIVE OR REGISTER AND REGISTER

0coo
|] . .
| I /
0 000 11| R R 0 0 0 0
) s
N N Y I TS S TS D N T N OO A
0 1 2 3 46 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by Rp is logically Exclusive ORed with the
word in the GPR specified by RS' The result is transferred to the GPR
specified -by RD‘

CCl: Always zero

cc2: 1ISI (RD) is greater than zero
CC3: ISI (R;) is less than zero
cCc4: 1ISI (RD) is equal to zero

Memory Location: 0139E
Hex Instruction: OF EO (RD=7, R5=6)

Assembly Language Coding: EOR 6,7
PSWR GPR6 GPR7
0100139E 33333333 55555555
PSWR GPR6 GPR7
200013A0 33333333 66666666

The contents of GPR6 and GPR7 are Exclusive ORed, and the result is
transferred to GPR7. CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE -

RESULTS

EXAMPLE

Before
Execution

After Execution

Note

EXCLUSIVE OR REGISTER AND REGISTER MASKED EORM

s,d
0C08
=+ '
o o001 1| & R 1000/////////////////W
Lt 1.1) L1 L 11 ‘
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RD is logically Exclusive ORed with the
word in the GPR specified by RS' The resulting word is then masked (Logical

AND Function) with the contents of the Mask register (R4). The result is
transferred to the GPR specified by RD.

(Rg) ® (Ry) & (R4) - R,

CCl: Always zero

€C2: 1SI (RD) is greater than zero
€C3: 1ISI (RDg is Tess than zero
cc4: 1ISI (RD is equal to zero

Memory Location: 25A32
Hex Instruction: OF E8 (Ry=7, RS=6)
Assembly Language Coding: EORM 6,7

PSWR GPR4 GPR6 GPR7
00025A32 00FEDFO00 9725A2C8 6248237
PSWR GPR4 GPR6 GPR7
08025A34 00FEDFQ0 9725A2C8 00000000

The contents of GPR6 and GPR7 are Exclusive ORed. The result is ANDed
with the contents of GPR4 and transferred to GPR7. CC4 is set.

6-111

SHIFT
OPERATION
INSTRUCTIONS

GENERAL
DESCRIPTION

INSTRUCTION
FORMATS

SHIFT
INFORMATION

INTERREGISTER

CONDITION CODE

UTILIZATION

6-112

This group of instructions provides the capability to perform Arithmetic,
Logical, and Circular Left br Right shift operations on the contents of
words or doublewords in General Purpose Registers. Provisions have also
been made to allow Normalize operations to be performed on the contents of
words or doublewords in General Purpose Registers.

The following two instruction formats are used by the Shift instruction
group:

I I I 7
OP CODE R D | O | SHIFT COUNT

Lt 1 1 1 1 1| | |

01‘23456_78910111213141516171819202122232425262728293031
Bits 0-5 define the Operation Code.
Bits 6-8 designate a General Purpose Register address (0-7).
Bit 9 designates direction.

D=1 designates shift left
D=0 designates shift right

Bit 10 unassigned.

Bits 11-15 define the number of shifts to be made.

e Lo | e b=

012345678‘910111?13141516171819202122232425262728293031

Bits 0-5 define the Operation Code.

Bits 6-8 designate the register to contain the result of the
operation.

Bits 9-11 designate the register which contains the source operand.

Bits 12-15 define the Augmenting Operation Code.

Mosﬁ Shift instructions leave the Condition Code unchanged.

DEFINITION

Note

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

NORMALIZE : NOR
d,s

6000
! 4

6 1100 0| Rp Rg
0 123 456 7 8 910111213 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by RS is shifted left, 4 bit positions at

a time, until the contents are normalized for the base 16 exponent.
The contents of RS are less than one or equal to or greater than 1/16

(1> (RS)2:1/16.) The exponent is set to 40, and is decremented once

for each group of 4 shifts performed. When normalization is complete,
the exponent is stored in bit positions 25-31 of the GPR specified by RD'

Bit positions 0-24 of the GPR specified by RS are cleared to zeros. If
the contents of the GPR specified by RS are equal to zero, the exponent

stored in bit positions 25-31 of the GPR specified by RD will equal zero
and no shifting will be performed.

The normalized result must be converted to the format defined on page 6-171
prior to use by the floating-point arithmetic unit or standard FORTRAN
floating-point subroutines. In addition, a test must be made for minus full
scale (1XXX XXXX 0000 0000 --- 0000) and a conversion made to (1YYY YYYY
1111 0000 --- 0000), where YYY YYYY is one less than XXX XXXX.

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 00D32
Hex Instruction: 63 10 (Rg=6, Ry=1)

Assembly Language Coding: NOR 6,1
PSWR GPR1 GPR6
20000D32 12345678 0002E915
PSWR GPR1 GPR6
20000034 0000003D 2E915000

The content of GPR6 is normalized by three left shifts of four bits each.
The exponent is determined by decrementing 40H once for each shift and
transferred to GPR1.

6-113

NORD
s,d

DEFINITION

Note

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

6-114

NORMALIZE DOUBLE

0 123 45 6 7 8 910 111213141516 17 1819 20 21 22 23 24 25 26 27 28 29 30 31

The doubTeword in the GPR specified by Rg and Rg+l is shifted left, 4 bit
positions at a time, until the contents are normalized for the base 16
exponent (1 > (RS,RS+1) > 1/16). The contents of Rg and Rs+l are less than
one or equal to or greater than 1/16. Rs+1 is the GPR one greater than
specified by Rg. The exponent of the doubleword is set to 4016 and is
decremented once for each group of four shifts performed. When normalization
is complete, the exponent is stored in bit positions 25-31 of the GPR
specified by Rp. Bit positions 0-24 of the GPR specified by Rp are cleared
to zeros. If the contents of the doubleword specified by Rg and Rg+l are
equal to zero, the exponent stored in bit positions 25-31 of the GPR
specified by Rp will equal zero, and no shifting will be performed.

The normalized result must be converted to the format defined on page 6-171
prior to use by the floating-point arithmetic unit or standard FORTRAN
floating-point subroutines. In addition, a test must be made for minus full
scale (1XXX XXXX 0000 0000 --- 0000) and a conversion made to (1YYY YYYY
1111 0000 --- 0000), where YYY YYYY is one less than XXX XXXX.

CC1l: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 0046E

Hex Instruction: 67 10 (Rg=6, Rp=1)
Assembly Language Coding: NORD 6,1

PSWR GPR1 GPR6 GPR7
100004 6E 9ABCDEFOQ FFFFFFFF FF3AD915
PSWR GPR1 GPR6 GPR7
10000470 00000037 F3AD9150 00000000

The doubleword obtained from the contents of GPR6 and GPR7 is normalized by
nine left shifts of four bit positions each. The result is returned to
GPR6 and GPR7, and the exponent (40H-9) is transferred to GPR1.

SHIFT AND COUNT ZEROS SCz
6800

01 23 456 7 8 9101112131415 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31

DEFINITION The word in the GPR specified by Rg is shifted left, one bit position at a
time, until the sign (bit 0) changes from zero to one. The contents are then
shifted left one more bit position, and the total number of shifts minus one
is placed in bit positions 27-31 of the GPR specified by Ry. Bit positions
0-26 of the GPR specified by Rp are set to zeros. The shi?t count specifies
the most significant bit position (0-31) of Rg that was equal to one.

a0

.

NOTES 1. If the contents of the GPR specified by Rg are edua] to zero, the shift
count placed in bit positions 27-31 of the GPR specified by Rp is
zero, and Condition Code bit 4 is set to one.

2. If the sign (bit 0) of the GPR specified by Rs is equal to one, the
shift count placed in bit positions 27-31 of the GPR specified by
Rp is zero, and Condition Code bit 4 is set to zero.

CONDITION CODE CC1l: Always zero
RESULTS CC2: Always zero
CC3: Always zero

CcC4: ISI RS 0-31 is equal to zero

EXAMPLE Memory Location: 0399E
: Hex Instruction: 6A 20 (RS=4, RD=2)
Assembly Language Coding: SCZ 2,N
Before PSWR GPR2 GPR4
Execution 2000399E 12345678 00300611
After Execution PSWR GPR2 GPR4
000039A0 0000000A 80308800

Note The content of GPR4 are left shifted 10 bits when bit 0 is equal to one.
The contents are then shifted one more bit position, and the zero count of
10 (AH) is transferred to GPR2.

6-115

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

EXAMPLE 2

Before
Execution
After Executien

Note

6-116

SHIFT LEFT ARITHMETIC

6C40
l | i)
] ! I"SHIFT
01 1 0 1 1 RO |1]o FIELD
| N O T T Y I | | S |
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bit positions 1-31 of the GPR specified by R are shifted left the number of
bit positions specified by the shift field (bits 11-15) in the Instruction
Word. Bit position 0 (sign bit) of the GPR specified by R remains unchanged.
Condition Code bit 1 is set to one if any bit shifted out of position 1
differs from the sign bit.

l¢—0

0 31

]

CC1l: 1ISI arithmetic exception
CC2: Always zero
CC3: Always zero
CC4: Always zero

Memory Location: 00106
Hex Instruction: 6F 4C (R=6, Shift Count=1210)

Assembly Language Coding: SLA 6,12
PSWR GPR6

10000106 000013AD

PSWR GPR6

00000108 013AD000

The contents of GPR6 are left shifted 12 bit positions and then zero-filled
from the right. The result is transferred to GPR6.

Memory Location: 00106
Hex Instruction: 6F 4C (R=6, Shift Count=1210)
Assembly lLanguage Coding: SLA 6,12
PSWR GPR6
10000106 001FAD58
PSWR GPR6
7AD58000

40000108

Overflow occurs and is indicated by CCl.

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

SHIFT LEFT LOGICAL SLL

d,v
7040
[l | 1 .
I | I SHIFT
01 1 1 0 0 R 17(0 FIELD
| I I O I O L4 1 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is shifted left the number of bit
positions specified by the shift field (bits 11-15) in the Instruction Word.

f
:

CCl: No change '
CC2: No change
CC3: No change
CC4: No change

Memory lLocation: 00812

Hex Instruction: 73 D4 (R=7, Shift Count=20;q)
Assembly Language Coding: SLL 7,20

PSWR GPR7

A0000812 12345678

PSWR GPR7

A0000814 67800000

The contents of GPR7 are left-shifted 20 bits and replaced.

6-117

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-118

SHIFT LEFT CIRCULAR

7440
' l i
RN
| I I I | | | | I T |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is shifted left the number of bit
positions specified by the shift field (bits 11-15) in the Instruction
Word. Bits shifted out of bit position 0 are shifted into bit position 31.

L “ Iy

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 001FA

Hex Instruction: 77 CF (R=7, Shift Field=16,q)
Assembly Language Coding: SLC 7,16

PSWR GPR7

000001FA 12345678

PSWR GPR7

000001FC 56781234

The contents of GPR7 are shifted left circular for 16 bit positions.

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

SHIFT LEFT ARITHMETIC DOUBLE , SLAD

d,v
7840
|] 1 _
] =T -1 7
0111 1 0| R 1| o] sHiFTFIELD / /
L4111 L1 [T (4771 / / VNNV
o 1 2 3 4 5 0 7 8 O 10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in the GPR specified by R and R+l is shifted left the number
of bit positions specified by the shift field (bits 11-15) in the Instruction
Word. R+1 is the GPR one greater than specified by R. The sign (bit 0) of
the GPR specified by R remains unchanged. Condition Code bit 1 is set to One
if any bit shifted out of position 1 differs from the sign bit, position O.

1
! R R+l €0
! .

0 31 0 31

<«

CCl: 1ISI arithmetic exception
CC2: Always zero
CC3: Always zero
CC4: Always zero

Memory Location: 02DF6

Hex Instruction: 7A 58 (R=4, Shift Fie1d=2410)
Assemb]y Language Coding: SLAD 4,24

PSKR GPR4 GPR5

80002DF6 FFFFFFA3 9A178802

PSWR GPR4 GPR5

80002DF8 A39A1788 02000000

The doubleword obtained from the contents of GPR4 and GPR5 is left-shifted
24 bit positions, then zero-filled from the right. The result is returned
to GPR4 and GPRS5.

6-119

SLLD
d,v

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-120

SHIFT LEFT LOGICAL DOUBLE

7€40

R

1

0

I
SHIFT FIELD

Himmmmmmmm;

L.l 1

4 5 6 7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3t

The doubleword in the GPR specified by R and R+l is shifted left the number
of bit positions specified by the shift field (bits 11-15) in the Instruction

R+1 is the GPR one greater than specified by R.

Word.
1
1l
o 1 31
CCl: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location:
Hex Instruction:

Assembly Language Coding:

PSWR
100001FE

PSWR
10000200

GPR6
01234567

GPR6
6789ABCD

R+t

001FE
7F 58 (R=6, Shift Field=24)
SLLD 6,24

GPR7
89ABCDEF

GPR7
EF000000

The doubleword obtained from GPR6 and GPR7 is left-shifted 24 bit positions,

then zero-filled from the right.

The result is returned to GPR6 and GPR7.

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

SHIFT RIGHT ARITHMETIC SRA

d,v
6C00
| 1]
_ I I 1
o 1t 1t 0 1 1 R 0] 0| SHIFT FIELD
L1 1 11 L1 | I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is shifted right the number of bit
positions specified by the shift field (bits 11-15) in the Instruction
Word. Bit position 0 (sign bit) is shifted into bit position 1 on each
shift. The sign bit remains unchanged.

1
-[+]
v

31

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: ; 00372
Hex Instruction: 6D OA (R=4, Shift Field=107q)

Assembly Language Coding: SRA 4,10
PSWR GPR4

10000372 B69825F1

PSWR GPR4

10000374 FFEDA609

The contents of GPR4 are shifted right 10 bit positions. Since that value
is negative, a one is entered into bit position 1 with each shift.

6-121

SRL
d,v

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-122

SHIFT RIGHT LOGICAL
7000

]]]
I |
01 1 1 00 R 0 | 0 | SHIFT FIELD

0O 1 2 3 4 5.6 7 8 9 1 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is shifted right the number of bit
positions specified by the shift field (bits 11-15) in the Instruction Word.

o-P

7

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: 00372
Hex Instruction: 72 0A (R=4, Shift Field=101q)

Assembly Language Coding: SRL 4,10
PSWR GPR4

10000372 B69825F1

PSWR GPR4

10000374 002DA609

The content of GPR4 is shifted right 10 bit positions, then.zero-filled
from the Teft.

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

SHIFT RIGHT CIRCULAR SRC

, d,v
7400
| | : _
I I sHIFT
o1 1 1 0 1 R oo FIELD
1 1. 1.1 1 [1 1 1.1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 156 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is shifted right the number of bit
positions specified by the shift field (bits 11-15) in the Instruction Word.
Bits shifted out of bit position 31 are shifted into bit position 0.

ji i Iy

CCl: No change
CC2: No change
CC3: No change
CC4: No change

]

Memory Location: 00372) :

Hex Instruction: 76 0C (R=4, Shift Field=121q)
Assembly Language Coding: SRC 4,12

PSWR GPR4

20000372 01234567

PSWR GPR4

20000374 56701234

The contents of GPR4 are shifted right circular 12 bit positions and
replaced in GPR4.

€-123

SRAD
d,v

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-124

SHIFT RIGHT ARITHMETIC DOUBLE

7800
]]] :
I I TSHIFT /)
o 11110 & oo ST ////////////// /
| B I I | L1 I |
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 2223 24 25 26 27 28 29 30 31

The doubleword in the GPR specified by R and R+l is shifted right the number
of bit positions specified by the shift field (bits 11-15) in the Instruction
Word. R+l is the GPR one greater than specified by R. The sign (bit 0) of
the GPR specified by R remains unchanged. Bit position 0 (sign bit) is shifted
into bit position 1 with each shift.

-

0 31 0 31

z
v

)
t

— 1 R
)

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Memory Location: ' 02B46
Hex Instruction: 7B 18 (R=6, Shift Fie]d=2410)

Assembly Language Coding: SRAD 6,24
PSWR GPR6 GPR7
20002B46 8E2A379B 58C1964D
PSWR GPR6 GPR7
20002B48 FFFFFF8E 2A379B58

The doubleword obtained from the contents of GPR6 and GPR7 is shifted
right 24 bit positions, with the sign extended 24 bits from the left. The
result is transferred to GPR6 and GPR7. '

DEFINITION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

SHIFT RIGHT LOGICAL DOUBLE : SRLD

d,v
7C00
| : : !
RREX MR/,
L1111 [| I R
012345678910111213141516171819202122232425262728293031

The doubleword in the GPR specified by R and R+l is shifted right the
number of bit positions specified by the shift field (bits 11-15) in the
Instruction Word. R+l is the GPR one greater than specified by R.

. —

(4] 31 (¢} Si
CC1l: No change
CC2: No change
CC3: No change
CC4: No change

R+ —>

b e]
=)
R

Memory Location: 02B46
Hex Instruction: 7F 18 (R=6, Shift Field=24,)

Assembly Language Coding: SRLD 6,24
PSWR GPR6 GPR7
20002B46 "~ 8E2A379B 58C1964D
PSWR GPR6 GPR7
20002B48 0000008E 2A379B58

The doubleword obtained from the contents of GPR6 and GPR7 is shifted right
24 bit positions, then zero-filled from the left. The result is transferred
to GPR6 and GPR7.

6-125

BIT
MANIPULATION
INSTRUCTIONS

GENERAL

DESCRIPTION

INSTRUCTION
FORMATS

MEMORY
REFERENCE

INTERREGISTER

6-126

The Bit Manipulation instruction group provides the capability to set, read,
or add a bit to a specified bit Tocation within a specified byte of a

memory location or General Purpose Register. Provisions have also been made
to test a bit in memory or a General Purpose Register by transferring the
contents of that bit position to the Condition Code register.

The Bit Manipulation instruction group uses the following two 1nstruct1on
formats:

l l l 1. 1 l
! BIT |] 1 1 1
OP CODE FIELD x |']F , WA c
I I | 11] I I T N N N I N N TN T T T Y |]
01 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bits 0-5 define the Operation Code.
Bits 6-8 specify a bit (0-7).
Bits 9-10 designate one of three index registers.
Bit 11 indicates whether an indirect addresss1ng operation
is to be performed.
“Bits 12-31 specify the address of the operand when the X and I fields

are equal to zero.

ek

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5 define the Operation Code.

Bits 6-8 specify a bit (0-7).

Bits 9-11 designate a General Purpose Register addréss (0-7).
Bits 12-13 unassigned.

Bits 14-15 specify a byte (0-3).

CONDITION CODE
UTILIZATION

INTERPROCESSOR
SEMAPHORES

A Condition Code is set during execution of Set Bit, Zero Bit, and Test

Bit operations, if the bit on which the operation is being performed is equal
to one. During Add Bit operations, a Condition Code is set to indicate
whether the execution of the instruction caused a result greater than zero,
less than zero, equal to zero, or an arithmetic exception.

When two processors share memory and other resources, a simple positive
method must be provided for dynamically reserving/releasing shared memory
pages and the other shared resources. The Set Bit in Memory, Zero Bit in
Memory, or Add Bit in Memory instructions (SBM, ZBM) are used for this pur-
pose. If both processors attempt to set (or zero) the same semaphore bit at
the same time, one processor will actually access the memory location before
the other processor by virtue of the shared memory bus design. The first pro-
cessor to access the bit will copy the previous contents of the bit into its
Condition Code register before setting (or clearing) the bit. On the very
next memory cycle, the other processor will copy the state of the bit as set
by the first processor into its Condition Code register and then set (or
clear) the bit again. Both processors then execute Branch on Condition Code
instructions to test the status of the bit prior to changing it. The first
processor will find the bit previously not set (or set), indicating that it
was able to reserve the resource which the user has associated with the bit.
The second processor will find the bit already set (or not set), indicating
that the resource is currently reserved by the other processor and that
subsequent attempts should be made.

6-127

SBM
C,*m,x

~ DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

6-128

SET BIT IN MEMORY

9808
1 [1 1 1 1
I ot | T 1 T]
1 0o 0ot 1 0 FIELD X I 1 BYTE OPERAND ADDRESS
I | L1 ! [N N N O O O T T O O Y Y N OO OO
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is
accessed, and the specified bit (bit field) within the byte set to.
one. All other bits within the byte remain unchanged. The resulting
byte is replaced in the Tocation specified by the EBA. Condition Code
bit 3 (CC3) is transferred to CC4, CC2 is transferred to CC3, CCl is
transferred to CC2, and the original status of the specified bit of
the byte specified by the EBA is transferred to CCl.

Since the contents of the Condition Code register are shifted to the

next highest position before the specified bit is loaded into CCl, any

4 bits in memory or the GPR's can be stored in the Condition Code register
for a combined Conditional Branch test.

(cc3) — cca
(ccz2) - cc3
(cc1) — cc2
(EBLSBL) - CC1

CCl: ISI EBLgp; is equal to one
CC2: ISI CCl was one
CC3: ISI CC2 was one
CC4: ISI CC3 was one

Memory Location: 01000
Hex Instruction: 98 88 14 03 (bit field = 1)
Assembly Language Coding: SBHM 1,X'1403'

PSWR Memory Byte 01403
20001000 1A
PSWR Memory Byte 01403
10001004 5A

Bit 1 of memory byte 01403 is set to one.

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

SET BIT IN REGISTER SBR

d,b
1800

| §Il |

J T BYTéZV
0 00 110 0 o

FIELD R FIELD
I N 1 TN ISR N T TN OO N N N Uy A |

0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The specified bit (bit field) of the specified byte (byte field) in the
GPR specified by R is set to one. All other bits within the GPR specified
by R remain unchanged. Condition Code bit 3 (CC3) is transferred to CC4,
CC2 is transferred to CC3, CCl is transferred to CC2, and the original
status of the specified bit in register R is transferred to CCl.

Since the contents of the Condition Code register are shifted to the next
highest position before the specified bit is loaded into CCl, any four
bits in memory or the GPR's can be stored in the Condition Code register
for a combined Conditional Branch test.

(cc3)— cca
(cc2)— cc3
gcm) —~ CC2
Reg)= CCl
SBL
1 EBLgp,

CCl: ISI Rgp, 15 equal to one

CC2: ISI CCl was one
CC3: ISI CC2 was one
CC4: ISI CC3 was one

Memory Location 01002

Hex Instruction: XXXX1B 82 (bit field=7, R=0, byte field=2)
Assembly Language Coding: SBR 0,2

PSKR GPRO

10001002 0374B891

PSWR GPRO

08001004 0374B991

Bit 23 of GPRO is set to one.

6-129

ZBM
C,*m, X

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

6-130

ZERO BIT IN MEMORY

9Cc08
| | | 1 | |
! BIT | 1 1 1
40 0 1 af BT x |3 BYTE OPERAND ADDRESS
| I N | L1 | I N R T N T TN T T A N T AN A N N
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is
accessed and the specified bit (bit field) within the byte is set to
zero. A1l other bits within the byte remain unchanged. The resulting
byte is replaced in the location specified by the EBA. Condition Code
bit 3 (CC3) is transferred to CC4, CC2 is transferred to CC3, CCl is
transferred to CC2 and the original status of the specified bit of the
byte specified by the EBA is transferred to CC1.

Since the contents of the Condition Code register are shifted to the

next highest position before the specified bit is loaded into CC1l, any
four bits in memory or the GPR's can be stored in the Condition Code
register for a combined Conditional Branch test.

(cc3) — cca
(ccz) = cc3
(cci) — cc2
(EBLSBL) — CC1
0 - EBLgpL

CCl: ISI EBLgg; is equal to one
CC2: ISI €Cl1 was one
CC3: ISI CC2 was one
CC4: ISI CC3 was one

1F684
9E 8A 01 22 (bit field=5)
IMB 5,X'20122'

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR Memory Byte 20122
1001F684 34
PSWR Memory Byte 20122
4801F688 30

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE

EXAMPLE

Before
Execution

After Execution

Note

ZERO BIT IN REGISTER ' ZBR

24 M ORE 1/

The specified bit (bit field) of the specified byte (byte field) in the
GPR specified by R is set to zero. A1l other bits within the GPR specified
by R remain unchanged. Condition Code bit 3(CC3) 1is transferred to CC2,
and the original status of the specified bit of the specified byte in
register R is transferred to CCI.

Since the contents of the Condition Code register are shifted to the next
highest position before the bit is loaded into CCl, any four bits in
memory or the GPR's can be stored in the Condition Code register for a
combined Conditional Branch test.

(cc3) — cca
(cc2) — cc3
(cc1) — cc2
(RSBL) - (CC1
0 - EBLEBL

CC1: ISI Rgpy is equal to one
CC2: ISI CCl was one
CC3: ISI CC2 was one
CC4: ISI CC3 was one

Memory Location: 00C56

Hex Instruction: 1C51 (bit field=0, R=5, byte field=1)
Assembly Language Coding: ZBR 5,8

PSWR - GPR5 -

10000C56 76A43B19

PSWR GPR5

48000C58 76243819

Bit 8 of GPR5 is c]eared to zero. CC4 is set.

6-131

ABM
C,™m,X

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

- Before
Execution
After Execution

Note

6-132

ADD BIT IN MEMORY
A008

1 | | | ‘ |]
BIT | I T] T
101 0 0 0| e X 1] BYTE OPERAND ADDRESS
1 1 1 11 1 1 | | N T TN N A (NN T N AN) O N T O T B
0 1 2 3 4 65 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and one is added to the bit position specified by the bit field. The
addition is performed on the entire memory word containing the byte specified

‘by the EBA. Therefore, a carry may be propagated left to the sign bit. The

resulting word is transferred to the memory word Tocation containing the byte
specified by the EBA.

(EBL)+1SBL — EBL

CC1l: ISI arithmetic exception

CC2: ISI (EWL) is greater than zero
CC3: ISI (EWL) dis less than zero
CC4: ISI (EWL) is equal to zero

Memory Location: 03000
Hex Instruction: A2 08 31 92 (bit field=4, X=0, I=0)
Assembly Language Coding: ABM 4,X'3192'

PSWR Memory Word 03190
00003000 51A3F926
PSWR lemory Word 03190
20003004 51A40126

A one is added to bit position 207g of memory word 03190 (byte 2, bit 4)
which propagates a carry left to bit position 1379. The result is returned
to memory word 03190. CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before,
Execution

After Execution

Note

ADD BIT IN REGISTER ABR

QKA O

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A one is added to the specified bit (bit field) of the specified byte (byte
field) in the GPR specified by R. The addition is performed on the entire
word of the GPR specified by R. Therefore, a carry may be propagated left
to the sign bit. The result is then transferred to the GPR specified by R.

(R)+1gp — R

CC1: ISI arithmetic exception

CC2: ISI Rg.3p is greater than zero
CC3: ISI Rg-31 is Tess than zero
CC4: ISI Rp-31 is equal to zero

Memory Location: 0184E

Hex Instruction: 21 61 (bit field=2, R=6, byte field=1)
Assembly Language Coding: ABR 6,10

PSWR GPR6

0800184E 3BE9AC48

PSWR GPR6

20001850 3C09AC48

A One is added to bit position 101 of GPR6, and the result is replaced in
GPR6. CC2 is set.

6-133

TBM
C,y*m,Xx

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

6-134

TEST BIT IN MEMORY

A408
| l | | | |
| BIT | | I 1]
1 01 0 0 1gep X 1 BYTE OPERAND ADDRESS
| I I T O N I O I | IS 1N TN O N Y N T N NN N O O N O N |
01 2 3 4 5 6 7 8 9 10 11 12 13 14 156 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The specified bit in memory is transferred to the Condition Code register.
Condition Code bit 3 (CC3) is transferred to CC4, CC2 is transferred to CC3,
CCl is transferred to CC2, and the specified bit (bit field) of the byte
specified by the Effective Byte Address (EBA) is transferred to CCl.

Since the contents of the Condition Code register are shifted to the next
highest position before the specified bit is loaded into CC1l, any four bits
in memory or the GPR's can be stored in the Condition Code register for a
combined Conditional Branch test.

(cc3) — cca
(cc2) — cC3
(cc1) — cc2
(EBLgg,) — CC1

CCl: 1ISI RsgL is equal to one
CC2: ISI CCl1 was equal to one
CC3: 1ISI CC2 was equal to one
CC4: ISI CC3 was equal to one

Memory Location: 05A38
Hex Instruction: A6 08 5B 21 (bit field=4, X=0, I=0)
Assembly Language Coding: TBM 4,X'5B21'

PSWR Memory Byte 05B21
10005A38 29

PSWR - Memory Byte 05B21
48005A3C 29 ,

Bit 4 of memory byte 05B21 is transferred to CCl. CC3 is transferred to

cca.

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

TEST BIT IN REGISTER TBR

d,b
2400
l l
J BT | BYTE [/
00106 0 TlpED R]1% OlrED
I I L1 | 1 1
01 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The specified bit in the GPR specified by R is transferred to the Condition
Code register. Condition Code bit 3 (CC3) is transferred to CC4, CC2 is
transferred to CC3, CCl is transferred to CC2, and the specified bit (bit
field) of the specified byte (byte field) in the GPR specified by R is
transferred to CCIL.

Since the contents of the Condition Code register are shifted to the next
highest position before the specified bit is loaded into CCl, any four bits
in memory or the GPR's can be stored in the Condition Code register for

a combined Conditional Branch test.

(cc3) —cca
(cc2) —-cc3
(cc1) —cc2
(RSBL)—'CCI

CCl: ISI RggL was equal to one
CC2: ISI CC1l was equal to one
CC3: ISI CC2 was equal to one
CC4: 1ISI CC3 was equal to one

Memory Location 01982

Hex Instruction: 25 D3 (bit field=3, R=5, byte field=3)
Assembly Language Coding: TBR 5,27

PSWR GPR5

18001982 81A2C64D

PSWR GPR5

08001984 81A2C64D

CC2 through CC4 are right-shifted one bit position. CCl is cleared to zero
since bit 2779 of GPR5 is zero.

6-135

FIXED-POINT
ARITHMETIC
INSTRUCTIONS

GENERAL

DESCRIPTION

‘INSTRUCTION
FORMATS

MEMORY
REFERENCE

IMMEDIATE

6-136

The Fixed-Point Arithmetic group is used to perform addition, subtraction,
multiplication, d1v1s1on, and sign control functions on bytes, halfwords,

words, and doublewords in memory and General Purpose Registers.

Provisions

have also been made to allow the result of a register-to-register addition or
subtraction to be masked before final storage.

The F1xed Point Arithmetic instructions use the following three instruction

formats:
|]]]] 1
| |] I | 1
OP CODE R X 1 F WA C
L1 111 L] I O IO NN N N Y N S T O O]
0O 1t 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5 define the Operation Code.
Bits 6-8 designate a General Purpose Register address (0-7).
Bits 9-10 designate one of three index registers.
Bit 11 designates whether an Indirect Addressing operation is
to be performed.
Bits 12-31 specify the address of the operand when the X and I fields
are equal to zero.
| | I 1 [l |
I | I AUG) i | T
OP CODE R 0 0 0 Ofcope OPERAND VALUE
L1 11 [L1 | E T TS N T N MO NN TN OO TN AN A I
o 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5
Bits 6-8
Bits 9-12
Bits 13-15
Bits. 16-31

define the Operation Code.

designate a General Purpose Register address (0-7).
unassigned.

define Augmenting Operation Code.

contain the 16-bit operand value.

INTERREGISTER

Data Formats

Byte

Halfword
(Sign Extended)

Word

Doubleword

OP CODE R I R AUG CODE W////I//
D S /
I I | | Ll L1 1 42%Z%ZZZZ%Z%ZZZZZZZZZZZZZZ%ZQ
o 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5 define the Operation Code.
Bits 6-8 designate the register to contain the result of the operation.
Bits 9-11 designate the register which contains the source operand.
Bits 12-15 define the Augmenting Operation Code.

The Fixed-Point Arithmetic instructions use the following data formats:

] |] R l
T T {

0

I |
0 0 00 00 0O OO O O0OOUOU OOOTUOTGOTU OTGOTOO

] |
INTEGER

N Y Y TN Y O |

NS N TN N [N N N O SO U NN U N NN U TS SN NN S N |

10 11 12 13 14 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

o1 8 9

2 3 4 5 6 7

| 1 1 i

| ; -1 i |
S 8§ S 8§ S 8 S S 8§ S S s s S s s]s INTEGER

0 1 2 3 4 6 6 7 8 9 10 11 12 13 t4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

I T ' | I
s . INTEGER
L S N T NN NN TN N TN T N T T T N T O N A O OO O I B B
o 1 2 3 5 6 7 8 9 10-11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
l l I / AN ' l l
] 1 ' ! < / I 1 1
S INTEGER
A A NN T T T O A O T O O N N TR N TN TN U N N O T Y OO O
< >
01 2 3 4 5 6 7 8 9 10 1 12 13 14 49 50 51 52 653 54 b5 56 57 58 53 60 61 62 63

6-137

CONDITION CODE

UTILIZATION

TREATMENT OF
SIGNED NUMBERS

6-138

Execution of most Fixed-Point Arithmetic instructions causes a Condition
Code to be set to indicate whether the result of the operation was greater
than, less than, or equal to zero. Arithmetic exceptions produced by an
arithmetic operation are also reflected by the Condition Code results.

To perform logical operations, the hardware interprets operands as logical
words. For fixed-point arithmetic operations, operands are treated as
unsigned numbers. Logical and arithmetic operations can be performed on any
of the data types available in the SEL 32 Series Computer bytes, 16-bit
halfwords, 32-bit words, and 64-bit doublewords. A program executing on the
SEL 32 Series Computer however, can interpret any of the available data types
as a two's complement notation number. It is a property of two's complement
arithmetic that operations on signed numbers using two's complement con-
versions are identical to operations on unsigned numbers; in other words,
the hardware treats the sign as the most significant magnitude bit.

Consider a General Purpose Register that contains:

As an unsigned number, this would be equivalent to:

8116 .= 129,

Interpreted as a signed number using two's complement notation, it would be:

7Ei6 = 12610

It makes no difference as to how the programmer interprets data as far as
processor operation is concerned. However, the programmer is aided in the
use of two's complement notation by the Condition Code (CC) bits of the
Program Status Word (PSW), which are generally set based on two's complement
notation.

Numbers in two's complement notation are symmetrical in magnitude around a
zero representation, so all even numbers, both positive and negative, will
end in zero, and all odd numbers will end in one (binary word containing all
one's represents minus one).

If one's complement notation was used for negative numbers, a negative
number could be read by attaching significance to the zeros instead of
the one's.

In two's complement notation, each number is one greater than the complement
of the positive number of the same magnitude, so a negative number can be
read by attaching significance to the right-hand one and to the zeros to the
left of it. (The negative number of the largest magnitude has a one only

in the sign position.) Assuming a binary integer, one's may be discarded at
the Teft in a negative integer in the same way that leading zeros may be
dropped from a positive integer.

Associated with the Arithmetic/Logic Unit is a 4-bit Condition Code
register which forms the CC portion of the PSW. These CC bits are altered
during all Arithmetic/Logical operations and data transfers.- The CC bits
indicate such conditions as arithmetic exception, overflow, zero, and
positive or negative magnitude.

6-139

ADMB
d,*m,Xx

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After
Execution

‘Note

6-140

ADD MEMORY BYTE

B808
] | l]]
L T B 1 I !
101 11 0 R x 111 BYTE OPERAND ADDRESS
| I T T | Pl | SR N NS T T N T N T IO Y T O I IS |
01 2 3 4 5 6 7 8 9 10 11.12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and 24 zeros are appended to the most significant end to form a word. This

word is algebraically added to the contents of the GPR specified by R. The

resulting word is then transferred to the GPR specified by R.

0y_p3» (EBL)*(R) R

CCl: 1ISI arithmetic exception
cC2: 'ISI Ry.37 is greater than zero

CC3: ISI Ry 37 is less than zero

CC4: ISIR is equal to zero
0-31

Memory Location: 00800

Hex Instruction:
Assembly Language Coding:

BA 08 09 15 (R=4, X=0, I=0)
ADMB 4,X'915'

PSWR GPR4 Memory Byte 00915
10000800 00000099 8A

PSWR GPR4 Memory Byte 00915
20000804 00000123 8A '

The contents of memory byte 00915, with zeros prefixed, are added to the
contents of GPR4, and the result is transferred to GPR4. CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

ADD MEMORY HALFWORD ADMH

d,*m,x
B800
1 | |] |]
1 1 T 1 T |
1 0 1t 1 1 0O R X i}jo0 HALFWORD OPERAND ADDRESS 1
L1 11 L1] N T N T OO RN N N N PN N O O Y OO |
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and the sign bit (bit 16) is extended 16 bits to the left to form a
word. This word is algebraically added to the contents of the GPR specified
by R. The resulting word is then transferred to the GPR specified by R.

(EHL)SE+(R)-* R

CCl: ISI arithmetic exception

€C2: ISI Ry 44 is greater than zero
€C3: ISI Ry 37 is less than zero
CC4: ISI Ry 37 is equal to zero

Memory Location: 40D68
Hex Instruction: BB 84 10 97 (R=7, X=0, I=0)
Assembly Language Coding: ADMH 7,X'41096'

PSWR GPR7 Memory Halfword 41096
20040068 000006C4 8C42
PSWR GPR7 Memory Halfword 41096
10040D6C FFFF9306 842

The contents of memory halfword 41096 with sign extension are added to the
contents of GPR7, and the result replaces the contents of GPR7. CC3 is set.

6-141

ADMW
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-142

ADD MEMORY WORD
B800

4 L 1 i | |

1 | I | 1 I
101 1 10 R x |i}o WORD OPERAND ADDRESS oo

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is accessed
and algebraically added to the contents of the GPR specified by R. The
resulting word is then transferred to the GPR specified by R. '

(EWL)+(R) —R

CC1l: ISI arithmetic exception

CC2: 1ISI Rp-31 1s greater than zero
CC3: ISI Ry 37 is less than zero
CC4: ISI Ry 37 s equal to zero

Memory Location: 00D50
Hex Instruction: BB 00 11 AC (R=6, X=0, I=0)
Assembly Language Coding: ADMW 6,X'11AC'

PSWR GPR6

Memory Word 011AC
400000D50 0037C1F3 004FC276
PSWR GPR6 Memory Word 011AC
200000054 00878469 004FC276

The contents of memory word 011AC are added to the contents of GPR6. The
result is transferred to GPR6. CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before'

Execution

After Execution

Note

ADD MEMORY DOUBLEWORD :) ADMD

d,*m, X
B800
| | ! |] l
I I i I 1 i
101 1 1 0 R X 110 DOUBLEWORD OPERAND ADDRESS cj110
I | 1l] N I T TN OO T NN N N NS O T O N
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and algebraically added to the contents of the GPR specified by
R and R+1. R+1 is the GPR one greater than specified by R. The contents of
the GPR specified by R+l are added to the contents of the least significant
word of the doubleword first. The contents of the GPR specified by R are
added to the contents of the most significant word of the doubleword last.
The resulting doubleword is transferred to the GPR specified by R and R+1.

(EWL + 1) + (R+1)—R+1 + Carry

(EWL) + (R) + Carry —R

CCl: ISI arithmetic exception

€cC2: ISI (R, R+1) is greater than zero

CC3: ISI (R, R+1) is less than zero
cC4: ISI (R, R+1) is equal to zero

Memory Location: 08E3C

Hex Instruction: BA 00 92 52 (R=4, X=0, I=0)
Assembly Language Coding: ADMD 4,X'9250'
PSWR GPR4 GPR5

08008E3C 000298A1 815BC63E

Memory Word 09250 Memory Word 09254
3B69A07E , 7F3549A4

PSWR GPR4 GPR5

20008E40 3B6C3920 00913FE2

Memory Word 09250 Memory Word 09254
3B69A07E ' 7F3579A4

The doubleword obtained from the contents of memory words 09250 and 09254
is added to the doubleword obtained from the contents of GPR4 and GPR5.
The result is transferred to GPR4 and GPR5. CC2 is set.

6-143

ADR

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-144

ADD REGISTER TO REGISTER
3800

01 23 45 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by Rp is algebraically added to the word in
the GPR specified by Rg. The resulting word is then transferred to the GPR
specified by RD‘

CCl: ISI arithmetic exception

€C2: ISI (R,) is greater than zero
CC3: ISI (Ry) is.less than zero
CC4: 1SI (RD) is equal to zero

Memory Location: 03FA2

Hex Instruction: 3B 70 (RD=6, RS=7)
Assembly Language Coding: ADR 7,6

PSWR GPR6 GPR7

08003FA2 FF03C67D 045C6E3F

PSWR GPR6 GPR7

20003FA4 036034BC 045C6E3F

The contents of GPR6 and GPR7 are added and the result is transferred to
GPR6. CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

ADD REGISTER TO REGISTER MASKED ADRM

S,d
3808
I]
| LI
00111‘0 RD RS OODOW
L1 11 Ll 111 L1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by Rp is algebraically added to the word in
the GPR specified by Rs. The sum of this addition is masked (Logical AND
Function) with the contents of the Mask register (R4). The resulting word
is then transferred to the GPR specified by RD'

(RS)+(RD)&(R4) -~ Rp

CC1l: ISI arithmetic exception

cc2: 1ISI (RD)-is greater .than zero
€C3: 1ISI (R;) is Tess than zero
cc4: 1ISI (RD) is equal to zero

Memory Location: 16A9A
Hex Instruction: 38 78 (Rp=6, Rg=7)

Assembly Language Coding: ADRM 7,6

PSWR GPR4 GPR6 GPR7
40016A9A 007FFFFC 004FC276 0037C1F3
PSWR GPR4 ' GPR6 GPR7
20016A9C 0007FFFC 00078468

0037C1F3

The contents of GPR6 and GPR7 are added; the result is ANDed with the
contents of GPR4 and transferred to GPR6. CC2 is set.

6-145

ARMB
S, *m,X

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-146

ADD REGISTER TO MEMORY BYTE

E808

R

X
]

1

|

l 1
BYTE OPERAND ADDRESS
N T I

0 1 2 3 4 5 6 7 8 9 1011 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and algebraically added to the contents of the GPR specified by R. Bits 24-31
of the result are then transferred to the memory byte location specified by
the EBA. The GPR and the other three bytes in the word which contains the

byte specified by the EBA remain unchanged.

(R)+(EBL) —

CCi:
ccz:
CC3:
CcC4:

Undefined
Undefined
Undefined

Memory Location:
Hex Instruction:

Assembly Language Coding:

PSWR GPR6
00001A64 0000004A
PSWR GPR6
00001A68 0000004A

EBL

01A64
EB 08 1A 97 (R=6, X=0, I=0)
ARMB 6,X'1A97"

ISI the 32-bit sum is equal to zero

Memory Byte 01A97

39

Memory Byte 01A97

83

The contents of GPR6 and memory byte 01A97 are added and the result is

transferred to memory byte 01A97.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

ADD REGISTER TO MEMORY HALFWORD ARMH

S, ¥, X
E800
] | | | | |
1 | I | 1 |
1 1 1. 0 1 O R X 110 HALFWORD OPERAND ADDRESS
L i 11 1 1 ! [T TN TN Y TN NN (OO IO Y N TN T O N A I |
0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and algebraically added to the least significant halfword

(bits 16-31) of the GPR specified by R. The result is then transferred to
the memory halfword location specified by the EHA. The other halfword of
the word which contains the halfword specified by the EHA remains unchanged.

(Ryg_31)* (EHA) — EHL

CCl: Undefined
CC2: Undefined
CC3: Undefined
€C4: ISI (EHL) is equal to zero

Memory Location: 200B4
Hex Instruction: EA 82 09 19 (R=5, X=0, I=0)
Assembly Language Coding: ARMH 5,X'20918'

PSWR GPR5 Memory Halfword 20918
000200B4 FFFF8C42 06C4
PSWR GPR5 Memory Halfword 20918
000200B8 FFFF8C42 9306

The contents of bits 16-31 of GPR5 and memory halfword 20918 are added and
the result is transferred to memory halfword 20918.

6-147

ARMW
S,*m, X

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before

Execution

After Execution

Note

© 6-148

ADD REGISTER TO MEMORY WORD

E800
| 1 | | | |
I T 1 :] 1 1
1t 110 1 0 R X 1]o WORD OPERAND ADDRESS' oo
Lt 1 11 [| N N T T T T T Y O O T I O
0 1 2 3 4 5 6 7 8 91011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31

The word in memory specified by the Effective Word Address (EWA). is accessed
and algebraically added to the word in the GPR specified by R. The resulting
word is then transferred to the memory word location specified by the EWA.

(E)+(EWL) —~ EWL

CCl: 1ISI arithmetic exception

CC2: 1ISI (EWL) is greater than zero
CC3: ISI (EWL) is less than zero
CC4: 1ISI (EWL) is equal to zero

Memory Location: - 03000 :
Hex Instruction: EB 80 31 00 (R=7, X=0, I=0)
Assembly Language Coding: ARMW 7,X'3100'

PSWR GPR7 Memory Word 03100
08003000 245C6E3F FFO3C67D
PSWR GPR7 Memory Word 03100
20003004 245C6E3F 236034BC

The contents of GPR7 and memory word 03100 are added and the result is
transferred to memory word 03100. CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE

RESULTS

EXAMPLE

Before
Execution

After Execution

Note

ADD REGISTER TO MEMORY DOUBLEWORD ‘ ARMD

S.*m,X
E800
|]] 1 l 1
| 1 1]
1 1 1 0 1 O R X I |o DOUBLEWORD OPERAND ADDRESS oj11]o0
L1 1 11 L1] N TS T (Y N T T N N N T T S |
01 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and algebraically added to the doubleword in the GPR specified
by R and R+l. R+l is the GPR one greater than specified by R. The contents
of the GPR specified by R+l are added to the contents of the least signifi-
cant word of the doubleword first. The resulting doubleword is transferred
to the memory doubleword location specified by the EDA.

(R+1)+(EQL+1) — EWL+1+Carry
(R)+(EWL)+Carry — EWL

CCl: ISI arithmetic exception

CC2: 1ISI (EDL) is greater than zero

€CC3: ISI (EDL) is less than zero
CC4: 1ISI (EDL) is equal to zero

Memory Location: 0819C

Hex Instruction: EB 00 83 AA (R=6, X=0, I=0)
Assembly Language Coding: ARMD 6,X'83A8"
PSWR GPR6 GPR7

4000819C 01A298A1 F15BC63E

Memory Word 083A8 Memory Word 083AC
3B69A07E 7F3579A4

PSWR GPR6 GPR7

200081A0 01A298A1 F15BC63E

Memory Word 083A8 Memory Word 083AC
3D0C3920 70913FE2

The doubleword obtained from GPR6 and GPR7 is added to the doubleword from
memory words 083A8 and 083AC. The result is transferred to memory words
083A8 and 083AC. CC2 is set.

6-149

ADI
d,v

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-150

ADD IMMEDIATE

€801
!] | ! 1
| I]]
1100 10 R 0 0 ofjo 0 0 1 IMMEDIATE OPERAND
| N N N S A NN N T N T (N (N T T T O O [Y I Y O Y
0 1 2 3 4 5 6 7 8 9 101 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The sign of the least significant bit (bits 16-31) of the Instruction Word
is extended 16 bits to the left to form a word. This word is algebraically
added to the word in the GPR specified by R. The resulting word is trans-
ferred to the GPR specified by R.

(IW +(R) =R

16-31)SE

CCl: ISI arithmetic exception

CC2: ISI Ry 5, is greater than zero
CC3: ISI Ry 37 is less than zero
CC4: ISI Ry_3j s equal to zero

Memory Location: 00D88
Hex Instruction: C8 01 86 B2 (R=0)
Assembly Language Coding: ADI 0,X'86B2'

PSWR GPRO
20000088 0000794E
PSWR GPRO
08000D8C 00000000

The immediate operand, sign extended, is added to the contents of the GPRO
and the result replaces the previous contents of GPRO. CC4 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After
Execution

Note

SUBTRACT MEMORY BYTE SUMB

d,*m,x
BCO8
1 1 1] 1 1
i I 1 I 1 1
t 01 1 1 1 R X 1|1 BYTE OPERAND ADDRESS
L1111 L | | I O N N TN TN (NN NN U TN NN NS OO VOO A O T |
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3t

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and 24 zeros are appended to the most significant end to form a word. This
word is algebraically subtracted from the word in the GPR specified by R.
The resulting word is transferred to the GPR specified by R.

(R)'[OO;Z3,(EBL)] —~R

CC1l: ISI arithmetic exception

CC2: ISI Ry 49 1is greater than zero
CC3: ISI Ry 37 is less than zero
CC4: ISI Ry_3] s equal to zero

01000
BC 88 12 01 (R=1, X=0, I=0)
SUMB 1,X'1201"

Memory Location:
Hex Instruction:
Assembly Language Coding:

PSWR GPR1 Memory Byte 01201
40001000 0194A7F2 9A
PSWR GPR1 - Memory Byte 01201
20001004 0194A758 9A

The contents of memory byte 01201, with 24 zeros prefixed, are subtracted
from the contents of GPR1. The result is transferred to GPR1. CC2 js set.

6-151

SUMH
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-152

SUBTRACT MEMORY HALFWORD

BCOO
] | | 1 | l
)] . | 1] I
10 1 1 11 R x [1]e HALFWORD OPERAND ADDRESS 1
| T S T T A I DS I | | S T O U O N TN I N N Y T Y O NN |

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address is
accessed and the sign bit (bit 16) is extended 16 bits to the left to form

a word. This word is algebraically subtracted from the word in the GPR
specified by R. The resulting word is then transferred to the GPR specified
by R.

(R)-(EHL)SE —-R

CCl: 1ISI arithmetic exception

CC2: 1ISI R0-31 is greater than zero
CC3: ISI Ry 37 is less than zero
CC4: ISI Ry 37 is equal to zero

Memory Location: 01604
Hex Instruction: BF 00 18 77 (R=6, X=0, I=0)
Assembly Language Coding: SUMH 6,X'1876'

PSWR GPR6 Memory Halfword 01876
10001604 00024CB3 34C6
PSWR GPR6 Memory Halfword 01876
20001608 000217ED 34C6

The contents of memory halfword 01876, sign extended, are subtracted from the
contents of GPR6. The result is transferred to GPR6. CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

SUBTRACT MEMORY WORD SUMK

d,*m,x
BCOO
{]] | l |
] I] 1 I |
1 0 1 1 1 1 R X I |0 WORD OPERAND ADDRESS 0]o
L1 1 11 L1 1 N N I T N N I I N OO N Y I
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address is accessed and
algebraically subtracted from the word in the GPR specified by R. The
resulting word is then transferred to the GPR specified by R.

(R)-(EWL) =R

CCl: 1ISI arithmetic exception

CC2: ISI Ry 44 is greater than zero
CC3: ISI Ry 3] is less than zero
CC4: ISI Ry 37 is equal to zero

Memory lLocation: 6C208
Hex Instruction: BC 86 F9 14 (R=1, X=0, I=0)
Assembly Language Coding: SUMW 1,X'6F914'

~

PSWR GPR1 Memory Word 6F914
0406C208 00A6264D 00074BC3
PSWR GPR1 Memory Word 6F914
2006C20C 009EDASA 00074BC3

The contents of memory word 6F914 are subtracted from the contents of GPR1
and the result is transferred to GPR1. CC2 is set.

6-153

SUMD SUBTRACT MEMORY DOUBLEWORD

d,*m,x v
BCOO
l | l l | I
| I I] 1 I
1.0 1 1 1 1 R X 1|0 DOUBLEWORD OPERAND ADDRESS 0f1}o
Lt 14 L1] D I N TN TN O Y TN T N O Y
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DEFINITION The doubleword in memory specified by the Effective Doubleword Address (EDA)
is accessed and algebraically subtracted from the doubleword in the GPR
specified by R and R+l. R+l is the GPR one greater than specified by R. The
word Tocated in the GPR specified by R+1 is subtracted from the Teast
significant word of the doubleword first. The resulting doubleword is trans-
ferred to the GPR specified by R and R+1.

SUMMARY (R+1)-(EWL+1) — R+1-Borrow
EXPRESSION
(R)-(EWL)-Borrow —~R

CONDITION CODE CC1l: 1ISI arithmetic exception
RESULTS CC2: ISI (R, R+l) is greater than zero
CC3: ISI (R, R+l) is less than zero
CC4: 1ISI (R, R+1) is equal to zero

EXAMPLE Memory Location: 03000
Hex Instruction: BF 00 31 02 (R=6, X=0, I=0)
Assembly Language Coding: SUMD 6,X'3100 :
Before PSWR GPR6 GPR7
Execution ™. 10003000 5AD983B7 C833D509
Memory Word 03100 Memory Word 03104
153B0492 5BE87A16
After Execution PSWR GPR6 GPR7
20003004 -459E7F25 6C4B5AF3
Memory Word 03100 Memory Word 03104
15380492 5BE8B7A16

Note The doubleword obtained from memory words 03100 and 03104 is subtracted from
the doubleword in GPR6 and GPR7. The result is transferred to GPR6 and GPR7.
CC2 is set.

6-154

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

SUR
SUBTRACT REGISTER FROM REGISTER s,d

3C00

0 1 2-3 4 6 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3t

The word in the GPR specified by Rg is algebraically subtracted from the word
in the GPR specified by RD. -The resulting word is then transferred to the
GPR specified by RD’

(RD)-(RS) - RD

CCl: 1ISI arithmetic exception

cC2: 1ISI (RD) is greater than zero
CC3: 1ISI (RD) is less than zero
CC4: 1ISI (RD) is equal to zero

Memory Location: 106AE

Hex Instruction: 3C A0 (RD=1, RS=2)
Assembly Language Coding: SUR 2,1

PSWR GPR1 i) GPR2

100106AE 12345678 12345678

PSWR GPR1 GPR2

08010680 00000000 12345678

The contents of GPR2 are subtracted from the contents of GPR1. The result is
replaced in GPR1. CC4 is set.

6-155

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-156

SUBTRACT REGISTER FROM REGISTER MASKED

3c08

i # 7
0601 1 11| Ry Rg |1 0 0 0 ;Z%ézgy
Lt 1 1 | - . L1 |

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by Rs is algebraically subtracted from the word
in the GPR specified by Rp. The difference of this subtraction is then
masked (Logical AND Function) with the contents of the Mask register (R4).
The resulting word is transferred to the GPR specified by RD'

(Rp)-(Rg)&(R4) - R

CCl: 1ISI arithmetic exception

cc2: 1ISI (RD) is greater than zero
cC3: 1ISI (RD) is less than zero
cc4: 1SI (RD) is equal to zero

Memory Location: 00496
Hex Instruction: 3F 58 (Rp=6, Rg=5)

Assembly Language Coding: SURM 5,6

PSWR GPR4 GPR5 GPR6
10000496 00FFFFOO 00074BC3 00A6264D
PSWR GPR4 GPR5 GPR6
20000498 OOFFFFOO0 000748C3 009EDAQO

The contents of GPR5 are subtracted from the contents of GPR6. The result
is ANDed with the contents of GPR4 and transferred to GPR6. CC2 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION. CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

SUBTRACT IMMEDIATE Sul

d,v
€802
L 1 | | 1
I 1 1 T |
1100 10 R o0 0 o0jo o 1 0 IMMEDIATE OPERAND
| | 1 1 Ll | I .t 11111 rrpt
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The sign of the Teast significant halfword (bits 16-31) of the Instruction
Word is extended 16 bits to the left to form a word. This word is
algebraically subtracted from the word in the GPR specified by R. The
resulting word .is transferred to the GPR specified by R.

(R)-(Wy6_31)5g =R

CCl: ISI arithmetic exception

cc2: 1ISI R0—31 is greater than zero
CC3: ISI Ry 37 is less than zero
CC4: 1ISI Ry 37 is equal to zero

Memory Location: 019B8
Hex Instruction: CB 82 83 9A (R=7)
Assembly Language Coding: SUT 7,X'839A"

PSWR GPR7
10001988 FFFF839A
PSWR GPR7
080019BC 00000000

The imnediate operand with sign extension is subtracted from the content
of GPR7. The result is transferred to GPR7. (C4 is set. \

6-157

MPMB
s ¥m, x

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE
Before

Execution

After Execution

Note

6-158

MULTIPLY BY MEMORY BYTE
coos

1 |] | 1 |
| 1 | I
1100 00 R X 1] BYTE OPERAND ADDRESS

| I I T N N O T N | | I Y (N N T (Y N A TN O Y A O N I |

0 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and 24 zeros are appended to the most significant end to form a word. This
word is algebraically multiplied by the word in the GPR specified by R+1.
R+l is the GPR one greater than specified by R. The double-precision result
is transferred to the GPR specified by R and R+1.

1. An arithmetic exception will never occur since the result of a
multiplication can never exceed the length of the doubleword register.

2. GPR specified by R must have an even address.

0g_p3s (EBAIX(R#1) = R,R+1

CCl: Always zero :

CC2: 1ISI (R, R+I) is greater than zero
CC3: 1ISI (R, R+1) is less than zero
CC4: 1ISI (R, R+1l) is equal to zero

Memory Location: 2BA28
Hex Instruction: CO OA C3 D9
Assembly Language Coding: MPMB 0,X'2C3D9'

PSWR GPRO GPR1
0002BA28 12345678 6F90C859
Memory Byte 2C3D9

40

PSWR GPRO GPR1
2002BA2C 0000001B E4321640

Memory Byte 2C3D9
40

The contents of memory byte 2C3D9, with zeros prefixed, are multipled by the
contents of GPR1l. The result is transferred to GPRO and GPR1. CC2 is set.

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

MULTIPLY BY MEMORY HALFWORD MPMH

d,*m,x
€0000
| 1 1 1 1 1
1]] | | 1
11 0 00 0 O R X 1]0 HALFWORD OPERAND ADDRESS 1
L1l 1 11 L L A N I N N T TR R N T T N AN O M N
0t 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed and the sign-bit (bit 16) is extended 16 bits to the left to form a
word. This word is algebraically multiplied by the word in the GPR specified
by R+l. R+l is the GPR one greater than specified by R. The double-precision
result is transferred to the GPR specified by R and R+l.

1. An arithmetic exception will never occur since the result of a multi-
plication can never exceed the length of the doubleword register.

2. GPR specified by R must have an even address.

(EHL)SEX(R+1)—> R,R+1

CC1: Always zero

CC2: ISI{R, R+l) is greater than zero
CC3: ISI (R, R+l) is less than zero
CC4: 1ISI (R, R+l) is equal to zero

Memory Location: 096A4
Hex Instruction: Cl 00 9B 57 (R=2, X=0, I=0)
Assembly Language Coding: MPMH 2,X'9B56"

PSWR GPR2 GPR3 Memory Halfword 09B56
080096A4 12345678 00000003 FFFD
PSWR , GPR2 GPR3 Memory Halfword 09B56
100096A8 FFFFFFFF FFFFFFF7 FFFD

The contents of GPR3 are multiplied by the contents of memory halfword

09B56. The doubleword result is transferred to GPR2 and GPR3. CC3 is set.

6-159

MPMW
d,*m,x

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-160

MULTIPLY BY MEMORY WORD

c000
] !] :] | l
I 1 i | l
1100 00 R x |1]o WORD OPERAND ADDRESS oo
L1 11 L1] AN T (N T T N N NN Y S NS N S N |
0 1 2 3 45 6 7 8 9 1011 12 13 14 156 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Word Address (EWA) is accessed
and algebraically multiplied by the word GPR specified by R+1. R+1 is the
GPR one greater than specified by R. The double-precision result is trans-
ferred to the GPR specified by R and R+1.

1. An arithmetic exception will never occur since the result of a
multiplication can never exceed the length of the doubleword register.

2. GPR specified by R must have an even address.

(EWL)x(R+1) — (R,R+1)

CCl: Always zero

€C2: 1ISI (R, R+1) is greater than zero
CC3: 1ISI (R, R+1) is less than zero
CC4: 1ISI (R, R+1) is equal to zero

Memory Location: 04AC8
Hex Instruction: C3 00 4B 1C (R=6, X=0, I=0)
Assembly Language Coding: MPMW 6,X'4B1C'

PSWR GPR6 GPR7 Memory Word 04B1C
10004AC8 00000000 80000000 80000000
PSWR GPR6 GPR7 Memory Word 04B1C
20004AcCC 40000000 00000000 80000000

The contents of GPR7 and memory word 04B1C ére multiplied, and the result is
transferred to GPR6 and GPR7. CC2 is set.

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

" After Execution

Note

s,d
MULTIPLY REGISTER BY REGISTER
4000
l : .
01 0 o'o 0 Rp Rg [0 0 0 0 A%V //
L1111 L1 Ll L 11 / A 4 4 / 4 ;/4
0 1 2 3 4 5 6 -7 8 9 1 11 12 13 14 15 16 17-18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word GPR specified by Re is algebraically multiplied by the word in the
GPR specified by Rptl. ? is the GPR one greater than specified by Rp.
The double- prec1s10n resu?t is transferred to the GPR specified by R and
RD+1
1. The multiplicand register Rg can be any register, including register

R +1 however, RD must be an even-numbered register.

2. An arithmetic exception will never occur since the result of a multi-
plication can never exceed the length of the doubleword register.

(Rg)x(Ry#1) = Rp,Ry+1

CC1l: Always zero

cc2: ISI (R ,RD+1) is greater than zero
cc3: ISI (R ,RD+1) is less than zero
cc4: 1ISI (RD,RD+1) is equal to zero

Memory Location: 0098E

Hex Instruction: 40 10 (RD=O,RS=1)
Assembly Language Coding: MPR 1,0

PSKWR GPRO GPR1

1000098E 00000000 0000000F

PSWR GPRO GPR1

20000990 00000000 000000E1

The content of GPR1 is multiplied by itself, and the doubleword product is
transferred to GPRO and GPR1. CC2 is set.

6-161

MPI "~ "MULTIPLY IMMEDIATE
d,v
€803

l I 1 l . {
1t 1 0 0 10 R 0 0 0jJO 0 1 1) IMMEDIATE OPERAND

| NN (N TN TS NN N TN A N N N AN N N (N SO IS IS U TN (N N N TN (N TN N N |

0 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DEFINITION The sign of the least significant halfword (bits 16-31) of the Instruction
Word is extended 16 bits to the left to form a word. This word is alge-
braically multiplied by the word in the GPR specified by R+l. R+l is the
GPR one greater than specified by R. The result is transferred to the GPR
specified by R and R+1.

NOTES 1. An arithmetic exception will never occur since the result of a multi-
plication can never exceed the length of the doubleword register.

2. The GPR specified by R must have an even address.

SUMMARY (IW,, oi)ccx(RF1) — R,R*1
EXPRESSION 16-31°SE

CONDITION CODE CCl: Always zero
RESULTS CC2: 1ISI {R,R+1) is greater than zero
CC3: ISI (R,R+1) is Tess than zero
CC4: 1ISI (R,R+1) is equal to zero

EXAMPLE Memory Location: 00634
Hex Instruction: CB 03 01 00 (R=6)
Assembly Language Coding; MPI 6,X'0100'
Before PSWR GPR6 GPR7
Execution 20000634 12345678 F37A9B15
After Execution PSWR GPR6 GPR7
10000638 FFFFFFF3 7A9B1500
Note The immediate operand, sign extended, is multiplied by the contents of GPR7.

The result is transferred to GPR6 and GPR7. CC3 is set.

6-162

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

DIVIDE BY MEMORY BYTE ~ . DVMB

d,*m,x
c408
1
| 1 1 | | 1
| 1 1 | |
1 1 0 0 0 1 R X] 1 BYTE OPERAND ADDRESS
Ll Lt 11 | 1 A NSO TR N N I W T I O T T O O I
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

The byte in memory specified by the Effective Byte Address (EBA) is accessed
and 24 zeros are appended to the most significant end to form a word. This
word is algebraically divided into the doubleword in the GPR specified by R
and R+1. R+1 is the GPR one greater than specified by R. The resulting
quotient is then transferred to the GPR specified by R+l, and the remainder
is transferred to the GPR specified by R. The sign of the GPR specified by
R (remainder) is set to the original sign of the dividends. The sign of the
GPR specified by R+1 (quotient) will be the algebraic product of the original
signs of the dividend and the divisor except when the absolute value of the
dividend is less than the absolute value of the divisor. In that case, the
resulting quotient (GPR specified by R+1) will be set to zero.

1. An arithmetic exception occurs if the value of the quotient exceeds
32 bits. If an arithmetic exception occurs, the original dividend will
be restored in the GPR specified by R and R+1.

2. GPR specified by R must have an even address.
(R,R1) / [00_23,(EBL)] —R+1

Remainder — R

CCl: ISI arithmetic exception

cc2: 1ISI (R+10_31) is greater than zero

CC3: 1ISI (R+10_31) is less than zero
cc4: 1ISI (R+10_31) is equal to zero

Memory Location: 03000
Hex Instruction: C4 08 30 BF. (R=0, X=0, I=0)

- Assembly Language Coding: DVMB 0,X'30BF'
PSWR "~ GPRO GPR1 Memory Byte 030BF
10003000 00000000 00000139 04
PSWR GPRO GPR1 Memory Byte 030BF
20003004 00000001 0000004E 04

The doubleword contents of GPRO and GPR1 are divided by the content of
memory byte 030BF with 24 zeros prefixed. The quotient is transferred to
GPR1 and the remainder is transferred to GPRO. CC2 is set.

6-163

DVMH

d,*m,x

DEFINITION

NOTES

SUMMARY

EXPRESSION

CONDITION CODE

After

6-164

RESULTS

EXAMPLE

Before
Execution

Execution

Note

DIVIDE BY MEMORY HALFWORD

C400
1 |] 1 | |
T T [T 1 T
1100 0 1 R- x |i1}o HALFWORD OPERAND ADDRESS 1
L 1.1 11 1 1 | | I VN N VO O O N S I N U O I O N
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The halfword in memory specified by the Effective Halfword Address (EHA) is
accessed, and the sign is extended 16 bits to the left to form a word. This
word is algebraically divided into the doubleword in the GPR specified by R
and R+1. R+l is the GPR one greater than specified by R. The resulting
quotient is then transferred to the GPR specified by R+l and the remainder
is transferred to the GPR specified by R. The sign of the GPR specified by
R (remainder) is set to the original sign of the dividend. The sign of the
GPR specified by R+l (quotient) will be the algebraic product of the original
signs of the dividend and the divisor, except when the absolute value of the
dividend is less than the absolute value of the divisor. In that case, the
resulting quotient (GPR specified by R+1) will be set to zero.

1. An arithmetic exception occurs if the value of the guotient exceeds
32 bits. If an arithmetic exception occurs, the original dividend will
be restored in the GPR specified by R and R+1. .

'

2. The GPR specified by R must have an even address.
(R,R+1)/(EHL)SE.. R+1
Remainder — R

CCl: ISI arithmetic exception

CC2: ISI R+ly 5, is greater than zero
CC3: ISI Rtlg 37 1s less than zero
CC4: ISI R+lg 31 is equal to zero

Memory Location: 05A94

Hex Instruction: C7 00 5D 6B (R=6, X=0, I=0)

Assembly Language Coding: DVMH 6,X'5D6A"

PSKR GPR6 v GPR7 Memory Halfword 05D6A
08005A94 00000000 00000038 FFF8

PSWR GPR6 GPR7 Memory Halfword 05D6A
10005A98 00000005 FFFFFFF9 FFF8

The doubleword contents of GPR6 and GPR7 are divided by the contents of
memory halfword 05D6A with sign extension. The quotient is transferred to
GPR7 and the remainder is transferred to GPR6. CC3 is set.

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

DIVIDE BY MEMORY WORD DVMW

d,*m,x
€400
| 1 1 | l]
| | 1 1 1
1 1 0 0 0 1 R X 1{0 WORD OPERAND ADDRESS 0of}o
L1 1 11 L [| I O IO O A NN N W N N N OO O W Y
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

and algebraically divided intg the doubleword in the GPR specified by R and
R+l. R+1 is the GPR one gredter than specified by R. The resulting quotient
is then transferred to the GPR specified by R+1, and the remainder is trans-
ferred to the GPR specified by R. The sign of the GPR specified by R (re-
mainder) is set to the original sign of the dividend. The sign of the GPR
specified by R+1 (quotient) will be the algebraic product of the original
signs of the dividend and the divisor, except when the absolute value of the
dividend is less than the absolute value of the divisor. In that case, the
resulting quotient (GPR specified by R+1) will be set to zero.

The word in memory specifieda;y/the Effective Word Address (EWA) is accessed
t

1. An arithmetic exception occurs if the value of the quotient exceeds
32 bits. If an arithmetic exception occurs, the original dividend will
be restored in the GPR specified by R and R+1.

2. The GPR specified by R must have an even address.

(RsR+1)/(EWL) — R+1

Remainder — R

~ CCl: 1ISI arithmetic exception

CC2: ISI R+ly 5, is greater than zero
CC3: ISI R+l 37 is less than zero
CC4: ISI R+ly 37 is equal to zero

Memory Location: 078C0

Hex Instruction: C6 00 7B 5C (R=4, X=0, I=0)
Assembly Language Coding: DVMW 4,X'7B5C'

PSWR GPR4 GPR5 Memory Word 07B5C
400078C0 00000000 039A20CF FC000000

PSWR GPR4 GPR5 Memory Word 07B5C
080078C4 039A20CF 00000000 FC000000

The doubleword obtained from GPR4 and GPR5 is divided by the contents of
memory word 07B5C. The quotient is transferred to GPR5, and the remainder
is transferred to GPR4. CC4 is set.

6-165

DEFINITION

NOTES

SUMMARY

EXPRESSION

CONDITION CODE

After

6-166

RESULTS

EXAMPLE

Before
Execution

Execution

Note

DIVIDE REGISTER BY REGISTER

4400
]]
T T ¢/
01 0 0 0 1 Rp Rg © 000
B T T | I T B | 11 |
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16717 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by Rg is algebraically divided into the
doubleword in the GPR specified by Rp and Rp+l. Rpt+l is the GPR one

greater than specified by Rp. The resulting quotient is then transferred to
the GPR specified by Rp+l, and the remainder is transferred to the GPR
specified by Rp. The sign of the GPR specified by R (remainder) is set to
the original sign of the dividend. The sign of the BPR specified by Rp+l
(quotient) will be the algebraic product of the original signs of the
dividend and the divisor, except when the absolute value of the dividend is
less than the absolute value of the divisor. In that case, the resulting
quotient (GPR specified by RD+1) will be set to zero.

1. An arithmetic exception occurs if the value of the quotient exceeds 32
bits. If an arithmetic exception occurs, the original dividend will
be restored in the GPR specified by R and R+1.

2. The GPR specified by RD must have an even address.

3. RS must not equal RD or RD+1.

(RD,RD+1)/RS.. RD+1

Remainder — RD

CCl: ISI arithmetic exception

cC2: 1ISI RD+10_31 is greater than zero

CC3: ISI Rytlg 37 is less than zero
CC4: ISI Rytlg 37 is equal to zero

Memory Location: 04136

Hex Instruction: 47 20 (RD=6,RS=2)
Assembly Language Coding: DVR 2,6

PSWR GPR2 GPR6 GPR7
10004136 0000000A 00000000 000000FF
PSWR. GPR2 GPR6 GPR7 .
20004138 0000000A 00000005 00000019

The doubleword obtained from GPR6 and GPR7 is divided by the contents of
GPRZ2. The quotient is transferred to GPR7, and the remainder is trans-
ferred to GPR6. CC2 is set.

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution

Note

DIVIDE IMMEDIATE - Dyl

d,v
€804
1 [[L []
1 T 1
1 1 0 0 1 0 R 0 0 0|0 1 0 O IMMEDIATE OPERAND
I I L1 L | | O S N T T (N S OO AN I I Y |
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The sign of the least significant halfword (bits 16-31) of the Instruction
Word is extended 16 bits to the Teft to form a word. This word is

algebraically divided into the doubleword in the GPR specified by R and R+1.

R+1 is the GPR one greater than specified by R." The resulting quotient is
then transferred to the GPR specified by R+l, and the remainder is trans-
ferred to the GPR specified by R. The sign of the GPR specified by R
(remainder) is set to the original sign of the dividend. The sign of the
GPR specified by R+l (quotient) will be the algebraic product of the

original signs of the dividend and the divisor, except when the absolute
value of the dividend is less than the absolute value of the divisor. In
that case, the resulting quotient (GPR specified by R+1) will be set to zero.

1. An arithmetic exception occurs if the value of the quotient exceeds 32
bits. If an arithmetic exception occurs, the original dividend will be
restored in the GPR specified by R and R+1.

2. The GPR specified by R must have an even address.

(R,R+1)/(IW — R+1

16—31)SE
Remainder —R

CCl: ISI arithmetic exception

CC2: ISI R+l o, is greater than zero
CC3: ISI R+lq 37 is less than zero
CC4: ISI R+lg 37 is equal to zero

Memory Location: 08000

Hex Instruction: C9 04 FF FD (R=2)
Assembly Language Coding: DVI 2,-3

PSWR GPR2 GPR3

04008000 00000000 000001B7

PSWR GPR2 GPR3

10008004 00000001 FFFFFF6F

The doubleword obtained from GPR2 and GPR3 is divided by the immediate
operand, sign extended. The quotient is transferred to GPR3, and the
remainder is transferred to GPR2. CC3 is set.

6-167

DEFINITION
SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution
After Execution

Note

6-168

EXTEND SIGN
0004

1
0 0 0 0 0 O

R
|

0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The sign (bit 0) of the contents of the GPR specified by R+l is extended
through all 32 bit positions of the GPR specified by R.

(R+10) —’Ro_31

CCl: Always zero
CC2: ISI Ry 54 s greater than zero

CC3: ISI R0-31

is less than zero

CC4: ISI Ry 37 s equal to zero

Memory Location:
Hex Instruction:

Assembly Language Coding:

PSWR GPR1
0800083A
PSWR GPR1
1000083C

00008074

FFFFFFFF

0083A
00 84 (R=1)
ES 1

GPR2
8000C361

GPR2
8000C361

Bits 0-31 of GPR1 are set to one's. CC3 is set.

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE

Before
Execution

After Execution -

Note

ROUND REGISTER RNg

0005
1 [l -
] 1
0O 0 0 0 0 0 R 0O 0 o0 1 0 1 /
L L1 Ll Ll L1 / f /A A LTI
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the GPR specified by R are incremented by one if bit
position 0 of the GPR specified by R+1 is equal to one. R+l is the GPR
one greater than specified by R.

(R)*+1,1f(R+1)=1

CC1: ISI arithmetic exception
(C2: ISI Ry 5, is greater than zero

€C3: ISI Ry 37 is less than zero

CC4: 1ISI R0-31 is equal to zero

Memory -Location: 0OFFE

Hex Instruction: 03 75 (R=6)
Assembly Language Coding: RND 6

PSWR GPR6 ‘ GPR7
40000FFE 783A05B2 - 92CDO61F
PSWR GPR6 GPR7
20001000 783A05B3 92CDO61F

The contents of GPR6 are incremented by one, and thevesult is returned to
GPR6. CC2 1is set.

6-169

FLOATING-POINT
ARITHMETIC
INSTRUCTION

GENERAL
DESCRIPTION

INSTRUCTION
FORMAT

MEMORY

REFERENCE

- CONDITION CODE
UTILIZATION

6-170

The Floating-Point Arithmetic instructions provide the capability to add,
subtract, multiply, or divide operands of large magnitude with precise
results. A floating-point number is made up of three parts: a sign, a
fraction, and an exponent. The sign applies to the fraction and denotes
a positive or negative value. The fraction is a binary number with an
assumed radix point between the sign bit and the most significant bit.
The exponent is a 7-bit binary power to which the base 16 is raised. The
quantity that the floating-point number represents is obtained by multi-
plying the fraction by the number 16 raised to the power represented by
the exponent. :

The following %nstruction format is used for all floating-point operations:

T 1 1 1 1]
OP CODE R X 1 |F WORD ADDRESS [
I I I | L 1 1 I O N NN NN NN O T N U N T B N
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bits 0-5 define the Operation Code.
Bits 6-8 designate a General Purpose Register address (0-7).
Bits 9-10 designate one of three index registers.
Bit 11 indicates whether an indirect addressing operation is

. to be performed.

Bits 12-31 directly specifies the address of the operand when the X and
I fields are equal to zero. If X is not equal to zero,
indirect addressing is specified. Bit 12 (F) 1is used as
an augment bit by the Floating~Point instructions.

Execution of all Floating-Point Arithmetic instructions causes a Condition
Code to be set to indicate whether the result of the operation was greater
than, less than, or equal to zero. Arithmetic exceptions produced by a

Floating-Point operation are also reflected by the Condition Code results.

The meaning of the Condition Codes differ for the execution of the
Floating-Point instructions. CCl is set by an Arithmetic Exception
condition (underflow or overflow). To differentiate between these ex-
ceptions, CC4 is also set when the overflow condition occurs. In both
instances, either CC2 or CC3 is used to indicate the state of what would
have been the sign of the resultant fraction had the arithmetic exception
not occurred. The following table reflects the possible Condition Code
settings:

Condition Code Definition

O
O
—

ce2 | ces | cca

Arithmetic exception

Positive fraction

Negative

Zero fraction

Exponent Underflow, positive fraction
Exponent Underflow, negative fraction
Exponent Overflow, positive fraction
Exponent Overflow, negative fraction

e el k= X=X l
OrHHROFROO—O
HFOMMOOMOO
OO OO0

FLOATING-POINT
ARITHMETIC
OPERANDS

A floating-point number can be represented in two different formats: word
and doubleword. These two formats are the same except that the doubleword
contains eight additional hexadecimal digits of significance in the fraction
These two formats are shown below.

1 1] 1 1]
1 1 1 1 ! 1
s EXPONENT 24 BIT FRACTION
L1 1 1 11 | I N I I [T T T NN TR NN SN NN NN N N RN NN N N A |
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
L ! / N\ ! 1 1
= 1 /7 1 1 T
s EXPONENT 56 BIT FRACTION
L4 1 1 11 | A I I I 7 NGRS A I T T I T O (N T O O O N |
01 2 3 4565 6 7 8 9 10111213 14 N7 49 50 61 52 53 54 55 656 57 58 59 60 61 62 63

The floating-point number, in either format, is made up of three parts: a
sign, a fraction, and an exponent. The sign bit (bit 0) applies to the
fraction and denotes a positive or negative value. The fraction is a
hexadecimal normalized number with a radix point to the left of the highest
order fraction bit (bit 8). The exponent (bits 1-7) is a 7-bit binary
number to which the base 16 is raised.

Negative exponents are carried in the two's complement format. To remove
the sign and therefore enable exponents’to be compared directly, both
positive and negative exponents are biased up by 4016 (excess 6410 notation).

The quant1ty that a floating-point number represents is obtained by multi-
p]ylng the fraction by the number 16 10 raised to the power of the exponent
minus 4016

A positive floating-point number is converted to a negative floating-point
number by taking the two's complement of the positive fraction and the one's
complement of the biased exponent. If the minus one case is ruled illegit-
imate, all floating-point numbers can be converted from positive to negative
and from negative to positive by taking the two's complement of the number
in floating-point format. Signed numbers in the f10qt1ng point ‘format can
then be compared directly, one with another, by using the Compare Ar1thmet1c
class of instructions.

A11 floating-point operands must be normalized before being operated on by

a floating-point instruction. A positive floating-point number is normalized
when the value of the fraction is less than one and greater than or equal

to one-sixteenth (1> F>1/16). A negative floating-point number is normalized
when the value of the fraction is greater than minus one and less than or
equal to minus one-sixteenth (-1< F<-1/16). All floating-point answers are
normalized by the CPU. If a floating-point operation results in a minus

one of the form 1 XXX XXXX 0000...0000, the CPU will convert that result

to a legitimate normalized floating-point number of the form 1 YYY YYYY

1111 0000...0000, where YYY YYYY is one less than XXX XXXX.

A hexadecimal guard digit is appended to the least significant hexadecimal
digit of the floating-point word operands by the CPU. This guard digit is
carried throughout all floating-point word computations. The most signif-
icant bit of the guard digit is used as the basis for rounding by the CPU at
the end of every floating-point word computation.

6-171

ADFW
d,*m,x

DEFINITION

NOTES

SUMMARY

EXPRESSION

CONDITION CODE

6-172

RESULTS

ADD FLOATING-POINT WORD

E008
| | l | | |
| T T | 1 1
11 1 000 R x |1 WORD OPERAND ADDRESS ofo
I T L1 1 N TN N VO T Y T Y A A T
0 1 2 3 4 65 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The floating-point operand in memory is accessed. If either of the floating-
point numbers is negative, the one's complement of the base 16 exponent

(bits 1-7) is taken of the negative number. Both exponents are then

stripped of their 4016 bias and algebraically compared. If the two ex-

ponents are equal, the signed fractions of the two numbers are algebrai-
cally added. If the exponents differ, and the difference is greater than

or equal to one, or less than or equal to six (1 exponent difference 6),
the fraction of the operand containing the smaller exponent is shifted

right one hexadecimal digit. After exponent equalization, the fractions

are added algebraically. The normalized and rounded sum of the two fractions
is placed in bit positions 0 and 8-31 of GPR d. The resulting exponent is
biased up by 4016’ and, if the resulting fraction is negative, the one's

complement of the exponent is placed in bit positions 1-7 of GPR d.

1. If the resulting fraction equals zero, the exponent and fraction are
set to zero in GPR d.

2. Operands are expected to be normalized.

3. If the exponent difference is greater than six, the operand having
the larger exponent is normalized and placed in the GPR specified
by R.

(R)+(EWL) — (R)

CCl: 1ISI arithmetic exception

CC2: ISI Ry g 39 is greater than zero
CC3: ISI Ry’g 37 is less than zero
cC4: 1ISI R0:8-31 is equal to zero

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

ADD FLOATING POINT DOUBLEWORD ADFD
d,*m,x
E008
| i ' | | i
11 1 0 I0 0 Rl X 111 DOUBLEWORD OPERAND ADDRESS ojt]o
1 11 1.1 L1] N N WO T N NN N (NS (O N OO O O A
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The floating-point operand in memory is accessed.
floating-point numbers is negative, the one's complement of the base 16
exponent (bits 1-7) is taken of the negative number.
then stripped of their 4016 bias and algebraically compared. If the two

If either of the

Both exponents are

exponents are equal, the signed fractions of the two numbers are alge-

braically added. If the exponents differ, and the difference is greater

than or equal to one, or less than or equal to six (1< exponent difference
<6), the fraction of the operand containing the smaller exponent is shifted

right one hexadecimal digit. After exponent equalization, the fractions

are added algebraically. The normalized and rounded sum of the two

fractions is placed in bit positions 0 and 8-63 of GPR d+1.

The resulting

exponent is biased up by 4016’ and, if the resulting fraction is negative,
the one's complement of the exponent is placed in bit positions 1-7 of GPR d.

1. If the resulting fraction equals zero, the exponent and fraction are

set to zero in GPR d+1.

2. Operands are expected to be normalized.

3. If the exponent difference is greater than 13, the operand having
the larger exponent is normalized and placed in the GPR specified

by R, R+l.
(R), (R¥1)+(EWL) , (EWL+1)—= (R),(R+1)

CCl: ISI arithmetic exception

CC2: ISI Ry g_3q7 is greater than zero
CC3: ISI Ry g_3p 1s less than zero
cC4: 1ISI R0,8-31 is equal to zero

Assembly Language Coding: ADFD R,X'(DW Op Addr)'

6-173

SUFW
d,*m,x

DEFINITION

NOTES

SUMMARY

EXPRESSION

CONDITION CODE

6-174

RESULTS

SUBTRACT FLOATING-POINT WORD

EQ00
[| 1 | 1 L
]] { Eﬂl 1])
11 1 0 0 0 R X 1]0 WORD OPERAND ADDRESS . o]0
L1 1 1.1 L1 | | I N O T O I T A N O O OO O N

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The floating-point operand in memory is accessed. If either the floating-
point number in the GPR or memory is negative, the one's complement of the
base 16 exponent (bits 1-7) is taken. Both exponents are then stripped of
their 4016 bias and algebraically compared. If the two exponents are equal,

the 24-bit signed fractions are algebraically subtracted (i.e., the memory
operand is subtracted from the GPR or GPR s). If the exponents differ, and
the difference is greater than one, or less than six (1< exponent difference
<6), the fraction of the operand containing the smaller exponent is shifted
right one hexadecimal digit at a time until the exponents are equalized.

The exponent of this operand is effectively incremented by one each time

the fraction is shifted right one hexadecimal. After exponent equalization,
the fractions are subtracted algebraically. The normalized and rounded
difference between the two fractions is placed in bit positions 0O and 8-31
of GPR d. The resulting exponent is biased up by 4016’ and, if the result-

ing fraction is negative, the one's complement of the exponent is placed in
bit positions 1-7 of GPR d.

1. If the resulting fraction is equal to zero, the exponent and fraction
are set to zero in the GPR or GPR s.

2. Operands are expected to be normalized.

3. If the exponent difference is greater than six, the operand having
the larger exponent is normalized and placed in the GPR specified
by R.

(R)-(EWL) — (R)

CCl: 1ISI arithmetic exception

CC2: ISI Ry g 31 is greater than zero

CC3: ISI Ry’g 37 is less than zero

CC4: ISI Ry’g_37 is equal to zero

Assembly Language Coding: SUFW R, X'(W Op Addr)'

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

SUBTRACT FLOATING-POINT DOUBLEWORD ' SUFD

d,*m,X
EO00
L : : | I 1 1
T T 1
1 11 0 0 0 R X i]o DOUBLEWORD OPERAND ADDRESS ojJ11]o0
L1111 L1] | I N I O O T T T R TR O T N
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The floating-point operand in memory is accessed. If either the floating-
point number in the GPR or memory is negative, the one's complement of the
base 16 exponent (bits 1-7) is taken. Both exponents are then stripped of
their 4016 bias and algebraically compared. If the two exponents are equal,

the 24-bit signed fractions are algebraically subtracted (i.e., the memory
operand is subtracted from the GPR or GPR s). If the exponents differ, and
the difference is greater than or equal to one, or less than or equal to
six (1< exponent difference <6), the fraction of the operand containing
the smaller exponent is shifted right one hexadecimal digit at a time until
the exponents are equalized. The exponent of this operand is effectively
incremented by one each time the fraction is shifted right one hexadecimal
digit. After exponent equalization, the fractions are subtracted algebra-
ically. The normalized and rounded difference between the two fractions is
placed in bit positions 0 and 8-63 of GPR d+l. The resulting exponent is
biased up by 4016’ and, if the resulting fraction is negative, the one's

complement of the exponent is placed in bit positions 1-7 of GPR d.

1. If the resulting fraction is equal to zero, the exponent and fraction
are set to zero in the GPR or GPR s.

2. Operands are expected to be normalized.

3. If the exponent difference is greater than 13, the operand
having the larger exponent is normalized and placed in the
GPR specified by R, Rtl. '

(R) ,(R¥1)~(EWL),(EWL+1) — (R),(R+1)

CCl: ISI arithmetic exception ;

CC2: ISI Ry g_31 is greater than zero

CC3: ISI Ry’g 37 is less than zero

CC4: ISI Ry’g 37 s equal to zero

Assembly Language Coding: SUFD R,X'(DW Op Addr)’

6-175

MPFW
d,*m,

X

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE

6-176

RESULTS

MULTIPLY FLOATING-POINT WORD
E408

1 1] !] 1
I I 1 I I
11 1 0 0 1 R x 11 WORD OPERAND ADDRESS ofo
I T I | J_1 l | I I N TN T NI T TN O s |
0 1 2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The floating-point operand fraction is multiplied by the fraction of GPR d.

If either one or both of the floating-point numbers are negative, the

exponent of the negative number is changed to its one's complement. Both
exponents are then stripped of their 4014 bias and algebraically added. The
normalized and rounded product of the multiplication is placed in bits 0 and
8-31 of GPR d. The resulting exponent is biased up by 4036, and, if the
resulting fraction is negative, the one's complement of the resulting exponent
is placed in bits 1-7 of GPR d.

Operands are expected to be normalized.

(EWL x(R

WLy, g-31%(Ro,5-31) = Ro,5-31
(BWLy_7)+(Ry_7) = Ry

CCl: ISI arithmetic exception

CC2: IS Ry o 59 1s greater than zero

CC3: ISI Ry’g 37 is less than zero
CC4: ISI Ry’g 37 s equal to zero

Assembly Language Coding: MPFW R,X'(W Op Addr)'

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

MULTIPLY FLOATING-POINT DOUBLEWORD MPFD

d,*m,x
E408
] | 1 L I !
T 1 1]] »
1 1 1 0 0 1 R X)1 DOUBLEWORD OPERAND ADDRESS ojl|11]o0
L1t L1 | IS U N A T S T A I A T B
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The floating-point operand fraction is multiplied by the fraction of GPR d+1.
If either one or both of the floating-point numbers are negative, the
exponent of the negative number is changed to its one's complement. Both
exponents are then stripped of their 401 bias and algebraically added. The
normalized and rounded product of the multiplication is placed in bits 0 and
8-63 of GPR d+1. The resulting exponent is biased up by 4016, and if the
resulting fraction is negative, the one's complement of the resulting exponent
is placed in bits 1-7 of GPR d.

Operands are expected to be normalized.

(EWLg g_31> EWL¥1g 59)x(Ry g 315R+1y 39)

~Ro,8-31"F*1p-31

(BULy 7)+(Ry_7) =Ry 5

CCl: ISI arithmetic exception

CC2: 1ISI Ry g 5; 1s greater than zero

CC3: ISI Ry’g 37 is less than zero
CC4: ISI Ry’ 3] s equal to zero

Assembly Language Coding: MPFD R,X'(DW Op Addr)'

6-177

DVFW
dy*m,x

DEFINITION

NOTE
SUMMARY

EXPRESSION

CONDITION CODE

6-178

RESULTS

DIVIDE FLOATING-POINT WORD

E400
]]] | |]
1 | -1 | I |
11 1 0 0 1 R X |t]o WORD OPERAND ADDRESS ofo
I T T 11 | I S N I Y T W N T T N A S N A |
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 26 26 27 28 29 30 3

The floating-point operand in memory (divisor) is accessed, and the fraction
is divided into the fraction of GPR d. If either one or both of the
floating-point numbers are negative, the one's complement of the exponent is
taken. Both exponents are then stripped of their 4015 bias, and the exponent
of the divisor is subtracted a]gebra1ca11y from the exponent of the dividend.
The normalized and rounded quotient is placed in bit 0 and bit positions 8-31
of the GPR d. The resu1t1ng exponent 1s biased up by 4016, and, if the
resu1t1ng fraction is negative, the one's complement of the resu1t1ng fraction
is placed in bits 1-7 of GPR d.

Operands are expected to be normalized.

(Ry,g-31)/(EWLG g 39) =Ry g 31

(Ry_7)-(BWLy 7) ~ Ry 7

CCl: 1ISI arithmetic exception

- CC2: ISI Ry o 44 is greater than zero

CC3: ISI Ry’g 37 is less than zero
CC4: ISI Ry’g 37 is equal to zero

Assembly Language Coding: DVFW R,X'(W Op Addr)'

DEFINITION

NOTE

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

DIVIDE FLOATING-POINT DOUBLEWORD DVFD

d,*m,x
E400
[1 | 1 |
1 I | 1 T
1t 1 1 0 0 1 R X 1 |0 DOUBLEWORD OPERAND ADDRESS ott1]o
L 11 11 1 1] Ll ittt
01 2 3 4 5 6 7 8 9 1 1 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The floating-point operand in memory (divisor)is accessed and the fraction

is divided into the fraction of GPR d+1. If either one or both of the
floating-point numbers are negative, the one's complement of the exponent is
taken. Both exponents are then stripped of their 40;4 bias, and the exponent
of the divisor is subtracted algebraically from the exponent of the dividend.
The normalized and rounded quotient is placed in bit 0 and bit positions

8-63 of the GPR d+1. The resulting exponent is biased up by 4036, and, if
the resulting fraction is negative, the one's complement of the resulting
fraction is placed in bits 1-7 of GPR d.

Operands are expected to be normalized.

(Rp,g-31°R*1g_31)/ (EWLy g_59-EWL*1 59)

= Rp,8-31°R*1p.31

(R1_7)-(EWL1_7) — R1-7

CCl: ISI arithmetic exception

CcC2: ISI RO 8-31 is greater than zero
ISI RA°o

CC3: 0.8-31 1S less than zero
CC4: ISI Ry’g 3] is equal to zero

Assembly Language Coding: DVFD R,X'(DW Op. Addr)'

6-179

CONTROL
INSTRUCTIONS

GENERAL
DESCRIPTION

INSTRUCTION
FORMATS

MEMORY
REFERENCE

INTERREGISTER

CONDITION CODE
UTILIZATION

6-180

This group of instructions allows the mainframe to perform Execute No 0p s
Halt, and Wait operations. .

Control instructions use the Memory Reference and Interregister instruction
formats. Several of the Control instructions vary the basic Interregister
format in that certain portions are not used and are left blank.

= 1 I 1 | B |
OP CODE R X I |F - WA Cc
| | | | N TN TN YN TN N T O NS N IO N B]
01 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bits 0-5 define the Operation Code.
Bits 6-8 designate a General Purpose Register address (0-7).
Bits 9-10 designate one of three index registers.
Bit 11 indicates whether an indirect addressing operation is

to be performed.

Bits 12-31 specify the address of the operand when the X and I fields
are equal to zero.

e A e =

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5 define the Operation Code.

Bits 6-8 designate the register to contain the result of the
operation.

Bits 9-11 designate the register which contains the source operand.

Bits 12-15 define the Augmenting Operation Code.

Condition Code results for Execute operations will be dependent on the
instruction that was performed. A1l other control operations leave the
current Condition Code unchanged.

DEFINITION

CONDITION CODE
RESULTS

NOTES

BRANCH AND RESET INTERRUPT BRI
*m, X
F900

¥ J) 1) T
1 1111 0l010] x |ilo BRANCH ADDRESS
I I W D | Ll 1 ¢ o 31 8t 9 3 j 1 4 1 1 I T U |
0 1 2 3 4 5 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This instruction resets the highest active 1nterrupt level and branches to
the address indicated.

When coded indirect, this instruction causes the target PSW or PSD to
be loaded into the CPU resets the highest active interrupt level, and
branches to the address in the PSW or PSD.

CCl: ISI if (I) is equal to one and (EWL,) is equal to one.
€C2: ISI if (I) is equal to one and (ENLZ) is equal to one.
cc3: ISI if (I) is equal to one and (EWL;) is equal to one.
CC4: ISI if (I) is equal to one and (EWL4) is equal to one.
Assembly Language Coding: BRI X'(Branch Addr)'

1. Used only with interrupts operating in Active mode.

2. Privileged instruction.

3. If granularity of PSD is MAP, the contents of the MAP are changed
in accord with the instructions in PSD word 2.

4., This instruction cannot be used with Post-indexing.

6-181

LPSD
d,*m,x

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE

RESULTS

NOTES

6-182

LOAD PROGRAM STATUS DOUBLEWORD
F980

x |1]o PSD ADDRESS
1]'1l1l 001111 T N N WOV U A R NS NN AN TN IR W NN NN N N N |

0 1 2 3 4 5 6 7 8 9 10 111213 14°15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Causes the PSD addressed by the instruction to be loaded into the Program
Status Doubleword Reg1sters

(EDL) — (PSDR)

CCl: Changed by the PSD being loaded

CC2: Changed by the PSD being loaded

CC3: Changed by the PSD being loaded

CC4: Changed by the PSD being loaded
Assembly Language Coding: LPSD X'(PSD Addr)'

1. Privileged instruction. .

2. Causes system to go Mapped or Unmapped in accordance with codes in PSD
that is being loaded.

3. . This dinstruction does not modify contents of the MAP.

4. Attempt to execute this instruction in PSW mode will result in an
undefined instruction trap.

5. The Block External Interrupts will be changed in accord with b1ts 48 and
49 of the PSD.

DEFINITION

SUMMARY
EXPRESSION

NOTES

CONDITION CODE
RESULTS

LOAD PROGRAM STATUS DOUBLEWORD AND CHANGE MAP

FA80

LPSDCM
d,*m,x

X
111110 10 1]
I R T |

L 4 1 'l

0

L

L

PSD ADDRESS

1 Ll i L L L.

0123 456 78 910N 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Causes the PSD addressed by the instruction to be loaded into the Program
Status Doubleword Registers, and the MAP to be loaded in accord with the
BPIX and CPIX contents of the PSD.

(EDL) — (PSDR)
(MIDL) - Map Registers

If the PSD defines the mapped condition,
this instruction will cause the CPU to go mapped.

1. The Block External Interrupts will be changed in accord with bits 48

and 49 of the PSD.

2. Attempt to execute this instruction in PSW mode will result in an

undefined instruction trap.

CCl: Changed by the PSD being loaded
CC2: Changed by the PSD being loaded
CC3: Changed by the PSD being loaded

‘CC4: Changed by the PSD being loaded

Assembly Language Coding: LPSDCM X'(PSD Addr)'

6-183

LCS

DEFINITION

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXAMPLE
Before
Execution

After Execution

Note

6-184

LOAD CONTROL SWITCHES
0003

0 123456 7 8 910N 12‘131415161718192021.222324252627282930 31

The contents of Control Switches (CSW) 0-15 are transferred to bit positions
0-15 of the GPR specified by R. Bit positions 16-31 of the GPR specified
by R are cleared to zeros. '

(CSy_15) = Ro-15

0—~ Ry5.31

CCl: Always zero

cc2: 1IsI (R0_31; is greater than zero
CcC3: 1ISI (RO_31 is less than zero
cc4: 1ISI (R0_31) is equal to zero

Memory Location: - 06002

Hex Instruction: 03 83 (R=7)

Assembly Language Coding: LCS 7

PSWR GPR7 Control Switches 0, 6 set
00006002 FFFFFFFF

PSWR GPR7

10006004 82000000

Bit positions 0 and 6 of GPR7 are set and all other bits are cleared.
CC3 is set.

DEFINITION

- NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXECUTE REGISTER

c807

EXR

| |

UNASSIGNED

0

Assembly Language Coding:

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in the GPR specified by R is transferred to the Instruction register
to be executed as the next instruction. If this instruction is not a Branch,
the next instruction executed (following execution of the instruction in
register R) is in the sequential memory location following the EXR instruction.
If the GPR specified by R does contain a Branch instruction, the Program Status
Word Register (PSWR) is changed accordingly.

1. If two halfword instructions are in the GPR specified by R, only the
left halfword instruction is executed.

2. An Unimplemented Instruction trap is generated if an EXR instruction
attempts to execute an Unimplemented instruction or another Execute
instruction. _ ‘

3. The "PSD mode only" instructions cannot be targets of EXR, EXRR, or EXM.

(R) = 1

Defined by the executed instruction.

EXR R

6-185

EXRR
S
DEFINITION
NOTE
SUMMARY
EXPRESSION

CONDITION CODE

6-186

RESULTS

EXECUTE REGISTER RIGHT
€807

[[1 l |

1 1 I I 1

11 0 0 1 0 R 0 0 0O 1 1 1 UNASSIGNED 1
Lt 1 1 1 L1 L_1 | | L1t 1ttt 1 11 1t 1.1
0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the least significant halfword (bits 16-31) of the GPR
specified by R are transferred to the most significant halfword position

(bits 0-15) of the Instruction register to be executed as the next instruction.
If this halfword instruction is not a Branch, the next instruction executed
(following execution of the halfword instruction transferred to the Instruction
register) is in the sequential memory location following the EXRR instruction.
If the instruction transferred to the Instruction register is a Branch in-
struction, the Program Status Word Register (PSWR) is changed accordingly.

1. An unimplemented Instruction trap is generated if an EXRR instruction
attempts to execute an Unimplemented instruction or another Execute
instruction. :

2. The "PSD mode only" instructions cannot be targets of EXR, EXRR, or EXM.
(Rig-31) = Ip.15

Defined by the executed instruction.

Assembly Language Coding: EXRR R

DEFINITION

NOTES

SUMMARY
EXPRESSION

CONDITION CODE
RESULTS

EXECUTE MEMORY EXM

*m, X
A800
] 1 1 | l {
1 1 , I 1 I I
1 01 0 1 0J0 0 O X 1]0 OPERAND ADDRESS
1 1 111 L1] | N O W N NN NN AN N OO TN O N N O A O
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The word in memory specified by the Effective Address (EA) 1is accessed and
executed as the next instruction. If this instruction is.not a Branch, the
next instruction executed (following execution of the instruction specified
by the EA) is in the next sequential memory location following the EXM in-
struction. If the instruction in memory specified by the EA is a Branch
instruction, the Program Status Word Register (PSWR) is changed accordingly.

1. If two halfword instructions are in the memory location specified by
the EA, bit 30 of the EA determines which halfword instruction is
executed. When bit 30 equals zero, the left halfword is executed.

When bit 30 equals one, right halfword is executed.

2. An Unimplemented Instruction trap is generated if an EXM instruction
attempts to execute an Unimplemented instruction or another Execute
instruction.

3. " The "PSD mode only" instructions cannot be targets of EXR, EXRR, or EXM.

(EWLg_31) — I, if EA3g=0

(EWL1g-31) = I, if EA3p=l
Defined by the executed instruction.

Assembly Language Coding: EXM X'(Op Addr)'

6-187

HALT

DEFINITION

CONDITION CODE

6-188

RESULTS

NOTE

HALT
0000
|]
OOOOIOOOOlOODOOIOOD////////////////
L1 11 L1 L1 1 1 1 /
01 2 3 45 6 7 8 9 10 11 12 13°14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

The execution of this instruction causes computer operation to be stopped.
This includes input/output transfers and the servicing of priority interrupts.
I/0 in progress will be completed, but no interrupts will be serviced.

Leaving a HALT condition requires depressing the RUN/HALT switch on the
Systems Control Panel.

CCl: No change
CC2: ~No change
CC3: No change
CC4: No change
Assembly Language Coding: HALT

This is a privileged instruction.

DEFINITION

CONDITION CODE
RESULTS

“NOTE

WAIT WAIT
0001

T

The execution of this instruction causes the CPU to enter the Idle mode and
lights the Wait indicator on the System Control Panel. Input/output
transfers and priority interrupt servicing continue. If an interrupt occurs
during a Wait condition, a return to the Wait occurs after the interrupt is
serviced.

CCl: No change
CC2: No change
CC3: No change
CC4: No change
Assembly Language Coding: WAIT

If there is an attempt to execute a WAIT with interrupts blocked, a Block
Mode Timeout Trap will be generated.

6-189

DEFINITION

CONDITION CODE

6-190

RESULTS

NO OPERATION
0002

1 1 : /
0 0 0 0 0 0JO0o 0 0]Jo- 0 0JO O 1 O // /
' S I B B A A AN /// / / KA A

01 2 3-4 5 6 7 8 9 10 11 12 13 14-15 16 17 18 19 20 21 22 23 24 25 2627 28 29 30 31

The Assembler uses the No Operation instruction to pad a halfword instruction
which forces the next. instruction to start on a word boundary, if the next
instruction is a word instruction. It is also used whenever there is a

need for an executable instruction that does not alter the machine status.

CC1l: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: NOP

DEFINITION

CONDITION CODE

NOTES

CALL MONITOR CALM

3000
I l | .

N N N OO [N N T Y (N N s B
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 2324 25 26 27 28 29 30 3

The execution of this instruction causes an interrupt request signal to be
applied to interrupt priority 2716' Bit positions 6-15 of the Instruction

Word may be used to contain program flags which can be examined by the
interrupt service routine.

CCi: No change
CcC2: No change
CC3: No change
CC4: No change _
Assembly Language Coding: CALM PROGRAM. FLAGS

1. Interrupt level 27 must be enabled prior to execution of this
instruction,

2. This instruction must not be executed with a higher priority
Tevel active.

€-191

oo

» CALL# SUPERVISOR CALL
€806

T T L) L

IND CALL NUMBER

,1,0, 0,1,040,0,000,0,070f§ Y1, 0] , , , [S S TN W U W R U O
0 1 2345 67 8 91011121314.1516 17 1819 20 2122 23 24 25 26 27 28 29 30 31

DEFINITION The execution of this instruction causes a pseudo-trap to the trap/interrupt
vector for relative priority level 6. Bits 16-19 may be used to index the
interrupt vector (Tocation 180) with up to 16 locations. This index vector
address will point to a SVC vector table whose content will point to the
trap subroutine.

Bits 20-31 are used for the call number. This call number serves as an
identifier parameter for the software use.

Interrupt Context Block 0

180 Secondary Vector Table OLD PSD1
[svc vectoR }———[Seconpary VECTOR o —] OLD PSD2
SECONDARY VECTOR 1 ' NEW PSD1

=== NEW PSD2
CALL #
NOT USED

Interrupt Context Block 1

L 0LD PSDI
SECONDARY VECTOR T }=-: | ' OLD PSD2
' b NEW PSD1

vv NEW PSD2
CALL #
NOT USED

& - e m

CONDITION CODE CCl: zero
RESULTS cC2: zero

CC3: zero

cC4: zero

Assembly Language Coding: SVC IND, CALL#

NOTE The CPU must have previously been set to PSD mode.
Otherwise, an Undefined Instruction Trap will occur,

6-192

DEFINITION

CONDITION CODE

NOTE

SET CPU MODE SETCPU

S
2C09

0 123 456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The execution of this instruction causes the operating characteristic of the
CPU to change to the mode specified by the contents of R.)

The contents of R will be:

Ll L RJ] . t]
RESERVED MODE N RESERVED
000 0O0OCOOOOOOTOTDOO 000 0-0 00 0O0O0OOOOTUO OO

| W (N W OR[N TN NN TN TN WA NN NN NUUN SN NN NN NN NN S WK T W WO NN SO NN NN MO U
0 123465 67 8 9101112131415 16 17 1819 20 2122 23 24 25 26 27 28 29 30 31

Bits 0-13 Must be zeros and reserved for future use.
Bit 14 Enable Block Mode Timeout Trap.
Bit 15 Enable PSD Traps.
Bit 16-18 Reserved (must be zero).
Bit 19 0=PSW mode
1=PSD mode

CCl: No change

CC2: No change

CC3: No change

CC4: No change
Assembly Language Coding: SETCPU S

The PSD mode of operation must be enabled (allowed) by way of a hardware
Jjumper on the C Board, or an Undefined Instruction Trap will occur.

6-193

RDSTS

6-194

DEFINITION

READ CPU STATUS WORD

0009

oooooo|] Ro {ooofl1 oo

Ll T T T

b1 1 1 L1 | I W T S NN TN N T T N

0

This instruction places the CPU Status Word into Register RD

2 3 456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

the CPU Status Word is location 91H in the CPU Scratchpad.
status, bits 00-23 of the Status Word (in the Scratchpad) are set to zero.

Bits 24-31 of the Scratchpad Status Word remain unchanged.

Word in Register RD is defined as follows:

Bit
0
1

=0, CLASS 0,1,2, OR E ERROR

=1, CLASS F I/0 ERROR

=0, I/0 PROCESSING ERROR

—1, INTERRUPT PROCESSING ERROR

FINAL. BUS TRANSFER ERROR

BUS NO RESPONSE ERROR

1/0 CHANNEL BUSY OR BUSY STATUS BIT ERROR
READY TIMEQOUT ERROR

I/0 DRT TIMEOUT ERROR

RETRY COUNT EXHAUSTED ERROR

OPERAND FETCH PARITY ERROR
INSTRUCTION FETCH PARITY ERROR
OPERAND NONPRESENT ERROR

INSTRUCTION NONPRESENT ERROR
UNDEFINED PSD MODE INSTRUCTION ERROR
MEMORY FETCH DRT TIMEOUT ERROR

RESET CHANNEL ERROR

CHANNEL WCS NOT ENABLED ERROR

MAP NOT FOUND (LEM, SEM,CEMA INST. ONLY)
OR MAP REGISTER ADDRESS OVERFLOW (MAP
CONTEXT SWITCH)

UNEXPLAINED MEMORY ERROR

BRI I/0 ERROR

UNDEFINED INSTRUCTION PSW MODE ONLY'
MAP INVALID ACCESS OR MAP MODE RESTRICTION ERROR
NOT USED

CPU WCS NOT PRESENT ERROR

NOT USED

ENABLE ARITHMETIC EXCEPTION TRAP
DISABLE PSD MODE TRAPS

BLOCK MODE IS ACTIVE

NOT USED

NOT USED

NOT USED

NOT USED

=0, CPU MODE PSW

=1, CPU MODE PSD

The source of
After reporting

The CPU Status

CONDITION CODE CCl: Not used
RESULTS CC2: ISI PSD mode
CC3: ISI interrupts are blocked
CC4: ISI RD bits 0-23 equal zero
‘ Assembly Language Coding: RDSTS RD
NOTES 1. This instruction is a Privileged Halfword instruction.
2. This instruction may not be the target of an Execute instruction.

3. The PSD mode of operation must be enabled (allowed) by way of a
hardware jumper on the C-board, or an undefined instruction trap

will occur.

6-195

EAE

DEFINITION

CONDITION CODE
RESULTS

NOTES

6-196

ENABLE ARITHMETIC EXCEPTION TRAP
0008

0 123456 7 8 910 111213-14 15 16 .17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Sets bit 6 of PSD to enable Arithmetic Exception Trap.

CCl: No change
CC2: No change
CC3: No change
CC4: No change

Assembly Language Coding: EAE
1. Halfword Instruction.

2. Attempt to execute this instruction in PSW mode will result in an
Undefined Instruction Trap.

DEFINITION

CONDITION CODE
RESULTS

NOTES

DISABLE ARITHMETIC EXCEPTION TRAP DAE
00OE

0 123 456 7 8 91011 1213141516 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

Resets bit 6 of PSD to disable Arithmetic Exception Trap.
CCl: No change

CC2: No change

CC3: No change

CC4: No change

Assembly Language Coding: DAE

1. Halfword Instruction.

2. Attempt to execute this instruction in 55 mode will result in an
Undefined Instruction Trap.

6-197

INTERRUPT
INSTRUCTIONS

GENERAL

DESCRIPTION

INSTRUCTION
FORMATS

INTERRUPT

CONTROL -

CONDITION CODE

UTILIZATION

6-198

The Interrupt Control instruction group provides the availability to permit
selective Enable, Disable, Request, Activate, and Deactivate operations to

be performed on any addressed interrupt level.

These instructions can only

be executed when bit 0 of the PSWR equals one (Privileged State).

The following instruction format is used for all Interrupt Control
operations: (Trap/Interrupt priorities are shown in Table 6-3.)

] |] | | L
op (:ODEl PFIHORITY LEVELl é:;':)% UNASSIIGNED
I I | I A I | Lt N T T Y NN T N TN O AN O A O Y
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bits 0-5 define the Operation Code.
Bits 6-12 define the binary priority level number of the interrupt
being commanded.
Bits 13-15 define the Augmenting Operation Code.
Bits 16-31 unassigned.

A11 Interrupt Control instructions leave the current Condition Code
unchanged.

Table 6-3.

32/70 Series Relative Trap/Interrupt Priorities

INTERRUPT

INTERRUPT ,
AND TRAP INTERRUPT | VECTOR TCW 10CD
RELATIVE LOGICAL LOCATION 'ADDRESS ADDRESS
PRIORITY PRIORITY (1vL) ** *% DESCRIPTION
00 0F4 Power Fail Safe Trap
01 OFC System Override Trap (Not Used)
02 OE8* Memory Parity Trap
03 190 Nonpresent Memory Trap
04 194 Undefined Instruction Trap
05 198 Privilege Violation Trap
06 180 Supervisor Call Trap
07 184 Machine Check Trap
08 188 System Check Trap
09 18C Map Fault Trap
0A Not Used
OB Not Used
0c Not Used
oD Not Used
OE OE4 Block Mode Timeout Trap
OF 1A4* Arithmetic Exception Trap
10 00 OF0 Power Fail Safe Interrupt
11 01 OF8 System Override Interrupt
12 12 OE8* ***Memory Parity Trap
13 13 OEC Attention Interrupt
14 14 140 100 700 I/0 Channel 0 Interrupt
15 15 144 104 708 I/0 Channel 1 Interrupt
16 16 148 108 710 I1/0 Channel 2 Interrupt
17 17 14C 10C 718 I/0 Channel 3 Interrupt
18 18 150 110 720 I1/0 Channel 4 Interrupt
19 19 154 114 728 I/0 Channel 5 Interrupt
1A 1A 158 118 730 I/0 Channel 6 Interrupt
1B 1B 15C 11C 738 I1/0 Channel 7 Interrupt
1C 1C 160 120 740 I1/0 Channel 8 Interrupt
1D 1D 164 124 748 I1/0 Channel 9 Interrupt
1E 1E 168 128 750 I/0 Channel A Interrupt
1F 1F 16C 12C 758 170 Channel B Interrupt
20 20 170 130 760 - 1/0 Channel C Interrupt
21 21 174 134 768 I/0 Channel D Interrupt
22 22 178 138 770 1/0 Channel E Interrupt
23 23 17C 13C 778 I/0 Channel F Interrupt
24 24 190* ***Nonpresent Memory Trap
25 25 194* ***ndefined Instruction Trap
26 26 198* ***Prijvilege Violation Trap
27 27 19C Call Monitor Interrupt
. 28 28 1A0 Real-Time Clock Interrupt
29 29 1A4* ***Arithmetic Exception Interrupt
2A 2A 1A8 External/Software Interrupts
2B 2B 1AC External/Software Interrupts
2C 1B0 External/Software Interrupts

- 2C

. 6-199

Table 6-3. 32/70 Series Relative Trap/Interrupt Priorities (Cont'd)
INTERRUPT INTERRUPf
AND TRAP INTERRUPT | VECTOR TCW 10CD
RELATIVE LOGICAL LOCATION ADDRESS ADDRESS «
PRIORITY PRIORITY (IvL) *% ** DESCRIPTION
2D 2D 1B4 External/Software Interrupts
2E 2E 1B8 External/Software Interrupts
2F 2F 1BC External/Software Interrupts
30 30 1C0 External/Software Interrupts
31 31 1C4 External/Software Interrupts
THROUGH THROUGH THROUGH THROUGH
7E 7E 2F8 External/Software Interrupts
7F 7F 2FC External/Software Interrupts

6-200

* Vector Locations Shared With Traps

** For Nonextended I/0 Devices
**%* PSWY Function - Now External/Software Interrupts - For PSD Mode.

A11 Interrupts Are Externally Generated

DEFINITION

NOTES

INSTRUCTION
PRIORITY
LEVEL FIELD

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE
CODING

NOTE

ENABLE INTERRUPT EI
FC0O

i L 1 | 1 L]

AUG
PRIORITY LEVEL |CODE 00 0O0OO OO0O0OUOOOD OO OOO O

b e e e e g 10404040 3 1 1o Ll 11

0 12345 6 7 8 910 111213141516 171819 20 21 22 23 24 25 26 27 28 29 30 31

If bit position 0 of the PSWR is equal to one (Privileged State), the
priority interrupt level specified by the priority level field (bits 6-12)

in the Instruction Word (IW) is conditioned to respond to an interrupt
signal. If bit position 0 of the PSWR is equal to zero (Unprivileged State),
execution of this instruction will generate the Privileged Violation trap.

1. This instruction does not operate with priority levels 216 - 1116‘

2. Any stored requests for the specified level are eligible to become
active. : ‘

3. In the PSD mode, traps are always enabled.

4. This instruction has no affect on levels assigned to Class F I/0
and is treated as NOP.

5. For levels 0 and 1, the RTOM jumpers provide either constant enable
or software enable/disable.

Bits 6 through 12 Priority Level (Hex)
0010010 12
0010011 13
0010100 14
1111110 ' ~ '7E
1111111 7F

CCl: No change
CC2: No change
CC3: No change
CC4: No change

EI LEVEL

Any stored requests for the specified level are eligible to become active.

6-201

DEFINITION

NOTES

INSTRUCTION
PRIORITY
LEVEL FIELD

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE CODING

6-202

REQUEST INTERRUPT

FCO2
| Ea— T T T T T
AUG
1 11 1 1 1) PRIORITYLEVEL |Gooe |0 © 0 0 0 0 000 0 0000 00
Ly a1 a1y 4 43 4 4 101,00 4 4 4 4 4 3 33 0 1 31 0 1

0 1 23 45 67 8 910111213 1415 16 17 1819 20 2122 23 24 25 26 27 28 29 30 A

If bit position 0 of the PSWR is equal to one (Privileged State), an
interrupt request signal is applied to the interrupt level specified by

the priority level field (bits 6-12) in the Instruction Word (IW). This
signal simulates the signal generated by the internal or external condition
connected to the specified level. If bit position O of the PSWR is equal to
zero (Unprivileged State), execution of this instruction will generate the
Privileged Violation Trap. The interrupt request signal is stored in the
specified level whether or not it is enabled and/or active.

1. This instruction does not operate with priority levels 216 - 1115.

2. For RI's on levels 0 or 1, the RTOM jumpers select either that levels
0 and 1 are enabled, or that software enables are required.

3. This instruction has no affect on levels assigned to Class F I/0
and is treated as NOP.

Bits 6 through 12 Priority Level (Hex)
0000000 00
0000001 , 01
0010010 12
1111&10 . 7E
1111111 7F

CCl: No change
CC2: No change
CC3: No change
CC4: No change

RI LEVEL

DEFINITION

NOTES

INSTRUCTION
PRIORITY
LEVEL FIELD

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE
CODING

ACTIVATE INTERRUPT Al
FCO3 "

! ' ' TAuG '
CODE

PRIORITYLEVEL]O0 1 1]J0 0 0 0 O O 0 O O 0 0 O 0 0 O O
1 PR N TN WO S WO WO T YO T T T T M |

01 23 456 7 8 9101112131415 16 1718 19 20 21 22 23 24 25 26 2728 29 30 31

If bit position 0 of the PSWR is equal to one (Privileged State), a signal
is applied to set the active condition in the priority interrupt level
specified by the priority level field (bits 6-12) in the Instruction Word
(IW). The active level is set in the specified level whether or not that
level is enabled. This condition prohibits this level and any lower levels
not already in service from being serviced until this level is deactivated.
However, request signa]s occurring at this or lower levels are stored for
subsequent servicing. If bit position O of the PSWR is equal to zero
(Unprivileged State), execution of this instruction will generate the
Privileged Violation Trap.

1. This instruction does not operate with priority levels 216 - 1116'

2. This instruction has no affect on levels aésigned to Class F I/0
and is treated as NOP.

Bits 6 through 12 Priority Level (Hex)
0000000 00
0000001 01
0010010 12
1111110 7E
1111111 7F
CCl: No change
CC2: No change
CC3: No change

CC4: No change
Al LEVEL

6-203

DI DISABLE INTERRUPT

v
- FCO1
T T T 1AUG T T T
CODE
11 1 1 1 1 PRIORITY LEVEL 0010000000000000000
[T N | [W (N NS W W NN S Wl WL NN TN NN WOUNY NN NN N NNNEN NN SN SN NN SR AU N

0 123456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 256 26 27 28 29 30 31

DEFINITION If bit position 0 of the PSWR is equal to one (Privileged State), the priority
interrupt Tlevel spec1f1ed by the priority level field (bits 6-12) in the
Instruction Word (IW) is disabled and will not respond to an interrupt
signal. If bit position O of the PSWR is equal to zero (Unprivileged State),
execution of this instruction will generate the Privileged Violation Trap.
The active state of the interrupt is not affected.

NOTES 1. Any unserviced request signal at this level is cleared by execution of
this instruction.

2. This instruction does not operate with priority levels 216 - 1116'
In the PSD mode, traps are always enabled.

4. This instruction has no affect on levels assigned to Class F 1/0
and is treated as NOP.

5. For levels 0 and 1, the RTOM jumpers prov1de either constant enable
or software enable/dlsab]e

~ INSTRUCTION Bits 6 through 12 Priority Level (Hex)
PRIORITY
LEVEL FIELD 0010010 ’ 12
0010011 13
0010100 14
1111110 7E
1111111 7F

CONDITION CODE CCl: No change
RESULTS CC2: No change

CC3: No change

CC4: No change

ASSEMBLY DI LEVEL

LANGUAGE
CODING

6-204

DEFINITION

NOTE

INSTRUCTION
PRIORITY
LEVEL FIELD

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE
CODING

DEACTIVATE INTERRUPT DAl

v
FCOo4
¥ L L4 AUG 1 T 1
11111 1 PRIORITY LEVEL|{CCPE 1o 0 0 00 0 0 00 000 OO 0O
1]] I [} 1 4 1 1 1 1 '1lolo i 1 1 1 [} 1 [[1 1 [] [] [] [[

0 123 4 5 6 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

If bit position 0 of the PSWR is equal to one (Privileged State), a signal

is applied to reset the active condition for the priority interrupt level
specified by the priority level field (bits 6-12) in the Instruction Word.
The specified level is set inactive whether the level is enabled or disabled.
Execution of the Deactivate Interrupt instruction does not clear any request
signals on the specified level or any other level. If bit position 0 of the
PSWR is equal to zero (Unprivileged State), execution of this instruction
will generate the Privileged Violation Trap.

1. This instruction does not operate with priority levels 2 16 = 1116'

2. This instruction has no affect on 1evels assigned to Class F I/0

and is treated as a NOP.

3. In PSD mode, DAI and the following instruction are executed as an
uninterruptible pair.

4. Using a Deactivate Interrupt and LPSD or a Deactivate Interrupt and
LPSDCM is preferable to using a BRI.

Bits 6 through 12 Priority Level (Hex)
0000000 00
0000001 01
0010010 12
1111110 7E
1111111 7F

CCl: No change
CC2: No change
CC3: ‘No change
CC4: No. change

DAI' LEVEL

6-205

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE
CODING

NOTES

6-206

ACTIVATE CHANNEL INTERRUPT
FC77

T Y T AUG Y T
OPCODE R CODE CHANNEL SUBADDRESS

Tt 111 11 11 1 011 1 1140 0
L i 1 1 i1 | 11 L1 _: 1 1 _1 | I T N T

01 2 3 456 7 8 9101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Activate Channel Interrupt will cause the addressed channel to begin
actively contending with other interrupt levels, causing a blocking of its
level, and all lower priority levels, from requesting an interrupt. If a
request is currently pending in the channel, the request interrupt is
removed but the interrupt level remains in contention.

Bits 0-5 specify the operation code, octal 77.

Bits 6-8 specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress
field to form the logical channel and subaddress.

Bits 9-12 specify the operation as an ACI, hex E.

Bits 13-15 specify the augmeht code, octal 7.

Bits 16-31 specify a constant that will be added to the contents
of R to form the logical channel and subaddress. If R

is zero only, constant will be used to specify the
logical channel and subaddress.

cCi, 2, 3, and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Condition Codes on page 6-214 of this
manual.

ACI R,'(Constant)'

1. Condition Codes, after execution of the ACI,, will be set and can be
tested by a subsequent BCT or BCF to determine if the ACI was accepted
by the channel.

2. If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

DEFINITION

CONDITION CODE

RESULTS

ASSEMBLY
LANGUAGE
CODING

NOTES

ENABLE CHANNEL INTERRUPT ECI
S,V
FC67
L ¥ 1) IAUG 1 T
OP CODE R ECI ICODE CHANNEL SUBADDRESS
11 1t 11 11 00|11 1]0 0
3 1 1 1 Ll I | [| L1t 1 I 1 1 3 1 1 1

0 123 4 56 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

" The Enable Channel Interrupt causes the addressed channel to be enabled

to request interrupts from the CPU.

Bits 0-5
Bits 6-8

Bits 9-12
Bits 13-15
Bits 16-31

specify the operation code, octal 77.

specify the General Purpose Register, when nonzero,
whose contents will be added to the channel and
subaddress field to form the logical channel and
subaddress.

specify the operation as ECI, hex C.

specify the augment code, octal 7.

specify a constant that will be added to the
contents of R to form the logical channel and
subaddress. If R is zero only constant will be
used to specify the logical channel and subaddress.

cC1, 2, 3, and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition
Code combinations, refer to the Class F Condition Codes on Page 6-214

of this manual.

ECI R,'(Constant)'

1. Condition Codes after execution of the ECI will be set and can be
tested by a subsequent BCT or BCF to determine if the ECI was
accepted by the channel.

2. If this instruction is executed for a Non-Class F channel, an
Undefined Instruction Trap will occur.

6-207

DESCRIPTION

CONDITION CODE

6-208

RESULTS

ASSEMBLY
LANGUAGE
CODING

NOTES

DISABLE CHANNEL INTERRUPTS

FC6F
L] 1 A AUG 1 1
OP CODE R DCi1 ODE CHANNEL SUBADDRESS
1I1l1l1|1|‘l 1 1 1.1.011 1I1l1 0 [il [l 1 1 'l o 1 1 2 1 1 1
0 1 2 3 456 7.8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Disable Channel Interrupt causes the addressed channel to be disabled

from

cc1,
This
Code
this

DCI

requesting interrupts from the CPU.
Bits 0-5 "specify the operation code, octal 77.
Bits 6-8 specify the General Purpose Register, when nonzero,

whose contents will be added to the channel and
subaddress field to form the logical channel and

subaddress.
Bits 9-12 specify the operation as DCI, hex D ’
Bits 13-15 specify the augment code, octal 7.

Bits 16-31 specify a constant that will be added to the contents
of R to form the logical channel and subaddress. If R is
zero, only constant will be used to specify the logical
channel and subaddress.

2,3,and 4 = (0000)2 or (1000)2

jndicates that the instruction was accepted. For other Condition
combinations refer to the Class F Condition Codes on page 6-214 of
manual . :

R,'(Constant)’

Condition Codes after execution of the DCI will be set and can be
tested by a subsequent BCT or BCF to determine if the DCI was
accepted by the channel.

If this instruction is executed for a Non-Class F channel, an
Undefined Instruction Trap will occur.

DEFINITION

CONDITION CODE

ASSEMBLY
LANGUAGE
CODING

NOTES

DEACTIVATE CHANNEL INTERRUPT DACI

S,V

FCTF

! ' v lauG '
OP CODE R DACI ODE CHANNEL SUBADDRESS
1,1, 1,1,1.1 1.1,1,1]1,1.1]o0

I § Il i L [1 'l [l L | 1 1 i Il i 1 I 0 1] 1 L [l 1

01 2 3 4 56 7 8 9101112131415 16 17 18 19 20 2122 23 24 25 26 27 28 29 30 31

The Deactivate Channel Interrupt will cause the addressed channel to remove
its interrupt level from contention. If a request interrupt is currently
queued, the deactivate will cause the queued request to act1ve]y request if
the channel is enabled.

Bits 0-5 specify the operation code, octal 77.

Bits 6-8 specify the General Purpose Register, when nonzero,
whose contents will be added to the channel and
subaddress fields to form the logical channel and
subaddress.

Bits 9-12 specify the operation as DACI, hex F.

Bits 13-15 specify the augment code, octal 7.

Bits 16-31 specify a constant that will be added to the contents
of R to form the logical channel and subaddress. If R
is zero, only constant will be used to specify the logical
channel and subaddress.

cc1, 2, 3, and 4 = (0000), or (1000),

This indicates that the instruction was accepted. For other Condition Code
combinations, refer to the Class F Condition Codes on page 6-214 of this
manual.

DACI R,'(Constant)'

1. Condition Codes after execution of the DACI will be set and can be tested
by a subsequent BCT or BDF to determine if the DACI was successfully
executed.

2. On PSD mode, the DACI and follow1ng instructions are executed as an
uninterruptible pair.

3. Using Deactivate Channel Interrupt and LPSD or Deactivate Channel
Interrupt and LPSDCM is preferable to using a BRI.

4. If this instruction is executed for a Non-Class F channel, an
Undefined Instruction Trap will occur.

6-209

BEI

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY

LANGUAGE
CODING

NOTE

6-210

BLOCK EXTERNAL INTERRUPTS
0006

[=]

0 123 456 7 8 910Mn 1213141516171819202122232425262728293031

The execution of this instruction prevents the CPU from sensing all
interrupt requests generated by the I/0 channel and RTOM.

CCl: No change
CC2: No change
CC3: No change
CC4: No change

BEI

The CPU must have previously been set to PSD mode.

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE
CODING

NOTE

UNBLOCK EXTERNAL INTERRUPTS

0007

UEI

01010401010

.

0 00
L1

000
Ll

01 1 1
L 1 1

0 1234667 8 9101112131415 16 17 1819 20 21 22 23 24 25'26 27 28 29 30 31

The execution of this instruction causes the CPU to sense all interrupt
requests generated by the I/0 channel and RTOM.

CCl:
cc2:
CC3:
CC4:

UEI

No change
No change
No change
No change

The CPU must have previously been set to PSD mode.

6-211

INPUT/OUTPUT
INSTRUCTIONS

GENERAL

DESCRIPTION -

INSTRUCTION
FORMATS

INPUT/OUTPUT

CONDITION CODE

The Input/Output instructions provide the capability to perform Command or
Test operations to attached peripheral devices. Both the Command Device
and the Test Device instructions cause a 16-bit function code to be sent
to the device specified by the instruction.

The following instruction format is‘used by both Input/Output instructions.

DEVICE NO CODE

AUG
OP CODE FUNCT!ON CODE
| A T S N N Y T TN NN NS VO NN NN WA NI Y N N WS VHON WONN S NN W NN SHN NN U 1

UTILIZATION

6-212

0 12345 67 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits 0-5 define the Operation Code.

Bits 6-12 designate the device number.

Bits 13-15 define the Augmenting Operation Code.
Bits 16-31 contain the 16-bit function code.

The Condition Code is set during execution of a Test Device instruction to
indicate the result of the test being performed. The Command Device in-
struction leaves the current Condition Code unchanged.

CLASS F 1/0
INSTRUCTIONS

INSTRUCTION
FORMAT

NOTES -

A11 Class F I/0 instructions will be in the following format:

T
OP CODE

1 ,1,1,1,141

R
1

SUB OP

AUG
CODE

T
CHANNEL

SUBADDRESS

y 3o g J 1141404 4 3 49 3 9 tol 4 o449 g

0o 1

2 3 4 5 6 7 8 9 1011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Op Code bits 0-5 and Aug Code bits 13-15 must contain ones. The R field
(bits 6-8), if nonzero, specifies the general register whose contents will be
added to the channel and subaddress field bits 16-31 to form the logical
channel and subaddress. If R is specified as zero, only the channel and

subaddress fields will be used.

The format of the computed logical

channel and subaddress is:

L] 1 L)

LOGICAL CHANNEL SUBADDRESS

Ojolololololojololololol ol ololo 0l 11 1 1 3 0. N N WY N S |

0 1 2 3 456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The subaddress will be ignored by the channel if the operation does not
apply to a controller or device. .

The sub op field bits 09-12 specify the type of operation that is to be
performed as described below: ‘

BITS 09-12

i R === - 00000000
R EFOOOORMREREFEOOOO
RPFROORFOOHMFEOOMMFOO
HFOFOFOMROMROMROMMORO
[J T Y TN Y NN S N NN T N TR I T I |
DL 3K > DK D DX 3K 3K DX 3K 2K DX B DX X< <

MMOOW»POONOTOR_RWNEO

SUB 0P

Unassigned

Unassigned

START I/0 (SIO)

TEST 1/0 (TIO)

STOP I/0 (STPIO)

RESET CHANNEL (RSCHNL)

HALT 1/0 (HIO)

GRAB CONTROLLER (GRIO)

RESET CONTROLLER (RSCTL)

ENABLE WRITE CHANNEL WCS (ECWCS)
Unassigned

WRITE CHANNEL WCS (WCWCS)

ENABLE CHANNEL INTERRUPT (ECI)
DISABLE CHANNEL INTERRUPT (DCI)
ACTIVATE CHANNEL INTERRUPT (ACI)
DEACTIVATE CHANNEL INTERRUPT (DACI)

Channel must be ICL'd as Class F.

EXR, EXRR, and EXM may not be used.

3. Must be in PSD mode.

CCs must be tested after each instruction.

5. ¢b, TD, EI, DI, AI, DAI, and RI cannot be executed to Class F channel.

6-213

CLASS F The condition codes will be set for the execution of all Class F I/0
CONDITION CODES instructions and indicate the successful or unsuccessful initiation
. of an I/0 instruction. The condition codes can be set by the CPU,
for channel busy and inoperable or undefined channel, or by the
information passed directly from the channel. The assignments for
the condition codes are:

CC1 ccz cc3 cca

0 0 0 0 REQUEST ACTIVATED, WILL ECHO STATUS
0 0 0 1 CHANNEL BUSY

0 0 1 0 CHANNEL INOPERABLE OR UNDEFINED

0 0 1 1 SUBCHANNEL BUSY

0 1 0 0 STATUS STORED

0 1 0 1 UNSUPPORTED TRANSACTION

0 1 1 0 UNASSIGNED

0 1 1 1 UNASSIGNED

1 0 0 0 REQUEST ACCEPTED AND QUEUED, NO ECHO STATUS
1 0 0 1 UNASSIGNED

1 0 1 0 UNASSIGNED

1 0 1 1 UNASSIGNED

1 1 0 0 UNASSIGNED

1 1 0 0 UNASSIGNED

1 1 1 0 UNASSIGNED

1 1 1 1 UNASSIGNED

"Although 16 encoded condtions are possible, only the assigned patterns
will occur.

6-214

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
EXAMPLE

NOTES

COMMAND DEVICE
FCO6

CD
n,f

DEVICE ADDRESS

1 1

ol -]

COMMAND CODE

01 2 3 456 7 8 9101112131415 16 1718 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the Command Code field (bits 16-31) are transferred to the
Device Controller Channel specified by the device address contained in
bit positions 6-12 of the Instruction Word.

CCl:
cC2:
CC3:
CcC4:

CD
®)]

No change
No change
No change
No change

Dev Comm
Add Code

X'7A' ,X'8000"'
X'78',X'9000'
Class 0,1,2,3, and E I1/0

Command
Output data to device 7A
Input data from device 78

Processor instruction only.

1f the CPU is in the PSW mode and a CD instruction to a

Class F channel is attempted, a No Operation (NOP) will be

executed instead.

If the CPU is in the PSD

mode and a CD instruction to a Class F

channel is attempted, a System Check Trap will occur.

6-215

10
n,f

DEFINITION

NOTE

CONDITION CODE

6-216

RESULTS

ASSEMBLY
EXAMPLE

NOTES

TEST DEVICE
FCO5

] 4 L] | | v

DEVICE ADDRESS ‘10 1 TEST CODE 00 00O
| W W N W | T W U T I | Ll L4 43 3 & 1 2 2 ! 23 ¢4 2 3 4 1

0 1234 56 7 8 910 111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The contents of the Test Code field (bits 16-27) are transferred to the
Device Controller Channel (DCC) specified by the device address contained
in bit positions 6-12 of the Instruction Word. The device test defined by
the Test Code is performed in the DCC, and the test results are stored in
Condition Code bits 1-4 (CC1_4).

A TD having a unique Test Code is available with most peripheral devices.
Execution of a TD with this code causes a snapshot of all device and DCC
status to be stored in memory. The. individual peripheral device reference
manuals define the operation of this instruction with each device.

Test results defined for specific peripheral device.

Dev Comm

Add Code Command
D X'10',X'8000' Request the Controller Status for unit 10
1D X'10',X'2000' Request the Device status for unit 10

1. Class 0,1,2,3, and E I/0 Processor instruction only.

2. If the CPU is in the PSW mode and a TD instruction to a Class F
channel is attempted, the following Condition Codes will be set:

a. TD 8000 - CC3 (Channel Error)
b. TD 4000 - CC3 (Program Violation
c. TD 2000 - CC2 (Status Transfer Not Performed)

3. If the CPU is in the PSD mode and a TD instruction to a Class F
channel is attempted, a System Check Trap will occur.

DEFINITION

CONDITION CODE

RESULTS

ASSEMBLY
LANGUAGE
CODING

NOTES

START 1/0 g . SI0
FC17

1 § v AUG 1 ¥
OP CODE R sio CODE CHANNEL SUBADDRESS
o vyt g g J0,0, 10001 140 g 0

0 123 456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

Start I/0 will be used to begin I/0 execution or to return appropriate
Condition Codes and status if I/0 execution could not be accomplished.

Bits 0-5 specify the operation code, octal 77.
Bits 648 specify the General Purpose Register, when nonzero, whose

contents will be added to the channel and subaddress
fields to form the logical channel and subaddress.

Bits 9-12 specify the operation as an SIQ, hex 2.

Bits 13-15 specify the augment code, octal 7.

Bits 16-31 specify a constant that will be added to the contents of R
to form the logical channel and subaddress. If R is zero,

only bits 16-31 will be used to specify the logical channel
and subaddress.

ccl, 2, 3, and 4 = (00002) or (10002)

This indicates that the instruction was accepted. For other Condition
Code combinations refer to the Class F Condition Codes on page 6-214
of this manual.

SI0 R,‘'(Constant)’

1. Condition Codes, after exécution of an SI0O, will be set and can be
tested by a subsequent BCT or BCF to ascertain if the I/0 was
accepted.

2. If this instruction is executed for a Non-Class F channel, an Undefined

Instruction Trap will occur.

6-217

DEFINITION

CONDITION CODE

6-218

RESULTS

ASSEMBLY
LANGUAGE
CODING

NOTES

TEST 1/0
FCIF

v . T ¥ AUG] 1
OP CODE R . TIO CODE CHANNEL SUBADDRESS
101314138314 4 4 403031414 1,1,140 R W WY W O W) [S N T W |

012345 67 8 9101112131415 1617 1819 20 21 22 23 24 25 26 27 28 29 30 31

Test I/0 will be used to test controller state and to return appropriate
Condition Codes and status reflecting the state of the addressed controller
and/or device. Channel implementation will dictate the depth that the
channel must test to determine current state.

Bits 0-5 specify the operation code, octal 77.

Bits 6-8 specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress
fields to form the logical channel and subaddress.

Bits 9-12 specify the operation as a TIO, hex 3.
Bits 13-15 specify the augment code, octal 7.

Bits 16-31 = Specify a constant that will be added to the contents of
R to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

cC1, 2, 3, and 4 = (0000)2 or (1000)2
This indicates that the instruction was accepted. For other Condition Code

combinations refer to the Class F Condition Codes on Page 6-214 of this
manual.

TI0O . R,'(Constant)’

1. Condition Codes, after execution of the TIO, will be set and can be
tested by a subsequent BCT or BCF to ascertain channel/controller/device
state. : '

2. If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE
CODING

NOTES

STOP
FC27

1/0

STPIO
S,V

OP CODE
1,1,1,1,1,1

AUG v Y '
R STPIO CODE CONSTANT

L 40,1,0,0 1,114 4 4 3 3 3 3 4 4 3 493 43 4

01 2 3 4.5

6 7 8 91011121314 16 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The STOP I/0 (STPIO) is used to terminate the current I/0 operation after

the completion

of the current 10CD. The STOP I/0 applies only to the

addressed subchannel, and the only function is to suppress command and
data chain flags in the current IOCD.

Bits 0-5 specify the operation code, octal 77.

Bits 6-8 - specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress fields
to form the logical channel and subaddress.

Bits 9-12 specify the operation as a STPIO, hex 4.

Bits 13-15 specify the augment code, octal 7.

Bits 16-31 specify a constant that will be added to the contents of

R to form the logical channel and subaddress. If R is zero,

only bits 16-31 will be used to specify the Togical channel
and subaddress.

ccl, 2, 3, and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Condition Codes on page 6-214 of this
manual. . .

STPI0O R,'(Constant)'

Condition Codes, after execution of an STPIO, will be set and can be
tested by a subsequent BCT or BCF to ascertain the channel/controller/
device state.

If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

6-219

RSCHNL
S,V

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE
CODING

NOTES

6-220

RESET CHANNEL

FC2F
! ! ' AUG K !
OP CODE R RSCHNL CODE CHANNEL SUBADDRESS
1, 1,1,1,1,1 p ¢ J0,1,0,1 411,10} 4 4 4 ¢ 4 4 |0} 4 4 4 4 4

0 1.2 34 5 6 7 8 9 10 111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3t

The Reset Channel (RSCHNL) causes the addressed channel to cease and
reset all activity and to return to the idle state. The channle will
also reset all subchannels. No controller or device will be affected.
Any requesting or active interrupt level will be reset.

Bits 0-5 specify the operation code, octal 77.

Bits 6-8 specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress fields
to form the logical channel and subaddress.

Bits 9-12 specify the operatioh as a RSCHNL, hex 5.

Bits 13-15 specify the augment code, octal 7.

Bits 16-31 specify a constant that will be added to the contents of R
to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

cCl, 2, 3, and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Condtion Codes on page 6-214 of this manual.

RSCHNL R, '(Constant)'

1. Condition Codes, after execution of a RSCHNL, will be set and can be.
 tested by a subsequent BCT or BCF to ascertain the channel/controller/
device state,

2. If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE
CODING

HALT 1/0
FC37

1

OP CODE
1,141,141 ,1

T L] 1

AUG :
CODE CHANNEL SUBADDRESS

1I1|1 0 1 [1 [1 Il 0 1 1 [) 5 1

R HIO
[0,;1,140

0 1 23 4 56 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Halt I/0 (HIO) is used to cause an immediate but orderly termination in the

controller.

The Device End condition will notify the software of the actual

termination in the controller; thus, indicating its availability for new

requests.

If the Halt I/0 caused the generation of status relating to the

terminated I/0 operation, then the Device End condition for the termination
of the I/0 operation will be the only Device End condition generated.

Bits 0-5
Bits 6-8

Bits 9-12
Bits 13-15
Bists 16-31

specify the operation code, octal 77.

specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress fields
to form the logical channel and subaddress.

specify the operation as a HIO, hex 6.

specify the augment code, octal 7.

specify a constant that will be added to the contents of

R to form the logical channel and subaddress. If R is zero,

only bits 16-31 will be used to spec1fy the Togical channel
and subaddress.

cc1, 2, 3, and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted.

For other Condition Code

combinations refer to the Class F Condition Codes on page 6-214 of this

manual.

HIO R,'(Constant)'

1. Condition Codes after execution of the HIO, will be set and be tested by
a subsequent BCT or BCF to ascertain if the HIO was successfully

executed.

2. If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

6-221

GRIO GRAB CONTROLLER
FC3F

¥]] T T

AUG
OP CODE R GRIO CODE CHANNEL SUBADDRESS
151,1,1,1,1 L4 40,1 41 414141431404 4 4 4 43 4 4 |0 L1 1 1 3 1

01 23 45 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DEFINITION The Grab Controller (GRIO) will cause the addressed controller to release
itself from the currently assigned channel and to reserve itself for the
grabbing channel.

Bits 0-5 specify the operation code, octal 77.

Bits 6-8 specify the General Purpose Register, when nonzero, whose
contents will be added to the channel and subaddress fields
to form the logical channel and subaddress.

Bits 9-12 specify the operafion as GRIO, hex 7.
Bits 13-15 specify the augment code, octal 7.

Bits 16-31 specify a constant that will be added to the contents of R
to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

CONDITION CODE cc1, 2, 3, and 4 =’(0000)2 or (1000)2
RESULTS
This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Codes on page 6-214 of this manual.

ASSEMBLY GRIO R,'(Constant)'
LANGUAGE ;
CODING

NOTES 1. Condition Codes, after execution of the GRIO, will be set and can be
tested by a subsequent BCT or BCF to determine if the GRIO was
successfully executed.

2. If this instruction is executed for a Non-Class F cﬁannel, an
Undefined Instruction. Trap will occur.

6-222

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE
CODING

NOTE

RSCTL
S,V

RESET CONTROLLER

FC47

131 41,1,1 41

T T AUG . T T
R RSCTL CODE CHANNEL SUBADDRESS

. ¢ |1 40,0404 4 4, O] 43 43 4 4 3 4 JO) ¢ 4 3 4 4

0 123 45 6 7 8 9101112131415 16 17 1819 20 21 22 23 24 25 26 27 28 29 30 31

This instruction causes the addressed controller to be completely reset. In
addition, the subchannel and all pending and generated status conditions are

cleared.
Bits 0-5
Bits 6-8

Bits 9-12
Bits 13-15
Bits 16-31

specify the operation code, octal 77.

specify the General Purpose Register (R), when nonzero,
whose contents will be added to the channel and subaddress
fields to form the logical channel and subaddress.

specify the operation as RSCTL, hex 8.

specify the augment code, octal 7.

specifies a constant that will be added to the contents of R
to form the logical channel and subaddress. If R is zero,

only bits 16-31 will be used to specify the logical channel
and subaddress.

cCl, 2, 3, and 4 = (000)2 or (1000)2

This indicates that the instruction was accepted.

For other Condition Code

combinations refer to the Class F Condition Codes on page 6-214 of this

manual.

RSCTL

R,"'(Constant)"

If this instruction is éxecuted for a Non-Class F channel, an Undefined
Instruction Trap will occur.

6-223

ECWCS
S,V

DEFINITION

CONDITION CODE

6-224

RESULTS

ASSEMBLY
LANGUAGE
CODING

NOTES

ENABLE CHANNEL WCS LOAD
FC4F

k] 1 L AUG L T
ECWCS CHANNEL o] susADDRESS
OP CODE 1,00 1 1 9P 1o

0 123 456 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Enable Channel WCS Load (ECWCS) sets an interlock within the CPU to
enable the loading of WCS. The ECWCS must be the first of a 2-instruction
sequence.

Bits 0-5 Specify the operation code, octal 77.

Bits 6-8 Specify the general register, when nonzero, whose contents
will be added to the channel and subaddress fields to form
the logical channel and subaddress.

Bits 9-12 Specify the operation as an ECWCS, hex 9.

Bits 13-15 Specify the augment code, octal 7.

Bits 16-31 Specify a constant that will be added to the contents of R
to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

¢C1, 2, 3, and 4 = (0000)2 or (1000)2

'This indicates that the instruction was accepted. For other Condition Code

combinations, refer to the Class F Condition Codes on page 6-214 of this
manual. v

ECWCS R,'(Constant)'

1. Condition Codes after the execution of the ECWCS instruction will be
set and can be tested by a subsequent BCT or BCF to ascertain whether
the ECWCS instruction was successfully executed.

2. If this instruction is executed for a Non-Class F channel, an
Undefined Instruction Trap will occur.

DEFINITION

CONDITION CODE
RESULTS

ASSEMBLY
LANGUAGE
CODING

NOTES

WRITE CHANNEL WCS WCWCS
. S,V
FC5F

T T T AUG T T
OP CODE R WCWCS | CODE CHANNEL SUBADDRESS
11, 1,1,1,1,1 L 1,0,1 ,141,1,140 PR T T T 0 PR W T TR N N

0 123 456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The Write Channel WCS (WCWCS) causes the loading of the channel WCS. The
WCWCS must be the second instruction executed to the Class F I/0 controller,
the first being ECWCS, without any intervening I/0 instructions to the

Class F I/0 controller to be loaded.

Bits 0-5 Specify the operation code, octal 77.

Bits 6-8 Specify the general register, when nonzero, whose contents
will be added to the channel and subaddress fields to form
the logical channel and subaddress.

Bits 9-12 Specify the operation as a WCWCS, hex B.

Bits 13-15 Specify the augment code, octal 7.

Bits 16-31 Specify a constant that will be added to the contents of
R to form the logical channel and subaddress. If R is zero,
only bits 16-31 will be used to specify the logical channel
and subaddress.

CCl, 2, 3, and 4 = (0000)2 or (1000)2

This indicates that the instruction was accepted. For other Condition Code
combinations refer to the Class F Condition Codes on page 6-214 of this
manual. :

WCWCS R,'(Constant)'

1., The information that is required by the WCS load will be passed to the
Class F I/0 controller by a parameter Tist., The I0OCD address location
specified for this controller will be initialized by software prior to
the execution of this instruction. The subaddress field will be ignored.

2. If this instruction is executed for a Non-Class F channel, an Undefined
Instruction Trap will occur.

3. If the WCWCS instruction is not preceded by an ECWCS instruction, a
System Check Trap will occur.

6-225

10CD FORMAT FOR
CLASS F 1/0 WCS

6-226

Lol A [l

T 4 1 L]

START WCS ADDRESS BYTE COUNT

[S N T N W SR N NN NN AN SR ST DU SR T R SHN NN SR SN NN NN SHE T T R |

0 123 456 7 8 910111213 1415 16 17 18 19 20 21 22 23 24 2526 27 28 29 30 31

U e

0 12 3.4 5 6 7 8-29 10 1121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Real Data Address: Bits 8-31 (MSW) wi]] contain the address of the

memory location for the first word to be loaded.

Start WCS Address: Bits 0-15 (LSW) will contain the address of WCS

Byte Count:

where the first word is to be loaded.

Bits 16-31 (LSW). will contain the number of bytes
to be loaded.

INTRODUCTION

PANEL LOCK

POWER

RUN/HALT

SYSTEM RESET
ATTENTION

INITIAL
PROGRAM LOAD

CLOCK
OVERRIDE

OPERATION/MODE
INDICATORS

PARITY
“ERROR

INTERRUPT
A

v

SECTION VII

CONTROL PANEL

This section describes the function and operation of the Serial System
Control Panel of the 32/70 Series Computer. Figure 7-1 shows the
controls, keyboards, and displays of the Serial System Control Panel.

The PANEL LOCK switch is a two-position rotary key switch having an
unlocked and locked position. The turnkey can be removed in either
position. When the switch is in the unlocked position, all panel keys
on the Serial System Control Panel are operational. In the locked
position, all panel keys are disabled except for the ATTENTION key and
those panel keys for write/read of control switches on the Hexadecimal
Keyboard and the Function Keyboard which remain operational at all
times.

The POWER switch is a two-position latching pushbutton which provides
the capability to power the system on or off. The state of the power is
determined by the RUN and HALT indicators. When the power is on, either
the RUN or HALT indicator is on. When the power is off, all indicators
on the panel will be off.

Depressing the RUN/HALT key while the CPU is in the Halt mode causes the
CPU to enter the Run mode and begin executing instructions from the
location specified in the Program Status Word.

Depressing the RUN/HALT key while the CPU is in the Run mode causes the -
CPU to enter the Halt mode. In the Halt mode, the CPU no longer
executes instructions from memory; instead, it is placed in a micro-
routine which monitors selected panel support functions.

Depressing the SYSTEM RESET key when the system is in the Halt mode
initializes all appropriate logic in all SelBUS devices.

Depressing the ATTENTION key causes an interrupt to occur at the
Attention Interrupt level, priority level 1344.

"~ Depressing the INITIAL PROGRAM LOAD key when the CPU is in the Halt

mode puts the CPU in the Initial Program Load mode. This initiates the
microprogram loading sequence which consists of reading a dedicated
device address and then reading from the specified device. The device
number is entered through the Serial System Control Panel.

Depressing the CLK OVRD key activates the override condition; no further
interrupts from the Real-Time Clock or the Interval Timer will be per-
mitted. A second depression of this key deactivates the clock override
condition.

The Operation/Mode indicators consist of single-bit, light-emitting
diodes. These -indicators display either the operational mode of the CPU
or a conditioned interruption in computer operation.

The PARITY ERROR display, when 1it, indicates that a memory parity error
has occurred during a CPU memory access.

The INTERRUPT ACTIVE display is on if any interrupt (I/0 or external)
is in the active state.

2L

"1-/ anb4

Ldued [043UO) S9LUBS 0//2€ 9yl

DISPLAY A

EVEN REG

.b
.U‘
Q-
@-

12 13

14

15 16 17 18 19

DISPLAY B

ODD REG

4 5 6 7
0000

MEMORY
ADDRESS

o~
PROGRAM
COUNTER

OPERATOR
FAULT

MEMORY
DATA

EFFECTIVE
ADDRESS

@ struction

. sToP

@ nstrsTop

OPERAND
READ STOP

OPERAND
WRITE STOP

. ERROR

CONTROL
SWITCHES

@ «eveoarn

SYSI=ENs

ENGINEERING LABORATORIES

PARITY INTERRUPT cLOCK
ERROR ACTIVE OVERRIDE @~ @ v @ var
PANEL LOCK POWER) AL
ATTENTION

UNLOCKED LOCKED] | prosram Loao

L] [] v

| LK RUN

- SYSTEM RESET e || B

>
2
INSTR STEP]

S

WS
KEYBOARD
A’ 4

CLOCK
'OVERRIDE
RUN
HALT

WAIT

KEYBOARDS

HEXADECIMAL
KEYBOARD

The CLOCK OVERRIDE display is on when the clock override condition is
active (The CLK OVRD key is depressed.)

The RUN display is on when the CPU is in the Run mode. While in the Run
mode, the CPU is executing instructions.

The HALT display is on when the CPU is in the Halt mode. In this mode,
no instructions are executed.

The WAIT display is on when the CPU is in the Wait state: that is, no
instructions are being executed. However, I/0 operations continue to
completion.

The Hexadecimal keyboard and the Function keyboard operate in con-
junction with the panel displays as a unified Input/Output device to
the CPU. Operation of the keyboards provides the capability to se-
lectively store and/or read data in memory or in registers.

The Hexadecimal keyboard, referred to as the "Hex keyboard," is used to
either enter data into the B-Display or to enter the source/destination
of the panel function to be performed. The dual function of each Hex
keyboard key is indicated by the upper and lower case values printed on
each key.

The upper case values are used when data is entered into the B-Display.
The upper case values are enabled by first depressing the Function
keyboard KEYBOARD key. The Function keyboard KEYBOARD key causes the
B-Display to be cleared and the KEYBOARD indicator to illuminate. When
the KEYBOARD indicator is illuminated, all entries from the Hex keyboard
are interpreted as data and are entered into the B-Display by a 4-bit
left shift of the contents of the B-Display and insertion of the hex
value of the depressed key into the four least significant bit positions
(hex digit) of the B-Display. If the 32-bit capacity of the B-Display is
exceeded, the most significant four bits of the B-Display are shifted
out of the display and lost, and the new digit is loaded into the least
significant bit positions.

The Tlower case values of the Hex keyboard are used to specify the
source/destination of a function to be performed by the Serial System
Control Panel. The lower case values are enabled by first depressing
the Function keyboard WRiTE key or the BE%Q keys, causing the subsequent
entry from the Hex keyboard to be interpreted as the source/destination
of the Write or Read function. When a source/destination is entered in
the Hex keyboard, it causes-a corresponding indicator to illuminate on
the Serial System Control Panel. The Hex keyboard keys that cause an
indicator to illuminate are listed as follows:

1. The ROE s f-@% ’Réﬁ , and RGE keys cause the EVEN register Hex

indicator to indicate the hexadecimal value of the even register
addressed.

2. The ﬁlﬁ , Rt%— , ‘5E , and 'R%E keys cause the ODD REGISTER Hex in-

dicator to indicate the hexadecimal value of the odd register ad-
dressed.

3. The T%T key causes the MEMORY ADDRESS indicator to illuminate.

- 7-3

7-4

FUNCTION
KEYBOARD

WRITE
X
KEY

READ
KEY

WRITE &
INC 'A'
KEY

INC 'A’
& READ
KEY

The ﬁ%T key causes the PSW (Program Status Word) indicator to
illuminate.

5. | The ;%- key causes the PROGRAM COUNTER indicator to i]]um%nate.
6. The Cgﬁf key causes the CONTROL SWITCHES indicator to illuminate.
7. The %5 key causes the MEMORY DATA indicator to i]]dminate.’

8. fhe gf key causes the EFFECTIVE ADDRESS indicator to illuminate.

9. The ﬁgﬁf key causes the second word of the PSD to be displayed
in the B-Display.

10. The Cgﬂv key causes a logical address in the A-Display to be con-

verted to a 24-bit physical address and be displayed in the B-
Display.

The Function keyboard sets the function to be performed by the Control
Panel according to the key that is depressed. The functions that can
be selected by the Function keyboard keys are as follows:

Depressing the !B%IE key causes the operand in the B-Display to be
stored in the destination specified by a subsequent depression of a
Hex keyboard key. The 1lower case value of the Hex keyboard key
describes the destination of the operand and the function indicator

that will illuminate. The use of the Hex keyboard EK key is proh1b1ted
for the destination of a Write function. If the Hex keyboard ——ﬁ is de-

pressed, the contents of the A-Display (which must contain a valid
memory address, PSW, or Program Counter Value) are used to address
memory. The operand in the B-Display is stored at that memory address.

READ

Depressing the key causes the operand specified by a subsequent de-
X

pression of a Hex keyboard key to be loaded into either the A- or
B-Display. The lower case value of the Hex keyboard key describes the
source of the operand and the function indicator that will illuminate.

The use of the Hex keyboard ﬁﬁ key is prohibited as a source of a Read
function.

If the Hex keyboard %D key is depressed, the contents of the A-Display

(which must contain a valid memory address, PSW, or Program Counter
Value) are used to address memory. The contents of the addressed
memory location are loaded into the B-Display.

Depressing the WRITE & INC 'A' key causes the operand in the B-Display
to be stored in the memory location addressed by the A-Display. The
A-Display is then incremented by four (one memory word). The A-Display
must contain a valid memory address, and the B-Display must contain
the operand to be stored in memory. The WRITE & INC 'A' key is used
for Write functions to sequential memory locations.

The INC 'A' & READ key causes the address in the A-Display to be in-
cremented by four (one memory word), and the updated address is used
to address memory. The contents of the addressed memory location are
then loaded into the B-Display. The A-Display must contain a valid
memory address. The INC 'A' & READ Key is used for Read functions of
sequential memory locations.

EXT FUNCT
KEY

INSTR STOP
KEY

OPRND
R STOP
KEY

OPRND
W STOP
KEY

INSTR
STEP
KEY

KEYBOARD
KEY

The EXT FUNCT key is used for extended funct1ons, such as a 1amp test
routine.

Depressing the INSTR STOP key causes the Instruction Stop function to
become active or inactive. If the Instruction Stop function was active,
and the INSTR STOP indicator was illuminated, depressing the Function
keyboard INSTR STOP key would deactivate the Instruction Stop function
and turn off the indicator. If the Instruction Stop function was
inactive, and the INSTR STOP indicator was off, depressing the Function
keyboard INSTR STOP key would activate the Instruction Stop function,
illuminate the INSTR Stop indicator and load the memory address from the
B-Display into the Address Compare register. When the CPU fetches an
instruction from the memory location specified by the Address Compare
register, the STOP indicator illuminates, and the CPU halts. The
B-Display must be loaded with the instruction address by way of the Hex
keyboard before depressing the Function keyboard INSTR STOP key.

Depressing the OPRND R STOP key causes the Operand Read Stop function
to become active or inactive. If the Operand Read Stop function was
active, and the OPERAND READ STOP indicator was illuminated, depressing
the Function keyboard OPRND R STOP key would deactivate the Operand Read
Stop function and turn off the indicator.If the Operand Read Stop was
inactive, depressing the Function keyboard OPRND R STOP key would
activate the Operand Read Stop function and load the memory address from
the B-Display into the Address Compare register. When the CPU reads an
operand from the specified memory location, the STOP indicator
illuminates, and the CPU halts. The B-Display must be loaded with the
operand memory address by way of the Hex keyboard before depressing the
OPRND R STOP key. The address in the B-Display for Compare Halt must be
entered in a 24-bit physical address format.

Depressing the OPRND W STOP key causes the Operand Write Stop function
to become active or inactive. If the Operand Write Stop function was
active, and the OPERAND WRITE STOP indicator was illuminated, depressing
the function keyboard OPRND W STOP key would deactivate the Operand
Write Stop function and turn off the indicator. If the Operand Write
Stop was inactive, depressing the Function keyboard OPRND W STOP key
would activate the Operand Write Stop function, illuminate the OPERAND
WRITE ‘STOP indicator, and load the memory address from the B-Display
into the Address Compare register. When the CPU stores an operand in the
specified memory location, the STOP indicator illuminates, and the CPU
halts. The B-Display must be loaded with the operand memory address by
way of Hex keyboard before depressing the OPRND W STOP key. The address
in the B-Display for Compare Halt must be entered in a 24-bit physical
address format.

Depressing the INSTR STEP key causes both the A- and B-Displays and all
function indicators, except the Instruction and Operand STOP indicators,
to be cleared. It then causes the CPU to execute one software instruc-
tion that is addressed by the CPU Program Status Word Register. After
one instruction has been executed, the CPU halts, the A-Display will in-
dicate the next Program Status WOrd and the B- D1sp1ay will indicate the
new Instruction word.

Depressing the KEYBOARD key causes the B-Display to be cleared, the KEY-
BOARD 1indicator to illuminate, and any subsequent Hex keyboard entries
to be interpreted at their upper case values and inserted into the four
rightmost bit positions of the B-Display. The KEYBOARD key is normally
used to clear the B-Display before entering an operand into the
B-Display from the Hex keyboard.

7-5

7-6

PANEL
DISPLAYS

A-DISPLAY

The A-Display consists of 32 binary indicators that are divided into
eight 4-bit fields for easy hexadecimal read-out. When the Hex Display
option is included in the Serial Control Panel, a hex display indicator
above each 4-bit field provides a direct hexadecimal read-out of the
contents of the field.

The contents of the A-Display are described by the function indicators
directly to the right of the A-Display or by the EVEN REGISTER hex
display indicator to the left of the A-Display. The contents of the
A-Display can be any of the following:

1. A memory address in bit positions 8-31.

2. The contents of the CPU Program Status Word Register.

3. The Program Counter bits from the CPU Program Status Word Register

in bit positions 8-31.
4. The most significant word of the Program Status Doubleword.

5. The contents of any of four even-numbered CPU general purpose
registers.

The A-Display can be loaded in either a Write or a Read function, as
specified by the corresponding keys of the Function keyboard. In a
Write function, the A-Display is loaded as follows:

1. The B-Display is loaded with an operand or address by way of the
Hex keyboard. '

2. The Function keyboard E‘%-IE key is depressed to specify the Write
function. '

3. The Hex keyboard lower case value (operand destination) is spec-
ified by depressing one of the even-numbered register keys on
the MA, PSW, or PC keys.

In a Read function, the A-Display is loaded as follows:

1. The Function keyboard BE%Q key is depressed to specify the Read

function.

2. The Hex keyboard lower case value (operand source) is specified by
depressing one of the even-numbered register keys, the PSW or the
PC key.

When the Read function is complete, the operand specified by the Hex
keyboard will be loaded into the A-Display, and the corresponding
function indicator will illuminate to define the contents of the
A-Display. The exception being the E key which will load PSD word 2 into
the B-Display.

When the A-Display contains a memory address, Program Status Word, or
Program Counter, the contents of the A-Display can be used to address
memory during memory Read or Write functions. In these types of
functions, the WRITE & INC 'A' and the INC 'A' & READ keys of the
Function keyboard can be used to access memory and increment the
contents of the A-Display to the next sequential memory word address.

B-DISPLAY

The B-Display consists of 32 binary indicators that are divided into
eight 4-bit fields for easy hexadecimal read-out. When the Hex Display
option is included in the Serial System Control Panel, a hex display
indicator above each 4-bit field provides a direct hexadecimal read-out

~ of the contents of the field.

The contents of the B-Display are described by the function indicators
to the right of the B-Display or by the ODD REGISTER hex display
indicator to the left of the B-Display. The contents of the B-Display
can be any of the following:

1., Keyboard data being entered from the Hex keyboard.
2. A memory data word.

3. An Effective Address of the instruction addressed by the PSW or PC
in the A-Display.

4. An instruction addressed by the PSW or PC in the A-Display.
5. The contents of the CPU Control Switches in bit positions 0-11.

6. The contents of any of four odd-numbered CPU General Purpose Reg-
isters.

7. The least significant word of the Program Status Doubleword (PSD).
8. The physical address in an address conversion operation.

The B-Display can be loaded in either a Write or Read function, as
specified by the corresponding keys of the Function keyboard. In a
Write function, the B-Display is loaded as follows:

1. An operand is loaded from the Hex keyboard.

WRITE
X

2. The Function keyboard key is depressed to specify the Write

function.

3. The contents of the B-Display can be transferred to the A-Display
by depressing any even-numbered register key, the MA key, the PSW
key, or the PC key to specify the operand destination.

4. The contents of the B-Display can be transferred directly to an
odd-numbered register, the CPU Control Switch register, or to .the
memory location addressed by the A-Display by depressing one of
the odd-numbered register keys, the CSWS key, or the MD key, res-
pectively, to specify the operand destination.

In a Read function, the B-Display is loaded as follows:

1. The Function keyboard 5552 key is depressed to specify a Read
function.

2. The Hex keyboard lower case value (operand source) is specified
by depressing an odd-numbered register key, the CSWS key, the MD
key, the EA key, or the PSD2 key.

When the Read function is complete, the corresponding indicator will
illuminate to define the contents of the B-Display.

7-7

ODD/EVEN
INDICATORS

EVEN REGISTER

INDICATOR

0DD REGISTER
INDICATOR

MISCELLANEQUS
INDICATORS

MEMORY ADDRESS

INDICATOR

PSW
INDICATOR

PROGRAM
~ COUNTER
INDICATOR

OPERATOR FAULT

7-8

INDICATOR

The EVEN REGISTER indicator consists of a hexadecimal display (optional)
indicator that provides a direct read-out of the even-numbered register
being addressed by the Serial System Control Panel. The contents of
this register are displayed to the left of the A-Display. The EVEN
REGISTER indicator will be illuminated only when the A-Display conta1ns
the contents of an even-numbered register.

The four binary indicators directly below the EVEN REGISTER indicator
correspond to the even register address.

The ODD REGISTER indicator consists of a hexadecimal display (optional)
indicator that provides a direct read-out of the odd-numbered register
being addressed by the Serial System Control Panel. The contents of
this register are displayed in the B-Display. The O0DD REGISTER
indicator will be illuminated only when the B-Display contains the
contents of an odd-numbered register.

The four binary displays directly below the 0DD REGISTER indicator
correspond to the odd register address.

The MEMORY ADDRESS indicator is a 1-bit display that defines the con-
tents of the A-Display as a memory address. The memory address can
only be loaded into the into the A-Display with a Write function. The
memory address 1is primarily used for memory addressing in subsequent
memory read or write operations.

The PSW indicator is a 1-bit display that defines the contents of the

_ A-Display as the CPU Program Status Word Register. The PSW can be used

for changing the contents of the CPU PSW and for memory addressing in
subsequent memory read or write operations. In PSD mode, the A-Display
represents the most significant word of the PSD.

The PROGRAM COUNTER indicator is a 1-bit display that defines the con-
tents of the A-Display as the current value of the CPU Program Counter
portion of the Program Status Word Register. The Program Counter can
be loaded into the A-Display with either a Write or a Read function.

The Program Counter can be used for changing the Program Counter
port1on of the Program Status Word Register and for memory addressing
in subsequent memory read or write operations.

The OPERATOR FAULT indicator is a 1-bit display that indicates that an
operator fault has occurred on the Serial System Control Panel. Two
types of Operator Faults can normally occur:

1. The function selected by the Function keyboard was illogical with
respect to the operand source/destination selected by the Hex
keyboard.

2. The function selected by the Function keyboard combined with the
operation and source/destination spec1f1ed by the Hex keyboard
cannot be performed because the CPU is in a Run mode and the spec-
ified function is not is not allowed.

The specific type of Operator Fault that has occurred must be determined
by the Serial System Control Panel operator.

MEMORY DATA
INDICATOR

s

EFFECTIVE
ADDRESS
INDICATOR

ERROR
INDICATOR

CONTROL
SWITCHES
INDICATOR

KEYBOARD
INDICATOR

INSTRUCTION
INDICATOR

STOP
INDICATOR

The MEMORY DATA indicator is a 1l-bit display that defines the contents
of the B-Display as memory data from the memory location addressed by
the A-Display. For the MEMORY DATA indicator to be illuminated, the
A-Display must contain a memory address and the MEMORY ADDRESS lndlcator
must be illuminated. Memory data can be manually loaded into the
B-Display and the addressed memory location in a Write function or read
into the B-Display from the addressed memory location in Read function.

The EFFECTIVE ADDRESS indicator is a 1-bit display that defines the
contents of the B-Display as .an effective address of a software memory
reference instruction that 1is addressed by the contents of the
A-Display. The A-Display must contain either a PSW or Program Counter
Value, which is used by the CPU to access the software memory reference
instruction. The CPU then computes the instruction's effective address
based on any indexed or indirect addressing specified by the instruc-
tion. When the addressing is complete, the effective address can only
be loaded into the B-Display by a Read function.

The ERROR indicator is a 1-bit display that defines the contents of
the B-Display as an internal error code. The internal errors exclude
operator errors and include Serial System Control Panel errors, CPU
acknowledge errors, SelBUS transmission errors, and memory errors.

The CONTROL SWITCHES indicator is a 1l-bit display that defines the con-
tents of the B-Display as the CPU Control Switches. The Control Switches
can be loaded into the B-Display in either a Write or a Read function.
In a Write function, the B-Display is loaded from the Hex keyboard.
The contents of the B-Display (Control Switches) are then loaded into
a dedicated memory 1location. In a Read function, the Serial System
Control Panel reads the dedicated memory location and transfers its
contents (Control Switches) to the B-Display.

The specific dedicated memory address used for storage of the Control
Switches is a function of the computer system configuration and CPU
firmware.

The KEYBOARD indicator is a 1-bit display that indicates when the upper -

case values (hex digits 0 through F) can be loaded into the B-Display
from the Hex keyboard. The KEYBOARD indicator illuminates in response
to the KEYBOARD switch on the Function keyboard. -

The INSTRUCTION indicator is a 1-bit display that defines the contents
of the B-Display as an instruction addressed by a PSW or Program Counter
Value in the A-Display. An instruction can be manually loaded into the
B-Display and addressed memory location in a Write function or read into
the B-Display from the addressed memory location in a Read function.

The Serial System Control Panel defines the contents of any memory

location as an instruction if the A-Display contains—a PSW or Program
Counter Value. If the A-Display contains a memory address (the MEMORY
ADDRESS indicator is illuminated), the contents of the addressed memory
Tocation is defined as memory data, which 111um1nates the MEMORY DATA
indicator.

The STOP indicator is a 1-bit display that indicates when the CPU has
been halted by the Instruction Stop, Operand Read Stop, or Operand Write
Stop logic. In addition to the STOP indicator, one or more of the' INSTR
STOP, OPERAND READ STOP, or OPERAND WRITE STOP indicators should also be
illuminated indicating the type of stop logic that is active. When the
STOP indicator illuminates and CPU halts, the A-Display will contain the
current contents of the CPU PSW, and the B-Display will contain the
instruction addressed by the Program Counter portion of the PSW
(A-Display).

7-9:

7-10

INSTR STOP
INDICATOR

OPERAND
READ STOP
INDICATOR

OPERAND
-WRITE STOP
INDICATOR

OPERATOR
FAULT
INDICATOR

ERROR
INDICATOR

The INSTR STOP indicator is a 1-bit display that defines the active
condition of the Instruction Stop logic. When the Instruction Stop is
active, a memory address is in the Address Compare register. When the
CPU fetches an instruction from that memory location, the CPU will halt
and the STOP indicator will illuminate. :

The OPERAND READ STOP indicator is a 1-bit display that defines the
active condition of the Operand Read Stop logic. When Operand Read Stop
is active, a memory address is in the Address Compare register. When
the CPU performs a memory read from that memory location, the CPU will
halt and the STOP indicator will illuminate.

The OPERAND WRITE STOP indicator is a 1-bit display that defines the
active condition of the Operand Write Stop logic. When the Operand
Write Stop is active, a memory address is in the Address Compare regis-
ter. When the CPU performs a memory write to that location, the CPU will
halt and the STOP indicator will illuminate.

The Serial System Control Panel is equipped with an OPERATOR FAULT
indicator that illuminates when the panel detects an operator fault
condition. When the OPERATOR FAULT indicator lights, the rightmost
digit of the B-Display will indicate the source of the fault as follows:

Fault
Number Description
1. Does not Apply to the Serial Panel
2 Operation Nof Allowed - Run on Lock Restrictions
3 Invalid Operand Source or Destination
4, A-Display Not Valid for Operation to be Performed
5 Invalid Extended Function
6 Special Extended Function Not Enabtled
7. Does not Apply to the Serial Panel

The Serial System Control Panel is equipped with an ERROR indicator that
illuminates when a panel error is detected. When the ERROR indicator
lights, the rightmost digit of the B-Display will indicate the source
of the fault as follows:

Fault

Number Description

1. CPU Uart Error

Transmission Error other than CPU Uart
No Response from Memory

Nonpresent Memory

Parity Error in Memory

Write/Read Compake Error in‘Memory

N OO o sw N

Bus Interchange or Memory is Broken

MISCELLANEOUS
INDICATIONS

OPERATING
INSTRUCTIONS

LOAD B-
DISPLAY
FROM
HEX
KEYBOARD

LOAD A-

Several indicators are available to the operator‘when the computer,
while in the PSD mode, enters the Halt mode or when the PSW is read
by the panel switches. They are as follows:

1. Bit 6 indicates last instruction executed was a right halfword.
2 Bit 7 indicates Arithmetic Exception.

3. Bit 8 indicates PSD mode if set or PSW mode if zero.

4 Bit 9 indicates Mapped if set or Unmapped if zero.

5. Bit 32 indicates Interrupts Blocked if set.

The following discussions provide step-by-step instructions for using
the controls and indicators of the Serial System Control Panel. Each
heading designates a specific function to be performed and the
sequential steps necessary to complete the function. Each discussion
includes two significant conditions necessary for each function: Panel
Lock position and CPU mode.

Description of the Load B-Display from Hex keyboard and description of
the Load A-Display provide the primary functions of the Serial System
Control Panel that are necessary for all other functions. After these
descriptions are initially presented, they are referred to by title only
in subsequent descriptions.

1. The Panel Lock must be in the Unlocked mode.

The CPU can be in the Run or Halt mode.

Depress the KEYBOARD key on the Function keyboard.

e

Observe that the B-Display clears and the KEYBOARD indicator illum-
inates.

5. Enter the operand into the B-Display by depressing the correct
hex digit key on the Hex keyboard, one digit at a time.

6. Observe that the last digit entered from the Hex keyboard is loaded
into the four least significant bit positions of the B-Display and
that any previous contents of the B-Display is left-shifted by four
bit positions.

7. When the B-Display is full, or the complete operand has been enter-
ed into the B-Display, the operation is complete.

8. If the 32-bit capacity of the B-Display is exceeded, the four
most significant bit positions of the B-Display will be lost as
each new digit is entered into the B-Display.

9. If a mistake is made while entering the operand, depress the KEY-
BOARD key on the Function keyboard and return to step 4.

The Load A-Display function can be divided into seven subfunctions that
described separately in the following descriptions. The seven sub-
functions are:

1. Write Memory Address

2. Write PSW (Program Status Word)

3. Read PSW (Program Status Word)

WRITE
MEMORY
ADDRESS

WRITE PSW

READ PSW

N v ok

=

Write PSD2
Read PSD2
Write Program Counter

Read Program Counter

The Panel Lock must be in the Unlocked mode.
The CPU can be in the Run or Halt mode.

Enter the memory address into the B-Display from the Hex keyboard.
(See Load B-Display from Hex keyboard.)

WRITE
-

Depress the key on the Function keyboard.

Depress the %K key on the Hex keyboard.

Observe that the memory address is transferred from the B-Display
to the A-Display and that the MEMORY ADDRESS indicator illuminates.

The operation is complete. If a mistake was made during the se-
quence, return to Step 3.

The Panel Lock must be in the Unlocked mode

The CPU must be in the Halt mode.

Enter the PSW operand into the B-Display from the Hex keyboard.
(See Load B-Display from Hex keyboard.)

Depress the WRiTE key on the Function keyboard.

kDepress the 2 key on the Hex keyboard.

PSW

Observe that the PSW operand is transferred from the B-Display
to the A-Display and that PSW indicator illuminates. At this time,
the PSW operand has also been loaded into the CPU Program Status
Word Register.

The operation is complete. If a mistake was made during the
sequence, return to Step 3.

The Panel Lock must be in the Unlocked mode.

The CPU must be in the Halt mode.

Depress the B%AQ key on the Function keyboard.

Depress the F%W key on the Hex keyboard.

Observe that the Progfam Status Word is transferred from the CPU
Program Status Word Register to the A-Display and that the PSW
indicator illuminates.

6. The operation is complete. If a mistake was made during the se-
quence, return to Step 3.

WRITE PSD2 1. The Panel Lock must be in the Unlocked mode.
2. The CPU must be in the Halt mode.

3. Enter the PSD2 (least significant word of the PSD) operand into
the B-Display from the Hex keyboard. (See Load B-Display from
Hex keyboard).

4. Depress the !B§IE key on the Function keyboard.

5. Depress the F%U? key on the Hex keyboard.

6. The operation is complete. If a mistake was made during the se-
quence, return to Step 3.

READ PSD2 1. The Panel Lock must be in the Unlocked mode.

2. The CPU must be in the Halt mode.

READ
5

3. Depress the key on the Function keyboard.

4. Depress the E key on the Hex keyboard.
PSD2 ™

5. The operation is complete. If a mistake was made during. the se-
quence, return to Step 3.

WRITE 1. The Panel Lock must be in the Unlocked mode.
PROGRAM
COUNTER 2. The CPU must be in the Halt mode.

3. Enter the Program Counter Value into bits 8-31 of the B-Display
from the Hex keyboard. (See Load B-Display from Hex keyboard.)

4. Depress the wRﬁTE key on the Function keyboard.

5. Depress the %C key on the Hex keyboard.

6. Observe that bits 13-31 of the B-Display are transferred to the
A-Display and that the PROGRAM COUNTER indicator illuminates. At
-this time, the Program Counter Value has been loaded into the
Program Counter portion of the CPU Program Status Word Register.

7. The operation is complete. If a mistake was made during the se-
quence, return to Step 3.

READ 1. The Panel Lock must be in the Unlocked mode.
PROGRAM
COUNTER 2. The CPU must be in the Halt mode.

3. Depress the B%AQ key on the Function keyboard.

7-13

7-14

READ
MEMORY
(SINGLE

ADDRESS)

4. Depress the A key on the Hex keyboard.
PC

5. Observe that the Program Counter Value is transferred from the CPU
Program Status Word Register and transferred to bits 13-31 of the
A-Display and that the PROGRAM COUNTER indicator illuminates.

6. The operation is complete. If a mistake was made during the se-
quence, return to Step 3.

The Write Memory sequence is dependent on a valid address (Memory Ad-
dress, PSW, or Program Counter Value) in the A-Display. This value
can be set in the A-Display by using any of the subfunctions described
in the Load A-Display discussion.

1. The Panel Lock must be in the Unlocked mode.

2. Enter a Memory Address, PSW, or Program Counter Value into the

A-Display as described in the Load A-Display discussion.

3. Enter the operand to be stored in memory into the B-Display from
the Hex keyboard. (See Load B-Display from Hex keyboard.)

WRITE

4. Depress the key on the Functfon keyboard.

5. Depress the %ﬁ key on the Hex keyboard.

6. Observe that the operand in the B-Display remains unchanged and
that either the MEMORY DATA or INSTRUCTION indicator illuminates
as follows:

a. If the A-Display contains a memory address, the MEMORY DATA
indicator should illuminate.

b. If the A-Display contains either a PSW ofr Program Counter
Value, the INSTRUCTION indicator should illuminate.

7. The operation is complete. If a mistake was made during the se-
quence, return to Step 3.

The Read Memory sequence is dependent on a valid address (Memory Ad-
dress, PSW, or Program Counter Value) in the A-Display. This value can
can be set in the A-Display by using any of the subfunctions described
in the Load A-Display discussion.

1. The Panel Lock must be in the Unlocked mode.

2. Enter a Memory Address,' PSW, or Program Counter Value into the
A-Display as described in the Load A-Display discussion.

3. Depress the INC 'A' & READ key on the Function keyboard.

4. Observe that the A-Display is incremented by four- to the next
sequential memory address.

5. Observe that the MEMORY DATA or INSTRUCTION indicator illuminates
as follows:

a. If the A-Display contains a memory address, the MEMORY DATA
indicator should illuminate.

b. If the A-Display contains a PSW or Program Counter Value,
the INSTRUCTION indicator should illuminate.

6. The operand in the B-Display should be the contents of the memory
location addressed by the A-Display.

7. If no mistakes occurred in the above sequence, return to Step 4
to read the next memory location.

8. If a mistake was made, the same memory address can be reread by
performing the Read Memory (Single Address) sequence beginning
with Step 4.

When using the Read Memory (Sequential Addresses) sequence, the first
address entered into the A-Display will not be read. To read the first
address, perform the Read Memory (Single Address) sequence, then enter
the Read Memory (Sequential Addresses) sequence beginning with Step 4.

INSTRUCTION The Instruction Step function causes the CPU to enter the Run mode and
STEP execute one software . instruction. After the instruction has been
executed, the CPU returns to the Halt mode.

The sequence for the Instruction Step function is as follows:
1. The Panel Lock must be in the Unlocked mode.
2. The CPU must be in the Halt mode.

3. If the CPU Program Status Word Register does not point to the
instruction to be executed, load a Program Counter or PSW Value
into the A-Display and CPU register as described in the Load A-
Display description.

4. Depress the INSTR STEP key on the Function keyboard.
5. Observe that the PANEL HALT indicator is illuminated.

6. The system halts with the updated PSW Value in the A-Display and
instruction addressed by the A-Display (PSW) in the B-Display.

7. To execute the next instruction, return to Step 4.

READ The Read Effective Address sequence causes the CPU to fetch the in-
EFFECTIVE struction addressed by the Program Counter of PSW Value in the A-Display.
ADDRESS The instruction fetched should be a memory reference instruction to
generate a valid effective address. After the instruction has been

fetched, the CPU calculates the instruction's effective memory address

by performing the indexing and indirect addressing specified by the in-

struction. When the address computations are complete, the CPU transfers

the effective address to the Serial System Control Panel's B-Display.

The Read Effective Address sequence is as follows:
1. The Panel Lock must be in the Unlocked mode.
2. The CPU must be in the Halt mode.

3. Enter a PSW or Program Counter Value into the A-Display as de-
scribed in the Load A-Display discussion.

4. Depress the BE%Q key on the Function keyboard. \

7-15

7-16

- CONVERT

ADDRESS

. STOP
SEQUENCE

7.

Depress the gﬁ key on the Hex keyboard.

Observe that the EFFECTIVE ADDRESS indicator i]luminates and the
effective address is loaded into the B-Display.

The operation is complete. If a mistake occurred, return to Step 3.

The Convert Address sequence causes conversion of a logical address in
the A-Display to a 24-bit physical address in the B-Display.

The Convert Address sequence is as follows:

1.

2
3.
4

7.

The Panel Lock must be in the Unlocked mode.

The CPU must be in the Halt mode.

The CPU must be in the PSD mode.

Enter a PSW, Program Counter Value, or memory address in the A-
Display as described in the Load A-Display discussion.

DepreSs the BE%Q key on the Function keyboard.

Depress the Cﬁ%V key on the Hex keyboard.

The operation is compfete. If a mistake occurred, return to Step 4.

The Stop sequence includes the Instruction Stop, Operand Read Stop, and
Operand Write Stop functions. Each function has its own key on the
Function Keyboard and its own indicator to indicate when that function
is active.

The sequence for the Stop functions is as follows:

1.
2.
3.

The Panel Lock must be in the Unlocked mode.
The CPU must be in the Halt mode.

Enter the memory stop address into the B-Display from the Hex
keyboard.

Depress the INSTR STOP, OPRND R STOP, or OPRND W STOP key on the
Function keyboard.

Observe that the indicator for the Stop function selected by the
Function keyboard illuminates.

If the CPU is in the Run mode and the specified memory location
is accessed in the correct operating mode (Instruction Fetch,
Operand Read, or Operand Write), the following events should occur.

a. The PANEL HALT indicator should illuminate.

b. The STOP indicator should illuminate.

c. The current contents of the CPU PSWR should appear in the
A-Display, and the PSW indicator should illuminate.

d. The instruction addressed by the Program Counter portion of
the PSW should appear in the B-Display, and the INSTRUCTION
indicator should illuminate.

7. To clear any active Stop function, perform the following steps:

a. Depress the Function keyboard key that corresponds to the
function to be cleared.

b. Observe that the corresponding Stop function indicator turns.

When using the Stop function, multiple Stop functions can be set by
entering the Stop functions sequentially; however, if a different Stop
address is entered with each Stop function, the most recently entered
Stop address will be used for all active Stop functions.

CONTROL The Control Switches sequence is used to set or monitor the CPU
SWITCHES Control Switches that are stored in a dedicated memory location. The
SEQUENCE Control Switches sequence is divided into the Write Control Switches

. function that sets the Control Switches in the dedicated memory location
and the Read Control Switches function that reads the contents of the
dedicated memory location.

WRITE 1. The Panel Lock must be in the Unlocked mode.
CONTROL o
SWITCHES 2. Enter the Control Switch configuration into bit positions 0-12 of
the B-Display from the Hex keyboard. (See Load B-Display from Hex
keyboard).

3. Depress the

EB%IE key on the Function keyboard.

4. Depress the E%W§ key on the Hex keyboard.

5. Observe that the CONTROL SWITCHES indicator illuminates. At this
time, the contents of the B-Display have been transferred to the
control switches dedicated memory location.

6. The operation is complete. If a mistake was made, return to Step 3.

READ 1. The Panel Lock must be in the Unlocked mode.
CONTROL .
SWITCHES 2. The CPU can be in the Run or Halt mode.

READ
X

3. Depress the key on the Function keyboard.

4. Depress the C%Wg key on the Hex keyboard.

5. Observe that the CONTROL SWITCHES indicator illuminates, and the
contents of the control switches dedicated memory location are
transferred to the B-Display.

6. The operation is complete. If a mistake was made, return to Step 3.

7-17

INITIAL
PROGRAM
LOAD

SEQUENCE

The Initial Program Load (IPL) sequence is a function of the Serial
System Control Panel and CPU firmware. The IPL sequence is as follows:

. w Ny

The Panel Lock must be in the Unlocked mode.
The CPU must be in the Halt mode.
Depress the SYSTEM RESET key.

Enter the peripheral device address of the IPL device into the
B-Display from the Hex keyboard. (See Load B-Display from Hex
keyboard.) Note: If an all-zeros device address is entered into the
B-Display, the CPU firmware will default to a firmware-specified
IPL device address.

Depress the INITIAL PROGRAM LOAD key.

When the IPL sequence is complete, the CPU will be in the Halt
mode. Any changes in the software program can be made at this
time.

The operation 1is complete. Refer to the software description of
the Bootstrap program for operating instructions of the Bootstrap
program.

INITIAL PROGRAM
LOAD (IPL)

FORMATS OF THE

INITIAL
CONFIGURATION
LOAD - (ICL)

CL

SECTION V1l

SYSTEM INITIALIZATION

Initialization and configuration of a 32/70 Series System is accom-
plished through the use of the Initial Program Load (IPL) sequence.
This sequence initializes the system, sets up the I/0 configuration, and
boots in the operating system. The usual method of initializing the
system is through the use of the card reader to read in a deck of cards
containing the I/0 device configuration and assigned interrupt organ-
ization. The IPL sequence 1is initiated by placing the Initial Con-
figuration Load (ICL) deck of cards in the card reader, setting up of
the address of the card reader on the system front panel, and depressing
the IPL button on the system front panel.

It should be noted that if the mode jumper on the CPU is set up for the
PSD mode, the CPU will come up in the PSD mode. If, when placing the
address of the IPL device in the B-Display of the front panel,
additional information is added, then the CPU can be made to come up in
the PSW mode of operation. The procedure for establishing the PSW mode
of operation is as follows:

1. If using either the parallel or serial front panel for data entry,
add 8000 to the device address (sets bit 16 to One). For example,
if the address of the card reader is 7800, then by the setting of
b;t 16 to One (or adding 8000), the resultant address becomes
F800.

2. If using the serial front panel, entering a 55 plus the card reader
address results in the CPU coming up in the PSW mode. The re-
sultant address in the B-Display is then 00557800.

After the cards are read into the system, the SYSTEM RESET button is
depressed, the address of the device (disc) containing the operating
system is entered on the front panel, and the IPL button 1is again
depressed, thereby booting in the operating system. :

The Initial Configuration Load (ICL) deck of cards contains three basic

record formats. The following sections provide descriptions for each

format.

Initial Configuration Load (ICL) records are read from a default or
selected peripheral device. The ICL records are converted into in
formation that is used to initialize the 256- x 32-bit Configuration RAM
(CR) contained in the 32/70 Series Central Processor Unit (CPU).
Information contained in the CR is used by the CPU.to address and main-
tain the status of the 128 possible devices and the 112 possible
interrupts.

Initial Configuration Load records must be in the following ASCII or
Hollerith formats: :

8-1

FORMAT #1 *DEVXX=FCILCASA (,NN)

where:

*DEV

XX

IL

CA

SA

)

NN

NOTE 1:

MmOt WN =

defines that the record contains a controller definition
entry.

is the hexadecimal address that will be used by macro level
input/output instructions to address the controller.

is a necessary delimiter. Each letter to the right of this
deli?iter represents one hexadecimal digit (four binary
bits).

flags used by the CPU for input/output emulation. Presently,
this field is always zero.

defines the class of controller being emulated. Presently,

this field can contain one of the following values:

0 LINE PRINTER
CARD READER
TELETYPE
INTERVAL TIMER
PANEL

= Unassigned
ALL OTHERS
EXTENDED I/0

ol nnunn

is the hexadecimal interrupt priority level of the Service
Interrupt (i.e., priority levels 14, through 23;¢) for the
defined controller.

is the hexadecimal controller address as defined by the hard-
ware switches on the IOM.

is' the lowest hexadecimal device subaddress used by the con-
troller. This field is normally zero when more than one
device is configured. .

denotes optional parameter.

is a delimiter that must be used when more than one device
is configured.

is a 2-digit hexadecimal number that specifies the number
of devices configured on the controller.

The subaddress (SA) field must reflect the following for the
Teletype, Line Printer, Card Reader (TLC) controller:

1. Card Reader is subaddress 04.

2. Teletype is subaddress 1,¢.

3. Line Printer is subaddress 2,¢.

FORMAT #2

FORMAT #3

EXAMPLES OF
: INTTIAL
CONFIGURATION
L C

*INTXX RS
where:

*INT

XX

NOTE 1:
NOTE 2:
NOTE 3:

NOTE 4:

*END
where:

*END

defines that the record contains an interrupt definition
entry.

is the hexadecimal interrupt priority level ‘that is to be
emulated.

is a necessary delimiter. Each letter to the right of this
delimiter represents one hexadecimal digit (four binary
bits). .

is the hexadecimal RTOM board number to which the interrupt
XX is assigned.

is the hexadecimal subaddress on the RTOM board to which the
interrupt XX is assigned.

RTOM physical controller address 79;¢ is RTOM board number 1,
address 7A;¢ is RTOM board number 2, etc.

Real-Time Clock - hardware is connected to subaddress 6, on
the RTOM board.

Interval Timer hardware 1is connected to subaddress 4;¢ on

RTOM physical controller addresses must be 79,4 or above. This
convention allows a maximum of seven RTOM boards to be defined

on a single 32/70 Series system. Seven RTOM boards will sup-

port 112,4, interrupt levels.

is the last record of an Initial Configuration Load (ICL) deck.
This record signifies the end of the load process.

A device entry:

*DEV04=0E140100,04

The device entry above specifies the following information:

1. The 32/70 series input/output commands will address the controller
as 0416' A

2. The ",04" is an optional parameter that specifies that there are
4,¢ devices on the controller. There will be four entries defined
in the Configuration RAM (CR). The input/output commands (i.e., CD
and TD) will address the devices as 4;¢, 516, 616, and 7;¢-

3. The controller is an "E" class controller.

4. The priority of the Service Interrupt (SI) is 14,.

8-3

the RTOM board.
\
|
|
\

8-4

Assigning a priority to a controller has the following implications:

5.

The Transfer Interrupt location for priority 14,¢ is 100,¢.

The Service Interrupt vector location for priority 14,6 is 14046.
The emulation IOCD will be stored at location 700;¢.

The interrupt control instructions (i.e., DI, EI, RI, AI, DAI)
will control the interrupt on the controller by addressing
priority 14,¢.

The physical address of the controller is 01,¢.

An interrupt entry (RTOM):

*INT28=16

The interrupt entry above specifies the following information:

1.

The 32/70 Series interrupt control instructions (i.e., DI, EI, RI,
AI, DAI) will control the interrupt on the RTOM by addressing
priority 28,¢.

The number of the RTOM board is 1.

The subaddress on the RTOM board is 6,5 (jumpered logic subaddress
is 9).

A sample Initial Configuration Load (ICL) Deck is given in Figure 8-1.

EXAMPLE

COMMENTS

(SEE NOTE)
*DEV04=0E150400, 02
*DEV08=0E160800, 04
*DEV10=0E181000, 04
*DEV20=0E1A2000, 10
*DEV60=0E1E6000,08
*DEV78=01207800
*DEV7A=00217802
*DEV7E=02237801
*INTOO=1F
*INTO1=1E
*INT12=1D
*INT13=1C
*INT24=1B
*INT25=1A
*INT26=19
*INT27=18
*INT28=16
*INT29=17
*INT2A=15
*INT28=14
*INT2C=13
*INT2D=12

*END

READ ASCII CARD READER 10CD
CARTRIDGE DISC WITH THO PLATTERS
MOVING-HEAD DISC

9-TRACK MAG TAPE

GPMC

ADS

PRIMARY CARD READER
PRIMARY LINE PRINTER
PRIMARY TELETYPE

POWER FAIL/AUTO RESTART
SYSTEM OVERRIDE

MEMORY PARITY TRAP

CONSOLE INTERRUPT
NONPRESENT MEMORY
UNDEFINED INSTRUCTION TRAP
PRIVILEGE VIOLATION

CALL MONITOR

REAL-TIME CLOCK -
ARITHMETIC EXCEPTION
EXTERNAL INTERRUPT
EXTERNAL INTERRUPT
EXTERNAL INTERRUPT
EXTERNAL INTERRUPT

LAST CARD

NOTE: THE FIRST RECORD IS DEVICE DEPENDENT AND REPRESENTS TWO
32-BIT WORDS, THE FIRST BEING ALL ZEROS AND THE SECOND
A VALID I0CD TO READ THE FOLLOWING RECORDS.

Figure 8-1. System Initial Configuration Load (ICL) Deck

8-5/8-6

APPENDIX A
INSTRUCTION SET
(FUNCTIONALLY GROUPED)

The 32/70 Series instructions are listed alphabetically by mnemonic code within one of the
following functional groupings:

o0000O0OGOGOOGOIOSOSOOS

Load/Store Instructions

Branch Instructions

Compare Instructions

Logical Instructions

Register Transfer Instructions
Shift Operation Instructions

Bit Manipulation Instructions
Fixed-Point Arithmetic Instructions
Floating-Point Arithmetic Instructions
Control Instructions

Interrupt Instructions

Input/Output Instructions

Memory Management

Writable Control Storage

Each entry includes the following information:

Instruction Mnemonic
Operand Format
Operation Code
Instruction Function

The following symbols are used to denote required entries for operand formats:

b

N X< 0T3S -han

Bit Number In General Register (0-31)

Bit Number In Memory Byte

Destination General Register (0-7)

Function

Memory Address

Channel Or Device Number

Protect Register Number

Source General Register (0-7)

Value of Operand For Immediate, Sh1ft and Condition Code Instruct1ons
Index Register (1-3)

Indirect Addressing

Register Address Field for Special Instructions

Halfword instructions are denoted by # preceding the instruction mnemonic. The halfword instruc-
tions are all interregister (except TRP and TPR) instructions: CALM, WAIT, HALT, and NOP.

A-1

LOAD/STORE INSTRUCTIONS

Operand
Mnemonic Format Op Code Page Instruction Function
LB d,*m,x AC08 6-10 Load Byte
LD d,*m,x ACO00 6-13 Load Doubleword
LH d,*m,x ACO0 6-11 Load Halfword
Lw d,*m,x ACO0 6-12 Load Word
LF - d,*m,x ccoo 6-28 Load File
LEA d,*m,x D000 6-23 Load Effective Address
LEAR d,*m,x 8000 6-24 Load Effective Address Real
LA d,*m,x 3400 6-25 Load Address
LEM s,d,z €809 6-26 Load External MAP
CEMA s,d,z C80A 6-27 Convert External MAP Address
LI d,v €800 6-22 Load Immediate
LMB d,*m,x 8008 6-14 Load Masked Byte
LMD d,*m,x B00O 6-17 Load Masked Doubleword
LMH d,*m,x B00O 6-15 Load Masked Halfword
LMW d,*m,x B00O 6-16 Load Masked Word
LNB d,*m,x B408 6-18 Load Negative Byte
LND d,*m,x B400 6-21 Load Negative Doubleword
LNH d,*m,x B400 6-19 Load Negative Halfword
LNW d,*m,x B400 6-20 Load Negative Word
STB s, %m,x D408 6-29 Store Byte
STD s, *m,x D400 6-32 Store Doubleword
STH s, *m,x D400 6-30 Store Halfword
STW s,*m,x D400 6-31 Store Word
STF s,%*m,X DCOO 6-37 . Store File
SEM s,d,z €808 6-38 Store External MAP
STMB s, *m,x D808 6-33 Store Masked Byte
STMD s,%m, X D800 6-36 Store Masked Doubleword
STMH s,*m, X D800 6-34 Store Masked Halfword
STMW s,*m,x D800 6-35 Store Masked Word
IMB *m,x F808 6-39 Zero Memory Byte
IMD *m,x F800 6-42 Zero Memory Doubleword
IMH *m, X F800 6-40 Zero Memory Halfword
IMW *m,x F800 6-41 Zero Memory Word
#1IR d 0coo0 6-43 Zero Register

MEMORY MANAGEMENT INSTRUCTIONS

Operand
Mnemonic Format Op Code Page Instruction Function
#SEA 000D 6-59 Set Extended Addressing
#CEA 000F 6-60 Clear Extended Addressing
LMAP d 2C07 6-61 Load MAP
#TMAPR s,d 2COA 6-62 Transfer MAP to Register

Indicates Halfword Instruction
* Indicates Indirect Addressing

A-2

BRANCH INSTRUCTIONS

Operand
Mnemonic Format
BCF v, *m,x F000
BCT v, *m,x EC00
BFT *m, x F000
BIB d,m F400
BID d,m F460
BIH d,m F420
BIW d,m F440
BL *m,x F880
BU *m, x ECO0

COMPARE INSTRUCTIONS

Operand
Mnemonic Format
CAMB d,*m,x 9008
CAMD d,*m,x 9000
CAMH d,*m,x 9000
CAMW d,*m,x 9000
#CAR s,d 1000
CI d,v €805
CMMB d,*m,x 9408
CMMD d,*m,x 9400
CMMH d,*m,x 9400
CMMW d,*m,x 9400
#CMR s,d 1400
LOGICAL INSTRUCTIONS

Operand
Mnemonic Format
ANMB d,*m,x 8408
ANMD d,*m,x 8400
ANMH d,*m,x 8400
ANMW d,*m,x 8400
#ANR s,d 0400
EOMB d,*m,x 8C08
EOMD d,*m,x 8C00
EOMH d,*m,x 8C00
EOMW d,*m,x 8C00
#EOR s,d 0C00
#EORM s,d 0Cc08
ORMB d,*m,x 8808
ORMD d,*m,x 8800
ORMH d,*m,x 8800
ORMW d,*m,x - 8800
#ORR s,d 0800
#0RRM s,d 0808

Indicates Halfword Instruction
* Indicates Indirect Addressing

Op_Code

Op_Code

Page
6-73
6-74
6-75

6-77

6-80
6-78
6-79
6-76
6-72

Op Code Page

6-83
6-86
6-84
6-85
6-87
6-88
6-89
6-92
6-90
6-91
6-93

Instruction Function

Branch Condition False

Branch Condition True

Branch Function True

Branch After Incrementing Byte
Branch After Incrementing Doubleword
Branch After Incrementing Halfword
Branch After Incrementing Word
Branch and Link

Branch Unconditionally

Instruction Function

Compare Arithmetic with Memory Byte
Compare Arithmetic with Memory Doubleword
Compare Arithmetic with Memory Halfword
Compare Arithmetic with Memory Word
Compare Arithmetic with Register
Compare Immediate

Compare Masked with Memory Byte

Compare Masked with Memory Doubleword
Compare Masked with Memory Halfword
Compare Masked with Memory Word

Compare Masked with Register

Instruction Function

AND Memory Byte

AND Memory Doublword

AND Memory Halfword

AND Memory Word

AND Register and Register
Exclusive OR Memory Byte

Exclusive OR Memory Doubleword
Exclusive OR Memory Halfword
Exclusive OR Memory Word

Exclusive OR Register and Register
Exclusive OR Register and Register Masked
OR Memory Byte

OR Memory Doubleword

OR Memory Halfword

OR Memory Word

OR Register and Register

OR Register and Register Masked

A-3

REGISTER TRANSFER INSTRUCTIONS

: Operand
Mnemonic Format Op Code
#XCR s,d 2C05
#XCRM s,d 2C0D
TPR r,p. FB80O
#TRC s,d 2C03
#TRCM s,d 2C0B
#TRN s,d 2C04
#TRNM s,d- 2C0C
TRP S,p FBOO
#TRR s,d 2C00
#TRRM s,d 2C08
#TRSW s 2800
#TRSC s,d 2COE
#TSCR s,d 2COF

SHIFT OPERATION INSTRUCTIONS

Operand
Mnemonic Format Op_Code
#NOR d,s 6000
#NORD d,s 6400
#SCZ d,s 6800
#SLA d,v 6C40
#SLAD d,v 7840
#SLC d,v 7440
#SLL d,v 7040
#SLLD d,v 7C40
#SRA d,v 6C00
#SRAD d,v 7800
#SRC d,v 7400
#SRL d,v 7000
#SRLD d,v 7C00

“

BIT MANIPULATION INSTRUCTIONS

Operand
Mnemonic Format Op_Code
ABM ¢, *m,x A008
#ABR d,b ~ 2000
SBM c,*m,x 9808
#SBR d,b 1800
TBM c,*m,x A408
#TBR d,b 2400
ZBM c,*m,x 9C08
#1BR d,b 1C00

Indicates Halfword Instruction
* Indicates Indirect Addressing

©
P
[

OB D2OIO g,

CTAAN 00 NON PWOOO,

Page

6-113

6-114
6-115
6-116
6-119
6-118
6-117
6-120
6-121
6-124
6-123
6-122
6-125

Page

6-132
6-133
6-128
6-129
6-134
6-135
6-130
6-131

Instruction Function

Exchange Registers

Exchange Registers Masked

Transfer Protect Register to Register
Transfer Register Complement
Transfer Register

Complement Masked

Transfer Register Negative

Transfer Register Negative Masked
Transfer Register to Protect Register
Transfer Register to Register
Transfer Register to Register Masked
Transfer Register to PSWR

Transfer Register to Scratchpad
Transfer Scratchpad to Register

Instruction Function

Normalize

Normalize Double

Shift and Count Zeros

Shift Left Arithmetic

Shift Left Arithmetic Double
Shift Left Circular

Shift Left Logical

Shift Left Logical Double
Shift Right Arithmetic

Shift Right Arithmetic Double
Shift Right Circular

Shift Right Logical

Shift Right Logical Double

Instruction Function

Add Bit in Memory
Add Bit in Register
Set Bit in Memory
Set Bit in Register
Test Bit in Memory
Test Bit in Register
Zero Bit in Memory
Zero Bit in Register

FIXED-POINT ARITHMETIC INSTRUCTIONS

Operand

Mnemonic Format Op Code Page

ADI d,v c801 6-150
ADMB d,*m,x B808 6-140
ADMD d,*m,x B800 6-143
ADMH d,*m,x B800 6-141
ADMW d,*m,x B800 6-142
#ADR s,d 3800 6-144
#ADRM s,d 3808 6-145
ARMB s, *m,x E808 6-146
ARMD s,*m,X E800 6-149-
ARMH s,*m,x E800 6-147
ARMW s, *m,x E800 6-148
SUI S,V €802 6-157
SUMB d,*m,x , BCO8 6-151
SUMD d,*m,x BCOO 6-154
SUMH d,*m,x BCOO 6-152
SUMW d,*m,x BCOO 6-153
#SUR s,d 3C00 6-155
#SURM s,d 3C08 6-156
MPMH ©od,*m,x €000 6-159
MPMW d,*m,x €000 6-160
#MPR s,d 4000 6-161
MPI d,v C803 6-162
MPMB d,*m,x 008 6-158
DVI d,v 804 6-167
DVMB d,*m,x €408 6-163
DVMH d,*m,x C400 6-164
DVMW d,*m,x €400 6-165
#DVR “s,d 4400 6-166
#ES d 0004 6-168
#RND d 0005 6-169

FLOATING-POINT ARITHMETIC INSTRUCTIONS

Operand

Mnemonic Format Op Code Page

ADFD d,*m,x E008 6-173
ADFW - d,*m,x E008 6-172
SUFD d,*m,x E00O0 6-175
SUFW d, m X E000 6-174
MPFD d, m X E408 6-177
MPFW d, m X E408 6-176
DVFD . d, m X E400 6-179
DVFW d,*m,x E400 6-178

Indicates Halfword Instruction
* Indicates Indirect Addressing

Instruction Function

Add Immediate

Add Memory Byte

Add Memory Doubleword
Add Memory Halfword
Add Memory Word

~ Add Register to Register

Add Register to Register Masked
Add Register to Memory Byte

Add Register to Memory Doubleword
Add Register to Memory Halfword
Add Register to Memory Word
Subtract Immediate

Subtract Memory Byte

Subtract Memory Doubleword

-Subtract Memory Halfword

Subtract Memory Word

Subtract Register from Register
Subtract Register from Register Masked
Multiply by Memory Halfword
Multiply by Memory Word
Multiply Register-by Register
Multiply Immediate

Multiply by Memory Byte

Divide Immediate

Divide by Memory Byte

Divide by Memory Halfword
Divide by Memory Word

Divide Register by Register
Extend Sign

Round Register

Instruction Format

Add Floating-Point Doubleword

Add Floating-Point Word

Subtract Floating-Point Doubleword
Subtract Floating-Point Word
Multiply Floating-Point Doubleword
Multiply Floating-Point Word
Divide Floating-Point Doubleword
Divide Floating-Point Word

A-5

CONTROL INSTRUCTIONS

Operand ,
Mnemonic Format Op Code Page . Instruction Function
BRI *m, X F900 6-181 Branch and Reset Interrupt
LPSD d,*m,x F980 6-182 Load Program Status Doubleword
LPSDCM d,*m,x FA80 6-183 Load. Program Status Doubleword and Change Map
#CALM v 3000 6-191 Call Monitor
DAE 000E 6-197 Disable Arithmetic Exception Trap
EAE 0008 6-196 Enable Arithmetic Exception Trap
EXM *m,x ‘ A800 6-187 Execute Memory
EXR s 807 6-185 Execute Register
EXRR s c807 6-186 Execute Register Right
#HALT 0000 6-188 Halt
#LCS 0003 6-184 Load Control Switches
#NOP 0002 6-190 No Operation
RDSTS d 0009 6-194 Read CPU Status Word
SvC IND,CALL# €806 6-192 Supervisor Call
#SETCPU s 2C09 6-193 Set CPU Mode
#WAIT 0001 6-189 Wait

INTERRUPT INSTRUCTIONS

Operand '
Mnemonic Format Op Code Page Instruction Function
ACI S,V FC77 6-206 Activate Channel Interrupt
Al v FCO3 6-203 Activate Interrupt
#BEI 0006 6-210 Block External Interrupts
DACI s,V v FC7F 6-209 Deactivate Channel Interrupt
DAI v FC04 6-205 Deactivate Interrupt
DCI S,V FC6F 6-208 Disable Channel Interrupt
DI \ FCOl 6-204 Disable Interrupt
ECI S,V FC67 6-207 Enable Channel Interrupt
EI Y FCO00 6-201 Enable Interrupt
RI \ FC02 6-202 Request Interrupt
#UET 0007 6-211 Unblock External Interrupts
INPUT/OUTPUT INSTRUCTIONS
Operand
Mnemonic Format Op Code Page Instruction Function
ch n,f FC06 6-215 Command Device
D n,f FC05 6~216 Test Device
SI10 S,V FC17 6-217 Start 1/0
TIO S,V FC1F 6-218 Test 1/0
STPIO S,V FC27 6-219 Stop I/0
RSCHNL S,V FC2F 6-220 Reset Channel
HIO S,V FC37 6-221 Halt I/0
GRIO S,V FC3F 6-222 -Grab Controller
RSCTL S,V FC47 6-223 Reset Controller
ECWCS S,V FCAF 6-224 Enable Channel WCS Load
WCWCS S,V FC5F 6-225 Write Channel WCS

WRITABLE CONTROL STORAGE INSTRUCTIONS

Operand
Mnemonic Format Op Code Page Instruction Function
#WWCS s,d 000C 6-65 Write WCS
#RWCS s,d 000B 6-66 Read WCS
#IWCS *m, X FAQO 6-67 Jump WCS

Indicates Halfword Instruction
* Indicates Indirect Addressing

A-6

APPENDIX B

HEXADECIMAL-DECIMAL CONVERSION TABLE

The following table contains the necessary information for direct conversion of decimal and hexadecimal numbers
in these ranges:

Hexadecimal Decimal
00000 to O1FFF 000000 to 008191
To convert a hexadecimal number to a decimal value, locate all but the last digit of the hexadecimal value in the left-
most column of the table, then follow that line of figures to the right to the column under the last digit of the hexa-

decimal value. At this intersection is the decimal value of the hexadecimal number.

Example: Convert hexadecimal 3EC to decimal.
VI, [3 A C'

03 000992 000993 000994 000995 0OG%6 000997 000996 000999 001000 0G1001 001002 001003 001005 001006 001007

Answer = 001004 decimal

For decimal to hexadecimal conversion as in the example, first find the decimal value {1004} in the table, then con-
struct the hexadecimal value from the hexadecimal characters above the column and in the left-most column.

For numbers outside the range of the table, add the following values to the table figures:

Hexadecimal Decimal
3000 12288
4000 16384
5000 20480
6000 24576
7000 28672
8000 32768
9000 36864
A000 40960
BOOO 45056
€000 49152
D000 : 52248
E000 57344
FO00) 61440

B-1

B-2

§aggegaaegagsasg

000512

000544

000576
000592

000624
000640

000672

000704
000720
000736
000752

. 000768

000784

000816

001008

001024
001040
001056
001072
Q01088
001104
001120
00116
001152
001168
001184
001200
00218
001232

| 00248

000257
000273
000289
000305
000321
000337
000353
000369
000385

000417
000433
000449

000481
000497

000673

000705
00072t
000737
000753

001025
001041
001057

001073

001069
001105
001121
001137
001153
001169
001185
001208
Q021 ?
001233
001249

© 001265

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

000018
000034

000082

000114
000130
0001485
000162
000178
000194
000210
000226
000242

000274
000290
000306
000322
000338
000354
000370
000386
000402
000418
00043¢
000450

000482

000514
000530
000546

000578
000594
000610
000626
000642

000674

000706
000722
000738
000754

000770
000786

000818
000834

000882

000914
000930
000946
000962
000378

001010

001026
001062
001058
001074
001090
001106
001122
ooti3s
001154
003170
001186
001202

001218 |

001234
001250
001266

000003
000019

000051

000083

000115
000131
000147
000163
000179
000195
000211
000227
000243

000259
000275
000291
000307
000323

000355
000371
000387
000403
000419
000435
000451
000467

000499

000515
000531
000547
000563
000579

000611
000627
000643
000659
000675

000707
00G723
000739
000755

00077t
000787
000803
000819
000835
000851
000867
000893

000915
000931
000347
000963
000979

001081

001027
001043
001069
001075
001091
001107
00123
Q0V19
001155
00117t
00187
001203
001219
001233
00125t
001267

000116
000137
000148
000164
000180
000196
000212
000228

000260
000276
000292

000324
000340
000356

000372

000388

000420
000436
000452

000484

000612
000628

000676

000708
000724
000740
000756

000772
000788

000021
000037

000069

000101
000117
000133
000149
000265
000181
000197
000213
000229
000245

000261
000277
000293

000325
000341

000373

000517
000533

000565
000581
000597
000613

000661
000677
000633
000709
000725
000741
000757

000773
000789

000821
000837
000853

w0901
000917
000933

000981
000997
001013

001029
001045
00106t
001077
001093
001109
001125
001143
001157
00123
001183
001205
001221
001237
001253
001765

000022
000038

000070

000102
000118
000134
000150
000166
000182
000198
000214
000230
000248

000470

000614

000870

000918

001030
001046
001062
001078
001034
001110
001126
001142
001158
oottre
001190
001206
001222
001238
001254
001270

000023

000103
000119
000135
000151
000167
000183
000199
000215
000231
000247

000263
000279

000311
000327
000343
000359
000375

000391

000519
000535
000551
000567
000583

000615
000631
000647
000663
000679

00071t
000727
000743
000759

00103t
001047
001063
001079
001095
- 42311
001127
001143
001159
001175
001191
001207
001223
001239
0012%%
oot

000024

000056
000072

000104
000120
000136
000152
000168
000184

000216
000232
000248

000264
000280

000312
000328
000344
000360
000376

000520
000536
000552

000616

000776
000792

000824

001032
001048
001064
001080
001096
001112
001128
001144
001160
001176
001192
001208
00122¢
001240
001256
001272

000025
000041
000057
000073

000105
000121
000137
000153
000169
000186
000201
000217
000233
000240

000265
000281
000297
000313
000329
000345
000361
000377
000393

000425
000441
000457
000473

000521
000537
000553

000601
000617
000633

000665
000681
000697
000713
000229
000745
000761

000777
000793
000809
000825
00084 ¢
000857
000873
000889
000905
00092t
000937
000953
000969
000985
001001
001017

001033
001049
001065
00108
001097
a3
001129
001145
001161
1127
001193
001209
001225
001241
001257
001273

000106

000154
000170
000188
000202
00028
000234
000250

000282

000314
0003309

000362
000378

000410
000426
000442

000474
000430

000522
000538
000554
000570

000618
000634

000682

000714
000730
000746
000762

000778

000810

001034
001050

001082
00109@
001114
001130
001146
001162
o017
001194
001210
001226
001242
001258
001274

000011
000027
000043

000075

000107
000123
000139
000155
000171
000187

000219

000267
000283
000293
000315
000331
000347

000379
000395
000411
000427
000443
000459
000475
000491

000523
000538
000555
000571

000603
000619

000651
000667
000683

000715
000731
000747
000763

000779
000795
000811

001035
001051
001067
oo1083

001099

001115
001131
001147
001163
001179
001195
001214
001227
001243
001259
001278

000700
000716
000732
000748
000764

000796
000812
000828

000876

001020

001036
001052
001068
001084
001100
001116
001132
001148
001164
001180
001196
001212
001228
001244
001260
001276

000525

001037
001063
001069
001085
001101
001117
001133
001149
001165
001181
001197
001213
001229
001245
001261
o217y

000014

000078

000112
000126
000142
000158
020174
000190

000222
000238

000478

000510

000526
000542
000558
000574

000622
0006138

000670

000702
000718
000734
000750
000766

000782
000798
000814
000830

000862
000878

000810
000926

000974

001006
001022

001038
001064
001070
001086

- 001102

001113
001134
001150
001166
001182
001198
001214
001230
001246
001262
001278

000271
000287

000319

000361
000367
000383

000415
000431
000487
000463
U00478

000511

000527
000543

000575
000591
000607
000623

00067 1
000687
000703
000219
000735
000751
000767

0070
0071
0072
0073
0074

0076
0077
0078

0ora
0078
007C
0070
007
007F

001280
001296
001312
001328
001344
001356
001316
001392
001408
001424
001440
001456
001472
001688
001504
001520

001536
0061552
001568
001584
001600
001616
001632
001648
001664
001680
001696
001212
001728
0G1744
001760
001776

001792
001808
001824
001840
001856
001872
001888
001904
001920
201936
001952
001968
001984

002016
002032

002304
002320
002336
002382
062368
002384
002400
002476
0c2432
002443
002454
007480
002496
002512
002528
007544

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont'd)

001281
001297
001313
001329
001345
001386!
001377
001393
001409
001425,
001441
001457
001473
001489
001505
001521

001537
001553
001569
001585
001601
001617
001633
001643
0016€5
001681
001697
001213
001729
001745
001761
001777

001793
001809
001825
001841
001857
001873
001889
001905
001921
001937
001953
001969
001985
002001
002017

002033

002049
002065
002081
002097
002113
002129
002145
002161
w2177
002193
002209
002225
002241
002257
002273
002283

002305
002321
002337
062253
002363
062365
062401
0c2417
002433
002443
002365
0C2481
002497
002913
002529
002545

001282
001298
001314
001330
001346
001362
001378
061334
001410
001426
001442
001458
001474
001490
001506
001622

001538
001554
001570
001586
001602
001618
001€3¢
001650
001666
001632
001608

L0

001730
001746
01762
001778

001794
001810
001826
001842
001858
001874
001890
001906
001922
001938
001954
001370
001986
002002
002018
002034

002050
002066
002082

002114
002130
002146
002162
oc2178

002194

002210
002226

- 002242

002274
002290

002306
002322
002338
002354
002370
002386
002402
002438
002434
002450
002466
002482
002438
002514
002520
002546

001783
001299
001315
001331
001347
001363
001379
001395
001411
001427
001443
001459
001475

001491

001507
001523

001539
001555
001571
001587
001603
001679
001635
001651
001657
001683
001699
001715
00Y731
001747
001763
001779

001795
201811
001827
001843
001859
001875
001831
001907
001923
0019389
001955
001871
001987
002003
002019
062035

002307
002223
002339
002355
002371
002387
002403
002419
002435
002451
002467
002423
0Cc2499
0C28 3

ocz52
062547

001284
001300
001316
001332
001348
001364
001380
001396
001412
001428
001444
001460
001476
001432
001508
001524

001540
001556
001572
001588
001604
001620
001636
001652
001668
001684
001700
001736
001732
001748
001764
001780

001796
001812
001828
001844
003860
001876
061892
001908
001924
001940
001956
0c1972
001988
002004
0C2020
002036

002052

002084
oc2100
002116
002132
002748
002164
002180
002196
002212
002228
002204
062260
002276
062292

oc2308
002324
oc2340
0C2386
002372
002388
0C204
002420
002436
0c2452
0c2468
oc2egs
002500
0025
002632
oczees

001285
001301
201317
001333
001349
001365
001381
0013397
001413
001429
001445
1330 3]
001477
001493
001509
001525

001541
001557
001573
001589
001605
001621
001637

001853

001669
001685
00170}
001717
001733
001749
001765
001781

001797
001813
001823
001845
001861
001877
001893
001909
Q01325
001941
001857
003873
061969
0072005
002021
002037

002053

002085
002101
002117
002133
002149
002165
002181
002197
0C2213
92229
0C2245
002261
002272
0c293

002309
02228
00234
0c2357
062373
002383
0C2405
oc242t
002437
0€24s3
0c2ae3
0c2485
0c25C
oc2cti
el
062549

001286
001302
001318
001334
003350
001366
001382
001398
001414
001430
001446
001462
001478
001434
001510
001526

001542
001558
001574
001590
001606
001622
001638
001654
001670
001686
001702
001718
001734
001750
001766
001782

" 001798

001814
001830
001846
031862
001878
001894
001910
001926
001942
001958
001974
001990
002006
002022
0c2038

002054
002070
002086
002102
002118
002134
002150
002166
002182
002198
002274
0G2230
002246
002262
002278
002294

o

002310
002326
007342
002358
002374
0C23%0
0C2406
0c2422
002478
002454
0C2470
0C2486
202502

0C2534
002559

001287
001303
001319
001335
001351
001357
001383
001399
001415
001431
001447
001463
001479
001495
0035t
001527

061543
001559
001575
001591
001607
001623
01639
001655
001671
001687
001703
001719
001236
001751
001767
001783

003799
001815
00183t
001847
001863
001873
001895
00191
001927
001943
001359
001975
001991

002023
002039

002071
002087
002103
062119
002135
002153
002167
002183
002199
002215
062231
002247
002263
002279
002235

7

002311

2327
002343
002359
002375
062391
0C2407
002423
002439
0C2455
0c2471
0C2487
002403
002519
002515
002551

001288
001304
001320
001336
001352
001388
001384
001400
001416
061432
001448
001464
001480
001496
001512
001528

001544
001560
001576
001592
001608
00:624
001640
001656
001672
001688
001704
001720
001736
001752
001768
001784

00800
001816
001832
001848
001864
001880
001896
001912
001928
001944
001960
001976
001992
002008
002024
002040

002056,
002072
002988
002104
002120
002136
002152
002168
002184

002216
002232
002248
002264
002280
002296

002312
002328
002344
0C2360
002376
002392
002408
002424
062440
002456
002472
002483
062504
002420
002526
002952

001289
001305
001321
001337
001353
001369
001385
001401
001817
001433
001449
001465
001481
001497
001513
001529

001545
001563
061577
001593
001609
001625
001641
001657
00673
001689
001705
001721
001737
001753
001769
001785

002673
002089
002105
002121
002137
002153
002169
002185
002201
acz2v?
002233
0C2249
02265
0c2281
002297

2313
002329
002245
062261
oc2377
002393
0C2409
002425
0C2441
002457
0C2673
062489
002505

" ocst

0C2537
062553

001290
001306
001322
001338
001354
001370
001386
001402
001418
001434
001450
001466
001482
001438
001514
001530

001546
001562
001578

- 001538

001613
001626
001642
001€58
001674
001890
001706
001722
001738
001754
001270
001786

001802
001818
001834
001850
001866
001882
Jo1838
001914
001530
001946
001962
001978
001994
002010
002026
02042

002074

002090

002106
002122
002138
002154
002170
002186
002202
002218
002234
002250
002266
062282
0cz298

002314
002330
0C2346
062352
002378
002234
00249
072426
0C2442
02453
oG2474
06243
0C255%
oce5e2
€3538
0C2554

001291
001307
001323
001339
001355
001321
001387
001403
001419
001435
001451
0Q146?
001483
001499
N0I1StTS
00153t

001547
001563
001579
001595
oms1t
001627
001643
001659
001675
001691
001707
001723
001738
001755
00177¢
007187

001803
001819
001835
001851
001867
001883
001899
001915
001931
001947
001963
001979
001995
002011
002027
002043

002059
002075

002107
002123
002139
002155
002171
002187
002203
002219
002235
002251
002267

002239

002315
002331
002347
002363
062379
002395
002611
002427
002443
002459
002475
002431
002507
0c2523
fo

002595

001292
001308
001324
001340
001356
001372
001388
001404
001420
001436
001452
001468
001484
001500
001516
001532

001548
001564
001580
001596
001612
001628
501644
001660
001676
001692
001708
001724
001740
001756
001772
001788

001804
001820
001836
001852
001868
001884
001900
001916
001932
001948
001964
001980
001996
002012
002028
002044

002076
002092
002108
002124'
002140
002156
002122
002188
002204
002220
002236
002252
002268
002284
002300

002316
002332
002348
002364
002380
002396
002412
002428
002444
002480
0c2476
002492
0c2508
007524
0C2540
062556

14
001293
001309
001325
001341
001357
001373
001389
001405
001421
001437
001453
001469
001485
001501
001517
001533

]

001548
001565
001581
001597
001613
001629
001645
001661
001677
001693
001709
001725
001741
001757
001773
003789

[}

001805
001821
003837
001853
001869
001885
001901
001917
001933
001949
001965
001981
001997
002013
002029
002045

0

002061
002077
002083
002109
002125
002141
002157
002173
002189
002205
00222y
002237
002253
002269
002285
002301

[+]

002317
002333
002349
002365
002381
002397
002413
002429
002445
002461
002477
062493
002509
202525
007543
002557

001294
001310
001326
001342
001358
001374
001390
001406
001422
001428
001454
001470
001486
001502
001518
001534

001550
001566
001582
001598
001614
001630
001646
001662
001678
001634
001710
001726
001742
001758
001774
001790

001806
001822
001838
001854
001870
001886
001902
001918
001934
001950
001966
001982
001996
002014
002030

002062
002078

02110
002126
0G2142
002158
002174
002190

2022722
002238
002254
002270
002286
002302

002318
002334

002366
002382
002398
002414
002430

2406
002462
ocz4r8
062494
002510
002528
002542
007558

001295
00131t
001327
001243
001359
001378
00139t
001407
001423
001438
001455
001420
001487
001503
001519
001535

001551
001567
001583
001599
00165
06163}
001647
001663
001679
001695
[1241]
001727
001743
001759
001775
00179t

001807
001823
001839
001855
001871
001887
001903
001819
001935
001951
001967
001983
00199
002015
002031
002047

002063
004079
002095
002113
002127
002143
002159
002175
002191

002207 .

002223
00223
002258
002274
002287
002303

002319

002351
002367
002383

002415
002431
002447
002463
002479
002495

002511,

002527
002542
002532

B-3

11333411441

e

gggrugaoun'-g

T

LY

003072
003088
003104
003120
003136
003152

003184

003472

003604
003620

003562

003600
003818

003896
003712
003728
003748

" Q03780

003778
003792

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont’d)

003073

003108
003121
003137
003153
003108
003188
00320t
003217

003249

003281
003297
003313

00300
003817

003649
003885
003681
003887
003713
003729
003745
003781
003777
003793

o0382%

002914
002930

002082
002978

003010

003042

003074

003474

003622

003554
003670

002579

0028t
002627
002643

002675
002001
002707
002723
002730
002755
00277
002787

02819

003075
003001
003107
003123
003139
003155
003171
003187

003219

003251
003287
003283

003315

003687
Q3819

003651
003687
Qo383

Q03718
003731
003747

©03779
003795
003811
003827

003076

003108
003124
003140
003158
003172
003188

003318

003662
003668

003700
003718
003732
003748
003784
003780
003706
003812
003828

002821
002837
002853

002885
002901
002917

002049

002081
002997
003013

003045
003081

003077
003083
003109
003125
003141
003157
003173
003189
003205
003221
003237
003253

003301
003317

003605
003421
003837
003653
003689

003701
00371y
003733
003749
003765
003781
003797
003813
002829

003318

003414
003430

003478

003510
003526
003542

003574

003622
003638

003870
003886
003702
003718
003734
003730
003766
003782
003798
003814
003820

002823

002855
002871

002903
002919
00283
002951
002967

003015
003031
003047
003063

003079

003111
003127
003143
003158
003175
003191
003207
003223

003255
003271
003287
003303
003319

003335
003351

003383

003415
003431
003447

003479

003531
003527
003543
003558
003575

003591
003807
003623

003655
00367t
003687
003703
003719
003735
003751
oe3rer
002783
003799
003815
00383t

002584
002600
002616
002632
002648
002664

002712
002728
002744
002760
002776
002792

002824
002840
002856
002872
002688

002920

003016

003048
003064

003338
003352

002585
002607
002617
002633
002049
002665
00268
002607
002713
002720
002745
002761
002777
002793

003017

003081
003007
003113
003129
003145
003161
003177
003193

003225
003241
003257
003273
003288
003305
00332+

003593

003625
003641
003657
003673
003689
003705
003721
003737

© 003753

003769
003785
003801
003437
003833

A
002570

002602
002818
002634
002650
002686
002682
002606
002714
002730
002748
002762
002778
002794
002810

003594
003610
003626
003642

003674
003690
003706
003722
003738
003754
003770
003786
003802
003818
003834

003019

003083
003008
003115
003131
003147
003163
002179
003195
003211
003227
003243

003275
003291
003307
003323

003339

003371
003387
003403
0g3419
003435
003451
003457
003483

003515
003531
003547
003563
00357y

003611
003627
003643
003659
003675
00369}
003707
003723
003738
003785
002771
003787
003803
003819
003835

02718
002732
002748
002784
002780

002812

002828

002880
002876

002908
002924
002940
002966
002972

003020

003052

003084
003100
003116
003132
003148
003164
003180
003196
003242
003228
003244
003260
003276
003292
003308
003324

003340

003372

003532

003612

003628
003644

003676

003708
003724
003740
003756
003272
003787
003804
003820
00382¢

]
002573

002621
002637
002653

002085
002701
002717
002733
002749
002765
002781
002797
002813

003341
003357
003373

003421
003437
003453
003468

003501
003517
003533
003549

003581

003587
003613
003629
003645
003661

003677
003693
003709
003725
003741
003757
003773
00378y
003805
00382*

00383: .

002574

[341)
002734

002768
002782

002814

002830
002848

002878

002910
002926
002942

002674

003006
003022
003038

003070

003086
003102
003118
003134
003150
003166
003182
Q03198
Q03214
003230
003246
003262
003278

003310
003326

003438
003454
003470
003486
003502
003518
003534
003550

003582

003596
003614
003627

003662
0o3ere

003710
003726
005742
003758
003774
00379¢

003822
003838

007831
002847

002879
002895
002818
002927
002943

002975

003007
003023

00307 %

003087
003103
003119
003135
003151
003167
003183
003199
003215
003231
003247
003263
003279

00331%
003327

003423
003439
003455
003471
003487
003503
003519
003535
003551
003567
003583

003599
003615
003631
003647
003663
003679

003711
003727 °
003743

003775
00379
003307
003823
00383%

00F0
00F ¢
00F2
00F 3
wFa
OOFS
00F6

00F8
00F9
OOFA

00FC
[]

OOF F

0100
010t
0102
0103
0104
oS
0106
0107
0108
008
0108
o108
0:0C
0100
O10€
O0F

9110
oty
0112
0113
otie
ons
one
ony
0118
ong
011A
(131 3
onic
[AR]4
OVIE
0N

0120
02y

cr22

0123
G124

0125
0126
oy

0128
[:1F.]
0124
0128
[:1¥ 4
0120
0R2€
012f

1k J
0131
0132
€133
c134
013
o136
oty
0138
c139
o13a
0138
033C
0130
013€
013

004112

004128,

008144
004160
004176
004192

004224
004240

004272
004288
004304
004320
004336

004608
004624
004640
004656
004672

004704
004720
004736
004752
004768
004784

004816
004832

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont'd)

003848

003873
003889

003921
003937
003953

004001
00017

004353
004369
004385
004401
004447
004433
004449
004465
004481
004497
004513
004529
004545
004561
004577
004593

004625
004641
004657
004673

004705
004721
004737
004753
004769
004785
00480
004817
004833
004849

004881
004897
004913
004929
Q04945
00496t
004377
004993

005025
00504 1
005057
005073

005105

004114
004130
004148
004162
004178
004194
004210
004226
004242
004258
004274
004290

004322
004338

004610
004626
004642
004658
004674

004706
004722
004738
004754
004770
004786
004802
004818

004850

004882

004914
004930

004346°

004362
004378
004394
005010
005026

. 005042

005074
005090
005106

003843

003859
003875

003907
003923
003929

003971
003987

004018

004115
004133
004147
004163
004179
004195
004211
004227
004243
004259
004275
004291
004307
004323
004339

004611
004627
004643
004659
004675
004691
004707
004723
004733
004755
004774
004787
004803
004813

004851

004867
004883

004315
004931

0043963
004979
004995
00561+
0Us027
005043

005075
005091
005107

004100
004118
004132
004148
004164
004180
004196
004212
004228
004244

004276
004292
004308
004324
004340

004356
004372
004388

004420
004436
004452
004468

004500
004516
004532
004548
004564
004580

004596 -

004612
004628
004644
004660
004676
004692
004708
004724
004740
004756
004772
004788

004820

004852

HHH O

005012
005028
005044
005060
005076
005092

005108 -

003881
003877

003909
003941

003973

004021
004037

004101
004117
004133
004148
004105
004181
004197
004213
004228
004248
004261
004277
004293
004309

004341

004357
004373
004389

00442t

004725
004741
004757
004773
004789

004837
004853

004885
004901
004917
004933
004949

004981
004997
005013
005029

00506 ¢
005077
005093
005109

003878
003910
003942

003974

004022
004038

004070

004102
004118
004134
004150
004166
004182
04198
004214
004230
004246

004278
004294
004310
0C4326
004342

004358
004374
004380

004422
004438

004470

004518
004534
004550

004582

004614

004662
004678

004710
004726
004742

004774
004790

004822
004838
004854

004870

004902
004918
004934
004350
004966
004382
004998
005014
005030
005046
005062
005078

005110

004103
004119
004135
004151
004167
004183
004199
004215
004231
004247

004279
004295
004311
004327
004343

004815
004631
004647
004663
004679

004713
004727
004743
004759
004775
004791

004871

004903
004919
004935
004351
204967
004983

005015
005G31

005063
005079
005085
0511t

004378

004872

004904
004920
004936
004952
004968
004984

005016
005032
005048
005064

005096
005112

004105
004128
004137
004153
004159
004185
004201
004217
004233
004249
004265
00428

Q04313
004329
004345

004617
004633
Q04649

004631
004697
004713
004729
004745
004761
004777
004783

004841
004857

004873

004905
004921
004937
004953
004969
004985
005001
005017
005023
005049
005065
005081
Q05097
005113

004382
004378

Q04a10

004442

004474

004818

004714

003851
003887
003883

003915
003931

Q03979

0040t
004027

004059
004075
004001

004107
004123
004139
004155
00T FY
004187
004203
004219
004235
004251
004267
004783

004315
004331
004347

004363
004379

00441}
004427
004443

008475

004507
004523
004539

004571
004587

004619

004875
00489+
004907
004923

004108
004124
004140
004156
004172
004188

004220
0042360
004252
004268°
004284

004316
004332
004348

004620

004652
004668

004700
004716
004732
004748
004764
004780
004798
004812
004820

005100
005116

002853

003085
003901
003>
003033

003965
0030681

00401

00408
004077

004109
004125
004141
004157
004173
004189

004224
004237
004253

004285
004301
004317
004333
004349

004365
004381
004397
004413
004429

004463
004477
004433

004525
004541
004557
004573
004589

004877
004893
004909

004941
004957
004973
004989

00502
005037
005053

005101
00st17

004110
004128
004142
004158
004178
004190

004222
004238
004254
004270
004288

004118
004334
004380

004366
004382

Q0s4te
004430
004446
004452
004478

004510
004528
004542
004558
00574
004590

004718
004734
004750
004782
004798
004814
004830

004862

004878
004910
004925
004942
004974
008022
005028
005070

005102
005118

003871
003887

oo1e

[
003087
003983

004015

004114
004127
004143
004159
004175
004191
004207
004223
004230
004255
00427
004287
004303
004319

004351

004337
004383

004415
00443+
004447
004463
004479

004511
9204527
004543

T04578
204591

B-5

0140
ores
0162
o1e)
0res
016
ores
11}
ores
oree
(L7}
o
otec
ore
(113
014F

0150
0151

0182

0153
0154
0135
orse
(112

0158
0159
O13A
o058
015C
0150
018€
018F

o180
0181
062
0183
o164
o8
(41}
oer
oies
ole9
oA
0168
ovec
o180
(4] 3
OteF

o170
0173
0172
[133]
0174
oS
o17¢
o171
one
o17e
ot7a
otrs
orIc
0170
07E
oV

0100
o
0182
0183
o1e
Qes
o186
o7
s
(1]
o184
o
018C
080
(1113
.11 13

L]
005120
005136
005152
005168
005184
005200
005216
005232
005248
005264
005280
005298
005312
005328
005344
008360

]
005376
005392
005408
005424
005440
006466
005472
005488
005504
005520
008538
005552
005588

005584
005800
005816

]
005832
005648
005884
005680
005608
006712
005728
005744
005760
005776
005792
005808
005824
006840
005858
005872

°
005888
005904
005920

005936
005952
005968
005984
006000
006016

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont'd)

005121
005137
005153
005160
005185
00520t
005212
005233
005249
005265
005281
005297
005313
005329
005345
005361

005377
005393

005425
005441

' 005457

005473

006521
005537
005553
005589
005585
005801
006617

005905
005921
006937
005953

005985

006017
006033

006113
006129

006145
006161
006177
006193

006225
006241
006257
006273
006289
006305
00632
006337
006353
006369
006385

005122
005138
005154
005170
005186
005202
005218
005234
005250

005282
005298
005314
005330
005346
005362

005378

005410
005426
005442
005458
005474

005522
005554
006586

005618

0060860
006682

005714
005730
006748
005762
005778
005794
005810
005826
005842

005874

005906
005922
005338

005870
005986

006018
Q08034

006082

006114
006130

005146
006162
006178
006194
006210
006226
006242
006758
006274
006290

006322
006338
0061354

005123
005139
005155

005171

005187
005203
005219
005235
00525%

005267
005283
005299
005315
005331
005347
006363

005379

005411
008427
005443

005475
005491
005507
005523
005539
005555
005571
005587
005603
006618

006147
006163
006179
006195
00621 v
006227
006243
006259
00627%
00€291
006307
006323
006139
006355
00637

006387

006652

005700
005716
005732

008100
006118
006132

006148
006164
006180
006136
006212
006228
006244
006260
006276
006292

006328
006340
006356
006372
006388

005125
005141
005157
005173
005189

005221
005237
005283

005285
005301
005317
005333
005349
005365

005381
005397
005413
005429

005451
005477
005493

005541
005557
006573

006637q
005653

005701
005717
005733
005749
005765
005781
005797
005813

005845
005861
005877

005893

005925
005941
005957
006973

00610
006117
006133

005126
005142
005158
005174
005190

005222
005238
005254
005270
005286
005302
005318

005350

005398
005414
005430

005478

006510
005526
005542

005574
005580
005606

005670

005702
006718
005734
005750
005766
005782
005798
005814
005830

005878

005910
0065926
005942

005974
005990

006022
006038

006070

006102
006118
006134

006150
006166
006182
006198
006214
006230
006246
006262
006278

006310
00€326
006342
006358
006374
006390

005127
005143
005159
005175
005191
005207
005223
005239

005271
005287
005303
005318
005335
005351
005367

00607t

006103
006119
006135

006151
006167
006183
006199
006215
006231
006247
006263
006279
006295
006311
006377
006343
006359
006375
006391

005384

005416
005432
005448

005480

005512
005528
005544
005560
005576
005592
005608
005624

005640

005672

005704
005720
005736
005752
005768
005784

005816
005832

005880

005912
005928
005944

005976
005992

006024

006056
006072

006104
006120
006136

006152
006168
006184

006216
006232
006248

006280
006296
006312
006328
006344

006376
006392

005129

‘006145

005161
005177
005193

005225
005241
005257
005273
005289
005305
005321
005337
006353

005385

005417
005433
005449
005465
005481
005497
005513
005529
005545
005561
005577
005593
005609
005625

005641
005673

005705
005721
005737
005753
005769
005785
005801
005817
005833
005849
005865
005881

005897
005913

005345
005961
005977
005993

006025
00604 1
006057
006073
006089
006105
006121
006137

006153
006169
006185
006201
006217
006233
006243
006265
006281
006297
006313
006329
006345
006361
006377
006393

005386

005418
005434

005466
005482

514
005530
005546
005562
005578
005594
005610
005626

005642

005674

005706
005722
005738
005754
005770
005786

005818

005850
005866
005882

005914
005930
005946
005962
005978

006010
006026

006074

006106
006122
006138

006154
006170
006186

006218
006234
006250
006266

006282

006314
006330
006346
006362
006378

005387

005419
005435
005451
005467
005483
005499
005515
005531
005547
005563
005579

005611
005627

005643

005675
005691
005707
005723
005733
005755
005771
005787
005803
005819

005851
005867
005883

006155
006171
006187
006203
006219
006235
006251
006267
006283

006315
006331
006347
006363
006379
006395

005452

516

005564

005612
005628

006108
006124
006140

005421
005437
005453

005485
005501
005517
005533
005549
005565
00558t
005597
005613
005629

005645
005661
005677
005693

005725
005741
005757
005773
005783

005821
005837
005853

005885

006157
006173
006189
006205
006221
006237
006253

006285
006301
006317
006333
006349
006365
006381
006397

3

005134

. 005150

005166
005182
005198
005214

005246
005262
005278
006294
005310
005326
005342

005374

005390

005422
005438

005470

518
005534
005550
005566

005614
005630

005646q
005678

005710
005726
005742
005758
005774
005790

005822

005854
005870

006110
006126
006142

005135
005351

009167

005:83
005199
005715
00523

005247
005263
005279
005295
005314

005327
005343

005375

005201
005407
005423
005420

005471

005503
006519
005535
005551
005567
005583

005615
006631

005647
005663
006679

00571t

005743

005919

006159
006175
006191

006223
006239

006271
006287
006303
006319
006335
006351
006367

006399

0190
019
o
0193
(1]
0198
0198
0187
o098

oA
0198
019C
0190
019€
O19F

01AQ
O1AY
01A2
013
o1A4
01AS
01A8
CIA?
01A8
01A9
OtAA
[17Y]
01AC
O1AD
0I1AE
OVAF

080
o118t
0182
o183
o84
0ss
oiss
ote?
ose
oee
018A
o188
oc
018D
O18€E
OISF

o1co
01CY

01c7

01C3
01C4
01Cs

o1ce
ocy
ocs

oice
O1CA
oice
occ
0i1CD
01CE
OICF

o100
{1
0102
0103
01De
0108
0108
0107
0108
0109
010A
(4]]
1112/
0o
010€
O0F

007056
007072
007088
007104
007120
007136
007152

007168
007184
007200
007216
007232
007248
007264
007280
007296
007312
007328
007344
007360
007376
002392
007408

007424
007440
007458
007472
007488
007504
007520
007536
007552
007568
007584
007600
007616
007632
007648
007664

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont'd)

008401
008417

006577

008657
006673

008705
008723
006737
006753
006769
008763
006801
008817

006843
006866
00688 1
00897

007073

007105
007121
007137
007153

007160
007185
007201
007217
007233
007249
007265
007281
007297
007313

007345
007361
007377

007400

006674

008e14

006948
0080962

007010

007042
007068
007074
007000
007108
007122
007138
007154

007428
007442

007474
007490
007508
007522
007538
007554
007570

007602
067618
007634
007650
007686

006675
008631
006707
006723
008739
008755
006771
006787
006803
006819

008851
006867
006383

006915
008931
000947

005879

0c7e1t
007027
007043
007063
007075
007001
007107
007123
007139
007155

o077
007187
007203
007219
007235
007251
007267
007283
007299
007315
007331
007347
007363
007379
007395
Q07433

007427
007443
007459
007475
007431
007507
007523
007539
007555
00757%
007587

007613
007635
007651
007667

4
008404
008420
006436

000462

006468
006484
006516
006532
006548
00c5e4
008580
006508
006612
ocse2s
006844
4
006660
006676
008682
006708
006724
006740
008756
008772
006788
008804
006820
008838
008852
008068
006884
006000
4

007012
007028
007044
007060
007076

007108
007124
007140
007156

00772
00788

007220
007238
007252
007268
007284
007300
007316
007332
007348

007380

007412

007428
007444
007460
007478
007492
007508
007524
007540
007556
007572
007588
007804
0C7620
007636
007652
007668

006421

008453

006501
006517

008581
00659
005612

0066681
008577

006709

006741
008757
006773

007429
007445
007451
001477
007493

007525
007541
0c7ss?
007573
007589
007605
007621
007637
007653
007660

007014

007046
007062

007110
007126
007142
007158

007174
007190

007430
007446
007462
007478
L7494
007510
007526
007542

007574

007606
007622
007638
007054
067870

008679

008711
006727
008743
006759
006775

006919

007421
007447
007483
007479
007495
007511
007527

007559
007575
007591
007607
007623
007639
007665
007671

008712

0a7178
007192
007208
007224

007258
007272
007288

007320
007336
007362

07400
007416

I L HHHH

006473

008521
008537
0086563

006601
008617
008633

oosse

008713
008729
006745
00676t
006777
008793

006825
005841

008873

w7177
007193

007433
007443
007465
007481
007497
007513
007520
007545
007561
007577
007583

007625
007641
oo7es?
007673

007018
007034
007082
007114
007130

007148
007162

007178
007194
007210
007242

007274

007322

007334
007370

007402
007418

007834

007488
007482
007488

' 007514

007548
007578
007594
007610
007642

007874

007116
007131
007147
007183

007179
007196
007211
007227
007243

007291
007307
007323

007355
007371
007387

007419

008701
008717

008749
008765
0o0g781

008313

006261
006877

o101
ooty
007133
007149
007165

007437
007463
007489

007503
007517

007549

007581
007507
007813

007645
oo7e81
007672

TR HHH
LR L
3 = =82 &

HHEL
HHEH

g
-

HEH

008910

HHH L

007102
007118
007134
007150
007188

007182
007198
007214
007230

T I HEE

g
H

00881$
008831

008047

HHHH

007103
oo7118
00713%
007181

HHHHELH R HHEEHHH

[
063!
007047

B-7

B-8

QE0
O
1124
[113]
OrEe
[111)
ovES
O
OVES
0'E
0VEA
ors
01EC
0160
[1113
OrEF

01F0
OtFY
01F2
01F3
OtFs
01FS
OtFs
[112
[117]
0'Fe
OVFA
OIFR
OtFC
OIFD
OtFE
OIFF

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Contd)

core81
007607
001713
007729
007745
007761
007777
0077193
007800

007841
007867
007873
007889

o072y

007837
007963
007069

008001
008017

008113
008129
008145
008161
008177

007608
00716
007730
007748
007762
007178
007794
007810

007842

007874

007908
0822

007800
007715
007731
007747
007783
007779
007798
[24 131

007843
001875

007907
007923

007955
007971
007987

008019

008051
008087

008115
008131
008147
008163
o179

007684

007218
o7
007748

007780
007796
007812

007844
007860
007878
007892

007924

007958
007972

007608
007701
a77v)
007733
007749
007766
00778)
007797
007813
007829
007845
007861
007877
007893

007928

007941
007957
007973
007969

008021
008037
008053

008101
008117
008133
008149
008165
008181

oorree
007734
007750

007782
007798
007814

0078468
007862
oo7878

007910
07928

007942
007958
007974
007990

008022

008070

008102
008118
008134
008150
008168
008182

007943
007959
007975
007993
008007
008023

008071
008087
008103
008119
008135
008151
008167
008183

007888
007704
007720
007738
007752
007768
007784
007800
007816
007832
007848
007664

007896
007912

007944

007976
007992

008024

008072

008104
008120
008136

008152

008168
008184

9

007889
007705
00772
007737
007753
007769
007785
007801
007817
007833
007849
007965
007881
007897
007913
007929

007690
007708
007722
007738
007754
007770
007788
007802
007818
007834
007850
007868
007882
007898
007914
007930

007948
007962
007978
007994
008010

008042
008074

008108
008122
008138
008154
008170
008188

007691
007707
007723
007739
077155
007771
007787
007803
007819
007835
007851
007867
007883
007899
007915
007931

c

007682
007708
007724
907740

007772
007788

007820
007838
007852
007868
007884
007900
007918
007932

008172
008188

[}

007633
007708
007725
007741
007757
007773
007789
007805
007821
007837
007853
007869
007885
00790t
007917
007933

007949
007965
007981
007997
008013

008045
008063
008077
008093
008108
008125
008141
008157
008173
008189

. 007604

007710
007728
007742
007758
007774
00?790
007806
007822
007838
207854
007870
007886
007902
007918
007934

007950
007066
007982
007998
008014

008062
008078

008110
008126
008142
008158
008174
008190

007608
007711
007727
007743
007750
007778
007791
007807
007823
207439
007856
007871
007687
007903
007919
007936

007951
007967
007983
007999
008015

008047
008079

008111
008127
008143
008159
008175
008191

APPENDIX C

HEXADECIMAL CONVERSION TABLE

Converting to hexadecimal may be simplified by using the following table.

To convert (61275) 1 to hexadecimal, using the table: the table entry closest to, but not greater than,(61275)¢q is
(61184) 19, which equals (EF00) 1 from the table. Subtracting 61,184 from the original number (61275-61184)10
leaves a remainder of (91)1q, which equals (58) 16 Therefore, (61275) g = (EF5B) 4.

e [} 2 3 4 [[} 7“‘”‘ [] A " [o € F

| ¥ ||| |4 | | 5 4 F | 7| #
7 | y NN NP\ Y | W S\ PN F| B\ |\ %
|| | F | | | |\ | || | | | | €| #
% | % % B\ B\ RN\ |8\ K\

||| | 5| | o8| 8| | | | | 6| # | H#
A\ ¥\ | 5| 8| 28 o | 6|\ o8|)| # | | # | |
| | |\ | V6 | F #
¥ 2 e; ¢ | \? 3 < K \'f;.e o;, 4 \'i: \‘z’ % ff «‘:1,;9 o;.a
2 %\ % B\ F\NH\H|F %K1 4 %\ 4 S| F| F|
F| | |\ |\ F| | F | F | F || F L F
| | K\ 6\ | F\ |\ | | F | 5| F | # | ¥ | #
¥\ A\ | |) F| #|)) |) | | | #
| F| # | | K| £ | F)| | #|) | #F | | #
¥\ | 7| 5| 6| | | F| | #| #| | F F | #

AR A A AR AN AR AN AN AN A AN AN AV AP
2% | % f /'rj o % % x;, 5 % % f? f:,‘) f';o % +, V.

C-1/C-2

APPENDIX D
HEXADECIMAL ADDITIONS

In the following Hexadecimal Addition Table, all values represent the result of an addition of a hexadecimal character
from the column across the top and the column down the left side. The resuit of the addition is found where the two
characters to be added intersect within the table. All values above the slanted line represent the result of an addition
with no carry generated; all those values below the slanted line represent the result of an addition with a carry of one
generated into the next character position of the hexadecimal result.

HEXADECIMAL ADDITION TABLE
ol 1]2|3|als|e|7|8|9|Aa|BlCc|D|E]|F
1 2|3flals|e|7]|8|9o|Aa|Blc|{D|E]|]E]DO
2] 3| a|s5|6|7|8|9o|Aa|lB|lc|{D|E|]Ef0]1
3| 4 | 5|6|7|8|9|Aa|lBlc|[D|{E[EfO0]1]2
a|s5|6|7]8lo|ale]lc|[o|eE|lefo|l1]2]3
5| 6|7]|8|o|AalBlc|{D|{E[Efo]|1]2][3]|34
6| 7/8|9|A|B|c|D|E|]Efo|l1]|2[3|4a]s
7| 8|9 |AalB|c|[D|]E|efo|1]|2|3[a|5]68s
g8lo|lals|c|o]e|lefo|1|2]3]afs|6]|7
sl alslc|o|le|Eefo|1|2]|3|4[5]6]|7]8
Alslclo|le|lefo]1]|2]|3|a|5|6|7]|8]69
Blc|lo|e|efofl1]2{3]|a|s5]|]6]|7|8|9|A
clole|efol1]2]|3|a|s5]|6|7|8|9]|A]|B
p|e|efo|{1[2|3|a[s|s|7]|8]9|A|B]|C
el efol1[2(3|a|s5|6j7|8|9|AalB|C]|D
Fto| 1|23 |a|s|e6|7]|8|9|Aa|lB|lCc|D]|E

D-1/D-2

128

256
512
1024
2048

4098
8192
16 384
32768

65536
131072
262 144
524 288

1048576
2097 152
4194 304
8 388 608

16777 216
33554 432
67 108 864
134217728

268 435 456
536 870 912
1073741824
2147 483 648

4 294 967 296
8 589 934 592
17 179 869 184
34 359 738 368

68 719 476 736
137 438 953 472
274 877 906 944
549 755 813 888

1099511627 776
2 199 023 255 552
4398046511 104
8 796 093 022 208

17 592 186 044 416
35 184 372 088 832
70 368 744 177 664
140 737 488 355 328

281 474 976 710 656
562 949 953 421 312
1 125 899 906 842 624
2251799813685 248

4503 599 627 370 496
9 007 199 254 740 992
18 014 398 509 481 984
36 028 797 018 963 968

72 057 594 037 927 936
144 115 188 075 855 872
288 230 376 151 711 744
576 460 752 303 423 488

1 152 921 504 606 846 976
2 305 843 009 213 693 952

4611686 018 427 387 904 -

9223 372 036 854 775 808

WO NANS WN=-0O 3

APPENDIX E

NUMER iCAL INFORMATION

2
1.0
05
025
0125

00625
003125
0.015 625
0.007 8125

0.003 906 26
0001953 125
0.000976 5626
0.000 488 281 25

0.000 244 140 625
0.000 122 070 3125
0.000 061 035 156 25
0.000030517 578 125

0.000 015 258 789 062 &
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 8125

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 5625
0.000 000 119 209 289 550 781 25

0.000 000 059 604 644 775 390 625
0.000 000 029 802 322 387 695 3125
0.000 000 014 301 161 193 847 656 25
0.000 000 007 450 530 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5
0.000 000 001 862 645 149 230 957 031.25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 8125

0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25

0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 3126
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125

0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
0.000 000 000 000 454 747 350 886 464 118 957 519531 25
0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
0.000 000 000 000 113 686 837 721 616 029 739 3798828125

0.000 000 000 000 056 843 418 860 808 014 869 689 941 406 25
0.000 000 000 000 028 421 709 430 404 007 434 B44 970 703 125
0.000 000 000 000 014 210 854 715 202 003 717 422 485 351 562 5
0.000 000 000 000 007 105 427 357 601 001 BSB 711 242 675 781 25

0.000 000 000 000 003 552 713 678 800 500 929 355 621 337 890 625
0.000 000 000 000 001 776 356 839 400 250 464 877 810 668 945 3125
0.000 000 000 000 000 888 178 419 700 125 232 338 905 334 472 656 25
0.000 000 000 000 000 444 089 209 850 062 616 169 452 667 236 328 125

0.000 000 000 000 000 222 044 604 925 031 308 084 726 333 618 164 062 5
0.000 000 000 000 000 111 022 302 462 515 654 042 363 166 809 082 031 25
0.000 000 000 000 000 055 511 151 231 257 827 021 181 583 404 541 015 625
0.000 000 000 000 000 027 756 575 615 628 913 510 590 791 702 270 507 812 S

0.000 000 00C 000 000 013 877 787 807 814 456 755 295 395 851 135 253 906 25
0.000 000 000 000 000 006 938 893 903 907 228 377 647 697 925 567 626 953 125
0.000 000 000 000 000 003 469 446 951 953 614 188 823 848 962 783 813 476 562 5
0.000 000 000 000 000 001 734 723 475 976 807 094 411 924 481 391 906 738 281 25

0.000 000 000 000 000 000 867 361 737 988 403 547 205 962 240 695 953 369 140 625
0.000 000 000 000 000 000 433 680 868 994 201 773 602 981 120 347 976 684 570 3125
0.000 000 000 000 000 000 216 840 434 497 100 886 801 490 560 173 988 342 285 156 25
0.000 000 000 000 000 000 108 420 217 248 550 443 400 745 380 086 994 171 142 578 125

TABLE OF POWERS OF TWO

E-1/E-2

23
163
DI

8AC7

281
503
057
921

68
099
592
474
599
594
504

17
E8

918
5AF3
8D7E
86F2
4578
8683
2304

16
268
294
719
51
186
976
627
037
606

98
5F5
3B9A
5408
4876
D4AS
4E72
107A
A4Cé
6FC1
5D8A
A764
89E8

65
048
777
435
967
476
627
044
710
370
927
846

16
256
096
536
576
216
456
296
736
776
416
656
496
936

976

APPENDIX F

TABLE OF POWERS OF SIXTEEN
n 16"
0 0.10000 00000 00000 00000 x 10
1 0.62500 00000 00000 00000 x 107
2 0.39062 50000 00000 00000 x 1072
3 024414 06250 00000 00000 x.. 107>
4 0.15258 78906 25000 00000 x 10”4
5 0.95367 43164 06250 00000 x 1070
6 0.59604 64477 53906 25000 x 107
7 0.7252 90298 46191 40625 x 1070
8 0.23283 06436 53869 62891 x 1070
9 0.4551 91522 83668 51807 x 1070
10 0.90949 47017 72928 23792 x 10712
n 0.56843 41886 08080 14870 x 107 '°
12 0.35527 13678 80050 09294 x 10°'4
13 0.22204 46049 25031 30808 x 107
14 0.13877 78780 78144 56755 x 10 '°
15 0.86736 17379 88403 54721 x 10°'°
TABLE OF POWERS OF TEN
n 107"
0 1.0600 0000 0000 0000
1 0.1999 9999 9999 999A
2 028F5 C28F 5C28 F5C3 x 16
3 04189 3748 CG6A7 EF9E x 1672
4 068DB 8BAC 710C B296 x 167
5 0.A7C5 AC47 1B47 8423 «x 164
6 .0.10C6 F7A0 BS5SED 8D37 «x 1674
7 0.1AD7 F29A BCAF 4858 x 167
8 02AF3 IDC4 6118 73BF x 16°
9 0.44B8 2FA0 9B5A 52CC «x 167
10 06DF3 7F67 S5EF6 EADF x 16°
11 OAFEB FFOB CB24 AAFF x 167
12 0.1197 9981 2DEA 1119 «x 1677
13 01c25 C268 4976 81C2 x 160
14 0.2D09 370D 4257 3604 167"
15 0480E BE7B 9D58 566D x 16 '
16 0734A CASF 6226 FOAE x 16
17 08677 AA32 36A4 B449 x 16
18 01272 5DD1 D243 ABAl x 167"
19 0083 C94F 16713

86D2 AC35

F-1/F-2

APPENDIX G

ASCII INTERCHANGE CODE SET WITH CARD PUNCH CODES

Row Col 0 1 2 3 4 5 6 ?
Bit Positions
a o+-o) 0 o 0 0 0 0
5 1——o0 () 0 o 1 1 1 1
6 2—i——0 0o 1 1 o o 1 1
[7. 3—b+—o0 1 0 1 o 1 0 1
boto | |
0 NUL DLE SP 0) P . e
120981 12-11.981 Nopunch O 84 117 8-1 12-117
0001 1 SOH oCt 1 1 A Q a q
1291 1181 1287 1 124 118 12.01 12118
0010 2 STX DC2 “ 2 B R b r
1292 1192 87 2 122 119 1202 12119
oot1 3 | ETX pca # 3 c s c s
1293 1193 83 3 123 02 1203 1102
0100 4 EOT pCa $ 4 D T d t
: 9.7 984 1183 4 124 03 1204 1103
0101 5 ENQ NAK % 5 £ u e u
0985 985 084 5 125 04 1205 1104
0110 6 ACK SYN & 6 F v f v
0986 92 12 6 126 0S5 1206 1105
011 7 BEL ETB ‘ 7 G w g 0w
0987 096 85 7 127 06 1207 1106
1000 8 8BS CAN { 8 H X h x
1196 1198 1285 8 128 07 1208 1107
1001 9 HT EM) 9 { Y i v
1296 11981 1185 9 129 08 1209 1108
1010 A LF sus t : J z i 2
095 987 1184 82 11 09 12111 1109
1011 B vT ESC + : K (k {
12983 097 1286 1186 112 1282 12112 120
1100 € FF S , < L \] !
12984 11984 083 1284 113 082 12113 121
1101 D CR GS . = M b m }
12985 119856 11 86 114 1182 12114 110
1110 E o) RS) > N A n -
12986 11986 1283 086 115 1187 12115 1101
1 F St us / ? 0 - o DEL
12987 11987 01 087 116 085 12116 1297

G-2

Some positions inthe ASCII code chart may have a different graphic representation on various devices as:

Control Characters:

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR
SO
st
DLE
DC1
DC2

ASCIH 18M 029

' t

[¢

]]

A >
Null DC3
Start of Heading (CC) DC4
Start of Text (CC) NAK
End of Text (CC) SYN
End of Transmission (CC) ETB
Enquiry (CC) CAN
Acknowledge (CC} EM
Bell {audible or attention signal) SS
Backspace (FE) ESC
Horizontal Tabulation (punch card skip}(FE) FS
Line Feed (FE) ‘GS
Vertical Tabulation (FE) RS
Form Feed (FE) us
Carriage Return (FE) DEL
Shift Out Sp
Shift In {CC)
Data Link Escape (CC) (FE)
Device Control 1 {IS)

Device Control 2

Device Control 3

Device Control 4 (stop)
Negative Acknowledge {CC)
Synchronous Idle (CC)

End of Transmission Block (CC)
Cancel

End of Medium

Start of Special Sequence
Escape

File Separator {IS)

Group Separator (IS)

Record Separator (iS)

Unit Separator (1S)

Delete

Space {normally nonprinting)
Communication Control
Format Effector

Information Separator

MNEMONIC
HALT

32/70 SERIES INSTRUCTIONS BY OP CODE

DESCRIPTION

HALT

WAIT

NO OPERATION

LOAD CONTROL SWITCHES

3
BLOCK EXTERNAL INTERRUPTS
UNBLOCK EXTERNAL INTERRUPTS
ENABLE ARITHMETIC EXCEPTION TRAP
READ CPU STATUS WORD
SET EXTENDED ADDRESSING
DISABLE ARITHMETIC EXCEPTION TRAP
CLEAR EXTENDED ADDRESSING
AND REGISTER AND REGISTER
OR REGISTER AND REGISTER
OR REGISTER AND REGISTER MASKED
EXCLUSIVE OR REGISTER AND REGISTER
ZERO REGISTER
EXCLUSIVE OR REGISTER AND REGISTER MASKED
COMPARE ARITHMETIC WITH REGISTER
COMPARE MASKED WITH REGISTER
SET BIT IN REGISTER
ZERO BIT IN REGISTER
ADD BIT IN REGISTER
TEST BIT IN REGISTER
TRANSFER REGISTER TO PSWR
TRANSFER REGISTER TO REGISTER
TRANSFER REGISTER COMPLEMENT
TRANSFER REGISTER NEGATIVE
EXCHANGE REGISTERS
LOAD MAP
TRANSFER REGISTER TO REGISTER MASKED
SET CPU MODE
TRANSFER MAP TO REGISTER
TRANSFER REGISTER COMPLEMENT MASKED
TRANSFER REGISTER NEGATIVE MASKED
EXCHANGE REGISTERS MASKED
TRANSFER REGISTER TO SCRATCHPAD
TRANSFER SCRATCHPAD TO REGISTER
CALL MONITOR
LOAD ADDRESS
ADD REGISTER TO REGISTER
ADD REGISTER TO REGISTER MASKED
SUBTRACT REGISTER FROM REGISTER
SUBTRACT REGISTER FROM REGISTER MASKED
MULTIPLY REGISTER BY REGISTER
DIVIDE REGISTER BY REGISTER
NORMALIZE
NORMALIZE DOUBLE
SHIFT AND COUNT ZEROS
SHIFT RIGHT ARITHMETIC
SHIFT LEFT ARITHMETIC
SHIFT RIGHT LOGICAL
SHIFT LEFT LOGICAL
SHIFT RIGHT CIRCULAR
SHIFT LEFT CIRCULAR
SHIFT RIGHT ARITHMETIC DOUBLE
SHIFT RIGHT LOGICAL DOUBLE
SHIFT LEFT LOGICAL DOUBLE
LOAD EFFECTIVE ADDRESS REAL
AND MEMORY HALFWORD
AND MEMORY WORD
AND MEMORY DOUBLEWORD
AND MEMORY BYTE
OR MEMORY HALFWORD
OR MEMORY WORD
OR MEMORY DOUBLEWORD
OR MEMORY BYTE
EXCLUSIVE OR MEMORY HALFWORD
EXCLUSIVE OR MEMORY WORD
EXCLUSIVE OR MEMORY DOUBLEWORD
EXCLUSIVE OR MEMORY BYTE
COMPARE ARITHMETIC WITH MEMORY HALFWORD
COMPARE ARITHMETIC WITH MEMORY WORD
COMPARE ARITHMETIC WITH MEMORY DOUBLEWORD
COMPARE ARITHMETIC WITH MEMORY BYTE'
COMPARE MASKED WITH MEMORY HALFWORD
COMPARE MASKED WITH MEMORY WORD
COMPARE MASKED WITH MEMORY DOUBLEWORD
COMPARE MASKED WITH MEMORY BYTE
SET BIT IN MEMORY

LOAD HALFWORD
LOAD WORD

LOAD DOUBLEWORD
LOAD BYTE

0P _CODE

HNEMONIC

LMH
LMW
LMD
LMB
LNH
LNW
LND
LNB

DESCRIPTION

LOAD MASKED HALFWORD

LOAD MASKED WORD

LOAD MASKED DOUBLEWORD

LOAD MASKED BYTE

LOAD NEGATIVE HALFWORD

LOAD NEGATIVE WORD

LOAD NEGATIVE DOUBLEWORD

LOAD NEGATIVE BYTE

ADD MEMORY HALFWORD

ADD MEMORY WORD

ADD MEMORY DOUBLEWORD

ADD MEMORY BYTE

SUBTRACT MEMORY HALFWORD
SUBTRACT MEMORY WORD

SUBTRACT MEMORY DOUBLEWORD
SUBTRACT MEMORY BYTE

MULTIPLY BY MEMORY HALFWORD
MULTIPLY BY MEMORY WORD
MULTIPLY BY MEMORY BYTE

O1VIDE BY MEMORY HALFWORD
DIVIDE BY MEMORY WORD

DIVIDE BY MEMORY BYTE

LOAD IMMEDIATE

ADD_IMMEDIATE

SUBTRACT IMMEDIATE

MULTIPLY IMMEDIATE

DIVIDE IMMEDIATE

COMPARE IMMEDIATE

SUPERVISOR CALL

EXECUTE REGISTER RIGHT

EXECUTE REGISTER

LOAD FILE

LOAD EFFECTIVE ADDRESS

STORE HALFWORD

STORE WORD

STORE DOUBLEWORD

STORE BYTE

STORE MASKED HALFWORD

STORE MASKED WORD

STORE MASKED DOUBLEWORD

STORE MASKED BYTE

STORE FILE .

SUBTRACT FLOATING-POINT WORD
SUBTRACT FLOATING-POINT DOUBLEWORD
ADD FLOATING-POINT WORD

ADD FLOATING-POINT DOUBLEWORD
DIVIDE FLOATING-POINT WORD
DIVIDE FLOATING-POINT DOUBLEWORD
MULTIPLY FLOATING-POINT WORD
MULTIPLY FLOATING-POINT DOUBLEWORD
ADD REGISTER TO MEMORY HALFWORD
ADD REGISTER TO MEMORY WORD
ADD REGISTER TO MEMORY DOUBLEWORD
ADD REGISTER TO MEMORY BYTE
BRANCH UNCONDITIONALLY

BRANCH CONDITION TRUE

BRANCH CONDITION FALSE

BRANCH FUNCTION TRUE

BRANCH AFTER INCREMENTING BYTE
BRANCH AFTER INCREMENTING HALFWORD
BRANCH AFTER INCREMENTING WORD
BRANCH AFTER INCREMENTING DOUBLEWORD
ZERO MEMORY HALFWORD

ZERO MEMORY WORD

ZERO MEMORY DOUBLEWORD

ZERO MEMORY BYTE

BRANCH AND LINK

BRANCH AND RESET INTERRUPT
LOAD PROGRAM STATUS DOUBLEWORD
LOAD PROGRAM STATUS DOUBLEWORD AND CHANGE MAP
ENABLE INTERRUPT

DISABLE INTERRUPT

REQUEST INTERRUPT
ACTIVATE_INTERRUPT

DEACTIVATE INTERRUPT

TEST DEVICE

COMMAND DEVICE

START 1/0

TEST 1/0

STOP 1/0

RESET CHANNEL

HALT 1/0

GRAB_CONTROLLER

RESET CONTROLLER

ENABLE CHANNEL WCS LOAD

WRITE CHANNEL WCS

ENABLE CHANNEL INTERRUPT
DISABLE CHANNEL INTERRUPT
ACTIVATE CHANNEL INTERRUPT
DEACTIVATE CHANNEL INTERRUPT

Reader’s Comment Form

Date

- Manual Title:

Publication Number

" @ Howdo you use this publication?

O As an introduction to the subject.
[J Emergency Maintenance.
O other

<
a

. @ |s the material:

Easy to read?
Well organized?
Complete?
Well illustrated ?
Accurate?
Suitable for its intended use?

0oooooa

@ Please check the items that describe your position:

[Customer Personnel [Technician O instructor
[JSYSTEMS Personnel [(JField Service O Trainee
[J Engineer Joperator O Other

2
o

000000

[]sales Representative [JProgrammer
- @ Please check specific criticism(s), give page number(s), and explain below:

O Clarification on page(s) [Deletion on page(s)
[J Addition on page(s) [J Error on page(s)

. Explanation:

Your Name:

Your Company:

SYSTEMS Form No. 674

Printed in USA

May we have your comments?

This publication is one of a series of SYSTEMS Engineering Laboratories technical
documents written to serve each of a wide variety of users. Your completion of the
attached form will aid SYSTEMS in the continued production of complete, easily
referenced material in each of these various technical publications.

Thank You
Fold and Staple for Mailing
First Class
Permit No. 2356
Fort Lauderdale,
Florida
BUSINESS REPLY MAIL L]
No Postage Stamp Necessary if Mailed in the United States I
L]
Postage Will Be Paid By:]
I
SYSTEMS Engineering Laboratories .
6901 West Sunrise Boulevard

Fort Lauderdale, Florida 33313 I

..

Fold and Staple for Mailing

é

ENGINEERING LABORATORIES
6901 WEST SUNRISE BLVD. FT. LAUDERDALE, FLORIDA 33313

62659529

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	6-001
	6-002
	6-003
	6-004
	6-005
	6-006
	6-007
	6-008
	6-009
	6-010
	6-011
	6-012
	6-013
	6-014
	6-015
	6-016
	6-017
	6-018
	6-019
	6-020
	6-021
	6-022
	6-023
	6-024
	6-025
	6-026
	6-027
	6-028
	6-029
	6-030
	6-031
	6-032
	6-033
	6-034
	6-035
	6-036
	6-037
	6-038
	6-039
	6-040
	6-041
	6-042
	6-043
	6-044
	6-045
	6-046
	6-047
	6-048
	6-049
	6-050
	6-051
	6-052
	6-053
	6-054
	6-055
	6-056
	6-057
	6-058
	6-059
	6-060
	6-061
	6-062
	6-063
	6-064
	6-065
	6-066
	6-067
	6-068
	6-069
	6-070
	6-071
	6-072
	6-073
	6-074
	6-075
	6-076
	6-077
	6-078
	6-079
	6-080
	6-081
	6-082
	6-083
	6-084
	6-085
	6-086
	6-087
	6-088
	6-089
	6-090
	6-091
	6-092
	6-093
	6-094
	6-095
	6-096
	6-097
	6-098
	6-099
	6-100
	6-101
	6-102
	6-103
	6-104
	6-105
	6-106
	6-107
	6-108
	6-109
	6-110
	6-111
	6-112
	6-113
	6-114
	6-115
	6-116
	6-117
	6-118
	6-119
	6-120
	6-121
	6-122
	6-123
	6-124
	6-125
	6-126
	6-127
	6-128
	6-129
	6-130
	6-131
	6-132
	6-133
	6-134
	6-135
	6-136
	6-137
	6-138
	6-139
	6-140
	6-141
	6-142
	6-143
	6-144
	6-145
	6-146
	6-147
	6-148
	6-149
	6-150
	6-151
	6-152
	6-153
	6-154
	6-155
	6-156
	6-157
	6-158
	6-159
	6-160
	6-161
	6-162
	6-163
	6-164
	6-165
	6-166
	6-167
	6-168
	6-169
	6-170
	6-171
	6-172
	6-173
	6-174
	6-175
	6-176
	6-177
	6-178
	6-179
	6-180
	6-181
	6-182
	6-183
	6-184
	6-185
	6-186
	6-187
	6-188
	6-189
	6-190
	6-191
	6-192
	6-193
	6-194
	6-195
	6-196
	6-197
	6-198
	6-199
	6-200
	6-201
	6-202
	6-203
	6-204
	6-205
	6-206
	6-207
	6-208
	6-209
	6-210
	6-211
	6-212
	6-213
	6-214
	6-215
	6-216
	6-217
	6-218
	6-219
	6-220
	6-221
	6-222
	6-223
	6-224
	6-225
	6-226
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	8-05
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	D-01
	E-01
	F-01
	G-01
	G-02
	H-01
	replyA
	replyB

