6901 West Sunrise Biwd., Ft. Lauderdale, Fis. 33313 @ 306-587-2800 m

ENGINEERING LABORATORIES

Computer Reference Manual
SYSTEMS 72

Digital Computer

April 1972

@ Specifications Subject to Change Without Notice 8©1972 SYSTEMS Engineering Laboratories ® Printed in USA
@ Publication Number 301-720005-001 ® Price: $10.00

Typical SYSTEMS 72 Digital Computer and Teletype

LIST OF EFFECTIVE PAGES

The total number of pages in this manua! is 184, consisting
of the following pages:

Page Number Issue

Title Original
A Original
i through iv Original
1-1 through 1-12 Original
2-1 through 2-54 Original
3-1 through 3-10 Original
4-1 through 4-8 Original
A-1 through A-4 Original
B-1 through B-42 Original
C-1 through C-6 Original
D-1 through D-14 Original
E-1 through E-2 Original
-1 through F-2 . Original
G-1 through G-2 Original
H-1 through H-10 Original

1-1 through 1-8 Original

Section

SECTION |

SECTION 1l

SECTION 11

TABLES OF CONTENTS
Title
INTRODUCTION AND DESCRIPTION

Introduction

Purpose of Equipment
Optional Equipment
Physical Configuration
Functional Configuration
Control Panel
Power Turn on Procedure

Loading Procedures
Loading - No Optional Loader

Loading - Optional Loader
Modifying Memory From the Control Panel
Displaying Memory at the Control Panel
Hexadecimal Notation

CENTRAL PROCESSOR UNIT

Introduction
CPU Operational Phases
Instruction Format
Addressable Registers
Program Status Doubleword
Address Calculation
Relative Addressina
Relative Base Addressing
Indirect Addressing
Post-Indexing
Absolute Addressing
Instruction Repertoire
Branch Instructions
Load Instructions
Store Instructions
Arithmetic Instructions
Logical Instructions
Compare Instruction
Shift Instructions
Call Instructions
Input/Output Instructions
Other fnstructions
CORE/DISC MEMORY SYSTEM

Introduction
Basic Core/Disc Memory System
Memory System Functions
Core Memory
Dedicated Core Locations
Data Guard
Memory Parity Check
Memory Ports
Disc Memory

Page

1-1
11
12
12
12
18
18
1-10
1-10
1-11
1-11
1-12
1-12

21
241

24

2:5

29

29

29

212
2-12
212
2-12
2-14
2-21
2-28
2-32
2-:36
2-40
242
246
2-51
2-54

3-1
3-1
3-1
3-2
3-2
3-3
33
33
34

SECTION 111
(Cont'd)

SECTION IV

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX 1

IOTMOO®>»

TABLE OF CONTENTS (CONT'D)
CORE/DISC MEMORY SYSTEM

Actual/Virtual Memory Configuration

Memory Map Format

Memory Map Operation

Memory Map Update

Memory Traps
Sense Disc Rotational Position
Output Disc Track and Sector Address
Output Core Bank and Page Address
Page Transfer Terminator

INPUT/OUTPUT SYSTEM

Introduction
Dual Level Interrupt System
1/0 Priority
Interrupt Inhibit
Interrupt Clear
System Interrupts
Set System Interrupts
Sense System Interrupts
Memory Traps
input/Output Command List
Input/Output Instructions
Basic Input/Output Operation
PIN/POT 1/0 Capability

Glossary of Terms

SYSTEMS 72 Derivative Instructions

Sample Input/Output Program

Reference Tables

ASCI| Character Set and Hexadecimal Codes
SYSTEMS 72 Instructions - Alphabetical Listing
SYSTEMS 72 Instructions - Numerical Listing
Effective Address Calculation Times

SYSTEMS 72 Special Derivatives Instructions

Figuré

1-1
1-2

1-3
21
2-2
23
31
4-1

Table

1-1
1-2
21
2-2

LIST OF ILLUSTRATIONS
Title

Basic SYSTEMS 72 Digital Computer, Front View

Simplified Block Diagram - SYSTEMS 72 Digital
Computer

Front Panel Controls and Indicators

Block Diagram - CPU Operational Phases

Sequence Diagram - Effective Address Calculation

Calculation Diagram - Effective Address

Actual/Virtual Memory Configuration (Basic System)

Simplified Diagram - Input/Output System

LIST OF TABLES

Title

SYSTEMS 72 Options

SYSTEMS 72 Software

Condition Code Configurations for Basic Instructions
CPU Basic Instructions

Page

1-6

17
19
22
210
2-11
35
45

Page

1-3
14
2-7
2-13

LIST OF RELATED PUBLICATIONS

The following publications contain information not included in this manual, but necessary for a complete under-
standing of the SYSTEMS 72 Digital Computer.

Publication Title Publication No.
MA/10 Operating System Reference Manual 323-720001
Math Library Reference Manual 323-720002
FORTRAN [V Reference Manual 323-720003
MA/20 Reference Manual *323-720004
MAP Assembler Reference Manual 323-720006
BASIC Reference Manual 323-720007
Interface Design Manual 310-770000
CPU/Memory Maintenance Guide 303-780000
NOTE

(* Preliminary)

INTRODUCTION

PURPOSE OF
EQUIPMENT

SECTION |
INTRODUCTION AND DESCRIPTION

This manual consists of four sections and three appendicies that describe the SYSTEMS
72 Digital Computer. Detailed reference information is provided for the major functional
areas of the equiprnent, such as the central processor, core/disc memory system, and
input/output system. The detailed information describes the instruction set used by
the central processor, the actual/virtual memory concept used by the core/disc memory
system, and the input/output programming used by the input/output system.

The purpose of SYSTEMS 72 is to offer the user a low-cost computer capable of
executing large-scale programs while operating with a variety of input/output (1/0)
devices. Modular expansion of core memory from 4096 sixteen-bit words for the basic
configuration of the SYSTEMS 72, to 65,536 words in 4096-word increments, offers
the user an effective trade-off in the higher cost of core versus the speed and efficiency
at which the user's programs are executed.

Major features offered by the SYSTEMS 72 are as follows:

4096 word core memory expandable to 65,536 words
880-nanosecond core memory cycle time
32,768-words of programmable memory, expandable to 65536 words

words.
Virtual programmable memory to actual memory map
Core memory write protection
Automatic program fragmentation
Dynamic program relocation

Power fail safe

Only single-word instructions

User-defined instructions

Privileged instructions

Five-bit operation field

Eight addressable registers

Relative addressing, forward and backward
Base-relative addressing

Single-level indirect addressing

Post-indexing

Multilevel interrupt system

Rapid context switching

I0P-oriented input/output system
Aysnchronous, demand-multiplexed input/output
Data and command chaining

Wide variety of hardware options and /O devices

® 0 00000 S PONOE OO OGEYG OFONOO

65,536-word memory extension disc, expandable to 131,072 words or 262,144

1-1

OPTIONAL
EQUIPMENT

PHYSICAL

CONFIGURATION

FUNCTIONAL
CONFIGURATION

A wide variety of hardware options and 1/O devices are provided for use with the
SYSTEMS 72. Hardware options include priority interrupts, real-time clocks, memory
parity, high speed registers, automatic bootstrap loader, high speed multiply/divide,
console interrupt and direct access to memory. Peripheral 1/0 devices include paper
tape punch/reader, card reader, various teletypes impact printers, disc drives, 7- and
O-track tape transports, and asynchronous data sets.

Table 1-1 lists the optional equipment available for use with SYSTEMS 72.

The basic configuration of SYSTEMS 72 is illustrated in figure 1-1. A card frame

assembly mounted behind the control panel houses the circuit cards that comprise the
central processor unit (CPU), core/disc memory system, power fail safe, and teletype

controller. The first 4096-word core memory module, which is supplied with the basic
system, is also installed in the card frame assembly. The card frame assembly will
accomodate an additional Model 7230 Core Memory Module; however, further core
memory expansion requires the Model 7231 Memory Extender Chassis.

In addition to the teletype controller and power fail safe, five 1/O slots are provided
in the card frame assembly to accomodate hardware options or controllers for the various
1/O devices. If more than five slots are required for the hardware options or device
controllers, the basic system capability is expanded by the Model 7271 1/0 Extender
Chassis.

The Model 7220 High Speed Multiply/Divide is installed in a dedicated slot in the card
frame assembly. The same slotkmay also be used for other customer-required optional
instructions. Another dedicated slot is provided for the Model 7240 Direct Access
Channel or the Model 7241 Multiplexed Input/Output Processor.

Disc memory capacity of the SYSTEMS 72 may be increased by installing one of the
Model 7235 through 7236 Disc Assemblies in place of the 65,536-word disc supplied
with the basic system. Use of a larger disc memory in conjunction with the Model
7232 Memory Map Extension increases the programmable memory capacity of the
system to 65,536 words.

The exact rack-mounted configuratioh of a particular system depends upon the number
of rack-mounted peripheral devices, and whether or not the system requires the Model
7231 Memory Extender Chassis and Model 7271 1/O Extender Chassis.

The functional configuration of the basic SYSTEMS 72 is illustrated in figure 1-2. Data
processing is controlled by the CPU, which receives input data from the control panel,
teletype, or other I/O device. The CPU subsequently transfers the information to the
core memory by way of the core/disc memory system.

Table 1-1. SYSTEMS 72 Options

Model Description Model Description
4005 61-Inch Cabinet 4531 9-Track Tape Transport
4021 86-Pin Card Extender 4535 7-Track Tape Transport and Controller
4022 60-Pin Card Edge Connector 4536 7-Track Tape Transport
4023 -Conductor Cable 4590 Magnetic Tape Reel
4024 60/25-Pin Connector Cable Assembly 4701 Asynchronous Data Set and Controller
4103 Paper Tape Punch/Reader and Controller 4760 General Purpose 1/0 Interface
4211 Card Reader and Controller 7200 SYSTEMS 72 Basic Computer
4302 ASR-33 Teletype and Controller 7210 Memory Parity Trap Card Assembly
4303 KSR-33 Teletype and Controller 7211 Real-Time Clock Card Assembly
4313 ASR-35 Teletype and Controller 7212 High Speed Register Card Assembly
4314 KSR-35 Teletype and Controller 7214 Automatic Bootstrap Loader Card Assembly
4361 Buffered Impact Printer and Controller 7220 High Speed Multiply/Divide Card Assembly
4412 24 Megabyte Disc Drive and Controller 7230 4K Core Memory Card Assembly
4414 48 Megabyte Disc Drive and Controller 7231 Memory Extension Chassis
4415 2.4 Megabyte Disc Drive and Controller 7232 Long Map Card Assembly
4417 24 Megabyte Disc Drive 7235 131K-Word Disc Assembly
4419 48 Megabyte Disc Drive 7236 262K-Word Disc Assembly
4420 2.4 Megabyte Disc Drive 7241 Multiplexer Input/Qutput Processor
4481 2.4 Megabyte Disc Pack 7242 MIOP Expansion
4485 48 Megabyte Disc Pack 7245 Direct Access Interface Card Assembly
4499 24 Megabyte Disc Pack 7250 Console Interrupt Card Assembly
4530 9-Track Tape Transport and Controller 7251 Priority Interrupt Pair Card Assembly
7271 /O Extender Chassis
72910 MA/20

TABLE 1-2. SYSTEMS 72 SOFTWARE

CODE NUMBER TITLE

AAA 8000000

AAB 8000001 MA/10 Kernel

AAC 8000002 MA/10 Programmed IOP

AAD 8000003 Loader TextLister

AAE 8000004 Symbolic Editor

AAF 8000005 MA/CC1

AAG 8000006 Symbol Concordance

AAH 8000007 MA/10 Linking Loader

AAI 8000008 MA/10 System Generator

AAJ 8000009 MAP Assembler

AAK 8000010 BASIC Compiler

AAL 8000011 FORTRAN IV Compiler

AAM 8000012 MA/10 Virtual Non-Linking Loader (32K)
AAN 8000013 Debug - Basic

AAQ 8000014 Debug- EXTENDED

AAP 8000015 MA/10 System Loader (32K)

AAQ 8000016 MA/1010CS

AAR 8000017 Card Reader Handler

AAS 8000018 Line Printer Handler

AAT 8000019 MA/10 Fixed Head Disc

AAU 8000020 MA/10 System INITIALIZE

AAV 8000021

AAW 8000022

AAX 8000023 MA/10 Virtual Non-Linking Loader (65K)
AAY 78000024 MA/10 System Loader (65K)

AAZ 8000025 MA/10 Movable Head Disc Handler

ABA 8000026 Monitor Services

ABB 8000027 MA/10 SYSPAGE

ABC 8000028 MA/10 10CS Dibs/Cibs

ABD 8000029 MA/10 Teletype Handler

ABE 8000030 MA/10 Cassette & Magnetic Tape

ABF 8000031 MEDIA

ABG 8000032 D.P. Fixed Pt. Two's Complement and D.P. Fixed Pt. Absolute
ABH 8000033 Fl. Pt. Load and FI. PTStore

ABI 8000034 D.P. Fixed Pt. Load & D.P. Fixed Pt Store
ABJ 8000035 Floating Point Normalize

ABK 8000036 Double Precision Fixed point Add, Subtract
ABL 8000037 Single Precision Fixed Point Multiply
ABM 8000038 Single Precision DIV

ABN 8000039 Floating Point Overflow

ABO 8000040 Floating Point Add, Subtract

ABP 8000041 Fl. Pt. Comp. and D.P. Fixed Pt. Comp
ABQ 8000042 Fl. Pt. Multiply and D.P. Fixed Pt. Multiply
ABR 8000043 Fl. Pt. Divide and D.P. Fixed Pt. Divide
ABS 8000044 Binary Integer to ASCII Conversion

ABT 8000045 ASCII to Binary Integer Conversion

14

TABLE 1-2. SYSTEMS 72 SOFTWARE (Cont’'d)

CODE NUMBER TITLE

ABU 8000046 ASCII to Floating Point Conversion
ABV 8000047 Floating Point to ASCIl Conversion
ABW 8000048 Floating Point Square Root

ABX 8000049 Floating Point Natural Logarithm
ABY 8000050 Floating Point Common Logarithm
ABZ 8000051 Floaing Point Exponential (eX)
ACA 8000052 Floating Point Tangent

ACB 8000053 Floating Point Sine, Cosine

ACC 8000054 Floating Point Ar¢ Tangent

ACD 8000055 Floating Point Hyperbolic " Tangent
ACE 8000056 Random Number Generator

ACF 8000057 Floating Point to Fixed Point Conversion
ACG 8000058 Fixed Point to Floating Point Conversion
ACH 8000059 CPU Confidence Test

ACI 8000060 Full Memory Test

ACJ 8000061 TTY Read;Punch Test

ACK 8000062 Disc File Test

ACL 8000063 Map Register Test

ACM 8000064 Upper 4K Memory Test

ACN 8000065 DAC Test

ACO 8000066 Absolute Dumper

LiB 801000 10CS’ Library

LIB 801001 Math Library

16

SYSTEMS 72

.O.‘I‘ IOQQI
CONTROL

esee & INDICATOR
PANEL

DISC
MEMORY

16

Figure 1-1. Basic SYSTEMS 72 Digital Computer, Front View

18

CONTROL PANEL

POWER TURN
ON PROCEDURE

Information to be processed and transferred to the control panel, teletype, or other
I/O device is read from the core memory under control of the core/disc memory system.
The information is subsequently transferred to the CPU for output to the control panel
or 1/0 device.

I/O data transfers are accomplished under control of an Input/Output Processor (IOP).
The Input/Output Processor (IOP) is provided in the basic system as a Programmed
Input/Output Processor (PIOP) or optionally as a hardware Multiplexed Input/Output
Processor (MIOP). The PIOP is software-implemented, it appears to be a separate entity
to both the user's program and the operating system. To set up a data transfer, the
user's program specifies the direction and size of transfer, the appropriate location in
virtual memory, and the action to be taken upon termination of the transfer. The
Multiplexed Input/Output Processor (MIOP) is a hardware option that can be used to
replace the PIOP. It serves to increase the bandwidth to about 700,000 words per second.
The addition of this option has no effect on programs already written.

Several busses are used to facilitate transfer of data and address information. Data
transfers between the CPU and control panel or |/O device are accomplished by way
of the program 1/O data bus, while data transferred between the CPU and core/disc
memory system is exchanged by way of the memory data bus. The source of the data
input to the CPU, or destination of the data output from the CPU, is defined by an
effective address, which is calculated by the CPU and output on the associated bus.

Programs stored in the core or disc memory control the processing sequence. The
core/disc memory system, under control of a small core-resident program which retrieves
information required by the current program from the disc memory and stores the
information in core for use by the CPU during processing. Information not required
by the current program is transferred from core to disc.

Operator intervention into the processing sequence is by means of the switches located
on the control panel, teletype, or other 1/0 device.

A Direct Access Channel (DAC), or a Multiplexed Input/Output Processor {MIOP) are
provided as hardware options. The DAC permits direct data transfers between an 1/0O
device and the core memory, so that the transfer is not under control of the CPU.
This transfer rate is 1,000,000 words per second. The MIOP allows for the servicing
of up to 64 devices concurrently.. The bandwidth here is 700,000 words per second.

The operator control panel contains the controls and indicators necessary to display
the current status of the computer, cHange the status as required, and alter wie various
registers and memory. Certain switches and indicators are also provided to facilitate
maintenance of the computer. Figure 1-3 illustrates the controls and indicators on the

operator control panel and provides a brief description of the function of each control
and indicator.

To apply power to the basic configuration of SYSTEMS 72, connect the power cord
from the system power supply to a source of 115-volt ac, single-phase power. Set the
circuit breaker on the ac distribution panel in each rack to ON..

+"DNLLNDIXI S1 L1 SV NVHOOUd ¥ 40

“704 135 N338 SVH HOLIMS TVNEIINI 21907 DNISSI0H IHL MOTT04 NVD INLLNOY
3H1 030IAOBd ‘05 IVWIDIGYX3H NOILYDIOT LV ONINNID 3IVHL V LVHL 08 ‘NOILNOIXI NOLLONYLSNI
*38 AHOW3W N) G3HOLS 38 11IM HIAVD') dVHISI1008 AU3IAI U314V 034073AI0 S| LANHYILNI NV
TVNOILIO “0V07 0L 135 NIHM "0 OL L3S 51 ZMSd ONV ‘08 NOILISOd FOVHL NI '1id3 NI L4OUYILNI 3108
T¥IIIIAYXIH OL L35 St IMSd "LIS3Y IUV SIDIAIQ LNdLNO “NOD AHVLINIWON V $§340T3A30_LINYUYIINI OL
. . .) TYNOLLAO) YIAVOT dVHLSL008 ..

. HILIMS ONILLIS "SLANHYTANI NdD STOULNCD

/LNdNI 1TV ANV WILSAS “1353Y OL 135 NIHM o+ WVHOOHd Y IYNOILIO S1 38NLY34 3IVEL .+ STLON

dVH151008 HL 40 ONIAYO ONY L35I WILSAS STOMINCD
“3NO AS GAANIWIHONI 1 TNMGd ONV *INSd
Al 031419345 NOILVI0) AHOWIN Ni 038045 SI
SIHILIMS VAVG OLNI 135 NOLLVWHO4NI “THOLS
OL L3S NIHM "HOLIMS TYNUIINI A8 03103138
H31SO3U NI GIYOLS S) STHILIME YLIVA OLNI

138 NOLLVIOSNI ‘U3LTV 135 N3HM *3701

04 135 $1 ALNWOD NIHM QWAL TV 73 OL NOIL
W30} AYOWIW HO HALSIDIY IYVMOUVH SMOTIV

SONVNILNIVIW ONY

NOUYHILWV :<E¢°¢h2-¢90 G3SN S1 HOLIMS
3HL 40 NOILISOd 3701 3HL 'SLTVH ONV NOLL
“ONYLSNI INO $31NJ3X 3 TdD 'NOLLISOd d31S
N1 ‘ZMS3 ANV TNEd A8 G3N1430 5V NOLL
-NO3X3 SNIDIB WY HOOYd ‘FiTH OL 135 NIHM
. 40 300w $0uINCD

3AILYHIONI §1 %2012 JHL ‘3015)

“JINNOSYId IONVYNILNIVIW AH 350 HO4 ANBVWING
§1 300N 4315 'd31S 01 43S S) HOLIMS INLL HOVA
2019 ANO AIINVAQY SI NOILINYLSNI ‘3701 N
SINANOD HLIM ‘NOILNOIX I WV HOOUd ONING
839072 SNONNILNDOD 90713A3Q OL NNY OL 13§
“ND0II WILSAS *HIW-¥ 40 IQOW STOHLNOD

- “NNY 0L OV N3HL “TIVH
0L 3LNAWOD ONILLIS AH QILHYLSIY 30 AVA
TN OL HOLIMS AV 14510 ONILLIS AB GINIWVXS 38 AVN
NOLLONYISNI LXIN 03103130 SISTHOLIMS VIVO OINI ¢
133 SSIHAAY NIHM SLTVH NdD "NOILISOd LTVH ¥ NI
"HOLIMS
L35387GV01 HLIM NOLLONNINOD NI 030v0] 38
AVA WYHOOHd 4VH1S1008 NOILJO ‘NOILISOd T NI

AN3IWJIND3 OL ¥3MOd OV AHVIIHd STOHLNOD

“HILSIDIY ONIIUOM NdD - M. s owas vy T
‘HILSIOIH ONIIHOM D - W
4315193U S53WAAV 3110443 - § 1Unawo> 1105803 aviasia TeNEN anna o uimod

‘4315193H NOILINBLSNI - T

'Z QYOM SNLVLS WYHDO0Yd - NS4 v
‘L GHOM SNLYLS WYHOOUd * IMSd

i3V a3¥ALIV 7 ‘0 21901 v

| SLNIS3dIH NOLLISOd NMOG ONY | 31907 ¥

ﬁ SLN3SI4dIY NOLLISOd 3N "INV 104 INOD NO

SIHOLIMS HIHLO HLIM AISN IUV LVHL SISTINOAY

! p—— AHOWIW ONV SOHOM Y1Vva 11891 3NHI30

38 AVW LYHL SHIL1S193H 'H3ILTV OL HILNI
ONILL3S GNY “TTA1 01 I1N4WOD DNLLLIS
'0341S30 SV STHOLIMS VIVO ONILLIS ‘HILSIDIY
A3YISI0 INILII IS AB 0IHILTY IV SHILSIDIY
11Nd1n0 ¥30av) sNE 3 -3

‘MILSIDIY ONINHOM NdD - K

'HILSIDIY ONINHOM NI - W

43151934 SSIHAAY IAILIIAII-T

H31S1934 NOLLONYISNI - T

"NOLLINHISNI LNLNO HO LNANI QIWWYHO
“Otd ONIHNG ONIJILS ATIVNNYIN 3TIHM

ATTNO 3AILYHILO "IDIAIA WOH4 118 VN

ANV S3000 NOILIONGD ONINIVLNOD SINIT
SNLYLS LNLNO/LNANI QIWWVHOOHd - TT1d
NOLLONHLSNI 1N4LNO0 YO LNdNI OINWYHD
“OYd ONIHNA ONIHAALS ATTVONYN 3TIHM
ATINO IALLYY IO 'INAI0 03SSIHAAY 04 SINIT
V1vd 1N4LN0/LNANI OIWNVHOOHd - GOId
301A30 O/1 01 SANN

$S3IHAAY 1NdLNO/LNINI QIWWVHDOH - YOI
‘3HVY QIAVILSIA 38 AVW LVHL

$3SSNB ANV SHILSIDIY "LIVH SS3UAAY HO ‘Ov01
4YH151008 TYNOILJO GIHI LTV HO '03AVI4SI0 38 OL
H31S1934 S103135 HILIMS 'SUILSIDIY TYNHILNI
ONY S3SSAH 40 SINIINOD AV14SH0 SHOLYIION!

‘€ W34S1934 ALIVILN - EY
‘Z¥31S1938 ALITAN - T8
‘LHILSIDIY ALINLN - T8
— ‘43151934 35VE B
"H31S193Y X3ONI - X
‘HILSIDIW ILLIWHLIYY 03ONTLXT -T
"HILSIOIY DULINHLINY - ¥
"H3LS5I93Y Viva -G
‘SIHOLINS
V1IVQ AB 03NI330 NOILYIOT AUOWIW - WIR
“TMEd A8 G3NI330 NOLLINHLSNS LX3N - IN
‘3IYVY 0IAVI4SIO Viva
‘A1VH ANOO3IS/STTIAD NIL ¥ LV ATIVIINYNAD
03AV14SIA S} VLva ‘NNH Lv FINANOD H1tM
“3701 NI St HOLIMS TINAW0D SY ONOTI SV ‘3L
$193Y 031937138 YO "SIHOLIMS VAVQ A8 A3NIFIA
NOILYI0T AYOWIW 40 AV14SI0 JILVLS IIAOHd

*135 N3HM 300N JAVIS

ONY 13534 NIHM 300W BIISVW NI TTd0 - SN
*3A0W dYW N) 11dD - SV

‘G3LIBIHNI YV S1SINDIY LANYHALNI - T
‘a3LIGHN

JHV S1SIND3IH IDIAHIS LNdLNO/LNdNI o1
*135 NIHM 1IN00Yd Y101

ANV L3S3H NIHM WNS Y1907 -
"3A0W IONINDIS IUVAWOI NI NdD -

"A3S$3V0V DNIIE IV ZMSd ONV LMSJ M3N ONY
‘G3YOLS DNIZE 3V ZTMSd ONV LMSd ANIHBND
“@34HN000 SVH LN HYILNI SILVOIANI - INT

___ "NOLLONYLSNI

ANIHHNO ONILNIAXA $1 7D SILVIION! - NXT
“a31NI3X3 39 01 NOILINHISNI 40 SSIHOOY JAIL
23443 ONILYINDTYI SI 114D SALVYIIANI - Ealel

1352 3000 NOILIGNO3D - -
NOILN3X3
‘135 L 3002 NOILIANOD - 13D - IGvis
:SN1V1S WYHSOU 3LVOION! - ZNEd NOILONHISNI J0 DNINNIOI8 mw#‘D.OZ._ZO‘_m._.M%wKW

'631N03X3

S) WYHO0YJ SV 031LVAdN ATIVOILVWOLNY

“INNOJ WYHOO0Yd LN3HENDI SILVYIIGNI - INSd
a3 40 SNLVLS INIHHND LVIIAN)

NOILINHLSNI H3V3 30 3SVHd 31VDIaNI

"53UNA300LHd IONY
“NILNIVIN ONIHNG HOLIMS ¥J0TD ONISN Q3ddILS

‘INNILNOD OL NNY OL ATIVNNYN 38 AVIN 'S3SVHd LdNYBILNI ANV
3701 WOHS 135 38 1SN HOLIMS JLNMWOD *FINTING "ILVINOTYO 'THVIS 40 S43LS ILVIIGN)

31V1S ONILIVM ¥ N1 §1 7135 STLYIIONT

19

Figure 1-3. Front Panel Controls and Indicators

LOADING
PROCEDURES

LOADING - NO
OPTIONAL LOADER

Loading procedures for SYSTEMS 72 depend upon whether the configuration is
equipped with a Model 7214 Automatic Bootstrap Loader. If the optional loader is
not installed, program information is assumed to originate at the teletype. In systems
where the optional loader is installed, the DATA SWITCHES on the control panel are
used to select the peripheral device from which the program information will be loaded.
The first set of procedures listed below are for systems without the optional loader,
and the second set are for systems with the loader.

a. On the computer control panel, set the controls as follows:

SWITCH SETTING

CLOCK RUN

ALTER/STORE OFF = Center position
INTERNAL PSW 1

DISPLAY OFF

CONSOLE OFF = Center position
COMPUTE IDLE

RESET/LOAD) OFF = Center position
DATA OFF

b. Momentarily set the RESET/LOAD switch to RESET.

c. Key in the bootstrap loader by sequentially setting the DATA SWIiTCHES
to the hexadecimal values listed below and momentarily setting the ALTER/STORE
switch to STORE.

MEMORY LOCATION HEXADECIMAL VALUE
50 0B5F
51 0960

*52 * 0608
53 0803

*54 *0834
55 1255
56
57
58 005A
59 0000
BA * 0148
58 0900
5C 2700
5D 0F03
5E 3756
5F 0200

60 0055

LOADING
OPTIONAL LOADER

MODIFYING
MEMORY FROM
THE CONTROL
PANEL

In this example, the memory locations that have asterisks (52, 54, and 5A) are configured
for a device on channel 8. If a device is on another channel, the values of the memory
slots would change. Example: Paper reader on channel 'B' 52=060B, 54=8037, and

5A=014B.

d.

b.
to RESET.

Momentarily set the RESET/LOAD switch to RESET.

Install appropriate punched paper tape in the teletype paper tape reader.
Set COMPUTE switch on computer control panel to RIIN,

When tape stops, set COMPUTE switch to IDLE.

Momentarily set RESET/LOAD switch to RESET.

Set DATA SWITCH 7 to the UP position.

Momentarily set ALTER/STORE switch to ALTER.

Set COMPUTE switch to RUN to start program from location X'0100'.

On the computer control panel, set COMPUTE switch to IDLE, and the
INTERNAL Switch To L.

Momentarily set RESET/LOAD switch to RESET, then to LOAD, and back

Set the appropriate device address into the DATA SWITCHES right justified.

Install punched paper tape, magnetic tape, etc. on appropriate peripheral

Set COMPUTE switch on compute: control panel to RUN.
When device stops, set COMPUTE TO IDLE.
Momentarily set RESET/LOAD switch to RESET, then to LOAD.

Set COMPUTE switch to RUN to start program from location Xx'0101".

Any programmable register or memory location may be modified by operating the
switches on the control panel as follows:

a.

b.

Set the COMPUTE switch to IDLE and the INTERNAL switch to PSW1.

Set DATA SWITCHES to hexadecimal address of desired memory location

and momentarily set ALTER/STORE switch to ALTER. This sets program status werd
1 (PSW1) to the memory location to be modified.

1-11

112

DISPLAYING
MEMORY AT
THE CONTROL
PANEL

HEXADECIMAL

NOTATION

c. Set DATA SWITCHES to hexadecimal value to be stored in selected memory
location, and momentarily set ALTER/STORE switch to STORE. This stores the selected
value in the location defined by PSW1, after which PSW1 is automatically incremented
by one. (The MAP indicator in the PROGRAM STATUS DOUBLEWORD on the control
panel indicates that the address defined by PSW1 is virtual when the indicator is set
and actual when the indicator is reset.)

d. To store additional hexadecimal values in sequential memory locations, set
each new value into the DATA SWITCHES and momentarily set the ALTER/STORE
switch to STORE.

Any core memory location may be displayed on the DISPLAY indicators by operating
the switches on the control panel as follows:

a. Set the desired memory address into the DATA SWITCHES.

b. Set the DISPLAY switch to MEM to display the contents of the location
specified by the DATA SWITCHES. (A toggle switch located inside the control panel
determines whether the memory location selected by the DATA SWITCHES is an actual
address or a virtual address.)

In addition to the memory display switch setting, there are settings for the display
of any hardware registers (memory locations 0 - 7)

Note
The DISPLAY indicators are updated at a 10-cycle-per-second rate. This allows the user
to change the DATA SWITCHES to any memory address as the program is executing
and display the contents of the memory location in the DISPLAY indicators.

Throughout this manual and related documents, memory address are referenced in
hexadecimal notation, which is indicated by the letter X followed by four characters
in single quotation marks. Each character corresponds to a four-bit group of basic 16-bit

word used by SYSTEMS 72. An example of hexadecimal code and a coded 16-bit word
is provided below,

HEXADECIMAL HEXADECIMAL

CODE VALUE .CODE VALUE
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 o
0101 5 1101 D
0110 6 1110 E
0111 7 111 F
0101 1111 0011 1001 = X'65F39' in hexadecimal notation

=5

= F

=3

-— =9

INTRODUCTION

CPU OPERATIONAL
PHASES

SECTION It
CENTRAL PROCESSOR UNIT

The Central Processor Unit (CPU) operates under control of an instruction repertoire
consisting of 27 basic instructions. (Five optional instructions are reserved for
user-selected functions.) Fifteen of the basic instructions are register-expandable, which
allows the CPU to operate directly on eight addressable full-word registers. In addition,
the CPU allows the user to make use of features such as: condition codes, master/slave
operating modes, double indexing, displacement indexing, indirect addressing, and
relative addressing forward and backward.

Rapid context switching, in which the CPU changes from the current program
environment to a new program environment, assures efficient handling of interrupts
and smooth changes in operating mode.

The CPU has four operational phases: start, calculate, execute, and interrupt. These
phases correspond to the four INSTRUCTION PHASE indicators located on the contro!
panel. At any given time, the CPU is operating in one of these phases; however, during
normal processing more than one indicator may be on due to the speed at which data
is being processed.

Figure 2-1 is a general block diagram of the four operational phases. When first intialized,
the CPU enters the start phase where it remains until the COMPUTE switch is set to
RUN or STEP. This action initiates an instruction fetch cycle, which obtains an
instruction from memory, stores the instruction, and causes the CPU to enter the

calculate phase.

Juring the calculate phase, the CPU determines an effective address that is used to
define a specific memory location, or provide additional information regarding the
operation to be performed. After calculation of the effective address, the CPU enters
the execute phase and performs the operation specified in the instruction. When the
instruction has been executed, the CPU returns to the start phase; and if the COMPUTE
switch is set to RUN, it acquires another instruction. The process is then repeated for
the new instruction. (If the COMPUTE switch was initially .set to STEP, it must
again be set to STEP to execute another instruction.)

The sequence from start, to calculate, to execute, and back to start is the normal
processing cycle for the CPU. In the run mode, this cycle will continue until an interrupt
is detected, indicating that the CPU is to halt its current operation in order to service
the requesting device. A normal interrupt cycle requires the CPU to complete the current
instruction, so that the interrupt phase is entered from the execute phase. Two other
conditions will also cause the CPU to enter the interrupt phase:

e Receipt of an interrupt request after the CPU has been halted in the start
phase.

° Detection of a memory trap by the core/disc memory system. The trap
condition causes the CPU to halt its current operation in the start, calculate,
or execute phase to process the memory trap.

21

P == — = e —— ——
|
|

"INIT NIX0OHE MO1704 SdvHL AHOW3IW HO SLdNHYILNI
"ANIT Q1708 SMOT704 ONISS300Hd TYWHON :S3LON

—r—— —— — - ———— =

SNLVLS NVHD
-Odd M3N QvO1 *
SNLV1S WVYHOOHd
LN3IYYND 3HOLS *
3SYHd LdNYHILNI

_

SNGILONYLSNY
Jisva LZ ¢
ISVYHd 31N23X3

e—

ONIX3AaN! 1S0d ¢
ONIsSs3daav
1034HIaN]| ®
ONIss3daav
JAILv3Y 3sva e
ONiISsayaav
JAILYI3Y @
ISVHd 3LVINITIVI

-

L4

3T70AD 3HOLS
370AD H3LV
HJ134
NOILONYILISNI ®
37JAD AVIdSIQ ®
3SVHd LHVL1S

"

’
|
|
|
|
|
|
|
|
$

1HV1S
Nndd

Block Diagram - CPU Operational Phases

Figure 2-1.

2:2

INSTRUCTION
FORMAT

Regardless of the conditions under which the CPU enters the interrupt phase, processing
of the interrupt is the same. First the CPU stores the current program environment
defined by the program status doubleword, which is displayed by the PROGRAM
STATUS DOUBLEWORD indicators on the control panel. A program status doubleword
associated with the interrupting device is then transferred from memory to the CPU
and the CPU returns to the start phase to begin processing the interrupt.

Processing performed by the CPU is accomplished under control of memory reference
instructions, which are in the single-word format indicated below.

OPERATION
R|1|x s| DISPLACEMENT

COPE, | T
0 1 2 3 45 6 7 8 9 1011 121314 15 POSITION

The various fields of the memory reference instructions are used to specify the operation
to be performed by the CPU and the effective address required during execution of
the instruction. Specific functions associated with each field of the instruction are

indicated below.

Fieid

R

OPERATION

Function

Relative Addressing - Specifies that the address

is relative to the program count in program status
word 1 (PSW1). PSW1 is displayed on the front panel
by indicators 0 through 15 of the PROGRAM
STATUS DOUBLEWORD.

Indirect Addressing - Specifies an indirect
reference is to be used in calculating the effective
address.

Post-Indexing - Specifies calculation of an address
relative to the index count stored in the index (X)
register. X-Register is displayed by the DISPLAY
indicators in conjunction with the DISPLAY switch.

Operation Code - Specifies the operation next be executed
by the CPU. The current contents of the instruction ()
register are displayed by the DISPLAY indicators with the
DISPLAY switch in the NI position.

Base-Relative Addressing - Specifies the sign of the
displacement when the R-bit is set, indicating relative
addressing. Specifies pre-indexing by adding the Base
Register when the R-bit is reset.

2-3

ADDRESSABLE SYSTEMS 72 contains eight full-word addressable registers. In configurations without
REGISTERS the Model 7212 High-Speed Register option, the registers occupy the first eight core
memory locations. In configurations containing the high-speed register option, the
addressable registers consist of eight integrated-circuit, flip-flop registers that increase
the speed and efficiency of the CPU. In either case, the registers are always addressable
as absolute locations X'0000' through X'0007'. (Effective addresses in this range are
not mapped.)
All eight addressable registers have general utility and several perform special functions.
A brief summary of each register is provided below:
Register Name Address Special Function
A Accumulator x'0001" Store result of arithmetic,
logical, compare, and shift
operations.
B Base Register x'0004' Base-Relative Addressing
D Data Register X'0000' Store 16-bit data words output
to, or input from, the
programmed input/output data
bus.
E Extended x'0002' Used as the low-order extension
Accumulator of the accumulator (A) register
during double register shift
operations, and optional
Multiply/Divide Instructions
X Index Register x'0003' Post-indexing and looping
R1 Utility Register 1 x'0005' None
R2 Utility Register 2 x'0006' None
R3 Utility Register 3 x'0007' None

24

DISPLACEMENT Address Displacement - Specifies the displacement to
be used in calculation of the effective address.

Several instructions executed by the CPU use certain fields for special purposes. For
example, conditional branch instructions are incapable of indirect addressing and
post-indexing, s¢ for these instructions the | and X fields are used tc mask the condition
codes. In addition, a branch return and clear instruction does not include post-indexing.
In this case, the X field indicates whether the highest active interrupt is to be cleared.

PROGRAM STATUS

The program status doubleword, which contains the current program environment is
displayed on the PROGRAM STATUS DOUBLEWORD indicators on the control panel.
The format for the two words is illustrated below:

DOUBLEWORD

Program Status Word 1 (PSW1)

PROGRAM COUNTER
I N N O A O O T T S Iy |

01 2 3 45 6 7 8 9 101112131415

Program Status Word 2 (PSW2)

cle slshhjim]m
clc mim|oli]a]s
U I e kN PR P

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3

Since the program status doubleword represents a summary of the current program
environment, the CPU is able to transfer control rapidly from one program to another.
The transfer process, which is referred to as rapid context switching, increases the
efficiency of SYSTEMS 72 in processing interrupts and transferring control between
user programs and the operating system.

Rapid context switching occurs during the processing of interrupts, memory traps, or
execution of a Call 1 or Call 2 instruction. If one of these events is detected, the
current program status doubleword is exchanged for a new doubleword pertaining to
the routine being called. After the interrupt has been processed, a branch return and
clear instruction is used to return control to the original program status doubleword.

As indicated in the diagram of the program status doubleword, PSW1 contains a program
count that indicates the memory address of the next instruction to be executed, PSW1
steps sequentially with every instruction execution, unless redirected by a branch
instruction, a call instruction, an interrupt, or a memory trap. Program status word
2 (PSW2) defines the program operating environment through a series of status bits.
The purpose of each status bit is discussed below:

Bits Function
CCt1 and CC2 Condition _Codes - Indicate the result of an

instruction execution or during programmed
input/output operations the status of the
peripheral device. Instructions that alter

the condition codes are defined in table 2-1.
Interrupts also alter the condition codes.

25

SM1 and SM2

101

MAP

MS

26

Functions

Compare Sequence Mode - Sequence mode 1 (SM1)
places the CPU in the compare sequence mode, in
which only the compare instruction is allowed to
alter the condition codes. During the compare
sequence mode, the result of each comparison
combines logically with the current condition

code settings as controlled by sequence mode 2 {SM2).
If SM2 is set, the bits destined for the condition

codes form the logical OR in which logical ONES

are developed in those bit positions where either
or both inputs are logical ONES. If SM2 is reset,
the bits form the logical AND in which

logical ONES are developed only in those bit
positions where either, but not both, operands
contain logical ONES.

Input/Output Inhibit - 10l blocks all input/output
service requests when set. The software-implemented
programmed input/output processor (PIOP) norinally
allows input/output service requests to take

priority over interrupt requests, which signal the
end of a data transfer. With 101 set, the low
priority interrupt requests are allowed, but all
input/output service requests are inhibited.

(Refer to Section IV for a discussion of the
interrupt system.)

Interrupt Inhibit - !l blocks all interrupt

service requests, but not input/output service
requests. Blocking the interrupt request

prevents an interrupt from becoming active, but
does not prevent an armed interrupt from entering
the waiting state. (Refer to section |V for

a discussion of the interrupt system.)

Mapped Mode - MAP allows a memory map in the
core/disc memory system to translate program

addresses in virtual memory to actual addresses
in core memory. All programs are usually mapped. (Refer

to section Ill for a discussion of the core/disc memory
system.)

Master/Slave - MS prevents execution of

privileged instructions while the CPU is

in the slave mode (MS reset). The instruction
repertoire contains four privileged instructions;

PIN, POT, BRC, and CAL1. The operating systems always
operate with MS reset; user programs normally do not.

Table 2-1. Condition Code Configurations for Basic instructions

Instruction

Condition Code Configuration

POT =00

PIN = 01

AND = 02

LOR =03

EOR =04

LDD =08

LDA =09

LBY =0A

LDX =0B

LDB=0C

Function of Peripheral Device

Function of Peripheral Device

ccl cc2
1 1 A REGISTER <0
0 0 A REGISTER=0
1 0 A REGISTER >0
ccl cc2
1 1 A REGISTER<O
0 0 A REGISTER=0
1 0 A REGISTER>O0
ccl cc2
1 1 A REGISTER <u
0 0 A REGISTER=0
1 0 A REGISTER>O0
ccl cc2
1 1 D REGISTER<O
0 0 D REGISTER=0
1 0 D REGISTER >0
ccl ce2
1 1 A REGISTER<O
0 0 A REGISTER =0
1 0 A REGISTER >0
ccl cc2
0 0 A REGISTER =0
1 0 A REGISTER >0
cc1 ce2
1 1 X REGISTER< O
0 0 X REGISTER =0
1 0 X REGISTER >0
ccl cc2
1 1 B REGISTER<KO
0 0 B REGISTER =0
1 0 B REGISTER >0

Table 2-1. Condition Code Configurations for Basic Instructions (Cont’d)

Instruction Condition Code Configuration
ADD =0D cc1 Ccc2
0 0 NO CARRY - NO OVERFLOW
0 1 NO CARRY - OVERFLOW
1 0 CARRY -NO OVERFLOW
1 1 CARRY -OVERFLOW
SUB = 0OE CcC1 CC2
0 0 NO CARRY - NO OVERFLOW
0 1 NO CARRY - OVERFLOW
1 0 CARRY - NO OVERFLOW
1 1 CARRY -OVERFLOW
INC = OF cC1 cc2
0 0 NO CARRY -NO OVERFLOW
0 1 NO CARRY -OVERFLOW
1 0 CARRY - NO OVERFLOW
1 1 CARRY -OVERFLOW
CMP =10 cC1 CC2
1 1 A REGISTER<EFFECTIVE WORD
0 0] A REGISTER =EFFECTIVE WORD
1 0 A REGISTER>EFFECTIVE WORD
S=1 LEFT SHIFT
ccr ce2
0 0 A REGISTER BIT D ORIGINALLY = 0 AND HAS
RECEIVED ONLY O’s
0 1 A REGISTER BIT 0 ORIGINALLY =1 AND HAS
RECEIVED AT LEAST ONE 1
1 0 A REGISTER BIT 0 ORIGINALLY =1 AND HAS
RECEIVED AT LEAST ONE O
1 1 A REGISTER BIT 0 WAR 0 AND RECEIVED AT LEAST
ONE 1
RIGHT SHIFT
ccl cc2
0 0 A REGISTER BIT 15 AND E REGISTER BIT 15
HAVE RECEIVED ONLY 0's
0 1 A REGISTER BIT 15 RECEIVED A 0 AT LEAST
ONCE AND BIT 15 OF E AT LEAST ONE 1
1 0 A REGISTER BIT 15 RECEIVED A 1 AT LEAST

ONCE AND BIT 15 OF E AT LEASTONE 0
A REGISTER BIT 15 AND E REGISTER BIT 15
RECEIVED A 1 AT LEAST ONCE

28

ADUHESS
CALCULATION

RELATIVE
ADDRESSING

BASE-RELATIVE
ADDRESSING

The configuration of the R, I, X, and S bits in the instruction is examined in conjunction
with the displacement field to compute the effective memory address. The calculation
is performed in exactly the same manner, regardless of whether the effective address
will be used to specify a memory location, as in a load instruction, or to specify further
details of the instruction as in a shift instruction. Figure 2-2 illustrates the sequence
of the address calculation and figure 2-3 indicates the resulting address.

The CPU first checks the R-bit to determine if an address relative to the current program
count is PSW1 is required. If the R bit is set, indicating relative addressing, the S (sign)
bit is checked to determine if the address is forward or backward of the current program
count.

Relative Backward - When the S-bit is set, indicating a backward address, the
CPU extends the sign bit into bits 0 through 7 of the instruction. Extending
the sign is accomplished by providing all ONE's in bits 0 through 7, so that
the internal adder develops the TWO's complement of the address. The resultant
partial address may be up to 128 locations backward from the current program
count in PSW1.

Relative Forward - When the S-bit is reset, indicating a forward address, calculation
of the partial address takes place in basically the same manner as a relative
backward address, except that the sign is not extended into bits O through 7
of the instruction. In this case, all Z_ERO's are provided in bits 0 through 7, so
that the internal adder merely adds the displacement to the program count. The
resultant partial address may be up to 127 locations forward of the current
program count in PSW1.

If the R-bit is reset when checked by the CPU, the S-bit is examined to determine
if pre-indexing (base addressing) is required. In this case, the CPU reads the contents
of the B (base) register, and adds this value to the current program count. The resultant
partial address may be up to 127 locations forward of the count in the B-register.

2-9

R BIT SET?
(RELATIVE
ADDRESSING)

/S BIT SET
(BASE RELATIVE
ADDRESSING)

YES

YES

EXTEND SIGN OF
DISPLACEMENT, ADD
TO PSW1, STORE
PARTIALINS& W
REGISTERS

ADD DISPLACEMENT
TO PSW1, STORE

PARTIAL ADDRESS IN
S & W REGISTERS

ADD DISPLACEMENT
TO BSTORE PARTIAL

ADDRESSINS & W
REGISTERS

1 BIT SET?
(INDIRECT
ADDRESSING)

YES

PARTIAL ADDRESS POINTS TO
MEMORY LOCATION CONTAIN-
ING SECOND PARTIAL ADDRESS.
STORE CONTENTS OF MEMORY
LOCATION IN S & W REGISTERS

X BITSET?
(POST INDEXING)

ADD PARITAL
ADDRESS TO X TO

OBTAIN EFFECTIVE
ADDRESS

STORE EFFECTIVE
ADDRESS INS & W
REGISTERS

2-10

Figure 2-2. Sequence Diagram - Effective Address Calculation

"SS3YAQY 3AILDIA43 IHL | 14810 L IS IHL HOHM NI
‘DNISSIHAAY TLNIOSEY SINNSSY HILNAWOD FHL ‘'GI141934S LON SI
150d ¥O 3Yd JAILVIE 41 Y

‘SS3HAAY 3ALLI3443 IHL SIN0D38 SSIWOaY
IVILHVd 3HL QIYINDIY LON 31°SSIHAAY 3AILI3443 IHL INIWYILIA OL HILSIDIY X
3H1 01 Q300Y 51 Z HO L d31S NI GINIVLEO SSIUAQY TVILHVA IHL ‘A3 INDIY
41°G3YINDIY SI ONIXIONI LHOJ 31 INIWHILIA OL LIS X SININVXI Y ILNINOD
“SS3UQQV TVILHVd ONOJIS V
ONINIVANOD NOILY IO T AHOWIN ¥ O4 SLNIOd SSIHAAY IVILHYY IHL ‘OIHINDIY 41
"a3WIND3N S ONISSIHAAY LOIHION! 41 ININUILIA OL 118 | SINIWYX I HILNINOD
“SYALSIDIY M ANV S IHL NI OFHOLS ONV UTAVINDTVD
sl IVILYVd JHL SI¥IHLI) SIONIX I d
HO ONISSIYAAY JALLYI3Y 31 ININHILIQ 0L S119'S ONV U SINIWVXI HILNWOD “L
‘NOILVINDTVO SS3HAAY 3AILI3d43

L]

o

_ $SIUAAY IAILDIAAI _ S0u3Z 1Y _ = — 1NIW3OV 14810 _ sou3z 1V _ 210 SNOLLY0T
AHOWAW DNISSIHOAY 10310 SLNNZJ
LI T LTIl TTTTTeTe]e] aumosay «
— $83M0QY 3A1LO3443 _ = — x _ + _ ssavaav vuuvd _
LIT T T T TTTT [+ oNKaONI 504 ¢
S1$103 M ONY § NI JHOLS
— $SSIYOAV WWLLYVE 1_ = — NOLLYDO AtOW3IW f— -— — $SIVAAY WILHVY _ AHOWIW NI NOILY D07 03UIS3A ANV
$3N1430 LVHL SSIUOQY TYLLUYd ONODIS ONINIVL
“NOD NOILYO0T AHOWIN DNISSIDOV SLMRI3d
LTI TTTT I
103HIONI ®
SHALSIDIY M ONY S NI JHOLS ——— INIWIOVUSIO——
Y315193H B NI SSIHAGY LNIYHND WONS
— SSIHOC ¥ TviLuva _ = — a _ + _ _ _ _ — * _ __~ _ — _ _ _x_x_e_ TUVMHO4 SNOILYOOT BZE ONISSIHOAY SL N34
ONISSIAAY 3AILYIIY 3SVE *
auvmxove
41 ININT1N0D 5.2
SHLLSIDIU M ANV § N 3HOLS wors
| ¥3LSI03Y IMSd
NI SSIHOOY LNIUHNO WOHA ¥DVE 8ZL ONV
- x
_ SSauAqY TviLuve _ — e _ M _ _ — — — _ _ — _ _ — _ _ _x_x_ __ SNOLLYDOT ZZ1 ONISSIHAQY SLIWHId
IAUVIIY .
_r IN3W3DV1asIa — s _ NOLLYHI0 _x _) _ ¥ —
$S3HQQV INVLINSIY Q3WH03Y 34 NOLYYIH0 ONIBSIHAAY 40 34AL

LVYWNYO3 NOLLDNHLSNI

Figure 2-3. Calculation Diagram - Effective Address

2.1

2-12

Indirect Addressing

Post-indexing

Absolute Addressing

INSTRUCTION
REPERTOIRE

After the R and S bits have been checked, the CPU examines the | bit to determine
if indirect addressing is required. If the | bit is set, the partial address calculated for
relative addressing or pre-indexing is used to address a memory location containing a
new partial address. The new partial address, which is read from memory by the CPU,
is capable of accessing any location in memory.

After any indirect address calculations have been completed, the CPU examines the
X-bit to determine if post-indexing is required. If the X-bit is set, the partial address
calculated for relative addressing, pre-indexing, and/or indirect addressing is used in
calculation of the final effective address. In this case, the CPU reads the contents of
the X (index) register and adds this value to the previously calculated partial address.
The resultant effective address is capable of accessing any location in memory.

If the R, I, X, and S bits of the instruction are all reset, the CPU assumes absolute
addressing. In this case, the displacement field of the instruction is used to address
the desired memory location. Absolute addressing permits accessing any memory location
between X'0000' and X'007F', which represents the maximum value of the displacement
field.

The five-bit operation code field of the CPU instruction yields 27 basic instructions
and five optional instructions. The basic instructions, which are listed by the hexadecimal
value of the operation code field in table 2-2, consist of the following types of
instructions: Branch, Load, Store, Arithmetic, Logical, Shift, Call, Input/Output, and
Other. Table 2-2 also indicates the active steps of each instruction, which are displayed
by the INSTRUCTION STEP indicators on the control panel as the instruction is
executing. The five optional instructions, for which the hexadecimal value of the
operation code field is X'1B' through X'1F', are selected by the user to implement
optional circuits, such as high-speed multiply/divide. Any undefined operation code
will execute as a No Operation.

Many of the basic instructions used by SYSTEMS 72 are register expandable, which
allows the CPU to operate on all eight addressable registers. Other basic instructions
also provide derivatives that are recognized by the assembler. The ability of the assembler
to recognize a wide variety of derivative instructions reduces the time required to
program the SYSTEMS 72. All derivative instructions are listed in appendix B.

Execution timing for the various instructions depends on whether the Model 7212
High-Speed Register option is installed. This option significantly increases the speed
and efficfency of the CPU. In configurations with the high-speed registers, timing also
depends on whether the operand is in core or the appropriate register, with faster
execution occurring when the operand is in the appropriate register.

TABLE 2-2. CPU BASIC INSTRUCTIONS

OPERATION | PHASE/INSTRUCTION PHASE/INSTRUCTION ACTIVE INSTRUCTION STEPS
CODE MNEMONIC DEFINITION 0]112]3|4]5]6] 7]8l9}10]11]12}13]14
N/A SP START PHASE
N/A CALC CALCULATE PHASE
N/A INT INTERRUPT PHASE A/
N/A EXU EXECUTE PHASE
00 POT PROGRAMMED OUTPUT
01 PIN PROGRAMMED INPUT
02 AND AND MEMORY INTO A
03 LOR OR MEMORY INTO A
04 EOR EXCLUSIVE OR

MEMORY INTO A
05 STD STORED D REGISTER L/
06 STA STORED A REGISTER /]
07 SBY STORED BYTE FROM A
08 LDD LOAD D REGISTER
09 LDA LOAD A REGISTER
0A LBY LOAD BYTE INTO A
0B LDX LOAD X REGISTER
0C LDB LOAD B REGISTER
oD ADD ADD MEMORY TO A
OE SUB SUBTRACT MEMORY
FROM A
OF INC INCREMENT MEMORY
10 CMP COMPARE AWITH
MEMORY
11 S SHIFT
12 B BRANCH
13 BAL BRANCH AND LINK
14 BIX BRANCH AND INCREMENT
INDEX
15 BCR BRANCH ON CONDITIONS
RESET
16 BCS BRANCH ON CONDITIONS
SET
17 BRC BRANCH RETURN AND
CLEAR
18 CAL1 CALL 1
19 CAL2 CALL 2
1A CAL3 CALL 3 L/

213

2.14

BRANCH
INSTRUCT/IONS

The branch instructions exercise program control by forcing the program count in PSW1
out of its usual sequence, setting up linkages to subroutines, counting the iterations
through a loop, testing the condition codes, and restoring the program status
doubleword. The ability of the branch instructions to exercise program control makes
the use of these instructions appropriate immediately after executing one of the other
types of instructions.

Branch instructions do not affect the condition codes.

Basic branch instructions are: B, BAL, BIX, BCR, BCS, and BRC.

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

B Branch
1200
2 i
|R 1{x]1 0 0 1 0] S| DISPLACEMENT
O | | T O I
o 1 2 3Vas 6 7¥8 9 10112131415

Affected: PSW1

The B instruction causes an unconditional branch, in which the effective address replaces
the program count in PSW1,

Memory Location:
Hex Instruction:

PSW1
1000

PSW1
1050

1000
9250

PSW2
4002

PSw2
4002

2-15

BAL

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

216

BAL Branch and Link

1300
[1

IR 1[x]1 00 1 1|s| DISPLACEMENT I
I |
0 1 2 3% 5 6 7V 9 1011012 13 14 15

Affected: PSW1
B-Register

The address immediately following the current address replaces the contents of the
B-register, and the effective address replaces the program count in PSW1. (Pre-indexing

is allowed since the effective address is calculated before the contents of the B register
are altered.)

BAL is normally used to branch to a subroutine, which can then use pre-indexing to
pass arguments and set up the return address. By storing the linking address in the
B-register instead of the effective location, BAL permits branching to reentrant
subroutines and subroutines with multiple entry points.

Memory Location: 1010

Hex Instruction: D350

PSW1 PSW2 B {1060)
1010 4002 035C 1400
PSW1 PSW2 B (1060)
1400 4002 1011 1400

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

BIX Branch and Increment Index

_ 1400 .
Rlit]x]h o 1 o o] S| DISPLACEMENT

[I | N S O I
01 2 3Vas 6 718 9 1011112131415

Affected: PSW1

X-Register

BIX

The contents of the X-register are incremented by one. It the contents of the X-register
do not equal zero, the effective address replaces the program count in PSW1. If the
contents of the X-register are equal to zero, program control passes to the address
immediately following the current location. (The X field should normally be left reset;

if set, post-indexing will occur before the X-register is incremented.)

PSW1
1420

PSW1
141C

Memory Location: 1420

Hex Instruction: 94FC
PSW2
2002
PSW2
2002

FFF9

FFFA

2-17

BCR

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

2-18

BCR Branch on Conditons Reset

15600

IR|X1

] DISPLACEMENT
I T

g 1 2 3Va 5 6 7

Affected:

PSW 1

8 9 10 11412 13 14 15

The effective address replaces PSW1 in all cases except those in which a condition code
indicator and the associated mask bit are both set. The effective address calculation
does not include indirect addressing or post-indexing, so that the 1 field is used to
mask CC2. All configurations of the condition codes and mask bits are indicated below,
with the letter B marking every combination that will cause branching. If the
requirements for branching are not satisfied, the program count in PSW1 is advanced
to the next sequential location.

Mask Bits

Condition Codes IX 1 IX]| IX] IX

CC1 CC2 00| 01] 10| 11

B|B|B
- |8
B

- -0 0O
0w w®

0
1
0
1

The assembler recognizes

BEZ
BGEZ
BE
BGE
BNC
BNO

Memory Location:
Hex Instruction:

PSW1
1020

PSw1
1027

Note:

the following derivatives of BCR:

Branch if Equal to Zero
Branch if Greater Than or Equal to Zero
Branch if Equal
Branch if Greater Than or Equal
Branch on No Carry
Branch on No Overfiow
1020
D507
PSW2
4002
PSW2
4002

Derivatives of this instruction are given in the Appendix B.

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

BCS Branch on Conditions Set.

1600

R|] 1] X

1
]

0110 |S
|

DISPLACEMENT
I S |

|

0O 1 2 3 45 6 7 8 9 10111213 1415

Affected:

PSW1

BCS

The effective address replaces PSW1 if a condition code indicator and the associated
mask bit are both set. The effective address calculation does not include indirect
addressing or post-indexing, so that the | field of the instruction is used to mask CC1
and the X field is used to mask CC2. All configurations of the condition code and
mask bits are indicated below, with the letters B marking every combination that will
cause branching. If the requirements for branching are not satisified, the program count

in PSW1 is advanced to the next sequential location.

Mask Bit
Condition Codes IX IIX] IX | IX
CcC1 ccz} ocojor 101 1
0 0 - - - -
0 1 -|B - B
1 0 -1 - B B
1 1 -18B B B

The assembler recognizes the following derivatives of BCS:

BNEZ Branch if Not Equal to Zero
BLZ Branch if Less Than Zero
BNE Branch if Not Equal
BL Branch if Less Than
BC Branch on Carry
BO Branch on Overflow
Memory Location: 1090
Hex Instruction: D606
PSW1 PSW2
1090 C002
PSW1 PSW2
1096 Co02
Note:

Derivatives of this instruction are given in Appendix B.

2-19

BRC

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

2-20

BRC Branch Return and Clear

, 1700 .

Xj1 01 1 1]s DISPLACEMENT I
Lt 1 I ! 1 1 1] |

0 1

2 3’45 6 7%'8 9 1011%12 13 1415

Affected: PSW1

The contents of the effective address and the following location replace the program
status doubleword. Calculation of the effective address does not include post-indexing,
so that a ONE in the X field indicates that the highest active interrupt is to be cleared.
A privileged instruction, BRC has no effect when the CPU is in the slave mode.

Call 1 and Call 2 instructions, as well as interrupts and memory traps, store the program
status doubleword before branching to a service routine. The new PSW2 normally puts
the CPU in the master mode, which allows these routines to use BRC upon returning
to the main program. (Returns from the call instructions are normally accomplished

PSW2
Highest Active Interrupt

with the X field reset.)

Memory Location: 0238

Hex Instruction: 5742

PSW1 PSW2 (1100) (1101)

0238 0001 105C 0002

PSW1 PSW2 (1100} (1101)

105C 0002 105C 0002

Note: This instruction is used to return from a memory

(42)
1100

(42)
1100

Trap.

LOAD INSTRUCTIONS The A, B, D, and X-registers are capable of receiving the contents of any addressable
register or memory location. In addition, the A-register may receive either high-order
or low-order byte from any addressable register or memory location.

Load instructions configure the condition codes as follows:
_C_Ci1_ cc2 Condition

1 1 Value loaded into receiving register
less than zero

0 0 Value loaded into receiving register
equal to zero

1 0 Value loaded into receiving register
greater than zero

Note

Bits O through 7 are always cleared for a load byte instruction, so that the receiving
register can never be less than zero.

The conditional branch instructions listed below are appropriate immediately after a
load instruction:

BEZ Branch if contents of receiving register are equal to zero

BNEZ Branch if contents of receiving register are not equal to zero

BGEZ Branch if contents of receiving register are greater than equal to zero
BLZ Branch if contents of receiving register are less than zero

Basic load instructions are: LBY, LDA, LDB, LDD, and LDX.

221

LBY

DEFINITION

LBY Load Byte into A-Register
LOAOO 1

Rl I1|IXxjo 1 0 10| s]| DISPLACEMENT I
(S T I | I O T
01 2 3% 5 6 7%8 9 10 11h213 1415

Affected: A-Register
CCt
CC2 Always reset

The high-order byte (byte 0), bits 0 through 7, or the low-order byte (byte 1), bits
8 through 15, of the effective word is loaded into the low-order byte of the A-register.
The high-order byte of the A-register is cleared.

For effective address calculations that do not specify post-indexing, the effective byte
is always present in bits O through 7 of the effective word. The maximum foreward
or backward reference is 32K bytes on byte instructions.

For effective address calculations using post-indexing , the CPU develops a 17-bit
effective address, in which the 16 most-significant bits represent the address of the
effective word, and the least significant bit indicates whether the effective byte is present
in bits 0 through 7 or bits 8 through 15 of the effective word. The control exercised

by the least significant bit is indicated below:

EFFECTIVE WORD

(o) RDER
P s R O el
0 1 2 3 4|5 6 7 8 9 1011 12 13}14 15

LSB=10 LsB =1
— 4
I CLEARED LOW ORDER A REGISTER
[S N U | | I

01 2 3 45 6 7 8 9 101112131415

The assembler recognizes the following derivatives of LBY:

LBYB Load Byte into A from B
LBYD Load Byte into A from D
LBYE Load Byte into A from E
LBY X Load Byte into A from X
LBY1 Load Byte into A from R1
LBY2 Load Byte into A from R2
LBY3 Load Byte into A from R3

EXAMPLE 1

BEFORE EXECUTION

AFTER EXECUTION

EXAMPLE 2

BEFORE EXECUTION

AFTER EXECUTION

Memory Location: 101A

Hex Instruction: 8A3A

PSW1 PSW2 (1054)
101A 8002 3031
PSW1 PSW2 (1054)
1018 8002 3031
Memory Location: 101B

Hex Instruction: AA38

PSW1 PSW2 (1054)
1018 8002 3031
PSW1 PSW2 (1054)
101C 8002 3031

Note: Derivatives of this instruction are given in Appendix B.

LBY (Cont'd)

2:23

LDA

LDA Load A-Register

) 0809 .

010 00
IR X507 7 | S| DISPEAGEMENT
01 2 3% 5 6 778 9 101171213 14 15

Affected: A-Register
CcC1
cc2

DEFINITION The effective word is loaded into the A-register. The condition codes are configured
as determined by the value of the effective word.

The assembler recognizes the following derivatives of LDA:

LLDAB Load A from
LDAD Load A from
LDAE Load A from
LDAX Load A from
LDA1 Load A from R1
LDA2 Load A from R2
LDA3 Load A from R3

X mMOoQOw

EXAMPLE Memory Location: 1008
Hex Instruction: 8949
BEFORE EXECUTION PSW1 PSW2 (1051) A
1008 8002 7FFF FFFF
AFTER EXECUTION PSW1 PSW2 (1051) A
1009 8002 7FFF 7FFF
Note: Derivatives of this instruction are given in Appendix B.

2:24

LDB

LDB Load B-Register
0CO00 , .

R{I|X]0O 1 1.0 O | S|DISPLACEMENT
I .| | |

0 1 2 3%a 5 6 778 9 1011%1213 14 15

Affected: B-Register
ccCi
CC2

DEFINITION The effective word is loaded into the B-register. The condition codes are configured
as determined by the value of the effective word.

The assembler recognizes the following derivatives of LDB:

LDBA Load B from A
LDBD Load B from D
LDBE Load B from E
LDBX Load B from X
LDB1 Load B from R1
LDB2 Load B from R2
LDB3 Load B from R3

EXAMPLE ' Memory Location: 1019
Hex Instruction: 8C3A
BEFORE EXECUTION PSW1 PSW2 (1053) B
1009 8002 0001 0300
AFTER EXECUTION PSW1 PSW2 (1053) B
101A 8002 0001 0001
Note: Derivatives of this instruction are given in Appendix B.

2-25

LDD

LDD Load D-Register
0800 | .

Rl 1] X]1 1 0 0 o0]S DISPLACEMENT

1 1 | | |
01 2 3% 5 6 7¥8 9 101171213 14 15

Affected: D Register
CC1
CC2

DEFINITION The effective word is loaded into the D-register. The condition codes are configured
as determined by the value of the effective word.

The assembler recognizes the following derivatives of LDD:

LDDA Load D from A
LDDB Load D from B
LDDE Load D from E
LDDX Load D from X
LDD1 Load D from R1
LDD2 Load D from R2
LDD3 Load D from R3

EXAMPLE Memory Location: 1001
Hex Instruction: 0801
BEFORE EXECUTION PSW1 PSW2 {1050) D
1000 8002 8000 4C00
AFTER EXECUTION PSW1 PSW2 (1050) D
1001 C002 8000 8000
Note: Derivatives of this instruction are given in Appendix B.

2-26

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

LDX Load X-Register

0B0O, {
R{1|x] 0 1 0 1 1|s |DISPLACEMENT
I |) I T I S T
0 1 2 3'45 6 718 9 1011112131415
Affected: X Register
cc1
CC2

LDX

The effective word is loaded into the X-register. The condition codes are configured
as determined by the value of the effective word.

The assembler recognizes the following derivatives of LDX:

LDXA Load X from A

LDXB Load X from B

LDXD Load X from D

LDXE Load X from E

LD X1 Load X from R1

LDX2 Load X from R2

LD X3 Load X from R3
Memory Location: 1011
Hex Instruction: 8B41
PSW1 PSW?2 (1052) X
1011 8002 FFFF FFFC
PSW1 PSW2 (1052) X
1012 Co02
Note: Derivatives of this instruction are given in Appendix B.

2-27

228

STORE
INSTRUCTIONS

The A and D-registers are both capable of storing their contents in any addressable
register or memory location. In addition, the A-register can also store the low-order
byte, bits 8 through 15, into the high-order or low-order byte of any addressable register
or memory location.

Store instructions do not affect the condition codes.

Basic store instructions are: SBY, STA, and STD.

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

SBY Store Byte from A-Register

0700
R]1|x]o o 1 1 1|S|DISPLACEMENT

1 1 | | 4 1 J | |
0 1 2 3 45 6 7 8 9 101112131415
Affected: Effective Byte

SBY

The low-order byte of the A-register, bits 8 through 15, replaces the low-order or
high-order byte of the effective word. The high-order byte, bits O through 7, of the

A-regi

ster is not affected.

For effective address calculations that do not specify post-indexing, the effective byte
is always bits 0 through 7 of the effective word. As with the load instruction, the
SBY can only address 32K bytes foreward or backward.

For effective address calculations using post-indexing, the CPU develops a 17-bit effective
address, in which the 16 most-significant bits represent the address of the effective word,
and the leastsignificant bit indicates whether the effective byte is bits O through 7
or bits 8 through 15 of the effective word. The control exercised by the least-significant

bit is indicated below:
HIGH ORDER LOW ORDER
l Ll L L1l]
01 2 3 45 6 7 8 9101112 13]14 15
LSB=0 rLSB =1
A 4
HIGH ORDER LOW ORDER

A REGISTER

EFFECTIVE WORD

Ll

L1 41 1 1 1 | |

|

0

2 3 45 6 7

8 9 10 11 1213 14 15

The assembler recognizes the following derivatives of SBY;

SBYB Store Byte from A into B
SBYD Store Byte from A into D
SBYE Store Byte from A into E
SBYX Store Byte from A into X
SBY1 Store Byte from A into R1
SBY2 Store Byte from A into R2
SBY3 Store Byte from A into R3

Memory Location: 101E

Hex Instruction: A737

PSW1 PSW2 {1053) A X

101E 8002 0001 0031 0004
PSW1 PSW2 (1053) A X

101F 8002 3101 0031 0004
Note: Derivatives of this instruction aie gwen in Appendix B.

2-29

STA

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

2-30

STA Store A-Register

- 0600 ,)
R[1|[x] 00 1 1 0]s]|DISPLACEMENT
[| N T |
0 1" 2 3'45 6 7'8 9 1011M2 13 14 15

Affected:

Effective Word

The contents of the A-register replace the effective word.

The assembler recognizes the following derivatives of STA:

STAB
STAD
STAE
STAX
STA1

STA2
STA3

Store
Store
Store
Store
Store
Store
Store

Memory Location:
Hex Instruction:

PSW1
101D

PSW1
101E

Note:

pPsw2
8002

PSw2
8002

>>>>>> >

into
into
into
into
into
into
into

101D
8639

mgQ ™

R1
R2
R3

(1056)
FFFF

{1056)
0031

0031

A
0031

Derivatives of this instruction are given in Appendix B.

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

STD Store D-Register

0500

R

X|]001T 0 1]S

| T |

DISPLACEMENT

0

2 3 45

Affected:

Effective Word

6 7 8 9 101112 13 1415

The contents of the D-register replace the effective word.

The assembler recognizes the following derivatives of STD:

STDA Store D into
STDB Store D into
STDE Store D into
STDX Store D into
STD1 Store D into
STD2 Store D into
STD3 Store D into

Memory Location: 101C

Hex Instruction: 8539

PSW1 PSW2

101C 8002

PSW1 PSW2

101D 8002

Note:

Derivatives of this instruction are given in Appendix B.

A
B
E

x

R1
R2
R3

(1055)
7FFF

(1055)
4C00

4C00

D
4C00

2-31

2-32

ARITHMETIC Arithmetic instructions are capable of operating on the contents of any addressable
INSTRUCTIONS register or memory location. If a carry or an overflow occurs during the execution
of an arithmetic instruction, the condition codes are configured as follows:

cct
0
0
1
1

The conditional branch instructions listed below are appropriate immediately after an

cc2
0

1
0
1

arithmetic instruction:

BO
BNO
BC
BNC

Branch on
Branch on
Branch on
Branch on

Condition

No Carry - No Overflow
No Carry - Overflow
Carry - No Overflow
Carry - Overflow

Overflow

No Overflow
Carry

No Carry

Basic arithmetic instructions are: ADD, INC, and SUB.

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

ADD

ADD Add Memory to A-Register

, 0D0O0 i
R]I|Xx]0 1 1 0 1|s|DISPLACEMENT I

| T R |
o1 2 3Vas 6 718 9 1011h213 1415
Affected: A-Register

CcC1

CC2

The effective word is added to the contents of the A-register after which the result

is stored in

the A-register.

The assembler recognizes the following derivatives of ADD:

ADDB
ADDD
ADDE
ADDX
ADD1

ADD?2
ADD3

Memory Lo
Hex Instruc

PSW1
101F

PSW1
1020

Note:

Add B to A
Add D to A
Add E to A
Add X to A
Add R1 to A
Add R2 to A
Add R3 to A

cation: 101F
tion: 8D31

PSW2 {1050) A
8002 8000 0031

PSW2 (1050) A
0002 8000 8031

Derivatives of this instruction given in Appendix B.

2-33

INC

INC Increment Memory
OFO‘O)

Rt |x] 0 1.17:1 1 |sS | DISPLACEMENT 1
| I | I I I O
0 1 2 3'as5 6 718 9 1011112131415

Affected: Effective Word
CC1
CC2

The effective word is incremented by one.

DEFINITION The assembler recongizes the following derivatives of INC:
INCA Increment A
INCB Increment B
INCD Increment D
INCE Increment E
INCX Increment X
INC1 Increment R1
INC2 Increment R2
INC3 Increment R3
EXAMPLE Memory Location: 1022
Hex Instruction: 8F30
BEFORE EXECUTION PSW1 PSW2 (1052)
1022 C002 0031
'AF TER EXECUTION PSW1 PSW2 (1052)
1023 0002 0032
Note: Derivatives of this instruction are given in Appendix B.

2-34

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

SuB

SUB Subtract Memory from A-Register

___OE00 .
IR 1 |x 0|1|111|0 S DIfPLf‘cﬁMElNTI ; I
01 2 3'a5 6 7°'8 9 101112131415
Affected: A Register

cC1

cc2

The effective word is subtracted from the contents of the A-register, after which the
result is stored in the A-register. Sub = O always resets CC1.

The assembler recognizes the following derivatives of SUB:

SuBB Subtract B from A
SUBD Subtract D from A
SUBE Subtract E from A
SUBX Subtract X from A
SUB1 Subtract R1 from A
suB2 Subtract R2 from A
SUB3 Subtract R3 from A

Memory Location: 1021

Hex Instruction: 8E30

PSW1 PSW2 (1051) A

1021 0002 4COO' 8031

PSW1 PSW2 (1051) A

1022 C002 4C00 3430

Note: Derivatives of this instruction are given in Appendix B.

2-35

LOGICAL The contents of the A-register are capable of forming the logical product, the logical
INSTRUCTION sum, or the logical difference with the contents of any addressable register or memory
location. Logical product, sum, and difference are defined as follows:

Logical Product Execution develops logical ONES only in
those bit positions in which both operands
contain ONES.

Logical Sum Execution develops logical ONES in those
bit positions in which either or both
operands contain ONES,

Logical Difference Execution develops logical ONES only in
those bit positions in which either, but
not both, operands contain ONES.

Logical instructions configure the condition codes as follows:

cc cc2 Condition

1 1 Result stored in A-register less than zero

0 0 Result stored in A-register equal to zero

1 0 Result stored in A-register greater than zero

The conditional branch instructions listed below are appropriate immediately after a
logical instruction:

BEZ Branch if result in A-register is equal to zero)

BNEZ Branch if result in A-register is not equal to zero

BGEZ Branch if result in A-register is greater than or equal to zero
BLZ Branch if result in A-register is less than zero

Basic logical instructions are: AND, EOR, and LOR.

2-36

DEFINITION

EXAMPLE

BEFORE EXECUTION

AFTER EXECUTION

AND AND Membry into A-Register

AND

, 0200 ,
R[1 | X]o 0 0 1 oS |DISPLACEMENT

1 | 1 | | |
o 1 2 3la s 6 718 g 10 111121314 15
Affected: A-Register

CC1

cc2

The effective word is combined with the contents of the A-register to develop a logical
product that is stored in the A-register.

The assembler recognizes the following derivatives of AND:

Memory Location:
Hex Instruction:

PSW1
1023

PSW1
1024

Note:

ANDB
ANDD
ANDE
ANDX
AND1

AND2
AND3

AND B into A
AND D into A
AND E into A
AND X into A
AND R1 into A

AND R2 into A
AND R3 into A
1023
8230
PSW2 (1053} A
0002 3101 3430
PSW2 (1054) A
8002 3101 3000

Derivatives of this instruction are given in Appendix B.

2:37

EOR

EOR Exclusive OR Memory into A-Register
0400

IR X|] 0 01 0 0|S | DISPLACEMENT]
| [| T I T |
01 2 3%4 5 6 7'8 9 1011112 13 14 15

Affected: A Register
CC1
CcC2

DEFINITION The effective word is combined with the contents of the A-register to develop a logical
difference that is stored in the A-register.

The assembler recognizes the following derivatives of EOR:

EORB Exclusive OR B into A
EORD Exclusive OR D into A
EORE Exclusive OR E into A
EORX Exclusive OR X into A
EOR1 Exclusive OR R1 into A
EOR2 Exclusive OR R2 into A
EOR3 Exclusive OR R3 into A

EXAMPLE Memory Location: 1025
Hex Instruction: 0407
BEFORE EXECUTION PSW1 PSW2 R3 A
1025 8002 38B2 3031
AFTER EXECUTION PSW1 PSW2 R3 A
1026 8002 3882 0883

2-38

LOR:

LOR OR Memory into A-Register
, 0300 .

Rl1 x 1o oo 1 1|s |DISPLACEMENT
1 1 | | | W W I |
0 1 2 3Vas 6 778 9 10111213 1415

Affected: A-Register
cc1
cc2

~ §

DEFINITION The effective word is combined with the contents of the A-register to develop a logical
sum that is stored in the A-register.

The assembler recognizes the following derivatives of LOR:

LORSB OR B into A
LORD OR D into A
LORE OR E into A
LORX OR X into A
LOR1 OR R1 into A
LOR2 OR R2 into A
LOR3 OR R3 into A

EXAMPLE Memory Location: 1024
Hex Instruction: 8330
BEFORE EXECUTION PSW1 PSW2 (1054) A
1024 8002 3031 3000
AFTER FXFCUTION PSW1 PSW2 (1054) A
1025 8002 3031 3031
Note: Derivaties of this instruction are given in Appendix B.

2-39

240

COMPARE
INSTRUCTION

The compare instruction determines whether the contents of the A-register are less than,
equal to, or greater than an addressable register or memory location. The instruction
treats both operands as signed integers in the two's complement format and leaves the
operands unchanged.

The compare instruction configures the condition codes as follows:

cc1 cc2 Condition

1 1 Contents of A-register less than other operand

0 0 Contents of A-register equal to other operand

1 0 Contents of A-register greater than other operand

The conditional branch instructions listed below are appropriate immediately after a
compare instruction.

BE Branch if contents of A-register are equal to other operand

BNE Branch if contents of A-register are not equal to other operand
BGE Branch if contents of A-register are greater than or equal to other
» operand

BL Branch if contents of A-register are less than other operand

Setting SM1 in the program status doubleword places the CPU in the compare sequence
mode, in which only the compare instruction is allowed to alter the condition codes.
During the compare sequence mode, the result of each comparison combines logically
with the current condition code settings as controlled by SM2 in the program status
doubleword. If SM2 is set, the bits destined for the condition codes form the logical
sum, in which logical ONES are developed in those bit positions where either or both
inputs are logical ONES. If SM2 is reset , the bits destined for the condition codes
form the logical product, in which logical ONES are developed only in those bit positions
where either, but not both, operands contain ONES.

CMpP

CMP Compare A-Register With Memory
1000 |

R|I {x]1T 0 0 0 O|s | DISPLACEMENT
L1 1 | | S N N |

01 2 3%a5 6 78 9 1011M213 1415

Affected: CC1
CcC2
DEFINITION The effective word is compared with the contents of the A-register and the condition

codes are set to indicate the results of the comparison.
The assembler recognizes the following derivatives of CMP:

CMPB Compare A with B
CMPD Compare A with D
CMPE Compare A with E
CMPX Compare A with X
CMP1 Compare A with R1
CMP2 Compare A with R2
CMP3 Compare A with R3

EXAMPLE Memory Location: 1026
Hex Instruction: 902C
BEFORE EXECUTION PSW1 PSW2 (1052) A
1026 8002 0031 0883
AFTER EXECUTION PSW1 PSW2 (1052) A
1027 8002 0031 0883
Note: Derivatives of this instruction are given in Appendix B.

2-41

; SHIFT A single shift instruction is used to develop a full complement of shift operations,
INSTRUCT/IONS including the following:

Single Register - The A-register is used for both right and left shift operations.

Double Register - The A and E-registers for a single 32-bit register that is used
for both right and left shift operations. The A-register contains the most-significant
16 bits and the E- register contains the least-significant 16 bits.

Logical - Logical left shifts introduce zeros into the least-significant bit position
and lose bits from the most-significant bit position. Logical right shifts introduce
ZERO bits into the most-significant bit position and lose bits from the
least-significant bit position..

Note

In double register logical shifts, the least-significant position is bit 15 of the E-register
and the most-significant position is bit 0 of the A-register.

Arithmetic - Arithmetic left shifts introduce zeros into the least-significant bit position

and lose bits from bit 1 of the A-register. Arithmetic right shifts propagate the contents

of bit position 0 of the A-register and lose bits from the least-significant bit position
Note

In double register arithmetic shifts, the least-significant position is bit 15 of the E-register.

Circular - Circular shifts take bits leaving one end of the register and introduce them
into the other end.

Note

In doubie register circular shifts, the two ends of the combined 32-bit register are
bit 0 of the A-register and bit 15 of the E-register.

Left and right shift instructions configure the condition codes as indicated below. Note
that for left shift instructions, settings CC1 indicates a change in the sign bit and setting
CC2 indicates that a ONE was shifted into the sign bit. For right shifts, note that
setting CC1 indicates a ONE was shifted into the least significant bit of the A-register
and setting CC2 indicates a ONE was shifted into the least significant bit of the E-register.

2-42

Left Shift:

ccr ce2
0 (U
0] 1
1 0
1 1
Right Shift:
cct cez
0 0
0 1
1 0]
1 1

Condition

Bit O of A-register was ZERO and received all ZERO'S
Bit O of A-register was ONE and received at least one
ONE

Bit O of A-register was ONE and received at least one
ZERO'S

Bit O of A-register was ZERO and received at least one
ONE

Condition

Bit 15 of A-received all ZEROS and bit 15 of
E received all ZERO'S

Bit 15 of A-received at least one ZERO, bit 15 of
E received at least one ONE

Bit 15 of A-received at least one ONE, bit 15 of

E received at least one ZERO

Bit 15 of A-received at ieast one ONE, bit 15 of

E received at least one ONE

2-43

2-44

11s

DISPLACEMENT

| N S

Affected:

DEFINITION

8 9 10 1112 13 14 15

A-Register (Single and Double Register Shifts)
E-Register (Double Register Shifts)

CC1

CC2

The CPU uses bits 8 through 15 of the effective address to define the following

parameters associated with the shift: single/double, arithmetic/logical/circular, right/left,
and shift count. Bits 8 through 15 of the effective address and the significance of the

various fields are indicated below:

SHIFT
| TyPE Ffi COUNT
D} | i] |
8 910 11 12 13 14 15

\

Coded representation of number of
places to shift from 1 to 16, where
0000 = 16,0001 =1,....1111 =15

Right or left, where O = right and
1 = left

Circular, logical, or arithmetic
shift, where 00 = Not allowed,
01 = Circular, 10 = Logical, and
11 = Arithmetic

Single or double, where 0 = single
and 1 = double

In a single register shift, the R, |, X, and S-bits are normally reset, so that the entire
operation is specified by the displacement field of the instruction. A double register
shift must develop the effective address through indirect addressing or indexing.

EXAMPLE 1

BEFORE EXECUTION

AFTER EXECUTION

EXAMPLE 2

BEFORE EXECUTION

AFTER EXECUTION

The assembler recognizes the following derivatives of S:

SLL ‘Shift Logical Left
SLR Shift Logical Right
SAL Shift Arithmetic Left
SAR Shift Arithmetic Right
SCL Shift Circular Left
SCR Shift Circular Right
SLLD Shift Logical Left Doubfe
SLRD Shift Logical Right Double
SALD Shift Arithmetic Left Double
SARD Shift Arithmetic Right Double
SCLD Shift Circular Left Double
SCRD Shift Circular Right Double

Type of Shift: SLR

Memory Location: 1027

Hex Instruction: 1145

PSW1 PSw2 A

1027 8002 0883

PSW1 PSW2 A

1028 8002 0044

Type of Shift SAL

Memory Location: 1028

Hex Instruction: 1177

PSW1 PSW2 A

1028 8002 0044

PSW1 PSW2 A

1029 0002 2200

Note: Derivatives of this instruction are given in Appendix B.

S (Cont’d)

245

CALL INSTRUCTIONS

Call instructions perform two major functions: (1) rapid context switching, in which
the current program environment contained in the program status doubleword is stored
and a new doubleword is accessed to initiate a new operation, and (2) subroutine linking,
in which the user accesses various subroutines as required.

Call instructions ignore the R, I, X, and S fields in calculating their effective addresses

The call instructions do not configure the condition codes.

CAL1Call 1
1800

|00011000

o

L1 1

DISPLACEMENT

L1l

0 1 2 3 45 6 7

Affected: PSW1
PSW2

8 9 10 1112 13 14 15

CAL1

Call 1 operates only when the CPU is operating in the master mode, in which the
MS bit of PSW2 is reset, and always switches program context, so that the instruction
is normally used for operating system calls.

Pointer R

Displacement

- »

Current PSW1
Current PSW2

New PSW2
New PSW1
New PSW1
New PSW1

New PSW1
New PSW1

126
127

The contents of X'0045' contain a pointer address that is used to address the first
location of a 131-word table. As indicated, the current PSW1 and PSW2 are stored
in the first two locations of the table. The contents of the third location are used
as PSW2 of the new program status doubleword. The effective address is used as a
displacement into the remaining 128 locations, so that the contents of the designated

location are used as PSW1 of the new program status doubleword.

CALT is a privileged instruction, which functions as a No Operation when the CPU
is in the slave mode. The instruction aiso assumes that the MAP bit in PSW2 is reset,

so that X'0045' and the contents of X'0045' are treated as actual addresses.

To return to the calling routine, the called routine executes a BRC instruction with

an effective address equal to the contents of the pointer in X'0045'".

247

CAL2

2-48

CAL2Call2
1900

11 0 0 1 DISPLACEMENT
|°°° 0 | DISPLACEMENT
"0 1 2 345 6 7°8 9 101112 13 14 15

Affected: PSW1
PSW2

Call 2 always switches program context but, unlike Call 1, it is not a priviledged
instruction. The instruction is normally used for user program calls to the operating
system,

The contents of X'0046' contain a pointer address that is used to address the first
location of a 131-word table. As indicated below, the current PSW1 and PSW2 are
stored in the first two locations of the table. The contents of the third |ocation are
used as PSW2 of the new program status doubleword. The effective address is used
as a displacement into the remaining 128 locations, so that the contents of the designated
location are used as PSW1 of the new program status doubleword.

Pointer cm———pp Current PSW1
Current PSW2

New PSW2

New PSW1 0
New PSW1 1
New PSW2 2

Displacement

L »

New PSW1 126
New PSW1 127

To prevent storage of improper values for PSW1 and PSW2 during the CAIl 1 sequence,
a BOUND directive must be used to ensure that all entries in the call table are totally
contained on one page, 266 words of memory. An example of the sequence required
to buila the call table is indicated.

BOUND
CAL2S DATA
DATA
DATA
DATA
DATA

DATA

256

0

0

PSW2
NPSW10
NPSW11

NPSW17F

oLD
OLD
NEW
CAL2
CAL2

CAL2

PSW1
PSW2
PSW2
DISPLACEMENT
DISPLACEMENT

DISPLACEMENT

CAL2 {Cont'd)

=y

127

Only as much of the table as is used must be on the bound page, so that if only
the first 20 Call 2 entries are used, then only 20 + 3 = 23 entries are placed on the

bound page.

Note

If the user does not develop Call 2 tables, no BOUND directives are required, since
the operating system handles the generation of both Call 1 and Call 2 tables.

CAL2 is not a privileged instruction. In addition, the instruction treats X'0046' and
the contents of X'0046' as virtual addresses only if the MAP bit in PSW2 is set.

To return to the calling routine, the called routine executes a BRC instruction with
an effective address equal to the pointer in X'0046'.

249

CAL3

2-50

CAL3Call 3
1A00

0001 1 01 00| DISPLACEMENT
Ll 1 I . |

0 1 2 3%4 5 6 7'8 9 10 11712 13 14 15

Affected: PSW1

Call 3 does not switch program context and is not a privileged instruction. The
instruction is normally used to link to subroutines within the user program.

The contents of X'0047' contain a pointer address that is used to address the first
location of a 129-word table. As indicated below, the current PSW1 is stored in the
first location and the effective address is used as a displacement into the remaining
128 locations. The contents of the designated location are used as PSW1 of the new
program status doubleword.

Pointer —— Current PSW1

New PSW1 0
New PSW1 1
New PSW1 2

]
Displacement

New PSW1 126
New PSW1 127

CAL3 does not switch program context and is not a privileged instruction. The
instruction treats X'0047' and the contents of X'0047" as virtual addresses only if the
MAP bit in PSW2 is set.

To return to the calling routine, the called routine branches to the address contained
in the first location of the call table.

INPUT/OUTPUT
INSTRUCTIONS

The input/output instructions operate on all devices connected to the Programmed
Input/Output (PIO) bus. This bus, which consists of 16 address lines, 16 data lines,
and six control lines is connected to the following equipment.

° All standard peripheral 1/O devices

° Optional Direct Access Channel (DAC)

® Basic system devices, such as the control panel, PSWZ register, disc
controller, and memory map

There are two basic input/output instructions: POT and PIN. In both instructions, the
effective address specifies the device and the operation to be performed.

Note

Instructions defined in section |V pertain to standard peripheral equipment and have
dedicated effective addresses. All effective addresses with an F in the most significant
hexadecimal digit, for example X'F847',are resered for instructions pertaining to special
user-oriented equipment.

The configuration of the condition codes for a given input/output instruction are
normally a function of the result of executing the instruction. Condition code indications

for the various peripheral devices are provided in the appropriate manuals.

All input/output instructions are privileged, so that while the CPU is operating in the
slave mode, the instructions function as No operations.

2-51

PIN

PIN Programmed Input

0109 L
IR i{xlo.o o0 o0 1]s DISPLACEMENT
1 (1 1 | I I R
01 2 3%a 5 6 7V8 9 10 1171213 14 15

Affected: D-Register
CC1
CcC2

The device address is output by way of the 16 effective address lines, and the addressed
device inputs data to the D-register by way of 16 data lines.

The assembler recognizes the following derivative of PIN:

TDV TDV Test Device Effective Address *

L1 1 000 o0 010 l1 S lDI!SI"‘liAClEMIlEN'l'l 0000 0000 11AA AAAA
| -

*

A = six-bit device address

Note: Special derivatives of this instruction are provided in Appendix |.

2-52

POT Programmed Output

0000 1
R |1 XxJj0 0 0 0 0|S | DISPLACEMENT
i 1 1 | | I |
0 1 2 3'4 5 6 72'8 9 101112 13 14 15
Affected: CC1
CC2

POT

The device address/operation is output by way of the 16 effective address lines, and
the contents of the D register are output to the addressed device by way of the 16

data lines.

The assembler recognizes the following derivatives of POT:

SIO Start Input/Output

000 0 O
Ll 1 |

I 111] ©
1

DISPLACFMENT
1 | 1]

TIO Test Input/Output
]

L1 1

0 000 Ofs

DISPLACEMENT
| |

HIO Halt Input/Output

1

000 0 O
| S |

DISPLACMEMENT
Ll L1 | |

IOR _Input/Output Reset
1

11110 0" 0I 0 l0 | 0 lDI?PLf\CﬁME’\ITl
HLT Program Halt

- Il 2

1 1 L 0 f—j) 0]70 S I.?ISIiLAFE!YIEI\iT |

* A= six-bit device address

Note:

Effective Address *

0000 0001 00DAA AAAA

0000 0001 10AA AAAA

0000 0001 O1AA AAAA

0000 0100 0000 0011

0000 0100 0000 0001

Special derivatives of this instruction are provided in Appendix . I.

SI0

TiO

HIO

IOR

HLT

2-53

OTHER /NSTRUCT/ONS The assembler recognizes several derivative instructions that have general utility:

cLA CLA Clear A-Register

0401 .

0jojofoo 1 0 o0jojo o6 000 1
I I Y
0 1 2 345 6 708 9 10 11112 13 14 15

Affected: A-Register
CC1
Ccc2

All 16 bit positions of the A-register, and condition codes 1 and 2, are reset.

NOP No Operation
9201

tloJol 1001 o0]lojo o o0 6.0 0 1
L1 | | 1] 1 1 1 |
01 2 3'4a5 6 78 9 10 1112 13 14 15

Affected: None

PSW1 advances normally, but no addressable register, memory location, or condition
code indicator is affected.

2-54

INTRODUCTION

BASIC CORE/
DISC MEMORY
SYSTEM

MEMORY SYSTEM
FUNCTIONS

SECTION 111
CORE/DISC MEMORY SYSTEM

The core/disc memory system, using a technique known as memory mapping, creates

an apparent or virtual memory that equals the capacity of the disc. In the basic

configuration of SYSTEMS 72, the virtual programmable memory capacity is 32,768
sixteen-bit words. This cépacity is doubled to 65,536 words in configurations using
the Model 7232 Memory Map Extension in conjunction with one of the following disc
memories:

Basic 65K Word Disc Memory

Model 7234 65K-Word Disc Memory

Model 7235 131K-Word Disc Memory

Model 7236 262K-Word Disc Memory

Model 7237 512-K Word Disc Memory

Core memory supplied with the basic configuration of the SYSTEMS 72 consists of
a single module with a capacity of 4096 sixteen-bit words; however, since virtual memory
is equal to the 32,768-word capacity because of the disc, a larger core is required only
if the time-critical portion of a program will not fit into the core memory supplied
with the basic configuration. In the event additional core is required, the SYSTEMS
72 permits expansion in 4096-word increments (to 65,536 words) by installing Model
7230 4K Core Memory Modules in a Model 7231 Memory Expansion Chassis.

The core/disc memory system supplied with the basic configuration of the SYSTEMS
72 consists of the following items:

Core Memory Modules

Disc Memory

Memory Map (MAP) Circuit Card - Card slot 6

Memory Access Controller (MAC) Circuit Card - Card Slot 6
Memory Extension Disc {(MED) Circuit Card - Card slot 7

The 4096-word capacity of the Core Memory module is functionally divided into sixteen
256-word pages. Any page may be stored, under control of the core/disc memory system,
on a specified sector of the disc.

The 65,5636-word capacity of the Model 7016 Disc Memory is functionally divided into
32 tracks, with eight sectors per track and 256 words per sector. By equating 256-word
core memory pages with 256-word disc memory sectors, the core/ disc memory system
is able to transfer 256-word blocks of program information from core to disc or from
disc to core.

The core/disc memory system performs four major functions during program execution:

Reading data from core memory

Writing data into core memory

Transferring data from the core memory to the disc memory
Transferring data from the disc memory to the core memory

A meinory read operation is initiated when the execution of an instruction requires
that information must be read from the core memory. The read operation transfers
information from the addressed core location to the requesting device,

3-1

CORE MEMORY

DEDICATED CORE

32

LOCATIONS

A memory write operation is initiated when the execution of an instruction requires
that information must be written into the core memory. The write operation transfers
information from the requesting device to the addressed core location.

Core-to-disc and disc-to-core transfers are initiated when the program requires
information not currently resident in core. The transfers, which take place under control
of a small core-resident program always transfer one 256-word page at a time.

A core-to-disc transfer is always performed first to clear an area in core memory for
the information required by the program. To accomplish the transfer, standard software

selects a seldom-used page that is currently co_re-resident and initiates the transfer to
the disc.

A disc-to-Core transfer is initiated after the core-to-disc transfer has cleared an area
for the required program information. After the required program information is
core-resident, program execution is allowed to continue.

Therefore, during program execution the core/disc memory system is continuously
reading from and writing into the core memory until information required by the
program is not available in core. At this time, a core-to-disc transfer is initiated to
transfer a seldom used page to the disc memory. This transfer is followed by a
disc-to-core transfer, which provides the information required to continue the program,

Although the basic configuration of SYSTEMS 72 contains only one 4096-word core
memory module, system design permits easy expansion to sixteen 4096-word modules,
which represents a core memory capacity of 65,536 words. Each 4096-word module
has independant address and data registers, which permit an early release during a
memory read or write operation. The early release feature allows SYSTEMS 72 to overlap
successive niemory accesses to different core memory modules and thereby increases
the efficiency of the CPU. A full memory cycle requires 880 nanoseconds.

Dedicated core locations range from X'0000' to X'01FF'. These locations reserve core
area for the eight addressable registers and various interrupts. In the basic configuration
of SYSTEMS 72, the addressable registers are assigned the first eight locations in core
X'0000" through X'0007". In configurations with the Model 7212 High Speed Register
option, the addressable registers are assigned the same addresses; however, the registers
are located in integrated circuit registers external to the core memory. A complete
list of dedicated core locations is provided below:

Decimal
Address Hexadecimal Address Reserved For
0 x'0000' D-Register
1 x'0001' A-Register
2 x'0002' E-Register
3 X'0003' X-Register
4 x'0004' B-Register
5 X'0005' R1-Registe
6 X'0006' R2-Register
7 x'0007' R3-Register
863 X'0008' - X'003F' Input/Output Service Interrupts
64 X'0040' Power-Off Interrupt
65 X'0041' Power-On interrupt
66

x'0042' Memory Access Controller Trap

DATA GUARD

MEMORY PARITY
CHECK

MEMORY PORTS

Address Hexadecimal Address Reserved For
67 X'0043" Memory Extension Disc Interrupt -
68 x'0044' Direct Access Channel I[nterrupt
69 X'0045' Call 1
70* X'0046' Call 2
71* x'0047' Call 3
72* x'0048' Real-Time Clock 1
73* x'0049' Real-Time Clock 2
74* X'004A' Real-Time Clock 3
75* x'004B' Real-Time Clock 4
76* x'004cC' Console Interrupt
128-511 X'0080' - X'01FF' System Interrupts **

* May address actual or vvirtual memory.

* Only as many locations as needed are reserved.

Data Guard is a standard feature that assures the contents of the core memory will
remain undisturbed during system shutdown, including power failure, and system restart.
Data Guard prevents memory read or write operations during the power on/off sequence
by holding the memory data bus at ground. Additional protection is provided by the
Power Fail-Safe standard feature.

The Model 7210 Memory Parity option generates even parity on each core memory
write operatioh and checks the parity on each read operation. A parity error results
if even parity is not detected during the read operation. The parity error causes the
core/disc memory system to generate a memory trap. The trap aborts the current
operation, so that an error in the memory system does not affect the instruction register
or one of the addressable registers.

Installation of the Model 7210 Memory Parity option lengthens memory read operations
by 250 nanoseconds.

There are three independent ports to core memory. These are listed below in order
of priority:

Port A - Disc Memory

Port B - Direct Access Channel (DAC) or the Multiplexed Input/Output Processor (MIOP)
Option '

Port C - Central Processor Unit (_CPU)

" Each port provides 16 address lines and 16 data lines, whichcare switched into the

memory in response to memory read or write requests from one of the requesting devices.
The Memory Access Controller (MAC)} resolves simultaneous core/disc requests by
granting access to memory in order of priority.

Each request indicates whether the access is to be a read or a write and the
mapped/unmapped status of the effective address. This allows the disc, DAC, and CPU
to exercise independent control over the status of the effective address. (Effective
addresses accessing virtual memory are always mapped, while effective addresses accessing
actual memory are never mapped. In addition, the MAP bit in PSW2 controls
mapped/unmapped status only when the CPU port is selected.)

'3-3

DISC MEMORY

ACTUAL/VIRTUAL
MEMORY
CONFIGURATION

Programs written from SYSTEMS 72 virtual memory are stored on the 65,536-word
disc. The programs may occupy any combination of 256-word pages, but normally
occupy contiguous pages in program sequence.

The 65,536-word disc capacity of the basic SYSTEMS 72 may be expanded to 131,072
words or 262,144 words through the installation of one of the discs listed below.
Through installation of the Model 7232 Memory Map Extender, the programmable
memory capacity may be expanded to 65,536 words, which represents the limit of
the 16-bit effective address; however, any of the discs listed below may store programs
to the limit of its capacity.

e Model 7235 131K-Word Disc Memory
e Model 7236 262K-Word Disc Memory

The basic 65,636-word disc has 32 tracks, with eight sectors/track and 256 words/sector.
Expansion simply increases the number of tracks on the same side of a single disc.

All discs are fixed-head with a head-per-track, so that the average access time is 16.67
milliseconds, which represents one-half the rotational period of the disc.

The disc controller generates odd parity while writing a sector on the disc and checks
for odd parity while reading from the disc.

Programs developed for SYSTEMS 72 are normally written for virtual memory, which
in the basic configuration is equivalent to the capacity of the disc. As indicated in
figure 3-1, the 32,768-word virtual memory capacity of the basic system is derived
from a disc containing 32 tracks, with eight sectors (pages) per track, and 256 words
per page.

To access a word in virtual memory, the page containing the word must be resident
in actual memory. In the basic configuration of SYSTEMS 72 actual memory consists
of a single core memory bank, which contains sixteen 256-word pages or 4096 words
of total capacity.

In accessing a given memory location, the requesting device first specifies whether the
effective memory address is mapped or unmapped. If the address is unmapped, the
actual core address is accessed and the memory read or write operation is initiated;
however, if the address is mapped, the address must be converted from a location in
virtual memory to the corresponding location in actual memory.

Conversion from a virtual address to an address in actual memory is accomplished
through the use of a memory map. The sequence of events required to perform a
virtual-to-actual conversion depends upon whether the word required by the program
is resident on a virtual page that is currently resident in core. If the page is core-resident,
the memory map simply converts the virtual page address to the actual page address
and the memory system initiates the appropriate read or write operation. If the virtual
page is not core-resident, the memory system, under control of standard software initiates
core-to-disc and disc-to-core transfers to transfer the desired page to core. Once the
virtual page is core-resident, the memory map converts the virtual page address to the
actual page address and the memory system initiates the appropriate read or write
operation.

(N4} LINN

HOSS300H4 2 1804
IVHLINDD

511891 - SS3VAAV
{IVNLHIA} JAILD3443

{1VYNOILO}
140IW) HOSSII0Hd
LN41N0/1NdNE
H3IXIWILINW HO
(O¥0) 437170HINOD
S$S320V 103410

{AHOWIN IVNLBIA)

B 1404

¥ 140d

0810/SQHOM 9£5'59
ALIOVAVD 39Vd 9
IDVI/SAUOM 952
¥OVHLUSIOVA 8
39vd
3HOD=HOL03S 2510
NOVHL/SHOLIAS 8
SHovHL ZE
SALIOVVD

AHOW3IW 3510

SHIISNVYL I0Vd

AYOWIN
RLOTE

SHIISNVHL 3OVY

TOHLNOD
AHOWIN

S118 91 = SS3¥QAV viva

{1YNLHIA) IALLDIA43

IYNO1LI3HIAI8

ndd

ava asa

S1HOd AHOWIN

NOISHIANOD
$S3HAQV TVNLIV OL

TIVNLHIA ANV 3LIBWAY 3Y
AHOW3NW IHOD TOHLNOD

dVIN OGNV T0HLNGD
§$S300V AHOWIW

SSIYAQY IWVNLIV

viva
IVYNOLLDIHIGE

SH3IISNVHL 39Vd
3¥0D 01 3810

3100 04 3510 2510 0L 380D
NOISHIANOD SSIHAAY SHI4SNVHL 3Ovd IHOIOL
1YNL3V 0L WNLHIA 3510 ONV JS1G-0L-3H03
ANV 3LIHWOVIY 0UiNOD 10ULNOD OGNV 2LVILINI
AYOWIW 3H0D 10HINOD" AHOWIW
dvw
¥31108LNO3 OS10
nuMMw.uwm Hnmw.z%zu NOISNILX3 AHOWIN
ssauaav viva I
WNLov 1VNOILIINICIE
MNVE/SAHOM 960¥ - - -
39vd GHOM 9SZ
NNVE/SIOV 9t
ANVE L
‘ALIDVAVD
AHOWIW 340D 810/SQHOM 965'98
ALIOVdVD 30Vd 962
3JDVI/SAHOM 952
NIVHL/SIOV4 B
39Vd 340D = HO103S 9510
MOVHLSHOLI3S &
SNOVHL ZE
:ALIOVAVD
AUOW3N 510
910 130OW SW3LSAS

¥iVvQ NOILYWHOINI

g — - - — —]
SH34SNVHL 30Vd
OS1G 01 3¥03

-~ -
NNVE/SAHOM 980%
SYUIISNVEL JOV4/SOHOM 9SZ
39Vd IWOD0L-ISKA NNVE/SIADVA L
ANV 2813-01-340D JNVE L
TOULNOD ONY ALVILINI :ALIOVdYD
AHOWIW 3H0D
9510 NOIL e — 06 1300W NOIL
“NILX3 AHOWIW “YHO4dH0I TOHLNOD
NOILYWHO4NI

'/

AUOWEN TVYNLYIA

/

AHOWIWN IVNLIV

Figure 3-1. Actual/Virtual Memory Configuration (Basic System)

3-6

MEMORY MAP
FORMAT

MEMORY MAP
OPERATION

In the basic configuration of SYSTEMS 72, the memory map consists of 128 twelve-bit
integrated-circuit registers; one for each 256-word page of virtual memory (32,768 words
256 words/page). Each register uses the format shown below to indicate the status of
the associated virtual page:

rle ACTUAL PAGE

R Page Resident Bit- Indicates whether virtual page
is core resident, with 0 = non-resident and
1 = resident.

P Memory Protect Bit - Indicates whether virtual

page is write protected (from the slave mode user)
during CPU memory access, with 0 = unprotected
and 1 = protected.

ACTUAL PAGE Actual Core Location - Defines actual core
location of virtual page when R-bit is set,
indicating that page is core resident

N Not used

Assuming that the virtual page is core resident when a memory read or write operation
is requested, the virtual-to-actual conversion is accomplished by examining the eight
most-significant bits of the effective address. These bits define one of the 128 or 256
map registers, which contain the actual core page address in the ACTUAL PAGE field.
The eight bits removed form the ACTUAL PAGE field define the actual page location
of the desired data, while the eight least significant bits of the effective address define
a specific word on the page. (The eight least significant bits of the effective address
remain intact, since both virtual and actual pages always contain 256 words.)

In the example indicated, a mapped effective address of X'04D2' is translated into an
actual address of X'0DD2'. The first two digits of the address, X'04', indicate that
the eight most-significant bits of the actual address are stored in map register 004,
Note that the R and P bits of map register 004 indicate that the page is core resident
and is not write protected. Any attempt to access a non-resident page resuits in a memory
trap, which causes the core-to-disc and dis-to-core page transfers required to transfer
the addressed virtual page into core. Attempts to write into protected locations also
result in memory traps. Error indications associated with the memory trap are traps.
Error indications associated with the memory trap are discussed in the paragraph on
Memory Ports.

locations also result in memory traps. Error indications associated with the memory
trap are traps. Error indications associated with the memory trap are discussed in the
paragraph on Memory Ports.

0 4 D 2
Effective Virtual | Lo 0 0 oflo 1 0 o1 1 0 1]0 0 10
]
Virtual Page RP ACTUAL PAGE
00 oloj]0 0000000
01 1l0l0 0000011
02 olojo o 0O0OD00OO
03 110lo o 001000
. Memory Map___
7C 1lojlo 0000 1 11
7D 1lojlooo0oo0 1110
7E 11lo0jlo o001 111
7F oJojo o 000000
|
A/_/-\M
0 D D 2
Actual Address) |
=X'0DD2'§ t000110111010010
! | | | I | S | 1 |

Virtual memory may be expanded from 32,768 words to 65,536 words through
installation of a larger memory map. In this case, the optional Mode! 7232 Map Extender
must be used in conjunction with one of the following discs:

® Model 7235 131K-Word Disc Assembly
® Model 7236 262K-Word Disc Assembly

MEMORY MAP The memory map is updated each time a virtual page changes status. To modify the
LUPDATE contents of the appropriate map register, the R, P, and ACTUAL PAGE fields are loaded
into the 10 least-significant bits of the D-Register and a POT instruction is executed
with an effective address, of X'OFRR'. The eight least-significant bits of the effective
address, RR, define the map register to be updated by the 10 least-significant bits of
the D-Register.

MEMORY TRAPS The operations listed, if attempted by the core/disc memory system, will result in a
memory trap:
) An attempt to access a page beyond the range of the memory map

[) An attempt to access a non-resident page

[] An attempt to write into a protected page

® Incorrect parity during a read operation, providing the Model 7210 Memory
Parity option is installed.

Detection of a memory trap while the CPU is connected for service causes the core/disc
memory system to interrupt to actual location X'0042' and terminates the memory
access. (If the CPU is operating in the master mode with the MS bit of PSW2 reset,
the CPU may write into a protected iocation without causing a memory trap.)

38

Sense Disc
Rotational
Position

A PIN instruction may be executed with an effective address of X'OF **' 7.5 instruction
transfers the contents of a snapshot register in the core/disc memory logic to the
D-register in the CPU. The format of the data transferred to the D-register s indicated
below. Until unloaded by the PIN instruction, the snapshot register will not accept
a new configuration,

IM ADDRESS
| T T T L4 1 1 1 ! |
0O 1 2 3 45 6 7 8 9 10111213 1415

M Mapped/Unmapped Status - Indicates whether the
effective address received by the core/disc memory
system is mapped or unmapped, with 0 = unmapped and
1 = mapped

ADDRESS Eight Most- Significant Bits of Effective Address
Defines the eight most-significant bits of the
effective address received by the core/disc memory
system,

The condition codes resulting from this PIN instruction are as follows:

cc1 CC2 Condition
0 0 Core Memory Parity Error (Optional)
0 1 Write PROTECT Violation
1 0 Page Non-Resident
1 1 Page Out of Range
The rotational position may be sensed by executing a PIN instructior: v * an effective

address of X'OEO5. The PIN returns the sector position in the three ieast-signiticant
bit positions of the D-register and configures the conditions to indicat. the appropriate
quarter-sector. The configuration of the three least-significant bits of the D-register and
the condition are indicated below:

D-Register Condition
13 14 15 Disc_Sector CC1 ccz Quarter Sector
0 0 0 0 0 0 First

0 0 1 1 0 1 Second

0 1 0 2 1 0 Third

0 1 1 3 1 1 Fourth

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Output Disc
Track Ang’'
Sector Address

Qutput Core
Bank And
Page Address

Page
Transfer
Terminator

To set up the track and sector address, the D-Register is loaded as indicated below:

TRACK ADDRESS SECTOR
Ll Y T U N T O L

01 2 3 45 6 7 8 9 101112131415

A POT instruction with an effective address of X'0E04’, then transfers the disc track
and sector to the core/disc memory system for storage.

If a transfer is currently in progress when the POT instruction is executed, the busy
condition indicated by setting CC1 and the POT is rejected.

After storing the disc track and sector address, a POT instruction may load the core
bank and page address into bit positions 8 through 15 of the D-register for subsequent
transfer to the core/disc memary system. The configuration of the D-register is indicated
below:

{1 1 1 | | |

01 2 3 45 6 7 8 9‘1011 12 13,14 15
Defines 1 of up to 16

4096-word memory banks

(A’ single memory module Defines 1 of 16 pages in
is provided with the basic selected bank
configuration of SYSTEMS 72.)

BANK PAGE
Jlllllll

After loading the D-register, a POT instruction may be executed with an effective address
from among the following:

Effective Address Direction and Mapped/Unmapped Status
X'0E00' Core-to-Disc/Mapped

X'0E01' Disc-to-Core/Mapped

X'0E02' Core-to-disc/Unmapped

X'0E03' Disc-to-Core/Unmapped

As indicated, the effective address defines the direction of the page transfer, and the
mapped/unmapped status of the address.

If a transfer is currently in progress when the POT instruction is executed, the busy
condition is indicated by setting CC1 and the POT is rejected.

Once started, the page transfer continues to completion uniess halted by the program.

A page transfer is normally terminated upon completion of the transfer. In this case,
the program interrupts to location x'0043'.

The transfer may be halted prematurely by the disc controller if an error is detected
during the transfer. In this case, CC2 is set to indicate an incomplete transfer resulting
from an error condition.

3-10

To determine the origin of the error, the program may execute a PIN instruction with
an effective address of X'0E04". The PIN transfers the error condition to bits 12 through
15 of the D-register, which are configured as follows:

D-Register

12 13 14 15 Error_Condition

1 0 0 0 Non-Resident Page or No Memory

0 1 0 0 Protect Violation (Not CPU)

0 0 1 0 Core Memory Parity Error (Optional)
0 0 0 1 Disc Memory Parity Error

A page transfer may also be halted by executing a POT instruction with an effective
address of X'OE05'. Execution of this POT results in an immediate halt of the page
transfer and sets CC1 to indicate that a page transfer was in progress.

INTRODUCTION

DUAL LEVEL
INTERRUPT
SYSTEM

SECTION IV
INPUT/OUTPUT SYSTEM

The SYSTEMS 72 input/output system, using an input/output processor (PIOP or MIOP),
processes input/output requests on a demand-multiplexed basis. The PIOP is activated
by interrupts from a dual-level, priority interrupt system, which assigns the highest
priority to input/output service requests and the lowest priority to interrupt requests
signalling the end of an input/output (1/0) data transfer. The input/output system also
allows the user to interface devices, through the Model 7240 Direct Access Channel
(DAC), or through the use of the basic programmed output (POT) and programmed
input (PIN) instructions described in Section I,

'

The PIOP functionally appears to be an integral part of the central processor unit (CPU)
and differs from the external MIOP onlv in that it requires more frequent servicing by
the operating system. Operating under control of the PIOP, the CPU outputs data to,
and inputs data from, the various peripherial devices connected to the programmed
input/output (P1O) bus. Peripherial devices connected to the PIO bus operate
independently and asynchronously because the associated device controllers require
minimal direction from the PIOP and because each controller contains a separate data
buffer. Thumbwheel switches located on device controllers provide maximum flexibility
in assigning device addresses.

The SYSTEMS 72 operating systems fully utilize the 1/O capability of the PIOP, so
that the programmer is relieved of all tasks associated with using the PIOP, The only
requirement is to set up a four-word input/output command list (IOCL) table and start
the 1/O data transfer. This feature provides PIOP/MIOP transparency to the user.

The dual-level interrupt system processes two types of interrupts as follows:

° Input/Output Service Requests
° Interrupt Requests

Input/output service requests are generated by the peripheral device controllers to inform
the PIOP that an 1/O data transfer is required by way of the PIO bus. Since many
peripherial devices operate at high data transfer rates, input/output service requests are
assigned a higher priority than the interrupt requests, which simply inform the PIOP
that a data transfer has been completed.

Regardless of the type of interrupt, the method of informing the PIOP of the request
and the associated address is the same. The request is transferred from the associated
device controller to the CPU which, unless the request is inhibited, provides an interrupt
strobe back to the device controller. The strobe causes the device controller to place
the 16-bit interrupt address on the PIO bus, indicate the mapped/unmapped status of
the address, and configure the condition codes. Service interrupts are always unmapped
and have six bit addresses.

4-1

4-2

1/0 PRIORITY

INTERRUPT
INHIBIT

INTERRUPT
CLEAR

SYSTEM
INTERRUPTS

When the CPU completes execution of the current instruction, it accesses the location
specified by the interrupt address. The contents of this location contain a pointer address
that defines the starting location of a four-word table that is used to switch program
context to the interrupt subroutine. (If the device controller indicated that the interrupt
address was mapped, the pointer address is also mapped.) The CPU stores the current
PSW1 in the first word of the four-word table and the current PSW2 in the second.
A new PSW1 is then removed from the third word of the table and a new PSW2 is
removed from the fourth, after which processing resumes under control of the new
program status doubleword, which indicates to the PIOP how the interrupt is to be
serviced.

The 1/Q priority of both input/output service requests and interrupt requests is
dependent upon the 1/O card slot location of the device controllers located in the chassis
assembly provided with the basic configuration of the SYSTEMS 72 and the Model
7271 1/0 Expansion Chassis provided with an expanded configuration. The device
controller installed nearest to the central processor unit (CPU) is assigned the highest
priority. 'In the chassis assembly provided in the basic system, the device controller
in card slot 15 has the highest priority and the device controller in card slot 21 has
the lowest priority. In expanded configurations, the device controller rlosest to the
I/0 extender circuit card has the highest priority of the cards instailed in the Model
7271 1/O Expansion Chassis.

The interrupt system is mechanized so that even though the input/output service request
and the interrupt request for a given device controller have the same card slot priority,
the lower priority interrupt request will be serviced only after all of the active
input/output service requests have been serviced. This ensures that all devices waiting
to transfer data will be serviced before any lower priority interrupt request is recognized.

Both input/output service requests and interrupt requests may be inhibited by the user.
Setting the 10l bit in PSW2 inhibits all input/output service requests, but not interrupt
service requests. Setting the bit 11 in PSW2 inhibits all interrupt requests, but not
input/output service requests.

At the end of the interrupt subroutine, execution of a branch return and clear (BRC)
instruction with the X field set will return program control to the previous program
status doubleword and clear the highest active interrupt.

System interrupts are implemented by expanding the basic configuration of SYSTEMS
72 to include Model 7251 Priority Interrupt Pair options. The system interrupts are
similiar to the interrupts generated by the device controllers; however, the system
interrupts function only as low priority interrupt requests, which allows these interrupts
to be inhibited by the Il bit of PSW2.

Each Model 7251 Priority Interrupt Pair provides two system interrupts, so that each
card contains an even-numbered interrupt and an odd-numbered interrupt. Addresses
for the systems interrupts are X'0080' through X'01FF', which covers the maximum
compliment of 384 interrupts. Toggle switches mounted on the cards are used to select
the eight most-significant bits of the nine-bit interrupt address. A circuit on the card
supplies the least-significant bit in the address,ﬂ' which indicates whether the
even-numbered or odd-numbered interrupt is selected.

Set System
Interrupts

The system interrupts may be armed, enabled, triggered, sensed, or set. These parameters
are defined as follows:

° Armed - Arming turns an interrupt on. A program may disarm an interrupt
to reassign a stimulus to a different priority level or to remove the stimulus
altogether.

° Enabled - Enabling an armed interrupt allows the interrupt to request service

and acknowledge a stimulus. A program may disable an interrupt, which
prevents the interrupt from requesting service, but not from acknowledging
the stimulus. This allows the program to defer response to the stimulus
without losing track of it.

° Triggered - Triggering an interrupt permits a program to initiate an interrupt
stimulus of its own. These program-generated interrupts may be used to:
simulate external system elements during program checkout, and allocate
portions of a program to an external stimuli queue.

° Sensed - Sensing allows the program to determine whether an interrupt
is armed/disarmed, enabled/disabled, waiting or active, and whether the
associated interrupt address is to be mapped or unmapped.

. Set - Setting permits the program to configure the interrupt status. The
interrupts must be set initially and during power restart. In addition, an
interrupt may require a change in status during program execution.

To set the status of a system interrupt, the program must first load the D-register with
a bit pattern in the format illustrated below. After loading the desired bit pattern,
the program executes a POT instruction with an effective address of X'01TT', where
TT represents the toggle-switch address of the interrupt pair.

D-Register
Bit Position Bit Function When Set
0 Enables bits 2, 3, 5, 6, and 7
1 Enables bits 2, 3, 4, and 5 even if bit O is reset
2 Arms even interrupt
3 Enables even interrupt
4 Triggers even interrupt
5 Maps even interrupt address
6 Sets even interrupt to waiting state
7 Sets even interrupt to active state
8 Enables bits 10, 11, 13, 14, and 15
9 Enables bits 10, 11, 12, and 13 even if bit 8 is reset
10 Arms odd interrupt
11 Enables odd interrupt
12 Triggers odd interrupt
13 Maps odd interrupt address
14 Sets odd interrupt to waiting state
15 Sets odd interrupt to active state

Note that the high-order byte, bits 0 through 7, of the D-register controls the even
interrupt, and the low-order byte, bits 8 through 15, controls the odd interrupt.

4-3

Sense System
Interrupts

MEMORY TRAPS

INPUT/OUTPUT
COMMAND LIST

To sense the status of a system interrupt, the program executes PIN instruction with
an effective address of X'01TT', where TT represents the toggle-switch address of the
interrupt pair. The status of the interrupt pair is transferred to the D-register in the
format indicated below.

D-Register

Bit Position Bit Function When Set
0 Not used - Always set
1 Not used - Always reset
2 Even interrupt armed
3 Even interrupt enabled
4 Not used - Always reset
5 Even interrupt address mapped
6 Even interrupt in waiting state
7 Even interrupt in active state
8 Not used - Always set
9 Not used - Always reset
10 Odd interrupt armed
11 Odd interrupt enabled
12 Not used - Always reset
13 Odd interrupt address mapped
14 Odd interrupt in waiting state
15 ’ Odd interrupt in active state

Note that the high-order byte, bits O through 7, of the D -register indicates the status
of the even interrupt, and the low-order byte, bits 8 through 15, indicates the status
of the odd interrupt.

Although not classified as an interrupt, a memory trap represents an interrupt of the
highest priority, which causes an immediate interrupt to actual location X'0042'. Refer
to the paragraph in Section Il on the memory trap for a discussion.

The four-word input/output command list (IOCL) used by the PIOP and MIOP to control
[/0 data transfers between the CPU and a device controller is illustrated below.

IOCL TABLE
Wordo = | ORDERBYTE | FLAG BYTE
Word 1 INTERRUPT ADDRESS
Word 2 DATA ADDRESS
Word 3 BYTE COUNT

012 3 45 %86 7 8 9 10 11 12 13 14 15

Word 0

The high-order byte, bits 0 through 7, of word O contains the order byte, which specifies
the operation to be performed by the peripherial device. The low-order byte, bits 8
through 15, contains the flag byte, which specifies details of the transfer and the method
of terminating the transfer. The significance of the bits in the order and flag bytes
is indicated below:

Order Byte:

Bit Configuration

0 1 2 3 4 5 6 7 Device Order

M M M M M M 0 1 Write

M M M M M M 1 0 Read

M M M M M M 1 1 Control

M M M M M 1 0 0 Sense

M M M M 1 1 0 0 Read Backward

M M M M 1 0 0 0 Transfer in Channel

0 0 0 0 0 0 0 0 Halt

Flag Byte:

Flag Bit Meaning If Set

8 M;)p data addresses and terminal
interrupt address

9 Interrupt on Zero Byte Count

10 Interrupt on Transmission Error

1 Suppress Incorrect Length

12 Interrupt on Unusual End

13 Command Chain

14 Data Chain

15 Interrupt on Channel End

Word 1

Word 1 of the IOCL contains the terminal interrupt address. In terminating an 1/O
operation, the device controller interrupts to this address. This address points to the
location that is used to save the old PSW1 and PSW2 and get the new PSW1 and PSW2.

Word 2

Word 2 of the {OCL contains the data address, which points to the first word of the
data block. In byte transfers, the left byte is byte 0.

Word 3

Word 3 of the IUCL contains a byte count that indicates the number of bytes to be
transferred.

4.5

INPUT/OUTPUT
INSTRUCTIONS

Input/output instructions required to initiate and monitor 1/O operations are derivatives
of the basic POT and PIN instructions discussed in section Ill. The configuration of
the five 1/0 instructions, the associated effective address, and the function of each
instruction is defined below. In the effective address, AA AAAA in the six
least-significant bits represents the device address, which is set using the thumbwheel
switches on the associated device controller card.

POT Instructions

SIO Start 10 Effective address

0000 0001 ODAA AAAA

111]0 00 S DISPLACEMENT
| | | 1 1 [1 |
TIO Test 10
0000 0001 10AA AAAA
111]0 00 S DISPLACEMENT
1 1 1 | |
HIO Halt 10
0000 0001 01AA AAAA
11110 00 s . DISPLACEMENT
! 1] | l] 1] |

IOR 10 Reset

111 o 00 s DiISPLACEMENT 0000 0100 0000 0011

Ll 1 1 L1 1 1 |

PIN Instruction:

TDV Test Device
0000 0000 11AA AAAA

111]o 01 3 DISPLACEMENT
| I | |

The six-bit device address ensures that SIO, TIO, HIO, and TDV instructions operate
only on the addressed device. The IOR instruction has a fixed effective address and
operates on all devices connected on the PIO bus. Execution of an SIO, TIO, HIO,
or TDV instruction sets CC1 if the addressed device is busy, while execution of an
IOR instruction sets CC1 if any device is busy. On multidevice controllers CC2 is also
set.

BASIC
INPUT/OUTPUT
OPERATION

Once the operating system has constructed the |IOCL table specified by the user program,
the user initiates the 1/0 operation by executing an SIO instruction. This sets the device
controller busy and causes the controller to: generate an input/output service request,
transfer the device address to the CPU or MIOP by way of the PIO bus, and request
an order out.

The PIOP or MIOP responds to the request for service by transferring the order out,
which consists of word 1 of the IOCL, to the requesting device controller by way
of the PIO bus. Assuming that word 1 does not contain an illegal order, the device
controller generates another input/output service request, and specifies the size of the
data word, which may be a full 16-bit word or an 8-bit byte. The IOP responds to
the second input/output service requests by transferring the data in the specified
direction, incrementing the data address, and decrementing the transfer count.

Assuming that the transfer count was not decremented to zero by the data transfer,
the IOP processes data requests from other device controllers until the original controller
generates another input/output service request, indicating another data transfer is
required. This process continues until the transfer count has been decremented to zero,
which causes the 10P to issue a terminal order by way of the PIO bus. The terminal
order inhibits further data requests and causes the device controller to generate an
input/output service request, requesting an order in,

When the IOP issues the order in, the device controller transfers status information
to the CPU or MIOP by way of the PIO bus. Typically the status information indicates
whether the 1/0O operation is to be halted, or whether data or command chaining is
required. Regardless of the status information transferred to the CPU, the PIOPor MIOP
issues an order out, which transfers word 2 of the IOCL to the device controller by
way of the P10 bus. The interrupt address in word 2 permits the controller to interrupt
to the proper location When an interrupt is specified in the flag byte of word 1 of
the IOCL.

Assuming that no data or command chaining is specified in the flag byte, but the device
is required to interrupt to the PIOP or MIOP, the device controller generates an interrupt
request. When the CPU services the interrupt request, the device controller transfers
the interrupt address to the CPU by way of the PIO bus and the request is cleared
to terminate the 1/O operation.

Data Chaining (Multiple IOCL'S associated with one physical record)

Data chaining is specified by the associated bit in the flag byte or word 1 of the IOCL.
When data chaining is required at the end of a data transfer, the device controlier requests
a new order out from the PIOP or MIOP which responds by transferring word 1 of
a new I0CL to the device controller by way of the PIO bus. Although the new IOCL
specifies a new data address, transfer count, and normally a new termination sequence,
the previous operation does not change. To ensure that the operation does not change,
the device controller inhibits the new order byte, so that only the new flag byte is stored
by the device controller. After the flag byte has been stored, the device controller generates
an input/output service request, which causes the PIOP or MIOP to initiate a transfer to or
from the new data block. The data transfer process is the same as previously described.

4.7

PIN/POT
1/0 CAPABILITY

The data chaining feature provides scatter-read/gather-write capability, so that a single
instruction with appropriate I0CLs can initiate a series of operations that either: store
information in non-sequential blocks of core, or gather information from several areas
of core for subsequent printing as a single line on the teletype or line printer.

Command Chaining (Multiple 10CL's associated with multiple physical records)

Command chaining is specified by the associated bit in the flag byte of word 1 of

the 10CL. When command chaining is required at the end of a data transfer, the device
controller requests a new order out from the PIOP or MIOP, which transfers word 1

of a new IOCL to the device controller by way of the PIO bus. The command
chaining process differs from data chaining since in addition to specifying a new
data address, transfer count, and termination sequence, the order byte is allowed
to specify a different operation. After the new order and flag bytes have been stored
the device controller generates and input/output service request to initiate the new
data transfer.

An example of command chaining would be to read n records from magnetic tape using
the Read configuration of the order byte, space the magnetic tape forward x records
using the Control configuration of the order byte, write n records on the magnetic
tape using the Write configuration of the order byte, and stop the tape using the Stop
configuration of the order byte.

Devices that do not require the block transfer capability of the.Programmed Input/Output
Processor (PIOP) or Multiplexed Input/Output Processor (MIOP) may be interfaced
by way of the Program Input/Output (P10) bus. To use this capability, the user program)
outputs data by executing the basic POT instruction and inputs data by executing the
basic PIN instruction.

APPENDIX A

GLOSSARY OF TERMS

This glossary defines various technical terms used in discussions of the
SYSTEMS 72 Digital Computer. The terms are listed in alphabetical order.

ABSOLUTE ADDRESSING

A method of referencing one of the first 127 memory locations, which
are represented in hexadecimal by X'0000' through X'007F". The absolute
address is equal to the value of the DISPLACEMENT field of the
instruction when the R, !, X, and S bits of the instruction are all reset
to zero.

ACTUAL MEMORY

A name commonly given to core memory, which may range from 4096
words in the basic configuration of SYSTEMS 72 to 65,536 words in
a fully expanded configuration. SYSTEMS 72.is a virtual memory system,
which permits the execution of programs up to the 32,768-word capacity
of the disc memory in the basic configuration and up to'65,536 words
in an expanded configuration. Although the program normally references
locations in virtual memory, the required information must be core
resident before the program can continue. (See also virtual memory.)

ADDRESSABLE REGISTER

A 16-bit register that may be accessed by addressing by way of the
DISPLACEMENT field of the instruction. There are eight addressable
registers provided with the SYSTEMS 72. in the basic configuration, the
registers occupy the first eight locations in actual memory. In
configurations with the Model 7212 High-Speed Register option, the
registers are located in external integrated circuits. The eight registers and
the associated actual memory address are listed below:

Register Address
D x'0000'
A x'0001’
E x'0002'
X X'0003'
B X'o004'
R1 x'0005'
R2 x'0006'
R3 x'0007"
ASSEMBLER

A program that assists the user by translating code or notation
understandable to the user into machine Ianguage.AIn the SYSTEMS 72,
the MAP assembler accepts and converts a mnemonic equivalent of the
various instructions, such as ADD, S‘{A, and CAL2.

AUTOMATIC PROGRAM FRAGMENTATION

A method used by a small core-resident program to allocate portions of
user programs into the virtual memory space provided by SYSTEMS 72.
User programs are fragmented into 256-word pages that are transferred
from the disc to the core memory on a demand basis as the program
executes. Any 256-word disc page may be transferred into any 256-word
core page, which allows contiguous program segments to be scattered in
core.

BASE ADDRESSING

A method of indexing using the B (base) register. (See pre-indexing).

BOOTSTRAP LOADER

A method to allow programs to be loaded from any standard binary input
device, such as a paper tape reader or magnetic tape. A standard paper
tape bootstrap is provided with the basic configuration of SYSTEMS 72.
This bootstrap allows programs to be input from paper tapes by way
of the paper tape reader on the teletype. The Model 7214 Automatic
Bootstrap loader permits loading from any of the binary input devices
connected to the SYSTEMS 72.

BYTE

An eight-bit segment of data word. Bits O through 7 of a 16-bit word
are normally referred to as the high-order byte end bits 8 through 15
are referred to as the low-order byte. Most-significant and even byte are
also used to describe the high-order byte, while least-significant and odd
byte are used to describe the low-order byte.

CENTRAL PROCESSOR UNIT

The functional portion of a digital computer that interprets and executes
the program instructions. Normally referred to as the CPU, the processor
contains various registers that operate on the program data, busses that
transfer the data from one area to another, and the arithmetic element
that performs the arithmetic functions.

COMMAND CHAINING

A method of input/output (1/0) used by SYSTEMS 72 to permit a single
instruction to initiate an entire sequence of events. A typical command
chaining operation wouid be to have the user program start an /O
operation by reading n records from magnetic tape, command chain to
space the magnetic tape x records forward, command chain to write n
records on the magnetic tape, and command chain to stop the tape.

COMPILER

A program that assists the user by allowing the program to be written
in a completely human-oriented language, which is not associated with
any particular computer. The compiler translates a program written in
compiler language into a sequence of instructions that cause the computer
to perform the program. In addition, the compiler handles memory
allocation and generates machine instructions and code. SYSTEMS 72
offers two optional compilers: BASIC and FORTRAN.

CONDITION CODES

A method of indicating the result of an instruction execution. In the
SYSTEMS 72, the condition codes are displayed on the control panel
by indicators CC1 and CC2 in the PROGRAM STATUS DOUBLEWORD.
DATA CHAINING

A method of input/output (1/O} used by SYSTEMS 72 to permit a single
instruction to initiate high speed block transfers between a peripheral

Al

device and non-contiguious areas of core memory. Data chaining results
in a process referred to as scatter-read/gather-write, which permits
information stored in non-contiguous areas of core to be gathered for
printing on a single line of the teletype or line printer.

DEMAND MULTIPLEXING

A method by which requests for input/output (1/0) service are processed
on the basis of demand, rather than being scanned in a fixed priority
sequence. SYSTEMS 72 input/output is on a demand multiplexed basis
under control of a software-implemented programmed input/output
processor (PIOP).

DIRECT ACCESS CHANNEL

A device that permits external, systems-oriented equipment to interface
directly to the core memory. Normally referred to as a DAC, the channel
allows a user program to initiate a high-speed 1/O data transfer that
is not under control of the software-implemented programmed
input/output processor (PIOP) or MIOP. SYSTEMS 72 offérs a Model
7245 Direct Access Interface.

DISPLACEMENT INDEXING

A method of addressing obtained by adding the contents of an index
register to the address portion of the instruction. SYSTEMS 72 offers
two types of displacement indexing: pre-indexing, in which the B (base)
register is added to the DISPLACEMENT field of the instruction; and
post-indexing, in which the X (index) register is added to a previously
calculated partial address. '

DOUBLE INDEXING

A method of addressing in which the contents of two separate index
registers are used in the calculation of the effective address. In the
SYSTEMS 72, pre-iindexing adds the DISPLACEMENT field of the
instruction to the B (base) register, after which post-indexing may add
the previously calculated partial address to the contents of the X (index)
register to obtain the final effective address.

DYNAMIC PROGRAM RELOCATION

A process used by a small core-resident program to relocate program
segments within the virtual memory space provided by SYSTEMS 72.

EFFECTIVE ADDRESS

The final memory reference address resulting from calculations performed
by the CPU. The effective address indicates a core location containing
a 16-bit word that will be used during execution of the current instruction.
The R, 1, X, and S bits of the instruction define the operations required
to calculate the effective address. which may include the following:

Relative Addressing
Pre-indexing
indirect Addressing
Post-Indexing
Absolute Addressing

EFFECTIVE WORD

Effective word is a term used to describe the contents of the effective
address.

HEXADECIMAL CODE

Hexadecimal refers to a number system of base 16, so that valid digits
in the systemare: 0, 1, 2, 3,4, 5,6, 7,8, 9, A, B, C D, E, and

F. In the SYSTEMS 72, 16-bit words are normaliy divided into four
groups containing four bits each, so that each four-bit group represents
a hexadecimal character as indicated below:

Code Character Code Character
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 111 F

Therefore, the 16-bit word illustrated below represents a hexadecimal code
of X'143F". Note that in text, the code is prefixed by the letter X and
is enclosed in single quotes.

0001 0100 0011 1111 = X'143F'
INDIRECT ADDRESSING
A method of addressing that defines a memory location containing ar
address capable of specifying any location in memary. In the SYSTEMS
72 the R and S bits of the instruction indicate relative adarc.. or
pre-indexing, which is performed prior to indirect addressing. T ! bit
of the instruction defines the requirement for indirect address i

INPUT/OUTRUT DEVICE

A device used to input data to the central processa: unit (CPU) for

processing, or output processed data for storsg: o printout. Typical
input/output (1/0) devices used with the SYS1EMS 72 include teletypes,
paper tape reader and punch, card reader i« printer, magnetic tapes,

and disc memories.

INPUT/OUTPUT SERVICE REQUEST

A request from a device controller, which informs the programmed
input/output processor (PIOP) that the associated input/output device is
ready to transfer data. This type of request represents a high priority
interrupt that is serviced by the PIOP according to a priority established
by the physical location of the controller cards in the main CPU chassis
and the 1/O expansion chassis supplied with an expanded configuration.
The highest priority is assigned to the device controller located closest
to the CPU cards in the main CPU chassis.

INSTRUCTION

An instruction represents one operation in a computer program or routine,
such as ADD, STA, or CAL2. The SYSTEMS 72 has 27 basic instructions
and 5 optional instructions that are reserved for special user-specified
operations. Fifteen of the basic instructions have register-expandable
derivatives, so that these instructions operate on all eight addressable
registers. Many of the remaining 12 basic instructions also have derivatives,
so that the total instruction set for SYSTEMS 72 contains 164
instructions, exclusive of the 5 optional instructions. All basic and
derivative instructions for SYSTEMS 72 are provided in appendix B.

INTERRUPT REQUEST

A request from a device controller, which informs the programmed
input/output processor (PIOP) that the associated input/output device has
completed an 1/O data transfer. This type of request represents a low
priority interrupt that is serviced by the PIOP according to the priority
assigned to the 1/O device. Priority is determined by the physical location

of the device controller cards located in the main CPU chassis and the
1/0 extender chassis supplied with an expanded configuration. The highest
priority is assigned to the device controller located closest to the CPU
cards in the main CPU chassis. Interrupt requests are serviced by the
PIOP only after all high priority input/output service requests have been
serviced.

MEMORY MAP

A device that allows the monitoring of the resident/non-resident core
memory status of each 256-word page in the virtual memory space
provided by SYSTEMS 72. Non-resident pages addressed by the user
program causes a small core-resident program to transfer a seldom
used-page from core to disc and the addressed page from disc to core
so that the program can continue. The map also contains the
protected/unprotected status of each virtual page, which prevents writing
into protected areas unless overriden by the central processor unit (CPU).
In the basic configuration of SYSTEMS 72, the map contains the status
of ait 128 pages on the 32,768-word disc. In an expanded configuration,
the man maintains the status of 256 pages on a disc having a minimum
capacity of 65.536 worde<

MEMORY PORT

A device for accessing core memory. The SYSTEMS 72 provides three
dedicated ports to memory, which are assigned fixed priorities according
to data transfer requirements. The highest priority is assigned to the disc
memory, so that there may be efficient initiation of page transfers as
required by the user program. The next highest priority is assigned to
the optional direct access channel (DAC), so that the channel can execute
high speed block data transfers. The lowest priority is assigned to the
central processor unit (CPU}, so that the CPU is permitted access to
memory only after the higher priority ports have been serviced.

MEMORY REFERENCE INSTRUCTION

An instruction that uses the effective address calculated by the central
processor unit (CPU) to reference a memory location that contains data
used during execution of the instruction. (See also instruction.)

MEMORY TRAP

A method by which the core/disc memory system informs a small
core-resident program of an attempt to access a non-resident page, an
attempt to write into a protected page, or a parity error during a read
oparation, providing the system is equipped with the Model 7210 Memory
Parity option. Detection of any of the previous conditions while the
central processor unit (CPU) is connected for service results in termination
of the memory access. In the case of a non-resident page, a seldom-usec
page will be transferred from core to disc and the required page from
disc to core so that the user program can continue.

OPERATION CODE

Normally referred to as an op code, the operation code represents the
portion of an instruction that indicates what operation is to be performed
during execution of the instruction. The OPERATION CODE field for
SYSTEMS 72, which occupies bits 3 through 7 of the 16-bit instruction,
specifies which of the 27 basic instructions or five optional instructions
is to be executed. Appendix B lists alt basic and derivative instructions
in the SYSTEMS 72 instruction repertoire.

PARTIAL ADDRESS

An address formed by the central processor unit (CPU) during calculation
of the effective address. Until the CPU has performed all address
calculations specified by the R, I, X, and S bits of the instruction, the
address is referred to as a partial address.

POST-INDEXING

A method of addressing that defines a memory location referenced to
the contents of the index (X) register. In the SYSTEMS 72, the R, |,
and S bits specify relative addressing, indirect addressing, and pre-indexing,
respectively, which must be performed prior to post-indexing. The X bit
of the instruction defines the requirement for post-indexing.

PRE-INDEXING

A method of addressing that defines a memory location referenced to
the contents of the base (B) register. In the SYSTEMS 72, if the R
bit of the instruction is not set to request relative addressing, the S bit
may be used to request pre-indexing, which occurs prior to indirect
addressing or post-indexing as specified by the | and X bits, respectively.

PRIVILEGED INSTRUCTIONS

A method of permitting certain instructions to execute only when the
central processor unit (CPU) is operating in a certain mode. SYSTEMS
72 offers four privileged instructions: POT, PIN, BRC, and CAL1. These
instructions execute only when the CPU is operating in the master mode,
which occurs when the MS bit in PSW2 is reset.

PROGRAMMABLE REGISTER

A register that may be operated upon directly by the user program. (See
also addressable register).

PROGRAMMED INPUT/OUTPUT PROCESSOR

A software-implemented method of simulating an external hardware
input/output processor. Normally referred to as the PIOP, the processor
controls block-mode input/output transfers and eliminates time-consuming
input/output programming by the user, All the PIOP requires is that the
user set up a four-word table defining the control information required
for the transfer, the terminal interrupt address, the starting data address,
and the word count, after which the user program starts the transfer,

which is completed under control of the PIOP,

PROGRAM STATUS DOUBLEWORD

Two 16-bit words that define the current program environment. Program
status word 1 (PSW1) indicates the current location of the program
counter. Program status word 2 (PSW2) indicates various parameters of
the current program as indicated below. The doubleword is displayed by
the PROGRAM STATUS DOUBLEWORD indicators on the SYSTEMS
72 control panel.

Condition Codes - CC1 and CC2Z

Compare Sequence Mode - SM1 and SM2
Input/Qutput Service Request Inhibit - 10t
Interrupt Request Inhibit - 11

Interrupt Register Inhibit - HHA

Address Mapped - MAP

Master/Slave Mode - MS

o000 0 00

RAPID CONTEXT SWITCHING

A method of rapidly changing the program environment to process
memory traps, interrupts, and call instructions. In performing the
switching function, the system first stores the current program
environment contained in the program status doubleword. A new
doubleword is then accessed to define the program environment required
to continue processing. After the memory trap, interrupt, or call has been
processed, the original program environment is restored, SO that processing
can continue from where it was previously halted.

A3

RELATIVE ADDRESSING

A method of addressing that defines a memory location relative to the
program count contained in program status word 1 (PSW1}. In the
SYSTEMS 72, the R bit of the instruction is set to request relative
addressing and the S bit indicates whether the desired address is forward
or backward of the current program count. Relative addressing occurs
prior to indirect addressing or post-indexing as specified by the | and
X bits, respectively. No pre-indexing can occur when relative addressing
is requested, since the S bit is used to indicate whether the value in
the DISPLACEMENT field is forward or backward of the current program
count.

VIRTUAL MEMORY

A concept by which a small programmable memory space, referred to
as actual memory, is effectively increased in size by adding mass storage
elements that take on the programmable characteristics ot the smaller
memory. In the basic configuration of SYSTEMS 72, the 4096-word
core represents the actual memory space and the 65,536-word disc
represents the virtual memory space. Program segments of 256-words,

A4

which are referred to as pages, are transferred between the core and disc
memories under control of a small core-resident program that is
transparent to the user.

As long as the user program executes portions of a program that are
core-resident as indicated by the memory map, processing will continue.
When the program attempts to access a page that is not core-resident,
a memory trap is generated that causes the transfer of a seldom-used
page from core to disc and then transfer the required from disc to core.
After the required page is core-resident, the instruction is re-exscuted
and processing resumes.

WRITE PROTECT

A methad used to prevent destroying information stored in specified pages
of the virtual memory space. An attempt to write into a protected page
results in a memory trap that terminates the memory access. The only
exception occurs when the central processor unit (CPU) is connected for
service, since the CPU may override the page write protect bit stored
in the memory map.

APPENDIX B

SYSTEMS 72 DERIVATIVE INSTRUCTIONS

The SYSTEMS 72 provides an instruction repertoire of 27 basic instructions, which are discussed in section

11 of this manual, and five optional instructions that may be implemented for expanded configurations.

Fifteen of the basic instructions are register-expandable, so that derivatives of these instructions operate on the
eight programmable registers. Many of the remaining 12 basic instructions also have derivatives. This

appendix lists all derivative instructions.

Basic
Instruction

Derivative, Format, and/or Function

BCR-15

BE Branch if Equal
_ |

IR11 101 0 1s

DISPLACEMENT
I T T |

"0 1 2 3las 6 718 9

10 11112 13 14 15

The effective address replaces PSW1 if the contents of the A-register and the other operand are equal. BE is

appropriate immediately after a compare instruction.

EXAMPLE Memory Location:
Hex Instruction:

BEFORE EXECUTION PSW1
1050

AFTER EXECUTION PSWi1
1051

BEZ Branch if Equal to Zero

1050
E504

PSW2
8003

PSW2
8003

Rj1{o0}j1 01 0 1]|Ss

| . |

DISPLACEMENT
! 1 1 | | |

o1 2 3las 6 718 9

The effective address replaces PSW1 if the contents of the relevant register are equal to zero. BEZ is appropriate

10 11112 13 14 15

after a load instruction, in which the receiving register is relevant, or a logical instruction, in which the A -

register is relevant.

EXAMPLE Memory Location:
Hex Instruction:

BEFORE EXECUTION PSW1
1030

AFTER EXECUTION PSW1
1031

1020
D507

PSW2
4002

PSW2
4002

Basic
Instruction

Derivative, Format, and/or Function

BCR-15 (Cont'd}

BGE Branch if Greater than or Equal
| |

I 1010 1 P ,
R] o1 Ly 1 S Pnsqlace.mertl |

01 2 3l4a 5 6 7 8 9 101112 13 14 15

The effective address reptaces PSW1 if the contents of the A register. are greater than or equal to the other operand.
BGE is appropriate immediately after a compare instruction.

EXAMPLE Memory Location: 1060
Hex Instruction: B505

BEFORE EXECUTION PSW1 PSW2
1060 8003

AFTER EXECUTION PSW1 PSW2
1065 8003

BGEZ Branch i: Greater than or Equal to Zero
_]

lR 01 101 0 1is DISPLACEMENT
1 1 I | | S N T |

0 1 2 3145 6 7 8 9 101112 13 14 15
The effective address replaces PSW1 if the contents of the relevant register are greater than or equal to zero.
BGEZ is appropriate immediately after a load instruction, in which the receiving register is relevant, or a
logical instruction, in which the A-register is relevant.

i
‘
|
|
|

EXAMPLE Memory Location: 1040
Hex Instruction: B505

BEFORE EXECUTION PSW1 PSW2
1040 4002

AFTER EXECUTION PSW1 PSW2
1041 4002

Basic
Instruction

Derivative, Format, and/or Function

BCR- 15
{Cont'd)

BNC Branch clm No Carry

Rjf1jJo0j1 010 1]Ss
L1]

Displacement
i 1 J 1 1

o 1 2 3las 6 718 9

10 1111213 14 15

The effective address replaces PSW1 if the last arithmetic operation did not cause a carry. BNC is appropriate
immediately after an arithmetic instruction.

EXAMPLE Memory Location: 1070
Hex Instruction: D506
BEFORE EXECUTION PSW1 PSW2
1070 8003
AFTER EXECUTION PSW1 PSwW2
1071 3003
BNO Branch on No Overflow \
Rlol111 01 0 1|S Displacement
| I | { | | |

0 1 2 3las 6 718 g

EXAMPLE Memory Location:
Hex Instruction:

BEFORE EXECUTION PSW1
1080

AFTER EXECUTION PSW1
1083

10 11|12 13 14 15

The effective address replaces PSW 1 if the last arithmetic operation did not cause an overflow. BNO is appropriate
immediately after an arithmetic instruction.

1080
B503

PSW2
8003

PSW2
3003

Basic
Instruction

Derivative, Format, and/or Function

BCS - 16

BC Branch on Carry
] |

Rl 1Jol1 01 1 0]s Displacement
R T i i il

0 1 2 3Vas 6 7218 9 1011112131415

The effective address replaces PSW1 if the last arithmetic operation caused a carry. BC is appropriate
immediately after an arithmetic instruction.

EXAMPLE: Memory Location: 10E0
Hex Instruction: D604

BEFORE EXECUTION: PSW1 PSw2
10EO 8002

AFTER EXECUTION: PSW1 PSW2
10E4 8002

BL Branch if Less Than
| |
R|oj1]1 01 1 0}s Displacement 1
| |

[T | [i
0 1 2 3las 6 718 9 1011112 13 14 1%

The effective address replaces PSW1 if the contents of the A register are less than the other operand. BL is
appropriate immediately after a compare instruction.

EXAMPLE: Memory Location: 10D0
Hex Instruction: B602

BEFORE EXECUTION PSW1 PSW2
10D0 4002

AFTER EXECUTION PSwW1 PSw2
10D2 4002

B4

Basic

Instruction Derivative, Format, and/or Function
BSC-16 BLZ Branch if Less than Zero
1 1
{Cont'd)

R{ojJ1]1 0 1 1 .0

]

Displacement
| I T |

8 9

10 11112 13 14 15

The effective address replaces PSW1 if the contents of the relevant register are less than zero. BLZ is appropriate
immediately after a load instruction in which, the receiving register is relevant, or a logical instruction in which

the A register is relevant.

EXAMPLE Memory Location:

Hex Instruct

ion:

BEFORE EXEUCTION PSW1
10BO

AFTER EXECUTION PSW1
10B4

BO Branch oln Overflow

1080
B604

PSw2
4002

PSW2
4002

RIO110110

S

Displacement I
) I W |

o 1 2 3la 5 6 7

8 9 10 1111213 14 18

The effective address replaces PSW 1 if the last arithmetic operation caused an overfiow. BO is appropriate

immediately after an arithmetic instruction.

EXAMPLE:

Memory Location:

Hex Instruction:

BEFORE EXECUTION

AFTER EXECUTION

10F0

B602
PSW1 PSW2
10F0 8002
PSW1 PSW2
10F1 8002

BS

Basic
Instruction

Derivative, Format, and/or Function

BCS-1¢
(Cont'a,

BNE Branch if Not Equal
__ |

R{1]0]1 0 1 1 O]s
L1 1 | L1 1

Displacement

L1 |

01 2 3la 5 6 708 9 10 11}

12 13 14 15

The effective address replaces PSW1 if the contents of the A register and the other operand are not equal. BNE is

appropriate immediately after a compare instruction.

EXAMPLE Memory Location: 10C0
Hex Instruction: D603

BEFORE EXECUTION PSW1 PSW2
10C0 4002

AFTER EXECUTION PSW1 PSW2
10C1 4002

BNEZ Branchlif Not Equal to Zero

R 1011 . 0 isplace
110 1 97 S lDusflac

[

0 1 2 3las 6 718 9 10 n

1213 14 15

The effective address replaces PSW1 if the contents of the relevant register do'not equal zero. BNEZ is appropriate
immediately after a load instruction in which, the receiving register is relevant, or a logical instruction, the A

register is relevant.

EXAMPLE Memory Location:
Hex Instruction:

BEFORE EXECUTION PSwi1
10A0

AFTER EXECUTION PSW1
10A5

10A0
D505

PSW2
€002

PSw2
€002

B-6

Basic
Instruction

Derivative, Format, and/or Function

LDD - 08

LDDA Load D from A
| |

100 OJjojoo o 0 0 0 1
I —_— T T T
4 5 6 718 9 1011 1213 14 15

ojojo

— ©

o 1 2 3

The contents of the A register replace the contents of the D register.

EXAMPLE: Memory Location: 1001
Hex Instruction: 0801

BEFORE EXECUTION PSW1 PSW2 A D
1001 €002 FFFF 8000

AFTER EXFCUTION PSW1 PSW2 A D
1002 €002 FFFF FFFF

LDDB Load D from B

olo Jo 0 T 00 Olofo o0 0 0 1 0 O
| | | O I I O T |
o 1 2 3la s & 718 9 101112131415

The contents of the B register replace the contents of the D register.

EXAMPLE: Memory Location: 1004
Hex Instruction: 0804
BEFORE EXECUTION: PSW1 PSW2 B D
1004 0002 0300 FFFC
AFTER EXECUTION PSW1 PSW2 B D
1005 8002 0300 - 0300

B-7

Basic
Instruction

Derivative, Format, and/or Function

LDD - 08
Cont’d

LDDE Load D from E

]

000010010000|0|010

10
N |

0 1 2 3las 6 718 9 1011112131415

The contents of the E register replace the contents of the D register.

EXAMPLE:

Memory Location: 1002

Hex Instruction: 0802

BEFORE EXECUTION PSW1
1002

AFTER EXECUTION PSW1
1003

LDDX Load D from X

PSW2
€002

PSW2
8002

Il

E D
000A FFFF
E D

000A 000A

0100 0[g]o oo oo

| |

L1 |

11
| |

The contents of the X register replace the contents of the D register.

EXAMPLE: Memory Location:
Hex Instruction:

5 6 718 9 1011]12 13 1415

BEFORE EXECUTION: PSW1
1003

AFTER EXECUTION: PSW1
1004

1003
0803

PSW2 X D
8002 FFFC 000A
PSW2 X D
0002 FFFC FFFC

B-8

Basic

Derivative, Format, and/or Function

Instruction
LDD-08 LDP1 Load D from R1 .
(Cont’d)
ololoJo 10 0 ojoj OooO0O0O0OT1T O 1
1 {1] | N IO O W |
0 1 2 3la s 6 718 9 1011112131415
The contents of the R1 register replace the contents of the D register.
EXAMPLE: Memory Location: 1005
Hex Instruction: 0805
BEFORE EXECUTION: PSW1 PSW2 R1 D
1005 8002 0000 0300
AFTER EXFCUTION: PSW1 PSW2 R1 D
1006 0002 0000 0000
LDD2 Load D from R2 '
ojo]jo 01000O0]O 0000 11 0
T T | ! 4 J 1 | |
0 1 2 3las 6 718 9 1011112131415
The contents of the R2 register replace the contents of the D register.
EXAMPLE: Memory Location: 1006
Hex I[nstruction: 0806
BEFORE EXECUTION: PSW1 PSW2 R2 D
1006 0002 0020 0000
AFTER EXECUTION: PSW1 PSW2 , R2 D
1007 8002 0020 0020
LDD3 Load D from R.3 :
0000100000'000111'
1 1] | | T I
0 v 2 3la s 6 718 9 1011112131415
The contents of the R3 Register replace the contents of the D register.
EXAMPLE: Memory Location: 1007
Hex Instruction:. 0807
BEFORE EXECUTION: PSW1 PSw2 R3 D
1007 8002 3882 0020
AFTER EXECUTION: PSW1 PSW2 R3 D
1008 8002 3882 38B2

Basic
Instruction

Derivative, Format, and/or Function

LDA-09

LDAB Load A from B

ojojol 0 1t 00 1]0 000O0T11TO0TO
| . e 1 1 | |

0 1 2 3las 6 718 g 1011112131419

The contents of the B register replace the contents of the A register.

EXAMPLE: Memory Location: 100C
Hex Instruction: 0904
BEFORE EXECUTION: PSW1 PSW2 B
100C C002 0300
AFTER EXECUTIPN: PSW1 PSW2 B
100D 8002 0300

LDAD Load A from D »

ojojo}j 01 00 1JO}] OO O0O0OC O O
) I . L1 1 L | |

0 1 2 3las 6 718 9 101111213 1415

The contents of the D register replace the contents of the A register.

EXAMPLE: Memory Location: 1009
Hex Instruction: 0900
BEFORE EXECUTION: PSW1 PSW2 D
1009 8002 38B2
AFTER EXECUTION: PSW1 PSW2 D
100A 8002 38B2

FFFF

0300

7FFF

38B2

B-10

Basic

Derivative, Format, and/or Function

Instruction
LDA-09 LDAE Load A from E
(Cont’d) ! Y
olojo}j 0 1 00 1]0 0 0 0O0 010
] q | | [J] | | |
0 1+ 2 3a 5 6 718 9 101111213 14 15
The contents of the E register replace the contents of the A register.
EXAMPLE: Memory Location: 100A
Hex Instruction: 0902
BEFORE EXECUTION: PSW1 PSW2 E A
100A 8002 000A 38B2
AFTER EXECUTION: PSW1 PSW2 E A
100B 8002 000A 000A
LDAX Load A from X .
ol olof 0100 1j00§y 00 000 1 1
| | I I I O |
0 1 2 3las 6 718 9 1011112 13 14 15
The contents of the X register replace the contents of the A register.
EXAMPLE: Memory Location: 100B
Hex Instruction: 0903
BEFORE EXECUTION: PSW1 - PSW2 X A
100B 8002 FFFC 000A
AFTER EXECUTION: PSW1 PSW2 X A
100C C002 FFFC FFFC

Basic
Instruction

Derivative, Format, and/or Function

LDA-09
(Cont'd)

~ LDA1 Load A from R1

I |

Ioooo10010 000010
|]

|
|

01 2 3'4a 5 6 7

The contents of the R1 register replace the contents of the A register.

8 9 10 11112 13 14 15

EXAMPLE Memory Location: 100D
Hex Instruction: 0905
BEFORE EXECUTION PSW1 PSW2 R1
100D 8002 0000
AFTER EXECUTION PSW1 PSW2 R1
100E 0002 0000
LDA2 Load A from R2
[0 0o|o 0100 1]|0 0000 1T 1T O
| |] l 1 | I } |

0 1 2 3la 5 6 7

The contents of the R2 register replace the contents of the A register.

8 9 10 111121314 15

EXAMPLE: Memory Location: 100E
Hex Instruction: 0906
BEFORE EXECUTION: PSW1 PSW2 R2
100E 0002 0020
AFTER EXECUTION: PSW1 PSW2 R2
100F 8002 0020
LDA3 LoadlAfrom R3 ,
(] R) 01001 0]0 0 0 0 1 1 1
| I T . | 1 1 |] |
0 1 2 31as 6 718 9 1011112131419
The contents of the R3 register replace the contents of the A register.
EXAMPLE: Memory Location: 100F
Hex Instruction: 0907
BEFORE EXECUTION: PSW1 PSW?2 R3
100F 8002 38B2
AFTER EXECUTION: PSW1 PSW2 R3
1010 8002 38B2

A
0300

A
0000

A
0000

0020

0020

3882

B8-12

Basic
Instruction

Derivative, Format, and/or Function

LBY - 0A

LBYB Load Byte into A from B

L [

ololo] 01 010|0j00O0 O0O 10 O

[1 1 | | N O |
0 1 2 3la s 6 718 9 101111213 14 15

Bits O through 7 of the B register replace bits 8 through 15 of the A register and bits 0 through 7 of the
A register are cleared.

LBYD Load Byte into A from D

1 1

ol oJo]j] 0 1 01 olo]Joo o0 o0 0 o0
KON f I T I T
o 1 2 3las 6 718 9 1011112131415

Bits O through 7 of the D register replace bits 8 through 15 of the A register and bits 0 through 7 of the A
register are cleared.

LBYE Load Byte into A from E

2

o[ooo101ooooooo1o
1 | | | | I
o 1 2 3la 5 6 7t8 9 10 1111213 14 15

Bits O through 7 of the E register replace bits 8 through 15 of the A register and bits 0 through 7 of the A
register are cleared.

LBY X Load Byte into A from X
,)

|oooo1o1000000011
I I | T O |
0 1 2 3las 6 718 g 1011112131415

Bits O through 7 of the X register replace bits 8 through 15 of the A register and bits O through 7 of the A
register are cleared.

B-13

Basic

Instruction Derivative, Format, and/or Function
LBY - 0OA LBY1 Load Byte into A from R1
(Cont’d)] .

ol ojo] 01 01 0J0j0O0O0O0 1 0 1

|] 1 1 [] |
0 1 2 3las 6 718 9 1011112 13 1415

Bits O through 7 of the R1 register replace bits 8 through 15 of the A register and bits 0 through 7 of the
A register are cleared.

LBY2 Load Byte into A from R2

1]

L0000101000000110
0

[I O] 1 1 ! |
1 2 3Tas 6 718 9 1011112 13 14 15

Bits O through 7 of the R2 register replace bits 8 through 15 of the A register and bits 0 through 7 of the
A register are cleared.

LBY3 Load Byte into A from R3

1 L
olololo1010lo]lo 00011 1
1 |] |] 1 1] | I
0 v 2 3la 5 6 708 9 101111213 14 15

Bits O through 7 of the R3 register replace bits 8 througﬁ 15 of the A register and bits O through 7 of the
A register are cleared.

Basic
Instruction

Derivative, Format, and/or Function

LDX - 08B

LDXA Load X from A
'

ololoJ]O 101 1j0jO0 000 0O 1

I | T |
0 1 2 3¢ta4a 5 6 718 9 1011112131415

The contents of the A register replace the contents of the X register.

EXAMPLE: Memory Location: 1013
Hex Instruction: 0B01
BEFORE EXECUTION: PSW1 PSW2 A
1013 8002 38B2
AFTER EXECUTION: PSW1 PSW2 A
1014 8002 38B2

LDXB Load X from B
{

oloJjoJo 1 01 1]oJooo0o0 10 ol
1 1 | | | I I T N
o 1 2 3la s 6 7018 9 10111121314 15

The contents of the B register replace the contents of the X register.

EXAMPLE: Memory- Location: 1015

Hex Instruction: 0B04
BEFORE EXECUTION: PSW1 PSW2 B
1015 8002 0300
AFTER EXECUTION: PSW1 PSW2 B
1016 8002 0300

4000

38B2

000A

0300

B-15

Bésic .
Instruction

Derivative, Format, and/or Function

LDX - 0B
{Cont’d)}

LDXD Load X from D

o ojojo 1011 jo

000O0O OO
Y N S |

01 2 3las 6 718 9

10 11112 13 14 15

The contents of the D register replace the contents of the X register,

EXAMPLE: Memory Location:
Hex Instruction:

BEFORE EXECUTION: PSW1
1012

AFTER EXECUTION: PSW1
1013

LDXE Load X from E

1012

0BOO

PSW2 D
€002 4C00
PSW2 D
8002 4C00

of ofojJO 1 0 1 11}0
L {1 |
0

0 000O0T1T O
L1l 1 1 | |

1 2 3las 6 718 g

10 11112 13 14 158

The contents of the E register replace the contents of the X register.

EXAMPLE: Memory Location:
Hex Instruction:

BEFORE EXECUTION: PSW1
1014

AFTER EXECUTION: PSW1
1015

1014

0B02

PSW2 E
8002 000A
PSW2 E
8002 000A

FFFF

4C00

38B2

000A

B-16

Basic

Derivative, Format, and/or Function

Instruction
LDX - 0B LDX1 Load X from R1
{Cont’d) | d
ololelo 101 1]ofoo0oo0o01 0 1
1 |4 | | I T .
o 1+ 2 3la 5 6 718 9 10 nl1213 1415

The contents of the R1 register replace the contents of the X register.

EXAMPLE: Memory Location: 1016
Hex Instruction: 0B0O5
BEFORE EXECUTION: PSW1 PSW2 R1
1016 8002 0000
AFTER EXECUTION: PSW1 PSW2 R1
1017 0002 0000
LDX2 Load X from R2
3]
Io olojo 1 01 1]0 0 00O0T11T 1T O
| S T | I S I I |

o 1 2

The contents of the R2 register replace the contents of the X register.

8 9 10 11112 13 14 15

EXAMPLE: Memory Location: 1017
Hex Instruction: 0B06

BEFORE EXECUTION: PSW1 PSW2 R2

1017 0002 0020
AFTER EXECUTION: PSW1 PSW2 R2

1018 8002 0020
LDX3 Load X from R3
_ 1 1

0001

L1 1

|ooo 01011}0]0
|

L1 1

11I
|

01 2 3la 5 6 7

The contents of the R3 register replace the contents of the X register.

EXAMPLE: Memory Location:
Hex Instruction:

BEFORE EXECUTION: PSW1
1018

AFTER EXECUTION: PSw1
1019

1018
0BO:

pPSw2
B002

PSw2
8002

8 9 10 1111213 14 15

R3
38B2

R3
38B2

0300

0000

0000

0020

0020

3882

B-17

Basic
Instruction

Derivative, Format, and/or Function

LDB-0C

LDBA Load B from A

L

ojofotfo 1 1 0 O0]O

000O0UOTO 0 1
[|

0 1 2 3las 6 718

9 10 11112 13 14 15

The contents of the A register replace the contents of the B register.

LDBD Load B from D
)

1

Io;'ooo11oo
| T |

0

0 00O0GOCU OO
1 1 1 | |

01 2 3las 6 7

8

9 10 11112 13 14 15

The contents of the D register replace the contents of the B register.

LDBE Load B from E
1

0j0j0|0 1 1 0 O
1 1 |

0

0 0 00 0 1 O
Lt 0 1 | |

0 1 2 3la 5 6 7

8

9 10 1111213 14 15

The contents of the E register replace the contents of the B register.

LDBX Load B from X

1

ojojojlo 1.1 0 0

0j0 0 0 0 0 1 1

L1 1 ' | |

01 2 3las 6 7

8 9

10 11112 13 14 15

The contents of the X register replace the contents of the B register.

B-18

Basic
Instruction

Derivative, Format, and/or Function

LDB-0C
(Cont’'d)

LDB1 Load B from R1

ojojoJo 1100
Ll

001000101

I T |

01 2 3la 5 6 7

8 9

10 11112 13 14 15

The contents of the R1 register replace the contents of the B register,

LDB2 Load B from R2
1

1

0ololofO 1-1 00
| |

0jo &6 0 01 0 1

|

| IO T

0 1 2 3las 6 7

8 9

10 11112 13 14 15

The contents of the R2 register replace the contents of the B register.

LDB3 Load ? from R3

000101100

B T |

0jo0 00011 1

|

| T T |

0 1 2 3las 6 7

8 9

10 11112 13 14 15

The contents of the R3 register replace the contents of the B register.

B-19

Basic
Instruction

Derivative, Format, and/or Function

STD - 05

STDA Store D into A

1

|

olo]lol1 o 1 0 1]0'lo 0 0 0 0 0 1

|

0 1 2 3Mas 6 718 9 1011112 13 14 15

The contents of the D register replace the contents of the A register.

Affected: A register

STDB Store D into B
|

ojojojo o 1 0 1

0jo 0 0 0 1 0 O

) T |

0 1+ 2 34 5 6 7

8 9 10 111121314 15

The contents of the D register replace the contents of the B register.

Affected: B Register

STDE Store D into E

1

ojojc|o o 1.0 1
| |

OOOOOU‘IOI
L1 L | 1 |

0t 2 314 5 6 7

8 9 10 1111213 14 15

The contents of the D register replace the contents of the E register.

Affected: E Register

STDX Store D into X
1

0l]o0j0jo0o 0 1 0 1
| S T

0j]0 O
|

00 0 11
I T

0 1 2 3las 6 7

8 9 10 11112 13 14 15

The contents of the D Register replace the contents of the X register.

Affected: X Register

B-20

Basic
Instruction

Derivative, Format, and/or Function

STD - 05
(cont'd)

STD1 Store D into R1

I000001010000 010 1

"0 1 2 3las 6 718 9 1011112131415

The contents of the D register replace the cortents of the R1 register.

Affected: R1 Register

STD2 Store D into Rz
-

-
olojoJ] 0o0o101]0] 0000110
Ll 1 Lt L Ll L

0o 1 2 3la 5 6 718 9 10 11112131415

The contents of the D register replace the contnets of the R2 register.

Affected: R2 Register

STD3 Store D into R3

ojlolo] OO0 10 11p oo00O0T1TT11
| | 1 1 1 1 1 |

0 1 2 3las 6 718 9 1011112131415

The contents of the D register replace the contents of the R3 register.

Affected: R3 Register

B-21

Basic
Instruction

Derivative, Format, and/or Function

STA - 06

STAB Store Ainto B |

ojojojo 0 110 JO0jO0OO0O0O0OT1TO0 O
S | | I

01 2 3'4a5 6 78 9 1011121314715
The contents of the A register replace the contents of the B register.

Affected: B Register

STAD Store Ainto D
] 1

oloJoJo 0110 }0l0oo000000
. | I TR W T |

0 1 2 3"as5 6 718 9 101112131415

The contents of the A register replace the contents of the D register.

Affected: D Register

STAE Store Ainto E .
1

Iogooo11ooooooo1o
[[N W |
0 1 2 3 45 6 718 9 10111121314 15

The contents of the A register replace the contents of the E register.

Affected: E Register

STAX Store A into X |

ololo]oo110]|o] oo0oo0o0011
| 1] | | S N T
01 2 3 45 6 7'8 9 10 1111213 14 15

The contents of the A register replace the contents of the X register.

Affected: X Register

B-22

Basic
Instruction

Derivative, Format, and/or Function

STA - 06
{Cont’d)

STA1 Store A into R1

oloflofoo0 110
| S |

0

0 00O0101
{1] 1] |

0 1" 2 3'4a5 6 7

8 9 10 11112 13 14 15

The contents of the A register replace the contents of the R1 register.

Affected: R1 Register

STA2 Store Ainto R2

ocjlojojo o110
Ll d .l

0

0000110
| T

o1 2 3'4 5 6 7

8 g9 10 1111213 14 15

The contents of the A register replace the contents of the R2 register.

Affected : R2 Register

STA3 Store Alinto R3

L

oloflofo0o0 110
1 4 | |

0000111
| S o N I |

0 1 2 3'a5 6 7

8 9 10 11112 13 14 15

The contents of the A register replace the contents of the R3 register.

Affected: R3 Register

B-23

Basic
Instruction

Derivative, Format, and/or Function

SBY--07

SBYB Store Blyte from Ainto B

Iooooo»111
Ll 1l

0!.‘voo1oo
/A R N |

01 2 3'4a 5 6 7

Bits 8 through 15 of the A register replace bits 0 through
B register unaffected.

Affected: Bits O through 7 of the B register.

SBYD Store Byte from A into D
1

8 o 10111213 14 15

7 of the B register, leaving bits 8 through 15 of the

|00000111
|

o|{o’0 0 0 0 0 o
N

01 2 3'as 6 7

8 9 10 11112 13 14 15

Bits 8 through 15 of the A register replace bits 0 through 7 of the D register, leaving bits 8 th rough 13 . f the

D register unaffected.

Affected: Bits O through 7 of the D register.

SBYE Store Byte from A into E

cjojoio 0 1 1 1
Ll 1 1

0jo o 0 0 o010
I I N

01 2 3la s 6 7

Bits 8 through 15 of the A register replace bits 0 through
E register unaffected.

Affected: Bits O through 7 of the E register.

SEY X Store Byte from A into X
1

8 9 10 11112 13 14 15

7 of the E register, leaving bits 8 through 15 of the

|

ojojojo o 1 1 1
L1 | |

0J]0o 0 0 0 0 1 1
Ll 1 1 | |

01 2 3'a5 6 7

Bits 8 through 15 of the A register replace bits O through
X register unaffected.

Affected: Bits O through 7 of the X register.

8 9 10 1112 13 14 15

7 of the X register, leaving bits 8 through 15 of the

B-24

Basic
Instruction

Derivative, Format, and/or Function

SBY-07
{Cont’d)

SBY1 Store Byte from A into R1
£

ol olofoo 111 JojJooo0o0 10 1
: [| S T IO |
0 1 2 3'4a% 6 78 9 1011121314156

Bits 8 through 15 of the A register replace bits O through 7 of the R1 register, leaving bits 8 through 15 of the
R1 register unaffected.

Affected: Bits 0 through 7 of the R1 register.

SBY2 Store I._’.yte from A into R2

olojo] oo 11 1]Jolooo0oo0110
11 1 | I O I |
0 1 2 3'465 6 7'8 9 10111213 1415

Bits 8 through 15 of the A register replace bits O through 7 of the R2 register, leaving bits 8 through 15 of the
R2 register unaffected.

Affected: Bits O through 7 of the R2 register.

SBY 3 Store I?yte from A into R3 A
ololo] o011 1|0l 0000111
i 4] | | I I

o 1 2 34 5 6 7218 9 101171213 1415

Bits 8 through 15 of the A register replace bits O through 7 of the R3 register, 'eaving bits 8 through 15 of the
R3 register unaffected.

Affected: Bits O through 7 of the R3 register.

B-25

Basic
Instruction

Derivative, Format, and/or Function

ADD - 0D

ADDB Add B| to A

L

olo 01101

Io

000O0T11TO0T0O0
| |

|

0

1

2 345 6 7

8

9

10 11112 13 14 15

The contents of the B register plus the contents of the A register replace the contents of the A register.

ADDD Add Dto A

L

E

0

0{0 1 1

0

0 000O0O0OTO
N I I U |

0

The contents of the D register plus the contents of the A register replace the contents of the A register.

1

2 3'4a 5 6 7

ADDE AddE to A

8 9

10 11712 13 14 15

Io

0

o]0 1 1

o}l o
|

0 00010
| I I T |

0

The contents of the E register plus the contents of the A register replace the contents of the A register.

1

2 345

ADDX Add X to A
|

6 7

8 9

10 11912 13 14 15

1

Io

0

0|0 1 1 01

11

1

|

o] o0

|

0 00O T1T1

|

0

The contents of the X register plus the contents of the A register replace the contents of the A register.

1

2 3'4 5

6 7

8 9

10 11712 13 14 15

B-26

Basic
Instruction

Derivative, Format, and/or Function

ADD-0D
{Cont'd)

ADD1 Add R‘1 to A

olololo 1 101 JoJoooo 101
I | | .
0 1 2 3 4 5.6 7'8 9 1011121314 15

The contents of the R1 register plus the contents of the A register replace the contents of the A register.

ADD2 Add R2to A .
1

ol olofo 11701 |ojoooo0o1 10
| | |
0 1 2 3'45 6 7'8 9 1011'1213 1415

The contents of the R2 register plus the contents of the A register replace the contents of the A register.

ADD3 Add R3to A L B

0000111'
ojojofo, 1,100 10f 99997,

0 1 2 3'4a 5 6 7'8 9 101112131415

The contents of the R3 register plus the contents of the A register replace the contents of the A register.

B-27

Basic
Instruction

Derivative, Format, and/or Function

SUB - OE

SUBB Subtra‘ct B from A

[

0

|

0]0 111030

0000100

| |

L

0 1

2 3'a 5 6

7'8

9 10 11712 13 14 15

The contents of the A register minus the contents of the B register replace the contents of the A register

susD Subtralct D from A

vl

0| o0

olo 1110

0‘0000000

|

|

0o 1

2 3'45 6 7

8 9

10 11712 13 14 15

The contents of the A register minus the contents of the D register replace the contents of the A register

SUBE Subtraft E from A

ojo

olo 1110
[41 |

0

0 0 01

0o
| T

]

0

0 1

2 3'4 5 6 7

8 9

10 11712 13 14

15

The contents of the A register minus the contents of the E register replace the contents of the A register

SUBX Subtract X from A

I |
olojo]l o1t 1 10]0] 0000011
| | I T O T N |
0 v 2 3las 6 ""8 9 1012131415

The contents of the A register minus the contents of the X register replace the contents of the A register

B-28

Basic
Instruction

SUB - OE

Derivative, Format, and/or Function

(Cont'd)

SUB1 Subtract R1 from A
_ 1

|00001110
| Ll

ol ooo0o0101
N T |

01 2 3 465 6 7

SUB2 Subtract R2 from A
\

8 g 10 11712 13 14 15

The contents of the A register minus the contents of the R1 register replace the contents of the A register.

I000011100

00001110
Ll

0 1V 2 3 45 6-7'8

SUB3 Subtract R3 from A
_ I

| I
9 10 11112 13 14 15

The contents of the A register minus the contents of the R2 register replace the contents of the A register

|000011100

0 1

00111

00
| T |

2 345 6. 7

8 9

10 11712 13 14 15

The contents of the A register minus the contents of the R3 register replace the contents of the A register.

B-29

Basic
Instruction

Derivative, Format, and/or Function

INC - OF

INCA Increment A

L

1

F)oo 01111
[

0] 0000OCO0O1
Ll

Ll]

01 2 34 5 6 7
'he contents of the A register increase by one.

Affected: A Register

CCt-
Ccc2

INCB Increment B

B 9

10 1112 13 14 15

ojojo o011 11]0 0 00O0T1TOODO
| |
0 1 2 3’45 6 7'8 9 1011112131415
The contents of the B register increase by one.
Affected: B Register
CC1
CcC2
INCD Increment D \
I3
ojojojJ 0 11 1 1|0 0 00 O0OGCTO
1] | | | 1 1 ! g |
01 2 3"4a 5 6 7'8 9 10111213 14 15
The contents of the D register increase by one.
Affected: D Register
cc1
CC2
INCE lncrem.entE |
ojojoj 011 11 |0l 000 0CO 10
) S | | T I T
01 2 3"4a6 6 778 9 101111212 1415

The contents of the E register increase by one.
Affected: E Register
cc1
cc2

Derivative, Format, and/or Function

olojoj 01 11 1]O0
| .

|

Basic
Instruction
INC - OF INCX Increm‘entX 1
(Cont'd)
0000011

O T

0 1 2 3 45 6 7'8

The contents of the X register increase by one.

X Register
cc1
cc2

Affected:

INC1 Increme‘s nt R1

9 10 11'12 13 14 15

]

olojo]J O 111 1]0
[0 L 1

|

0 00O01TO01

| N S

0 1 2 3 45 6 7'8

The contents of the R1 register increase by one.

R1 Register
cc1
CC2

Affected:

INC2 Increment R2

9

1

0 11112 13 14 15

N |

ojojoj o0 111 1]0

0000110

|

I T |

The contents of the R2 register increase by one.

R2 Register
CC1
CcC2

Affected:

INC3 Incremept R3

01 2 3'as5 6 7'8 9

10 1112 13 14 15

| S

00 o 01111]0

0
]

000111
Ll 1 1

0 1 2 34 5 8 7

The contents of the R3 register increase by one.

R3 Register
cCc1
cCc2

Affected:

8 9

10 1112 13 14 15

B-31

Basic
Instruction

Derivative, Format, and/or Function

AND - 02

ANDB . ANI?B into A .

olojoj 000 10]J0] 0000100
[| [|
0 1 2 3 45 6 7'8 9 101112 13 14 15

The logical product of the contents of the A register and the contents of the B register replaces the contents of
the A register.

ANDD AND D into A
1 |

ol olo] o001 0]0] 0o00o0o000O0
[N | I T Y|
0 1 2 345 6 7'8 9 1011112 13 14 15

The logical product of the contents of the A register and the cantents of the D register replaces the contents of
the A register.

ANDE ANDE into A
!]

oloJo] 0 oo 10]Jol ooo0o00 10
| S S | T
01 2 3"a 5 6 728 g9 10 11712 13 14 15

The logical product of the contents of the A register and the contents of the E register replaces the contents of
the A register.

ANDX ANDlX into A i

oloJo|l O 0 0 1 010 00 00O T1 1

| | | T
0 v 2 3'4a5 6 78 9 101112 13 14 15

The logical product of the contents of the A register and the contents of the X register replaces the contents of
the A register.

B-32

Basic

Derivative, Format, and/or Function

Instruction
AND- 02 AND1 AND R1 into A
{Cont'd) | |
looo ooo10foloooo0101
[1 1 1 | I I I T |

0

2 3'4 56 7'8 9

10 11112 13 14 15

The logical product of the contents of the A register and the contents of the R1 register replaces the contents ot

the A register.

AND2 AND le into A

ojojoj 0 0 0 1

T O

0

0l 0000110
L1 1 1 | |

0 1 2 3'as 6

7

8 9 10 1112 13 14 15

The logical product of the contents of the A register and the contents of the R2 register replaces the contents of

the A register.

AND3 AND R3into A
|

Iooo 00010

o|oooo111
| N T N TS N

o 1 2

8 9 10 11112 13 14 15

The logical product of the contents of the A register and the contents of the R3 register replaces the contents of

the A register.

B-33

Basic
Instruction

Derivative, Format, and/or Function

LOR - 03

LORB ORB into A

I 1

0000100

0 1" 2 34 5 6 7°'8 9 101171213 314 15

The logica!l sum of the contents of the B register and the contents of the A register replaces the contents of the
A register.

LORD OR D into A \

Iooo 0001100000000'

i I T | N N A |
01 2 3'"45 6 7'8 9 1011112 13 14 15

The logical sum of the contents of the D register and the contents of the A register replaces the contents of the
A register.

LORE ORE into A
1 4

ojojojoo0011}j0| 000O0O0T11TO
L4 1 1 L1 1 1 | |

0 1 2 3'4 5 6 7'8 9 10 111213 14 15

.

The logical sum of the contents of the E register and the contents of the A register replaces the contents of the
A register.

LORX OR Xlinto A ,

| L1 1 1

olojJo]J] oo o1 1]0] 00000 11
1| |
0 1 2 3'as 6 7'8 9 1011'12 13 1415

The logical sum of the contents of the X register and the contents of the A register replaces the contents of the
A register.

B-34

Basic
Instruction

Derivative, Format, and/or Function

LOR-03
{Cont‘d)

LOR1 OR R]into A

ol ofo] 0 0 0 1 1

ol ooo0o0 101
) R Y T |

8 9 10 11'12 13 14 15

The logical sum of the contents of the R1 register and the contents of the A register replaces the contents of the

A register.

LOR2 OR R2into A
1

000 11
| I T

0jo |o

ol oooo0o1 10
| O

01 2 3'4 5 6 7

8 9 10 111121314 15

The logical sum of the contents of the R2 register and the contents of the A register replaces the contents of the

A register.

LOR3 OR R3into A
1

000 11

a] o]0

o] 0000 111
| I O

0 1 2 3'45 6 7

8 9 10 11112 13 14 15

The logical sum of the contents of the R3 register and the contents of the A register replaces the contents of the

A register.

B-35

Basic
Instruction

Derivative, Format, and/or Function

EOR - 04

EORB Excluslive OR Binto A

] |] |
0 1 2 3456 7'8 9 1011'12 13 14 15

0000101100000010100
|

The :ogical difference of the contents of the B register and the contents of the A register replaces the contents
of the A register,

EORD Excluiive OR D into A R

0jojoj 001 0O0}J0|] 000 O0OCTOO

| S . | | N |
0 v 2 3%a5 6 778 9 1011112 13 14 15

The logical difference of the contents of the D register and the contents of the A register replaces the contents
of the A register.

EORE Exclusive OR E into A
_ | |

0ojojoj 001 0O0|0] 00O0OOT1GOC
LJ 1 | Ll 1 1 | |

01 2 3"a5 6 7'8 9 101112 13 14 15

The logical difference of the contents of the E register and the contents of the A register replaces the content.
of the A register.

EORX Exclu§ive OR Xiinto A

olojo] 001 00]o] 0000011
l 4 | | |
01 2 374 5 6 778 9 101112 13 14 15

The logical difference of the contents of the X register and the contents of the A register replaces the contents
of the A register.

B-36

Basic

. Derivative, Format, and/or Function
Instruction

EOR - 04 EOR1 Exclusive OR R1 into A

(Cont’d) ’

of ojlo] 0 0 1 0 0]O
i N

0000101
) I |

0 1 2 3'45 6 7'8 9

EOR2 Excluslive OR R2into A

10 11712 13 14 15

The logical difference of the contents of the R1 register and the contents of the A register replaces the contents
of the A register.

olofo] oo 100]o0

T .|

oooo11o|
) I O W |

01 2 34 5 6 7'8 9 101112131415

EOR3 Exclusive OR R3 into A

The logical difference of the contents of the R2 register and the contents of the A register replaces the contents
of the A register.

0{ojJoj 00 100]}|O
| I

0000111
| e Y I |

0 1 2 3las 6 7'8 9

10 111213 14 15

The logical difference of the contents of the R3 register and the contents of the A register replaces the contents
of the A register.

B-37

Basic
Instruction

Derivative, Format, and/or Function

CMP - 10

CMPB Compare A with B
| I

looo1ooooooooo1oo
1 1 1 | 1 (] 1 | |
0 1 2 3'a5 6 7'8 9 101°11213 1416

The condition code indicators depict the comparison between the contents of the A register and the contents
of the B register.,

CMPD Compare A with D

6lolo|1 0o 0 o o|lo]lo o 0 0 0 0 o
1 1 1] | I

01 2 34 5 6 72'8 9 10111213 14 15

The condition code indicators depict the comparison between the contents of the A register and the contents
of the D register. *

CMPE Compare A with E
)]

ojojol1 o o oo o0ojojJo 0 0 0 0 1 O
[| | I |
01 2 3'as 6 7'8 9 101112 13 1415

The condition code indicators depict the comparison between the contents of the A register and the contents
of the E register.

CMPX Compare A with X

0001000000000011'
i1 1 | I I T

01 2 3 45 6 708 9 101111213 14 15

The condition code indicators depict the comparison between the contents of the A register and the contents of
the X register.

B-38

of the R2 register.

the R3 register.

The condition code indicators depict the comparison between the contents of the A register and the contents of

CMP2 Compare A with R2

| |
ojofo 100 0 0|0

{1 1 |
0 1

Basic o)
Instruction Derivative, Format, and/or Function
CMP-10 CMP1 CompalreAwuth R1 \
(Cont’d) |
0jo0ijo 10 000]}O 0 00O 101
[T . | I T T I |
0 v 2 3'4as5 6 7'8 9 101111213 1415
the R1 register,

2 3'45 6 7

8 9

00001

10
| S .|

10 11712 13 14 15
The condition code indicators depict the comparison between the contents of the A register and the contents

CMP3 Compare A with R3
|

|

The condition code indicators depict the comparison between the contents of the A register and the contents of

|
oloJo] 1 0000]o] 0000111
[4] ! | |
01 2 3"4 5 6 7'8 9 101111213 14 15

B-39

Basic

Derivative, Format, and/or Function

Instruction
S-11 Mnemonic Meaning Bits 8-15 of Effective Address
SLL Shift Logical Left IO 110 |1 CJOULNTL
8 9 10 11 1213 14 15
SLR Shift Logical Right Of1lo]o ClOU';'T 1
8 9 101111213 1415
SAL Shift Arithmetic Left ojt1]1 |1 c10u:\|'rl
8 9 10 111213 14 15
SAR Shift Arithmetic Right ojr]1 o CI‘JU';'Tl I
8 9 10 119112 13 14 15
scL Shift Circular Left I ofo|1 |1 C?U'\IIT .
8 9 10 1112 13 14 15
SCR Shift Circular Right oo o CFU'}'TI I
8 9 10 11°12 13 14 15
SLLD Shift Logical Left 11 1101 1 COUNT
Double |] |
8 9 10 11112 13 1415
SLRD Shift Logical Right i1 1} 0|0 COUNT
Double | ! |
8 9 10 1112 13 14 15
SALD Shift Arithmetic Left 1® 11 111 COUNT I
Double | .
8 9 10 11712 13 14 15
SARD Shift Arithmetic i 11 1]0 COUNT
Right Double ! 1 |
8 9 10 1112 13 14 15
SCLD Shift Circular al ol 111 COUNT
Left Double L1
8 9 10 11'12 13 14 15
SCRD Shift Circular 1] OI 110 COUNT
Right Double | -
8 9 10 11 12 13 14 15

* COUNT =Number of places shifted.

B840

Basic
Instruction

Derivative, Format, and/or Function

POT - 00

S10 Start Input/Output
1

I 1] 1]jo]Jo 0 0 0 0| s Displacement
| 1 4 ! | | I S T |
0 1 2 3'4 5 6 7'8 9 10 11°1213 14 15
Effective Address *: 0000 0001 00AA AAAA
TIO Test Input/Output ,
1
11 1]0Jj0 0 0 O O} S Displacement
| I | T U I |
0 1 2 3'46 6 7'8 9 101112 131415
Effective Addres; *: 0000 0001 10AA AAAA
HI0 Halt Input/Output .
11 110lo0 0 0 0 O] S Displacement
) 1] | | S N O |
0 1 2 3'4a5 6 7'8 9 101112 13 1415
Effective Address *: 0000 0001 01AA AAAA
IOR Input/Output Reset ;
11 1]0}j0 0 0 0 O] S Displacement
1 1 Jq ! | [I
0t 2 3 4 5 6 7'8 9 1011 1213 14 1§
Effective Address * : 0000 0100 0000 0011
HLT Progran'| Halt ,
11 1]0j0 0 0 0 O] S Displacement I
| S | | T |
01 2 345 6 7'8 9 1011112131415

Effective Address *: 0000 0100 0000 0001

* A =six bit device address

B41

Basic

Derivative, Format, and/or Function

Instruction
PIN - 01 TDV Test Device \
111 |0 S Displacement
0,0/ 001 [e A
0 1 2 3456 7'8 9 1011112131415
Effective Address * 0000 0000 11AA AAAA
* A =six bit device address
B-12 NOP No Operation \
1
1lojlo]1 0 o 1 0]lojoOo O O 0 O O 1
1 1 | | | I O |
0 1 2 3'4as5 6 7'8 9 1011112131415
Affected: None
PSW1 advances normaliy, but no addressable register, memory location, or condition code indicator is affected.
EOR - 04 CLA Clear A Register

1

r00000100
1 L 1 |

0jloo o o0 0 0 1
1 1 1 | | |

Affected: A Register
CcC1
cc2

8 9 10 11112 13 14 15

All 16 bit positions of the A register, and condition codes 1 and 2, are reset.

B-42

APPENDIX C

SAMPLE INPUT/OUTPUT PROGRAM

This appendix contains information necessary to program the standard SYSTEMS peri-
pheral devices provided with the SYSTEMS 72, Information defining the four-word
input/output command list (IOCL) that must be set up by the user is provided first,
followed by a sample program that illustrates the construction of the IOCL tables and the
data/command chaining operations.

INPUT/OUTPUT COMMAND LIST

The four-word input/output command list (IOCL) used by the PIOP to control /O
data transfers between the CPU and a device controller is illustrated below.

10CL
Word 0 ORDER BYTE | FLAG BYTE
Word 1 INTERRUPT ADDRESS
Word 2 DATA ADDRESS
Word 3 BYTE COUNT

0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

Word 0

The high-order byte, bits 0 through 7, of word 0 contains the order byte, which specifies
the operation to be performed by the peripherial device. The low-order byte, bits 8

through 15, contains the flag byte, which specifies details of the transfer and the method
of terminating the transfer. ‘

The significance of the bits in the order and flag bytes is indicated below:
Order Byte:

Bit Configuration

01234567 Device Order

MMMMMMDO 1 Write

MMMMMM1TO0 Read M = Bits used to
MMMMMMI 1 Control modify the basic
0000O0O0CO0CO Halt device order

Flag Byte:

Flag Bit Meaning If Set
8 Map data addresses and terminal
interrupt address
9 Interrupt on Zero Byte Count
10 Halt on Transmission Error
11 Suppress Incorrect Length
12 Interrupt on Unusual End
13 Command Chain
14 Data Chain
15 Interrupt on Channel End
Word 1

Word 1 of the IOCL contains the terminal interrupt address. In terminating an 1/O
operation, the device controller interrupts to this address, which contains the interrupt
pointer,
Word 2

Word 2 of the IOCL contains the data address, which points to the first word of data
block. The first byte is assumed to be byte 0, which is the left-hand byte.

Word 3

Word 3 of the IOCL contains a byte count that indicates the number of bytes to be
transferred.

SAMPLE PROGRAM

The Sample Program uses the teletype as an input/output device. Input/output command
lists (IOCL's) in the sample program are designed to output a message to the teletype
for printout, or input a message from the teletype keyboard for subsequent echo printout
on the teletype. The first part of the program outputs a message and data chains on
a carriage return/line feed (CR/LF). The second part of the program is for command
chaining and allows a message of up to 20 characters to be input from the keyboard,
echos the message back to the teletype for printout, and data chains on a CR/LF.
The program then loops back through the command chain example.

The first four-word IOCL table for data chaining starts at line 14, and a second table
begins at line 18. The second table contains an interrupt address labeled INTA, which
transfers control to the interrupt processor starting in line 26. The interrupt processor
processes the channel end interrupt, which occurs after all mechanical motion resulting
from a carriage return and line feed has stopped.

The main program starts on line 46, which also specifies the message to be transferred
to the teletype for printout. At the completion of the message, the program branches
to the command chain example in line 96. This example is processed by the IOCL's
starting at line 79 and allows the user to input a message from the teletype keyboard.
The message is then echoed back for printout on the teletype.

EXAMPLE 1. I0CL COMMAND AND DATA CHAIN

1
2 *
3 *****EOUATES LE X R &
4 *
0080 5 INTMAPED EQU X'80’ INTERRUPT MAPPED
0100 6 PRINT EQU X'100 WRITE ORDER
0002 7 DATACH EQU 2 DATA CHAIN
0001 8 CHEND EQU 1 INT ON CHANNEL END
0000 0000 9 CFLAG DATA 0
0001 0008 10 TYADR DATA 8 ADDRESS OF TELETYPE
11 *
12 *****]OCL FOR DATA CHAIN*****
13 *
0002 0102 14 IOCLDCH DATA PRINT + DATACH
0003 0000 15 DATA 0 NO INTERRUPT WAS REQUESTED
0004 0000 16 MSGADR DATA 0 LOCATION OF MESSAGE
0005 0000 17 MSGLEN DATA 0 LENGHT OF MESSAGE
0006 0181 18 IOCLCRLF DATA PRINT+INTMAPED+CHEND
0007 0000 * 19 DATA INTA POINTER TO INTERRUPT
ADDRESS POINTER
0008 0000 * 20 DATA CRLF LOCATION OF CR AND LF
0009 0002 21 DATA 2 LENGTH OF 2 CHARACTERS
22
000A 0DOA 23 CRLF DATA X'DOA’ CARRIAGE RETURN LINE FEED
EXAMPLE 2. INTERRUPT PROCESSOR
24
25 Ot
000B 0000 * 26 INTA DATA INT POINTER TO INTERRUPT
LOCATION
000C 0000 27 INT DATA 0.0 OLD PSW1 AND PSW2
000D 0000 '
000E 0010 28 DATA $+2 NEW PSW1
00OF 0002 29 DATA 2 MAPPED PSW2
30 *
0010 8BF1 31 LDX TYADR GET TELETYPE ADDRESS
0011 E100 * 32 PIN X'CO'1 TEST DEVICE STATUS
0012 9201 33 NOP .
0013 9201 34 NOP .
0014 9201 35 NOP CODE TO TEST STATUS
0015 9201 36 NOP AND SET APPROPRIATE FLAGS
0016 9201 37 NOP
0017 9201 38 NOP)
0018 8FES 39 INC CFLAG COMPLETION FLAG
0019 B7F3 40 BRC INT.1 CLEAR INTERRUPT AND RETURN
41 *

Cc3

001A
0018
001C
001D
001E
001F
0020
0021

0022
0023
0024
0025
0026
0027

0028
0029
002A
0028
002C
002D

002E
002F

0030

0031
0032

0033

0034
0035
0036
0037
0038
0039

C4

5448
4953
2049
5320
4120
4441
5441
2043
4841
494E
2045
5841
4D50
4C45

0028

8900 *
86DC
8900 *
86D9
0401
86DS

8800 *
8BD2

E00O *

89CF
D5FF

D200 *

00CO
001C
001A
0002
0100
0000 *

42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66

67

EXAMPLE 3. MAIN PROGRAM FOR I0CL

*

*****PROGRAM TO USE IOCL™*****

*

MESSAGE TEST ‘'THIS IS A DATA CHAIN EXAMPLE’

*

DATCHAIN EQU

LDA
STA
LDA
STA
CLA
STA

LDD
LDX

POT

WAIT LDA
BEZ

B

LPOOL

$

=28
MSGLEN

= MESSAGE
MSGADR
CFLAG

=|OCLDCH
TYADR

X100',1

CFLAG
$1

COMCHAIN

PROGRAM ORIGIN --DATA CHAIN
MESSAGE LENGTH

LOCATION OF MESSAGE

ZERO COMPLETION FLAG
D REGISTER IS ADDRESS OF 10CL
LOAD ADDRESS OF DEVICE---
TELETYPE

START 1/0 ON TELETYPE

WAIT UNTIL MESSAGE IS OUTPUT

DO COMMAND CHAIN EXAMPLE

003A

0045
0046
0047
0048

0049

004A
004B
004C

004D
004E
004F
0050

0051
0052
0053
0054

0055

0056

0200
0004

0204
0000
003A
0014

0102

0000
003A
0014

0100
0000
000A
0002

0051
8800 *
8BAF
EOE5
F5FF

92FC

0028
0045

68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84

85
86
87
88
89
90
91
92
93

EXAMPLE 4. COMMAND CHAIN

¥*

FEETYEQUATES™ MY
READKB EQU X200’
CMDCH EQU 4
ECHO RES 11

*

READ
COMMAND CHAIN

BUFFER FOR INPUT/QUTPUT
MESSAGE

FHEXEXHOCL FOR COMMAND CHAIN EXAMPLE******

*

IOCLCMD DATA READKB+CMDCH
DATA O
DATA ECHO

DATA 20

DATA PRINT +DATACH

DATA O
DATA ECHO
DATA 20

DATA PRINT
DATA O
DATA CRLF
DATA 2

94

95 *

96 COMCHAIN EQU §$

97 LDD =I0CLCMD
98 LDX TYADR

99 POT X'100°1
100 BCR3 $-1

101 *
102 B COMCHAIN
103 *

104 END DATCHAIN

NO ERRORS

NO INTERRUPT
BUFFER FOR MESSAGE
20 CHARACTERS

OUTPUT AND DA1 A CHAIN
ONCR LF

NO INTERRUPT

MESSAGE LOCATION

SIZE OF MESSAGE

OUTPUT CR LF

LOCATION OF CR LF
2 CHARTERS

EXAMPLE 5. PROGRAM FOR INPUT AND OUTPUT

COMMAND CHAIN EXAMPLE
SETUP IOCL D REG

DEVICE TO XR

SIO

SEE IF I/O ACCEPTED

DO IT ONE MORE TIME

C-5/C-6

APPENDIX D

REFERENCE TABLES

This appendix contains mathematical tables useful to the progremmer in performing mathematical calculations and
conversions. The various tables are listed below with the associated page number.

Table ' Page No.
Powers of Two v D-2
Hexadecimal Conversion D-3
ACSII Character Set and Hexadecimal Codes D-12

" Tablen

[Vg

16
32
64
128

256
s12
1024
2 048

4 096
8192
16 384
32 768

65 536
131 072
262 144
S24 288

1 048 576
2097152
4194 304
8 388 608

16 1717 216
33 554 432
67 108 864
134 217 728

268 435 456
$36 870 912
1 073 741 824
2147 483 648

4 294 967 296
8 589 934 592
17179 869 184
34 359 738 368

TABLE D-1. POWERS OF TWO TABLE

wNn— O

-~ v

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25

27

28
29
30
31

32
33
34
35

ooor-
N WwO

.25
.125
0.062 5
0.031 25
0.015 625
0.0078125

0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25

0.000 244 140 625
0.000 122070 312 5
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 S
0.000 007 629 394 531 25
0.000 003 814 697 265 62%
0.000 001 907 348 6328125

0.000 000 953 674 316 406 25
0.000 000 476 837 158 203 125
0.000 000 238 418 579 101 562 5
0.000 000 119 209 289 550 781 25

0.000 000 0S9 604 644 775 390 625
0.000 000 029 802 322 387 6953125
0.000 000 014 901 161 193 847 656 25
0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 S
0.000 000 001 862 645 149 230 957 031 25
0.000 000 000 931 322 574 615 478 515 625
0.000 000 000 465 661 287 307 739 257 812 5

0.000 000 000 232 830 643 653 869 628 906 25
0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25

TABLE D-2. HEXADECIMAL TABLES

The following tables aid in converting hexadecimal
values to decimal values, or the reverse.

Direct Conversion Table
This table provides direct conversion of decimal and
hexadecimal numbers in these ranges :

Hexadecimal- Decimal
000to FFF 0000 to 4095

For numbers outside the range of the table, add the
following values to the table figures:

HEXADECIMAL DECIMAL
1000 4096
200G 8192
3000 12288
4000 16384
5000 20480
6000 24576
7000 28672
8000 32768
9000 36864
A000 40960
B00O 45056
€000 49152
D0000 53248
E000 57344
FO00 61440

00
01
02
03

04
05
06
07

08

]

oc
0D
0E
OF

10
1
12
13

14
15
16
17

0 1 2 3 4 5 6 7 8 9 A B C D E F

‘0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 DO10 0011 0012 0013 0014 0015
0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047
0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0075
0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095
0026 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111
0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127

0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159
0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175
0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191

0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207
0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223
0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238.0239
0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255

0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303
0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319

0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335
0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351
0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367

10368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

D-4

18
19
1A
1B

1c
1D
1€
1F

20
21
22
23

24
25
26
27

28
29
2A
2B

2C
2D
2E
2F

30
31
32
33

34
35
36
37

38
39
3A
3B

3C
3D
3E
3F

TABLE D-2. HEXADECIMAL TABLES (CONT'D)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0384 0385 0386 0387 0388 0389 0390 0391 0392 0293 0394 0395 0396 0397 0398 0399
0400 04071 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415
0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431
0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447

0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463
0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479
0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495
0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511

0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687
0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703

0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831

0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895

0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959

0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

.40
41
42
43

44
45
46
47

49
4A
48

4C
4D
4E
4F

50
51
52
53

54
55
56
57

58
59
5A
5B

5C
5D
5E
5F

60
61
62
63

SRR

67

TABLE D-2. HEXADECIMAL TABLES (CONT'D)

0 1 2 3 4 5 6 7 8 9 A B C D E F

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 107C 1071
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
1120 1121 1122 1123 1124 1125°1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
1232 1233 1234°1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1296
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
1312 1313 1314 1315 1316 1317 1318;1319 1320 1321 1322 1323 1324 1325 1326 1327
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1401 1403 1404 1405 1406 1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

1472 14731474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

1536 1637 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
1652 1553 1554 1655 1566 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1578 1580 1581 1582 1583
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 16141615
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1667

D5

68
69
6A
68

6C
6D
6E
6F

70

71
72
73

74
75
76
77

78
79
7A
7B

7C
7D
7E
7F

80
81
82
83

84
85
86
87

88
89
8A
88

8C
8D
8E
8F

TABLE D-2. HEXADECIMAL TABLES (CONT'D)

0 1 2 3 4 5 6 7 8 9 A B Cc D E F

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1576 1677 1678 1679
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
17121713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 17731774 1775
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 .1788 1789 1790 1791

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

1856 1857 1858 1859 1860 1861 1RR?2 1863 1864 1865 1866 1867 1868 1869 1870 1871
1872 18731874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172:2173 2174 2175

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

90
91
92
93

94
95
96
97

98
99
9A
98

a9C
"~ 9D
9E
9F

A0
Al
A2
A3

A4
A5
A6
A7

A8

A9
AA
AB

AC
AD
AE
AF

BO
B1
B2
B3

B4
B5
B6
B7

TABLE D-2 HEXADECIMAL TABLES (CONT'D)

o 1 2 3 4 5 6 7 8 9 A B C D E F

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

2432 2433 2434 2435 2435 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2627
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
2544 2545 2546 2547 2648 2549 2550 2551 2552 2553 2554 256565 2556 2557 2558 2559

2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 25671 2572 2573 2574 2575
2576 2577 2578 2579 2580 2581 2582 2583 2584 2685 2686 2587 2588 2589 2590 2591
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 27172718 2719
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

2752 2753 27542755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
2864 2865 2866 2867 2868 28559 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879

2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
3896 2897 2898 2899 2900 2901 2901 2903 2904 2905 2906 2907 2908 2909 2910 2911
2012 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
2028 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

D-7

D-8

B8
B9
BA
BB

BC
BD
BE
BF

co
C1
C2
C3

c4
C5
C6
C7

cs
C9
CA
CcB

cc
co
CE

CF

DO
D1
D2
D3

D4
D5
D6
D7

D8
D9
DA
DB

DC
bD
DE
DF

TABLE D-2. HEXADECIMAL TABLES (CONT'D)

0 1 2 3 4 5 6 7 8 9 A B C D E F

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023

3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
3104 3106 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263

3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3356 3356 3357 3358 3359
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

3392 3393 3394 3395 3396 33973398 3399 3400 3401 3402 3403 3404 3405 3406 3407
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3436 3436 3437 3438 3439
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
35604 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
3652 3653 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

EO
E1
E2
E3

E4
E5
E6
E7

E8
E9
EA
EB

EC
ED
EE
EF

FO
F1
F2
F3

F4
F5
Fé
F7

F8
F9
FA
FB

FC
FD
FE
FF

TABLE D-2. HEXADECIMAL TABLES (CONT'D)

0 1 2 3 4 5 6 7 & 9 A B C D E F

3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3694 3595 3596 3597 3598 3599
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 6311 3612 3613 3614 3615
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3386 3887
3888 3389 3390 3891 3897 3893 3894 3895 3896 3897 3898 3899 3200 3901 3902 3903

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Sl 4
14} 3
€l a
cl 0]
L g
oL A4
6 6
8 8
L L
9 9
S S
L4 14
€ €
[4 c
l l
0 0

|Pwioag XaH
L9SY

31A9

ove
vee
80¢
c6l
9/l
091
vl
8¢l
cil
96
08
¥9
8y
L4
91
0

O~ aNMTSTUOLON~NOOOLCHMOQOWW

[ew198Q XaH
€clo

\ Q4OMdIVvH

ov8'e
¥85'€
8ce'e
zLo'e
918'¢
09G'¢
y0g'e
8v0'¢
z6L'L
9eg’L
082’1
¥eo'L
89/
4R
952
0

OO ONOCOOLTHO OO WW

[ewddq XaH
L9SY

J1A8

v

ovv' L9
Ype' LS
8vZ'€S
Zsl'ey
950Gk
096’01
¥98'9¢
89.'Ce
cL9'se
9/5'vT
08t'0c
¥8e'9lL
88c'cl
z61's
960t
0

O NS OLON~NOOOLCODOODO W LW

Jewdsg XaH
gclo

S

0v0’'c86
v05'L16
896'1LS8
zev'98L
968'02.
09€’'559
¥28'685
88Z'vzS
2SL'8sy
o1Z'e6e
089'/2¢
v¥1'c9c
809'961
ZLO'LEL
9€5'69
0

OrrNMTOON~NODOOLCDOD OO W W

jewidag XaH
L9SY

J1A9

9

0v9'8zL'sl
¥90'089' L
88 LEY'EL
z16'284'CL
9ce'veG'LL
09/°68%'01
v8L'LEV'6
809'88¢'8
TEO'OVE' L
961’ 162'9
088'c¥Z'S
Y0E' 6L’y
8cL'apl'e
zsl'ee0'e
9/G'890'L
0

O—NMtOLWO~NOOLCODOOWW

jewdag xaH
€210

L

0tZ'859'1SZ
¥20°'188'vET
808°c0l’81T
265'92€°10C
9/€'6v5 ¥8L
091'zLL 191
Y¥6'v66°'0GL
8CLLLT'YEL
zIgovy' LLL
96Z'£99'001
080°'988'¢€8
#98°'801'£9
8v9'lec’og
zZEY'vSa'ee
aLZ'2LL'91
0

O N MISTOLWONODOILDOO WL

[ewIdaq XaH
L9GY

3LA8

ddOM41VvH

378VL NOISHIANOD 43IDILNITVINIOIA ANV IVINIOIAVYXIH '€-d 318vL

8

Ov8'LE£5'9Z0' Y
#8€°'960'8G/°E
876'099'68Y'S
zLv'see'ee’s
910'06£'256'C
096'5E'¥89°Z
POL'616'SLY'T
8r9'E8y L LT
z61'8¥0'648'L
9e/'c19'019'L
08C'LL1'ThE'L
T8 LyL'SL0'L
89£'90€'508
Z16°'048'9€S
96¢'GEY'89C
0

Or-~rNMWON~NOCOLCO OO WW

[ewioag XxaH
€210 :S11d

D-10

TABLE D-3. HEXADECIMAL AND DECIMAL INTEGER CONVERSION TABLE

TO CONVERT HEXADECIMAL TO DECIMAL

1. Locate the column of decimal numbers corresponding to
the left-most digit or letter of the hexadecimal: select from
this column and record the number that corresponds to the
position of the hexadecimal digit or letter,

2. Repeat step 1 for the next (second from the left)position.

3. Repeat step 1 for the units (third from the left)position.

4. Add the number selected from the table to form the
decimal number.

TO CONVERT DECIMAL TO HEXADECIMAL

1. (a) Select from the table the highest: decimal number that is
equal to or less than the number to be converted.
(b) Record the hexadecimal of the column containing the
selected number.
(c) Subtract the selected decimal from the number
to be converted.
2. Using the remainder from step 1 (c) repeat all of step 1
to develop the second position of the hexadecimal (and
aremainder).
3. Using the remainder from step 2 repeat all of step 1 to
develop the units position of the hexadecimal.
4. Combine terms to form the hexadecimal number.

To convert Integer numbers greater than
the capacity of table, use the techniques
below:

HEXADECIMAL TO DECIMAL

Successive cumulative multiplication from
left to right, adding units position
Example: D3416 = 338010 D= 13
X 16
208
3= _13
211
X 16
3376
4= _+4
3380

EXAMPLE
Conversion of
Hexadecimal Value D34
1. D 3328
2.3 48
3. 4 4
4. Decimal 3380
EXAMPLE
Conversion of
Decimal Value 3380
1. D -3328
52
2.3 _-48
4
3- 4 .4
4. Hexadecimal D34
DECIMAL TO HEXADECIMAL
Divide and collect the remainder in
reverse order.
Example: 338010=X16
163380 ~ remainder

16[211 4
1613~ =3
D

3380, 0=D341 6

D-11

TABLE D-4. HEXADECIMAL AND DECIMAL FRACTION CONVERSION TABLE

Hexadecimal and Decimal Fraction Conversion Table

HALFWORD

BYTE BYTE

BITS 0123 4567 0123 4567

Hex| Decimall|[Hex Decimal|Hex Decimal Hex Decimal Equivalent

0000 [f.00 (.0000 0000 |[.000 0000 0000 000C |/ .0000 [.0000 0000 0000 0000
0625 |.01 |.0039 0625 |.001 0002 4414 0625 |[.0001 | 0000 1525 8789 0625
1250 |[.02 |.0078 1260 |.002 0004 8828 1250 |.0002 | .0OOOO 3051 7578 1250
.1875 [|.03 {.0117 1875 (.003 0007 3242 1875 | .0003 | .0000 4577 6367 1875
.2500 (|.04 |.0156 2500 [.004 0009 7656 2500 (|.0004 | .0000 6103 5156 2500
3125 |[.05 |.0195 3125 }.005 0012 2070 3125 |[.0005 | .0000 7629 3945 3125
3760 |f.06 |.0234 3750 |.006 0014 6484 3750 (| .0006 | .0000 9155 2734 3750
A375 [1.07 |.0273 4375 [l.007 | '.0017 0898 4375 || .0007 | .0001 0681 1623 4375
.b000 ([.08 |.0312 5000 |[.008 0019 5312 5000 ([.0008 | .0001 2207 0312 5000
5625 |.09 (.0351 5625 |.009 0021 9726 5625 ||.0009 |.0001 3732 9101 5625
6250 |.0A [.0390 6250 |[.00A | .0024 4140 6250 || .000A |.0001 5258 7890 6250
.6875 |(.0B 1.0429 6875 |[.00B .0026 8554 6875 | .000B | .0001 6784 6679 6875
.7500 |1.OC |.0468 7500 |.00C 0029 2068 7500 (| .000C | .0001 8310 5468 7500
8125 |l.OD |.0607 8125 |.00D | .0031 7382 8125 [|.000D |.0001 9836 4257 8125
8750 |.OE |.0546 8750 |[l.00E 0034 1796 8750 |/ .000E |.0002 1362 3046 8750
9375 (lL.OF |.05685 9375 |l.00F 0036 6210 9375 | .000F |.0002 2888 1835 9375

TMODOmPpODNDUBRWND D

1 2 3 4

POWERS OF 16 TABLE

Example: 268,435,456, 0=(2.68435456x108) 10-1000 00004 6=(107) 16

16" n

1 0

16 1

256 2

4 096 3

65 536 4

1048 576 5

16777 216 6

268 435 456 7

4 294 967 296 8

68 719 476 736 9
1099 511 627 776 10=A
17 592 186 044 416 11=8
281474 976 710 656 12=C
4 503 599 627 370 496 13=D
72 057 594 037 927 936 14=E
15=F

1 152 921 504 606 846 976

Decimal Values

D-12

TABLE D-4 HEXADECIMAL AND DECIMAL FRACTION CONVERSION TABLE (Cont'd)

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find .A in position 1 .6250
Find .0B in position 2 .0429 6875
Find .00C in position 3 .0029 2968 7500

ABC Hex is equal to .6708 9843 7500

TO CONVERT .13 DECIMAL TO HEXADECIMAL

1. Find .1250 next lowest to .1300 =2 Hex
Subtract -.1250

2. Find .0039 0625 next lowest .0050 0000 o1
to -.0039 9625)

3. Find .0009 7656 2500 .0010 9375 0000 004

-.0009 7656 2500
4. Find .0001 0681 156234375 0001 1718 7500 0000 _ o007
-0001 0681 1523 4375

5. 13 Decimal is approximately 0000 1037 5976 5625 =-2‘}47 Hex
equal to

To convert fractions beyond the capacity of table, use techniques below:

HEXADECIMAL FRACTION TO DECIMAL

Convert the hexadecimal fraction to its decimal equivalent using the same technigue as for integer numbers.
Divide the results by 16 M (n is the number of fraction positions).

Example: .BA7 =540771 10
BA716 =22154g 540771
165 =4096 4096 2215.000000

DECIMAL FRACTION TO HEXADICIMAL

Collect Integer parts of product in the order of calculation

Example: .540810 =.8A7.|6
5408
X16
8 6528
X16
A 4448
X16
7 1168

D-13

TMOO@WPOONDDO H WN =

MTMOOTmPOONDDOHWN =

D-14

02
03
04
05
06
07
08

0A
08
ocC
oD
OE
OF
10

01
02
03
04
05
06
07

19
0A
0B
oc
oD
OE
OF

03

05
06

£88S

0B
oc
oD
OE
OF
10
1"

02
04
06

0A

OE
10
12
14
16
18
1A
1C
1E

TABLE D-5. HEXADECIMAL ADDITION AND SUBTRACTION TABLE

w

06
07

09
A
0B

oD
OE
OF
10
11

12

06
09
ocC
OF
12
15
18
1B
1E
21

24
27

2A
20

4

05
06

07

08

09
0A
0B
ocC
0D
OE
OF
10
1

12
13

TABLE D-6. HEXADECIMAL MULTIPLICATION TABLE
Example: 2 x4=08,F x2=1E

10
14
18
1C
20
24
28
2C
30
34
38
3C

Example: 6+2=8,8-2=6,and8-6=2

06
07

09
0A
0B
oc
oD
OE
OF
10
11

12
13
14

05
O0A
OF
14
19
1E
23
28
2D
32
37

3C
141

46
4B

6

07
08
09
0A
0B
oC
0D
OE
OF
10
1
12
13
14
15

6

06
oc
12
18
1E
24
2A
30
36
3C
42
48
4E
54
5A

7

08
09
0A
0B
oC
oD
OE
OF
10
1

12
13
14
15
16

7

Q7
OE
15
iC
23
2A
31

38
3F
46
4D
54
5B
62
69

09
OA
o8
oc
oD
OE
OF
10
11

12

13
14
15

16
17

8

08
10
18
20
28
30
38
40
48
50
58
60
68
70
78

9

0A
oB
oc
oD
OE
OF
10
11

12
13
14
15
16
17

18

9

09
12
1B
24
2D
36
3F
48
51

5A
63
6C
75
7E
87

0B
ocC
oD
OE
OF
10
11

12
13
14
15
16
17

18
19

A

0A
14
1E
28
32
3C
46
50
5A
64
6E
78
82
8c
96

0B
16
21

2C
37
42
4D
58
63
6E
79
84
8F
9A
A5

oD
OE
OF
10
11

12
13
14
15
16
17

18
19
1A
18

18
24
30
3C
48
54
60
6C
78
84
90
9C
A8
B4

OE
OF
10
1"

12
13
14
15
16
17
18
19
1A
1B
1C

oD
1A
27

41

4E
5B
68
75
82
8F
o9C
A9
B6

c3

E

OF
10
1

12
13
14
15
16
17

18
19
1A
1B
1C
1D

OE
1C
2A

46
54
62
70
7E
8C
9A
A8
B6
ca
D2

10
11

12
13
14
15
16
17
18
19
1A
1B
1Cc
1D
1E

OF
1E
2D
3C
4B
5A
69

78
87

96

A5
B4
c3
D2
E1

ASCIl CHARACTER SET AND HEXADECIMAL CODES

APPENDIX E

0000 0001 Joo1o o011 | o100 | o101 | 0110 | 0111
coL 00 10 20 30 40 50 60 70
4321 ROW
0000 0 NULL | pco [BLANK] @ ® P
0001 1 SOM X-ON |1 1 A Q
0010 2 EOA ' | TAPE |” 2 B R
0011 3 EOM X-OFF | # 3 C S
0100 4 EOT TAPE |$ 4 D T
0101 5 WRU NAK | % 5 E U
0110 6 RU SYN |& 6 F Y
0111 7 BEL ETB | 7 G W
1000 8 BS SO (8 H X
1001 9 TAB SI) 9 | Y
1010 A LF S2 i : J 2
1011 B VT S3 e : K [
1100 C FORM s4 , < L \ ACK
1101 D |RETURN | S5 = M] ALT MODE
1110 E SO S6 . > N 1 ESC
1111 F Si S7 / ? 0 —

RUB OUT

E-1/E:2

APPENDIX F
SYSTEMS 72 INSTRUCTIONS
ALPHABETICAL LISTING

INSTRUCTION FORMAT

X| OP CODE S DISPLACEMENT
| S | I I |

01 2 3 45 6 7 8 9 10111213 1415~
MNEMONIC CODE INSTRUCTION
ADD oD Add Memory to A Register
AND 02 AND Memory to A Register
B 12 Branch
BAL 13 Branch and Link
BC 56 Branch on Carry
BCR 15 Branch on Conditions Reset
BCS 16 Branch on Conditions Set
BE 75 Branch if Equal
BEZ 75 Branch if Equal to Zero
BGE 35 Branch if Equal To or Greater Than
BGEZ 35 Branch if Equal To or Greater Than Zero
BI X 14 Increment X and Branch if Not Equal to Zero
BL 36 Branch if Less Than
BLZ 36 Branch if Less Than Zero
BNC bb Branch on No Carry
BNE 56 Branch if Not Equal To
BNEZ 56 Branch if Not Equal to Zero
BNO 35 Branch on No Qverflow
BO 36 Branch on Overflow
BRC 17 Branch Return and Clea
CAL1 18 Call 1
CAL2 19 Call 2 to Monitor Services
CAL3 1A Call
CLA 0401 Clear A Register
CMP 10 Compare A Register to Memory
DIV 1C Divide
EOR 04 Exclusive OR Memory into A Register
INC OF Increment Memorv by One
LBY 0A Load Byte into A Register
LDA 09 Load A Register
LDB ocC Load A Register
LDD 08 Load D Register
LDX 0B Load X Register
LOR 03 Logical OR Memory into A Register
MPY 1B Multiply
NOP 9201 No Operation
PIN 01 Programmed Input
POT 00 Programmed Output
S 1 Shift
SBY 07 Store Byte
STA 06 Store A Register
STD 05 Store D Register
suB OE

Subtract Memory from A Register

Note: See Appendix B for register-expandable derivative instructions.

F-1/F-2

APPENDIX G
SYSTEMS 72 INSTRUCTIONS

NUMERICAL LISTING

INSTRUCTION FORMAT

RII] X OP CODE S DISPLACEMENT
.] | | S W T |
01 2 3 45 6 7 8 9 101 12131415
MNEMONIC CODE INSTRUCT iON
POT 00 Programmed Output
PIN 01 Programmed Input
AND 02 AND Memory to A Register
LOR 03 Logical OR Memory into A Register
EOR 04 Exclusive OR Memory into A Register
STD 05 Store D Register
STA 06 Store A Register
SBY 07 Store Byte
LDD 08 Load D Register
LDA 09 Load A Register
LBY 0A Load Byte into A Register
LDX 0B Load X Register
LDB oC Load B Register
ADD oD Add Memory to A Register
SUB OE Subtract Memory from A Register
INC OF Increment Memory by One
CMP 10 Compare A Register to Memory
S 1 Shift
B 12 Branch
BAL 13 Branch and Link
BIX 14 Increment X and Branch if Not Equal to Zero
BCR 15 Branch on Conditions Reset
BCS 16 Branch on Conditions Set
BRC 17 Branch Return and Clear
CAL1 18 Call 1
CAL2 19 Call 2 to Monitor Services
CAL3 1A Call 3
MPY 1B Multiply
DIV 1C Divide
BGE 35 Branch if Equal To or Greater Than
BGEZ 35 Branch if Equal To or Greater Than Zero
BNO 35 Branch on No Overflow
BL 36 Branch if Less Than
BLZ 36 Branch if Less Than Zero
BO 36 Branch on Overflow
BNC 55 Branch on No Carry
BC 56 Branch on Carry
BNE 56 Branch if Not Equal To
BNEZ 56 Branch if Not Equal to Zero
BE 75 Branch if Equal
BEZ 75 Branch if Equal to Zero
CLA 0401 Clear A Register
NOP 9201 No Operation

Note: . See Appendix B for register-expandable derivative instructions.

G-1/G-2

APPENDIX H

EFFECTIVE ADDRESS CALCULATION TIMES

With High
Speed Registers

0
0

1.00

0.50

0.75

0.76

(time in microseconds)

Without High
Speed Registers

0
0
1.00

1.00

1.25

1.25

Remarks
Absolute Addressing
Relative Addressing

Indirect Addressing-
operand in core memory

Indirect Addressing-
operand in A Register

Post-indexing

Pre-indexing (base
addressing)

H-1

STArA Xxxx S/L'L P ety X9pu| juswalou| pue youeig X18
0437 01 {enb3 Jo
.8¢¢ txxx SLL e x T4 ueyl Jajealn j youeug 2398
lenb3y
TS . 7 AN M STArA ueyl Jslealn Jl youelg 398
T A4 . S Xxxx GSZ'C olez 01 |enb3 j1 youeug Z38
§¢¢ P SL'1 .x STAr4 jenbg 41 youeug 39
TAY P 7AN) P T 18§ suollpuo) uo youeig sod
T - SLL *w G¢'¢c 18say suonipuo) uo youelg 4049
00°¢ FhE G¢'c P Ge'c Ay uo youeig od
e TANA FrEw T FRER S/°C Ul pue youelg Ive
G¢'¢ xxan S Exr TAYS youeug g
SL'Y ExER 00°€ PR 0G5'¢ v Vv Olul €4 ANV ANV
SL'v P 00°€ X 0g’e v vV Ol ZH ANV CANV
SL'y *xwx 00°€ Frxx 0S¢ v V Olul |H ANV LANV
SL'Y R 00’€ P 0g’e v v ol X anv XANVY
SL'Y Eexn 00’e P 0S¢ v Vv Ol 3 ANV 3JANV
SL'Y FEEE 00’ P 0g’e v vV ol g ANV danNv
SL'Y x%x 00’€ P 0s’e v vV Olul g ANV aaNv
SL'Y o0s'e 00°€ 00t 0s’€ Vv ol Alowsiy ANV anNv
SL'Y P 00°¢ - 0s'¢ v vV 01 €4 aav €gav
SL'y 2ran 00°€ P 0S¢ v Vv Ol ¢d aav caav
SL'y P, 00°€ M 0G§'€ v v Ol L4 aav Laav
SLY - oo'e - 0g'¢ v v 01 X aav xaav
SL'Yy % 00°¢ . 0S¢ v Vv 01 3 aav 3aav
SL'Y PR 00°¢ R 0S¢ v v © g aav aaav
GL'Y ik xk 00°c P 0G5t v v 01 g aav aaav
Sl 0s’e 00€ 00'v 0g¢c v [4esiBoy v o1 Alows)y aav aav
2100 J31s16ay 310D ssiboy
u ul ul u

a3saniox3 puesadQ puesadQ puesadQ puessdQ

SH31SIO3H | H3ILSIOIH NI "LSNI 3403 NI "LSNI -

d33dS HOIH d3dnTONI SH31SI93H d33dS HOIH 310N NOILdI"H3S3a "LSNI

mwv * XK ¥ * % ¥ % Oo.q * ¥ * ¥ < N\sm& —Umwm Nm&m

mm..q * ¥ X ¥ * K ¥ X OO.Q XXX < mwr._QH_\Sm NHND “vmmm mam

00'v ooe o0o'e 0g'¢ 05°€ 0 inding pawwe.boly 10d

T 0s'¢ 0s¢ 00t oo o} nduj pswweiboiq Nid

mN.N * ¥ % ¥ * %X ¥ mN.N * ¥ ¥ K < Co_u.m_mao OZ QOZ

008 06°L 05’8 008 Aldiiniy AdIN

oo.m LE X 22 * % % * om:v LR < mewx HJQP:O\H:QC_ IO_

Do.m ¥* ¥ ¥ * * K ¥ ¥ om..q * ¥ ¥ < H—N—I— I_I.I_I

00°S PP xxxx 0sv P v inding/induj ey OlH

05°€ xxxn xex 05°€ M. v seisibey v Jea|) V10

00°G 0s'y SL°E 00°s Sc'v v € lied €1Vv0

00°9 05'G 00V 009 0S'v A4 ¢ 18D ¢1v0

00’9 0SS 00y 009 0sv A4 L e LIVvO

00y 0S¢ 05¢ 00’ 00°¢€ 4B9|Q puE uinldy youely odd

G¢'¢ kxR TAN - S¢'¢ MOJIBAQ UO youelg od

S¢'c - Sl P ST MOj{lang ON uo youeug ONg

olaz

G¢'¢ X% %% TAN Exxr T4 01 |enb3 joN J! youeig Z3Ng

S¢'c % %% 7 AN Xk G¢'c jenb3 10N §I youeig 3INg

S¢'c P Sl ok xk G¢'C Aley oN uo youeig N8

S¢°C P Sl PN S¢'c OJaz uey] sseq 3l youelg Z14d

S¢'¢ P sl I SC'¢ ueyl sseq § youelg 4
1315169y Jo1s1bay

ui u ul ul

aaaniox3a puesadQ pueiadQ pueiadQ pueiad(
SHILSIO3Y | H31S193Y NI "LSNI 340D NI "1SNI

d33dsS HOIH 310N NO!ILdId3S3a "1SNI

@3IaNTONI SH31SI193H d33dS HOIH

H-3

SLy - 00'c P 0s¢ v v ol 3 4O 3HO1
QLY P 00°€ " 0G6'¢ A4 Vv ol g 4o aygol
Sy P 00°¢ P 06¢ \4 Vv ol g Ho gd01
1315160y
SLY 0g’e 0o0'c 00'v 09t v ol Alowsiy HO 401
T rEw 0s'¢e xrxx 00°€ A4 €4 juswalou| E€ONI
mh.m * ¥ K * Om.N * % ¥ ¥ Oo.m < Nm “C@ED_QC_ NUZ—
GL'E ER 0s5'¢ P 00°¢ A iy luswalou| LONI
SL'E o 0s¢ rhEE 00€ v X juswaudu] XONI
mﬁ.m ¥* % ¥ * om.N * % ¥ ¥ Oo.m < w PCUEO.—UC_ moz_
MN.MH * % ¥ Om.N EE R R oo.m < D H.—_OP—._WLUC_ DOZ_
GL°E P 0s¢ rxxx 00€ v g juswaiduy 8ONI
mN.m * 3 %% om.N * ¥ XK OO.M” < < u.__UC..—O_U—.__ <OZ—
GLE ST 0s'¢ SL'€ 00’€ Asowspy 1uswaiou| ONI
SZ'6 9.8 SL'6 SZ'6 apiag Ald
00v P 05¢ P 00t v €4 yum vy asedwo) £dNO
00’y xwn 0§¢ P 00°¢ v 24 yum vy aiedwo) ¢dND
00’y xR 05°¢ e 00°€ v lY yum y atedwo LdND
00y s 0s¢ FAP 00’e A4 X yum y asedwo) XdND
004 Een 0s’¢ EEn 00°€ v 3 yum y atedwo) 3dIND
00y - 0s'¢c R 00’ v g yum y aledwo) adiwo
00'v PP 06°¢ rrxn 00€ v g yum vy aledwo) gdWO
Alowa |y
00t 00'c 05°¢ 05°¢ 00'e sisibey v asedwo) dNO
a10) 1a1siboy 2i0) 1918163y
ul ul ui ul
a3anioxs3 puesadp puesadQ puessdp puesadQ
SH31SID3Y H31SI1934 Ni "LSNI 3HOD NI "LISNI
Q33dS HOIH Q3aNTONI SH3LSID3H G33dS HOIH 310N NOI1dI43S3a "1SNI

H-4

€Y wouy
00y ERER 0s'c rEER 00t v Vv Olul a1Ag peoT EAL
cY wody
00y rERE 0G°¢C e 00’€ v Vv oiul a1Ag peoT AT
1Y wouj
RN . 0s°c P 00't Y v Olul 31Ag peot LAGT
X wWouy
00’y P 0g'c P 00'e A"/ Vv Olul a1Ag peoT XAgG1
3 woy
00V fxxx 0s’¢c e W 00’e v Vv ol a1Ag peoT JAGT
g wody
00'v P 0g’c P 00’E A"/ Vv Ol alAg peot aAa
g wou}
00'v R 0g'¢ R 00t v Vv olul a1Ag peoq aAgl
1918160y
00'v 0o0e 0S¢ 05°€ 00'e Vv Owul a1Ag peol Aq
0G°S thnn SL'E N 1A v Vv Ol €4 H"O dAIsSn|oxX3 €403
05°S P GL'E x % 2T 4 Y WV Olul ¢4 YO dAISNdxX3 cd03
05'S Ex xR SL°E P Scv Y vV Olul LY HO 3AISn|dX3 L403
09'S x %% GL'E kX% T4 \vJ Y Ol X {(QO 38Asnjox3 Xd0d
059 P S TA rxxE GCYv v Vv Olul 3 YO aAISNPX3 3403
0G9'S rxxx SL'E P SCv v ¥ Ol g HQ aAIsn|dx3 ado3
05°S X% GL'E PR GCv v Vv Olul g HO 3AsSNIX3 ga403
121516y vy o1ul
0SS GCv SL°E SLY SCt AJOWB YO dAIsSN|IX3 403
SL'Y Xxxw 00'e - 0g9°€ v Vv Olul g4 HO €401
SLY rxEw o0’e SR 0G°€ A Vv Ol 24 HO cd01
SL'Y rrxx 00’E P 09t v Vv Ol LY HO L4071
810D 191s1boy 810D 1sibay
ul ul ul u
a3aaniox3 puesadQ puessdQ puesadQ puesad()
SH3ILSID3Y H31S1934 NI "1SNI 3H0O NI "1SNI
d33dS HOIH d3AaNIONI SH31SI93d Aa33dS HOIH 310N NOILdIH0S3a "1SNI

HS

1915168y

00°9 wxxx sxns 0s'v wxwn v Aejdsig peo yal
06°¢ P G¢'¢c *Hxx GL°¢ v €4 woy g peoq €aanl
05'€ xxxs §¢'c N SL°C v ¢y woy g peoq ¢aa
05°€ . S¢'c """ x S/°C v Iy woy g peol Laan
0s't U S¢'c * % xx Sl'c v X woy g peoq Xaan
05°€ - S¢'c M SL'¢ v 3 woy g peoq 3aan
0G'€ *ex Gc'c . T4 \4 g woly g peoq gaa
0g’t rxxx Sc'e Fxxw GaL’c A4 Y woi g peon vaat
06t 00€ ac'c GC't GLC Jasibey g peon aan
05t *k ke x TALA " Sl.¢C \4 €4 woly g peoq €aan
05'€ P sc'e rxwx SL°C v cY wol g peoq caal
05°€ *xx SZ'¢ raan S.°¢ v LY woy g peoq 1aai
0s€ P ac'e P SL°¢ v X woy g peoq Xdai
09°¢ * S¢'¢ PPN SL°¢ A4 3 wouy g peoT 34901
09t rxan AL P, T4 A4 g woly g peo asa
05°€ P T P SL'¢ v V woJi g peot vaanl
09t # 00e S¢'c S¢'t Sl.¢ Joysibey g peoq adal
0ge - gee P. SLc v €d woy v peol eval
0s'c Exrw T4 P SLe v ¢y wody y peol van
0s'¢ xxxR §S¢'¢c *xx T A v 1y woly y peoq lvail
0s§°€ P gc'c xxxn T4 v X woy y peoq Xval
0s'e - g¢'c e glc v J wolyy v peo Ival
05°€ . T4 P SL'¢ v g wo4 v peoq ava
0S¢ P TN P S/.¢C A4 g woiy y peon avan
05°€ 00’ §¢'¢ TS SL°¢ seisibey v peon vai

ai0) 191s1bay alo) Jo1s1bay

ul ul ul ul

aaaniox3 puesadQ puesadQ puesad(puesadQ

SY31S1D3Y | HILSIDIH NI~ ISNI 3400 NI "LSNI
d33dS HOIH @3ANTONI SY31S193H a33dS HOIH 310N NOI1didds3a "LSNI

H-6

€Y ol v
0s's T SL°E P 1A 4 v woy alAg alolg EASS
¢y ol y
0s'9 P SL'E rxxx =T 4 \Y woy alAg aioig CAgS
ld QU 'y
0§'s Py SL°E xxx SC'v v wouy a1Ag aloig LAGS
X Ol y
05°S EERE GL°E ok S’y Vv woy 3lAg alolg XAgGS
3 ol 'y
06’9 P SL°E o GC'tv v woyy a1Ag 81015 3JA8S
d oy
09's %k SL'E ®xxw SC'y v woyy a3Ag alolg aAgds
g ol vy
0G'S rxrw SL°¢C Exwa ST v woly alAg alolg aAdsS
Jasibey v
0SS Gy SL°E QLY =148 4 wouy alAg a101g AgS
00°S - P oSy EEER v ZMSd Peon ¢3d1
0s’t XX G¢'c reR SL°¢C v €Y woly X peoT exXan
0S°E ey G2'C x GL'C v cd woy X peon ZxXal
0S¢ U GZ'c R GL°¢ v 1y wol X peoy LXal
0S°€ rEER G2'c XEE% G.C v 3 wol X peo’ Ixai
0s’c EEER G2'c FERE G/.°C v g woly X peon axai
0S°’€ ERER T A EExE SL¢C A\ g wol X peo’ axan
0g'e KX EE T T GL°C v v woly X peot vXal
0S°€ 00°¢ ac'c TR SL°C \Y 1a1siboy X peoT Xal
210D J91s1b6ay ai0) 115160y
ut ul ul ul
a3aniox3 puesadQ puesadQ puesadQ puessad
SH3LSID3IH HI1SI1934H NI "1SNI 3400 NI "LSNI
a33d4S HOIH a3AaNIONI SH3LSID3IY A33dS HOIH J10N NOI1ld143S3a "1SNI

H-7

ST 4 ’xxx 00'€ U 0S¢ v v wol gy 1deaqng €ans
SC'y P 00°€ xww 08¢ v v wol gy 3oengng zans
qc'y ’xxx 00'€ A 05t A4 vV wol Ly 1oenqng Ldns
SC'v Yoxxx 00'€ *xwx 0s'c v Y wol X 1oeaqng Xans
SC'v - 00'€ P 0S¢ A4 Vv wody 3 10eaqng 34NS
A 4 e 00'€ *xwx 0s€ A4 Vv wody g 10enqng aans
T 4 *ewx 00'€ o 0s¢ v v woly g 1oeaqgng gans
81sibey v wouy
Sc'y 05°€ 00°€ 00y 0s’e Alows|y 10B0gNg ans
SL°E xxw 0S¢ . 00°€ v €4 1oul g alolg €41s
SL°E A 06°¢ N 00°¢ v cd 0wl g 8Jolg Z2ais
SL°€ P 0s¢e P 00°€¢ A4 Ly o g aiois Lals
SL°E Pa_— 0s'¢c P 00¢ A4 X o g 8J0lg Xaits
SL°E *xx 0s'¢ PR 00€ v 3 owl g aiols 34l1s
SL'E *xxx 0S¢ - 00€ \4 g olul g 8Jois 4a1s
SL°E rEER 08¢ M oo’€ v Vv 0ot g 8iolg vaits
SL'E SL°C 0g'¢c T 00°¢ Jeisibay Q au01g aits
SL°E - 05¢ xxxx 00¢€ A €Y ol v 84015 €V 1S
SL'E rxwa 08¢ P 00€ v ¢d ol y 8loig A
SL'E P 08¢ rwn 00€ v LY ol v 3aiolg LV 1S
SL°E P 05¢ rwn 00°¢ v X ol y 3ai0ig XV 1S
GL'E P 0s'¢ Ew 00€ v 3 ol y alolg IV 1S
GL'E N 06°¢ P 00°€ v g ot vy ai0g avis
SL'E . 0s’¢ o x 00t A g 01Ul y 3015 av1s
GL'E TArA 08¢ GZ°€ 00€ Jisibay v 81015 V1S
al0) 18181bay ai0) Jasibay
ul ui ul u
a3gniox3a puessd puessd(puesad puesadQ
SH3LSIO3NH H31S1934 NI "1SNI 3400 NI "1SNI
a33dS HOIH J3AaN1ONI SH3LSI93Y d33dS HOIH 310N NOI1dI143S3a "1SNI

H-8

009 waxe s xxx 00’ asuodsay 1dnialu|
00°'G " n nkx 0sv xxxR v indinp/andu; 1sa) oIl
ST’y exrx xxx 00'v - v Jomeg 191 AdL
00°s Ex xR - 0s'vy P v indinQ/indu; ue1g oIS
a|gnog
G.'8 09'S . 00'9 seas v'a by |eaboy Hiys aydis
00 SLe R GZ'E o nu v'a wbiy |eatbo7 Yiys d1s
3|gnoQg
GL'8 09°S *xEw 009 . v'a yo [eabo Hius J11s
00t G.L°C Exnx SE'E xxxx v'a 3o |eaboT iys a1s
ajgnoQ
G.'8 0s'S xxx 009 - v'a WbIY JejndAD BIYS ados
00'v SLT kKK 9c'e P v'a wbiy Jeinoud UIYS 40S
ajgnogg
GL'8 09'¢ kxR 009 rxxx v'a Yo7 Jendiiy HIYS anos
00t SLC xex ec'e xwx v'a 4o Jendiy HIYS 10S
ajlgqnoq ybiy
6.8 09'G P 009 P v'a ndwyIly HIYys advs
by
00y GSLC *rwx AR N v'a anBWYIY HIYS Hvs
s|gnog 197
GL'8 0G'S Erwn 009 *xxx v'a onBWIIIY HIYS aivs
o7
00t SL'T . STAES Fxxr v'a SfIaWYILY HIUS Ivs
SLL 0S8t 00's a a|gnop - HIYg S
00y qL'¢ 8z’¢c a 9|buis - Hiys S
810D 1915160y 23100 1815168y
ul ul ul ul
a3aniox3 puesadQ puesadQ puesad puessdQ
SHILSIDIY | YILSID3d NI "LSNI 3402 NI "1SNI
G33dS HOIH d3QNTONI SY31SI193H d33dS HOIH 310N NOILdI"0S3a "LSNI

H-9

Notes

A Includes time for all effective address calculations
M xxxll
B indicates that this situation is not possible or not probable

C Plus delay imposed by external device

D Plus 0.25 miscroseconds for each bit position shifted

H-10

APPENDIX |
SYSTEMS 72 SPECIAL DERIVATIVES INSTRUCTIONS

PIN Programmed Input

R | X 01 S Displacement

0 1 2 3 4 5 6 7 8 9 10 N 12 13 14 15

The effective address serves two purposes. it drives the Programmed Input/Output Bus Address lines, and
it provides an augment code for the many derivatives of PIN. The Programmed Input /Output Bus data
lines are loaded into the D register. The special derivatives of PIN for input output operation are as
follows.

Test 1/O instruction TIO

PIN EFA=X'0180' + DADD

where DADD is the device address

affected: CC1 if controller busy
CC2 if device busy

Test Device instruction TDV
PIN EFA = X'0100' + DADD
where DADD is the device address
affected: CC1 if controller busy
CC2 if device busy
D contains device status

Order in instruction
PIN EFA = X'0080' + DADD
where DADD is the device address
affected: CC1 if controller busy
CC2 if device busy
D contains device status

Data In Word instruction
PIN EFA = 0000 0000 0ODD DDDD
where DD DDDD is the device address
affected: CC1 if Burst mode

CC2 if data not available

D contains one data word

Data In Byte instruction
PIN EFA = 0000 0000 01DD DDDD
where DD DDDD. is the device address
affected: CC1 if Burst mode

CC2 if data not available

D contains input data in byte 1

" The special derivatives of PIN for display panel inspection are as follows:

Read Display Switch instruction

PIN EFA = X'0400'
CC1 and CC2 unchanged

affected: D contains the contents of the register
specified by the display switch,or the
contents of the memory location defined
by the data switches.

Read Data Switches instruction
PIN EFA = X'0401'
CC1 and CC2 unchanged
affected: D contains the contents of the data switches

Read PSW2 instruction
PIN EFA = X'0402'

CC1 and CC2 unchanged
affected: D contains the contents of PSW2

The special derivative of PIN for the Console Interrupt option is as follows.

Read Console Interrupt Status instruction

PIN EFA = X'0404'
- CC1 and CC2 unchanged
affected: D contains the console interrupt status

The special derivatives of PIN for the Direct Access Channel are as follows.

Sense DAC Address instruction
PIN EFA = X'0405'
affected: CC1 if DAC busy
CC2 always zero
D contains dynamic data address

Sense DAC Word Count instruction
PIN EFA = X'0406
affected: CC1 if DAC busy
CC2 always zero
D contains dynamic word count

Sense DAC Status instruction
PIN EFA = X'0409'
affected: CC1 if DAC busy
CC2 if core access error
D contains current device status

The special derivatives of PIN for the Real-Time Clock option are as follows.

Read RTC time Instruction

PIN

EFA = X'0208" + N

wherecN is the clock address

affected:

CC1 and CC2 always zero
D contains the current time

Sense RTC Interval instruction

PIN

EFA = X'020C' + N

where N is the clock address

affected:

CC1 and CC2 always zero
D interrupt interval

Sense RTC Status instruction

PIN

EFA = X'0210' + N

where N is the clock status

affected:

CC1 and CC2 always zero

The special derivative of PIN for the Interrupt Pair option is as follows.

Sense Interrupt Status instruction

PIN

EFA = X'200" + IADD even

where IADD is the interrupt address

affected:

CC1 and CC2 unchanged
D contains current interrupt status Even in byte 0,0dd in byte 1

The special derivative of PIN for memory mapping is as follows.

Read Snapshot Register instruction

PIN
affected:

EFA = X'OF00' or X'OE10'

CC1 if page fault

CC2 if protect violation

CC1 and CC2 zero if last trap

was memory parity error

D contains the contents of the snapshot register

The spécial derivatives of PIN for page transfers are as follows.

Test Page Transfer ‘instruction

PIN
affected:

EFA = X'0E04"

CC1 if MED busy
CC2 always zero

D contains MED status

Test Disc Position instruction

PIN
affected:

EFA = X'0E05'
CC1 and CC2 equal sector quarter U contains current sector number

POT Programmed Output

R | X 00) Displacement

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15

The effective address serves two purposes. It drives the Programmed Input/Output Bus address lines, and it
provides an augment code for the many derivatives of POT. The Programmed Input/Output Bus data lines
are driven by the D register . The special derivatives of POT for input/output operation are as follows.

Start 1/0 instruction SI0
POT EFA = X'0100' + DADD
where DADD is the device address
affected: CC1 if controller busy
CC2 if device busy
D is meaningless

Order Out 1 instruction
POT EFA is X'0080' + DADD
where DADD is the device address
affected: CC1 if controller busy
CC2 if device busy
D contains I0CL word 1

Order Out 2 instruction
POT EFA is X'00C0' + DADD
Where DADD is the device address
affected: CC1 if controller busy
CC2 if device busy
D contains I0CL word 2

Terminal Order instruction
POT EFA = X'01C0' + DADD
where DADD is the device address
affected: CC1 if controller busy
CC2 is device busy
D contains terminal Hrder

Data Output Word instruction
POT EFA = X'0000' + DADD
where DADD is the device address
affected: CC1 if Burst mode

CC2 if data not accepted

D contains data to be output

Data Output Byte instruction
POT EFA = X'0040' + DADD
where DADD is the device address
affected: CC1 if Burst mode
CC2 if data not accepted
D contains data to be output
from byte 1

Reset 1/O instruction IOR
POT EFA = X' 0404'
affected: CC1 if any controller busy
CC2 if any device busy
D is meaningless

The special derivatives of POT for display panel operation are as follows.

Load Display Register instruction
POT EFA = X'0400
affected: CC1 and CC2 unchanged
D contains data to be displayed

Halt Program instruction HLT

POT EFA = X'0401'

affected: CC1 and CC2 always zero
D is meaningless

Load PSW2 instruction

POT EFA = X'0402’

affected: CC1 and CC2 unchanged
D contains data for PSW2

The special derivative of POT for the Console Ihterrupt option is as follows.

Set Console Interrupt Status instruction
POT EFA = X'0404'
‘affected: CC1 and CC2 unchanged

D contains the interrupt status

The special derivatives of POT for the Direct Access Channel are as follows.

Load DAC Address instruction
POT EFA = X'0405'
affected: CC1 if DAC busy
CC2 always zero
D contains initial data address

15

Load DAC Word Count instruction
POT EFA = X'0406'
affected: CC1 if DAC busy
CC2 always zero
D contains initial word count

Start DAC Transfer instruction

POT EFA = X'0407'

affected: CC1 if DAC busy
CC2 always zero
D is meaningless

Halt DAC Transfer instruction

POT EFA is X'0408'

affected: CC1 if DAC busy
CC2 always zero
D is meaningless

Set DAC Status instruction
POT EFA = x'0409'
affected: CC1 if DAC busy
CC2 always zero
D contains DAC new status

The special derivatives of POT for the Real-Time Clock option are as follows.

Start RTC Clock instruction

POT EFA = X'0200' + N

where N is the clock address

affected: CC1 and CC2 always zero
D is meaningless

Stop RTC Clock instruction

POT EFA = X'0204" +N

where N is the clock address

affected: CC1 and CC2 always zero
D is meaningless

Continue RTC Clock instruction

POT EFA = X'0208' + N

where N is the clock address

affected: CC1 and CC2 always zero
D is meaningless

Set RTC Status instruction

POT EFA = X'0210' + N

where N is the clock address

affected: CC1 and CC2 always zero
D contains initial count

The special derivative of POT for the Interrupt Pair option is as follows.

Set Interrupt Status instruction
POT EFA = X'200' + IADD even
where IADD is the interrupt address
affected: CC1 and CC2 unchanged
D contains initial interrupt status Even in byte 0, Odd in byte 1

The special derivative of POT for memory mapping is as follows.

Memory Map Update
POT EFA = X'OF00' + PADD
where PADD is the virtual page address
affected: CC1 and CC2 unchanged

D contains new map data

The special derivatives of POT for page transfers are as follows.

Core-to- Disc Mapped instruction
POT EFA = X'0E00’
“affected: CC1 if MED busy
CC2 always zero
D contains the core page address

Disc- to -Core Mapped instruction
POT EFA = X'0EO1'
affected: CC1 if MED busy
CC2 always zero
D contains the core page address

Core to -Disc Unmapped instruction
POT EFA = X'0E02"
affected: CC1 if MED busy
CC2 always zero
D contains the core page address

Disc to Core Unmapped instruction
POT EFA = X'0E03'
affected: CC1 if MED busy

CC2 always zero

D contains the core page address

Start_Page Transfer instruction
POT EFA = X'0EQ5'
affected: CC1 if MED busy
‘CC2 always zero
D contains the disc page address

Halt Page Transfer instruction
POT EFA = X'OE05'
affected: CC1 if transfer complete
CC2 if transfer error
D is meaningless

	0000
	0001
	0002
	001
	002
	003
	004
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-08
	01-09
	01-10
	01-11
	01-12
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	a-01
	a-02
	a-03
	a-04
	b-01
	b-02
	b-03
	b-04
	b-05
	b-06
	b-07
	b-08
	b-09
	b-10
	b-11
	b-12
	b-13
	b-14
	b-15
	b-16
	b-17
	b-18
	b-19
	b-20
	b-21
	b-22
	b-23
	b-24
	b-25
	b-26
	b-27
	b-28
	b-29
	b-30
	b-31
	b-32
	b-33
	b-34
	b-35
	b-36
	b-37
	b-38
	b-39
	b-40
	b-41
	b-42
	c-1
	c-2
	c-3
	c-4
	c-5
	d-01
	d-02
	d-03
	d-04
	d-05
	d-06
	d-07
	d-08
	d-09
	d-10
	d-11
	d-12
	d-13
	d-14
	e-1
	f-1
	g-1
	h-01
	h-02
	h-03
	h-04
	h-05
	h-06
	h-07
	h-08
	h-09
	h-10
	i-1
	i-2
	i-3
	i-4
	i-5
	i-6
	i-7
	i-8

