Gould CONCEPT/32
Floating-Point Accelerator
Model 3611

Technical Manual

March 1983

Publication Order Number: 303-003020-000

== GOULD

Electronics

This manual is supplied without representation or warranty of any kind. Gould
Inc., S.E.L. Computer Systems Division therefore assumes no responsibility and
shall have no liability of any kind arising from the supply or use of this
publication or any material contained herein.

Copyright 1983
Gould Inc., S.E.L. Computer Systems Division
Printed in U.S.A.

HISTORY

The Gould CONCEPT/32 Floating-Point Accelerator (Model 3611) Technical Manual,
Publication Order Number 303—-003020-000, was printed March, 1983.

This manual contains the following pages:

Title page
Copyright page
iii/iv through viii
1-1 through 1-16
2-1 through 2-52
A~1 through A-2

B-1 through B-6
IN-1 through IN-2

iii/iv

CONTENTS

Page

GENERAL DESCRIPTION

ot ok et et et

1
2
3
4
5

Introduction.cesssesoessstossssoscccsasssosonsssssrssnsassnssssnal=~l
PUYPOSE . cesssssossscovsssorscsansosnsanssssonasnssssoasossosnessnassel=l
PrerequisitesSscesssscsosssessscecsosssassnsacosssassossorsnossscseel—l
Equipment DescriptioNiccescessssccesssrsesscsssasossnssasncsssseel=2
Functional DescriptioNecscesssecsssssnsncsscssrssesssasssenssnel=2
1.5.1 FPA File RegisterS.siceecssossossscesssncacssosscsnsasceesl=2
Instruction FOormatS.cessceecsssessossscssssscsssosnsssssal=bd
Operand FOrmatSescessssscsssvessscsssssossssssssssssseel=9
Operand EntrYeeeesosoasoaseseessessossssassssesssssssneel=?
Input Register Loadingeececsceocescscssessocecsscassnoessssl=l2
Arithmetic Operations..sseseessscessassssssascensssssal=l2
Result Normalizing and Roundingeeeeeessesoscescscnsesal=ld
Result StOrage.escessscecsssssessccssscossnsrsssesssseal=lé
Arithmetic ExceptloNiccceseescsessccsssessssssssesessel=ld
General Purpose Register BuBY.ceceeceesessesceasssnsssl=l5
FPA Enable/Disable seeesceessassoercsssnssscssaacnsseesl=ls

- OO0 WN

-~ O

e ® o ® o o o
(VRV. RV RV RVEV RV RV RV NV,

Pt et et st i fond fund ek pst s

THEORY OF OPERATION

2.1

2.2

Add and Subtract Unit.ceesessesccsssssscesosssssssasaassasssase2=l]
2.1.1 Floating=-point File..ieseovossecorssasscacsssonssascssesll
Input RegisterS.cescesesescocssrscessssnsssnsncconssseeelm?
SCAleressescessssvossssacsssssssarsearssosvsessssnncssacnn=h
Preadder.ceiciesccesscessssseccssnsessscssssscscssssseel=bd
PreshifterBicsccesscecerccencssscsssvsoncscscarsosccsossesl=b
ALU Sign and OverfloW.eeeesescsscesosssssocsscassosssssel=?
Special Negative Number and Positive All

Zero Detector........................-...............2-9
8 Leading Ones and Leading Zeros DetectOr.icsieesscssssses2=10
9 Exponent COrrectOr.ecececesesevescccsvscsscscsosassasoess2=ll
10 Normalizer..eeesoescassoasesssssscsscsssccanssssssoneelmll
11 Overflow and Rounding..ceeseeecesesscsssosscssoasssssss2=ll
12 Normalizer Error CorrectOr.scscscccscsssccssscsssassssl=ll
13 Output ReglSter8...cescecsssccsscososcncscscanonssosssealml2
14 Destination Address Control.eseeescesscscsosesssssssssel=l2
1
1
i
1
2
3

.
NOWmPHWN

5 Arithmetic Exception Reglster....cceecscocecscssscorsces2=12
6 Clock and Microengine.scesesecesesosonssscssnesssasssel=l3
Ply and Divide Unlt.cieeeeesesencssoccasssossnssnsosssese2=ll
Floating-point Multiply.cseovecctscscsocsscssconansecnssl=ls
Floating-point Divide..cvieoercrioccsceconsncscnvecsceea2=33
Fixed=-point Multiplication.ceeessceceossscasoracsssseel=bb

NNN%NNNNNNNNN

.

Appendix A - M/D Unit PROM Control Code DefinitionS...eeceesccscecsccsshA=l

Appendix B - Connector Pin Assignments..................................B—l

Index .00."...OO....O.'...C..QO.CQl..ll..'......".OOOOOQOOOOOOODOOIN-I

vi

TABLES

Table Page

Floating-point Accelerator SpecificationSesececescccccsscsecsasessel—é
CREG BitsS 36=39ccceevecosecscscascsssscrsnssscncossssssceassscscssanel=h
Preadder Valu@Seecssoocosscccescsossscscssscsossssssssssanssssscnsel=’
AE PrediCliONisccesssosescsssosscscssssccssscosascsncscssasncccsnnccncnsel’
ALU Control LineS.ceccssscsessscsscoccscsvssssssssascsnasscscscscassssel—7
Overflow State Diagrameececsossscssessscscssscssasscssssscssssacssossssesal=0
Qutput Register CONteNlSececsscsssstseccssscscssoassscssssccssscssssesl=l8
Sequence Control PROM Map — MB84 and MB8l.seseessscessceccsnsocses2—19
Operation Decod@esesesesescsocesssssosnssscosacsesssscrsnsccnsscesssasnel=20
Sequence Control PROM Coding -

Multiply Floating—point Wordeeeeceseessssccccsscasscaccssconsesel2=20
2-10 Active Sequence Control Signals -

Multiply Floating—point Wordeeesssoscsosesescasesossssscscescssoel=2l
2-11 Sequence Control PROM Coding -

Multiply Floating-point Doubleword.eceseesscssssssssssssacsescsel=2l
2-12 Active Sequence Control Signals -

Multiply Floating-point Doubleword.eccesesecessesesccossasocnaosal=22
2~13 AE Register ContentS.esescssecssssssssccssscssassssssccsssnasscssacl=34
2-14 Output Register ContentSeseessesssscscsssssosssassscscssssssssassesl=36
2-15 Sequence Control SPROM Coding -

Divide Floating—point Wordeecessesessssscsccscssscsssscccascseceel=b?
2-16 Active Sequence Control Signals -

Divide Floating—point Wordeeesssssecccesscsscessscsssscosssavscssel=bB
2-17 Sequence Control PROM Coding -

Divide Floating-point Doublewordesssscsscsecscsssssscsssessasseeesl=b9
2-18 Active Sequence Control Signals -

Divide Floating-point Doublewordeeseesscscscescscsascssscsssssscsel2=50
2-19 Fixed—point ANSWET OULPUl.ceecscorsccosescssscncscsoscncscsnsacsssseel=D2
2-20 Sequence Control PROM Coding -

Fixed-point Multiplyeeccececscsccccsscsscscsccscscsnsccscccssssancnsl=52
2-21 Active Sequence Control Signals -

Fixed-point Multiply.ecececsseccsceaccersccssoscsccscscsnscsossanssel=52

NNNN!TDNNNN*—-
WO ~NOUn WK

A-1 MB84 PROM Control Code Definitions — M/D UniteseececccesssscsoccaseaA—l
A-2 MB81 PROM Control Code Definitions — M/D Unit.eceeecesceccoccsoscssceecdA=2
B~1 Connector Jl Pin AsSignmentSescesscesecccoccoossccsssasssscssscesssebl
B-2 Connector J2 Pin AsSignmentSeecececcecesscssscscsssssssssssassassscssebm]
B-3 Connector J3 Pin AsSignmentSececesesscccscsossssssscssssasasssocsasaB=2
B-4 Connector J4 Pin AssignmentS.seecececsesessascrcsosccscscccsssssscsccessB=2
B-5 Connector J5 Pin AssignmentSeescsssseccscesssecssssssssccscssccsesaB=3
B-6 Connector J6 Pin AsSignmentS..seseesscecscsssscsesssssssasscscoaseeB=3
B-7 Connector PlA Pin ASSignmentS..seecescesssscsscessscssssenssccsseseeeb~l
B-8 Connector PIC Pin AssignmentS.eseececscscssasscsasccccssssccsssasesb=b
B-9 Connector P1B Pin AsSignmentSeccecscesccsensscscscssscsssosssssssennsesaB~d

vii

TLLUSTRATIONS

Figure Page

—
I

Floating-point Accelerator Typical Installation..ceeeeesccccocesessl=3
FPA/CPU Simplified Block DiagramM..cecosssssccccsssssscscsasasscssnsl=?
Fixed-point Operand FOIMALSeeeoecssscosoccccsssssssssescscsccsessel=l0
Single-precision Floating-point Operand FOrmateceecsossocsccesesssl=ll
Double-precision Floating-point Operand FOrmat.ceeseessesscscsesesl=ll
Add and Subtract Unit — Block Diagrame.eseceecsececessccscccsscscsssel=3
Simplified Sign and Overflow FUNCLION. ceeecsccvcsscscascsossssosssel=d
Status WOrd FOTMAL.eeeeseessscvocscesnssscsessssssscsssossssassssel=l3
Multiply and Divide Unit-Block DiagramMeecesscesssccscsssssssssssesl=l5
Exponent Logic Block Diagram (Floating-point Multiply).ececececoesse2-24
Multiply Logic - Simplified Block Diagram.sscesscocscscccssscssesel=2]
Multiply Logic - Detailed Block Diagrame.cccsccscossscascascassesse2=29
Exponent Logic Block Diagram (Floating-point Divide).eeescesceseses2-4l
Single-precision Normalization and

Rounding Example..2-44
2-10 Double-precision Normalization and Rounding Example.ccecesesceeese2=bb

(o
|

I |
£ WN e

|
WoNOTUVEsWN-= WU

DN NN bt st o
J 1 (L I

NNTNNN

viii

CHAPTER 1

GENERAL DESCRIPTION

1.1 Imtroduction

The optional floating-point
accelerator (FPA) is used by the
central processing unit (CPU) to
increase the speed of arithmetic
operations.,

In this manual, unless otherwise
specified, the following conventions
will apply:

1. The term CPU refers to the
CONCEPT 32/67 Central
Processing Unit.

2. The terms add and subtract
unit, A/S unit and FPA A board
refer to the 160-103556 Add
and Subtract Unit.

3. The terms multiply and divide
unit, M/D unit and FPA B board
refer to the 160-103557
Multiply and Divide Unit.

1.2 Purpose

The FPA performs floating-point
addition, subtraction,
multiplication, and division on
single-precision (32-bit) and double-
precision (64~bit) operands. The FPA
also performs fixed-point
multiplication.

The following floating-point
arithmetic operations are supported
by the FPA:

1. Add floating-point word

2. Add floating-point doubleword

3. Add floating-point word
register to register

4, Add floating-point doubleword
register to register

5. Subtract floating-point word

6. Subtract floating-point
doubleword

7. Subtract floating-point word
register to register

8. Subtract floating-point
doubleword register to
register

9. Multiply floating-point word

10. Multiply floating-point
doubl eword

11. Multiply floating-point word
register to register

12, Multiply floating-point
doubleword register to
register

13. Divide floating-point word

14, Divide floating-point
doubleword

15. Divide floating-point word
register to register

16, Divide floating~point
doubleword register to
register

The following fixed-point arithmetic
operations are supported by the FPA:

1. Multiply by memory byte

2. Multiply by memory halfword
3. Multiply by memory word

4, Multiply register by register
5. Multiply immediate

1.3 Prerequisites

The FPA requires two SelBUS card
slots immediately above, and adjacent
to the CPU on a CONCEPT/32 chassis.
A typical FPA installation is shown
in Figure 1-1.

1.4 Equipment Description

The FPA consists of two, 15 inch by
18.5 inch, logic boards. The add and
subtract (A/S) unit performs all
floating-point addition and
subtraction operations. This unit
also contains 16 file registers which
are shared by both the multiply and
divide unit and the add and subtract
unit,

The file registers are used to store
operands for the arithmetic
operations and to store the results
of the operations. The contents of
the file registers are a copy of the
contents of the general purpose
registers in the CPU.

The multiply and divide (M/D) unit
performs all floating-point multipli-
cation and division operations and
fixed-point multiplication opera-
tions. The results of multi-
ply/divide operations are put away in
the file registers in the A/S unit.

The two logic boards connect directly
to the backplane SelBUS at connector
P1B. The SelBUS provides the FPA
with power, ground and clock connec-
tions only; the FPA does not
communicate directly over the SelBUS.

The two—connector, 50 pin cable on
the pin side of the backplane at PIC
forms the file address (FADD) bus
between the two floating-point
units. This bus is used to address
the file register for storing the
arithmetic operation results.

The three-connector 50-pin cable at
J1 forms the external Y (EY) bus
between the two floating-point units
and the CPU. This bus is used to
carry 32-bit operands from the CPU,
and arithmetic results from the M/D
unit, to the file registers in the
A/S unit.

The two-connector, 50 pin cable at J2

forms the operand (OPR) bus between
the two floating-point units. This

1-2

bus carries 32-bit operands from the

- file registers in the A/S unit to the

M/D unit.

The three-connector, 50 pin cable at
J3 forms the external A (EA) bus
between the A/S unit and the CPU, and
the external B (EB) bus between the
two floating—point units and the

CPU. The EA bus carries A-port
addresses from the CPU to the file
registers in the A/S unit. The EB
bus carries B-port addresses from the
CPU to the file registers in the A/S
unit, and the RB address registers in
both floating-point units. The cable
also carries control and test signals
between the CPU and the FPA.

The three-connector, 50 pin cable at
J4 forms the external buffered data
(EDB) bus between the two floating-
point units and the CPU. The bus
carries the 32-bit memory operand to
both floating-point units.

See Appendix B for detailed signal
pin assignments for each connector.

Table 1-1 lists the physical,
electrical, environmental, and
operational specifications of the
floating-point accelerator.

1.5 Functional Description

The following paragraphs describe the
operations performed by the FPA and
the different data formats used with
the FPA. Figure 1-2 is a simplified
functional block diagram of the FPA
and its interaction with the CPU.

1.5.1 FPA File Registers

FPA file registers 0 through 7 are
copies of the CPU (software) general
purpose registers and are updated
each time the CPU performs a write to
the GPRs. All floating-point results
are put away in the FPA file
registers and the CPU will use the
FPA copy of the GPRs for store in

SelBUS
P1C PIB P1A

e et e —— T st

1
XA18

[FeA
XA17 (' OPTION

XA16
XA!S Z 32/67
| cPU
ot XA14
)
05‘)“\‘
s
\© ADD AND SUBTRACT UNIT
\ 160-103556
o
= 5
f MULTIPLY AND DIVIDE UNIT
160-103557
96 PIN DIN
CONNECTORS
AAAAAAAAAAAA c
............ b
............ a
/
{ 6 l é C FPA
OPTION
P1A
S ———— et /\/PE_/'—\ e 32/67
CrPy
SelBUS (f
— ADD AND SUBTRACT UNIT
160-103566
MULTIPLY AND DIVIDE UNIT
160-103557
50 PIN 50 PIN CONNECTORS
CONNECTORS
’ TURNKEY
PANEL
830379
Figure 1-1. Floating-point Accelerator Typical Installation

Table 1-1 (Sheet 1 of 2)
Floating-point Accelerator Specifications

Characteristic

Specification

PHYSICAL

Number of PWB

Length (each PWB)

Width (each PWB)

Weigh (total for boards
and cables)

ELECTRICAL

Voltage
Current
Unit A
Unit B
Power
Unit A
Unit B

ENVIRONMENTAL
Operating

Temperature

Relative humidity
Storage
Temperature

Relative humidity

Two

18.5 inches (46.99 cm)
15.0 inches (38.10 cm)
8 pounds

5 vdc + 5%

18 amps
24 amps

90 watts
120 watts

+50 degrees to +100 degrees
Fahrenheit (+10 degrees to +40
degrees Celsius)

5% to 95%

-40 degrees to +140 degrees
Fahrenheit (-40 degrees to +60
degrees Celsius)

2% to 95%

Table 1-1 (Sheet 2 of 2)

Floating—point .Accelerator Specifications

Characteristic Specification
OPERATIONAL
Instruction execution
time (with 600-nanosecond
memory)
Floating—point instructions
Add word (ADFW) 0.90 microseconds
Add doubleword (ADFD) 1.50 microseconds
Add word register to register (ADRFW)} 1.05 microseconds
Add doubleword register to
register (ADRFD) 1.80 microseconds
Subtract word (SUFW) 0.90 microseconds
Subtract doubleword (SUFD) 1.50 microseconds
Subtract word register to
register (SURFW) 1.05 microseconds
Subtract doubleword register
to register (SURFD) 1.80 microseconds
Multiply word (MPFW) 1.35 microseconds
Multiply doubleword (MPFD) 2.55 microseconds
Multiply word register to
register (MPRFW) 1.50 microseconds
Multiply doubleword register
to register (MPRFD) 2.85 microseconds
Divide word (DVFW) 4.95 microseconds
Divide doubleword (DVFD) 8.10 microseconds
Divide word register to
register (DVRFW) 5.10 microseconds
Divide doubleword register
to register (DVRFD) 8.40 microseconds
Fixed-point instructions
Multiply memory byte (MPMB) 1.95 microseconds
Multiply memory halfword (MPMH) 1.95 microseconds
Multiply memory word (MPMW) 1.80 microseconds
Multiply register by register (MPR) 1.95 microseconds
Multiply immediate (MPI) 1.95 microseconds

Note:

Fixed-point multiply and floating-point add, subtract, and

multiply operations will yield identical results when performed by

either the FPA or the CPU firmware. However,
floating-point divide operation performed by the FPA will be one
bit more accurate than the result of the same operation performed

by the CPU firmware.

the result of a

memory instructioms. For CPU
register modification instructions,
the CPU will use the FPA copy of a
register, or register pair in double
precision, if a floating-point
operation has been executed by the
same register(s).

The remaining eight FPA file
registers (8 through 15) may be used
as work registers in writable control
store (WCS) applications on a per
process basis. The eight upper
registers cannot be saved during CPU
interrupt/trap context switching;
however, they can be accessed by CPU
microcode that is not a part of the
standard microcode set.

1.5.1.1 Register Conflict Resolution

The CPU and FPA hardware resolves
register conflicts between
instructions such that, if a
floating-point destination register
is specified as a source register to
a subsequent instruction, and the
floating-point instruction is not
complete, the CPU will pause and wait
for the floating-point instruction to
complete. The result of the
floating-point operation is then used
as the source operand to the
subsequent instruction. The
subsequent instruction may be a
floating-point, fixed point, or
logical instruction.

The register conflict hardware cannot
resolve conflicts between pre- or
post-indexing registers and floating-
point target registers. If a
floating-point register is specified
as an indexing register to a
subsequent instruction, and the
floating—point instruction is not
complete, the results will be
indeterminate.

1.5.2 Instruction Formats

An arithmetic instruction supported
by the FPA will conform to one of

1-6

three different instruction
formats: memory reference,
interregister, and immediate. For
detailed descriptions of these
instruction formats, see the CPU
Reference Manual.

1.5.2.1 Memory Reference Instruction
Format

The memory reference instruction
format causes the CPU to fetch one
operand from memory and the other
operand from a general purpose
register. The results of the
arithmetic operations are returned to
the same general purpose register,
overwriting the previously stored
contents.

The memory reference format is used
by the multiply by memory fixed-point
instructions and all floating-point
instructions other than the register
to register type.

1.5.2.2 Interregister Instruction
Format

The interregister instruction format
causes the CPU to fetch one operand
from a source general purpose
register and the other operand from a
destination general purpose

register. The results of the
arithmetic operations are returned to
the destination general purpose
register, overwriting the previously
stored contents.

The interregister format is used by
the multiply register by register
fixed-point instruction and register
to register floating-point
instructions.

1.5.2.3 TImmediate Instruction Format

The immediate instruction format
causes the CPU to fetch one operand
from a general purpose register. The
16-bit operand portion of the
instruction (bits 16 through 31) is
sign-extended left, to form the other

-1 r-a‘-

UNIT I UNIT

CS UNIT

]
I
|

—

CACHE n n RA RB
DATA IN _(I@ ADDRESS ADDRESS
REGISTER I>' (SOURCE) (DESTINATION) I l
I a n
| I l 800-03 >
A00-03 lgg |>’l EA00-03 'lf

J7

h
h

J7
EB00-03

4

SelBUS
é._ DATA OUT
REGISTER

GENERAL
PURPOSE
REGISTERS

RA RB '

SelBUS 41:]

—t

A B

é.; DATA IN
REGISTER

ALU DATA
SOURCE SELECTOR

1 v
R

SelBUS I

CACHE BK 0

—» CACHE
CACHEBK 1 |

MUX

LOGIC UNIT I

QUTPUT

*Z-1 2an8y4

- weadeyq Y2014 PRIIFTdwIS Ndd/Vdd

£820e8

8-1/4-1

DATA

I ARITHMETIC

' SELECTOR
l CACHE
RIGHT I

DATAOUT |g— SHIFTER YB BUS l YBUS i JU Eygus B J3

REGISTER l h— e >—<I -
') J3 Ja 53 I ' J3 Jg fJs

MDB BUS DB BUS /' DB BUS Vs
l Je - PASEE I -
— ‘ C— e d

EAQ0-03 B3, 3
w(
. ’ EB00-03 TS
FADD00-03 P1c 3| D Pic ’

i |

MULTIPLEXER

| ! |

T

. FILE J1
£Y00-31
REGISTERS ¢ e 7Y (< oun foms -X
RA RB l
Ja by
EDB BUS EDBOO-31
R -
| —t o Y
¢ 52 < 92
| i |
I MSW y LSW | Msw | LSw RB
o — b — — 4 L -
OPERAND OPERAND ADDRESS I
l INPUT REGISTER] INPUT REGISTER | REGISTER
ADD/SUBTRACT
FUNCTION
| -}
msw | Lsw AE
- — L 4 status
ouTPUT REGISTER
REGISTER
ADD AND SUBTRACT UNIT
[160-103556 I
—
I EDB BUS £DB00.31 4 —l"" =l
' OPR BUS ® OPR 0031 42 C EE 12
e
l EBO0-03 J3 43
L) T
msw | sw | msw | Lsw RB PiC P1C
[~ OPERAND | OremaNs | ADDREss [
INPUT REGISTER| INPUT REGISTER| REGISTER
MULTIPLY/DIVIDE
FUNCTION
]
msw 1 Lsw AE I
IR T STATUS
OQUTPUT REGISTER
. REGISTER

EY00-31 I ' JE'
| MULTIPLY AND DIVIDE UNIT EY BUS i
——

" 160-103557 J

32-bit operand, and sent to the

FPA. The results of the arithmetic
operation are returned to the same
general purpose register, overwriting
the previously stored contents.

The immediate format is used only by
the multiply immediate fixed-point
instruction.

1.5.3 Operand Formats

The operands of the arithmetic
operation must be stored in memory
and/or the general purpose
register(s) in the proper format. 1In
addition, floating—point operands
must also be normalized. The
following paragraphs detail the
various operand formats.

1.5.3.1 Fixed-point Operand Formats
Figure 1-3 illustrates the formats
for fixed-point operands received by
the FPA,

The byte and halfword integers are
right justified in a 32-bit word
format; the most-significant portion
of the byte and halfword operands are
zero-filled and sign-extended,
respectively. The alignment, zero-
f111, and sign—extend functions are
performed in the CPU after the
operands are fetched from memory.

For every fixed-point multiply
instruction executed, the FPA

- receives two 32-bit operands and
returns a 64-bit (doubleword) answer.

1.5.3.2 Floating-point Operand
Formats

Figures 1-4 and 1-5 show the proper
formats for the single- and double-
precision floating-point operands.
Both formats consist of a sign (S),
an exponent, and a fraction. The
sign bit (bit 0) represents the
positive (0) or negative (1) value of
the fraction. The exponent is a

seven-bit (bits 1 through 7) binary
number and represents the power to
the base 16 of the fraction. The
exponent can either be a positive or
negative value. The hexadecimal
value of 40 represents an exponent of
0 to the base 16. Any hexadecimal
value above 40 represents a positive

“exponent (i.e., hexadecimal of 4l

represents the exponent value of
positive 1 to the base 16) and any
hexadecimal value below 40 represents
a negative exponent (i.e.,
hexadecimal value of 3F represents
the exponent value of negative 1 to
the base 16).

The fraction is represented by 24
bits (bits 8 through 31) in a single-
precision operand and by 56 bits
(bits 8 through 63) in a double-
precision operand. The radix point
of the normalized, binary fractiomn is
assumed to be to the immediate left
of its most-significant bit.

When the sign bit represents a
negative number, the biased magnitude
of the exponent is stored in the
one's complement form and the
fraction in the two's complement
form. Positive numbers are stored in

. the absolute value.

1.5.3.3 Normalized Floating-point
Operands

The floating-point operand is
considered to be normalized when the
absolute value of the most-
significant hexadecimal digit of the
fraction contains a value less than
one and greater than or equal to one-
sixteenth. Hexadecimal fractions
with magnitudes less than one-
sixteenth must be normalized by left
shifting the fraction and
decrementing the exponent by one
accordingly.

1.5.4 Operand Entry

The floating—point accelerator
receives single- and double-precision

1-9

BYTE

INTEGER

folofolo]ofo]ofo]ofofofofo]ofofojofo]ofo]ojofo]o] |
01 2 34 5 6 7 8 91011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

HALFWORD (SIGN EXTENDED)

v T T

SIGN EXTENDED S INTEGER

EEEEEEEEEEEENE EEN

01 2 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

WORD

S INTEGER

EEEEEEEEEEN

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

810070

Figure 1-3. Fixed-point Operand Formats

[I

S EXPONENT

24-BiT FRACTION

REEEN

EEEEEEEEEEEEEEEEEEEREE

0O 1 2 3 4 5 6 7 8 9 10 11 1213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

810071

Figure 1-4.

Single-precision Floating-point Operand Format

| l

7 (1 |

S EXPONENT

56-BIT FRACTION

HEEEEEEERREE

jIEEENEEEEEEEER

01234567891011127314/

(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

810072

Figure 1-5.

operands from memory and from a
general purpose register. The addend
of an addition operation, the
subtrahend of a subtraction
operation, the multiplicand of a
multiplication operation, and the
divisor of a division operation are
stored in a memory location. The
augend, minuend, multiplier and
dividend are stored in a general
purpose register.

1.5.4.1 Memory Operands

Operands fetched from memory enter
the data-in register of the CPU and
are enabled onto the DB bus (bits
DBOO through DB31). These bits are
applied to both floating-point units,
via the external DB (EDB) bus,
through a cable at J4.

Double-precision Floating-point Operand Format

1.5.4.2 File Register Operands

The CPU microword controls the
loading of an operand from a general
purpose register in the CPU, to a
file register in the floating-point
accelerator. The CPU microword sets
up the arithmetic logic unit of the
CPU to place the operand on the
internal Y bus (bits YOO through Y31)
and enables the external Y bus (bits
EYOO through EY31) at Jl1. The EY
bits are applied to the floating-
point unit A by the cable at J1. At
the same time, the CPU microword
activates the register B (RB) address
(bits BOO through B03) in which the
operand is to be stored. The
register B address is the location of
the general purpose register which is
designated as the destination

register. The register B address
(bits EBOO through EB03) is applied
to both floating-point units by a
cable at J3. The operand is
simultaneously stored in the general
purpose register and the file
register which has been addressed by
the RB address.

Double-precision operands are loaded
into two consecutive file register
and general purpose register
addresses.

1.5.5 Input Register Loading

The CPU microword establishes which
floating-point unit 1s enabled based
on the arithmetic operation being
performed. The A/S unit is enabled
for the addition and subtraction
operations and the M/D unit is
enabled for the multiplication and
division operations.

The RB address is stored in the RB
address register of the enabled
floating-point unit. The stored RB
address is used for storing the
results of the arithmetic operation.

1.5.5.1 Single Precision

The input registers of the
appropriate floating-point unit are
loaded during the CPU memory fetch
cycle. At the time the operand from
memory is enabled onto the DB bus,
the operand from the file registers
is enabled onto the OPR bus (bits
OPROO through OPR31). The CPU
enables the input registers of the
unit which is to perform the
arithmetic computation, and both
operands are loaded simultaneously
into the most-significant word (MSW)
position of the operand input
registers.

The floating—point unit calculations
are performed on 64-bit operands.
During the loading of single-
precision operands, the least-

1-12

significant word position is
automatically zero extended.

1.5.5.2 Double Precision

Double-precision operands are
contained in two consecutive file
register locations and memory
locations. The most-significant word
of the doubleword resides in the even
address and the least-significant
word resides in the odd address. The
least-significant words (LSW) of both
the memory and register operands are
loaded into the least-significant
word positions. The CPU then fetches
the most-significant operand from
memory and simultaneously loads both
words into the most-significant word
positions of the operand input
registers.

1.5.6 Arithmetic Operations

The operands are disassembled into
their component parts (the sign, the
exponent, and the fraction) by the
floating-point accelerator prior to
the arithmetic operation. Each of
the component parts is manipulated
and calculated independently. The
results are reassembled prior to
being stored in the floating-point
accelerator file registers.

1.5.6.1 Addition/Subtraction

The addition/subtraction operations
are performed by the add and subtract
unit. The addition/subtraction
instructions cause the CPU microword
to enable the input registers of the
A/S unit, and the operands are loaded
into the input registers as
previously described. After the
input registers are loaded, the
addition or subtraction operation
begins.

The exponents of the fractions are
compared to each other to determine
the smaller of the two., The fraction
of the operand with the smaller
exponent is shifted right and the
exponent is Incremented by one for
each hexadecimal digit shifted until
the two exponents are equalized. If
the difference between the two
exponents is greater than the maximum
allowable difference (6 for single-
precision operands and 13 for double-
precision operands), the smaller
exponent and its fraction are
considered insignificant compared to
the larger exponent, and the fraction
of the operand with the smaller
exponent is forced to zero.

The fractions are algebraically added
or subtracted and the resulting
fraction is normalized or rounded.

The resulting sign, exponent and
fraction are assembled and
transferred to the output register of
the add and subtract unit.

Since all fractional answers are
automatically normalized by the A/S
Unit, it Is possible to use a
floating-point add instruction (ADFW
or ADFD) simply to normalize an
operand. This can be done by adding
the unnormalized operand to another
operand with a zero wvalue.

1.5.6.2 Multiplication/Division

The multiplication/division
operations are performed by the
multiply and divide unit. The
multiplication/division instructions
cause the CPU microword to enable the
input registers of the M/D unit and
the operands are loaded into the
input registers as previously
described. After the Input registers
are loaded, the multipli-
cation/division operation begins.

1.5.6.2.1 Multiplication

The floating-point accelerator
executes both fixed-point and
floating-point multiply Instructions.

The multiply operation on the
floating-point fraction (or fixed-
point integer) is performed using a
multiple~clock operation where
partial products are calculated and
then added to the sum of all previous
partial products. For single-
precision floating-point multiply
operations, the summation of partial
products may be normalized (if
needed) or rounded. For double-
precision floating-point multiply
operations, only normalization may be
performed (if needed), never
rounding. In fixed-point operations,
no normalization or rounding is
performed.

The biased exponents of the floating-
point fractions are algebraically
added, and then 40 (hex) is
subtracted from the sum. The result
is the biased exponent of the answer.

Upon completion of the floating-point
or fixed-point multiply, the result
is transferred to the file register
located on the A/S unit,

1.5.6.2.2 Division

Division of the fraction is

accompl ished by first performing an
algorithm using iterative '
multiplications to obtain the
approximate reciprocal of the divisor
and then multiplying the reciprocal

- by the dividend.

The exponent of the answer is derived
by first calculating the exponent of
the reciprocal and then adding this
value to the exponent of the
dividend.

The fraction answer is both

normalized (i1f needed) and rounded.
The corrected fraction answer, sign
bit, and exponent are assembled and

1-13

transferred to the file register
located on the A/S unit.

1.5.7 Result Normalizing and Rounding

The following paragraphs describe the
normalizing and rounding operationms.

1.5.7.1 Guard Digit

The guard digit is an additional
hexadecimal digit of precision which
is used in the normalizing and
rounding processes of single-
precision arithmetic operations and
double-precision division

operations. The guard digit of these
operations allows the results of the
operations to be calculated with a
precision of seven hexadecimal digits
for single precision and 15 for
double precision. The guard digit
"becomes part of the fraction if
normalization is required or is used
to determine if the least-significant
digit is incremented by one during
the rounding process.

1.5 72 mmliz’.ﬂg

Left shift normalization of the
fractional result of any arithmetic
operation is required when its
absolute value is less than one-
sixteenth. The floating-point unit
achieves normalization by shifting
the hexadecimal fraction to the left
until its magnitude is greater than,
or equal to, one-sixteenth. The
exponent is decremented by one for
each hexadecimal shift. The guard
digit, of the single-precision
arithmetic operation and the double-
precision division operation, is
shifted into the least-significant
digit position on the first left
shift. Subsequent shifts place zeros
in the least-significant position of
the hexadecimal fraction.

Since the double-precision additionm,
subtraction and multiplication

1-14

operations do not employ the guard
digit, zeros are always shifted into
the least-significant digit position
during the normalizing process.

When the fraction contains all zeros,
the exponent is forced to a value of
zero.

1.5.7.3 Rounding

The rounding process examines the
most-significant bit of the guard
digit for a one or a zero. If the
most-significant bit of the guard
digit is a one (represents a
hexadecimal value of 8 or greater), a
one is added to the hexadecimal
fraction. If the most-significant
bit of the guard digit is a zero
(represents a hexadecimal value of 7
or less), the fraction is not
incremented. Thus, both positive and
negative fractions are rounded
upwards (i.e., more positive).

1.5.8 Result Storage

The results of the arithmetic
operation are transferred from the
output register of the floating-point
units, via the external Y bus (bits
EYOO through EY31), to the file
registers. The B address register
places the B address (bits FADDOO
through FADDO3) on the external
address bus. The results, which are
stored in the file register at the
location specified by the B address,
overwrite the previously stored
contents.

The CPU is informed that the results
of the arithmetic operation are
available for transfer to the
destination general purpose

register. The CPU microword
addresses the destination file
register (B address) via the register
A address lines (bits AQQ through
A03). This action places the
contents of the destination file
register, which was designated by the

B address, on the external DB bus
(bits EDBOO through EDB31). The
result is stored in the general
purpose register designated by the RB
address. The result overwrites the
previously stored contents of the
destination general purpose register.

1.5.9 Arithmetic Exception

An arithmetic exception (AE) will
occur if the answer to an arithmetic
operation results in an exponent
underflow or overflow. The AE will
cause a trap, within the CPU, if the
AE trap is enabled.

If an AE occurs, and the AE trap is
not enabled, the CPU firmware will
return a full-scale positive result
(@ 7FFFFFFF) with a positive
overflow, a full-scale negative
result (@ 80000001) with a negative
overflow, and (@ 00000000) with an
underflow,

At the time the CPU accepts the
results of the arithmetic operation
from the file register, the CPU tests
the floating-point unit for an AE.

If an AE has occurred, the CPU
firmware enables the arithmetic
exception status word onto the
external DB bus., The status word
informs the CPU of the sign of the
resultant which caused the arithmetic
exception and whether it resulted in
an underflow or an overflow.

An arithmetic exception will prevent
the answer from being stored into the
file register. Therefore, the file
register and the destination general
purpose register will retain the
original operand.

1.5.10 General Purpose Register Busy
During the arithmetic operation, the

destination general purpose register
is assigned a busy status.

The CPU requests the transfer of the
results from the file register to the

destination general purpose register
by addressing the file register with
the destination address on the RA
lines. Addressing the destination
register causes the CPU to pause
until the results of the operation
have been stored into the file
register. After the results have
been stored, the destination general
purpose register is released from its
busy status and the CPU is allowed to
read the results from the file
register and update its general
purpose register.

1.5.11 FPA Enable/Disable

Operation of the floating-point
accelerator can be enabled or
disabled by means of the switch (S1)
located on the front edge of the A/S
unit circuit board. With the circuit
card properly installed, S1 should be
switched to the right to enable the
FPA.

Operation of the FPA can also be
enabled or disabled by the CPU
firmware. At power on reset time, an
unknown status in the FPA file status
register may cause the CPU to stop or
perform some error operation. At
this time, the CPU firmware will
issue a level order (RESET.FPA) to
disable the FPA, and a sequence of
microcode will clear all the FPA file
registers and set the file status
register to a known state. At the
completion of this reset sequence,
the firmware will issue another level
order (SET.FPA) to enable the FPA,
and the FPA will be ready to resume
normal operation.

The SI hardware switch and the
firmware set/reset FPA function can
override each other, Enabling switch
S1 will place the FPA under firmware
control.

1-15/1-16

CHAPTER 2

THEORY OF OPERATION

2.1 Add and Subtract Unit

The add and subtract (A/S) unit
contains the logic required to
perform floating-point addition and
subtraction arithmetic operations.
In addition, it contains the
floating~point file which provides
the interface between the CPU and
both floating-point units. :

Figure 2-1 1s a functional block
diagram of the 160~103556 Add and
Subtract Unit. The block diagram
details the major functional blocks
and major signals of the A/S unit.
The signal mnemonics shown on the
block diagram are similar to those
used on the logic diagram. For the
add and subtract unit, sheet numbers
shown in parentheses in the text, and
in the lower right hand corner of
each functional block on block
diagrams, are the sheet numbers on
the A/S unit logic diagram, 130-
103556-000, where the circuit details
can be found.

2.1.1 Flcating-point File

The floating-point file is a major
part of the interface between the CPU
and the floating-point units. The
floating-point arithmetic arguments
are passed from the floating-point
file registers (FPR) to the operand
input registers. The floating-point
unit returns the results of the
arithmetic operation to the original
destination FPR and, subsequently, to
the CPU.

The operands from the CPU caﬁ be
either single-precision or double-
precision operands. Both types of

operands contain a sign bit (sign of
the fraction), a seven-bit exponent
value, and either a 24-bit fraction
for single-precision operands or a
56-bit fraction for double-~precision
operands. The radix point of the
fraction is assumed to be immediately
before the first bit of the fraction.

The exponents of negative numbers are
applied to the floating-point file as
one’s complement numbers and the
fractions as two’s complement
numbers. The exponents and fractions
of positive numbers are applied to
the file register as absolute values.

2.1.1.1 File Register logic

The floating-point file register
(sheets 28 through 30) stores
operands and results of the
arithmetic operations input on the
external Y (EY) bus. There are
sixteen 32-bit file registers, eight
of which correspond directly to the
CPU general purpose registers (GPR),
addresses 0 through 7. The remaining
eight, addresses 8 through F, may be
used as work registers in writable
control store (WCS) applications.

The output of the file register
transfers operands to the operand
(OPR) bus for loading the operand
input register.

The file register can be loaded with
an operand from the CPU or with a
result of an arithmetic operation by
either floating-point unit.

During the execution of a floating-
point instruction, the operand in the

2-1

general purpose register of the CPU
will be loaded into the floating-
point file register of the same
address (example: GPRO——»FPRO).
This is accomplished by the CPU
microword which addresses the (file)
register (B-port) via the B address
lines (EBOO through EB03).
Simultaneously, the external
destination field (CREG36 through
CREG39) of the microword will specify
the floating-point file as the
external destination. At the end of
the same CPU cycle, the contents of
the GPR are loaded into the addressed
FPR via the external Y bus lines
(EYO0 through EY31).

The decoding of the external
destination field causes the
generation of a load file (LDFILE)
signal which clocks the operand, from
the EY bus, into the file register
designated by the GPR address (EBOO
through EB03).

The logic to decode the CPU microword
external destination field is
contained in the file contention and
decode logic.

The results of arithmetic operatiomns
are placed on the EY bus from the
floating-point unit output register
under the control of the

microengine. The register B-port
address, the same address used for
storing the operand, is placed on the
file address lines (FADDOO through
FADDO3) by the unit which performed
the arithmetic operation. The
microengine issues a unit store
(UNITSTORE) signal and the results on
the EY bus are stored into the file
register designated by the original
GPR address.

1f, during the arithmetic operation,
an arithmetic exception occurs, the
arithmetic exception data (AEDATA)
signal is generated. This signal
inhibits the UNITSTORE, preventing
the results from being loaded into
the file register, and the file
register retains the original
operand.

2-2

The CPU accesses the contents of the
file register by issuing a file
enable signal (FILEEN) and applying
the file register address, as
designated by the destination GPR, to
the register A-port (RA) external
address lines (EAOO through EA03).
The FILEEN signal generates the file
output enable (FILEOE) signal which
enables the contents of the addressed
file register onto the external data
bus (EDBOQ through EDB31). The CPU
GPR is updated with the contents of
the file register at the end of the
CPU cycle.

2.1.1.2 File Contention Logic

The file contention logic (sheet 27)
contains the circuitry for decoding
the external destination (ED) field
(CREG36 through CREG39) of the CPU
microword. The ED field is decoded
by the decoder as shown in table 2-1,

The external B lines (EBOO through *
EBO3) are multiplexed with the file
address lines (FADDOO through
FADDO3). When the UNITSTORE signal
is not present, the external B lines
are selected and generate the file B-
port address (FBOO through FBO3).
When the UNITSTORE signal is present,
the file address lines are selected
and generate the file B-port address.

2.1.2 1Input Registers

The following paragraphs describe the
operation of the single- and double-
precision input registers.

2.1.2.1 Single Precision

The 24-bit fractions of both operands
are loaded simultaneously into the
single-precision input register
(sheet 4) by the load single
(LDSINGLEO1) signal from the
microengine. One operand fractionm is
obtained from the file register’s B-
port via the operand bus (OPRO8
through OPR31). The other operand

y=2/¢€-1

*1-¢ @an31j

weideyq YOo0[d - 3IFUN IOBAIQRS puR PPV

Z8€0E8

\ J3 EB00-03
v
CREG36-39
EA00-03 r
pic FADDO00-03
— *
J1 EY00.31 EY BUS
y v YV V ¥
J3__FILEEN N FB00.03 FILE
| FILE
RE CONTENTION
AEDATA o L%'gITCE“ g LOFILE AND DECODE
UNITSTORE Logic
UNITSTORE .y Fa-so —_— 27
J2 OPROD-31 OPR BUS :
J4 EDBO0-31 £DB BUS
v <
o 9 S 5 5 2
=]] @ @ o 8
8 8 8 @ 8 &
8 A 3 « "f «@ ‘y_'
INPUT REG LDS'NGLIE INPUT REG
LDSINGLE scaen |osmate| ppgcision PRECISION
—_— —_—p
(LSW) LDOUSBLE (MSW} ‘
23 [«]—™ I 56
o n 2
2R Iz IR |= g MY08.31 & g
C T I 3 <] <
S 2 X @ & 8
8 g e { @ 8
t] 2
A4 \ 4 A4
- -
2 M Lo Y
PRESHIFTER PRESHIFTER
———>
I 7.8 I 9,
v
g g
B <
@ &
a G
A \ 4 : A y
510 500
] ——
PREADDER
s ALU, SIGN AND OVERFLOW so1
IS -l
I 3 ln-m
3 3182 @ 2
o O ol z S
[v] ; rs ~ [=3
m o ®
8 2 8
&
~
. L 4 $
[2
2 :
0
(=]
<
bl
o
Yyyyvy v | A A J \ 4
SPECIAL NEG NUM LEADING ONES AND
AND POS ALL ZERO LEADING ZEROS
DETECTOR DETECTOR
l 16 I 15
) N m m <
e 2 9 8 8
S 2 2 3
& 8)4
=] w
w
Y vV vYY ¥ L 4
EXPONENT CORRECTOR AND
ROUNDING CONTROLLER
I 17
» @ m » —y
5 g g e
5 b4 5 z
~ o
g ¢
y y 3
OVERFLOW ALU08.35 |ALUDB.63
AND ROUNDING |« >
| 20
P
2
nN
(=3
®
«
| mux
. [22
- |= z |2 5 2 o N [l B
g |2 HE R EINE 2 | LB |5 g ZIz
c iz Qle 3 < 515 18 N O ,Z2 |N
3 | mI1z El] P o gi1€ 12 |2
D S m @ o |12 12 2153 1z I»
m m o ' m D < &
o |9 2 s w 2 o (o F=4 a
o IS m prd » |o o o
1N 2] m |= - g g
(9] 1Y)
v 4 v VvVY VY Y VY ¥V Y v- .
DEST. ADDR EXPONENT AND OVERFLOW
CONTROL ROUND REG QUTPUT NORMALIZER
-» AND AE REGISTER OUTPUT REG
28 l 22 l 21 I 23
hul m m m m
> Q
& @ 3 2 3
9 8 o @
3 & « @ Q
8 - EDB BUS
A EY BUS 4

Table 2-1
CREG Bits 36-39

CREG Bit

Syntax |36 37 38 39

Function

FP.FILE | 1 0 1 1

Floating-point file.
the load file (LDFILE) signal.
is used to load operands into the file
register.

This syntax generates
This signal

A/S.MSW | 1 1 0 0

Add/subtract most-significant word.
syntax generates the single-precision add
(SPADD) signal.
loading of a word from a selected file
register and a word from the EDB bus into
the two single-precision (MSW) input
registers.
both single- and double-precision operands.

This

The signal controls the

This signal is generated for

A/S.LSW | 1 1 0 1

Add/subtract least-significant word.
syntax generates the double-precision add
(DPADD) signal.
loading of a word from a selected file
register and a word from the EDB bus into
the two double-precision (LSW) input
registers.
double-precision operands.

This

The signal controls the

This signal is generated for

is prefetched from memory. The CPU
microword enables the memory data
onto the external data (EDB) bus
(EDBOO through EDB31) after the valid
memory data is returned to the CPU,
via cache multiplexer and right
shifter, and clocked into the cache
data out register. At the end of the
current CPU cycle, both operands are
loaded into the most-significant word
(MSW) portion (for single-precision
operands) of the FPU input reg-
ister. Simultaneously, the least-
significant word (LSW) portion
(double-precision) of the input
register is cleared.

The single operand (SINGLEOPRO1)
signal clears the double-precision
input register when a single-
precision operand is loaded into the
single-precision input register.

The latched outputs of the input
register are applied to the X and Y
preshifters.

2.1.2.2 Double Precision

The least-significant 32 bits (LSW)
of the 56-bit fractions of both
operands are loaded simultaneously
into the double-precision input
register (sheets 5 and 6) by the load
double (LDDOUBLEO1) signal from the
microengine. One operand fraction
(LSW) is obtained from the file
register B-port via the operand bus
(OPROO through OPR31). The other
operand fraction (LSW) is obtained
from the cache data out register via
the external data bus (EDBOO through
EDB31).

After the least-significant word has
been loaded and latched into the
double-precision input register, the
most-significant word is loaded into
the single-precision input register
as described in paragraph 2.1.2.1;
however, the LSW is not cleared.

The latched outputs of the input
register are applied to the X and Y
preshifters.

2.1.3 Scaler

The scaler (sheets 2 and 3) contailns
the logic to determine the right-
shift count required and which
fraction (the X or the Y) requires
right shifting in order to make the
two exponents equal.

The load single (LDINGLEO1) signal
from the microengine loads the scaler
with the sign bits (bit 0) and the
exponents (bit 1 through bit 7) of
both operands. The external data
bus, bits EDBOO through EDBO7,
carries the sign and exponent of the
X operand. The operand bus, bits
OPROO through OPRO7, carries the sign
and exponent of the Y operand.

If the sign bit of one or both of the
fractions is negative (bit 0 = 1),
that fraction’s exponent is one’s
complemented. If the sign bit is
positive (bit 0 = 0), the exponent is
not altered. The resulting exponent
values are simultaneously subtracted
from each other using the two’s
complement method.

The scaler simultaneously subtracts
the Y exponent value from the X
exponent value and the X exponent
value from the Y exponent value and
determines which exponent value, the
X or the Y, is the greater.

If the X exponent value is the
greater, the Y right shift (RISHY0O
through RISHYO3) count is equal to
the difference between the Y exponent
value and the X exponent value, The
Y right shift count is applied to the
Y preshifter.

If the Y exponent value is the
greater, the X right shift (RISHX00
through RISHX03) count is equal to
the difference between the X exponent
value and the Y exponent value. The

2~-6

X right shift count is applied to the
X preshifter.

If the difference between the
exponent values is greater than six,
for single-precision operands, or 13,
for double-precision operands, the
smaller fraction is considered
insignificant and the maximum shift
count of 15 is established. This
causes the smaller operand to be
replaced with all zeros by the
preshifter.

The exponent (X or Y) which has the
greater absolute value is applied to
the preadder as bits EOl1 through
E07. EO00 is always a zero.

2.1.4 Preadder

The preadder (sheet 3) predicts the
possibility of an arfithmetic
exception’s occurring during the
addition or subtraction of two
fractions.

In the scaler, the resulting exponent
is applied to the exponent lines (EO1
through E07). EO0 is always a
logical zero. A hexadecimal value
(see table 2-2) is added to the
exponent. The results of the
addition indicate the possibility of
an arithmetic exception when
PADDEOO = 1,

The preadded exponent (PADDEOO
through PADDEQO7) is applied to the
exponent corrector logic.

The exponents that will not have an
AE in the preadder are shown in Table
2-3.

2.1.5 Preshifters

The preshifters: (sheets 7 through 10)
shift the X or Y mantissa to
compensate for the equalizing of the
exponents.,

The X mantissa (MX08 through MX31 for
single precision and MX32 through

Table 2-2
Preadder Values

Decimal Hexadecimal
Exponent Precision Value
Sign Added
Positive Single 01
Negative Single F8
Positive Double 01
Negative Double F2
Table 2-3
AE Prediction
Decimal Decimal | Hexadecimal
Exponent Precision Exponent Value With
Sign Value 40 Bias
Positive Single + 62 7E
Negative Single -56 08
Positive Single +62 7E
Negative Single -50 OE
Table 2-4
ALU Control Lines
Function Sl S10 S01 SO0
OFF 0 0 0 0
ADD SP 1 1 0 0
ADD DP 1 1 1 1
SUB SP 0 1 0 0
SUB DP 0 1 0 1

MX63 for double precision) is applied
to the inputs of the X preshifter
(sheets 7 and 8). The Y mantissa
(MYO8 through MY31 for single
precision and MY32 through MY63 for
double precision) is applied to the
inputs of the Y preshifter (sheets 9
and 10). Either the X or the Y
mantissa is right shifted and sign
bit extended as determined by the
shift count (RISHXOO through RISHXO3
or RISHYOO through RISHYO03).

2.1.6 ALU Sign and Overflow

Since the arithmetic calculations are
performed by the two’s complement

method, the sign of the mantissa is
part of the calculation. Both sign
bits (SX and SY) are applied to the
sign portion of the arithmetic logic
unit (ALU) (sheets 11 through 14),
and both mantissas (SMX08 through
SMX63 and SMY08 through SMY63) are
applied to the mantissa portion of
the ALU.

The control signals S10, Sl1, SO0 and
SOl from the microengine are applied
to the ALU. These signals control
the functions of the ALU for both
single- and double-precision
operation. Table 2-4 shows the
states of the control lines for the

2-7

ALU functions. The S10 and SI1
signals control the ALUs associated
with the sign bit and the seven most-
significant hexadecimal digits and
the S00 and SO1 signals control the
remaining ALUs associated with the
seven least-significant hexadecimal
digits.

The ALU is turned off during the
loading of the input regilsters and
during the preshift operation. The
ALU is turned on after the shifted
mantissa signals are stable,
approximately 110 nanoseconds into
the machine cycle.

The seventh hexadecimal digit (least-
significant) 1s the guard digit. The
guard digit provides an extra
hexadecimal digit of precision for
single-precision operations when
either of the X and Y mantissas have
been right shifted by the preshifter.

The resulting sign is a function of
the addition or subtraction operation
of the sign bits and the overflow
from the most-significant hexadecimal
digit.

An overflow condition can be
generated by overflow from the most-
significant hexadecimal fraction
digit or by a special overflow case
which is caused by the addition or
subtraction of some special numbers.

Figure 2-2 is a simplified version of
the sign and overflow functions. The
sign bits (SX and SY) and the most-
significant hexadecimal fraction
digits (SMX08 through 11 and SMY0S8
through 11) are applied to the
arithmetic logic units. The control
lines (S11 and S10) establish the add
or subtract function. The carry-out
(COUT2) of the most-significant
hexadecimal digit ALU is applied to
the carry-in (CIN1) of the sign bit
ALU (sheet 14) and to the exclusive
OR gate B. The carry-out (COUT1) of
the sign bit ALU is also applied to
the exclusive OR gate B. The sign
bit (the result of the addition or

2-8

subtraction operation) and the
overflow (OVFLOW) are applied to the

exclusive OR gate C, the output of
which is the SIGN+ signal. The
OVFLOW signal is also applied to OR
gate A, along with the special
overflow signal (SPOVFLOW). The
outputs of the A gate are the signals
OVFLOWO1l through OVFLOW 04.

The exclusive OR gate B implements
the rules for an overflow
condition. Table 2-5 is a state
diagram for the overflow condition.

The rule for the overflow condition
is: an OVFLOW signal will be
generated when COUT]1 is present and
CINl 1s not present or CINl is
present and COUT1 is not present; an
OVFLOW signal will not be generated
when COUT1 and CINl are both present
or neither are present. The OVFLOWO1
through OFVLOW04 signals are
generated when either an OVFLOW
signal or an SPOVFLOW signal or both
are Input to OR gate A.

The special overflow 1s generated
under special conditions; for
example: when two negative eights
are added or a positive eight is
subtracted from a negative eight.
These two operations will satisfy the
rule CIN1 and COUT! so as to produce
no overflow. In this case, these two
operations are detected by the
special negative number logic and a
special overflow signal (SPOVFLOW) is
issued. This causes the overflow
signals OVFLOWOl through OVFLOW04 to
be generated.

The ALU functinal block also contains
logic which detects a guard digit
value less than, or equal to, seven
(hexadecimal) with all other digits
equal to zero, for single-precision
negative fractions. In this special
case, the guard digit is cleared, an
F (hexadecimal) is inserted into the
most-signficant hexadecimal digit,
and the exponent is decremented by
one.

SX
SY

S11
SIGN
S10 ALU

COUT 1

SMX08-11
SMY08-11

S11
MSD
S10 ALU

ey
»

CauUT 2
CiN 2

SIGN + ‘Ell"('J Q—ﬁﬂﬂ__.';]
B\

SPOVFLOW
14 nl'
A
3
2 z
9 3
L >
3)
820841
Figure 2-2. Simplified Sign and Overflow Function
Table 2-5
Overflow State Diagram
CIN1 COUT1 SPOVFLOW OVFLOWO1~04
0 0 0 0
0 1 0 1
1 0 0 1
1 1 0 0
1 1 1 1
X X 1 1
X = Don’t Care

2.1.7 Special Negative Number and
Positive A1l Zero Detector

The special negative number and
positive all-zero detector logic
(sheet 16) detects an all-zeroes
result in single- and double-

precision hexadecimal fractions of an
arithmetic operation. It also
detects a single-precision negative
number in which the hexadecimal

_mantissa is. all zeros and the guard

digit is equal to, or less than, a
hexadecimal 7.

Both of these conditions produce the
error correct signal (ECOR) to the
exponent correction logic. (Some
special single-precision, negative
number cases also cause the
generation of the special overflow
signal (SPOVFLOW) which is used to
correct the results.)

2.1.8 Leading Ones and Leading
Zeros Detector ’

In the leading ones and leading zeros
detector circuitry (sheet 15),
leading Fs (hexadecimal) of single-
and double-precision negative
mantissas {presented in the twos
complement form) and leading zeros of
single~ and double-precision positive
mantissas are detected if no overflow
condition exists. The number of
leading Fs or zeros detected
establishes a count on the exponent
correct (ECOROO through ECOR03) lines
which is used to decrement the
exponent.

The normalized shift count (NSC) is
used to left shift the mantissa so
that a hexadecimal digit other than a
zero for a positive mantissa and an F
(hexadecimal) for a negative mantissa
is to the immediate right of the
radix point.

2.1.9 Exponent Corrector

The exponent corrector (sheet 17)
ad justs the exponent to compensate
for the bit that was added in the
preadder, for normalizing of the
mantissa, and for special case
numbers.,

The error correction bits (ECORO0Q
through ECOR03) are added to the
exponent (PADDEOO through PADDEO7)
from the preadder. The exponent is
ad justed based on the conditions that
exist,

2-10

When there is no overflow, no request
for normalization, and the mantissa

is either positive or negative, a
value of FX (hexadecimal) is added to
the preadded exponent. The value of
X (hexadecimal) 1s the one’s
complement of the mantissa shift
count, which in this case is F. This
causes the preadded exponent to be
decremented by 1 to compensate for
the preadded bit.

When there 18 no overflow, but there
is a request for normalizing, and the
mantissa is either positive or
negative, a value of FX (hexadecimal)
is added to the preadded expoment.
The value of X (hexadecimal) is the
one’s complement of the mantissa
shift count.

When there is a normal overflow or
special overflow (negative mantissa
only), no request for normalizing,
and the normal overflow mantissa is
either a positive or negative, a
value of 00 (hexadecimal) 1is added to
the preadded exponent.

The special negative number case
where the mantissa contains one or
more leading Fs, followed by all
zeros, there is no overflow, and a
request for normalizing, a value of
FX+1 (hexadecimal) is added to the
preadded exponent. The value of X
(hexadecimal) is the one’s complement
of the mantissa shift count., The 1
(hexadecimal) is added because the
error correct (ECOR) signal 1is true
for the special negative numbers.

When the sign of the mantissa is
negative, the corrected exponent is
one’s complemented before it is
transferred to the exponent output
register. The corrected exponents of
positive mantissas are in their
absolute values and are not
complemented before being transferred
to the exponent output register.

The exponent corrector logic also
contains the logic for determining if
an arithmetic exception has

occurred. The exponent is seven bits
wide; however, the output of the
preadder is eight bits wide. This
allows the most—significant bit (bit
00) of the exponent corrector to be
used to indicate the occurrence of an
arithmetic exception (SETAE). The
set arithmetic exception signal is
added with the sign positive (SIGN+)
signals to indicate a positive or
negative arithmetic exception. The
arithmetic exception signals are
transferred to the arithmetic
exception status register. The
arithmetic exception status is
transferred to the CPU by firmware
request.

2.1.10 Normalizer

The normalizer (sheets 18 and 19)
receives the mantissa from the
arithmetic logic units and the
normalized shift count from the
leading ones and leading zeros
detector. The mantissa is shifted
left by the amount specified by the
shift count. Both single- and
double-precision mantissas can be
normalized.

2.1.11 Overflow and Rounding

In the overflow and rounding
circuitry (sheet 20), single-
precision mantissas are rounded to
the next higher hexadecimal digit if
the guard digit (ALU32 through ALU35)
is equal to, or greater than, eight
(hexadecimal). This is accomplished
by adding a hexadecimal one (the
ROUND signal) to the least-
significant mantissa digit. There is
an exception to the rounding of the
single-precision mantissa. A
mantissa which contains all Fs
(hexadecimal) is not rounded because
it would cause an overflow condition.

There are several overflow conditions
which require special handling of the
most—significant digit (ALUO8 through
ALUll). In each case, the digit is
placed into the most-significant
digit and the mantissa is shifted
right by the overflow right shifter
(2:1 myltiplexers).

When a positive overflow condition
exists, a one (hexadecimal) is placed
into the most-significant digit.

When a negative overflow condition
exists, an E (hexadecimal) is placed
into the most-significant digit.

When a special overflow condition
exists, an F (hexadecimal) is placed
into the most-significant digit.

2.1.12 Normalizer Error Corrector

The normalizer error corrector (sheet
22) is a 2:1 multiplexer which
normally selects the normalized bits
(NMZ08 through NMZ11l); however, in
some special cases it will select an
F (hexadecimal).

These special cases exist when the
result of the ALU operation has a
negative sign, the mantissa must be
normalized one or more positions, and
the normalized mantissa contains all
zeros.

An example of this special case is as
follows:

Assume the result of the ALU
operation is a negative FFFFOO.
The mantissa requests normalizing
because of the four leading Fs.
The result of normalizing this
mantissa is a negative 000000,
which is an invalid negative
number. The special negative

number detector detects the
special case of negative
mantissas with leading Fs
followed by all zeros and
generates the error correction
(ECOR) signal. The ECOR signal
causes the multiplexer to select
- an F instead of the normalized
bits (NMZ08 through NMZ11) and
applies it, via the normalized
error corrected lines (MNZOS8ECOR
through NMZ11ECOR), to the
normalized output register.

2.1.13 Output Registers

The add and subtract unit has two
sets of mantissa output registers
(sheets 21 through 23). One set
contains the sign, the exponent, the
results of an ALU overflow, and/or
the results of a single-precision
rounding request. The other set of
output registers contains the sign,
the exponent, and the normalized
results if an overflow condition does
not exist.

Both sets of registers are 64 bits
wide (the exponent portion of the
exponent and rounded register is
common to both sets) at their inputs
and both sets send their contents to
the 32-bit wide EY bus (EYOO through
EY31). The selection of one or the
other set of output registers and the
sequencing of their outputs to the EY
bus are controlled by the
microengine,

2.1.13.1 Exponent and Rounded Register

The exponent and rounded register
(sheet 22) contains the sign (SIGN+),
exponent (EZ01 through EZ07), and the
rounded mantissa (RMZ08 through
RMZ31) of a single-precision result,
or the most-significant word of a
double-precision result. The least-
significant word of the double-
overflow output register.

2-12

The exponent portion of this register
also contains the sign and exponent
for the normalized output register.

2.1.13.2 Overflow Output Register

The overflow
21) works in

output register (sheet
conjunction with the
exponent and rounded register. It
contains the least-significant word
(ALU32 through ALU63) of a double-
precision result.

2.1.13.3 Normalized Output Register

The normalized output register (sheet
23) contains the normalized results
of single- and double-precision
operations (NMZO8SECOR through
NMZ11ECOR, NMZ12 through NMZ31, and
NMZ32 through NMZ63). The sign bit
and exponent of the normalized
results are contained in the exponent
portion of the exponent and rounded
register.

2.1.14 Destination Address Control

The destination address control
(sheet 26) stores the address of the
original file register in which the
resulting operand is to be stored.
This address is placed on the file
address lines (FADDOO through FADDO3)
during the resulting operand storing
process.,

2.1.15 Arithmetic Exception Register

The arithmetic exception register
(sheet 26) contains the status of the
arithmetic exception. The arithmetic
exception output enable (AEOE) from
the CPU is common to both floating-
point accelerator units. The status
of both the add and subtract unit
and the multiply/divide unit are

reported. The CPU is able to examine
the individual bytes of the status

2.2 Multiply and Divide Unit

word. The status word format is The multiply and divide (M/D) unit
shown in Figure 2-3. contains the logic required to
BYTE 0 BYTE 1 BYTE 2 BYTE 3
A/S UNIT STATUS NOT USED M/D UNIT STATUS NOT USED
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bits 0 - 4 Not used
Bit 5 =1 Sign of the AE Result is positive
Bit 6 =1 Sign of the AE result is negative
Bit 7 0 Exponent underflow
=1 Exponent overflow
830070

The bits of status byte O correspond
to bits EDBOO through EDBO7 on the
external DB bus.

The CPU enables the detection of the
arithmetic exception by issuing the
arithmetic exception enable (AEXCPEN)
signal. When an arithmetic exception
occurs, the add and subtract unit
will respond with an arithmetic
exception signal (AEPEND) to the

CPU. The CPU will request the
arithmetic exception status word by
enabling the status register output.

An arithmetic exception prevents the
results from being stored back into
the original destination file
register.

2.1.16 Clock and Microengine

The clock and microengine circuitry
(sheets 24 and 25) contains the logic
for the timing, control, and
sequencing of the add and subtract
unit.

Status Word Format

perform the floating-point
multiplication and division and
fixed-point multiplication
operations.

For reference, a block diagram of the
160-103557 M/D unit is provided in
Figure 2-4., 1In the text that
follows, additional block diagrams
are provided that illustrate that
portion of the M/D unit applicable to
the particular aritbmetic operation
being described.

For the multiply and divide unit,
sheet numbers shown in parentheses in
the text, and in the lower right hand
corner of each functional block on
block diagrams, are the sheet numbers
on the M/D unit logic diagram, 130-
103557-000, where the circuit details
can be found.

Execution of the floating-point
multiply, floating-point divide, and
fixed-point multiply operations are
described separately. Where similar
functions exist among the instruc-
tions, they are explained in the
description of the floating-point
multiply and then referred to, but

2-13

not duplicated, in the text for the
other instructions. The reader
should understand the description of
the floating-point multiply

before proceeding to the floating-
point divide or fixed-point
multiply.

2.2.1 Floating-Point Multiply

The main steps implemented for
execution of the multiply floating-
point word and doubleword
instructions by the M/D unit are as
follows:

Operands are input from the CPU and
the FPA register file.

Instruction execution is initiated by
the CPU.

The incoming floating-point
multiplicand and multiplier operands
are disassembled and loaded into the
fraction and exponent logic of the
FPA B Board.

For single-precision operations, the
fraction is a 24-bit hexadecimal
number positioned in bits 08 through
31 of the incoming word operand. For
double-precision operations, the
fraction is a 56-bit hexadecimal
number positioned in bits 08 through
63 of the incoming doubleword
operand.

1f either, one or both, of the
fractions has a negative sign (bit
0), the exponent (bits 0l through 07)
of the negative fraction is one's
complemented. The biased exponents
are algebraically added, and then 40
(hex) is subtracted from the sum.

The result is the biased exponent of
the answer. .

The two fractions are multiplied
together and then normalized or
rounded as needed to produce the
final fraction answer with an
appropriate sign. The sign of the
final fraction will be negative if
either of the original operands was
negative.

2-14

If the fraction answer is megative,
then the biased exponent of the
answer will be one's complemented.

The final fraction, fraction sign,
and exponent are assembled into the
correct format for a single- or
double-precision floating-point
operand and stored in the FPA
register file.

2.2.1.1 Simplified Sequence of Events

1. Load operands
a. Input the fraction sign
bits and the exponents of
both operands from the OPR
and EDR buses into the
exponent input logic (sheet
27).

b. If either one (or both) of
the fraction sign bits is
negative, one's complement
the exponent associated
with the negative fraction
(sheet 27).

c. Load the exponents into the
exponent input registers .
(sheet 27).

d. Load the fractions of the
multiplier (X) and the
multiplicand (Y) from the
OPR and EDB buses
respectively into the
fraction logic (sheets 2
and 10).

Note

One machine cycle is
required to load single-
precision operands; two
machine cycles are required
to load double-precision
operands.

e. Input the destination file
address from the DR bus
into the RR address logic
sheets 26 and 29).

TEXP00-07

OPR
BUS

00-07

W 0007

EXPONENT
INPUT
LOGIC

7

FPUOPRAORD

2
EXPA EXPB
00-07 00-07
A B

A/S EXP ALU

=]

'

A/SEXPALU

REGISTER

28
EY00-07
SEXP, 00-07

FULL
ADDER

29

—

TEXP 00-07

XOR

=

'

EXPONENT
QUTPUT
REGISTER

29

lE Y00-07

EDB OPR OPR
LDUNIT FPUDPRBORD
BUS)
GND BUS 00-07 BUS ’ :
00-31 ?——-———\ £B00-03
ioo-:n 00-31 08-314 00074 08:31Y 0007 4
FIX POINT FMULTIPLICAND/ ZERO DOUB. PREC. ING. . CONTROL RB
MULTIPLICAND DIVISOR EXTENSION DIVIDEND DIVIDEND/ CONSTANT SEQUENCES ADDRESS
REGISTER REGISTER REGISTER REGISTER MULTIPLIER REGISTER LOGIC
3 2 8 4 REGISTER] 49 8 32 129,26
X00-07 XC X00-07
X00-07
X00-07
MULTIPLIER R
CIRCUIT REGISTER
4 RCo863
|11,24
ABSY
REGISTER
RCO08-63 —
5 MULTIPLIER
ouTPUT RECIP
REGISTER PROMS
13,14 l 12
T RIGHT Y08-63 PR06-07 | l 1 ARC17-194
RC12-63 @ REGISTER P08-71
. RC09-16
6 TWO'S PP
QY0007 XC00-07
comp ADDER
LOGIC > —
CREG36-39 9,15 16-20
lﬂ&ﬂ
PP
REGISTER
16-20'
lPROS-TI
NORMALIZE
N{;’;“gé;g: f@——{COMPLEMENT
AND ROUND
I 26 ’ LOGIC 21.24
RC08-71
RC08-63) : RC16-71
ARITH FIX POINT
EXCEPTION R%‘gg;’;? MULTIPLY
LOGIC ouTPUT
- r—so‘ REGISTER[-
lsoma-za L ;i EY00-31 FADDO0-03

830381

Figure 2-4.

Multiply and Divide Unit-Block Diagram

2-15/2-16

2.

In the A/S exponent ALU (sheet
28), add the biased exponents
and subtract 40 (hex) from the
sum. The result is the biased
exponent of the answer.

a. Multiply the two fractions
together.

b. Load the biased exponent
sum obtained in step two
into the exponent ALU
register (sheet 28).

Correct the fraction product
from step 3:

a. Normalize the fraction
answer if needed.

Exception: Do not normalize
negative answer
if fraction
portion
= F0000000

b. Enable rounding of fraction
answer only when
normalization is not
needed.

c. If the fraction product
required normalization,
decrement the exponent.

a. If either one (but not
both) of the original
operands had a negative
fraction, one's complement
the biased exponent
produced in step 2 and/or
step 4-b (sheet 29).

b. If either one (but not
both) of the original
operands had a negative
fraction, set the sign of
the fraction answer to a
logical one (sheet 29).

c. Load the sign bit of the

fraction answer and the
biased exponent into the
exponent output register
(sheet 29).

Exception: If the
fractional
—answer from step
3 is all zeros,

of if the
exponent of the
original
operands had a
negative
fraction, one's
complement the

biased exponent
produced in

step 2 and/or
step 4-b (sheet
29).

d. Load the corrected fraction
answer from step 4 into the
floating—point output
register (sheet 30).

Gate the contents of the
exponent output and floating—
point output registers into
their respective bit positions
on the external Y (EY) bus.
Register contents are shown in
Table 2-6.

Output the destination file
address from the RB address
logic onto the file address
bus (FADDOO through 03). This
is the address of the file
register(s) to which the
answer is destined.

2.2.1.2 Sequence Control

Internal operation of the M/D unit is
largely controlled by a sequencer

(sheet 32).

1'

2'

3.

The sequencer includes:

Two 512-location by 8-bit
control programmable read-
only-memories (PROMs)

Two synchronous binary
counters

Five Decode/Demultiplexers
(DCD/DMUX)

The PROMs contain encoded control
bits which are used to step the M/D

unit

through the sequence required

to execute a given arithmetic

Table 2-6
Output Register Contents

Single-precision answers:
Exp. Out. Reg. EY00-07 Cycle n
Double-precision answers:
Exp. Out. Reg. EY00-07 Cycle n
Flt. Pt. Out. Reg. 08-31} EY08-31 .
Flt. Pt. Out. Reg. 32-63 | EYO0-31 Cycle n+l

operation. A memory map of both
PROMs is provided in Table 2-7.

Some of the PROM bits drive discrete
control lines; the others are
arranged in four-bit codes which must
be decoded by the appropriate
decode/demultiplexer circuits.

The PROMs are addressed sequen-
tially. The high order portion of
the PROM address is determined by
decoding the A/S and M/D unit orders
(LFPUOPRAORD and LFPUOPRBORD) and
CREG bits 36 through 39, all of which
originate in the CPU. The two
floating-point unit orders (sheet 32)
specify the type of arithmetic
operation (see Table 2-8). CREG bits
36 through 39 are decoded on sheet 15
and indicate whether the operation is
single precision (HLDSPMULT) or
double precision (HLDDPMULT). The
decoding of these inputs from the CPU
determines what arithmetic

operation will be performed and
provides the appropriate address
range for the sequencer PROMs (MB84
and MB81). Within that address range
is stored the control code for the
particular arithmetic operation
decoded.

The two binary counters supply the
low order portion of the PROM address
and sequentially step the address
count through the appropriate

range. Both counters are reset at
the end of each sequence. Therefore,

2-18

the low-order portion of the PROM
address will be at zero when the CPU
orders for the next arithmetic
operation are received. The reset is
a function of BDONE which is coded in
the last PROM location of each
sequence.,

Both PROMs are accessed simulta-
neously; their parallel outputs
provide 16-bits of usable control
code which are divided into four
fields. Tables 2-9 and 2-10 define
the control codes and active sequence
control signals applicable to the
multiply floating-point word
instruction. Tables 2-11 and 2-i2
define the control codes and active
sequence control signals applicable
to the multiply floating-point
doubleword instruction. Signal
definitions of all the control codes
in the sequencer PROMs are provided
in Appendix A.

2.2.1.3 Operand Loading

Two operands are loaded
simultaneously into the M/D unit
logic at the beginning of each
instruction execution sequence. One
operand originates in memory; it is
transferred to the M/D unit board on
the 32-bit EDB bus from the CPU's
cache data out register. The other
operand is fetched from one of the
A/S unit's file registers; it is
transferred to the FPA B board on the
32-bit OPR bus.

Table 2-7
Sequence Control PROM Map — MB84 and MB81

Address Contents
0000-0004 Single Precision Flt. Pt. Multiply
Sequence Control Code
005 b 03F All COde = 20 (hex)n-ooo...ooootoocoaMBSA only
All code = ZEeYOSeeesseasoscesasessssssMB8l only
040 - 05C Single Precision Flt. Pt. Divide
Sequence Control Code
05D - O7F All code = 20 (heX)eeseeeoosaoasasss MB84 only
All Code = ZerOS.....................MBS]. Only
080 - 085 Fixed Pt., Multiply
Sequence Control Code
086 - OFF All COde = 20 (hex)..0.'00..0.'.'.-..MB84 only
All Code = Zeros.-...................Mle Only
100 - 108 Double Precision Flt. Pt. Multiply
Sequence Control Code
109 - 13F All COde = 20 (hex)cooooooo-oooooooonMB84 Only
All code = ZEerOSeessessssccsseecesssMB8l only
140 - 16D Double Precision Flt. Pt. Divide
Sequence Control Code
16E - 1FF All code = 20 (heX)eessoosesssessasssMB84 oOnly
All cOde = ZEerOSecessssssssesssesaessMB8l only

Single-precision operands require
only one bus transfer, and are always
loaded into the most-—significant word
position of the operand input
registers. Double-precision operands
require two bus transfers; the least-—
signficant word (bits 32 through 63)
is always transferred first.

The operand input registers are
loaded as a result of decoding (sheet
15) CREG bits 36 through 39. These
bits originate in the CPU and
represent the contents of the
external destination field of the CPU
microword; they specify whether the
M/D unit should load a single- or
double-precision operand. For

single-precision operations, one CPU
microword with "M/D.MSW" in the
external destination field will
initiate the operand load. For
double-precision operations,
"M/D.LSW" will be specified first,
followed by another microword with
"M/D.MSW".

Disassembly of the operands into
their component parts is accomplished
by steering the fraction, fraction
sign bit, and exponent into the
appropriate input registers of the
exponent and fraction logic.

Table 2-8

Operation Decode

CREG
36-39 HLDDP
HEX MULT
VALUE SIGNAL FPA.A FPA.B Operation
E 0 0 0 Single-precision Flt.-Pt. Multiply
E 0 0 1 Single-precision Flt.-Pt. Divide
E 0 1 0 Fixed-Pt. Multiply A
E 0 1 1 No Operation
F 1 0 0 Double-precision Flt.-Pt. Multiply
F 1 0 1 Double-precision Flt.-Pt. Divide
F 1 1 0 No Operation
F 1 1 1 No Operation
Table 2-9
Sequence Control PROM Coding - Multiply Floating—point Word
Address PROM MB84 PROM MB81
Field A | Field B Field C | Field D
8765 4321 8765 (4321
000 0110 07000 0000 {0001
001 0001 1000 0000 |00O00O
002 0000 |J0O0O0O 0000 j0000O
003 0000 jOOOO 0000 |1110
004 1010|1101 1100 {1111

Table 2-10
Active Sequence Control Signals - Multiply Floating—point Word

Step PROM MB84 PROM MB81
Field A Field B Field C Field D
1 HSTOPCLKEN LSPZEN LX1STRT
2 LTADDEN LTPPAISTRT | LSPZEN
HMULTCLR
3 LTADDEN
4 LTADDEN LLDEXP
5 HDONE LSETAE LSELMULT LLDOUT
Table 2-11
Sequence Control PROM Coding - Multiply Floating-point Doubleword
Address PROM MB84 PROM MB81
Field A | Field B Field C |Field D
8765 (4321 8765 |4321
100 0110 JO00O0O 0001 1010
101 0001 J1011 0001 |00O0O
102 0000 |00O0O 0001 |JOOOO
103 0000 |J1001 0001 |0010
104 0000 |OO0O0O 0001 |OOO1
105 0000 |1000 0001 {(00O0O
106 0000 |OOOO 0001 |[00O00O
107 0000 |00C00O 0000 (1110
108 1010 j1101 1100 1111

Table 2-12
Active Sequence Control Signals — Multiply Floating-point

Doubleword

Step PROM MB84 PROM MBA1
Field A Field B Field ¢ | Field D

1 HSTOPCLKEN LDPYEX LZ3STRT

2 LTADDEN LTPPA3STRT LDPYEN NOP
HMULTCLR

3 LTADDEN LDPYEN - | NoP

4 LTADDEN LTPPA2STRT LDPYEN L¥2STRT

5 LTADDEN LDPYEN LX1STRT

6 LTADDEN LTPPA1STRT LDPYEN NOP

7 LTADDEN LDPYEN NOP

8 LTADDEN LLDEYP

9 HDONE LSETAE LSELMULT | LLDOUT

Bits 08 through 31 of the memory
operand (multiplicand) are input from
the EDB bus into bit positions 08
through 31 of the multipli-
cand/divisor (M/D) register. Bits 00
through 07 (fraction sign bit and
exponent) are input into the exponent
input register.

The register operand (multiplier) is
similarly loaded into the
dividend/multiplier (D/M) register
and the exponent input register from
the OPR bus.

For single-precision operations, the
least-significant portions of the M/D
and D/M registers (bits 32 through
63) are not loaded. They retain old
data. This portion of these two
registers is never gated out to the
fraction logic during single-
precision multiply.

However, the multiply logic always
requires a 56-bit multiplicand.

2-22

Thus, zeros (in bit positions 32
through 63) are appended to the 24—
bit (08 through 31) single-precision
fraction output froxm the M'D
register, The zeros are output by
the zero extension register and are
asserted onto the Y bus in bit
positions 32 through 63. The Y bus
connects the multiplicand input
register (M/D register) and the zero
extension register to the fraction
multiplv logic.

The D'M register output (multiplier)
i{s gated from the D/M register to the
multiplv logic on the X bus. It is
not necessary to append zeros to the
multiplier, since only an eight-bit
subset of the multiplier is used each
multiply iteration. The D/M
register’s output is sequentially
stepped, beginning with bits 24
through 31 the first iteration and
followed by bits 15 through 23 and 08
through 15, the second and third
multiply iterations.

2.2.1.4 Destination File Address

The M/D unit receives a destination
file address from the A/S unit at the
same time that the initial operands
are received. The destination file
address specifies the file register
into which the answer should be
stored when the arithmetic operation
is completed.

The M/D unit simply retains the
destination file address and then
returns it to the A/S unit, along
with the answer, upon completion of
the arithmetic operation.

The destination file address is input
from the EB bus (bits 00 through 03)
and loaded into the file address
input register (sheet 29)
simultaneous with loading the initial
single-precision operand (or, the MSW
of the initial double-precision
operand). The contents of the file
address input register are output to
the RB address logic (sheet 26) where
they are retained. Upon completion
of the arithmetic operation, the
destination file address will be
sent, via the file address bus
(FADDOO through 03), to the A/S

unit. This address transfer is
controlled by the output control
logic (sheet 31).

2.2.1.5 Exponent Handling

The basic sequence for handling
exponents is outlined as follows:

1. One’s complement either
exponent if its associated
fraction is negative.

2. Add exponents without removing
their 40 (hex) bias.

3. Subtract 40 (hex) from the
exponent sum.

4. Load the result from step 3
into the exponent ALU
register.

5. Decrement the exponent sum if
the fraction answer needed to
be normalized.

6. One’s complement the final
exponent if the sign of
fraction answer is negative.

7. Load the exponent output
register.

8. Gate the exponent onto the EY
bus (EYOl through 07).

There are two exponent input
registers. The exponent of the
multiplier (exponent A) is always
loaded into the expoment A input
register (sheet 27); the exponent of
the multiplicand is always loaded
into the exponent B input register
(sheet 27).

When the exponents are input from
their respective data buses, each
exponent passes through a separate
exclusive OR network located in the
data path between the data bus input
and the A and B exponent input
registers (see Figure 2-5). Each
exclusive OR network is fed by one
of the exponents (A or B) and the
sign bit of the fraction associated
with that particular exponent. If
the sign bit is a logical one
(indicating a negative fraction), the
exclusive OR network will one’s
complement the exponent.

The A and B exponents are added
together in the exponent ALU (sheet
28) without first removing the bias
of either exponent. The addition of
the two biased exponents produces a
sum with a bias of 80 (hex). To
correct this, 40 (hex) is subtracted
from the sum of the biased exponents
using the full adder which is located
at the exponent ALU output. The
subtraction is performed by adding
the two’s complement of 40 (hex) to
the output of the exponent ALU.

The result of the exponent add/sub-
tract operation is loaded into the
exponent ALU register (sheet 28) when
the sequence control logic issues the
load exponent signal, LLDEXPL. If
the fraction product is zero, the
exponent ALU register will be reset,
forcing the value of the exponent to
zero (LFRCZEXP).

SPMICLK

MULTHLIER

EXPONENT INPUT *

OPRO1-07

OPROO

EXPONENT A

INPUT REG.
I 27

1

CONSTANT

MULTIPLICAND
EXPONENT INPUT

1 EDBO1-07

‘EDBOO

EXPONENT B

INPUT REG.
] 27

v 4

EXPONENT

ALU E‘

|

Yy

FULL
ADDER

3y

2CLKS03
LDEXPL

EXP ALU

REGISTER
I 28

-

CONSTANT 1
FULL
ADDER I-—-
29
FRCZEXP -ﬁ
QUALNEG | ’
7
EXPONENT
_QUTCLK —pP ouTPuT
REGISTER[29
EY00-07
810038
Figure 2-5. Exponent Logic Block Diagram (Floating-point Multiply)

The ocutput of the exponent ALU
register propagates to the exponent
full adder (sheet 29). The exponent
full adder decrements the exponent by
one if the fraction normalize detec-
tor (sheet 26) has determined that
the product of the fraction multiply
needs to be normalized. The exponent
will never have to be decremented by
a value greater than one because the
fraction product will never need to
be shifted by more than one hex digit
to achieve normalization.

If the sign of the fraction product
is negative, the exponent will be
one’s complemented prior to being
loaded into the exponent output
register (sheet 29). One’s
complementing the exponent will be
inhibited If the exponent was forced
to zero in the exponent ALU register
(see above).

The exponent output register is
loaded with the sign of the fraction
and the seven-bit blased exponent
when the sequence control logic
issues the load output registers
signal (LLDOUT). Loading the
exponent output register occurs
simultaneous with the loading of the
fraction into the floating-point
output register.

2.2.1.6 Sign Bit Manipulation

The sign bits of both operands enter
the FPA B board along with two
exponents and fractions from the EDB
and OPR buses. The two sign bits are
examined independent of their
respective fractions and are used to:

1. Generate the sign of the
fraction product.

2. Condition the fraction
normalize logic.

3. Control the exponent one’s
complement logic.

4. Condition the fraction two’s
complement logic (i.e., the
two’s complement logic
associated with the partial
product adder).

The sign of the fraction product is
determined by an exclusive OR of the

signs of the original fraction
muitiplier and multiplicand (sheets
29 and 24). If efther one (but not
both) of the original fractions 1is
negative, the sign of the fraction
product will be negative. If both
are negative or positive, the sign of
the fraction product will be
positive.

The sign of the fraction product is
loaded into the exponent output
register (bit 0 position) (sheet 29)
at the same time as the final
exponent .

The exclusive OR function described
above also provides an indication
(POSITIVE or NEGATIVE) to the
fraction normalize logic (sheet 26)
as to whether the fraction product
will be negative or positive.

1. If the sign is negative, the
normalize logic is conditioned
to test for leading Fs in the
fraction product. Leading Fs
in conjunction with a negative
sign bit mean normalization is
required.

2. If the sign 1s positive, the
normalize logic is conditioned
to test for leading zeros.
Leading zeros in conjunction
with a positive sign bit mean
normalization is required.

There are three sets of exponent
one’s complement logic. Two sets are
for the original exponents (sheet 27)
and one set is for the exponent of
the answer (sheet 29).

The one’s complement network for each
of the incoming expoanents is
controlled by the sign of the
fraction associated with the
particular (A or B) exponent. If the
sign of the fraction is negative, the
exponent of that fraction is one’s
complemented as it is input from the
data bus.

The one’s complement network for the
final exponent (sheet 29) is
controlled by the sign of the
fraction product. If the fraction
product is negative, the final
exponent is one’s complemented prior
to being loaded into the exponent
output register.

The sign bits of the original
fractions (multiplier and
multiplicand) are used to condition
the fraction two’s complement
logic. To understand this
application, refer to the section
entitled two’s complement handling
that is provided later in this
chapter (paragraph 2.2.1.7.2).

2.2.1.7 PFraction Multiply

A simplified diagram of the fraction
multiply logic is provided in Figure
2-6.

The multiplication of fractioms
begins on the cycle after operand
loading when the sequence control
logic enables the output of the
multiplier (X) and multiplicand ()
onto the X and Y buses,
respectively. The entire 56-bit
multiplicand is output onto the Y
bus. One byte of the multiplier is
output onto the X bus. For single-
precision operations omnly, the zero-
extension register will output zeros
into bit positions 32 through 63 of
the Y bus.

The multiplication of fractioms
requires a total of four machine
cycles (eight for double precision)
to execute. Each of the first three
cycles involves multiplying a 56-bit
multiplicand by eight bits of the
multiplier and adding (accumulation)
the result (partial product) from the
previous cycle. A different
multiplier byte is used each cycle,
starting with the least-significant
byte (bits 24 through 31 for single
precision: bits 56 through 63 for
double precision). No multiplication

2-26

occurs in the fourth cycle; instead,

_one final accumulate is performed.

At the end of the fourth cycle, the
fraction product resides in the
partial product (PP) register.

2.2.1.7.1 Basic Steps

The text that follows provides a more
detailed description of the basic
steps for the multiplication of
fractions. The two’s complement
function, which is an integral part
of the fraction multiply, is
described separately. For reference,
a detailed block diagram of the
fraction multiply logic is provided
in Figure 2-7.

The basic steps for the first
jiteration of the fraction multiply
are outlined as follows:

1. Multiply the least-significant
byte of the multiplier times
the entire multiplicand (bits
08 through 63). This produces
a 112-bit result which
propagates from the multiplier
circuit to the multiplier
output register.

Note

Bits 24 through 31 of X are
used for the first iteration
of a single-precision
multiply. For double
precision, X bits 56 through
63 are used instead.

2. The 112 bits are overlapped
and added together in ALUl of
the PP adder logic to produce
a 56-bit result.

3. The previous partial product
currently in the PP output
register (which is always zero
for the first iteration) is
shifted right eight bit
positions and then added to
the result from ALUl. This
add is performed in ALU2. The

Y BUS X BUS

MULTIPLICAND MULTIPLIER
56 8
MULTIPLIER
CIRCUIT
rlS, 14

112
MULTIPLIER
ouTPUT
REGISTER
13, 14
112
TWO'S PARTIAL
COMPLEMENT ——— PRODUCT
LOGIC ADDER
9,15 116-19
64
PARTIAL
PRODUCT
OUTPUT
REGISTER 16-19
64
56-BIT PRODUCT AND
8-8IT GUARD DIGIT
810039
Figure 2-6. Multiply Logic - Simplified Block Diagram

previous partial-product value
is zero only for the first
iteration of the fraction
multiply.

4, The result of the ALU2
addition propagates to the PP
output register. One fraction
multiply iteration is
completed. The value that
propagates into the PP output
register at the end of the
first iteration represents the
first partial product.

Subsequent iterations follow the same
basic steps outlined above. The
differences are noted in the
paragraphs that follow.

In each subsequent fraction multiply
iteration, a progressively more
significant byte of the multiplier
(X) is multiplied times the entire
56-bit multiplicand (Y). This is
performed in step 1 above. Only the
bits of X differ each iteration.

Step 3 above is performed in the same
manner during each subsequent
iteration. However, the value in the
PP output register for the second
iteration (step 3) will be the
partial product that was produced the
first iteration., Thereafter, the
value in the PP output register for
each iteration (step 3) will be the
result of the multiply from the
previous iteration plus the sum of
all previous partial products. Each
iteration, the new partial product is
added to the sum of all previous
partial products. The process is
cumulative, At the end of the last
iteration, the value in the PP output
register will be a 56-bit product
plus an 8-bit guard digit.

Due to the 8-bit shift right that
occurs each iteratiom {step 3), the
most-significant byte of the first
partial product will have been
shifted into the least-significant
byte position of the final product by
the time the last iteration is
completed.,

-28

2.2.1.7.2 Two’s Complement Handling

Since there 1s an established

convention that all negative
floating—point fractions input to or
output from the FPA will be in their
two’s complement form, this must be
taken into account during the
execution of the fraction multiply.
The method used is broadly defined as
follows:

1. When the fraction multiply
occurs in the multiplier
circuit, only the absolute
values of the two fractions
are used; that is, they are
consideration of the sign of
either fraction.

2. If either one or both of the
original fractions was
negative, then a two’s
complement value will be added
to the result from step one.
This is a function of the
two’s complement logic and the
partial product adder.

The two’s complement value that is
added to the product of X times Y (if
either one or both fractions are
negative) is derived by the following
method:

1., If Y is negative, one’s
complement X and add it to the
product of X times Y.

2. If X is negative, one’s
complement Y and add it to the
product of X times Y.

3, Add a binary constant to the
product of X times Y:

- if neither X nor Y are
negative, add the binary
constant of 00 to each
partial product.

- if either X or Y (but not
both) are negative, add the
binary constant of 0l to
each partial product.

TADDL

TADDEN

ENYT
Y08-63 Y08-15 X00-07 Y16-23 Y2431 v3239 Y4047 Y4855 ¥56-63
Y BYTE Y X Y X Y X Y X Y X Y X Y x MULTIPLIER
SELECT MULTIPLIER MULTIPLIER MULTIPLIER MULTIPLIER MULTIPLIER MULTIPLIER MULTIPLIER CIRCUITS
toGic | ¢ (SHEETS 13-14)
YC00-07
ONE'S
< 4 - o - - o o —— .
COMPLEMENT 8 8 8 s 7 g 41 s] 8] S/V 8 4 g 4 8] g4
LOGIC
STAGING MULTIPLIER
REGISTER 08-15 16-23A 16238 24-31A 24318 32-39A 40-47A 40-478 48.55A 48.558 56-63A 56-63B 64-71 R‘;g:;.’ga
8) , (SHEETS 13-14)
P08-15 P16-23A P16-238 P24-31A P24-31B P32-398 P40-47A P40-478 P48-55A P48.558 JP56-63A P56-638 | P64-71
XC00-07 -il l'_.- 1;_ —— e e o e
A
CARRY OUT A B A B A B A B B B
1 ALV ALU 1 ALU1 ALU1 ALU1 ALU Y
mm—— ! '
PARTIAL
PRODUCT
QY00-07 ADDER
1 _l ___1 —j __1 __1 ._j __1 (SHEETS 16-19)
A B A B A B A B A B B A 8 A B
LOOKAHEAD
LOGIC, ALU2 ALU2 ALU2 ALU2 ALU2 ALU2 ALU2 ALU2
[z
v i * PACOUT
ONE-BIT
lw
f SPR06-07 PARTIAL
PRODUCT
PO OuTPUT
REGISTER 08-15 16-23 2431 3239 40-47 48-55 56-63 64-71 REGISTER
- d (SHEETS 16-19)
PR06-07
PR08-15 PR16-23 PR24-31 PR32-39 PR40-47 PR48.55 PR56-63 PR64-71
830380
Figure 2-7. Multiply Logic — Detailed Block Diagram

2-29/2-30

- - if both X and Y are
negative, add the binary
constant of 11 to each
partial product.

As previously described, the manner
in which partial products are shifted
to the right by 8 bits each multiply
iteration means that only the most-
significant byte of each partial
product will become part of the final
answer. This fact makes it possible
to add the two’s complement value
incrementally, by adding it to the
most-significant byte of each new
partial product.

The two’s complement logic is
included in Figure 2-7. The X and Y
bits enter the two’s complement logic
from the X and Y bus, respectively,
as shown at the top left portion of
the diagram. Only the sign bits and
one byte of each fraction are
selected, per multiply iteration,
starting with the least-significant
byte of X and Y the first

iteration. Each iteration
thereafter, a progressively more-
significant byte of X and Y is
selected.

The operand input register for the
multiplier (D/M register) has a byte
select circuit that gates the
appropriate multiplier (X) byte onto
the X bus each iteration of the
fraction multiply operation; this
same multiplier (X) byte is also
input to the two’s complement

logic. A special byte select circuit
is required for Y. This circuit,
which is i1llustrated in Figure 2-7,
is necessary because the entire
multiplicand (instead of just one
byte) is used by the fraction
multiply logic each iteration;
therefore, the entire multiplicand
will be present on the Y bus each
iteration.

The selected X and Y bytes are input
to a set of gates (logic sheets 8 and
15 respectively) which one’s
complement the X and/or Y bytes if

the sign of their opposite fraction
is negative. Whenever the sign is
positive, the gates are disabled and
their output is all zeros.

The output of the one’s complement
gates for the selected X byte is
staged in a register latch (sheet 8)
and then added to the first byte of
the 56-bit product of X times Y.

This add is performed in ALUl. ALU2
is used in a similar manner to add
the output of the Y one’s complement
logic to the first byte output from
ALUl. In addition, this Y value
contains one of the binary

constants: 00, 01, or 10. This
constant is stored in the multiplier
output register (sheet 14) and added
to the Y value (which could be either
zero or the one’s complement of Y) in
the full adder (sheet 15) illustrated
in Figure 2-7.

Initially, the multiplier output
register (sheet 14) is preset with
the appropriate constant which is
determined in accordance with rule
three listed above. Thereafter, a
one~-bit adder {sheet 15) (see Figure
2-7) is used to track the carry-out
from the first byte of ALUl and the
full adder. This provides for carry
propagation into the first byte of
each subsequent multiply iterationm.
Since only the first byte of each
multiply iteration can become part of
the final fraction answer, this
carry-out (when there is a carry) is,
in effect, propagating into the next
more-significant byte of the final
fraction answer with each multiply
iteration.

2.2.1.8 Praction Correction

Fraction correction for floating-
point multiplication involves either
normalizing or rounding the fraction
product. Both single- and double-
precision fractions are normalized
when needed; however, the rounding
function is applicable only to
single-precision fractions.

One machine cycle is required to
correct the fraction product and is a
function of the normalize/comple-
ment/round logic (sheets 21 through
24) shown in Figure 2-4. For
multiply, this logic provides the
data structure for normalization and
rounding. It also provides a two’s
complement function; however, this
function is used only during divide.

2.2.1.8.1 Normalization

Normalization is performed by a
normalize detector and a set of 2:1
multiplexers. The normalize detector
(sheet 26) samples the output of the
PP register (sheets 16 through 19)
and determines when the normalization
of the fraction product is needed.

I1f normalization is needed, the
detector provides the appropriate
select signals to the 2:1
multiplexers (sheets 21 through 24)
which steer the incoming fraction
product to the left four bits (one
hex digit). This effectively shifts
bits 12 through 63 of the fraction
product into bit positions 08 through
59, and zeros into 60 through 63.

A fractional product will never
require a shift left of more than
four bit positions to achieve
normalization.

Normalization is influenced by the
sign of the fraction. If the sign is
negative, the normalize detector
tests for leading Fs in the fraction
product. All ones in the most-
significant hex digit of the fraction
product (when the sign is negative)
will enable normalization. If the
sign is positive, the normalize
detector tests for leading zeros in
the fraction product. All zeros in
the most-significant hex digit of the
fraction product (when the sign is
positive) will enable normalization.

There is one exception to the

above. Normalization is not enabled,
when the sign is negative, if the
fraction product equals FO000000.

2-32

2.2.1.8.2 Rounding

' In floating-point multiplication, the

rounding function is only available
for single-precision operations.
Even then, it is enabled only when
normalization is not needed.

When enabled, rounding is performed
by adding a logical one to the most-
significant bit of the guard digit
(bit 32). If bit 32 of the fraction
product was already a one, then a
carry will propagate into bit 31 and
the fraction product will be rounded
upward by a value of one.

The round function is performed in
the complement/round ALU (sheets 21
through 24). The primary purpose of
this ALU is for use during

division. Rounding is its only
function during floating-point
multiply. When rounding is not
enabled, all zeros are added to the
fraction product.

2.2.1.9 Answer Output

The fraction product, fraction sign
bit, and exponent are simultaneously
loaded into their respective output
registers under control of the
sequence control logic (sheet 32):

1. Fraction product (HRCOS8
through 63) is loaded into the
floating-point output register
(sheet 30).

2. Fraction sign bit is loaded
into bit 00 of the exponent
output register (sheet 29).

3. Exponent is loaded into bits
01 through 07 of the exponent
output register (sheet 29).

The output registers are loaded as a
result of the LLDOUT signal from the
sequence control logic. This signal
is staged in a control flip-flop
(sheet 14). The output of the
control flip-flop (LLDOUTREG)

actually enables the loading of the
above listed registers.

Simultaneous with loading the output
registers, the output control logic
(sheet 31) is enabled. This logic
controls access to the EY bus by the
M/D unit. The EY bus is shared by
the CPU and the A/S and M/D units.
If the EY bus is currently available,
the contents of the output registers
will be gated onto the bus and sent
to the A/S unit’s FPA file register
on the next machine cycle after the
loading of the output registers.

Access to the EY bus is prior-
itized. The list that follows
defines the priority in descending
order.

1. CPU (HCPUOUT)
2. A/S unit (LADDOUT)
3. M/D unit

Whenever the M/D unit board loads its
output registers, the output control
logic will test for the presence of
HCPUOUT and LADDOUT. If either ome
is true, the EY bus is not currently
available to the M/D unit. As soon
as the bus is available, the output
control logic will output the
fraction, fraction sign bit, and the
exponent onto the EY bus. Along with
the data, the output control logic
also transfers the address of the
file register for which the data is
intended. This four-bit address is
sent on the file address bus (FADDOO
through 03) from the RB address
register (sheet 26) to the A/S

unit. In addition to the data and
the address, the output control logic
sends the signal, LUNITSTORE, on a
discrete line to the file register.
This signal conditions the file
register for a file write operation.

2.2.1.10 Arithmetic Exception
An arithmetic exception (AE) is an

error indication. For floating-point
multiplication, only two conditions

will generate an AE: exponent
underflow and exponent overflow.

If the M/D unit detects either one of
the above conditions (sheet 29), the
output control logic (sheet 31) sends
an error indication (LAEDATA) to the
FPA file register, along with the
data, and notifies the CPU that an AE
is pending (LAEPEND).

The error signal (LAEDATA), sent to
the FPA file register, inhibits the
file write operation. Thus, the
original register operand is retained
in the file.

The CPU tests for the presence of an
AF when it reads the contents of the
file register. The AE pending signal
informs the CPU that the data in the
file register is the original
register operand and not the answer
from the arithmetic operation.

After the CPU tests for, and detects,
the presence of an AE, it can
determine the type of AE by reading
the arithmetic exception register
which is located on the M/D unit,

The contents of this register provide
the CPU with the information required
to properly set up the software-
testable condition codes.

The AE register (sheet 29) is an
eight-bit register whose contents are
output to the ED bus (EDB16 through
23) upon request of the CPU (LAEEN;
sheet 28). The contents of the AE
register are shown in Table 2-13.

2.2.2 Floating—-point Divide

The M/D unit executes both divide
floating-point word (DVFW) and divide
floating-point doubleword (DVFD)
instructions. The paragraphs that
follow provide a brief overview of
the steps involved.

Operands are input from the CPU and
the FPA file register.

Table 2-13
AE Register. Contents

Bit Definition
16-20 Not used.
21 Set if the sign of AE result is positive.
22 get if the sign of AE result is negative.
23 Set if exponent underflow occurred.
Reset (logical 0) if exponent overflow occurred.

Note

AE register bits 16 through 23 correspond to ED bus bits 16 through 23,

respectively.

Instruction execution is initiated by
the CPU.

The incoming floating-point divisor
and dividend operands are
disassembled and loaded into the
fraction and exponent logic of the
M/D unit. For single-precision
operations, the fraction is a 24-bit
hexadecimal number positioned in bits
08 through 31 of the incoming word
operand. For double-precision
operations, the fraction is a 56-bit
hexadecimal number positioned in bits
08 through 63 of the incoming
doubleword operand. If either one or
both of the incoming fractions has a
negative sign (bit 0), the exponent
(bits 01 through 07) of the negative
fraction is one’s complemented.

After the incoming operands are
disassembled and loaded into the
fraction and exponent logic, the
division of fractions is initiated.
Simultaneous with .the division of
fractions, exponent calculations are
performed in the exponent logic.

Fraction division is performed by
first calculating the reciprocal of
the divisor and then multiplying that
reciprocal value by the dividend to
obtain the quotient.

2-34

The quotient is corrected by enabling
both normalization (if needed) and
rounding.

1f the fraction answer (quotient) is
negative, then the biased exponent of
the answer will be one’s
complemented.

The final fraction, fraction sign,
and exponent are assembled into the
correct format for a single- or
double-precision floating-point
operand, and stored in the register
file.

2.2.2.1 Simplified Sequence of Events
1. Load operands

a. Input the fraction sign
bits and the exponents of
both operands from the OPR
and EDB buses into the
exponent input logic (sheet
27).

b. If either one (or both) of
the fraction sign bits is
negative, one’s complement
the exponent assoclated
with the negative fraction
(sheet 27). ’

Ca

a.

b.

Load the exponents into the
exponent input registers
{sheet 27).

Load the fractions of the
dividend and divisor from
the OPR and EDB buses
repectively into the
fraction logic (sheets 2,
4, and 10).

Note

One machine cycle is
required to load single-
precision operands;

two machine cycles are
required to load double-
precision operands.

Input the destination file
address from the EB bus

into the RB address logic.

Calculate the reciprocal of
the divisor.

Calculate the exponent of
the reciprocal.

Multiply the dividend and the
reciprocal of the divisor
together to obtain the
fraction quotient.

Add the dividend exponent and
reciprocal exponent. The
result is the biased exponent
of the answer.

Correct the fraction answer
obtained in step three:

Normalize the fraction

answer if needed.

Exception: Do not
normalize
negative
answer if
fraction
portion
= F0000000

Enable rounding of the
fraction answer

6.

regardless of whether
normalization was
performed.

a. If either one (but not
both) of the original
operands had a negative
fraction, one’s
complement (sheet 29)
the biased exponent
produced in step 4.

b. If either one (but not
both) of the original
operands had a negative
fraction, set the sign
of the fraction answer
to a logical one (sheet
29).

C. Load the sign bit of
the fraction answer and
the biased exponent
into the exponent
output register (sheet
29).

Exception: If the
fraction
answer from
step three
is all
zeros, force
the exponent
of the
answer to
zero and
inhibit the
exponent
one’s
complement
function.

d. Load the corrected
fraction answer from
step five into the
floating-point output
register (sheet 30).

Gate the contents of the
exponent output and floating-
point output registers into
their respective bit position
on the external Y (EY) bus.
Register contents are shown in
Table 2-14.

Table 2-14
Qutput Register Contents

Single-precision answers:

Exp. Out. Reg. EY00-07 Cycle n
Double-precision answers:

Exp. Out. Reg. EY00-07 Cycle n
Flt. Out. Reg. 08-31 EY08-31

Flt. Out. Reg. 32-63 EY00-31 Cycle n+l

8. Output the destination file
address from the RB address
logic onto the file address
bus (FADDOO through 03). This
is the address of the file
register(s) to which the
answer is destined.

2.2.2.2 Operand lLoading

Operand loading for floating-point
division is basically the same as for
floating-point multiply. The reader
should refer to the description of
operand loading for floating-point
multiply. The text that follows
primarily focuses on the differences.

The memory operand (divisor) and the
register operand (dividend) are input
to the FPA B board on the EDB and OPR
buses, respectively. For single-
precision operations, bits 08 through
31 of the memory operand (divisor)
are input from the EDB bus into bit
positions 08 through 31 of the
multiplicand/divisor (M/D) register
(sheet 2). Bits 00 through 07
(fraction sign bit and exponent) are
input into the exponent B input
register (sheet 27).

For double-precision operations, two
machine cycles are required to
complete operand loading. Bits 32
through 63 of the fraction are loaded
first (into the M/D register) on the

2-36

first bus transfer. The MSW (which
contains the sign bit, exponent and
the most significant 24 bits of the
fraction) is loaded into the exponent
B input register, and the M/D
register, on the second bus transfer.

The register operand (dividend) is
similarly loaded into the div-
idend/multiplier (D/M) register
(sheet 10) and the exponent A input
register (sheet 27). 1In addition, a
copy of the fraction portion of the
dividend is also loaded into the
double-precision dividend (sheet 4)
register. The contents of this
register are used only during double-
precison divide operations.

2.2.2.3 Destination File Address

The destination file address is
handled in the same manner for the
floating-point divide instructions as
that previously described for the
floating-point multiply (paragraph
2.2.1.4).

2.2.2.4 Fraction Division

The divide algorithm uses multipli-
cation in many instances. To under-
stand this portion of the algorithm,
the reader should refer to the
description of fraction multiply
provided earlier in this chapter

(paragraph 2.2.1.7). That
information is not repeated in the
text that follows.

As previously stated, division is
performed by multiplying the dividend
by the reciprocal of the divisor.
Most of the divide algorithm involves
calculating the correct reciprocal.
The reciprocal is calculated by
starting with an approximate
reciprocal value and incrementally
correcting it until an acceptable
degree of accuracy is obtained.

The initial reciprocal approximation
resides in a programmable read-only-
memory (PROM) and is based on the
most-significant twelve bits of the
divisor. For single-precision
operations, the initial reciprocal
approximation will have to be
corrected twice to obtain the final
reciprocal. For double-precision
operations, three corrections are
required to obtain the final
reciprocal.

Since it is known that the product of
any number (n) and its reciprocal (r)
should equal one, the degree of
accuracy of the reciprocal
approximation can be calculated by
multiplying it by the divisor. The
product of this multiplication is
called the error factor of the
reciprocal. The error factor will be
closer to the value of 1.0 each time
a more accurate reciprocal is used in
the calculation.

Each new reciprocal approximation is
calculated by multiplying the
preceding reciprocal approximation
and its error factor together.

The following 1is a simplified outline
of the steps used to obtain the final
reciprocal:

1. Look up the first reciprocal
approximation in the
reciprocal PROM.

2. Calculate the first error
factor by multiplying the
first reciprocal and absolute
value of the divisor together.

3. Find the second reciprocal by
multiplying the first error
factor and the first
reciprocal together.

4. Calculate the second error
factor by multiplying the
second reciprocal and the
absolute value of the divisor
together,

5. Find the third reciprocal by
multiplying the second error
factor and the absolute value
of the divisor together,

For single-precision operations, the
third reciprocal approximation will
be used as the final reciprocal.
Double-precision operations require
an additional iteration.

A more detailed outline of the steps
required for fraction division,
including the hardware data paths, is
provided as follows:

1. Find the first reciprocal
approximation of the divisor:

a. Obtain the absolute value
of the divisor:
Multiply the divisor by a
constant of one. This
multiply is simply to get
the divisor through the
multiply pipeline to the
complement logic.

If the divisor is
negative, take the two’s
complement of the value
produced in the
preceding step.
performed in the
complement/round ALU.
The result is the
absolute value of the
divisor,

This is

b. Load the absolute value of
the divisor into the ABSY
register (sheet 5).

c. Use the absolute value of
the divisor to look up the
first reciprocal
approximation in the
reciprocal PROM (sheet 12).

d. Load the first reciprocal
approximation into the
reciprocal PROM output
register (sheet 12).

Calculate the error factor of
the first reciprocal:

a. Multiply the absolute value
of the divisor by the first
reciprocal approximation.

b. Two’s complement the
product from step 2a. This
is performed in the
complement/round ALU
(sheets 21 through 23).

c. Shift the two’'s
complemented value to the
right one hexadecimal
digit, and load it into the
T right register.

Find the second reciprocal
approximation:

a. Multiply the error factor
resident in the T right
register by the first
reciprocal approximation
(which is located in the
reciprocal PROM output
register).

b. Load the product from step
3a into the R register
(sheet 11). This is the
second reciprocal
approximation.

Calculate the error factor of
the second reciprocal:

a. Multiply the absolute value
of the divisor by the
second reciprocal
approximation.

b. Two’s complement the
product from step 4a. This
is performed in the
complement/round ALU.

c. Shift the two’s
complemented value to the
right one hexadecimal
digit, and load it into the
T right register.

5. Find the third reciprocal
approximation:

a. Multiply the error factor
resident in the T right
register by the second
reciprocal approximation
which is in the R register.

b. For single-precision
operations the product from
step 5a is the final
reciprocal. If the
original divisor was
negative, take the two’s
complement of the final
reciprocal using the
complement/round ALU. Load
the final reciprocal (or,
its two’s complement) into
the ABSY register.

For double-precision
operations the product from
step 5a is the third
reciprocal and is loaded
into the R register.

Single Precision:

6. Calculate the quotient:
multiply the reciprocal of the
divisor (ABSY register) by the
dividend (D/M register).

7. Correct the quotient by
normalizing and rounding.

8.

Load the fraction quotient
into the floating-point output
register (sheet 30).

Double Precision:

6.

Calculate the error factor of
the third reciprocal
approximation:

a. Multiply the absolute value
of the divisor by the third
reciprocal approximation.

b. Two’s complement the
product from step 6a.
is performed in the
complement/round ALU.

This

c. Shift the two’s
complemented value to the
" right one hexadecimal
digit, and load it into the
T right register.

Find the fourth reciprocal
approximation:

a. Multiply the error factor
in the T right register by
the third reciprocal
approximation.

b. If the original divisor was
negative, take the two’s
complement of the value
produced in step 7a. This
is performed in the
complement/round ALU.

c. Load the product from step
7a (or 7b if applicable)
into the R register. This
is the final reciprocal of
the divisor.

Calculate the quotient:
Multiply the dividend (double-
precision dividend register)
by the reciprocal of the
divisor (R register).

Correct the quotient by
normalizing and rounding.

10.

Load the double-precision
fraction quotient into the
floating-point output
register,

2.2.2.5 Exponent Handling

Exponent handling for divide includes
the following basic steps:

1.

When exponents are input from
the data buses, one’s
complement either exponent if
its associated fraction is
negative.

Calculate the exponent of the
divisor’s reciprocal
approximation.

Ad just the exponent calculated
in step two each time a new
reciprocal is derived.

Add the exponents of the final
reciprocal and the dividend.

a. Decrement the exponent
obtained in step four if
the fraction answer
{(quotient) had to be
normalized.

b. Increment the exponent
obtained in step four if
the fraction had to be
shifted right (one
hexadecimal digit) to
correct for fraction
overflow.

Note

Fraction overflow could have
occurred as the result of
rounding.

6.

One’s complement the final
exponent if the sign of the
fraction answer is negative.

Load the exponent output
register.

Gate the exponent onto the EY
bus (EYOO through 07).

The exponent logic used during divide
operations is illustrated in Figure
2_8 . :

When the exponents are input from
their respective data buses, each
exponent passes through a separate
exclusive OR network located in the
data path between the data bus imput
and the A and B exponent input
registers (see Figure 2-8). Each
exclusive OR network is fed by one of
the exponents (A or B) and the sign
bit of the fraction associated with
that particular exponent. If the
sign bit is a logical one (indicating
a negative fraction), the exclusive
OR network will one's complement the
exponent .

Calculation of the initial reciprocal
exponent is performed by subtracting
the exponent of the divisor from the
constant 82. This subtraction is
performed in the exponent ALU. The
result is loaded into the exponent
ALU register when the sequence
control logic issues LLDEXPL. The
output of the exponent ALU register
propagates through the full adder
(which free-runs with an add zero
function) and is asserted on the
TEXPOO through 07 lines (see Figure
2-8).

One cycle after the exponent ALU
register is loaded, the initial
reciprocal exponent is clocked into
both TEXP registers.

While the fraction logic is
calculating the second reciprocal
approximation, the initial exponent
reciprocal will be adjusted by adding
to it the constant of 41. This is
performed in the exponent ALU after
the contents of the TEXP A register
and the constant 41 register are
gated to the A and B inputs,
respectively, of the exponent ALU.
The result is loaded into the
exponent ALU register when LLDEXPL is
issued; one cycle later it will be
loaded into the TEXP registers.

2-40

The reciprocal exponent adjustment
described above occurs twice during

‘single-precision operations (i.e.,

coincident with calculation of the
second and third reciprocal
approximation in the fraction logic)
and three times during double-
precision operations (i.e.,
coincident with calculation of the
second, third, and fourth reciprocal
approximations).

After the fraction logic has
calculated the final reciprocal of
the divisor, it will find the
quotient by multiplying the dividend
and the divisor reciprocal

together. When this occurs, the
exponent logic will calculate the
exponent of the quotient by adding
together the exponent of the dividend
and the exponent of the reciprocal.
These two exponents reside (at this
time) in the exponent A register and
the TEXP B register, respectively.
They are added together in the
exponent ALU, and the result is
loaded into the exponent ALU register
when the sequence control logic
issues the load exponent signal,
LLDEXPL. If the fraction quotient is
zero, the exponent ALU register will
be reset to force the value of the
exponent to zero (LFRCZEXP).

The output of the exponent ALU
register propagates to the exponent
full adder (sheet 29). The exponent
full adder will decrement the
quotient exponent by one if the
quotient had to be normalized. The
exponent will never have to be
decremented by a value greater than
one because the fraction quotient
will never need to be shifted by more
than one hexadecimal digit to achieve
normalization.

The exponent full adder will
increment the quotient exponent by
one if the quotient had to be shifted
right (one hexadecimal digit) to
correct for fraction overflow. This
would occur, for example, if rounding
caused fraction overflow.

DIVISOR EXPONENT INPUT DIVIDEND EXPONENT INPUT

£0B01-07 OPR01-07

EDHOOi I

v

v

v

OPROO

£

EXPS8 CONSTANT 41 TEXP B TEXP A EXP A CONSTANT
INPUT REGISTER REGISTER REGISTER INPUT | 82
REGISTER [27 >7 ﬁ27 27 Rsmsrsﬁm REGlSTERm
EXPONENT
ALY
CONSTANT

FuLL
ADDER
EXP ALU
REGISTER

CONSTANT '

v

FULL ADDER
29

TEXP00-07

~L

EXPONENT
OUTPUT REG

29

+ EY00-07

810041

Figure 2-8. Exponent Logic Block Diagram (Floating-point Divide)

If the sign of the fraction quotient
is negative, the exponent will be
one's complemented prior to being
loaded into the exponent output
register (sheet 29). One's
complementing the exponent will be
inhibited if the exponent was forced
to zero in the exponent ALU register.

The exponent output register is
loaded with the sign of the fraction
and the seven-bit biased exponent
when the sequence control logic
(sheet 32) issues the load output
registers signal (LLDOUT). Loading
the exponent output register occurs
simultaneous with the loading of the
fraction into the floating-point
output register.

2.2.2.6 Sign Bit Manipulation

The sign bits of both operands enter
the M/D unit board along with two
exponents and fractioms from the EDB
and OPR buses. The two sign bits are
examined independent of their
respective fractions and are used to:

1. Generate the sign of the
fraction answer.

2. Condition the fraction
normalize logic.

3. Control the exponent one's
complement logic.

4. Condition the fraction two's
complement logic (i.e., the
two's complement logic
associated with the partial
product adder).

5. Condition the two's complement
function of the
complement/round ALU logic.

With two exceptions, the above listed

functions are performed in the same
manner as previously described for

2-42

the floating-point multiply
instruction (paragraph 2.2.1.6).

‘Sign bit manipulation differs for

floating-point division only in
regard to items two and five above.
These are explained in the text that
follows.

2.2.2.6.1 Conditioning the Normalize
Logic

When handling the fraction answer,
the normalize logic is conditioned by
an exclusive OR of the two original
sign bits (sheet 24). This function
is the same for both floating-point
divide and floating-point multiply.

Conditioning of the normalize logic
in floating-point divide is handled
differently only during calculation
of the reciprocal. The reciprocal
calculation includes a series of
steps that involve multiplying. It
is necessary that the normalize logic
treat each product as a positive
value. That is, normalization will
be invoked only when the product has
leading zeros (i.e., all zeros in the
most—significant hexadecimal digit or
beyond). To accomplish this, the
sequence control logic issues a force
positive signal (LFRCPOS) which
overrides the output of the sign bit
exclusive OR circuit (sheet 24). The
resulting signal (HPOSITIVE)
conditions the normalize detection
logic (sheet 26) to treat the data
(product) as a positive value.

During floating-point division, the
force positive signal (LFRCPOS) is
issued by the sequence control logic,
after each multiply, through
calculation of the final reciprocal
value.

2.2.2.6.2 Two's Complement Condition—
ing (Complement/Round ALU)

The sign of the original divisor
fraction is used in two instances
during the reciprocal calculations to

condition the two's complement enable
signals (LCOMPL1EN and -LCOMPL2EN;
sheet 25) for the complement/round
ALU.

If the sign of the original divisor
was negative, the two's complement
function of the complement/round ALU
will be enabled:

1. To obtain the absolute value
of the divisor. This occurs
Just prior to look-up of the
initial reciprocal approxi-
mation and is initiated by the
LQUALCOMPEN signal from the
sequence control logic.

2. To take the two's complement
of the final reciprocal. This
occurs just prior to loading
the final reciprocal into the
ABSY register (or the R
register for double-precision
operations) and is initiated
by the LQUALCOMPEN signal from
the sequence control logic.

2.2.2.7 Fraction Correction

Fraction correction for floating-
point division includes the
capability of both normalizing and
rounding the fraction answer. This
applies to both single- and double-
precision fraction answers and
requires only one machine cycle to
execute. Prior to normalization and
rounding, the uncorrected fraction
answer at the output of the PP
register has two guard digits (see
Figures 2-9 and 2-10). This provides
an additional degree of precision and
makes it possible to both normalize
and round.

2.2.2.7.1 Normalization

Normalization is performed by a
normalize detector (sheet 26) and a
set of 2:1 multiplexers (sheets 21
through 24). The normalize detector
samples the contents of the PP

register (sheets 16 through 19) and
determines when the normalization of
the fraction answer is needed. 1If
normalization is needed, the detector
provides the appropriate select
signals to the 2:1 multiplexers which
steer the incoming fraction answer to
the left four bits (one hexadecimal
digit).

When normalization is performed, the
entire fraction answer will be
shifted left one hexadecimal digit
causing the data in bit positions 12
through 71 to be shifted into bit
positions 08 through 67. Bit
positions 68 through 71 are zero-
filled (refer to Figures 2-9 and
2-10). A fraction answer will never
require a shift left of more than
four bit positions to achieve
normalization. If normalization of
the fraction occurs, the exponent
will be decremented by a value of
one.

Normalization is influenced by the
sign of the fraction. If the sign is
negative, the normalize detector
tests for leading ones in the
fraction answer. All ones in the
most-significant hex digit of the
fraction answer (when the sign is
negative) will enable normal- .
ization. If the sign is positive,
the normalize detector tests for
leading zeros in the fraction

answer. All zeros in the most-
significant hex digit of the fraction
answer (when the sign is positive)
will enable normalization.

There is not exception to the

above. Normalization is not enabled
when the sign is negative if the
fraction answer equals F0000000.

2.2.2.7.2 Rounding

In floating-point division, rounding
is enabled for both single- and
double-precision operations
regardless of whether normalization
occurs. The round function is

43

STEP ' FRACTION GUARD | GUARD
1 }o 5 F 2 3 A 7 7 0 o 0 0 0 0 0 0
2 5 F 2 3 A 7 7 0 (o} 4] 0 4] 0 4] o] 0
3 1s F 2 3 A7 7 0 0 0 0 0 0 0 0)
BITS| 8 31 | 3235 3639 | 40 71

** ASSUMES SIGN BIT = LOGICAL ZERO (POSITIVE)*~

NOTES
1 STEP 1 REPRESENTS THE OUTPUT OF THE PP REGISTER.
2 STEP 2 REPRESENTS THE OUTPUT OF THE N-ORMALlZATION MULTIPLEXERS.
SINCE THIS IS A POSITIVE FRACTION AND THERE WERE LEADING ZEROS IN THE
DATA REPRESENTED IN STEP 1, NORMALIZATION WAS PERFORMED.
3 STEP 3 REPRESENTS THE DATA OUTPUT TO THE FLOATING-POINT OUTPUT

REGISTER. ALTHOUGH ROUNDING WAS ENABLED, IT DID NOT ALTER THE SINGLE-
PRECISION FRACTION SINCE THE MOST - SIGNIFICANT GUARD DIGIT CONTAINED A
VALUE LESS THAN EIGHT (HEX).

810045
Figure 2-9. Single—precision Normalization and Rounding Example
STEP FRACTION GUARD |GUARD
1 0 5 F 2 3 A 7 7 9 F F B8 B B 7 9
2 5 F 2 3 A 7 7 9 F F B B B 7 9 0
3 5 Fo2 3 A 7 7 9 F F B B B 8
BiITs | 8 63 6467 | 6871
ASSUMES BIT = LOGICAL ZERO (POSITIVE)
NOTES
1 STEP 1 REPRESENTS THE OUTPUT OF THE PP REGISTER.
2 STEP 2 REPRESENTS THE OUTPUT OF THE NORMALIZATION MULTIPLEXERS.
SINCE THIS IS A POSITIVE FRACTION AND THERE WERE LEADING ZEROS N THE
DATA REPRESENTED IN STEP 1, NORMALIZATION WAS PERFORMED.
3 STEP 3 REPRESENTS THE DATA AFTER THE NORMALIZED FRACTION HAS
BEEN ROUNDED AND OUTPUT TO THE FLOATING-POINT OUTPUT REGISTER.
NOTE THAT ONLY BITS 8-63 ARE OUTPUT.
810046

44

Figure 2-10. Double-precision Normalization and Rounding Example

performed in the complement/round ALU
(sheets 21 through 24).

For single-precision fractions,
rounding is performed by adding a

" logical one to the most-significant
bit to the guard digit (bit 32). If
bit 32 was already a one, then a
carry will propagate into bit 31 and
the fraction answer will be rounded
upward by a value of one.

For double-precison fraction,
rounding is performed by adding a
logical one to the most-significant
bit of the guard digit (bit 64). If
bit 64 was already a one, then a
carry will propagate into bit 63 and
the fraction answer will be rounded
upward by a value of one.

- Rounding is possible after
normalization due to the fact that
there are two guard digits, and
because it is never necessary to
shift left by more than one
hexadecimal digit to achieve a
normalized answer. After
normalization, only the least-
significant guard digit is zero
filled; the most-significant guard
digit (bits 64 through 67 or 32
through 35) will contain valid
data. The guarantee that there will
always be valid data in the most-
significant guard digit makes
enabling rounding worthwhile.
Although rounding is enabled, the
value of the fraction will not be
rounded upward unless the most-
significant guard digit is equal to
or greater than eight (i.e., the
most-significant bit of the guard
digit has to be a logical one).

If rounding causes fraction overflow,
this is corrected by effectively
shifting the fraction to the right
one hexadecimal digit and
incrementing the exponent by one.

For example, rounding will cause
fraction overflow if the fraction
quotient is maximum positive (i.e.,
positive sign bit and all ones in the
fraction). The right shift is
implemented by forcing a one into bit

position 11 of the fraction. This is
performed in the floating-point
output register (sheet 30) when the
HSETMSDONE signal is generated by the
round control logic (sheet 25).
Forcing bit 11 to a one is
effectively the same as shifting an
overflow bit to the right one
hexadecimal position.

2.2.2.8 Answer Output

Answer output for floating-point
division is the same as previously
described for the floating-point
multiply instruction (paragraph
2.2.1.9).

2.2.2.9 Arithmetic Exception

The arithmetic exception (AE) logic
has one function that is applicable
only during floating-point

division. Otherwise, the detection
and reporting of an arithmetic
exception is the same as previously
described for floating-point
multiplication (paragraph 2.2.1.10).

In floating-point division, if the
incoming divisor fraction is equal to
zero, an arithmetic exception will
always result.

A test for the presence of this
condition is made early in the divide
algorithm. If the divisor equals
zero, a flag will be set (sheet 24)
for later use. The divide operation
then continues normally. At the end
of the divide operation, the presence
of the flag will cause an AE
indication to be generated (sheet
29).

The test for the divisor equal-to-
zero condition is a function of the
zero detection logic (sheets 21, 22,
23 and 26). The test is performed
just prior to the look-up of the
initial reciprocal approximation
(after the divisor propagates through

2-45

the multiply pipeline). If the
divisior equals zero, the LFRCZEXP
signal (sheet 26) will be

generated. This signal, in
conjunction with the LSETAE and LDIV
signals from the sequence control
logic, will set the divisor equal-to-—
zero flag.

2.2.2.10 Sequence Control

An explanation of the sequence
control logic is included in the text
for the floating-point multiply
instruction (paragraph 2.2.1.2).

Tables 2-15, 2-16, 2-17, and 2-18
provide the PROM control codes and
sequence control signals applicable
to the floating—point divide
instructions.

2.2.3 Fixed-point Multiplication

The FPA B board executes the
following fixed—point instructioms:

1. Multiply by Memory Byte (MPMB)

2. Multiply by Memory Halfword
(MPMH)

3. Multiply by Memory Word (MPMW)

4. Multiply Register by Register
(MPR) :

5. Multiply Immediate (MPI)

All five of the above instructions
are executed in the same manner by
the M/D unit and follow the same
sequence of steps.

For each fixed—point instruction
executed, the M/D unit receives two
32-bit operands. This is true for
both the byte and halfword operands
as well as the word operands. After
the byte operand for an MPMB
instruction is fetched from memory by
the CPU, the CPU creates a 32-bit
format prior to loading the operand
into the M/D unit. This format,
which is illustrated in Chapter 1,
has the byte operand in the least-

2-46

significant byte position (bits 24
through 31). The three most-
significant bytes are zero—-filled by
the CPU. Similarly, the halfword
operand (for the MPMH instruction) is
fetched by the CPU and aligned in the
least-significant halfword position
of a 32-bit format. The most-
significant halfword is sign-extended
by the CPU. The alignment and zero-
fill or sign-extend functions are
performed prior to loading the
operands into the FPA.

The multiply algorithm is the same
for multiplication of the fixed-point
operands as that previously described
for multiplying floating-point
fractions (paragraph 2.2.1.7).

There are no exponents involved in
fixed-point operations.

No normalization or rounding is
performed, and no arithmetic
exceptions are generated for fixed-
point operatioms.

Since fixed-point multiplication
involves two 32-bit operands,
provision is made for the storing of
a doubleword answer. '

2.2.3.1 Simplified Sequence of Events

1. Load two 32-bit operands and
the destination file address.

2. Multiply operands.

3. Load doubleword answer into
the fixed-point output
register.

4. Transfer the destination file
address and the doubleword
answer to the FPA file
register (A/S unit). This
requires two EY bus transfers.

2.2.3.2 Operand Loading

Two 32-bit operands are loaded
simultaneously into the M/D unit

‘ Table 2-15
Sequence Control PROM Coding — Divide Floating-point Word

PROM MB81

Field D

4321

- O OO0 OO~ OO~ 00000 —~000~
—_—o OO A OO~ O~ OmMOO~ O~ 00 ~000O0O0OC~~
et QOO SO~ OO0~ 00000 —~O~—~0O0O0—~—
Om r O OO M mMOO ™M~ OO0 ~~O0O0O -~ O0O0O~~

Field C

8765

CmMOO0OOO0 ~m—OO0O0OO0OOmMmm<OOOO0O0OO0OO0O~
O m OO0 O0O = mrOQOO0OOO™HH=~mO~O000OOO0OO
O OO M~ OO0~ rHOQOOOQOOQO~m ™m—~O0O0O
COrMOO0OO0OO0O~O00000O0O0OO0O~OO0O0O~0O0OO0O0OO

"PROM MB84

Field B

4321

COO0OOOOO0OOOOCOOOOOO0O0OO0O~0O00O0O0QO0
COCO0O0O0OO0OOOOOOOOO0OO0OOOOOOO0O0O0O0O0O0
COO0O~OO0OOOOOO 000000000 OOOOOOO
OO0 0000000000000 O~-0O0~00O0

Field A

8765

O OO0~ 00O0~0Q0O0O00O00O0~0O0O0CO~O00O0O00OO
yoad pd o g ol pd o vl el vk ed A vl vt pd el e ol e e e = O O OO O~
—~ O 0000000000000 OOOOOOOO0OO
OO0 OO0OO0ODOODODOOOOO0CO0OOOQCO ~

Address

O NMITINORNOALCMOARKO—~NMITINORNONLMO
F LT LT TG T T T T T T T T NN NN NN NN D NN NN
0000000000000 OOLOO0OOOOOO

2-47

Table 2-16
Active Sequence Control Signals — Divide

Floating—point Word

Step PROM MB84 PROM MB31
Field A Field B Field C Field D
1 HSTOPCLKEN LSPZEN L1CNSTEN
2 HMULTCLR LSUBTEXPEN LLDEXP
3 LQUALCOMPEN | LFRCPOS
4 LSETAE LSPZEN NOP
5 LABSYEN LPROMSTRT
6 HMULTCLR LABSYEN NOP
7 LSPZEN LLDEXP
8 L2-XYEN LFRCPOS
9 LTEN LPROMSTRT
10 HMULTCLR LTEN NOP
11 LSPZEN LLDEXP
12 LSPZEN LFRCPOS
13 LREN LABSYEN LR1ISTRT
14 HMULTCLR LABSYEN NOP
15 LABSYEN NOP
16 LSPZEN LLDEXP
17 L2-XYEN LFRCPOS
18 LTEN LR1STRT
19 LMULTCLR LTEN NOP
20 LTEN NOP
21 LSPZEN LLDEXP
22 LQUALCOMPEN | LFRCPOS
23 LABSYEN LOCNSTEN
24 HMULTCLR LTPPA2STRT LABSYEN LOCNSTEN
25 LABSYEN LX1STRT
26 LTPPA1STRT LABSYEN NOP
27 LABSYEN NOP
28 LSPZEN LLDEXP
29 HDONE LRNDEN LLDOUT

Table 2-17
Sequence Control PROM Coding — Divide Floating-point Doubleword

PROM MBS81

Field C

Field D

4321

YO~ OO0 0O OO0OO0ONM OO0 ~N—O00O0mOO~OO0O0~0C0 OO mMm e OO ~000O
HFHOO OO~ OO~ OO M O~MOO 000 ~00 MO0 ~OO0OmMOHOOOO~OO m —
HH OO A OO A O OO0OO0OO0O~0O0O0O OO0 ~0m OO0 MO0 1O OO0 m —
O 00O OO0 1000~ —~00OD 00000~ mrOO0O0O0O~mHmMOOOCOOOO m— m~

8765

HHOOOO0OO " "1 O0OO0OOCOOCO A 1 OO0OOCOOOQO riri ri ot 7t O v vl vd vt it i el
O~ OO0~ OO0~ mmmrHOOOCOOOOMmmrmm OO0 0000COOO
OO0 " ~O0O0CO0O0OO0O " rHOOOOCOO T m mMmMOOOOOOCO OO mrrm e ri— O
CO~O000O0OrO0OO0O000O0CO 0000000000 ~00O0OOOrHOO0O0O0O0OOOO —

PROM MB84

Field B

4321

COO0 0000000000000 ~0~0000O0
COO0O 0000000000000 COODODODOO O~ rmMOOO0ODO
CO~r-OO00O0O0COCO~O0OO0O0O0O00O0O0O0OmOO0OO0O0ODODOOO~HMOOOODOOO —~
CO- OO0 0000 OO0 O~000OO0OCCOCO MMM MOmMO OO —

Field A

8765

0100010001000100001000010000001000000100000000
1111111111111111111111111111111111111000000001
1000
0001

Address

140
141
142
143
144
145
146
147
148
149
14A
148
14C
14D
14E
14F
150
151
152
153
154
155
156
157
158
159
15A
15B
15C
15D
15E
15F
160
161
162
163
164
165
166
167
168
169
16A
16B
16C
16D

2-49

° Table 2-18 »
Active Sequence Control Signals - pivide Floating-point Doubleword

Step PROM MB84 PROM MB31
Field A Field B Field C Field D
1 HSTOPCLKEN LDPYEN L1CNSTEN
2 HMULTCLR LSUBTEXPEN LLDEXP
3 LDPDIV LQUALCOMPEN LFRCPOS
4 LSETAE LSPZEN NOP
5 LABSYEN LPROMSTRT
6 HMULTCLR LABSYEN NOP
7 LSPZEN LLDEXP
8 L2-XYEN LFRCPOS
9 LTEN LPROMSTRT
10 HMULTCLR LTEN NOP
11 LSPZEN LLDEXP
12 LSPZEN LFRCPOS
13 LREN LABSYEN LR1ISTRT
14 HMULTCLR LABSYEN NOP
15 LABSYEN NOP
16 LSPZEN LLDEXP
17 L2-XYEN LFRCPOS
18 LTEN LR1STRT
19 LMULTCLR LTEN NOP
20 LTEN NOP
21 LSPZEN LLDEXP
22 LSPZEN LFRCPOS
23 LREN LABSYEN LR2STRT
24 HMULTCLR LABSYEN NOP
25 LABSYEN LRISTRT
26 LABSYEN NOP
27 LABSYEN NOP
28 LSPZEN LLDEXP
29 L2~-XYEN LFRCPOS
30 LTEN LR2STRT
31 HMULTCLR LTEN NOP
32 LTEN LRISTRT
33 LTEN NOP
34 LTEN NOP
35 LSPZEN LLDEXP
36 LDPDIV LQUALCOMPEN | LFRCPOS
37 LREN LDPNUMEN LR4STRT
38 LTADDEN LTPPA4STRT LDPNUMEN LR3STRT
HMULTCLR
39 LTADDEN LTPPA3STRT LDPNUMEN NOP
40 LTADDEN LDPNUMEN LR2STRT
41 LTADDEN LTPPA2STRT LDPNUMEN NOP
42 LTADDEN LDPNUMEN LR1STRT
43 LTADDEN LTPPAISTRT LDPNUMEN NOP
44 LTADDEN LDPNUMEN NOP
45 LTADDEN LDPNUMEN LLDEXP
46 HDONE LDPDIV LRNDEN LLDOUT

50

logic at the beginning of each fixed-
point instruction execution sequence.

For the MPMB, MPMH, MPMW and MPI
instructions, the memory operand (or
immediate operand for an MPI
instruction) is transferred from the
CPU to the M/D unit on the EDB bus.
The register operand is input from
the file register to the M/D unit on
the OPR bus.

For the MPR instruction, both
register operands are transferred
from the FPA file register to the M/D
unit on the EDB and OPR buses,
respectively.

For all fixed-point instructions, the
operand input from the EDB bus is the
multiplicand. All 32 bits (00
through 31) of the multiplicand are
loaded into the fixed-point
multiplicand register (sheet 3). The
operand input from the OPR bus is
always the multiplier. All 32 bits
(00 through 31) of the multiplier are
loaded into the dividend/multiplier
(D/M) register (sheet 10).

2.2.3.3 Destination File Address

The destination file address is
handled in the same manner as
previously described for the
floating-point multiply instruction
(paragraph 2.2.1.4).

2.2.3.4 Sign Bit Manipulation

Sign bit manipulation for fixed-point
operation is limited to conditioning
of the two’s complement logic (sheets
8 and 15). In addition to being
loaded into the operand input
registers (D/M register and fixed-
point multiplicand register) as part
of the integer value, the sign bit of
each operand is input directly, from
the EDB and OPR buses, to the staging
register shown on sheet 29. The
output of the staging register
(HNEGDIVSR and HNEGNUM) is used to

generate the X and Y sign bit signals
(LENXT and LENYT) that condition the
two’s complement logic.

The two’s complement logic and the
function of the sign bit conditioning
signals are explained in the text for
floating-point multiply (paragraphs
2.2.1.6 and 2,2.1.7.2) and
illustrated in Figure 2-7.

2.2.3.5 Operand Multiply

The multiplication of fixed-point
operands is performed in basically
the same manner as that described for
multiplication of floating-point
fractions (paragraphs 2.2.1.7 and
2.2.1.7.2).

Operand multiplication begins the
cycle after operand loading when the
sequence control logic enables the
output of the multiplier (X), from
the D/M register, and the
multiplicand (Y), from the fixed-
point multiplicand register, onto the
X and Y buses, respectively. The
entire 32-bit multiplicand is output
on the Y bus in bit positions 08
through 39; the remaining bit
positions (40 through 63) of the Y
bus are filled with zeros, output
from the zero-extension register.
One byte of the multiplier is output
onto the X bus for each multiply
iteration. Four iterations are
required to step through the entire
32-bit multiplier, beginning with the
least-significant byte (bits 24
through 31).

2.2.3.6 Answer Output

The doubleword integer product is
loaded into the fixed-point multiply
output register (sheet 7) under
control of the sequence control logic
(LLDOUT signal, sheet 32). The
fixed-point multiply output register
receives RC bits 08 through 71
and, at the appropriate time,
outputs one 32-bit word at a

time to the file register (A/S
unit) by way of the EY bus (00
through 31). The fixed-point answer
output is shown in Table 2-19.

Output to the EY bus is controlled by
the output control logic (sheet

31). A description of this logic is
provided in paragraph 2.2.1.9.

2.2.3.7 Sequence Control

An explanation of the sequence
control logic is included in the text
for floating-point multiply
(paragraph 2.2.1.2).

Tables 2-20 and 2-21 provide the PROM
control codes and sequence control
signals applicable to all of the
fixed-point multiply instructions.

Table 2-19
Fixed-point Answer Output
Fixed-point Multiply Out. HEY00-07 Cycle n
Reg. 08-15 (sheet 28)
Fixed-point Multiply Out. HEY08-31
Reg. 16-39 (sheet 7)
Fixed-Point Multiply Out. HEY00-31 Cycle nt+l
Reg 40-71 (sheet ID)
Table 2-20
Sequence Control PROM Coding — Fixed-point Multiply
Address PROM MB84 PROM MBS81
Field A Field B Field C Field D
8765 4321 8765 4321
080 |0110 1001 0010 0001
081 (0001 0000 0010 0000
082 |0000 1000 0010 00060
083 |0000 0000 0010 0010
084 |0000O 0000 0000 0000
085 1010 1110 0000 1111
Table 2-21

Active Sequence Control Signals - Fixed-point Multiply

Step PROM MB84 PROM MB81

Field A Field B Field C Field D

1 HSTOPCLKEN LTPPA2STRT | LFXPYEN LX1STRT

2 HMULTCLR LFXPYEN NOP
LTADDEN

3 LTADDEN LTPPA1STRT | LFXPYEN NOP

4 LTADDEN LFXPYEN LX2STRT

5 LTADDEN LSPZEN NOP

6 HDONE LDPDIV LSPZEN LLDOUT

MB84 PROM Control Code Definitions - M/D Unit

APPENDIX A

Table A-1

M B84 Field A M B84 Field B
1l x x x - HDONE 0 0 - LTPPAISTRT
x 1 x x - HSTOPCLKEN 0 1 - LTPPA2STRT
x x 0 x - LTADDEN 1 0 - LTPPA4STRT
x x x 1 - HMULTCLR 1 1 - LTPPA3STRT
0 0 - LREN
0 1 - LSETAE
1 0 - LDPDIV
11 - Not Assigned

APPENDIX A (Continued)

Table A-2
MBS1 PROM Control Code Definitions — M/D Unit

MB81 Field C MB81 Field D
0000 - LSPZEN 0000 - NOP
0001 - LDPYEN 0001 - LXISTRT
0010 - LFXPYEN 0010 - LX2STRT
0011 - LTEN 0011 - LRISTRT
0100 - LABSYEN 0100 - LR2STRT
0101 - LDPNUMEN 0101 - LR3STRT
0110 - Not Assigned 0110 - LPROMSTRT
0111 - LSUBTEXPEN 0111 - LICNSTEN
‘1 000 - Not Assigned 1000 - Not Assigned
1001 - LRNDEN 1001 - LFRCPOS
1010 - LQUALCOMPEN 1010 - LX3STRT
1011 - L2-XYEN 1011 - LR4STRT
1100 - LSELMULT 1100 - ©LOCNSTEN
1101 - Not Assigned 1101 - Not Assigned
1110 - LDPDIVEN 1110 - LLDEXP
1111 - NOP 1111 - LLDPOUT

A-2

APPENDIX B

Table B-1

Connector J1 Pin Assignments

Pin | Signal Pin | Signal Pin { Signal
01 | GND 18 | HEYIO 35 | GND
02 | GND 19 | HEY11 36 | HEY22
03 | HEYOO 20 | GND 37 |} HEY23
04 | HEYO1 21 | HEY12 38 |GND
05 | GND 22 | HEY13 39 |HEY24
06 | HEYO2 23 | GND 40 | HEY25
07 | HEYO03 24 | HEY14 41 JGND
08 | GND 25 | HEY15 42 |HEY26
09 | HEY04 26 | GND 43 | HEY27
10 | HEYOS 27 | HEY16 44 | GND
11 j GND 28 | HEY17 45 | HEY28
12 { HEYO06 29 | GND 46 |HEY29
13 | HEYO7 30 | HEY18 47 |GND
14 | GND 31 | HEY19 48 | HEY30
15 | HEYO8 32 | GND 49 | HEY31
16 | HEYO09 33 | HEY20 50 |GND
17 | GND 34 | HEY21
Table B-2

Connector J2 Pin Assignments
Pin | Signal Pin | Signal Pin }Signal
01 | GND 18 | HOPRI1O 35 |GND
02 | GND 19 | HOPR11 36 | HOPR22
03 | HOPROO 20 | GND 37 |HOPR23
04 | HOPRO1 21 {HOPRI12 38 |GND
05 | GND 22 |} HOPRI13 39 |HOPR24
06 | HOPRQ2 23 | GND 40 |HOPR25
07 | HOPRO3 24 | HOPR14 41 GND
08 | GND 25 | HOPR15 42 | HOPR26
09 | HOPRO4 26 | GND 43 | HORP27
10 | HOPROS 27 | HOPR16 44 |GND
11 | GND 28 | HOPR17 45 | HOPR28
12 | HOPRO6 29 |GND 46 |HOPR29
13 | HOPRO7 30 |HOPRIS 47 |GND
14 | GND 31 | HOPRI19 48 |HOPR30
15 { HOPRO8 32 |GND 49 |HOPR31
16 } HOPRO9 33 | HOPR20 50 |GND
17 GND 34 HOPR21

APPENDIX B (Continued)

Table B-3

Connector J3 Pin Assignments

Pin | Signal Pin | Signal Pin | Signal
01 LENBLFPA 18 LFPUBUSY 35 GND
02 HPHX2 19 LAEPEND 36 HCREG38
03 | HEAOO 20 | GND 37 | HCREG39
04 | HEAOL 21 | HAEXCPEN 38 |GND
05 | GND 22 LFPAMDATA 39 LFPUOPRAORD
06 HEAO2 23 GND 40 LFPUOPRBORD
07 HEAO3 24 LFPREGAUPD 41 GND
08 GND 25 LFPREGBUPD 42 LQUALCREGCLK
09 | HEBOO 26 | GND 43 | SPARE
10 | HEBOL 27 | SPARE 44 | GND
11 GND 28 SPARE 45 HCPUOUT
12 HEBO2 29 GND 46 HSTOPCLK
13 | HEBO3 30 | LFILEEN 47 | GND
14 GND 31 LAEEN 48 LSTOPCPU
15 LFPAAEDATA 32 GND 49 LFPUPRESENT
16 SPARE 33 HCREG36 50 GND
17 GND 34 HCREG37
Table B-4

Connector J4 Pin Assignments
Pin | Signal Pin | Signal Pin | Signal
01 GND 18 HEDB1O 35 GND
02 GND 19 HEDB11 36 HEDB22
03 | HEDBOO 20 | GND 37 | HEDB23
04 HEDBO1 21 HEDB12 38 GND
05 | GND 22 | HEDB13 39 | HEDB24
06 | HEDBO2 23 | GND 40 | HEDB25
07 | HEDBO3 24 | HEDBl4 41 | GND
08 GND 25 HEDB15 42 HEDB26
09 | HEDBO4 26 | GND 43 | HEDB27
10 HEDBO5S 27 HEDBL16 44 GND
11 | GND 28 | HEDB17 45 | HEDB28
12 HEDBO6 29 GND 46 HEDB29
13 | HEDBO7 30 | HEDB18 47 | GND
14 GND 31 HEDB19 48 HEDB30
15 | HEDBO8 32 | GND 49 | HEDB31
16 HEDBO9 33 HEDB20 50 GND
17 GND 34 HEDB21

Table B-5

APPENDIX B (Continued)

Connector J5 Pin Assignments

Pin | Signal Pin | Signal Pin { Signal
01 | GND 18 | HRC10 35 | GND
02 | GND 19 | HRCl1 36 | HRC22
03 | HTEXPOO 20 |} GND 37 | HRC23
04 HTEXPO1 21 HRC12 38 GND
05 | GND 22 | HRC13 39 | HRC24
06 HTEXPO2 23 GND 40 HRC25
07 | HTEXPO3 24 | HRCl4 41 | GND
08 | GND 25 |} HRC15 42 | HRC26
09 | HTEXPO4 26 | GND 43 § HRC27
10 | HTEXPOS 27 | HRC16 44) GND
11 | GND 28 | HRC17 45 | HRC28
12) HTEXPO6 29 | GND 46 | HRC29
13 | HTEXPO7 30 | HRC18 47 1 GND
14 GND 31 HRC19 48 HRC30
15 | HRCO8 32 |GND 49 | HRC31
16 § HRCO9 33 | HRC20 50 | GND
17 | GND 34] HRC21

M/D unit connector J5 is used for test purposes only.

Table B-6

Connector J6 Pin Assigmments

Pin | Signal Pin | Signal Pin | Signal
01 |} GND 18 | HRC42 35 | GND
02 } GND 19 | HRC43 36 | HRC54
03 | HRC32 20 | GND 37 | HRC55
04 | HRC33 21 | HRCA44 38 | GND
05 | GND 22 | HRC45 39 | HRC56
06 | HRC34 23 }JGND 40 | HRC57
07 | HRC35 24 | HRC46 41 | GND
08 | GND 25 | HRC47 42 | HRC58
09 | HRC36 26 | GND 43 | HRC59
10 | HRC37 27 | HRC48 44 | GND
11 | GND 28 | HRC49 45 | HRC60
12 | HRC38 29 | GND 46 | HRC61
13 | HRC39 30 | HRC50 47 | GND
14 | GND 31 |HRC51 48 | HRC62
15 | HRC4O0 32 |GND 49 | HRC63
16 | HRC41 33 | HRCS52 50 | GND
17 | GND 34 | HRC53

M/D unit connector J6 is used for test purposes only.

APPENDIX B (Continued)

Table B-7

Connector PlA Pin Assignments

Pin | Signal Pin | Signal Pin]| Signal
0l | GND 18 | SPARE 35 |GND
02 | GND 19 | SPARE 36 | SPARE
03 | SPARE 20 jGND 37 SPARE
04 | SPARE 21 | SPARE 38 |GND
05 | GND 22 | SPARE 39 | SPARE
06 | SPARE 23 |GND 40 |} SPARE
07 SPARE 24 | SPARE 41 |GND
08 | GND 25 | SPARE 42 | SPARE
09 SPARE 26 |GND 43 | SPARE
10 | SPARE 27 | SPARE 44 | GND
11 | GND 28 | SPARE 45 | SPARE
12 | SPARE 29 |GND 46 | SPARE
13 SPARE 30 | SPARE 47 |GND
14 | GND 31 SPARE 48 | SPARE
15 | SPARE 32 |GND 49 | SPARE
16 SPARE 33 | SPARE 50 |GND
17 | GND 34 | SPARE
Table B-8
Connector PIC Pin Assignments

Pin | Signal Pin | Signal Pin | Signal
01 GND 18 SPARE 35 GND
02 | GND 19 | SPARE 36 | SPARE
03 | HFADDOO 20 |GND 37 SPARE
04 | HFADDO!1 21 SPARE 38 [IGND
05 | GND 22 SPARE 39 | SPARE
06 | HFADDO2 23 | GND 40 | SPARE
07 | HFADDO3 24 | SPARE 41 | GND
08 GND 25 SPARE 42 SPARE
09 | HMULTBUSY 26 | GND 43 | SPARE
10 LUNITSTORE 27 SPARE 44 GND
i1 GND 28 | SPARE 45 | SPARE
12 LAEDATA 29 GND 46 SPARE
13 | LADDOUT 30 | SPARE 47 | GND
14 GND 31 SPARE 48 SPARE
15 | HADDBUSY 32 |GND 49 | SPARE
16 | SPARE 33 SPARE 50 |GND
17 GND 34 SPARE

B4

APPENDIX B (Continued)

Table B-9

Connector PIB Pin Assignments

Pin | Signal Pin {Signal Pin | Signal
01 GND 78 | GND 131 | GND
02 | GND 79 | GND 137 | +5v
03 | +5V 83 | GND 138 | +5V
04 | +5V 85 | LCLKL 139 | GND
10 | GND 87 GND 140 | GND
19 | GND 88 | LSTSC 146 | GND
39 GND 91 GND 155 | GND
45 | GND 92 | GND 166 | GND
46 GND 83 | GND 175 | GND
47 1 +5V 94 | GND 181 | +5v
48 | +5V 98 | GND 182 | +5v
54 | GND 99 1 GND i83 | GND
63 | GND 104 | LRESET 184 § GND

P1B, the SelBUS connector, has a total of 184 pims.

This

table lists only those pins used by the floating-point

accelerator,

For a complete list of the standard PIB pin

assignments, see the CONCEPT 32/67 CPU Technical Manual,
publication order number 303-000410,

B-5/B-6

INDEX

Add and Subtract Unit, 2-1
Addition/Subtraction, 1-12

ALU Sign and Overflow, 2-7

Answer Output, 2-32, 2-45, 2-51
Arithmetic Exception, 1-15, 2-33, 2-45
Arithmetic Exception Register, 2-12
Arithmetic Operations, 1-12

Basic Steps, 2-26

Clock and Microengine, 2-13
Conditioning the Normalize Logic, 2-42

Destination Address Control, 2-12
Destination File Address, 2-23, 2-36, 2-51
Division, 1-13

Double Precision, 1-12, 2-5

Equipment Description, 1-2
Exponent and Rounded Register, 2-12
Exponent Corrector, 2-10

Exponent Handling, 2-23, 2-39

File Contention Logic, 2-2

File Register Logic, 2-1

File Register Operands, 1-ll
Fixed-Point Multiplication, 2-46
Fixed-Point Operand Formats, 1-9
Floating-Point Divide, 2-33
Floating-Point File, 2-1
Floating-Point Multiply, 2-14
Floating-Point Operand Formats, 1-9
FPA Enable/Disable, 1-15

FPA File Registers, 1-2

Fraction Correction, 2-31, 2-43
Fraction Division, 2-36
Fraction Multiply, 2-26
Functional Description, 1-2

General Purpose Register Busy, 1-15
Guard Digit, 1-14

Immediate Instruction Format, 1-6
Input Register Loading, 1-12

Input Registers 2-2

Instruction Formats, 1-6
Interregister Instruction Format, 1-9
Introduction, 1-1

IN-1

Leading Ones and Leading Zeros Detector, 2-10

Memory Operands, l-11

Memory Reference Instruction Format, 1-6
Multiplication, 1-13
Multiplication/Division, 1-13

Multiply and Divide Unit, 2-13
Normalization, 2-32, 2-43

Normalized Floating-Point Operands, 1-9
Normalized Output Register, 2-12
Normalizer, 2-11

Normalizer Error Corrector, 2-11
Normalizing, 1-14

Operand Entry, 1-9

Operand Formats, 1-9

Operand Loading, 2-18, 2-36, 2-46
Operand Multiply, 2-51

Output Registers, 2-12

Overflow and Rounding, 2-11
Overflow Output Register, 2-12

Preadder, 2-6
Prerequisites, 1-1
Preshifters, 2-6
Purpose, 1-1

Register Conflict Resolution, 1-6
Result Normalizing and Rounding, 1-14
Result Storage, 1-14

Rounding, 1-14, 2-32, 2-43

Scaler, 2-6

Sequence Control, 2-17, 2-46, 2-52

Sign Bit Manipulation, 2-25, 2-42, 2-51

Simplified Sequence of Events, 2-14, 2-34, 2-46

Single Precision, 1-12, 2-2

Special Negative Number and All Positive Zero Detector, 2-9

Two’s Complement Conditioning, 2-42
Two’s Complement Handling, 2-28

IN-2

Gould tne., $.E.L. Computsr Systems Division -)

6901 W. Sunrise Blvd.. P.O. Box 8148, : G 0 U LD
For: Lauderdale. FL 333103148 .
Prcs; (305) 5672900 Electronics

VSER QRGap AT i SO .

REFRESENTATH

APPLICATIONS {Please indicats)

i. EDP 2. Communications 3. Design & Drafting
A. Inventory Control A, Telephone Systemn Monitoring A, Electrical
B. Engineering & Production 2. Front End Processors 3. Mechanical
Data Control . Message Switching C. Architectural
C. Large Machine (3fi-Load 5. Other D. Cartography
D. Remote Batch Termina! E. image Processing
E. Other F. Other
4. Industrial Automation 5. laboratory and Computational 6. Energy Monitoring & Control
A. Continuous Process Controi Op. A. Seismic A. Power Generation
B. Production Scheduling & Control B. Scientific Calculation B. Power Distribution
C. Process Planning C. Experiment Monitoring C. Environmental Control
D. Numerical Control D. Mathematical Modeling D. Meter Monitoring
- E. Other £. Signal Processing E. Other
F. Other

7. Simulation
A. Flight Simulators 8. ther Please return to:
B. Power Plant Simulators
C. Electronic Warfare
D. Other

Users Group Administrator

Date:

243-06-1(3/83)

{Detach Here)

Gouid S.E.L. Users Group . ..

The purpose o_f the Gould S.E.L. Users Group is to help create better User/User and User/Gould S.E.L.
Communications.

There is no fee to join the Users Group. Simply complete the Membership Application on the reverse side

and mail to the Users Group Administrator. You will automatically receive Users Group Newsletters,
Referral Guide and other pertinent Users Group Activity information.

Fold and Staple for Mailing

NO POSTAGE
. NECESSARY
IF MAILED

IN THE
UNITED STATES

]
. -]
BUSINESS REPLY MAIL —
e
FIRST CLASS PERMIT NO. 947 FT.LAUDERDALE, FLORIDA 33310 S —
POSTAGE WILL BE PAID BY ADDRESSEE T ———
...]
L .______.__________}]
Gould Inc., S.E.L. Computer Systems Division =
Attn: Users GrOUp Administrator R
6901 W. Sunrise Bivd., P.O. Box 9148 IR
Ft. Lauderdale, FL 333109148 e —
SR
]

———-

- - o

Fold and Staple for Mailing

=x GOULD

Electronics

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	2-01
	2-02
	2-03
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	Index-01
	Index-02
	replyA
	replyB

