
C.:· iP

c

SYMBOLIC DEBUGGER

User's Guide

June 1981

Publication: 321-001090-200

Supersedes 323-321514-001

Formerly: 323-321514-002

-} GOULD
Electronics & Electrical Products

This manual is supplied without representation or warranty of any kind. Gould Inc.,
S.E.L. Computer Systems Division therefore assumes no responsibility and shall have no
liability of any kind arising from the supply or use of this publication or any material
contained herein.

LIMITED RIGHTS LEGEND

Use, duplication, or disclosure of data contained within this document is subject to the
restrictions stated in SYSTEMS' Proprietary Agreement (Form No. 903) or, for
Government customers, DAR 7-104.9A.

Copyright © 1981 by Gould
First Printed March, 1980

Printed in the U.S.A.

C)

I

c PREFACE

The Symbolic Debugger User's Guide provides a functional description and operating
procedures on SYSTEMS Symbolic Debugger. This user's guide contains seven chapters:

An overview of the Symbolic Debugger

File assignment usage and interpretation

Various means of accessing the Symbolic Debugger

Program execution using the Symbolic Debugger with regard to registers, memory,
symbols and expressions

A description of commands available for use with the Symbolic Debugger

Error messages and abort code summaries

Sample programs and debugging sessions showing various debugging techniques.

Symbolic Debugger iii

r~

l CONTENTS

Preface ••••••••••••••••••••••••••••••• " • • . • • • • • • • • • • • • • • • • • . • • • • iii
Document Change History •••••••••••.•.•..••...••• " • • . . . • • . . . • . • viii
Documentation Conventions .••••••..••••..•...••.••••.••..•••••••••.• ix

Chapter

I-OVERVIEW

1.1 General Description •••••..•..•.......•..••••. " 1-1
1.2 Local and Global Symbols • • • • . • • • . • • . . . • • • • • . . . • . . . • • . . . • . • . • •• 1-1
1.3 Accessing Program Symbols ••••..•.••..••••••••••....••..•.•.•• 1-2
1.4 Summary of Symbolic Debugger Capabilities ••••••.••••••••••••••••. 1-2

2-Fn.ES AND Fn.E ASSIGNMENTS

2.1 Symbolic Debugger Files. . . • . • • • • • • • . • . . • • • • • • . . • . • • • • . • • •• 2-1
2.2 Dynamic Files and Buffers ..•.••.•....•.....••.•.•..•••••••..•. 2-1
2.3 Interactive Mode Default File Assignments ••••••••••••.•.•••••••••• 2-1
2.4 Batch Mode Default File Assignments .•..•••••••.•••.•.•.••••••••. 2-2
2.5 Symbolic Debugger Prompts •.••••••••••••.••••••••••••.•••••..• 2-3

3-ACCESSING THE SYMBOLIC DEBUGGER

3.1 Accessing the Symbolic Debugger via TSM (Interactive Mode) ..•.•..•..•. 3-1
3.2 Accessing the Symbolic Debugger via the Batch Stream

(Batch Mocfe) •••••••••••••••••••••••••••••• " • " • " •• " • " " ••••••
3.3 Accessing the Symbolic Debugger via the Break Key ••.•.•...••.......•

3-2
3-4
3-5
3-5

3.4 Accessing the Symbolic Debugger via the M.DEBUG Macro••..
3.5 The Symbolic Debugger's Location in Memory .•••••••••••.••.••••••••

4-USING THE SYMBOLIC DEBUGGER

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

Setting the Default for Symbolic References ••••..••••.••••••.••••.. 4--1
Command Files •••• " SI •••• 01 •• 1/1 ••• to ••••• fill e flo • fill 1/1 ••••• " ••••• II. 4-2
User Break Receiver ••• II II ••••• fill ••••• to • II II II • to e 1/1 • II e 4-2
Program Execution. II ••• Co II II •• II .. II II fill •• II • Q U ... II • II \) II ... II ... 4-2
Traps and Trap Lists. II Q ... iii' • II Iii ••• " II 4-3
Nested Traps III • II II II II II ... II ••• ,. • ,. •••••• II II .. II ... II • e ••• D 4-4
Examining Memory and Registers •••••.•••••••.•••.•....•..•.•..• 4-4-
Modifying Memory and Registers. . • . • • • • • • • • • . • • . • • • • • . • . • . • . • . .• 4-5
Selecting the Input Radix •• II ••••• II D • II II (I II II <11 •• 4-6
Establishing User Bases .. II •• II ... II • It II II II •• II II Q • II II • II • II fill " II • • • .. • •• 4-6
Selecting Relative or Absolute Addressing • . . • • • . • • . • • • • . • . • • • . . • • .• 4-6
Selecting Log/No Log File. • • • • . • • • • . • • . • • • • . • . • • • • • • • • • . • • . • . .• 4-6
Selecting Label Field Format •••..•.••.•••••••.•••••.••.•••..••. 4-6
Selecting Extended Memory Access • • . • • • • . • • . . • • • . • . • • . • . • • • • • • •• 4--7
Symbolic Debugger Command Expressions ••..••.•....•••.•.••••.•.. 4--7
4.15.1 Arithmetic Expressions .••••••••.•••••••.•••••••••••••. 4-8
4.15.2 Logical Expressions ." "." It a .. f,t " ,. it 4-8

Symbolic Debugger v

CONTENTS

Chapter

4.16
4.15.3 Relational Expressions •••••••••
Terms used in Symbolic Debugger Expressions
4.16.1
4.16.2
4.16.3
4.16.4
4.16.5
4.16.6
4.16.7

Integers .•....•.•...•••••
Constants
Register and Memory Contents
Bases .••
Symbols •.
COUNT.
Period (.)

5-SYMBOLIC DEBUGGER COMMANDS

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40

vi

Using the Symbolic Debugger Commands
Summary of Symbollc Debugger Commands
The A (Address) Command
The ABSOLUTE Command
The B (Binary) Command ••
The BASE Command .••••.
The BREAK Command ••••
The CC (Condition Code) Command
The CLEAR Command •.•••••••
The CM (Change Memory) Command
The CR (Change Register) Command
The DA (Display ASCII) Command •••
The DD (Display Double Precision) Command
The DELETE Command ...•••..•••••••
The DETACH Command ...•••••••••.••
The DF (Display Floating Point) Command
The DI (Display Instruction) Command •••.
The DN (Display Numeric) Command .••••
The DNB (Display Numeric Byte) Command
The DNH (Display Numeric Halfword) Command ••
The DNW (Display Numeric Word) Command
The DUMP Command •.•••••••.•.•••••
The E (Single Precision Floating Point) Command
The END Command
The EXIT Command •••
The FILE Command •••
The FORMAT Command
The GO Command
The IF Command
The LIST Command
The LOG Command
The MODE Command
The MSG (Message) Command
The N (Numeric) Command •••
The PGM (Program) Command ••
The RELATIVE Command
The REVIEW Command.
The RUN Command.
The SET Command •.
The SHOW Command

4-9
4-9
4-9

4-10
4-11
4-11
4-13
4-14
4-14

5-1
5-1
5-5
5-5
5-6
5-6
5-7
5-7
5-8
5-9

5-10
5-10
5-11
5-12
5-13
5-13
5-14
5-14
5-15
5-15
5-16
5-16
5-17
5-17
5-18
5-18
5-19
5-20
5-21
5-21
5-22
5-23
5-24
5-24
5-25
5-25
5-26
5-26
5-27
5-28

Symbolic Debugger

({-~

'~ :

-"

o

c'

CONTENTS

Chapter

5.41 The SNAP Command. .. 5-29
5.42 The STATUS Command. .. .5-29
5.43 The STEP Command • • . • • • . . . • • . • • • . • • . . • . . • • . • . . • .• 5-30
5.44 The TIME Command. .. 5-30
5.45 The TRACE Command 5-31
5.46 The TRACK Command 5-33
5.47 The WATCH Command • • • • • • . • • • . . . • • • • • • . . . • . . • • • • . • • • • • • . .• 5-33
5.48 The X (Hexadecimal) Command. . • . • . • • . • • • • • • • • • • • • • • • • • • . • • • .• 5-34

6-ERROR MESSAGES

6.1 Symbolic Debugger File Assignment Error Messages ••...••..•••••.•.•• 6-1
6.2 Addressing Error Messages ••..•.•....•..•...•..•••.............. 6-2
6.3 Trap Error Messages. • • • • . . • . . . • • . • . • • • • • . . . • • • . • • •• 6-3
6.4 Command Expression Error Messages. • • • • • • • • • • . • . • • • • . • • • • • • • . . •• 6-5
6.5 Base Error Messages. .. 6-7
6.6 Command File Error Messages. • • . • . • • • • • •• 6-8
6.7 Command Argument Error Messages ••.•••••..•••••••••••••••••••. 6-9
6.8 Other Error Messages •••..••••...•••..•..•.•..•••••..•.•.•••. 6-10
6.9 Abort Codes. • • • • • • • • . • • • • • • • • • • • • • • • • . • • • • . • • • • • • • • • • • . • •• 6-11

7-SAMPLE DEBUGGING SESSIONS

7.1
7.2

7.3

Debugging Session Introduction • . • • • • • • • . • • • • • • • • • • • • • • . • • • • • . • •• 7-1
Example 1: Scanning Data in a Program Loop .•..••••••••••••••••••• 7-1
7.2.1 Sample Program-DBGTST •••.•••••••••.••..•.•••.••••• 7-2
7.2.2 Sample Debugging Sessions for Program DBGTST ••••.••••.••• 7-3
Example 2: Searching Through a Linked List ••••.••.••••••••••••.••• 7-6
7.3.1 Sample Program--DBGTST2 ••.•.••..•..••..•.••••••.•.• 7-7
7.3.2 Sample Debugging Session for Program DBGTST2 .••...•.....• 7-8

Symbolic Debugger vii

Document Change History

Insert latest change pages and dispose of superseded pages. On a changed page, the
portion of the page affected by the latest changes is indicated by a vertical bar in the
outer margin of the page. However, a completely changed page will not have a full
length bar, but will have the change notation by the page number.

Software Document Release Software
Revision Revision Date Release /I

0 000 3/80 1.0
C 001 7/80 1.1
F 002 6/81 2.0

0= Original F = Formal Revision C = Change Package

List of Effective Pages

Page
No.

Change
No.*

iii to vii 0
1-1 to 1-2 •..•...•............ 0
2-1 to 0
3-1 to 0

Page
No.

Change
No.*

4-1 to a
5-1 to 0
6-1 to 0
7-1 to•.. 0

* A "0" in this column indicates an original page, a "1" indicates a page changed by
Change Packet 1, a "2" indicates a page changed by Change Packet 2, and so forth.

viii Symbolic Debugger

"r- ~'"
I'"

\'-~j'

, ' , , " •. '., 0",

c.·.··.·
/

Documentation Conventions

Notation conventions used in command syntax and examples through this manual are
listed below.

Notation

lowercase letters

CAPIT AL LETTERS

[]

{ }

Symbolic Debugger

Description

Lowercase letters identify a generic element that must
be replaced with a user-selected value.

For example, the syntax statement:

!ACTIV ATE taskname

taskname could be entered as MYT ASK, as in:

!ACTIV ATE MYT ASK

Capital letters must be entered as shown for input, and
will be printed as shown in output.

ME M ,class specifies entering MEM followed
by a memory class (E, H, or S).

An element inside brackets is optional. Several
elements placed one under the other inside a pair of
brackets means that the user may select anyone or
none of those elements.

[CURR]

Tf, tasknamel
Gtaskno J

specifies the term CURR may be
entered but is not required.

specifies entering the letter T
then either a task name or a
tasknumber may be entered (both
are optional).

Elements placed one under the other inside a pair of
braces identify a required choice.

T{' taskname}
,taskno

specifies entering the letter T
then either a taskname or a task
number must be entered.

The horizontal ellipsis indicates that the previous
bracketed element may be repeated, or that elements
have been omitted.

ix

Numbers and
special characters

Underscore

x

name 1 , .•• ,namen specifies one or more values
may be entered, with a comma
inserted between each name
value.

The vertical ellipsis indicates that commands,
parameters, or instructions have been omitted.

COLLECT 1,3

LIST

specifies there are one or more
commands omitted between the
COLLECT and LIST commands.

Numbers that appear on the line (i.e., not subscripts),
special symbols, and punctuation marks other than
dotted lines, brackets, braces, and underlines appear as
shown in output messages and must be entered as shown
when input.

(value) specifies the proper value must
be entered enclosed in
parentheses; e.g., (234).

In examples, all terminal input is underscored; terminal
output is not.

TSM >ASSIGN1 specifies TSM was displayed on
the terminal, but ASSIGN 1 was
typed by the terminal user.

In syntax statements, underscoring is used to show the
acceptable abbreviation (if any) of commands and key
words. For example, the syntax:

ACTIVATE taskname specifies the command verb
ACTIVATE can either be
spelled out or abbreviated to
ACTI. In some cases, any
character following the
under lined portions of the verb
is ignored. In other cases, the
verb must either be spelled out
correctly or abbreviated to
exactly the under lined portion.

Symbolic Debugger

C .. ---."'·
, ""

r
L

CHAPTER I-OVERVIEW

1.1 General Description

The Symbolic Debugger is an optional software package available for use with the
MPX-32 (Mapped Programming Executive) operating system. The Symbolic Debugger is a
tool to assist in locating program errors in all languages supported by MPX-32. However,
the symbolic capabilities are available only with FORTRAN (both 77+ and 66+) and
Assembly Language.

The Symbolic Debugger is used as a replacement for the Debug load module provided
with MPX-32 and provides enhanced capabilities including: symbolic access, new
commands (including new data commands) and additional capabilities to aid during the
testing and debugging phase of program development.

The debugging phase is begun after a program is successfully compiled or assembled and
cataloged into an MPX-32 load module.

The Symbolic Debugger provides a stable environment to verify the correct execution of
a program or to locate any logic errors that may prevent proper execution. This is
accomplished through Symbolic Debugger commands. The commands provide access to
specific memory addresses where the user suspects errors. The contents of the addresses
can be displayed to verify correctness or to locate errors.

In FORTRAN and Assembly Language, addresses may be accessed through the use of
local and global symbols defined in the source program. These symbols represent
memory addresses, therefore the user does not need to know exact numerical addresses.
If the location is associated with a symbol, it can be accessed by using that symbol name
in the appropriate address parameter or command expression of a Symbolic Debugger
Command. If the location to be accessed is not identified by a symbol, the name of the
previous local symbol plus the offset to the desired location must be entered in the
command expression.

1.2 Local and Global Symbols

The symbols used by the Symbolic Debugger are divided into two groups, local symbols
and global symbols. Local symbols are those symbols defined within a specific source
program, and accessed by that program. Global symbols are symbols defined within a
specific source program, and can be referenced by other programs to provide
interprogram linkage.

Symbolic Debugger Overview 1-1

In FORTRAN, the following groups' are local symbols:

*

Array Names
Variable Names
Statement Names
Internal Functions
Statement Functions
Symbolic Constants*
Statement Numbers**

A symbolic constant can be used as a local symbol only if its value is less than _2 15,
greater than 215, or it is passed as an actual argument in a subroutine or function
call.

** FORTRAN-77 + Release 3.0 assigns a statement number to each executable
FORTRAN statement. The format for the statement number is S.x where x is the
sequential location of the statement from the beginning of the respective program.
Statement numbers are treated as local symbols by the Symbolic Debugger and can
be used as address parameters or command expressions in Symbolic Debugger
Commands. Assembly Language statements embedded in a FORTRAN statement
may be accessed by using the FORTRAN statement number plus the offset to the
appropriate Assembly Language statement.

In FORTRAN, the following groups are global symbols:

Program Names
Subroutine Names
Function Names
Entry Points

In Assembly Language, local symbols are all symbols used as address labels. Global
symbols must be defined as linkage symbols through the DEF directive in the assembly
stage of the defining program, and referenced as linkage symbol through the EXT
directi ve in the assembly stage of the referring program.

1.3 Accessing Program Symbols

Option 19 must be set for both the compiler/assembler and the Cataloger to allow the
Symbolic Debugger to access the program's symbols.

If option 19 is set for the compiler I assembler, all local symbols defined in the source
program are written to the Cataloger.

If option 19 is set for the Cataloger, all program names and global symbols defined in the
source program are placed in a table which is accessable by the Symbolic Debugger for
address references.

If option 19 is set for both the compiler/assembler and the Cataloger, all program names
and all local and global symbols are placed in tables which are accessable by the
Symbolic Debugger for address references.

Option 19 is set through the use of the OPTION command in TSM. The OPTION
command and the options to beset are entered followed by a carriage return. Then, the
taskname for which the options are to be set is entered (FORTRAN, ASSEMBLER, or
CATALOG).

1-2 Overview Symbolic Debugger

o

Note:

If option 19 is set for the compiler/assembler, it must also be set for the Cataloger.
However, option 19 may be set for the Cataloger only.

1.4 Summary of Symbolic Debugger Capabilities

The Symbolic Debugger is capable of

Debugging interactively or in batch. In either environment, Symbolic Debugger
commands control the execution of the program.

Accessing program locations {memory addresses} by using the symbols defined in the
source program. Addresses are displayed as symbolic expressions.

Displaying data in several formats (floating point, ASCII, integer, or instruction
mnemonic).

Executing program instructions one at a time and showing the result after each is
executed.

Printing a debugging session log.

Accessing commands from a Symbolic Debugger command file to alleviate the need
of entering each command individually during the debugging session.

Symbolic Debugger Overview 1-3

CHAPTER 2-FILES AND FILE ASSIGNMENTS

2.1 Symbolic Debugger Files

When the Symbolic Debugger is accessed and gains control of program execution, it
determines whether it has been accessed interactively, or in batch mode and makes the
appropriate file assignments for the command input and output. If the Symbolic
Debugger is running interactively, it also assigns a temporary file for logging the
debugging session. This log file can contain up to 100 screens of data, and can be printed
through the use of the LOG command or reviewed through the use of the REVIEW
command. The log file is unnecessary when running in batch because the output file for
the debugging session is equivalent to the log file.

All Symbolic Debugger logical file codes (lfcs) are assigned by default when the Symbolic
Debugger is accessed. When running interactively, none of the default lfc assignments
may be changed (no other assignment is valid). When running batch, only the default
input lfc (f/IN) and output lfc (f/OT) assignments may be changed. This may be desirable
for the output lfc (f/OT) if a large quantity of output is to be produced.

2.2 Dynamic Files and Buffers

When cataloging a task for use with the Symbolic Debugger, the Symbolic Debugger
requires five dynamic files and three dynamic buffers. If option 19 is set for the
Cataloger and no dynamic files or buffers are to be allocated for the task to be
debugged, the Cataloger will automatically allocate the files and buffers required for the
Symbolic Debugger •

. If the task to be debugged requires dynamic files or buffers, then the user must (through
the use of the FILES and BUFFERS directives) specify the number of files and buffers
that the task needs. If option 19 is set, the Cataloger will automatically add the five
files and three buffers required by the Symbolic Debugger to the number of files and
buffers specified in the FILES and BUFFERS directives (the number required by the
task). The Cataloger will then specify in the load module the total number of dynamic
files and buffers needed for execution of this task.

2.3 Interactive Mode Default File Assignments

The following is a list of the default assignments for the Symbolic Debugger when
running interactively.

Logical File Code

II IN

IIOT

1101

Symbolic Debugger

Assignment

UT

UT

DC,N

Files and
File Assignments

Descr iption

Command input is from the
user's terminal

Output is to the user's terminal

Temporary log file is on disc

2-1

Logical File Code Assignment

1102 SLO,N

1103 filename [,password]

IISM load module

2.. Batch Mode Default File Assignments

Description

Spooled output for LOG and
DUMP commands

User command file. This
assignment is made only if the
FILE command is specified.
The lfc 1103 is assigned to the
filename and password (if
specified) in the FILE
command.

Symbol table. This assignment
is made only if option 19 was
set for the Cataloger.

The following is a list of the default file assignments for the Symbolic Debugger when
running batch.

Logical File Code Assignment

II IN SYC

1I0T SLO,1000

1103 filename [,password]

IISM loadmodule

Description

Command input is from the
SYC file

Spooled output (1000 lines) is to
the SLO file

User command file. This
assignment is made only if the
FILE command is specified.
The lfc 1103 is assigned to the
filename and password (if
specified) in the FILE
command.

Symbol table. This assignment
is made only if option 19 is set.

The lfc IIIN and flOT may be reassigned by the user in the job control before accessing
the Symbolic Debugger.

2-2
Files and

File Assignments Symbolic Debugger

. . 0 "·'

o

2.5 Symbolic Debugger Prompts

The Symbolic Debugger has six command prompts that may be issued depending on the
last executed command. The following is a description of the six Symbolic Debugger
prompts.

Prompt

>

»

!!

Description

This will always be the first prompt issued by the Symbolic Debugger
following its identifying message. The commands entered in response to this
prompt come from the lfc IIIN and will be executed immediately. This
prompt will be reissued after the execution of all commands with the
exception of the SET, FILE and EXIT commands.

This prompt identifies commands from the lfc IIIN that are entered in a trap
list. If the SET command was entered in response to the period (.) prompt,
the Symbolic Debugger will issue the double period (••) prompt. The
commands entered in response to this prompt are not executed
immediately. These commands are placed in a trap list and are deferred
until the trap is encountered.

This prompt identifies commands from a command file. If the FILE
command was entered in response to any of the prompts, each command in
the command file specified will be written to the lfc 1I0T preceded by the
greater than (» prompt. The commands preceded by this prompt are
executed immediately and the result is written following each command.

This prompt identifies commands from a command file that are entered in a
trap list. If the SET command was entered in the command file, all
subsequent commands in the command file will be entered in a trap list until
a trap list terminator command is entered. When the command file is
accessed (the FILE command is entered), all the commands in the trap list
after the SET command and until the trap list terminator command are
preceded by the double greater than (») prompt. The commands preceded
by this prompt are not executed immediately. These commands are deferred
until the trap is encountered.

This prompt identifies commands from a trap list. When a trap is
encountered, each command in the trap list will be written to the lfc #IN
preceded by the exclamation point (!) prompt. The commands preceded by
this prompt are executed immediately and the result is written following
each corrmand.

This prompt identifies commands from a trap list that are entered in a
nested trap list. If the SET command was entered in a trap list, all
commands following the SET command will be entered in a nested trap list
until a trap list terminator command is entered. When the first trap is
encountered, all the commands which are in the nested trap list are preceded
by the double exclamation point O!) prompt. The commands preceded by this
prompt are not executed immediately. These commands are deferred until
the nested trap is encountered. Refer to Section 4.6 for a description of
nested traps.

Symbolic Debugger
Files and

File Assignments 2-3

It .. . "."':
~;v

CHAPTER 3-ACCESSING THE SYMBOLIC DEBUGGER

3.1 Accessing the Symbolic Debugger via TSM (Interactive Mode)

The most common method of accessing the Symbolic Debugger is via TSM (interactive
mode). This is accomplished by entering the DEBUG command in response to the TSM
prompt. All of the file assignments for the program must be made prior to entering the
DEBUG command. These file assignments can be made by establishing defaults through
the use of the Cataloger's ASSIGN directives, or by entering the TSM ASSIGN commands
before entering the DEBUG command.

When the Symbolic Debugger assumes control, it will write its identifying message, the
PSW at the point of execution, condition code status, program counter value (the entry
point to the program) and the registers status to the lfc IIOT (output) file, and prompt
the user for a Symbolic Debugger command. The sequence is as follows:

1. The user enters

TSM>DEBUG taskname

taskname specifies the name of the task to be debugged

2. The Debugger responds

MPX-32 SYMBOLIC DEBUG Vr. r rrrn/dd/yy ,hh:mn: ss
PSW=pppppppp (CC=cccc)(PC=aaaaaaaa)

TASK NAME = taskname

REGS=OOOOOOOO 00000000 00000000 00000000
00000000 00000000 00000000 00000000

• (the period prompt)

Vr.r

mm/dd/yy

hh:mm:ss

taskname

pppppppp

cccc

aaaaaaaa

Symbolic Debugger

specifies the revision level of the Symbolic Debugger

specifies the current date

specifies the current time of day

specifies the name of the task to be debugged

specifies the program status word (PSW) at the start of the
execution

specifies the value of the condition codes at the start of the
execution

specifies the current program counter value at the start of
execution. This value can be displayed as a program name, a
base plus an offset address, or a program name plus an offset
address.

Accessing the
Symbolic Debugger 3-1

• (period prompt)

3. The user enters

.command

specifies the Symbolic Debugger prompt. There are six
Symbolic Debugger prompts. Refer to Section 2.5
Symbolic Debugger Prompts for a description of each
prompt.

(period prompt) specifies the Symbolic Debugger immediate
prompt from the lfc /lIN

command specifies one of the Symbolic Debugger commands
described in Chapter 5

3.2 Accessing the Symbolic Debugger via the Batch Stream

The Symbolic Debugger can be accessed via the Batch Stream by ent'ering the $DEBUG
command in the job control. The Symbolic Debugger cannot be accessed until the
program has been assembled/compiled and cataloged. Therefore, the $DEBUG command
must follow the $ASSEMBLE/$FORTRAN and $CATALOG portions of the job control if
the program is to be assembled/compiled, cataloged and debugged in one job stream.
Otherwise, separate job control can be set up for each phase of the program
development.

All the file assignments for the program to be debugged must be made prior to debugging
the program. These file assignments can be made by establishing defaults through the
use of the Cataloger's ASSIGN directives when the program is cataloged. If no defaults
were assigned, the $ASSIGN commands must be entered in the job control preceding the
$DEBUG command.

Default file assignments are made for all necessary Symbolic Debugger files (refer to
Chapter 2-Files and File Assignments). Only the Symbolic Debugger input (/lIN) and
output (/lOT) files may be changed from their default.

The Symbolic Debugger commands to be executed are entered following the $DEBUG
command in the job control.

3-2
Accessing the

Symbolic Debugger Symbolic Debugger

o

Example 1

C This is an example of job control to assemble, catalog and debug a program.

infile

SLO

$JOB DBG.TST username
$OPTION 19
$EXECUTE ASSEMBLE

source program

.
$OPTION 19
$EXECUTE CATALOG

Catalog directives

.
$ASSIGNIIN=infile
$ASSIGN20UT=SLO,lOOO
$DEBUG DBG.TST
command!
command2

commandn
$EOJ
$$

specifies the name of the permanent disc file which contains the input
for the user program

specifies the user program output is to be written to the system listed
output file (spooled output) which is then written to the line printer.

Symbolic Debugger
Accessing the

Symbolic Debugger 3-3

Example 2

This is an example job control for debugging only. This example assumes that the
program has been assembled/compiled, and cataloged and that no default program file
assignments were made during Cataloging.

infile

SLO

$JOB DBG. TST username
$ASSIGN 1 IN =infile
$ASSIGN20UT =SLO, 1 000
$DEBUG DBG.TST
command 1
command2

commandn
$EOJ
$$

specifies the name of the permanent disc file which contains the input
for the user program

specifies the user program output is to be written to the system listed
output file (spooled output) which is then written to the line printer.

3.3 Accessing the Symbolic Debugger via the Break Key

The Symbolic Debugger can be accessed by depressing the Break key on the user's
terminal after a task has been activated via TSM. When the Break key is depressed, TSM
will respond with the following prompt:

BREAKON:taskname AT:aaaaaaaa ET:tttt.tt SEC. CONT,ABORT,OR DEBUG?

task name

aaaaaaaa

tttt. tt

specifies the name of the task which was executing at the time of the
break

specifies the address at which the break occurred

specifies the time in seconds at which the break occurred

The user has the choice of continuing (CONT), aborting (ABORT), or debugging (DEBUG)
the program. Responding with CONT (continue) will cause the program to continue
execution at the point where the break occurred. Responding with ABORT will abort
program execution. Responding with DEBUG will cause MPX-32 to load the Symbolic
Debugger into the last available 8K words of the 128K word address space. The Symbolic
Debugger will then write its identifying message as described in Section 3.1 and wait for
a command to be entered. Note that the register values in the message will specify the
contents of the registers at the time the break occurred.

3-4
Accessing the

Symbolic Debugger Symbolic Debugger
o

3.4 Accessing the Symbolic Debugger via the M.DEBUG Macro

The Symbolic Debugger can be accessed by coding the M.DEBUG macro into a program
at the location where the Symbolic Debugger is to be activated. MPX-32 loads the
Symbolic Debugger and transfers control to it at that point.

When debugging is complete, the program will issue the EXIT command to exit from the
Symbolic Debugger and terminate the debugging session. The Symbolic Debugger will
also exit if it encounters an end-of-file (EOF) from the command input device.

3.5 The Symbolic Debugger's Location in Memory

When the Symbolic Debugger is requested, MPX-32 loads it in the last available 8K words
of the 128K word address space along with the program specified in the DEBUG
command. If the Symbolic Debugger cannot fit in the available memory along with the
task then only the task is loaded. If the user task contains a CSECT, the Symbolic
Debugger is loaded in memory just below the beginning of the CSECT. (The CSECT is an
area of memory that contains code/data that may be shared by more than one program.
The code/data contained in the CSECT has read only status which is accessed almost
simultaneously by the sharing programs. The read/write data referenced by the CSECT
is contained in the DSECT. This data is individual (not shared) to the programs sharing
the CSECT).

When the Symbolic Debugger gains control, MPX-32 preserves the registers in the Task
Service Area (TSA) at offset T.CONTXT. T.CONTXT is a ten word area within the TSA
of each task which is reserved for the Symbolic Debugger's use. The Symbolic Debugger
uses this area as the task's register status when it gains control.

The Symbolic Debugger initializes default bases and opens the load module file for
symbolic access (if option 19 is set).

Symbolic Debugger
Accessing the

Symbolic Debugger 3-5

The following diagram illustrates the location of the Symbolic Debugger in memory

3-6

• J
I
I
I
I

EXTENDED ADDRESS SPACE

GLOBAL COMMON/DATA POOL

CSECT

SYMBOLIC DEBUGGER PATCH AREA

SYMBOLIC DEBUGGER

DSECT

TSA

OPERA TING SYSTEM

t
I
I
I
I 128KW

•

o

Location of the Symbolic Debugger in Memory

Accessing the
Symbolic Debugger Symbolic Debugger

o

CHAPTER 4-USING THE SYMBOLIC DEBUGGER

4.1 Setting the Default for Symbolic References

There are various symbol tables in which the Symbolic Debugger searches for symbol
names. These are the program name table, the global symbol table and a number of local
symbol tables (one for each of the program names in the program name table). A default
may be set to either the global or one of the local symbol tables through the use of the
PGM command. The default specifies that the symbol table to which the default is set
will be the first table searched for the symbol name specified in a Symbolic Debugger
command.

If the PGM command is entered without an argument, the default is set to the global
symbol table (this is the default condition when the Symbolic Debugger is accessed).
Global symbols may then be accessed by entering the symbol name in a command
expression. Local symbols may be accessed in this default condition only if they are
entered in a full pathname. A full pathname consists of the program name which defines
the local symbol, a back slash ("') character and the local symbol name
(progname ,\locsym). Refer to Section 4-.16.5 for a more detailed description of symbols
and pathnames. .

The default may be changed to one of the local symbol tables by entering the PGM
command and the name of the program which defines the desired local symbols. Local
symbols defined in the program specified in th PGM command may then be entered
without specifying the program name and backslash () character. Local symbols defined
in another program must still be entered in the full pathname format. Global symbols
may be entered in this default condition, but if a global symbol, default local symbol
and/or program have the same name, the local symbol will be accessed. Therefore, if the
global symbol was desired, the default must be returned to the global symbol table (enter
PGM with no argument). If a program name was desired, it must be preceded with the
pound sign (11).

Examples

.PGM D.EXMPL

will allow the Symbolic Debugger to access all local symbols defined in the program
D.EXMPL.

.PGM

will allow the Symbolic Debugger to access all global symbols defined in the program
-to be debugged (local symbols are no longer accessable without entering a full pathname).

Symbolic Debugger
Using the

Symbolic Debugger 4-1

4.2 Command Files

The Symbolic Debugger can accept commands from a permanent disc file called a
command file. A command file can be created via the MPX-32 text editor. The
command file can contain any number of Symbolic Debugger commands and all
commands can be used in the command file except the FILE command. The commands
will be executed in the order in which they are entered in the file.

To access a command file, it must first be stored uncompressed with the MPX-32 text
editor STORE command. The command file can then be accessed during a debugging
session by entering the FILE command and the name of the command file.

4.3 User Break Receiver

If a break occurs during the execution of a program while the Symbolic Debugger is
attached, the Symbolic Debugger gains control and reports the occurrence of the break
to the user. If the program has a break receiver and the user wants control passed to the
break receiver, the BREAK command must be entered. This command causes the
Symbolic Debugger to pass control to the break receiver if one exists. If a break
receiver does not exist, the Symbolic Debugger will issue the following error message to
the lfc IIOT:

NO USER BREAK RECEIVER

4.4 Program Execution

The Symbolic Debugger has several commands for transferring control to the user
program to begin program execution. These commands are the GO, TRACE, TRACK and
WATCH commands.

After the Symbolic Debugger is accessed, the execution of the program to be debugged
can be started by entering the GO command. This command can also be used to continue
execution after the program has been stopped. The GO command has two optional
parameters, the start address and the stop address. If the start address is not specified,
the Symbolic Debugger uses the current PSW as the start address. If the stop address is
not specified, program execution continues until the program completes or until an abort
or trap is encountered. If no parameters are specified, the program will execute as if the
Symbolic Debugger was not attached. Refer to Section 5.28, The GO Command, for a
more detailed description.

Program execution may also be started with the TRACE command. The TRACE
command is used to single step through program execution. This command has two
optional parameters, the start address and the stop address. If a start address is
specified, the Symbolic Debugger will start execution at that address and display the
instruction located at that address. If no start address is specified, the Symbolic
Debugger will start execution at the address specified in the current PSW and display the
instruction located at that address. After each instruction is displayed a carriage return
(cr) must be entered after the instruction is written to execute and display each
subsequent instruction. The single step trace continues in this manner until reaching the
stop address (if specified) or the end of the program (if no stop address is specified). The
trace may be stopped at any time by entering any character other than a carriage return
(cr) following the display of an instruction. For a more detailed description, refer to
Section 5.45, The TRACE Command.

4-2
Using the

Symbolic Debugger Symbolic Debugger

./--~

VG

(j

Note:

When executing a program via the TRACE command, all traps and break points are
ignored.

There are two other commands that can be used to start program execution, the TRACK
and WATCH commands. Both of these commands are functionally like the TRACE
command. The TRACK command differs from the TRACE command in that it writes
only branch instructions and their results to the lfc /lOT. The WATCH command differs
from the TRACE command in that it does not write any instructions or results.

The WATCH command causes the Symbolic Debugger to monitor program execution to
detect erroneous branches into memory that is not within the program's address range. If
a branching address error occurs, an error message will be written to the lfc /lOT. There
will be no other output during program execution in WATCH mode. For a more detailed
description, refer to Sections 5.46 The TRACK command and 5.47 The WATCH
command.

If • .5 Traps and Trap Lists

Program execution may be stopped by setting traps at locations within the program. The
SET command is used to place traps at the desired locations. The SET command requires
one parameter, the trap (stop) address. When program execution is started by the GO
command, execution continues until a trap is encountered (or until the program finishes
processing). If during execution a trap is encountered, execution of the program will stop
at the trap address. This allows the user to execute sections of code that are known to
be correct and stop at an address where errors are suspected. When execution is stopped
because a trap was encountered, the Symbolic Debugger will execute the commands in
the trap list for the trap specified in the SET command.

When the SET command is entered, the Symbolic Debugger defers the execution of
subsequent commands and stores them in a trap list for the trap specified in the SET
command. A trap list can contain any number of Symbolic Debugger commands. The
commands will be executed in the order they were entered in the trap list. All Symbolic
Debugger commands can be entered in a trap list, except the LOG and REVIEW
commands.

Each command entered in a trap list, except the CLEAR, FORMAT, MODE and SHOW
commands, is checked for validity before being stored. If a command contains an error,
the command is not entered in the trap list and an appropriate error message is written
to the lfc IIOT (refer to Section 6.3 Trap Error Messages). Following the error message,
the user may re-enter the command or enter another command as desired. The
commands CLEAR, FORMAT, MODE, and SHOW will be validated only when they are to
be executed.

A trap list command may contain a user base parameter which has not yet been defined.
This is not considered an error in a trap list command. Therefore, care should be taken
to define all user bases either before building the trap list or before executing the trap
which contains an undefined user base reference.

Trap lists are ended by entering anyone of the trap list terminator commands. If the
trap list contains nested traps, each trap list terminator corresponds to the trap list
following the most recent unterminated SET command (refer to Section 4.6 Nested
Traps). Valid trap list terminators are the BREAK, END, EXIT, FILE, GO, TRACE,
TRACK and WATCH commands.

Symbolic Debugger
Using the

Symbolic Debugger 4-3

4.6 Nested Traps

Trap lists can be nested within a trap list. If a SET command is entered in a trap list, a
nested trap list is built within the original trap list. When the original trap is
encountered during program execution, the SET command in the trap list being executed U!.' "'-~".'
will cause a second trap to be set at the address specified in the nested SET command.
Any number of trap lists may be nested within a trap list. Each nested trap will be set
only after the trap list it is nested within is executed.

Each nested trap within a trap list must have a corresponding trap list terminator. Each
trap list terminator corresponds to the trap list following the most recent unterminated
SET command.

Example

SET trap! ---'- trap is set at address specified by trap!
commandl-l - commandl-l is stored in the trap list for trap!
commandl-2 - commandl-2 is stored in the trap list for trapl
SET trap2 - trap2 will be set when trap! is encountered
command2-l - command2-l is stored in the trap list for trap2
SET trap3] - trap3 will be set when trap2 is encountered
command3-1 - command3-l is stored in the trap list for trap3
terminator3 - terminator3 is stored in and terminates the trap list for trap3
SET trap4] - trap4 will be set when trap2 is encountered
command4-l - command4-l is stored in the trap list for trap4
terminator4 - terminator4 is stored in and terminates the trap list for trap4
terminator2 - terminator2 is stored in and terminates the trap list for trap2
terminator 1 - terminator! is stored in and terminates the trap list for trap 1

4.7 Examining Memory and Registers

The Symbolic Debugger provides commands which allow the user to examine the contents
of memory or registers.

The commands to display memory are as follows:

4-4

Command

DA (Display

DD (Display

DF (Display

DI (Display

ASCII)

Double Precision)

Floating Point)

Instruction)

Description

Displays the contents of memory in
ASCII format.

Displays the contents of memory in
double precision floating point format.

Displays the contents of memory in
single precision floating point format.

Displays the contents of memory in
instruction format.

DN (Display Numeric) Displays the contents of memory in a
decimal numeric format (the data size is
selected from the symbol table entry).

Using the
Symbolic Debugger Symbolic Debugger

c

c

(',

Command

DNB (Display Numeric Byte)

DNH (Display Numeric Halfword)

DNW (Display Numeric Word)

DUMP

SNAP

Description

Displays the contents of memory in a
decimal numeric byte format.

Displays the contents of memory in a
decimal numeric halfword format.

Displays the contents of memory in a
decimal numeric word format.

Dumps the contents of memory to the
line printer in a side-by-side hexadecimal
and ASCII format.

Displays the contents of memory in a
side-by-side hexadecimal and ASCII
format.

The eight general purpose registers can be displayed by entering the STATUS command.
This command will display the contents of all general purpose registers in a side-by-side
hexadecimal and ASCII format. The STATUS command has no parameters.

".8 Modifying Memory and Registers

The Symbolic Debugger provides commands which allow the user to change memory or
register values.

The contents of memory can be changed by entering the CM (Change Memory)
command. This command requires two parameters separated by an equal sign (=). The
first parameter is the starting address of the address values to be changed. The second
parameter, which may be a list of values separated by commas, is the data to be entered
in memory starting at the address specified in the first parameter. If there is only one
entry in the second parameter (the data list), only the address specified will be changed.
Two successive commas in the data list specify that the corresponding address word
value will remain unchanged.

Example

.CM 100=1,2,,4

will cause the values 1, 2, and 4 to replace the contents of addresses 100, 104 and 10C
respectively. Address 108 remains unchanged.

The contents of registers can be changed by entering the CR (Change Register)
command. This command requires two parameters separated by an equal sign (=). The
first parameter is the starting register (RO-R7) of the register(s) to be changed. The
second parameter, which may be a list of values separated by commas, is the data to be
entered in the reglSter(s) starting with the register specified in the first parameter. If
there is only one entry in the second parameter (the data list), only the register specified
will be changed. Two successive commas in the data list specify that the corresponding
register will remain unchanged.

Exampl~

.CR Rl=l,2,,4

will cause the values 1, 2, and 4 to replace the contents of registers Rl, R2 and R4
respectively. Register R3 remains unchanged.

Symbolic Debugger
Using the

Symbolic Debugger 4-5

4.9 Selecting the Input Radix

The input radix can be selected using the FORMAT command. The default radix is
hexadecimal. To change the default radix to decimal, enter the Symbolic Debugger
command FORMAT N. To change the default radix back to hexadecimal, enter FORMAT .L:f-~
X. The SHOW OPTIONS command may be entered to display the current default input j

radix.

4.10 Establishing User Bases

To establish a base at the beginning of a data structure or a subroutine that will be
referenced frequently during the debugging process, enter the BASE command. This
command requires two parameters, the base name and the expression whose value is
assigned to the base. Once a base is defined, it may be used as a term in an expression in
Symbolic Debugger commands. To change the value of a base, enter the BASE
command. To remove all user defined bases from the Symbolic Debugger's base table,
enter the CLEAR BASES command. Refer to Section 5.6 the Base Command, for a more
detailed description.

4.11 Selecting Relative or Absolute Addressing

To establish a relative reference point during debugging, use the RELATIVE command.
This command uses one optional parameter, a base name or program name to be the
relative reference point. If the parameter is omitted, the Symbolic Debugger re­
establishes the last relative name used in the program. The ABSOLUTE command is used
to make all subsequent address expressions absolute, not relative to a base or program
name. The SHOW OPTIONS command may be entered to display the current addressing
mode (relative or absolute).

4.12 Selecting Log/No Log File

A temporary log file is allocated by default for the Symbolic Debugger when the
Symbolic Debugger is accessed in interactive mode. The log file is used to store all of
the commands and results of the debugging session until a LOG or REVIEW command is
entered. These commands display the log file to the line printer (LOG command) or the
lfc IIOT (REVIEW command) and then clear the log file. All subsequent commands will
be entered in the log file until another LOG or REVIEW command is entered or until the
debugging session is ended.

The log file will not be maintained after the user enters the MODE NOLOG command.
Entering this command will allow the Symbolic Debugger to execute faster. The log file
can be maintained again by entering the MODE LOG command thus all subsequent
commands will then be stored. The SHOW OPTIONS command may be entered to display
whether or not a log file is being maintained.

4.13 Selecting Label Field Format

The addresses which are displayed in the label field of all Symbolic Debugger command
results can be displayed in two formats. The first format is oriented to FORTRAN
programs and displays the address as the program name plus the symbol name plus the
offset. Program name specifies the program in which the address to be displayed is
located. Symbol name specifies the symbol name within the specified program which has
the closest value greater than or equal to the address to be displayed. Offset specifies
the positive difference between the symbol name's value and the address to be displayed.

4-6
Using the

Symbolic Debugger Symbolic Debugger

o

The second format is oriented to non-FORTRAN programs. This format displays the
address as the program name plus the offset. Program name specifies the program in
which the address to be displayed is located. Offset specifies the positive difference
between the symbol name's value and the address to be displayed.

Entering the MODE FORTRAN command will cause the Symbolic Debugger to select the
FORTRAN oriented format. Entering the MODE NOFORTRAN command will cause the
Symbolic Debugger to select the non-FORTRAN oriented format. Both Assembly
Language and FORTRAN programs may use either addressing format. The default
setting of the Symbolic Debugger is the non-FORTRAN mode. The SHOW OPTIONS
command may be entered to display the current label field format.

",.1", Selecting Extended Memory Access

If the program to be debugged uses extended memory addressing, the Symbolic Debugger
can access extended memory only when the extended memory bit is set in the program
status word (PSW). The extended memory bit in the PSW can only be set by executing
the SEA (set extended addressing) instruction in the program being debugged. The
execution of this instruction can be bypassed by entering the Symbolic Debugger MODE
EXTENDED command.

The MODE EXTENDED command allows the user access to extended memory without
having to execute the SEA instruction within the program. This allows the user to
examine or change extended memory at any time in the debugging session. If the MODE
EXTENDED command is not entered, the user would have to trace through the program
location which contains the SEA instruction (setting the PSW extended memory bit)
before attempting to access extended memory via a Symbolic Debugger command.

(.. . If the program to be debugged does not require extended memory access, the MODE
NOEXTENDED command will not allow the user access to extended memory. This is the
default condition in the Symbolic Debugger. The SHOW OPTIONS command may be
entered to display the current extended memory access mode.

4.1.5 Symbolic Debugger Command Expressions

Many Symbolic Debugger commands have required or optional parameters specified as
expressions. The Symbolic Debugger expressions are specified as ar ithmetic, logical,
relational or single term expressions. The expressions are evaluated as 32-bit integer
expressions. Each expression contains one or more valid terms. Valid terms used in
expressions are integers (in the default input radix), constants, register and memory
contents, base names, symbolic references, COUNT and period (.).

The rules for entering expressions are

• Operators are binary (arithmetic, logical or relationaI), requiring two operands.

• Expressions are evaluated left to right.

• Parentheses override left to right evaluation.

• Expressions are evaluated as 32-bit integer operations.

• Expressions contain one or more valid terms.

Symbolic Debugger
Using the

Symbolic Debugger 4-7

4.15.1 Arithmetic Expressions

The following is a description of valid arithmetic expressions (X and Y specify any valid
term). .

Expressions ~ Descr iption

X+Y Addition X is added to Y, overflow is ignored

X-V Subtraction Y is subtracted from X, overflow is
ignored

x*y Multiplication X is multiplied by Y, overflow is
ignored

X/V Division X is divided by Y, remainder is ignored

4.15.2 Logical Expression

The following is a description of valid logical expressions (X and Y specify any valid
term).

Expression

X"Y

X&:Y

XlY

X@Y

4-8

~ Description

Logical Shift X is shifted Y bits to the left if Y is
positive or to the right if Y is negative

Logical AND X is logicaUy anded with Y

Logical OR X is logically ored with Y

Exclusive OR X is exclusively ored with Y

Using the
Symbolic Debugger Symbolic Debugger

c

c'

1f.l.5.3 Relational Expressions

The following is a description of valid relational expressions (X and Y specify any valid
term).

Expression

X=Y

X< >Y

X >Y

X<Y

X>=Y

X<=Y

Note:

~

Equal

Not Equal

Greater

Less

Greater or Equal

Less or Equal

Description

if X is equal to Y, evaluated as TRUE
or 1 (otherwise, FALSE or 0)

if X is not equal to Y, evaluated as
TRUE or 1 (otherwise, FALSE or 0).

if X is greater than Y, evaluated as
TRUE or 1 (otherwise, FALSE or 0)

If X is less than Y, evaluated as TRUE
or 1 (otherwise, FALSE or 0)

if X is greater than or equal to Y,
evaluated as TRUE or 1 (otherwise,
FALSE or 0)

if X is less than or equal to Y,
evaluated as TRUE or 1 (otherwise,
FALSE or 0)

Single terms may be entered as expressions, and their value used as the expression result.

4.16 Terms used in Symbolic Debugger Expressions

Symbolic Debugger expressions contain one or more valid terms. The valid terms are
integers, constants, register and memory contents, base names, symbolic references,
COUNT and period (.).

4.16.1 Integers

Integers used as terms are entered in the default input radix. If the input radix is
hexadecimal, the first digit of the integer must be 0 through 9. Therefore, if a
hexadecimal integer beginning with A through F is to be entered, it must be preceded by
a leading zero.

If the input radix is hexadecimal, any number of digits can be entered as a hexadecimal
integer but only the last eight digits (the least significant digits) will be accepted by the
Symbolic Debugger as the integer value.

If the input radix is decimal, one to ten digits can be entered as the decimal integer. If
more than ten digits are entered, the Symbolic Debugger expects the eleventh digit to be
a valid operator, and writes the message

MISSING OPERATOR

to the lfc nOT and reissues a prompt for another command. The user should re-enter the
command with a one to ten digit decimal integer or issue another command.

Symbolic Debugger
Using the

Symbolic Debugger 4-9

4.16.2 Constants

The following are six types of constants used as terms in Symbolic Debugger expressions:

Hexadecimal Constant - A hexadecimal constant is a string of hexadecimal digits
enclosed in apostrophes and preceded by the letter X (e.g., X 'lEC'). If the default
input radix is hexadecimal, the letter X and the apostrophes are unnecessary. If the X
and apostrophes are omitted and the hexadecimal value begins with A-F, a leading
zero must precede the hexadecimal constant (synonymous with hexadecimal integer).
In either format, any number of digits can be entered, but only the last eight digits
(the least significant) will be used as the constant.

• Decimal Constant - A decimal constant is a string of one to ten decimal digits
enclosed in apostrophes and preceded by the letter N (e.g., N '193'). If the default
input radix is decimal, the letter N is unnecessary (synonymous with decimal
integer). If more than ten digits are entered in a decimal constant string, the
Symbolic Debugger expects the eleventh digit to be a valid operator, and writes the
message

MISSING OPERATOR

to the lfc IIOT and reissues a prompt for another command. The user should re-enter
the command with a one to ten digit decimal constant or issue another command.

• Binary Constant - A binary constant is a string of one to 32 ASCII ones and zeros
enclosed in apostrophes and preceded by the letter B (e.g., B' 1010 11'). If fewer than
32 digits are entered, leading binary zeros are added to produce a 32-bit value.

· Floating Point Constant - A floating point constant is a string of one to 21 decimal
digits enclosed in apostrophes and preceded by the letter E. The floating point string
is entered in one of three formats, a single precision value without an exponent, a
single precision value with an exponent (denoted by the letter E) or a double precision
value with an exponent (denoted by the letter D). The mantissa and the exponent can
optionally be designated as positive (+) or negative (-).

Examples:

A single precision floating point constant without an exponent.

E'0.999'

A positive single precision floating point constant with a negative exponent.
E'+100.32E-IO'

A negative double preCision floating point constant with an exponent

E'-100.32D 10'

• C-Character Constant - A C-character constant is a string of one to four ASCII
characters enclosed in apostrophes and preceded by the letter C (e.g., C'AI ?'). C­
character constants are left justified and trailing blanks are added to produce a 32-bit
value, if fewer than four characters are entered.

• G-Character Constant - A G-character constant is a string of one to four ASCII
characters enclosed in apostrophes and preceded by the letter G (e.g., G'AI ?').
G-character constants are right-justified and leading binary zeros are added to
produce a 32-bit value, if fewer than four characters are entered.

4-10
Using the

Symbolic Debugger Symbolic Debugger

{---,

'--J

c

4.16.3 Register and Memory Contents

The contents of registers and memory are used as terms in expressions by specifying the
register name or the memory address of the contents to be used.

Register contents are used by entering any of the eight general purpose registers in the
form Rn (n specifies a register number 0 through 7).

Memory contents are used by entering the address of the contents to be used in one of
the following formats:

C

C (address)
C (address + hex)
C (address -:; dec)
C (hex) -
C (dec)

specifies the contents of the term enclosed in parentheses is to be
used in the expression

address specifies a base name, program name, symbol, period (.) or explicit
pathname (program name plus symbol name plus offset or program
name plus offset).

hex specifies a hexadecimal value

dec specifies a decimal value

These expressions specify the 32-bit contents of the address or expression inside the
parentheses. Bits 30 and 31 of the expression value are zeroed to determine the word
address.

4.16.4 Bases

Bases are symbolic terms used in expressions. A base name is denoted by a $ as the first
character. The Symbolic Debugger defines nine bases when it is accessed. The nine
Symbolic Debugger bases are

Base Name

$

$PSD

$0

$TSA

$DSS

$DSE

$PCH

$CSS

$CSE

$END

Symbolic Debugger

Description

Bits 13-31 of the user task program status doubleword (PSD)

Bits 0-31 of the user task PSD

Constant zero

Start address of the user task's task service area (TSA)

Start address of the user task's DSECT

End address of the user task's DSEeT

Start address of the 256-word patch area (in the Symbolic Debugger)

Start address of the user task's CSECT

End address of the user task's CSECT

End address of the user task's extended memory

Using the
Symbolic Debugger 4-11

The relative position of some of the bases described above on a memory map of a user
task which uses all possible memory areas (CSECT, DSECT, Global Common, and
extended memory) is shown below.

£ £
I 1
I EXTENDED ADDRESS SPACE I
,...1 ____________ .,1 128K

GLOBAL COMMON/DATAPOOL

$CSE

CSECT

$CSS
SYMBOLIC DEBUGGER PATCH AREA

$PCH

$DSE

DSECT

$DSS

TSA

$TSA

OPERATING SYSTEM

$0 o

SYMBOLIC DEBUGGER BASE NAMES

Bases, other than the reserved Symbolic Debugger bases, can be defined through the use
of the BASE command. A user defined base name begins with a $ and an alphabetic
character followed by one to seven alphanumeric characters. User defined base names
may not be the same as any of the reserved Symbolic Debugger bases.

4-12
Using the

Symbolic Debugger Symbolic Debugger

o

o

(~•
./

4.16.5 Symbols

Programs assembled/compiled and cataloged with option 19 set allow the Symbolic
Debugger access to program names, global symbols and local symbols. If option 19 is set
only for the Cataloger, only program names and global symbols can be accessed.

Program names are denoted by the special character II (pound sign) and symbol names
(local and global) are denoted by the special character" (backs lash). Both special
characters are optional, but if global symbols, local symbols and/or programs have the
same name, the special characters should be entered for clarity.

When the Symbolic Debugger is accessed, it defaults to searching for global symbols. If
the default is not changed (via the PGM command), local symbols must be preceded by
the program name in which they are located and the backslash (\) character for the
Symbolic Debugger to access them.

If the PGM command and a program name are entered, the Symbolic Debugger then
defaults to the local symbols within the specified program name. In this default
condition, if a symbol is entered without the special character, the Symbolic Debugger
will first search the local symbol table (of the specified program). If the symbol is not
found, the global symbol table will be searched. If the symbol is not found in the global
symbol table, the program table will be searched. Therefore, the special characters
should be used to avoid ambiguous cases (symbols and programs with the same name).

Local symbols which are not located in the program specified in the PGM command must
be preceded by the program name in which they are defined and the backslash (\)
character.

The following syntax shows valid symbolic addresses:

Syntax

[II] progname

/I specifies the optional special character to denote a program name

progname specifies the program name to be used as a symbolic address

Syntax

[\]glosym

\

glosym

Symbolic Debugger

specifies the optional special character to denote a symbol name

specifies the global symbol to be used as a symbolic address. If the
default is to local symbols and a local symbol exists with the same
name, the PGM command must be entered without a program name to
set the default to global symbols. Otherwise, the local symbol by that
name will be accessed.

Using the
Symbolic Debugger 4-13

Syntax

[[llJprognameJ [']locsym

1/

progname

\

locsym

4.16.6 COUNT

specifies the optional special character to denote a program name

specifies the optional program name if the default is set to local
symbols defined in that program name.

If the default is set to global symbols or to local symbols defined
under a different program name, then the program name must be
specified followed by the backslash character and the local symbol
name.

specifies the optional special character to denote a symbol name.
This character is optional if the local symbol name it precedes is in
the default local symbol table. Otherwise it must be specified.

specifies the local symbol to be used as a symbolic address.

COUNT is a special term in expressions used to determine how many times a trap has
been encountered since it was set. When a trap is set, a counter is established to track
the number of times the trap is encountered. COUNT is always updated to reflect the
number of times that the last trap in the program was encountered. Therefore, COUNT
can be specified after each trap to determine how many times each trap has occurred.

COUNT is useful in conditional trap lists. If a program has a loop which executes
properly a number of times and then encounters an error, a trap can be set at the
beginning of the loop with a conditional trap list to execute only when COUNT equals the
number of times the loop executed properly. Then, through the commands in the trap
list, the user can examine memory or register contents during the iteration of the loop
which contains the error.

4.16.7 Period (.)

The special character period (.) is equal to the last address displayed by a memory
related command. The period (.) is used as a term in an expression in place of re­
entering the last displayed address.

The period (.) is set by the execution of the CM, DA, DO, DF, OJ, DN, DNB, DNH, DNW
and SNAP commands.

4-14
Using the

Symbolic Debugger Symbolic Debugger

c·.···.1>··
'::

Example

The user enters the command

.DI IIDBGTST\$YMBOL 1

The Symbolic Debugger responds

DBGTST\SYMBOL 1 L W R5, DBGTST\SYMBOL2

The user enters the command

.SET.

The Symbolic Debugger issues the trap list prompt and the user enters the command

•• END

The Symbolic Debugger sets a trap at the address specified by period (.) which is
DBGTST".SYMBOLI with no corresponding trap list commands.

Symbolic Debugger
Using the

Symbolic Debugger 4-15

(

(

CHAPTER 5-SYMBOLIC DEBUGGER COMMANDS

5.1 Using the Symbolic Debugger Commands

The following rules apply to the Symbolic Debugger commands, whether they are entered
from the lfc IIIN (batch mode or interactive mode) or from a command file (Uc 1103)
through the use of the FILE command.

• Each command record read from the lfc flIN is placed in a 72-character buffer. If the
record size of the file/device assigned to the lfc IIIN is other than 72 characters, the
command is left-justified and blank-filled or truncated to the 72-character buffer
size.

• Compound commands and continuation of command lines are not allowed.

• All commands have a command verb. Some command verbs may be abbreviated by
entering the characters underlined in the syntax. If no command verb is entered, the
Symbolic Debugger defaults to the SNAP command.

• The command verb is followed by a termination character (any non-alphabetic
character) and the command argument list (if required). Multiple arguments are
separated by commas (,). Blanks in a command line are ignored except inside a G or C
character constant.

• Error messages are written to the lfc IIOT when an incorrect command is entered.
Refer to Chapter 6 for a description of the error messages.

• The response to each entered command is written to the lfc IIOT following that
command. (Some commands have no displayed response.)

5.2 Summary of Symbolic Debugger Commands

Command

A

ABSOLUTE

B

BASE

BREAK

CC

Symbolic Debugger

Descr iption

Displays the address of the specified expression.

Sets absolute mode. All subsequent address expressions are
evaluated and displayed as absolute addresses until relative
mode is set via the RELATIVE command.

Evaluates and displays the specified expression in binary
format.

Creates, deletes or modifies a user base.

Transfers control to a user task's break receiver.

Displays or modifies condition codes in the user task's program
status doubleword (PSD).

Commands 5-1

Command

CLEAR

CM

CR

DA

DO

DELETE

DETACH

OF

01

ON

DNB

DNH

DNW

DUMP

E

END

EXIT or X

FILE

5-2

Descr iption

Clears all user defined bases or deletes all traps.

Changes memory contents to the 32-bit value(s) specified
begiming at the address· specified.

Changes register contents to the 32-bit value(s) specified
begiming at the register specified.

Displays the contents· of the memory range specified in ASCII
format.

Displays the contents of the memory range specified in double
precision floating-point format.

Deletes the specified trap.

Detaches the Symbolic Debugger from the user task and
transfers control to the task at the address specified or at the
last address executed in the task.

Displays the contents of the memory range specified in single
precision floating point format.

Displays the contents of the memory· range specified in
instruction mnemonic format (Assembly language).

Displays the contents of the memory range specified in
decimal integer format.

Displays the contents of the memory range specified in
decimal integer byte format.

Displays the contents of the memory range specified in
decimal integer half word format.

Displays the contents of the memory range specified in
decimal integer word format.

Dumps the content of the memory range specified, the task's
PSD and the general purpose registers to the line printer
(interactive mode) or to the lfc /lOT (batch mode) in a side-by­
side hexadecimal and ASCII format.

Evaluates and displays the result of the expression specified in
single precision floating point format.

Terminates a trap list and returns control to the lfc /lIN.

Terminates the Symbolic Debugger and the user task.

Passes control to the command file specified to read and
execute the commands in the file, then return control to the
lfc /lIN.

Commands Symbolic Debugger

o

o

Command

(
FORMAT

GO

IF

LIST

LOG

MODE

MSG

N

PGM

RELATIVE

(/ REVIEW

RUN

SET

SHOW

SNAP

STATUS

STEP

C'-
~.

TIME

Symbolic Debugger

Descr iption

Sets the default radix to either decimal or hexadecimal for
undesignated values in expressions.

Begins execution of the user's task at the address specified or
at the current program counter value.

Establishes conditional trap list execution.

Displays the trap list for the specified trap.

Writes the temporary log file to the line printer (interactive
mode only, not available in batch mode).

Sets log/no log file, extended/no extended memory access, and
FORTRAN/NOFORTRAN label field format.

Designates a comment line.

Evaluates and displays the result of the expression specified in
signed decimal format.

Establishes the program name specified as the default for local
symbol searches or if no program name is specified, defaults to
glob-al symbol searches.

Sets relative mode and optionally establishes a new relative
base or program name.

Writes the temporary log file (one screen at a time) to the lfc
/lIN (interactive mode only, not available in batch mode).

Sets run mode (as opposed to single-step) for tracing or
tracking. A full screen of program instructions will be
displayed before prompting for continuation or termination of
the trace or track.

Sets a trap at the word address specified and prompts for a
trap list command.

Displays trap addresses, base names and values, option settings
and/ or symbols.

Displays the contents of the memory range specified in side­
by-side hexadecimal and ASCII format.

Displays the status of the user PSD and general purpose
registers at the current address.

Sets single-step mode for subsequent TRACE or TRACK
commands. One program instruction will be displayed before
prompting for continuation or termination of the trace or
track.

Displays the current date and time.

Commands 5-3

Command

TRACE

TRACK

WATCH

x

5-4

Description

Transfers control to the user task and displays each instruction
after it is executed.

Transfers control to the user task and displays each branch
instruction after it is executed.

Transfers control to the user task and reports any erroneous
branches into memory (no instructions are displayed).

Evaluates and displays the result of the expression specified in
hexadecimal format. If no expression is specified, X is
interpreted as the EXIT command.

Commands Symbolic Debugger
c

C"
....

5.3 The A (Address) Command

A (Address) Command

ABSOLUTE Command

The A command is used to evaluate and display an expression in address format. If
extended addressing mode is not set, 19 bits are used. If extended addressing mode is
set, 24 bits are used.

Syntax:
A expr

expr specifies any valid Symbolic Debugger expression.

Response:

In Relative mode, the address is displayed as the closest base or program name to the
value plus the positive offset, in hexadecimal.

In Absolute mode, the address is displayed as a hexadecimal number without leading
zeros.

5.4 The ABSOLUTE Command

The ABSOLUTE command is used to set the absolute mode. As a result, subsequent
address expressions are interpreted as absolute and displayed as absolute hexadecimal
logical addresses. This mode is in effect until a RELATIVE command is executed.

Syntax:

ABSOLUTE

. Response:

The command is always valid.

There is no output.

The Symbolic Debugger prompts for the next command.

Symbolic Debugger Commands 5-5

J! (Binary) Command

BASE Command

5.5 The B (Binary) Command

The B command is used to evaluate an expression and display its result in binary format.

Syntax:

B expr

expr specifies any valid Symbolic Debugger expression

Response:

The 32-character binary equivalent of the expression is displayed.

5.6 The BASE Command

The BASE command is used to define a user base (add its name to the internal base
definition table), delete a user base name from the base table, or redefine a user base
(change the value specified in the base name's definition).

Up to 16 user bases are allowed. Refer to Section 4.10 Establishing User Bases.

Syntax:

BASE base (,expr]

base specifies a user base name. A user base name must begin with the
character $ and an alphabetic character. A base name can be a
maximum of eight alphanumeric characters.

expr specifies a logical address to be used as the base's value. If the
expression is not specified, the base name is deleted. If "expr" is
specified and "base" is already defined, "base" is redefined to the
value specified by "expr".

Response:

There is no output except error messages. Error messages inform the user if

• the user tries to define a new base and the base table is full (16 user bases)

· "base" is not specified

• "base" is a base name which was defined by the Symbolic Debugger and cannot be
redefined

• the user attempts to delete an undefined base

5-6 Commands Symbolic Debugger

o

5.7 The BREAK Command

The BREAK Command

CC (Condition Code) Command

The BREAK command is used to transfer control from the Symbolic Debugger to the user
task's break receiver.

Syntax:

BREAK

Response:

The user break receiver gets control. The Symbolic Debugger regains control upon the
occurrence of the next break, trap, user abort, or break receiver exit.

An error message informs the user if the user task has no break receiver.

The BREAK command is a trap list terminator.

5.8 The CC (Condition Code) Command

The CC command is. used to display the four condition code bits in the Symbolic
Debugger base $PSD (bits 0-31 of the user PSD) or to display the old condition code of
$PSD and insert a new value.

Syntax:

CC [cc]

cc

Response:

is a string of four binary digits that will replace the existing condition
codes in $PSD. If not specified the Symbolic Debugger displays the
present condition codes.

An error message informs the user if the condition code is specified incorrectly.

The Symbolic Debugger prompts for the next command.

Symbolic Debugger Commands 5-7

.5.9 The CLEAR Command

The CLEAR command is used to delete all user defined bases or traps.

Syntax: .

CLEAR { BASES }
TRAPS

BASES indicates that all user base definitions are to be deleted.

TRAPS indicates that all traps are to be deleted.

Response:

An error message informs the user of any argument specification errors.

There is no output except for error messages. The Symbolic Debugger prompts for the
next command.

5-8 Commands Symbolic Debugger

o

CM (Change Memory) Command

5.10 The eM (Change Memory) Command

The CM command is used to alter the contents of one or more consecutive words in the
task's logical address space.

Syntax:

CM addr=expr 1[,expr2, ... ,expr nJ

addr specifies the address of the first word to be changed (bits 30 and 31 of
addr are ignored).

expr specifies the 32-bit value to be stored at the specified address.

Response:

Successive values are stored in consecutive words beginning at
"addr". Two consecutive commas with no intervening value can be
used to skip the memory address corresponding to the missing value,
leaving its contents unchanged.

Error messages inform the user if:

• "addr" and "expr" are not both present and valid

• memory changes must be stopped because "addr" or an address derived from it
(multiple values) violates a Symbolic Debugger address restriction

• an error occurs in evaluating one of the "expr" values

Note: In the third case, the error message will specify which memory words, if any, were
successfully changed.

A SNAP is automatically performed by the Symbolic Debugger for the modified range
and the new contents are displayed.

The Symbolic Debugger prompts for the next command.

When storing a double precision floating point constant into memory, two words are
changed.

The special character period (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.».

Symbolic Debugger Commands 5-9

-=.:.::. ,----ct- &''''''O~·'''''· I "'"'" •••••• C;UIU

DA (Display ASCn) Command

5.11 The CR (Change Register) Command

The CR command is used to alter the contents of one or more user registers.

Syntax:

CR Rn=exprl [,expr2 , ••• ,exprn]

Rn specifies a user register (RO-R7)

expr specifies the 32-bit value to be stored in the specified register.

Response:

Succeeding values, if any, are stored in consecutive user registers.
Two consecutive commas with no intervening value can be used to
skip the user register corresponding to the missing value, leaving its
contents unchanged. If user register R7 has been altered or skipped
and one or more unused values remain, they are ignored.

An error message informs the user if:

. A register specification is absent or not in the range 0-7.

• The first value is not specified.

The Symbolic Debugger prompts for the next command.

When changing a register to a double precision floating point constant, two registers are
changed.

5.12 The DA (Display ASCn) Command

The DA command is used to display a memory range in ASCII format.

Syntax:

low

high

Response:

DA (low] [,high]

specifies the first byte address to be displayed. If not specified, the
last location displayed plus one word is used as the default.

specifies the last byte address of the range to be displayed. If not
specified, only the low address is displayed.

The memory address(es) are displayed in label-field format. The contents of memory are
displayed in ASCII format.

The special character r.eriod (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.) .

5-10 Commands Symbolic Debugger

C'

DD (Display Double PreciSIon} commano

.5.13 The DD (Display Double Precision) Command

The DD command is used to display a memory range in double precision floating point
format.

Syntax:

DD Dow] [,high]

low specifies the first word address to be displayed. If not specified, the
last location displayed plus one word is used as the default.

high specifies the last word address of the range to be displayed. If not
specified, only the low address is displayed.

Response:

The address(es) specified are displayed in label-field format. The contents of the
specified memory address(es) plus the contents of the next word are converted to their
floating point double preCision equivalent and displayed.

If a range is given, the, second display begins two words (8 bytes) after the first display.

The special character period (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.».

Symbolic Debugger Commands 5-11

UJ:.U:. I I:. L:omman<1

5.14 The DELETE Command

The DELETE command is used to delete a specified trap and restore the user instruction
to its original location.

Syntax:

DELETE trap -
trap specifies a trap address.

Response:

An error message informs the user if:

• "addr" is not specified

• "addr" is not an address at which a trap has been set by the SET command

The user instruction replaced by the trap instruction is restored to its original location.

The Symbolic Debugger prompts for the next command.

5-12 Commands Symbolic Debugger

c

.5.1.5 The DETACH Command

DETACH u>mmano

OF (Display Floating Point) Command

The DETACH command is used to detach the Symbolic Debugger from the user task and
transfer control to the task at the specified address or at $ (bits 13-31 of user PSD).

Syntax:

DETACH [addrJ

addr specifies the address within the user task to which control is
transferred. If not specified, defaults to $.

Response:

All traps are deleted (there is no need to enter CLEAR TRAPS to restore user
instructions replaced by trap instructions).

The Symbolic Debugger files and memory are deallocated.

The Symbolic Debugger transfers control to the specified address.

An error message informs the user if the specified address violates the Symbolic
Debugger's address restriction. .

DET ACH is a trap list terminator.

(~ .5.16 The OF (Display Floating Point) Command

(","

" ~/

The DF command is used to display a memory range in floating point format.

Syntax:

DF [low] [,high]

low specifies the first word address to be displayed. If not specified, the
last location displayed plus one word is used as the default.

high specifies the last word address of the range to be displayed. If not
specified, only the low address is displayed.

Response:

The memory addressees) are displayed in label-field format. The content of the specified
memory address is displayed in single precision floating point format.

If a range is given, the second display begins one word (4 bytes) after the first display.

The special character period (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.».

Symbolic Debugger Commands 5-13

01 (Display Instruction) Command

ON (Display Numeric) Command

5.17 The 01 (Display Instruction) Command

The DI command is used to display a memory range as mnemonic instructions (Assembly
Language).

Syntax:

DI [low] [,high]

low specifies the first word or halfword address to be displayed. If not
specified, the last location displayed plus one word is used as the
default.

high specifies the last word or halfword address of the range to be
displayed. If not specified, only the low address is displayed.

Response:

The memory address(es) are displayed in label-field format. The contents of the memory
address(es) are displayed in Assembly Language format.

The special character period (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.».

5.18 The DN (Display Numeric) Command

The DN command is used to display a memory range in decimal integer format.

Syntax:

DN [low] [,high]

low specifies the first word address to be displayed. If not specified, the
last location displayed plus one word is used as the default.

high specifies the last word address of the range to be displayed. If not
specified, only the low address is displayed.

Response:

The memory addressees) are displayed in label-field format. The contents of the memory
address(es) are displayed in decimal integer format.

The size is determined by the Symbol Table Entry. If there is no Symbol Table Entry, the
default is one word.

The special character f.eriod (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.) •

5-14 Commands Symbolic Debugger

c

C'·
/

DNB (Display Numeric Byte) Commana

DNH (Display Numeric HaUword) Command

5.19 The DNB (Display Numeric Byte) Command

The DNB command is used to display a memory range in decimal byte format.

Syntax:

DNB [lOW] [,high]

low specifies the first byte address to be displayed. If not specified, the
last location displayed plus one word is used as the default.

high specifies the last byte address of the range to be displayed. If not
specified, only the low address is displayed.

Response:

The memory addressees) are displayed in label-field format. The contents of the memory
addressees) are displayed in decimal integer byte format.

The special character f.eriod (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.) •

5.20 The DNH (Display Numeric HaUword) Command

The DNH command is used to display a memory range in decimal halfword format.

Syntax:

DNH [low] [,high]

low specifies the first halfword address to be displayed. If not specified,
the last location displayed plus one word is used as the default.

high specifies the last halfword address of the range to be displayed. If
not specified, only the low address is displayed.

Response:

. The memory addressees) are displayed in label-field format. The contents of the memory
addressees) are displayed in decimal integer halfword format.

The special character f.eriod (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.) • .

Symbolic Debugger Commands 5-15

ONW (Display Numeric Word) Command -" DUMP Command

5.21 The DNW (Display Numeric Word) Command

The DNW command is used to display a memory range in decimal word format.

Syntax:

DNW [low] (,high]

low specifies the first word address to be displayed. If not specified, the
last location displayed plus one word is used as the default.

high specifies the last word address of the range to be displayed. If not
specified, only the low address is displayed.

Response:

The memory address(es) are displayed in label-field format. The contents of the memory
address(es) are displayed in decimal integer word format.

The special character f.eriod (.) is set at the completion of this command {refer to
Section 4.16.7 Period (.) •

5.22 The DUMP Command

The DUMP command is used to write a range of memory to the line printer in side-by­
side hexadecimal and ASCII format. In batch mode, the dump is written to lfc IIOT.

Syntax:

DUMP [Iow][,high]

low and high

Response:

are expressions representing memory addresses. If "high
is not specified or is not greater than low, only the single word
at low is displayed.

If no addresses are specified, the Symbolic Debugger will dump
the addresses following the last address dumped. If no
addresses were dumped, the Symbolic Debugger will dump the
contents of memory starting at absolute address zero.

The memory range between the specified addresses is dumped to the line printer (or lfc
nOT in batch mode). The user PSD and registers are also shown.

An error message is displayed if any address in the range violates an address restriction.

5-16 Commands Symbolic Debugger

o

o

c-

(

~ , "0.&"'" ------. - ------~

END Command

5.23 The E (Single Prec.ision Floating Point) Command

The E command is used to display an expression value in single precision floating point
format.

Syntax:

E expr

expr specifies the expression to be displayed in floating point format.

Response:

The single precision floating point equivalent of the expression is displayed.

5.24 The END Command

The END command is used to terminate a trap list. Using a carriage return <CR>in
interactive mode performs the same function.

Syntax:

END or<CR>

Response:

END is a trap list terminator.

Symbolic Debugger Commands 5 .. 17

.!:!!,J.I vnUII4IIQ

FR.e Command

5.25 The EXIT Command

The EXIT command is used to terminate debugging and return to the TSM prompt. Both
the user task and the Symbolic Debugger exit.

Syntax:

EXIT (or) X

Response:

The Symbolic Debugger calls the M.EXIT service.

EXIT is a trap list terminator.

The Symbolic Debugger also exits in response to a Control C {end-of-file}.

5.26 The FD..E Command

The FILE command is used to read subsequent Symbolic Debugger commands from a
command file instead of from the lfc IIIN.

Syntax:

FILE filename [,password]

filename specifies the name of a command file on disc.

password specifies the password, if any, associated with the file.

Response:

An error message informs the user if:

• "filenamelt is absent or invalid, or the file does not exist

• the password is invalid

• the user is not allowed access to the file, e.g., a password is associated with the file
and has not been supplied

• the FILE command is read from a command file

If there are no errors, the Symbolic Debugger assigns lfc 1103 to the specified file and
reads subsequent commands from 1103 instead of /lIN. When the Symbolic Debugger
reaches end-of-file on 1103 or a break is recognized, command input returns to IIIN.

The Symbolic Debugger searches for a user file by the specified filename. If a user file
is not found, it then searches for a system file.

Use of the FILE command terminates a trap list.

5-18 Commands Symbolic Debugger

U
~···~·

- , .. _-, , ;,,>

o

FORMAT commano

5.27 The FORMAT Command

The FORMAT command is used to set the default input format for undesignated numeric
constants and integers in expressions to hexadecimal or decimal.

Syntax:

FORMAT

x sets the input radix to hexadecimal, which is the default when the
Symbolic Debugger is accessed.

N sets the input radix to decimal.

Response:

An error message informs the user if the format specification is absent or invalid.

The Symbolic Debugger prompts for the next command (no output).

Symbolic Debugger Commands 5-19

go Command

.5.28 The GO Command

The GO command is used to transfer control to the user task, optionally setting a one-
shot trap. .

Syntax:

GO [addd[,trap]

addr specifies the address within the user task to which the Symbolic
Debugger transfers control. If not specified, the Symbolic Debugger
base S (bits 13-31) of the user PSD is used.

trap specifies the address within the user task at which the Symbolic
Debugger sets a trap. The list of Symbolic Debugger commands
executed when the trap occurs is as follows:

1* ONE-SHOT TRAP SET BY GO COMMAND
IDEL$
lEND

"$" is. the special Symbolic Debugger base equal to bits 13-31 of the
user PSD.

If a trap address is not specified the Symbolic Debugger does not set a
trap before transferring control to the user task ..

Response:

An error message informs the user if:

• either the transfer address or trap address violate the Symbolic Debugger address
restrictions

• a trap address is specified and a trap is already set there

• no trap table space remains and a trap address is specified

• "addr" is an odd number

• "trap" is not on a word boundary

If GO is successful, the Symbolic Debugger transfers control to the user task at the
specified address. If the last control transfer into the Symbolic Debugger was caused by
a trap and control is passed to the trap address for that trap, the user instruction
replaced by the trap instruction is executed first. Control is then passed to the trap
address plus one word unless the replaced user instruction is any instruction which
terminates the TRACE, TRACK, or WATCH commands-such a replaced instruction may
not be executed without first deleting the trap set on it.

Control remains with the user task until a trap, break, or user abort occurs, at which
time the Symbolic Debugger regains control and prompts for the next command.

GO is a trap list terminator.

5-20 Commands . Symbolic Debugger

o

o

o

- ""' _.-
LIST Command

5.29 The IF Command

The IF command is used to make a trap list conditional. (The trap list is executed only if
specified conditions are met.) When used, this command must be the first command of
the trap list.

Syntax:

IF expr

expr specifies any valid Symbolic Debugger expression.

Response:

If the value of "expr" is nonzero, the trap is reported and remaining commands in the
trap list are executed. The relational operators produce a value of 1 if the relation is
true, and a value of 0 if false (refer to Section 4.15.3 for a description of relational
operators)~

If the value of "expr" is zero, no trap is reported and the program continues executing as
if the user issued a GO $ command.

The trap's COUNT is incremented whether the trap is reported or not •

An error message informs the user when the IF command is entered as an immediate
command or when "expr" is absent or invalid.

5.~ The LIST Command

The LIST command is used to display the trap list for a specific trap.

Syntax:

LIST trap

trap specifies a trap address

Response:

. An error message informs the user if "trap" is not a trap address.

Symbolic Debugger Commands 5-21

LOG Command

5.31 The LOG Command

The LOG command is used to print the current contents of the terminal log fHe.

Note:

A log file is maintained only when the LOG option has been specified by the MODE
command. The default condition is to maintain a log file.

Syntax:

LOG

Response:

All log file records which have not already been printed are copied to an SLO file. The
SLO file. is then closed and deallocated. All log file records thus copied are no longer
accessible (their space is released). The LOG command is ignored in batch.

5-22 Commands Symbolic Debugger

./ '-"

MUUa=. \.,Ommano

5.32 The MODE Command

C- The MODE command sets the following modes for the debugging session:

c.···
./

• A log file is/is not maintained to log the debugging session
• Extended memory access is/is not allowed
• FORTRAN display format is/is not set

Syntax:

LOG
NOLOG

MODE EXTENDED
NOEXTENDED
FORTRAN
NOFORTRAN

LOG specifies that a log file will be maintained for the debugging
session.

NOLOG specifies that a log file will not be maintained for the
debugging session.

EXTENDED specifies that extended addressing will be allowed, thus the
user has access to program locations in extended memory.

NOEXTENDED

FORTRAN

NOFORTRAN

Response:

specifies that extended addressing will not be allowed, thus the
user must trace through an SEA (set extended addressing)
instruction to access extended memory.

specifies that FORTRAN addressing format is set. The address
label field will be displayed as the program name and closest
previous symbol name and the offset address
(i.e., program'\.symbol + 04).

specifies that NOFORTRAN addressing format is set. The
address label field will be displayed as the program name plus
the offset address (i.e., program + 04).

An error message informs the user if the mode is invalid or missing.

The Symbolic Debugger prompts for the next command (no output).

Symbolic Debugger Commands 5-23

MSG (Messag~) Command

N (Numeric) Command

5.33 The MSG Command

The MSG command is used to denote a comment in a debugging session. It is most useful
in command files and trap lists to document the commands.

Syntax~

MSG message

(or)

* message

message specifies any character string.

Response:

The character string is displayed ..

5.34 The N (Numeric) Command

The N command is used to evaluate and display the expression's value in signed decimal
integer format. .

Syntax:

expr

Response:

Nexpr

specifies the expression to be evaluated and displayed in signed
decimal integer format.

The signed decimal integer equivalent of the expression is displayed.

5-24 Commands Symbolic Debugger

·0

o

(

~ ~lv6"~···' -_ _--

RELATIVE Command

.5.3.5 The PGM (Program) Command

The. PGM command is used to establish a program name in which the Debugger will
search for local symbols. This command also sets a new relative program name (see
RELATIVE command).

Syntax:

PGM [prognameJ

progname

Response:

specifies a program name which may begin with the character 11 (the
designating character II is optionaI). If a program name is not
specified, the current program name is cleared and the Symbolic
Debugger defaults to the global symbol table.

An error message informs the user if the program name could not be found •

.5.36 The RELATIVE Command

The RELATIVE command is used to set relative mode. Subsequent addresses that do not
include an explicit base, program, or symbol name are interpreted as relative to the base
or program name set by this command.

Syntax:

RELATIVE [base J
progname

base

progname

Response:

is a base name which must begin with the character $ (refer to
Section 4.10 Establishing User Bases).

is a program name which may begin with the character II (the
designating character II is optionaI).

If neither parameter is specified, the last base or program name that
was set by a RELATIVE command is used. During initialization, the
Symbolic Debugger sets the relative mode and establishes $DSS as the
default base.

Each address subsequently displayed is represented as a displacement from the nearest
base or program name which is not greater than the address. If a base and a program
name have the same value, the Symbolic Debugger uses the program name.

An error informs the user if the specified base or program name is not defined.

Symbolic Debugger Commands .5-2.5

ru:. y IC W \...ommana

RUN Command

5.37 The REVIEW Command

The REVIEW command is used to write the log file to the lfc IIOT.

Syntax:

REVIEW [screens]

screens specifies the number of screens from the current position in the log
file for the Symbolic Debugger to backspace before beginning the log
file display. If not specified or if specified as a number greater than
the number of screens currently contained in the log file, the display
begins at the first record in the log file.

Response:

The Symbolic Debugger displays the log file one screen at a time.

When the Symbolic Debugger reaches the end of the log file, the display is terminated
and the Symbolic Debugger prompts for the next command. None of the above terminal
I/O is copied to the log file.

REVIE W is treated as a comment in batch.

An error message informs the user if:

• REVIEW is entered as a deferred command

• REVIEW is read from a command file

5.38 The RUN Command

The RUN command is used to set the run mode. This results in trace or track continuing
until the Symbolic Debugger reaches a full screen of output instead of prompting for
input after each instruction.

Syntax:

RUN

Response:

Until a STEP command is executed, the TRACE and TRACK commands will display a full
screen of output before prompting for continuation or termination of the trace or track.

5-26 Commands Symbolic Debugger

(.. -,,\

.~

(

;:)1:. 1 '--UU" HaalU

.5.39 The SET Command

The SET command is used to set a trap in the user task at a specified location.

Syntax:

~ET trap

trap specifies the address at which the Symbolic Debugger sets a trap.

Response:

An error message informs the user if:

• The trap address is not specified.

• The specified address is already a trap address.

• The specified address violates an address restriction.

• Debug's trap table is full and thus no more traps can be set until a trap is deleted.

• "trap" is not on a word boundary.

The user instruction at the specified trap address is replaced by a trap instruction
(SVC 1,X'66').

The Symbolic Debugger then prompts for commands to be placed in the trap list (i.e.,
deferred commands).

The user can enter any Symbolic Debugger command in a trap list. All commands placed
in the trap list are checked for validity before they are actually stored in the trap list
except for the commands CLEAR, FORMAT, MODE and SHOW. These commands will be
validated only when they are to be executed. If a command is invalid, the Symbolic
Debugger will write an error message and issue another prompt.

A nested trap list occurs if a user enters a SET command in a trap list. This means the
second trap is set only when the first trap is encountered. Nesting can continue as far as
the user desires, however, there must be a terminator for each SET command in the
nested trap list. Refer to Section 4.6 for a detailed description of nested traps.

To terminate a trap list, enter one of the following commands: BREAK, END, EXIT,
FILE, GO, TRACE, TRACK, or WATCH.

Symbolic Debugger Commands 5-27

SHOW Command

5.40 The SHOW Command

The SHOW command is used to display current base definitions, trap addresses, option 0
settings, or symbols. '_ ~.,

Syntax:

SHOW[BASES J TRAPS
OPTIONS
SYMBOLS

BASES

TRAPS

OPTIONS

SYMBOLS

displays the current definitions of all special bases and user
bases.

displays all trap addresses.

displays the settings of the options controlled by the following
commands:

ABSOLUTE/RELATIVE
RUN/STEP
FORMAT
MODE

displays all symbols defined in the default program (i.e.,
program name established by the most recent PGM
command). If there is no default program name established, all
global symbols are displayed.

If no parameters are specified, all displays are produced.

Response:

An error message informs the user if any argument but BASES, TRAPS, OPTIONS, or
SYMBOLS is used.

5-28 Commands Symbolic Debugger

ti--~

'I

'-jl

o

c

SNAP COmmana

STATUS Command

'.,.1 The SNAP Command

The SNAP command is used to write the contents of a range of logical addresses to the
file or device assigned to lfc /lOT. The format is a side-by-side hexadecimal and Ascn
display.

This command is also a default (implied) command. Any expression entered without a
command verb performs as if it were preceded by SNAP. If a carriage return without a
command verb or expression is entered, the Symbolic Debugger will snap the address
following the last address snapped. If no addresses were snapped, the Symbolic Debugger
will snap the contents of memory starting at absolute address zero.

Syntax:

low

high

Response:

SN AP [low] [,high]

specifies the first address to snap. If not specified, the snap begins at
the address following the last address snapped or at absolute zero if

. no previous address was snapped

specifies the last address to snap. If not specified, only the single
word at the low address is snapped. Bits 30 and 31 are ignored and
assumed to be zero.

The specified memory contents are written to lfc flOT.

The special character period (.) is set at the completion of this command {refer to
Section 4.16.7 Period (.».

'."2 The STATUS Command

The STATUS command is used to display a status report indicating the user PSD and the
general purpose registers for the address contained in the program counter.

Syntax:
STATUS

Response:

The Symbolic Debugger displays a status report on the terminal.

Symbolic Debugger Commands 5-29

STEP Command

TIME Command

.5.43 The STEP Command

The STEP command is used to set step mode.

This allows a single step trace or track through the execution of each instruction in the
user task.

Syntax:

STEP

Reponse:

Until a RUN command is issued, all TRACE and TRACK commands will pause after each
instruction displayed so the user can inspect each instruction and its results before the
next instruction is executed.

STEP is ignored in batch •

.5.44 The TIME Command

The TIME command is used to display the current date and time of day.

Syntax:

TIME

Response:

The Symbolic Debugger displays the calendar date as stored in the Communications
Region (C.DATE) and the time of day as returned by the M.TDAY service.

5-30 Commands Symbolic Debugger

c

o

(

5.45 The TRACE Command

The TRACE command is used to execute and display each user instruction and its
results. To trace only branching instructions, use the TRACK command.

Syntax:

TRACE [start]['stopJ

start specifies the address of the first user instruction to be executed. If
not specified, the special base $ (bits 13-31 of the user PSD) is used.

stop specifies the address of the last user instruction to be traced. If not
specified, the trace continues as described below.

Response:

The Debugger executes user instructions beginning at the specified start address and
displays each instruction with its operands in an Assembler-like format. The instruction
results are displayed on the right-hand side of the output.

In Step mode, the Symbolic Debugger pauses after each instruction is executed or
simulated and waits for a I-character response from the user. To proceed to the next
instruction, enter only a carriage return. Any other response terminates TRACE. If the
Symbolic Debugger is in Run mode, TRACE does not pause after each instruction but
proceeds immediately to the next instruction; thus the only opportunity to stop the
display is at the end of each screen. Note that in batch, TRACE functions as if a RUN
command were in effect.

(C This process continues until one of the following occurs:

• An instruction has been fetched, executed, and displayed from the specified stop
address. The user context indicates that the instruction has been executed, as shown
in the status report announcing trace termination.

• A user instruction is aborted by a privilege violation or a map fault. The Symbolic
Debugger executes most user instructions by transferring control to the user task one
instruction at a time. When these instructions execute, it is as if the user had entered
"GO a,b" where a is the address of an instruction and b is the address of the next
instruction (logically next, not necessarily a+ 1 W). Any abort condition caused by such
instructions is reported as it would be after a GO command and the trace is
terminated. The user context is reported in a status report.

• The Symbolic Debugger fetches an instruction that breaks the trace (refer to the list
of instructions at the end of this section). The instruction is displayed and TRACE is
terminated. The user context still points to the untraceable instruction, as shown in
the status report announcing trace termination.

• The address of the next instruction to be fetched would violate an address
restriction. No instruction is displayed, the trace is terminated, and the user context
points to the bad address as shown in the status report announcing trace termination.

If the last control transfer to the Symbolic Debugger is caused by a trap, and the starting
address is $ (the user PSD), the user instruction replaced by the trap instruction at $ is
traced as if it were at $, and the trace is continued.

Symbolic Debugger Commands 5-31

An error message informs the user if the starting address violates an address restriction,
if the starting address is greater than the stop address, or if the start and/or stop address
is an odd address. .

TRACE is a trap list terminator.

The following Assembly Language instructions will cause a trace to stop (returning
control to the Symbolic Debugger):

AI
BEl
BRI
CD
CEMA
DAI
DJ
EI
EWCS
HALT
JWCS
LEM
LPCM
LPSD
RDST
RI
RWCS
SEM
SCPU
TD
TMTR
TPR
TRP
UEI
WAIT
WWCS
All undefined opcodes

5-32 Commands Symbolic Debugger

c

o

c

.... , ... -- - - --

WATCH Command

5.46 The TRACK Command

The TRACK command functions exactly like TRACE, except that it displays only
instructions that result in a change in the flow of control.

Syntax:

TRACK [start] [,stop]

start specifies the address of the first user instruction to be executed. If
not specified, the special base $ (bits 13-31 of the user PSD) is used.

stop specifies the address of the last user instruction to be executed. If
not specified, the track is continued as described for TRACE.

Response:

TRACK functions exactly like TRACE, except only instructions which actually cause a
branch are displayed (BCT, TRSW, LPSD, etc.).

5.47 The WATCH Command

The WATCH command functions like TRACE, but does not display instructions. It is used
to detect erroneous branches into areas such as extended address space or MPX-32.

Syntax:

WATCH [start] GstopJ

start specifies the address of the first user instruction to be executed. If
not specified, the special base $ (bits 13-31 of the user PSD) is used.

stop specifies the address of the last user instruction to watch. If not
specified, the watch continues as described below.

Response:

The Symbolic Debugger performs a TRACE but inhibits the usual instruction display.
When, as often happens in a new program, an erroneous branch is taken, it is often into
an area completely out of the program (e.g., a branch to location 0). Especially in the
case of a privileged task, many instructions may precede the inevitable disaster. While
the system crumbles, many of the most useful hints as to the cause (e.g., register
contents) are destroyed. WATCH provides a convenient means of detecting such
branches when they happen without all the terminal output caused by TRACE or TRACK.

Symbolic Debugger Commands 5-33

X (Hexadecimal) Command

5.48 The X (Hexadecimal) Command

The X command is used to evaluate and display the expression's value in hexadecimal Ci ... ~.
format.

Syntax:

X expr

expr specifies the expression to be displayed in hexadecimal.

Response:

The hexadecimal equivalent of the expression is displayed.

Note:

If the expression is not specified, the Symbolic Debugger exits (refer to Section 5.25 the
EXIT Command).

5-34 Commands Symbolic Debugger

c

c CHAPTER 6-ERROR MESSAGES

6.1 Symbolic Debugger File Assignment Error Messages

There are four error messages which may be written to the lfc IIOT if an error occurs
during Symbolic Debugger file assignments.

If the user did not assign enough dynamic file space for the executing task via the
Cataloger's FILES directive, the message

NO FAT/FPT SPACE AVAILABLE

will be written to the lfc IIOT. The user should recatalog the task specifying the correct
number of dynamic file assignments. At catalog time the user task must specify the
number of files required to execute the task. If Option 19 is not set for the Cataloger,
the user task will not have symbols available for use in the debugging session.

If Option 19 is set for the Cataloger, the Cataloger will automatically add five files to
the number the user requested. These five files are needed for symbolic debugging.

If the user did not assign enough blocking buffers for the executing task via the
Cataloger's BUFFERS directive, the message

NO BLOCKING BUFFER AVAILABLE

will be written to the lfc IIOT. The user should recatalog the task specifying the correct
number of blocking buffers. At catalog time the user task must specify the number of
buffers required to execute the task.

If option 19 is not set for the Cataloger, the user task will not have symbolic support
during debugging. If option 19 is set for the Cataloger, the Cataloger will automatically
add three buffers to the number the user requested. These three buffers are needed for
symbolic debugging.

If there is not enough disc space available for the Symbolic Debugger to allocate for the
SLO file (1000 lines for the lfc IIOT in batch mode and 300 screens of data for the
temporary log file in interactive mode), the message

NO DISC SPACE AVAILABLE

will be written to the lfc IIOT. The user must wait until disc space becomes available.

If the Symbolic Debugger attempts to assign the temporary log file (lfc 1101) and the log
file has been statically assigned by the user before accessing the Symbolic Debugger, the
message

LOG FILE ALREADY ALLOCATED

will be written to the lfc IIOT. The user must deallocate the user defined log file
assignment (no static file assignments are allowed) to allow the Symbolic Debugger to
assign the log file to its default assignment.

Symbolic Debugger Error Messages 6-1

6.2 Addressing Error Messages

There are eleven error messages which may be written to the lfc IIOT if an invalid
address is specified in a command.

If the user enters the CM (change memory) command without specifying the address to C
be changed, the message

ADDRESS MISSING

will be written to the lfc IIOT. The user should re-enter the command specifying the
address to be changed.

If the user enters the CM (change memory) command without specifying the value to be
placed in the address specified, the message

NO VALUE SPECIFIED

will be written to the lfc II aT • The user should re-enter the command specifying the
value to replace the contents of the address specified.

If the user enters a command (which allows a range of addresses as its parameters)
followed by a single address and a comma (,) but failed to enter a second address, the
message

NO HIGH ADDRESS

will be written to the lfc 1I0T. The user should re-enter the command followed by the
low and high addresses separated by a comma. If only one address is desired as the
parameter, no comma should be entered.

If the user enters a command (which allows a range of addresses as its parameters)
followed by a low address (first address specified) which is greater than the high address
(second address specified), the message

LOW > HIGH

will be written to the lfc 1I0T. The user should re-enter the command insuring that the
first address is lower than the second address specified.

If the user enters a command (which allows an address as its parameter) other than the
CM (change memory) command followed by an address which is not within the user
program's addressing space, the message

ADDRESS OUTSIDE YOUR AREA

will be written to the lfc 1I0T. The user should re-enter the command insuring that the
address specified is within the allowable addressing space.

If the user enters the CM (change memory) command followed by an address which is not
within the user program's addressing space, the message

CAN'T WRITE TO THAT ADDRESS

will be written to the lfc IIOT. The user should re-enter the command insuring that the
address specified is within the allowable addressing space.

6-2 Error Messages Symbolic Debugger

0·······'1>.·

" .'

If the user enters a SNAP or DUMP command followed by a range of addresses which are
not within the user program's addressing space, the message

MAP HOLE

will be written to the lfc IIOT. The user should re-enter the command insuring that the
range of addresses is within the allowable addressing space.

If the user enters the DETACH command followed by an address which is incorrectly
bounded, the message

CAN'T BRANCH TO ODD ADDRESS

will be written to the lfc IIOT. The user should re-enter the command insuring that the
address specified falls on the correct boundary.

If the user enters the TRACE command followed by an address which is not within the
user program's addressing space, the message

CANNOT TRACE INSTRUCTION

will be written to the lfc IIOT. The user should re-enter the command insuring that the
address is within the allowable addressing space.

If the user enters the CR (change register) command followed by an invalid register
number, the message

REG NOT 0-7

will be written to the lfc IIOT. The user should re-enter the command insuring that the
register number specified is zero through seven.

If the user enters the CR (change register) command followed by a valid register number
and invalid or missing values to be placed in the register(s), the message

NO CHANGE VALUE

will be written to the lfc IIOT. The user should re-enter the command insuring that the
value(s) to be placed in the register(s) are valid 32-bit values (refer to Section 5.11 CR
(Change Register) Command).

6.3 Trap Error Messages

There are eight error messages which may be written to the lfc 1I0T if an invalid trap or
trap list command is entered.

If the user enters a SET or GO command followed by a trap address that the Symbolic
Debugger can't locate because

• The trap address is not on a word boundary
• The trap address is a local symbol name and the default is to global symbols
• The trap address is a local symbol name that is not in the default local symbol table
• The trap address is a global symbol' that is not in the global symbol table

Symbolic Debugger Error Messages 6-3

The following message will be written to the lfc /lOT:

TRAPS ON WORD BOUNDARIES ONLY

The user should re-enter the command insuring that the trap address is on a word (')
boundary, and that the symbol name specified is in the default symbol table (local or j
global).

If the user enters a SET command with no trap address specified, the message

NO TRAP ADDRESS SPECIFIED

will be written to the lfc IIOT. The user should re-enter the command specifying the
address where the trap is to be set.

If the user enters a LOG or REVIEW command in a trap list, the message

NOT ALLOWED IN TRAP LIST

will be written to the lfc IIOT. The user should enter any valid trap list command, or
enter a trap list terminator before re-entering the LOG or REVIEW command (these are
the only two commands which are not allowed in a trap list).

If the user enters a SET command followed by the address of a previously set trap, the
message

ALREADY A TRAP THERE

will be written to the lfc /lOT. The user should re-enter the command followed by an
address at which no trap exists.

If the user enters a DELETE or LIST command followed by an address at which no trap
exists, the message

NO TRAP THERE

will be written to the lfc !lOT. The user should verify the trap addresses, and re-enter
the command followed by a valid trap address.

If the user enters the SET command and the trap table is full (maximum number of traps
are set), the message

TRAP TABLE FULL; TRAP NOT SET

will be written to the lfc !lOT. The user must delete one or more traps before another
trap can be set.

If the user enters the IF command outside of a trap list, the message

IMMEDIATE "IF" NOT ALLOWED

will be written to the lfc /lOT. The user must set a trap and enter the IF command as
the first command in the trap list if the trap is to be conditional. The IF command may
not be used at any other time.

6-4 Error Messages Symbolic Debugger

c

If the user enters the IF command in a trap list and it is not the first command in that
trap list, the message

"IF" COMMAND OUT OF SEQUENCE

will be written to the lfc 1I0T. The user must reset the trap (or set a new trap) and enter
the IF command as the first command in the trap list if the trap list is to be conditional.

6.4 Command Expression Error Messages

There are sixteen expression error messages which may be written to the lfc 1I0T if an
invalid expression is entered.

If the user enters an IF or LIST command with no expression (expression is a required
parameter), the message

NO EXPRESSION

will be written to the lfc 1I0T. The user should re-enter the command with the IF
conditional expression or the expression (trap address) to be listed.

If the user enters a command followed by an expression parameter which contains paired
parentheses with no vCillue inside ,(), the message

NULL SUBEXPRESSION

will be written to the lfc 1I0T. The user should re-enter the command with a value inside
the parentheses, or delete the parentheses.

If the user enters a command followed by an expression which contains a symbol that the
Symbolic Debugger cannot locate within the default local symbol table (if PGM command
was entered) or within the global symbol table, the message

UNDEFINED SYMBOL

will be written to the lfc 1I0T. The user should verify the default symbol table (local to
a program specified in the PGM command or global symbols) by entering the SHOW
SYMBOLS command. If the desired symbol is a local symbol to another program name,
enter the PGM command followed by the program name which defines the desired symbol
before re-entering the command.

If the user enters a command followed by an expression which contains a term that the
. Symbolic Debugger cannot recognize, the message

UNRECOGNIZABLE TERM

will be written to the lfc 1I0T. The user should re-enter the command insuring that the
expression contains valid terms (refer to Sections 4.16.1 through 4.16.7 for a description
of valid terms used in expressions).

Symbolic Debugger Error Messages 6-5

If the user enters a command followed by an expression which does not contain an
operator, the message

MISSING OPERATOR

will be written to the lfc IIOT. The user should re-enter the command insuring that the
expression contains a valid operator (refer to Section 4.15 Symbolic Debugger Command
Expressions, for a description of valid operators).

Note:

This message will also be written if a decimal integer greater than ten digits is entered
as a term in an expression. Decimal integers may not exceed ten digits.

If the user enters a command followed by an expression which contains an operator with
only one operand, the message

DANGLING OPERA TOR

will be written to the lfc IIOT. The user should re-enter the command insuring that the
expression contains two operands for each operator specified.

If the user enters a command followed by an expression which contains a sequence of two
or more operators that are not separated by operands, the message

CONSECUTIVE OPERA TORS

will be written to the lfc IIOT. The user should re-enter the command insuring that the
expression contains two operands for each operator specified.

If the user enters a command followed by an expression which contains a left parenthesis
that is not paired with a corresponding right parenthesis or vice versa, one of the
messages

UNMATCHED LEFT (
or UNMATCHED RIGHT)

will be written to the lfc IIOT. The user should re-enter the command insuring that the
expression contains paired left and right parentheses.

If the user enters a command followed by an expression which contains a memory
contents term that (when evaluated) produces an indirect address which would cause a
map fault, the message

ADDRESS WOULD CAUSE MAP FAULT

will be written to the lfc IIOT. The user should re-enter the command insuring that the
evaluated expression does not produce an invalid address. The contents of the memory
location specified in the term can be examined through the use of the display memory
commands (refer to Section 4.7 Examining Memory and Registers for a summary of the
display memory commands).

6-6 Error Messages Symbolic Debugger

o

o

(

, , (,",'

If the user enters a command followed by an expression which produces an invalid
effective address, the message

EFFECTIVE ADDRESS CAUSES MAP F AUL T

will be written to the lfc /lOT. The user should re-enter the command insuring that the
evaluated expression does not produce an invalid effective address.

If the user enters a command followed by an expression which contains an invalid
constant or integer, one of the following messages will be written to the lfc /lOT
(depending on the type of constant or integer contained in the expression).

or

or

or

or

INVALID FLOATING POINT NUMBER

INVALID DECIMAL NUMBER

INVALID tiEXADECIMAL NUMBER

INVALID BINARY NUMBER

INVALID CHARACTER STRING

The user should re-enter the command insuring that the constant or integer value is valid
(refer to Sections 4.16.1 and 4.16.2 for a description of valid integer and constant terms
in expressions).

6.5 Base Error Messages

There are four error messages which may be written to the lfc /lOT if a user base is
incorrectly defined, redefined or deleted.

If the user enters the BASE command and does not specify a base name, the message

NO BASE NAME

will be written to the lfc /lOT. The user should re-enter the command followed by an
existing or new user defined base name.

If the user enters the BASE command followed by an invalid base name, the message

BAD BASE NAME

, will be written to the lfc /lOT. The user should re-enter the command insuring that a
valid base name is specified. (Valid base names begin with the $ and an alphabetic
character followed by one to seven alphanumeric characters).

If the user enters the BASE command followed by a Symbolic Debugger base name, the
message

SPECIAL BASE NOT ALLOWED

will be written to the lfc /lOT. There are special Symbolic Debugger defined base names
(refer to Section 4.16.4 Bases) which may not be redefined or deleted by the BASE
command. The user should re-enter the command insuring that the base name is a new or
existing user defined base.

Symbolic Debugger Error Messages 6-7

If the user enters the BASE command followed by a new base name and the base table is
full, the message

. BASE TABLE FULL

will be written to the lfc 110T. The user must delete one or more bases before a new
base can be defined.

6.6 Command File Error Messages

There are five error messages which may be written to the lfc 110T if a command file is
incorrectly accessed.

If the user enters the FILE command and does not specify a file name, the message

NO FILE NAME

will be written to the lfc 110T. The user should re-enter the command followed by a
valid command file name and password (if required).

If the user enters the FILE command followed by an invalid file name, the message

NO SUCH FILE

will be written to the lfc 1I0T. The user should re-enter the command followed by a
valid command file name and password (If required).

o

If the user enters the FILE command followed by a file name without a password and a f-)-
password is needed, the message (_ .

FILE PASSWORD PROTECTED

will be written to the lfc 1I0T. The user should re-enter the command followed by the
valid file name and required password.

If the user enters the FILE command followed by a file name which is more than eight
characters (eight bytes) in length, the message

FILE NAME> 8 BYTES

will be written to the lfc 110T. The user should re-enter the command followed by a
valid file name (not exceeding eight characters) and password (if required).

If the user enters the FILE command followed by a file name and a password which is
more thaneight characters (eight bytes) in length, the message

PASSWORD>8 BYTES

will be written to the lfc 110T. The user should re-enter the command followed by a
valid file name and password (not exceeding eight characters).

6-8 Error Messages Symbolic Debugger

o

c

(

6.7 Command Argument Error Messages

There are nine error messages which may be written to the lfc /fOT if an invalid or
missing argument is entered following a command.

If the user enters the CLEAR command with an invalid or missing argument, the message

ARGUMENT SHOULD BE "BASES" OR "TRAPS"

will be written to the lfc fIOT. The user should re-enter the command specifying either
bases or traps as the argument.

If the user enters the SHOW command with an illegal or missing argument, the message

ARGUMENT SHOULD BE BLANK, "BASES", "OPTIONS", OR
"TRAPS"

will be written to the lfc fIOT. The user should re-enter the command specifying one of
the valid arguments listed in the message.

If the user enters the FORMAT command with an illegal or missing argument, the
message

ARGUMENT SHOULD BE "X" OR "N"

will be written to the lfc fIOT. The user should re-enter the command specifying either
X (hexadecimal input radix) or N (decimal input radix).

If the user enters the MODE command with an illegal or missing argument, the message

ARGUMENT SHOULD BE "NOFORTRAN", "FORTRAN",
"EXTENDED", "NOEXTENDED", "LOG", "NOLOG"

. will be written to the lfc fIOT. The user should re-enter the command specifying one of
the valid arguments listed in the message.

If the user enters the RELATIVE command with an invalid base or program name, the
message

RELATIVE NAME NOT FOUND

will be written to the lfc fIOT. The user should re-enter the command insuring that a
valid base or program name is specified.

If the user enters the RELATIVE command with a $ or PSD as its argument, the message

CAN'T USE "$" OR "PSD"

will be written to the lfc fIOT. The Symbolic Debugger special bases $ and $PSD can not
be specified for relative addressing. The user should re-enter the command insuring that
a valid base or program name is specified.

Symbolic Debugger Error Messages 6-9

If the user enters the DELETE command with no argument, the message

DELETE WHAT

will be written to the lfc 1I0T. The user should re-enter the command insuring that the
trap to be deleted is specified.

If the user enters the PGM command with an invalid program name, the message

NO SUCH PROGRAM NAME

will be written to the lfc fIOT. The user should re-enter the command insuring that a
valid program name (to be established as default for local symbols) is specified.

If the user enters the CC (condition code) command with an invalid value to replace the
existing condition codes, the message

BAD CONDITION CODES

will be written to the lfc fIOT. The user should re-enter the command insuring that the
value to replace the existing condition codes is a 4-digit binary value. (To display
existing condition codes, enter the CC command with no argument).

6.8 Other Error Messages

There are three other error messages which may be written to the lfc 1I0T if one of the
following errors occur.

c

If the user enters the BREAK command and there is no break receiver in the user /--\
program, the message \",,-j

NO USER BREAK RECEIVER

will be written to the lfc fIOT. This command can only be used to transfer control to the
user program's break receiver. If no break receiver exists, the command is invalid.

If the user enters an invalid command, the message

UNRECOGNIZED COMMAND

will be written to the lfc fIOT. The user should verify the valid command syntax, and re­
enter the command.

If the Symbolic Debugger temporary log file is filled, the message

LOG FILE IS FULL, USE "LOG" COMMAND TO OUTPUT IT

will be written to the lfc fIOT. The user should enter the LOG command (to write the log
file to the line printer) or the REVIEW command (to write the log file to the lfc fIOT). If
neither command is entered, the contents of the log file will be destroyed and a new log
file started.

6-10 Error Messages Symbolic Debugger

o

6.9 Abort Codes

The Symbolic Debugger has two abort codes which may be written to the lfc /lOT if an
abort occurs. The two abort codes are

• DBOI

• DB02

In batch mode, the end of the file assigned to lfc /lOT has been encountered
before the end of job (EOJ).

A fatal I/O error has occurred on the lfc specified after the abort code in
the abort message.

The following are examples of fatal I/o errors:

• The input file is not assigned and there is no default input file.

· The output file is not assigned and there is no default output file.

• The same lfc is assigned to both the input and output file.

The above abort codes usually refer to errors within the job control. Therefore, the job
control should be examined for errors before the program code.

Symbolic Debugger Error Messages 6-11/6-12

o

o

CHAPTER 7-SAMPLE DEBUGGING SESSIONS

7.1 Debugging Session Introduction

This chapter illustrates how to use the Symbolic Debugger. The programs which are
shown are not realistic programs but, for the purpose of simplicity these programs will
show some useful features in the Symbolic Debugger. In reality, programs such as these
may be a subprogram or module of an entire system of subprograms or modules. Each of
these separate subprograms or modules should be debugged separately then added to the
stable system. This method of debugging sections of an entire system then adding the
sections to the stable system is highly recommended.

The following sample programs and command keys illustrate the use and results of the
debugging sessions.

7.2 Example 1: Scanning Data in a Program Loop

The sample program for this debugging session searches through a table of seven values
looking for the value' five. If the value is contained in the table, the program will
successfully exit. Otherwise, the program will abort.

The debugging session shows how to set a trap at the beginning of a loop and build a trap
list that will display the register contents for the trap address, then continue execution
through the loop until the trap is encountered again. This cycle continues through each
successive iteration of the loop. This allows the user to examine the register contents to
insure correct program execution for each iteration of the loop.

The following subsections contain the sample program and the debugging session which
demonstrate the procedure described above.

Symbolic Debugger Debugging Sessions 7-1

DElGTST VER 9.3

"" " . I (lOOOI PROGRAIv' DBGTST 1'> N
OOOO? *
00003 * THIS pqOGRAIv' WILL DEMONSTRATf THE SYMBOLIC CAPABILITIES VI
00004 * WHICH ARE USED THROUGH THE SYMBOLIC DEBUGGER. /»
00(\(15 * 3

" 001'106 * THJS PROGRAM WILL SIMPLY SCAN A TARLE OF DATA ITEMS ii' 00007 * LOOKING FOR A SPECIFIC ITEM. IF THf ITEM IS FnUND
." 00001'\ * THEN A SUCCESSFUL EXIT IS PERFOqMED. IF THE ITEM a Oonoa * IS ~JnT FO!IND THEN THE PROGPH" IS ABl"RTED. OQ 00010 * ill 00011 o 1'1 (HI 0 RO EQLJ 0 3 0001? n(lOl'll Rl EQU 1
&, Oon 13 On(lrl.? P? EQU 2

00014 ("'\1) fl 3 Q~ EQU 3 o:s 001'11<; 0(1)11 .. '14 fQII IJ C')
0001'" OI1(i nS R'S EQU C;
000 17 0(' \. n t- Rb F.!W b ~ 00011'\ 00()117 R7 EQU 7
0(1 (11 a * 0 i'lOrl?11 DfI('Iol1n nooOilonl RFGTARLE I'lATAW X' 1 ' (1)

0" 000?1 Df) Oi)1)1; IlQllo(lOO? DATA'N)(I 2'
c: ooon D<'lI1(10P ~ 0 I'! I) non,~ DATA~:)(' 3' OQ

O'Q ,... 00023 Ded' (\<'lC 1"l00('lnl)OLJ OATh X'II'
;:) (lno;;>a pn 1'1 Ii 1 n 'lOliOO('lliC; I1ATAW)(, '5 '

OQ 0002'i P0001(j oonOOOflf, DATAw)('6'
Vl 00026 D(101)1P I1QfI(lI'lO('l7 DATAw X' 7' (1)
(I> oon27 p()n(l1 r: Et\iQT ARLf EOI! $ ESTABLISH ENDING ADDRESS OF TARLE (I>

CCO?~ Pi) iir)?I' BOUNf) lD DQUALEWORO ALIGN TASK NAME 0
;:) ()0029 r> r Ml? Ii "u 'i ~~ <; <j II ij T ASK ~I A IA F r) A TAR C'TSTDI<G NAME OF THIS TASK (I>

~nf\O::>..j 1l21J7?020
(1)0311 * 0t)031 * START C1F PROGRA~
()l'In 3? *
(lO03~ P r) n n?p. 1Ii1~lil'l(l(l() P0000n ~TART LA Rl,REGTARLE GET ADDR. OF BEGINNING OF TABLE
00034 POOO2C (91'1(1000,) LI R2,S PUT IN VALUE OF'ITEM SEARCHED FOR
(l1)03<; pr'i'\n30 Q120(lOI'l{) 00000 U'H)D CAMW Q2,0,R1 CHFCK IF FOUND VALUE
I} 0 o ";C. PI)OO3 .. EEI'I01"l051 POOI}'SO REQ ENDSUCC 8RANCH TO END SUCCESSFULLY IF FOUND
00037 * 0003J'1 p., '')(131' r'lPl I1 O()1.J ADI Rl,lW INC. TO LOOK AT NEXT ITEM IN TARLE Vl 0003<') DOO()~C QI)POO(llC PI}OO1.C r. AMlV Rl,ENI)TARLf CHECK IF AT END OF TARLE '<

3 1'10040 DI)O Oil 0 F200 li 03! POOO30 BNE LOOP AQANCH IF NOT AT END OF TABLE
0" 00('141 * 0
>- 0001l? PI)('IO£Jt,4 AE~OOO51l POOO'511 LW R5,=C'ERR' LOAD IN ABORT CODE
(") 00043 Poo()ap ~FoQOOi'2 P()0020 LI) R6,TASKNAMf LOAD IN ABORT TASK NAME
0 OOOIlIJ PIlI)I'!IJC r'<H161 OS'" SVC 1,X'S&' AaORT THIS TASK
t'!) 0001l'i * 0'" c: 000111- Pf)I'iO'iO 1'80610<;5 FNDSUCC SVC 1,X'5S' SUCCESSFUL END OF PROGRAM OQ PliIlO"4 <:5'i25220 OQ
(1) 000'17 DOIlO"'" POO028 END START ..,

". 0000 ERRnFl'5 P ,)i'lGTST

o f - -'-
'\ [')

..... /

7.2.2 Sample Debugging Session for program DBGTST

All commands in the sample debugging session are numbered to correspond to a key
which describes the commands and responses. Each command is immediately followed by
its response.

Command Key

1) The Symbolic Debugger is accessed by entering the DEBUG command in response
to the TSM > prompt.

The Symbolic Debugger responds with its identifying message.

2) The command to show the symbols (SHOW SYMBOLS) is entered.

The default is to the global symbol table, the response displays the global symbols
header and indicates that there are no global symbols in the program by displaying
no symbol names.

3) The command to set the default program name and accessable symbols (PGM
DBGTST) is entered.

The default program name is set to DBGTST. The symbols local to DBGTST are
accessable. There is no written response to this command.

4) The command to show symbols (SHOW SYMBOLS) is entered again (this time to
display the local symbols).

5)

6,7)

8)

6a)

The response displays the local symbols header and all symbols local to the
program DBGTST.

The command to set a trap at the beginning of a program loop at the location
whose address is specified by the symbol name LOOP (SET LOOP) is entered.

The trap is set at the address specified by the symbol name LOOP and the
Symbolic Debugger responds with the trap list prompt (••).

The command (command 6) to snap register one (SN RI) is entered in the trap list
followed by the GO command (command 7). These commands are deferred until
the trap is encountered. When they are executed, RI will be displayed and
program execution resumed. Because the trap is set at the beginning of a loop,
each time program execution is resumed the trap is encountered again and the
trap list executed. This allows the user to insure correct program execution for
each iteration of the loop. The GO command in the trap list is a trap list
terminator, therefore the trap list is ended and the immediate lfc IIIN prompt (.)
is issued.

The command to begin program execution (GO) is entered. Program execution
will begin at the base S (bits 13-31 of the user PSD or the current program
counter value) because no start address was specified.

The program will begin execution. There is no written response to the GO
command.

The trap is encountered and the SNAP command (deferred in the trap list) is
executed.

Symbolic Debugger Debugging Sessions 7-3

The response specifies the address contained in register one (DBGTST) followed by
the contents of that address (00000001).

7a) The GO command (deferred in the trap list) is executed.

Program execution is resumed. There is no written response.

6b) The trap is encountered and the SNAP command (deferred in the trap list) is
executed.

The response specifies the address contained in register one (DBGTST +4) followed
by the contents of that address (00000002). .

7b) The GO command (deferred in the trap list) is executed.

Program execution is resumed. There is no written response.

6c) The trap is encountered and the SNAP command (deferred in the trap list) is
executed.

The response specifies the address contained in register one (DBGTST +8) followed
by the contents of that address (00000003).

7c} The GO command (deferred in the trap list) is executed.

Program execution is resumed. There is no written response.

6d} The trap is encountered and the SNAP command (deferred in the trap list) is
executed.

C··~

The response specifies the address contained in register one (DBGTST +C) followed r'"
by the contents of that address (00000004). ~_j'

7d) The GO command (deferred in the trap list) is executed.

Program execution is resumed. There is no written response.

6e) The trap is encountered and the SNAP command (deferred in the trap list) is
executed.

The response specifies the address contained in register one (DBGTST +10)
followed by the contents of that address (00000005).

7e) The GO command (deferred in the trap list) is executed.

7-4

Program execution is resumed and the value five encountered therefore a
successful exit from the program is performed. The Symbolic Debugger displays
the status of the program at the exit address.

Debugging Sessions Symbolic Debugger
c

Debugging Session

1) TSM> DEBUG DBGTST

[~ MPX-32 SYMBOLIC DEBUG V2.0 05/13/81, 13:00:00 TASK NAME = DBGTST
PSW=01029828 (CC=OOOO) (PC=DBGTST+28)
REGS=OOOOOOOO 00000000 00000000 00000000 ·

00000000 00000000 00000000 00000000 ·
2) · SH)W SYMBOLS

GLOBAL SYMBOLS
3) .PGA DBGTST
4) · SH)W SYMBOLS

SYMBOLS LOCAL TO PROGRAM UDBGTST
START TASKNAME END S UCC BEGTABLE LOOP
ENDTABLE

5) .SET LOOP
6) • . SN R1
7) • .GO
8) .GO

TRAP @ DBGTST+30
PSW=21029830 (CC=0100) (PC=DBGTST+30)
REGS=OOOOOOOO 00029800 00000005 00000000 ·

00000000 00000000 00000000 00000000 ·
6a) !SN Rl

DBGTST 00000001 / /
7a) !GO

TRAP @ DBGTST+30
PSW=21029830 (CC=0100) (PC=DBGTST+30)
REGS=OOOOOOOO 00029804 00000005 00000000 ·

(C 00000000 00000000 00000000 00000000 ·
6b) !SN R1

DBGTST+4 00000002 / /
7b) !GO

TRAP @ DBGTST+30
PSW=21029830 (CC=0100) (PC=DBGTST=30)
REGS=OOOOOOOO 00029808 00000005 00000000 ·

00000000 00000000 00000000 00000000 ·
6c) ! SN Rl

DBGTST+8 00000003 / /
7c) !GO

TRAP @ DBQTST+30
PSW=21029830 (CC=0100) (PC=DBGTST+30)
REGS=OOOOOOOO 0002980C 00000005 00000000 ·

00000000 00000000 00000000 00000000 ·
6d) ! SN R1

DBGTST+C 00000004 I I
7d) !GO

TRAP @ DBGTST+30
PSW=21029830 (CC=0100) (PC=DBGTST+30)
REGS=OOOOOOOO 00029810 00000005 00000000 · "

00000000 00000000 00000000 00000000 • ••••• It •••••••••

6e} !SN Rl
DBGTST+IO 00000005 I I

Symbolic Debugger Debugging Sessions 7-5

7.3 Example 2: Searching Through it Linked List

The sample program for this debugging session contains a linked list with four data words
in each node. If the nodes are linked correctly, the program will successfully exit.
Otherwise, the program will abort.

The debugging session shows how to establish a value for the special character, period (.),
which will be used to display the node address and data words of each node. The
debugging session also shows how to build a conditional trap list which will be executed
only if the counter (CTR, which is used to count the number of nodes that are linked) is
greater than two (a conditional trap list allows the user to execute the trap list only if a
specified condition 1s met).. .

The following subsections contain the sample program and the debugging session which
demonstrate the procedure described above.

7-6 Debugging Sessions Symbolic Debugger

.,- ..

Vl
'<
3
S-
Ir.
('j

o

1
~ .,

o
(I)
CT

~
~.

Vl
(I)
VI
\!.!.

a

"'-I
I

"'-I

~

D6GTST2

00001
00002
00003
OOOO~

ooooe;
nOOOb
00007
OOOO~
nOO(l<l
000\0
nnOl1
00012
00013
OOOI'J
0001<;
00016
00017
(loa 1'\
oonl<>
nOO<,n
(100<'1
ooon
0002~
OOO<'IJ
ooo?o:;
non;?!'
OO(l?1
00028
00(12 0 .
00(1,0
0003!
n0032
0003'
00(130
0(1030:;

0003t-
00037
0003~

n003<>
000110
(lOOlll
nOn4<'
00(1113
000011
0004e;
000101/0,
00047
001'1"11
000110
000'5(1
00051

~OOOO

00001
0000;>
00003
(Jooe"
0(1000;
onnn"
OOr17

pooooO
P('OOna
"nnO(l~

DenQOr
P0~OIO
OI')r>(I~iJ

PonOI ..
pooOIC
P00020
oOr.(l2t!
pnno;> ..
P,'OOi?C
pnno,o
P(ln034
P,lO 03t1
P(l003C
POOO"O
"oaoao
P'l ~01l1'
onn04P
P00noc

p(}n050
1'000'00
<1000'01\

PUOl)'OC
p 00 0hO
ponat-o

P,! n')hil.
P(lOo!,C
PO"070

00000010
00000000
IJEIIF 1144'0
34i?(21)20
00000000
00000031J
oEoF1.I41.1<;
;1;>020<'0
OO~OOOI)I

aOOOI)OI)~

~EI.IFuuI.l5

,3<'0;>020
0000000;
0000002<1
4EOF4I.JOS
;2;>02020
00000002
00000000

'iuC:;3C:;01.l/J
I.I;>OB220

ACAOOQI)O
C8$'OOOOO
1";>00006'1

~EA0007~

AF00004~

C~061 0<;0

~3MOOI.l7

6C AOOOOO
1";>00006'1

PI) 0 070 C80~10'5S
"001)78 ~5e;2c:;220
"ryn07C DOO'O?

* 0000 EP~OQS IN DPGTST2

P00014

POOl)34

PI)0004

P00024

POOOOO

POOObB

P00078
POOOl.l8

P00007
00000

P0006B

POOOSO

.,
* .,
*
*
* RO
QI
P2
D;
PII
FIe;
Db
R7
L PJKSTRT
NOOI"II

NODEI

~JODr:: 3

r,ODE2

CTR

TASKNAfo'F

*

I"'j

VER 9.3

PROGRAM DBGTST2

THIS PROGRAM WIll DEMONSTRATE THE SYMBOLIC CAPABILITIES
WHICH ARE USED THROUGH THE SYMBOLIC DEBUGGER •
THIS PROGRAM WIll ESTA6lISH A LINKEO lIST ~HICH CAN
THEN BE DISPLAYED THROUGH THE USE OF DEBUGGER COMMANDS.

EQU
EGiU
EGlI)
EQIJ
EGllJ
FGllJ
ErlU
EQU
AC~

DATAw
DATA~
DATA;~

DATAI';
AC\II
DATAl>
GATAW
t)ATAW
ACW
f'lATAW
DATAI'i
DATA",
ACW
DATA~,

DATAW
DATAi'<
DATA ..
!lOUND
DATAB

o
1
2
3
4

5
b
7
NDDEI
o
C'I.;ODE'
C'~
/I
NODE2
C'NODE'
C'I
1
NODElI
C'NODE'
C'3
3
NODE3
C'NODE'
C'2
2
o
1 D
C'TSTDBG2 '

INITIALIZE BeGINNING OF lIST
FORwARD POINTE~ = 0 => NO MORE
1ST WORD OF DATA IN NODE 4
?ND WORD OF DATA IN NODE 0
3RD WORD OF ~ATA IN NODE 4
FORwA~O POINTER IN NODE 1
1ST WORD Of DATA IN NODE I
?ND WORD OF DATA IN NODE 1
3RD WORD Of DATA IN NODE 1
FORWARD POINTER IN NODE 3
1ST WORD Of DATA IN NODE 3
2ND WORD OF DATA IN NODE 3
3RD WORD OF DATA IN NODE 3
FORWARD POINTER IN NODE 2
1ST WORD OF DATA IN NODE 2
2N~ WORD OF DATA IN NODE 2
3~D WORD OF DATA IN NODE 2
INITIALIZE COUNTER OF NUMBER OF
DOU6lEWORD ALIGN TASK NAME
NAME OF THIS TASK

NODE

* START OF PROGRAM
* START

*

* LOOP

*

lW
CI
8N!:

Rl,LINKSTRT
Rl,O
lOOP

LW R5,=C'ERR'
LD Rb,TASKNAME
SVC I,X'5b'

A8M
lW
FlNE

31,CTR
Rl, a,Rl
lOOP

ENDSUCC SVC I,X'55'

END START

lOAD IN POINTER TO lINKED lIST
CHECK If lINKED lIST IS NUll
8RANCH IF lINKED LIST IS NOT NUll

lOAD IN ABORT CODE
lOAD IN ABORT TASK NAME
ABORT THIS TASK

INC. CTR. OF NUMBER OF NOOES FOUND
LOAD IN POINTER TO NExT NODE
BRANCH IF NOT AT END OF lIST

SUCCESSFUL END OF PROGRAM

1"'1

"'-I .
I.lol • -
~
~
'tI a

OQ

iil
3
I

~

~
N

7.3.2 Sample Debugging Session for program DBGTST2

All commands in the sample debugging session are numbered to corresponding to a key
which describes the commands and responses. Each command is immediately followed by
its responseoc

Command Key

1) The Symbolic Debugger is' accessed by entering the DEBUG command in response to
the T5M> prompt. .

The Symbolic Debugger responds with its identifying message.

2) The command to set the default program name and the accessable symbols (PGM
flDBGTST2) is entered.

The default program name is set to DBGTST2. The symbols local to DBGTST2 are
nowaccessable. There is no written response to this command.

3) The command to snap the address which contains the address of the 1st node in the
linked list (SN LINKSTRT) is entered.

The response specifies the address to be snapped (DBSTST2) and the contents of
that address (00029814). The address is displayed in the program name plus offset
format. In this example, there is no offset. LlNKSTRT is located at the start
address, program name +0 (the +0 is not displayed). The contents of the snapped
address (00029814) specifies the address of the first node in the link. The value of
the special character period (.) is set to the value of UNKSTRT (period (.) can be
entered in place of the last address specified in a memory related command). The
value of period (.) is reset each time a memory related command is entered.

4) The command to execute the commands in a command file (FILE FlUNK) is
entered.

The response to the FILE command is to execute the commands in the command
file (FlUNK) specified. The commands in command file FlUNK are

SN C(.), C(.) + OC
SN • - OC

5) The first command in the command file is the SNAP command (SN C(.), C(.) + OC).
The range of addresses to be snapped specifies the contents of the special character
period (.) (which is set to the address UNKSTART) through the contents of period
(.) plus 12 decimal bytes. Prior to the execution of this command the contents of
period (.) is the address of the first node in the linked list.

The response specifies the address of the first node in the linked list (DBGTST2+ 14)
and the contents of the first node (00029834 4E4F4445 31202020 00000001
1 ••• 4NODE 1 •••• /). The period (.) is now set to the address of the third data word of
the first node (00029820, which was the last address in the specified range).

6) The second and last command in the command file is also the SNAP command
(SN.-OC). The address to be snapped specifies the period (.) minus 12 decimal bytes
(.-OC).

7-8 Debugging Sessions Symbolic Debugger

C~!

o

The response specifies the address of the first node in the linked list (DBGTST2+14)
and the contents of that address (00029834). The contents (00029834) specifies the
address oi the second node. This command is entered to reset the value of period
(.) to the first word of the node just displayed which contains the address of the
next node.

The FILE command is entered.

The commands in the command file (FlUNK) are accessed.

8) The SNAP command (specified in the command file) is executed. The range of
addresses to be snapped specifies the contents of period (.) (which is set to the
address of the first word of the first node in the linked list) through the contents of
period (.) plus 12 decimal bytes. Prior to the execution of this command, the
contents of period (.) is the address of the second node.

The response specifies the address of the second node (DBGTST2+34) and the
contents of the second node (00029824 4E4F4445 32202020 00000002
/ ... $ NODE 2 •••• !). The period (.) is now set to the address of the third data word
of the second node (00029840).

9) The second SNAP command (specified in the command file) is executed. The
address to be snapped specifies the period (.) minus 12 decimal bytes (.-OC).

The response· specifies the address of the second node in the linked list
(DBGTST2+34) and the contents of that address (00029824). The contents
(00029824) specifies the address of the third node in the linked list. The special
character period (.) is now set to the address of the second node (00029834).

10) The FILE Command is entered again.

The commands in the command file (FlUNK) are accessed.

11) The SNAP command (specified in the command file) is executed. The range of
addresses to be snapped specifies the contents of period (.) (which is set to the
address of the first word of the second node in the linked list) through the contents
of period (.) plus 12 decimal bytes. Prior to the execution of this command the
contents of period (.) is the address of the third node.

The response specifies the address of the third node (DBGTST +24) and the contents
of the third node (00029804 4E4F4445 33202020 00000003 / •••• NODE 3 •••• !). The
period has the value of the address of the third data word of the third node
(00029830).

12) The second SNAP command (specified in the command file) is executed. The
address to be snapped specifies the period (.) minus 12 decimal bytes (.-OC).

The response specifies the address of the third node in the .linked list (DBGTST2+24)
and the contents of that address (00029804). The contents (00029804) specify the
address of the fourth node in the linked list. The period (.) is now set to the address
of the third node (00029824).

13) The FILE command is entered again.

The commands in the command file (FlUNK) are accessed.

Symbolic Debugger Debugging Sessions 7-9

14) The SNAP command (specified in the command file) is executed. The range of
addresses to be snapped specifies the contents of period (.) (which is set to the
address of the first word of the third node in the linked list) through the contents
of period (.) plus 12 decimal bytes. Prior to the execution of this command the
contents of period (.) is the address of the fourth node.

The response specifies the address of the fourth node (DBGTST+4) and the
contents of the fourth node (00000000 4E4F4445 34202020 00000004
/ •••• NODE 4 •••• f). The period (.) is now set to the address of the third data word
of the fourth node (00029810).

15) The second SNAP command (specified in the command file) is executed. The
address to be snapped specifies the period (.) minus 12 decimal bytes (.-OC).

The response speCifies the address of the fourth node in the linked list
(DBGTST2+4) and the contents of the address (00000000). The contents (00000000)
specifies the start address of the program (this indicates that there are no other
nodes). The period (.) is now set to the address of the fourth node (00029804). All
nodes and their data words have been examined.

16) The command to set a trap at the beginning of a program loop (SET LOOP) is
entered.

17)

18)

The trap is set at the address specified by the symbol name LOOP and the
Symbolic Debugger responds with the trap list prompt (••).

The command to establish a conditional trap list (IF C(CTR) > 2) is entered. The
argument specifies that the trap list at location LOOP will be executed only if the
contents of the local symbol CTR is greater than two. The conditional command
(IF) is deferred (along with commands 18 and 19) until the trap at LOOP is
encountered.

The command to snap the start address of the program (SNAP LlNKSTRT) is
entered. This command is deferred until the trap is encountered.

19) The command to execute the commands in a command file (FILE FILlNK) is
entered. The commands in the command file (FlUNK) specified will be executed
when the trap is encountered. The FILE command is a trap list terminator,
therefore the trap list is ended.

20) The command to begin program execution (GO) is entered. Program execution
will begin at the base $ (bits 13-31 of the user PSD or the current program counter
value) because no start address was specified.

The program will begin execution. There is no written response to the GO
command.

17a) The IF command (deferred in the trap list) is executed.

The response specifies the IF conditional statement and the current status at the
address where the condition became true. The relational value of C{CTR) 2 is
equal to one (the condition is true).

18a) The SNAP command (deferred in the trap list) is executed.

7-10

The response specifies the address to be snapped (DGB TST2), which is the same
address as the symbol name (LINKSTRT), and the contents of that address
(00029814).

Debugging Sessions Symbolic Debugger

(J

o

c

(

o

19a) The FILE command (deferred in the trap list) is executed.

The commands in the command file (FILINK) are accessed.

The SNAP command (specified in the command file) is executed. The range of
addresses to be snapped specifies the contents of the period (.) (which is set to the
start address of the program) through the contents of period (.) plus 12 decimal
bytes. The contents of period (.) is the address of the first node in the linked list.

The response specifies the address of the first node in the linked list
(DBGTST2+14) and the contents of the first node (00029834 4E4F4445 31202020
00000001 1 ••. 4NODE1 •••• /). The period C.) is now set to the address of the third
data word of the first node (00029820).

The second SNAP command (specified in the command file) is executed. The
address to be snapped specifies the period (.) minus 12 decimal bytes (.-OC).

The response specifies the address of the first node in the linked list
CDBGTST2+14) and the contents of that address (00029834). The contents
(00029834) specifies the address of the second node. The period is now set to the
address of the first node in the linked list (00029814).

Symbolic Debugger Debugging Sessions 7-11

Debugging Session

_ 1) TSM> DEBUG DBGTST2

MPX-32 SYMBOLIC DEBUG V2.0 05/13/81, 13:30:00 TASK NAME = DBGTST2 0
PSW=01029850(CC=0000) (PC=DBGTST2+50)· . --
REGS':£OOOOOOOO.· 00000000 00000000 00000000 •..........••..•

00000000 -0,0'000000 00000000 00000000

2) .PGM HDBGTST2
3) . SN L INKSTRT

DBGTST2 - 00029814
4) .FILE FILINK
5) SN C(.),C(.)+OC

DBGTST2+14 00029834
6) SN. -OC

DBGTST2+14 00029834
7) .FILE FILINK
8) SN,C(.),C(.)+OC

DBGTST2+34 00029824
9) SN. -OC

DBGTST2+34 00029824
10) .FILE FILINK
II)SN C(.),C(.)+OC

DBGTST2+24 00029804
12) SN. -OC

DBGTST2+24 00029804
13) .FILE FILINK
14) SN C(.),C(.)+OC

DBGTST2+4 00000000
15) SN. -OC

DBGTSt2+4 00000000
16) SET LOOP
17) .. IF C(CTR»2
18) .. SN LINKSTRT
1 9) .. FILE F I LINK
20) .GO

TRAP @ DBGTST2+68
17a) IF C(CTR) > 2

'IF' VALUE = 00000001
PSW=21029868 (CC=0100)
REGS=OOOOOOOO 00029804
oonooooo 00000000

18a) !SN LINKSTRT
DBGTST2 00029814

1 9 a) ! FILE _ F I LINK
SN C (.) ,C (.) + OC
DBGTST2+14 00029834
SN . -OC
DBGTST2+t4. - 00029834

7-12

4E4F4445 31202020

4E4F4445 32202020

4E4F4445 33202020

4E4F4445 34202020

(PC=DBGTST2+68)
00000000 00000000
00000000 00000000

4E4F4445 31202n20

_ Debugging Sessions

/ /
00000001 1 ••• 4NODE1 •••• /

I ... 4/

00000002 1 ••• $NODE2 .••• 1

/ •.• $1

00000003 1 •.•• NODE3 •••• 1

I I

00000004 1 •••• NODE4 •••• 1

I /

I 1

00000001 1 •.• 4NODEl •••• 1

/ ••. 4/

Symbolic Debugger

.(--".
I

'-.,J

o

