
multidata ..
<qiultidata .
· 'multidata .
·.· multidata
· multidata
multidata
multidata

. multidata
multidata

· rnultidata
'-._

· multidata
· mu ltidata ··
. multidata

multidata
. multidata
· multidata
· multidata

. oiultidata
· · ITiultidata

multidata ·

Computer Reference Manual
SYSTEMS 72

COMPUTER REFERENCE M\NUAL

SYSTEMS 72

October 1970

SYSTEMS ENGINEERING IABCRA TOR.I ES , INC.
6901 West Sunrise Boulevard

Fort Lauderdale, Florida 33313

SYSTB!fJ MJLTIDA TA DIVIS I ON

7300 Bolsa Avenue
Westminster, California

Publication No. 31101

(213) 598-1377
(714) 892-8347

Price: $10

-

Copyright~1970 by Multidata Inc., 7300 Bolsa Avenue, Westainater,
California. Printed in the United States of America. All rights
reserved. Contents of thia publication .. Y not be reproduc•d in
any form without peraiaaion of the copyright owner.

CONTENTS

Page

SECTION 1 INTRODUCnON
SECnClf 2 SYSTEM ARCRI TECTURE
SECTION 3 MEMORY

3.1 MEMORY ACCESS CONTROLLER 3-1
3.1.1 Port Selection 3-3
3.1.2 Mapping 3-3
3.1.3 Error Detection 3-5

3.2 CORE MEMORY 3-6
3.2.1 Data Guard 3-6
3.2.2 Memory Parity Checking 3-6
3.2.3 Dedicated Locations 3-6

3.3 MEMORY EXTENSION DISC 3-7
3.3.1 Page Transfers 3-7
3.3.2 Terminating a Page Transfer 3-8
3.3.3 Position Sensing 3-9

SECTION 4 CENTRAL PROCESSOR
4.1 ADDRESSABLE REGISTERS 4-1
4.2 PROORAM STATUS DOUBLEWORD 4-2

4.2.1 Condition Codes 4-3
4.2.2 Sequence Mode 4-3
4.2.3 Input/Output Inhibit 4-3
4.2.4 Interrupt Inhibit 4-3
4.2.5 Mapped Mode 4-3
4.2.6 Master/Slave Mode 4-4

4.3 INSTRUCTION FOR~T 4-4
4.4 ADDRESSING 4-4
4.5 INSTRUCTION REPERTOIRE 4-5

4.5.1 Branch Instructions 4-6
4.5.2 Load Instructions 4-11
4.5.3 Store Instructions 4-20
4.5.4 Arithmetic Instructions 4-26
4.5.5 Logical Instructions 4-32
4.5.6 Compare Instructions 4-37
4.5.7 Shift Instructions 4-40
4.5.8 Call Instructions 4-43
4.5.9 Input/Output Instructions 4-45
4.5.10 Other Instructions 4-47

SECTION 5 INPUT/OUTPUT SYSTEM
5.1 INPUT/OUTPUT PROCESSOR 5-1

5.1.1 IOP Operation 5-2
5.1.2 Chaining 5-4
5.1.3 Special Devices 5-4

5.2 PROGRAMMED INPUT/CXJTPUT BUS 5-5

-

Page

5.3 DIRECT ACCESS CHANNEL 5-5
5.3.1 Preparing the Channel 5-5
5.3.2 Channel Operation 5-6
5.3.3 Sensing 5-7

5.4 INTERRUPT SYSTEM 5-8
5.4.1 The Trap 5-10
5.4.2 Input/Output Interrupts 5-10
5.4.3 System Interrupts 5-12
5.4.4 Power Fail Safe 5-14
5.4.5 Real-Time Clocks
5.4.6 Console Interrupt

SECTION 6 OPERATOR CONTROL PANEL
6.1 CONTROL PANEL SWITCHES AND INDICATORS 6-1

6.1.1 Power 6-1
6.1.2 Instruction Steps 6-1
6.1.3 Instruction Phase 6-1
6.1.4 Clock 6-3
6.1.5 Halt 6-3
6.1.6 Program Status Doubleword 6-3
6.1. 7 Internal Lights and Switch 6-4
6.1. 8 Enter 6-5
6.1. 9 Display Lights and Switch 6-5
6.1.10 Console 6-6
6.1.11 Compute 6-6
6.1.12 Reset/Load 6-6
6.1.13 Data Switches 6-7

6.2 LOi\DI NG PROCEDURE 6-7
6.3 MODI FYI NG MEMORY FROM THE CONSOLE 6-7
6.4 READING OUT MEMORY FROM THE CONSOLE 6-8

APPENDIX A REFERENCE TABLES
APPENDIX B INSTRUCTION LIST
APPENDIX C INSTRUCTION TIMING

GLOOSARY

INDEX

SECTION 1

INTRODUCTION

The salient characteristics of the SYSTEM:> 72 are:

* 32,768 words of programmable memory, expandable to 65,536 words
* memory map
* automatic program fragmentation
* dynamic program relocation
* memory write protection
* 880-nanosecond core memory cycle time
* 4096-word core memory, expandable to 65,536 words
* 32,768-word memory extension disc, expandable to 131,072 words

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*

*

rapid context switching
eight addressable registers
double indexing
displacement indexing
single-level indirect addressing
privileged instructions
five-bit operation field
only single-word instructions
user-defined instructions
relative addressing, forward and backward

!OP-oriented input/output system
1111ltilevel interrupt system
asynchronous, demand-multiplexed input/output
data chaining
command chaining
device independent input/output
up to 384 individually armed, enabled, triggered, sensed, and set interrupts
multiple real-time clocks

remote control panel

1-1

SECTION 3

MEMORY

Through memory mapping, the SYSTEM> 72 executes programs that exceed it•
core memory capacity.

In the baaic configuration the Memory Access Controller maps the 32,768-
word Memory Extension Disc into the 4096-word core memory in such a way
that the effective capacity of core is equal to that of the disc.

Programmable memory increases to 65,536 words -- the range of the 16-
bit effective address -- in a syste• with an expanded disc, even if
core memory remains at 4096 words.

3 .1 MBMORY A~S CONTROLLER

The Meaory Access Controller relieves the programmer of all memory
management tasks. It employs a Memory Map to dynamically relocate
memory references. And when another program segment needs to be
transferred into core, the Kernel initiates the transfer and modi­
fies the Memory Map accordingly. (The Kernel is a small, core­
reaident program that is always transparent to the user's program.)

As shown in Figure 3-1, the controller provides three dedicated
ports to core memory. Data transfers b~tween any port and the
memory bus are direct. An address reaches the bus through the
Module Selector, which uses the four most significant bits to
select the memory module and then loads the twelve least signif i­
cant bits into the address register of that module.

The Memory Map translates virtual addresses into actual addresses.

The Snapshot Register monitors the eight most significant bits of
each address from the processor port for use in error detection.

'nle interface to the ProgralmDed Input/Output Bus enables the pro­
cessor to modify the Memory Map and to read the Snapshot Register.

3-1

DISC

DAC

CP

Parity Error >I
--~ Snanahot Protect Violation- r-

Register
Bon-Resident Page,---..._ ____ __,

PIO Baa
lnterf ace

8

, Mapped/Un1D8pped

Bead/Write l
J_ ____ . I

16
---·· i

Port
Selector

~-: ___ _

• Data

I

AddreH

Module Selector

Memory Bus 32 bits

Memory Accesa Controller
Figure 3-1

Maa>ry Map

A44reaa

Data

3.1.1 Port Selection

The Memory Extension Disc, the Direct Access Channel, and the
Central Processor each has an independent port to core mem-
ory. Each port accommodates 16 address lines and 16 data
lines. The Port Selector responds to a core memory access re­
quest by switching the lines from the requesting port into the
Memory Access Controller. It resolves simultaneous requests,
granting highest priority to the disc port, next highest to the
channel port, and lowest to the processor port. Each request
indicate• whether the access is to be a read or a write and
whether the address is to be mapped or unmapped. Thus the disc,
the channel, and the processor exercise independent control over
the Mapped/Unmapped line; PSW2 controls mapping only while the
processor port is selected. (Virtual addresses are always
mapped; actual addresses are never mapped.)

3.1.2 Mapping

The Memory Access Controller divides core memory into 256-word
pages and transfers program segments a page at a time from disc
into core. '11\is puts instructions in core, ready for execution.
But the program refers to them by their virtual addresses, which
do not agree, in general, with their actual addresses. The Mem­
ory Map solves this problem by keeping track of the correspond­
ence between virtual and actual pages. (Only the eight most
significant bits in the virtual address need be translated; since
the pages always contain 256 words, the eight least significant
bits remain intact.) As a virtual address enters the controller,
the Memory Map substitutes the actual page corresponding to the
virtual page and thereby produces the actual address.

The Memory Map is a complement of 128 (optionally 256) 10-bit
integrated circuit registers, one for each page of virtual mem­
ory. Each register uses the format shown in Figure 3-2 to de­
note the status of its virtual page.

Virtual page n

Field

R

p

IR Ip I Actual Page
0 1 2 3 4 5 6 7 8 9

Function

Indicates, if set, that the virtual page
currently occupies the core locations
specified by Actual Page.

Protects the actual page from being
written into. if set.

3-3

-

Pield Function

Actual Page Replaces the eight most significant bit•
of any reference to virtual page n.

Memory Map Regiater
Figure 3-2

Figure 3-3 depicts the operation of the Memory Map. Thia exam­
ple shows a virtual address calling for a page that is core­
resident (R set); if R were reset, the attempted translation
would fail and an error condition would arise, as discussed in
3.1.3.

Virtual
Address

Virtual 0
Page 1

2
3

----~4

5

252
253
254
255

Memory Map
0 0 0 0 00 0 0 0 0 l

1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0
1 o~o .. o o 1 1 o i 1-~ J 00001101 I 11010010 I
1100001001 1 l I

- r
11 0 0 0 0 0 0 1
l· 0 0 0 0 0 1 1
1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0

Memory Map Operation
Figure 3-3

Actual Address to
Module Selector

The Memory Map needs updating every time a virtual page changes
status. To aodify the contents of a map register, the Kernel
sets up the desired configuration in the ten least significant
bits of the D Register (in the format shown in Figure 3-2).
Then it executes a POT instruction (defined in 4.5.9) with an
effective address of X'OFRR'. The eight least significant bits
of this effective address designate the map register to receive
the contents of the D Register.

3-4

3.1.3 Error Detection

The Memory Access Controller detects an attempt to access a non­
resident page, an attempt to write into a protected page, and
(if the parity option is installed) a parity error that occurs
during a read operation.

If an error is detected while the processor port is selected,
the program traps to actual location X'0042', aborting the
memory access. (In the master mode the processor may write
into a protected page without triggering an error condition.)
The trap sets the condition code indicators as follows:

Condition

Parity Error
Protect Violation
Non-Resident Page

CCl

0
0
1

CC2

0
1
0

The orogram should (and the Kernel does) now execute a PIN instruc­
tion (defined in 4.5.9) with an effective address of X'OFXX'.
This Input Snapshot Register instruction loads the D Register
according to the format in Figure 3-4. (Until unloaded by this
PIN instruction, the Snapshot Register will not accept a new
configuration.)

I Ml I Address I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Field

M

Address

Function

Indicates, if set, that the address re­
quired mapping.

Holds the eight most significant bits of
the effective address sent by the processor.

Snapshot Register
Figure 3-4

Disc and channel operations also respond to the detection of
memory access errors. Error handling for disc operations is
discussed in 3.3.2, for channel operations in 5.3.3.

3-5

3.2 CORE MEMORY

A• many as 16 core memory modules operate independently on an asyn­
chronous memory bus. The full memory cycle takes 880 nanoseconds.
Each module contains 4096 words and has its own address and data·
registers. These registers allow the bus to release early and
thereby overlap successive memory accesses to different modules.

3.2.1 Data Guard

Data Guard (a standard feature) assures that the contents of
core memory remain undisturbed during system shutdown (in­
cluding power failure) and restart. It prevents read or
write signals during the power on/off sequence by holding the
memory bus at ground. (The power off sequence does not begin
until the end of the current instruction.) There is a Power
Pail Safe option, described in 5.4.4, that provides additional
capabilities.

3.2.2 Memory Parity Checking (Optional)

The Memory Parity option generates odd parity on each write
operation and checks it on each read operation. (An attempt
to read from a nonexistent core location causes a parity error.)
The detection of a parity error while the processor is access­
ing memory initiates a trap, as discussed in 3.1.3. Trapping
has the advantage of aborting the current operation, thereby
preventing an error in the memory system from affecting the in­
struction register or one of the addressable registers.

3.2.3 Dedicated Locations

Actual locations 0-7 serve as the eight addressable registers;
crossover circuits nullify attempts to map virtual addresses
0-7. If the system includes the optional set of integrated cir­
cuit registers, they intercept memory accesses to locations 0-7
(and render those locations unavailable). A complete list of
dedicated locations follows:

Decimal Address

0-7
8-63

64

Hexadecimal Address

0-7
8-3F

40

3-6

Reserved For

Addressable Registers
lnput/OUtput Service

Interrupts
Power-Off Interrupt

Decimal Addreas Hexadecimal Address Reserved For

65
66

67

68*
69
70*
71*
72*
73*
74*
75*
76*

128-511*

41
42

43

44*
45
46*
47*
48*
49*
4A*
4B*
4C*

80-lFF*

Power-On Interrupt
Memory Access Controller

Trap
Memory Extension Disc

Interrupt
Direct Access Channel
Call 1
Call 2
Call 3
Real-Time Clock 1
Real-Time Clock 2
Real-Time Clock 3
Real-Time Clock 4
Console Interrupt
System Interrupts**

* May address actual or virtual memory.
** Only as many locations as needed are reserved.

3.3 MEMORY BXTBNSION DISC

Progra .. written for virtual memory are stored on the Memory Extension
Disc. 'lbeae programs may occupy any combination of 256-word pages, but
they would normally take contiguous pages in program sequence. Disc
capacity may be 32,768 words, 65,536 words, or 131,072 words. A single
program may not exceed 65,536 words -- the range of the 16-bit effective
address -- but a disc may hold programs to the limit of its capacity.

In its basic configuration the disc has 16 tracks, with 8 sectors/track
and 256 words/sector. Expansion simply increases the number of tracks
(to either 32 or 64) on the same side of a single disc.

A fixed-head, head/track design holds the average access time to 16.67
ailliseconds (one-half of the rotational period of the disc).

The disc controller generates odd parity while writing a sector on disc
and checks it while reading.

3.3.1 Page Transfers

Transfers between core and disc always occur a page at a time.
(The 256-word page equals the capacity of a sector.) To set up
a page transfer, the Kernel:

1) loads bits 7-15 of the D Register with the disc page
address. ('nlis 9-bit address covers the full 512-page
range.)

3-7

-

2) executes a POT instruction with an effective address of
X'OB04'. (If the disc controller is busy, it will aet
CCl to indicate that it did not accept the page address.)

3) loads bits 8-15 of the D Register with the core memory
page address. (This 8-bit address covers the full 256-
word page range; it may specify either a virtual or an
actual page.)

The program then initiates the transfer by executing a POT in­
struction with an effective address from among the following:

Effective Address

X'OEOO'
X'OEOl'
X'OE02'
X'OE03'

Spec if icat ion

Core to Disc, Mapped
Disc to Core, Mapped
Core to Disc, Unmapped
Disc to Core, Unmapped

(As before, the disc controller sets CCI if it is busy
and did not accept the page address.)

Once started, the page transfer continues to completion -- un­
less halted by the disc controller or by the program.

3.3.2 Terminating a Page Transfer

When the disc controller completes a page transfer or halts the
transfer because an error has occurred, it causes the program
to interrupt to actual location X'0043' and sets the condition
codes aa follows:

Condition CCI CC2

Transfer incomplete, no error 0 0
Transfer incomplete, error 0 1
Transfer complete, no error 1 0
Transfer complete, error 1 1

If an error has occurred, the progra• can determine its origin
by executing a PIN instruction with an effective address of
X'OE04'. Bits 12 through 15 of the D Register then identify
the error as follows:

Error

Non-Resident Page
Protect Violation
Memory Parity
Disc Parity

3-8

Bit Position Set

12
13
14
15

'ftle pr«>1r•• can halt a page tranafer by execatlnc a POT instruc­
tion with an effective a4clreee of X'OBOS'. (The diac controller
eete CCl to indicate that a page transfer had been in progresa.)

3.3.3 Poaition Sensing

s·o that it can be used efficiently by progra• (auch as the ICer­
nel) in awapping, the disc allows it• rotational position to be
sensed to within a quarter of a sector. The execution of a PIM
instruction with an effective address of X'OEOS' produces the
sector addreas (which ranges between zero and seven) in bit posi­
tions 13 through 15 of the D Register. The condition code settings
then indicate the position within that sector:

Condition 001 CC2 - -
Pirat Quarter 0 0
Second Quarter 0 1
Third Quarter 1 0
Pourth Quarter 1 l

3-9

SBCnCB 4

CENTRAL PROCESSOR

The Central Proceasor provides the programaer with the means to .. ke full
use of a comprehensive instruction repertoire: addressable registers,
condition codes, operating modes, double indexing, displacement indexing,
indirect addreaaing, and relative addressing forward or backward.

Rapid context switching assures efficient handling of interrupts and &110oth
changes in operatiDI aocle.

4. 1 ADDRBSSABLB REGISTERS

The memory reference instructions operate directly on eight full-word
register•. These addressable registers occupy either the first eight
core 11aaory locations or (optionally) 128 integrated circuit flip
flops. Either way, they are always addressable as absolute locations
0-7. (Bffective addresses int.his range are not mapped.)

All eight registers have general utility and several have special
capabilities. A brief sunaary of the registers follows:

Register Address Mame Special Function -
A 01 Accumlator Holds the results of arith-

metic, logical, compare, and
shift operations

B 04 Base Register Pre-indexing

D 00 Data Register Bolds 16-bit data words going
to and coming froa the Pro-
grammed Input/Output Bus.

B 02 Extended Becomes the low-order exten-
Accumlator sion of the Accumulator on

double register shift opera-
tions.

x 03 Index Register Post-Indexing; looping

Rl OS Utility Register None

4-1

-

Register Address Name Special Function

R2 06 Utility Register None

R3 07 Utility Register None

4. 2 PROGRAM STATUS DOUBLEWORD

By keeping a summary of the program environment in two 16-bit integrated
circuit registers, the Program Status Doubleword enables the SYSTEM> 72 to
transfer control quickly from one program to another. This ability to
turn suddenly to a new program and provide it with its correct operating
environment, called rapid context switching, makes the Model A especially
efficient in handling interrupts and in transferring control back and
forth between user programs and the operating system.

Rapid context switching is implicit in traps, interrupts, and the exe­
cution of a Call 1 or a Call 2 instruction. The occurrence of any of
these events will automatically cause the current Program Status Double­
word to be swapped for the one pertaining to the subroutine being called.
Later, in exiting from this subroutine, the Branch Return and Clear in­
struction will put the previous Program Status Doubleword back in control.

I LOCATION CCl.JNTER I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PSWl

PSW2

Program Status Doubleword
Figure 4-1

As shown in Figure 4-1, the first program status word .(PSWl) points to
the location of the next instruction to be executed. It steps sequen­
tially with every execution unless redirected by a branch or a call
instruction or by a trap or an interrupt.

The second program status word (PSW2) sets the program operating envir­
onment through a series of status indicators. The next six paragraphs
discuss the use of these indicators.

4-2

4.2.1 Condition Code Indicators (CCl and CC2)

Most instructions (all except the branch, store, and call instruc­
tions) configure the condition code indicators with each execution.
The interrupts and the trap also affect condition codes. The con­
ditional branch instructions use these settings to discover, for
example, that overflow has occurred, or that a device is ready, or
that one register holds a higher number than another.

4.2.2 Compare Sequence Mode (SMl and SM2)

In the compare sequence mode (SMl set) the SYSTEM> 72 uses the com­
pare instructions to detect whether all of the numbers in a group
bear the same relationship to a given value. For example, input
data entering the D Register could be compared with the contents
of the A Register. At the end of the block transfer the condi­
tion code settings would reveal whether the data consistently
exceeded the specified value. The setting of SM2 (defined in
4.5.6) helps determine the kind of comparison to be made.

4.2.3 Input/Output Inhibit (IOI)

Although the SYSTEM> 72 does not have an external input/output pro­
cessor, its system design is !OP-oriented. Accordingly, input/
output service requests from peripheral equipment take precedence
over all interrupt service requests. Input/Output Inhibit (IOI
set) blocks the input/output service requests but does not affect
any other part of the system. (Section 5 describes the input/
output system in detail.)

4.2.4 Interrupt Inhibit (II)

Interrupt Inhibit (II set) blocks all interrupt service requests
but not the input/output service requests. This blocking prevents
an interrupt from becoming active, but does not prevent an armed
interrupt from entering the waiting state. (Section 5 describes
the interrupt system in detail.)

4.2.5 Mapped Mode (MAP)

In the mapped mode (~P set) the SYSTEM> 72 uses the Memory Map to
translate program addresses into core memory addresses. (Sec­
tion 3 describes the operation of the Memory Map.) The Kernel,
a core-resident program that manages memory allocation, is never
mapped; all other programs are usually mapped.

4-3

4.2.6 Master/Slave Mode (M3)

Privileged instructions will execute only while the SYSTEM:> 72 is in
the master mode (M3 reset). The Kernel always has M3 reset; user
prograllS normally do not.

4.3 INSTRUCTIOR FORMAT

All SYSTEM3 72 instructions have this single-word format:

Pield

R

I

x

Operation

s

Displacement

!I 11 xi Operation(sl Displacement I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Function

Specifies addressing relative to PSWl, if set.

Specifies single-level indirect addressing, if set.

Specifies post-indexing, if set.

Specifies the operation to be executed.

Specifies the sign of the displacement, if set while
R is set; specifies pre-indexing if set while R is
reset.

Specifies the displacement, an integer used in the
effective address calculation.

Although conforming to the format, several of the branch instructions
put certain fields to special use. The conditional branch instructions
are incapable of indirect addressing and post-indexing; for them the I
and X fields define a mask. Similarly, the Branch Returft and Clear in­
struction does not include post-indexing; here the X field denotes
whether the highest active interrupt is to be cleared.

4.4 ADDRESSING

The effective address calculation proceeds in exactly the same manner
for each instruction. This is true regardless of whether the effective
address will be used to specify a memory location, as in a load instruc­
tion, or to specify further details of the operation, as in a shift in­
struction.

4-4

A three-step sequence describes the process:

1. If relative addressing is specified (R set), the sign and the
displacement form a 16-bit two's complement number (with the
sign in bits 0-8), which adds to PSWl to form the partial
address.

If pre-indexing if specified instead of relative addressing
(R reset, S set), the displacement (with bits 0-8 reset) adds
to the contents of the B Register to form the partial address.

If neither relative addressing nor pre-indexing is specified
(R and S both reset), the displacement (with bits 0-8 reset)
becomes the partial address.

2. If indirect addressing is specified (I set), the partial ad­
dress points to a memory location, the contents of which now
become the partial address.

If indirect addressing is not specified (I reset), the partial
address remains unchanged.

3. If post-indexing is specified (X set), the contents of the X
Register add to the partial address to form the effective ad­
dress. (On byte instructions the X Register holds a byte
count, which adds to the partial address to form a 17-bit ef­
fective byte address.)

If post-indexing is not specified (X reset), the partial ad­
dress becomes the effective address.

This process does not vary. For those branch instructions that are
incapable of post-indexing or of both indirect addressing and post­
indexing, the effective address calculation simply treats the perti­
nent fields as being reset. For call instructions the effective ad­
dress calculation treats R, I, x, and S as being reset.

4.5 INSTRUCTION REPERTOIRE

The five-bit operation field yields a comprehensive instruction reper­
toire, ranging from basic arithmetic instructions to sophisticated con­
text-switching call instructions. Further enhancing this power is the
ability of the memory reference instructions to operate on all eight
addressable registers.

By recognizing derivative instructions such as the register-to-register
instructions, the conditional branch instructions, and the shift instruc­
tions, the assembler makes the programming task easier.

4-5

Not all of the available operation codes have been implemented; aeveral
have been set aside for (optional) user-specified instruction•. An
undefined operation code will execute as a "No Operation".

Because the SYSTEMS 72 operates asynchronously, the duration of an instruc­
tion depends on several parameters. The method of calculating this dur­
ation is too lengthy to include after each instruction in this •ection.
Accordingly, timing information may be found in Appendix er;,

The number in the operation field of each instruction is in the hexadeci­
mal notation. (Elsewhere in this manual hexadecimal numbers are placed
in quotation marks preceded by the letter X, as in X*0045*.)

4.5.1 Branch Instructions

The branch instructions exercise program control by forcing PSWl out
of its usual sequence, by setting up linkages to subroutines, by
counting the iterations through a loop, by testing the condition
codes, and by restoring the Program Status Doubleword.

Branch instructions do not affect the condition code indicators.

B Branch

tJ1lxl 12 Isl Displacement I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 1~

The effective address replaces PSWl.

Affected: PSWl

BAL Branch and Link

§Ir !xi 13 Is I DAspiace•nt I
1 2 3 4 6 7 8 9 1 11 12 13 14 l~

The address immediately following the current address replaces the
contents of the B Register, and the effective address replaces PSWl.
(Pre-indexing is possible because the effective address calculation
occurs before the contents of the B Register are altered.)

Affected: PSWl
B Register

BAL is the normal choice for branching to a subroutine. The subrou­
tine can then use pre-indexing both to pass arguments and to set up
the return address. By putting the linking address in the B Register
instead of in the effective location, BAL is especially useful in
branching to reentrant subroutines and subroutines with multiple
entry points.

4-6

BIX Branch and Increment Index

§ 11 lxl 14 Isl Displacement I
i 2 3 4 5 6 7 8 9 to 11 12 13 14 ts

The contents of the X Register increment by one. If the contents of
the X Register do not equal zero, the effective address replaces
PSWl; .if they do equal zero, program control passes to the location
im:nediately following the current location. (The X field should nor­
mally be left reset; if set, post-indexing will occur before the X
Register is incremented.)

Affected: PSWl
X Register

BCS Branch on Conditions Set

§lrlxl 16 Isl Distlacement I
I 2 3 4 5 6 7 8 9 to 1 12 13 14 15

The effective address replaces PSWl if a condition code indicator
and its corresponding mask bit are both set. (CCI is masked by the
I field, CC2 by the X field; the effective address calculation does
not include indirect addressing or post-indexing.) Table 4-1 arrays
all configurations of the condition codes and the mask, with a "B"
marking every combination that will cause branching.

IX IX IX IX
CCI CC2 00 01 10 11

0 0
0 1 B B
1 0 B B
1 1 B B B

Table 4-1

If the requirements for branching are not met, PSWl advances normally.

Affected: PSWl

The assembler recognizes the following derivatives of BCS:

BNEZ Branch if Not Equal to Zero

~I 1 I ol 16 Isl Displacement I
1 2 3 4 s 6 1 a 9 to tt 12 13 14 15

4-7

Tile effective address replaces PSWl if the contents of the
pertinent register do not equal zero. BNEZ is appropriate
inunediately after a load instruction (the receiving regis­
ter is pertinent) or a logical instruction (the A Register
is pertinent).

BLZ Branch if Less than Zero

El ofll 16 Isl Displacement 1
o 1 2 3 4 s 6 7 8 9 10 11 12 13 14 IS

The effective address replaces PSWl if the contents of the
pertinent register are less than zero. BLZ is appropriate
immediately after a load instruction (the receiving regis­
ter is pertinent) or a logical instruction (the A Register
is pertinent).

BNE Branch if Not Equal

J! III ol 16 f sl Displacement I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The effective address replaces PSWl if the contents of the
A Register and the other operand are not equal. BNE is
appropriate immediately after a compare instruction.

BL Branch if Less Than

fllopf 16 Isl Displacement I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The effective address replaces PSWl if the contents of the
A Register are less than the other operand. BL is appro­
priate immediately after a compare instruction.

BC Branch on Carry

The effective address replaces PSWl if the last arithmetic
operation caused a carry. BC is appropriate immediately
after an arithmetic instruction.

4-8

BO Branch on Overflow

!i 0111 16 Isl Displacement i
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The effective address replaces PSWl if the last arithmetic
operation caused an overflow. BO is appropriate immediately
after an arithmetic instruction.

BCR Branch on Conditions Reset

g11 lxl 15 ISi Displacement I
l 2 3 4 5 6 7 8 9 16 ii 12 13 14 15

The effective address replaces PSWl unless a condition code indicator
and its corresponding mask bit are both set. (CCI is masked by the I
field, CC2 by the X field; the effective address calculation does not
include indirect addressing or post-indexing.) Table 4-2 arrays all
configurations of the condition codes and the mask, with a "B" mark­
ing every combination that will cause branching.

IX IX IX IX
CCI CC2 00 01 10 11

0 0 B B B B
0 1 B B
1 0 B B
1 1 B

Table 4-2

If the requirements for branching are not met, PSWl advances nor­
mally.

Affected: PSWl

The assembler recognizes the following derivatives of BCR:

BEZ Branch if Equal to Zero

t (1I11 15 (sl Displacement I
1 2 3 4 s 6 1 a 9 to tt t2 13 14 ts

The effective address replaces PSWl if the contents of the
pertinent register are equal to zero. BEZ is appropriate
immediately after a load instruction (the receiving regis­
ter is pertinent) or a logical instruction (the A Register
is pertinent).

4-9

BGEZ Branch if Greater than or Equal to Zero

! IO l lf p Iii Displacement I
0 1 2 3 4 6 7 9 10 11 12 13 14 15

The effective address replaces PSWl if the contents of the
pertinent register are greater than or equal to zero. BGEZ
is appropriate immediately after a load instruction (the
receiving register is pertinent) or a logical instruction
(the A Register is pertinent).

BE Branch if Equal

§fl f ll 15 Is I Disyiacement I
1 2 3 4 s 6 1 a 9 to 1 12 13 14 ts

The effective address replaces PSWl if the contents of the
A Register and the other operand are equal. BE is appro­
priate immediately after a compare instruction.

BGE Branch if Greater than or Equal

tilohl 15 Isl DistlacementJ
1 2 3 4 s 6 1-s· 9 to 1- t2 13 t4 1s

The effective address replaces PSWl if the contents of the
A Register are greater than or equal to the other operand.
BGE is appropriate immediately after a compare instruction.

BNC Branch on No Carry

@[1lol lS Isl Disllacement 1
0 1 2 3 4 s 6 7 8 9 10 1 12 13 14 15

The effective address replaces PSWl if the last arithmetic
operation did not cause a carry. BNC is appropriate imme­
diately after an arithmetic instruction.

BNO Branch on No Overflow

g10 Iii 15 Isl Disf1acement I
1 2 3 4 5 6 7 8 9 to 1 12 13 14 IS

'11le effective address replaces PSWl if the last arithmetic
operation did not cause an overflow. BNO is appropriate
immediately after an arithmetic instruction.

4-10

BRC Branch Return and Clear

@Ir f x I 17 ISi Displacement I
0 1 2 3 4 5 6 7 8 9 10 11 12 ll 14 15

The contents of the effective address and that of its succeeding
location replace the Program Status Doubleword. The effective ad­
dress calculation does not include post-indexing. Instead, a one
in the X field indicates that the highest active interrupt ia to
be cleared. A privileged instruction, BRC has no effect when the
processor is in the slave mode.

Affected: PSWl
PSW2
Highest Active Interrupt

Call 1 and Call 2 instructions, as well as traps and interrupts,
store the Program Status Doubleword before branching to a aervice_
routine. '!be new PSW2 normally puts the SYSTE~ 72 in the .. ater
mode, which enables these routines to use BRC upon returning-to
the main program. (Returns from the call instructions would nor­
mally be with the X field reset.)

4.5.2 Load Instructions

Registers A, B, D, and X are each capable of receiving the contents
of any register or any memory location. In addition, the A Register
may receive either the high- or low-order byte from any me.,ry loca­
tion or any other register.

Load instructions set the condition code indicators as follows:

Condition CCl 002

Contents of receiving register less than 1 1
zero

Contents of receiving register equal to 0 0
zero

Contents of receiving register greater 1 0
than zero

(For the byte instructions the receiving register can never be less
than zero because bits 0-7 are always cleared.)

'lbe conditional branch instructions listed below are appropriate
i11111ediately after a load instruction.

4-11

Mnemonic

BEZ

BNEZ

BGEZ

BLZ

LDA Load A Register

Meaning

Branch if contents of receiving register
are equal to zero

Branch if contents of receiving register
are not equal to zero

Branch if contents of receiving register
are greater than or equal to zero

Branch if contents of receiving register
are less than zero

§lrlx(09 Isl Displacement I
1 2 3 4 s 6 1 a 9 10 11 12 13 14 15

The effective word replaces the contents of the A Register.

Affected: A Register
CCl
CC2

The assembler recognizes the following derivatives of Ln\:

LDAB Load A from B

@I 0101 09 fol o4 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the B Register replace the contents of the
A Register.

LDAD Load A from D

Plot ol 09 lol oo I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the D Register replace the contents of the
A Register.

LDAE Load A from E

The contents of the E Register replace the contents of the
A Register.

4-12

LDAX Load A from X

P l~lol o9 tg1 03 I
6 2 3 4 5 6 7 9 10 11 12 13 14 15

The contents of the X Register replace the contents of
the A Register.

LDAl Load A from Rl

g10101 o9 101 o~ I
i 2 3 4 s 6 1 s 9 to 11 t 13 t4 ts

The contents of the Rl Register replace the contents of
the A Register.

LDA2 Load A from R2

p to lo I 09 101 06 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the R2 Register replace the contents of
the A Register.

LDA3 Load A from R3

~lolol 09 lol 01 1
I 2 3 4 s 6 1 s 9 10 11 12 t3 14 ts

The contents of the R3 Register replace the contents of
the A Register.

LDB Load B Register

§liixl oc Isl Displacement I
i 2 3 4 5 6 7 8 9 Io ii 12 13 14 1s

The effective word replaces the contents of the B Register.

Affected: B Register
CCI
CC2

The assembler recognizes the following derivatives of LDB:

4-13

LDBA Load B from A

p Io I ol oc lol o~ I
o 1 2 3 4 5 6 7 8 9 10 11 1 13 14 15

The contents of the A Register replace the contents of the
B Register.

LDBD Load B from D

p I o Io I oc I ot oo I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the D Register replace the contents of the
B Register.

LDBE Load B from E

p I~ I ~I ~c 1g1 o~ I o 3 4 6 7 9 10 11 1 13 14 15

The contents of the E Register replace the contents of the
B Register.

LDBX Load B from X

g lo I ~I ~c I~ I o~ 1 i 3 4 6 7 9 io ii 1 13 14 15

The contents of the X Register replace the contents of·- the
B Register.

LDBl Load B from Rl

~10101 oc 101 os I
1 2 3 4 s 6 1 s 9 10 ii 12 13 14 ts

The contents of the Rl Register replace the contents of the
B Register.

LDB2 Load B from R2

~ lolol oc lol 06 I
1 2 3 4 S 6 7 8 9 io 11 12 13 14 15

The contents of the R2 Register replace the contents of the
B Register.

4-14

LDB3 Load B from R3

p10101 oc 101 01 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the R3 Register replace the contents of
the B Register.

LDD Load D Register

§lrlxl ~8 1§1 Displacement I
1 2 3 4 6 7 9 16 11 12 13 14 15

The effective word replaces the contents of the D Register.

Affected: D Register
CCI
CC2

The assembler recognizes the following derivatives of LDD:

LDDA Load D from A

~ 1~1~1 ~a l~I ¥1 I 3 4 6 7 9 16 112 13 14 15

The contents of the A Register replace the contents of
the D Register.

LDDB Load D from B

~folol oa 101 o4 I
t 2 3 4 s 6 1 a 9 to 11 12 13 14 ts

The contents of the B Register replace the contents of
the D Register.

LDDE Load D from E

The contents of the E Register replace the contents of
the D Register.

LDDX Load D from X

4-15

The contents of the X Register replace the contents of
the D Register.

LDDl Load D from Rl

Pl61~1 ~8 161 o~ I o 1 3 4 6 7 s 9 16 11 1 13 14 15

The r.ontents of the Rl Register replace the contents of
the D Register.

LDD2 Load D from R2

~1°1°1 08 1°1 06
I Sf 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The contents of the R2 Register replace
the D Register.

LDD3 Load D from R3

plolol os lol 01 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

the contents of

The contents of the R3 Register replace the contents of
the D Register.

"LOX Load X Register

EU lxt OB f SI Displacement I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The effective word replaces the contents of the X Register.

Affected: X Register
CCI
CC2

The assembler r~cognizes the following derivatives of LDX:

LDXA I~oad X from A

~Io lo I oa lol 01 I
t 2 3 4 s 6 1 s 9 to 11 12 13 14 ts

The contents of the A Register replace. the contents of
the X Register.

4-16

Load X from B

JT![Of OB fol o4 J
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

The contents of the B Register replace the contents uf
the X Register.

LDXD Load X from D

p 1 o I of oB 101 oo I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the D Register replace the coulents of
the X Register.

LDXE Load X from E

p Io I o I oB I 01 o~ 1
o 1 2 3 4 5 6 7 8 9 io 11 1 13 14 15

The contents of the E Register replace the contents of
the X Register.

LDXl Load X from Rl

~10101 OB 101 1:0 05 I
1 2 3 4 5 6 7 8 9 11 12 13 14 15

The contents of the Rl Register replace the contents of·
the X Register.

LDX2 Load X from R2

The contents of the R2 Register replace the contents of
the X Register.

LDX3 Load X from R3

~10101 OB 101 07 I
1 2 3 4 5 6 7 8 9 10 it 12 13 14 15

The contents of the R3 Register replace the contents of
the X Register.

4-17

LBY Load Byte into A Register

tl1lxl OA ISi Displacement f
1 2 3 4 s 6 ' 8 9 10 11 12 13 14 15

The effective byte replaces bits 8-15 of the A Register (clearing
bits 0-7).

If post-indexing is not specified, the effective byte is bits 0-7
of the effective word.

If post-indexing is specified, the X Register holds a byte count, and
the effective address calculation produces a 17-bit effective byte
address. The sixteen most significant bits point to the effective
word, which contains an even-numbered byte in bits 0-7, an odd-num­
bered byte in bits 8-15.

Affected: A Register
CCl
CC2

The assembler recognizes the following derivatives of LBY:

LBYB Load Byte into A from B

p Io Ix I OA Joi o4 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The effective byte replaces bits 8-15 of the A Register
(clearing bits 0-7). If post-indexing is specified, and
the contents of the X Register equal one (a higher count
will change the instruction), the effective byte is bits
8-15 of the B Register. Otherwise, the effective byte
is bits 0-7 of the B Register.

LBYD Load Byte into A from D

e101x1 OA fol 00 I
0 1 2 3 4 5 6 7 8 9 10 11 l2 13 14 15

The effective byte replaces bits 8-15 of the A Register
(clearing bits 0-7). If post-indexing is specified, and
the contents of the X Register equal one (a higher count
will change the instruction), the effective byte is bits
8-15 of the D Register. Otherwise, the effective byte
is bits 0-7 of the D Register.

4-18

LBYE Load Byte into A from B

pJolol oA 101 02 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The effective byte replaces bits 8-15 of the A Register
(clearing bits 0-7). If post-indexing is specified, and
the contents of the X Register equal one (a higher count
will change the instruction), the effective byte is bits
8-15 of the E Register. Otherwise, the effective byte
is bits 0-7 of the E Register.

LBYX Load Byte into A from X

p 10101 OA 101 03 I
o 1 2 3 4 5 6 7 8 9 io 11 12 13 14 15

The effective byte replaces bits 8-15 of the A Register
(clearing bits 0-7). If post-indexing is specified, and
the contents of the X Register equal one (a higher count
will change the instruction), the effective byte is bits
8-15 of the X Register. Otherwise, the effective byte
is bits 0-7 of the X Register.

LBYl Load Byte into A from Rl

p I 0 I 0 I OA 101 OS I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The effective byte replaces bits 8-15 of the A Register
(clearing bits 0-7). If post-indexing is specified, and
the contents of the X Register equal one (a higher count
will change the instruction), the effective byte is bits
8-15 of the RI Register. Otherwise, the effective byte
is bits 0-7 of the Rl Register.

LBY2 Load Byte into A from R2

E ldJ~I ~A l~I 66 1 0 1 3 4 6 7 9 10 11 12 13 14 15

The effective byte replaces bits 8-15 of the A Register
(clearing bits 0-7). If post-indexing is specified, and
the contents of the X Register equal one (a higher count
will change the instruction), the effective byte is bits
8-15 of the R2 Register. Otherwise, the effective byte
is bits 0-7 of the R2 Register.

4-19

LBY3 Load Byte into A fro• R3

ptol ol OA 101 o7 I
0 1 2 3 4 s 6 7 8 9 10 11 12 13 14 15

The effective byte replaces bits 8-15 of the A Register (clearing
bits 0-7). If post-indexing is specified, and the contents of the
X Register equal one Ca higher count will change the instruction),
the effective byte is bits 8-15 of the R3 Register. Otherwise,
the effective byte is bits 0-7 of the R3 Register.

4.5.3 Store Instructions

'nle A Register and the D Register are both capable of storing their con­
tents into any register or memory location. In addition, the A Register
can also store bits 8-15 into either the high- or low-order byte of any
register or memory location.

Store instructions do not affect the condition code indicators.

STA Store A Register

!lrlx! 06 Is! Displacement !
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the A Register replace the effective word.

Affected: Effective word

'nle assembler recognizes the following derivatives of STA:

STAB Store A into B

p; o i o: 06 Io j o4 1
o 1 2 3 4 s 6 7 8 9 lo 11 12 13 14 15

The contents of the A Register replace the contents of the
B Register.

Affected: B Register

STAD Store A into D

p ! o I o I 06 Io I oo I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the A Register replace the contents of the
D Register.

Affected: D Register.

4-20

STAE Store A into E

Plolo! 06 fol 02 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the A Register replace the contents of the
E Register.

Affected: E Register

STAX Store A into X

Pl ol o I 06 Io I 03 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the A Register replace the contents of the
X Register.

Affected: X Register

STAl Store A into Rl

Pl o! 01 06 lo! o5 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the A Register replace the contents of the
Rl Register.

Affected: Rl Register

STA2 Store A into R2

p Io Io 1 06 Io I 06 I
o 1 2 3 4 s 6 1 s 9 10 11 12 13 14 15

The contents of the A Register replace the contents of the
R2 Register.

Affected: R2 Register

STA3 Store A into R3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the A Register replace the contents of the
R3 Register.

Affected: R3 Register

4-21

STD Store D Register

@I If xf 05 Isl Displacement l
0 1 2 3 4 5 6 ' 8 9 10 11 12 13 14 15

'lbe contents of the D Register replace the effective word.

Affected: Effective word

'lbe assembler recognizes the following derivatives of STD:

STDB Store D into B

P!OtO! 05 !01 04 I
o 1 2 3 4 s 6 7 8 9 10 11 12 13 14 IS

'lbe contents of the D Register replace the contents of the
B Register.

Affected: B Register

STDE Store D into E

o 1 2 3 4 s 6 7 s 9 to 11 12 13 14 1s

The contents of the D Register replace the contents of the
E Register.

Affected: E Register

STDX Store D into X

e 101o1 os f 01 03 ;
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1~

The ~ontents of the D Register replace the contents of the
X Register.

Affected: X Register

STDl Store D into Rl

pio:o1 os 10! 05 I
0 1 2 3 4 s 6 7 8 9 10 11 12 13 14 1~

The contents of the D Register replace the contents of the
Rl Register.

Affected: Rl Register

4-22

SBY

STD2 Store D into R2

PJ of o I os J OJ 06 ?
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the D Register replace the contents of the
R2 Register.

Affected: R2 Register

STD3 Store D into R3

Pl o'. Oj 05 ;or 01
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the D Register replace the contents of the
R3 Register.

Affected: R3 Register

Store Byte from A Register

@I I: xi 07 !s I Displacement J

-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits 8-15 of the A Register replace the effective byte (leaving the
other byte unaffected).

If Post-indexing is not specified, the effective byte is bits 0-7
of the effective word.

If post indexing is specified, the X Register holds a byte count, and
the effective address calculation produces a 17-bit effective byte ad­
dress. The 16 most significant bits point to the effective word, which
contains an even-numbered byte in bits 0-7, an odd-numbered byte in
bits 8-15.

Affected: Effective byte

The assembler recognizes the following derivatives of SBY:

4-23

SBYB Store Byte from A into B

p ! o I o ! 01 1 o ! o4 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits 8-15 of the A Register replace the effective
byte (leaving the other byte unaffected). If post­
indexing is specified, and the contents of the X
Register equal one (a higher count will change the
instruction), the effective byte is bits 8-15 of
the B Register. Otherwise, the effective byte is
bits 0-7 of the B Register.

Affected: Effective byte of B Register

SBYD Store Byte from A into D

~ 1 0 I 0 I 07 I 0 I 04 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits 8-15 of the A Register replace the effective byte
(leaving the other byte unaffected). If post­
indexing is specified, and the contents of the X
Register equal one (a higher count will change the
instruction), the effective byte is bits 8-15 of
the D Register. Otherwise, the effective byte is
bits 0-7 of the D Register.

Affected: Effective byte of D Register

SBYE Store Byte from A into E

Plolol 01 101 02 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits 8-15 of the A Register replace the effective
byte (leaving the other byte unaffected). If post­
indexing is specified, and the contents of the X

4-24

Register equal one (a higher count will change the in­
struction), the effective byte is bits 8-15 of the X
Register. Otherwise, the effective byte is bits 0-7
of the E Register.

Affected: Effective byte of the E Register

SBYX Store Byte from A into X

0 0 0 07 0 03
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits 8-15 of the A Register replace the effective
byte (leaving the other byte unaffected). If post­
indexing is specified, and the contents of the X
Register equal one (a higher count will change the
instruction), the effective byte is bits 8-15 of the
X Register. Otherwise, the effective byte is bits
0-7 of the X Register.

Affected: Effective Byte of the X Register

SBYl Store Byte from A into Rl

0 0 0 07 0 05
0 1 2 3 4 5 6 7 8 9 10 11 12 l3 14 15

Bits 8-15 of the A Register replace the effective
byte (leaving the other byte unaffected). If post­
indexing is specified, and the contents of the X
Register equal one (a higher count will change the
instruction), the effective byte is bits 8-15 of tee
X Register. Otherwise, the effective byte is bits
0-7 of the Rl Register.

· Affected: Effective Byte of the Rl Register

4-25

SBY2 Store Byte from A into R2

IQlolol 01 lol 06 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits 8-15 of the A Register replace the effective byte
(leaving the other byte unaffected). If post-indexing
is specified, and the contents of the X Register equal
one (a higher count will change the instruction), the
effective byte is bits 8-15 of the R2 Register. Other­
wise, the effective byte is bits 0-7 of the R2 Register.

Affected: Effective byte of the R2 Register

SBY3 Store Byte from A into R3

p101ol 01 101 01 I
o r 2 3 4 5 6 1 a 9 10 11 12 13 14 15

Bits 8-15 of the A Register replace the effective byte
(leaving the other byte unaffected). If post-indexing
is specified, and the contents of the X Register equal
one (a higher count will change the instruction), the
effective byte is bits 8-15 of the R3 Register. Other­
wise, the effective byte is bits 0-7 of the R3 Register.

Affected: Effective byte of the R3 Register

4.S.4 Arithmetic Instructions

The arithmetic instructions are capable of operating on the contents
of any register or memory location. Should a carry or an overflow
occur, the condition code indicators are set as follows:

Condition CCI CC2

No Overflow, No Carry 0 0
Overflow , No Carry 0 1
Carry, No Overflow 1 0
Carry and Overflow 1 1

The conditional branch instructions listed below are appropriate
immediately after an arithmetic instruction.

Mnemonic Meaning

BO Branch on overflow
llNO Branch on no overflow
BC Branch on carry
BNC Branch on no carry

4-26

ADD Add Memory to A Register

@11lxl do fsl Displacement I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The effective word plus the contents of the A Register replace the
contents of the A Register.

Affected: A Register
CCI
CC2

The assembler recognizes the following derivatives of ADD:

ADDB Add B to A

p lo I ol on lol o4 1
o 1 2 3 4 s 6 1 s 9 io 11 12 13 14 15

The contents of the B Register plus the contents of the A
Register replace the contents of the A Register.

ADDD Add D to A

lol of ol OD lol oo I
o 1 2 3 4 s 6 7 8 9 10 11 12 13 14 is

The contents of the D Register plus the contents of the A
Register replace the contents of the A Register.

ADDE Add E to A

IO lo (of on lol 02 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the E Register plus the contents of the A
Register replace the contents of the A Register.

ADDX Add X to A

~ lolol oo fol 03 ·I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the X Register plus the contents of the A
Register replace the contents of the A Register.

4-27

ADDI Add RI to A

fl IOtOf OD lof 05 l
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the Rl Register plus the contents of the
A Register replace the contents of the A Register.

ADD2 Add R2 to A

p lo Io I OD 10 I 06 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the R2 Register plus the contents of the
A Register replace the contents of the A Register.

ADD3 Add R3 to A

p (o lol OD lol 01 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the R3 Register plus the contents of the
A Register replace the contents of the A Register.

SUB Subtract Memory from A Register

lifl I I xi OB Isl Displacement I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS

The contents of the A Register minus the effective word replace the
contents of the A Register.

Affected: A Register
CCl
CC2

The assembler recognizes the following derivatives of SUB:

SUBB Subtract B from A

p I 0 I 0 I OE I 0 I 04 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the A Register minus the contents of the
B Register replace the contents of the A Register.

4-28

SUBD Subtract D from A

P lo lol OE ~l oo I
o 1 2 3 4 5 6 7 9 10 11 12 13 l4 IS

The contents of the A Register minus the contents of the D
Register replace the contents of the A Register.

SUBE Subtract E from A

IO Io I ol OE lol 02 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the A Register minus the contents of the E
Register replace the contents of the A Register.

SUBX Subtract X from A

~ lolol OE lol 03 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the A Register minus the contents of the X
Register replace the contents of the A Register.

SUBl Subtract Rl from A

~ 10 101 oE I g I o~ 1
1 2 3 4 5 6 7 9 io 11 1 13 14 15

The contents of the A Register minus the contents of the Rl
Register replace the contents of the A Register.

SUB2 Subtract R2 from A

fO I 0 I 0 I OE I 0 I 0 6 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the A Register minus the contents of the R2
Register replace the contents of the A Register.

SUB3 Subtract R3 from A

~lofol OE lol 01 I
1 2 3 4 s 6 7 8 9 to ii 12 13 14 15

The contents of the A Register minus the contents of the RJ
Register replace the contents of the A Register.

4-29

INC Increment Memory

liltlxl OP Isl Displacement I
0 1 2 3 4 5 6 7 8 § 10 11 12 13 14 15

The effective word increases by one.

Affected: Effective word
CCl
CC2

The assembler recognizes the following derivatives· of INC:

INCA Increment A

§lof ol OF fol 01 1
1 2 3 4 5 6 7 8 9 to 11 12 13 14 is

The contents of the A Register increase by one.

Affected:

INCB

A Register
CCI
CC2

Increment B

p lo lot OP 101 o4)
0 1 2 3 4 5 6 78 9 10 11 12 13 14 15

The· contents of the B Register increase by one.

Affected:

INCD

B Register
CCI
CC2

Increment D

Pio fol OF Joi oo I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the D Register increase by one.

Affected: D Register
CCI
CC2

4-30

INCE Increment E

fo lo lo! OF lol 02 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the E Register increase by one.

Affected:

INCX

E Register
CCl
CC2

Increment X

to I 0 I 0 I OF I 0 I 0 3 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the X Register increase by one.

Affected:

INCl

X Register
CCl
CC2

Increment Rl

~JOI OI OF IOl ¥~ 1
1 2 3 4 5 6 7 8 9 to 11 13 14 15

The contents of the Rl Register increase by one.

Affected:

INC2

Rl Register
CCI
CC2

Increment R2

The contents of the R2 Register increase by one.

Affected:

INC3

R2 Register
CCl
CC2

Increment R3

P lo lol OF lol 01t
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4-31

The contents of the R3 Register increase by one.

Affected:

4.5.5 Logical Instructions

R3 Register
CCI
CC2

The contents of the A Register are capable of forming the logical
product, the logical sum, or the logical difference with the con­
tents of any register or memory location.

The logical product contains ones only in those bit positions in
which both operands contain ones.

The logical sum containa ones only in those bit positions in which
either or both operands contain ones.

The logical difference contains ones only in those bit positions
in which either but not both operands contain ones.

Logical instructions set the condition code indicators as follows:

Condition CCI CC2

Contents of A Register less than zero 1 1
Contents of A Refister equal to zero 0 0
Contents of A Register greater than zero 1 0

The conditional branch instructions listed below are appropriate
immediately after a logical instruction.

Mnemonic

BEZ

BNEZ

BGEZ

BLZ

Meaning

Branch if contents of A Register are
equal to zero

Branch if contents of A Register are
not equal to zero

Branch if contents of A Register are
greater than or equal to zero

Branch if contents of A Register are
less than zero

4-32

AND AND Memory into A Register

l1 Ir I xi 02 Is J Dis placement I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The logical product of the effective word and the contents of the A
Register replaces the contents of the A Register.

Affected: A Register
CCl
CC2

The assembler recognizes the following derivatives of AND:

ANDB AND B into A

~ Io I ol 02 lo I o4 I
1 2 3 4 5 6 7 8 9 16 11 12 13 14 15

The logical product of the contents of the A Register and
the contents of the B Register replaces the contents of
the A Register.

ANDD AND D into A

I? lo lol 02 lol oo I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The logical product of the contents of the A Register and
the contents of the D Register replaces the contents of
the A Register.

ANDE AND E into A

@loJol 02 [ol 02 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The logical product of the contents of the A Register and
the contents of the E Register replaces the contents of
the A Register.

ANDX AND X into A

§lof ol ~2 1g1 o~ 1 1 2 3 4 . 6 7 9 IO ll 1 13 14 is
The logical product of the contents of the A Register and
the contents of the X Register replaces the contents of
the A Register.

4-33

ANDI AND Rl into A

f()folol 02 fol os I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS

The logical product of the contents of the A Register and
the contents of the Rl Register replaces the contents of
the A Register.

AND2 AND R2 into A

~forol 02 101 06 I
1 2 3 4 5 g 7 8 9 10 11 12 13 14 15

The logical product of the contents of the A Register and
the contents of the R2 Register replaces the contents of
the A Register.

AND3 AND R3 into A

p Io Io I 02 Io I 01 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The logical product of the contents of the A Register and
the contents of the R3 Register replaces the contents of
the A Register.

LOR OR Memory into A Register

j¥)1Jxl 03 Isl Displacement I
o 1 2 3 4 5 6 7 8 9 IO ii 12 13 14 15

The logical sum of the effective word and the contents of the A
Register replaces the contents of the A Register.

Affected: A Register
CCl
CC2

The assembler recognizes the following derivatives of LOR:

LORB OR B into A

~lolol 03 101 o4 I
1 2 3 4 5 6 7 8 9 io ii 12 13 14 15

The logical sum of the contents of the B Register and the
contents of the A Register replaces the contents of the A
Register.

4-34

LORD ORD into A

pfolol 03 lol oo 1
o 1 2 3 4 5 6 7 8 9 io 11 12 13 14 15

The logical sum of the contents of the D Register and the
contents of the A Register replaces the contents of the A
Register.

LORE ORE into A

plotol 03 fol 02 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The logical sum of the contents of the E Register and the
contents of the A Register replaces the contents of the A
Register.

LORX OR X into A

~I ol ol 03 lo I 03 I
1 2 3 4 s 6 1 s 9 to ii 12 t3 14 15

The logical sum of the contents of the X Register and the
contents of the A Register replaces the contents of the A
Register.

LORI OR Rl into A

~lof ol 03 lo I os I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The logical sum of the contents of the RI Register and the
contents of the A Register replaces the contents of the A
Register •.

LOR2 OR R2 into A

lol 06
I 8 9 10 II 12 13 14 15

The logical sum of the contents of the R2 Register and the
contents of the A Register replaces the contents of the A
Register_

4-35

LOR3 OR R3 Register into A

plolol 03 fol 01 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The logical sum of the contents of the R3 Register and the
contents of the A Register replaces the contents of the A
Register.

EOR Exclusive OR Memory into A Register

!lrlxl 04 Isl Displacement J
0 1 2 3 4 5 6 7 8 9 10 ll 12 13 14 1

The logical difference of the effective word and the contents of the
A Register replaces the contents of the A Register.

Affected: A Register
CCI
CC2

The assembler recognizes the following derivatives of EOR:

EORB Exclusive OR B into A

p)olol 04 lol o4 1
o 1 2 3 4 s 6 7 s 9 10 11 12 13 14 is
The logical difference of the contents of the B Register
and the contents of the A Register replaces the contents
of the A Register.

EORD Exclusive OR D into A

pfolol 04 lol oo I
o 1 2 3 4 5 6 7 8 9 io 11 12 13 14 15

The logical difference of the contents of the D Register
and the contents of the A Register replaces the contents
of the A Register.

EORE Exclusive OR E into A

14 15

The logical difference of the contents of the E Register
and the contents of the A Register replaces the contents
of the A Register.

4-36

EORX Exclusive OR X into A

~fo(ol o4 fol 03 1
1 2 3 4 5 6 7 8 9 !o 11 12 13 14 15

The logical difference of the contents of the X Register
and the contents of the A Register replaces the contents
of the A Register.

EORI Exclusive OR Rl into A

@10Jol o4 lol os I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The logical difference of the contents of the Rl Register
and the contents of the A Register replaces the contents
of the A Register.

EOR2 Exclusive OR R2 into A

~ Io I ol o4 I o I o 6 I
1 2 3 4 s 6 1 s 9 to 11 12 13 14 ts

The logical difference of the contents of the R2 Register
and the contents of the A Register replaces the contents
of the A Register.

EOR3 Exclusive OR R3 into A

~lo Io I 04 Io I 01 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 is

The logical difference of the contents of the R3 Register
and the contents of the A Register re places the contents
of the A Register.

4.5.& Compare Instructions

The compare instructions determine whether the contents of the A
Register are less than, equal to, or greater than that of a parti­
cular memory location or register, and set the condition code indi­
cators accordingly. These instructions treat both operands as
signed integers in the two's complement format and leave the oper­
ands unchanged.

The condition code settings are:

4-37

Condition

Contents of A Register less than other
operand

Contents of A Register equal to other
operand

Contents of A Register greater than
other operand

CCI CC2

1 1

0 0

1 0

The conditional branch instructions listed below are appropriate
i11111ediately after a compare instruction.

Mnemonic

BE

BNE

BGE

BL

Meaning

Branch if contents of A Register are
equal to other operand

Branch ·if contents of A Register are
not equal to other operand

Branch if contents of A Register are
greater than or equal to other operand

Branch if contents of A Register are
less than other operand

If the SYSTEM) 72 is in the compare sequence mode (SMl set) the result
of each comparison combines logically with the current condition
code settings instead of replacing them. The bit destined for CCl
forms the logical sum (SM2 reset) or the logical product (SM2 set)
with the current setting of CCl. CC2 is set similarly. (The com­
pare sequence mode inhibits condition code settings from all but the
compare instructions.)

CMP Compare A Register with Memory

til1 lxl 10 Isl Displacement I
o i 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The condition code indicators depict the comparison between the
contents of the A Register and the effective word.

Affected: CCl
CC2

The assembler recognizes the following derivatives of CMP:

4-38

CMPB Compare A with B

tololol 10 lol 04 r
o 1 2 3 4 s 6 1 a 9 10 11 12 13 14 ts
The condition code indicators depict the comparison be­
tween the contents of the A Register and the contents of
the B Register.

CMPD Compare A with D

p Jo I ol 10 Io I o~ I
0 1 2 3 4 5 6 7 8 9 10 11 1 13 14 15

The condition code indicators depict the comparison be­
tween the contents of the A Register and the contents of
the D Register.

CMPE Compare A with E

IQlolol 10 lof 02 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS

The condition code indicators depict the comparison be­
tween the contents of the A Register and the contents of
the E Register.

CMPX Compare A with X

ptolol 10 lol 03 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The condition code indicators depict the comparison be­
tween the contents of the A Register and the contents of
the X Register.

CMPI Compare A with Rl

E>lolol 10 lol o5 I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The condition code indicators depict the comparison be­
tween the contents of the A Register and the contents of
the Rl Register.

4-39

CMP2 Compare A with R2

@lo lol 10 ~ol 06 I
0 1 2 3 4 5 6 7 9 10 11 12 13 14 15

The condition code indicators depict the comparison be­
tween the contents of the A Register and the contents
of the R2 Register.

CMP3 Compare A with R3

lo I 01 I
7 8 9 10 11 12 13 14 15

The condition code indicators depict the comparison be­
tween the contents of the A Register and the contents
of the R3 Register.

4.5.7 Shift Instructions

A full complement of shift operations derive from a single instruc­
tion.

Single register shifts take place in the A Register. Double Register
shifts treat the A and E Registers as a single 32-bit register with
the E Register holding the sixteen least significant bits.

Logical left shifts introdu~ zeros into the least significant bit
position and lose bits leaving the most significant bit position.
Logical right shifts introduce zeros into the most significant bit
position and lose bits out of the least significant bit position.
(In double register logical shifts the least significant position
is bit position 15 of the E Register, the most significant position
is bit position O of the A Register.)

Arithmetic left shifts introduce zeros into the least significant
bit position and lose bits leaving bit position 1 of the A Regis­
ter. Arithmetic right shifts propagate the contents of bit posi­
tion 0 of the A Register and lose bits leaving the least signifi­
cant bit position. (In double register arithmetic shifts the
least significant bit position is bit position 15 of the E Register.)

Circular shifts take the bits leaving one end of the register and
introduce them into the other end. (In double register circular
shifts the two ends are bit position 0 of the A Register and bit
position 15 of the E Register.)

After a left shift the condition code settings are:

4-40

Condition CCI CC2

Bit position O of the A Register contained 0 0
a zero initially and has received only zeros

Bit position 0 of the A Register contained a 0 1
one initially and has received only zeros

Bit position O of the A Register contained a l 0
one initially and has received only ones

Bit position 0 of the A Register has received 1 1
a one at least once and has changed polarity
at least once

After a right shift the condition code settings are:

Condition CCl CC2

Bit position 15 of the A Register has re­
ceived only zeros

0 0

Bit position 15 of the A Register has re­
ceived a one at least once

0 1

S Shift

Elrlxl 11 Isl Displacement I
0 1 2 3 4 5 6 7 8 § 10 11 12 13 14 15

Bits 8-15 of the effective address specify the shift completely:

8 9 10 11 12

Bit Positions

8

9, 10

11

12-15

COUNT
13 14

Setting

0
1

00
01
10
11

0
1

4-41

15

Specification

Single register shift
Double register shift
Not allowed
Circular Shift
Logical shift
Arithmetic Shift
Right shift
Left shift
Number of places to shift
from 1-16 (zero means 16
nlaces)

Affected: A Register
E Register
CCI
CC2

A single register shift would ordinarily keep the R, I, x, and S
fields set to zero and specify the entire operation in the Dis-
placement field. A double register shift must develop its effec-
tive address through indirect addressing or indexing.

The assembler recognizes the following derivatives of S:

Mnemonic Meaning Bits 8-15 of Effective Address

SLL Shift Logical Left Ell I of 11 couNT I
8 9 10 11 12 13 14 15

SLR Shift Logical Right lo 11 I o I o I COUNT I
8 9 10 11 12 13 14 15

SAL Shift Arithmetic Left e1°11111 COUNT I
8 9 10 11 12 13 14 15

SAR Shift Arithmetic Right ~ I 0 I 1 I 0 I COUNT I
8 9 10 11 12 13 14 15

SCL Shift Circular Left e 11 1 1 1 1 1 COUNT l
8 ~ 10 11 12 13 14 15

SCR Shift Circular Right e 11 1 1 1 o 1 COUNT I
8 9 10 11 12 13 14 15

SLLD Shift Logical Left Double ~ 11 I 0 I l j COUNT I
8 9 10 11 12 13 14 15

SLRD Shift Logical Right Double 1111 r o 1 o 1 cooNT I
8 9 10 11 12 13 14 15

SALD Shift Arithmetic Left Double ~I ~ I 1 I I I COUNT I
: : 10 11 12 13 i4 15

SARD Shift Arithmetic Right Double ~ 10 11 I 0 I COONT I
8 9 10 11 12 13 14 15

SCLD Shift Circular Left Double ~ 11 11 I 11 COUNT
151 8 9 10 11 12 13 14

SCRD Shift Circular Right Double 1111 I 1 I 0 I COUNT I
8 9 10 11 12 13 14 15

4-42

4.5.8 Call Instructions

Call 1 operates only while the SYSTEM:; 72 is in the master mode and
always switchea program context, making it ideal for operating
system calla to the Kernel. Call 2 also awitches progra• con­
text, but is not privileged, making it ideal for user program
calls to the operating system. Call 3 does not awitch progra•
context and is not privileged, making it a convenient link to sub­
routines within the user program. Call instructions ignore the
R, I, X, and S field• in calculating their effective addresses.

Call instructions do not affect the condition code indicator•.

CALI Call 1

§ !O lo! 18 lol Displace•nt I
1 2 3 4 5 6 7 8 9 to 11 12 13 14 15

The contents of X'0045' point to the first location of a 131-word
table. As shown in Figure 4-2, PSWl and PSW2 go into the first
two locations. The contents of the third location replace PSW2.
The effective address becomes a displacement into the remaining
128 locations. The contents of the designated location replace
PSWl.

Affected: PSWl
PSW2

Pointer -·

Displace•nt

> Old PSWl
Old PSW2
Mew PSW2
Mew PSWl 110
New PSWl Ill
New PSWl 112

New PSWl #126
New PSWl 11127

Call 1/Call 2 Table
Figure 4-2

4-43

To return to the calling routine, the called routine executes a BRC
instruction with an effective address equal to the contenta of the
pointer in X'0045'.

CALl is a privileged instruction. (It functions as a "No Operation"
when the SYSTEMS 72 is in the slave mode.) It also presumes the mapped
mode indicator to be reset and, therefore, treats X'0045' and the
contents of x~o045' as actual addresses.

CAL2 Call 2

~l ol ol 19 lo I Disglacement I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of X'0045' point. to the first location of a 131-word
table. As shown in Figure 4-2, PSWl and PSW2 go into the first two
locations. The contents of the third location replace PSW2. The
effective address becomes a displacement into the reaaining 128 lo­
cations. The contents of the designated location replace PSWl.

Affected: PSWl
PSW2

To return to the calling routine, the called routine executes a BRC
instruction with an effective address equal to the contents of the
pointer in X'0046'.

CAL2 is not a privileged instruction. Furthermore, it treats X'0046'
and the contents of X'0046' as virtual addresses if the mapped mode
indicator is set.

CAL3 Call 3

Pl Of di lA IXI Displacement I
o 1 2 3 4 s 6 7 9 to 11 12 13 14 15

The contents of X'0047' point to the first location of a 129-word
table. As shown in Figure 4-3, PSWl goes into that first location.
The effective address become• a displacement into the remaining 128
locations. The contents of the designated location replace PSWl.

Affected: PSWl

4-44

Pointer-;. Old PSWl
New PSWl #0
New PSWl #1
New PSWl #2

Displacement

New PSWl #12 6
~I~ ________ N_e_w __ PS __ w_1 __ N_12_1 ______ _

Call 3 Table
Figure 4-3

To return to the calling routine, the called routine branches to the
address contained in the first location of the table.

Unlike CALl and CAL2, CAL3 does not switch program context. Like
CAL2, CAL3 is not a privileged instruction. It treats X'0047' and
the contents of X'0047' as virtual addresses if MAP is set.

4.5.9 Input/Output Instructions

The input/output instructions operate on all devices connected to the Pro­
grammed Input/()itput Bus. This hus runs 16 address lines, 16 bidirectional
da~a llnea, and six control lines to the Direct Access Channel, the
Memory Map, the disc controller, PSW2, and the control panel• as well
as to the standard peripheral equipment.

Programmed Input and Programmed Output are generic instFUctions. The
effective address specifies both the device and the operation to be
performed. ('lbose instructions that are defined and listed in Section
5 pertain to standard peripheral equipment and have dedicated effective
addresses; all addresses with X'F' in the most significant hexadecimal
digit are reserved for instructions pertaining to special user-oriented
equipment.)

Condition code settings are defined for each instruction instead of for
the input/output class of instructions.

All input/output instructions are privileged; while the SYSTEMS 72 is in
the slave mode, they function as ·~o Operations".

4-45

PIN Programed Input

§I 11 xi 01 IS I Displacement I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

'lbe effective address drives the 16 address lines. Then the addressed
device loads the D Register via the 16 data lines.

Affected: D Register
CCl
CC2

'nle assembler recognizes the following derivatives of PIN:

POT

RDS Read Data Switches

~ '1 io I 01 - -1s; Dhplaceme-nt
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the D Register represent the Data Switch
settings. (The assembler configures the displacement and
the indirectly addressed location such that X'0401' be­
comes the effective address.)

Affected: D Register

RPS2 Read PSW2

!ll\01 01 jS) Displacement I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

'nle contents of PSW2 replace the contents of the D-Regis­
ter. (The assembler configures the displacement and the
indirectly addressed location such that X'0402' becomes
the effective address.)

Affected: D Register

Programmed OUtput

!I II xi 00 ISi Displacement I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The effective address drives the 16 address lines. Then the addressed
device accepts the contents of the D Register via the 16 data lines.

Affected: CCI
CC2

4-46

The assembler recognizes the following derivatives of POT:

LDR Load Display Register

11I1 IO l O Isl Displacement I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the D Register replace the contents of
the Display Register. (The assembler configures the
displacement and the indirectly addressed location such
that X'0401' becomes the effective address.)

Affected: None

LPS2 Load PSW2

~(1!01 O isl Displacement I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The contents of the D Register replace the contents of
PSW2. (The assembler configures the displacement and
the indirectly addressed location such that X'04o2•
becomes the effective address.)

Affected: None

4.5.10 Other Instructions

The asseabler recognizes several derivative instructions that have
general utility.

NOP No Operation

!lo(ol 12 1oi 01 I
0 1 2 3 4 5 6 7 8 9 10 11 12 l3 14 15

PSWl advances normally, but no addressable register, memory location,
or condition code indicator is affected.

Affected: None

CLA Clear A Register

IOI O! Oi 04 101 01 1 o 1 2 3 4 s g 1 a 9 to tt 12 t3 t4 ts

4-47

CCI, CC2, and all 16 bit positions of the A Register are reset.

Affected:

HLT

A Register
CCl
CC2

Halt

lil!O O ;S; Displacement
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Program execution stops. If the operator places the COMPUTE switch
in IDLE and then back to RUN, execution will begin with the next in­
struction in sequence. An interrupt becoming active will restart
the prograa at the address contained in the new PSWl. The return
from the interrupt subroutine will be to the location immediately
following the Halt instruction. Both CCl and CC2 are reset. A
privileged instruction, HLT functions as a "No Operation" while the
processor is in the slave mode.

Affected: CCI
CC2

The assembler configures the displacement and the indirectly addressed
location such that X'0401' becomes the effective address.

4-48

SECTION S

INPUT/OUTPUT SYSTEM

In keeping with its large-scale architecture, the SYSTEMS 72 provides IOP capa­
bility in a demand-Dlltiplexed input/output system. It also provides a con­
venient interface to special devices, either through the Progranmed Input/
Output Bus or through the (optional) Direct Access Channel. A atltilevel
interrupt system responds to service requests on a priority basis.

5.1 INPUT/OUTPUT PROCESSOR

The (programned) Input/Output Processor frees the SYSTEM> 72 fro• the usual
small computer liaitations that restrict software growth. In handling
all peripheral device operations as a separate activity, the IOP at once
provides flexible, comprehensive control without imposing a requirement
for intricate, painstaking progra11111ing. (Although an integral part of
the Central Processor, the IOP differs functionally from an external IOP
only in that it requires more frequent servicing by the operating system.)

The IOP drives the Programmed Input/Output Bus, consisting of sixteen
address lines, sixteen bidirectional data lines, and six control lines.
Because service requests from peripheral devices are demand multiplexed,
instead of being continuously scanned in a fixed priority pattern, the
devices can use essentially all of the 200 KB bandwidth of the bus.

Peripheral devices operate independently and asynchronously because
their controllers require minimal direction fro• the IOP and because
each controller has its own data buffer. (These buffers vary in size
with the data rates of the devices, ranging from one byte for the tele­
typewriter to sixteen bytes for the nine-track magnetic tape transport.)
Thus a device takes only as much bandwidth as needed for data to move
between its buffer and the IOP; it will not seize the bus on block
transfers (except in burst mode). Controllers keep device addresses
in six toggle switch settings instead of in fixed circuitry. Thia
means that device addressing is flexible; arbitrary limits have not
been imposed on the number of devices of a given type that may be in
a system.

'Ille operating system, conceived concurrently with SYSTEMS 72 architecture
and designed to make full use of the IOP, relieves the prograDIDer of
all tasks associated with using the IOP. The result is an input/out-
put system that is both powerful and easy to program.

5-1

5.1.1 IOP Operation

Although the IOP is software-implemented and not physically dis­
tinct from the Central Processor, it appears to be a separate
entity -- both to the progranmer and to the operating system.
Accordingly, the convention listed below will be observed through­
out the IOP discussion:

The Central Processor executes instructions.
The Input/Output Processor executes conmands.
The Peripheral Device executes orders.

Figure 5-1 lists the instructions that the processor executes to
initiate and monitor input/output operations.

Instruction Effective Address

Start 1/0 (SIO) 0000 0101 OODD DDDD
Halt I/O (RIO) 0000 0101 OlDD DDDD
Test Device 0000 0101 OODD DDDD

(TDV)
Test I/0 (TIO) 0000 0101 lODD DDDD
Reset 1/0 (RIO) 0000 0100 0000 0011

Use

Starts an I/O operation
Halts an I/O operation
Inputs device status

Sets CCl if device is busy
Halts all devices

Notes: 1) Bits marked "D" in the effective address specify
the device address.

2) All of these instructions set CCI if the addressed
device is busy (or, for RIO, if any device is busy).

3) SIO, HIO, and RIO are POT instructions. TDV and TIO
are PIN instructions.

Input/Output Instructions
Figure 5-1

The IOP uses an Input/Output Command List (IOCL) to control peri­
pheral devices. Figure 5-2 shows the IOCL format.

Word 1 Order ; Flag
I

Word 2
Word 3
Word 4

Order Field:

Interrupt Address
Data Address

0-7
Byte Count

8-15

Bit Configuration
01234567

MMMMMMOl
MMMMMMlO
MMMMMMll

5-2

Order

Write
Read
Control

0 1 2 3 4 5 6 7

MMMMMlOO
MMMMllOO
MMMMlOOO
0 0 0 0 0 0 0 0

Order

Sense
Read Backward
Transfer in Channel
Stop

(The letter "M" designates bits to be used to further specify
the operation and adapt it to the needs of a particular device.)

Flag Field: Bit Meaning (If Bit is Set)

8 Map the data addresses and
terminal interrupt address

9 Interrupt on Zero Byte Count

10 Interrupt on Transmission
Error

11 Suppress Incorrect Length

12 Interrupt on Unusual End

13 Command Chain

14 Data Chain

15 Interrupt on Channel End

Interrupt Address: In terminating an operation, the device
interrupts to this address.

Data Address: The address of the fir-st word of the data
block.

Byte Count: The number of bytes to be transferred.

Input/Oltput Command List
Figure 5-2

A program initiates an input/output operation by making available
to the operating system the starting address of the data, the byte
count, and certain details about the direction and manner of the
data transfer. The operating system responds by setting up an IOCL
and then activating an appropriate device. (Sirice input/output is
device independent, it is only at this point -- run time -- that
the device is specified.

5-3

The device interrupts to the IOP, which sends the first word of
the IOCL to the device and disconnects. This word specifies
the operation, how it is to be performed, and how it is to be
terminated. When the device is ready to begin the data transfer,
it interrupts to the IOP again. The IOP then executes a data
transfer command and disconnects, incrementing the data address
(third word of the IOCL) and decrementing the byte count (fourth
word of the IOCL). The device executes a data transfer order
and interrupts to the IOP when ready for another. (For high-speed
data transfers, the device may keep the IOP connected while it
empties its data buffer.) 'nlis cycle continues until the byte
count goes to zero; the IOP then sends the device its terminal
interrupt address (which will cause the device to interrupt back
to the operating system instead of to the IOP) and disconnects.
The device then carries out the termination sequence specified
to it earlier by the first word of the IOCL.

s.1.2 Chaining

The device termination sequence may call for another IOCL and not
for an interrupt back to the operating system. In this event the
IOP receives the.interrupt; it responds by sending the first word
of the next IOCL -- a ~rocess called chaining.

In data chaining the new IOCL specifies a new termination sequence
(at least the fin~l IOCL must be different, or the operation would
not have a programmed conclusion), a new data address, and a new
byte count; it does not change the operation itself. Data chaining
thus provides scatter-read, gather-write capability; for example, a
single instruction, with appropriate IOCL's can initiate a series
of operations that gather information from several areas of core
memory and print it on a single line of the console teletypewriter.

Couaand chaining brings in a totally new IOCL, one that specifies
a different operation, as well as a new data address, a new byte
count, and a new termination sequence. This enables a single
instruction to initiate a series of different operations. For
example, coDlll8nd chaining could have the IOP read 16 records
from magnetic tape, rewind the tape, and reposition the tape 12
records from the load point.

S.1.3 Special Devices

The Interface Manual explains how special devices may be operated
under IOP control.

5-4

5.2 PROGRAMMED INPUT/OUTPUT BUS

Special devices that do not need the block transfer capability of
the IOP may be interfaced to the Programmed Input/()Jtput Bus and
operate under direct program control.

The bus consists of 16 address lines, 16 bidirectional data lines,
and 6 control lines. The Programmed Input (PIN) and Prograaaed
()Jtput (POT) instructions (defined in 4.5.9) execute single-word
transfers between the D Register and devices on the bus. The
effective address of the PIN or the POT specifies both the device
and the operation to be performed.

The operating system reserves all effective addresses with X'F'
in the most significant hexadecimal digit for special user-oriented
equipment.

5.3 DIRECT ACC~S CHANNEL

The (optional) Direct Access Channel interfaces special systems­
oriented devices directly to core memory. Each device controls
its own data transfer rate, which may approach the 1,000,000
words/second limit of the Memory Access Controller.

5.3.l Preparing the Channel

The typical channel operation will be a high-speed block
transfer. To set up the starting address, the program loads
this address into the D Register and then executes a POT in­
struct ion with an effective address of X'0405'. If both con­
dition code indicators are reset, the POT was accepted and
the address register of the channel now holds the starting
address; if CCI is set, the channel was busy and the POT had
no effect on it.

A similar sequence (with an effective address of X'0406' for
the POT) puts the word count in the word count register.
Again, the condition codes indicate whether the POT was ef­
fective.

To set the status of the channel, initially and also when
recovering from a power loss (described in 5.4.4), the pro­
gram executes a Par instruction with an effective address of
X'0409'. At this time the contents of the D Register specify
the following:

5-5

Bit

0

1

2

3

5

6

7

8

9

Meaning (If Bit is Set)

Makes bits 2, 5, 6, 7, 8, 9, 10, and 11 effective.

Makes bits 2 and 3 effective even if bit O is reset.

Arms the channel interrupt.

Enables the channel interrupt.

Indicates interrupt address is to be mapped.

Sets interrupt to waiting state.

Sets interrupt to active state.

Indicates the contents of the address register
are to be mapped.

Sets channel to run mode.

All other bits are unused, except 10 and 11, which specify the
operating mode:

Bit 10 Bit 11 Specification

0 0 Data transfer shall be an output

0 1 Direction of transfer specified by device

1 0 Data transfer shall be an input

1 1 Direction of transfer specified by device

5.3.2 Channel Operation

When the channel has received its starting address, word count,
and status, it is ready to transfer data. The transfer begins
when the program executes a POT instruction with an effective
address of X'0407'. (The contents of .the D Register are irrele­
vant.) If the channel was busy, it wi~l reject the POT and set
CCI; either way, the device controls CC2. If the POT was ac­
cepted, the channel waits for the device to request a data
transfer. (The external system controls the data transfer, even
to the point of selecting the device; the program addresses only
the channel, not the device.)

5-6

The channel automatically increments the address register and
decrements the word ceunt with each data transfer. When the
word count reaches zero, or if an error is detected, the channel
interrupts to location X'0044' (actual or virtual, as specified
in the channel status} if the channel interrupt is armed and
enabled.

lbe condition code indicators report the following:

CCI CC2 Specification

0 0 Transfer complete, no error
0 1 Transfer incomplete, no error
1 0 Transfer complete, error
I 1 Transfer incomplete, error

The program can stop a data transfer by executing a POT instruc­
tion with an effective address of X'0408'. If the channel had
been busy, it will set CCI; the device controls CC2. Stopping
does not affect the channel registers or cause an interrupt;
the same POT used for start is suitable for restart.

S.3.3 Sensing

The program can read the address register by executing a PIN in­
struct ion with an effective address of X'0405'. This loads the
D Register with the contents of the address register, without
affecting channel operation. CCI, if set, indicates that the
channel was busy; CC2 is always reset.

Similarly, a PIN with an effective address of X'0406' reads the
word count. Again, CCI is set if the channel was busy; cc2-is
always reset.

To sense the current status of the channel, the program executes
a PIN instruction with an effective address of X'0409'. (The
condition codes defined for the interrupt in 5.3.2 apply to this
PIN.) 'nle contents of the D Register then describe status, as
follows:

Bit

0
1
2
3
4
5

Meaning (If Bit is Set)

Unused, always set
Unused, always reset
Interrupt Armed
Interrupt Enabled
Unused, always reset
Interrupt Address Mapped

5-7

Bit

6
7
8
9

10,
12
13
14
15

11

Meaning (If Bit is Set)

Interrupt in Waiting State
Interrupt in Active State
Contents of Address Register to be Mapped
Channel is Active (no stopped, word count

not zero)
Operating Mode (defined below)
Unused, always Reset
Memory Parity Error
Memory Protect Violation
Non-Resident Page

The operating mode (bits 10 and 11) specifies whether the direc­
tion of the data transfers is under the control of the channel
or the device:

Bit 10

0
0
1
1

Bit 11

0
1
0
1

Spee if icat ion

Output
As defined by device
Input
As defined by device

The PIN resets the error indicators (bits 13, 14, and 15) in the
channel.

The Power Fail Safe option (described in 5.4.4) senses channel
status during its power-off sequence.

5.4 INTERRUPT SYSTEM

The Interrupt System allows devices on the Programmed Input/Output
Bus to force the Central Processor to transfer program control to
interrupt service routines.

The cycle begins when an external stimulus causes an interrupt to
enter the waiting state. If none of the interrupts in I/0 slots
nearer to the processor is in the waiting state of the active state,
the waiting interrupt em.its a service request. This request takes
precedence over interrupts farther from the processor, interrupting
those in the active state and blocking service requests from those in
the waiting state. (Thus 1/0 slot position determines priority in
the interrupt queue. But it does not determine interrupt address;
each interrupt bears its own address.)

5-8

I l
Interrupt I I I

'
strobe .l ..i

~ ~~
.l. - - - - - - - - - - - -· - - - -· - --------- -,,

T"'
Device A Device B Device C I

I~ l-' IL l ll. _I_ -------.~T
I nterrupt

' - - - - - --· l"T --------f' I s ervice

I I R equest

CENTRAL pROCESSOR I
I
l

'
v

L_
~

I Slot 1

I
I

' I , ,
~

Interrupt Address

I Slot 2

Interrupt System
Figure 5-3

I I
I I

'
I

I v I
PIO Bus (data lines)

I Slot 3 I

As shown in Figure 5-3, the request proceeds to the Interrupt Inhibit
(the II field of PSW2). If II is reset, the request causes the pro­
cessor to drive an interrupt strobe from. one I/O slot to the next ·
until the device making the request receives the strobe. The device
then places its 16-bit interrupt address on the PIO Bus data lines,
drives the Mapped line if the address is to be mapped, and configures
the condition code indicators. The interrupt is now in the active
state.

When the processor completes its current instruction, it accesses
the location specified by the interrupt address. The contents of
this location point to a four-word table. (If the interrupt ad­
dress was mapped, the pointer is also mapped.) The processor
then stores PSWl in the first word of the table and PSW2 in the
second. After loading PSWl from the third and PSW2 from the fourth,
it turns program control over to the new Program Status Doubleword.
(The procedure just described is rapid context switching -- also
mentioned in 4.3.2.)

5-9

At the conclusion of the interrupt subroutine, the execution of a
Branch Return and Clear instruction (BRC) with the X field set will
restore the previous Program Status Doubleword and clear the high­
est active interrupt. (Clearing takes an interrupt out of the active
state but does not affect the waiting state.)

System reset (described in 6.1.12) disarms and disables all interrupts
except the Power Fail Safe option interrupts. It also takes them out
of the waiting or active states.

5.4.1 The Trap

Although not classified as an interrupt, the Memory Access Con­
troller Trap resembles an interrupt of the highest priority.

Like an interrupt, it has a pointer location (always actual lo­
cation X'0042') that points to a four-word table where rapid
context switching takes place. It also configures the condi­
tion code indicators. The return from its service routine does
not have tbe X field of BRC set because the Trap does not re­
quire clearing.

The Trap differs from an interrupt in that it cannot be in­
hibited and also in that it takes effect iomediately, aborting
the current instruction.

5.4.2 Input/output Interrupts

Peripheral devices require two interrupt levels each, a higher
one for handling (rate-sensitive) data transfers and a lower one
for signalling the end of a transmission. Accordingly, the in­
terrupt system provides input/output service requests and an in­
put/output strobe. It also includes an Input/Output Inhibit
(the IOI field of PSW2), which determines whether an input/out­
put service request can trigger an input/output strobe. The
result is the two-tiered system depicted in Figure 5-4.

5-10

lnput/Qatput

I
I
~

I Input/
output

IOI ---- -- - - -- - ---.lllE--------+--1-- - - - - --~-+--service

II

CENTRAL PROCESSOR

Peripheral
Device A

Slot 1 Slot 2

Dual-Level Interrupts
Figure 5-4

Peripheral
Device C

Slot 3

Request

Interrupt
Service
Request

An impending data transfer causes a device to put its higher-level in­
terrupt into the waiting state. Thie interrupt then follows the pro­
cedure described earlier for interrupts generally. Here, however, its
input/output service request takes prededence over all activity on the
lower tier, even that emanating from I/0 slots nearer to the proce•sor.
Another difference is that the interrupt address is restricted to actual
locations 0-63 (the eight addressable registers are not excluded) and
is, therefore, not mapped. (The setting of six toggle switches in the
device controller specifies both the device address and the interrupt
address.) In exiting the input/output service routine, BRC clears the
input/output interrupt (which was the highest active interrupt, regard­
less of its 1/0 slot).

As a device reaches its end of transmission, it puts its lower-level
interrupt into the waiting state. The interrupt cycle proceeds in
the usual manner, the IOCL (defined in S.1.1) having previously sup­
plied a 16-bit interrupt address and a mapped/unmapped indicator.
(This is the sole instance in which the device address is not also
the interrupt address.)

5-11

5.4.3 System Interrupts

For use in special real-time systems, the System Interrupts pro­
vide extreme versatility. They can be individually armed/dis­
armed, enabled/disabled, triggered, sensed, or set.

Disarming turns an interrupt off. A program uses this capa­
bility to reassign a stimulus to a different priority level
or to remove it altogether.

Disabling an armed interrupt prevents that interrupt from
requesting service, but not from acknowledging a stimulus.
Thus, a program can defer response to a stimulus without
losing track of it.

Triggering is the means by which a program can initiate an
interrupt stimulus of its own. These program-generated
interrupts are useful in simulating external system ele­
ments during program checkout. They are also useful in
putting portions of a program into the external stimuli
queue.

Sensing finds out whether an interrupt is armed or unarmed,
enabled or disabled, whether tt is waiting·or not, whether
it is active or not, and whether its interrupt address is
to be mapped or unmapped. This capability is essential to
the power-off routine, which must record interrupt status
during a power fail shutdown (described in s.4.4).

Setting is the ability to configure interrupt status under
program control. An interrupt needs to be set initially
and during power restart; it may also require a change in
status during the course of program execution.

System Interrupts follow the procedure described earlier for in­
terrupts generally. Their service requests take the lower tier
shown in Figure 5-4, which makes them subject to Interrupt In­
hibit. Since the Interrupt Pair option provides two System In­
terrupts on a printed circuit card, each card carries an even­
and an odd-numbered interrupt. System Interrupt addresses be­
gin with X'0080' and go to X'OlFF' (a range of 384). Eight
toggle switch settings determine the eight most significant
bits in the address; circuitry on the card distinguishes the
even- and odd-numbered addresses (the least significant bit in
the nine-bit interrupt address).

A program senses interrupt status by executing a PIN instruction
with an effective address of X'OlTT', where "Tl'" represents the

5-12

toggle switch address of the interrupt pair. The contents of the
D Register then report status in the format shown in Figure 5-5.

Bit

0
1
2
3
4
5
6
7

8
9

10
11
12
13
14
15

Meaning (If Bit is Set)

Not used, always set
Not used, always reset
Even Interrupt Armed
Even Interrupt Bnabled
Not used, always reset
Bven Interrupt Address Mapped
Even Interrupt in Waiting State
Even Interrupt in Active State

Not used, always set
Not used, always reset
Odd Interrupt Armed
Odd Interrupt Enabled
Not used, always reset
Odd Interrupt Address Mapped
Odd Interrupt in Waiting State
Odd Interrupt in Active State

D Register Format (Sensing Interrupt)
Figure 5-5

To set the status of an interrupt, the program first loads the D
Register with a bit pattern consistent with the format in Figure
5-6. It then executes a POT instruction with an effective ad­
dress of X'OlTT', where "TT" represents the toggle switch address
of the interrupt pair.

Bit

0
1

2
3
4
5
6
7

8
9

Meaning (If Bit is Set)

Makes bits 2, 3, 5, 6, and 7 effective
Makes bits 2, 3, 4, and 5 effective even if

bit 0 is reset
Arms the Even Interrupt
Enables the Even Interrupt
Triggers the Even Interrupt
Causes Even Interrupt Address to be mapped
Sets Even Interrupt to the Waiting State
Sets Even Interrupt to the Active State

Makes bits 10, 11, 13, 14, and 15 effective
Makes bits 10, 11, 12, and 13 effective even

if bit 8 is reset

5-13

Bit

10
11
12
13
14
15

Meaning (If Bit is Set)

Arms the Odd Interrupt
Enables the Odd Interrupt
Triggers the Odd Interrupt
Causes the Odd Interrupt Address to be mapped
Sets the Odd Interrupt to the Waiting State
Sets the Odd Interrupt to the Active State

D Register Format (Setting Interrupt)
Figure 5-6

SECTION 6

CONTROL PANEL

The operator control panel contains the controls and indicators necessary
to display the current status of the computer, to change that status, and
to make changes or insertions into registers and memory. There are also
many maintenance functions provided on the control panel to allow easy
isolation of hardware errors.

The control panel is depicted in Figure 6-1.

6. 1 CONTROL PANEL SWITCHES AND INDICATORS

6.1.1 Power

The P~ER switch is a toggle switch which controls primary AC
power to the system.

6.1.2 Instruction Steps

The INSTRUCTIClf STEPS lights indicate which instruction step
the CPU is currently in for each instruction phase for each
instruction executed. These indicators display the steps of
instruction execution, I/O operation, and control panel opera­
tion. These indicators are primarily for use by maintenance
personnel. Light indicator 0 is on at the beginning of an
instruction execution phase and as the execution of the in­
struction proceeds, the current light goes out and the next
step light goes on. This process continues until the next in­
struction phase begins at which time indicator light O begins
again.

6.1.3 Instruction Phase

The INSTRUCTION PHASE lights indicate which phase of execution
the CPU is in as it executes an instruction. The indicators
specify the following:

6-1

FJ:trtAl't.E
CoAlrRoL C.oAJ:soL-E.

INSTRUCTION STEPS
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ' z. .3 4 5 ' 7 fl 9 10 II IZ.. 13
,.,..

/IS

INSTRUCTION PHASE HALT
0 0 0 0 0

STA~ r C.AL.C:.. e:xu. INr

Pt?o~R/9/IJ sr11ru.s J)O "LJ3 L E. WO R.t:J

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c- I z. :5 + s ~ "1 a Cf 10 II IL 13 l'f IS

CC I C.C2.. St"'H SM2.. IOI II MA'f MS

0 0 0 0 0 0 0 0
'" 17 2.'- '2-7 z~ 2., 3o 31

INTERNAL

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 I 2. 3 4 .5 " 7 'g 1 /O JI / l. 13

,.,_ /5

.J>ZS PLllY

0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0
C:' ' 2.. 3 s " 7 8 1 10 II 12. /..3 If IS

X>ArA :SW.ETCH GS

ft> ffe ji) ~ p; PJ ji) jiJ ffeJ p jiJ P> P> P' ~ i>
" '%.. 3 4- 5 (o 7 ' ' ID II 1.Z.. IJ 1+ JS'

Po Wei<. CLOC/<. EN Tc{{ .INTEIWllL CONSOLE &:JMPU.TE.

Orr ON RIAN ~1-rc.R-
$

'rll.1JC6 Ru.N ReSl!.T

0 s'ro~ c=€) <=@ c:@I~LE c:=€)
f'I;)-A

Sit:/> $TORE. .ZNr-£1(.RUP r STE"f /J)lfJ)

F..l().J) w fl

1. START: 'lbe START light is on at the beginning of
every instruction execution. All switches to the
right of the CLOCK switch are operational when the
START light is on. For example, when the CPU ia
set to the IDLE state, the START light is on and
the INSTRUCTION STEPS light 0 ia on.

2. CALC: The CALC light is on when the CPU is calcu­
lating the effective address of the instruction be­
ing executed.

3. EXU: The EXU light is on when the CPU is execut­
ing the current instruction.

4. INT: The INT light is on only during the time when
an interrupt occurs and the old PSWl and PSW2 are
being stored and the new PSWl and PSW2 are being
accessed as specified in the interrupt service rou­
tine. The CPU will load in the interrupted rou­
tines defined PSWl and PSW2 and then as soon as the
CPU begins executing the interrupt service routine,
the light will go out.

The INSTRUCTION PHASE lights are primarily for use by mainten­
ance personnel.

6.1.4 Clock -
The CLOCK RUN-IDLE-STEP switch allows the user to step through
the instruction steps of an instruction while it is being exe­
cuted by the CPU. This switch is latching in the RUN position
and momentary in the STEP position. This switch is normally set
to RUN when a program is being executed. The CPU will hang up
when in IDLE and one clock timing will occur in an instruction
execution each time the switch is moved to the STEP setting.
lbe CLOCK switch is primarily for use by maintenance personnel.

6.1.S Halt

The HALT light is on whenever the CPU is in tbe wait state.

6.1.6 Program Status Doubleword

The PROGRAM STATUS DOUBLEWORD displays the current operating
status of the CPU and consists of two words as follows:

6-3

6.1.7

Word 1: Word 1 of the Program Status Doubleword (referred
to as PSWl) contains the current program counter which is
continually updated as the CPU executes a program to point
at the next instruction location.

Word 2: Word 2 of the Program Status Doubleword (referred
to as PSW2) contains the following indicators and associated
lights on the operator's console:

lndicator

CCl
CC2
SMl

SM2

1m

II

Internal Lights and Switch

Meaning, If on

Condition Code 1 is set
Condition Code 2 is set
Processor is in the compare se­
quence mode
Further defines the compare se­
quence mode (described in 4.5.6)
Input/output service requests
are inhibited
Interrupt service requests are
inhibited
Processor is in the mapped mode
Processor is in the slave mode

The INTERNAL light indicators work in conjunction with the INTERNAL
switch. The INTERNAL switch may be set to any of the following
positions and each position represents an internal hardware register.

PSWl refers to Program Status Word 1

PSW2 refers to Program Status Word 2

PIG\ refers to the Progranmed Input/Output address lines
Wii!Ch contains the address going out to an 1/0 device

PIOD refers to the bidirectional Programmed Input/Output
data lines which contains the data being transferred to/
from the addressed device. 'nlese indicators are only
valid while single clocking through the execution of a
Programmed Output or Programmed Input instruction.

PIOC refers to the Programmed Input/Output status lines
which contains the condition codes (indicators 0 and 1)
and the mapped bit (indicator 14) coming back to the
CPU from the device. These indicators are only valid
while single clocking through the execution of a Pro­
grammed Output or Prograaned Input instruction.

6-4

I refers to the Instruction Register

S refers to the Effective Address Register

M refers to a CPU working register

W refers to a CPU working register

C refers to the output of the CPU's adder

For the most part, the INTERNAL lights and switch are used for
maintenance personnel. The exception of this rule is whenever
the user desires to modify PSWl or PSW2. In all cases except
for the PSWl and PSW2, the setting of the INTERNAL switch causes
the pertinent hardware register to be displayed in the INTERNAL
lights. However, when the INTERNAL switch is set to PSWl or
PSW2 the pertinent register is not displayed in the INTERNAL
lights as these registers are permanently displayed. These two
settings are used in conjunction with the ENTER switch in the
ALTER mode to modify the PROGRAM STATUS DOUBLEWORD word 1 or
word 2 to the setting of the DATA SWITCHES.

6.1.8 Enter

The ENTER switch is a momentary switch which has two positions:

ALTER causes the DATA SWITCHES setting to enter the hardware
register specified by the INTERNAL switch. This will allow
registers PSWl, PSW2, I, S, M, W to be altered. However,
the COMPUTE switch must be in the IDLE position.

6.1. 9

STORE causes the DATA SWITCHES setting to enter the memory
rocat'ion specified in PSWl and then automatically increments
PSWl by one. However, the COMPUTm: switch must be in the
IDLE posit ion.

Display Lights and Switch

The DISPLAY light indicators work in conjunction with the DISPLAY
switch. The DISPLAY switch may be set to any of the following
positions and display the result in the DISPLAY lights:

R3 displays Utility Register 3

~ displays Utility Register 2

Rl displays Utility Register 1

6-5

! displays Base Register

! displays the Index Register

! displays the Extended Arithmetic Register

! displays the Arithmetic Register

~ displays the Data Register

MEM displays the contents of the location specified by the
DATA SWITCHES

NI displays the next instruction to be executed as pointed
to by PSWl

When the COMPUTE switch is in IDLE, any of the positions on the
DISPLAY switch will display the appropriate value in the DISPLAY
lights in a static fashion. When the COMPUTE switch is in RUN,
the register or memory location specified by the DISPLAY switch
is displayed in a dynamic fashion at a two-cycles-per-second
rate. This means the user can dynamically follow a data pattern
in any register or memory location as the program is executing.

6.1.10 Console

The CONSOLE switch is momentary in the INTERRUPT position and
latching in the TRACE position. The TRACE position causes an
interrupt to occur after every instruction executed such that
a trace routine can follow the processing logic of a program
as it is executing. The INTERRUPT position causes a momentary
console interrupt to trigger in the CPU.

6.1.11 Compute

The COMPUTE switch is latching in the RUN position and momentary
in the step position. The COMPUTE switch must be in IDLE for
many of the other switches to be operational. When the RUN mode
is selected, program execution begins as defined in PSWl and PSW2.
When placed in the STEP position, the CPU executes one instruction
and halts.

6.1.12 Reset/Load

The RESET/LOAD switch is momentary in both positions. This
switch will operate only if the COMPUTE switch is set to IDLE.

6-6

When placed in the RESET position, I/O devices on the system are
reset, PSWl is set to hexadecimal SO, and PSW2 is set to o.

When placed in the LOAD position, the program contained on the
(optional) Bootstrap Loader will be placed into memory beginning
at hexadecimal location 50.

6.1.13 Data Switches

The DATA SWITCHES are two position switches that are latching
in the 1 (up) and O (down) positions. These switches allow the
user to define 16-bit data words and memory addresses to be
used in conjunction with other switches on the console.

6.2 LOADING PROCEDURE

The loading procedure is preformed as follows:

1. Place the COMPUTE switch to IDLE.

2. Enter the device number now being loaded from into the DATA
SWITCHES right justified.

3. Place the RESET/LOAD switch in the RESET position -- which
initializes the CPU.

4. Place the RESET/LOAD switch in the LOAD position -- which
brings the (optional) Bootstrap Loader into core memory
beginning at location hexadecimal SO.

5. Place the RESET/LOAD switch in the RESET position -- which
resets the CPU and all devices on the system. PSWl is also
set to hexadecimal 50 and PSW2 is set to O.

6. Place the COMPUTE switch to RUN and the CPU beings exe~ution
of the Bootstrap Loader beginning in memory location hexa­
decimal 50 which will boot in from the device specified in
the DATA SWITCHES.

6. 3 MODIFYING MEMORY FROM 'IRE CONSOLE

Any core memory location or programmable register can be modified as
follows:

6-7

-

I. Place the COMPUTE switch to IDLE.

2. Set PSwl equal to the location to be modified. Set the DATA
SWITCHES to the memory location desired, place the ENTER
switch to the ALTER position.

3. Enter the value to be stored in the DATA SWITCHES.

4. Place the ENTER switch to the STORE position -- which causes
the value in the data switches to be stored into the location
pointed to by PSWl. PSWl is automatically incremented by one.
PSWl is then assumed to be a virtual or actual address de­
pending upon the setting of the MAP bit in PSW2 (bit 14).

S. Keep entering new values into the DATA SWITCHES and toggling
the ENTER switch to STORE -- which stores data into sequential
memory locations.

6.4 READING OUT MEMORY FROM 'IHE CONSOLE

Any core location can be read out to the DISPLAY lights as follows:

1. Set the DISPLAY switch to MEM and the memory location desired
into the Dt\TA SWITCHES.

2. The contents of the location specified in the DATA SWITCHES
is then automatically displayed in the DISPLAY lights •

. A toggle switch located on the inside of ·the control panel
determines whether the location pointed to by the DATA
SWITCHES is an actual or virtual address (normally a virtual
address).

Setting the DISPLAY switch to MEM and the Dt\TA SWITCHES to any location
desired, that location will be displayed in the DISPLAY lights and up­
dated at a two-cycles-per-second rate. The user may arbitrarily change
the DATA SWITCHES to any address as the program is P.xecuting, and that
memory cell will be displayed in the DISPLAY lights at a two-cycles­
per-second rate -- even when the COMPUTE switch is in RUN and the pro­
gram is dynamically changing core locations.

6-8

(o t<; ~ f-oo {

multidata
multidat~
multidata·
multidata
multidata
multidata ,
mu ltidata ~·
multidata
multidata
multidat~
multidata .
multidata

· multidata
multidata

I

·multi data _
· multidata

multidata
multidat3
multidata
multidata

•

	000
	001
	002
	003
	004
	1-01
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	xBack

