CPL
UTX/32"

Assembler Reference Manual

January 1988

323-005450-000

= GOULD

Electronics

Limited Rights

This manual is supplied without representation or warranty of any kind. Gould Inc.
therefore assumes no responsibility and shall have no liability of any kind arising from
the supply or use of this publication or any material contained herein.

Proprietary Information

The information contained herein is proprietary to Gould CSD and/or its vendors, and its
use, disclosure or duplication is subject to the restrictions stated in the Gould CSD
license agreement Form No. 620-06 or the appropriate third-party sublicense agreement.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subdivision (b) (3) (ii) of the rights in Technical Data and Computer Software Clause at
52.277.7013.

Gould Inc., Computer Systems Division
6901 West Sunrise Boulevard
Fort Lauderdale, Florida 33313

UTX/32 is a trademark of Gould Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.

Portions of the UTX/32 Operating System are proprietary to AT&T Bell Laboratories,
and portions are proprietary to Gould CSD.

Copyright © 1988 by Gould Inc.
All Rights Reserved
Printed in the U.S.A.

Change 1

History

The UTX/32 Assembler Reference Manual, Release 2.0, Publication Order
Number 323-005450-000, was printed in September 1986.

Change Package 1, Publication Order Number 323-005450-001, was printed in
January 1988. Note: All references in this manual to Release 2.0 of UTX/32
apply to subsequent releases of UTX/32 for the Gould CONCEPT Product Line
unless otherwise noted in future change packages.

The updated manual contains the following pages:

Change

Number
TG PP ..cscoisminmanssosmessmanssssnsmersassonsemnssysssgsopse 1
Copyright Pagecccoceveeererenrrnreerecree e 1
History page, page iii/ivcccceeeverirrveneneereveenenns 1
Table of Contents, pages v through vi.................. 0
List of Tables, page vii/viilccccvuverrnivicrinnenind 0
Chapter 1, pages 1-1 through 1-3/14................... 0
Chapter 2, page 2-1/2-2 ...ooveeeeeieceeceevceeeeae 0
Chapter 3, pages 3-1 through 3-2 0
Chapter 4, page 4-1/4-2ccccoeveveieecreeereceenend 0
Chapter 5, page 5-1/5-2 ...vevevvineienerrece e 0
Chapter 6, pages 6-1 through 64 0
Chapter 7, pages 7-1 through 7-3/74................... 0
Chapter 8, page 8-1/8-2ccocoveeveviericeeieeieeeennnd 0
Chapter 9, pages 9-1 through 9-5/9-6................... 0
Chapter 10, pages 10-1 through 10-15/10-16....... 0
Chapter 11; page 11-1/11-2 civiniimmmsiisesisrossins 0
References, page RE-LRE-D.. .o mmnsvsmmind 0

A zero in the Change Number column indicates an original page. A 1 in this
column indicates a page to be substituted or added from this change package.

Every changed or new page in the document has the change number noted in the
page footer. The changed portion of a page is marked by a vertical bar in the
outer margin. A completely new or changed page will have no change bars, only
the change notation in the footer. Reverse sides of new or changed pages that are
not themselves changed have no change notation.

Change 1
UTX/32 Assembler Reference Manual i/iv

Assembler Reference Manual

for Gould UTX/32™

Release 2.0

September 1986

Publication Order Number: 323-005450-000

== GOULD

Electronics

This manual is supplied without representation or warranty of any kind. Gould
CSD therefore assumes no responsibility and shall have no liability of any kind

arising from the supply or use of this publication or any material contained
herein.

UTX/32 is a trademark of Gould Inc.

UNIX® is a registered trademark of A.T.&T.

PROPRIETARY INFORMATION

The information contained herein is proprietary to Gould CSD and/or its
vendors, and its use, disclosure or duplication is subject to the restrictions stated
in the Gould CSD license agreement Form No. 620-06 or the applicable third-
party sublicense agreement. Holders of a UNIX Software license are permitted
to copy this document, or any part of it, as necessary for licensed use of

software, provided this copyright notice and statement of permission are
included.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subdivision(b) (3) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227.7013.

Gould Inc. Computer Systems Division
6901 West Sunrise Boulevard
Fort Lauderdale, FL 33313

Copyright © 1986
Gould Inc. Computer Systems Division
All Rights Reserved
Printed in the U.S.A.

History

The Assembler Reference Manual for Gould UTX/32 , Release 2.0,
Publication Order Number 323-005450-000, was printed in September
1986.

The document contains the following components:

Title Page

Copyright Page

History Page, iii through iv
Table of Contents, v through vi
List of Tables, vii through viii
Chapter 1, 1-1 through 1-4
Chapter 2, 2-1 through 2-2
Chapter 3, 3-1 through 3-2
Chapter 4, 4-1 through 4-2
Chapter 5, 5-1 through 5-2
Chapter 6, 6-1 through 6-4
Chapter 7, 7-1 through 7-4
Chapter 8, 8-1 through 8-2
Chapter 9, 9-1 through 9-6
Chapter 10, 10-1 through 10-16
Chapter 11, 11-1 through 11-2
References, RF-1 through RF-2

ifi /iv

Table of Contents

1.1
1.2

3.1

3.2

3.2.1
3.2.2
3.2.3

3.3
3.4
3.5

5.1
5.2
5.3

6.1
6.2
6.3

Contents

.. vii
160t 0T 8 T0d 3 U U SO S ST 1-1
OrganizZation ..., 1-1
Documentation Conventions ..o 1-2
Use and OPtions ..o 2-1
Lexical Conventionsocooooooioooooooo 3-1
TERBIIBTS ..ueovvsrosesismorsummsnsssesmsimasissasisis s smosmsmsmms s sbbdeonsiersioss be o st abesesasn 3-1
COBIERIEY ;s inicmsmssoss cssmismmmasmmmimmmssrssvsss s oo SRS e 3-1

Scalar Constantsoc.ocooveiiiiiiiiieeeeeeeeeeeeeeeee e 3-1

Floating-point Constantscoo.o.oivieiiiieeeeeeeeeeeeeoeooo 3-2

SErINg CONSLANS ...ooveveriieieriieretetie et 3-2
B 07:] 27 SRS e s A o s e Rl N 3-2
BIaNS s st mmbtmesrmsns s sssrmsoseneoeeesesrr ot et smses 3-2
COMIMENTS ...ttt 3-2
Segments and Location Counters ... 4-1
BEBLEIMICIILE . it semsmsmmmnsmsnnnrmrsrssvommemvienstis o sessmios sonsrams ot st s shosesae 5-1
Labels ... 5-1
Null Statements ... 5-1
Keyword Statementsoooooivivieiieeieeeeeeeeeeeeeeeeeoeoee 5-1
EXPreSsSiOnSccccoooiiiiiiiiiicceeeee e 6-1
EXPression OPEratorscciiiirersimseissssesesesnssssssssssssssssseseses 6-1
Data TYPES oo 6-2
Type Propagation in EXpressionsccoooeeeeooeeooo 6-4

v UTX /32 Assembler Reference Manual

7.1 Register Operandscooooovoooeimooeooooooo
7.2 Base Register Operandsccocevovmieieooinioeeiseoeeoeeeeeeeooeoo
7.3 Memory Operandsocoooovoiooomeooooeoeoe
7.4 Indexed Operandscocooovevevoomomioo
7.5 Immediate Operandscccocooooomoo
8 Pseudo-instructions~
9 Pseudo-operations (Directives) ..o
9.1 C Preprocessor Commandsooooeeooeoooooooooo
9.2 Location Counter Controlococooovoooooooo
9.3 Filled Data ...ccooooiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee
9.4 IntbIaREeE DIBER (i mm i casseress o ot st e oS bt e e e
9.5 Symbol Definitionscocccoooovivoiiiiieioieeeeeeeeeeeeeooeooo
10 Opcodes for the Assembler ...
10.1 Move INStructionscoooooivivoieeeeeeeeeeeeeeeoeo
10.1.1 Two-operand Move Opcodesc.ocooemooomeomeoooo
10.1.2 Three-operand Move Opcodesccoooovomomeoooo
10.1.3 Load /Store InStTuctionsccocooveuieoooeoesoeooooooo
10.2 Branch Instructionscocoooooivoioooeooeoeeooooo
10.3 Shift INSEFUCTIONS ..o.ovveeeiceecceeeee e
10.4 Bit Manipulation Instructionscocoooovoomooooo
10.5 Compare and Logical Instructionsocoovooooooio
10.6 Arithmetic InStructionsccooecoveeeeeeemoreeeeeeeeeeeeoeoe
10.6.1 Fixed-point Arithmeticccocooiivomeieeoeeeooeeoooo
10.6.2 Floating-point Arithmeticocococooviiiiiioneoeeee
10.7 Type Conversion InsStructionsco.cocoooooovomoooooooooo
10.8 Control INStructionscooooveveueeeeeeee oo
10.8.1 Processor Control Instructionsccecoeveoovomooooooo
10.8.2 Input /Output Control InStructionscccocovvovovvoeeroeroo
10.8.3 Writable Control Store Instructionsoocoooovovioii
11 DiIagnostics ...

Referencesccooooiiiiiiioeeeeeeeeeeeee
UTX/32 Assembler Reference Manual vi

7-1
7-1
7-1
7-1
7-2
7-3

8-1

Contents

List of Tables

Table

6-1

6-2

9-1
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11

Contents

Page
Legal Expression Operators ... 6-1
Precedence LEVelsccooimmencoesenensssssssossssemsemesos oo 6-2
Expression Truncationcooooovevee 9-2
Two-operand Move Opcodesccccocoeooio 10-2
Three-operand Move Opcodescccoovvvvvii 10-3
Load/Store Instructions ... 10-4
Branch Instructions ..o 10-4
Shift Instructionscooooovooioooooiooeeeoo 10-7
Bit Manipulation Instructions ... 10-8
Compare and Logical Instructions ... 10-8
Fixed-Point Arithmetic Opcodescoccovvvvrovv 10-9
Floating-point Arithmetic Opcodescooovvoeoo 10-11
Type Conversion Instruction Opcodesocooovvvvv 10-12
Opcodes for Processor Control Instructions ..o 10-13

vii/viii UTX/32 Assembler Reference Manual

1 Introduction

Gould UTX/32 2.0 runs on the Gould PowerNode series of computers.
UTX/32 2.0 supports an assembler written for Gould computers. This
manual is based on the Berkeley VAX/UNIX Assembler Reference Manual
and has been modified for UTX/32 2.0. It describes the usage and input
syntax rules of the UTX/32 2.0 assembler, as.

as Is designed for assembling object code produced by the C compiler.
This document is intended only as a reference for system programmers
who are writing or maintaining compilers or writing assembly language
code. It is not intended to instruct programmers in how to write
assembler source programs.

1.1 Organization

This manual is divided into eleven chapters and a reference list:

Chapter 1 Provides a brief introduction

Chapter 2 Describes the use and options of the assembler

Chapter 3 Describes the assembler identifiers, constants, and
operators

Chapter 4 Describes the assembly segments and location counters

Chapter 5 Describes the sequence of statements

Chapter 6 Describes the expression operators and data types

Chapter 7 Describes the addressing modes for accessing data in
memory

Chapter 8 Describes the pseudo-instructions for calling conventions

Chapter 9 Describes the keywords introducing directives or
instructions

Chapter 10 Describes information about the opcodes

Chapter 11 Describes the assembler diagnostics

References An alphabetical list of the documents cited in this
manual

Interspersed throughout this manual are the following special pieces of
information that serve to highlight or augment instructions:

WARNINGS Emphasize procedures that are essential to proper
assembler use

TMUTX/32 2.0 and PowerNode are trademarks of Gould Inc.

Introduction 1-1 UTX/32 Assembler Reference

NOTES Provide useful information that is not critical to the
assembler’s operation

1.2 Documentation Conventions

Boldface

Command and utility names, system-specific words and special
characters, filenames and pathnames, and reserved words in code
are boldface within text.

Example:
The nroff command is used to format text.

Also, expressions that must be entered exactly as shown are boldface
within a command line or an example.

Example:

tar xv

Note that the prompt # is not boldface, because it is a computer
response instead of a user input.

Italics

[talics are used to refer to a manual page, to introduce new terms,
for titles of documents, and occasionally for emphasis.

Example:

The first tape, called the boot tape, contains three
initial boot programs.

< >

Angle brackets enclose descriptions of variable expressions that must
be replaced with a value or character string.

Example:

% cd <directory>

Ellipses. . .

Vertical or horizontal ellipses tells you that information has been
omitted, either on a syntax line or within examples.

UTX/32 Assembler Reference 1-2 Introduction

Introduction

Example:

.if n <nroff command

1-3/1-4

UTX/32 Assembler Reference

2 Use and Options

Most assembly language programs may be assembled using the cc
command. cc assumes that any file name suffixed by .8 contains
assembly language source, which it will pass through the C preprocessor
and on to the assembler. as arguments appearing on the cc command
line are passed appropriately.

The format of an as command line is
as [-LRQd | [—o output file | | file name |
as accepts the following command arguments:

—L The —L flag instructs the assembler to save all labels
beginning with a capital letter L in the symbol table
portion of the output file. Such labels in text or fartext are
not saved by default due to a convention of the C compiler,
which generates these as local labels.

-R The —R flag effectively turns .data n directives into .text
n directives. (The actions actually taken are considerably
more complex.) It becomes unnecessary to run editor
scripts on assembly code to make initialized data read-only
and shared. Uninitialized data (via .lcomm and .comm
directives) are still assembled into the bss segment.

—Q and —d The —Q (source trace) and the —d (debug) flags enable
trace output during assembler execution, provided that the
assembler has been compiled with the debugging code
enabled. The —Q option will cause the line number,
location pointer, and the input line to be printed for each
line of the program. This may be useful when debugging
macros defined by the C preprocessor, but will also produce
a large amount of output. The information printed for the
—d option is useful when debugging the assembler.

-0 The —o flag causes the output to be placed on the named
output. By default, the output of the assembler is placed in
the file a.out in the current directory.

The input to the assembler is normally taken from the standard input.
A file name may be given as an argument from which as should take its
input. Only one file name is allowed.

Use and Options 2-1/2-2 UTX/32 Assembler Reference

3 Lexical Conventions

Assembler tokens (a distinguishable unit in a sequence of characters)
include identifiers, constants, and operators.

3.1 Identifiers

An identifier consists of a sequence of alphanumeric characters, including
the period and underscore. (The period is also referred to as “dot.”)
The first character may not be numeric. Identifiers may be up to 4096
characters long (4095 significant characters plus the null at the end of
the string). Identifiers are also referred to as symbols or names.

3.2 Constants

The three types of constants are scalar, floating-point, and string.

3.2.1 Scalar Constants

Scalar (nonfloating-point) constants are defined as constants that can be
up to 32-bits wide. as does not support 64-bit integers and cannot
perform arithmetic on constants larger than 32 bits. Numbers with less
precision than 32 bits are treated as 32-bit quantities.

The following additional conventions apply to scalar constants:
o They are interpreted as two’s complement.

« 0123456789abcdefABCDEF are the digits used to represent them.
Each digit has the obvious value.

By comparison, the following conventions apply to decimal, octal, and
hexadecimal constants. Base ten (decimal) is the default radix.

decimal constant
A sequence of digits with the prefix Ot (zero and lowercase letter t)
or OT (zero and uppercase letter T)

The string 0t1234 is interpreted as a decimal value.

octal constant
A sequence of digits with the prefix Oo (zero and lowercase letter o),
00 (zero and uppercase letter O), or simply 0 (zero)

The string 01234 is interpreted as an octal value.

hexadecimal constant
A sequence of digits with the prefix Ox (zero and lowercase letter x)
or 0X (zero and uppercase letter X) The string O0x1234 is
interpreted as a hexadecimal value.

Lexical Conventions 3-1 UTX/32 Assembler Reference

3.2.2 Floating-point Constants

Floating-point constants are not explicitly recognized by the assembler.
The .word directive may be used, but the value must be manually
converted to the machine floating-point format defined in the processor
reference manual.

3.2.3 String Constants

A string constant is defined using the C language syntax. Strings begin
and end with double quotation marks. All C language backslash
conventions are observed. The assembler does not implicitly end strings
with a null byte.

3.3 Operators

There are several sin le-character operators; see Chapter 6
’ ’
“Expressmns.”

3.4 Blanks

Blank and tab characters may be interspersed freely between tokens, but
they may not be used within tokens (except string constants). A blank

or tab is required to separate adjacent identifiers or constants not
otherwise separated.

3.5 Comments

The character sequence

(minus sign, minus sign) introduces a comment, extending through the
end of the line on which it appears.

Lines beginning with a number/pound sign (#) in column one are
assumed to be C preprocessor commands. These lines are ignored by the
assembler with the exception of lines having the format

<number> <string>

This convention is interpreted as an indication that the assembler is now
assembling file <string> at line <number>. Such a convention allows
proper location reporting of errors if the assembler source has been
processed by the C preprocessor for the #include and #define
directives. Comments are otherwise ignored by the assembler. The
assembler will not recognize C-style comments, introduced with /* and
ending with */.

UTX/32 Assembler Reference 3-2 Lexical Conventions

4 Segments and Location Counters

This chapter explains the segmentation of assembled code and data.

Assembled code and data fall into several segments: text, fartext, data,
fardata, bss, and farbss. Within the data and fardata segments are two
subsegments, distinguished by number (data 1, data 2). The subsegments
are for programming convenience only. The UTX/32 operating system
makes some assumptions about the content of some of these segments;
the assembler does not.

Before writing the output file, the assembler pads each subsegment with
zeroes to a multiple of eight bytes and then concatenates the
subsegments in order to form the text and data segments. Requesting
that the link editor define symbols and storage regions is the only action
allowed by the assembler with respect to the bss segment.

Assembly begins in the text segment. Associated with each subsegment
is an implicit location counter beginning at zero and incremented by 1
for each byte assembled into the subsegment. Explicit reference to the
current segment’s location counter is possible by use of the dot (.), but
such practice is not recommended. Note that the location counter of
data subsegment 2 behaves peculiarly due to the concatenation used to
form the text and data segments.

Segments and Location Counters 4-1/4-2 UTX/32 Assembler Reference

o Statements

A source program is composed of a sequence of statements, separated
either by new lines or by semicolons. Statements are either null or
keyword. Either type of statement may be preceded by one or more
labels. These statements and labels are described in this chapter.

5.1 Labels

A label is referenced by its name. A label consists of a name followed by
a colon, as in the following example:

_main:

The effect of a label is to assign the current value and type of the
location counter to the name. An error is indicated in pass 1 if the name
is already defined; an error is indicated in pass 2 if the value assigned
changes the definition of the label.

Labels beginning with capital letter L are assumed to be local labels

generated by the compiler and are discarded unless the —L option is in
effect.

5.2 Null Statements

A null statement is empty and ignored by the assembler; however, it may
be labeled.

5.3 Keyword Statements

A keyword statement begins with one of the many predefined as
keywords. The syntax of the remainder of the statement depends on the
keyword. All instruction opcodes are keywords. The remaining
keywords are assembler pseudo-operations, also called directives. These

are listed in Chapter 9, “Pseudo-operations,” together with the syntax
they require.

Statements 5-1/5-2 UTX/32 Assembler Reference

6 Expressions

An ezpression is a sequence of symbols representing a value. These
symbols may include expression operators, identifiers, constants, and

parentheses. This chapter explains these symbols.

6.1 Expression Operators

The expressions in Table 6-1 are legal as operators.

Table 6-1
Legal Expression Operators

Operator Meaning

(unary) two’s complement
(unary) bitwise one’s complement
multiplication

division

modulo

addition

(binary) subtraction
logical right shift

logical left shift

bitwise AND

bitwise exclusive OR
bitwise OR

PR AV 4+ S~ *

Expressions may be grouped by use of parentheses. All operators in
expressions are fundamentally binary in nature. Arithmetic is fixed
point, two’s complement, and has 32 bits of precision. Arithmetic on

floating-point numbers is not recommended, as the floating-point format
is not understood by the expression handler.

Expressions 6-1 UTX/32 Assembler Reference

There are five levels of precedence, listed in Table 6-2 from highest
precedence level to lowest.

Table 6-2
Precedence Levels

Precedence Operator
Level
(highest) unary | —
binary

binary

binary

(lowest) binary

%

/
>
&

A+ ¥

All operators of the same precedence level are evaluated strictly left to
right, except for the evaluation order enforced by parentheses.

6.2 Data Types

The assembler manipulates several different types of expressions. The
types have a defined meaning only according to the output format
a.out.h and are not explicitly used by the assembler except when the
output file is created. The types are:

undefined
Upon first encounter, each symbol is undefined. The symbol is given
a default value of zero until it is defined as a label or by a .set
pseudo operation. It will be treated as an absolute symbol until
such a definition is parsed.

undefined external
A symbol which is declared .globl but not defined in the current
assembly is an undefined external. If such a symbol exists, the link
editor 1d must be used to load the assembler’s output with another
routine that defines the undefined reference.

absolute
An absolute symbol is defined ultimately from a constant. Its value
is unaffected by any possible future applications of the link editor to
the output file.

text
The value of a text symbol is measured with respect to the
beginning of the text segment of the program. If the assembler
output is link-edited, its text symbols may change in value, since the
program need not be the first in the link editor’s output. Most text
symbols are defined by appearing as labels. At the start of an
assembly, the value of dot (.) is address O of the text segment.

UTX/32 Assembler Reference 6-

o

Expressions

fartext
This segment has the same characteristics as the text segment, but
it 1s located in far space. Far space symbols may only be accessed
through pointers that use a full 24-bit address. Fartext symbol
values are measured with respect to the fartext segment origin.

data
The value of a data symbol is measured with respect to the origin of
the data segment of a program. Like text symbols, the value of a
data symbol may change during a subsequent link-editor run, since
previously loaded programs may have data segments. After the first
.data statement, the value of dot (.) is address O in the first data
subsegment.

fardata
This segment has the same characteristics as the data segment, but
1t is located in far space. Fardata symbol values are measured with
respect to the fardata segment origin. After the first fardata
statement, the value of dot (.) is address O in the first fardata
subsegment.

bss The value of a bss symbol is measured from the beginning of the bss
segment of a program. Like text and data symbols, the value of a
bss symbol may change during a subsequent link-editor run, since
previously loaded programs may have bss segments.

farbss
This segment has the same characteristics as the bss segment, but it
is located in far space. Farbss symbol values are measured with
respect to the farbss segment origin.

external absolute, text, fartext, data, fardata, bss, or farbss
Symbols declared .globl, but defined within an assembly as absolute,
text, data, or bss symbols, may be used exactly as if they were not
declared .globl; however, their value and type are available to the
link editor so that the program may be loaded with others that
reference these symbols.

constant
These symbols are in the constant subsegment of the text segment.
This subsegment is maintained only by the assembler. Constant
symbol values are measured with respect to the constant subsegment
origin.

register
The symbols

rO r1 r2 r3 r4 5 r6 17
b0 bl b2 b3 b4 b5 b6 b7

are predefined as register symbols.

Expressions 6-3 UTX /32 Assembler RReference

other types
Each keyword known to the assembler has a type that is used to
select the routine that processes the associated keyword statement.
The behavior of such symbols when not used as keywords is
dependent upon the context in which they are used (as with any
other symbol).

6.3 Type Propagation in Expressions

When operands are combined by expression operators, the result has a
type that depends on the types of the operands and on the operator.
The rules involved are complex to state but are intended to be sensible

and predictable. For purposes of expression evaluation the important
types are:

absolute

text

fartext

data

fardata

bss

farbss

constant
undefined external

The following rules govern how the operands are combined:
« If both operands are absolute, the result is absolute.

o If an absolute is combined with any of the other types mentioned in
Section 6.2, “Data Types,” the result has the other type.

These additional rules apply to particular operators:

+ If one operand is relocatable in some segment or is an undefined
external, the result has the postulated type, and the other operand
must be absolute.

— If the first operand is a relocatable symbol, the second operand may
be absolute (in which case, the result has the type of the first
operand). If the first operand is relocatable text, fartext, data, or
fadata, the second operand may be a relocatable symbol of the same
type. If the first operand is external undefined, the second must be
absolute. All other combinations are illegal.

other operators
It is illegal to apply these operators to any but absolute symbols.

UTX/32 Asscmbler Reference 6-4 Expressions

7 Addressing Modes

The assembler provides a variety of addressing modes, which are
methods for accessing data in memory or the machine registers. Each
operand of an assembler operation must conform to the syntax of one of
the address modes. In addition, most of the operations allow use of only
some of the addressing modes. This chapter explains each of the
assembler operands.

In the descriptions given below, the word target is used when an address
mode can be used in either the source or destination operand.

7.1 Register Operands

In the register mode, a general purpose register is the target. The
syntax is the name of the register (the letter r followed immediately by
the number [0-7] of the register).

In the following example, the contents of registers 0 and 1 are copied to
registers 4 and 5, respectively, by using a doubleword move instruction:

movd r0, r4

7.2 Base Register Operands

In the base register mode, a base register is the target. The syntax is
the name of the register (the letter b followed immediately by the
number [0-7] of the register). Note that the hardware does not use base
register 0 (b0) in determining an effective memory address. b0 may
however be used as a transient storage register.

In the following example, the content of base register 2 is copied to base
register 3:

movw b2, b3

7.3 Memory Operands

The memory address mode allows the direct specification of a memory
address. The target may only be a numeric value or a simple expression
containing no register specifications or indexing. The link editor 1d will
implicitly relocate the address by adding a base register specification to
the instruction.

In the following example, the byte at address table+86 is moved to
register 2. (The value of table would be defined elsewhere in the
program.)

Addressing Modes 7-1 UTX/32 Assembler Reference

movb table+6, r2

This mode is also used with most of the assembler pseudo-operations to
specify numeric values.

In the following example, the .word pseudo-operation is used to set the

content of the next location in the current segment to the decimal value
10.

.word 10

7.4 Indexed Operands

The indexed mode allows the specification of the indexing capability of
the hardware. The syntax of the target is an optional expression
followed by a left square bracket, [, followed by a register name (either

general purpose, base register, or one of each separated by a plus sign,
+), followed by a right square bracket,].

The expression is taken as the value to be used in the offset field of the

machine instruction. It must evaluate to a positive number that will fit
in a 16-bit field.

Note that the hardware does not use rO or b0 as an effective index.

If a general register is specified, it is used in the index field of the
machine instruction. Note that the hardware treats 0 in this field (if r0
were specified) as meaning no indexing is to be done.

WARNING: This usage is prone to errors and is not recommended.

If a base register is not specified, this value is adjusted according to the
base register values being used to specify segments of the program.

In the following example, a byte is copied to r2 from a table indexed by
register 1.

movb table+5[rl], r2

This address mode is also used with the F class I/O operations to specify
both the register and address to be used in the machine instruction.

In the following example, a start I/O instruction is executed, where
devaddr is defined elsewhere as a table address, and r4 contains an
offset to the specific entry.

sio devaddr(r4]

UTX/32 Assembler Reference 7-2 Addressing Modes

7.5 Immediate Operands

The immediate address mode is used to specify constant values the
assembler operations use as the source operand (never the destination).
The syntax is the character #, followed by an expression.

The implementation of this mode is somewhat complicated by
restrictions within the hardware. Certain machine instructions allow
16-bit values to be placed in the offset field of the instruction but are
used as immediate values. If such a variant is available and the
immediate value will fit in 16 bits, the assembler will use the instruction.
For some operations (notably the move operation), if the immediate
value is a constant O, a simpler register operation may be used. A
movw of 0 to a register will actually be translated to a zero register
instruction.

There are three cases when the value is stored in a special segment and
the emitted instruction addresses that location. The cases are:

. An immediate instruction is not available.
o The value will not fit in a 16-bit field.
« A relocatable expression is involved.

The constant segment is merged into the object module’s text segment
after the second pass of the assembler is completed.

In the first example, the contents of general register 6 are set to the
value 1.

movw #1,r6

In the second example, the value of general register 3 is set to zero. The
assembler will emit a zero register instruction in this case.

movw #0, r3

In the last example, the address of the label array is stored in base
register 4. The example uses one word in the constant segment plus the
instruction word.

movw #array, b4

Addressing Modes 7-3/7-4 UTX/32 Assembler Reference

8 Pseudo-instructions

This chapter presents pseudo-instructions, which are expanded into
appropriate code for the calling convention that is in effect.

The enter pseudo-instruction generates the prolog code for entering a
called function. Usage is as follows:

enter frame, regmask

The entry pseudo-instruction generates the prolog code for entering an
ENTRY of a called function (FORTRAN). Usage is as follows:

entry _ent

The func pseudo-instruction generates the code for calling a function.
Usage is as follows:

func #n, _ftn
or
func #n, [r#]

The retn pseudo-instruction generates the code for returning from a
called function. retn has no operands, but relies on the parameters of
the preceding enter.

Pseudo-instructions 8-1/8-2 UTX/32 Assembler Reference

9 Pseudo-operations (Directives)

The following keywords introduce directives or instructions and influence
the later behavior of the assembler. The metanotation

{ stuff }
means that zero or more instances of the given stuff may appear.

The following pseudo-operations are grouped into functional categories.

9.1 C Preprocessor Commands

<number>
<number> <string>

This is the only instance where a C preprocessor statement is meaningful
to the assembler. The # must be in the first column. This
metacomment causes the assembler to believe it is on the line number
indicated by <number>. The second argument, if included, causes the
assembler to believe it is in the file indicated by <string>; otherwise, the
current file name does not change.

This is useful for identifying where errors have occurred when files are
included with the C preprocessor.

9.2 Location Counter Control

text

.data

.data <expression>
Jfartext

fardata

Jfardata <expression>

These pseudo-operations cause the assembler to begin assembling into
the indicated text or data subsegment. If specified, the <expression>
must be defined, absolute, and evaluate to either 1 or 2. This allows
selection of one of the two subsegments within the data segment. An
omitted <expression> is treated as 1. Assembly starts in the .text
segment. The effect of a .data or .fardata directive is treated as a
.text directive if the —R assembly flag is set (the actual processing
involved is more complex than this implies).

Pseudo-instructions 9-1 Pseudo-operations (Directives)

9.3 Filled Data

The location counter is adjusted so that the <expression> lowest bits of
the location counter become zero, where <expression> is an exponential
value. This is done by assembling from 0 to (2, raised to <expression>)
bytes as in the following statement:

.align <expression>
For example, the statement
.align 2

pads to make the location counter evenly divisible by 4. The text and
fartext segments are padded with the NOP instruction (halfword value
0x0002). The constant, data, and fardata segments are padded with null
bytes. Only the sizes of the bss and farbss segments are adjusted, as the
assembler never emits code to them. The <expression™> must be defined,
absolute, nonnegative, and less than 16.

WARNING: The subsegment concatenation convention and the
current link editor conventions may not preserve attempts at
aligning to more than two low-order zero bits (8 word boundary).

.space <expression>

The location counter is advanced by <expression> bytes, where
<expression> must be defined and absolute. The space is filled in with
Zeroes.

9.4 Initialized Data

.byte <expr>{, <expr>}
Jhalf <expr>{ | <expr>}
-word <expr>{ , <expr>}
Jdong <expr>{, <expr>}

The expressions in the comma-separated list are truncated to the size
indicated by the key word, as shown in Table 9-1.

Table 9-1
Expression Truncation

KEYWORD | LENGTH (in bytes)
.byte 1
half 2
.word 4
long 8

o

Pseudo-operations (Directives) 9- Pscudo-instructions

These expressions are assembled in successive locations with proper
alignment. In the case of .long, 64 bits are emitted to the object file
with sign extension if necessary. Note the restrictions on expression
values discussed in Chapter 6, “Expressions,” when using .long.

.ascii <string>

Successive characters in the list are assembled into successive locations.
For example, the first character in the string is placed into the first
location. The C conventions for escaping are understood. The .ascii

directive will not pad the string with zeroes. The .ascii directive is
identical to

.byte <string0> <,stringl> ...

9.5 Symbol Definitions
The directive
.comm <name>, <expression>>

is used to declare an external symbol and a storage region (known as
common) in the bss or farbss segment. Provided the <name> is not
defined elsewhere, its type is made an undefined external, and its value is
<expression>. In fact, the name given behaves in the current assembly
the same as an undefined external. However, the link editor 1d treats
this as a special case. All external symbols in 1d that are not otherwise
defined and have a nonzero value are defined to lie in the bss segment.

In addition, enough space is left after the symbol to hold <expression>
bytes.

Jeomm <name>, <expression>
JSfarlcomm <name>, <expression>

A local common space of <expression> bytes will be allocated in the bss
or farbss segment and <name> assigned the location of the first byte.
The <name> is not declared as global and, hence, will be unknown to
the link editor.

.globl <name>

This statement makes the <name> external. If it is otherwise defined
(by .set or by appearance as a label), it acts within the assembly exactly
as if the .globl statement were not given; however, the link editor may
be used to combine this object module with other modules referring to
this symbol.

Conversely, if the given symbol is not defined within the current
assembly, the link editor can combine the output of this assembly with
that of others that define the symbol. The assembler makes all
otherwise undefined symbols external.

Pseudo-instructions 9-3 Pseudo-operations (Directives)

.using <base>, <memory>

The base register specified by <base> is flagged as having the memory
address <memory> for use by the assembler in relocating local symbols.
A value of 0 for <memory> will drop the effect of this directive. This
directive is used by the compiler to simplify addressing of local symbols.
The base register must not be changed during execution of the code while
a .using is in effect.

.set <name>, <expression>

The (<name>, <expression>) pair is entered into the symbol table.
Multiple .set statements with the same name are legal. The most recent
value replaces all previous values.

WARNING: The value of a name is not reinitialized between two
assembler passes. Therefore, a value defined in the first pass will be
used during the second pass if it is not defined before it is used.

stabs <string>, <exprl>, <expr2>, <expr3>, <expr4>
stabn <exprl>, <expr2>, <expr3>, <expr4>
stabd <exprl>, <expr2>, <expr3>

The stab directives place symbols in the symbol table for the symbolic
debugger, dbx. A stab is a symbol table entry. The .stabs is a string
stab, the .stabn is a stab not having a string, and the .stabd is a
“dot” stab that implicitly references “dot,” the current location counter.

The <string> in the .stabs directive is the name of a symbol. If the
symbol is 0, the .stabn directive may be used instead.

The other expressions are stored in the name list structure of the symbol
table nlist and preserved by the link editor for reference by dbx; the
value of the expressions are peculiar to formats required by dbx.

The metanotation for expressions in the following list refers to those
taken by .stabs, .stabn, and .stabd.

<exprl> is used as a symbol table tag nlist field n_type
<expr2> specifies the nlist field n_other

<expr3> is used for either the source line number, or for a nesting
level nlist field n_desc

<expr4> is used as tag specific information nlist field n_value

In the case of the .stabd directive, <expr4> is nonexistent and is taken
to be the value of the location counter at the following instruction.
Since there is no associated symbol name, (<string>), for a .stabd
directive, it can be used only in circumstances where the symbol is 0.
The effect of a .stabd directive can be achieved by the .stabn directive
in the following manner:

Pseudo-operations (Directives) 9-4 Pseudo-instructions

-stabn <expr1>, <expr2>, <expr3>, LLn
LLn:

where LLn is a label.

The .stabd directive is preferred, because it does not fill up the string
table with labels used only for the stab symbol entries.

Pseudo-instructions 9-5/9-6 Pseudo-operations (Directives)

- 10 Opcodes for the Assembler

The following chapter presents information about the opcodes for the
UTX/32 2.0 assembler. The assembler may generate different machine
instructions for some opcodes, depending on the nature of the operands.
The text indicates the range of possible instructions in these cases.

Information about the hardware mnemonics can be found in the

reference manual for each processor type. The UTX/32 2.0 assembler
will function on all PowerNode processors.

The assembler uses the following suffixes to identify opcodes:
a byte operation.

a halfword operation.

a word operation.

a doubleword operation.

- - g = o

a floating-point word operation.
d a floating-point doubleword operation.

The subsections in this chapter use the following abbreviations to
identify the types of operands:

reg register mode

ereg register mode, even-numbered register required
base base mode

mem-ind memory or indexed mode

mem-imm-ind memory, immediate, or indexed mode

imm immediate mode

imm=0 immediate mode, value known to be zero

imm16 immediate mode, value known to fit in 16-bit immediate
immpow?2 immediate mode, value must be a power of 2

immbig immediate mode, value unknown or will not fit in 16 bits

10.1 Move Instructions

Tables 10-1, 10-2, and 10-3 present the possible machine instructions
generated from the move instructions of the UTX/32 2.0 assembler.

Opcodes 10-1 UTX/32 Assembler Reference

10.1.1 Two-operand Move Opcodes

The machine instruction generated is determined from the operand size
(byte, half, word, etc.) and type. The first operand is always the source
operand, and the second is always the destination. Condition codes are

not set identically in all cases.

Table 10-1

Two-operand Move Opcodes

Mnemonic | Operandl | Operand2 Hardware Mnemonic

movw reg base TRBR (0x2C01)

mov bhwf] | reg reg TRR (0x2C00)

mov bhwf] | reg mem-ind ST[BHW| (0xD400)

mov|ld] eregA eregB TRR (0x2C00).
Two TRR instructions are
emitted—the first moves
eregA+1 to eregB+1, and the
second moves eregA to eregB.

mov ld] ereg mem-ind STD (0xD400)

movw baseA baseB LABR (0x5808).
BaseA cannot be bO0.

movw base reg TBRR (0x2C02)

movw base mem-ind STWBR (0x5400)

mov [ld] base ereg TBRR (0x2C00).
Two TBRR instructions are
emitted—the first moves
base+1 to reg+1, and the
second moves base to ereg.

movw imm=0 base LABR (0x5808)

mov [bhfw] [imm=0 reg ZR (0x0C00)

mov [bhfw] | imm=0 mem-ind ZMBHW] (0xF'800)

mov [ld] imm=0 ereg ZR (0x0C00).
Two ZR instructions are
emitted—the first zeroes the
register, the second the register
+ 1.

mov|(ld] imm=0 mem-ind ZMD (0xE800)

movw imm16 base LABR (0x5808)

mov|[bhwf] | imm16 reg LI (0xC800)

UTX/32 Assembler Reference 10-2

Opcodes

Table 10-1 — Continued
Two-operand Move Opcodes

Mnemonic | Operandl | Operand?2 Hardware Mnemonic
movw immbig base LWBR (0x5C00).
The instruction uses the
constant segment for value.
mov [bhwf] | immbig reg L[BHW] (0xAC00).
The instruction uses the
constant segment for value.
mov ld] imm ereg LD (0xAC00).
The instruction uses the
constant segment for value.
movw mem-ind base LWBR (0x5C00)
mov bhwf] | mem-ind reg L[BHW] (0xAC00)

10.1.2 Three-operand Move Opcodes

Opcodes

The opcodes given

in Table

10-2 generate

two 2-operand move

instructions. The first moves the value of operand 1 to operand 2. The
second moves (the just modified) value of operand 2 to operand 3. The
instructions generated to perform each move are those described in the
previous section, ‘“Two-operand Move Opcodes.”

Table 10-2
Three-operand Move Opcodes

Mnemonic | Operandl | Operand2 | Operand3
mov [bhwf] | imm reg mem-ind
mov ld] imm ereg mem-ind
movw imm base mem-ind
mov bhwf] | mem-ind reg mem-ind
mov ld] mem-ind ereg mem-ind
movw mem-ind base mem-ind

10-3

UTX/32 Assembler Reference

10.1.3 Load/Store Instructions

The instructions in Table 10-3 are special purpose variants of the move
instructions. trsc and tser are privileged instructions.

Table 10-3
Load/Store Instructions

Mnemonic Operandl Operand2 | Hardware Mnemonic
cplw reg reg TRC (0x2C03)
movea mem-ind reg LA (0x5000)
movea, mem-ind base LABR (0x5808)
subea mem-ind base SUABR (0x5800)
movear mem-ind reg LEAR (0x8000)
lear mem-ind reg LEAR (0x8000)
negbhw] mem-imm-ind | reg LN[BHW] (0xB400)
negbhw] reg reg TRN (0x2Co4)
negl mem-imm-ind | ereg LND (0xB400)

file mem-ind reg LF (0xCCo00)

file mem-ind base LFBR (0xCC08)
file reg mem-ind STF (0xDC00)

file base mem-ind STFBR (0xDC08)
trsc reg reg TRSC (0x2COE)
tscr reg reg TSCR (0x2C0F)
xchg reg reg XCR (0x2C05)
xchg base base XCBR (0x2802)

10.2 Branch Instructions

All of the branch opcodes take a single operand, except for the jump-
after-increment instructions (2 operands), the funec instruction (2
operands), and the ret instruction (no operands). The D field of 3 BCT
or BCF defines the condition. See the Gould PowerNode reference
manuals for the condition codes that are actually tested. Caution is
required to assure that the correct condition codes are being used.

The funec opcode listed at the end of Table 10-4 implements the UTX/32
function call, which generates three or four instructions.

Table 10-4
Branch Instructions

Mnemonic | Operandl D field Hardware Mnemonie
jmp mem-ind D=g BU (0xECOO0)
jmp reg TRSW (0x2800)

UTX/32 Assembler Reference 10-4 Opcodes

Table 10-4 — Continued
Branch Instructions

Mnemonic | Operandl D field Hardware Mnemonic

jbn mem-ind D=1 BCT (0xEC80),
jump bit not zero.
Use only after a bit
manipulation
instruction. This
instruction is a
synonym for jbt.
jbz mem-ind D=1 BCF (0xF080), jump
bit zero. Use only
after a bit
manipulation
instruction. This
instruction is a
synonym for jbf.
jbt mem-ind D=1 BCT (0xEC80),
jump bit true. Use
only after a bit
manipulation
instruction. This
instruction is a
synonym for jbn.
jbf mem-ind D=1 BCF (0xF080), jump
bit false. Use only
after a bit
manipulation
instruction. This
instruction is a
synonym for jbz.

jeq mem-ind D=4 BCT (0xEE00)
ige mem-ind D=5 BCT (0xEE80)
gt mem-ind D=2 BCT (0xEDO00)
jle mem-ind D=6 BCT (0xEF00)
ilt mem-ind | D=3 | BCT (0xEDS0)
jne mem-ind D=4 BCF (0xF200)
bet7 mem-ind D=7 BCT (0xEF80)
bef2 mem-ind D=2 BCF (0xF100)
bef3 mem-ind D=3 BCF (0xF180)
bef5 mem-ind D=5 BCF (0xF280)
bef6 mem-ind D=6 BCF (0xF300)
bef7 mem-ind D=7 BCF (0xF380)

Opcodes 10-5 UTX/32 Assembler Reference

Table 10-4 — Continued
Branch Instructions

Mnemonic | Operandl D field Hardware Mnemonic
ift mem-ind D=0 BFT (0xF000). This
instruction

implicitly requires r4
as a mask register.

jsr mem-ind BL (0xF880)
bl mem-ind BL (0xF880)
ret RETURN (0x280E).

The C compiler does
not support the
stack format
assumed by the
hardware for this

instruction.
jib reg mem-ind | BIB (0xF400)
jih reg mem-ind | BIH (0xF420)
jiw reg mem-ind | BIW (0xF440)
jil reg mem-ind | BID (0xF460)

func imm mem-ind

10.3 Shift Instructions

The register-register variant of the arithmetic and logical shifts is
implemented by building a shift instruction in the first operand register
and then using an execute register instruction. The shift instructions are
in Table 10-5. This variant uses three instruction words and two
constant-space words.

UTX/32 Asscmbler Reference 10-6 Opcodes

The immediate-register variant uses one halfword instruction. The shift

modulus

value used is the immediate value mod 32 (arithmetic
operation).
Table 10-5
Shift Instructions

Mnemonic | Operandl | Operand2 | Hardware Mnemonic
aslw imm reg SLA (0x1C40)
aslw reg reg SLA (0x1C40)
asll imm ereg SLAD (0x2040)
asll reg ereg SLAD (0x2040)
asrw imm reg SRA (0x1C00)
asrw reg reg SRA (0x1C00)
asrl imm ereg SRAD (0x2000)
asrl reg ereg SRAD (0x2000)
Islw imm reg SLL (0x1C60)
Islw reg reg SLL (0x1C60)
Isll imm ereg SLLD (0x2060)
Isll reg ereg SLLD (0x2060)
Isrw imm reg SRL (0x1C20)
Isrw reg reg SRL (0x1C20)
Isrl Imm ereg SRLD (0x2020)
Isrl reg ereg SRLD (0x2020)
rotlw imm regx SLC (0x2440)
rotlw reg reg SLC (0x2440)
rotrw imm reg SRC (0x2400)
rotrw reg reg SRC (0x2400)
sacz reg reg SACZ (0x1008)

10.4 Bit Manipulation Instructions

Opcodes

The first operand of a bit instruction is a 32-bit mask with a single bit
position set. The assembler encodes the bit position of the set bit into
the emitted instruction. These instructions are detailed in Table 10-6.

10-7

UTX/32 Assembler Reference

The user is cautioned that the hardware does not set the condition codes

in the same way for these instructions as it does for arithmetic
instructions.

Table 10-6
Bit Manipulation Instructions

Mnemonic | Operandl | Operand2 | Hardware Mnemonic
baddw immpow2 | mem-ind ABM (0xA008)
baddw immpow2 | reg ABR (0x1808)
belr[bhw] immpow2 | mem-ind ZBM (0x9C08)

belrw immpow2 | reg ZBR (0x1804)
bset/bhw] | immpow2 | mem-ind | SBM (0x9808)

bsetw immpow2 | reg SBR (0x1800)
btst[bhw] immpow2 | mem-ind TBM (0xA408)
btstw immpow2 | reg TBR (0x180C)

10.5 Compare and Logical Instructions

Instructions in Table 10-7 operate on arithmetic data and set condition
codes similarly to the arithmetic instructions. The compare instruction
should not be used in conjunction with bit instructions, since the
instructions do not use the condition codes in the same fashion.

Table 10-7
Compare and Logical Instructions

Mnemonic Operand1l Operand?2 Hardware Mnemonic
and|[bhw] mem-imm-ind | reg ANMBHW]| (0x8400)
andl mem-imm-ind | ereg ANMD (0x8400)
andw reg reg ANR (0x0400)
cmp(bhwf] | mem-ind reg CAM[BHW] (0x9000)
cmplbhwif] | imm16 reg CI (0xC805)
cmplbhwf] | immbig reg CAM[BHW]| (0x9000)
cmp|wf] reg reg CAR (0x1000)
cmp|ld] mem-imm-ind | ereg CAMD (0x9000)
or[bhw] mem-imm-ind | reg ORM[BHW] (0x8400)
orl mem-imm-ind | ereg ORMD (0x8400)

orw reg reg ORR (0x0400)

UTX/32 Assembler Reference

10-8

Opcodes

Table 10-7 — Continued
Compare and Logical Instructions

Mnemonic Operandl Operand?2 Hardware Mnemonic
xor [bhw] mem-imm-ind | reg EORM[BHW] (0x8400)
xorl mem-imm-ind | ereg EORMD (0x8400)
XOTr'w reg reg EORR (0x0400)

The instructions for fixed-point and floating-point arithmetic are in

10.6 Arithmetic Instructions

Tables 10-8 and 10-9.

10.6.1 Fixed-point Arithmetic

Instructions in Table 10-8 are used for fixed-point (integer) arithmetic

addition, division, multiplication, and subtraction.

Table 10-8
Fixed-Point Arithmetic Opcodes

Opcodes

Mnemonic | Operandl | Operand2 | Hardware Mnemonic
add[bhw]| mem-ind reg ADM[BHW] (0xB800)
add[bhw] reg mem-ind | ARM[BHW] (0xE800)
addl mem-ind ereg ADMD (0xB800)
addl ereg mem-ind ARMD (0xE800)
addw immpow2 | mem-ind ABM (0xA008).
Note that condition
codes will be set
differently in this
variant.
addb imm reg ADMB (0xB800)
addl imm ereg ADML (0xB800)
add[hw] imm16 reg ADI (0xC801).
The hardware sign
extends the
immediate, hence
only the half and
word variants can be
used here.
add|hw] immbig reg ADM[HW] (0xB800)
10-9

UTX/32 Assembler Reference

Table 10-8 — Continued
Fixed-Point Arithmetic Opcodes

Mnemonic | Operandl | Operand?2 Hardware Mnemonic

addw reg reg ADR (0x3800)
div[bhw] mem-ind ereg DVM[BHW] (0xC400)
divb imm ereg DVMB (0xC400)
div]hw] imm16 ereg DVI (0xC804)

The hardware sign
extends the
immediate, hence
only the half and
word variants can be

used here.
divihw] immbig ereg DVM[HW] (0xC400)
divw reg ereg DVR (0x380A)
mul[bhw] mem-ind ereg MPM[BHW] (0xC000)
mulb imm ereg MPMB (0xC000)
mulfhw] imm16 ereg MPI (0xC803)

The hardware sign
extends the
immediate, hence
only the half and
word variants can be

used here.
mulfhw] immbig ereg MPM[HW] (0xC000)
mulw reg ereg MPR (0x3802)
sub[bhw] mem-ind ereg SUM[BHW| (0xBC00)
subl mem-ind ereg SUMD (0xBC00)
subb imm reg SUMB (0xBC00)
subl imm ereg SUML (0xBC00)
sub[hw] imm16 reg SUI (0xC802).

The hardware sign
extends the
immediate, hence
only the half and
word variants can be
used here.

sublhw] immbig reg SUM[HW| (0xBC00)

UTX/32 Assembler Reference 10-10 Opcodes

Table 10-8 — Continued
Fixed-Point Arithmetic Opcodes

Mnemonic

Operandl

Operand?2

Hardware Mnemonic

subw reg

reg

SUR (0x3C00)

10.6.2 Floating-point Arithmetic

Instructions in Table 10-9 are used for floating-point (real number)
arithmetic addition, division, multiplication, and subtraction. Follow the

restrictions on floating-

this section.

Table 10-9

point expressions in the appropriate sections of

Floating-point Arithmetic Opcodes

Mnemonic Operand1l Operand?2 Hardware Mnemonic
addf mem-imm-ind | reg ADFW (0xE008)
addf reg reg ADRFW (0x3801)
addd mem-imm-ind | ereg ADFD (0xE008)
addd reg ereg ADRFD (0x3809)
divf mem-imm-ind | reg DVFD (0xE400)
divf reg reg DVRFW (0x3804)
divd mem-imm-ind | ereg DVFD (0xE400)
divd reg ereg DVRFD (0x380C)
mulf mem-imm-ind | reg MPFW (0xE408)
mulf reg reg MPRFW (0x3806)
muld mem-imm-ind | ereg MPFD (0xE408)
muld reg ereg MPRFD (0x380E)
subf mem-imm-ind | reg SUFW (0xE000)
subf reg reg SUFRW (0x3803)
subd mem-imm-ind | ereg SUFD (0xE000)
subd reg ereg SURFD (0x380B)
Opcodes 10-11 UTX/32 Assembler Reference

10.7 Type Conversion Instructions

Table 10-10 lists instructions for converting values to different types.
The evtew opcode requires one operand, and the remainder require two.
The user should read the processor manual before using either rnd or

sign.
Table 10-10
Type Conversion Instruction Opcodes

Mnemonic | Operandl | Operand2 Hardware Mnemonic

cvtew reg The convert-character-to-word
opcode has several possible
implementations, due to
differences between processors.
No guarantees are made for the
setting of the condition codes.

cvtdl reg reg FIXD (0x380D)

cvtfw reg reg FIXW (0x3805)

cvtld reg reg FLTD (0x380F)

evtwl reg reg FLTW (0x3807)

rnd ereg RND (0x0005).
Takes only one operand.

sign ereg ES (0x0004).
Takes only one operand.

10.8 Control Instructions

The processor reference manual should be studied before any of the
instructions in this section are used.

UTX/32 Assembler Reference 10-12 Opcodes

10.8.1 Processor Control Instructions

Some of the instructions in Table 10-11 are privileged.

Table 10-11
Opcodes for Processor Control Instructions

Mnemonic | Operandl | Operand2 | Hardware Mnemonic
cea CEA (0x000F)
cme reg CMC (0x040A)
dae DAE (0x000E)
eae EAE (0x0008)
exm mem-ind EXM (0xA800)
exr reg EXR (0xC807)
exrr reg EXRR (0xC807)
halt HALT (0x0000)
les reg LCS (0x0003)
Imap reg LMAP (0x2C07)
Ipsd mem-ind LPSD (0xF980)
Ipsdem mem-ind LPSDCM (0xFA80)
nop NOP (0x0002)
rdsts reg RDSTS (0x0009)
rpswt reg RPSWT (0x040B)
sea SEA (0x000D)
setcpu reg SETCPU (0x2C09)
sipu SIPU (0x000A)
smc reg SMC (0x0407)
sve imm imm SVC(0xC806).

The first operand

must fit in 4 bits,

the second in 12.
teer reg TCCR (0x2804)
tmapr reg reg TMAPR (0x2C0A)
tpcbr base TPCBR (0x280C)
tree reg TRCC (0x2805)
trsw reg TRSW (0x2800)
wait WAIT (0x0001)

Opcodes 10-13 UTX/32 Assembler Reference

10.8.2 Input/Output Control Instructions

NOTE: All of the instructions in this section are privileged.

The following two opcodes each take two operands in the memory
operand syntax. (cd stands for command device, td is test device.) The
first operand must be the (constant valued) device address. The second
operand must be a 16-bit constant value, which is used in the low-order

halfword.
cd CD (0xFC06)
td TD (0xFC05)

The F class /O opcodes require one operand in any of the immediate,
indexed, memory, or register operand formats. The low-order halfword
of the instruction is set from either an immediate value, the nonregister
part of an indexed operand, or the expression value of a memory

operand.
aci ACI (0xFC77)
daci DACI (0xFC7F)
dei DCI (0xFC6F)
eci ECI (0xFC67)
grio GRIO (0xFC3F)
hio HIO (0xFC37)
rschnl RSCHNL (0xFC2F)
rsctl RSCTL (0xFC47)
sio SIO (0xFC17)
stpio STPIO (0xFC27)
tio TIO (0xFCI1F)

The following five interrupt control instructions each take one immediate
operand, which must be a 7-bit priority level value.

al Al (0xFCO03)
dai DAI (0xFC04)
di DI (0xFCo1)
i EI (0xFC00)
ri RI (0xFC02)

UTX/32 Asscmbler Reference 10-14 Opcodes

The following two interrupt control instructions take no operands.
bei BEI (0x0006)
uei UEI (0x0007)

10.8.3 Writable Control Store Instructions

Opcodes

The ecwes and wewes instructions use the same operand format as the
class F I/O instructions: one operand in the immediate, indexed, memory,
or register format. The ecwes and wewes instructions must be used
together. (See the appropriate processor manual [Gould].) The rwecs
and wwes instructions require two register operands. The jwes
instruction takes one operand in either the memory or indexed mode.
Some of these instructions are privileged.

ecwces ECWCS (0xFC4F)
wewes WCWCS (0xFC5F)

rwes RWCS (0x000B)
wwes WWCS (0x000C)
jwes JWCS (0xFA08)

10-15/10-16 UTX/32 Assembler Reference

11 Diagnostics

Diagnostics

Diagnostics are intended to be self-explanatory and appear in the
standard error file. Error diagnostics complain about lexical, syntactic,
and some semantic errors, and abort the assembly at the end of the pass
in which they are found. Errors found in the first pass will block
reporting of errors detected only during the second assembler pass.

11-1/11-2 UTX/32 Assembler Reference

Diagnostics

References

Gould CSD. Gould V6 and V9 Central Processing Unit Reference Manual.
301-004310-000. 1985.

Reiser, J. F. and R. R. Henry. “The Berkeley VAX/UNIX Assembler
Reference Manual.” In UNIX Programmer’s Manual. Volume 2C.
University of California at Berkeley. 1983.

RF-1/RF-2 References

Gould Inc., Computer Systems Division @

6901 W. Sunrise Blvd. G 0 U LD
P. O. Box 409148

Fort Lauderdale, FL 33340-9148 Electronics
Telephone (305) 587-2900

Users Group Membership Application

USER ORGANIZATION:

REPRESENTATIVE(S):

ADDRESS:

TELEX NUMBER: PHONE NUMBER:

NUMBER AND TYPE OF GOULD CSD COMPUTERS:

OPERATING SYSTEM AND REV. LEVEL:

APPLICATIONS (Please Indicate)

1. EDP 2. Communications 3. Design & Drafting
A. Inventory Control A. Telephone System Monitoring A. Electrical
B. Engineering & Production B. Front End Processors - B. Mechanical
Data Control C. Message Switching C. Architectural
C. Large Machine Off-Load D. Other D. Cartography
D. Remote Batch Terminal E. Image Processing
E. Other F. Other
4. Industrial Automation 5. Laboratory and Computational 6. Energy Monitoring & Control
A. Continuous Process Control Op. A. Seismic A. Power Generation
B. Production Scheduling & Control B. Scientific Calculation B. Power Distribution
C. Process Planning C. Experiment Monitoring C. Environmental Control
D. Numerical Control D. Mathematical Modeling D. Meter Monitoring
E. Other E. Signal Processing E. Other
F. Other
7. Simulation
A. Flight Simulators 8. Other Please return to:
B. Power Plant Simulators
C. Electronic Warfare Users Group Representative
D. Other

Date:

243-06-1 (1/86)

Gould Inc., Computer Systems Division Users Group. . .

The purpose of the Gould CSD Users Group is to help create better User/User and User/Gould CSD
communications.

Fold and Staple for Mailing

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

e FIRST-CLASS MAIL PERMIT NO.947 FT. LAUDERDALE, FL

POSTAGE WILL BE PAID BY ADDRESSEE

GOULD INC., COMPUTER SYSTEMS DIVISION
ATTENTION: USERS GROUP REPRESENTATIVE
6901 W. SUNRISE BLVD.

P.0. BOX 409148

FT. LAUDERDALE FL 33340-9970

I

Fold and Staple for Mailing

== GOULD

Electronics

(Detach Here)

