SYMBOLIC DEBUGGER

User's Guide

June 1981

Publication: 321-001090-200
Supersedes 323-321514-001
Formerly: 323-321514-002

=2 GOULD

Electronics & Electrical Products

This manual is supplied without representation or warranty of any kind. Gould Inc.,
S.E.L. Computer Systems Division therefore assumes no responsibility and shall have no

liability of any kind arising from the supply or use of this publication or any material
contained herein.

LIMITED RIGHTS LEGEND

Use, duplication, or disclosure of data contained within this document is subject to the
restrictions stated in SYSTEMS' Proprietary Agreement (Form No. 903) or, for
Government customers, DAR 7-104.9A.

Copyright ©1981 by Gould
First Printed March, 1980
Printed in the U.S.A.

[- PREFACE

The Symbolic Debugger User's Guide provides a functional description and operating
procedures on SYSTEMS Symbolic Debugger. This user's guide contains seven chapters:

An overview of the Symbolic Debugger
File assignment usage and interpretation
Various means of accessing the Symbolic Debugger

Program execution using the Symbolic Debugger with regard to registers, memory,
symbols and expressions

. A description of commands available for use with the Symbolic Debugger
. Error messages and abort code summaries

. Sample programs and debugging sessions showing various debugging techniques.

C

Symbolic Debugger iii

N

CONTENTS

Preface . .o vttt iiiiiiiiiieenennns ceseseecenn ettt et e iii
Document Change History.....oeeeeeeeenn ettt ettt et viii
Documentation Conventionscceveeeeoen. serescssccosans P b
Chapter Page
1—OVERVIEW

1.1 General Descriptionccvevn cessssersessescssenns ssesesccena 1-1
1.2 Local and Global Symbols e e et s e een s s e e et et e s s e e e 1-1
1.3 Accessing Program Symbols00 T 1-2
1.4 Summary of Symbolic Debugger Capabilitiescivieiiiiiiiieenn. 1-2
2—FILES AND FILE ASSIGNMENTS

2.1 Symbolic Debugger Files. Cecesecessssscassnns 2-1
2.2 Dynamic Filesand Buffersciiiiiiiiit ittt nnnneeaanenss 2-1
2.3 Interactive Mode Default File Assignments ceectseseresnsenns 2-1
2.4 Batch Mode Default File Assignments ceeccesesasacnes 2-2
2.5 Symbolic Debugger Promptsceeevennn e 2-3

3—ACCESSING THE SYMBOLIC DEBUGGER

3.1 Accessing the Symbolic Debugger via TSM (Interactive Mode) « .. cvvvvvnn 3-1
3.2 Accessing the Symbolic Debugger via the Batch Stream

(Batch MOdE) v ot v vttt ittt insnneesocennssosessseessonasnnas 3-2
3.3 Accessing the Symbolic Debugger via the Break Keycoovvt 3-4
3.4 Accessing the Symbolic Debugger via the M\DEBUG Macro 3-5
3.5 The Symbolic Debugger's Location in Memory........... Cee e enenas 3-5

4—USING THE SYMBOLIC DEBUGGER

4.1 Setting the Default for Symbolic References 4-1
4.2 Command Files Cssesesesesesesesseanes et e 4-2
4.3 User Break Receiver. .. .o iiiiii ittt etenenceeesasocansenes 4-2
4.4 Program Execution............ Ceeceesesscsnstesncen Sescascscs 4-2
4.5 Trapsand Trap ListS e v e o o vttt enovecoscscosssncsssscsnsonsas 4-3
4.6 Nested Traps ¢« e e e v v e v v e neene Ceseeeassenaen e s secee et aen e 4-4
4.7 Examining Memory and Registersccieieeieiieecencencnnans 4-4
4.8 Modifying Memory and Registers ..« c v v e v eveee Ce e e esesesseseae s 4-5
4.9 Selectingthe Input Radixciitiiiiiiiiieiiiineeieneneaneesns 4-6
4.10 Establishing User Bases............. ceesesrecensecese e seas 4-6
4.11 Selecting Relative or Absolute Addressingccvveeeeeteocnecsennans 4-6
4,12 Selecting Log/No Log File...... e Ceere e e Ceeeeee 4-6
4.13 Selecting Label Field Format ceeeen ceecsessecrssecnssasens 4-6
4.14 Selecting Extended Memory ACCeSS « vt vvvveevanne ctesesesscacnann 4-7
4.15 Symbolic Debugger Command EXpressionscciiieereeecoconsns 4-7

4.15.1 Arithmetic EXPressions « v o oo eseseossscsssccosnssssncesss 4-8

4.15.2 Logical Expressions Ceseieeecnas Ceeseccoeceneees 4-8

Symbolic Debugger ‘ \

CONTENTS

Chapter Page
4.15.3 Relational Expressions cececcans O 24 <(
4.16 Terms used in Symbolic Debugger Expressions cecreescnsceses U9
4.16.1 Integers .o v v v viieerientencnnns B 4
4.16.2 Constants . eveieeienneenecnacnonns A L
4.16.3 Register and Memory Contents teseseeesens cee. b4-11
4.16.4 Bases. ceresesetetsnnaas ceceerseans ceeeseseneess U-11
4.16.5 Symbols..... ceesesaanens ceseccccasss B-13
4.16.6 COUNT tivvvitneennnnns et eet et B N U
4.16.7 Period (L) v v iiiiiiiiie it ennnnnnneennss ceceeeesees b-l4
5—SYMBOLIC DEBUGGER COMMANDS
5.1 Using the Symbolic Debugger Commands «« v oot etetenseenoneosenss 5-1
5.2 Summary of Symbolic Debugger Commands Gt e e 5-1
5.3 The A (Address) Commandcvv0n. et ecee e creeeses cee 5-5
5.4 The ABSOLUTE Command cesesesscncon e B B
5.5 TheB (Binary) Command.uoeeeeeeeeeoencoensoennns et eeeaean 5-6
5.6 The BASE Commandccveenennn et eesee e tesesescsccncnes 5-6
57 TheBREAK Commandoeeveeeeenncennnnns cescscsnsss ceees 5-7
5.8 The CC (Condition Code) Command 5-7
59 The CLEARCommandc.iveeveveececnnnsons cieetssenssnees -8
5.10 The CM (Change Memory) Command - vwuvonenn, Ceeeeeeaen . 5-9
5.11 The CR (Change Register) Command « .. veveveveronnssss ceesaesanes 5-10
5.12 The DA (Display ASCII) Command et teeeeree e 5-10
5.13 The DD (Display Double Precision) Command cecrcsnsenasess =11
5.14 The DELETE Command.......eveeeeeesosennsansns e A V4
5.15 The DETACH Command crececscssesenas cseccrsnaas ceee. 5-13 "/
5.16 The DF (Display Floating Point) Command 5-13
5.17 The DI (Display Instruction) Command . .« vvcvvvveenessns Ceeeeeneas 5-14
5.18 The DN (Display Numeric) Command .. vt vevenennennsonns ceeenn .. 5-14
5.19 The DNB (Display Numeric Byte) Commandvevuvvevesnnns ceeeeen 5-15
5.20 The DNH (Display Numeric Halfword) Command.......... sescasassans 5-15
5.21 The DNW (Display Numeric Word) Commandc000s. cetsereeess 5-16
5.22 The DUMPCommandveoeeeennsns cesasessssosse ceeeesee. I-16
5.23 The E (Single Precision Floating Pomt) Command +vovuvsne B N ¥4
5.24 The END Command cecccnccnns Ceeveccctssassasaansse 5-17
5.25 The EXIT Command e cer e ceecses st nesessenenne 5-18
5.26 The FILECommand00000 ceesresesesssessscncsssscesse =18
5.27 The FORMAT Command ceseecsecsssscvsss e B 2 ¥
5,282 The GOCommand ceecesecssno v ceeerececnesess =20
5,29 ThelFCommandcovveveenns C e et eeseesseseesnesecesanaas 5-21
5.30 The LISTCommandc00.. O T T T P 14 |
5.31 The LOGCommand ceeesessessscsesesenssssccsssens D=22
5.3Z The MODECommandccc0eeeenns I N4
5.33 The MSG (Message) Command + . evvevveesnnsss ceeeen Cheeeeranees 524
5.3 The N (Numeric)Commandcvveveenrnnennsans ceeeseseneenas 5-24
5.35 The PGM (Program) Command......... A, 15
5.36 The RELATIVE Command .. .ccevtvesseesconses B)
5.37 The REVIEW Commandveeveeeeeeneseossssosssossonsssssss =26
533 The RUNCommandvveeeeeceesonesssosossocssnssonssecnses =26
5.39 The SET Command T 24
540 The SHOW Command .+ ..o vieneerenseenenosssesnoscssssnssesss 3-28

vi Symbolic Debugger

CONTENTS

Chapter Page
541 The SNAPCommand....eeceeeeeseses C e et et ses e aen eeeeees 5-29
542 The STATUS Command . v .eeeeeeeeeennnses e cerreeeeneos 93=29
543 The STEP Command . .cvveeeeereosnsoenoscsenosscsscssscnsasss 9-30
544 The TIMECommand «...ceveeeervene C e e e ettt ee ettt e e ees. 9-30
545 The TRACECommandccoeeveens T 3
5.46 The TRACK Command chc e e st es e ettt e e et et a e e 5-33
547 The WATCH Command v« e et v v eteeeesononeencens ceressansseses 533
5.48 The X (Hexadecimal) Command........ e R 1

6—ERROR MESSAGES

6.1 Symbolic Debugger File Assignment Error Messages con . 6-1
6.2 Addressing Error Messagesuveeverenrtrnrenenennons ceveeae 6-2
6.3 Trap Error Messages « « v e e vt v sstsneesonnosssoanssosasssssnss . 6-3
6.4 Command Expression Error Messages .« c v oo v v v eeveennenons ceees 6-5
6.5 BaseError Messages «« v oo vt vntenonecseasoscenssonssnssonsnnses 6-7
6.6 Command File Error Messages. . v.oevvveereveeennens coess e e ceee. 6-8
6.7 Command Argument Error Messages .. .ceveuveieeeenssenrasecsnssss 69
6.8 Other Error Messages « « e v v vvtvetentnsneesesosnosonassncnns ... 6-10
6.9 AbortCodes....eoeeeneeinncennns cesesessseness eee. 6-11
7-—-SAMPLE DEBUGGING SESSIONS
7.1 Debugging Session Introduction g 7-1
7.2 Example l: Scanning Data in a Program Loop ceererssenc e vees 7-1
7.2.1 Sample Program--DBGTST ...t iit it inernnennnenns . 7-2
7.2.2 Sample Debugging Sessions for Program DBGTST crecssenen veo 7-3
7.3 Example 2: Searching ThroughaLinked List ... vvvveeieieneennnnnans 7-6
7.3.1 Sample Program--DBGTST2t cenn cees 7-7
7.3.2 Sample Debugging Session for Program DBGTSTZ ceeeee 7-8
Symbolic Debugger vii

Document Change History

({/\

| A
Insert latest change pages and dispose of superseded pages. On a changed page, the
portion of the page affected by the latest changes is indicated by a vertical bar in the
outer margin of the page. However, a completely changed page will not have a full
length bar, but will have the change notation by the page number.
Software Document Release Software
Revision Revision Date Release #
o 000 3/80 1.0
C 001 7/80 1.1
F 002 6/81 2.0
O = Original F = Formal Revision C = Change Package

List of Effective Pages

Page Change Page Change
No. No.* No. No.* TN
iiitOVii...................... 4—1t0--.--...........0 \KJ

1-1t01-2 @ o 0 00009 0 0000000000 00

2-1t0 ¢oveenn

3-lto ® e 0 0 0 00000000000

0

0 2 R o A
R | 6-110 cvvveeeerrerssennssnsessl

0 7-110 ceeveveesescesnsscecnncesal

*A "0" in this column indicates an original page, a "1" indicates a page changed by
Change Packet 1, a "2" indicates a page changed by Change Packet 2, and so forth.

viii

C

Symbolic Debugger

Documentation Conventions

Notation conventions used in command syntax and examples through this manual are
listed below.

Notation Description
lowercase letters Lowercase letters identify a generic element that must

be replaced with a user-selected value.

For example, the syntax statement:
IACTIVATE taskname

taskname could be entered as MYTASK, as in:

IACTIVATE MYTASK

CAPITAL LETTERS Capital letters must be entered as shown for input, and
will be printed as shown in output.

MEM,class specifies entering MEM followed
by a memory class (E, H, or S).

An element inside brackets is optional. Several

[] elements placed one under the other inside a pair of
brackets means that the user may select any one or
none of those elements.

[CURR] specifies the term CURR may be
entered but is not required.

T|,taskname specifies entering the letter T

,taskno then either a taskname or a

tasknumber may be entered (both
are optional).

9

Elements placed one under the other inside a pair of
braces identify a required choice.
T),taskname specifies entering the letter T
,taskno then either a taskname or a task
number must be entered.
The horizontal ellipsis indicates that the previous

bracketed element may be repeated, or that elements
have been omitted.

Symbolic Debugger _ ix

Numbers and
special characters

Underscore

name,,...,name specifies one or more values
may be entered, with a comma

inserted between each name
value. :

The vertical ellipsis indicates that commands,
parameters, or instructions have been omitted.

COLLECT 1,3 specifies there are one or more
. commands omitted between the
. COLLECT and LIST commands.
LIST

Numbers that appear on the line (i.e., not subscripts),
special symbols, and punctuation marks other than
dotted lines, brackets, braces, and underlines appear as
shown in output messages and must be entered as shown
when input.

(value) specifies the proper value must
be entered enclosed in
parentheses; e.g., (234).

In examples, all terminal input is underscored; terminal
output is not.

TSM>ASSIGN1 specifies TSM was displayed on
the terminal, but ASSIGN! was
typed by the terminal user.

In syntax statements, underscoring is used to show the
acceptable abbreviation (if any) of commands and key
words. For example, the syntax:

ACTIVATE taskname specifies the command verb
ACTIVATE can either be
spelled out or abbreviated to
ACTIL In some cases, any
character following the
underlined portions of the verb
is ignored. In other cases, the
verb must either be spelled out
correctly or abbreviated to
exactly the underlined portion.

Symbolic Debugger

27N

_/

BN
3\
Fl

b

C

CHAPTER 1—-OVERVIEW

1.1 General Description

The Symbolic Debugger is an optional software package available for use with the
MPX-32 (Mapped Programming Executive) operating system. The Symbolic Debugger is a
tool to assist in locating program errors in all languages supported by MPX-32. However,
the symbolic capabilities are available only with FORTRAN (both 77+ and 66+) and
Assembly Language.

The Symbolic Debugger is used as a replacement for the Debug load module provided
with MPX-32 and provides enhanced capabilities including: symbolic access, new
commands (including new data commands) and additional capabilities to aid during the
testing and debugging phase of program development.

The debugging phase is begun after a program is successfully compiled or assembled and
cataloged into an MPX-32 load module.

The Symbolic Debugger provides a stable environment to verify the correct execution of
a program or to locate any logic errors that may prevent proper execution. This is
accomplished through Symbolic Debugger commands. The commands provide access to
specific memory addresses where the user suspects errors. The contents of the addresses
can be displayed to verify correctness or to locate errors.

In FORTRAN and Assembly Language, addresses may be accessed through the use of
local and global symbols defined in the source program. These symbols represent
memory addresses, therefore the user does not need to know exact numerical addresses.
If the location is associated with a symbol, it can be accessed by using that symbol name
in the appropriate address parameter or command expression of a Symbolic Debugger
Command. If the location to be accessed is not identified by a symbol, the name of the
previous local symbol plus the offset to the desired location must be entered in the
command expression.

1.2 Local and Global Symbols

The symbols used by the Symbolic Debugger are divided into two groups, local symbols
and global symbols. Local symbols are those symbols defined within a specific source
program, and accessed by that program. Global symbols are symbols defined within a
specific source program, and can be referenced by other programs to provide
interprogram linkage.

Symbolic Debugger Overview 1-1

In FORTRAN, the following groups are local symbols:

. Array Names
Variable Names
Statement Names
Internal Functions
Statement Functions
Symbolic Constants*
Statement Numbers**

e o o o o

* A symbolic conftant can be used as a local symbol only if its value is less than 215 ,
greater than 2°7, or it is passed as an actual argument in a subroutine or function
call.

** FORTRAN-77+ Release 3.0 assigns a statement number to each executable
FORTRAN statement. The format for the statement number is S.x where x is the
sequential location of the statement from the beginning of the respective program.
Statement numbers are treated as local symbols by the Symbolic Debugger and can
be used as address parameters or command expressions in Symbolic Debugger
Commands. Assembly Language statements embedded in a FORTRAN statement
may be accessed by using the FORTRAN statement number plus the offset to the
appropriate Assembly Language statement.

In FORTRAN, the following groups are global symbols:

. Program Names
Subroutine Names

. Function Names

. Entry Points

In Assembly Language, local symbols are all symbols used as address labels. Global
symbols must be defined as linkage symbols through the DEF directive in the assembly
stage of the defining program, and referenced as linkage symbol through the EXT
directive in the assembly stage of the referring program.

1.3 Accessing Program Symbols

Option 19 must be set for both the compiler/assembler and the Cataloger to allow the
Symbolic Debugger to access the program's symbols.

If option 19 is set for the compiler/assembler, all local symbols defined in the source
program are written to the Cataloger.

If option 19 is set for the Cataloger, all program names and global symbols defined in the
source program are placed in a table which is accessable by the Symbolic Debugger for
address references.

If option 19 is set for both the compiler/assembler and the Cataloger, all program names
and all local and global symbols are placed in tables which are accessable by the
Symbolic Debugger for address references.

Option 19 is set through the use of the OPTION command in TSM. The OPTION
command and the options to be set are entered followed by a carriage return. Then, the
taskname for which the options are to be set is entered (FORTRAN, ASSEMBLER, or
CATALOQG).

1-2 Overview Symbolic Debugger

C

Note:

If option 19 is set for the compiler/assembler, it must also be set for the Cataloger.
However, option 19 may be set for the Cataloger only.

1.4 Summary of Symbolic Debugger Capabilities

The Symbolic Debugger is capable of

Debugging interactively or in batch. In either environment, Symbolic Debugger
commands control the execution of the program.

Accessing program locations (memory addresses) by using the symbols defined in the
source program. Addresses are displayed as symbolic expressions.

Displaying data in several formats (floating point, ASCII, integer, or instruction
mnemonic).

Executing program instructions one at a time and showing the result after each is
executed.

Printing a debugging session log.

Accessing commands from a Symbolic Debugger command file to alleviate the need
of entering each command individually during the debugging session.

Symbolic Debugger Overview 1-3

N

CHAPTER 2—FILES AND FILE ASSIGNMENTS

2.1 Symbolic Debugger Files

When the Symbolic Debugger is accessed and gains control of program execution, it
determines whether it has been accessed interactively, or in batch mode and makes the
appropriate file assignments for the command input and output. If the Symbolic
Debugger is running interactively, it also assigns a temporary file for logging the
debugging session. This log file can contain up to 100 screens of data, and can be printed
through the use of the LOG command or reviewed through the use of the REVIEW
command. The log file is unnecessary when running in batch because the output file for
the debugging session is equivalent to the log file.

All Symbolic Debugger logical file codes (lfcs) are assigned by default when the Symbolic
Debugger is accessed. When running interactively, none of the default lfc assignments
may be changed (no other assignment is valid). When running batch, only the default
input lfc (#IN) and output lfc (#0OT) assignments may be changed. This may be desirable
for the output lfc (#OT) if a large quantity of output is to be produced.

2.2 Dynamic Files and Buffers

When cataloging a task for use with the Symbolic Debugger, the Symbolic Debugger
requires five dynamic files and three dynamic buffers. If option 19 is set for the
Cataloger and no dynamic files or buffers are to be allocated for the task to be
debugged, the Cataloger will automatically allocate the files and buffers required for the
Symbolic Debugger.

If the task to be debugged requires dynamic files or buffers, then the user must (through
the use of the FILES and BUFFERS directives) specify the number of files and buffers
that the task needs. If option 19 is set, the Cataloger will automatically add the five
files and three buffers required by the Symbolic Debugger to the number of files and
buffers specified in the FILES and BUFFERS directives (the number required by the
task). The Cataloger will then specify in the load module the total number of dynamic
files and buffers needed for execution of this task.

2.3 Interactive Mode Default File Assignments

The following is a list of the default assignments for the Symbolic Debugger when
running interactively.

Logicalv File Code Assignment Description
#IN uT ‘ Command input is from the
user's terminal
#OT uT Output is to the user's terminal
{01 DC,N Temporary log file is on disc
Files and

Symbolic Debugger File Assignments 2-1

Logical File Code Assighment Description

102 SLO,N Spooled output for LOG and
DUMP commands

##03 filename [,password] User command file. This
assignment is made only if the
FILE command is specified.
The lfc #03 is assigned to the
filename and password (if
specified) in the FILE
command.

#SM load module Symbol table. This assignment
is made only if option 19 was
set for the Cataloger.

2,4 Batch Mode Default File Assignments

The following is a list of the default file assignments for the Symbolic Debugger when
running batch.

Logical File Code Assignment Description

#HIN SYC Command input is from the
SYC file

#fOT SLO,1000 Spooled output (1000 lines) is to

the SLO file

#03 filename [,password] User command file. This =
assignment is made only if the i
FILE command is specified.
The lfc #03 is assigned to the
filename and password (if
specified) in the FILE
command.

#SM loadmodule Symbol table. This assignment
is made only if option 19 is set.

The lfc #IN and #OT may be reassigned by the user in the job control before accessing
the Symbolic Debugger.

Ty,
Files and (]J
2-2 File Assignments Symbolic Debugger

2.5 Symbolic Debugger Prompts

The Symbolic Debugger has six command prompts that may be issued depending on the
last executed command. The following is a description of the six Symbolic Debugger

prompts.

Prompt

>

Description

This will always be the first prompt issued by the Symbolic Debugger
following its identifying message. The commands entered in response to this
prompt come from the lfc #IN and will be executed immediately. This
prompt will be reissued after the execution of all commands with the
exception of the SET, FILE and EXIT commands.

This prompt identifies commands from the lfc #IN that are entered in a trap
list. If the SET command was entered in response to the period (.) prompt,
the Symbolic Debugger will issue the double period (..) prompt. The
commands entered in response to this prompt are not executed
immediately. These commands are placed in a trap list and are deferred
until the trap is encountered.

This prompt identifies commands from a command file. If the FILE
command was entered in response to any of the prompts, each command in
the command file specified will be written to the lfc #OT preceded by the
greater than (>) prompt. The commands preceded by this prompt are
executed immediately and the result is written following each command.

This prompt identifies commands from a command file that are entered in a
trap list. If the SET command was entered in the command file, all
subsequent commands in the command file will be entered in a trap list until
a trap list terminator command is entered. When the command file is
accessed (the FILE command is entered), all the commands in the trap list
after the SET command and until the trap list terminator command are
preceded by the double greater than (>) prompt. The commands preceded
by this prompt are not executed immediately. These commands are deferred
until the trap is encountered.

This prompt identifies commands from a trap list. When a trap is
encountered, each command in the trap list will be written to the lic #IN
preceded by the exclamation point (!) prompt. The commands preceded by
this prompt are executed immediately and the result is written following
each command.

This prompt identifies commands from a trap list that are entered in a
nested trap list. If the SET command was entered in a trap list, all
commands following the SET command will be entered in a nested trap list
until a trap list terminator command is entered. When the first trap is
encountered, all the commands which are in the nested trap list are preceded
by the double exclamation point (I!) prompt. The commands preceded by this
prompt are not executed immediately. These commands are deferred until
the nested trap is encountered. Refer to Section 4.6 for a description of
nested traps.

Files and

Symbolic Debugger File Assignments ' 2-3

CHAPTER 3—ACCESSING THE SYMBOLIC DEBUGGER
3.1 Accessing the Symbolic Debugger via TSM (Interactive Mode)

The most common method of accessing the Symbolic Debugger is via TSM (interactive
mode). This is accomplished by entering the DEBUG command in response to the TSM
prompt. All of the file assignments for the program must be made prior to entering the
DEBUG command. These file assignments can be made by establishing defaults through
the use of the Cataloger's ASSIGN directives, or by entering the TSM ASSIGN commands
before entering the DEBUG command.

When the Symbolic Debugger assumes control, it will write its identifying message, the
PSW at the point of execution, condition code status, program counter value (the entry
point to the program) and the registers status to the lfc #OT (output) file, and prompt
the user for a Symbolic Debugger command. The sequence is as follows:
I. The user enters
TSM>DEBUG taskname
taskname specifies the name of the task to be debugged

2. The Debugger responds

MPX-32 SYMBOLIC DEBUG Vr.r mm/dd/yy,hh:mm:ss TASK NAME = taskname
PSW=pppppppp (CC=cccc)(PC=aaaaaaaa)

REGS=00000000 00000000 00000000 00000000cce...n cesnas
00000000 00000000 00000000 00000000 ...vieeevneennnn
. (the period prompt)
Vr.r specifies the revision level of the Symbolic Debugger
mm/dd/yy specifies the current date
hh:mm:ss specifies the current time of day
taskname specifies the name of the task to be debugged
PPPPPPPP specifies the program status word (PSW) at the start of the
execution
ccece specifies the value of the condition codes at the start of the
execution
aaaaaaaa specifies the current program counter value at the start of

execution. This value can be displayed as a program name, a
base plus an offset address, or a program name plus an offset
address.

Accessing the
Symbolic Debugger Symbolic Debugger 3-1

. (period prompt) specifies the Symbolic Debugger prompt. There are six
Symbolic Debugger prompts. Refer to Section 2.5
Symbolic Debugger Prompts for a description of each
prompt.

3. The user enters
.command

(period prompt) specifies the Symbolic Debugger immediate
prompt from the lfc #IN

command specifies one of the Symbolic Debugger commands
described in Chapter 5

3.2 Accessing the Symbolic Debugger via the Batch Stream

The Symbolic Debugger can be accessed via the Batch Stream by entering the SDEBUG
command in the job. control. The Symbolic Debugger cannot be accessed until the
program has been assembled/compiled and cataloged. Therefore, the SDEBUG command
must follow the SASSEMBLE/SFORTRAN and $CATALOG portions of the job control if
the program is to be assembled/compiled, cataloged and debugged in one job stream.
Otherwise, separate job control can be set up for each phase of the program
development.

All the file assignments for the program to be debugged must be made prior to debugging
the program. These file assignments can be made by establishing defaults through the
use of the Cataloger's ASSIGN directives when the program is cataloged. If no defaults
were assigned, the $ASSIGN commands must be entered in the job control preceding the
SDEBUG command.

Default file assignments are made for all necessary Symbolic Debugger files (refer to
Chapter 2—Files and File Assignments). Only the Symbolic Debugger input (#IN) and
output (#OT) files may be changed from their default.

The Symbolic Debugger commands to be executed are entered following the SDEBUG
command in the job control.

Accessing the
3-2 Symbolic Debugger Symbolic Debugger

‘\/"

c

C

Example 1

This is an example of job control to assemble, catalog and debug a program.

infile

SLO

Symbolic Debugger

$JOB DBG.TST username
SOPTION 19
SEXECUTE ASSEMBLE

source program

$OPTION 19
SEXECUTE CATALOG

Catalog directives

3

§A§SIGN1 IN=infile
ASSIGN2 OUT=SLO, 1000
SDEBUG DBG.TST
command}

command2

command
$SEOJ

$$

n

specifies the name of the permanent disc file which contains the input

for the user program

specifies the user program output is to be written to the system listed
output file (spooled output) which is then written to the line printer.

Accessing the
Symbolic Debugger

Example 2

This is an example job control for debugging only. This example assumes that the
program has been assembled/compiled, and cataloged and that no default program file
assignments were made during Cataloging.

»

$JOB DBG.TST username
SASSIGN1 IN=infile
SASSIGN?2 ‘OUT=SLO, 1000
SDEBUG DBG.TST

command|
command,

commandp,
SEO3J

$$

infile specifies the name of the permanent disc file which contains the input
for the user program

SLO specifies the user program output is to be written to the system listed
output file (spooled output) which is then written to the line printer.

3.3 Accessing the Symbolic Debugger via the Break Key

The Symbolic Debugger can be accessed by depressing the Break key on the user's
terminal after a task has been activated via TSM. When the Break key is depressed, TSM

will respond with the following prompt: N
BREAKON: taskname AT:aaaaaaaa ET:tttt.tt SEC. CONT,ABORT,OR DEBUG? R
taskname speciﬁes the name of the task which was executing at the time of the
break
aaaaaaaa specifies the address at which the break occurred
tttt.tt specifies the time in seconds at which the break occurred

The user has the choice of continuing (CONT), aborting (ABORT), or debugging (DEBUG)
the program. Responding with CONT (continue) will cause the program to continue
execution at the point where the break occurred. Responding with ABORT will abort
program execution. Responding with DEBUG will cause MPX-32 to load the Symbolic
Debugger into the last available 8K words of the 128K word address space. The Symbolic
Debugger will then write its identifying message as described in Section 3.1 and wait for
a command to be entered. Note that the register values in the message will specify the
contents of the registers at the time the break occurred.

Accessing the
3-4 Symbolic Debugger Symbolic Debugger

C

3.4 Accessing the Symbolic Debugger via the M.DEBUG Macro

The Symbolic Debugger can be accessed by coding the M.DEBUG macro into a program
at the location where the Symbolic Debugger is to be activated. MPX-32 loads the
Symbolic Debugger and transfers control to it at that point.

When debugging is complete, the program will issue the EXIT command to exit from the
Symbolic Debugger and terminate the debugging session. The Symbolic Debugger will
also exit if it encounters an end-of-file (EOF) from the command input device.

3.5 The Symbolic Debugger's Location in Memory

When the Symbolic Debugger is requested, MPX-32 loads it in the last available 8K words
of the 128K word address space along with the program specified in the DEBUG
command. If the Symbolic Debugger cannot fit in the available memory along with the
task then only the task is loaded. If the user task contains a CSECT, the Symbolic
Debugger is loaded in memory just below the beginning of the CSECT. (The CSECT is an
area of memory that contains code/data that may be shared by more than one program.
The code/data contained in the CSECT has read only status which is accessed almost
simultaneously by the sharing programs. The read/write data referenced by the CSECT
is contained in the DSECT. This data is individual (not shared) to the programs sharing
the CSECT).

When the Symbolic Debugger gains control, MPX-32 preserves the registers in the Task
Service Area (TSA) at offset T.CONTXT. T.CONTXT is a ten word area within the TSA
of each task which is reserved for the Symbolic Debugger's use. The Symbolic Debugger
uses this area as the task's register status when it gains control.

The Symbolic Debugger initializes default bases and opens the load module file for

symbolic access (if option 19 is set).

Accessing the
Symbolic Debugger Symbolic Debugger 3-5

The following diagram illustrates the location of the Symbolic Debugger in memory

A
|
|
| EXTENDED ADDRESS SPACE
| «

]

A
]
|
|
I
[

GLOBAL COMMON/DATA POOL

CSECT

SYMBOLIC DEBUGGER PATCH AREA

SYMBOLIC DEBUGGER

DSECT

TSA

OPERATING SYSTEM

Location of the Symbolic Debugger in Memory

Accessing the
3-6 Symbolic Debugger

O
128KW
E
()
kd/
0

C

Symbolic Debugger

CHAPTER 4—USING THE SYMBOLIC DEBUGGER

4.1 Setting the Default for Symbolic References

There are various symbol tables in which the Symbolic Debugger searches for symbol
names. These are the program name table, the global symbol table and a number of local
symbol tables (one for each of the program names in the program name table). A default
may be set to either the global or one of the local symbol tables through the use of the
PGM command. The default specifies that the symbol table to which the default is set
will be the first table searched for the symbol name specified in a Symbolic Debugger
command.

If the PGM command is entered without an argument, the default is set to the global
symbol table (this is the default condition when the Symbolic Debugger is accessed).
Global symbols may then be accessed by entering the symbol name in a command
expression. Local symbols may be accessed in this default condition only if they are
entered in a full pathname. A full pathname consists of the program name which defines
the local symbol, a back slash (\) character and the local symbol name
(progname\ locsym). Refer to Section 4.16.5 for a more detailed description of symbols
and pathnames.

The default may be changed to one of the local symbol tables by entering the PGM
command and the name of the program which defines the desired local symbols. Local
symbols defined in the program specified in th PGM command may then be entered
without specifying the program name and backslash () character. Local symbols defined
in another program must still be entered in the full pathname format. Global symbols
may be entered in this default condition, but if a global symbol, default local symbol
. and/or program have the same name, the local symbol will be accessed. Therefore, if the
global symbol was desired, the default must be returned to the global symbol table (enter
PGM with no argument). If a program name was desired, it must be preceded with the
pound sign (#).

Examples
.PGM D.EXMPL

will allow the Symbolic Debugger to access all local symbols defined in the program
D.EXMPL.

PGM

will allow the Symbolic Debugger to access all global symbols defined in the program
“to be debugged (local symbols are no longer accessable without entering a full pathname).

Using the
Symbolic Debugger Symbolic Debugger 4-1

4.2 Command Files

The Symbolic Debugger can accept commands from a permanent disc file called a
command file. A command file can be created via the MPX-32 text editor. The
command file can contain any number of Symbolic Debugger commands and all
commands can be used in the command file except the FILE command. The commands
will be executed in the order in which they are entered in the file.

To access a command file, it must first be stored uncompressed with the MPX-32 text
editor STORE command. The command file can then be accessed during a debugging
session by entering the FILE command and the name of the command file. '

4.3 User Break Receiver

If a break occurs during the execution of a program while the Symbolic Debugger is
attached, the Symbolic Debugger gains control and reports the occurrence of the break
to the user. If the program has a break receiver and the user wants control passed to the
break receiver, the BREAK command must be entered. This command causes the
Symbolic Debugger to pass control to the break receiver if one exists. If a break
receiver does not exist, the Symbolic Debugger will issue the following error message to
the lfc #OT:

NO USER BREAK RECEIVER
4.4 Program Execution

The Symbolic Debugger has several commands for transferring control to the user
program to begin program execution. These commands are the GO, TRACE, TRACK and
WATCH commands.

After the Symbolic Debugger is accessed, the execution of the program to be debugged
can be started by entering the GO command. This command can also be used to continue
execution after the program has been stopped. The GO command has two optional
parameters, the start address and the stop address. If the start address is not specified,
the Symbolic Debugger uses the current PSW as the start address. If the stop address is
not specified, program execution continues until the program completes or until an abort
or trap is encountered. If no parameters are specified, the program will execute as if the
Symbolic Debugger was not attached. Refer to Section 5.28, The GO Command, for a
more detailed description.

Program execution may also be started with the TRACE command. The TRACE
command is used to single step through program execution. This command has two
optional parameters, the start address and the stop address. If a start address is
specified, the Symbolic Debugger will start execution at that address and display the
instruction located at that address. If no start address is specified, the Symbolic
Debugger will start execution at the address specified in the current PSW and display the
instruction located at that address. After each instruction is displayed a carriage return
(cr) must be entered after the instruction is written to execute and display each
subsequent instruction. The single step trace continues in this manner until reaching the
stop address (if specified) or the end of the program (if no stop address is specified). The
trace may be stopped at any time by entering any character other than a carriage return
(cr) following the display of an instruction. For a more detailed description, refer to
Section 5.45, The TRACE Command.

Using the
4-2 Symbolic Debugger Symbolic Debugger

Note:

When executing a program via the TRACE command, all traps and break points are
ignored.

There are two other commands that can be used to start program execution , the TRACK
and WATCH commands. Both of these commands are functionally like the TRACE
command. The TRACK command differs from the TRACE command in that it writes
only branch instructions and their results to the lic #OT. The WATCH command differs
from the TRACE command in that it does not write any instructions or results.

The WATCH command causes the Symbolic Debugger to monitor program execution to
detect erroneous branches into memory that is not within the program's address range. If
a branching address error occurs, an error message will be written to the lfc #OT. There
will be no other output during program execution in WATCH mode. For a more detailed
description, refer to Sections 5.46 The TRACK command and 5.47 The WATCH
command.

4.5 Traps and Trap Lists

Program execution may be stopped by setting traps at locations within the program. The
SET command is used to place traps at the desired locations. The SET command requires
one parameter, the trap (stop) address. When program execution is started by the GO
command, execution continues until a trap is encountered (or until the program finishes
processing). If during execution a trap is encountered, execution of the program will stop
at the trap address. This allows the user to execute sections of code that are known to
be correct and stop at an address where errors are suspected. When execution is stopped
because a trap was encountered, the Symbolic Debugger will execute the commands in
the trap list for the trap specified in the SET command.

When the SET command is entered, the Symbolic Debugger defers the execution of
subsequent commands and stores them in a trap list for the trap specified in the SET
command. A trap list can contain any number of Symbolic Debugger commands. The
commands will be executed in the order they were entered in the trap list. All Symbolic -
Debugger commands can be entered in a trap list, except the LOG and REVIEW
commands.

Each command entered in a trap list, except the CLEAR, FORMAT, MODE and SHOW
commands, is checked for validity before being stored. If a command contains an error,
the command is not entered in the trap list and an appropriate error message is written
to the Ifc #OT (refer to Section 6.3 Trap Error Messages). Following the error message,
the user may re-enter the command or enter another command as desired. The
commands CLEAR, FORMAT, MODE, and SHOW will be validated only when they are to
be executed.

A trap list command may contain a user base parameter which has not yet been defined.
This is not considered an error in a trap list command. Therefore, care should be taken
to define all user bases either before building the trap list or before executing the trap
which contains an undefined user base reference.

Trap lists are ended by entering any one of the trap list terminator commands. If the
trap list contains nested traps, each trap list terminator corresponds to the trap list
following the most recent unterminated SET command (refer to Section 4.6 Nested
Traps). Valid trap list terminators are the BREAK, END, EXIT, FILE, GO, TRACE,
TRACK and WATCH commands.

Using the
Symbolic Debugger Symbolic Debugger 4-3

4.6 Nested Traps

Trap lists can be nested within a trap list. If a SET command is entered in a trap list, a
nested trap list is built within the original trap list. When the original trap is
encountered during program execution, the SET command in the trap list being executed
will cause a second trap to be set at the address specified in the nested SET command.
Any number of trap lists may be nested within a trap list. Each nested trap will be set
only after the trap list it is nested within is executed. :

Each nested trap within a trap list must have a corresponding trap list terminator. Each
trap list terminator corresponds to the trap list following the most recent unterminated
SET command.

Example

. SET trapl ——7- trap is set at address specified by trap!

.. commandl-l - commandl-1 is stored in the trap list for trapl

.. commandl-2 - commandl-2 is stored in the trap list for trapl
SET trap2 — |- trap2 will be set when trapl is encountered

. command2-1 - command2-1 is stored in the trap list for trap2
. SET trap3 - trap3 will be set when trap2 is encountered
.. command3-1 :] - command3-1 is stored in the trap list for trap3
. terminator3 - terminator3 is stored in and terminates the trap list for trap3
. SET trap4 - trap#4 will be set when trap2 is encountered
:l - command4-1 is stored in the trap list for trap4
- terminator¥ is stored in and terminates the trap list for trap4

.. COmmand#-l
.. terminator#
terminator2 — |- terminator?2 is stored in and terminates the trap list for trap2

.. terminatorl - terminatorl is stored in and terminates the trap list for trapl

4.7 Examining Memory and Registers

The Symbolic Debugger provides commands which allow the user to examine the contents
of memory or registers.

The commands to display memory are as follows:

Command Description
DA (Display ASCII) Displays the contents of memory in

ASCII format.

DD (Display Double Precision) Displays the contents of memory in
double precision floating point format.

DF (Display Floating Point) Displays the contents of memory in
single precision floating point format.

DI (Display Instruction) Displays the contents of memory in
instruction format.

DN (Display Numeric) Displays the contents of memory in a

decimal numeric format (the data size is
selected from the symbol table entry).

Using the

4-4 Svmbolic Debugger Symbolic Debugger

C;

//rr\\

{ i
‘\z\\/’v

Command Description

DNB (Display Numeric Byte) Displays the contents of memory in a
decimal numeric byte format.

DNH (Display Numeric Halfword) Displays the contents of memory in a
decimal numeric halfword format.

DNW (Display Numeric Word) Displays the contents of memory in a
decimal numeric word format.

DUMP Dumps the contents of memory to the
line printer in a side-by-side hexadecimal
and ASCII format.

SNAP Displays the contents of memory in a
side-by-side hexadecimal and ASCI
format.

The eight general purpose registers can be displayed by entering the STATUS command.
This command will display the contents of all general purpose registers in a side-by-side
hexadecimal and ASCII format. The STATUS command has no parameters.

4.8 Modifying Memory and Registers

The Symbolic Debugger provides commands which allow the user to change memory or
register values.

The contents of memory can be changed by entering the CM (Change Memory)
command. This command requires two parameters separated by an equal sign (=). The
first parameter is the starting address of the address values to be changed. The second
parameter, which may be a list of values separated by commas, is the data to be entered
in memory starting at the address specified in the first parameter. If there is only one
entry in the second parameter (the data list), only the address specified will be changed.
Two successive commas in the data list specify that the corresponding address word
value will remain unchanged.

Example
.CM 100=1,2,,4

will cause the values 1, 2, and 4 to replace the contents of addresses 100, 104 and 10C
respectively. Address 108 remains unchanged.

The contents of registers can be changed by entering the CR (Change Register)
command. This command requires two parameters separated by an equal sign (=). The
first parameter is the starting register (R0-R7) of the register(s) to be changed. The
second parameter, which may be a list of values separated by commas, is the data to be
entered in the register(s) starting with the register specified in the first parameter. If
there is only one entry in the second parameter (the data list), only the register specified
will be changed. Two successive commas in the data list specify that the corresponding
register will remain unchanged.

Example
.CR R1=1,2,,4

will cause the values 1, 2, and 4 to replace the contents of registers Rl, R2 and R#%
respectively. Register R3 remains unchanged.

Using the
Symbolic Debugger Symbolic Debugger 4-5

4.9 Selecting the Input Radix

The input radix can be selected using the FORMAT command. The default radix is
hexadecimal. To change the default radix to decimal, enter the Symbolic Debugger
command FORMAT N. To change the default radix back to hexadecimal, enter FORMAT
X. The SHOW OPTIONS command may be entered to display the current default input
radix.

4.10 Establishing User Bases

To establish a base at the beginning of a data structure or a subroutine that will be
referenced frequently during the debugging process, enter the BASE command. This
command requires two parameters, the base name and the expression whose value is
assigned to the base. Once a base is defined, it may be used as a term in an expression in
Symbolic Debugger commands. To change the value of a base, enter the BASE
command. To remove all user defined bases from the Symbolic Debugger's base table,
enter the CLEAR BASES command. Refer to Section 5.6 the Base Command, for a more
detailed description.

4.11 Selecting Relative or Absolute Addressing

To establish a relative reference point during debugging, use the RELATIVE command. |

This command uses one optional parameter, a base name or program name to be the
relative reference point. If the parameter is omitted, the Symbolic Debugger re-
establishes the last relative name used in the program. The ABSOLUTE command is used
to make all subsequent address expressions absolute, not relative to a base or program
name. The SHOW OPTIONS command may be entered to display the current addressing
mode (relative or absolute).

4.12 Selecting Log/No Log File

A temporary log file is allocated by default for the Symbolic Debugger when the
Symbolic Debugger is accessed in interactive mode. The log file is used to store all of
the commands and results of the debugging session until a LOG or REVIEW command is
entered. These commands display the log file to the line printer (LOG command) or the
lfc #OT (REVIEW command) and then clear the log file. All subsequent commands will
be entered in the log file until another LOG or REVIEW command is entered or until the
debugging session is ended.

The log file will not be maintained after the user enters the MODE NOLOG command.
Entering this command will allow the Symbolic Debugger to execute faster. The log file
can be maintained again by entering the MODE LOG command thus all subsequent
commands will then be stored. The SHOW OPTIONS command may be entered to display
whether or not a log file is being maintained.

4.13 Selecting Label Field Format

The addresses which are displayed in the label field of all Symbolic Debugger command
results can be displayed in two formats. The first format is oriented to FORTRAN
programs and displays the address as the program name plus the symbol name plus the
offset. Program name specifies the program in which the address to be displayed is
located. Symbol name specifies the symbol name within the specified program which has
the closest value greater than or equal to the address to be displayed. Offset specifies
the positive difference between the symbol name's value and the address to be displayed.

Using the
b-6 Symbolic Debugger Symbolic Debugger

The second format is oriented to non-FORTRAN programs. This format displays the
address as the program name plus the offset. Program name specifies the program in
which the address to be displayed is located. Offset specifies the positive difference
between the symbol name's value and the address to be displayed.

Entering the MODE FORTRAN command will cause the Symbolic Debugger to select the
FORTRAN oriented format. Entering the MODE NOFORTRAN command will cause the
Symbolic Debugger to select the non-FORTRAN oriented format. Both Assembly
Language and FORTRAN programs may use either addressing format. The default
setting of the Symbolic Debugger is the non-FORTRAN mode. The SHOW OPTIONS
command may be entered to display the current label field format.

4.14 Selecting Extended Memory Access

If the program to be debugged uses extended memory addressing, the Symbolic Debugger
can access extended memory only when the extended memory bit is set in the program
status word (PSW). The extended memory bit in the PSW can only be set by executing
the SEA (set extended addressing) instruction in the program being debugged. The
execution of this instruction can be bypassed by entering the Symbolic Debugger MODE
EXTENDED command.

The MODE EXTENDED command allows the user access to extended memory without
having to execute the SEA instruction within the program. This allows the user to
examine or change extended memory at any time in the debugging session. If the MODE
EXTENDED command is not entered, the user would have to trace through the program
location which contains the SEA instruction (setting the PSW extended memory bit)
before attempting to access extended memory via a Symbolic Debugger command.

If the program to be debugged does not require extended memory access, the MODE
NOEXTENDED command will not allow the user access to extended memory. This is the
default condition in the Symbolic Debugger. The SHOW OPTIONS command may be
entered to display the current extended memory access mode.

4.15 Symbolic Debugger Command Expressions

Many Symbolic Debugger commands have required or optional parameters specified as
expressions. The Symbolic Debugger expressions are specified as arithmetic, logical,
relational or single term expressions. The expressions are evaluated as 32-bit integer
expressions. Each expression contains one or more valid terms. Valid terms used in
expressions are integers (in the default input radix), constants, register and memory
contents, base names, symbolic references, COUNT and period (.).

The rules for entering expressions are

. Operators are binary (arithmetic, logical or relational), requiring two operands.

. Expressions are evaluated left to right.

. Parentheses override left to right evaluation.

. Expressions are evaluated as 32-bit integer operations.

. Expressions contain one or more valid terms.

Using the
Symbolic Debugger Symbolic Debugger 4-7

4.15.1 Arithmetic Expressions

The following is a description of valid arithmetic expressions (X and Y specify any valid

term).

Expressions Type
X+Y Addition
X-Y Subtraction
X*Y Multiplication
X/Y Division

4.15.2 Logical Expression

Description
X is added to Y, overflow is ignored

Y is subtracted from X, overflow is
ignored

X is multiplied by Y,
ignored

overflow is

X is divided by Y, remainder is ignored

The following is a description of valid logical expressions (X and Y specify any valid

term).

Expression Type

XAY Logical Shift

X&Y Logical AND

Xy Logical OR

X@y Exclusive OR
4-8

Using the

Symbolic Debugger

Description

X is shifted Y bits to the left if Y is
positive or to the right if Y is negative

X is logically anded with Y
X is logically ored with Y

X is exclusively ored with Y

Symbolic Debugger

{1

4.15.3 Relational Expressions

The gollowing is a description of valid relational expressions (X and Y specify any valid
term).

Expression Type Description

X=Y Equal if X is equal to Y, evaluated as TRUE
or 1 (otherwise, FALSE or 0)

X< >Y Not Equal if X is not equal to Y, evaluated as
TRUE or 1 (otherwise, FALSE or 0).

X>Y Greater if X is greater than Y, evaluated as
TRUE or 1 (otherwise, FALSE or 0)

X<Y Less If X is less than Y, evaluated as TRUE
or 1 (otherwise, FALSE or 0)

X>=Y Greater or Equal if X is greater than or equal to Y,
evaluated as TRUE or 1 (otherwxse,
FALSE or 0)

X<=Y , Less or Equal if X is less than or equal to Y,
evaluated as TRUE or 1 (otherwise,
FALSE or 0)

Note:

Single terms may be entered as expressions, and their value used as the expression result.
4.16 Terms used in Symbolic Debugger Expressions

Symbolic Debugger expressions contain one or more valid terms. The valid terms are
integers, constants, register and memory contents, base names, symbolic references,
COUNT and period (.).

§.16.1 Integers

Integers used as terms are entered in the default input radix. If the input radix is
hexadecimal, the first digit of the integer must be 0 through 9. Therefore, if a
hexadecimal integer beginning with A through F is to be entered, it must be preceded by
a leading zero.

If the input radix is hexadecimal, any number of digits can be entered as a hexadecimal
integer but only the last eight digits (the least significant digits) will be accepted by the
Symbolic Debugger as the integer value.

If the input radix is decimal, one to ten digits can be entered as the decimal integer. If
more than ten digits are entered, the Symbolic Debugger expects the eleventh digit to be
a valid operator, and writes the message

MISSING OPERATOR
to the lfc #OT and reissues a prompt for another command. The user should re-enter the

command with a one to ten digit decimal integer or issue another command.

Using the
Symbolic Debugger Symbolic Debugger 4-9

4.16.2 Constants
The following are six types of constants used as terms in Symbolic Debugger expressions:

. Hexadecimal Constant - A hexadecimal constant is a string of hexadecimal digits
enclosed in apostrophes and preceded by the letter X (e.g., X '1EC'). If the default
input radix is hexadecimal, the letter X and the apostrophes are unnecessary. If the X
and apostrophes are omitted and the hexadecimal value begins with A-F, a leading
zero must precede the hexadecimal constant (synonymous with hexadecimal integer).
In either format, any number of digits can be entered, but only the last eight digits
(the least significant) will be used as the constant.

. Decimal Constant - A decimal constant is a string of one to ten decimal digits
enclosed in apostrophes and preceded by the letter N (e.g., N '193"). If the default
input radix is decimal, the letter N is unnecessary (synonymous with decimal
integer). If more than ten digits are entered in a decimal constant string, the
Symbolic Debugger expects the eleventh digit to be a valid operator, and writes the
message

MISSING OPERATOR

to the lfc #OT and reissues a prompt for another command. The user should re-enter
the command with a one to ten digit decimal constant or issue another command.

. Binary Constant - A binary constant is a string of one to 32 ASCII ones and zeros
enclosed in apostrophes and preceded by the letter B (e.g., B'101011'). If fewer than
32 digits are entered, leading binary zeros are added to produce a 32-bit value.

. Floating Point Constant - A floating point constant is a string of one to 21 decimal
digits enclosed in apostrophes and preceded by the letter E. The floating point string
is entered in one of three formats, a single precision value without an exponent, a
single precision value with an exponent (denoted by the letter E) or a double precision
value with an exponent (denoted by the letter D). The mantissa and the exponent can
optionally be designated as positive (+) or negative (-).

Examples:
A single precision floating point constant without an exponent.
E'0.999'

A positive single precision floating point constant with a negative exponent.
E'+100.32E-10'

A negative double precision floating point constant with an exponent
E'-100.32D 10

. C-Character Constant - A C-character constant is a string of one to four ASCII
characters enclosed in apostrophes and preceded by the letter C (e.g., C'Al?"). C-
character constants are left justified and trailing blanks are added to produce a 32-bit
value, if fewer than four characters are entered.

. G-Character Constant - A G-character constant is a string of one to four ASCII
characters enclosed in apostrophes and preceded by the letter G (e.g., G'Al?").
G-character constants are right-justified and leading binary zeros are added to
produce a 32-bit value, if fewer than four characters are entered.

Using the
4-10 Symbolic Debugger Symbolic Debugger

C*‘\
o

4.16.3 Register and Memory Contents

The contents of registers and memory are used as terms in expressions by specifying the
register name or the memory address of the contents to be used.

Register contents are used by entering any of the eight general purpose registers in the
form Rn (n specifies a register number 0 through 7).

Memory contents are used by entering the address of the contents to be used in one of
the following formats:

C (address)

C (address + hex)
C (address + dec)
C (hex)

C (dec)

C specifies the contents of the term enclosed in parentheses is to be
used in the expression

address specifies a base name, program name, symbol, period (.) or explicit
pathname (program name plus symbol name plus offset or program
name plus offset).

hex specifies a hexadecimal value

dec specifies a decimal value

These expressions specify the 32-bit contents of the address or expression inside the
parentheses. Bits 30 and 31 of the expression value are zeroed to determine the word
address.

4.16.4 Bases

Bases are symbolic terms used in expressions. A base name is denoted by a $ as the first
character. The Symbolic Debugger defines nine bases when it is accessed. The nine
Symbolic Debugger bases are

Base Name Description
$ Bits 13-31 of the user task program status doubleword (PSD)
SPSD Bits 0-31 of the user task PSD
-$0 Constant zero
$TSA Start address of the user task's task service area (TSA)
$DSS Start address of the user task's DSECT
SDSE End address of the user task's DSECT
SPCH Start address of the 256-word patch area (in the Symbolic Debugger)
$CSs Start address of the user task's CSECT
$CSE End address of the user task's CSECT
SEND End address of the user task's extended memory
Using the

Symbolic Debugger Symbolic Debugger 4-11

The relative position of some of the bases described above on a memory map of a user
task which uses all possible memory areas (CSECT, DSECT, Global Common, and
extended memory) is shown below.

4 4
EXTENDED ADDRESS SPACE :

128K

GLOBAL COMMON/DATAPOOL

$CSE >

CSECT

$Css

SYMBOLIC DEBUGGER PATCH AREA

SPCH 2
SYMBOLIC DEBUGGER

]
/
e

DSECT

$DSS >
TSA
$STSA

OPERATING SYSTEM

$0 > 0

SYMBOLIC DEBUGGER BASE NAMES

Bases, other than the reserved Symbolic Debugger bases, can be defined through the use

of the BASE command. A user defined base name begins with a $ and an alphabetic

character followed by one to seven alphanumeric characters. User defined base names

may not be the same as any of the reserved Symbolic Debugger bases. (\
Using the M

4-12 Symbolic Debugger Symbolic Debugger

C

4.16.5 Symbols

Programs assembled/compiled and cataloged with option 19 set allow the Symbolic
Debugger access to program names, global symbols and local symbols. If option 19 is set
only for the Cataloger, only program names and global symbols can be accessed. '

Program names are denoted by the special character # (pound sign) and symbol names
(local and global) are denoted by the special character \ (backslash). Both special
characters are optional, but if global symbols, local symbols and/or programs have the
same name, the special characters should be entered for clarity.

When the Symbolic Debugger is accessed, it defaults to searching for global symbols. If
the default is not changed (via the PGM command), local symbols must be preceded by
the program name in which they are located and the backslash (\) character for the
Symbolic Debugger to access them.

If the PGM command and a program name are entered, the Symbolic Debugger then
defaults to the local symbols within the specified program name. In this default
condition, if a symbol is entered without the special character, the Symbolic Debugger
will first search the local symbol table (of the specified program). If the symbol is not
found, the global symbol table will be searched. If the symbol is not found in the global
symbol table, the program table will be searched. Therefore, the special characters
should be used to avoid ambiguous cases (symbols and programs with the same name).

Local symbols which are not located in the program specified in the PGM command must
be preceded by the program name in which they are defined and the backslash (\)
character. .

The following syntax shows valid symbolic addresses:

Syntax
[#] progname
specifies the optional special character to denote a program name

progname specifies the program name to be used as a symbolic address

Syntax
[\]glosym
\ specifies the optional special character to denote a symbol name
glosym specifies the global symbol to be used as a symbolic address. If the

default is to local symbols and a local symbol exists with the same
name, the PGM command must be entered without a program name to
set the default to global symbols. Otherwise, the local symbol by that
name will be accessed. :

Using the
Symbolic Debugger Symbolic Debugger 4-13

Syntax
[[:#]progname] [\]tocsym

specifies the optional special character to denote a program name

progname specifies the optional program name if the default is set to local
symbols defined in that program name.

If the default is set to global symbols or to local symbols defined
under a different program name, then the program name must be
specified followed by the backslash character and the local symbol
name.

\ specifies the optional special character to denote a symbol name.
This character is optional if the local symbol name it precedes is in
the default local symbol table. Otherwise it must be specified.

locsym specifies the local symbol to be used as a symbolic address.

4.16.6 COUNT

COUNT is a special term in expressions used to determine how many times a trap has
been encountered since it was set. When a trap is set, a counter is established to track
the number of times the trap is encountered. COUNT is always updated to reflect the
number of times that the last trap in the program was encountered. Therefore, COUNT
can be specified after each trap to determine how many times each trap has occurred.

COUNT is useful in conditional trap lists. If a program has a loop which executes |
properly a number of times and then encounters an error, a trap can be set at the N
beginning of the loop with a conditional trap list to execute only when COUNT equals the

number of times the loop executed properly. Then, through the commands in the trap

list, the user can examine memory or register contents during the iteration of the loop

which contains the error.

4.16.7 Period (.)

The special character period (.) is equal to the last address displayed by a memory
related command. The period (.) is used as a term in an expression in place of re-
entering the last displayed address.

The period (.) is set by the execution of the CM, DA, DD, DF, DI, DN, DNB, DNH, DNW
and SNAP commands.

Using the
4-14 Symbolic Debugger Symbolic Debugger

Example

The user enters the command
DI #DBGTST\SYMBOL 1
The Symbolic Debugger responds

DBGTST\SYMBOL1 LW R5, DBGTST\SYMBOL 2

The user enters the command
SET .
The Symbolic Debugger issues the trap list prompt and the user enters the command

+END

The Symbolic Debugger sets a trap at the address specified by period (.) which is

DBGTST\SYMBOL! with no corresponding trap list commands.

Using the
Symbolic Debugger Symbolic Debugger

4-15

N

CHAPTER 5—SYMBOLIC DEBUGGER COMMANDS

5.1 Using the Symbolic Debugger Commands

The following rules apply to the Symbolic Debugger commands, whether they are entered
from the lfc #IN (batch mode or interactive mode) or from a command file (Ifc #03)
through the use of the FILE command.

Each command record read from the lfc #IN is placed in a 72-character buffer. If the
record size of the file/device assigned to the lfc #IN is other than 72 characters, the
command is left-justified and blank-filled or truncated to the 72-character buffer
size.

Compound commands and continuation of command lines are not allowed.

All commands have a command verb. Some command verbs may be abbreviated by
entering the characters underlined in the syntax. If no command verb is entered, the
Symbolic Debugger defaults to the SNAP command.

The command verb is followed by a termination character (any non-alphabetic
character) and the command argument list (if required). Multiple arguments are
separated by commas (,). Blanks in a command line are ignored except inside a G or C
character constant.

Error messages are written to the lfc #OT when an incorrect command is entered.
Refer to Chapter 6 for a description of the error messages.

The response to each entered command is written to the lfc #OT following that
command. (Some commands have no displayed response.)

5.2 Summary of Symbolic Debugger Commands

Command Description
A Displays the address of the specified expression.
ABSOLUTE Sets absolute mode. All subsequent address expressions are

evaluated and displayed as absolute addresses until relative
mode is set via the RELATIVE command.

B Evaluates and displays the specified expression in binary
format.

BASE Creates, deletes or modifies a user base.

BREAK Transfers control to a user task's break receiver.

CC Displays or modifies condition codes in the user task's program

status doubleword (PSD).

Symbolic Debugger Commands 5-1

Command
CLEAR

o™

DD

DELETE
DETACH

DNB

DNH

DNW

DUMP

E

END
EXIT or X

FILE

Description

Clears all user defined bases or deletes all traps.

Changes memory contents to the 32-bit value(s) specified
beginning at the address specified.

Changes register contents to the 32-bit value(s) specified
beginning at the register specified.

Displays the contents of the memory range specified in ASCII
format.

Displays the contents of the memory range specified in double
precision floating-point format.

Deletes the specified trap.

Detaches the Symbolic Debugger from the user task and
transfers control to the task at the address specified or at the
last address executed in the task.

Displays the contents of the memory range specified in single
precision floating point format.

Displays the contents of the memory range specified in
instruction mnemonic format (Assembly language).

Displays the contents of the memory range specified in
decimal integer format.

Displays the contents of the memory range specified in
decimal integer byte format.

Displays the contents of the memory range specified in
decimal integer halfword format.

Displays the contents of the memory range specified in
decimal integer word format. :

Dumps the content of the memory range specified, the task's
PSD and the general purpose registers to the line printer
(interactive mode) or to the lfc #OT (batch mode) in a side-by-
side hexadecimal and ASCII format.

Evaluates and displays the result of the expression specified in
single precision floating point format.

Terminates a trap list and returns control to the lfc #IN.
Terminates the Symbolic Debugger and the user task.
Passes control to the command file specified to read and

execute the commands in the file, then return control to the
lfc #IN.

Commands Symbolic Debugger

Command

FORMAT

PGM

RELATIVE
REVIEW

RUN

SET
SHOW
SNAP
STATUS

STEP

TIME

Syrnbolic Debugger

Description

Sets the default radix to either decimal or hexadecimal for
undesignated values in expressions.

Begins execution of the user's task at the address specified or
at the current program counter value.

Establishes conditional trap list execution.
Displays the trap list for the specified trap.

Writes the temporary log file to the line printer (interactive
mode only, not available in batch mode).

Sets log/no log file, extended/no extended memory access, and
FORTRAN/NOFORTRAN label field format.

Designates a comment line.

Evaluates and displays the result of the expression specified in
signed decimal format.

Establishes the program name specified as the default for local
symbol searches or if no program name is specified, defaults to
global symbol searches.

Sets relative mode and optionally establishes a new relative
base or program name.

Writes the temporary log file (one screen at a time) to the lfc
#IN (interactive mode only, not available in batch mode).

Sets run mode (as opposed to single-step) for tracing or
tracking. A full screen of program instructions will be
displayed before prompting for continuation or termination of
the trace or track.

Sets a trap at the word address specified and prompts for a
trap list command.

Displays trap addresses, base names and values, option settings
and/or symbols.

Displays the contents of the memory range specified in side-
by-side hexadecimal and ASCII format.

Displays the status of the user PSD and general purpose
registers at the current address.

Sets single-step mode for subsequent TRACE or TRACK
commands. One program instruction will be displayed before
prompting for continuation or termination of the trace or
track.

Displays the current date and time.

Commands 5-3

Command ’ Description

TRACE Transfers control to the user task and displays each instruction
after it is executed.

TRACK Transfers control to the user task and displays each branch (J
instruction after it is executed.

WATCH Transfers control to the user task and reports any erroneous
branches into memory (no instructions are displayed).

X Evaluates and displays the result of the expression specified in
hexadecimal format. If no expression is specified, X is
interpreted as the EXIT command.

N

C

5-4 Commands - Symbolic Debugger

A (Address) Command
ABSOLUTE Command

5.3 The A (Address) Command

The A command is used to evaluate and display an expression in address format. If
extended addressing mode is not set, 19 bits are used. If extended addressing mode is
set, 24 bits are used.

Syntax:
A expr

expr specifies any valid Symbolic Debugger expression.
Response:

In Relative mode, the address is displayed as the closest base or program name to the
value plus the positive offset, in hexadecimal.

In Absolute mode, the address is displayed as a hexadecimal number without leading
zeros.
5.4 The ABSOLUTE Command
The ABSOLUTE command is used to set the absolute mode. As a result, subsequent
address expressions are interpreted as absolute and displayed as absolute hexadecimal
logical addresses. This mode is in effect until a RELATIVE command is executed.
Syntax:

ABSOLUTE
" Response:
The command is always valid.

There is no output.

The Symbolic Debugger prompts for the next command.

Symbolic Debugger Commands 5-5

_B (Binary) Command
BASE Command

5.5 The B (Binary) Command

N
The B command is used to evaluate an expression and display its result in binary format. @
Syntax: |
B expr
expr specifies any valid Symbolic Debugger expression
Response:

The 32-character binary equivalent of the expression is displayed.

5.6 The BASE Command

The BASE command is used to define a user base (add its name to the internal base
definition table), delete a user base name from the base table, or redefine a user base
(change the value specified in the base name's definition).

Up to 16 user bases are allowed. Refer to Section 4.10 Establishing User Bases.

Syntax:
BASE base [,expr]
base specifies a user base name. A user base name must begin with the N
character $ and an alphabetic character. A base name can be a \ /
maximum of eight alphanumeric characters. —
expr specifies a logical address to be used as the base's value. If the
expression is not specified, the base name is deleted. If "expr" is
specified and "base" is already defined, "base" is redefined to the
value specified by "expr".
Response:

There is no output except error messages. Error messages inform the user if
. the user tries to define a new base and the base table is full (16 user bases)
. "base" is not specified

. "base" is a base name which was defined by the Symbolic Debugger and cannot be
redefined

. the user attempts to delete an undefined base

C

5-6 Commands Symbolic Debugger

The BREAK Command
CC (Condition Code) Command

5.7 The BREAK Command

The BREAK command is used to transfer control from the Symbolic Debugger to the user
task's break receiver.

Syntax:
BREAK
Response:

The user break receiver gets control. The Symbolic Debugger regains control upon the
occurrence of the next break, trap, user abort, or break receiver exit.

An error message informs the user if the user task has no break receiver.

The BREAK command is a trap list terminator.

5.8 The CC (Condition Code) Command

The CC command is used to display the four condition code bits in the Symbolic
Debugger base $PSD (bits 0-31 of the user PSD) or to display the old condition code of
S$PSD and insert a new value.

Syntax:
€c [ec]
cc is a string of four binary digits that will replace the existing condition
codes in SPSD. If not specified the Symbolic Debugger displays the
present condition codes.
Response:

An error message informs the user if the condition code is specified incorrectly.

The Symbolic Debugger prompts for the next command.

Symbolic Debugger Commands 5-7

5.9 The CLEAR Command

The CLEAR command is used to delete all user defined bases or traps.

Syntax: ()

CLEAR { BASES }

TRAPS
BASES indicates that all user base definitions are to be deleted.
TRAPS indicates that all traps are to be deleted.
Response: /

An error message informs the user of any argument specification errors.

There is no output except for error messages. The Symbolic Debugger prompts for the
next command.

TN

\)
R

5-8 Commands Symbolic Debugger

CM (Change Memory) Command

5.10 The CM (Change Memory) Command

The CM command is used to alter the contents of one or more consecutive words in the
task's logical address space.

Syntax:
CM addr:expr1[,expr2,,,,,exprn]
addr specifies the address of the first word to be changed (bits 30 and 31 of
addr are ignored).
expr specifies the 32-bit value to be stored at the specified address.
Successive values are stored in consecutive words beginning at
"addr". Two consecutive commas with no intervening value can be
used to skip the memory address corresponding to the missing value,
leaving its contents unchanged.
Response:

Error messages inform the user if:
. "addr" and "expr" are not both present and valid

. memory changes must be stopped because "addr" or an address derived from it
(multiple values) violates a Symbolic Debugger address restriction

. an error occurs in evaluating one of the "expr" values

Note: In the third case, the error message will specify which memory words, if any, were
successfully changed.

A SNAP is automatically performed by the Symbolic Debugger for the modified range
and the new contents are displayed.

The Symbolic Debugger prompts for the next command.

When storing a double precmon floating point constant into memory, two words are
changed.

The special character period (.) is set at the completion of this command (refer to
Sectlon 4.16.7 Period (.)).

Symbolic Debugger Commands 5-9

Sa S O\ e anas apyN .'\\'6““'.’ NVIBIIEICE I
———

DA (Display ASCH) Command

5.11 The CR (Change Register) Command

The CR command is used to alter the contents of one or more user registers.

Syntax:
CR Rn=expr) [,exprz ,...,exprn]
Rn specifies a user register (R0-R7)
expr specifies the 32-bit value to be stored in the specified register.
Succeeding values, if any, are stored in consecutive user registers.
Two consecutive commas with no intervening value can be used to
skip the user register corresponding to the missing value, leaving its
contents unchanged. If user register R7 has been altered or skipped
and one or more unused values remain, they are ignored.
Response:

An error message informs the user if:
A register specification is absent or not in the range 0-7.
. The first value is not specified.
The Symbolic Debugger prompts for the next command.
When changing a register to a double precision floating point constant, two registers are
changed. :
5.12 The DA (Display ASCII) Command

The DA command is used to display a memory range in ASCII format.

Syntax:
DA [low] [high]
low specifies the first byte address to be displayed. If not specified, the
last location displayed plus one word is used as the default.
high specifies the last byte address of the range to be displayed. If not
specified, only the low address is displayed.
Response:

The memory address(es) are displayed in label-field format. The contents of memory are
displayed in ASCII format.

The special character period (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.)f. ,

5-10 Commands ' Symbolic Debugger

C

DD (Display Double Precision) Commana
5.13 The DD (Display Double Precision) Command

The DD command is used to display a memory range in double precision floating point
format.

Syntax:
DD [iow] [;high]
low specifies the first word address to be displayed. If not specified, the
last location displayed plus one word is used as the default.
high specifies the last word address of the range to be displayed. If not
specified, only the low address is displayed.
Response:

The address(es) specified are displayed in label-field format. The contents of the
specified memory address(es) plus the contents of the next word are converted to their
floating point double precision equivalent and displayed.

If a range is given, the second display begins two words (8 bytes) after the first display.

The special character period (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.)).

Symbolic Debugger Commands ‘ 5-11

DEeLEE Command

5.14 The DELETE Command

The DELETE command is used to delete a specified trap and restore the user instruction
to its original location. _

Syntax:
DELETE trap
trap specifies a trap address.
Response:

An error message informs the user if:

. "addr" is not specified

. "addr" is not an address at which a trap has been set by the SET command

The user instruction replaced by the trap instruction is restored to its original location.

The Symbolic Debugger prompts for the next command.

5-12 Commands Symbolic Debugger

DETACH Commana
DF (Display Floating Point) Command

5.15 The DETACH Command

The DETACH command is used to detach the Symbolic Debugger from the user task and
transfer control to the task at the specified address or at $§ (bits 13-31 of user PSD).

Syntax:
DETACH [addr]
addr specifies the address within the user task to which control is
transferred. If not specified, defaults to $.
Response:

All traps are deleted (there is no need to enter CLEAR TRAPS to restore user
instructions replaced by trap instructions).

The Symbolic Debugger files and memory are deallocated.
The Symbolic Debugger transfers control to the specified address.

An error message informs the user if the specified address violates the Symbolic
Debugger's address restriction.

DETACH is a trap list terminator.

5.16 The DF (Display Floating Point) Command

The DF command is used to display a memory range in floating point format.

Syntax:
DF [low] [,high]
low specifies the first word address to be displayed. If not specified, the
last location displayed plus one word is used as the default.
high specifies the last word address of the range to be displayed. If not
specified, only the low address is displayed.
| Response:

The memory address(es) are displayed in label-field format. The content of the specified
memory address is displayed in single precision floating point format.

If a range is given, the second display begins one word (4 bytes) after the first display.

The special character period (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.)).

Symbolic Debugger Commands 5-13

DI (Display Instruction) Command
DN (Display Numeric) Command

5.17 The DI (Display Instruction) Command

The DI command is used to display a memory range as mnemonic instructions (Assembly
Language).

Syntax:
DI [IOW] [’high] .
low specifies the first word or halfword address to be displayed. If not
specified, the last location displayed plus one word is used as the
default.
high specifies the last word or halfword address of the range to be
displayed. If not specified, only the low address is displayed.
Response:

The memory address(es) are displayed in label-field format. The contents of the memory
address(es) are displayed in Assembly Language format.

The special character period (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.)).
5.18 The DN (Display Numeric) Command

The DN command is used to display a memory range in decimal integer format.

Syntaxi
DN [low][,high]
low specifies the first word address to be displayed. If not specified, the
last location displayed plus one word is used as the default.
high specifies the last word address of the range to be displayed. If not
specified, only the low address is displayed.
Response:

The memory address(es) are displayed in label-field format. The contents of the memory
address(es) are displayed in decimal integer format.

The size is determined by the Symbol Table Entry. If there is no Symbol Table Entry, the
default is one word.

The special character {Jeriod (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.)).

5-14 Commands Symbolic Debugger

C

DNB (Display Numeric Byte) Commana
DNH (Display Numeric Halfword) Command

5.19 The DNB (Display Numeric Byte) Command

The DNB command is used to display a memory range in decimal byte format.

Syntax:
DNB [low] [,high]
low specifies the first byte address to be displayed. If not specified, the
last location displayed plus one word is used as the default.
high specifies the last byte address of the range to be displayed. If not
specified, only the low address is displayed.
Response:

The memory address(es) are displayed in label-field format. The contents of the memory
address(es) are displayed in decimal integer byte format.

The special character period (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.)). '

5.20 The DNH (Display Numeric Halfword) Command

The DNH command is used to display a memory range in decimal halfword format.

Syntax:
DNH [low] [,high]
low specifies the first halfword address to be displayed. If not specified,
the last location displayed plus one word is used as the default.
high specifies the last halfword address of the range to be displayed. If
not specified, only the low address is displayed.
Response:

. The memory address(es) are displayed in label-field format. The contents of the memory

address(es) are displayed in decimal integer halfword format.

The special character ;)eriod () is set at the completion of this command (refer to
Section 4.16.7 Period (.)). '

Symbolic Debugger Commands 5-15

DNW (Display Numeric Word) Command
DUMP Command

5.21 The DNW (Display Numeric Word) Command

The DNW command is used to display a memory range in decimal word format.

Syntax:
DNW [low] [,high]
low specifies the first word address to be displayed. If not specified, the
last location displayed plus one word is used as the default.
high specifies the last word address of the range to be displayed. If not
specified, only the low address is displayed.
Response:

The memory address(es) are displayed in label-field format. The contents of the memory
address(es) are displayed in decimal integer word format.

The special character period () is set at the completion of this command (refer to
Section 4.16.7 Period (.){
5.22 The DUMP Command

The DUMP command is used to write a range of memory to the line printer in side-by-
side hexadecimal and ASCII format. In batch mode, the dump is written to lfc #OT.

Syntax:
DUMP [low][,high]
low and high are expressions representing memory addresses. If high

is not specified or is not greater than low, only the single word
at low is displayed.
If no addresses are specified, the Symbolic Debugger will dump
the addresses following the last address dumped. If no
addresses were dumped, the Symbolic Debugger will dump the
contents of memory starting at absolute address zero.

Response:

The memory range between the specified addresses is dumped to the line printer (or lfc
#OT in batch mode). The user PSD and registers are also shown.

An error message is displayed if any address in the range violates an address restriction.

5-16 Commands Symbolic Debugger

C

Ao ""‘“'6“" R AV vamraves - e

END Command

5.23 The E (Single Precision Floating Point) Command

The E command is used to display an expression value in single precision floating point
format.

Syntax:
E expr
expr specifies the expression to be displayed in floating point format.
Response:

The single precision floating point equivalent of the expression is displayed.

5.24 The END Command

The END command is used to terminate a trap list. Using a carriage return <CR>in
interactive mode performs the same function.

Syntax:
END or<CR>
Response:

END is a trap list terminator.

Symbolic Debugger Commands 5-17

(VAR QR WS S R0)

FILE Command

5.25 The EXIT Command

The EXIT command is used to terminate debugging and return to the TSM prompt. Both
the user task and the Symbolic Debugger exit.

Syntax:
EXIT (or) X
Response:
The Symbolic Debugger calls the M.EXIT service.
EXIT is a trap list terminator.

The Symbolic Debugger also exits in response to a Control C (end-of-file).

5.26 The FILE Command

The FILE command is used to read subsequent Symbolic Debugger commands from a
command file instead of from the Ifc #IN.

Syntax:
FILE filename [,password]
filename specifies the name of a command file on disc.
password specifies the password, if any, associated with the file.
Response:

An error message informs the user if:
"filename" is absent or invalid, or the file does not exist
. the password is invalid

. the user is not allowed access to the file, e.g., a password is associated with the file
and has not been supplied

. the FILE command is read from a command file
If there are no errors, the Symbolic Debugger assigns lfc #03 to the specified file and
reads subsequent commands from #03 instead of #IN. When the Symbolic Debugger

reaches end-of-file on #03 or a break is recognized, command input returns to #IN.

The Symbolic Debugger searches for a user file by the specified filename. If a user file
is not found, it then searches for a system file.

Use of the FILE command terminates a trap list.

5-18 Commands Symbolic Debugger

FORMAT Commana

5.27 The FORMAT Command

The FORMAT command is used to set the default input format for undesignated numeric
constants and integers in expressions to hexadecimal or decimal.

Syntax:
FORMAT X
N
X sets the input radix to hexadecimal, which is the default when the
Symbolic Debugger is accessed.
N sets the input radix to decimal.
Response:

An error message informs the user if the format specification is absent or invalid.

The Symbolic Debugger prompts for the next command (no output).

Symbolic Debugger Commands 5-19

GO Command
5.28 The GO Command

The GO command is used to transfer control to the user task, optionally setting a one-
shot trap.

Syntax:
GO [addr][,trap]
addr specifies the address within the user task to which the Symbolic
Debugger transfers control. If not specified, the Symbolic Debugger
base § (bits 13-31) of the user PSD is used.
trap specifies the address within the user task at which the Symbolic
Debugger sets a trap. The list of Symbolic Debugger commands
executed when the trap occurs is as follows:
I* ONE-SHOT TRAP SET BY GO COMMAND
IDEL $
IEND

"$" is the special Symbolic Debugger base equal to bits 13-31 of the
user PSD.

If a trap address is not specified the Symbolic Debugger does not set a
trap before transferring control to the user task.

Response:
An error message informs the user if:

. either the transfer address or trap address violate the Symbolic Debugger address
restrictions

. a trap address is specified and a trap is already set there

. no trap table space remains and a trap address is specified

. "addr" is an odd number

. "trap" is not on a word boundary

If GO is successful, the Symbolic Debugger transfers control to the user task at the
specified address. If the last control transfer into the Symbolic Debugger was caused by
a trap and control is passed to the trap address for that trap, the user instruction
replaced by the trap instruction is executed first. Control is then passed to the trap
address plus one word unless the replaced user instruction is any instruction which
terminates the TRACE , TRACK, or WATCH commands--such a replaced instruction may
not be executed without first deleting the trap set on it.

Control remains with the user task until a trap, break, or user abort occurs, at which
time the Symbolic Debugger regains control and prompts for the next command.

GO is a trap list terminator.

5-20 Commands Symbolic Debugger

TN

MR N ABREBEEuse s
—

LIST Command

5.29 The IF Command

The IF command is used to make a trap list conditional. (The trap list is executed only if
specified conditions are met.) When used, this command must be the first command of
the trap list.

Syntax:
IF expr
expr specifies any valid Symbolic Debugger expression.
Response:

If the value of "expr" is nonzero, the trap is reported and remaining commands in the
trap list are executed. The relational operators produce a value of | if the relation is
true, and a value of 0 if false (refer to Section 4.15.3 for a description of relational
operators).

If the value of "expr" is zero, no trap is reported and the program continues executing as
if the user issued a GO $§ command.

The trap's COUNT is incremented whether the trap is reported or not .

An error message informs the user when the IF command is entered as an immediate
command or when "expr" is absent or invalid.

5.30 The LIST Command

~ The LIST command is used to display the trap list for a specific trap.

Syntax:
LIST trap
trap specifies a trap address
Response:

An error message informs the user if "trap" is not a trap address.

Symbolic Debugger Commands 5-21

LOG Command

- 5.31 The LOG Command Q
The LOG command is used to print the current contents of the terminal log file. s
Note:

A log file is maintained only when the LOG option has been specified by the MODE
command. The default condition is to maintain a log file.

Syntax:
LOG
Response:
All log file records which have not already been printed are copied to an SLO file. The

SLO file is then closed and deallocated. All log file records thus copied are no longer
accessible (their space is released). The LOG command is ignored in batch.

C

5-22 Commands Symbolic Debugger

‘MODE Commana

5.32 The MODE Command

The MODE command sets the following modes for the debugging session:

. A log file is/is not maintained to log the debugging session
. Extended memory access is/is not allowed
. FORTRAN display format is/is not set

Syntax:
LOG
NOLOG
MODE / EXTENDED
NOEXTENDED
FORTRAN
NOFORTRAN
LOG specifies that a log file will be maintained for the debugging
session.
NOLOG specifies that a log file will not be maintained for the
debugging session.
EXTENDED specifies that extended addressing will be allowed, thus the
user has access to program locations in extended memory.
NOEXTENDED specifies that extended addressing will not be allowed, thus the
user must trace through an SEA (set extended addressing)
instruction to access extended memory.
 FORTRAN specifies that FORTRAN addressing format is set. The address
label field will be displayed as the program name and closest
previous symbol name and the offset address
(i.e., program\symbol + 04).
NOFORTRAN specifies that NOFORTRAN addressing format is set. The
address label field will be displayed as the program name plus
the offset address (i.e., program + 04).
Response:

An error message informs the user if the mode is invalid or missing.

The Symbolic Debugger prompts for the next command (no output).

Symbolic Debugger

Commands 5-23

MSG (Message) Command
N (Numeric) Command

5.33 The MSG Command

The MSG command is used to denote a comment in a debugging session. It is most useful
in command files and trap lists to document the commands.

Syntax:
MSG message
(or)
* fnessage
message specifies any character string.
Response:

The character string is displayed.

5.34 The N (Numeric) Command

The N command is used to evaluate and display the expression's value in signed decimal
integer format. '

Syntax:
N expr
éxpr specifies the expression to be evaluated and displayed in signed
decimal integer format.
Response:

The signed decimal integer equivalent of the expression is displayed.

5-24 Commands Symbolic Debugger

CNTIVE \&L LUBL @88y ~ovseracam- —

RELATIVE Comman

5.35 The PGM (Program) Command

The PGM command is used to establish a program name in which the Debugger will

search for local symbols. This command also sets a new relative program name (see

RELATIVE command).

Syntax:

PGM [progname]
progname specifies a program name which may begin with the character # (the

designating character # is optional). If a program name is not
specified, the current program name is cleared and the Symbolic
Debugger defaults to the global symbol table.

Response:

An error message informs the user if the program name could not be found.

5.36 The RELATIVE Command

The RELATIVE command is used to set relative mode. Subsequent addresses that do not
include an explicit base, program, or symbol name are interpreted as relative to the base
or program name set by this command.

Syntax:
RELATIVE [base
progname
base is a base name which must begin with the character $§ (refer to

Section 4.10 Establishing User Bases).

progname is a program name which may begin with the character # (the
designating character # is optional).

If neither parameter is specified, the last base or program name that
was set by a RELATIVE command is used. During initialization, the
Symbolic Debugger sets the relative mode and establishes $DSS as the
default base.
Response:
Each address subsequently displayed is represented as a displacement from the nearest
base or program name which is not greater than the address. If a base and a program
name have the same value, the Symbolic Debugger uses the program name.

An error informs the user if the specified base or program name is not defined.

Symbolic Debugger Commands 5-25

KCVICW Lommand
RUN Command

5.37 The REVIEW Command

The REVIEW command is used to write the log file to the lfc #OT.

Syntax:
REVIEW [screens]
screens specifies the number of screens from the current position in the log

file for the Symbolic Debugger to backspace before beginning the log
file display. If not specified or if specified as a number greater than
the number of screens currently contained in the log file, the display
begins at the first record in the log file.

Response:

The Symbolic Debugger displays the log file one screen at a time.

When the Symbolic Debugger reaches the end of the log file, the display is terminated
and the Symbolic Debugger prompts for the next command. None of the above terminal
1/O is copied to the log file.

REVIEW is treated as a comment in batch.

An error message informs the user if:

. REVIEW is entered as a deferred command

.. REVIEW is read from a command file

5.38 The RUN Command
The RUN command is used to set the run mode. This results in trace or track continuing
until the Symbolic Debugger reaches a full screen of output instead of prompting for
input after each instruction.
Syntax:

RUN

Response:

Until a STEP command is executed, the TRACE and TRACK commands will display a full
screen of output before prompting for continuation or termination of the trace or track.

5-26 Commands ' Symbolic Debugger

@

C

3!: 1 Lonnnanu

5.39 The SET Command

The SET command is used to set a trap in the user task at a specified location.

Syntax:
SET trap
trap specifies the address at which the Symbolic Debugger sets a trap.
Response:

An error message informs the user if:

. The trap address is not specified.

. The specified address is already a trap address.

. The specified address violates an address restriction.

. Debug's trap table is full and thus no more traps can be set until a trap is deleted.
. "trap" is not on a word boundary.

The user instruction at the specified trap address is replaced by a trap instruction
(SVC 1,X'66").

The Symbolic Debugger then prompts for commands to be placed in the trap list (i.e.,
deferred commands).

The user can enter any Symbolic Debugger command in a trap list. All commands placed

- in the trap list are checked for validity before they are actually stored in the trap list

except for the commands CLEAR, FORMAT, MODE and SHOW. These commands will be
validated only when they are to be executed. If a command is invalid, the Symbolic
Debugger will write an error message and issue another prompt.

A nested trap list occurs if a user enters a SET command in a trap list. This means the
second trap is set only when the first trap is encountered. Nesting can continue as far as
the user desires, however, there must be a terminator for each SET command in the
nested trap list. Refer to Section 4.6 for a detailed description of nested traps.

To terminate a trap list, enter one of the following commands: BREAK, END, EXIT,

'FILE, GO, TRACE, TRACK, or WATCH.

Symbolic Debugger Commands 5-27

SHOW Command

5.40 The SHOW Command

The SHOW command is used to display current base definitions, trap addresses, option
settings, or symbols.

Syntax:
SHOW[BASES
TRAPS
OPTIONS
SYMBOLS
BASES displays the current definitions of all special bases and user
bases.
TRAPS displays all trap addresses.
OPTIONS displays the settings of the options controlled by the following
commands:
ABSOLUTE/RELATIVE
RUN/STEP
FORMAT
MODE
SYMBOLS displays all symbols defined in the default program (i.e.,

program name established by the most recent PGM
command). If there is no default program name established, all
global symbols are displayed. N

If no parameters are specified, all displays are produced. S
Response:

An error message informs the user if any argument but BASES, TRAPS, OPTIONS, or
SYMBOLS is used.

¢
j

5-28 Commands ‘ Symbolic Debugger

SNAP Commana
STATUS Command

5.41 The SNAP Command

The SNAP command is used to write the contents of a range of logical addresses to the
file or device assigned to lfc #OT. The format is a side-by-side hexadecimal and ASCII
display.

This command is also a default (implied) command. Any expression entered without a
command verb performs as if it were preceded by SNAP. If a carriage return without a
command verb or expression is entered, the Symbolic Debugger will snap the address
following the last address snapped. If no addresses were snapped, the Symbolic Debugger
will snap the contents of memory starting at absolute address zero.

Syntax:
SNAP [low] [high]
low specifies the first address to snap. If not specified, the snap begins at
the address following the last address snapped or at absolute zero if
'no previous address was snapped
high specifies the last address to snap. If not specified, only the single
word at the low address is snapped. Bits 30 and 31 are ignored and
assumed to be zero.
Response:

The specified memory contents are written to lfc #OT.

The special character period (.) is set at the completion of this command (refer to
Section 4.16.7 Period (.)).

5.42 The STATUS Command

The STATUS command is used to display a status report indicating the user PSD and the
general purpose registers for the address contained in the program counter.

Syntax:
STATUS

Response:

‘The Symbolic Debugger displays a status report on the terminal.

Symbolic Debugger Commands 5-29

STEP Command
TIME Command

5.43 The STEP Command .
The STEP command is used to set step mode. - @

This allows a single step trace or track through the execution of each instruction in the
user task.

Syntax:
STEP
Reponse:
Until a RUN command is issued, all TRACE and TRACK commands will pause after each
instruction displayed so the user can inspect each instruction and its results before the

next instruction is executed.

STEP is ignored in batch.

5.44 The TIME Command
The TIME command is used to display the current date and time of day.
Syntax:
TIME : .

Response: K‘q

The Symbolic Debugger displays the calendar date as stored in the Communications
Region (C.DATE) and the time of day as returned by the M.TDAY service.

5-30 Commands Symbolic Debugger

LINNNLI, Vst

5.45 The TRACE Command

The TRACE command is used to execute and display each user instruction and its
results. To trace only branching instructions, use the TRACK command.

Syntax:
TRACE [start][,stop]
start specifies the address of the first user instruction to be executed. If
not specified, the special base $ (bits 13-31 of the user PSD) is used.
stop specifies the address of the last user instruction to be traced. If not
specified, the trace continues as described below.
Response:

The Debugger executes user instructions beginning at the specified start address and
displays each instruction with its operands in an Assembler-like format. The instruction
results are displayed on the right-hand side of the output.

In Step mode, the Symbolic Debugger pauses after each instruction is executed or
simulated and waits for a l-character response from the user. To proceed to the next
instruction, enter only a carriage return. Any other response terminates TRACE. If the
Symbolic Debugger is in Run mode, TRACE does not pause after each instruction but
proceeds immediately to the next instruction; thus the only opportunity to stop the
display is at the end of each screen. Note that in batch, TRACE functions as if a RUN
command were in effect.

This process continues until one of the following occurs:

. An instruction has been fetched, executed, and displayed from the specified stop
address. The user context indicates that the instruction has been executed, as shown
in the status report announcing trace termination.

. A user instruction is aborted by a privilege violation or a map fault. The Symbolic
Debugger executes most user instructions by transferring control to the user task one
instruction at a time. When these instructions execute, it is as if the user had entered
"GO a,b" where a is the address of an instruction and b is the address of the next
instruction (logically next, not necessarily a+1W). Any abort condition caused by such
instructions is reported as it would be after a GO command and the trace is
terminated. The user context is reported in a status report.

. The Symbolic Debugger fetches an instruction that breaks the trace (refer to the list
of instructions at the end of this section). The instruction is displayed and TRACE is
terminated. The user context still points to the untraceable instruction, as shown in
the status report announcing trace termination.

. The address of the next instruction to be fetched would violate an address
restriction. No instruction is displayed, the trace is terminated, and the user context
points to the bad address as shown in the status report announcing trace termination.

If the last control transfer to the Symbolic Debugger is caused by a trap, and the starting

address is $ (the user PSD), the user instruction replaced by the trap instruction at $ is
traced as if it were at $, and the trace is continued.

Symbolic Debugger Commands 5-31

E AL COInnana

An error message informs the user if the starting address violates an address restriction,
if the starting address is greater than the stop address, or if the start and/or stop address

is an odd address. -
TRACE is a trap list terminator. ' {/"

The following Assembly Language instructions will cause a trace to stop (returning
control to the Symbolic Debugger):

Al

BEI
BRI
CD
CEMA

TMTR (
TPR . N
TRP

UEI

WAIT

WWCS

All undefined opcodes

5-32 Commands Symbolic Debugger

C

e —

WATCH Command

5.46 The TRACK Command

The TRACK command functions exactly like TRACE, except that it displays only
instructions that result in a change in the flow of control.

Syntax:
TRACK [start][,stop]
start specifies the address of the first user instruction to be executed. If
not specified, the special base $ (bits 13-31 of the user PSD) is used.
stop specifies the address of the last user instruction to be executed. If
not specified, the track is continued as described for TRACE.
Response:

TRACK functions exactly like TRACE, except only instructions which actually cause a
branch are displayed (BCT, TRSW, LPSD, etc.g
5.47 The WATCH Command

The WATCH command functions like TRACE, but does not display instructions. It is used
to detect erroneous branches into areas such as extended address space or MPX-32.

Syntax:
WATCH [start][,stop]
start specifies the address of the first user instruction to be executed. If
not specified, the special base $ (bits 13-31 of the user PSD) is used.
stop specifies the address of the last user instruction to watch. If not
specified, the watch continues as described below.
Response:

The Symbolic Debugger performs a TRACE but inhibits the usual instruction display.
When, as often happens in a new program, an erroneous branch is taken, it is often into

_an area completely out of the program (e.g., a branch to location 0). Especially in the

case of a privileged task, many instructions may precede the inevitable disaster. While
the system crumbles, many of the most useful hints as to the cause (e.g., register
contents) are destroyed. WATCH provides a convenient means of detecting such
branches when they happen without all the terminal output caused by TRACE or TRACK.

Symbolic Debugger Commands 5-33

X (Hexadecimal) Command

5.48 The X (Hexadecimal) Command

The X command is used to evaluate and display the expression's value in hexadecimal
format.

Syntax:
X expr
expr specifies the expression to be aisplayed in hexadecimal.
Response:
The hexadecimal equivalent of the expression is displayed.
Note:

If the expression is not specified, the Symbolic Debugger exits (refer to Section 5.25 the
EXIT Command).

5-34 Commands Symbolic Debugger

CHAPTER 6—-ERROR MESSAGES

6.1 Symbolic Debugger File Assignment Error Messages

There are four error messages which may be written to the lfc #OT if an error occurs
during Symbolic Debugger file assignments.

If the user did not assign enough dynamic file space for the executing task via the
Cataloger's FILES directive, the message

NO FAT/FPT SPACE AVAILABLE

will be written to the lfc #OT. The user should recatalog the task specifying the correct
number of dynamic file assignments. At catalog time the user task must specify the
number of files required to execute the task. If Option 19 is not set for the Cataloger,
the user task will not have symbols available for use in the debugging session.

If Option 19 is set for the Cataloger, the Cataloger will automatically add five files to
the number the user requested. These five files are needed for symbolic debugging.

If the user did not assign enough blocking buffers for the executing task via the
Cataloger's BUFFERS directive, the message

NO BLOCKING BUFFER AVAILABLE

will be written to the lfc #OT. The user should recatalog the task specifying the correct
number of blocking buffers. At catalog time the user task must specify the number of
. buffers required to execute the task.

If option 19 is not set for the Cataloger, the user task will not have symbolic support
during debugging. If option 19 is set for the Cataloger, the Cataloger will automatically
add three buffers to the number the user requested. These three buffers are needed for
symbolic debugging.

If there is not enough disc space available for the Symbolic Debugger to allocate for the
SLO file (1000 lines for the lfc #OT in batch mode and 300 screens of data for the
temporary log file in interactive mode), the message

NO DISC SPACE AVAILABLE
will be written to the lfc #OT. The user must wait until disc space becomes available.
If the Symbolic Debugger attempts to assign the temporary log file (lfc #01) and the log
file has been statically assigned by the user before accessing the Symbolic Debugger, the
message

LOG FILE ALREADY ALLOCATED
will be written to the lfc #OT. The user must deallocate the user defined log file

assignment (no static file assignments are allowed) to allow the Symbolic Debugger to
assign the log file to its default assignment.

Symbolic Debugger Error Messages 6-1

6.2 Addressing Error Messages

There are eleven error messages which may be written to the lic #OT if an invalid
address is specified in a command.

If the user enters the CM (change memory) command without specifying the address to
be changed, the message

ADDRESS MISSING

will be written to the lic #OT. The user should re-enter the command specifying the
address to be changed. '

If the user enters the CM (change memory) command without specifying the value to be
placed in the address specified, the message

NO VALUE SPECIFIED

will be written to the lfc #0OT. The user should re-enter the command specifying the
value to replace the contents of the address specified.

If the user enters a command (which allows a range of addresses as its parameters)
followed by a single address and a comma (,) but failed to enter a second address, the
message

NO HIGH ADDRESS

will be written to the lfc #OT. The user should re-enter the command followed by the
low and high addresses separated by a comma. If only one address is desired as the
parameter, no comma should be entered.

If the user enters a command (which allows a range of addresses as its parameters)
followed by a low address (first address specified) which is greater than the high address
(second address specified), the message

LOW > HIGH

will be written to the lic #OT. The user should re-enter the command insuring that the
first address is lower than the second address specified.

If the user enters a command (which allows an address as its parameter) other than the
CM (change memory) command followed by an address which is not within the user
program's addressing space, the message

ADDRESS OUTSIDE YOUR AREA

will be written to the lic #OT. The user should re-enter the command insuring that the
address specified is within the allowable addressing space.

If the user enters the CM (change memory) command followed by an address which is not
within the user program's addressing space, the message

CAN'T WRITE TO THAT ADDRESS

will be written to the lfc #OT. The user should re-enter the command insuring that the
address specified is within the allowable addressing space.

6-2 Error Messages Symbolic Debugger

If the user enters a SNAP or DUMP command followed by a range of addresses which are
not within the user program's addressing space, the message

MAP HOLE

will be written to the lfc #OT. The user should re-enter the command insuring that the
range of addresses is within the allowable addressing space.

If the user enters the DETACH command followed by an address which is incorrectly
bounded, the message

CAN'T BRANCH TO ODD ADDRESS

will be written to the lfc #OT. The user should re-enter the command insuring that the
address specified falls on the correct boundary.

If the user enters the TRACE command followed by an address which is not within the
user program's addressing space, the message

CANNOT TRACE INSTRUCTION

will be written to the lfc #OT. The user should re-enter the command insuring that the
address is within the allowable addressing space.

If the user enters the CR (change register) command followed by an invalid register
number, the message

REG NOT 0-7

will be written to the lfc #OT. The user should re-enter the command insuring that the
register number specified is zero through seven.

If the user enters the CR (change reglster) command followed by a valid register number
and invalid or missing values to be placed in the register(s), the message

NO CHANGE VALUE

will be written to the lfc #OT. The user should re-enter the command insuring that the
value(s) to be placed in the register(s) are valid 32-bit values (refer to Section 5.11 CR
(Change Register) Command).

6.3 Trap Error Messages

There are eight error messages which may be written to the lfc #OT if an invalid trap or
trap list command is entered.

If the user enters a SET or GO command followed by a trap address that the Symbolic
Debugger can't locate because .

. The trap address is not on a word boundary

. The trap address is a local symbol name and the default is to global symbols

. The trap address is a local symbol name that is not in the default local symbol table
. The trap address is a global symbol that is not in the global symbol table

Symbolic Debugger Error Messages 6-3

The following message will be written to the lfc #OT:

TRAPS ON WORD BOUNDARIES ONLY
The user should re-enter the command .insuring that the trap address is on a word
boundary, and that the symbol name specified is in the default symbol table (local or
global).
If the user enters a SET command with no trap address specified, the message

NO TRAP ADDRESS SPECIFIED

will be written to the lfc #OT. The user should re-enter the command specifying the
address where the trap is to be set.

If the user enters a LOG or REVIEW command in a trap list, the message

NOT ALLOWED IN TRAP LIST
will be written to the lfc #OT. The user should enter any valid trap list command, or
enter a trap list terminator before re-entering the LOG or REVIEW command (these are

the only two commands which are not allowed in a trap list).

If the user enters a SET command followed by the address of a previously set trap, the
message

ALREADY A TRAP THERE

will be written to the lfc #OT. The user should re-enter the command followed by an
address at which no trap exists.

If the user enters a DELETE or LIST command followed by an address at which no trap
exists, the message

NO TRAP THERE

will be written to the lfc #OT. The user should verify the trap addresses, and re-enter
the command followed by a valid trap address.

If the user enters the SET command and the trap table is full (maximum number of traps
are set), the message

TRAP TABLE FULL; TRAP NOT SET

will be written to the lfc #OT. The user must delete one or more traps before another
trap can be set.

If the user enters the IF command outside of a trap list, the message
IMMEDIATE "IF" NOT ALLOWED
will be written to the lfc #OT. The user must set a trap and enter the IF command as

the first command in the trap list if the trap is to be conditional. The IF command may
not be used at any other time.)

6-4 Error Messages Symbolic Debugger

C

C

If the user enters the IF command in a trap list and it is not the first command in that
trap list, the message

"IF" COMMAND OUT OF SEQUENCE

will be written to the lfc #OT. The user must reset the trap (or set a new trap) and enter
the IF command as the first command in the trap list if the trap list is to be conditional.

6.4 Command Expression Error Messages

There are sixteen expression error messages which may be written to the lfc #OT if an
invalid expression is entered.

If the user enters an IF or LIST command with no expression (expression is a required
parameter), the message

NO EXPRESSION

will be written to the lfc #OT. The user should re-enter the command with the IF
conditional expression or the expression (trap address) to be listed.

If the user enters a command followed by an expression parameter which contains paired
parentheses with no value inside '()' the message

NULL SUBEXPRESSION

will be written to the lfc #OT. The user should re-enter the command with a value inside
the parentheses, or delete the parentheses.

If the user enters a command followed by an expression which contains a symbol that the
Symbolic Debugger cannot locate within the default local symbol table (if PGM command
was entered) or within the global symbol table, the message

UNDEFINED SYMBOL

will be written to the lfc #OT. The user should verify the default symbol table (local to
a program specified in the PGM command or global symbols) by entering the SHOW
SYMBOLS command. If the desired symbol is a local symbol to another program name,
enter the PGM command followed by the program name which defines the desired symbol
before re-entering the command.

If the user enters a command followed by an expression which contains a term that the

- Symbolic Debugger cannot recognize, the message

UNRECOGNIZABLE TERM
will be written to the lfc #OT. The user should re-enter the command insuring that the

expression contains valid terms (refer to Sections 4.16.1 through 4.16.7 for a description
of valid terms used in expressions).

Symbolic Debugger Error Messages 6-5

If the user enters a command followed by an expression which does not contain an
operator, the message

MISSING OPERATOR

will be written to the lfc #OT. The user should re-enter the command insuring that the
expression contains a valid operator (refer to Section 4.15 Symbolic Debugger Command
Expressions, for a description of valid operators).

Note:

This message will also be written if a decimal integer greater than ten digits is entered
as a term in an expression. Decimal integers may not exceed ten digits.

If the user enters a command followed by an expression which contains an operator with
only one operand, the message

DANGLING OPERATOR

will be written to the lfc #OT. The user should re-enter the command insuring that the
expression contains two operands for each operator specified.

If the user enters a command followed by an expression which contains a sequence of two
or more operators that are not separated by operands, the message

CONSECUTIVE OPERATORS

will be written to the lfc #OT. The user should re-enter the command insuring that the
expression contains two operands for each operator specified.

If the user enters a command followed by an expression which contains a left parenthesis
that is not paired with a corresponding right parenthesis or vice versa, one of the
messages

UNMATCHED LEFT (
or UNMATCHED RIGHT)

will be written to the lfc #OT. The user should re-enter the command insuring that the
expression contains paired left and right parentheses.

If the user enters a command followed by an expression which contains a memory
contents term that (when evaluated) produces an indirect address which would cause a
map fault, the message

ADDRESS WOULD CAUSE MAP FAULT

will be written to the lfc #OT. The user should re-enter the command insuring that the
evaluated expression does not produce an invalid address. The contents of the memory
location specified in the term can be examined through the use of the display memory
commands (refer to Section 4.7 Examining Memory and Registers for a summary of the
display memory commands).

6-6 Error Messages Symbolic Debugger

C

If the user enters a command followed by an expression which produces an invalid
effective address, the message

EFFECTIVE ADDRESS CAUSES MAP FAULT

will be written to the lfc #OT. The user should re-enter the command insuring that the
evaluated expression does not produce an invalid effective address.

If the user enters a command followed by an expression which contains an invalid
constant or integer, one of the following messages will be written to the lic #OT
(depending on the type of constant or integer contained in the expression).

INVALID FLOATING POINT NUMBER

or
INVALID DECIMAL NUMBER
or
INVALID HEXADECIMAL NUMBER
or
INVALID BINARY NUMBER
or

INVALID CHARACTER STRING
The user should re-enter the command insuring that the constant or integer value is valid
(refer to Sections 4.16.1 and 4.16.2 for a description of valid integer and constant terms
in expressions).

6.5 Base Error Messages

There are four error messages which may be written to the lfc #OT if a user base is
incorrectly defined, redefined or deleted.

If the user enters the BASE command and does not specify a base name, the message
NO BASE NAME

will be written to the lfc #OT. The user should re-enter the command followed by an
existing or new user defined base name,

If the user enters the BASE command followed by an invalid base name, the message

BAD BASE NAME

“will be written to the lfc #OT. The user should re-enter the command insuring that a

valid base name is specified. (Valid base names begin with the $ and an alphabetic
character followed by one to seven alphanumeric characters).

If the user enters the BASE command followed by a Symbolic Debugger base name, the
message '

SPECIAL BASE NOT ALLOWED

will be written to the lfc #0OT. There are special Symbolic Debugger defined base names
(refer to Section 4.16.4 Bases) which may not be redefined or deleted by the BASE
command. The user should re-enter the command insuring that the base name is a new or
existing user defined base.

Symbolic Debugger Error Messages 6-7

If the user enters the BASE command followed by a new base name and the base table is
full, the message

. BASE TABLE FULL
will be written to the lfc #OT. The user must delete one or more bases before a new
base can be defined.
6.6 Command File Error Messages

There are five error messages which may be written to the lfc #OT if a command file is
incorrectly accessed.

If the user enters the FILE command and does not specify a file name, the message
NO FILE NAME

will be written to the lfc #OT. The user should re-enter the command followed by a
valid command file name and password (if required).

If the user enters the FILE command followed by an invalid file name, the message
NO SUCH FILE

will be written to the lfc #OT. The user should re-enter the command followed by a
valid command file name and password (if required).

If the user enters the FILE command followed by a file name without a password and a
password is needed, the message

FILE PASSWORD PROTECTED

will be written to the lfc #OT. The user should re-enter the command followed by the
valid file name and required password.

If the user enters the FILE command followed by a file name which is more than eight
characters (eight bytes) in length, the message

FILE NAME >8 BYTES

will be written to the lfc #OT. The user should re-enter the command followed by a
valid file name (not exceeding eight characters) and password (if required).

If the user enters the FILE command followed by a file name and a password which is
more than eight characters (eight bytes) in length, the message

PASSWORD > 8 BYTES

will be written to the lfc #OT. The user should re-enter the command followed by a
valid file name and password (not exceeding eight characters).

6-8 Error Messages Symbolic Debugger

6.7 Command Argument Error Messages

There are nine error messages which may be written to the lfc #OT if an invalid or
missing argument is entered following a command.

If the user enters the CLEAR command with an invalid or missing argument, the message
ARGUMENT SHOULD BE "BASES" OR "TRAPS"

will be written to the lfc #OT. The user should re-enter the command specifying either
bases or traps as the argument.

If the user enters the SHOW command with an illegal or missing argument, the message

ARGUMENT SHOULD BE BLANK, "BASES", "OPTIONS", OR
"TRAPS"

will be written to the lfc #OT. The user should re-enter the command specifying one of
the valid arguments listed in the message.

If the user enters the FORMAT command with an illegal or missing argument, the
message

ARGUMENT SHOULD BE "X" OR "N"

will be written to the lfc #OT. The user should re-enter the command specifying either
X (hexadecimal input radix) or N (decimal input radix).

If the user enters the MODE command with an illegal or missing argument, the message

ARGUMENT SHOULD BE "NOFORTRAN", "FORTRAN",
"EXTENDED", "NOEXTENDED", "LOG", "NOLOG"

- will be written to the lfc #OT. The user should re-enter the command specifying one of

the valid arguments listed in the message.

If the user enters the RELATIVE command with an invalid base or program name, the
message

RELATIVE NAME NOT FOUND

will be written to the lfc #OT. The user should re-enter the command insuring that a
valid base or program name is specified.

If the user enters the RELATIVE command with a $ or PSD as its argument, the message
CAN'T USE "$" OR "PSD"
will be written to the lfc #OT. The Symbolic Debugger special bases $ and $PSD can not

be specified for relative addressing. The user should re-enter the command insuring that
a valid base or program name is specified.

Symbolic Debugger Error Messages 6-9

If the user enters the DELETE command with no argument, the message

DELETE WHAT

will be written to the lfc #OT. The user should re-enter the command insuring that the
trap to be deleted is specified.

If the user enters the PGM command with an invalid program name, the message
NO SUCH PROGRAM NAME

will be written to the lfc #OT. The user should re-enter the command insuring that a
valid program name (to be established as default for local symbols) is specified.

If the user enters the CC (condition code) command with an invalid value to replace the
existing condition codes, the message

BAD CONDITION CODES
will be written to the lfc #OT. The user should re-enter the command insuring that the
value to replace the existing condition codes is a #4-digit binary value. (To display
existing condition codes, enter the CC command with no argument).

6.8 Other Error Messages

There are three other error messages which may be written to the lfc #OT if one of the
following errors occur.

If the user enters the BREAK command and there is no break receiver in the user “
program, the message \

NO USER BREAK RECEIVER

will be written to the lfc #OT. This command can only be used to transfer control to the
user program's break receiver. If no break receiver exists, the command is invalid.

If the user enters an invalid command, the message
UNRECOGNIZED COMMAND

will be written to the lfc #OT. The user should verify the valid command syntax, and re-
enter the command.

If the Symbolic Debugger temporary log file is filled, the message

LOG FILE IS FULL, USE "LOG" COMMAND TO OUTPUT IT
will be written to the lfc #OT. The user should enter the LOG command (to write the log
file to the line printer) or the REVIEW command (to write the log file to the lfc #OT). If

neither command is entered, the contents of the log file will be destroyed and a new log
file started.

6-10 ‘ Error Messages Symbolic Debugger

6.9 Abort Codes

The Symbolic Debugger has two abort codes which may be written to the lfc #OT if an
abort occurs. The two abort codes are

(. DBOI In batch mode, the end of the file assigned to lfc #OT has been encountered
before the end of job (EOJ).

DB02 A fatal I/O error has occurred on the lfc specified after the abort code in
the abort message.

The following are examples of fatal I/O errors:

. The input file is not assigned and there is no default input file.
The output file is not assigned and there is no default output file.

. The same lfc is assigned to both the input and output file.

The above abort codes usually refer to errors within the job control. Therefore, the job
control should be examined for errors before the program code.

C

Symbolic Debugger Error Messages 6-11/6-12

CHAPTER 7—SAMPLE DEBUGGING SESSIONS

7.1 Debugging Session Introduction

This chapter illustrates how to use the Symbolic Debugger. The programs which are
shown are not realistic programs but, for the purpose of simplicity these programs will
show some useful features in the Symbolic Debugger. In reality, programs such as these
may be a subprogram or module of an entire system of subprograms or modules. Each of
these separate subprograms or modules should be debugged separately then added to the
stable system. This method of debugging sections of an entire system then adding the
sections to the stable system is highly recommended.

The following sample programs and command keys illustrate the use and results of the
debugging sessions. »

7.2 Example 1: Scanning Data in a Program Loop

The sample program for this debugging session searches through a table of seven values
looking for the value five. If the value is contained in the table, the program will
successfully exit. Otherwise, the program will abort.

The debugging session shows how to set a trap at the beginning of a loop and build a trap
list that will display the register contents for the trap address, then continue execution
through the loop until the trap is encountered again. This cycle continues through each
successive iteration of the loop. This allows the user to examine the register contents to
insure correct program execution for each iteration of the loop.

The following subsections contain the sample program and the debugging session which

demonstrate the procedure described above.

Symbolic Debugger Debugging Sessions 7-1

L

suoissag 8urddngaQg

1288nga(o1joquIAg

w4

*

DBRGTST

00001
nonng
00003
00004
00005
0nnne
00007
00008
00000
00010
00011
00012
00013
00014
00018
00016k
00017
00018
00nyo
nopongzn
00021
00027
010023
nonz4u
onnegs
00026
nona7
00028
00029

nnnzn
00031
0onnza
N0033
00034
0003S
neo3e
00037
00038
0003°
noongo
00041
00042
00043
00044
00045
noonae

00047
0000

nopng
noong
enene
nnanNnyg
0nong
60005
nngne
oenny

DOONOD
PNONNG
pANNNP
Beoang
panntn
POND1G
POOOTE
pPooOtLc
PORN2Q
fcan2n
PoNODy

PNOOPR
paon2c
Pro0a30
POONO3y

PANQZR
POONRC
PNO0AQ

POOOUY
POOOU4R
PANNAC

PNNOSO
PNNOSY
PONOSA

ERRARS 1IN

nongnnnyg
nonanno2
0000003
NN0CN00U
noNNo0nNs
00000006
nooonony

SuUR3Itydy
agu72020

34800000
gonononons
91200000
EENDONOS)

r8R1NC04
QnrRONOLC
F2000G631

AEROOGSY
AF000022
rene1056

£8061058%
45525220

DRGTST

PogQonn

nooon
PN0ONSO
F0001C
P00030

POOOSY
P00020

P00028

VER 9,3

THIS PRNOGRAM WILL DEMONSTRATF THE SYMBOLIC CAPABILITIES

THYS PROGRAM WILL SIMPLY SCAN A TABLE OF DATA ITEMS

IF THE ITEM IS FNUND

THEN A SUCCESSFUL EXIT IS PERFORMED, IF THE ITEM

ESTABLISH ENDING ADDRESS OF TABLE
DOURLEWORD ALIGN TASK NAME
NAME OF THIS TASK

GET ADDR, OF BEGINNING OF TABLE

PUT IN VALUE OF ITEM SEARCHED FOR
CHECK IF FOUND VALUE

BRANCH TO END SUCCESSFULLY T1F FOUND

INC, TO LOOK AT NEXT ITEM IN TABLE
CHECK IF AT END OF TARLE
RRANCH IF NOT AT END OF TABLE

LOAD IN ABORTY CODE
LOAD IN ABORT TASK NAME
ABORT THIS TASK

SUCCESSFUL END OF PROGRAM

PROGRAM DBGTST
*
*
* WHICH ARE USED THROUGH THE SYMBOLIC DEBUGGER,
*
*
* LOOKING FOR A SPECIFIC ITEM,
*
* IS NNT FOUND THEN THE PROGPAM IS ABORTED,
* .
RO EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 FQu u
RS EQU 5
R6& FQu)
rR7 EQU 7
*
REGTARLE DATAW Xty
DATAW X1
DATAR X133
DATAW Xty
DATAW X151
DATAW Xtg!
DATAw X177
ENDTARLE EOQU $!
BOUND 1D !
TASKNAME DATAR C'TSTDRG ! !
*
* START OF PROGRAM
*
START LA R1,REGTARLE !
LI R2,5 . !
Lone Camw R2,0,R1 !
BRER ENDSUCC !
*
ADI R1, 1w !
CAMW R1,ENDTABLF !
BNE Lonp !
*
Lw RS,=C'ERR! !
LD Ré6, TASKNAME !
sve 1,X'56! !
*
ENDSUCC SVC 1,x'85!¢ !
END START
£
\

1S1odg—weidoig sidweg 1°2°/

£

7.2.2 Sample Debugging Session for program DBGTST

All commands in the sample debugging session are numbered to correspond to a key
which describes the commands and responses. Each command is immediately followed by
its response. -

Command Key

1)

2)

3)

4)

5)

6,7)

8)

6a)

The Symbolic Debugger is accessed by entering the DEBUG command in response
to the TSM > prompt.

The Symbolic Debugger responds with its identifying message.
The command to show the symbols (SHOW SYMBOLS) is entered.

The default is to the global symbol table, the response displays the global symbols
header and indicates that there are no global symbols in the program by displaying
no symbol names.

The command to set the default program name and accessable symbols (PGM
DBGTST) is entered.

The default program name is set to DBGTST. The symbols local to DBGTST are
accessable. There is no written response to this command.

The command to show symbols (SHOW SYMBOLS) is entered again (this time to
display the local symbols).

The response displays the local symbols header and all symbols local to the
program DBGTST.

The command to set a trap at the beginning of a program loop at the location
whose address is specified by the symbol name LOOP (SET LOOP) is entered.

The trap is set at the address specified by the symbol name LOOP and the
Symbolic Debugger responds with the trap list prompt (..).

The command (command 6) to snap register one (SN R1) is entered in the trap list
followed by the GO command (command 7). These commands are deferred until
the trap is encountered. When they are executed, R1 will be displayed and
program execution resumed. Because the trap is set at the beginning of a loop,
each time program execution is resumed the trap is encountered again and the
trap list executed. This allows the user to insure correct program execution for
each iteration of the loop. The GO command in the trap list is a trap list
terminator, therefore the trap list is ended and the immediate lfc #IN prompt (.)
is issued.

The command to begin program execution (GO) is entered. Program execution
will begin at the base $ (bits 13-31 of the user PSD or the current program
counter value) because no start address was specified.

The program will begin execution. There is no written response to the GO
command.

The trap is encountered and the SNAP command (deferred in the trap list) is
executed. -

Symbolic Debugger | Debugging Sessions ' ‘ 7-3

7a)

6b)

7b)

6¢)

7¢)

6d)

7d)

6e)

7e)

The response specifies the address contained in register one (DBGTST) followed by
the contents of that address (00000001).

The GO command (deferred in the trap list) is executed.
Program execution is resumed. There is no written response.

The trap is encountered and the SNAP command (deferred in the trap list) is
executed.

The response specifies the address contained in register one (DBGTST+4) followed
by the contents of that address (00000002). '

The GO command (deferred in the trap list) is executed.
Program execution is resumed. There is no written response.

The trap is encountered and the SNAP command (deferred in the trap list) is
executed.

The response specifies the address contained in register one (DBGTST+8) followed
by the contents of that address (00000003).

The GO command (deferred in the trap list) is executed.
Program execution is resumed. There is no written response.

The trap is encountered and the SNAP command (deferred in the trap list) is
executed.

The response specifies the address contained in register one (DBGTST+C) followed
by the contents of that address (00000004).

The GO command (deferred in the trap list) is executed.
Program execution is resumed. There is no written response.

The trap is encountered and the SNAP command (deferred in the trap list) is
executed.

The response specifies the address contained in register one (DBGTST+10)
followed by the contents of that address (00000005).

The GO command (deferred in the trap list) is executed.
Program execution is resumed and the value five encountered therefore a

successful exit from the program is performed. The Symbolic Debugger displays
the status of the program at the exit address.

Debugging Sessions Symbolic Debugger

(

™

/

C

Debugging Session

1)

6a)
7a)

6b)
7b)

6c)
7¢)

6d)
7d)

6e)

Symbolic Debugger

TSM> DEBUG DBGTST

MPX-32 SYMBOLIC DEBUG V2.0 05/13/81, 13:00:00 TASK NAME = DBGTST

PSW=01029828 (CC=0000) (PC=DBGTST+28)

REGS=00000000 00000000 00000000 00000000civeeeeennn
00000000 00000000 00000000 00000000e0vvusese

.SHOW SYMBOLS

GLOBAL SYMBOLS

.PGM DBGTST

. SHOW SYMBOLS

SYMBOLS LOCAL TO PROGRAM {#DBGTST

START TASKNAME ENDSUCC BEGTABLE LOOP

ENDTABLE

.SET LOOP

..SN RI

..GO

.GO

TRAP @ DBGTST+30

PSW=21029830 (CC=0100) (PC=DBGTST+30)

REGS=00000000 00029800 00000005 00000000eveevenean
00000000 00000000 00000000 00000000civenveennns

ISN RI1

DBGTST 00000001 /..

1GO
TRAP @ DBGTST+30

PSW=21029830 (CC=0100) (PC=DBGTST+30)

REGS=00000000 00029804 00000005 00000000
00000000 00000000 00000000 00000000

ISN R1

DBGTST+4 00000002

1GO
TRAP @ DBGTST+30

PSW=21029830 (CC=0100) (PC=DBGTST=30)

REGS=00000000 00029808 00000005 00000000
00000000 00000000 00000000 00000000

ISN R1

DBGTST+8 00000003

1GO
TRAP @ DBQTST+30

PSW=21029830 (CC=0100) (PC=DBGTST+30)

REGS=00000000 0002980C 00000005 00000000
00000000 00000000 00000000 000OOOOOO

ISN RI1

DBGTST+C 00000004

1GO
TRAP @ DBGTST+30

PSW=21029830 (CC=0100) (PC=DBGTST+30)

REGS=00000000 00029810 00000005 00000000
00000000 00000000 00000000 00000000

ISN RI1

DBGTST+10 00000005

Debugging Sessions

0000000000000000

oooooooooooooooo

oooooooooooooooo

7-5

7.3 Example 2: Searching Through a Linked List

The sample program for this debugging session contains a linked list with four data words
in each node. If the nodes are linked correctly, the program will successfully exit.
Otherwise, the program will abort.

The debugging session shows how to establish a value for the special character, period (.),
which will be used to display the node address and data words of each node. The
debugging session also shows how to build a conditional trap list which will be executed
only if the counter (CTR, which is used to count the number of nodes that are linked) is
greater than two (a conditional trap list allows the user to execute the trap list only if a
specified condition is met).

The following subsections contain the sample program and the debugging session which
demonstrate the procedure described above.

7-6 Debugging Sessions Symbolic Debugger

1988ngaQg onoquikg

s 8ur88ngaQg

SUOTISS®

*

DBGTSTR2
00001
00002
00003
00004
00005
00006
00007
0000R noooe
0oone 00001
00010 00002
00011 N0003
00012 n0004
00013 neopns
00014 0onnne
00015 oneay
00016 PonraNQ
00017 LAGVIR]
00018 PONOOK
oonto poOOOC
00020 PNOND1O
00021 enpoty
00022 PONGIR
00022 panpyC
noo2u PONN20
0002% ponD2d
00nRA PAOD2R
00027 PuNn2C
00028 LR)
00029 .. PPNO3Y
00030 PaNNTA
00031 PONO3C
00032 PANOUO
00032 PO0NoUu
0no3y PIN0U4e
00035 enooUr
Pocouc
00036
00037
Noo3R
0n03e POOOSO
00040 POGCSY
0004y PQANOASA
0nona2
00043 PONNSC
000wy PANJKO
00048 PONNGy
00046k
00047 PONYAA,
0004R PAANKC
00040 PONOTO
00050
000S1 POOOTY
2300TR
000s2 £9007C
00non

00N00014
nononoonn
UEULUFNULUS
34202020
N900000U
00000034
UEUFUUUS
31202020
nononNoNt
nonNonNoNg
UEUFUU4YS
33202020
00000003
00000024
4EUFUUUS
12202020
00000002
00000000

S4535444
42u73220

AEA0N0N0
£8850000
F2000069

AEBRONOTR
AF0000U4A
CROA1056

A3R20047
AC200000
F2000069

CB8061055
45525220

ERRORS N DRGTST2

PN0O014U

PNON3Y

PNONO4

P0N0024

PN000O
P0O0DOKB
PO0OOTE
POOOU4R

P0O004T
noo0o00
P00068

P000S0

VER 9,3

PROGRAM DBGTST2

*

* THIS PROGRAM WILL DEMONSTRATE THE SYMBOLIC CAPABILITIES

* WHICH ARE USED THROUGH THE SYMBOLIC DEBUGGER,

* THIS PROGRAM WILL ESTABLISH A LINKED LIST WHICH CAN

* THEN BE DISPLAYED THROUGH THE USE OF DEBUGGER COMMANDS,

*

RO EQU 0

R1 EQU 1

rR2 EQU 2

R3 EQU 3

RU EQU 4

RS FQU 5

R6 EQU 6

R7 EqQu 7

LINKSTRT ACw NODE1 ! INITIALIZE BEGINNING OF LIST

NODF4 DATAW 0 ! FORWARD POINTER = 0 =» NO MORE NODE
DATAW C'NOCE’ ! 1ST WORD OF DATA IN NODE 4
DATAW C'u ' ! 2ND WORD OF DATA IN NOCOE 4
DATAW 4 ! 3RD WORD OF DATA IN NODE 4

NCDE 1 ACW NODE?2 ! FORWARD POINTER IN NODE 1
DATAW C'NODE! ! 1ST WORD OF DATA IN NODE 1
DATAW c'1 ! { 2ND WORD OF DATA IN NODE 1
NATAW 1 ! 3RD WORD OF DATA IN NODE 1

NODEZ ACW NODE Y | FORWARD POINTER IN NODE 3
DATAW C'NODE! ! 1ST WORD OF DATA IN NODE 3
DATAW c'3 ' ! 2ND WORD OF DATA IN NODE 3
DATAW 3 ! 3RD WORD OF DATA IN NNDE 3

NODF 2 ACW NODEZ ! FORWARD POINTER IN NODE 2
DATAW C'NODE"’ ! 1ST WORD OF DATA IN NODE 2
DATAW c'e ' | 2ND WORD OF DATA IN NODE 2
DATAW 2 ! 3RD WORD OF DATA IN NODFE 2

CTR DATAW 0 ! INITIALIZE COUNTER OF NUMBER OF
RNUND 10 ! DOUBLEWORD ALIGN TASK NAME

TASKNAMF DATAB c'T8TDBG2 ! ! NAME OF THIS TASK

*

* START OF PROGRAM

*

START Lw R1,LINKSTRT I LOAD IN POINTER TO LINKED LIST
[21 R1,0 ! CHECK IF LINKED LIST IS NULL
BNE LoorP ! BRANCH IF LINKFD LIST IS NOT NULL

*
LW RS, =C'ERR! I LOAD IN ABORT CODE
Lo R6, TASKNAME ! LOAD IN ABORT TASK NAME
Svc 1,X'56" ! ABORY THIS TASK

*

LOOP ABM 31,CTR ! INC, CTR, OF NUMBER OF NODES FOUND
Lw R1,0,R1 ! LOAD IN POINTER TO NEXT NODE
RNE LooP ! BRANCH IF NOT AT END OF LIST

*

ENDSUCC SVC 1,X'Ss? | SUCCESSFUL END OF PROGRAM
END START

Z1S159d — weidoig ardureg ¢/

7.3.2 Sample Debugging Session for program DBGTST2

All commands in the sample debugging session are numbered to corresponding to a key
which describes the commands and responses. Each command is immediately followed by
its response.

Command Key

1)

2)

3)

4)

5)

6)

7-8

The Symbolic Debugger is accessed by entering the DEBUG command in response to
the TSM> prompt.

The Symbolic Debugger responds with its identifying message.

The command to set the default program name and the accessable symbols (PGM
#DBGTST2) is entered.

The default program name is set to DBGTST2. The symbols local to DBGTST2 are
now accessable. There is no written response to this command.

The command to snap the address which contains the address of the lst node in the
linked list (SN LINKSTRT) is entered.

The response specifies the address to be snapped (DBSTST2) and the contents of
that address (00029814). The address is displayed in the program name plus offset
format. In this example, there is no offset. LINKSTRT is located at the start
address, program name +0 (the +0 is not displayed). The contents of the snapped
address (00029814) specifies the address of the first node in the link. The value of
the special character period (.) is set to the value of LINKSTRT (period (.) can be
entered in place of the last address specified in a memory related command). The
value of period (.) is reset each time a memory related command is entered.

The command to execute the commands in a command file (FILE FILINK) is
entered.

The response to the FILE command is to execute the commands in the command
file (FILINK) specified. The commands in command file FILINK are

SN C(.), C()) + 0C
SN .-0C

The first command in the command file is the SNAP command (SN C(.), C(.) + 0C).
The range of addresses to be snapped specifies the contents of the special character
period (.) (which is set to the address LINKSTART) through the contents of period
(.) plus 12 decimal bytes. Prior to the execution of this command the contents of
period (.) is the address of the first node in the linked list.

The response specifies the address of the first node in the linked list (DBGTST2+14)
and the contents of the first node (00029834 4E4F4445 31202020 00000001
/...4NODEI1/). The period (.) is now set to the address of the third data word of
the first node (00029820, which was the last address in the specified range).

The second and last command in the command file is also the SNAP command

§SN.-;)C). The address to be snapped specifies the period (.) minus 12 decimal bytes
.~0C).

Debugging Sessions Symbolic Debugger

S

C

7)

8)

9)

10)

11)

12)

13)

The response specifies the address of the first node in the linked list (DBGTST2+14)
and the contents of that address (00029834). The contents (0002983%) specifies the
address oi the second node. This command is entered to reset the value of period
(.) to the first word of the node just displayed which contains the address of the
next node.

The FILE command is entered.
The commands in the command file (FILINK) are accessed.

The SNAP command (specified in the command file) is executed. The range of
addresses to be snapped specifies the contents of period (.) (which is set to the
address of the first word of the first node in the linked list) through the contents of
period (.) plus 12 decimal bytes. Prior to the execution of this command, the
contents of period (.) is the address of the second node.

The response specifies the address of the second node (DBGTST2+34) and the
contents of the second node (00029824 4Eu4F4445 32202020 00000002
/... NODE 2/). The period (.) is now set to the address of the third data word
of the second node (00029840).

The second SNAP command (specified in the command file) is executed. The
address to be snapped specifies the period (.) minus 12 decimal bytes (.-0C).

The response specifies the address of the second node in the linked list
(DBGTST2+34) and the contents of that address (00029824). The contents
(00029824) specifies the address of the third node in the linked list. The special
character period (.) is now set to the address of the second node (00029834).

The FILE Command is entered again.
The commands in the command file (FILINK) are accessed.

The SNAP command (specified in the command file) is executed. The range of
addresses to be snapped specifies the contents of period (.) (which is set to the
address of the first word of the second node in the linked list) through the contents
of period (.) plus 12 decimal bytes. Prior to the execution of this command the
contents of period (.) is the address of the third node.

The response specifies the address of the third node (DBGTST+24) and the contents
of the third node (00029804 4E4F4445 33202020 00000003 /.... NODE 3/). The
period has the value of the address of the third data word of the third node
(00029830).

The second SNAP command (specified in the command file) is executed. The
address to be snapped specifies the period (.) minus 12 decimal bytes (.-0C).

The response specifies the address of the third node in the linked list (DBGTST2+24)
and the contents of that address (00029804). The contents (00029804) specify the
address of the fourth node in the linked list. The period (.) is now set to the address
of the third node (00029824).

The FILE command is entered again.

The commands in the command file (FILINK) are accessed.

Symbolic Debugger Debugging Sessions 7-9

14)

15)

16)

17)

18)

19)

20)

17a)

18a)

The SNAP command (specified in the command file) is executed. The range of
addresses to be snapped specifies the contents of period (.) (which is set to the
address of the first word of the third node in the linked list) through the contents
of period (.) plus 12 decimal bytes. Prior to the execution of this command the
contents of period (.) is the address of the fourth node.

The response specifies the address of the fourth node (DBGTST+4) and the
contents of the fourth node (00000000 4E4Fu4445 34202020 00000004
/... NODE 4/). The period (.) is now set to the address of the third data word
of the fourth node (00029810).

The second SNAP command (specified in the command file) is executed. The
address to be snapped specifies the period (.) minus 12 decimal bytes (.-0C).

The response specifies the address of the fourth node in the linked list
(DBGTST2+4) and the contents of the address (00000000). The contents (00000000)
specifies the start address of the program (this indicates that there are no other
nodes). The period (.) is now set to the address of the fourth node (00029804). All
nodes and their data words have been examined.

The command to set a trap at the beginning of a program loop (SET LOOP) is
entered.

The trap is set at the address specified by the symbol name LOOP and the
Symbolic Debugger responds with the trap list prompt (..).

The command to establish a conditional trap list (IF C(CTR) >2) is entered. The
argument specifies that the trap list at location LOOP will be executed only if the
contents of the local symbol CTR is greater than two. The conditional command
(IF) is deferred (along with commands 18 and 19) until the trap at LOOP is
encountered.

The command to snap the start address of the program (SNAP LINKSTRT) is
entered. This command is deferred until the trap is encountered.

The command to execute the commands in a command file (FILE FILINK) is
entered. The commands in the command file (FILINK) specified will be executed
when the trap is encountered. The FILE command is a trap list terminator,
therefore the trap list is ended.

The command to begin program execution (GO) is entered. Program execution
will begin at the base $§ (bits 13-31 of the user PSD or the current program counter
value) because no start address was specified.

The program will begin execution. There is no written response to the GO
command.
The IF command (deferred in the trap list) is executed.

The response specifies the IF conditional statement and the current status at the

address where the condition became true. The relational value of C(CTR) 2 is
equal to one (the condition is true).

The SNAP command (deferred in the trap list) is executed.
The response specifies the address to be snapped (DGBTST2), which is the same

address as the symbol name (LINKSTRT), and the contents of that address
(00029814). :

Debugging Sessions Symbolic Debugger

19a) The FILE command (deferred in the trap list) is executed.

The commands in the command file (FILINK) are accessed.

C , The SNAP command (specified in the command file) is executed. The range of

g addresses to be snapped specifies the contents of the period (.) (which is set to the
start address of the program) through the contents of period (.) plus 12 decimal
bytes. The contents of period (.) is the address of the first node in the linked list.

The response specifies the address of the first node in the linked list
(DBGTST2+14) and the contents of the first node (00029834 4E4F 4445 31202020
00000001 /...4NODEI!/). The period (.) is now set to the address of the third
data word of the first node (00029820).

The second SNAP command (specified in the command file) is executed. The
address to be snapped specifies the period (.) minus 12 decimal bytes (.-0C).

The response specifies the address of the first node in the linked list
(DBGTST2+14) and the contents of that address (00029834). The contents

(00029834) specifies the address of the second node. The period is now set to the
address of the first node in the linked list (00029814).

"\
C/
o

Symbolic Debugger Debugging Sessions 7-11

Debugging Session

1) TSM> DEBUG DBGTST2

MPX-32 SYMBOLIC DEBUG V2.0 05/13/81, 13:30:00 TASK NAME = DBGTST2 (;J
PSW=01029850 (CC=0000) (PC=DBGTST2+50) , , \ X
REGS=00000000 - 00000000 00000000 00000000covnn. ceeen

00000000 00000000 00000000 00000000 e

2) .PGM #DBGTST?2
3) SN LINKSTRT

DBGTST?2 00029814 ; [eoeod]
4) .FILE FILINK
5) SN C(.),C(.)+0C

DBGTST2+14 00029834 4E4F4445 31202020 00000001 /...4NODEl..../
6) SN . -0C _

DBGTST2+14 00029834 ... 4/

7) .FILE FILINK
8) SN.C(.),C(.)+0C

DBGTST2+34% 00029824 4E4F4445 32202020 00000002 /....SNODEZ..../
9) SN .-0C ' :
DBGTST2+34 00029824 l...8/

10) .FILE FILINK e ——
11) SN C(.),C(.)+0C

DBGTST2+24 00029804 4E4F4445 33202020 00000003 /....NODE3..../
12) SN .-0C : '
DBGTST2+24 00029804 , [eoodl

13) .FILE FILINK
14) SN c(.),C(.)+0C

DBGTST2+4 00000000 4E4F4445 34202020 00000004 /....NODE4..../
15) SN .-0C >

DBGTST2+4 00000000 [eood] L W
16) SET LOOP . ‘
17) ..IF C(CTR)>2

18) ..SN LINKSTRT

19) ..FILE FILINK

20) .GO

TRAP @ DBGTST2+68
17a) IF C(CTR) > 2

'"IF' VALUE = 00000001
PSW=21029868 (CC=0100) (PC=DBGTST2+68)
REGS=00000000 00029804 00000000 00000000veveeennn ..
00000000 00000000 00000000 00000000 .+....oeev.. e
18a) !SN LINKSTRT
DBGTST?2 00029814 » [ooo.]

19a) !FILE FILINK
SN C(.),C(.)+0C

DBGTST2+14 00029834 4E4F4445 31202020 00000001 /...4NODEl..../
SN .-0C

DBGTST2+14 00029834 - [...4]

‘::;

7-12 ' Debugging Sessions Symbolic Debugger

TSI T

