
CPL

uTx/32'"

Assembler Reference Manual

January 1988

+ GouLD
323-005450-000

Electronics

Limited Rights

This manual is supplied without representation or wÍuranty of any kind. Gould Inc.
therefore assumes no responsibility and shall have no liability of any kind arising from
the supply or use of this publication or any material contained herein.

Proprietary Information

The infonnation contained herein is proprietary to Gould CSD and/or its vendors, and its
use, disclosure or duplication is subject to the restrictions stated in the Goutd CSD
license agreement Form No. 620-06 or the appropriate third-parry subliceÍlse agreement.

Restricted Ri ghts Legend

Use, duplication, or disclosure by the Government is subject Ío restrictions as set forth in
subdivision (b) (3) (ii) of the rights in Technical Data and Computer Software Clause at
s2.277.7013.

Gould lnc., Computer Systems Division
6901 West Sunrise Boulevard
Fort Lauderdale, Florida 33313

UTX|32 is a trademark of Gould Inc.

UND(is a registered trademark of AT&T Bell Laboratories.

Portions of the uw32 operating sy§tem are proprietary to AT&T Bell Laborarories,
and portions are proprietary to Gould CSD.

Copyright O 1988 by Gould Inc.
All Rights Reserved
Printed in the U.S.A.

Qhange 1

History

The UTX|32 Assembler Reference Manual, Release 2.0, Publication Order
Number 323-N545O-000, was printed in September 1986.

Change Package 1, Publication Order Number 323-005450-001, was printed in
January 1988. Note: All references in this manual to Release 2.0 of UTXR?
apply to subsequent releases of UTN32 for the Gould CONCEPT product Line
unless othenvise noted in future change packages.

The updated manual contains the following pages:

Change
Number

Title page...1
Copyright page1
History page, page iii/iv1
Table of Contenrc, pages v through vi..................0
List of Tables, page viWiii0
Chapter 1, pages l-l ttuough l-3114...................0
Chapter Z,page2-llZ-Z0
Chapter 3, pages 3- I through 3-Z0
Chapter 4,page4-ll4-20
Chapter 5, page 5-ll5-20
Chapter 6, pages 6- 1 through 640
Chapter 7, pages 7-1 through 7-3n4...................0
Chapter 8, page 8-1/8-2........0
Chapter 9, pages 9-1 ttuough 9-519-6...................0
Chapter 10, pages 10-1 through lG15/1G16.......0
Chapter 11, page ll-Ull-z0
References, page RF- I 7RF-20

A zero in the Change Number column indicates an original page. A 1 in this
column indicates a page to be substituted or added from this change package.

Every changed or new page in the document has the change number noted in the
page footer. The changed portion of a page is marked by a vertical bar in the
outer margin. A completely new or changed page will have no change bars, only
the change notation in the footer. Reverse sides of new or changed pages that are

not themselves changed have no change notation.

Change 1

iii/ivWXBZ Assembler Reference Manual

Assembler Reference Manual
for Gould UT)(/gZ'*

Release 2.O

September 1988

Publication Order Number: 323-005450-000

+ GouLD
Electronics

This manual is supplied without representation or warranty of any kind. Gould
CSD therefore assumes no responsibility and shall have no liability of any kind
arising from ihe supply or use of this publication or any material contained
herein.

UTX/32 is a trademark of Gould Inc.

UNIX@ is a registered trademark of A.T.&T.

PROPRIETARY INFORMATION

The information contained herein is proprietary to Gould CSD and/or its
vendors, and its use, disclosure or duplication is subject to the restrictions stated
in the Gould CSD license agreement Form No. 62G06 or the applicable third-
party sublicense agreement. Holders of a UNIX Software license are permitted
to copy this document, or any part of it, as necessary for licensed use of
software, provided this copyright notice and statement of permission are
included.

RBSTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subdivision(b) (3) (ii) of the Rights in Technical Data and compurer
Software clause at 52.227.7013.

Gould Inc. Computer Systems Division
6901 West Sunrise Boulevard
Fort Lauderdale, FL BAB13

Copyrighr @ 1986
Gould Inc. Computer Systems Division

All Rights Reserved
Printed in the U.S.A.

History

The Assembler Reference Manual for Gould UTX/9P , Release Z.O,
Publication Order Number 323-00545G000, was printed in September
1986.

The document contains the following components:

Title Page
Copyright Page
History Page, iii through iv
Table of Contents, v through vi
List of Tables, vii through viii
Chapter 1, 1-l through l-4
Chapter 2, 2-1 through 2-2
Chapter 3, &l through 3-2
Chapter 4, 4-l through 4-2
Chapter 5, Sl through e2
Chapter 6, &1 through &4
Chapter 7, 7-1 throughT-4
Chapter 8, 8-l through &2
Chapter 9,9-l through 9-6
Chapter 10, 1Gl through lG16
Chapter 11, 1l-1 through l1-2
References, RF-1 through RF-2

iiiliv

Table of Contents

List of Tables

1

1.1

L.2

2

3

3.1

3.2
3.2.1
3.2.2
3.2.3

3.3

3.4

3.5

4

5

5.1

5.2

5.3

6

6.1

6.2

6.3

Organization

Introduction

vll

1-t

1-l
L-2

2-l

3-l

3-1

3-l
3-t
3-2
3-2

3-2

3-2

3-2

4-l

Documentation Conventions

Use and Options

Lexical Conventions

Identifiers
Constants

Operators

Scalar Constants

String Constants
Floating-point Const ants

Blanks
Comments

Segrnents and Location Counters

Statements

Labels

Null Statements
I(eyword Statements

Expressions

Expression Operators
Data Types 6-2
Type Propagation in Expressions 6-4

5-l

5-t
5-1

5-t

6-1

6-r

Contenl,s UTX 132 Assem bL' r Reference]v{an ual

7

7.t
7.2

7.3

7.4

7.5

8

I
9.1

9.2

9.3

9.4

9.5

10

10.1
10.1.1
10.r.2
10.1.3

ro.2
10.3

10.4

10.5

10.6
10.6.1
10.6.2

10.7

10.8
10.8.1
10.8.2
10.8.3

11

7-l
7-l
7-l
7-l
7-2

7-3

8-1

9-l

9-l
9-1

9-2

9-2

9-3

r0-l

10-t
r0-2
10-3
10-4

10-4

10-6

10-7

10-8

10-9
10-9

10-11

l0-12

10-12
10-13
l0-14
10-15

rt-1

RF.1

Addressing Modes

Register Operands
Base Register Operands
Memory Operands
Indexed Operands
Immediate Operands

Pseudo-instructions

Pseudo-operations (D irectives)
C Preprocessor Commands
Location Counter Control
Filled Data
Initialized Data
Symbol Definitions

Opcodes for the Assembler

Move Instructions
Two-operand Move Opcodes
Three-operand Move Opcodes
Load/Store Instructions,

Branch Instructions

Shift Instructions
Bit Manipulation Instructions,

Compare and Logical Instructions

Arithmetic Instructions
Fixed-point Arithmetic
Floating-point Arithmetic

Type Conversion Instructions
Control Instructions

Processor Control Instructions
Input/Output Control Instructions
Writable Control Store Instructions

Diagnostics

References

VIUTX/32 Assenrbler Reference Manual Contents

List of Tables

Table

&1
ï2
9-l

rGl
1G2
1G3
1G4
1G5
1G6
1G7
1G8
1G9
lGl0
lG11

Legal Expression Operators
Precedence Levels
Expression Truncation
Two-operand Move Opcodes
Three-operand Move Opcodes
Load/Store Instructions
Branch Instructions
Shift Instructions
Bit Manipulation Instructions
Compare and Logical Instructions
Fixed-Point Arithmetic Opcodes
Floating-point Arithmetic Opcodes
Type Conversion Instruction Opcodes
Opcodes for Processor Control Instructions

Page

6-l
6-2
9-2

to-2
l0-3
l0-4
10-4
10-7
t0-8
l0-8
10-9
10-11
l0-12
l0-r3

Contents vii/viii UTX/32 Assernbler Reference Manual

1.1

1 fntroduction

9:lld. urx/32 2.0 runs on the Gourd powerNode series of computers.urx/32 2.0 supports an assembler written for Gould computers. This
manual is based o_n the Berkeley vAX/UNIX Assernbler Relerence Manual
and has been modified_for urx/Bz 2..o. tt describes the usage and input
syntax rules of the UTX/82 2.0 assembler, as.

as is designed for assembling object code produced by the c compiler.
This document is intended only as a reference for system progràmmers
who are writing or maintaining compilers or writinj n".u*tly-lrnguage
code. It is not intended to instruct programmeis in how to *.it.
assembler source programs.

Organization

This manual is divided into eleven chapters and a reference Iist:
Chapter 1 Provides a brief introduction
chapter 2 Describes the use and options of the assembler
chapter 3 Describes the assembler identifiers, constants, and

operators

chapter 4 Describes the assembly segments and location counters
Chapter 5 Describes the sequence of statements
chapter 0 Describes the expression operators and data types
chapter 7 Describes the addressing modes for accessing data in

memory

Chapter 8 Describes the pseudo-instructions for calling conventions
chapter g Describes the keywords introducing directives or

instructions

Chapter l0 Describes information about the opcodes

Chapter l1 Describes the assembler diagnostics
References An alphabetical list of the documents cited in this

manual

Interspersed throughout this manual are the following special pieces of
information that serve to highlight or augment instructions:
\\'ARNINGS Emphasize procedures that are essential to proper

assembler use

*UTXTfZ
2.0 and PowerNode are trademarks of Gould Inc.

Introduction 1-l UTX/32 Asse nr bler Reference

NOTES Provide useful information that is not critical to the
assembler's operation

L.2 Documentation Conventions

Boldface
command and utility names, system-specific words and special
characters, filenames and pathnames, and reserved words in code
are boldface within text.

Example:

The nroff command is used to format text.

Also, expressions that must be entered exactly as shown are boldface
within a command line or an example.

Example:

+ tar xv

Note that the prompt * is not boldface, because it is a computer
response instead of a user input.

Itolics
Italics are used to refer to a manual page, to introduce new terms,
for titles of documents, and occasionally for emphasis.

Example:

The first tape, called the boot tape, contains three
initial boot programs.

Angle brackets enclose descriptions of variable expressions that must
be replaced with a value or character string.

Example:

7. cd <directory>

Ellipses. . .

vertical or horizontal ellipses tells you that information has been
omitted, either on a syntax line or within examples.

UTX/32 Assembler Reference l-z Introduction

Example:

lntroduct ion l-3h-4 UTX/JZ Asserrrbler Reference

2 use and Options

Most assembly language programs may be assembled using the cc
command. cc assumes that àny file name suffixed by .s contains
assembly language source, which it will pass through the c preprocessor
and on to the assembler. as arguments appearing on the cc command
line are passed appropriately.

The format of an as command line is

as [-LRQd] [* output ttte] | lile name)

as accepts the following command arguments:

-L The -L flag instructs the assembler to save all labels
beginning with a capital letter L in the symbol table
portion of the output file. such labels in text or fartext are
not saved by default due to a convention of the c compiler,
which generates these as local labels.

-R The -R flag effectively turns .data n directives into "textn directives. (The actions actually taken are considerably
more complex.) It becomes unnecessary to run editor
scripts on assembly code to make initialized data read-only
and shared. Uninitialized data (via .lcomm and .comm
directives) are still assembled into the bss segment.

-Q and -d rhe -Q (source rrace) and the -d (debug) flags enable
trace output during assembler execution, provided that the
assembler has been compiled with the debugging code
enabled. The -a option will cause the line number,
location pointer, and the input line to be printed for each
line of the program. This may be useful when debugging
macros defined by the C preprocessor, but will also produce
a large amount of output. The information printed for the
-d option is useful when debugging the assembler.

-o The -o flag causes the output to be placed on the named
output. By default, the output of the assembler is placed in
the file a.out in the current directory.

The input to the assembler is normally taken from the standard input.
A file name may be given às an argument from which as should take its
input. Only one file name is allowed.

Use and Olrt,i,'rrs 2-r/2-2 UTX 132 Assembler [leference

3 Lexical Conventions

Assembler tokens (a distinguishable unit in a sequence of characters)
include identifiers, constants, and operators.

3.1 Identifiers

An identilier consists of a sequence of alphanumeric characters, including
the period and underscore. (The period is also referred to as "dot.")
The first character may not be numeric. Identifiers may be up to 40g6
characters long (+095 significant characters plus the null at the end of
the string). Identifiers are also referred to as symbols or names.

3.2 Constants

The three types of constants are scalar, floating-point, and string.

3.2.1 Scalar Constants

Scalar (nonfloating-point) constants are defined as constants that can be
up to 32-bits wide. as does not support 64-bit integers and cannot
perform arithmetic on constants larger than 32 bits. Numbers with less
precision than 32 bits are treated as B2-bit quantities.

The following additional conventions apply to scalar constants:

. They are interpreted as two's complement.

. OL23456789abcdefABCDEF are the digits used to represent them.
Each digit has the obvious value.

By comparison, the following conventions apply to decimal, octal, and
hexadecimal constants. Base ten (decimal) is the default radix.

decimal constant
A sequence of digits with the prefix 0t (zero and lowercase letter t)
or 0T (zero and uppercase letter T)

The string OtL234 is interpreted as a decimal value.

octal congtant
A sequence of digits with the prefix 0o (zero and lowercase letter o),
0O (zero and uppercase letter O), or simply 0 (zero)

The string 01234 is interpreted as an octal value.

hexadecimal constant
A sequence of digits with the prefix 0x (zero and lowercase letter x)
or 0x (zero and uppercase letter x) The string oxr234 is
interpreted as a hexadecimal value

Lexical Conventions 3-l UTX/32 Assem bler Referenee

3.2.2 Floating-point Constants

Floating-point constants are not explicitly recognized by the assembler.
The .word directive may be used, but the value must be manually
converted to the machine floating-point format defined in the processor
reference manual.

3.2.3 String Constants

A string constant is defined using the C language syntax. Strings begin
and end with double quotation marks. AII C language backslash
conventions are observed. The assembler does not implicitly end strings
with a null byte.

3.3 Operators

There are ..several single-character operators; see chapter 6,ttExpressions."

3.4 Blanks

Blank and tab characters may be interspersed freely between tokens, but
they may not be used within tokens (except string constants). A blank
or tab is required to separate adjacent identifiers or coístants not
otherwise separated.

3.5 Comments

The character sequence

(minus sign, minus sign) introduces a comment, extending through the
end of the line on which it appears.

Lines beginning with a number/pound sign (f) in column one are
assumed to be c preprocessor commands. These lines are ignored by the
assembler with the exception of lines having the format

ff (number) (string)

This convention is interpreted as an indication that the assembler is now
assembling file (string) at line (number). Such a convention allows
proper location reporting of errors if the assembler source has been
processed by the c preprocessor for the finclude and #define
directives. comments are otherwise ignored by the assembler. The
assembler will not recognize c-style comments, introduced with /* and
ending with */.

UTX/32 Asstrrrbler Reference 3-2 Lexieal Conventions

4 Segments and Location Counters

This chapter explains the segmentation of assembled code and dat,a.

Assembled code and data fall into several segments: text, fartext, data,
fardata, bss, and farbss. within the data and fardata segments are two
subsegments, distinguished by number (data l, data 2). The subsegments
are for programming convenience only. The urx/82 operating system
makes some assumptions about the content of some of these segments;
the assembler does not.

Before writing the output file, the assembler pads each subsegment with
zeroes to a multiple of eight bytes and then concatenates the
subsegments in order to form the text and data segments. Requesting
that the link editor define symbols and storage regions is the only action
allowed by the assembler with respect to the bss segment.

Assembly begins in the text segment. Associated with each subsegment
is an implicit location counter beginning at zero and incremented by t
for each byte assembled into the subsegment. Explicit reference to the
current segment's location counter is possible by use of the dot (.), but
such practice is not recommended. Note that the location counter of
data subsegment 2 behaves peculiarly due to the concatenation used to
form the text and data segments.

Segments anrl Location Counters 4-l/4-2 UTX/32 Assern bler Reference

5 Staternents

A source program is composed of a sequence of statements, separatedeither f, ::y rines or by semicorons.
'statements

are eitrrer nuil orkeyword. Either type of statement may be preceded by onc or morelabers- These statements and rabels "." ór"rruld in this chapter.

5.1 Labels

A label is referenced by its name. A laber consists of a name folrowed bya colon, as in the following example:

_main:

The effect of a label is to assign the current varue and type of thelocation counter to the name. An error is indicated in pass I if the nameis already defined; an error is. indicated ; ;; 2 if the varue assignedchanges the definition of the label.

Labels beginning with capital letter L are assumed to be local labels

:;r::ï:r.O
by the compiler and are discarded unless th, _i àprï"" i" i,

5.2 Null Statements

frïí.iji:ement
is empry and ignored by rhe assembler; however, it may

5.3 Keyword Statements
A keyword statement begins with one of the many predefined askeywords. The syntax of the remainder of the

"trtemeít i.penas on thekeyword. AII instruction opcodes are keywords. The remainingkeywords are assemble-r pseudooperations, aht called directiues. Theseare listed in chapter g, "pseudo-operations,,, togeiher *iir, ,n" syntaxthey require.

Statements 5-t/5-2 UTX/;12 Assem bler Reference

6 Expressions

An erpression is a sequence of symbols representing
symbols may include expression operators, identifiers,
parentheses. This chapter explains these symbols.

Expression Operators

The expressions in Table 6-1 are legal as operators.

a value. These
consbants, and

6.1

Table 6-1
Legal Expression Operators

Operator Meanine

-

*
/
%
+

*
I
I

(unary) two's complement
(unary) bitwise one's complement
multiplication
division
modulo
addition
(binary) subtraction
logical right shift
logical left shift
bitwise AND
bitwise exclusive OR
bitwise OR

Expressions may be grouped by use of parentheses. All operators in
expressions are fundamentally binary in nature. Arithmetic is fixed
point, two's complement, and has 82 bits of precision. Arithmetic on
floating-point numbers is not recommended, as the floating-point format
is not understood by the expression handler.

Expressions 6-1 UTX/32 Assembler ll.cference

There are five levels of precedence, listed in Table 6-2
precedence level to lowesb.

Table 6-2
Precedence Levels

from highest

Precedence
Level

Operator

(highest) unary
binary
binary
binary

(lowest) binary

All operators of the same precedence level are evaluated strictly left to
right, except for the evaluation order enforced by parentheses.

6.2 Data Types

The assembler manipulates several different types of expressions. The
types have a defined meaning only according to the output format
a.out.h and are not explicitly used by the assembler except when the
output file is created. The types are:

undefined
Upon first encounter, each symbol is undetined. The symbol is given
a default value of zero until it is defined as a label or by a .set
pseudo operation. It will be treated as an absolute symbol until
such a definition is parsed.

uudefined external
A symbol which is declared .globl but not defined in the current
assembly is at undefined erternal. If such a symbol exists, the link
editor ld must be used to load the assembler's output with another
routine that defines the undefined reference.

absolute
An absolute symbol is defined ultimately from a constant. Its value
is unaffected by any possible future applications of the link editor to
the output file.

text
The value of a text symbol is measured with respect to the
beginning of the text segment of the program. If the assembler
output is link-edited, its text symbols may change in value, since the
program need not be the first in the link editor's output. Most text
symbols are defined by appearing as labels. At the start of an
assembly, the value of dot (.) is address 0 of the text segmenb.

UTX/32 Assern bler Reference 6-2 Expressions

fartext
This segment has the same characteristics as the text segment, but
it is located in far space. Far space symbols may onry be accessed
through pointers that use a full 24-bit address. Fartext symbol
values are measured with respect to the fartext segment origin.

data
The value of a data symbol is measured wiih respect to the origin of
the data segment of a program. Like text symbols, the value of a
data symbol may change during a subsequent link-editor run, since
previously loaded programs may have data segments. After the first
.data statement, the value of dot (.) is address 0 in the first data
subsegment.

fardata
This segment has the same characteristics as the data segment, but
it is located in far space. Fardata symbol values are measured with
respect to the fardata segment origin. After the first fardata
statement, the value of dot (.) is address 0 in the first fardata
subsegment.

bss The value of a bss symbol is measured from the beginning of the bss
segment of a program. Like text and data symbols, the value of a
bss symbol may change during a subsequent link-editor run, since
previously loaded programs may have bss segments.

farbss
This segment has the same characteristics as the bss segment, but it
is located in far space. Farbss symbol values are measured with
respect to the farbss segment origin.

external absolute, text, fartext, data, fardata, bss, or farbss
symbols declared .globl, but defined within an assembly as absolute,
text, data, or bss symbols, may be used exactly as if they were not
declared .globl; however, their value and type are available to the
link editor so that the program may be loaded with others that
reference these symbols.

constant
These symbols are in the constant subsegment of the text segment.
This subsegment is maintained only by the assembler. constant
symbol values are me&sured with respect to the constant subsegment
origin.

register
The symbols

r3 14 r5 16 r7
b3 b4 b5 b6 b7

are predefined as register symbols.

r0 r1 r2
b0 b1 b2

Expressions 6-3 UTX/32 Assemblet lieference

other types
Each keyword known to the assembler has a type tha[is used to
select the routine that processes the associated keyword statement.
The behavior of such symbols when not used as keywords is
dependent upon the context in which they are used (as with any
other symbol).

6.3 Type Propagation in Expressions

When operands are combined by expression operators, the result has a
type that depends on the types of the operands and on the operator.
The rules involved are complex to state but are intended to be sensible
and predictable. For purposes of expression evaluation the important
types are:

absolute
text
fartext
data
fardata
bss
farbss
constant
undefined external

The following rules govern how the operands are combined:

. If both operands are absolute, the result is absolute.

. If an absolute is combined with any of the other types mentioned in
Section 6.2, "Data Types," the result has the other type.

These additional rules apply to particular operators:

+ If one operand is relocatable in some segment or is an undefined
external, the result has the postulated type, and the other operand
must be absolute.

If the first operand is a relocatable symbol, the second operand may
be absolute (in which case, the result has the type of the first
operand). tf the first operand is relocatable text, fartext, data, or
fadata, the second operand may be a relocatable symbol of the same
type. If the first operand is external undefined, the second must be
absolute. All other combinations are illegal.

other operators
It is illegal to apply these operators to any but absolute symbols.

UTX/32 Assr.rrrbler Reference 6-4 Ex;rressions

7 Addressing Modes

The assembler provides a variety of addressing modes, which are
methods for accessing data in memory or the machine registers. Each
operand of an assembler operation must conform to the syntax of one of
the address modes. In addition, most of the operations allow use of only
some of the addressing modes. This chapter explains each of the
assembler operands.

In the descriptions given below, the word target is used when an address
mode can be used in either the source or destination operand.

7.L Register Operands

In the register mode, a general purpose register is the target. The
syntax is the name of the register (the letter r followed immediately by
the number [G7] of the register).

In the following example, the contents of registers 0 and I are copied to
registers 4 and 5, respectively, by using a doubleword move instruction:

movd rO, r4

7.2 Base Register Operands

In the base register mode, a base register is the target. The syntax is
the name of the register (the letter b followed immediately by the
number [U7] of the register). Note thab the hardware does not use base
register 0 (b0) in determining an effective memory address. bO rnay
however be used as a transient storage register.

In the following example, the content of base register 2 is copied to base
register 3:

movw b2, b3

7.3 Memory Operands

The memory address mode allows the direct specification of a memory
address. The target may only be a numeric value or a simple expression
containing no register specifications or indexing. The link editor ld will
implicitly relocate the address by adding a base register specificat,ion to
the instruction.

In the following example, the byte at address table*B is moved to
register 2. (The value of table would be defined elsewlrere in the
program.)

Addrt'ssing Nlodes 7-L UTX/32 AssembL'r Reference

movb table*8, 12

This mode is also used with most of the assembler pseude'operations to
specify numeric values.

In the following example, the .word pseudo.operation is used to set the
content of the next location in the current segment to the decimal value
10.

.word 10

7.4 Indexed Operands

The indexed mode allows the specification of the indexing capability of
the hardware. The syntax of the target is an optional expression

followed by a left square bracket, [, followed by a register name (either
general purpose, base register, or one of each separated by a plus sign,

*), followed by a right square bracket,].

The expression is taken as the value to be used in the offset field of the
machine instruction. It must evaluate to a positive number that will fit
in a 16-bib field.

Note that the hardware does not use rO or b0 as an effective index.

If a general register is specified, it is used in the index field of the
machine instruction. Note that the hardware treats 0 in this field (if rO
were specified) as meaning no indexing is to be done.

WARNING: This usage is prone to errors and is not recommended.

If a base register is not specified, this value is adjusted according to the
base register values being used to specify segments of the program.

In the following example, a byte is copied to 12 from a table indexed by
register I.

movb table*5[rl], 12

This address mode is also used with the F class I/O operations to specify
both the register and address to be used in the machine instruction.

In the following example, a start I/O instruction is executed, where
devaddr is defined elsewhere as a table address, and 14 contains an
offset to the specific entry.

sio devaddr[r4]

LTTX/32 Assc nr bler Reference 7_' Addressing Modes

7.5 Immediate Operands

The immediate address mode is used to specify constant values the
assembler operations use as the source operand (never the destination).
The syntax is the character ff, followed by an expression.

The implementation of this mode is somewhat complicated by
restrictions within the hardware. Certain machine instructions allow
f6-bit values to be placed in the offset field of the instruction but are
used as immediate values. If such a variant is available and the
immediate value will fit in rO bits, the assembler will use the instruction.
For some operations (notably the move operation), if the immediate
value is a constant 0, a simpler register operation may be used. A
moyw of 0 to a register will actually be translated to à zeÍo register
instruction.

There are three cases when the value is stored in a special segment and
the emitted instruction addresses that location. The cases are:

. An immediate instruction is not available.

. The value will not fit in a l6-bit field.

. A relocatable expression is involved.

The constant segment is merged into the object module's text segment
after the second pass of the assembler is completed.

In the first example, the contents of general register 6 are set to the
value 1.

movw fl, 16

In the second example, the value of general register 3 is set to zero. The
assembler will emit à zeÍo register instruction in this case.

movy ffi, 13

In the last example, the address of the label array is stored in base
register 4. The example uses one word in the constant segment plus the
instruction word.

mov.n, ffzrrayrb4

Addressing lr'Íodes 7-3 /7-4 UTX/39,,\sst m l>ler Reference

\-/ 8 Pseudo-instructions

This chapter presents pseudoinstructions, which are expanded into
appropriate code for the calling convention that is in effect.

The enter pseudo-instruction generates the prolog code for entering a
called function. Usage is as follows:

enter frame, regmask

The entry pseudo-instruction generates the prolog code for entering an
ENTRY of a called function (FORTRAN). Usage is as follows:

entry -ent
The func pseudeinstruction generates the code for calling a function.
Usage is as follows:

func far 36o

or

func fn, [rfJ
The retu pseudoinstruction generates the code for returning from a
called function. retn has no operands, but relies on the parameters of

\--_, the preceding enter.

\---l
Pseudo-instructions 8-1/8-2 UTX/32 Assembler lteference

I Pseudo-operations (Directives)

The following keywords introduce directives or instructions and influence
the later behavior of the assembler. The metanotation

{ stuff }
means that zero or more instances of the given stuff may appea,r.

The following pseudooperations are grouped into functional categories.

9.L C Preprocessor Commands

f (number)
f (number) (string)

This is the only instance where a C preprocessor statement is meaningful
to the assembler. The # rnust be in the first column. This
metacomment causes the assembler to believe it is on the line number
indicated by (number). The second argument, if included, causes the
assembler to believe it is in the file indicated by (string); otherwise, the
current file name does not change.

This is useful for identifying where errors have occurred when files are
included with the C preprocessor.

9.2 Location Counter Control
.text
.data
.data (expression)
.fartext
.fardata
.fardata (expression)

These pseudo-operations cause the assembler to begin assembling into
the indicated text or data subsegment. If specified, the (expression)
must be defined, absolute, and evaluate to either 1 or 2. This allows
selection of one of the two subsegments within the data segment. An
omitted (expression) is treated as 1. Assembly starts in the .text
segment. The effect of a .data or .fardata directive is treated as a
.text directive if the --R assembly flag is set (the actual processing
involved is more complex than this implies).

Pseudo-instruct ions 9-1 Pseudo-operations (Directives)

9.3 Filled Data
The location counter is adjusted so that the (expression) lowest bits of
the location counter become zero, where (expression) is an exponential
value. This is done by assembling from 0 to (2, raised to (expression))
bytes as in the following statement:

.align (expression)

For example, the statement

.align 2

pads to make the location counter evenly divisible by 4. The text and
fartext segments are padded with the NOP instruction (halfword value
0x0002). The constant, data, and fardata segments are padded with null
bytes. Only the sizes of the bss and farbss segments are adjusted, as the
assembler never emits code to them. The (expression) must be defined,
absolute, nonnegative, and less than 16.

WARNING: The subsegment concatenation conyention and the
current link editor conventions may not preserve attempts at
aligning to more than two low-order zero bits (g word boundaiy).

.8pace (expression)

The location counter is advanced by (expression) bytes, where(expression) must be defined and absolute. The space is fitted in with
zeroes.

9.4 Initialized Data

The expressions in the comma-separated list are truncated to the size
indicated by the key word, as shown in Table g-1.

Table 9-l
Expression Truncation

.byte (expr){ , (expr)}

.half (expr){ , (expr}}

.word (expr){ , (expr)}

.long (expr){ , (expr)}

I(EYWORD LENGTH íin bvtes)
byte
half
word
Ionc

I
a,

4
8

Pseudo.opera t ions (Directives) 9-2 Psr. rr do- instructions

These expressions are assembled in successive locations with proper
alignment. In the case of .long, 64 bits are emitted to the object file
with sign extension if necessary. Note the restrictions on expression
values discussed in Chapter 6, "Expressions," when using .long.

.ascii (string)

Successive characters in the list are assembled into successive locations.
Por example, the first character in the string is placed into the first
location. The C conventions for escaping are understood. The .ascii
directive will not pad the string with zeroes. The .ascii directive is
identical to

.byte (stringO) (,stringl) ...

9.5 Symbol Definitions
The directive

.comm (name)r(expression)

is used to declare an external symbol and a storage region (known as
common) in the bss or farbss segment. Provided the (name) is not
defined elsewhere, its type is made an undefined external, and its value is
(expression). In fact, the name given behaves in the current assembly
the same as an undefined external. However, the link editor ld treats
this as a special case. All external symbols in ld that are not otherwise
defined and have & nonzero value are defined to Iie in the bss segment.
In addition, enough space is left after the symbol to hold (expression)
bytes.

.lcomm (name)r(expression)

.fa,rlcomm (name), (expression)

A local common space of (expression) bytes will be allocated in the bss
or farbss segment and (name) assigned the iocation of the first byte.
The (name) is not declared as global and, hence, will be unknown to
the link editor,

.globl (name)

This statement makes the (name) external. If it is otherwise defined
(by .set or by appearance as a label), it acts within the assembly exactly
as if the .globl statement were not given; however, the link editor may
be used to combine this object module with other modules referring to
this symbol.

Conversely, if the given symbol is not defined within the current
assembly, the link editor can combine the output of this assembly with
that of others that define the symbol. The assembler makes all
otherwise undefined symbols external.

Pseudo'inst r rrc t, ions 9-3 Pseudo-operations (Di rectives)

.using (base),(memory)

The base register specified by (base) is flagged as having the memory
address (memory) for use by the assembler in relocating local symbols.
A value of 0 for (memory) will drop the effect of this directive. This
directive is used by the compiler to simplify addressing of local symbols.
The base register must not be changed during execution of the code while
a .using is in effect.

.set (name), (expression)

The ((name), (expression)) pair is entered into the symbol table.
lr,Íultiple .set statements with the same name are legal. The most recent
value replaces all previous values.

WARNING: The value of a name is not reinitialized between two
assembler passes. Therefore, a value defined in the first pass will be
used during the second pass if it is not defined before it is used.

.stabs (string), (expr1), (expr2), (expr3), (expr4)

.stabn (expr1), (expr2), (exprS), (expr4)

.stabd (expr1), (expr2), (expr3)

The stab directives place symbols in the symbol table for the symbolic
debugger, dbx. A stab is a symbol table entry. The .stabs is a string
stab, the .stabn is a stab not having a string, and the .stabd is a

"dot" gtab that implicitly references "dot," the current location counter.

The (string) in the .stabs directive is the name of a symbol. If the
symbol is 0, the .stabn directive may be used instead.

The other expressions are stored in the name list structure of the symbol
table nlist and preserved by the link editor for reference by dbx; the
value of the expressions are peculiar to formats required by dbx.

The metanotation for expressions in the following list refers to those
taken by .stabs, .stabn, and .stabd.
(exprl) is used as a symbol table tag nlist field n-type
(expr2) specifies the nlist field n-other
(expr3) is used for either the source line number, or for a nesting

level nlist field n-desc
(expr4) is used as tag specific information nlist field n-value

In the case of the .stabd directive, (expr4) is nonexistent and is taken
to be the value of the location counter at the following instruction.
Since there is no associated symbol name, ((string)), for a .stabd
directive, it can be used only in circumstances where the symbol is 0.
The effect of a .stabd directive can be achieved by the .etabn directive
in t he following manner:

Pseudo.operÍr I ions (Directives) 9-4 Pseudo.inst rrrctions

.stabn (exprl), (expr2), (expr3), LLn
LLn:

where LLn is a label.

The 'stabd directive is preferred, because it does not fill up the stringtable with labels used only for the stab symbol entries.

Pseudo-instr rrr:tions 9-5/9-6 Pseudo.operations (Directives)

1O Opcodes for the Assembler

The following chapter presents information about the opcocles for the
U^lX/32 2.0 assembler. The assembler may generate different machine
instructions for some opcodes, depending on the nature of ihe operands.
The text indicates the range of possible instructions in these

"u""".
Information about the hardware mnemonics can be found in the
reference.manual for each processor type. The urX/22 2.o assembler
will function on all powerNode processors.

The assembler uses the following suffixes to identify opcodes:

b a byte operation.

h a halfword operation.

w a word operation.

I a doubleword operation.

f a floating-point word operation.

d a floating-point doubleword operation.

The subsections in this chapter use the following abbreviations to
identify the types of operands:

reg register mode

ereg register mode, even-numbered register required
base base mode

mem-ind memory or indexed mode

mem-imm-ind memory, immediate, or indexed mode

imm immediate mode

imm--0 immediate mode, value known to be zero

imml6 immediate mode, value known to fit in 16-bit immediate
immpow2 immediate mode, yalue must be a power of 2
immbig immediate mode, value unknown or will not fit in 16 bits

l-O.1 Move Instructions
Tables 10-1, 1G2, and 10-3 present the possible machine instructions
generated from the move instructions of the UTX/32 2.0 assembler.

Opcodes lGl UTX/32 Asserrrhler Reference

1O.1.1 Two-operand Move Opcodes

1-he machine instruct,ion generated is determined from the operand size
(byte, half, word, el,c.) and type. The first operand is always the source
operand, and the second is always the destination. Condition codes are
not set identically in all cases.

Table lG1
'Iwo.operand Move Opcodes

Mnemonic Operandl Operand2 Hardware Mnemonic

mov[bhwf]
mov[bhwf]

mov[ld]

mov[ld]

movw

movw
moYw

mov[ld]

mov[ld]

nrovw
rnov[bhwf]

movw
mov[bhfw]
mov[bhfw]

mov[ld]

reg
re8
reg

eregA

ereS

baseA

imm-O
imm={
imm{
imm{

imm==0

imml6
imml6

base
base

base

base
reg
mem-ind

eregB

mem-ind

baseB

re8
mem-ind

ereg

base
re8
mem-ind

ereS

mem-ind

base
reg

TRBR (0x2C01)
TRR (0x2C00)
STlBHwl (0xDa00)

TRR (0x2C00).
Two TRR instructions are
emitted-the first moves
eregA+l to eregB*l, and the
second moyes eregA to eregB.

STD (0xDa00)

LABR (0x5s08).
BaseA cannot be b0.

TBRR (0x2C02)
STWBR (0x5a00)

TBRR (0x2C00).
Two TBRR instructions are
emitted-the first moves
base*l to reg*l, and the
second moves base to ereg.

LABR (0x5808)
ZR (0x0C00)
zM[BHw] (0xF80o)

ZR (0x0C00).
Two ZR instructions are
emitted-the first zeroes the
register, the second the register
+1.
ZMD (0xE800)

LABR (0x580s)
LI (0xC800)

L T\/32 --\sslnrl:ler Reference lG2 Opcodes

'Iable l0-1 - Continued
Twooperand Move Opcodes

Mnemonic Operand I Operand2 Hardware Mnemonic
movw

movfbhwf]

mov[ld]

movw
movIbhwf]

immbig

immbig

imm

mem-ind
mem-ind

base

ereg

base
reg

re8

LWBR (0x5C00).
The instruction uses the
constant segment for value

LIBIIW] (oxACoo).
The instruction uses the
constant segment for value

LD (0xAC00).
The instruction uses the
constant segment for value

LWBR (0x5C0o)
LIBHW] (0xAC00)

1O.1.2 Three-operand Move Opcodes

The opcodes given in Table lG2 generate two 2-operand move
instructions. The first moves the value of operand I to operand 2. The
second moves (the just modified) value of operand 2 to operand B. The
instructions generated to perform each move are those described in the
previous section, "Two.operand Move Opcodes.,,

Table 10-2
Three-operand Move Opcodes

Mnemonic Operandl Operand2 Operand3

mov[bhwf]
mov[ld]
movw
mov[bhwf]
mov[ld]
movw

rmm
imm
imm
mem-ind
mem-ind
mem-ind

reg
ereS
base
re8
ereg
base

mem-
mem-
mem-
mem-
mem-
mem-

nd
nd
nd
nd
nd
nd

l0-;lOpcodes LITX/32 Assenr l,lcl Referenr.e

10.1.3 Load/Store fnstructions
The i.structions in 'rrbre rG3 are special purpose variants o[instructions. trsc ancl tscr are priviLg.a irrt.r.itn".

LO.2 Branch fnstructions
AII of the branch opcodes take a single operand, except for the ju-p_afrer-in*ement instrucrions (2 .p"rï.a"i-'ïi'à func i.r.t.u"tiin (2operands), and the ret instruciion^(no .p#raï1. The D field of a Bcror BCF defines the condition. sàe the c.;íà powerNode referencemanuals for the condition codes that ,r" ,"iràIy tested. caution isrequired to assure that the correct condition codes are being used.
The func opcode risted at the end of rabre lG4 imprements the urx/g2function cail, which generates three or rou. rr"t.u.tior".

Table IGB
Lond /Síore Instructions

Table lG4
Branch Instructions

the move

Mnemonic Operandl Operand2 Hardware Mnemonic
cplw
movea
moYea
subea
moYear
lear
neg[bhw]
neg[bhw]
negl
file
file
file
file
t rsc
tscr
xchg

reg
mem-ind
mem-ind
mem-ind
mem-ind
mem-ind
mem-imm-ind
reg
mem-imm-ind
mem-ind
mem-ind
reg
base
reg
reg
reg
base

reg
reg
base
base
reg
re8
re8
reg
ereg
reg
base
mem-ind
mem-ind
reg
reg
reg
base

TRC (0x2C0a)
LA (0x5000)
LABR (0xs808)
SUABR (oxssoo)
LEAR (0x8000)
LEAR (oxsooo)
LNlBHwl (0xBa00)
TRN (0x2C0a)
LND (0xBa00j
LF (OxCCo0)
LFBR (0xCC08)
STF (0xDC00)
STFBR (0xDC08)
TRSC (0x2C0E)
TSCR (0x2C0F)
XCR (0x2C05)
XCER (0x2802

Lil'\/32 Assr.rr1l1l1,1 Reference l0-4
Opcodes

Table lG4 - Continued
Branch Instructions

Mnemonic Operandl D field Hardware Mnemonic
jbn

jbz

jbr

jbf

jeq

ise
ist
jle
jlr
jn"

bctT
bcf2
bcf3
bcfS
bcf6
bcfT

mem-ind

mem-ind

mem-ind

mem-ind

mem-ind
mem-ind
mem-ind
mem-ind
mem-ind
mem-ind

mem-ind
mem-ind
mem-ind
mem-ind
mem-ind
mem-ind

D_ 1

D_ I

D_ I

D:1

D:4
D:5
D:2
D:6
D:3
D:4
D:7
D:2
D:3
D:5
D:6
D:7

BCT (0xEC8o),
jump bit not zero.
Use only after a bit
manipulation
instruction. This
instruction is a
synonym for jbt.
BCF (0xF08o), jump
bit zero. Use only
after a bit
manipulation
instruction. This
instruction is a
synonym for jbf.
BCT (0xEC80),
jump bit true. Use
only after a bit
manipulation
instruction. This
instruction is a
synonym for jbn.
BCF (0xF080), jump
bit false. Use only
after a bit
manipulation
instruction. This
instruction is a
synonym for jbz.

BCT (oxEEoo)
BCT (0xEE80)
BCT (0xED00)
BCT (0xEF00)
BCT (0xED80)
BCF (0xF200)

BCT (0xEF80)
BCF (0xF10o)
BCF (0xPl80)
BCF (0xF280)
BCF (0xF30o)
BCF (0xF380)

Opcodes 10-5 UTX/32 Assenr l»ler Ileference

Table lG4 - Continued
Branch Instructions

Mnemonic Operandl D field Hardware Mnemonic
jfr

JST

bI

ret

jib
jih
jiw
jil

func

mem-ind

mem-ind
mem-ind

re8
reg
reg
re8

imm

D -0

mem-ind
mem-ind
mem-ind
mem-ind

mem-ind

BFT (0xF000). This
instruction
implicitly requires 14

as a mask register.

BL (0xF8s0)
BL (0xF880)

RETURN (0x280E).
The C compiler does
not support the
stack format
assumed by the
hardware for this
instruction.

BIB (0xFa00)
BIH (0xFa20)
BIW (oxFaao)
BID (0xFa60)

1O.3 Shift Instructions
The register-register variant of the arithmetic and logical shifts is
implemented by building a shift instruction in the first operand register
and then using an execute register instruction. The shift instructions are
in Table 1G5. This variant uses three instruction words and two
constant-space words.

UTX/32 ,\ssr.rrrbter Reference 1G.6 Opcodes

Mnemonic Operandl Operand2 Hardware Mnemonic
aslw
aslw
asll
asll

asrw
asrw
asrl
asrl

lslw
lslw
lsll
lsll

lsrw
Isrw
lsrl
lsrl

rotlw
rotlw
rotrw
rotrw

sàcz

tmm
reg
imm
reg

imm
reg
imm
reg

lmm
re8
lmm
reg

imm
reg
imm
reg

imm
reg
imm
reg

reg

reg
reg
ereS
ereg

re8
reg
ereE
ereS

reg
reg
ereg
ereg

re8
reg
ereg
ereg

regx
re8
reg
reg

re8

SLA (oxlCao)
SLA (OxlCa0)
SLAD (0x20a0)
SLAD (0x20a0)

SRA (oxlC0o)
SRA (0xtC00)
SRAD (0x2000)
SRAD (0x20oo)

SLL (0xlC6o)
SLL (0x1C6o)
SLLD (0x2060)
SLLD (0x2060)

SRL (0x1C20)
SRL (0xlC20)
SRLD (0x2020)
SRLD (0x2020)

SLC (0x2aa0)
SLC (0x2aa0)
SRC (0x2400)
SRC (0x2a00)

SACZ (0xl0o8)

10.4 Bit Manipulation Instructions
The first operand of a bit instruction is a 32-bit mask with a single bit
position set. The assembler encodes the bit position of the set blt into
the emitted instruction. These instructions are detailed in Table lG6.

The immediate-register variant uses one halfword instruction. The shiftvalue used is the immediate varue mod z2 (arithmetic modulus
operation).

Table lG5
Shift Instructions

Opcodes lO-7 UTX/32 Asstrnbler Reference

'I'he user is cautioned that the hardware does not set the condition codes
in the same way for these instructions as it does for arithmetic
instructions.

Table 1G6
Bit Manipulation Instructions

Mnemonic Operandl Operand2 Hardware Mnemonic

baddw
baddw
bclr[bhw]
bclrw
bset[bhw]
bsetw
btst[bhw]
btstw

mmpow2
mmpow2
mmpow2
mmpow2
.mmpow2
mmpow2
,mmpow2
.mmpow2

mem-ind
reg
mem-ind
re8
mem-ind
reg
mem-ind
re8

ABM (0xA008)
ABR (0x1808)
ZBM (OxeCos)
ZBR (oxl80a)
SBM (0xe80s)
SBR (0x1800)
TBM (0xAa08)
TBR (0xl80C)

1O.5 Compare and Logical Instructions
Instructions in Table 1G7 operate on arithmetic data and set condition
codes similarly to the arithmetic instructions. The compare instruction
should not be used in conjunction with bit instructions, since the
instructions do not use the condition codes in the same fashion.

Table lG7
Compare and Logical Instructions

Mnemonic Operandl Operand2 Hardware Mnemonic

and[bhw]
andl
andw

cmp[bhwf]
cmp[bhwf]
cmp[bhwf]

cmp[wf]

cmp[ld]

or[bhw]
orl
orw

mem-imm-ind
mem-imm-ind
re8

mem-ind
imm16
immbig

reg

mem-imm-ind

mem-imm-ind
mem-imm-ind
reg

reg
ereg
reg

re8
re8
re8

re8

ereg

reg
ereg
re8

ANMIBHW] (oxa+oo)
ANMD (0x8a00)
ANR (0x0a00)

CAMIBHW] (0xe000)
CI (0xC805)
CAM[BH\M] (0xe000)

CAR (0xl00o)

CAMD (0xe000)

oRMlBlIwl (0x8a00)
ORMD (0x8a00)
ORR (0x0a0o)

UTX/39 ,\ss,'nrlrle r lteference 1G8 Opcodes

Table lG7 - Continued
Compare and Logical Instructions

i\{nemonic Operandl Operand2 Hardware Mnemonic
xor[bhw]
xorl
xorw

mem-imm-ind
mem-imm-ind
re8

reg
ereg
reg

EORM[BHW] (0x8a00)
EORMD (0x8400)
EORR (0x0a0o)

1O.B Arithmetic Instructions
The instructions for fixed-point and floating-point arithmetic are in
Tables 1G8 and lGg.

10.0.1 Fixed-point Arithmetic
Instructions in Table 1G8 are used for fixed-point (integer) arithmetic
addition, division, multiplication, and subtraction.

Table lG8
Fixed-Point Arithmetic Opcodes

Mnemonic Operandl Operand2 Hardware Mnemonic

add[bhw]
add[bhw]
addl
addl

addw

addb
addl
addfhw]

add[hw]

mem-ind
reg
mem-ind
ereg

immpow2

imm
imm
imml6

immbig

reg
mem-ind
ereS
mem-ind

mem-ind

reg
ereg
re8

reg

ADMIBHWI (0x8800)
ARMIBHWI (0xE800)
ADMD (0xB800)
ARMD (0xE800)

ABM (0xA008).
Note that condition
codes will be set
differently in this
variant.

ADMB (0xB800)
ADML (0xBs00)
ADI (0xCs01).
The hardware sign
extends the
immediate, hence
only the half and
word yariants ean be
used here.
ADMIHW] (0xI1800)

Opcodes 1Gg VTX/32 Assernbler Reference

Table 1G8 - Continued
Fixed-Point Arithmetic Opcodes

Mnemonic Operandl Operand2 Hardware Mnemonic

addw

div[bhw]

divb

div[hw]

div[hw]

divw

mul[bhw]

mulb
mul[hw]

mul[hw]

mulw

sub[bhw]
subl

subb
subl
sub[hw]

sub[hw]

Ï"t--,,0
Irmm I

immlo I

immbig

immbig

reg

mem-ind

imm
imml6

immbig

reg

mem-ind
mem-ind

imm
imm
imm16

I

reg

re8

ereg

ereS

ereg

ereS

ereS

ereg
ereg

reg
ereS
re8

ereB

ereS

ereS

ereS
ereS

ADR (0x3800)

DVMIBHWI (0xca00)

DVMB (oxCaoo)

DVI (0xC80a)
The hardware sign
extends the
immediate, hence
only the half and
word variants can be
used here.

DVM[H\M] (0xCa00)

DVR (0x380A)

MPMIBHWI (oxcooo)

MPMB (0xc00o)
MPI (0xC803)
The hardware sign
extends the
immediate, hence
only the half and
word variants can be
used here.
MPMlHwl (oxc0oo)

MPR (0x3s02)

SUMIBHW] (0xBcoo)
SUMD (OxBC0o)

SUMB (0xBC0o)
SUML (0xBC00)
SUI (0xC802).
The hardware sign
extends the
immediate, hence
only the half and
word variants can be
used here.
suMlHwl (oxBCm)

UTX/32 r\sst' tu ble r Reference 1G.10 Opcodes

1O.6.2 Floating-point Arithmetic
Instructions in Table lGg
arithmetic addition, division,
restrictions on floating_point
this section.

'Iable 1G8 - Continued
Fixcd-Point Arithmetic Opcodes

Table lG9
Floating-point Arithmetic Opcodes

are used for floating-point (real number)
multiplication, and subtraction. Follow the
expressions in the appropriate sections of

Operandl Ilardware Mnemonic

SUR (0x3C00)

Mnemonic Operandl Operand2 Hardware Mnemonic
addf
addf
addd
addd

divf
divf
divd
divd

mulf
mulf
muld
muld

subf
subf
subd
subd

mem-imm-ind
re8
mem-imm-ind
reg

mem-imm-ind
reg
mem-imm-ind
re8

mem-imm-ind
reg
mem-imm-ind
reg

mem-imm-ind
reg
mem-imm-ind
reg

re8
reg
ereg
ereg

reg
reg
ereg
ereS

reg
reg
ereg
ereg

reg
reg
ereg
ereg

ADFW (0xE008)
ADRFW (0x3s0t)
ADFD (0xE00s)
ADRFD (0xa80e)

DVFD (0xEa00)
DVRFW (0x380a)
DVFD (0xEa00)
D\R,FD (0xB80C)

MPFW (0xEa08)
MPRFW (0x8806)
MPFD (0xEa08)
MPRFD (0xa80E)

SUFW (0xE000)
SUFRW (0x3s03)
SUFD (0xE000)
SURFD (0xa80B)

Opcodes lGll UTX/32 Assembler Ileference

1O.7 Type Conversion Instructions

1'able lG10 lists instructions for converting values to different types.
l['he cvtcw opcode requires one operànd, and the remainder require two.
The user should read the processor manual before using eibher rnd or
sign.

Table lG10
Type Conversion Instruction Opcodes

Mnemonic Operandl Operand2 Hardware Mnemonic

cvtcw

cvtdl
cvtfw
cvtld
cvtwf

rnd

sign

re8

reg
re8
re8
re8

ereg

ereS

reg
reg
reg
re8

The convert-character-to-word
opcode has several possible
implementations, due to
differences between processors.
No guarantees are made for the
setting of the condition codes.

FIXD (0x380D)
FIXW (oxaaos)
FLTD (0x380F)
FLTW (0x3807)

RND (0x0005).
Takes only one operand.

ES (ox0ooa).
Takes only one operand.

1O.8 Controllnstructions
The processor reference manual should be studied before any of the
instructions in this section are used.

LITX/32 As-,'rrrlrl'r lteference 1G'12 Opcodes

10.8.1 Procesgor Control Instructions
Some of the instructions in Table lGll are privileged.

Table lGll
Opcodes for Processor Control Instructions

Mnemonic Operandl Operand2 Hardware Mnemonic
cea,

cmc
dae
eàe

exm
exr
exrr

halt
lcs
lmap
lpsd
lpsdcm

nop
rdsts
rpswt
sea
setcpu
sipu
smc

§YC

mem-ind
re8
reg

reg
reg
mem-ind
mem-ind

re8
reg

reg

reg

imm

CEA (0x000F)
CMC (0x0a0A)
DAE (0x000E)
EAE (0x0008)

E)tuÍ (0xA800)
EXR (0xC807)
EXRR (0xC8oz)

HALT (0x0000)
LCS (0x0003)
LMAP (0x2C07)
LPSD (0xFe80)
LPSDCM (0xFA80)

NoP (0x0002)
RDSTS (0x000e)
RPSWT (0x0a0B)
SEA (0x00oD)
SETCPU (0x2C0e)
SIPU (oxoooA)
SMC (0x0a07)

SVC(oxCsoo).
The first operand
must fit in 4 bits,
the second in 12.

TCCR (0x280a)
TMAPR (0x2C0A)
TPCBR (0x2s0C)
TRCC (0x2805)
TRSW (0x2800)
WAIT (0x00ot)

Opcodes lGl3 UTX/32 Asscrn bler Reference

10.8.2 Input/Output Control Instructions

NOTE: All of the instructions in this section are privileged.

The following two opcodes each take two operands in the memory
operand syn[ax. (cd stands for command device, td is test device.) ThL
first operand must be the (constant valued) device address. The second
operand must be a 16-bit constant value, which is used in the low-order
halfword.

CD (0xFC06)

TD (0xFC05)

The F class I/o opcodes require one operand in any of the immediate,
indexed, memory, or register operand formats. The low-order halfword
of the instruction is set from either an immediate value, the nonregister
part of an indexed operand, or the expression value of , -Ào.y
operand.

cd

rd

acl

daci

dci

eci

grio

hio

stpio

tio

rschnl RSCHNL (0xFC2F)

rsctl RSCTL (OxFCa7)

sio SIO (0xFC17)

ACI (0xFC77)

DACI (OxFC7F)

DCI (oxFCoF)

ECI (0xFC67)

GRIO (0xFC3F)

HIo (0xFC37)

STPIO (oxFC27)

TIo (0xFC1F)

The following five interrupt control instructions each take one immediate
operand, which must be a 7-bit priority level value.

AI (0xFc03)

DAI (oxFCoa)

DI (0xFC01)

EI (0xFC00)

RI (0xFC02)

ai

dai

di

ei

ri

UTX/32 Asst'nrbler Reference lGl4 Opcodes

The following two interrupt control instructions take no operands.
bei BEI (0x0006)

uei UEI (0x00oz)

10.8.3 'Writable Control Store Instructions

The ecwcs and wcwcs instructions use the same operand format as the
class F I/o instructions: one operand in the immediate, indexed, memory,
or register format. The ecwcs and wcwcs instructions must be used
together. (see the appropriate processor manual [Gould].) The rwcs
and wwcs instructions require two register operands. The jwcs
instruction takes one operand in either the memory or indexed Àode.
Some of these instructions are privileged.

ecwcs ECWCS (0xFCaF)

wcwcs WCWCS (0xFCSF)

rïvcs RWCS (0x0008)
.tilwcs \ nryCS (0x00OC)

jwcs JWCS (0xFA0s)

Opcodes 1G15/1e16 UTX I 32 Assembler Reference

ll Diagnostics

Diagnostics are intended to be self-explanatory and appear in the
standard error file. Error diagnostics complain about lexical, syntactic,
and some semantic errors, and abort the assembly at the end of the pass
in which they are found. Errors found in the first pass will biock
reporting of errors detected only during the second assembler pass.

Diagnostics rt-r/rr-2 UTX/32 Assembler llcference

Reiser, J. F. and I ! Henry. ,,The Berkeley
Reference Manual.,, In UNÍX progro*^"r,"
University of California ar Berkef"v. iöàa.

Referencea

Gould csD. Gould v6 and vg centrar processing (tnit Rererence Manual.301-00431G000. 1985.

VAX/UNIX Assembler
Manual. Volume 2C.

Diagnostics RF-l/RF-2
References

Gould lnc., Computl Syrtrme Divirion
6901 W. Sunrise Blvd.
P. O. Box 409148
Fort Lauderdale, FL 33340-9148
Telephone (305) 587-2900

+ GouLD
Electronics

USER ORGANIZAT]ON:

REPRESENTATIVE(S):

ADDRESS:

TELEX NUMBER:

NUMBER AND TYPE OF GOULD CSD COMPUTERS:

PHONE NUMBER:

OPERATING SYSTEM AND REV. LEVEL:

4.

APPLICATIONS (Please lndicste)

1. EDP

A. Inventory Control
B. Engineering & Production

Data Control
C. Large Machine Off-Load
D. Remote Batch Terminal
E. Other

2. Cornmunicatioor

A. Telephone Syrtem Monitoring
B. Front End Procercor.
C. Messags Switching
D. Other

5. Laboratory and Computational

A. Seismic
B. Scíentific Calculation
C. ExperimentMonitoring
D. Mathematical Modeling
E. Signal Proceesing

F. Other

8. Other

3. Derign & Drafting

A. Electrical
B. Mechanical
C. Architectural
D. Cartography
E. lmage Processing

F. Other

6. Enerry Monitoring & Control

A. Power Generation
B. Power Distribution
C. Environmental Control
D. Meter Monitoring
E. Other

Plere return to:

Users Group Representative

Date:

lndustrial Automation

A. Continuor.rs Process Control Op.
B. Production Scheduling & Control
C. Process Planning
D. Numerical Control
E. Other

Simulation

A. Flight Simulaton
B. Power Plant Simulaton
C. Electronic WarÍare
D. Other

7.

243{6-l (1/86}

BUSINESS REPLY MAIL
FIRSTCLASS MAIL PERMIT NO.947 FT. LAUDERDALE, FLPOSTAGEWl@

Fold and Staple Íor Mailing

Gould lnc., computer systems Drvrgron users Group. . .

iiff;tïlï,lf
the Gould csD Users Group is to help create better User/User and User/Goutd csD

There is no fee to ioin the Users Group. Simply complete the Membership Application on the reverse sideand mail to the users Group Representative.'you witt automatically ;;;;" users Group Newsletters,Referral Guide and other pertinent Users Group activity information.

I roeosrlcr II utcessrnv I
I lr uarrro I

I rnrxe I

lurrreosrrresf

o
o
I
!o
6
ooggglD_t Nc.. coMpurE R SYSTEMS Dr vtstoNAïïENTI O N : USE RS C noupï epn-e-sLrrrrarr ve6901 W. SUNRISE BLVD.

P. O. BOx 409148
FT. LAUDERDALE FL 33340.9970

l,,ll,,,ll,,,ll,,l,,lll,,,l,l,,l,l,,l,,,lll,,,,,l,ll

+ GouLD

Fold and Staple for Mailing

Electronics

