IRIS Communications
Guide

Version 1.1

Silicon Graphics, Inc.
2011 Stierlin Road
Mountain View, CA 94043

Document Number 007-0390-010
(includes IRIS Communications Guide Update Package
Document Number 007-0390-011)

Technical Publications:

Gail Kesner
Diane M. Wilford

Engineering:
Vernon Schryver
Brendan Eich
Paul Mielke
Kipp Hickman

© Copyright 1986, Silicon Graphics, Inc.
All rights reserved.

This document contains proprietary information of Silicon
Graphics, Inc., and is protected by Federal copyright law.
The information may not be disclosed to third parties or
copied or duplicated in any form, in whole or in part,
without prior written consent of Silicon Graphics, Inc.

The information in this document is subject to change
without notice.

IRIS Communications Guide

Document Number 007-0390-010

(includes IRIS Communications Guide Update Package
Document Number 007-0390-011)

UNIX is a trademark of AT&T Bell Laboratories.

0S/MUS and UM/CMS are trademarks of IBM

VAX and VMS are trademarks of Digital Equipment Corporation
NFS is a trademark of Sun Microsystems, Inc.

CONTENTS

1. IntrodUucCHON. ...cooiiniiiniiiiii e e 1-1
. Communications Protocols.............evieiiiiiiniieiiienenieinnnn, 2-1
2.1 Using the IRIS with TCP/IP......ccccoiiiiiiiiiiiiiinneennn, 2-1
2.2 Using the IRIS with XNS ..., 2-2

. Host Communicationscocoeeriivietiniinieerccieeneenenn 3-1
3.1 The wsiris Program...........ccccooeiiiiiiniiiinn 3-1
3.1.1 Terminal Operationsccc.ccoiiiieicrecennninnen. 3-1

3.1.2 Workstation Operationscccooeeeeneeiinnnns 32

3.2 DEC VAX Running VMS ... 32
3.3 IBM Running VM/CMS and OS/MVS..........cceceeriinnneee 3-3
3.4 Remote Graphics Libraryc.oooouiiiiiiin.. 3-3

. Network File Systemoooiuiiimiiiiiniiiiiiiiien 4-1
4.1 Mounting a Remote File System................ccoceeiiiiiiies 41
4.2 The YP SerViCe........cocouurmumurireiiiuiiiineieeeeeiniannesenns 4-2

. The UUCP Program...........ccoeevmirmmiieeiiiiinnneneiineneeneenanens 5-1
5.1 Network Requirements...........cccoooeiiiiiiiiiiiiiiiinn. 5-1
5.2 UUCP Configuration Files........ RN 5-2
5.3 Public Directoryccoevimimimiiiieiiiiineniice e, 5-3
5.4 UUCP Conventionscoeeeivriermieierinnerineneneienene - 5-4
5.4.1 Network AAAresses..........ccoevuiirenimiirennneneneennns 5-4

5.4.2 Path Namesc..c.ooiiiiiiiiiiiiiiiiiniiineeins 5-4

5.5 Transferring Filesooooiiiii 5-5
5.6 Forwarding Filescooiiiiiiniiiinniiiiinnnnnn, 5-5
5.7 Executing Commands on a Remote System................. 5-6
5.8 Sending Mailcooiiiiiiii 5-7
5.9 Transferring Files with cu...........o... 5-7
5.9.1 IRIS to VAX Transfers.............co.ueviiiireeinnncnnnn. 5-8

5.9.2 VAX to IRIS Transfers...........coceeviinneeiinrennnennens 5-9

. The Mail Systemcoooiiiiiiiiiiiiiiii e, 6-1
6.1 Mail System Hierarchy ...l 6-2
6.2 Examples Using Mailccccovmuiiiiiiiiiiiiiniieeninne. 6-2
6.2.1 Mail without Routingc....ccooiiiiniins 6-3

6.2.2 Mail with Routing.............oeeiiiiiiiiniine 6-4

6.3 The sendmail.cf File....................... e eeteieteeeeeieaeaaas 6-5
6.4 Address Aasing...........ooooiiiiiiiiiiiiii 6-7

6.5 UUCP and Sendmail.........cocoveiieiiiiiiiniiiineniieieenenans 6-7

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix E:
Appendix G:

Communications Options on the IRIS A-1
Bibliography.............ccoiiiiiiiniiiiiinieiieee e B-1
NFS Reference Materialccccceeevrvnrniiiiiinieecennnnen. C-1
Mail Systems and Addressing in 4.2bsd........................... D-1
SENDMAIL — An Internetwork Mail Router.................... E-1
SENDMAIL — Installation and Operation Guide............... F-1

The Domain Naming Convention for Internet User
APPLCAtONSoooiiiiiiiiiiiiiiet e G-1

1. Introduction

IRIS terminals and workstations are powerful tools. The ability to network
them with one another and with other systems greatly enhances their power.
Silicon Graphics, Inc., provides the IRIS with networking ﬂex1b1hty through
standard or optional software programs and hardware.

The IRIS Communications Guide is an overview of the communications
capabilities of the IRIS. [RISes can be networked with one another and with a
variety of hosts; they can function in either a TCP/IP or XNS environment; and
they can accommodate a number of applications, including file transfer and
electronic mail. Table 1-1 shows the networking possibilities with the IRIS.

IRIS Host Method of Communication

Terminal IRIS workstation TCP/IP or XNS protocols,
or serial line

DEC VAX running UNIX or VMS TCP/IP or XNS protocols,
or serial line

IBM running VM/CMS or OS/MVS ~ Geometry Link

UNIX host uuce
UNIX host running NFS TCP/IP protocols
Workstation IRIS workstation TCP/IP or XNS protocols,

or serial line

DEC VAX running UNIX or VMS TCP/IP or XNS protocols,
or serial line

IBM running VM/CMS or OSMVS ~ Geometry Link

UNIX host uuce

UNIX host running NFS TCPAP protocols
UNIX or VMS host running mail Mail

program

Table 1-1: Communication with the IRIS

Version 1.0

1-2 IRIS Communications Guide Introduction

This guide addresses five kinds of communication:

» Interactive communication, in which commands entered locally are executed
on a remote system.

o Communication between the IRIS as a graphics terminal and a remote host.
In graphics terminal mode, IRIS terminals and workstations are used as
graphics output devices. The graphics programs usually run and are
maintained on the host.

» File transfer among devices on the same network or on different networks.

e Dynamic file access across a network using Network File System (NFS).
NFS allows users to mount directories from a remote host and treat remote
files as if they were local.

¢ Electronic mail between hosts.

The IRIS Communications Guide is divided into the following sections:

Chapter 1:
Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Appendix A:

Appendix B:

Appendix C:

Introduction

Communications Protocols
Describes the IRIS -as it functions in TCP/IP and XNS
environments.

Host Communications
Describes the hardware and software that enables the IRIS to
communicate with a variety of hosts.

Network File System
Introduces NFS, the system that allows files to be shared across
the network.

The UUCP Program
Describes the utility that enables communication between the
IRIS and remote systems.

The Mail System
Describes the mail system, which allows users on the network to
send messages to one another.

Communications Options on the IRIS
Describes the communications options on the IRIS series 2000
and 3000.

Bibliography
Lists further reading material on topics covered in this manual.

NFS Reference Material
Introduces and presents specifications for External Data
Representation Protocols and Remote Procedure Call Protocols.

Version 1.0

Introduction

Appendix C:

Appendix D:

Appendix E:

Appendix F:

Appendix G:

IRIS Communications Guide 1-3

NFS Reference Material

Introduces and presents specifications for External Data
Representation Protocols and Remote Procedure Call
Protocols.

Mail Systems and Addressing in 4.2bsd
Describes mail routing and sendmail in 4.2bsd

SENDMAIL — An Internetwork Mail Router
Describes sendmail operations in internetwork mail routing

SENDMAIL — Installation and Operation Guide
Describes installation, normal operations, and tailoring for
the mail configuration files.

The Domain Naming Convention for Internet User Applications
Describes the hierarchical naming convention based on
domain concepts.

Because the IRIS Communications Guide is an overview, most of the topics
covered are described more fully in other manuals. Refer to Appendix B for a
complete list of references.

This document uses the standard UNIX convention for referring to entries in
the UNIX documentation. The entry name is followed by a section number in
parentheses. For example, cc(1) refers to the cc manual entry in Section 1 of the
UNIx Programmer’s Manual, Volume I.

In command syntax descriptions, square brackets surrounding an argument
indicate that the argument is optional. Words in italics represent variable
parameters, which should be replaced with the string or value appropriate for
the application. Examples are shown in typewriter font.

In text descriptions, filenames and UNIX commands are written in italics.

Version 1.0

2. Communications Protocols

A communications protocol is a procedure with a well-defined format that
allows two or more systems to communicate over a physical link. The
International Standards Organization recognizes a few standard protocols. The
IRIS can run with two of these: Transmission Control Protocol/Internet Protocol
(TCP/IP) and Xerox Network Systems (XNS). Although systems running
different protocols can coexist on the same network, communication is possible
only among systems running the same protocols.

The TCP/IP or XNS protocols can be used for all IRIS connections except those
in IBM environments (refer to Section 3.3 for a discussion of the IBM
connections). On the IRIS, the TCP/IP and XNS protocol sets reside in separate
kernels. To change from one to the other, you must become the superuser,
issue the kernel(1M) command with the desired protocol argument (tcp or xns),
and reboot the system. For more detailed information on the TCP/IP and XNS
protocols, refer to the TCP/IP User’s Guide and the XNS User’'s Guide.

This section provides an overview of the two protocol sets, including
configuration of the IRIS for the protocol, and a brief description of the
network commands that can be used with the protocols.

2.1 Using the IRIS with TCP/IP

Beginning with software releases GL2-W2.5 and GL2-W3.5, TCP/IP (based on
4.3bsd) is the standard protocol shipped with the IRIS workstations (2400, 2400
Turbo, 2500, 2500 Turbo, 3020, 3030). IRIS workstations running earlier
software and all IRIS terminals use the XNS protocol set as the default. If
another kernel is installed, you must use the kernel(1M) command with the tcp
argument to install the TCP/IP kernel and reboot the system.

Each workstation on a network must have a unique host name. Refer to the
TCP/IP User's Guide for instructions on configuring the host name and other
system administration procedures required to set up an IRIS system in a TCP/IP
environment.

The basic TCP/IP commands that can be issued at the IRIS are rcp, rsh. rlogin,
fir. and telnet. You must be running the TCP/IP kernel to use these
commands. - The daemon (a process running in the background) that supports
these commands can be disabled on individual hosts for security (see the
inet(1IM) manual page). Following is a brief explanation of each command.

Version 1.0

2-2 IRIS Communications Guide Communications Protocols

Refer to the TCP/IP User's Guide for a complete discussion of each one and tor
the other commands available with TCP/I.

« The rcp command copies a file from one system running UNIX to another.
- The syntax of the command is:

rcp [sourcehost:]pathname [destinationhost:]pathname

If no host name is specified, UNIX assumes the local host.

o The rsh command connects your terminal to a remote host running UNIX,
and allows you to execute the commands you issue. The syntax of the
command is: ’

rsh hostname [commandname)

The command is executed on the specified host.

o The rlogin command initiates a login on a remote host running UNIX. The
syntax of the command is:

rlogin hostname

In an ARPANET environment, telnet and ftp perform the same tunctions as
rlogin and rcp. The commands rlogin and rcp are faster and more reliable, and
Silicon Graphics, Inc., recommends using these instead, if possible. Reter to
the TCP/IP User’s Guide tor information on telnet and fip.

2.2 Using the IRIS with XNS

IRIS ‘workstations running software releases earlier than GL2-W2.5 and GL2-
W3.5 and all IRIS terminals use the XNS protocol by default. Beginning with
the GL2-W2.5 and GL2-W3.5 software release, the XNS protocol is an option
on these systems.

[RIS terminals (2300, 2300 Turbo, 3010) using the XNS kernel require no host
name configuration; they function only as terminals, not as hosts. IRIS
workstations in an XNS environment must have a unique host name. Reter to
the XNS User’s Guide for the procedures required to set up an IRIS system in an
XNS environment.

The UNIX operating system provides a set of commands that the IRIS can use
in an XNS environment. You must be running the XNS kernel to use these
commands. If another kernel is installed, you must use the kernel(1M)
command with the xns argument to install the XNS kernel and reboot the
system. :

Version 1.0

Communications Protocols IRIS Communications Guide 2-3

The basic commands in an XNS implementation that can be issued at the IRIS
are xcp, xx, and xlogin. The daemon that supports these commands can be
disabled on individual hosts for security (see the xnsd(1IM) manual page).
Following is a brief explanation of each command. Refer to the XNS User’s
Guide for a complete discussion of each one and for the other commands
available with XNS.

¢ The xcp command copies a file from one system running UNIX to another.
The syntax of the command is:

xcp [sourcehost:1pathname [destinationhost:]pathname

If no host name is specified for either the source or destination, UNIX
assumes the local host. Typically, you have an account with the same user
name on both hosts. If you have no account on the remote host, UNIX
attempts to copy the specified file into or from the guest account (a default
account) on the destination host.

¢ The xx command connects your terminal to a remote host running UNIX and
allows you to execute the commands you issue. The syntax of the
command is:

xx hostname [commandname]

¢ The xlogin command initiates a login on a remote host running UNIX. The
syntax of the command is:

xlogin [hostname]
When the connection is made, the remote host prompts for a login:

login:

If the normal disconnection commands (e.g., logout,) do not
function following an xlogin command, issue the following sequence:

<CR> .

Version 1.0

3. Host Communications

Silicon Graphics, Inc., provides standard and optional hardware and software
that enable you to communicate with a variety ot hosts.

3.1 The wsiris Program

The wsiris(1) program enables communication between an IRIS terminal and a
host. It also allows an IRIS workstation to emulate an IRIS terminal. (For
terminal emulation in IBM environments, you must use the t3279(1) program;
refer to Section 3.3.) Before using wsiris, you must install the host software.
The [RIS Series 3000 Owner's Guide lists the procedure for host software
installation. For complete intormation on wsiris, see wsiris(1); the IRIS Series
3000 Owner’s Guide; IRIS Workstation Guide, Series 2000; and IRIS Terminal Guide,
Series 2000.

3.1.1 Terminal Operations

After loading UNIX trom the default boot file and checking the tile system, the
IRIS 2300, 2300 Turbo, and 3010 terminals automatically load and run wsiris.
The wsiris program enables the terminals to emulate standard ASCII character
terminals. In addition, wsiris pertorms these functions:

 Sets up communication with the host
¢ Interprets graphics command sequences trom the host

You can escape trom iwsiris to an interactive environment trom which vou can
issue the UNIX commands necessarv to perform basic system administration.
However, the IRIS terminals do not have a complete UNIX operating system.
(See the IRIS Series 3000 Owner's Guide and the [RIS Terminal Guide, Series 2000
tor a description of the wsiris environment.)

Version 1.0

3-2 [RIS Communications Guide Host Communications

After wsiris boots on the terminal, it displays the stacrtup message:

IRIS GL2 Terminal Emulator
Connect to what host?

Enter the name of the host to which you want to connect. The login prompt
from the host is displayed.

To perform system administration tasks, vou need to exit wsiris. Issue the
tollowing command:

~t

3.1.2 Workstation Operations

The wsiris program allows a workstation to emulate an IRIS terminal while
communicating with a remote host. The workstation can be configured to
connect automatically to a specified host (see Section 5.2 in the IRIS Terminal
Guide, Series 2000 and Section 5.2 in the Series 3000 Owner’s Guide). For IBM
terminal emulation, refer to Section 3.3. To enter terminal emulation mode on
a workstation, issue the wsiris command (see wsiris(1)). The workstation
prompts for the host:

Connect to what host?

Enter the name of the host to which you want to connect. Your workstation is
now in terminal emulation mode. You can run remote graphics programs from
a remote host to your workstation or perform other functions, such as editing
tiles, etc.

3.2 DEC VAX Running VMS

IRIS terminals and workstations can communicate with a DEC VAX running
VMS in a TCP/IP or XNS environment. Before you can run the software that
enables the IRIS to communicate with a VMS host, you must ensure that the
appropriate protocol kernel is installed on the IRIS. To change kernels, become
the superuser, issue the kernel(1M) command with the protocol as an argument
(either tcp or xns), and reboot the system. Refer to the GL2-W2.5 Release Notes
User’s Guide or GL2-W3.5 Release Notes for this procedure. Silicon Graphics, Inc.,
provides as an option the software for both the VAX host and the IRIS in the
XNS environment. In TCP/IP, the software for the IRIS is also available from
Silicon Graphics, Inc., as the standard in releases GL2-W2.5 and GL2-W3.5 or
later; the software for the VAX is available from the Wollengong Group, of Palo
Alto, California. For more information about TCP/IP and XNS, refer to Chapter
2.

Version 1.0

Host Communications IRIS Communications Guide 3-3

3.3 IBM Running VM/CMS and OS/MVS

IRIS terminals and workstations can communicate with an IBM host that is
running either the VM/CMS or OS/MVS operating system. Silicon Graphics,
Inc., provides the Geometry Link., which consists of a 3270 interface card for
installation in your IRIS workstation, a 3278/79 emulation program, and host
files. You can download applications from the IBM to the IRIS via the 3278/79
emulation program, and you can transfer files between the IRIS and the IBM
using the Up Down Transfer (UDT) program. Reter to the IBM Terminal
Emulation guide from Silicon Graphics, Inc., tor complete information on IBM
host capabilities with- the IRIS. Following are thé requirements for operating
the IRIS in an IBM environment: .

e The IRIS workstation must be running sottware release GL2-W2.4 (2000
series) or GL2-W3.4 (3000 series) or later.

 The IRIS terminal must be running software release GL2-T2.4 (2000 series)
or GL2-T3.4 (3000 series) or later.

¢ You must install the Silicon Graphics, Inc., 3270 interface card in your
terminal or workstation to run the IBM terminal emulation software.

« Before you can use the 3278/79 terminal emulation option, the host files
must be installed inthe IBM host.

3.4 Remote Graphics Library

Silicon Graphics, Inc., provides a Remote Graphics Library (RGL) that resides
on a host system (IRIS workstation, VAX, or IBM). RGL programs allow
communications of graphics across the network. In order for a terminal to
access RGL on a host, the host must also have an IRIS-compatible
communications option. For successful communication with RGL, the standard
host communications rules apply: communications with a DEC VAX host are
with the TCP/IP or XNS protocols; communications with an IBM host are with
the Geometry Link. The RGL can run on the following hosts:

¢ IRIS workstation (C only)
o DEC VAX running UNIX (FORTAN only)
o DEC VAX running VMS (C or FORTAN)

For instructions on installing RGL software on a DEC host and tor
troubleshooting information, see the VMS FORTRAN Remote Graphics Library
Series 2000/3000 manual. Comparable information tor IBM hosts can be found
in the [BM Terminal Emulation guide.

Version 1.0

4. Network File System

Network File System (NFS) is a software system developed by Sun
Microsystems, Inc., that enables the IRIS to share file systems over the
network. It allows a client system (terminal or workstation) to access files
residing on another host system on the network. Both systems must be
running NFS. The IRIS must have at least four megabytes of available
memory. When using NFS, a client mounts file systems trom an NFS server.

Silicon Graphics, Inc., has adapted Sun Microsystems, Inc., 3.0 release of NFS
as an option for use on a Series 3000 IRIS and on a Series 2000 IRIS with the
Turbo option. The IRIS must be running TCP/IP and GL2-W3.5 release
software or later. To run NFS, you must become the superuser, issue the
kernel(1M) command with nfs as an argument, and reboot the system.

This section discusses the NFS service, including both a description of how to
mount a file system and YP, the NFS lookup service. For complete information
on installing and operating NFS, refer to Appendix C, which contains
specifications for the External Data Representation Protocol and Remote Procedure
Call Protocol.

4.1 Mounting a Remote File System

To work with files from an NFS server, a client must request those files via
either a hard mount (the default) or soft mount. If they are successtul, both types
of requests effect the file access or operation. A hard mount continues to call
the server until it responds The client waits indefinitely for a response to its
request, even if the server is slow or is not tunctioning. With a soft mount, the
client issues the request only a certain number ot times, then stops and sends
and error message to the console. Betore you can mount a file system, your
terminal or workstation must be listed as a client in the /etc/export file on the
NFS server.

To issue a mount command, you must tirst become the superuser. The syntax
of the mount(1M) command is:

mount server_name:/file_system /mount_point

Version 1.0

4-2 IRIS Communications Guide -Network File System

The server_name is the name of the NFS server, file_systém is the name of the file
system on the NFS server you want to mount, and mount_point is the path
name on the client where you want the file system to reside. To check that the
mounting procedure has been successtul, issue the df1) or mount(1M)
command without an argument. These commands list all the currently
mounted file systems on your window.

Typically, you automatically mount frequently used file systems at startup by
placing entries for them in the file /etc/fstab (see fstab(4)).

4.2 The YP Service

The YP (Yellow Péges) service is the distributed network administrative
database for NFS. YP is transparent to the user. It is an option of NFS; it can
be disabled by the system administrator. Following is a list of YP features:

o YP is a distributed system. The database is fully replicated at several sites,
each of which runs a server process for the database. These sites are known
as YP servers. During normal operation, any server process can answer a
client request; the answer is the same throughout the network. This allows
multiple servers per network, and gives the YP service a high degree of
availability and reliability.

e YP is a lookup service. It maintains a set of databases that may be queried.
For example, a client may ask for the value associated with a particular key
within a database; or the client may request that YP enumerate every key-
value pair within a database.

Refer to the NFS Ulser’s Guide for more information.

Version 1.0

5. The UUCP Program

UNIx-to-UNIX-Copy (UUCP) is a UNIX utility that enables communication
between your IRIS and remote systems. UUCP is the group name of the batch
programs that create a dial-up UNIX network. Through UUCP, you can
transfer files between local and remote systems, execute remote programs, and
send mail between local and remote systems. Because the UUCP network is a
batch network, requests for data file transfers and remote execution are spooled
by the daemon uucico, and transmission does not occur immediately.

5.1 Network Requirements

Before you can take advantage of the UUCP utility, you must make sure that
the network is properly set up.

The network hardware must be configured to communicate via one of the
tollowing:

o Serial line (direct link)
o XNS Ethernet
¢ Modem running at 1200, 2400, 4800, or 9600 baud

Refer to the IRIS Series 3000 Owner's Guide and IRIS Workstation Guide, Series
2000, for information on network configuration, or check with your system
administrator.

The software required to run the UUCP utility consists of these user programs:
uucp(1C) Copies large text files between systems on the local UUCP

network. The wuucp command is one of the programs within
UUCT and should be entered in lower-case letters.

cu(1) Logs in directly to a remote UNIX system (and to some non-UNIX
systems) and executes commands interactively on that system.

Version 1.0

5-2 IRIS Communications Guide The UUCP Program

uuto(1C) Automatically delivers a local source file to the public directory on
the remote system and notifies the recipient by mail when the tile
arrives.

uupick(1C) Retrieves files from usr/spool/uucppublic after they are transterred
using the uufo program.

uux(1C) Executes commands on a remote system.

5.2 UUCP Configuration Files

Running UUCP requires tailoring some UUCP configuration files to your
particular network. The UUCP -configuration files are in the directories
fusr/libluucp and /usr/spool/uucp. Below is a list of the main UUCP contiguration
files with descriptions of their tunctions. A complete set of configuration files
can be found in the references listed in Appendix B.

In addition to the UUCP files, two UNIX system files need to be recontigured
for use with UUCP. They are described at the end of this section. For
instructions on configuring these, see the IRIS Series 3000 Owner’s Guide or IRIS
Workstation Guide, Series 2000.

The following UUCP configuration files are in the directory /usr/lib/uucp:

L-devices Sets the line speeds for the ports used by UUCP. The file
contains a series of one-line entries, each of which lists a
device, how it is connected, and at what speed it is
communicating. Fomexample:

DIR tty06 0 4800

This entry specifies that the device ty06 is directly connected
and that it is used at 4800 baud.

L-dialcodes Contains the dial-code abbreviations used by the
fusr/lib/uucp/L.sys ftile. The entries are in the form:

abb dial-sequence

abb is the abbreviation of a location, and dial-sequence is the dial
sequence associated with the location. For example:

sf 415

This entry sends the sequence 415 to the dial unit.

Version 1.0

The UUCP Program IRIS Communications Guide 5-3

L.cmds Lists the commands on the local system that can be executed
by a remote system through UUCP.

L.sys Contains information (e.g., speed of communication) about
sites that uucp(1) can call.

USERFILE Determines the point of access on the system. This can be set
to the root directory, to a user, or to a point in a path name of
a user. Any files under this point can be accessed by ULCP
running as one of the users listed in USERFILE.

The following UUCP configuration files are in the directory /usr/spool/uucp:

LOGFILE Shows the UUCP process as it takes place.

LCK..machinename Prevent the ports used for UUCP from being interrupted
while remote commands are executed.

The following files (with their path names) are UNIX system files that must be
configured to enable UUCP comumunication:

letc/passwd Contains the UUCP user names and passwords of remote
systems. All user names and passwords must be defined
in this file to allow remote systems to call your system.

letclinittab Contains a series of lines with getty commands for
identifying specific serial lines.

5.3 Public Directory

UUCP provides the directory /usr/spool/uucppublic as a convenient intermediate
stop for storing files being transferred between remote systems. This directory
has general-access privilege; that is, any UUCP user can transfer files from it.
Because it is public, if you are transferring files that contain confidential
material, you may want to store them in /usr/spool/uucppublic only briefly, and
remove them from the directory as soon as the the recipient notifies you of
their receipt. The files in /usr/spool/uucppublic should be purged regularly by the
UUCP administrator.

Version 1.0

5-4 IRIS Communications Guide The UUCP Program

5.4 UUCP Conventions

UUCP requires that you follow certain conventions when naming addresses
and paths.

5.4.1 .Network Addresses

A system’s address is a unique name that identifies the system. To function
within UUCP, you need to know vour system’s network address as well as the
remote system’s address. To find your system’s network address, type:

uuname -1
To find out a remote system’s network address, type:
uuname

A list of all the system addresses appears on your console. The list resides in
the file /usr/libluucp/L.sys. Only systems listed in this file can be accessed by
UUCP. To add remote system names to the list, you must edit
lusrilibluucp/L.sys. '

5.4.2 Path Names

This section lists the conventions required by UUCP to name paths. They can
be used to name either source or destination paths.

» The UUCP notation for a remote path name is:

system!pathname (Bourne shell)
system\ !pathname (C shell)

Note that if you use the C shell, you must override the meaning of an
exclamation point by preceding it with a backslash (). The .following
examples of UUCP commands use the C-shell notation for remote
commands and paths. In this syntax, the system is a system that uucp(1)
knows. The pathname part ot the command may be either a full path name
or a directory name. For example:

uucp xnodo\ t/usr/you/tile
or

uucp xnode\ t/usr/you/directory

In the example above, /usr/you/file is the entire path name for the file name
file; lusr/youldirectory is the path name for a directory.

Version 1.0

The UUCP l’rogram IRIS Communications Guide 5-5

* The login directory on a remote system may be specitied by using the tilde
(%) character. The combination ~user references the login directory of a user
on the remote system. For example, type:

uucp xmode)!“adm/file

If the login directory for user adm on the remote system is /usr/sys/adm, the
command above is interpreted by UUCP as:

uucp xnode\ !/usr/sys/adm/file

5.5 Transferring Files

The uucp command with optional arguments can be used to transfer files
between local systems and between systems on different networks.

 To transfer a file from a local system to a remote system, issue the uucp
command with the following syntax:

uucp sourcefile destinationfile

* To transter a file into a remote system’s directory use the following syntax:
uucp filei ronotolyl\!/cnp/!ilol

The command above transfers filel to another system named remotesys into
directory /tmp.

* To fetch a file from a remote system to a local one, type:
uucp remotesys\!'filel diri

This command transfers the file named filel from the system remotesys into
the local directory dirl.

5.6 Forwarding Files

Files that are transferred from one system to another may need to be forwarded
through intermediate nodes on the network. The file forwarding feature of
UUCP uses a variation of the exclamation point (!) notation to describe the path
to be taken to reach files. The syntax for forwarding files has three fields: the
command uucp, the file name, and the name of each system in the path
followed by an exclamation point. For example, a user on system A wants to
transmit a file to destination E. Because systems B, C, and D link systems A
and E, the request must be sent through systems B, C, and D before reaching
system E. Specify the transfer as follows:

Version 1.0

5-6 IRIS Communications Guide The UUCP Program

uucp file B\!C\!D\'E\! " you/uucppublic/file

The file named file is sent through B\/C\!D and reaches system E. In system E,
the file is sent through the login directory (*) to the you directory. Note that
the destination must be specified as the public area /usr/spool/uucppublic.

Fetching a file from another system using intermediate nodes is done in a
similar way. For example:

uucp B\!C\!D\!E\!"/you/file filex

This command fetches file from system E and renames it filex on the local
system. The forwarding prefix is the path from the local system, not from the
remote system.

The forwarding feature can also be used with remote execution. For example:
uux xnodo\!uucp ynodepnode! /usr/spool/uucppublic/file filex

This command sends a request to xnode to execute the uucp command to copy a
file from pnode to filex on xnode.

5.7 Executing Commands on a Remote System

You can use the uux command to execute commands on a remote system. uux
gathers files from various systems, executes a command on the remote system,
then sends standard output to a file on the local system. The uux command is
limited to those commands allowed by the remote system. The remote
system’s /usr/lib/uucpiL.cmds file contains the list of commands vou can execute
on that system. I[nvoking uux queues the request tor remote execution of the
command. The syntax of uux is as follows:

wux [option] system\!command

The command field consists of one or more commands allowed on the remote
" system, and can include the following special characters and operators. If you
use special characters in a command string, enclose them or the entire string in
double quotes.

Valid Not Valid

< <<
> >>
. *

! (1
?

Version 1.0

The UUCP Program IRIS Communications Guide 5-7

Note that, for security reasons, many installations limit the list of commands
that can be executed on behalf of an incoming request from uux. Many sites
permit little more than the receipt of mail. See the uux(1C) manual page.

Following is a sample remote execution command:
uux "vancouver\ tls > gtoucho\!"hatry/ 1s.vancouver"

This command string consists of two commands: the first executes the Is
command on the remote system vancouver. The second command directs the
output of the Is command on vancouver to a temporary file that uucp transfers to
user harry on system groucho.

5.8 Sending Mail

UUCP offers a remote message mailing facility. To mail a message to a user on
another system, issue the mail command with the following syntax:

mail system\!user
[message text]

ends the mail message and begins the mail transmission.

The variable system is the name of the remote system and user is the address on
the remote system to which the message is sent. See Chapter 6 for more
information on mail.

5.9 Transferring Files with cu

The cu command allows you to transfer files between systems running UNIX
and those running non-UNIX operating systems. Although other interfaces are
possible, Silicon Graphics, Inc., has successfully tested file transfers between
the IRIS and a DEC VAX running the VMS operating system.

To use cu effectively, you need adequate permission to read and write files. At
the local system prompt, type:

chmod 6686 filename
filename is the name of the file you want to transfer. Type:

" 18 -1 /dev/ttyd1

Version 1.0

5-8 IRIS Communications Guide The UUCP Program

The system responds with a message similar to:
crw-rv-rw- 1 larry 40, 49 Oct 8 10:26 /dev/ttyd1
Type:
cat /usr/lib/uucp/L-devices

The system responds with:

DIR ttydi ttyd1 4800
DIR ttyd2 ttyd2 2400
DIR ttyd3 ttyd3 1200
DIR ttyd4 ttyd4 300
DIR xns Ins xns

This checks the the port’s connection and speed. To connect to a serial port at
9600 baud, type:

cu -lttydl -s9600

To connect to a modem, refer to the modem manufacturer’s instructions.

Sections 5.9.1 and 5.9.2 explain the procedure for transterring tiles between an
IRIS and a VAX running VMS using the cu command.

5.9.1 IRIS to VAX Transfers
This procedure transters tiles trom the IRIS to a VAX at 9600 baud.
1. Atfter logging in to your IRIS, type:

cu -lttydl -s9600 dir

2. Log in to the VAX trom your IRIS. At the dollar sign ($) prompt
from the VAX, type:

set term/hostsync/readsync/ttsync/noecho

The noecho portion of the command makes the next line you type
invisible.

3. Give the file you want to copy from the IRIS a file name on the
VAX. The syntax ot the command is:

create fil¢_to_be _dumped _to

Version 1.0

The UUCP Program IRIS Communications Guide 5-9

For example:

create xferfile

4. The syntax of the transfer command is:
“$tr "\012" "\018" < file_on_IRIS '
In the example above, it would look like:
“$er "\012" "\015" < xferfile I

This line is visible because you have broken through to the UNIx
shell on the IRIS.

5. When you see the dollar sign prompt from the VAX, type:
The is invisible.

To exit cu, type

set term/echo

~

5.9.2 VAX to IRIS Transfers
This procedure transfers files from a DEC VAX to an IRIS at 9600 baud.
1. After logging in to the IRIS, type:

cu -lttydl -89600 dir

2. Log in to the VAX. When you see the dollar sign ($) prompt from
the VAX, type:

write sys$output "~>:file_on_IRIS"

The next two lines you enter will be invisible.

3. Type:

type file_to_be_sent

write sys$output "*>"

Version 1.1

5-10 IRIS Communications Guide The UUCP Program

4. To exit cu, type:

You can create a command file to run on the VAX to perform VAX to IRIS
transfers more easily. This is a sample command file:

$! This script sends a file from VMS/VAX

$! to the IRIS via cu. To use,

$! type @sendit file-on-IRIS file-to-be-sent
$!

$ write sys$output "~ >:’’p1°"

$ type ’p2’

$ write sys$output " >"

$ exit

Version 1.1

6. The Mail System

The mail system is a group of programs that let you send messages to other
users on the network and to receive messages from them. This section
provides an in-depth discussion of the mail system, including;:

» Sending mail

¢ Address aliasing

e UUCP and sendmail
¢ Mail administration

You can send mail on the IRIS through either UUCP or TCP/IP on an IRIS host
running GL2-W2.5, GL2-W3.5, or a later release. UUCP is used on IRISes
running XNS or using serial lines or modems. See Chapter 5 and Section 6.5
for information on UUCP.

Silicon Graphics, Inc., uses System V.0 /bin/mail and 4.3bsd sendmail and Mail
for its mail implementation.

The following software must be in place to run mail:
o /usr/lib/sendmail.cf
* /usr/lib/sendmail
o /usr/bin/Mail
e /bin/mail

o /bin/rmail

Version 1.0

6-2 [RIS Communications Guide The Mail System

6.1 Mail System Hierarchy
The mail system programs can be divided into four functional categories:

User interfaces These programs allow composition and perusal of the
mail text. They provide a user interface that supports the
creation of new messages and the reading and removal or
archiving of received messages. Examples of this level ot
the mail system are Mail(1) and mail(1).

Mail routing The sendmail(1) program calls the mail delivery or mail
transmission program. Routing messages in UUCP is
explicit; it must be done by the user.

Mail delivery These programs are responsible for depositing mail into a
data file for later perusal by a user or another program.

Mail transmission Mail transmission is needed when the destination for the
mail resides on a remote host. Examples of this level ot
the mail system are UUCP, which uses its own protocols
and runs over XNS and serial lines, and sendmail, which
uses the Standard Mail Transmission Protocol (SMTP)
and runs with TCP/IP. In all cases, the mail transmission
process has a counterpart, the mail reception process.
Both processes reside in the same program.

After you compose a message using an available user intertace, the message is
sent to a mail transmission or routing program.

6.2 Examples Using Mail
Sections 6.2.1 and 6.2.2 illustrate sample mail messages. The first shows a
message sent without routing. The second message is routed through UUCP.
Note that in both examples the syntax of the Mail command uses the C-shell
notation:

host\ tuser
The command could be issued as well with the Bourne shell notation:

host!user

The symbol “%” prompts for user interaction with the system. All messages
end by typing on a separate line.

Version 1.0

The Mail System IRIS Communications Guide 6-3

6.2.1 Mail without Routing

The following is an example of a common host interconnection. Hosts cne, two
and three are on an Ethernet connection and use SMTP (the Standard Mail
Transmission Protocol). Host four is connected to host one via a serial line, and
can communicate only via UUCP. Figure 6-1 shows four users: fred on host
one, barney on host two, wally on host three, and june on host four.

SMTP SMTP SMTP

mmmm Ethernet
=== Drop Line
- Serial Line

Figure 6-1: Map of Users and Hosts

To send mail, type Muil and the address at the system prompt (%); the prompt
does not appear again until you exit from Mail.

If user fred wants to send mail to barney, fred types:

% Mail two\!barney
Subject: Bedrock construction

Hey Barney

Let’s go fishing!
CTRL-D

%

When Mail is finished composing the message, it calls the sendmail program to
figure out how to send the mail to barney. The choice of calling sendmail is part
of the Mail program. sendmail figures out how to send the mail to burney and
which of its resources can perform the transmission. In this simple case,
because hosts one and fwo are on the same network, and because they both use
SMTP, sendmail uses TCP/IP directly to send the mail. A transmission program
that uses SMTP is built into sendmail.

On host two, it is assumed that a daemon exists that uses SMTP and that the
SMTP transmission program on host one will connect to it. Once this occurs,

Version 1.0

6-4 IRIS Communications Guide The Mail System

the mail is transmitted to host two and is ready for delivery. The sendmail
program runs on host two and receives the SMTP message. After removing
host two’s address from the destination address, sendmail runs through an
algorithm to resolve the new destination address.

The process used to resolve this address is approximately the same as that used
in the original sending of the address, when fred sent the original message. For
this example, the resolved address is barney. The local mail delivery program,
/bin/mail ~d, is called to deposit the mail into barney’s mailbox.

6.2.2 Mail with Routing

In this example, barney on host two wants to send mail to june on host four:

% Mail four\!juze
Subject: Your tv show

It’s great. Let’s have lunch Tuesday.

Sincerely, Barney Rubble

%

Mail composes the message and hands it to sendmail to route. sendmail, via its
configuration file on host two determines that it cannot send the mail directly to
host four. Instead, the mail must be routed through host one, because host one
has the only direct connection to host four. sendmail rewrites the mail address
to one!four!june, then sends the message to the SMTP server on host one. Host
one strips off its address, resulting in the address four!june.

Not all mailers use the same address format. UUCP does not use the same
format as sendmail. To cope with this, the sendmail.cf conftiguration file rewrites
addresses for the mailer. Once the four!june address is received at host one, the
sendmail.cf tile for host one determines that it must use UUCP to send mail to
host four. Note that this process is transparent to barney, the originator of the
message.

Once sendmail decides that UUCP must be used to send the mail, the data in
the sendmail.cf tile instructs sendmail in how to call the UUCP mail transmission
program. UUCP then takes the message and mails it to june via rmail (rmail is
responsible only for delivering UUCP mail). On host four, UUCP uses rmail to
receive the message, and rmail uses sendmail to deliver it. Once sendmail has
the message, it determines that no more forwarding is needed and uses the
local mailer to deliver the mail; june receives the original message.

Version 1.0

The Mail System IRIS Communications Guide 6-5

6.3 The sendmail.cf File

The sendmail.cf file identifies and contains information about all systems on the
network. Before a system can function with the mail program, the sendmail.cf
file must be modified to identify the system. The file entry for a system
includes the system’s name and the transmission protocols it uses. When
sendmail is invoked to send a message, it uses the rules in sendmail.cf to resolve
the “To” address to a particular system, user, and mailer (the program that
transmits the message).

When modifying the sendmail.cf tile, keep in mind the following points:

¢ If a system is in more than one category in the file, the order of protocol
choices is important. If both the target systems and the current system are
declared within the sendmail.cf file to use SMTP, then SMTP is used to
deliver the mail to the target. Otherwise, UUCP is used.

¢ Avoid using upper-case letters for the names of users and hosts. Many
systems are case-insensitive, and some automatically convert upper-case
letters to lower case.

The sendmail.cf file is divided into sections by the type of transmission protocol.
In each section, the names of the systems that communicate using that protocol
are listed. Following are examples of some of the types of entries in sendmail.cf:

e SMTP systems

These systems fall into the “CS” category. To add a system running SMTP,
search the file for lines beginning with “CS” and add the system’s name to
it. For example, if your system named chaplin runs SMTP, edit sendmail.cf
-and search for “CS.” The search takes you to these lines:

Direct connect smtp hosts
CSgroucho ’
CShardy

Add chaplin, with the prefix “CS,” to the list:
Direct connect smtp hosts
CSgroucho
CShardy
CSchaplin

If you do not send mail to certain systems, for example, groucho or hardy,
delete them from this list.

Version 1.0

6-6 IRIS Communications Guide ‘ The Mail System

e Modem systems

If you have systems with modems, search for that category. Edit sendmail.cf
and search for “CL” lines. The search takes you to these lines:

Machines with local modems - s*WARNING*# these machines WON'T forward
unknown mail.

CLabbott

CLcostello

Add sytems with modems to this list. Be sure to prefix your entry with
IICL.II

o UUCP or XNS systems

If you have systems with UUCP, search for those with direct UUCP
connections. (For a discussion of UUCP, see Chapter 5.) Also use the “CU”
class for systems connected with XNS. The search for “CU" takes you to
these lines:

direct UUCP connections
CUabbott
CUarpo

Add any UUCP systems, including the ““CU” pretix, to the list.

All UUCP and XNS systems must also be added to the UNIX system file
L.sys. Refer to Chapter 5 and Section 6.5 for more information on these files.

The sendmail.cf file on each IRIS must be tailored to fit the type of mail
transmission, UUCP or SMTP, of each host to which it sends mail. For
example, host one shown in Figure 6-1 uses SMTP to send mail to hosts two
and three, and uses UUCP to send mail to host four. Host one’s sendmail.cf file is
shown below: ~

Direct connect smtp hosts
CStwo

CSthree

direct UUCP connections
CUfour

Version 1.0

The Mail System) IRIS Communications Guide 6-7

6.4 Address Aliasing

Address aliasing is a process whereby one address is converted to another. It
is a form of shorthand: you can enter a short address that takes the place of an
entire routing address.

Some mail user interface programs provide an aliasing feature for destination
addresses. Unfortunately, not all do. To provide a common aliasing facility,
sendmail supports aliasing directly. sendmail’s aliasing is invoked after the user
interface programs’ aliasing, thus some aliases may have conflicting meanings.
Make sure the meanings are resolved before using the aliasing. The file
lusrllib/aliases contains a text form of a database used for mail aliasing. Modify
this file to add or delete aliases.

In the following example, the alias:
brubble: tvo\!barney

is in /usr/liblaliases. brubble is what you type. two\!barney is the routing
followed by sendmail. The message travels through system two to user barney.

Aliasing is performed only on local addresses. A message can be sent to a
remote location via a . forward file. When a message is received, sendmail looks
for a . forward file in the recipient’s home directory. If sendmail finds that file, it
forwards the message to the address contained in the file. If mail is forwarded,
sendmail applies the same rules that it applied to the original recipient address,
and restarts the routing process.

6.5 UUCP and Sendmail

The sendmail program uses UUCP to deliver mail to any system that can be
reached through UUCP (specified as class “CU” in the sendmail.cf file; see
Section 6.3) or to an unknown system.

UUCP has its own routing system. The routing of the message with a UUCP
destination must be done explicitly once the message crosses outside the name
space of sendmail. 1f UUCP cannot deliver mail (if either the destination host or
user is unknown), the mail is returned with an error message that points out
the part of the address that is in error. For example, if you send mail to
mouse\'wovds and woods is unknown, the error message would be similar to this
and would be followed by the text of the unsent message:

Version 1.0

6-8 [RIS Communications Guide The Mail System

bad system name woods

----- Transcript of session follows -~--
uux failed. code 101 4
554 l‘oodl\ ‘moose unknown mailer error

U t follows ——---

In order for UUCP to function in the mail program, all UUCP and XNS svstems
on the network must be listed in the UNIX system file L.sys. You must become
the superuser to edit this file. Search the L.sys file for this line:

works2 Any xns zns xns "" \r\c ogin:--ogin: uucpco assword: secret

In the example below, the above line has been modified to retlect the new XNS
system named pretzel, with the UUCP login uucpws and the password mustard:

pretzel Any xns xns xns nn \r\c ogin:--ogin: uucpws assword: mustard

The password in L.sys for the uucpws account on the system pretzel must be the
same as that in pretzel's /etc/passwd file. Also, a line in your /etc/passwd must
begin with uucpws and should look similar to the tollowing line:

A

uucpws :xtpVRt jwzL03Q:3:5:UUCP Login Account:/usr/spool/uucppublic: /usr/1lib/uucp/uu

Version 1.0

Appendix A: Communications Options on the IRIS

The table below displays communication options that run on the IRIS Series
2000 and 3000. The IRIS 2400 Turbo and 2500 Turbo are included with the IRIS
Series 3000, because they run the GL2-W3.5 sottware release.

Communications
Option

TCP/IP,
IBM, :
Serial line, IEEE 488

NFS

IRIS Series 2000
running GL2-W2.5
release software

Available

Not
Available

IRIS Series 2000/3000

running GL2-W3.5
release software

Available

Available

Communication Options on the IRIS

The table below displays the host operating svstems with which the IRIS can

communicate.

IBM running either
Hosts DEC VAX DEC VAX IRIS
running running OS/MVS or workstation
IRIS UNIX VMS VM/CMS

IRIS Series 2000 TCP/P TCP/P Geometry Link TCP/IP,
running GL2-W2.5 XNS XNS Serial line, or
release software Serial line Serial line XNS
IRIS Series 2000/3000 | TCP/IP TCP/IP Geometry Link | TCP/IP, NFS,
running GL2-W3.5 XNS XNS Serial line, or
release software Serial line Serial line XNS

\ersion 1.0

Host Communications on the IRIS

Appendix B: Bibliography‘

This appendix is designed to direct vou to further reading about topics covered
in the [RIS Communications Guide. References published by Silicon Graphics,
Inc., are followed by the abbreviation SGI. ~

B.1 IRIS Manuals
o IRIS Series 3000 Owner’s Guide, SGI
o IRIS Workstation Guide, Series 2000, SGI
e RIS Terminal Guide, Series 2000, SGI
o Getting Started with Your [RIS Workstation, SGI

B.2 Protocols
o TCP/P User's Guide, SGI

¢ Defense Data Network Protocol Handbook

L]

“Installing Software Updates” in the current release notes, SGI

UNIX Programmer’s Manual, SGI

B.2.1 XNS
e [RIS XNS User's Guide, SGI

B.3 Host Communications
o [BM Terminal Emulation, SGI

B.3.1 DEC VAX Running VMS
o VMS FORTRAN Remote Graphics Library, Series 2000/3000, SGI
o VMS XNS Series 2000/3000 Software Guide, SGI

Version 1.0

B-2 (RIS Communications Guide Appendix B

B.4 NFS

The documents described below are published by Sun Microsystems, Inc. The
Remote Procedure Call Protocol Specification and External Data Representation Protocol
Specification are in the Appendix C of this manual.

B.5 UUCP
o "UUCP," in the UNIX Programmer’s Manual. Volume I, SGI
o "ULUCP Tutorial," in the UNIX Programmmer’s Manual, Volume I, SGI

« Todino, Grace, Using UUCP and Usenet, Nutshell Handbooks, a trademark
of O'Reilly and Associates, Inc. ‘

e Todino, Grace, Managing UUCP and Usenet, Nutshell Handbooks, a
trademark ot O’Reillv and Associates, Inc. -

B.6 Mail

Appendices D, E, F, and G contain documents on mail.

Version 1.0

Appendix C: NFS Reference Materials

Introduction to XDR and RPC

The libraries and include files required to use the routines documented in the the External Data Represen-
tation Protocol Specification and Remote Procedure Call Protocol Specifications from Sun Microsystems,
Inc., are supplied with the NFS software option.

The include files that are referenced in these documents reside in the /usr/include/rpc difectory.

In order to link a program that calls the routines documented in the RPC Protocol Specifications and the
XDR Protocol Specifications, it is necessary to include two libraries in the load (/d) command: Sun
Microsystems, Inc.’s RPC support library (/usr/lib/libsun.a) and the Berkeley 4.3 compatibility library
(lusr!libllibbsd.a). The BSD library must be included because the RPC functions call procedures that are
defined only in the BSD library. The easiest way to include these libraries is by using a compiler command
similar to the following:

cc -o prog prog.c -lsun -lbsd

Note that the libraries must be included in the order shown. Refer to the intro(3) section of the UNIX
Programmer’ s Manual for more information.

Version 1.0

IRIS Communications Guide NFS Reference Material C-2

External Data Representation
Protocol Specification

1. Introduction

This manual describes library routines that allow a C programmer to describe arbitrary data structures in a
machine-independent fashion. The eXternal Data Representation (XDR) standard is the backbone of Sun’s
Remote Procedure Call package, in the sense that data for remote procedure calls is transmitted using the
standard. XDR library routines should be used to transmit data that is accessed (read or written) by more
than one type of machine.

This manual contains a description of XDR library routines, a guide to accessing currently available XDR
streams, information on defining new streams and data types, and a formal definition of the XDR standard.
XDR was designed to work across different languages, operating systems, and machine architectures.
Most users (particularly RPC users) only need the information in sections 2 and 3 of this document. Pro-
grammers wishing to implement RPC and XDR on new machines will need the information in sections 4
through 6. Advanced topics, not necessary for all implementations, are covered in section 7.

On Sun systems, C programs that want to use XDR routines must include the file <rpc/rpc.h>, which
contains all the necessary interfaces to the XDR system. Since the C library libc.a contains all the
XDR routines, compile as normal.

cc program.c

1.1. Justification
Consider the following two programs, ’writer:
#include <stdio.h>

main () /* writer.c */
{
long i;
for (i = 0; i < 8; i++) {
if (fwrite((char *)&i, sizeof(i), 1, stdout) != 1) {
fprintf (stderr, "failed!\n");
exit (1) ;

}

and reader:

Version 1.0

IRIS Communications Guide NFS Reference Material C-3

#include <stdio.h>

main () /* reader.c */
{
long i, j:
for (j = 0; j < 8; J++) {
if (fread((char *)&i, sizeof (i), 1, stdin) != 1) {
fprintf (stderr, "failed!\n");
exit(1);
}
printf("%ld ", i);
}
printf ("\n");
}

The two programs appear to be portable, because (a) they pass lint checking, and (b) they exhibit the
same behavior when executed on two different hardware architectures, a Sun and a VAX.

Piping the output of the writer program to the reader program-gives identical results on a Sun or a
VAX. §

sun% writer | reader
012345¢67
sun%

vax% writer | reader
01234567
vax$

With the advent of local area networks and Berkeley’s 4.2 BSD UNIXt came the concept of ‘‘network
pipes”” — a process produces data on one machine, and a second process consumes data on another
machine. A network pipe can be constructed with writer and reader. Here are the results if the first
produces data on a Sun, and the second consumes data on a VAX.

sun% writer | rsh vax reader

0 16777216 33554432 50331648 67108864 83886080 100663296
117440512

sun¥

Identical results can be obtained by executing writer on the VAX and reader on the Sun. These
results occur because the byte ordering of long integers differs between the VAX and the Sun, even though
word size is the same. Note that 16777216 is 2% — when four bytes are reversed, the 1 winds up in the
24th bit.

Whenever data is shared by two or more machine types, there is a need for portable data. Programs can be
made data-portable by replacing the read() and write() calls with calls to an XDR library routine
xdr_long(), a filter that knows the standard representation of a long integer in its external form. Here are
the revised versions of writer:

Version 1.0

IRIS Communications Guide NFS Reference Material C-4

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc */

main() /* writer.c */
{

XDR xdrs;

long i;

xdrstdio_create(&xdrs, stdout, XDR_ENCODE) ;
for (i = 0; i < 8; i++) {
if (!xdr_long(&xdrs, &i)) {
fprintf (stderr, "failed!\n");

exit(1);
}

}

}
and reader:

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc */
main () /* reader.c */
{

XDR xdrs;

long i, j:

xdrstdio_create (&xdrs, stdin, XDR_DECODE) ;
for (3 = 0; j < 8; J++) {
if (!xdr_long(&xdrs, &i)) {
fprintf (stderr, "failed!\n"):;
exit (1)
}
printf("$ld ", i);
}
printf ("\n");
}

The new programs were executed on a Sun, on a VAX, and from a Sun to a VAX;; the results are shown
below.

sun% writer | reader
01234567
sun%

vax% writer | reader
01234567
vax$

sun% writer | rsh vax reader
01234567
sun%

Dealing with integers is just the tip of the portable-data iceberg. Arbitrary data structures present portabil-
ity problems, particularly with respect to alignment and pointers. Alignment on word boundaries may
cause the size of a structure to vary from machine to machine. Pointers are convenient to use, but have no
meaning outside the machine where they are defined.

Version 1.0

IRIS Communications Guide NFS Reference Material C-5

1.2. The XDR Library

The XDR library solves data portability problems. It allows you to write and read arbitrary C constructs in
a consistent, specified, well-documented manner. Thus, it makes sense to use the library even when the
data is not shared among machines on a network.

The XDR library has filter routines for strings (null-terminated arrays of bytes), structures, unions, and
arrays, to name a few. Using more primitive routines, you can write your own specific XDR routines to
describe arbitrary data structures, including elements of arrays, arms of unions, or objects pointed at from
other structures. The structures themselves may contain arrays of arbitrary elements, or pointers to other
structures. :

Let’s examine the two programs more closely. There is a family of XDR stream creation routines in which
each member treats the stream of bits differently. In our example, data is manipulated using standard I/O
routines, so0 we use xdrstdio_create(). The parameters to XDR stream creation routines vary
according to their function. In our example, xdrstdio_create() takes a pointer to an XDR structure
that it initializes, a pointer to a FILE that the input or output is performed on, and the operation. The
operation may be XDR_ENCODE for serializing in the writer program, or XDR_DECODE for deserial-
izing in the reader program.

Note: RPC clients never need to create XDR streams; the RPC system itself creates these streams, which
are then passed to the clients.

The xdr_long() primitive is characteristic of most XDR library primitives and all client XDR routines.
First, the routine returns FALSE (0) if it fails, and TRUE (1) if it succeeds. Second, for each data type,
xxx, there is an associated XDR routine of the form:

xdr xxx(xdrs, fp)
XDR *xdrs;
xxx *fp;

{

}

In our case, xxx is long, and the corresponding XDR routine is a primitive, xdr_long. The client could
also define an arbitrary structure xxx in which case the client would also supply the routine xdr_xxx,
describing each field by calling XDR routines of the appropriate type. In all cases the first parameter,
xdrs can be treated as an opaque handle, and passed to the primitive routines.

XDR routines are direction independent; that is, the same routines are called to serialize or deserialize data.
This feature is critical to software engineering of portable data. The idea is to call the same routine for
either operation — this almost guarantees that serialized data can also be deserialized. One routine is used
by both producer and consumer of networked data. This is implemented by always passing the address of
an object rather than the object itself — only in the case of deserialization is the object modified. This
feature is not shown in our trivial example, but its value becomes obvious when nontrivial data structures
are passed among machines. If needed, you can obtain the direction of the XDR operation. See section 3.7
for details.

Let’s look at a slightly more complicated example. Assume that a person’s gross assets and liabilities are
to be exchanged among processes. Also assume that these values are important enough to warrant their
own data type:

Version 1.1

IRIS Communications Guide NFS Reference Material C-6

struct gnumbers {
long g _assets;
long g_liabilities;
bi

The corresponding XDR routine describing this structure would be:

bool t /* TRUE is success, FALSE is failure */
xdr_gnumbers (xdrs, gp)

XDR *xdrs;

struct gnumbers *gp;

if (xdr_long(xdrs, &gp->g_assets) &&
xdr_long(xdrs, &gp->g_liabilities))
return (TRUE) ;
return (FALSE) ;
}

Note that the parameter xdrs is never inspected or modified; it is only passed on to the subcomponent
routines. It is imperative to inspect the return value of each XDR routine call, and to give up immediately
and return FALSE if the subroutine fails.

This example also shows that the type bool_t is declared as an integer whose only values are TRUE (1)
and FALSE (0). This document uses the following definitions:

#define bool t int
#define TRUE 1
#define FALSE 0

#define enum t int /* enum t used for generic enums */

Keeping these conventions in mind, xdr_gnumbers() can be rewritten as follows:

xdr_gnumbers (xdrs, gp)
XDR *xdrs;
struct gnumbers *gp;

return(xdr_long(xdrs, &gp->g_assets) &&

xdr_long(xdrs, &gp->g_liabilities));
}

This document uses both coding styles.

Version 1.1

e~

IRIS Communications Guide NFS Reference Material C-7

2. XDR Library Primitives

This section gives a synopsis of each XDR primitive. It starts with basic data types and moves on to con-
structed data types. Finally, XDR utilities are discussed. The interface to these primitives and utilities is
defined in the include file <rpc/xdr.h>, automatically included by <rpc/rpc.h>.

2.1. Number Filters

The XDR library provides primitives to translate between numbers and their corresponding external
representations. Primitives cover the set of numbers in:

[signed,unsigned1* [short,int,long]
Specifically, the six primitives are:

bool_t xdr_ int(xdrs, ip)
XDR *xdrs;
int *ip;
bool_t xdr_ u_int (xdrs, up)
XDR *xdrs;
unsigned *up;
bool t xdr_ long(xdrs, lip)
XDR *xdrs;
long *1lip;
bool_t xdr_u_long(xdrs, lup)
XDR *xdrs;
u_long *lup;
bool_t xdr_short (xdrs, sip)
XDR *xdrs;
short *sip;
bool_t xdr_u_short (xdrs, sup)
XDR *xdrs;
u_short *sup;

The first parameter, xdrs, is an XDR stream handle. The second parameter is the address of the number
that provides data to the stream or receives data from it. All routines return TRUE if they complete suc-
cessfully, and FALSE otherwise.

2.2. Floating Point Filters
The XDR library also provides primitive routines for C’s floating point types:
bool_t xdr_ float (xdrs, £fp)

XDR *xdrs;
float *fp;

bool_t xdr double(xdrs, dp)
XDR *xdrs;
double *dp;

The first parameter, xdrs is an XDR stream handle. The second parameter is the address of the floating
point number that provides data to the stream or receives data from it. All routines return TRUE if they
complete successfully, and FALSE otherwise.

Version 1.1

IRIS Communications Guide NFS Reference Material C-8

Note: Since the numbers are represented in IEEE floating point, routines may fail when decoding a valid
IEEE representation into a machine-specific representation, or vice-versa.

2.3. Enumeration Filters

The XDR library provides a primitive for generic enumerations. The primitive assumes that a C enum
has the same representation inside the machine as a C integer. The boolean type is an important instance of
the enum. The external representation of a boolean is always one (TRUE) or zero (FALSE) .

#define bool t int
#define FALSE 0
#define TRUE 1

#define enum t int

bool_t xdr_ enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

bool t xdr_bool (xdrs, bp)
XDR *xdrs;
bool_t *bp:

The second parameters ep and bp are addresses of the associated type that provides data to, or receives
data from, the stream xdrs. The routines return TRUE if they complete successfully, and FALSE other-
wise.

2.4. No Data

Occasionally, an XDR routine must be supplied to the RPC system, even when no data is passed or
required. The library provides such a routine:

bool_t xdr_void(); /* always returns TRUE */

2.5. Constructed Data Type Filters

Constructed or compound data type primitives require more parameters and perform more complicated
functions then the primitives discussed above. This section includes primitives for strings, arrays, unions,
and pointers to structures.

Constructed data type primitives may use memory management. In many cases, memory is allocated when
deserializing data with XDR_DECODE. Therefore, the XDR package must provide means to deallocate
memory. This is done by an XDR operation, XDR_FREE. To review, the three XDR directional opera-
tions are XDR_ENCODE, XDR_DECODE, and XDR_FREE.

2.5.1. Strings

In C, a string is defined as a sequence of bytes terminated by a null byte, which is not considered when cal-
culating string length. However, when a string is passed or manipulated, a pointer to it is employed.
Therefore, the XDR library defines a string to be a “char **, and not a sequence of characters. The
external representation of a string is drastically different from its internal representation. Externally,
strings are represented as sequences of ASCII characters, while internally, they are represented with char-
acter pointers. Conversion between the two representations is accomplished with the routine

Version 1.1

IRIS Communications Guide NFS Reference Material C-7

2. XDR Library Primitives

This section gives a synopsis of each XDR primitive. It starts with basic data types and moves on to con-
structed data types. Finally, XDR utilities are discussed. The interface to these primitives and utilities is
defined in the include file <rpc/xdr.h>, automatically included by <rpc/rpc.h>.

2.1. Number Filters

The XDR library provides primitives to translate between numbers and their corresponding external
representations. Primitives cover the set of numbers in:
[signed, unsigned)*short,int,long)
Specifically, the six primitives are:
bool_t xdr_int (xdrs, ip)
XDR *xdrs;
int *ip;
bool_t xdr_u_int (xdrs, up)
XDR *xdrs;
- unsigned *up;
bool_t xdr_long(xdrs, lip)
XDR *xdrs;
long *1lip;
bool_t xdr_u_long(xdrs, lup)
XDR *xdrs;
u_long *lup;
bool_t xdr_short (xdrs, sip)

XDR *xdrs;
short *sip;

bool_t xdr_ u_short (xdrs, sup)
XDR *xdrs;
u_short *sup;

The first parameter, xdrs, is an XDR stream handle. The second parameter is the address of the number

that provides data to the stream or receives data from it. All routines return TRUE if they complete suc-
cessfully, and FALSE otherwise.

2.2. Floating Point Filters
The XDR library also provides primitive routines for C’s floating point types:
bool_t xdr_ float (xdrs, fp)

XDR *xdrs;
float *fp;

bool_t xdr_double (xdrs, dp)
XDR *xdrs;
double *dp;

The first parameter, xdrs is an XDR stream handle. The second parameter is the address of the floating
point number that provides data to the stream or receives data from it. All routines return TRUE if they
complete successfully, and FALSE otherwise.

Version 1.0

IRIS Communications Guide NFS Reference Material C-8

Note: Since the numbers are represented in IEEE floating point, routines may fail when decoding a valid
IEEE representation into a machine-specific representation, or vice-versa.

2.3. Enumeration Filters

The XDR library provides a primitive for generic enumerations. The primitive assumes that a C enum
has the same representation inside the machine as a C integer. The boolean type is an important instance of
the enum. The external representation of a boolean is always one TRUE) (or zero

FALSE). (

#define bool_t int
#define FALSE 0
#define TRUE 1

#define enum t int

bool_t xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

bool_t xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

The second parameters ep and bp are addresses of the associated type that provides data to, or receives
data from, the stream xdrs. The routines return TRUE if they complete successfully, and FALSE other-
wise.

2.4. No Data

Occasionally, an XDR routine must be supplied to the RPC system, even when no data is passed or
required. The library provides such a routine:

bool_t xdr_void(); /* always returns TRUE */

2.5. Constructed Data Type Filters

Constructed or compound data type primitives require more parameters and perform more complicated
functions then the primitives discussed above. This section includes primitives for strings, arrays, unions,
and pointers to structures.

Constructed data type primitives may use memory management. In many cases, memory is allocated when
deserializing data with XDR_DECODE. Therefore, the XDR package must provide means to deallocate
memory. This is done by an XDR opcration, XDR_FREE. To review, the three XDR directional opera-
tions are XDR_ENCODE, XDR_DECODE, and XDR_FREE. .

2.5.1. Strings

In C, a string is defined as a sequence of bytes terminated by a null byte, which is not considered when cal-
culating string length. However, when a string is passed or manipulated, a pointer to it is employed.
Therefore, the XDR library defines a string to be a "char **, and not a sequence of characters. The
external representation of a string is drastically different from its internal representation. Externally,
strings are represented as sequences of ASCII characters, while internally, they are represented with char-
acter pointers. Conversion between the two representations is accomplished with the routine

Version 1.0

PN

T

IRIS Communications Guide NFS Reference Material C-9

xdr_string():
bool_t xdr_string(xdrs, sp, maxlength)
XDR *xdrs;
char **sp;
u_int maxlength;

The first parameter xdrs is the XDR stream handle. The second parameter sp is a pointer to a string
(type "char **"). The third parameter maxlength specifies the maximum number of bytes
allowed during encoding or decoding; its value is usually specified by a protocol. For example, a protocol
specification may say that a file name may be no longer than 255 characters. The routine returns FALSE
if the number of characters exceeds maxlength,and TRUE if it doesn’t.

The behavior of xdr_string() is similar to the behavior of other routines discussed in this section. The
direction XDR_ENCODE is easiest to understand. The parameter sp points to a string of a certain length;
if it does not exceed maxlength, the bytes are serialized.

The effect of deserializing a string is subtle. First the length of the incoming string is determined; it must
not exceed maxlength. Next sp is dereferenced; if the the value is NULL, then a string of the
appropriate length is allocated and *sp is set to this string. If the original value of *sp is non-null, then
the XDR package assumes that a target area has been allocated, which can hold strings no longer than
maxlength. In either case, the string is decoded into the target area. The routine then appends a null
character to the string.

In the. XDR_FREE operation, the string is obtained by dereferencing sp. If the string is not NULL, it is
freed and *spissetto NULL. In this operation, xdr_string ignores the maxlength parameter.

252. Byte Arrays

Often variable-length arrays of bytes are preferable to strings. Byte arrays differ from strings in the follow-
ing three ways: 1) the length of the array (the byte count) is explicitly located in an unsigned integer, 2) the
byte sequence is not terminated by a null character, and 3) the external representation of the bytes is the
same as their internal representation. The primitive xdr_bytes() converts between the internal and
external representations of byte arrays:

bool_t xdr bytes(xdrs, bpp, lp, maxlength)
XDR *xdrs;
char **bpp;
u_int *1p;
u_int maxlength;

The usage of the first, second and fourth parameters are identical to the first, second and third parameters of

xdr_string(), respectively. The length of the byte area is obtained by dereferencing 1p when serializ-
ing; *1p is set to the byte length when deserializing.

2.53. Arrays

The XDR library package provides a primitive for handling arrays of arbitrary elements. The
xdr_bytes() routine treats a subset of generic arrays, in which the size of array elements is known to be
1, and the external description of each element is built-in. The generic array primitive, xdr_array()
requires parameters identical to those of xdr_bytes() plus two more: the size of array elements, and an
XDR routine to handle each of the elements. This routine is called to encode or decode each element of the
array.

Version 1.0

IRIS Communications Guide NFS Reference Material C-10

bool_t
xdr_array(xdrs, ap, lp, maxlength, elementsiz, xdr_element)
XDR *xdrs;
char **ap;
u_int *1p;
u_int maxlength;
u_int elementsiz;
bool_t (*xdr_element) ()

The parameter ap is the address of the pointer to the array. If *ap is NULL when the array is being
deserialized, XDR allocates an array of the appropriate size and sets *ap to that array. The element count
of the array is obtained from *1p when the array is serialized; *1p is set to the array length when the
array is deserialized. The parameter maxlength is the maximum number of elements that the array is
allowed to have; elementsiz is the byte size of each element of the array (the C function sizeof()
can be used to obtain this value). The routine xdr_element is called to serialize, deserialize, or free
each element of the array.

2.5.3.1. Examples
Before defining more constructed data types, it is appropriate to present three examples.
Example A

A user on a networked machine can be identified by (a) the machine name, such as krypton: see
gethostname (3); (b) the user’s UID: see geteuid(2); and (c) the group numbers to which the user belongs:
see getgroups(2). A structure with this information and its associated XDR routine could be coded like
this:

struct netuser {

char *nu_machinename;
int nu_uid;
u_int nu_glen;
int *nu_gids;
}:
#define NLEN 255 /* machine names < 256 chars */
#define NGRPS 20 /* user can’t be in > 20 groups */
bool_t
xdr_netuser(xdrs, nup)
XDR *xdrs;
struct netuser *nup;
{
* return(xdr_string(xdrs, &nup->nu_machinename, NLEN) &&
xdr_int (xdrs, &nup->nu_uid) &&
xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen, NGRPS,
sizeof (int), xdr_int));
}
Example B

A party of network users could be implemented as an array of netuser structure. The declaration and
its associated XDR routines are as follows:

Version 1.0

IRIS Communications Guide NFS Reference Material C-11

struct party {
u_int p_len;
struct netuser *p_nusers;
}:
#define PLEN 500 /* max number of users in a party */

bool_t
xdr_party(xdrs, pp)
XDR *xdrs;
struct party *pp;
{
return (xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,
sizeof (struct netuser), xdr_netuser));
}
Example C

The well-known parameters to main(), argc and argv can be combined into a structure. An array of
these structures can make up a history of commands. The declarations and XDR routines might look like:

Version 1.0

IRIS Communications Guide NFS Reference Material C-12

struct cmd {
u_int c_argc;
char **c_argv;
}:
#define ALEN 1000 /* args cannot be > 1000 chars */
#define NARGC 100 /* commands cannot have > 100 args */

struct history |{
u_int h_len;
struct cmd *h_cmds;
b:
#define NCMDS 75 /* history is no more than 75 commands */
bool_t
xdr_wrap_string(xdrs, sp)
XDR *xdrs;
char **sp;
{
return(xdr_string(xdrs, sp, ALEN));
}
bool_t
xdr_cmd(xdrsr cp)
XDR *xdrs;
struct cmd *cp;

return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,
sizeof (char *), xdr_wrap_string)):;
}
bool_t
xdr_history(xdrs, hp)
XDR *xdrs;
struct history *hp;

return(xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,
sizeof (struct cmd), xdr_cmd)):
}

The most confusing part of this example is that the routine xdr_wrap_string() is needed to package
the xdr_string() routine, because the implementation of xdr_array() only passes two parameters
to the amray element description routine; xdr_wrap_string() supplies the third parameter to
xdr_string().

By now the recursive nature of the XDR library should be obvious. Let’s continue with more constructed
data types.

2.5.4. Opaque Data

In some protocols, handles are passed from a server to client. The client passes the handle back to the
server at some later time. Handles are never inspected by clients; they are obtained and submitted. That is
to say, handles are opaque. The primitive xdr_opaque() is used for describing fixed sized, opaque
bytes.

Version 1.0

IRIS Communications Guide NFS Reference Material C-13

bool_t xdr_opaque(xdrs, p, len)
XDR *xdrs;
char *p;
u_int len;

The parameter p is the location of the bytes; len is the number of bytes in the opaque object. By
definition, the actual data contained in the opaque object are not machine portable.

2.5.5. Fixed Sized Arrays

The XDR library does not provide a primitive for fixed-length arrays (the primitive xdr_array() is for
varying-length arrays). Example A could be rewritten to use fixed-sized arrays in the following fashion:
#define NLEN 255 /* machine names must be < 256 chars */

#define NGRPS 20 /* user can’t belong to > 20 groups */

struct netuser ({
char *nu_machinename;
int nu_uid;
int nu_gids [NGRPS];
bi
bool_t
xdr_netuser (xdrs, nup)
XDR *xdrs;
struct netuser *nup;
int i;
if (!xdr_string(xdrs, &nup->nu_machinename, NLEN))
return (FALSE) ;
if (!xdr_int(xdrs, &nup->nu_uid))
return (FALSE) ;
for (i = 0; i < NGRPS; i++) {
if (!xdr_int (xdrs, &nup->nu_gids[i]))
return (FALSE) ;
}
return (TRUE) ;
}

Exercise: Rewrite example A so that it uses varying-length arrays and so that the netuser structure
contains the actual nu_gids array body as in the example above.

2.5.6. Discriminated Unions

The XDR library supports discriminated unions. A discriminated union is a C union and an enum_t
value that selects an ‘‘arm’” of the union.

Version 1.0

IRIS Communications Guide NFS Reference Material C-14

struct xdr_discrim {

}i

enum t value;
bool_t (*proc) ();

bool_t =xdr_union(xdrs, dscmp, unp, arms, defaultarm)

XDR *xdrs;

enum _t *dscmp;

char *unp;

struct xdr_discrim *arms;

bool_t (*defaultarm)(); /* may equal NULL */

First the routine translatcs the discriminant of the union located at *dscmp. The discriminant is always
an enum_t. Next the union located at *unp is translated. The parameter arms is a pointer to an array
of xdr_discrim structures. Each structure contains an order pair of [value,proc]. If the union’s
discriminant is equal to the associated value, then the proc is called to translate the union. The end of
the xdr_discrim structure array is denoted by a routine of value NULL(0). If the discriminant is not
found in the arms array, then the defaultarm procedure is called if it is non-null; otherwise the rou-

tine returns FALSE.
Example D

Suppose the type of a union may be integer, character pointer (a string), or a gnumbers structure. Also,
assume the union and its current type are declared in a structure. The declaration is:

enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };

struct u_tag {

}

enum utype utype; /* the union’s discriminant */
union {

int ival;

char *pval;

struct gnumbers gn;
} uval;

The following constructs and XDR procedure (de)serialize the discriminated union:

struct xdr_discrim u_tag_arms(4] = {

}

bool_t

{ INTEGER, xdr_int },

{ GNUMBERS, xdr_gnumbers }

{ STRING, xdr_wrap_string },

{ __dontcare__, NULL }

/* always terminate arms with a NULL xdr_proc */

xdr_u_tag(xdrs, utp).

}

XDR *xdrs;
struct u_tag *utp;

return (xdr_union(xdrs, &utp->utype, &utp->uval,
u_tag_arms, NULL));

The routine xdr_gnumbers() was presented in Section 2; xdr_wrap_string() was presented in
example C. The default arm parameter to xdr_union () (the last parameter) is NULL in this example.

Version 1.0

IRIS Communications Guide NFS Reference Material C-15

Therefore the value of the union’s discriminant may legally take on only values listed in the
u_tag_arms array. This example also demonstrates that the elements of the arm’s array do not need to
be sorted.

It is worth pointing out that the values of the discriminant may be sparse, though in this example they are
not. It is always good practice to assign explicitly integer values to each element of the discriminant’s
type. This practice both documents the external representation of the discriminant and guarantees that dif-
ferent C compilers emit identical discriminant values.

Exercise: Implement xdr_union() using the other primitives in this section.

2.5.7. Pointers

In C it is often convenient to put pointers to another structure within a structure. The primitive
xdr_reference() makes it easy to serialize, deserialize, and free these referenced structures.

bool_t xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int ssize:;
bool_t (*proc) ();

Parameter pp is the address of the pointer to the structure; parameter ssize is the size in bytes of the
structure (use the C function sizeof() to obtain this value); and proc is the XDR routine that describes
the structure. When decoding data, storage is allocated if *ppis NULL.

There is no need for a primitive xdr_struc() to describe structures within structures, because pointers
are always sufficient.

Exercise: Implement xdr_reference() using xdr_array(). Waming: xdr_reference() and
xdr_array() are NOT interchangeable external representations of data.

Example E

Suppose there is a structure containing a person’s name and a pointer toa gnumbexrs structure containing
the person’s gross assets and liabilities. The construct is:

struct pgn {

char *name;

struct gnumbers *gnp;
}:

The corresponding XDR routine for this structure is:

bool_t

xdr_pgn(xdrs, pp)
XDR *xdrs;
struct pgn *pp;

N .
if (xdr_string(xdrs, &pp->name, NLEN) &&
xdr_reference (xdrs, &pp->gnp,
sizeof (struct gnumbers), xdr_gnumbers))
return (TRUE) ;
return (FALSE) ;

Version 1.0

IRIS Communications Guide NFS Reference Material C-16

2.5.7.1. Pointer Semantics and XDR

In many applications, C programmers attach double meaning to the values of a pointer. Typically the value
NULL (or zero) means data is not needed, yet some application-specific interpretation applies. In essence,
the C programmer is encoding a discriminated union efficienty by overloading the interpretation of the
value of a pointer. For instance, in example E a NULL pointer value for gnp could indicate that the
person’s assets and liabilities are unknown. That is, the pointer value encodes two things: whether or not
the data is known; and if it is known, where it is located in memory. Linked lists are an extreme example
of the use of application-specific pointer interpretation.

The primitive xdr_reference() cannot and does not attach any special meaning to a null-value pointer
during serialization. That is, passing an address of a pointer whose value is NULL to
xdr_reference() when serialing data will most likely cause a memory fault and, on UNIX, a core dump
for debugging.

It is the explicit responsibility of the programmer to expand non-dereferenceable pointers into their specific
semantics. This usually involves describing data with a two-armed discriminated union. One arm is used
when the pointer is valid; the other is used when the pointer is invalid NULL) . (Section 7 has an exam-
ple (linked lists encoding) that deals with invalid pointer interpretation.

Exercise: After reading Section 7, return here and extend example E so that it can cbn'ecuy deal with null
pointer values.

Exercise: Using the xdr_union(), xdr_reference() and xdr_void() primitives, implement a
generic pointer handling primitive that implicitly deals with NULL pointers. The XDR library does not
provide such a primitive because it does not want to give the illusion that pointers have meaning in the
external world.

2.6. Non-filter Primitives
XDR streams can be manipulated with the primitives discussed in this section.
u_int xdr_getpos (xdrs)
XDR *xdrs;

bool_t xdr_setpos(xdrs, pos)
XDR *xdrs;
u_int pos;
xdr_destroy (xdrs)
XDR *xdrs;

The routine xdr_getpos() returns an unsigned integer that describes the current position in the data
stream. Warning: In some XDR streams, the returned value of xdr_getpos() is meaningless; the rou-
tine returns a —1 in this case (though —1 should be a legitimate value).

The routine xdr_setpos() sets a stream position to pos. Wamning: In some XDR streams, setting a
position is impossible; in such cases, xdr_setpos() will return FALSE. This routine will also fail if
the requested position is out-of-bounds. The definition of bounds varies from stream to stream.

The xdr_destroy() primitive destroys the XDR stream. Usage of the stream after calling this routine
is undefined.

Version 1.0

IRIS Communications Guide NFS Reference Material C-17

2.7. XDR Operation Directions

At times you may wish to optimize XDR routines by taking advantage of the direction of the operation -—
XDR_ENCODE, XDR_DECODE, or XDR_FREE. The value xdrs->x_op always contains the direction
of the XDR operation. Programmers are not encouraged to take advantage of this information. Therefore,
no example is presented here. However, an example in Section 7 demonstrates the usefulness- of the
xdrs->x_op field.

Version 1.0

IRIS Communications Guide NFS Reference Material C-18

3. XDR Stream Access

An XDR stream is obtained by calling the appropriate creation routine. These creation routines take argu-
ments that are tailored to the specific properties of the stream.

Streams currently exist for (de)serialization of data to or from standard /O FILE streams, TCP/IP con-
nections and UNIX files, and memory. Section 5 documents the XDR object and how to make new XDR
streams when they are required.

3.1. Standard I/O Streams
XDR streams can be interfaced to standard I/O using the xdrstdio_create() routine as follows:

#include <stdio.h>
#include <rpc/rpc.h> /* xdr streams part of rpc */

void

xdrstdio_create(xdrs, fp, x_op)
XDR *xdrs;
FILE *fp;

enum xdr_op x_op;
The routine xdrstdio_create() initializes an XDR stream pointed to by xdrs. The XDR stream
interfaces to the standard I/O library. Parameter f£p is an open file,and x_op is an XDR direction.

3.2. Memory Streams
Memory streams allow the streaming of data into or out of a specified area of memory:
tinclude <rpc/rpc.h>

void

xdrmem_create (xdrs, addr, len, x op)
XDR *xdrs;
char *addr;
u_int len;

enum xdr_op x_Op;

The routine xdrmem_create() initializes an XDR stream in local memory. The memory is pointed to
by parameter addr; parameter len is the length in bytes of the memory. The parameters xdrs and
x_op are identical to the corresponding parameters of xdrstdio_create(). Currently, the
UDP/IP implementation of RPC uses xdrmem create(). Complete call or result messages
are built in memory before calling the sendto() system routine.

3.3. Record (TCP/IP) Streams

A record stream is an XDR stream built on top of a record marking standard that is built on top of the UNIX
file or 4.2 BSD connection interface.

#include <rpc/rpc.h> /* xdr streams part of rpc */

xdrrec_create (xdrs,
sendsize, recvsize, iohandle, readproc, writeproc)
XDR *xdrs;
u_int sendsize, recvsize;
char *iohandle;
int (*readproc) (), (*writeproc) ();

Version 1.0

IRIS Communications Guide NFS Reference Material C-19

The routine xdrrec_create() provides an XDR stream interface that allows for a bidirectional, arbi-
trarily long sequence of records. The contents of the records are meant to be data in XDR form. The
stream’s primary use is for interfacing RPC to TCP connections. However, it can be used to stream data
into or out of normal UNIX files.

The parameter xdrs is similar to the corresponding parameter described above. The stream does its own
data buffering similar to that of standard I/O. The parameters sendsize and recvsize determine the
size in bytes of the output and input buffers, respectively; if their values are zero (0), then predetermined
defaults are used. When a buffer needs to be filled or flushed, the routine readproc or writeprocis
called, respectively. The usage and behavior of these routines are similar to the UNIX system calls read()
and write(). However, the first parameter to each of these routines is the opaque parameter iohan-
dle. The other two parameters buf "" (and nbytes) and the results (byte count) are identical to
the system routines. If xxx is readproc or writeproc, then it has the following form:
/ *
* returns the actual number of bytes transferred.
* -1 is an error
*/
int
xxx (iohandle, buf, len)
char *iohandle;
char *buf;
int nbytes:;

The XDR stream provides means for delimiting records in the byte stream. The implementation details of
delimiting records in a stream are discussed in appendix 1. The primitives that are specific 1o record
streams are as follows:

bool_t
xdrrec_endofrecord(xdrs, flushnow)
XDR *xdrs;
bool_t flushnow;
bool_t
xdrrec_skiprecord (xdrs)
XDR *xdrs;
bool_t
xdrrec_eof (xdrs)
XDR *xdrs;

The routine xdrrec_endof record() causes the current outgoing data to be marked as a record. If the
parameter flushnow is TRUE, then the stream’s writeproc() will be called; otherwise, wri-
teproc() will be called when the output buffer has been filled.

The routine xdrrec_skiprecord() causes an input stream’s position to be moved past the current
record boundary and onto the beginning of the next record in the stream.

If there is no more data in the stream’s input buffer, then the routine xdrrec_eof() returns TRUE. That
is not to say that there is no more data in the underlying file descriptor.

Version 1.0

IRIS Communications Guide NFS Reference Material C-20

4. XDR Stream Implementation
This section provides the abstract data types needed to implement new instances of XDR streams.

4.1. The XDR Object
The following structure defines the interface to an XDR stream:
enum xdr_op { XDR_ENCODE=0, XDR_DECODE=1, XDR_FREE=2 };

typedef struct {

enum xdr_op X_op; /* operation; fast added param */

struct xdr_ops {
bool_t (*x _getlong)(); /* get long from stream */
bool_t (*x_putlong) (); /* put long to stream */
bool_t (*x_getbytes) (); /* get bytes from stream */
bool_t (*x_putbytes) (); /* put bytes to stream */
u_int (*x_getpostn) (); /* return stream offset */

bool_t (*x_setpostn) (); /* reposition offset */
caddr_t (*x_inline) () /* ptr to buffered data */
VOID (*x_destroy) (); /* free private area */

} *x_ops;

caddr_t x _public: /* users’ data */

caddr_t x_private; /* pointer to private data */

caddr_t x_base; /* private for position info */

int x_handy; /* extra private word */
} XDR; .

The x_op field is the current operation being performed on the stream. This field is important to the XDR
primitives, but should not affect a stream’s implementation. That is, a stream’s implementation should not
depend on this value, The fields x_private, x_base , and x_handy are private to the particular
stream’s implementation. The field x_public is for the XDR client and should never be used by the
XDR stream implementations or the XDR primitives.

Macros for accessing operations x_getpostn (), x_setpostn(), and x_destroy() were defined
in Section 3.6. The operation x_inline() takes two parameters: an XDR *, and an unsigned integer,
which is a byte count. The routine returns a pointer to a piece of the stream’s internal buffer. The caller
can then use the buffer segment for any purpose. From the stream’s point of view, the bytes in the buffer
segment have been consumed or put. The routine may return NULL if it cannot return a buffer segment of
the requested size. (The x_inline routine is for cycle squeezers. Use of the resulting buffer is not
data-portable. Users are encouraged not to use this feature.)

The operations x_getbytes() and x_putbytes() blindly get and put sequences of bytes from or to
the underlying stream; they return TRUE if they are successful, and FALSE otherwise. The routines have
identical parameters (replace xxx):

bool t

xxxbytes (xdrs, buf, bytecount)
XDR *xdrs;
char *buf;

u_int bytecount;

The operations x_getlong() and x_putlong() receive and put long numbers from and to the data
stream. It is the responsibility of these routines to translate the numbers between the machine representa-
tion and the (standard) external representation. The UNIX primitives htonl() and ntohl() can be help-
ful in accomplishing this. Section 6 defines the standard representation of numbers. The higher-level XDR

Version 1.0

IRIS Communications Guide ‘ NFS Reference Material C-21

implementation assumes that signed and unsigned long integers contain the same number of bits, and that
nonnegative integers have the same bit representations as unsigned integers. The routines return TRUE if
they succeed, and FALSE otherwise. They have identical parameters:

bool_t

xxxlong(xdrs, 1lp)
XDR *xdrs;
long *1lp;

Implementors of new XDR streams must make an XDR structure (with new operation routines) available
to clients, using some kind of create routine.

Version 1.0

IRIS Communications Guide NFS Reference Material C-22

5. XDR Standard

This section defines the external data representation standard. The standard is independent of languages,
operating systems and hardware architectures. Once data is shared among machines, it should not matter
that the data was produced on a Sun, but is consumed by a VAX (or vice versa). Similarly the choice of
operating systems should have no influence on how the data is represented externally. For programming
languages, data produced by a C program should be readable by a Fortran or Pascal program.

The external data representation standard depends on the assumption that bytes (or octets) are portable. A
byte is defined to be eight bits of data. It is assumed that hardware that encodes bytes onto various media
will preserve the bytes’ meanings across hardware boundaries. For example, the Ethernet standard sug-
gests that bytes be encoded “‘little endian’’ style. Both Sun and VAX hardware implementations adhere to
the standard.

The XDR standard also suggests a language used to describe data. The language is a bastardized C; it is a
data description language, not a programming language. (The Xerox Courier Standard uses bastardized
Mesa as its data description language.)

5.1. Basic Block Size

The representation of all items requires a multiple of four bytes (or 32 bits) of data. The bytes are num-
bered 0 through n-1, where (n mod 4) = 0. The bytes are read or written to some byte stream such that byte
m always precedes byte m+1.

5.2. Integer

An XDR signed integer is a 32-bit datum that encodes an integer in the range
[-2147483648,2147483647]. The integer is represented in two’s complement notation. The most
and least significant bytes are 0 and 3, respectively. The data description of integers is integer.

5.3. Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer in the range
[0,4294967295]. It is represented by an unsigned binary number whose most and least significant
bytes are 0 and 3, respectively. The data description of unsigned integers is unsigned.

5.4. Enumerations

Enumerations have the same representation as integers. Enumerations are handy for describing subsets of
the integers. The data description of enumerated data is as follows:

typedef enum { name = value, } type-name;
For example the three colors red, yellow and blue could be described by an enumerated type:
typedef enum { RED = 2, YELLOW = 3, BLUE = 5 '} colors;

5.5. Booleans

Booleans are important enough and occur frequently enough to warrant their own explicit type in the stan-
dard. Boolean is an enumeration with the following form:

typedef enum { FALSE = 0, TRUE = 1 } boolean;

Version 1.0

IRIS Communications Guide NFS Reference Material C-23

5.6. Hyper Integer and Hyper Unsigned

The standard also defines 64-bit (8-byte) numbers called "hyper integer” and "hyper
unsigned"”. Their representations are the obvious extensions of the integer and unsigned deﬁned above.
The most and least significant bytes are 0 and 7, respectively.

5.7. Floating Point and Double Precision

The standard defines the encoding for the floating point data types f£loat (32 bits or 4 bytes) and dou-

ble (64 bits or 8 bytes). The encoding used is the IEEE standard for normalized single- and double-

precision floating point numbers. See the IEEE floating point standard for more information. The standard

encodes the following three fields, which describe the floating point number:

§ The sign of the number. Values 0 and 1 represent positive and negative, respectively.

E The exponent of the number, base 2. Floats devote 8 bits to this field, while doubles devote 11 bits.
The exponents for float and double are biased by 127 and 1023, respectively.

F The fractional part of the number’s mantissa, base 2. Floats devote 23 bits to this field, while dou-
bles devote 52 bits.

Therefore, the floating point number is described by:
(-1)SwoE-Biarny p

Just as the most and least significant bytes of a number are 0 and 3, the most and least significant bits of a
single-precision floating point number are 0 and 31. The beginning bit (and most significant bit) offsets of
S,E,and F are 0, 1, and 9, respectively.

Doubles have the analogous extensions. The beginning bit (and most significant bit) offsets of S, E, and F
are 0, 1, and 12, respectively.

The IEEE specification should be consulted concerning the encoding for signed zero, signed infinity
(overflow), and denormalized numbers (underflow). Under IEEE specifications, the ‘““NaN”’ (not a
number) is system dependent and should not be used.

5.8. Opaque Data
At times fixed-sized uninterpreted data needs to be passed among machines. This data is called opaque
and is described as:

typedef opaque type-name(n];

opaque name(n];

where n is the (static) number of bytes necessary to contain the opaque data. If n is not a multiple of
four, then the n bytes are followed by enough (up to 3) zero-valued bytes to make the total byte count of
the opaque object a multiple of four.

5.9. Counted Byte Strings

The standard defines a string of n (numbered O through n—1) bytes to be the number n encoded as
unsigned, and followed by the n bytes of the string. If » is not a multiple of four, then the » bytes are
followed by enough (up to 3) zero-valued bytes to make the total byte count a multiple of four. The data
description of strings is as follows:

Version 1.0

IRIS Communications Guide NFS Reference Material C-24

typedef string type-name<N>;
typedef string type-name<>;
string name<N>;
string name<>;

Note that the data description language uses angle brackets (< and >) to denote anything that is varying-
length (as opposed to square brackets to denote fixed-length sequences of data).

The constant N denotes an upper bound of the number of bytes that a string may contain. If N is not
specified, it is assumed to be 2°2-1, the maximum length. The constant N would normally be found in a
protocol specification. For example, a filing protocol may state that a file name can be no longer than 255
bytes, such as:

string filename<255>;
The XDR specification does not say what the individual bytes of a string represent; this important informa-

tion is left to higher-level specifications. A reasonable default is to assume that the bytes encode ASCII
characters.

5.10. Fixed Arrays
The data description for fixed-size arrays of homogeneous elements is as follows:

typedef elementtype type-name(n]:
elementtype name(n];

Fixed-size arrays of elements numbered 0 through n~1 are encoded by individually encoding the elements
of the array in their natural order, 0 through n—1.

5.11. Counted Arrays

Counted arrays provide the ability to encode varyiable-length arrays of homogeneous elements. The array
is encoded as: the element count n (an unsigned integer), followed by the encoding of each of the array’s
elements, starting with element O and progressing through element n—1. The data description for counted
arrays is similar to that of counted strings: '

typedef elementtype type-name<N>;
typedef elementtype type-name<>;
elementtype name<N>;
elementtype name<>;

Again, the constant N specifies the maximum acceptable element count of an array; if N is not specified,
itis assumed to be 232-1.

5.12. Structures
The data description for structures is very similar to that of standard C:

typedef struct {
component-type component-name;

} type-name;

The components of the structure are encoded in the order of their declaration in the structure.

Version 1.0

=

IRIS Communications Guide NFS Reference Material C-25

5.13. Discriminated Unions
A discriminated union is a type composed of a discriminant followed by a type selected from a set of prear-
ranged types according to the value of the discriminant. The type of the discriminant is always an
enumeration. The component types are called ‘‘arms’’ of the union. The discriminated union is encoded
as its discriminant followed by the encoding of the implied arm. The data description for discriminated
unions is as follows:
typedef union switch (discriminant-type) {
discriminant-value: arm-type;
default: default-arm-type;
} type-name; ‘
The default arm is optional. If it is not speciﬁed, then a valid encoding of the union cannot take on
unspecified discriminant values. Most specifications neither need nor use default arms.

5.14. Missing Specifications

The standard lacks representations for bit fields and bitmaps, since the standard is based on bytes. This is
not to say that no specification should be attempted.

§.15. Library Primitive / XDR Standard Cross Reference

The following table describes the association between the C library primitives discussed in Section 3, and
the standard data types defined in this section:

Version 1.0

IRIS Communications Guide
Primitives and Data Types
* C Primitive XDR Type Sections
xdr_int
xdr_long integer 3.1,62
xdr_short
xdr_u_int
xdr_u_long unsigned 3.1,6.3
xdr_u_short
- | hyper integer | 6.6
hyper unsigned
xdr_float float 32,67
xdr_double double 32,67
xdr_enum enum_t 33,64
xdr_bool bool_t 33,65
xdr_string string 3.5.1,69
xdr_bytes 352
xdr_array (varying arrays) 3.5.3,6.11
- (fixed arrays) 3.5.5,6.10
xdr_opaque opaque 354,68
xdr_union union 3.5.6,6.13
xdr_reference - 3.5.7
- struct 6.6

NFS Reference Material C-26

Version 1.0

IRIS Communications Guide NFS Reference Material C-27

6. Advanced Topics

This section describes techniques for passing data structures that are not covered in the preceding sections.
Such structures include linked lists (of arbitrary lengths). Unlike the simpler examples covered in the ear-
lier sections, the following examples are written using both the XDR C library routines and the XDR data
description language. Section 6 describes the XDR data definition language used below.

6.1. Linked Lists

The last example in Section 2 presented a C data structure and its associated XDR routines for a person’s
gross assets and liabilities. The example is duplicated below:

struct gnumbers {
long g_assets;
long g_liabilities;
}i
bool_t
xdr_gnumbers (xdrs, gp)
XDR *xdrs;
struct gnumbers *gp;

if (xdr_long(xdrs, &(gp->g_assets)))
return(xdr_long(xdrs, &(gp->g_liabilities)));
return (FALSE) ;
}

Now assume that we wish to implement a linked list of such information. A data structure could be con-
structed as follows:

typedef struct gnnode {
struct gnumbers gn_numbers;
struct gnnode *nxt;

bi

typedef struct gnnode *gnumbers_list;

The head of the linked list can be thought of as the data object; that is, the head is not merely a convenient
shorthand for a structure. Similarly the nxt field is used to indicate whether or not the object has ter-
minated. Unfortunately, if the object continues, the nxt field is also the address of where it continues.
The link addresses carry no useful information when the object is serialized.

The XDR data description of this linked list is described by the recursive type declaration of gm&mbers_list:

struct gnumbers {
unsigned g_assets;
unsigned g_liabilities;
bi

typedef union switch (boolean) {
case TRUE: struct {
struct gnumbers current_element;
gnumbers_list rest_of_list;
bi
case FALSE: struct {};
} gnumbers_list;

Version 1.0

IRIS Communications Guide NFS Reference Material C-28

In this description, the boolean indicates whether there is more data following it. If the boolean is FALSE,
then it is the last data field of the structure. If itis TRUE, then it is followed by a gnumbers structure
and (recursively) by a gnumbers_list (the rest of the object). Note that the C declaration has no
boolean explicitly declared in it (though the nxt field implicitly carries the information), while the XDR
data description has no pointer explicitly declared in it.

Hints for writing a set of XDR routines to successfully (de)serialize a linked list of entries can be taken
from the XDR description of the pointer-less data. The set consists of the mutually recursive routines
xdr_gnumbers_list, xdr_wrap_list,and xdr_gnnode.

bool_t
xdr_gnnode (xdrs, gp)
XDR *xdrs;
struct gnnode *gp;
{
return (xdr_gnumbers (xdrs, &(gp->gn_numbers)) &&
xdr_gnumbers_list (xdrs, &(gp->nxt)));
}
bool_t
xdr_wrap_list (xdrs, glp)

XDR *xdrs;
gnumbers_list *glp;

return (xdr_reference (xdrs, glp, sizeof (struct gnnode),
xdr_gnnode)) ;
}

struct xdr_discrim choices(2] = {

/*
* called if another node needs (de)serializing
*/

{ TRUE, xdr_wrap_list },

/*

* called when no more nodes need (de)serializing
*/

{ FALSE, xdr_void }

}

bool_t

xdr_gnumbers_list (xdrs, glp)
XDR *xdrs;
gnumbers_list *glp;

bool_t more_data:;
more_data = (*glp != (gnumbers_list)NULL):

return (xdr_union(xdrs, &more_data, glp, choices, NULL);
}

The entry routine is xdr_gnumbers_list(); its job is to translate between the boolean value
more_data and the list pointer values. If there is no more data, the xdr_union() primitive calls
xdr_void() and the recursion is terminated. Otherwise, xdr_union() calls xdr_wrap list(),
whose job is to dereference the list pointers. The xdr_gnnode() routine actually (de)serializes data of
the current node of the linked list, and recursively calls xdr_gnumbers_list() to handle the

Version 1.0

IRIS Communications Guide NFS Reference Material C-29

remainder of the list.

You should convince yourself that these routines function correctly in all three directions (XDR_ENCODE,
XDR_DECODE, and XDR_FREE) for linked lists of any length (including zero). Note that the boolean
more_data is always initialized, but in the XDR_DECODE case it is overwritten by an externally gen-
erated value. Also note that the value of the bool_t is lost in the stack. The essence of the value is
reflected in the list’s pointers.)

The unfortunate side effect of (de)serializing a list with these routines is that the C stack grows linearly
with respect to the number of nodes in the list. This is due to the recursion. The routines are also hard to
code (and understand) due to the number and nature of primitives involved (such as xdr_reference,
xdr_union,and xdr_void).

The following routine collapses the recursive routines. It also has other optimizations that are discussed
below.

bool_t

xdr_gnumbers_list (xdrs, glp)
XDR *xdrs;
gnumbers_list *glp;

bool_t more_data;

while (TRUE) {
more_data = (*glp != (gnumbers_list)NULL);
if (!xdr_bool(xdrs, &more_data))
return(FALSE) ;
if (!more_data)
return(TRUE); /* we are done */
if (!xdr_reference(xdrs, glp, sizeof (struct gnnode),
xdr_gnumbers)) :
return (FALSE) ;
glp = &(({*glp)=->nxt);

}

The claim is that this one routine is easier to code and understand than the three recursive routines above.
(It is also buggy, as discussed below.) The parameter glp is treated as the address of the pointer to the
head of the remainder of the list to be (de)serialized. Thus, glp is set to the address of the current node’s
nxt field at the end of the while loop. The discriminated union is implemented in-line; the variable
more_data has the same use in this routine as in the routines above. Its value is recomputed and re-
(de)serialized each iteration of the loop. Since *glp is a pointer to a node, the pointer is dereferenced
using xdr_reference (). Note that the third parameter is truly the size of a node (data values plus
nxt pointer), while xdr_gnumbers() only (de)scrializes the data values. We can get away with this
tricky optimization only because the nxt data comes after all legitimate external data.

The routine is buggy in the XDR_FREE case. The bug is that xdr_reference() will free the node
*glp. Upon return the assignment "glp = & ((*glp)->nxt)" cannot be guaranteed to work since
*g1p is no longer a legitimate node. The following is a rewrite that works in all cases. The hard part is to
avoid dereferencing a pointer which has not been initialized or which has been freed.

Version 1.0

IRIS Communications Guide NFS Reference Material C-30

bool_t

xdr_gnumbers_list (xdrs, glp)
XDR *xdrs;
gnumbers_list *glp;

bool_t more_data;
bool_t freeing;
gnumbers_list *next; /* the next value of glp */
freeing = (xdrs->x_op == XDR_FREE);
while (TRUE) {
more_data = (*glp !=.(gnumbers_list)NULL);
if (!xdr_bool (xdrs, é&more_data))
- return (FALSE) ;
if (!more_data)
return(TRUE); /* we are done */
if (freeing)
next = & ((*glp)->nxt);
if (!xdr_reference(xdrs, glp, sizeof(struct gnnode),
xdr_gnumbers))
return (FALSE) ;
glp = (freeing) ? next : &((*glp)->nxt);

}

Note that this is the first exainple in this document that actually inspects the direction of the operation
xdrs->x_op). (The claim is that the correct iterative implementation is still easier to understand or code
than the recursive implementation. It is certainly more efficient with respect to C stack requirements.

6.2. The Record Marking Standard

A record is composed of one or more record fragments. A record fragment is a four-byte header followed
by 010 2311 bytes of fragment data. The bytes encode an unsigned binary number; as with XDR integers,
the byte order is from highest to lowest. The number encodes two values — a boolean that indicates
whether the fragment is the last fragment of the record (bit value 1 implies the fragment is the last frag-
ment), and a 31-bit unsigned binary value which is the length in bytes of the fragment’s data. The boolean
value is the high-order bit of the header; the length is the 31 low-order bits.

(Note that this record specification is not in XDR standard form and cannot be implemented using XDR
primitives!)

Version 1.0

IRIS Communications Guide NFS Reference Material C-31

Appendix A -- Synopsis of XDR Routines
xdr_array(

xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char **arrp;
u_int *sizep, maxsize, elsize;
xdrproc_t elproc; .

A filter primitive that translates between arrays and their corresponding external representations. The
parameter arrp is the address of the pointer to the array, while sizep is the address of the element
count of the array; this element count cannot exceed maxsize. The parameter elsize is the
sizeof() each of the array’s elements, and elproc is an XDR filter that translates between the array
elements’ C form, and their external representation. This routine returns one if it succeeds, zero otherwise.

xdr_bool()

xdr_bool (xdrs, bp)
XDR *xdrs;
bool_t *bp:;

A filter primitive that translates between booleans (C integers) and their external representations. When
encoding data, this filter produces values of either one or zero. This routine returns one if it succeeds, zero
otherwise.

xdr_bytes()
xdr_bytes (xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;

u_int *sizep, maxsize;

A filter primitive that translates between counted byte strings and their external representations. The
parameter sp is the address of the string pointer. The length of the string is located at address sizep;
strings cannot be longer than maxsize. This routine returns one if it succeeds, zero otherwise.
xdr_destroy()

void
xdr_destroy (xdrs)
XDR *xdrs;
A macro that invokes the destroy routine associated with the XDR stream, xdrs. Destruction usually
involves freeing private data structures associated with the stream. Using xdrs after invoking
xdr_destroy() is undefined.
xdr_double()

xdr_double (xdrs, dp)
XDR *xdrs;
double *dp;

A filter primitive that translates between C double precision numbers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_enum()

Version 1.0

IRIS Communications Guide NFS Reference Material C-32

xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

A filter primitive that translates between C enurms (actually integers) and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_£loat(
xdr_float (xdrs, £p)
XDR *xdrs;
float *fp;

A filter primitive that translates between C floats and their external representations. This routine
returns one if it succeeds, zero otherwise.

xdr_getpos()

u_int
xdr_getpos (xdrs)
XDR *xdrs;

A macro that invokes the get-position routine associated with the XDR stream, xdrs. The routine returns
an unsigned integer, which indicates the position of the XDR byte stream. A desirable feature of XDR
streams is that simple arithmetic works with this number, although the XDR stream instances need not
guarantee this.

xdr_inline()

long *

xdr_inline (xdrs, len)
XDR *xdrs;
int len;

A macro that invokes the in-line routine associated with the XDR stream, xdrs. The routine returns a
pointer to a contiguous piece of the stream’s buffer; len is the byte length of the desired buffer. Note that
the pointer is cast to "long *". Waming: xdr_inline() may return NULL if it cannot allocate a
contiguous piece of a buffer. Therefore the behavior may vary among stream instances; it exists for the
sake of efficiency.

xdr_int()
xdr_int (xdrs, ip)
XDR *xdrs;
int *ip;

A filter primitive that translates between C intcgers and their external representations. This routine returns
one if it succeeds, zero otherwise.

xdr_long()
xdr_long(xdrs, 1p)
XDR *xdrs;
long *1lp;

A filter primitive that translates between C long integers and their external representations. This routine
returns one if it succeeds, zero otherwise.

Version 1.0

P

e

IRIS Communications Guide NFS Reference Material C-33

xdr_opaque()
xdr_opaque (xdrs, cp, cnt)
XDR *xdrs;
char *cp;

u_int cnt;

A filter primitive that translates between fixed size opaque data and its external representation. The param-
eter cp is the address of the opaque object, and cnt is its size in bytes. This rou-
tine returns one if it succeeds, zero otherwise.

xdr_reference()

xdr_reference (xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

A primitive that provides pointer chasing within structures. The parameter pp is the address of the

pointer; size is the sizeof() the structure that *pp points to; and proc is an XDR procedure that -
filters the structure between its C form and its external representation. This routine returns one if it

succeeds, zero otherwise.

xdr_setpos()

xdr_setpos (xdrs, pos)
XDR *xdrs;
u_int pos:;

A macro that invokes the set position routine associated with the XDR stream xdrs. The parameter pos
is a position value obtained from xdr_getpos (). This routine returns one if the XDR stream could be
repositioned, and zero otherwise. Warning: it is difficult to reposition some types of XDR streams, so this
routine may fail with one type of stream and succeed with another.

xdr_short(
xdr_short (xdrs, sp)

XDR *xdrs;
short *sp;

A filter primitive that translates between C short integers and their external representations. This rou-
tine returns one if it succeeds, zero otherwise.
xdr_string()
xdr_string(xdrs, sp, maxsize)
XDR *xdrs;

char **sp;
u_int maxsize;

A filter primitive that translates between C strings and their corresponding external representations. Strings
cannot cannot be longer than maxsize. Note that sp is the address of the string’s pointer. This routine
returns one if it succeeds, zero otherwise.

Version 1.0

IRIS Communications Guide NFS Reference Material C-34

xdr_u_int(Q
xdr_u_int (xdrs, up)

XDR *xdrs;
unsigned *up;

A filter primitive that translates between C unsigned integers and their external representations. This
routine returns one if it succeeds, zero otherwise.

xdr_u_long(Q

xdr_u_long(xdrs, ulp)
XDR *xdrs;
unsigned long *ulp;

A filter primitive that translates between C "unsigned long™ integers and their external representa-
tions. This routine returns one if it succeeds, zero otherwise.

xdr_u_short ()

xdr_u_short (xdrs, usp)
XDR *xdrs;
unsigned short *usp;

A filter primitive that translates between C "unsigned short"™ integers and their exter-
nal representations. This routine returns one if it succeeds, zero oth-
erwise.
xdr_union()
xdr_union(xdrs, dscmp, unp, chpices, dfault)
XDR *xdrs;
int *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

A filter primitive that translates between a discriminated C union and its corresponding external
representation. The parameter dscmp is the address of the union’s discriminant, while in the address of
the union. This routine returns one if it succeeds, zero otherwise.
xdr_void()

xdr_void ()

This routine always returns one. It may be passed to RPC routines that require a function parameter, where
nothing is to be done.

xdr_wrapstring()
xdr_wrapstring(xdrs, sp)

XDR *xdrs;
char **sp;

A primitive that calls xdr_string (xdrs, sp, MAXUNSIGNED); where MAXUNSIGNED is the max-
imum value of an unsigned integer. This is handy because the RPC package passes only two parameters
XDR routines, whereas xdr_string (), one of the most frequently used primitives, requires three
parameters. This routine returns one if it succeeds, zero otherwise.

Version 1.0

IRIS Communications Guide NFS Reference Material C-35

xdrmem_create()

void
xdrmem create (xdrs, addr, size, op)
XDR *xdrs;
char *addr;
u_int size;
enum xdr_op op;

This routine initializes the XDR stream object pointed t0 by xdrs. The stream’s data is written to, or
read from, a chunk of memory at location addr whose length is no more than size bytes long. The
op determines the direction of the XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

xdrrec_create()

void
xdrrec_create (xdrs,
sendsize, recvsize, handle, readit, writeit)
XDR *xdrs;
u_int sendsize, recvsize;
char *handle;
int (*readit) (), (*writeit) ();

This routine initializes the XDR stream object pointed to by xdrs. The stream’s data is written to a
buffer of size sendsize; a value of zero indicates the system should use a suitable default. The stream’s
data is read from a buffer of size recvsize; it too can be set to a suitable default by passing a zero
value. When a stream’s output buffer is full, writeit() is called. Similarly, when a stream’s input
buffer is empty, readit() is called. The behavior of these two routines is similar to the UNIX system
calls read and write, except that handle is passed to the former routines as the first parameter.
Note that the XDR stream’s op field must be set by the caller. Waming: this XDR stream implements an
intermediate record stream. Therefore there are additional bytes in the stream to provide record boundary
information.

xdrrec_endofrecord()

xdrrec_endofrecord (xdrs, sendnow)

XDR *xdrs;
int sendnow;

This routine can be invoked only on streams created by xdrrec_create(). The data in the output
buffer is marked as a completed record, and the output buffer is optionally written out if sendnow is
non-zero. This routine returns one if it succeeds, zero otherwise.

xdrrec_eof ()

xdrrec_eof (xdrs)
XDR *xdrs;
int empty;

This routine can be invoked only on streams created by xdrrec_create (). After consuming the rest
of the current record in the stream, this routine returns one if the stream has no more input, zero otherwise.

xdrrec_skiprecord()

xdrrec_skiprecord (xdrs)
XDR *xdrs;

This routine can be invoked only on streams created by xdrrec_create(). It tells the XDR

Version 1.0

IRIS Communications Guide NFS Reference Material C-36

implelixentation that the rest of the current record in the stream’s input buffer should be discarded. This
routine returns one if it succeeds, zero otherwise.

xdrstdio_create ()

void

xdrstdio_create(xdrs, file, op)
XDR *xdrs;
FILE *file;

enum xdr_op op;

This routine initializes the XDR stream object pointed to by xdrs. The XDR stream data is written to, or
read from, the Standard 1/O stream f£ile. The parameter op determines the direction of the XDR stream
(either XDR_ENCODE, XDR_DECODE, or XDR_FREE). Warning: the destroy routine associated with
such XDR streams calls ££1ush() on the file stream, butnever fclose().

Version 1.0

IRIS Communications Guide NFS Reference Material C-37

Remote Procedure Call
Protocol Specification

7. Introduction

This document specifies a message protocol used in implementing Sun’s Remote Procedure Call RPC)
package. The message protocol is specified with the eXternal Data Representation (XDR) language.

This document assumes that the reader is familiar with both RPC and XDR. It does not attempt to justify
RPC or its uses. Also, the casual user of RPC does not need to be familiar with the information in this
document.

7.1. Terminology

The document discusses servers, services, programs, procedures, clients and versions. A server is a
machine where some number of network services are implemented. A service is a collection of one or
more remote programs. A remote program implements one or more remote procedures; the procedures,
their parameters and results are documented in the specific program’s protocol specification. Network
clients are pieces of software that initiate remote procedure calls to services. A server may support more
than one version of a remote program in order to be forward compatible with changing protocols.

For example, a network file service may be composed of two programs. One program may deal with high
level applications such as file system access control and locking. The other may deal with low-level file
1/0, and have procedures like ‘‘read’’ and ‘‘write”’. A client machine of the network file service would
call the procedures associated with the two programs of the service on behalf of some user on the client
machine.

7.2. The RPC Model

The remote procedure call model is similar to the local procedure call model. In the local case, the caller
places arguments to a procedure in some well-specified location (such as a result register). It then transfers
control to the procedure, and eventually gains back control. At that point, the results of the procedure are
extracted from the well-specified location, and the caller continues execution.

The remote procedure call is similar, except that one thread of control winds through two processes — one
is the caller’s process, the other is a server’s process. That is, the caller process sends a call message to the
server process and waits (blocks) for a reply message. The call message contains the procedure’s parame-
ters, among other things. The reply message contains the procedure’s results, among other things. Once
the reply message is received, the results of the procedure are extracted, and caller’s execution is resumed.
On the server side, a process is dormant awaiting the arrival of a call message. When one arrives the server
process extracts the procedure’s parameters, computes the results, sends a reply message, and then awaits
the next call message. Note that in this model, only one of the two processes is active at any given time.
That is, the RPC protocol does not explicitly support multi-threading of caller or server processes.

7.3. Transports and Semantics

The RPC protocol is independent of transport protocols. That is, RPC does not care how a message is
passed from one process to another. The protocol only deals with the specification and interpretation of
messages.

Because of transport independence, the RPC protocol does not attach specific semantics to the remote pro-
cedures or their execution. Some semantics can be inferred from (but should be explicitly specified by) the
underlying transport protccol. For example, RPC message passing using UDP/IP is unreliable. Thus, if the

Version 1.0

IRIS Communications Guide NFS Reference Material C-38

caller retransmits call messages after short time-outs, the only thing he can infer from no reply message is
that the remote procedure was executed zero or more times (and from a reply message, one or more times).
On the other hand, RPC message passing using TCP/IP is reliable. No reply message means that the
remote procedure was executed at most once, whereas a reply message means that the remote procedure
was exactly once. (Note: At Sun, RPC is currently implemented on top of TCP/IP and UDP/IP transports.)

7.4. Binding and Rendezvous Independence

The act of binding a client to a service is not part of the remote procedure call specification. This impor-
tant and necessary function is left up to some higher level software.

Implementors should think of the RPC protocol as the jump-subroutine instruction (‘‘JSR’’) of a network;
the loader (binder) makes JSR useful, and the loader itself uses JSR to accomplish its task. Likewise, the
network makes RPC useful, using RPC to accomplish this task.

7.5. Message Authentication

The RPC protocol provides the fields necessary for a client to identify himself to a service and vice versa.
Security and access control mechanisms can be built on top of the message authentication.

Version 1.0

IRIS Communications Guide NFS Reference Material C-39

8. RPC Protocol Requirements

The RPC protocol must provide for the following:

1. Unique specification of a procedure to be called.

2. Provisions for matching response messages to request messages.
3. Provisions for authenticating the caller to service and vice versa.

Besides these requirements, features that detect the following are worth supporting because of protocol
roll-over errors, implementation bugs, user error, and network administration:

1. RPC protocol mismatches.

2. Remote program protocol version mismatches.

3 Protocol errors (such as misspecification of a procedure’s parameters).
4. Reasons why remote authentication failed.

5. Any other reasons why the desired procedure was not called.

8.1. Remote Programs and Procedures

The RPC call message has three unsigned fields: remote program number, remote program version
number, and remote procedure number. The three fields uniquely identify the procedure to be called. Pro-
gram numbers are administered by some central authority (like Sun). Once an implementor has a program
number, he can implement his remote program,; the first implementation would most likely have the version
number of 1. Because most new protocols evolve into better, stable and mature protocols, a version field of
the call message identifies which version of the protocol the caller is using. Version numbers make speak-
ing old and new protocols through the same server process possible.

The procedure number identifies the procedure to be called. These numbers are documented in the specific

program’s protocol specification. For example, a file service’s protocol specification may state that its pro-

cedure number S is read and procedure number 12 is write.

Just as remote program protocols may change over several versions, the actual RPC message protocol

could also change. Therefore, the call message also has the RPC version number in it; this field must be

two (2).

The reply message to a request message has enough information to distinguish the following error condi-

tions:

1. The remote implementation of RPC does speak protocol version 2. The lowest and highest sup-
ported RPC version numbers are returned.

2. The remote program is not available on the remote system.

3. The remote program does not support the rcquested version number. The lowest and highest sup-
ported remote program version numbers are returned.

4. The requested procedure number does not exist (this is usually a caller side protocol or programming
error).

5. The parameters to the remote procedure appear to be garbage from the server’s point of view.
(Again, this is caused by a disagreement about the protocol between client and service.)

Version 1.0

IRIS Communications Guide NFS Reference Material C-40

8.2, Authentication

Provisions for authentication of caller to service and vice versa are provided as a wart on the side of the
RPC protocol. The call message has two authentication fields, the credentials and verifier. The reply mes-
sage has one authentication field, the response verifier. The RPC protocol specification defines all three
fields to be the following opaque type:

enum auth_flavor {

AUTH_NULL =0,
AUTH_UNIX =1,
AUTH_SHORT =2

/* and more to be defined */
}i
struct opaque_auth {
union switch (enum auth_flavor) ({
default: string auth_body<400>;
}:
}:

In simple English, any opaque_auth structure is an auth_flavor enumeration followed by a
counted string, whose bytes are opaque to the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication fields is specified by indi-
vidual, independent authentication protocol specifications. Appendix A defines three authentication proto-
cols.

If authentication parameters were rejected, the response message contains information stating why they
were rejected.

8.3. Program Number Assignment
Program numbers are given out in groups of 0x20000000 (536870912) according to the following chart:

0 - 1ff£f££££E defined by Sun
20000000 - 3fffffff defined by user
40000000 - SEffffff transient
60000000 - 7fffffff reserved
80000000 - 9fffffff reserved
a0000000 - bEfffffff reserved
c0000000 - Afffffff reserved
e0000000 - ffffffff reserved

The first group is a range of numbers administered by Sun Microsystems, and should be identical for all
Sun customers. The second range is for applications peculiar to a particular customer. This range is
intendcd primarily for debugging new programs. When a customer develops an application that might be
of general interest, that application should be given an assigned number in the first range. The third group
is for applications that generate program numbers dynamically. The final groups are reservered for future
use, and should not be used.

8.4. Other Uses of the RPC Protocol

The intended use of this protocol is for calling remote procedures. That is, each call message is matched
with a response message. However, the protocol itself is a message passing protocol with which other
(non-RPC) protocols can be implemented. Sun currently uses, or perhaps abuses, the RPC message proto-
col for the following two (non-RPC) protocols: batching (or pipelining) and broadcast RPC. These two

Version 1.0

IRIS Communications Guide NFS Reference Material C-41

protocols are discussed but not defined below.

8.4.1. Batching

Batching allows a client to send an arbitrarily large sequence of call messages to a server; batching uses
reliable bytes stream protocols (like TCP/IP) for their transport. In the case of batching, the client never
waits for a reply from the server and the server does not send replies to batch requests. A sequence of
batch calls is usually terminated by a legitimate RPC in order to flush the pipeline (with positive ack-
nowledgement).

8.4.2. Broadcast RPC
In broadcast RPC based protocols, the client sends an a broadcast packet to the network and waits for
numerous replies. Broadcast RPC uses unreliable, packet based protocols (like UDP/IP) as their transports.

Servers that support broadcast protocols only respond when the request is successfully processed, and are
silent in the face of errors.

Version 1.0

IRIS Communications Guide NFS Reference Material C-42

9. The RPC Message Protocol

This section defines the RPC message protocol in the XDR data description language. The message is
defined in a top down style. Note: This is an XDR specification, not C code.

Version 1.0

IRIS Communications Guide NFS Reference Material C-43

enum msg_type {
CALL = 0,
REPLY = 1
}:
/*
* A reply to a call message can take on two forms:
* the message was either accepted or rejected.
*/
enum reply stat {
MSG_ACCEPTED = 0,
MSG_DENIED = 1
}s
/*
* Given that a call message was accepted, the following is
* the status of an attempt to call a remote procedure.

*/
enum accept_stat {
SUCCESS = 0, /* RPC executed successfully */
PROG_UNAVAIL = 1, /* remote hasn’t exported program */
PROG_MISMATCH= 2, /* remote can’t support version # */
PROC_UNAVAIL = 3, /* program can’t support procedure */
GARBAGE_ARGS = 4 /* procedure can’t decode params */
}:
/*
* Reasons why a call message was rejected:
*/

enum reject_stat {
RPC_MISMATCH = 0, /* RPC version number != 2 */
AUTH_ERROR = 1 /* remote can’t authenticate caller */
b

/*
* Why authentication failed:
x/
enum auth_stat {
AUTH_BADCRED = 1, /* bad credentials (seal broken) */
AUTH_REJECTEDCRED=2, /* client must begin new session */
AUTH_BADVERF = 3, /* bad verifier (seal broken) */
AUTH_REJECTEDVERF=4, /* verifier expired or replayed */
AUTH_TOOWEAK = 5, /* rejected for security reasons */

—
e

The RPC message:

All messages start with a transaction identifier, xid,
followed by a two-armed discriminated union. The union’s
discriminant is a msg_type which switches to one of the
two types of the message. The xid of a REPLY message
always matches that of the initiating CALL message. NB:
The xid field is only used for clients matching reply
messages with call messages; the service side cannot
treat this id as any type of sequence number.

LA B S B N A

*

*/
struct rpc_msg {

Version 1.0

IRIS Communications Guide NFS Reference Material C-44

unsigned xid;

union switch (enum msg_type) {
CALL: struct call_body;
REPLY: struct reply body:

}i
/*
* Body of an RPC request call:
* In version 2 of the RPC protocol specification, rpcvers
* must be equal to 2. The fields prog, vers, and proc
* specify the remote program, its version number, and the
* procedure within the remote program to be called. After
* these fields are two authentication parameters: cred
* (authentication credentials) and verf (authentication
* yerifier). The two authentication parameters are
* followed by the parameters to the remote procedure,
* which are specified by the specific program protocol.
*/
struct call_body {
. unsigned rpcvers; /* must be equal to two (2) */
unsigned prog;
unsigned vers;
unsigned proc;
struct opaque_auth cred;
struct opaque_auth verf;
/* procedure specific parameters start here */
y:
/%

* Body of a reply to an RPC request.
* The call message was either accepted or rejected.
*/
struct reply body ({
union switch (enum reply_ stat) {
MSG_ACCEPTED: struct accepted_reply’
MSG_DENIED: struct rejected_reply:

Reply to an RPC request that was accepted by the server.
Note: there could be an error even though the reques
was accepted. The first field is an authentication
verifier that the server generates in order to validate
itself to the caller. It is followed by a union whose
discriminant is an enum accept_stat. The SUCCESS arm
of the union is protocol specific. The PROG_UNAVAIL,
PROC_UNAVAIL, and GARBAGE_ARGS arms of the union are
void. The PROG_MISMATCH arm specifies the lowest and
highest version numbers of the remote program that are
supported by the server.

* % F X % % X %X % X W

*

*/
struct accepted_ reply {
struct opaque_auth verf;
union switch (enum accept_stat) {

Version 1.0

IRIS Communications Guide NFS Reference Material C-45

SUCCESS: struct {
/*
* procedure-specific results start here
*/
}:
PROG_MISMATCH: struct {
unsigned low;
unsigned high;
}:
default: struct {
/*
* void. Cases include PROG_UNAVAIL,
* PROC_UNAVAIL, and GARBAGE_ ARGS.
*/

~

[N—,

* * ¥ X X ¥ ¥ ¥ %

Reply to an RPC request that was rejected by the server.
The request can be rejected because of two reasons:
either the server is not running a compatible version of
the RPC protocol (RPC_MISMATCH), or the server refuses
to authenticate the caller (AUTH_ERROR). In the case of
an RPC version mismatch, the server returns the lowest
and highest supported RPC version numbers. In the case
of refused authentication, failure status is returned.
*/
struct rejected reply {
union switch (enum reject_stat) {
RPC_MISMATCH: struct {
unsigned low;
unsigned high;
}:
AUTH_ERROR: enum auth_stat;

9.1. Authentication Parameter Specification

As previously stated, authentication parameters are opaque, but open-ended to the rest of the RPC protocol.
This section defines some ‘‘flavors’* of authentication which have been implemented at (and supportcd by)
Sun. :

9.1.1. Null Authentication

Often calls must be made where the caller does not know who he is and the server does not care who the
caller is. In this case, the auth_flavor value (the discriminant of the opaque_auth’s union) of the RPC
message’s credentials, verifier, and response verifier is AUTH_NULL(0). The bytes of the auth_body
string are undefined. It is recommended that the string length be zero.

Version 1.0

IRIS Communications Guide NFS Reference Material C-46

9.1.2. UNIX Authentication

The caller of a remote procedure may wish to identify himself as he is identified on a UNIX system. The
value of the credential’s discriminant of an RPC call message is AUTH_UNIX(1). The bytes of the
credential’s string encode the the following (XDR) structure:

struct auth_unix {

unsigned stamp;

string machinename<255>;
unsigned uid;

unsigned gid;

unsigned gids<10>;

}i

The stamp is an arbitrary id which the caller machine may generate. The machinename is the name
of the caller’s machine (like ‘‘krypton’*). The uid is the caller’s effective user id. The gid is the call-
ers effective group id. The gids is a counted array of groups which contain the caller as a member. The
verifier accompanying the credentials should be of AUTH_NULL (defined above).

The value of the discriminate of the "response verifier™ received in the reply message from the
server may be AUTH_NULL or AUTH_SHORT . In the case of AUTH_SHORT, the bytes of the
"response verifier"’s string encode an auth_opaque structure. This new auth_opaque
structure may now be passed to the server instead of the original AUTH_UNIX flavor credentials. The
server keeps a cache which maps short hand auth_opaque structures (passed back by way of a
AUTH_SHORT style "response verifier") to the original credentials of the caller. The caller can
save network bandwidth and server cpu cycles by using the new credentials. ‘

The server may flush the short hand auth_opaque structure at any time. If this happens, the remote
procedure call message will be rejected due to an authentication error. The reason for the failure will be
AUTH_REJECTEDCRED. At this point, the caller may wish to try the original AUTH_UNIX style of
credentials.

9.2. Record Marking Standard

When RPC messages are passed on top of a byte stream protocol (like TCP/IP), it is necessary, or at least
desirable, to delimit one message from another in order to detect and possibly recover from user protocol
errors. This is called record marking (RM). Sun uses this RM/TCP/IP transport for passing RPC messages
on TCP streams. One RPC message fits into one RM record.

A record is composed of one or more record fragments. A record fragment is a four-byte header followed
by 0 to 23/-1 bytes of fragment data. The bytes encode an unsigned binary number; as with XDR
integers, the byte order is from highest to lowest. The number encodes two values — a boolean which
indicates whether the fragment is the last fragment of the record (bit value 1 implies the fragment is the last
fragment) and a 31-bit unsigned binary value which is the length in bytes of the fragment’s data. The
boolean value is the highest-order bit of the header; the length is the 31 low-order bits. (Note that this
record specification is not in XDR standard form!)

Version 1.0

IRIS Communications Guide NFS Reference Material C-47

1. Appendix A: Port Mapper Program Protocol

The port mapper program maps RPC program and version numbers to UDP/IP or TCP/IP port numbers.
This program makes dynamic binding of remote programs possible.

This is desirable because the range of reserved port numbers is very small and the number of potential
remote programs is very large. By running only the port mapper on a reserved port, the port numbers of
other remote programs can be ascertained by querying the port mapper.

1.1. The RPC Protocol
The protocol is specified by the XDR description language.

Port Mapper RPC Program Number: 100000
Version Number: 1
Supported Transports:
UDP/IP on port 111
RM/TCP/IP on port 111

1.1.1. Transport Protocol Numbers

#define IPPROTO_TCP 6 /* protocol number for TCP/IP */
#define IPPROTO_UDP 17 /* protocol number for UDP/IP */

1.1.2. RPC Procedures
Here is a list of RPC procedures:

1.1.2.1. Do Nothing
Procedure 0, Version 2.
0. PMAPPROC_NULL () returns ()

This procedure does no work. By convention, procedure zero of any protocol takes no parameters and
returns no results.

1.1.2.2. Set a Mapping
Procedure 1, Version 2.

1. PMAPPROC_SET (prog,vers,prot,port) returns (resp)
unsigned prog;
unsigned vers;
unsigned prot;
unsigned port;
boolean resp;

When a program first becomes available on a machine, it registers itself with the port mapper program on
the same machine. The program passes its program number prog, version number vers, transport pro-
tocol number prot, and the port port on which it awaits service request. The procedure returns
resp, whose value is TRUE if the procedure successfully established the mapping and FALSE otherwise.
The procedure refuses to establish a mapping if one already exists for the tuple [prog,vers,prot].

Version 1.0

IRIS Communications Guide NFS Reference Material C-48

1.1.2.3. Unset a Mapping
Procedure 2, Version 2.

2. PMAPPROC_UNSET (prog,vers,dummyl,dummy2) returns (resp)
unsigned prog;
unsigned vers;
unsigned dummyl; /* value always ignored */
unsigned dummy2; /* value always ignored */
boolean resp:;

When a program becomes unavailable, it should unregister itself with the port mapper program on the same
machine. The parameters and results have meanings identical to those of PMAPPROC_SET.

1.1.2.4. Look Up a Mapping
Procedure 3, Version 2.

3. PMAPPROC_GETPORT (prog,vers,prot,dummy) returns (port)
unsigned prog;
unsigned vers:;
unsigned prot;
unsigned dummy; /* this value always ignored */
unsigned port; /* zero means program not registered */

Given a program number prog, version number vers, and transport protocol number prot, this pro-
cedure returns the port number on which the program is awaiting call requests. A port value of zeros
means the program has not been registered.

1.1.2.5. Dumping the Mappings
Procedure 4, Version 2.

4. PMAPPROC_DUMP () returns (maplist)
struct maplist {
union switch (boolean) ({

FALSE: struct { /* void, end of list */ };

TRUE: struct {
unsigned prog;
unsigned vers;
unsigned prot;
unsigned port;
struct maplist the_rest;

}:
} maplist;

This procedure enumerates all entries in the port mapper’s database. The procedure takes no parameters
and returns a list of program, version, protocol, and port values.

1.1.2.6. Indirect Call Routine
Procedure S, Version 2.

Version 1.0

P

IRIS Communications Guide * NFS Reference Material C-49

5. PMAPPROC_CALLIT (prog,vers,proc,args) returns (port,res)
unsigned prog:;
unsigned vers;
unsigned proc;
string args<>;
unsigned port;
string res<>;

This procedure allows a caller to call another remote procedure on the same machine without knowing the
remote procedure’s port number. Its intended use is for supporting broadcasts to arbitrary remote programs
via the well-known port mapper’s port. The parameters prog, vers, proc, and the bytes of args
are the program number, version number, procedure number, and parameters of the remote procedure.
Note: .

1. This procedure only sends a response if the procedure was successfully executed and is silent (no

response) otherwise.
2. The port mapper communicates with the remote program using UDP/IP only.

The procedure returns the remote program’s port number, and the bytes of results are the results of the
remote procedure.

Version 1.0

Appendix D: Mail Systems and Addressing in 4.2bsd

Eric Allmant

Britton-Lee, Inc.
1919 Addison Street, Suite 105.
Berkeley, California 94704.

eric@Berkeley. ARPA
ucbvax'eric

ABSTRACT

Routing mail through a heterogeneous internet presents many new problems.
Among the worst of these is that of address mapping. Historically, this has been
handled on an ad hoc basis. However, this approach has become unmanageable as
internets grow.

Sendmail acts a unified ““post office’” to which all mail can be submitted. Address in-
terpretation is controlled by a production system, which can parse both old and new
tormat addresses. The new format is “‘domain-based,” a flexible technique that can
handle many common situations. Sendmail is not intended to perform user interface
functions.

Sendmail will replace delivermail in the Berkeley 4.2 distribution. Several major
hosts are now or will soon be running sendmgil. This change will affect any users
that route mail through a sendmail gateway. The changes that will be user visible
are emphasized.

The mail system to appear in 4.2bsd will contain a number of changes. Most of these
changes are based on the replacement of delivermail with a new module called sendmail. Send-
mail implements a general internetwork mail routing facility, featuring aliasing and forward-
ing, automatic routing to network gateways, and tlexible contiguration. Of key interest to the
mail system user will be the changes in the network addressing structure.

In a simple network, each node has an address, and resources can be identified with a
host-resource pair; in particular, the mail system can refer to users using a host-username
pair. Host names and numbers have to be administered by a central authcntv, but user-
names can be assigned locally to each host.

In an internet, multiple networks with ditferent characteristics and managements must
communicate. In particular, the syntax and semantics of resource identification change. Cer-
tain special cases can be handled trivially by ad hoc techniques, such as providing network
names that appear local to hosts on other networks, as with the Ethernet at Xerox PARC.
However, the general case is extremely complex. For example, some networks require that
the route the message takes be explicitly specified by the sender, simplifying the database
update problem since only adjacent hosts must be entered into the system tables, while oth-
ers use logical addressing, where the sender specifies the location of the recipient but not
how to get there. Some networks use a left-associative syntax and others use & right-

tA considerable part of this work was done while under the employ of the INGRES Project at the University of
California at Berkeley.

Mail Systems and Addressing in 4.2bsd D-1

Mail Systems and Addressing in 4.2bsd D-2

associative svntax, causing ambiguity in mixed addresses.

Internet standards. seek to eliminate these problems. Initially, these proposed expand-
ing the address pairs to address triples, consisting of {network, host, username} triples. Net-
work numbers must be universally agreed upon, and hosts can be assigned locally on each
network. The user-level presentation was changed to address domains, comprised of a local
resource identification and a hierarchical domain specification with a common static root. The
domain technique separates the issue of physical versus logical addressing. For example, an
address of the torm ‘‘eric@a.cc.berkeley.arpa” describes the logical organization of the
address space (user “eric”” on host “a” in the Computer Center at Berkeley) but not the physi-
cal networks used (for example, this could go over different networks depending on whether
““a” were on an ethernet or a store-and-forward network).

Sendmail is intended to help bridge the gap between the totally ad hoc world of networks
that know nothing of each other and the clean, tightly-coupled world of unique network
numbers. It can accept old arbitrary address syntaxes, resolving ambiguities using heuristics
specified by the system administrator, as well as domain-based addressing. It helps guide the
conversion of message formats between disparate networks. In short, sendmail is designed to
assist a graceful transition to consistent internetwork addressing schemes.

Section 1 defines some of the terms frequently left fuzzy when working in mail systems.
Section 2 discusses the design goals for sendmail. In section 3, the new address formats and
basic features of sendmail are described. Section 4 discusses some of the special problems of
the UUCP network. The differences between sendmail and delivermail are presented in section

3

DISCLAIMER: A number of examples in this paper use names ot actual people and
organizations. This is not intended to imply a commitment or even an intellectual
agreement on the part of these people or organizations. [n particular, Bell Telephone
Laboratories (BTL), Digital Equipment Corporation (DEC), Lawrence Berkeley Labora-
tories (LBL), Britton-Lee Incorporated (BLI), and the University of California at Berke-
ley are not committed to any of these proposals at this time. Much of this paper
represents no more than the personal opinions of the author.

1. DEFINITIONS

There are four basic concepts that must be clearly distinguished when dealing with
mail svstems: the user (or the user’s agent), the user’s identification, the user’s address,
and the route. These are distinguished primarily by their position independence.

1.1. User and Identification

The user is the being (a person or program) that is creating or receiving a mes-
sage. An agent is an entity operating on behalf of the user - such as a secretary who
handles my mail. or a program that automatically returns a message such as “I am at
the UNICOM conference.”

The identitication is the tag that goes along with the particular user. This tag is
completely independent of location. For example, my identification is the string "“Eric
Allman.” and this identification does not change whether [am located at U.C. Berke-
lev, at Britton-Lee, or at a scientific institute in Austria.

Since the identification is trequently ambiguous (e.g., there are two '‘Robert
Henry"'s at Berkeley) it is common to add other disambiguating information that is not
strictly part of the identification (e.g., Robert “Code Generator”” Henry versus Robert
“System Administrator’” Henry).

IRIS Communications Guide Version 1.0

Mail Systems and Addressing in 4.2bsd D3

1.2. Address

The address specifies a location. As [move around, my address changes. For
example, my address might change from “eric@Berkeley. ARPA” to “eric@bli.UUCP”
or “allman@IIASA. Austria” depending on my current affiliation.

However, an address is independent of the location of anyone else. That is, my
address remains the same to everyone who might be sending me mail. For example, a
person at MIT and a person at USC could both send to “eric@Berkeley. ARPA” and
have it arrive to the same mailbox.

Ideally a “white pages” service would be provided to map user identifications

into addresses (for example, see [Solomon81]). Currently this is handled by passing
around scraps of paper or by calling people on the telephone to find out their address.

1.3. Route

While an address specifies where to find a mailbox, a route specifies iow to find
the mailbox. Specifically, it specifies a path from sender to receiver. As such, the
route is potentially different for every pair of people in the electronic universe.

Normally the route is hidden from the user by the software. However, some net-
works put the burden of determining the route onto the sender. Although this simpli-
ties the software, it also greatly impairs the usability for most users. The UUCP net-
work is an example of such a network.

2. DESIGN GOALS

(n

Design goals for sendmail' include:

Compatibility with the existing mail programs, including Bell version 6 mail, Bell ver-
sion 7 mail, Berkeley Mail [Shoens79], BerkNet mail [Schmidt79], and hopefully
UUCP mail [Nowitz78]. ARPANET mail [Crocker82] was also required.

Reliability, in the sense of guaranteeing that every message is correctly delivered or
at least brought to the attention of a human for correct disposal; no message should
ever be completely lost. This goal was considered essential because of the emphasis
on mail in our environment. It has turned out to be one of the hardest goals to
satisty, especially in the face of the many anomalous message formats produced by
various ARPANET sites. For example, certain sites generate improperly formated
addresses, occasionally causing error-message loops. Some hosts use blanks in
names, causing problems with mail programs that assume that an address is one
word. The semantics of some fields are interpreted slightly differently by different
sites. [n summary, the obscure features of the ARPANET mail protocol really are
used and are difficult to support, but must be supported.

Existing software to do actual delivery should be used whenever possible. This goal
derives as much from political and practical considerations as technical.

Easy expansion to fairlv complex environments, including multiple connections to a
single network type (such as with multiple UUCP or Ethernets). This goal requires
consideration of the contents of an address as well as its syntax in order to determine
which gateway to use.

Contiguration information should not be compiled into the code. A single compiled
program should be able to run as is at any site (barring such basic changes as the
CPU type or the operating system). We have found this seemingly unimportant goal
to be critical in real life. Besides the simple problems that occur when any program

"This section makes no distinction between defivermail and <endmail.

IRIS Communications Guide Version 1.0

Mail Systems and Addressing in 4.2bsd D-4

(©

@®

gets recompiled in a different environment, many sites like to “tiddle”” with anything
that they will be recompiling anyway.

Sendmail must be able to let various groups maintain their own mailing lists, and let
individuals specify their own forwarding, without modifying the system alias file.
Each user should be able to specify which mailer to execute to process mail being

delivered for him. This feature allows users who are using specialized mailers that
use a different format to build their environment without changing the system, and

facilitates specialized functions (such as returning an “l am on vacation”’ message).

Network traffic should be minimized by batching addresses to a single host where
possible, without assistance from the user.

These goals motivated the architecture illustrated in figure 1. The user interacts with

a mail generating and sending program. When the mail is created, the generator calls
sendmail, which routes the message to the correct mailer(s). Since some of the senders
may be network servers and some of the mailers may be network clients, sendmail may be
used as an internet mail gateway.

3. USAGE

3.1. Address Formats

Arguments may be flags or addresses. Flags set various processing options. Fol-

lowing flag arguments, address arguments may be given. Addresses follow the syntax
in REC822 [Crocker82] for ARPANET address formats. [n brief, the tormat is:

(1) Anything in parentheses is thrown away (as a comment).

+

| sender! | | sender2 | | sender3 |
- + =
| | |
pemm——————— + + Aemmmemmmc——- -
[
v v v
o —————— e +
| sendmail |
bmmmmm——— e +
b
pmmm——————— + ¥ temmmmmce——— +
| | |
v v v
| maitert | | mailer2 | | maiter3 |

Figure 1 - Sendmail System Structure.

[RIS Communications Guide Version 1.0

Mail Systems and Addressing in 4.2bsd D-5

(2) Anvthing in angle brackets (“< >") is preferred over anvthing else. This rule
implements the ARPANET standard that addresses of the form

user name <machine-address >

will send to the electronic ‘‘machine-address” rather than the human “user
name.”

(3) Double quotes (") quote phrases; backslashes quote characters. Backslashes are
more powertul in that they will cause otherwise equivalent phrases to compare
differently - for example, user and "user" are equivalent, but \user is different
from either of them. This might be used to avoid normal aliasing or duplicate
suppression algorithms.

Parentheses, angle brackets, and double quotes must be properly balanced and
nested. The rewriting rules control remaining parsing?.

Although old style addresses are still accepted in most cases, the preferred
address format is based on ARPANET-stvle domain-based addresses [Su82a]. These
addresses are based on a hierarchical, logical decomposition of the address space. The
addresses are hierarchical in a sense similar to the U.S. postal addresses: the messages
may first be routed to the correct state, with no initial consideration ot the citv or other
addressing details. The addresses are logical in that each step in the hierarchy
corresponds to a set of “‘naming authorities” rather than a physical network.

For example, the address:
eric@HostA.BigSite. ARPA

would first look up the domain BigSite in the namespace administrated by ARPA. A
query could then be sent to BigSite for interpretation of HostA. Eventually the mail
would arrive at HostA, which would then do tinal delivery to user “eric.”

3.2. Mail to Files and Programs

Files and programs are legitimate message recipients. Files provide archival
storage ot messages, usetul for project administration and historv. Programs are useful
as recipients in a variety of situations, for example, to maintain a public repository of
systems messages (such as the Berkeley msgs program).

Any address passing through the initial parsing algorithm as a local address (i.e,
not appearing to be a valid address for another mailer) is scanned tor two special cases.
It pretixed by a vertical bar (" |"") the rest of the address is processed as a shell com-
mand. [f the user name begins with a slash mark (') the name s used as a tile
name, instead of a login name.

3.3. Aliasing, Forwarding, Inclusion

Sendmail reroutes mail three ways. Aliasing applies svstem wide. Forwarding
allows each user to reroute incoming mail destined for that account. Inclusion directs
sendmail to read a file for a list of addresses, and 1s normally used in conjunction with
aliasing.

3.3.1. Aliasing
Aliasing maps local addresses to address lists using a svstem-wide file. This
tile is hashed to speed access. Only addresses that parse as local are allowed as
aliases; this guarantees a unique key (since there are no nicknames for the local
host).

Drsclaimer: Some ~pecial processing s done arter rewnting local names. wce below

[RIS Communications Guide Version 1.0

Mail Systems and Addressing in 4.2bsd D-6

3.3.2. Forwarding

Atter aliasing, if an recipient address specifies a local user sendmail searches
for a "“.forward” file in the recipient's home directory. If it exists, the message is
not sent to that user, but rather to the list of addresses in that file. Often this list -
will contain only one address, and the feature will be used for network mail for-
warding.

Forwarding also permils a user to specify a private incoming mailer. For
example, forwarding to:

" | /usr/local/newmail myname"”
will use a ditferent incoming mailer.

3.3.3. Inclusion
Inclusion is specified in RFC 733 [Crocker77] syntax:
:Include: pathname

An address of this form reads the file specified by pathname and sends to all users
listed in that file.

The intent is not to support direct use of this feature, but rather to use this as a
subset of aliasing. For example, an alias of the torm:

project: :include:/ust/project/userlist

is a method of letting a project maintain a mailing list without interaction with the
system administration, even if the alias file is protected.

It is not necessary to rebuild the index on the alias database when a :include:
list is changed.

3.4. Message Collection

Once all recipient addresses are parsed and verified, the message is collected.
The message comes in two parts: a message header and a message body, separated by
a blank line. The body is an uninterpreted sequence of text lines.

The header is formated as a series of lines of the form
tield-name: field-value

Field-value can be split across lines by starting the following lines with a space or a
tab. Some header fields have special internal meaning, and have appropriate special
processing. Other headers are simply passed through. Some header tields may be
added automatically, such as time stamps.

4. THE UUCP PROBLEM

Of particular interest is the ULCP network. The explicit routing used in the UUCP
environment causes a number of serious problems. First, giving out an address is impos-
sible without knowing the address of your potential correspondent. This is typically han-
dled by specifving the address relative to some “well-known” host (e.g., ucbvax or
decvax). Second, it is often difficult to compute the set of addresses to reply to without
some knowledge of the topology of the network. Although it may be easy for a human
being to do this under many circumstances, a program does not have equaily sophisticated
heuristics built in. Third, certain addresses will become painfully and unnecessarily long,
as when a message is routed through many hosts in the USENET. And finally, certain
“‘mixed domain’’ addresses are impossible to parse unambiguously -e.g.,

decvax!ucbvax!lbl-h!user@L BL-CSAM

IRIS Communications Guide Version 1.0

Mail Systems and Addressing in 4.2bsd D-7

might have many possible resolutions, depending on whether the message was first
routed to decvax or to LBL-CSAM.

lo solve this problem, the UUCP syntax would have to be changed to use addresses
rather than routes. For example, the address ‘‘decvax!ucbvaxteric” might be expressed as
“eric@ucbvax.UUCP” (with the hop through decvax implied). This address would itself
be a domain-based address; for example, an address might be of the form:

mark@d.cbosg.btl. UUCP

Hosts outside of Bell Telephone Laboratories would then only need to know how to get to
a designated BTL relay, and the BTL topology would only be maintained inside Bell.

There are three major problems associated with turning UUCP addresses into some-
thing reasonable: detining the namespace, creating and propagating the necessary
software, and building and maintaining the database.

4.1. Defining the Namespace

Putting all UUCP hosts into a tlat namespace (e.g., “...@host. ULCI™") is not prac-
tical for a number of reasons. First, with over 1600 sites alreadv, and (with the increas-
ing availability of inexpensive microcomputers and autodialers) several thousand more
coming within a tew vears, the database update problem is simply intractable if the
namespace is tlat. Second, there are almost certainly name contlicts today. Third, as
the number of sites grow the names become ever less mnemonic.

It seems inevitable that there be some sort of naming authority tor the set of top
level names in the UUCP domain, as unpleasant a possibility as that may seem. It will
simply not be possible to have one host resolving all names. It mav however be possi-
ble to handle this in a tashion similar to that of assigning names of newsgroups in
USENET. However, it will be essential to encourage evervone to become subdomains
ot an existing domain whenever possible - even though this will certainly bruise some
egos. For example, if a new host named “blid” were to be added to the LUCP net-
work, it would probably actually be addressed as *d.bli. GLUCP” (i.e.. as host “d”" in
the pseudo-domain “bli” rather than as host “blid”" in the UUCP domain).

4.2. Creating and Propagating the Software

The sottware required to implement a consistent namespace is relativelv trivial.
T'wo modules are needed. one to handle incoming mail and one to handle outgoing
mail.

The incoming module must be prepared to handle either old or new style
addresses. New-stvie addresses can be passed through unchanged. OId style
addresses must be turned into new style addresses where possible.

The outgoing module is slightly trickier. It must do a database lookup on the
recipient addresses (passed on the command line) to determine what hosts to send the
message to. It those hosts do not accept new-stvle addresses, it must transtorm all
addresses in the header of the message into old stvle using the database lookup.

Both ot these modules are straightforward except for the issue of moditying the
header. It seems prudent to choose one tormat tor the message headers. For a number
ot reasons, Berkeley has elected to use the ARPANET protocols tor message tormats.
However, this protocol is somewhat ditficult to parse.

Cropagation is somewhat more difficult. There are a large number of hosts con-
nected to UUCP that will want to run completely standard systems (for very good rea-
sons). The strategy is not to convert the entire network - only enough ot it it alleviate
the problem.

IRIS Communications Guide Version 1.0

Mail Systems and Addressing in 4.2bsd . D-8

4.3. Building and Maintaining the Database

This is by far the most difficult problem. A prototype for this database already
exists, but it is maintained by hand and does not pretend to be complete.

This problem will be reduced considerably if people choose to group their hosts
into subdomains. This would require a global update only when a new top level
domain joined the network. A message to a host in a subdomain could simply be
routed to a known domain gateway for further processing. For example, the address
““eric®a.bli. UUCP”" might be routed to the “bli"’ gateway for redistribution; new hosts
could be added within BLI without notifying the rest of the world. Of course, other
hosts could be notified as an efficiency measure.

There may be more than one domain gateway. A domain such as BTL, for
instance, might have a dozen gateways to the outside world; a non-BTL site could
choose the closest gateway. The only restriction would be that all gateways maintain a
consistent view of the domain thev represent.

4.4. Logical Structure

Logically, domains are organized into a tree. There need not be a host actually
associated with each level in the tree - for example, there will be no host associated
with the name “UUCP.” Similarly, an organization might group names together for
administrative reasons; for example, the name :

CAD.research.BigCorp.UUCP
might not actually have a host representing ‘‘research.”

However, it may frequently be convenient to have a host or hosts that
“represent” a domain. For example, if a single host exists that represents Berkeley,
then mail from outside Berkeley can forward mail to that host for further resolution
without knowing Berkeley’s (rather volatile) topology. This is not unlike the uperation
of the telephone network.

This may also be useful inside certain large domains. For example, at Berkeley it
may be presumed that most hosts know about other hosts inside the Berkeley domain.
But if they process an address that is unknown, they can pass it “‘upstairs” tor further
examination. Thus as new hosts are added only one host (the domain master) must be
updated immediately; other hosts can be updated as convenient.

Ideally this name resolution process would be performed by a name server (e.g.,
[Su82b]) to avoid unnecessary copying of the message. However, in a batch network
such as UUCP this could result in unnecessary delays.

5. COMPARISON WITH DELIVERMAIL

()

()

Sendmail is an outgrowth ot delivermail. The primary ditterences are:

Configuration information is not compiled in. This change simplifies many of the
problems of moving to other machines. [t also allows easy debugging of new
mailers.

Address parsing is more tlexible. For example, delivermail only supported one gate-
way to any network, whereas sendmail can be sensitive to host names and reroute to
different gateways.

Forwarding and :include: features eliminate the requirement that the system alias file
be writable by any user (or that an update program be written, or that the system
& {ministration make all changes).

Sendmail supports message batching.across networks when a message is being sent
to multiple recipients.

[RIS Communications Guide Version 1.0

Mail Systems and Addressing in 4.2bsd D-9

(5) A mail queue is provided in sendmail. Mail that cannot be delivered immediately but
can potentially be delivered later is stored in this queue for a later retry. The queue
also provides a butfer against svstem crashes; atter the message has been collected it
may be reliably redelivered even if the system crashes during the initial delivery.

(6) Sendmail uses the networking support provided by 4.2BSD to provide a direct inter-
face networks such as the ARPANET and/or Ethernet using SMTP (the Simple Mail
Transter ['rotocol) over a TCP/II’ connection.

[RIS Communications Guide Version 1.0

[Crocker77]

[Crocker82]

[Feinler78]

[Nowitz78]

[Schmidt79]

[Shoens79}]

[Solomon81]

[Su82a]

[Su82b]

REFERENCES

Crocker, D. H., Vittal, J. J., Pogran, K. T., and Henderson, D. A.
Jr., Standard for the Format of ARPA Network Text Messages. RFC
733, NIC 41952. In [Feinler78]. November 1977.

Crocker, D. H., Standard for the Format of Arpa Internet Text Mes-
sages. RFC 822. Network Information Center, SRI International,
Menlo Park, California. August 1982.

Feinler, E., and Postel. |. (eds.), ARPANET Protocol Handbook. NIC
7104, Network Information Center, SRI International, Menlo Park,
California. 1978.

Nowitz, D. A., and Lesk, M. E., A Dial-Up Network of UNIX Sys-
tems. Bell Laboratories. In UNIX Programmer’s Manual, Seventh
Edition, Volume 2. August, 1978.

Schmidt, E., An Introduction to the Berkeley Network. University of
California, Berkeley California. 1979.

Shoens, K., Mail Reference Manual. University of California, Berke-
ley. In UNIX Programmer’s Manual, Seventh Edition, Volume 2C.
December 1979.

Solomon, M., Landweber, L., and Neuhengen, D., The Design of the
CSNET Name Server. CS-DN-2. University of Wisconsin, Madison.
October 1981.

Su, Zaw-Sing, and Postel, Jon, The Domain Naming Convention for
Internet User Applications. RFC819. Network [nformation Center,
SRI [nternational, Menlo Park, California. August 1982.

Su, Zaw-Sing, A Distributed System for Internet Name Service.
RFC830. Network Information Center, SRI International. Menlo
Park, California. October 1982.

Mail Systems and Addressing in 4.2bsd D-10

~ Appendix E: SENDMAIL - An Internetwork Mail Router

Eric Allmant

Britton-Lee, Inc.
1919 Addison Street, Suite 105.
Berkeley, California 94704

ABSTRACT

Routing mail through a heterogenous internet presents many new problems. Among
the worst of these is that of address mapping. Historically, this has been handled on
an ad hoc basis. However, this approach has become unmanageable as internets
grow.

Sendmail acts a unified "post oftice" to which all mail can be submitted. Address in-
terpretation is controlled by a production system, which can parse both domain-
based addressing and old-style ad hoc addresses. The production system is powertul
enough to rewrite addresses in the message header to conform to the standards ot a
number of common target networks, including old (NCP/RFC733) Arpanet, new
(TCP/RFC822) Arpanet, UUCP, and Phonenet. Sendmail also implements an SMTP
server, message queueing, and aliasing.

Sendmail implements a general internetwork mail routing facility, teaturing aliasing and
torwarding, automatic routing to network gateways, and flexible contiguration.

In a simple network, each node has an address, and resources can be identified with a
host-resource pair; in particular, the mail system can refer to users using a host-username
pair. Host names and numbers have to be administered by a central authority, but user-
names can be assigned locally to each host.)

[n an internet, multiple networks with different characterstics and managements must
communicate. In particular, the svntax and semantics of resource identification change. Cer-
tain special cases can be handled trivially by ad hoc techniques, such as providing network
names that appear local to hosts on other networks, as with the Ethernet at Xerox PARC.
However, the general case is extremely complex. For example, some networks require
point-to-point routing, which simplifies the database update problem since only adjacent
hosts must be entered into the system tables, while others use end-to-end addressing. Some
networks use a left-associative syntax and others use a right-associative svntax, causing ambi-
guity in mixed addresses.

[nternet standards seek to eliminate these problems. Initially, these proposed expand-
ing the address pairs to address triples, consisting of {network, host, resource} triples. Net-
work numbers must be universally agreed upon, and hosts can be assigned locally on each
network. The user-level presentation was quickly expanded to address domains, comprised
of a local resource identification and a hierarchical domain specification with a common static
root. The domain technique separates the issue of physical versus logical addressing. For
example, an address of the form ‘‘eric®a.cc.berkeley.arpa” describes only the logical

t.\ considerable part of this work was done while under the employ of the INGRES Project at the Universitv ot
Calitornia at Berkelev.

SENDMAIL - An Internetwork Mail Router E-1

SENDMAIL - An Internetwork Mail Router E-2

organization of the address space.

Sendmail is intended to help bridge the gap between the totally ud hoc world of networks
that know nothing of each other and the clean, tightly-coupled world of unique network
numbers. It can accept old arbitrary address syntaxes, resolving ambiguities using heuristics
specified by the system administrator, as well as domain-based addressing. It helps guide the
conversion of message formats between disparate networks. [n short, sendmail is designed to
assist a graceful transition to consistent internetwork addressing schemes.

Section 1 discusses the design goals for sendmail. Section 2 gives an overview of the
basic tunctions of the system. In section 3, details of usage are discussed. Section 4 com-
pares sendmail to other internet mail routers, and an evaluation, of sendmail is given in section
5, including future plans.

1. DESIGN GOALS
Design goals for sendmail include:

(1) Compatibility with the existing mail programs, including Bell version 6 mail, Bell ver-
sion 7 mail [UNIX83], Berkeley Mail [Shoens79], BerkNet mail [Schmidt79], and
hopetully UUCP mail [Nowitz78a, Nowitz78b]. ARPANET mail [Crocker77a, Pos-
tel77] was also required.

(2) Reliability, in the sense of guaranteeing that every message is correctly delivered or
at least brought to the attention of a human for correct disposal; no message should
ever be completely lost. This goal was considered essential because of the emphasis
on mail in our environment. It has turned out to be one ot the hardest goals to
satisfy, especially in the face ot the many anomalous message formats produced by
various ARPANET sites. For example, certain sites generate improperly formated
addresses, occasionally causing error-message loops. Some hosts use blanks in
names, causing problems with UNIX mail programs that assume that an address is
one word. The semantics of some fields are interpreted slightly differently by dif-
ferent sites. In summary, the obscure features of the ARPANET mail protocol really
are used and are difficult to support, but must be supported.

(3) Existing software to do actual delivery should be used whenever possible. This goal
derives as much from political and practical considerations as technical.

(4) Easy expansion to fairly complex environments, including multiple connections to a
single network type (such as with multiple UUCP or Ether nets [Metcalte76]). This
goal requires consideration of the contents of an address as well as its svntax in
order to determine which gateway to use. For example, the ARPANET is bringing
up the TCP protocol to replace the old NCP protocol. No host at Berkeley runs both
TCP and NCP, so it is necessary to look at the ARPANET host name to determine
whether to route mail to an NCP gateway or a TCP gateway.

(5) Contiguration should not be compiled into the code. A single compiled program
should be able to run as is at any site (barring such basic changes as the CPU type or
the operating system). We have tound this seemingly unimportant goal to be critical
in real life. Besides the simple problems that occur when any program gets recom-
piled in a different environment, many sites like to "“fiddle” with anything that they
will be recompiling anyway.

(6) Sendmail must be able to let various groups maintain their own mailing lists, and let
individuals specity their own forwarding, without moditying the system alias tile.

(7) Each user should be able to specify which mailer to execute to process mail being
delivered for him. This feature allows users who are using specialized mailers that
use a different format to build their environment without changing the svstem, and

IRIS Communications Guide Version 1.0

SENDMAIL - An Internetwork Mail Router E-3

facilitates specialized functions (such as returning an “’I am on vacation” message).

(8) Network traffic should be minimized by batching addresses to a single host where
possible, without assistance from the user.

These goals motivated the architecture illustrated in figure 1. The user interacts with
a mail generating and sending program. When the mail is created, the generator calls
sendmail, which routes the message to the correct mailer(s). Since some of the senders
may be network servers and some of the mailers may be network clients, sendmail may be
used as an internet mail gateway.

2. OVERVIEW

2.1. System Organization

Sendmail neither interfaces with the user nor does actual mail delivery. Rather, it
collects a message generated by a user interface program (UIP) such as Berkeley Mail,
MS [Crocker77b], or MH [Borden79], edits the message as required by the destination
network, and calls appropriate mailers to do mail delivery or queueing for network
transmission'. This discipline allows the insertion of new mailers at minimum cost. In
this sense sendmail resembles the Message Processing Module (MPM) of [Postel79b].

2.2. Interfaces to the Outside World

There are three ways sendmail can communicate with the outside world, both in
receiving and in sending mail. These are using the conventional UNIX argument
vector/return status, speaking SMID over a pair of UNIX pipes, and speaking SMIP

| sender1 | | senderz | | sender3 |
o + + ——
| | |
o ——— + + bemmmcmae——— +
[
v v v
b ——————————— +
| sendmail |
b ————————— +
[
+
| | !
v v v
P e +
| maitler1 | | mailer2 | | maiter3 |

-+

Figure 1 - Sendmail System Structure.

‘except when mailing to a file, when sendmail does the deliverv directly.

[RIS Communications Guide Version 1.0

SENDMAIL - An [nternetwork Mail Router E-4

over an interprocess(or) channel.

2.2.1. Argument vector/exit status

This technique is the standard UNIX method for communicating with the pro-
cess. A list of recipients is sent in the argument vector, and the message body is
sent on the standard input. Anything that the mailer prints is simply collected and
sent back to the sender if there were any problems. The exit status from the mailer
is collected after the message is sent, and a diagnostic is printed it appropriate.

2.2.2. SMTP over pipes

The SMIP protocol [Postel82] can be used to run an interactive lock-step inter-
face with the mailer. A subprocess is still created, but no recipient addresses are
passed to the mailer via the argument list. Instead, they are passed one at a time in
commands sent to the processes standard input. Anything appearing on the stan-
dard output must be a reply code in a special format.

2.2.3. SMTP over an IPC connection

This technique is similar to the previous technique, except that it uses a 4.2bsd
IPC channel [UNIX83]. This method is exceptionally flexible in that the mailer need
not reside on the same machine. It is normally used to connect to a sendmail pro-
cess on another machine. '

2.3. Operational Description

When a sender wants to send a message, it issues a request to sendmail using one
of the three methods described above. Sendmail operates in two distinct phases. [n the
first phase, it collects and stores the message. In the second phase, message delivery
occurs. If there were errors during processing during the second phase, sendmail
creates and returns a new message describing the error and/or returns an status code
telling what went wrong.

2.3.1. Argument processing and address parsing

[f sendmail is called using one of the two subprocess techniques, the arguments
are first scanned and option specifications are processed. Recipient addresses are
then collected, either from the command line or from the SMTP RCPT command,
and a list of recipients is created. Aliases are expanded at this step, including mail-
ing lists. As much validation as possible of the addresses is done at this step: syn-
tax is checked, and local addresses are verified, but detailed checking of host names
and addresses is deferred until delivery. Forwarding is also performed as the local
addresses are verified.

Sendmail appends each address to the recipient list after parsing. When a
name is aliased or forwarded, the old name is retained in the list, and a flag is set
that tells the delivery phase to ignore this recipient. This list is kept free from
duplicates, preventing alias loops and duplicate messages deliverd to the same reci-
pient, as might occur if a person is in two groups.

2.3.2. Message collection

Sendmail then collects the message. The message should have a header at the
beginning. No formatting requirements are imposed on the message except that
they must be lines of text (i.e., binary data is not allowed). The header is parsed
and stored in memory, and the body of the message is saved in a temporary file.

[RIS Communications Guide)) Version 1.0

SENDMALIL - An Internetwork Mail Router E-5

To simplify the program interface, the message is collected even if no
addresses were valid. The message will be returned with an error.

2.3.3. Message delivery

For each unique mailer and host in the recipient list. sendmail calls the
appropriate mailer. Each mailer invocation sends to all users receiving the message
on one host. Mailers that only accept one recipient at a time are handled properly.

The message is sent to the mailer using one of the same three interfaces used
to submit a message to sendmail. Each copy of the message is prepended by a cus-
tomized header. The mailer status code is caught and checked, and a suitable error
message given as appropriate. The exit code must conform to a system standard or
a generic message (“‘Service unavailable’) is given.

2.3.4. Queueing for retransmission

If the mailer returned an status that indicated that it might be able to handle
the mail later, sendmail will queue the mail and try again later.

2.3.5. Return to sender

If errors occur during processing, sendmail returns the message to the sender
for retransmission. The letter can be mailed back or written in the file ‘dead.letter”

in the sender’s home directory?.

2.4. Message Header Editing

Certain editing of the message header occurs automatically. Header lines can be
inserted under control of the configuration file. Some lines can be merged; for exam-
ple, a “From:” line and a “Full-name:” line can be merged under certain cir-
cumstances.

2.5. Configuration File

Almost all configuration intormation is read at runtime from an ASCII file, encod-
ing macro definitions (defining the value of macros used internally), header declara-
tions (telling sendmail the format of header lines that it will process specially, i.e.,
lines that it will add or reformat), mailer definitions (giving information such as the
location and characteristics of each mailer), and address rewriting rules (a limited pro-
duction system to rewrite addresses which is used to parse and rewrite the addresses).

To improve performance when reading the contiguration tile, a memory image
can be provided. This provides a ““compiled” form of the configuration file.

3. USAGE AND IMPLEMENTATION

3.1. Arguments
Arguments may be flags and addresses. Flags set various processing options.
Following flag arguments, address arguments may be given, unless we are running in
SMTP mode. Addresses tollow the syntax in RFC822 [Crocker82] for ARPANET
address formats. In brief, the format is:

*Obviousiv, if the site giving the error is not the originating site, the onlv reasonable option is to mail back to
the ~ender. Also, there are many more error disposition options, but they only cftect the error message - the “re-
turn to sender” tunction is always handled in one of these two wavs.

IRIS Communications Guide Version 1.0

SENDMAIL - An Internetwork Mail Router E-6

(1) Anything in parentheses is thrown away (as a comment).

(2) Anything in angle brackets (< >") is preterred over anvthing else. This rule
implements the ARPANET standard that addresses ot the form

user name < machine-address >

will send to the electronic ‘‘machine-address” rather than the human ‘‘user
name.”’

(3) Double quotes (") quote phrases; backslashes quote characters. Backslashes are
more powerful in that they will cause otherwise equivalent phrases to compare
differently — for example, user and "user" are equivalent, but \user is different
tfrom either of them.

Parentheses, angle brackets, and double quotes must be properly balanced and
nested. The rewriting rules control remaining parsing’.

3.2. Mail to Files and Programs

Files and programs are legitimate message recipients. Files provide archival
storage of messages. useful for project administration and history. Programs are useful
as recipients in a variety of situations, for example, to maintain a public repusitory of
systems messages (such as the Berkeley msgs program, or the MARS system [Satt-
ley78)).

Any address passing through the initial parsing algorithm as a local address (i.e,
not appearing to be a valid address for another mailer) is scanned for two special cases.
If prefixed by a vertical bar (" 1”) the rest of the address is processed as a shell com-
mand. If the user name begins with a slash mark (“/”') the name is used as a file
name, instead of a login name.

Files that have setuid or setgid bits set but no execute bits set have those bits
honored if sendmail is running as root.

3.3. Aliasing, Forwarding, Inclusion

Sendmail reroutes mail three ways. Aliasing applies system wide. Forwarding
allows each user to reroute incoming mail destined for that account. Inclusion directs
sendmail to read a file for a list of addresses, and is normally used in conjunction with
aliasing.

3.3.1. Aliasing

Aliasing maps names to address lists using a system-wide file. This file is
indexed to speed access. Only names that parse as local are allowed as aliases; this
guarantees a unique kev (since there are no nicknames for the local host).

3.3.2. Forwarding

Alter aliasing, recipients that are local and valid are checked for the existence
of a ““.forward” file in their home directory. If it exists, the message is not sent to
that user, but rather to the list of users in that file. Often this list will contain only
one address, and the feature will be used for network mail forwarding.

Forwarding also permits a user to specify a private incoming mailer. For
example, forwarding to:

" | /usrilocal/newmail myname™®

Disclaimer: Some special processing is done after rewriting local names; see below.

[RIS Communications Guide Version 1.0

SENDMAIL - An Internetwork Mail Router E-7

will use a ditferent incoming mailer.

3.3.3. Inclusion
Inclusion is specified in RFC 733 [Crocker77a] syntax:
:Include: pathname

An address of this form reads the file specified by pathname and sends to all users
listed in that file.

The intent is not to support direct use of this feature, but rather to use this as a
subset of aliasing. For example, an alias of the form:

project: :include:/usr/project/userlist

is a method of letting a project maintain a mailing list without interaction with the
system administration, even if the alias file is protected.

It is not necessary to rebuild the index on the alias database when a :include:
list is changed.

3.4. Message Collection

Once all recipient addresses are parsed and verified, the message is collected.
The message comes in two parts: a message header and a message body, separated by
a blank line.

The header is formatted as a series of lines of the form
field-name: field-value
Field-value can be split across lines by starting the following lines with a space or a
tab. Some header fields have special internal meaning, and have appropriate special

processing. Other headers are simply passed through. Some header fields may be
added automatically, such as time stamps.

The body is a series of text lines. [t is completely uninterpreted and untouched,
except that lines beginning with a dot have the dot doubled when transmitted over an
SMTP channel. This extra dot is stripped by the receiver.

3.5. Message Delivery

The send queue is ordered by receiving host before transmission to implement
message batching. Each address is marked as it is sent so rescanning the list is safe.
An argument list is built as the scan proceeds. Mail to files is detected during the scan
of the send list. The interface to the mailer is performed using one of the techniques
described in section 2.2.

After a connection is established, sendmail makes the per-mailer changes to the
header and sends the result to the mailer. [f anv mail is rejected by the mailer, a tlag is
set to invoke the return-to-sender function after all delivery completes.

3.6. Queued Messages

If the mailer returns a “temporary failure’ exit status, the message is queued. A
control file is used to describe the recipients to be sent to and various other parame-
ters. This control file is tormatted as a series of lines, each describing a sender, a reci-
pient, the time of submission, or some other salient parameter of the message. The
header of the message is stored in the control file, so that the associated data file in the
queue is just the temporary ftile that was originally collected.

IRIS Communications Guide Version 1.0

SENDMAIL - An Internetwork Mail Router E-8

3.7. Configuration

Configuration is controlled primarily by a contiguration file read at startup. Send-
mail should not need to be recomplied except

(1) To change operating systems (V6, V7/32V, 4BSD).

(2) To remove or insert the DBM (UNIX database) library.
(3) To change ARPAN ET reply codes. '

(4) To add headers fields requiring special processing.

Adding mailers or changing parsing (i.e., rewriting) or routing information does not
require recompilation.

If the mail is being sent by a local user, and the file mailcf” exists in the
sender’s home directory, that file is read as a configuration file after the system confi-
guration file. The primary use of this feature is to add header lines.

The configuration file encodes macro definitions, header definitions, mailer defin-
itions, rewriting rules, and options.

3.7.1. Macros

Macros can be used in three ways. Certain macros transmit unstructured tex-
tual information into the mail system, such as the name sendmail will use to identify
itself in error messages. Other macros transmit information from sendmail to the
contiguration file for use in creating other fields (such as argument vectors to
mailers); e.g., the name of the sender, and the host and user of the recipient. Other
macros are unused internally, and can be used as shorthand in the configuration
file.

3.7.2. Header declarations

Header declarations inform sendmail of the tormat of known header lines.
Knowledge of a few header lines is built into sendmail, such as the “‘From:” and
“Date:"" lines.

Most configured headers will be automatically inserted in the outgoing mes-
sage it they don't exist in the incoming message. Certain headers are suppressed
by some mailers.

3.7.3. Mailer declarations

Mailer declarations tell sendmail of the various mailers available to it. The
definition specifies the internal name of the mailer, the pathname of the program to
call, some flags associated with the mailer, and an argument vector to be used on
the call; this vector is macro-expanded before use.

3.7.4. Address rewriting rules

The heart of address parsing in sendmail is a set of rewriting rules. These are
an ordered list of pattern-replacement rules, (somewhat like a production system,
except that order is critical), which are applied to each address. The address is
rewritten textually until it is either rewritten into a special canonical form (i.e., a
(mailer, host, user) 3-tuple, such as {arpanet, usc-isif, postel} representing the
address “‘postel@usc-isif’’), oc it falls off the end. When a pattern matches, the rule
is reapplied until it fails.

The contiguration file also supports the editing of addresses into different for-
mats. For example, an address ot the torm:

IRIS Communications Guide Version 1.0

SENDMAIL - An Internetwork Mail Router E-9

ucstcgl!tet

might be mapped into:

tef@ucsfcgl. UUCP

to conform to the domain syntax. Translations can also be done in the other direc-
tion.

3.7.5. Option setting

There are several options that can be set from the configuration file. These

include the pathnames of various support files, timeouts, default modes, etc.

4. COMPARISON WITH OTHER MAILERS

4.1. Delivermail

1)

6)

Sendmail is an outgrowth of delivermail. The primary differences are:

Configuration information is not compiled in. This change simplifies many of the
problems of moving to other machines. It also allows easy debugging of new
mailers.

Address parsing is more flexible. For example, delivermail only supported one
gateway to any network, whereas sendmail can be sensitive to host names and
reroute to different gatewavs.

Forwarding and :include: features eliminate the requirement that the system alias
file be writable by any user (or that an update program be written, or that the sys-
tem administration make all changes).

Sendmail supports message batching across networks when a message is*being
sent to multiple recipients.

A mail queue is provided in sendmail. Mail that cannot be delivered immediately
but can potentially be delivered later is stored in this queue for a later retry. The
queue also provides a buffer against system crashes; after the message has been
collected it may be reliably redelivered even if the system crashes during the ini-
tial delivery.

Sendmail uses the networking support provided by 4.2BSD to provide a direct
interface networks such as the ARPANET and/or Ethernet using SMIP (the Sim-
ple Mail Transter Protocol) over a TCP/IP connection.

+4.2. MMDF

MMDF [Crocker79] spans a wider problem set than semimail. For example, the

domain of MMDF includes a ““phone network’ mailer, whereas sendmail calls on preex-
isting mailers in most cases.

MMDF and sendmail both support aliasing, customized mailers, message batching,

automatic forwarding to gateways, queueing, and retransmission. MMDEF supports
two-stage timeout, which sendmail does not support.

The configuration tor MMDF is compiled into the code®.
Since MMDF does not consider backwards compatibility as a design goal, the

address parsing is simpler but much less flexible.

Dynamic configuration tables are currently being considered for MMDF; allowing the installer to sclect erther
vomgztied or dvnamic tables.

[RIS Communications Guide Version 1.0

SENDMAIL - An Internetwork Mail Router : E-10

It is somewhat harder to integrate a new channel® into MMDEF. In particular,
MMDF must know the location and format of host tables for all channels, and the
channel must speak a special protocol. This allows MMDF to do additional verification
(such as verifying host names) at submission time.

MMDEF strictly separates the submission and delivery phases. Although sendmail
has the concept of each of these stages, they are integrated into one program, whereas
in MMDF they are split into two programs. .

4.3. Message Processing Module

The Message Processing Module (MPM) discussed by Postel [Postel79b] matches
sendmail closely in terms of its basic architecture. However, like MMDF, the MPM
includes the network interface software as part of its domain.

MPM also postulates a duplex channel to the receiver, as does MMDF, thus
allowing simpler handling of errors by the mailer than is possible in sendmail. When a
message queued by sendmuil is sent, any errors must be returned to the sender by the
mailer itself. Both MPM and MMDF mailers can return an immediate error response,
and a single error processor can create an appropriate response.

MPM prefers passing the message as a structured object, with type-length-value
tuples®. Such a convention requires a much higher degree of cooperation between
mailers than is required by sendmail. MPM also assumes a universally agreed upon
internet name space (with each address in the form of a net-host-user tuple), which
sendmail does not.

5. EVALUATIONS AND FUTURE PLANS

Sendmail is designed to work in a nonhomogeneous environment. Every attempt is
made to avoid imposing unnecessary constraints on the underlying mailers. This goal has
driven much of the design. One of the major problems has been the lack of a uniform
address space, as postulated in [Postel79a] and [Postel79b].

A nonuniform address space implies that a path will be specified in all addresses,
either explicitly (as part of the address) or implicitly (as with implied forwarding to gate-
ways). This restriction has the unpleasant etfect ot making replying to messages exceed-
ingly ditticult, since there is no one ““address” for any person, but only a way to get there
from wherever vou are.

Interfacing to mail programs that were not initially intended to be applied in an inter-
net environment has been amazingly successtul, and has reduced the job to a manageable
task.

Sendmail has knowledge of a tew difficult environments built in. [t generates
ARPANET FTP/SMTP compatible error messages (prepended with three-digit numbers
[Neigus73, Postel74, Postel82]) as necessary, optionally generates UNIX-stvle “From” lines
on the front of messages for some mailers, and knows how to parse the same lines on
input. Also, error handling has an option customized for BerkNet.

The decision to avoid doing any type ot delivery where possible {even, or perhaps
especially, local delivery) has turned out to be a good idea. Even with local delivery, there
are issues of the location of the mailbox, the tormat of the mailbox, the locking protocol
used, etc., that are best decided by other programs. One surprisingly major annoyance in
many internet mailers is that the location and format of local mail is built in. The feeling
seems to be that local mail is so common that it should be efficient. This feeling is not

The MMUDE equivalent of a sendmad ' mailer.”
This is ~imiiar to the NBS standard.

[RIS Communications Guide Version 1.0

SENDMAIL - An Internetwork Mail Router E-11

born out by cur experience; on the contrary, the location and format of mailboxes seems to
vary widely from system to system.

The ability to automatically generate a response to incoming mail (by forwarding
mail to a program) seems useful ("I am on vacation until late August....””) but can create
problems such as forwarding loops (two people on vacation whose programs send notes
back and forth, for instance) if these programs are not well written. A program could be
written to do standard tasks correctly, but this would solve the general case.

It might be desirable to implement some form of load limiting. I am unaware of any
mail system that addresses this problem, nor am [aware of any reasonable solution at this
time.

The configuration file is currently practically inscrutable; considerable convenience
could be realized with a higher-level format.

It seems clear that common protocols will be changing soon to accommodate chang-
ing requirements and environments. These changes will include modifications to the mes-
sage header (e.g., [NBS80]) or to the body of the message itself (such as tor multimedia
messages [Postel80]). Experience indicates that these changes should be relatively trivial
to integrate into the existing system.

In tightly coupled environments, it would be nice to have a name server such as
Grapvine [Birrell82] integrated into the mail system. This would allow a site such as
“‘Berkeley”” to appear as a single host, rather than as a collection of hosts, and would allow
people to move transparently among machines without having to change their addresses.
Such a facility would require an automatically updated database and some method of
resolving conflicts. Ideally this would be effective even without all hosts being under a
single management. However, it is not clear whether this feature should be integrated
into the aliasing facility or should be considered a “'value added” feature outside sendmail
itself.

As a more interesting case, the CSNET name server [Solomon81] provides an facility
that goes beyond a single tightly-coupled environment. Such a facility would normally
exist outside of sendmail however.

ACKNOWLEDGEMENTS

Thanks are due to Kurt Shoens for his continual cheerful assistance and good advice, Bill
Joy for pointing me in the correct direction (over and over), and Mark Horton for more advice,
prodding, and many of the good ideas. Kurt and Eric Schmidt are to be credited for using
delivermail as a server for their programs (Mail and BerkNet respectively) before any sane per-
son should have, and making the necessary moditications promptly and happily. Eric gave
me considerable advice about the perils of network software which saved me an unknown
amount of work and grief. Mark did the original implementation of the DBM version ot alias-
ing, installed the VFORK code, wrote the current version ot rmail, and was the person who
really convinced me to put the work into delivermaid to turn it into serdmail. Kurt deserves
accolades for using sendmail when [was myselt atraid to take the risk; how a person can con-
tinue to be so enthusiastic in the face of so much bitter reality is beyond me.

Kurt, Marck, Kirk McKusick, Marvin Solomon. and many others have reviewed this
paper. giving considerable useful advice.

Special thanks are reserved for Mike Stonebraker at Berkeley and Bob Epstein at Britton-
Lee, who both knowingly allowed me to put so much work into this project when there were
30 many other things I really should have been working on.

IRIS Communications Guide Version 1.0

[Birrell82]

[Borden79]

[Crocker77a])

[Crocker77b]

[Crocker79]

[Crocker82]

[Metcalte76]

[Feinler78]

[NBS80]
[Neigus73]
[Nowitz78a]

[Nowitz78b]

[Postel7+4]

[Postel77)

[Postel79a)

[Postel79b]

[Postel0]

REFERENCES

Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D.,
“Grapevine: An Exercise in Distributed Computing.” In Comm.
A.C.M. 25, 4, April 82.

Borden, S., Gaines, R. S., and Shapiro, N. Z., The MH Mssage Han-
dling System: Users’ Manual. R-2367-PAF. Rand Corporation. October
1979.

Crocker, D. H., Vittal, |. J., Pogran, K. T., and Henderson, D. A. Jr.,
Standard for the Format of ARPA Network Text Messages. RFC 733, NIC
41952. In [Feinler78]. November 1977.

Crocker, D. H., Framework and Functions of the MS Personal Message Sys-
tem. R-2134-ARPA, Rand Corporation, Santa Monica, California.
1977.

Crocker, D. H., Szurkowski, E. S.. and Farber, D. J., An [nternetwork
Memo Distribution Facility - MMDE. 6th Data Communication Sympo-
sium, Asilomar. November 1979.

Crocker, D. H., Standard for the Format of Arpa Internet [ext Messages.
RFC 822. Network Information Center, SRI International, Menle Park,
California. August 1982.

Metcalfe, R., and Boggs, D., “‘Ethernet: Distributed Packet Switching
for Local Computer Networks”, Communications of the ACM 19, 7. July
1976.

Feinler, E., and Postel, J. (eds.), ARPANET Protocol Handbook. NIC
7104, Network Information Center, SRI International, Menlo Park,
California. 1978.

National Bureau of Standards, Specification ot a Dratt Message Format
Standard. Report No. ICST/CBOS 80-2. October 1980.

Neigus, N., File Transfer Protocol for the ARPA Network. RFC 542, NIC
17759. In [Feinler78]. August, 1973.

Nowitz, D. A., and Lesk, M. E., A Dial-Up Network ot UNIX Systems.
Bell Laboratories. In UNIX Programmer's Manual, Seventh Edition,
Volume 2. August, 1978. .

Nowitz, D. A., Uucp Implementation Description. Bell Laboratories. In
UNIX Programmer's Manual. Seventh Edition, Volume 2. October,
1978.

Postel, J., and Neigus, N., Revised FTP Reply Codes. RFC 640, NIC
30843. In [Feinler78]. June, 1974.

Postel, J., Mail Protocol. NIC 29588. In [Feinler78]. November 1977.

Postel, J., Internet Message Protocol. RFC 753, IEN 85. Network Infor-
mation Center, SRI International, Menlo Park, California. March 1979.

Postel,]. B., An Internctwork Message Structure. In Proceedings of the
Sixth Data Communications Symposium, [EEE. New York. November
1979.

Postel, |. B., A Structured Format for Transmission of Multi-Media Docu-
ments. REC 767. Network Information Center, SRI (nternational.

SENDMAIL - An [nternetwork Mail Router E-12

SENDMAIL - An Internetwork Mail Router : E-13

[Postel82]

[Schmidt79]

[Shoens79]

[Sluizer81)

[Solomon81]

[Su82]

[UNIX83]

Menlo Park, California. August 1980.

Postel, J. B., Simple Mail Transfer Protocol. RFC821 (obsoleting
RFC788). Network Information Center, SRI International, Menlo Park,
California. August 1982.

Schmidt, E., An Introduction to the Berkeley Network. University of Cali-
fornia, Berkeley California. 1979.)

Shoens, K., Mail Reference Manual. University of California, Berkeley.
In UNIX Programmer's Manual, Seventh Edition, Volume 2C.
December 1979.

Sluizer, S., and Postel, J. B., Mail Transfer Protocol. RFC 780. Network
Information Center, SRI International, Menlo Park, California. Mav
1981.

Solomon, M., Landweber, L., and Neuhengen, D., “The Design of the
CSNET Name Server.” CS-DN-2, University of Wisconsin, Madison.
November 1981.

Su, Zaw-Sing, and Postel, Jon, The Domain Naming Convention for Inter-
net User Applications. RFC819. Network Information Center, SRI
International, Menlo Park, California. August 1982.

The UNIX Programmer’'s Manual, Seventh Edition, Virtual VAX-11 Ver-
sion, Volume 1. Bell Laboratories, moditied by the University of Cali-
fornia, Berkeley, California. March, 1983.

IRIS Communications Guide Version 1.0

Appendix F: Sendmail Installation and Operation Guide

Eric Allman
Britton-Lee, Inc.

Version 5.1

Sendmail implements a general purpose internetwork mail routing facility under the
UNIX* operating system. It is not tied to any one transport protocol - its function may be
likened to a crossbar switch, relaying messages from one domain into another. In the pro-
cess, it can do a limited amount of message header editing to put the message into a format
that is appropriate for the receiving domain. All of this is done under the control of a confi-
guration file.

Due to the requirements of flexibility for sendmail, the contiguration file can seem some-
what unapproachable. However, there are only a few basic configurations for most sites, for
which standard configuration files have been supplied. Most other configurations can be built
by adjusting an existing configuration files incrementally.

Although sendmail is intended to run without the need for monitoring, it has a number
of features that may be used to monitor or adjust the operation under unusual circumstances.
These features are described. - .

Section one describes how to do a basic sendmail installation. Section two explains the
day-to-day information you should know to maintain your mail system. If vou have a rela-
tively normal site, these two sections should contain sufficient information for you to install
sendmail and keep it happy. Section three describes some parameters that may be safely
tweaked. Section four has information regarding the command line arguments. Section five
contains the nitty-gritty information about the configuration file. This section is for maso-
chists and people who must write their own configuration file. The appendixes give a brief
but detailed explanation of a number of features not described in the rest of the paper.

The references in this paper are actually found in the companion paper Sendmail -~ An
Internetwork Mail Router. This other paper should be read before this manual to gain a basic
understanding of how the pieces fit together.

1. BASIC INSTALLATION

There are two basic steps to installing sendmail. The hard part is to build the confi-
guration table. This is a file that sendmail reads when it starts up that describes the
mailers it knows about, how to parse addresses, how to rewrite the message header, and
the settings of various options. Although the configuration table is quite complex, a confi-
guration can usually be built by adjusting an existing off-the-shelf configuration. The
second part is actually doing the installation, i.e., creating the necessaryv files, etc.

The remainder of this section will describe the installation of sendmail assuming you

can use one of the existing configurations and that the standard installation parameters are
acceptable. All pathnames and examples are given from the root of the sendmail subtree.

“UNIX is a trademark of Bell Laboratorics.

Sendmail Instailation and Operation Guide F-1

Sendmail Installation and Operation Guide F-2

1.1. Off-The-Shelf Configurations

The configuration files are all in the subdirectory cf of the sendmail directory. The
ones used at Berkeley are in m4(1) format; files with names ending ‘.m4" are m4
include files. while files with names ending “.mc” are the master files. Files with
names ending “.cf’ are the m4 processed versions of the corresponding “'.mc”" file.

Two off the shelf configuration files are supplied to handle the basic cases:
cHlarpaproto.cf for Acpanet (TCP) sites and cffuucpproto.cf tor UUCP sites. These are not
in m4 format. The file you need should be copied to a file with the same name as your
system, e.g.,

cp uucpproto.cf ucstcgl.ct
This file is now ready for installation as usr:liblsendmail .cf.

1.2. Installation Using the Makefile

A makefile exists in the root of the sendmail directory that will do all of these steps
for a 4.2bsd system. It may have to be slightly tailored for use on other systems.

Before using this makefile, you should already have created your configuration
file and left it in the file “cf/system.cf’” where system is the name of your system (i.e.,
what is returned by hostname (1)). If you do not have hostname you can use the declara-
“tion “HOST=system” on the make(1) command line. You should also examine the file
mdiconfig.m4 and change the md macros there to reflect any libraries and compilation flags you
may need.
The basic installation procedure is to type:
make
makeinstall
in the root directory of the sendmail distribution. This will make all binaries and install

them in the standard places. The second make command must be executed as the
superuser (root).

1.3. Installation by Hand
Along with building a configuration file, vou will have to install the sendmail
startup into your UNIX system. If you are doing this installation in conjunction with a
regular Berkeley UNIX install, these steps will already be complete. Many of these
steps will have to be executed as the superuser (root).

1.3.1. lib/libsys.a

The library in lib/libsys.a contains some routines that should in some sense be
part of the system library. These are the system logging routines and the new
directory access routines (if required). If you are not running the new 1.2bsd direc-
tory code and do not have the compatibility routines installed in your system
library, you should execute the commands:

od lib

make ndir
This will compile and install the 4.2 compatibility routines in the library. You
should then type:

cd lib # if required

make

This will recompile and fill the library.

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-3

1.3.2. /usr/lib/sendmail

The binary for sendmail is located in /usr/lib. There is a version available in
the source directory that is probably inadequate for your system. ‘You should plan
on recompiling and installing the entire system:

cd src

rm -f *.0

make

cp sendmail /usr/lib

1.3.3. /usr/lib/sendmail.cf

The configuration file that you created earlier should be installed in
fusr/lib/sendmail. cf:

cp ct/system.cf /usr/lib/sendmail.cf

1.3.4. /usrfucb/newaliases
If you are running deliverrail, it is critical that the newaliasses command be
replaced. This can just be a link to sendmail:

rm —f /usr/ucb/newaliases
In /usr/lib/sendmail /ust/ucb/newaliases

1.3.5. /usr/spool/mqueue

The directory /usrispool/mqueue should be created to hold the mail queue. This
directory should be mode 777 unless sendmail is cun setuid, when mgueue should be
owned by the sendmail owner and mode 755.

1.3.6. /usr/lib/aliases*

The system aliases are held in three files. The file “/ust/libialiases” is the mas-
ter copy. A sample is given in “lib/aliases” which includes some aliases which must
be defined:

cp lib/aliases /ust/lib/aliases
You should extend this file with any aliases that are apropos to your system.

Normally sendmail looks at a version of these files maintained by the dbm (3)
routines. These are stored in "“/ust/lib/aliases.dir” and ‘‘/usr/lib/aliases.pag.” These
can initially be created as empty files, but they will have to be initialized promptly.
These should be mode 666 if vou are running a reasonably relaxed system:

cp /dev/null /usr/lib/aliases.dir
cp /dev/null /usr/lib/aliases. pag
chmod 666 /usr/lib/aliases.*
newaliases

1.3.7. /usr/lib/sendmail.fc

If you intend to install the frozen version of the configuration file (for quick
startup) you should create the file /usrlib/sendmail.fc and initialize it. This step
may be safely skipped.

¢p ‘dev/null /usr/lib/sendmail.fc
usr/lib/sendmail -bz

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F4

1.3.8. /etc/rc

It will be necessary to start up the sendmail daemon when your system
reboots. . This daemon performs two functions: it listens on the SMTP socket for
connections (to receive mail from a remote system) and it processes the queue
periodically to insure that mail gets delivered when hosts come up.

Add the following lines to “’etc/rc” (or “/etc/rc.local” as appropriate) in the
area where it is starting up the daemons:
if [-f /usr/lib/sendmail |; then
(cd fust/spool/mqueue; rm —f [Inx}f*)
/ust/lib/sendmail -bd -q30m &
echo —n’ sendmail’ >/dev:console
fi
The “cd” and “rm” commands insure that all lock files have been removed;
extraneous lock files may be left around if the system goes down in the middle of
processing a message. The line that actually invokes sendmail has two tlags: “‘~bd”
causes it to listen on the SMTP port, and “~q30m’’ causes it to run the queue every
half hour.

If you are not running a version of UNIX that supports Berkeley TCP/IP, do
not include the -bd tlag.

1.3.9. /usr/lib/sendmail.hf

This is the help file used by the SMTP HELP command. It should be copied
from “lib/sendmail.ht"":

cp lib/sendmail.hf /ust/lib

1.3.10. /usr/lib/sendmail.st

If vou wish to collect statistics about your mail traffic, you should create the
file “/ust/lib/sendmail.st’":
cp /dev/null /ust/lib/sendmail.st
chmod 666 /usr/lib/sendmail.st

This file does not grow. It is printed with the program “‘aux/mailstats.”

1.3.11. /etc/syslog

You may want to run the syslog program (to collect log information about
sendmail). This program normally resides in ietc/syslog, with support files
‘etcisyslog.conf and Jetc/syslog.pid. The program is located in the aux subdirectory of
the sendmail distribution. The file ctc/suslog.cont describes the file(s) that sendmail
will log in. For a complete description of svslog, see the manual page for syslog (8)
(located in sendmail/doc on the distribution).

1.3.12. /usr/ucb/newaliases

i€ sendmail is invoked as “‘newaliases,” it will simulate the -bi flag (i.e., will
rebuild the alias database; see below). This should be a link to /ust/lib/sendmail.

1.3.13. /usr/ucb/mailq

If sendmail is invoked as “mailg,” it will simulate the -bp flag (i.e., sendmail
will print the contents of the mail queue; see below). This should be a link to
ustlib/sendmail.

IRIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-5

2. NORMAL OPERATIONS

2.1. Quick Configuration Startup
A fast version of the configuration file may be set up by using the -bz tlag:
/usr/lib/sendmail -bz

This creates the file /usr/lib/sendmail. f (“’frozen configuration”’). This file is an image of
serumail’'s data space after reading in the configuration file. If this file exists, it is used
instead of /usrilib/sendmail.cf sendmail. fc must be rebuilt manually every time sendmail .cf
is changed.

The frozen configuration file will be ignored if a ~C flag is specitied or if sendmail
detects that it is out of date. However, the heuristics are not strong so this should not
be trusted.

2.2. The System Log
The system log is supported by the syslog(8) program.

2.2.1. Format

Each line in the system log consists of a timestamp, the name of the machine
that generated it (for logging from several machines over the ethernet), the word
“sendmail:”, and a message.

2.2.2. Levels

If you have sysiog(8) or an equivalent installed, you will be able to do logging.
There is a large amount of information that can be logged. The log is arranged as a
succession of levels. At the lowest level only extremely strange situations are
logged. At the highest level, even the most mundane and uninteresting events are
recorded for posterity. As a convention, log levels under ten are considered “‘use-
ful;”” log levels above ten are usually for debugging purposes.

A complete description of the log levels is given in section 4.3.

2.3. The Mail Queue

The mail queue should be processed transparently. However, you may find that
manual intervention is sometimes necessary. For example, if a major host is down for
a period of time the queue may become clogged. Although sendmail ought to recover
gracetully when the host comes up, you may find performance unacceptably bad in the
meantime.

2.3.1. Printing the queue
The contents of the queue can be printed using the maily command (or by
specifying the -bp flag to sendmail):
mailq
This will produce a listing of the queue id’s, the size of the message, the date the
message entered the queue, and the sender and recipients.

2.3.2. Format of queue files

All queue files have the form x fAA99999 where AA99999 is the id for this file
and the x is a type. The types are:

d The data tile. The message body (excluding the header) is kept in this file.

IRIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-6

The lock file. [f this file exists, the job is currently being processed, and a
queue run will not process the file. For that reason, an extraneous If file can
cause a job to apparently disappear (it will not even time out!).

This file is created when an id is being created. It is a separate file to insure
that no mail can ever be destroved due to a race condition. It should exist for
no more than a few milliseconds at any given time.

The queue control file. This file contains the information necessary to process
the job.

A temporary file. These are an image ot the qf file when it is being rebuilt. It
should be renamed to a qf file very quickly.

A transcript file, existing during the life of a session showing everything that
happens during that session.

The qf file is structured as a series of lines each beginning with a code letter.

The lines are as tollows:

D The name of the data file. There may only be one of these lines.

H A header definition. There may be any number of these lines. The order is
important: they represent the order in the final message. These use the same
syntax as header detinitions in the configuration file.

R A recipient address. This will normally be completely aliased, but is actually
realiased when the job is processed. There will be one line for each recipient.

S The sender address. There may only be one of these lines.

T The job creation time. This is used to compute when to time out the job.

P The current message priority. This is used to order the queue. Higher
numbers mean lower priorities. The priority increases as the message sits in
the queue. The initial priority depends on the message class and the size of
the message.

M A message. This line is printed by the mailg command, and is generally used
to store status information. It can contain any text.

As an example, the following is a queue file sent to “mckusick@calder” and

“waj’:

DdfA13557

Seric

T404261372

P132
Rmckusick@calder
Rwnj

H?D?date: 23-Oct-82 15:49:32-PDT (Sat)
H?F?from: eric (Eric Allman)
H?x?full-name: Eric Allman
Hsubject: this is an example message
Hmessage-id: <8209232249. 13557 @UCBARPA.BERKELEY.ARPA >
Hreceived: by UCBARPA.BERKELEY.ARPA (3.227 [10722/82])
id A13557; 23-Oct-82 15:49:32-PDT (Sat)
Hphone: (415) 548-3211
HTo: mckusick@calder, wnj

This shows the name of the data tile, the person who sent the message, the submis-
sion time (in seconds since January 1, 1970), the message priority, the message
class, the recipients, and the headers for the message.

IRIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-7

2.3.3. Forcing the queue

Sendmail should run the queue automaticaily at intervals. The algorithm is to
read and sort the queue, and then to attempt to process all jobs in order. When it
attempts to run the job, sendmail first checks to see if the job is locked. If so, it
ignores the job.

There is no attempt to insure that only one queue processor exists at any time,
since there is no guarantee that a job cannot take forever to process. Due to the
locking algorithm, it is impossible for one job to freeze the queue. However, an
uncooperative recipient host or a program recipient that never returns can accumu-
late many processes in vour system. Untortunately, there is no way to resolve this
without violating the protocol.

In some cases, you may find that a major host going down for a couple of
days may create a prohibitively large queue. This will result in sendmail spending
an inordinate amount of time sorting the queue. This situation can be fixed by
moving the queue to a temporary place and creating a new queue. The old queue
can be run later when the offending host returns to service.

To do this, it is acceptable to move the entire queue directory:

cd /usr/spool
mv mqueue omqueue; mkdir mqueue; chmod 777 mqueue

You should then kill the existing daemon (since it will still be processing in the old
queue directory) and create a new daemon.

To run the old mail queue, run the following command:
/ust/lib/sendmail —0Q/ust/spool/omqueue —q

The -0Q flag specifies an alternate queue directory and the -q flag says to just run
every job in the queue. If you have a tendency toward voyeurism, vou can use the
-v flag to watch what is going on.

When the queue is finally emptied, you can remove the directory:
rmdir /ust/spool/omqueue

2.4. The Alias Database

The alias database exists in two torms. One is a text form, maintained in the file
‘usriliblaliases. The aliases are of the form

name: namel, name2, ...
Only local names may be aliased; e.g.,
eric@mit-xx: eric@berkeley
will not have the desired etfect. Aliases may be continued by starting any continuation

lines with a space or a tab. Blank lines and lines beginning with a sharp sign (“'#") are
comments.

The second form is processed by the dbm(3) library. This form is in the files
‘usriliblaliases.dir and /usr/libjaliases.pug. This is the form that semdmail actually uses to
resolve aliases. This technique is used to improve performance.

2.4.1. Rebuilding the alias database

The DBM version of the database may be rebuilt explicitly by executing the
command

newaliases

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide E-8

This is equivalent to giving sendmail the ~bi flag:
{usr/lib/sendmail —bi

If the “D” option is specified in the contiguration, sendmail will rebuild the
alias database automatically if possible when it is out of date. The conditions under
which it will do this are:

(1) The DBM version of the database is mode 666. -or-
(2) Sendmail is running setuid to root.

Auto-rebuild can be dangerous on heavily loaded machines with large alias files; if
it might take more than five minutes to rebuild the database, there is a chance that
several processes will start the rebuild process simultaneously.

2.4.2. Potential problems

There are a number ot problems that can occur with the alias database. They
all result from a sendmail process accessing the DBM version while it is only par-
tially built. This can happen under two circumstances: One process accesses the
database while another process is rebuilding it, or the process rebuilding the data-
base dies (due to being killed or a system crash) before completing the rebuild.

Sendmail has two techniques to try to relieve these problems. First, it ignores
interrupts while rebuilding the database; this avoids the problem of someone abort-
ing the process leaving a partially rebuilt database. Second, at the end of the
rebuild it adds an alias ot the torm

a: Qe
(which is not normally legal). Betore sendmail will access the database, it checks to
insure that this entry exists'. Sendmail will wait for this entry to appear, at which
point it will force a rebuild itselt’.

2.4.3. List owners

e rr

If an error occurs on sending to a certain address, say “x”, sendmail will look
for an alias of the form “owner-x"’ to receive the errors. This is tupically useful for a
mailing list where the submitter of the list has no control over the maintanence of the list
itself: in this case the list maintainer would be the owner of the list. For example:

unix-wizards: eric@ucbarpa, wnj@monet, nosuchuser,
sam@matisse
owner-unix-wizards: ericQucharpa
would cause “eric@ucbarpa’” to get the error that will occur when someone sends to unix-
wizards due to the inclusion ot “nosuchuser” on the list.

2.5. Per-User Forwarding (.forward Files)

As an alternative to the alias database, anv user may put a file with the name
“forward” in his or her home directorv. [f this file exists, sendmail redirects mail for
that user to the list of addresses listed in the .forward file. For example, it the home
directory for user “‘mckusick”” has a .forward file with contents:

“The "4 opton is required in the configuration for this action to vccur. This should normally be specified un-
less vou are running defivermail in parallel with sendmail.

“Note: the "D” option must be specified in the conriguration rile for this operation to occur. [t the “O” aption
1s not specitied, o warning message is generated and sendmail continues.

[RIS Communications Guide Version 1.0

P

Sendmail Installation and Operation Guide : F-9

mckusick@ernie
kirk@calder

then any mail arriving for “mckusick” will be redirected to the specified accounts.

2.6. Special Header Lines

Several header lines have special interpretations defined by the configuration file.
Others have interpretations built into sendmail that cannot be changed without chang-
ing the code. These builtins are described here.

2.6.1. Return-Receipt-To:

If this header is sent, a message will be sent to any specified addresses when
the final delivery is complete. if the mailer has the 1 flag (local delivery) set in the
mailer descriptor.

2.6.2. Errors-To:

If errors occur anywhere during processing, this header will cause error mes-
sages to go to the listed addresses rather than to the sender. This is intended for
mailing lists.

2.6.3. Apparently-To:

If a message comes in with no recipients listed in the message (in a To:, Cc:,
or Bec: line) then sendmail will add an “Apparently-To:” header line for any reci-
pients it is aware of. This is not put in as a standard recipient line to warn any reci-
pients that the list is not complete.

At least one recipient line is required under RFC 822.

3. ARGUMENTS

The complete list of arguments to sendnuil is described in detail in Appendix A.
Some important arguments are described here.

3.1. Queue Interval

The amount of time between forking a process to run through the queue is
defined by the —q flag. [f vou run in mode f or a this can be relatively large, since it
will only be relevant when a host that was down comes back up. If vou run in q mode
it should be relatively short, since it defines the maximum amount of time that a mes-
sage may sit in the queue.

3.2. Daemon Mode

If you allow incoming mail over an IPC connection, vou should have a daemon
running. This should be set by your /etcirc file using the -bd flag. The -bd flag and
the —q tlag may be combined in one call:

-usr/lib/sendmail -bd -¢30m

3.3. Forcing the Queue

In some cases you may find that the queue has gotten clogged for some reason.
Yuu can force a queue run using the —q tlag (with no value). It is entertaining to use
the -v flag (verbose) when this is done to watch what happens:

usrilib/sendmail —q -v

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-10

3.4. Debugging

There are a fairly large number of debug tlags built into semdmail. Each debug flag
has a number and a level, where higher levels means to print out more information.
The convention is that levels greater than nine are “‘absurd,” i.e., they print out so
much information that you wouldn’t normally want to see them except for debugging
that particular piece of code. Debug tlags are set using the —d option; the syntax is:

debug-tlag: —d debug-list

debug-list: debug-option [, debug-option]

debug-option: debug-range [. debug-level |

debug-range: integer | integer - integer

debug-level: integer
where spaces are for reading ease only. For example,

-d12 Set flag 12 to level 1
-d12.3 Set flag 12 to level 3
-d3-17 Set flags 3 through 17 to level 1

-d3-17.4 Set tlags 3 through 17 to level 4

For a complete list of the available debug tlags vou will have to look at the code (they
are too dynamic to keep this documentation up to date).

3.5. Trying a Different Configuration File
An alternative configuration file can be specified using the -C flag; for example,
/ust/lib/sendmail ~Ctest.ct

uses the configuration file test.cf instead of the default /usrilibisendmail.cf. It the -C flag
has no value it defaults to sendmail.cf in the current directory.

3.6. Changing the Values of Options
Options can be overridden using the —o flag. For example,
/ust/lib/sendmail ~0T2m
sets the T (timeout) option to two minutes for this run only.

4. TUNING

There are a number of configuration parameters you may want to change, depending
on the requirements of your site. Most of these are set using an option in the configura-
tion tile. For example, the line “OT3d" sets option “T” to the value “3d" (three days).

4.1. Timeouts

All time intervals are set using a scaled syntax. For example, “10m” represents
ten minutes, whereas 2h30m’”’ represents two and a halt hours. The full set of scales

is:
s seconds
m minutes
h hours
d days
w weeks

4.1.1. Queue interval

The argument to the —q flag specities how often a subdaemon will run the
queue. This is tvpically set to between five minutes and one half hour.

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-11

4.1.2. Read timeouts

It is possible to time out when reading the standard input or when reading
from a remote SMTP server. Technically, this is not acceptable within the published
protocols. However, it might be appropriate to set it to something large in certain
environments (such as an hour). This will reduce the chance of large numbers of
idle daemons piling up on your system. This timeout is set using the r option in
the configuration file.

4.1.3. Message timeouts

After sitting in the queue for a few days, a message will time out. This is to
insure that at least the sender is aware of the inability to send a message. The
timeout is typically set to three days. This timeout is set using the T option in the
contiguration file.

The time of submission is set in the queue, rather than the amount of time left
until timeout. As a result, you can flush messages that have been hanging for a
short period by running the queue with a short message timeout. For example,

fust/lib/sendmail -oT1d —q

will run the queue and flush anything that is one day old.

4.2. Delivery Mode
There are a number of delivery modes that sendmail can operate in, set by the “d”
configuration option. These modes specify how quickly mail will be delivered. Legal
modes are: ’
i deliver interactively (synchronously)
b deliver in background (asynchronously)
q queue only (don't deliver)

There are tradeoffs. Mode “i” passes the maximum amount of information to the

ey

sender, but is hardly ever necessary. Mode “q” puts the minimum load on vour
machine, but means that delivery may be delayed for up to the queue interval. Mode
“b” is probably a good compromise. However, this mode can cause large numbers of
processes if you have a mailer that takes a long time to deliver a message.

4.3. Log Level

The level of logging can be set for sendmail. The default using a standard confi-
guration table is level 9. The levels are as follows:

0 No logging.

1 Major problems only.

2 Message collections and failed deliveries.
3 Successtul deliveries.

4+ Messages being defered (due to a host being down, etc.).

5 Normal message ueueups.

6 Unusual but benign incidents, e.g., trying to process a locked queue file.

9 Log internal queue id to external message id mappings. This can be useful for

tracing a message as it travels between several hosts.
12 Several messages that are basically only of interest when debugging.
16 Verbose information regarding the queue.

IRIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-12

4.4. Load Limiting

Sendmail can be asked to queue (but not deliver) mail if the system load average
gets too high using the x option. When the load average exceeds the value of the x
option, the delivery mode is set to q (queue only) until the load drops.

For drastic cases, the X option defines a load average at which sendmail will
refuse to connect network connections. Locally generated mail (including incoming
UUCP mail) is still accepted.

4.5. File Modes

There are a number of files that may have a number of modes. The modes
depend on what functionality you want and the level of security you require.

4.5.1. To suid or not to suid?

Sendmail can safely be made setuid to root. At the point where it is about to
exec (2) a mailer, it checks to see if the userid is zero; if so, it resets the userid and
groupid to a default (set by the u and g options). (This can be overridden by setting
the S flag to the mailer for mailers that are trusted and must be called as root.)
However, this will cause mail processing to be accounted (using sa (8)) to root rather
than to the user sending the mail.

4.5.2. Temporary file modes

The mode of all temporary files that sendmail creates is determined by the “'F”
option. Reasonable values for this option are 0600 and 0644. If the more permis-
sive mode is selected, it will not be necessary to run sendmail as root at all (even
when running the queue). *

4.5.3. Should my alias database be writable?

At Berkeley we have the alias database (‘usr/lib/aliases*) mode 666. There are
some dangers inherent in this approach: any user can add him-/her-self to any list,
or can “steal” any other user's mail. However, we have found users to be basically
trustworthy, and the cost of having a read-only database greater than the expense
of finding and eradicating the rare nasty person.

The database that sendmail actually used is represented by the two files
aliases.dir and aliases.pag (both in /ust/lib). The mode on these tiles should match
the mode on /ustlib/aliases. [f aliases is writable and the DBM files (aliases.dir and
aliases.pug) are not, users will be unable to retlect their desired changes through to
the actual database. However, if aliases is read-only and the DBM files are writable,
a slightly sophisticated user can arrange to steal mail anyway.

If your DBM files are not writable by the world or you do not have auto-
rebuild enabled (with the “D” option), then you must be caretul to reconstruct the
alias database each time you change the text version:

newaliases

If this step is ignored or torgotten any intended changes will also be ignored or tor-
gotten.

5. THE WHOLE SCOOP ON THE CONFIGURATION FILE

This section describes the contiguration file in detail, including hints on how to write
one ot your own if you have to.

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-13

There is one point that should be made clear immediately: the syntax of the conti-
guration file is designed to be reasonably easy to parse, since this is done every time send-
mail starts up, rather than easy for a human to read or write. On the “‘future project”” list
is a contiguration-file compiler. :

An overview of the configuration file is given first, followed by details of the seman-
tics. i

5.1. The Syntax

The configuration file is organized as a senes of lines, each of which begins with
a single character defining the semantics tor the rest of the line. Lines beginning with
a space or a tab are continuation lines (although the semantics are not well defined in
many places). Blank lines and lines beginning with a sharp symbol (‘#’) are com-
ments.

5.1.1. Rand $S - rewriting rules

The core of address parsing are the rewriting rules. These are an ordered pro-
duction system. Sendmail scans through the set of rewriting rules looking for a
match on the left hand side (LHS) of the rule. When a rule matches, the address is
replaced by the right hand side (RHS) of the rule.

There are several sets of rewriting rules. Some of the rewriting sets are used
internally and must have specific semantics. Other rewriting sets do not have
specifically assigned semantics, and may be referenced by the mailer definitions or
by other rewriting sets.

The syntax of these two commands are:

Sn

Sets the current ruleset being collected to n. If vou begin a ruleset more than once
it deletes the old definition.

Rlhs rhs comments

The fields must be separated by at least one tab character; there may be embedded
spaces in the fields. The /hs is a pattern that is applied to the input. If it matches,
the input is rewritten to the riis. The comments are ignored.

5.1.2. D - define macro
Macros are named with a single character. These may be selected from the
entire ASCII set, but user-defined macros should be selected from the set of upper
case letters only. Lower case letters and special symbols are used internally.
The syntax for macro definitions is:
Dxval

where x is the name of the macro and val is the value it should have. Macros can
be interpolated in most places using the escape sequence $x.

5.1.3. Cand F - define classes

Classes of words may be defined to match on the left hand side of rewriting
tules. For example a class of all local names for this site might be created so that
attempts to send to oneself can be eliminated. These can either be defined directly
in the configuration file or read in from another file. Classes may be given names
from the set of upper case letters. Lower case letters and special characters are
reserved for system use.

IRIS Communications Guide . Version 1.0

Sendmail Installation and Operation Guide F-14

The syntax is:
Ccwordl word2...)
Fc file [format) .
The first form defines the class ¢ to match any of the named words. It is permissi-
ble to split them among multiple lines; for example, the two forms:
CHmonet ucbmonet
and

CHmonet
CHucbmoenet

are equivalent. The second form reads the elements of the class ¢ trom the named
file; the format is a scanf(3) pattern that should produce a single string,.

5.1.4. M - define mailer
Programs and interfaces to mailers are defined in this line. The format is:
Mname, {field=value }*

where name is the name of the mailer (used internally only) and the “field:==name"’
pairs define attributes of the mailer. Fields are:)

Path The pathname of the mailer

Flags Special flags for this mailer

Sender .A rewriting set for sender addresses
Recipient A rewriting set for recipient addresses

Argv An argument vector to pass to this mailer
Eol The end-ot-line string for this mailer
Maxsize The maximum message length to this mailer

Only the first character of the field name is checked.

5.1.5. H - define header

The format of the header lines that sendmail inserts into the message are
defined by the H line. The syntax of this line is:

H[?mflags?)name: htemplate

Continuation lines in this spec are reflected directly into the outgoing message. The
htemplate is macro expanded before insertion into the message. [f the mflags (sur-
rounded by question marks) are specified, at least one of the specified tlags must be
stated in the mailer definition for this header to be automatically output. If one of
{hese headers is in the input it is reflected to the output regardless of these tlags.

Some headers have special semantics that will be described below.

5.1.6. O - set option

There are a number of “‘random’ options that can be set from a configuration
file. Options are represented by single characters. The syntax of this line is:

Qo value

This sets option o to be value. Depending on the option, value may be a string, an
integer, a boolean (with legal values “t", “T", “t”, or "F""; the default is TRUE), or
a time interval.

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide . F-15

5.1.7. T - define trusted users

Trusted users are those users who are permitted to override the sender
address using the —f flag. These typically are “‘root,” “uucp,” and “network,” but
on some users it may be convenient to extend this list to include other users,
perhaps to support a separate UUCP login for each host. The syntax of this line is:

Tuserl user2...
There may be more than one of these lines.

5.1.8. P - precedence definitions

Values for the "“Precedence:” field mav be defined using the P control line.
The syntax of this field is:

Pname=num

When the name is found in a *'Precedence:” field, the message class is set to num.
Higher numbers mean higher precedence. Numbers less than zero have the special
property that error messages will not be returned. The detault precedence is zero.
For example, our list of precedences is:

DPfirst-class=0
Pspecial-delivery=100
Pjunk=-100

5.2. The Semantics
This section describes the semantics of the configuration file.

5.2.1. Special macros, conditionals

Macros are interpolated using the construct $x, where x is the name of the
macro to be interpolated. In particular, lower case letters are reserved to have spe-
cial semantics, used to pass information in or out of sendmail, and some special
characters are reserved to provide conditionals, etc.

The tollowing macros must be detined to transmit information into sendmail:

The SMTP entry message

The “official” domain name for this site

The format of the UNIX from line

The name of the daemon (for error messages)
The set of "operators" in addresses

q default format of sender address

The Se macro is printed out when SMTP starts up. The first word must be the $j
macro. The $j macro should be in RFC821 format. The Sl and $n macros can be
considered constants except under terribly unusual circumstances. The So macro
consists of a list of characters which will be considered tokens and which will
separate tokens when doing parsing. For example, it “‘r” were in the So macro,
then the input “address”” would be scanned as three tokens: “‘add,” “'r,”” and “ess."
Finally, the $q macro specities how an address should appear in a message when it
is defauited. For example, on our system these definitions are:

o5 ——an

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-16

De$j Sendmail $v ready at $b

DnMAILER-DAEMON

Difrom $g $d

Do.:%@!" ==/

Dqg?x ($x)$.

Dj$H.$D
An acceptable alternative for the $q macro is “$?x$x $.<$g>". These correspond
to the following two formats:

eric@Berkeley (Eric Allman)
Eric Allman <eric@Berkeley >

Some macros are defined by sendmuil for interpolation into argv’s for mailers or
for other contexts. These macros are:

The origination date in Arpanet format
The current date in Arpanet format

The hop count

The date in UNIX (ctime) format

The sender (from) address

The sender address relative to the recipient
The recipient host

The queue id

Sendmail’s pid

Protocol used

Sender’s host name

A numeric representation of the current time
The recipient user

The version number of sendmail

The hostname of this site

The full name of the sender

‘The home directory of the recipient

NX§<:"’“‘""‘U""=‘W""Q"‘G‘D

There are three types of dates that can be used. The $a and $b macros are in
Arpanet format; $a is the time as extracted from the “Date:” line of the message (if
there was one), and Sb is the current date and time (used for postmarks). If no
“Date:” line is found in the incoming message, Sa is set to the current time also.
The $d macro is equivalent to the $a macro in UNIX (ctime) tormat.

The $f macro is the id of the sender as originally determined; when mailing to
a specific host the $g macro is set to the address of the sender relative to the recipient.
For example, if I send to “bollard@matisse’” from the machine “‘ucbarpa’’ the $f
macro will be “eric”” and the $g macro will be “eric@ucbarpa.”

The $x macro is set to the full name of the sender. This can be determined in
several ways. [t can be passed as tlag to sendmail. The second choice is the value of
the “Full-name:” line in the header if it exists, and the third choice is the comment
tield of a ““From:” line. If all of these fail, and if the message is being originated
locally, the full name is looked up in the /etcipussud file.

When sending, the Sh, $u, and $z macros get set to the host, user, and home
directory (if local) of the recipient. The tirst two are set from the $@ and $: part ot
the rewriting rules, respectively.

The Sp and St macros are used to create unique strings (e.g., for the
“Message-1d:"” field). The $i macro is set to the queue id on this host; if put into
the timestamp line it can be extremely usetul for tracking messages. The Sv macro

IRIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide) F-17

is set to be the version number of sendmail; this is normally put in timestamps and
has been proven extremely useful for debugging. The $w macro is set to the name
of this host if it can be determined. The $c field is set to the “hop count,” i.e., the
number of times this message has been processed. This can be determined by the
-h tlag on the command line or by counting the timestamps in the message.

The $r and $s fields are set to the protocol used to communicate with sendmail .

and the sending hostname; these are not supported in the current version.
Conditionals can be specified using the syntax:
$2x textl §1 text2 $.

This interpolates text1 if the macro $x is set, and text2 otherwise. The “else” (§1)
clause may be omitted.

5.2.2. Special classes

The class $==w is set to be the set of all names this host is known by. This
can be used to delete local hostnames.

5.2.3. The left hand side

The lett hand side of rewriting rules contains a pattern. Normal words are
simply matched directly. Metasyntax is introduced using a dollar sign. The
metasymbols are:

$* Match zero or more tokens
S+ Match one or more tokens
$- Match exactly one token
$=x Match any token in class x
$”x Match any token not in class x
It any of these match, they are assigned to the symbol $n for replacement on the
right hand side, where n is the index in the LHS. For example, if the LHS:
554
is applied to the input:
UCBARPA:eric
the rule will match, and the values passed to the RHS will be:

51 UCBARPA
52 eric

5.2.4. The right hand side

When the left hand side of a rewriting rule matches, the input is deleted and
replaced by the right hand side. Tokens are copied directly from the RHS unless
they are begin with a dollar sign. Metasymbols are:

Sn Substitute indefinite token n from LHS
S[name$] Canonicalize name
S$>n “Call” ruleset n

S#mailer Resolve to mailer
Sahost Specity host
S:user Specify user

The $n syntax substitutes the corresponding value from a $4, S—, $*, $=, or
$” match on the LHS. It may be used anywhere.

IRIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide " F-18

A host name enclosed between $[and $] is looked up in the /etc/hosts tile and
replaced by the canonical name. For example, “$[csam$]” would become "“Ibl-
csam.arpa.”’

The $>n syntax causes the remainder of the line to be substituted as usual
and then passed as the argument to ruleset n. The final value of ruleset n then
becomes the substitution for this rule.

The $# syntax should only be used in ruleset zero. It causes evaluation of the
culeset to terminate immediately, and signals to sendmail that the address has com-
pletely resolved. The complete syntax is:

$#mailerS@host$:user

This specities the {mailer, host, user} 3-tuple necessary to direct the mailer. If the
mailer is local the host part may be omitted. The mailer and host must be a single
word, but the user may be multi-part.

A RHS may also be preceeded by a $@ or a $: to control evaluation. A $@ pre-
fix causes the ruleset to return with the remainder of the RHS as the value. A S:
prefix causes the rule to terminate immediately, but the ruleset to continue; this can
be used to avoid continued application of a rule. The prefix is stripped before con-
tinuing.

The $@ and $: prefixes may preceed a $> spec; for example:

R$4+ $:$>781

matches anything, passes that to ruleset seven, and continues; the $: is necessary to
avoid an infinite loop.

Substitution occurs in the order described, that is, parameters from the LHS
are substituted, hostnames are canonicalized, “subroutines’” are ‘called, and finally
$#, $@, and $: are processed.

5.2.5. Semantics of rewriting rule sets

There are five rewriting sets that have specitic semantics. These are related as
depicted by tigure 2.

Ruleset three should turn the address into “canonical form.” This form should
have the basic syntax:

———
-=>|{ 0 |-->resolved address
/ o
/ o ———
/ e I B B
R A / Fm—— r——— \e H——
addr==>| 3 |-->| D |-~ -==>| 4 |-->msg
—— +=-=-=-+ \e ot b/ tm———+
~==> 2 |==>| R |--

—— ———+

Figure 2-1 Rewriting set semantics

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-19

local-part@host-domain-spec

If no “@” sign is specified, then the host-domain-spec may be appended from the
sender address (if the C tlag is set in the mailer definition corresponding to the send-
ing mailer). Ruleset three is applied by sendmail before doing anything with any
address.

Ruleset zero is applied atter ruleset three to addresses that are going to actu-
ally specify recipients. It must resolve to a {mailer, host, user} triple. The mailer
must be defined in the mailer definitions from the configuration file. The host is
defined into the $h macro for use in the argv expansion of the specified mailer.

Rulesets one and two are applied to all sender and recipient addresses respec-
tively. They are applied before any specification in the mailer detinition. They
must never resolve.

Ruleset four is applied to all addresses in the message. It is typically used to
translate internal to external torm.

5.2.6. Mailer flags etc.

There are a number of flags that may be associated with each mailer, each
identified by a letter of the alphabet. Many of them are assigned semantics inter-
nally. These are detailed in Appendix C. Any other flags may be used freely to
conditionally assign headers to messages destined for particular mailers.

5.2.7. The “error’ mailer

The mailer with the special name “error” can be used to generate a user error.
The (optional) host field is a numeric exit status to be returned, and the user field is
a message to be printed. For example, the entry:

- S$#terror$:Host unknown in this domain

on the RHS of a rule will cause the specified error to be generated if the LHS
matches. This mailer is only functional in ruleset zero.

5.3. Building a Configuration File From Scratch

Building a configuration table from scratch is an extremely difficult job. For-
tunately, it is almost never necessary to do so; nearly every situation that may come up
may be resolved by changing an existing table. In any case, it is critical that you
understand what it is that you are trving to do and come up with a philosophy for the
contiguration table. This section is intended to explain what the real purpose of a con-
figuration table is and to give you some ideas tor what your philosophy might be.

5.3.1. What you are trying to do

The configuration table has three major purposes. The first and simplest is to
set up the environment for sendmail. This involves setting the options, defining a
few critical macros, etc. Since these are described in other places, we will not go
into more detail here.

The second purpose is to rewrite addresses in the message. This should typi-

cally be done in two phases. The first phase maps addresses in any format into a

canonical torm. This should be done in ruleset three. The second phase maps this

- canonical form into the syntax appropriate for the receiving mailer. Sendmail does
this in three subphases. Rulesets one and two are applied to all sender and reci-

pient addresses respectively. After this, you may specify per-mailer rulesets for

both sender and recipient addresses; this allows mailer-specific customization.

IRIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-20

Finally, ruleset four is applied to do any default conversion to external form.

The third purpose is to map addresses into the actual set of instructions neces-
sary to get the message delivered. Ruleset zero must resolve to the internal torm,
which is in turn used as a pointer to a mailer descriptor. The mailer descriptor
describes the interface requirements of the mailer.

5.3.2. Philosophy

The particular philosophy you choose will depend heavily on the size and
structure of your organization. [will present a few possible philosophies here.

One general point applies to all of these philosophies: it is almost always a
mistake to try to do full name resolution. For example, if you are trying to get
names of the form “user@host” to the Arpanet, it does not pay to route them to
“xyzvax!decvax!ucbvax!c70:user@host” since you then depend on several links not
under your control. The best approach to this problem is to simply forward to
“xyzvax!user@host” and let xyzvax worry about it from there. [n summary, just get
the message closer to the destination, rather than determining the full path.

5.3.2.1. Large site, many hosts - minimum information

Berkeley is an example of a large site, i.e., more than two or three hosts.
We have decided that the only reasonable philosophy in our environment is to
designate one host as the guru for our site. It must be able to resolve any piece
of mail it receives. The other sites should have the minimum amount of infor-
mation they can get away with. In addition, any information they do have
should be hints rather than solid information.

. For example, a typical site on our local ether network is “monet.” Monet
has a list of known ethernet hosts; if it receives mail for any of them, it can do
direct delivery. If it receives mail for any unknown host, it just passes it directly
to “ucbvax,” our master host. Ucbvax may determine that the host name is ille-
gal and reject the message, or may be able to do delivery. However, it is impor-
tant to note that when a new ethernet host is added, the only host that must
have its tables updated is ucbvax; the others may be updated as convenient, but
this is not critical.

This picture is slightly muddied due to network connections that are not
actually located on ucbvax. For example, our TCP connection is currently on
“"ucbarpa.” However, monet does not know about this; the information is hidden
totally between ucbvax and ucbarpa. Mail going from monet to a TCP host is
transfered via the ethernet from monet to ucbvax, then via the ethernet from
ucbvax to ucbarpa, and then is submitted to the Arpanet. Although this
involves some extra hops, we feel this is an acceptable tradeoft.

An interesting point is that it would be possible to update monet to send
TCP mail directly to ucbarpa if the load got too high; if monet tailed to note a
host as a TCD host it would go via ucbvax as before, and if monet incorrectly
sent a message to ucbarpa it would still be sent by ucbarpa to ucbvax as before.
The only problem that can occur is loops, as if ucbarpa thought that ucbvax had
the TCP connection and vice versa. For this reason, updates should always hap-
pen to the master host tirst.

This philosophy results as much from the need to have a single source for
the configuration files (typically built using m4(1) or some similar tool) as any
logical need. Maintaining more than three separate tables by hand is essentiallv
an impossible job.

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-21

5.3.2.2. Small site - complete information

A small site (two or three hosts) may find it more reasonable to have com-
plete information at each host. This would require that each host know exactly
where each network connection is, possibly iricluding the names of each host on
that network. As long as the site remains small and the the configuration
remains relatively static, the update problem will probably not be too great.

5.3.2.3. Single host

This is in some sense the trivial case. The only major issue is trying to
insure that you don’t have to know too much about your environment. For
example, if you have a ULCP connection you might find it useful to know about
the names of hosts connected directly to you, but this is really not necessary
since this may be determined from the syntax.

5.3.3. Relevant issues

The canonical form you use should almost certainly be as specified in the
Arpanet protocols RFC819 and RFC822. Copies of these RFC’s are included on the
sendmail tape as doc/rfc819.1pr and doc/rfc822.1pr.

RFC822 describes the format of the mail message itself. Sendmail follows this
RFC closely, to the extent that many of the standards described in this document
can not be changed without changing the code. In particular, the following charac-
ters have special interpretations:

<>0"\
Any attempt to use these characters for other than their RFC822 purpose in
addfesses is probably doomed to disaster.

RFCB819 describes the specifics of the domain-based addressing. This is
touched on in RFC822 as well. Essentially each host is given a name which is a
right-to-left dot qualified pseudo-path from a distinguished root. The elements of
the path need not be physical hosts; the domain is logical rather than physical. For
example, at Berkeley one legal host is “a.cc.berkeley.arpa”; reading from right to
left, “arpa” is a top level domain (related to, but not limited to, the physical
Arpanet), “‘berkeley” is both an'Arpanet host and a logical domain which is actually
interpreted by a host called ucbvax (which is actually just the “major’” host for this
domain), “cc” represents the Computer Center, (in this case a strictly logical
entity), and “a” is a host in the Computer Center; this particular host happens to be
connected via berknet, but other hosts might be connected via one of two ethernets
or some other network.

Beware when reading RFC819 that there are a number of errors in it.

5.3.4. How to proceed

Once vou have decided on a philosophy, it is worth examining the available
configuration tables to decide if any of them are close enough to steal major parts
ot. Even under the worst of conditions, there is a tair amount of boiler plate that
can be collected safely.

The next step is to build ruleset three. This will be the hardest part ot the job.
Beware of doing too much to the address in this ruleset, since anything you do will
reflect through to the message. In particular, stripping of local domains is best
deferred, since this can leave you with addresses with no domain spec at all. Since
sendmail likes to append the sending domain to addresses with no domain, this can
change the semantics of addresses. Also try to avoid fully qualifying domains in

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-22

this ruleset. Although technically legal, this can lead to unpleasantly and unneces-
sarily long addresses reflected into messages. The Berkeley configuration files
define ruleset nine to qualify domain names and strip local domains. This is called
from ruleset zero to get all addresses into a cleaner torm.

Once you have ruleset three finished, the other rulesets should be relatively
trivial. If you need hints, examine the supplied contiguration tables.

5.3.5. Testing the rewriting rules ~ the -bt flag

When vou build a contiguration table, vou can do a certain amount of testing
using the “‘test mode”’ of sendmail. For example, you could invoke sendmail as:

sendmail -bt -Ctest.cf

which would read the configuration file “test.ct’” and enter test mode. In this
mode, you enter lines of the form:

rwset address

where rwset is the rewriting set you want to use and address is an address to apply
the set to. Test mode shows you the steps it takes as it proceeds, finally showing
vou the address it ends up with. You may use a comma separated list of rwsets tor
sequential application of rules to an input; ruleset three is alwavs applied first. For
example:

1,21,4 monet:bollard

first applies ruleset three to the input “monet:bollard.” Ruleset one is then applied
to the output of ruleset three, followed similarly by rulesets twentv-one and four.

If you need more detail, you can also use the “-d21” flag to turn on more
debugging. For example, '

sendmail -bt -d21.99

turns on an incredible amount of information; a single word address is probably
going to print out several pages worth of information.

5.3.6. Building mailer descriptions

To add an outgoing mailer to vour mail system, vou will have to detine the
characteristics of the mailer.

Each mailer must have an internal name. This can be arbitrary, except that the
names “local’” and “prog”’ must be detined.

The pathname of the mailer must be given in the P field. If this mailer should
be accessed via an IPC connection, use the string “[IPC]” instead.

The F field defines the mailer flags. You should specity an “'f" or "' flag to
pass the name of the sender as a —f or -r flag respectively. These tlags are onlv
passed if they were passed to serudmail, so that mailers that give errors under some
circumstances can be placated. [f the mailer is not picky you can just specify “~f
Sg”" in the argv template. If the mailer must be called as root the “S” tlag should be
given; this will not reset the userid before calling the mailer’. If this mailer is local
(i-e., will perform final delivery rather than another network hop) the "1 tlag
should be given. Quote characters (backslashes and " marks) can be stripped trom
addresses if the "'s” flag is specified; if this is not given they are passed through. It
the mailer is capable ot sending to more than one user on the same host in a single
transaction the “‘m’”* flag should be stated. If this flag is on, then the argv template

Sendmail must be running sctuid to root tor this to work.

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-23

containing $u will be repeated for each unique user on a given host. The “e” tlag
will mark the mailer as being “‘expensive,” which will cause sendmail to defer con-
nection until a queue run®.

An unusual case is the “C” flag. This flag applies to the mailer that the mes-
sage is received from, rather than the mailer being sent to; if set, the domain spec
of the sender (i.e., the “@host.domain” part) is saved and is appended to any
addresses in the message that do not already contain a domain spec. For example,
a message of the form:

From: eric@ucbarpa
To: wnj@monet, mckusick

will be modified to:
From: ericQucbarpa
To: wnj@monet, mckusick@ucbarpa
ifand only if the “C” flag is defined in the mailer corresponding to “eric@ucbarpa.”
Other tlags are described in Appendix C.

The S and R fields in the mailer description are per-mailer rewriting sets to be
applied to sender and recipient addresses respectively. These are applied after the
sending domain is appended and the general rewriting sets (numbers one and two)
are applied, but before the output rewrite (ruleset tour) is applied. A typical use is
to append the current domain to addresses that do not already have a domain. For
example, a header of the form:

From: eric
might be changed to be:
From: ericQucbarpa
or
From: ucbvax!eric

depending on the domain it is being shipped into. These sets can also be used to
do special purpose output rewriting in cooperation with ruleset four.

The E field defines the string to use as an end-of-line indication. A string con-
taining only newline is the default. The usual backslash escapes (\r, \n, \f, \b) may
be used.

Finally, an argv template is given as the E field. [t mav have embedded
spaces. [f there is no argv with a Su macro in it, sendmail will speak SMTP to the
mailer. [f the pathname for this mailer is “[IPC],” the argv should be

IPC $h [port |
where port is the optional port number to connect to.

For example, the specitications:

Mlocal, P=/bin/mail, F=rlsm S$=10, R=20, A=mail -d $u

Mether, P=[IPC], F=meC, S=11, R=21, A=IPC $h, M=100000
specities a mailer to do local delivery and a mailer tor ethernet delivery. The first is
called “local,” is located in the file “'binymail.” takes a picky -t tlag, does local
delivery, quotes should be stripped from addresses, and multiple users can be

delivered at once; ruleset ten should be applied to sender addresses in the message
and ruleset twenty should be applied to recipient addresses; the argv to send to a

‘The “” contiguration option must be given tor this to be etrective.

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-24

message will be the word ““mail,” the word “-d,” and words containing the name
of the receiving user. If a —r flag is inserted it will be between the words "“mail”
and “-d.” The second mailer is called “‘ether,” it should be connected to via an I[PC
connection, it can handle multiple users at once, connections should be deferred,
and any domain from the sender address should be appended to any receiver narne
without a domain; sender addresses should be processed by ruleset eleven and reci-
pient addresses by ruleset twenty-one. There is a 100,000 byte limit on messages
passed through this mailer.

[RIS Communications Guide Version 1.0

APPENDIX A

COMMAND LINE FLAGS

Arguments must be presented with flags before addresses. The tlags are:

-t addr

~r addr
-h ¢cnt

-Fname

~bx

—qtime

-Ctile

dlevel

ox value

The sender’s machine address 1s addr. This flag is ignored unless the real user
is listed as a “‘trusted user” or if adidr contains an exclamation point (because
of certain restrictions in UUCP).

An obsolete form ot —f.

Sets the “hop count” to cnt. This represents the number of times this mes-
sage has been processed by sendmail (to the extent that it is supported by the
underlying networks). Cnt is incremented during processing, and if it reaches
MAXHOP (currently 30) sendmail throws away the message with an error.

Sets the full name of this user to name.
Don’t do aliasing or forwarding.
Read the header for “To:”, “Cc:”, and “Bec:” lines, and send to evervone

listed in those lists. The “Bcc:” line will be deleted before sending. Any
addresses in the argument vector will be deleted from the send list.

Set operation mode to x. Operation mogdes are:
m Deliver mail (detault)

a Run in arpanet mode (see below)

s Speak SMTP on input side

d Run as a daemon

t Run in test mode

v Just verify addresses, don't collect or deliver
i Initialize the alias database

p Print the mail queue

z Freeze the contiguration tile

The special processing for the ARPANET includes reading the “From:” line
from the header to tind the sender, printing ARPANET style messages (pre-
ceded by three digit reply codes for compatibility with the FTP protocol
[Neigus73, Postel74, Postel77]), and ending lines of error messages with
<CRLF>.

Try to process the queued up mail. If the time is given, a sendmail will run
through the queue at the specified interval to deliver queued mail; otherwise,
it only runs once.

Use a different configuration file. Sendmail runs as the invoking user (rather
than root) when this flag is specified.

Set debugging level.

Set option x to the specified value. These options are described in Appendix
B.

There are a number of options that may be specified as primitive flags (provided for
compatibility with delivermuil). These are the e, i, m, and v options. Also, the f option mav
be specified as the -s tlag.

Sendmail Installation and Operation Guide F-25

APPENDIX B

CONFIGURATION OPTIONS

The following options may be set using the —o flag on the command line or the O line in
the configuration file. Many ot them cannot e specified unless the invoking user is trusted.

Atile

aN

dx

ex

EFn

zn
Htile

i

Ln

Mx value

m

Nnetname

Use the named file as the alias file. [t no file is specitied, use aliases in the
cutrent directory.

If set, wait up to N minutes tor an "@:@" entry to exist in the alias database
before starting up. If it does not appear in N minutes, rebuild the database (it
the D option is also set) or issue a warning.

Set the blank substitution character to ¢c. Unquoted spaces in addresses are
replaced by this character.

If an outgoing mailer is marked as being expensive, don’t connect immedi-
ately. This requires that queueing be compiled in, since it will depend on a
queue run process to actually send the mail.

Deliver in mode x. Legal modes are:

i Deliver interactively (svnchronously)
b Deliver in background (asynchronously)
q Just queue the message (deliver during queue run)

If set, rebuild the alias database if necessary and possible. If this option is not
set, sendmail will never rebuild the alias database unless explicitly requested
using -bi.
Dispose of errors using mode x. The values for x are:

p Print error messages (detault)

q No messages, just give exit status

m Mail back errors

w Write back errors (mail if user not logged in)

e Mail back errors and give zero exit stat alwavs
The temporary file mode, in octal. 644 and 600 are good choices.

Save Unix-style “From’ lines at the front of headers. Normally they are
assumed redundant and discarded.

Set the default group id for mailers to run in to n.
Specify the help file tor SMTP.

Ignore dots in incoming messages.

Set the default log level to n.

Set the macro x to value. This is intended only for use from the command
line.

Send to me tou, even if [am in an alias expansion.

The name of the home network; “ARPA” by default. The the argument ot an
SMTP “HELO” command is checked against “hostname.netname’” where
hostname is requested trom the kernel for the current connection. If they do

Sendmail Installation and Operation Guide F-26

Sendmail Installation and Operation Guide F-27

Qdir
factor

rtime
Stile

S

[time
1S,D
un

v

xLA

XLA

not match, "‘Received:”” lines are augmented by the name that is determined
in this manner so that messages can be traced accurately.

Assume that the headers may be in old format, i.e., spaces delimit names.
This actually turns on an adaptive algorithm: if any recipient address contains
a comma, parenthesis, or angle bracket, it will be assumed that commas
already exist. If this flag is not on, only commas delimit names. Headers are
always output with commas between the names.

Use the named dir as the queue directory.

Use mctor as the multiplier in the map function to decide when to just queue
up jobs rather than run them. This value is divided by the difference between
the current load average and the load average limit (x tlag) to determine the
maximum message priority that will be sent. Detaults to 10000.

Timeout reads after time interval.
Log statistics in the named file.

Be super-safe when running things, i.e., always instantiate the queue file,
even if you are going to attempt immediate delivery. Sendmail always instan-
tiates the queue file before returning control the the client under any cir-
cumstances.

Set the queue timeout to time. After this interval, messages that have not
been successfully sent will be returned to the sender.

Set the local timezone name to S for standard time and D for davlight time;
this is only used under version six.

Set the default userid for mailers to n. Mailers without the S flag in the mailer
definition will run as this user.

Run in verbose mode.

When the system load average exceeds LA, just queue messages (i.e., don't
try to send them).

When the system load average exceeds LA, retuse incoming SMTD connec-
tions. '

[f set, deliver each job that is run from the queue in a separate process. Use
this option it you are short ot memory, since the default tends to consume
considerable amounts of memory while the queue is being processed.

[RIS Communications Guide Version 1.0

.APPENDIX C

MAILER FLAGS

The following flags may be set in the mailer description.

t

w

-

e T oE X

T

r

The mailer wants a —f from flag, but only if this is a network forward operation (i.e., the
mailer will give an error if the executing user does not have special permissions).

Same as f, but sends a - flag.

Don't reset the userid before calling the mailer. This would be used in a secure environ-
ment where sendmail ran as root. This could be used to avoid forged addresses. This flag
is suppressed if given from an “‘unsafe’’ environment (e.g, a user’s mail.ct file).

Do not insert a UNIX-style ““From’ line on the front of the message.

This mailer is local (i.e., final delivery will be performed).

Strip quote characters off of the address before calling the mailer.

This mailer can send to multiple users on the same host in one transaction. When a $u
macro occurs in the argv part of the mailer definition, that field will be repeated as neces-
sary for all qualifying users.

This mailer wants a “From:” header line.

This mailer wants a “‘Date:”’ header line.

This mailer wants a ‘‘Message-Id:”" header line.

This mailer wants a ‘‘Full-Name:" header line.

This mailer wants a ““Return-Path:” line.

Upper case should be preserved in user names for this mailer.

Upper case should be preserved in host names for this mailer.

This is an Arpanet-compatible mailer, and all appropriate modes should be set.

This mailer wants Unix-style “From” lines with the ugly UUCP-style “remote from
<host>" on the end.

This mailer is expensive to connect to, so try to avoid connecting normally; any necessary
connection will occur during a queue run.

This mailer want to use the hidden dot algorithm as specified in RFC821; basically, any
line beginning with a dot will have an extra dot prepended (to be stripped at the other
end). This insures that lines in the message containing a dot will not terminate the mes-
sage prematurely.

Limit the line lengths as specified in RFC821.

Use the return-path in the SMTP “MAIL FROM:” command rather than just the return
address; although this is required in RFC821, many hosts do not process return paths
properly.

This mailer will be speaking SMTP to another sendmail - as such it can use special proto-
col teatures. This option is not required (i.e., if this option is omitted the transmission
will still operate successtully, although perhaps not as efficiently as possible).

If mail is recerved from a mailer with this tlag set, any addresses in the header that do not
have an at sign (@) atter being rewritten by ruleset three will have the " @domain”

Sendmail Installation and Operation Guide F-28

Sendmail Installation and Operation Guide F-29

clause from the sender tacked on. This allows mail with headers of the form:

From: usera@hosta
To: userb@hostb, userc

to be rewritten as:

From: usera@hosta
To: userb@hostb, userc@hosta

automatically.

E Escape lines beginning with “From” in the message with a ">’ sign.

IRIS Communications Guide Version 1.0

APPENDIX D

OTHER CONFIGURATION

There are some configuration changes that can be made by recompiling sendmail. These
are located in three places:

md/contig.md These contain operating-system dependent descriptions. They are interpo-
lated into the Maketiles in the src and aux directories. This includes informa-
tion about what version of UNIX you are running, what libraries vou have to
include, etc.

src/cont.h Configuration parameters that may be tweaked by the installer are included in
cont.h.
src/cont.c Some special routines and a few variables may be defined in cont.c. For the

most part these are selected from the settings in cont.h.

Parameters in md/config.m4

[he tollowing compilation tlags may be defined in the m4CONFIG macro in mdiconfig.m4
to define the environment in which vou are operating.

Ve If set, this will compile a version 6 system, with 8-bit user id’s, single charac-
ter tty id’s, etc. .

VMUNIX If set, you will be assumed to have a Berkeley 4BSD or 4.1BSD, including the
ofork(2) system call, special types defined in <sysitypes.h> (e.g, u_char),
etc.

If none of these tlags are set, a version 7 system is assumed.

You will also have to specify what libraries to link with sendnuil in the m4LIBS macro.
Most notably, vou will have to include it you are running a 4.1BSD svstem.

Parameters in src¢/conf.h

Parameters and compilation options are defined in conf.h. Most of these need not nor-
mally be tweaked; common parameters are all in sendmail.cf. However, the sizes ot certain
primitive vectors, etc., are included in this file. The numbers following the parameters are
their default value.

MAXLINE [256] The maximum line length of any input line. If message lines exceed this
length they will still be processed correctlv; however, header lines, confi-
guration file lines, alias lines, etc., must tit within this limit.

MAXNAME [128] The maximum length of any name, such as a host or a user name.

MAXFIELD [2500] The maximum total length of any header field, including continuation
lines.

MAXPV [0} The maximum number of parameters to any mailer. This limits the
number of recipients that may be passed in one transaction.

MAXHOP [30] When a message has been processed more than this number ot times,
sendmail rejects the message on the assumption that there has been an
aliasing 'oop. This can be determined from the ~h flag or by counting the
number of trace fields (i.e, “Received:” lines) in the message header

Sendmail Installation and Operation Guide F-30

Sendmail Installation and Operation Guide F-31

MAXATOM [100] The maximum number of atoms (tokens) in a single address. For example,
the address “eric@Berkeley” is three atoms.

MAXMAILERS [25] .
The maximum number of mailers that may be defined in the configuration
tile.

MAXRWSETS [30] The maximum number of rewriting sets that may be defined.

MAXPRIORITIES [25]
The maximum number of values for the ‘‘Precedence:” field that may be
defined (using the P line in sendmail ct).

MAXTRUST [30] The maximum number of trusted users that may be defined (using the T
line in sendmail.cf).

A number of other compilation options exist. These specify whether or not specific code

should be compiled in.

DBM If set, the “DBM" package in UNIX is used (see DBM(3X) in [UNIX80}). If not

set, a much less efficient algorithm for processing aliases is used.

DEBUG If set, debugging information is compiled in. To actually get the debugging
output, the —d tlag must be used.
LOG If set, the syslog routine in use at some sites is used. This makes an intorma-

tional log record for each message processed, and makes a higher priority log
record for internal system errors.

QUEUE This flag should be set to compile in the queueing code. It this is not set,
mailers must accept the mail immediately or it will be returned to the sender.
SMTP If set, the code to handle user and server SMTP will be compiled in. This is

only necessary it your machine has some mailer that speaks SMTP.

DAEMON If set, code to run a daemon is compiled in. This code is for +.2BSD if the
NVMUNIX flag is specified; otherwise, 4.1a BSD code is used. Beware how-
ever that there are bugs in the 4.1a code that make it impossible tor sendmail
to work correctly under heavy load.

UGLYUUCP If vou have a UUCP host adjacent to you which is not running a reasonable
version of rmail, you will have to set this tlag to include the “remote trom
sysname” info on the from line. Otherwise, UUCP gets contused about
where the mail came from.

NOTUNIX If you are using a non-UNIX mail format, you can set this flag to turn off spe-
cial processing of UNIX-style “From ” lines.

Configuration in src/conf.c

Not all header semantics are defined in the configuration tile. Header lines that should
only be included by certain mailers (as well as other more vbscure semantics) must be speci-
tied in the Hdrinfo table in conf.c. This table contains the header name (which should be in all
lower case) and a set of header control tlags (described below), The flags are:

H_ACHECK Normally when the check is made to see it a header line is compatible with a
mailer, sedmail will not delete an existing line. If this tlag is set, serufmail will
delete even existing header lines. That is, if this bit is set and the mailer does
not have flag bits set that intersect with the required mailer flags in the header
definition in sendmail.cf, the header line is always deleted.

H_EOH [f this header tield is set, treat it like a blank line, i.e., it will signal the end of
the header and the beginning of the message text.

IRIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-32

H_FORCE Add this header entry even if one existed in the message before. [f a header
entry does not have this bit set, sendmail will not add another header line if a
header line of this name already existed. This would normally be used to
stamp the message by everyone who handled it.

H_TRACE [f set, this is a timestamp (trace) field. If the number of trace fields in a mes-
sage exceeds a preset amount the message is returned on the assumption that
it has an aliasing loop.

H_RCPT If set, this field contains recipient addresses. This is used by the -t flag to
determine who to send to when it is collecting recipients from the message.

H_FROM This flag indicates that this field specities a sender. The order of these tields
in the Hdrinfo table specifies sendmuail’s preference tor which tield to return
error messages to.

Let’s look at a sample Hdrinfo specification:

struct hdrinfo Hdrlnfo[] =

{
/* originator fields, most to least significant */
"resent-sender”, H_FROM,

"resent-trom", H_FROM,
"sender", H_FROM,
"from", H_FROM,
"full-name", H_ACHECK,
* destination fields */
Tto", H_RCPT,
"resent-to", H_RCPT,
"ec", HeRCPT,
™ message identification and control */
"message", H_EOH,
"text", H_EOH,
* trace fields */
"received", H_TRACE|H_FORCE,
NULL, 0,

|5
This structure indicates that the “To:”, “Resent-To:”, and “Cc:” tields all specity recipient
addresses. Any “Full-Name:” field will be deleted unless the required mailer tlag (indicated
in the configuration file) is specified. The “Message:” and "“Text:"” fields will terminate the
header; these are specitied in new protocols [NBS80] or used by random dissenters around
the network world. The “Received:” tield will always be added, and can be used to trace
messages.

There are a number of important points here. First, header fields are not added
automatically just because they are in the Hdrinfo structure; they must be specitied in the con-
figuration file in order to be added to the message. Any header tields mentioned in the confi-
guration file but not mentioned in the Hdrinfo structure have default processing performed;
that is, thev are added unless they were in the message already. Second, the Hdrinfo struc-
ture only specifies cliched processing; certain headers are processed specially by ad hoc code
regardless ot the status specified in Hdrinfp. For example, the “Sender:” and "“From:"” fields
are always scanned on ARPANET mail to determine the sender; this is used to perform the
“return to sender”’ function. The “From:” and “‘Full-Name:” fields are used to determine the
full name of the sender if possible; this is stored in the macro $x and used in a number of
wavs.

[RIS Communications Guide Version 1.0

Sendmail Installation and Operation Guide F-33

The file conf.c also contains the specification of ARPANET reply codes. There are four

classifications these fall into:

char Arpa_Info[] = "050°; /* arbitrary info */

char Arpa_TSyserr{] = "455"; /* some (transient) system ecrror */

char Arpa_PSyserr{] = "554*; /* some (transient) system crror */

char Arpa_Usrerr{] = "554*; /* some (fatal} user crror */
The class Arpa_Info is for any information that is not required by the protocol, such as for-
warding information. Arpa_TSuserr and Arpa_PSyserr is printed by the syserr routine. TSyserr
is printed out for transient errors, whereas PSyserr 1s printed for permanent errors; the dis-
tinction is made based on the value of crrno. Finally, Arpa_Usrerr is the result of a user error
and is generated by the usrerr routine; these are generated when the user has specified some-
thing wrong, and hence the error is permanent, i.e., it will not work simply bv resubmitting
the request.

It it is necessary to restrict mail through a relay, the checkcompt routine can be moditied.
This routine is called for every recipient address. It can return TRUE to indicate that the
address is acceptable and mail processing will continue, or it can return FALSE to reject the
recipient. If it returns false, it is up to checkcompat to print an error message (using usrerr) say-
ing why the message is rejected. For example, checkcempat could read:

bool
checkcompat(to)
register ADDRESS *to;
{
if (MsgSize > 50000 &é& to- >q.mailer != LocalMailer)
{
usrerr(*Message too large for non-local delivery®);
NoReturn = TRUE;
return (FALSE);
}
return (TRUE);
}

This would reject messages greater than 50000 bytes unless they were local. The NoReturn
tlag can be sent to supress the return of the actual body of the message in the error return.
The actual use of this routine is highly dependent on the implementation, and use should be
limited.

IRIS Communications Guide Version 1.0

APPENDIX E

SUMMARY OF SUPPORT FILES

This is a summary of the support tiles that sendmuil creates or generates.

‘usrilib/sendmail
The binary of sendmua!.

‘usr/bin/newaliases
A link to /usr/lib/sendmail; causes the alias database to be rebuilt. Running
this program is completely equivalent to giving sendmuil the -bi tlag.

/ustibinvmailq Prints a listing of the mail queue. This program is equivalent to using the -bp
tlag to sendmail.

ust/lib/sendmail.ct
T'he contiguration tile, in textual form.

usr/lib/sendmail.fc
The configuration file represented as a memory image.

usrilib/sendmail. hf
The SMTP help file.

usr/lib/sendmail.st
A statistics file; need not be present.

usrilib/aliases The textual version of the alias file.
usr:libsaliases. { pag,dir}
The alias file in Jdbm (3) format.
etcisyslog The program to do logging.
etc/syslog.conf The configuration file for syslog,.
etc/svslog.pid Contains the process id ot the currently running syslog.

usr:spovl/mqueue
The directory in which the mail queue and temporary files reside.

ustispool/mqueue/qf*

Control (queue) files for messages.
usrispool/mqueue/df*

Data files.

ustrspoolmqueue/If*
Lock files

“usr spool/mqueue/tt*
Temporary versions of the qf files, used during queue file rebuild.

usr'spool/mqueue/nt*
A file used when creating a unique id.

ust spool mqueuerxt*
A transcript of the current session.

Sendmail Installation and Operation Guide F-xxxiv

Network Working Group

Request for Comments: 819

1.

Appendix G:
The Domain Naming Convention for Internet User Applications

Introduction

For many years, the naming convention "<user>@<host>" has served the
ARPANET user community for its mail system, and the substring
"<host>" has been used for other applications such as file transfer
(FTP) and terminal access (Telnet). With the advent of network
interconnection, this naming convention needs to be generalized to
accommodate internetworking. A decision has recently been reached to
replace the simple name field, "<host>", by a composite name field,
"<domain>" [2]. This note is an attempt to clarify this generalized
naming convention, the Internet Naming Convention, and to explore the
implications of its adoption for Internet name service and user
applications.

The following example illustrates the changes in naming convention:

ARPANET Convention: FredeISIF
Internet Convention: Fred@F.ISI.ARPA

The intent is that the Internet names ve used to form a
tree-structured administrative dependent, rather than a strictly
topology dependent, hierarchy. The left-to-right string of name
components proceeds from the most specific to the most general, that
is, the root of the tree, the administrative universe, is on the
right.

The name service for realizing the Internet naming convention is
assumed to be appiication independent. It is not a part of any
particular application, but rather an independent name service serves
different user applications.

The Structural Mode!l
The Internet naming convention is based on the domain concept. The
name of a domain consists of a concatenation of one or more <simple
names>. A domain can be considered as a region of jurisdiction for
name assignment and of responsibility for name-to-agaress
translation. The set of domains forms a hierarchy.

Using a graph theory representation, this hierarchy may be model!ed as
a directed graph. A directed graph consists of a set of nodes and a

Su & Postel [Page G-1]

RFC 819 IRIS Communicaticns Guide

collection of arcs, where arcs are identified by ordered pairs of
distinct nodes [1]. Each node of the graph represents a domain. An
ordered pair (B, A). an arc from B to A, indicates that B is a
subdomain of domain A, and B is a simple name unique within A. We
will refer to B as a child of A, and A a parent of B. The directed
graph that best describes the naming hierarchy is called an
“in-tree", which is a rooted tree with all arcs directed towards the
root (Figure 1). The root of the tree represents the naming universe,
ancestor of all domains. Endpoints (or leaves) of the tree are the
lowest—-level domains.

U
/1N
/ | \ U -- Naming Universe
A A A I -- Intermediate Domain
| i i E -- Endpoint Domain
I E I
/ \ |
A A .
| | |
E E I
/1N
A A A
o
E E E
Figure 1

The In-Tree Model for Domain Hierarchy

The simple name of a child in this model is necessarily unique within
its parent domain. Since the simple name of the child’'s parent is
unique within the child’s grandparent domain, the child can be
uniquely named in its grandparent domain by the concatenation of its
simple name followed by its parent’s simple name.

For example, if the simple name of a child is "C1" then no other

child of the same parent may be named "C1". Further, if the
parent of this chiid is named "P1", then "P1" is a unique simple
name in the child’s grandparent domain. Thus, the concatenation

C1.P1 is unique in Cl1’'s grandparent domain.

Similarly, each element of the hierarchy is uniquely named in the
universe by its complete name. the concatenation of its simple name
and those for the domains along the trail leading to the naming
universe.

The hierarchical structure of the Internet naming convention supports

decentralization of naming authority and distribution of name service
capability. We assume a naming authority and a name server

Su & Postel {Page G-2]

RFC 819 IRIS Communications Guide

associated with each domain. In Sections 5 and 6 respectively the
name service and the naming authority are discussed.

Within an endpoint domain, unique names are assigned to <user>
representing user mailboxes. User mailboxes may be viewed as
children of their respective domains.

In reality, anomalies may exist violating the in-tree model of naming
hierarchy. Overlapping domains imply multiple parentage. i.e., an
entity of the naming hierarchy being a child of more than one domain.
It is conceivable that ISI can be a member of the ARPA domain as well
as a member of the USC domain (Figure 2). Such a relation
constitutes an anomaly to the rule of one-connectivity between any
two points of a tree. The common child and the sub-tree below it
become descendants of both parent domains.

ISI

Figure 2
Anomaly in the In-Tree Model

Some issues resulting from multiple parentage are addressed in
Appendix B. The general implications of multiple parentage are a
subject for further investigation.

Advantage of Absolute Naming

Absolute naming implies that the (complete) names are assigned with
respect to a universail reference point. The advantage of absolute

naming is that a name thus assigned can be universally interpreted

with respect to the universal reference point. The Internet naming
convention provides absolute naming with the naming universe as its
universal reference point.

For relative naming, an entity is named depending upon the position
of the naming entity relative to that of the named entity. A set of
hosts running the "unix" operating system exchange mail using a
method called "uucp”. The naming convention employed by uucp is an
example of relative naming. The mail recipient is typically named by
a source route identifying a chain of locally known hosts !inking the

Su & Postel [Page G-3]

RFC 819 IRIS Communications Guide

Su

sender’‘s host to the recipient’s. A destination name can be. for
example,

"alpha'!'beta!gamma!' john",

where "alpha" is presumably known to the originating host, "beta" is
known to "alpha", and so on.

The uucp mail system has demonstrated many of the problems inherent
to relative naming. When the host names are only locally
interpretable, routing optimization becomes impossible. A reply
message may have to traverse the reverse route to the original sender
in order to be forwarded to other parties.

Furthermore, if a message is forwarded by one of the original
recipients or passed on as the text of another message, the frame of
reference of the relative source route can be completely lost. Such
relative naming schemes have severe problems for many of the uses
that we depend upon in the ARPA Internet community.

Interoperability

To ailow interoperation with a different naming convention, the names
assigned by a foreign naming convention need to be accommodated.
Given the autonomous nature of domains, a foreign naming environment
may be incorporated as a domain anywhere in the hierarchy. wWithin
the naming universe, the name service for a domain is provided within
that domain. Thus, a foreign naming convention can be independent of
the Internet naming convention. What is implied here is that no
standard convention for naming needs to be imposed to allow
interoperations among heterogeneous naming environments.

For example:
There might be a naming convention, say. in the FOO worlid,
something like "<user>%<host>%<area>". Communications «ith an
entity in that environment can be achieved from the Internet
community by simply appending ".F00" on the end of the name in
that foreign convention.

John%ISI-Tops20-7%California.FO00

Another example:
One way of accommodating the "uucp wor!d" described in the last
section is to deciare it as a foreign system. Thus., a uucp

name

"alpha'beta!gamma! john"

& Postel [Page G-4|

RFC 819 IRIS Communications Guide

might be known in the Internet community as
"alpha'beta!gamma! john.UUCP" .

Communicating with a complex subdomain is another case which can
be treated as interoperation. A complex subdomain is a domain
with complex internal naming structure presumably unknown to the
outside world (or the outside world does not care to be concerned
with its complexity).

For the mail system application, the names embedded in the message
text are often used by the destination for such purpose as to reply
to the original message. Thus, the embedded names may need to be
converted for the benefit of the name server in the destination
environment. .

Conversion of names on the boundary between heterogeneous naming
environments is a compiex subject. The following example illustrates
some of the involved issues.

For example:

A message is sent from the Internet community to the FOO
environment. It may bear the "From" and "To" fields as:

From: Frede@eF.ISI.ARPA
To: John%ISI-Tops20-7%California.F00

where "FOO0" is a domain independent of the Internet naming
environment. The interface on the boundary of the two
environments may be represented by a software module. Wwe may
assume this interface to be an entity of the Internet community
as well as an entity of the FOO community. For the benefit of
the FOO environment, the "From" and "To" fields need to be
modified upon the message’s arrival at the boundary. One may
view naming as a separate layer of protocol, and treat
conversion as a protocol translation. The matter is
complicated when the message is sent to more than one
destination within different nmaming environments:; or the
message is destined within an environment not sharing boundary
with the originating naming environment.

While the general subject concerning conversion is beyond the scope
of this note, a few questions are raised in Appendix D.

Su & Postel {Page G-5]

RFC 819 IRIS Communications Guide

5.

Su

Name Service

Name service is a network service providing name-to-address
translation. Such service may be achieved in a number of ways. For
a simple networking environment, it can be accomplished with a single
central database containing name-to-address correspondence for all
the pertinment network entities, such as hosts.

In the case of the old ARPANET host names, a central database is
duplicated in each individual host. The originating module of an
applicatibn process would query the local name service (e.g., make a
system call) to obtain network address for the destination host. With
the proliferation of networks and an accelerating increase in the
number of hosts participating in networking, the ever growing size,
update frequency, and the dissemination of the centrai database makes
this approach unmanageable.

The hierarchical structure of the Internet naming convention supports
decentralization of naming authority and districution of name service

capability. It readily accommodates growth of the naming universe.
It allows an arbitrary number of hierarchical layers. The addition
of a new domain adds little complexity to an existing Internet
system.

The name service at each domain is assumed to be provided by one or
more name servers. There are two models for how a name server
completes its work, these might be called "iterative" and
“recursive”.

For an iterative name server there may be two kinds of responses.
The first kind of response is a destination address. The second
kind of response is the address of another name server. If the
response is a destination address. then the query is satisfied. If
the response is the address of another name server., then the query
must be repeated using that name server, and so con until a
destination address is obtained.

For a recursive name server there is only one kind of response --
a destination address. This puts an obligation on the name server
to actually make the call on another name server if it can’t
answer the guery itself.

It is noted that looping can be avoided since the names oresented for.
translation can only be of finite concatenation. However. care

should be taken in employing mechanisms such as a pointer to the next
simple name for resolution.

Ne believe that some name servers will be recursive, but we don't
believe that all will be. This means that the caller must be

& Postel (Page G-6]

RFC 819 - IRIS Communications Guide

Su & Postel

prepared for gither type of server., Further discussion and examples
of name service is given in Appendix C.

The basic name service at each domain is the translation of simple
names to addresses for all of its children. However, if only this
basic name service is provided, the use of complete (or fully
qualified) names would be required. Such requirement can be
unreasonable in practice. Thus, we propose the use of partial names
in the context in which their uniqueness is preserved. By
construction, naming uniqueness is preserved within the domain of a
common ancestry. Thus, a partially qualified name is constructed by
omitting from the complete name ancestors common to the communicating
parties. When a partially qualified name leaves its context of
uniqueness it must be additionally quaiified.

The use of partially qualified names places a requirement on the
Internet name service. To satisfy this requirement. the name service
at each domain must be capable of, in aaodition to the basic service,
~resolving simple names for all of its ancestors (incluging itself)
and their children. In Appendix B, the required distinction among
simple names for such resolution is addressed.

Naming Authority

Associated with each domain there must be a naming authority to
assign simple names and ensure proper distinction among simple names.

Note that if the use of partially qualified names is allowed in a
sub-domain, the uniqueness of simple names inside that sub-domain is
insufficient to avoid ambiguity with names outside the subdomain.
Appendix B discusses simple name assignment in a sub-domain that
would allow the use of partially qualified names without ambiguity.

Administratively, associated with each domain there is a single

person (or office) called the registrar. The registrar of the naming
universe specifies the top-level set of domains and designates a
registrar for each of these domains. The registrar for any given

domain maintains the naming authority for that domain.
Network=-Oriented Applications

For user applications such as file transfer and terminal access, the
remote host needs to be named. To be compatible with ARPANET naming
convention, a host can be treated as an endpoint domain.

Many operating systems or programming language run-time environments
orovide functions or calls {(JSYSs. SVCs, UUOs. SYSs, etc.) for
standard services (e.3., time-of-day, account-of-logged-in-user,
convert-number-to-string). [t is 1likely to be very helpful if such a

[Page G-7]

RFC 819 IRIS Communications Guide
function or call is developed for translating a host name to an
address. Indeed, several systems on the ARPANET already have such

facilities for translating an ARPANET host name into an ARPANET
address based on internal tables.

We recommend that this provision of a standard function or call for
translating names to addresses be extended to accept names of

Internet convention. This will promote a consistent interface to the

users of programs involving internetwork activities. The standard
facility for translating Internet names to Internet addresses should
include all the mechanisms available on the host, such as checking a
local table or cache of recently checked names, or consulting a name
server via the Internet.

8. Mail Relaying

Relaying is a feature adopted by more and more mail systems.
Relaying facilitates, among other things, interoperations between

heterogeneous mail systems. The term "relay" is used to describe the
situation where a message is routed via one or more intermediate
points between the senger and the recipient. The mail relays are

normally specified explicitly as relay points in the instructions for
message delivery. Usually, each of the intermediate relays assume
responsibility for the relayed message [3].

A point should be made on the basic difference between mail
relaying and the uucp naming system. The difference is that
although mail relaying with absolute naming can also be considered
as a form of source routing, the names of each intermediate points
and that of the destination are universally interpretable. while
the host names along a source route of the uucp convention is
relative and thus only locally interpretable.

The Internet naming convention explicitly allows interoperations
among heterogeneous systems. This implies that the originator of a
communication may name a destination which resides in a foreign
system. The probability is that the destination network address may
not be comprehensibie to the transport system of the originator.
Thus, an implicit relaying mechanism is.called for at the boundary
between the domains. The function of this imdlicit relay is the same
as the explicit relay.

Su & Postel [Page G-8]

RFC 819 IRIS Communications Guide

9. Implementation
The Actual Domains
The initial set of top-level names include:
ARPA

This represents the set of organizations involved in the
Internet system through the authority of the U.S. Defense
Advanced Research Projects Agency. This includes all the
research and development hosts on the ARPANET and hosts on
many other nets as well. But note very carefully that the
top-level domain "ARPA" does not map one-to-one with the
ARPANET -- domains are administrative, not topological.

Transition

In the transition from the ARPANET naming convention to the
Internet naming convention, a host name may be used as a simple
name for an endpoint domain. Thus, if "USC-ISIF" is an ARPANET
host name, then "USC-ISIF.ARPA" is the name of an Internet domain.

10. Summary

A hierarchical naming convention based on the domain concept has been
adopted by the Internet community. It is an absolute naming
convention defined along administrative rather than topological
boundaries. This naming convention is adaptive for interoperations
with other naming conventions. Thus, no standard convention needs to
be imposed for interoperations among heterogeneous naming
environments.

This Internet naming convention allows distributea name service and
naming authority functions at each domain. We have specified these
functions required at each docmain. Also discussed are implications
on network-oriented applications, mail systems, and administrative
aspects of this convention.

Su & Postel {Page G-9]

RFC 819 IRIS Communications Guide

APPENDIX A
The BNF Specification
We present here a rather detailed "BNF" definition of the allowed
form for a computer mail "mailbox" composed of a "local-part" and a
“domain" (separated by an at sign). Clearly, the domain can be used
separately in other network-oriented applications.

<mailbox> ::= <local-part> "@" <domain>

<local-part> ::= <string> | <quoted-string>

<string> ::= <char> I <char> <string>

<guoted-string> ::= """ <qtext> """

<gtext> ::= “"\" <x> | "\" <x> <gtext> | <g> | <g> <qtext>
<char> ::= <c> | "\" <x>

<domain> ::= <naming-domain> | <naming-domain> "." <domain>
<naming-domain> ::= <simple-name> | <address>
<simple-name> ::= <a> <ldh-str> <let~gig>

<ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

<let-dig> ::= <a> | <d>

<let-dig-hyp> ::= <a> | <g> | "-"

<address> :: = "#" <numper> | “[" <dotnum> "]"

<number> ::= <d> | <d> <number>

<dotnum> ::= <spum> "." <snum> "." <snum> "." <snum>

<spum> ::= one, two, or three digits representing a decimal integer

value in the range 0 through 255

<a> ::= any one of the 52 alphabetic characters A through Z in upper
case and a through z in lower case

<c> ::= any one of the 128 ASCII characters except <s> or <SP>

<d>

any one of the ten agigits 0 througn 9

Su & Postel (Page G-10]

RFC 819 IRIS Communications Guide

<g> ::= any one of the 128 ASCII characters except CR. LF, quote ("),
or backslash (\)

<x> ::= any one of the 128 ASCII characters (no exceptions)

NS T T T ST ST S T ST SRR T
""", and the control characters (ASCII codes 0 through 31 inclusive
and 127)

Note that the backslash, "\", is a quote character, which is used to
indicate that the next character is to be used literally (instead of
its normal interpretation). For example, "Joe\.Smith" could be used

to indicate a single nine character user field with comma being the
fourth character of the field.

The simple names that make up a domain may contain ooth upper and
lower case letters (as well as digits and hyphen). but these names
are not case sensitive.

Hosts are generally known by names. Sometimes a host is not known to
the translation function and communication is blocked. To bypass
this barrier two forms of addresses are also allowed for host
"names”. One form is a decimal integer prefixed by a pound sign, "#".
Another form, called "dotted decimal", is four small decimal integers
separated by dots and enclosed by brackets., e.g., “[123.255.37.2]",
which indicates a 32-pit ARPA Internet Address in four 8-bit fields.
(Of course, these numeric address forms are specific to the Internet,
other forms may have to be provided if this problem arises in other
transport systems.)

Su & Postel {Page G-11]

RFC 819 IRIS Communications Guide

APPENDIX B8
An Aside on the Assignment of Simple Names
In the following example, there are two naming hierarchies joining at
the naming universe ‘U’. One consists of domains (S, R, N, J, P, Q,

8, A); and the other (L, E, F, G, H, D, C, K, B, A). Domain B is
assumed to have multiple parentage as shown.

Figure 3
Illustration of Requirements for the Distinction of Simple Names

Suppose someone at A tries to initiate communication with destination
H. The fully quatlified destination name would be

H.G.F.E.L.U

Omitting common ancestors, the partially gualified name for the
destination would be

H.G.F
To permit the case of partially qualified names. name server at A
needs to resolve the simple name F, i.e., F needs to be distinct from
all the other simple names in its database.

To enable the name server of a domain to resclve simple names, a
simple name for a child needs to be assigned distinct from those of
all of its ancestors and their immediate children. However, sucn
distinction would not be sufficient to allow simpie name resolution
at lower-level domains because lower-level domains could have
multiple parentage beiow the level of this domain.

In the example above, let us assume that a name is to be assigned

Su & Postel (Page G-12]

RFC 819 IRIS Communicaticns Guide

to a new domain X by D. To allow name server at D "0 resolve
simple names, the name for X must be distinct from L, E, D, C, F.
and J. However, allowing A to resolve simple names, X needs to be
also distinct from A, B, K, as well as from Q, P, N, and R.

The following .observations can be made.

Simple names along parallel trails (distinct trails leading from
one domain to the naming universe) must be distinct, e.g.., N must
be distinct from E for B or A to properly . resolve simple names.

No universal uniqueness of simple names is called for, e.g.. the
simple name S does not have to be distinct from that of E, F, G,
H, D, C, K, Q, B, or A.

The lower the level at which a domain occurs, the more immune it
is to the requirement of naming unigueness.

To satisfy the required distinction of simple names for proper
resolution at all levels, a naming authority needs .to ensure the
simple name to be assigned distinct from those in the name server
databases at the endpoint maming domains within its domain. As an
example, for D to assign a simple name for X, it would need to
consult databases at A and K. It is. however, acceptable to have
simple names under domain A identical with those under K. Failure of
such distinct assignment of simple names by naming authority of one
domain would jeopardize the capability of simple name resolution for
entities within the subtree under that domain.

Su & Postel (Page G-13]

RFC 819 IRIS Communications Guide

APPENDIX C
Further Discussion of Name Service and Name Servers

The name service on a system shoul!d appear to the programmer of an
application program simply as a system call or library subroutine.
Within that call or subroutine there may be several types of methods
for resolving the name string into an address.

First, a local table may be consulted. This table may be a
complete table and may be updated frequently, or it may simply be
a cache of the few latest name to address mappings recently
determined.

Second. a call may be made to a name server to resolve the string
into a destination address.

Third, a call may be made to a name server to resolve the string
into a relay address.

Whenever a name server is called it may be a recursive server or an
interactive server.

If the server is recursive, the caller won’'t be able to tell if
the server itself -had the information to resolve the query or
called another server recursively (except perhaps for the time it
takes) . '

If the server is iterative, the caller must be prepared for either
the answer to its query, or a response indicating that it should
call on a different server.

It should be noted that the main name service discussed in this memo
is simply a name string to address service. For some applications
there may be other services needed.

For example., even witnin the Internet there are several procedures
or protocols for actually transferring mail. One need is to
determine which mail procedures a destination host can use.
Another need is to determine thé name &f a relay host if the
source and destination hosts do not have a common mail procedure.
These more specialized services must be specific to each
application since the answers may be application dependent. but
the basic name to address translation is application independent.

Su & Postel [Page G-14]

RFC 819 IRIS Communications Guide

APPENDIX D
Further Discussion of Interoperability and Protocol! Translations

The translation of protocols from one system to another is often
quite difficult. Following are some questions that stem from
considering the translations of addresses between mail systems:

What is the impact of different addressing environments (i.e.,
environments of different address formats)?

It is noted that the boundary of naming environment may or may not
coincide with the boundary of different mail systems. Should the
conversion of naming be independent of the application system?

The boundary between different addressing environments may or may
not coincide with that of different naming envirorments or
application systems. Some generic approach appears to be
necessary.

If the conversion of naming is to be independent of the
application system, some form of interaction appears necessary
between the interface module of naming conversion with some
application level functions., such as the parsing and modification
of message text.

To accommodate encryption, conversion may not be desirable at all.
What then can be an alternative to conversion?

Su & Postel {Page G-15]

RFC 819 IRIS Communications Guide

GLOSSARY
address

An address is a numerical identifier for the topological location
of the named entity.

name

A name is an alphanumeric identifier associated with the named

entity. For unique identification, a name needs to be unique in
the context in which the name is used. A name can be mapped to an
address.

complete (fully qualified) name
A complete name is a concatenation of simpl!e names representing
the hierarchical relation of the named with respect to the naming
universe. that is it is the concatenation of the simple names of
the domain structure tree nodes starting with its own name and
ending with the top level node name. It is a unique name in the
naming universe.

partially qualified name
A partially qualified name is an abbreviation of tne compiete name
omitting simple names of the common ancestors of the communicating
parties.

simple name

A simple name is an alphanumeric identifier unique only within its
parent domain.

domain

A domain defines a region of jurisdiction for name assignment and
of responsibility for name-to-address transiation.

naming universe
Naming universe is tne ancestor of all network entities.
naming environment

A networking environment employing a specific naming convention.

Su & Postel . {Page G-16]

RFC 819 IRIS Communications Guide

name service
Name service is a network service for name-to-address mapping.
name server

A name server is a network mechanism (e.g., a process) realizing
the function of name service.

naming authority
Naming authority is an administrative entity having the authority
for assigning simple names ana responsibility for resolving naming
conflict.

parallel relations
A network entity may have one or more hierarchical relations with
respect to the naming universe. Such mulitiple relations are
parallel relations to each other.

multiple parentage

A network entity has multiple parentage when it is assigned ‘a
simple name by more than one naming domain.

Su & Postel {Page G-17/|

RFC 819 [RIS Communicatisns Guide

REFERENCES
1] F. Harary, "Graph Theory". Addison-Wesley. Reading,
Massachusetts. 1969.

12! J. Postel, “"Computer Mail Meeting Notes", RFC-805,
USC/Information Sciences Institute, B8 February 1982.

i3] J. Postel. "Simple Mail Transfer Protocol", RFC-821,
USC/Information Sciences Institute, August 1982.

(4] D. Crocker, "Standard for the Format of ARPA Internet Text
Messages”, RFC-822, Department of Electrical Engineering, University

of Delaware, August 1982,

Su & Postel {Page G-18]|

[enuew siy} Buiroidwy Joj sy Aew nok suonsebbns Aue is)| esee|d

auoyd

[BNUBL SIy} Ul pUNO} 8ABY NOA SUOISSIWO IO ‘S8loeInooeU| ‘siolis Aue is)| eses)q

UOISIBA pUE 8|y} [enuepy

SININWNOD

"au| ‘solydess uoai|is

ssaippy
Auedwo)
weaswyeda(g
L

BWeU INOA

aleq

L2EL-EYOY6 VO ‘M3IA UlBIUNOW

|| suoljeosl|gnd [eoluyda] :uoljusiy
—— -ou| ‘solydesy) uodi|is
]

— 335S3HAQV A€ AIvd 38 11IM 3OVLSOd
]

EE—— vO ‘MIIANIVINNON Sv'ONLIWHId ~ SSV101SHId
]

— TIVIN Ad3d SS3INISNa
]

]

]

]

S31VLS A3lINN

3JHL NI
a3V i

AHVSS3IO3IN
3OVLISOd ON — —_ —— —

TCP/IP User’s Guide

Version 3.0

Silicon Graphics, Inc.
2011 Stierlin Road
Mountain View, CA 94043

Document Number 007-0330-030

Technical Publications:
Gail Kesner

Diane Wilford
Engineering:

Vemon Schryver
Archer Sully

© Copyright 1987, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary and confidential information of
Silicon Graphics, Inc., and is protected by Federal copyright law. The
contents of this document may not be disclosed to third parties, copied
or duplicated in any form, in whole or in part, without the express
written permission of Silicon Graphics, Inc.

U.S. Government Limited Rights

Use, duplication or disclosure of the techaical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (b) (2) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013. Contractor/manufacturer is Silicon
Graphics Inc., 2011 Stierlin Road, Mountain View, CA 94039-7311.

TCP/IP User’s Guide
Document Number 007-0330-030

The words IRIS, Geometry Link, Geometry Partners, Geometry Engine
and Geometry Accelerator are trademarks of Silicon Graphics, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

CONTENTS

1. INrOAUCHONcccveieeeiereecrereereesreseesessesnseseesesnessesessassssassaresssestennens 1-1
1.1 Getting Started.........ccoceveeurrecrenrnrrsenenienesesseiesnessesessesesessseessens 1-2
1.2 TCP/IP OVEIVIEW ...cuvrreceerrieenneeneinnsscsessassasesssesensnsensesenssnssnes 1-2
1.3 CONVENLIONScvouinirirerinirecniiniesceiisssessssesiisesesssssssessens 14
1.4 Relevant DOCUMENLAtIONccccoveiveeveereernesecerecressueranseesssassennes 1-5
1.5 Product SUPPOTL........ccueeeirerrenrenrentessennesssseesssesessessessessenesiosees 1-6

2. Software AdminNiSIratioN.........ccceeereeeeceerniesnsieessseeseessensveseessessesseses 2-1
2.1 Choosing an Address Classccooeevrvernruessnesnsnesseseecessesssnses 2-3

2.1.1 Class A Internet Addresses.ccooevveeursecnrcvennesersecsesurnenees 2-5
2.1.2 Class B Internet Addresses.........coeeveeeerereeceneesreneeeciennnes 2-6
2.1.3 Class C Internet AJdresses.......ccceveeevveererereerecereecneenrenees 2-6
2.2 Selecting @ HOSt NUMDEToccevirininurnicicsnnccsacnnnsissssncsenens 2-7
2.3 Naming Your IRIS WOrKStation............ccceeereerveerreerenereessuensensens 2-9
2.4 Configuring TCP/IP SOftWarecceceereerenruenereeresessesesusennene 2-10
2.4.1 Adding a New HOSLccccovernirrnenercrunenensesesueresasesiencses 2-10
2.4.2 Setting Remote Access Privileges..........ccccceveeeneecnecncnnn. 2-12
2.4.3 CuStOMIzZING .FAOSLScovererevrserrirecnsecrrreneesncessssscesssessenes 2-13
2.5 NetWOTK SECUTILYccveerrerrerrrereerererenseesneesensessesessesessensssssnssnes 2-14
2.5.1 Controlling Network ACCESSccceeerueremrrerercssesesesserenenns 2-14
2.5.2 Securing Your NEtWOIKcccceeeveeeenerrvesrensesresneseonnens 2-15
2.6 Connecting NEIWOTKScccecereeererarscecsreeneenesnsnesessessssssensnesens 2-16
2.6.1 Linking to Another Networkcoceeeeveererrereeeceesennnnns 2-17
2.6.2 route ULLLYccccoveeeresreserenentenerernesensnesssnesssseesesronens 2-18
2.6.3 Setting UpP @ GAEWAYccevevereereverreereressreseessrcsessesessenne 2-20
2.7 Maintaining YOUur NEIWOIKccceerevereereerrieresneresesenesseraiananns 2-23
2.7.1 Setting up Network Mailc.coeeeevericervensennenresneseerenans 2-23
2.7.2 Network StatiSHCS.......ccceeerereerererenrereerereessesessssesssnesarasaens 2-24
2.7.3 ACHVAUNE FWAOc.uceveceeeeneernenereeseneerenseeseseessnneseeresanes 2-25
2.8 Setting your Internet Address.........coceeuevereerreneerereerresrerecnesnreenens 2-26

3. Network Application Utilities .
3.1 Using rcp, the Remote Copy Program................cc.ccuue...

3.1.1 Copying Files from Local to
Remote Machines

............

3.1.2 Copying Files from Remote to
Local Machines ...

3.1.3 Copying Files between Remote Machines..........

............

3.1.4 Copying Directory Trees
3.2 Using rsh, the Remote Shell Program

3.3 Using rlogin, the Remote Login Program

3.4 Using rwhoccceueueenencn.
3.5 Using ruptime

........

3.6 Using Mail..............

. Using ARPANET Utilities

4.1 Using telnet, a Remote Login Program

4.2 Using fip, the File Transfer Program
4.2.1 Entering and Exiting fip ...

........

422 fip Commands...........ccccoueueueneee S
. Network Connections Within a Program................cccuucu....
5.1 The accept Program reeesenensanenns
5.2 The connect Program....... cereseesseserantaseeesasnesaenesssasananes
5.3 The select Program............ccececeeeeeverenneeeeereernesnen

3-3
3-3
3-3
34
34
3-5
3-6
3-7

4-1
41
42
42
44

5-1
54
56
5-8

1. Introduction

This book is designed for people who want to use the IRIS Series 3000
workstation to communicate with other computers using TCP/IP. In this
book, IRIS Series 3000 indicates all models in the 3000 and 3100 product
lines, including the series 2000 Turbo products (2400T and 2500T).

If this is your first time using an IRIS workstation, Getting Started with
Your IRIS Workstation is the first book you should read. To use the
procedures in this book, your IRIS must be running with the Ethernet card
installed. If your IRIS is not running, see Chapter 2, Hardware Installation
and Chapter 3, Booting the IRIS, in the /RIS Series 3000 Owner’ s Guide. If
the Ethemet card is not installed, call the Field Engineer who services your
account.

This document explains how to configure and use Transmission Control
Protocol/Intemet Protocol (TCP/IP) communications software on the IRIS
Series 3000 workstation.

The IRIS can communicate across an Ethemet local area network with other
hosts and terminals using TCP/IP communications software. TCP/IP offers
file transfer and remote login services. To connect the IRIS to the Ethemet,
see Chapter 2, Hardware Installation, in the IRIS Series 3000 Owner’'s
Guide.

The IRIS workstation runs the 4.3 BSD UNIX version of TCP/IP except that
the IRIS does not support the program talk and the UNIX domain socket,
UNIX_AF.

Version 3.0 Series 3000

1-2 TCP/P User’s Guide Introduction

1.1 Getting Started

This document makes some assumptions about you and your IRIS 3000
Series workstation:

e Your system is up and running and you know how to boot it. If not,
consult the IRIS Series 3000 Owner’s Guide.

e You know a little about the UNIX operating system. If not, read Getting
Started with Your IRIS Workstation.

e You are familiar with a text editor. If not, read Getting Started with
Your IRIS Workstation.

1.2 TCP/IP Overview

TCP/IP is the basic network protocol supported on IRIS Series 3000
workstations. A communications protocol is a procedure with a well
defined format that allows two or more systems t0 communicate across a
physical link. On the IRIS, the physical link is the Ethemnet network.

TCP/IP provides a fast, standard, and reliable means of communicating with
other systems running UNIX on your network.

TCP/IP commands let you:
o transfer files between computers interactively
e log in to remote computers and start a shell interactively
e execute commands on remote computers interactively

« send mail between users interactively

Series 3000 Version 3.0

Introducﬁon : TCP/IP User’s Guide 1-3

Below is a diagram of a typical Etheret network.

| | [

IRIS Computer Computer

Figure 1-1: Ethemnet Network

TCP/IP software is a standard feature on the IRIS. To use TCP/IP, you must
have the appropriate hardware:

e an Ethemnet cable
e a drop cable from the IRIS to a transceiver
+ an Ethernet board

Each computer on the network is linked to the Ethernet cable by a drop
cable. The Ethernet board is available as an option with the IRIS Series
3000 workstation.

The Ethernet cable is the physical foundation of the network; it supports
several layers of software. The first layer, Internet Protocol (IP), supports
the Transmission Control Protocol (TCP).

Version 3.0 Series 3000

1-4 TCP/IP User’s Guide Introduction

Figure 1-2 shows a diagram of these network layers.

TCP
P
Ethernet

Figure 1-2: Layers of TCP/IP Network Software

TCP creates a virtual circuit. A virtual circuit is a data path in which data
blocks are guaranteed to be delivered to the target machine, and in the
correct order. Messages are sent from the sender to the receiver until the
receiver sends back a message saying that all the data blocks have been
received in the correct order. The TCP layer enables and supports
applications such as TCP/IP commands.

1.3 Conventions

This document uses the standard UNIX convention when referring to entries
in the UNIX documentation. The entry name is followed by a section
number in parentheses. For example, cc(1) refers to the cc manual entry in
Section 1 of the UNIX Programmer’s Manual, Volume IA.

In command syntax descriptions and examples, square brackets surrounding
an argument indicate that the argument is optional. Variable parameters are
in italics. You replace these variable with the appropriate string or value.

In text descriptions, filenames-and UNIX commands are also in italics. IRIS
Graphics Library routines and PROM commands are in tpewriter font.

In examples that are set off from the text, text that the machine displays is in
typewriter font; textthat youtypeisin bold typewriter font.

Series 3000 Version 3.0

Introduction TCP/IP User’s Guide 1-5

1.4 Relevant Documentation
You may find useful information to help you plan and set up your network
in these documents:

e Defense Data Network Protocol Handbook, which is available from the
Network Information Center, Defense Data Network, SRI International,
Room EJ-291, 333 Ravenswood Ave., Menlo Park, California 94025,
telephone: (415) 326-6200

o IRIS Series 3000 Owner’s Guide
e UNIX Programmer’s Manual, Volume IA
e UNIX Programmer’s Manual, Volume IB

This table lists relevant manual pages from the UNIX Programmer’s Manual,
Volume IA and UNIX Programmer’s Manual, Volume IB.

Manual Page Explanation
arp(1M) Address resolution display and control
ftp(10) File transfer program
ftipd(1M) DARPA Intemet File Transfer Protocol server
ifconfig(1M) Configure network interface parameters
inetd(1M) Internet ‘‘super-server”’
netstat(1) Show network status
rcp(1C) Copy file to or from a remote system
rlogin(1C) Login to a remote system

| rlogind(1M) Remote login server
route(1M) Manually manipulate the routing tables
routed(1M) Network routing daemon
rsh(1C) Start a remote shell
rshd(1M) Remote shell server
ruptime(1C) Show status of other hosts on local network

Table 1-1: Manual Pages Relevant to TCP/IP

Version 3.0 ' Series 3000

1-6 TCP/IP User’s Guide Introduction
Manual Page Explanation

rwho(1C) Show who is logged in on local machines
rwhod(1M) System status server

telnet(1C) User interface to TELNET Protocol
telnetd(1M) TELNET Protocol server

accept(2) Accept a connection on a socket

bind(2) Bind a name to a socket

connect(2) Initiate a connection on a socket
select(2) Select I/O descriptor sets

send(2) Send message to a socket

socket(2) Create an endpoint for communication
byteorder(3N) Convert values between host and network byte order
inet(3N) Internet Protocol Family

rcmd(3N) Return a stream

hosts(4) Host name data base

hosts.equiv(4) Host names for shared accounts
networks(4) network name data base

protocols(4) Protocol name data base

rhosts(4) Host and user names in shared accounts
services(4) Service name data base

ip(7P) Internet Protocol

tcp(7P) Internet Transmission Control Protocol

Table 1-1: Manual Pages Relevant to TCP/IP (continued)

1.5 Product Support

Silicon Graphics, Inc., provides a comprehensive product support and
maintenance program for IRIS products. For further information, contact
Product Support through the Geometry Hotline

Silicon Graphics Geometry Hotline

(800) 345-0222 U.S. and Canada (toll-free)
350613

Worldwide (telex number)

Series 3000

Version 3.0

2. Software Administration

This chapter describes the procedures for configuring TCP/IP
communications software. Read this chapter if you are acting as either the
system or network administrator for your IRIS Series 3000 workstation. If
your system is already configured, go to Chapter 3. If your system is not
connected to the Ethernet, see Chapter 2, Hardware Installation, in the IRIS
Series 3000 Owner’s Guide. This chapter includes these basic configuration
procedures: ‘

Procedures Section

Choosing an address class 21
Naming your IRIS workstation 2.3
Configuring TCP/IP software 24
Connecting networks 2.6
Setting up network mail 271

Version 3.0 Series 3000

2-2 TCP/IP User’s Guide Software Administration

The following checklist provides instructions on the necessary steps for
configuring the TCP/IP software. Each step is explained in detail in this
manual. You must follow the steps listed below for all machines.

e Choose an address class-and assign an address for your system (Section
2.1). If you are connecting your system to an existing network, ask your
network administrator for the address you should assign to your system.

e Select your host number (Section 2.2).

« Assign a unique name to your system (Section 2.3). The default name is
IRIS.

» Create the host database for your system by editing the file /etc/hosts.
Edit the file /etc/hosts.equiv for controlling host access (Section 2.4).

o Update the databases on other systems on the network with your new
intemet address and system name. For systems with the UNIX
operating system, enter the changes in the /etc/hosts file (Section 2.4).

e If you have PROMs that are version 3.0.9 or later, set your network
address into PROM memory (Section 2.8). .

e Read about and try the network application programs described in
Chapters 3 and 4. Among other functions, these programs send and
receive files, and log in to remote systems.

Follow these steps if you plan to use your IRIS 3000 Series workstation for
network mail or as a gateway.

« Create gateway mappings for routing table initialization by adding route
entries to the file /etc/rc.tcp (Section 2.6). If you are connecting your
IRIS Series 3000 workstation to an existing network in which gateways
have already been established, obtain the gateway addresses from your
network administrator.

o If you want to use network mail, edit /etc/hosts and /usr/lib/sendmail.cf
to add the names of remote hosts (Section 2.7).

Series 3000 Version 3.0

=

Software Administration TCP/IP User’s Guide 2-3

2.1 Choosing an Address Class

TCP/IP uses two addresses to uniquely identify each node in a network: a
physical Ethernet address and a logical internet address. The Ethernet
address is a 6-byte physical address that identifies the Ethernet board.
‘Because it is burned into the hardware, it never changes.

The internet address is a 4-byte logical address that identifies the host on the
network. The logical address is in two parts: the network number followed
by the host number. You can specify addresses in decimal, octal, or
hexadecimal. Use a leading Ox or 0X for hexadecimal notation, and use a
leading O for octal notation. See inet(3N) for more information on the dot
(.) notation.

There are three intemnet address classes: Class A, Class B, and Class C.
The most significant bits of the address are the first byte that determine the
address class. Each address has the form:

All internet addresses on a particular network must be of the same class.

The number of bytes comprising the net and host portions of address
differs according to the address class. These differences are illustrated in
Figure 2-1.

Version 3.0 Series 3000

2-4 TCP/IP User’s Guide Software Administration

Class A addresses:

net host

P ,,-----ﬁi----\\
1.1 11

Class B addresses:

net host
r A N/ - N\
| .].1 .|
Class C addresses:
net host
A N\

’
4. J.._ 1.1

Figure 2-1: Net and Host Divisions of Addresses

To specify an internet address, you must list all four bytes of the address. If
any of the bytes is zero (0), you must use a 0 to specify that byte (see below
for examples).

NOTE: If you are connecting your system to an existing network, ask your
network administrator for the appropriate network address.

In any network, all internet addresses must be of the same class. If you are
connecting your system to an existing network, ask your network
administrator for the address class and network number. If you are building
a new network, see the information on assigning network classes below.

The IRIS Series 3000 workstation is shipped with the Class C address:
192.0.0.1

This address is in the /etc/hosts file. If you do not plan to connect your
network to a larger network and you do not already have a network number,
192.0.0.1 is a generic network number that you can use.

If you plan to connect your local network to a larger network, you must
apply for an address through the agency that administers the network to
which you wish to connect. For example, the Network Information Center

Series 3000 Version 3.0

Software Administration TCP/IP User’s Guide 2-5

(NIC) at Stanford Research Institute (SRI) is responsible for all network
numbers assignments for the Internet. If you have questions about Internet
network numbers or want further network information, call 1-800-235-3155
or contact the Hostmaster at the NIC. The network address is:

HOSTMASTER@SRI-NIC.ARPA

Each of the three classes of network is described below.

2.1.1 Class A Internet Addresses

As Figure 2-1 illustrates, in a class A address, the net portion of the
address consists of one byte, and the host portion consists of three bytes.

In a class A address, the most significant bit of the net portion of the
address must be 0. Because the most significant bit is 0, the possible range
for the network identification number is from 1 to 127 (decimal), instead of
1to 254. The host portion of the address consists of three bytes (24 bits).

You must specify each byte of the 24-bit host address separately using dot
notation. The possible range of values for each byte of the host address is 1
to 254. The possible range of values (in decimal) for each byte of the
address is shown below:

net host

*
[Byte 1].[Byte 2], [Byte 3], [Byte 4]

[0..127) [1..254) [1..254] [1..254)

This is an example of a class A address:
42.0.0.1

In the above address, the network identification number is 42. It uses one
byte of the specification. The host address is 1. Notice that it only uses one
byte of three possible bytes. The other two bytes are 0.

Version 3.0 Series 3000

2-6 TCP/IP User’s Guide Software Administration

2.1.2 Class B Internet Addresses

As Figure 2-1 illustrates, in a Class B address the net and host portions
each consist of two bytes. In a Class B address, the two most significant bits
of the first byte of the net portion of the address must be 10 (in binary). If
the most significant bits are 10, then you must use only the remaining six
bits of the first byte and all eight bits of the second byte to specify the rest of
the network identification number. This means the possible range (in
decimal) for the first byte of the net portion of the address is 128 to 191
and the range for the second byte is 1 to 254. Because the host portion of
the address also consists of two bytes, there are 216 possible host
identification numbers. The possible range (in decimal) for the two bytes of
the host portion of the address is 1 to 254. The possible range of values
(in decimal) for each byte is shown below: ,

A

/- NN/ N\
lByte ll,lByte 2I.|Byte 3I.|Byte 4]
[128...191) ([1..254] (1..254] [1..254)]

net host
A

This is an example of a class B address:
128.0.0.1

In the above address, the network identification number is 128.0. It uses two
bytes of the specification. The host number is 1. The host address uses only
one byte in the 2-byte specification. The other byte is specified with a 0.

2.1.3 Class C Internet Addresses

As shown in Figure 2-1, in a Class C address the net portion of the address
consists of three bytes and the host portion of the address consists of one
byte. In a Class C address, the three most significant bits of the net
portion of the address must be 110 (in binary). If the most significant bits
are 110, then you use the remaining five bits of the first byte and the 16 bits

Series 3000 Version 3.0

Software Administration TCP/IP User’s Guide 2-7

of the second and third bytes to specify the rest of the network identification
number. This means there are 22! network identification numbers. For the
net portion of the address, the possible range of values (in decimal) is 192
to 223 for the first byte of the address and 1 to 254 for the second and third
bytes. Since the host portion of the address consists of one byte, there are
28 host identification numbers. This means the possible range of values for
the host identification number is 1 to 254. The possible range of values (in
decimal) for each byte is shown below:

net host

N,

Esyte 1l,lByte 2] .ﬁayte 3|.lByte 4|
[192...223) [1..254] [1..254] [1..254)

This is an example of a class C address:
192.0.0.1

In the above address, the network identification number is 192.0.0. It uses
three bytes of the specification. The host number is 1.

2.2 Selecting a Host Number

After you select an address class, you need to select a specific internet host
number for your system. As previously mentioned, the TCP/IP protocols use
logical internet addresses while the Ethernet hardware uses physical
Ethernet addresses. Therefore, in order to send messages between two
systems connected by the Ethernet, the systems must be able to translate the
logical . internet addresses into the physical Ethernet addresses. This
translation is done with the Address Resolution Protocol (ARP).

The sending system broadcasts a message containing the destination
system’s internet address. The sending system then waits for the destination
system to send back its physical Ethernet address. After the sending system
receives the Ethemnet address, it associates this Ethemnet address with the
destination system’s internet address. The sending system then stores this
translation and the Ethernet address in a table for later use. Each system on
the network maintains a table of recently used address translations.

Version 3.0 Series 3000

2-8 TCP/IP User’s Guide Software Administration

Thus, the ARP protocol allows you to choose any host number as long as it
is unique and is the same class as the other systems on the network. The
only number that you cannot use is 127. This is the local host entry number,
which is used for testing. /etc/hosts lists all system names and addresses
that your system can access. See Section 2.4.1 for more information on the
letclhosts file.

Normally, hosts using the ARP method of address translation can
communicate only with other hosts that support the ARP method. The IRIS
TCP/IP software, however, supports communication with hosts that do not
support ARP. To establish communication with a host that does not support
ARP, add the mapping for its Ethernet address to the internet-to-Ethemet
address translation table on the IRIS. To do this, use the arp(1M) utility.

To use the arp utility, follow these steps:
1. On the system that supports ARP, log in as root.

login: root

2. Add information about the system that does not support ARP
(host-name) to the translation table. Type:

arp -s host_name Ethernet_address pub

The —s option tells arp to add the entry that follows to the
translation table. The pub option publishes the entry. That is,
it enables a host to respond to an ARP broadcast even if the
specified internet address is not its own address. (See arp(1M)
for more information.)

Once you add an entry to the table, it remains in the translation
table until you, reboot. If you want to make the entry you add
permanent, follow these directions:

e Edit /etc/rc.tcp. Find this line:

Add routing commands here

Series 3000 Version 3.0

=

Software Administration TCP/IP User’s Guide 2-9

Add this line:

arp -s host_name Ethernet_address pub

3. To insert multiple entries in the translation table by reading
them from a text file, type:

arp -£ filename

4. To display all the current entries in the table, type:
arp -a

The system responds with a list, similar to this:

opus (192.60.0.1) at 8:0:14:60:0:1
george (192.60.1.81) at 8:0:14:60:0:81
fred (192.60.0.65) at 8:0:14:0:0:65

2.3 Naming Your IRIS Workstation

The default name of a new IRIS Series 3000 workstation is IRIS. If you
have more than one system on a network, you must assign each system a
unique name. The name can be up to eight characters long and cannot
contain blank spaces.

The name must be in lowercase letters. As a general practice, do not assign
users or hosts any name that contains uppercase letters. If you must have
uppercase letters, then create a lowercase alias in /usr/lib/aliases. Many
systems are case-insensitive, and some convert uppercase letters to lower
case. To change the name of a system, edit the files /etc/hosts and
letc/sys_id and reboot the system. See the manual pages for hosts(4) and
letc/sys_id(4).

All the systems on your network must add the name of your workstation to
their /etc/hosts files. If you are adding a new machine to an existing
network, edit the /etc/hosts file on your new workstation to include the name
of another system on your network. Then, log in to the other system and

Version 3.0 Series 3000

2-10 TCP/IP User’s Guide Software Administration

copy the /etc/hosts file from the old system to the new one. The network
administrator should add the new system name to their /etc/hosts file and
update the /etc/hosts file on the other systems.

2.4 Configuring TCP/IP Software

After you establish an address for your network and your system, you need
to configure your TCP/IP software to fit your needs. Specifically, you must
perform the following tasks:

e Add your new host name to the host data base

o Set remote access privileges

2.4.1 Adding a New Host

The file /etc/hosts is the host names database. It contains mappings between
the intemet addresses and the names and aliases for the systems on the
network. This file exists on each system on a network. When you reference
a host by name in an application program, the application program uses this
file to determine the internet address of the host to which you are referring.

The /etc/hosts file can contain two elements:
o lines of text with two or more fields

« optional comments that begin with a pound sign (#) and continue to the
end of the line \

The first field of the line is the internet address, which consists of a network
number and a host number. In the entry for your machine, the internet
address contains the network number that you obtained or selected
according to the instructions in Section 2.1.

Series 3000 Version 3.0

o

Software Administration TCP/IP User’s Guide 2-11

NOTE: The first field must be followed by one or more spaces or tabs.

The second field contains the name of the system that is associated with the
intemet address in the first field. Figure 2-2 shows an example of an
letclhosts file.

#

internet Host Database
test entry
127.0.0.1 localhost
my machine
31.0.3.13 IRIS

active entries
31.0.048 cyrano
31.0.0.57 percival
31.0.0.13 arthur
31.0.3.59 zurich
31.0.0.66 opus
31.0.0.81 dagwood
31.0.0.10 mac
31.0.0.11 george
31.0.0.26 blondie

Figure 2-2: Example of an /etc/hosts File

If you are connecting to an existing network, obtain a copy of the /etc/hosts
file from your network administrator. (Before using this file, make sure it
conforms to the syntax specifications outlined in Section 2.1.) If you are
building a new network, add the name and address for your system as well
as for any other systems on the network to /etc/hosts. If you are going to use
your IRIS as a gateway, it requires two host names. You must put both
names for your workstation in the /etc/hosts. See Section 2.6.3.

Figure 2-2 shows an entry called localhost. This entry is a special address
that you use to test the TCP/IP software. When you reference this address,
the message is looped back intemnally; it is never physically transmitted
across the network. This localhost entry is a Class A address with network
number 127 and host number 1.

Version 3.0 Series 3000

2-12 TCP/IP User’s Guide Software Administration

2.4.2 Setting Remote Access Privileges

The /etc/hosts.equiv file contains a list of remote systems with which the
local system is equivalent, that is, with which it shares account names. This
file is used by the application programs rlogin, rsh, and rcp to allow remote
access to accounts on the local system.

There are two different ways to set up remote access privileges:

o Create a list of systems that can access your system. To do this, you edit
letc/hosts.equiv.

e Create a list of other users that can access your system. To do this, you
edit .rhosts.

You can use one or both of these methods. Each line in the files
letclhosts.equiv and .rhosts lists the unique name for each remote host
whose users can access the local machine.

letc/hosts.equiv contains lines of text with one or more fields that are
separated by exactly one blank space. A line consisting of a simple host
name means that anyone may log in from that host.

Figure 2-3 shows an example /etc/hosts.equiv file that corresponds to the
Jetc/hosts file shown in Figure 2-2.

localhost
iris
cyrano
percival
arthur
zurich
opus
dagwood
| mac
george
blondie

Figure 2-3: Example of an /etc/hosts.equiv File
Series 3000 Version 3.0

Software Administration TCP/IP User’s Guide 2-13

Each line in /etc/hosts.equiv is the name of a host that can access the local
system. If you are connecting your system to an existing network, ask your
network or system administrator for the host names that you should include
in this file. If you are building a new network, edit the letc/hosts.equiv so
that it contains the names of hosts that should have access to the files on
your system. Include only those hosts in hosts.equiv that are equivalent to
yours in security and administration.

2.4.3 Customizing .rhosts

You can use the .rhosts file to control remote access to systems. This file
serves the same purpose as /etc/hosts.equiv, but gives access to individual
users. The .rhosts file is located in a user’s home directory and specifies the
remote systems and users that can access the local system under the login
name of that user’s directory.

If you are listed in another user’s .rhosts file on a remote machine, you can
log in to that machine with your login id and you have all the same
privileges as the user who listed you in their .rhosts file. For example, user
sam’s .rhosts file is shown in Figure 2-4. In this example, donna, fred, and
rich use the machine iris and have all of sam’s privileges on his local
machine. The .rhosts file is used to validate a user when the name of the
remote system does not exist in the /etc/hosts.equiv file. ‘

.rhosts contains lines of text with fields for host and user separated by
exactly one space. Tab characters are not allowed. Each line contains the
name of the remote systems and the users on that remote system who can
access the local system. ' '

Version 3.0 Series 3000

2-14 TCP/P User’s Guide Software Administration

iris fred

iris rich

iris donna
zurich edwardo
opus bloom
opus pickles
dagwood daisy
mac henry
blondie marilyn

Figure 2-4: Example of an .rhosts File

2.5 Network Security

This section contains information on two network secuﬁfy issues: network
access control and the TCP/IP security algorithm.

2.5.1 Controlling Network Access

The configuration files described in Sections 2.4.2 and 2.4.3, letc/hosts.equiv
and .rhosts, maintain network security by controlling user access from
remote systems to the local system.

Users on remote systems whose systems are listed in the local system’s
letclhosts.equiv file can gain access to all files on the local system without
using a password. hosts.equiv makes users on one machine equivalent to
users on another machine. For example, user paul is a local user on system
chess. If system chess is listed in system spider’s host.equiv file, then paul
can use the rsh, rlogin, and rcp commands without supplying a password.
The host.equiv makes the remote user equivalent to the local user with the
same user name. Therefore, paul is paul on both chess and spider. See
hosts.equiv(4).

Series 3000 Version 3.0

Software Administration TCP/TIP User’s Guide 2-15

l.rhosts is in root’s home directory. This file allows the superuser or
permitted users on a remote host to log in as the superuser on the local host
without specifying a password. hosts.equiv does not permit root access. See
rhosts(4).

Another network security feature is configuration file ownership. You must
be logged in as root in order to edit most of the configuration files.

Warnings

Use /.rhosts only if all systems and their consoles are physically secure
against unauthorized use. Given access to a console with /.rhosts privileges,
anyone can log in as any user, including the superuser, and become root on
any system that has your system’s name and root in its /.rhosts file.

Be very selective about the systems you add to hosts.equiv because adding a
system to hosts.equiv makes all users on the remote system equivalent to
users on the local system. Making users on systems equivalent can be
dangerous. For example, if host_A lists host B in its /etc/hosts.equiv file,
then a user with superuser privileges on host_B can create an account with
any name that matches a user on host_A, thus gaining access to that user’s
files on host_A, if host.equiv is not restricted to specific users.

2.5.2 Securing Your Network

You can maintain network security and allow users to have access to several
machines by using three strategies:

e When more than one machine has the same protection domain, all the
machines within that protection domain have identical hosts.equiv files.
All users, except for root in this case, can use the rlogin, rcp, and rsh
commands without supplying a password.

e When the user root on all machines within the same protection domain
is put in each machine’s /.rhosts file, any user logged in as root on one
machine can use the rlogin, rcp, and rsh commands without supplying a
password.

Version 3.0 ‘ Series 3000

2-16 TCP/IP User’s Guide Software Administration

e When one user has the same name on several machines, this user is
listed in the .rhosts file in his home directory on each machine. This
user can use the rlogin, rcp, and rsh commands without supplying a
password.

2.6 Connecting Networks

After you set up your local network, you can connect it to other networks.
These networks must be connected physically through a gateway. A
gateway is an intermediate system that controls the flow of information
between two (or more) systems. A route is a sequence of host names
through which information is sent to its destination host. A route may go
through one or more gateways. When you send information to a host on a
remote network, it looks like the information is sent directly to the host;
however, the information is actually sent to a device that channels it to a
remote host. '

Some gateways are systems dedicated only to this function; others are hosts
that perform gateway functions in addition to their regular functions. Figure
2-5 shows a diagram of two networks with a gateway.

Series 3000 Version 3.0

Software Administration TCP/IP User’s Guide 2-17

IRIS Computer Computer |

Gateway
Machine
]
IRIS VAX Printer

=mmm Ethernet
—— Dropline

Figure 2-5: Example of Two Networks Connected by a Gateway

2.6.1 Linking to Another Network

To link to another network, you must include details about the network in
the file /etc/networks, which is the network host database. It contains
mappings between networks and their internet addresses. You must be the
superuser to edit this file. See networks(4).

Large networks, particularly those connected to the Internet, are
administered by the Network Information Center (NIC), operated by
Stanford Research Institute (SRI), in Palo Alto, CA. Contact the NIC for
information on becoming a part of a large network.

You must create a map of the gateways that your system will use. You can
create these gateways by using the route utility (Section 2.6.2) or by editing
letcirc.tcp (Section 2.6.3). All mappings between hosts and gateways

Version 3.0 Series 3000

2-18 TCP/IP User’s Guide Software Administration

appear in the routing table. To access or change the mappings in the routing
table use the route(1M) utility (Section 2.6.2). '

When the network is up and running, the routing table resides in the TCP
kernel. The initial entries in the table are based on the route commands in
the /etc/rc.tep file.

Use the netstat —r command, described in Section 2.7.2, to display gateway
entries in the routing table. Usually, the route daemon routed maintains the
routing tables automatically.

2.6.2 route Utility

Many gateways run a version of the BSD networking software that supports
the route daemon, routed. If you are connected to one of these networks,
you do not need to read this section, because the gateway machine’s routed
is responsible for adding and deleting routes. Follow the directions in this
section only if you are connecting to a network that does not use routed in
its networking software.

The route(1M) utility lets you add or delete gateway addresses for inter-
network communication. To add an address, type:

route add destination gateway metric
To delete an address, type:
route delete destination gateway metric

destination is either the name of a host on the remote network or it is the
entire remote network. gateway is the gateway that connects the two
networks. metric refers to the number of gateways information must go
through to get to its destination. If you do not specify the metric value,
route assumes a value of 0, which implies no gateways.

You can specify both destination and gateway as either names or intemet
addresses. Internet addresses must be in the same class as the network class.
(For information on address classes, see Section 2.1.) You must list both
destination and gateway in your /etc/hosts file; gateway must be listed in
letc/networks.

Series 3000 Version 3.0

Software Administration TCP/IP User’s Guide 2-19

Below are examples of commands for adding and deleting a new route using
the destination network. In each example, the system’s response to the
command contains the internet addresses (in four-part dot notation) that
corresponds to the destination and gateway given in the command. See
inet(7P) for information on dot notation.

NOTE: You must be logged in as root to add or delete gateways from the
routing table.

Adding a New Route

The following example adds a new route and gateway. The new route goes
to the network sanjose. This route is through the gateway sj. The metric
number indicates the number of gateways in this route. The metric number
is one (1) in this example. For example, to add the route san jose, type:

su
route add sanjose sj 1

After you enter this command, the system responds:

add network 21.0.0.0 gateway 90.1.32.131

Deleting a Route

The following example deletes a route and a gateway. To remove sj as a
route through which the network sanjose can be reached, delete the entry
from the routing table. For example, to delete the route san Jose, type:

su
route delete sanjose sj 1

Version 3.0 Series 3000

2-20 TCP/IP User’s Guide

After you enter this command, the system responds:

Software Administration

delete network 21.0.0.0 gateway 90.1.32.131

Displaying Routes

To display a route, type:

netstat -x

The system displays this information:

Routing tables

Destination
localhost
44
194.26.51
194.26.52
194.26.53
194.26.54
194.26.55

Section 2.7.2 describes the netstat —r command in more detail.

2.6.3 Setting Up a Gateway

Gateway
localhost
norman
alfred
gate-TBsrc
gate-owls
gate—goose
194.26.51.7

Flags
UH
UG

U

U.

UG
UG
UG

Refcnt

B OHER O

Use

42151
18231
65534
3853
28145
741

Interface
lo0
ex0
ex0
exl
ex0
ex0
ex0

You must have two Ethernet boards in your IRIS Series 3000 workstation to
use it as a gateway. Each Ethemet board has a unique Ethernet and intemnet
address and a unique host name. The entry in /etc/hosts for an IRIS thatis a

gateway would look like this:

191.25.50.10
191.25.51.10

Series 3000

gate-marketing
penquin

Version 3.0

Software Administration TCP/IP User’s Guide 2-21

To use your IRIS Series 3000 workstation as a gateway, follow these steps:

1. Become the superuser. Type:

su

2. Use the file /etc/rc.tcp to configure gateways, modify the
routing table, and activate the rwho utility, if needed. rc.zcp is
an initialization script that is invoked by /etc/init, which is
executed when you put the workstation into multi-user mode.
rc.tcp performs TCP/IP-specific initializations on gateways.
lusrletclifconfig initializes the Ethemnet interface and causes
re.tep to start the TCP/IP daemon inetd.

Edit rc.tcp to make your workstation function as a gateway.
Find these lines:

change and install the following line
for gatewaying
* /etc/ifconfig exl inet gate-$HNAME

/etc/ifconfig 1lo0 localhost

hostid $HNAME

You must give the workstation an alternative host name when
you make it a gateway. You must put both of these names for
your workstation in /etc/hosts. To use the IRIS as a gateway,
delete the pound sign (#) on the line with gate-$HNAME. This
line causes your machine’s host name to be defined as
gateway-hostname. Below is an example of these lines in
/etc/re.tcp changed to be used as a gateway.

change and install the following line
for gatewaying
/etc/ifconfig exl inet gate-SHNAME
/etc/ifconfig 100 localhost

hostid $HNAME

Version 3.0 Series 3000

2-22 TCP/IP User’s Guide Software Administration

3. Edit /rc.tcp to modify the script if you need to change the
automatically inferred routing tables. Find this line and
substitute either the host name or the internet address for either
the destination or gateway machine.

Example: "route add destination gateway 1"

Here is an example of the above line with the destination and
gateway machines specified.

route add walrus northpole 2

You must use static routing to work with hosts that do not run
routed(1M) or some other implementation of the RIP routing
protocol. The easiest way to specify static routing is in
letc/gateways, which is read by the local routed. To use static
routing with route, follow these steps:

A. Loginasroot.
login: root
B. Edit the file /etc/rc.tcp. Search for the following
comment:
4 Add routing commands here

Below this comment is another comment that shows how to
specify the gateway mappings:

Example: "/usr/etc/net/route add destination
gateway 1"

Add the gateway mappings for your system to the file. If you are
connecting to a preexisting network, get the gateway addresses
from your network administrator. For example, to map the gateway
sj to the host sanjose, type:

/usr/etc/net/route. add sanjose sj 2

Series 3000 Version 3.0

Software Administration TCP/TP User’s Guide 2-23

C. To effect the changes you specify in gateway
mapping, reboot the system.

2.7 Maintaining Your Network

This section provides information on network mail, statistics, and activating
the rwho utility.

2.7.1 Setting up Network Mail

TCP/IP uses the sendmail utility. sendmail forwards internetwork using any
network that will deliver the message to the correct place.

Each host running TCP/IP’s network mail facility uses a configuration file,
sendmail.cf, to store the names and communication modes of host machines.
lusr/liblaliases stores user and network addresses. When you add a new
machine to the network, you must edit /usr/lib/aliases to update the list of
users and their addresses to make these changes take effect, and then run the
program newaliases.

The sendmail.cf File

The sendmail.cf file identifies and contains information about all systems on
the network. Before a system can function with the mail program, you must
modify the sendmail.cf file to identify the system. The file entry for a
system includes the system’s name and the transmission protocols it uses.
You must enter the name of each system in lowercase letters. When
sendmail is invoked to send a message, it uses the rules in sendmail.cf to
resolve the To address of a particular system, user, and mailer (the program
that transmits the message).

The sendmail.cf file is divided into sections by the type of transmission
protocol. The IRIS Series 3000 workstation uses SMTP. List the other
systems you want to send mail to using TCP/IP under the SMTP category.
To add a system running SMTP, search the file for lines beginning with CS
and add the system’s name to it. For example, if you want to send mail to a
system named giants that runs SMTP, edit sendmail.cf and search for CS.

Version 3.0 Series 3000

2-24 TCP/IP User’s Guide Software Administration

The search takes you to these lines:

Direct connect smtp hosts
CScardinals
CStigers

Add giants, with the prefix CS to the list:

Direct connect smtp hosts
CScardinals

Cstigers

CSgiants

If you do not send mail to certain systems, for example, pirates or padres,
delete them from this list.

See the manual pages sendmail(IM), mail(1), and Mail(1) and the
documentation within the file /usr/lib/sendmail.cf.

2.7.2 Network Statistics
The netstat command provides statistical displays of network performance.
netstat has the following options:

—A shows the address of any associated protocol control blocks. Use this
for debugging.

—a shows the state of all sockets (normally, sockets used by server
processes are not shown).

—i shows the state of interfaces that have been automatically configured.
Interfaces that are statically configured into a system, but are not
located at boot time, are not shown.

-m shows statistics recorded by the memory management routines (the
network manages a private share of memory).

-n_ shows network addresses as numbers (normally netstat interprets
addresses and attempts to display them symbolically).

Series 3000 ‘ Version 3.0

Software Administration TCP/IP User’s Guide 2-25

—s shows statistics for each protocol.
-r shows the routing tables.

An example of the output of the netstat —r command is shown in Section
2.6.2.

2.7.3 Activating rwho

rwho is a network utility that tells you which machines are logged on the
network. rwho can be used effectively in small networks with less than 20
systems. In large networks, rwho becomes a significant performance drain.

Find these lines in /etc/rc.tcp:

Small networks can use rwho.
However, large sites, with > 20 rwho
machines can saturate the network.
In large networks, comment out the following 6 lines.
if test -x /usr/etc/rwhod; then

if test ! -d /usr/spool/rwho; then

mkdir /usr/spool/rwho '

fi
/usr/etc/rwhod; echo " rwhod\c"
fi

W e

echo "."

If you do not want to use rwho, add comment marks to these lines of code
so that it looks like the example below:

if test -x /usr/etc/rwhod; then
if test ! -d /usr/spool/rwho; then
mkdir /usr/spool/rwho
fi
/usr/etc/rwhod; echo " rwhod\c"
fi

LA L & & % %

echo "."

Version 3.0 Series 3000

2-26 TCP/IP User’s Guide Software Administration

2.8 Setting your Internet Address

The IRIS has two network addresses, an Ethernet address and an intemnet
address. The Ethemet address is a unique address that is bumned into a
PROM on the Ethemet board inside the IRIS. It never changes unless you
change the Ethernet board. The intemet address is a four-byte number and
is determined by your network. Instructions for determining your network
address are in Section 2.1.

It is good practice to set your internet address into your machine’s PROM
memory. Setting you internet address stores it in a special area of Random
Access Memory (RAM) that has battery power backup, so that the contents
are not lost when the machine is turned off or rebooted.

If you have PROMS at version 3.0.9 or later, follow this procedure.

1. Display the client’s intemet and Ethemet addresses at the
PROM monitor. To get to the PROM monitor, type:

su
sync

sync
reboot

2. Determine whether you have already set your internet address
into PROM memory. At the PROM monitor, type:

set
This brings up a screen with information about your system,
including network addressing. You must set your internet
address if you see this message:

internet address of this machine: (not set)

Series 3000 Version 3.0

Software Administration TCP/IP User’s Guide 2-27

To set your internet address, first, determine the internet address
for your machine, (see Section 2.1). You must set the internet
address of your machine locally using the PROM monitor set
command. Type:

set inetaddr <internet address>

The third field in the command is the assigned internet address
expressed in four decimal numbers, representing the four bytes
of the 32-bit internet address separated by periods. Enter the
number for the internet address assigned to your machine by the
network or system administrator, (for example, 89.0.0.1).

If your internet address has been set into PROM memory, verify
that it is correct with your network or system administrator.

Once you have used the set inetaddr command, you will not have to
reenter it on subsequent reboots. If the internet address of your machine is
ever changed, you must reset it using the set inetaddr command again.

Version 3.0

Series 3000

3. Network Application Utilities

This chapter describes the six network application utilities included in the
TCP/IP communications software:

rep copies a file from one computer running UNIX to another
computer running UNIX. o

rsh executes a command on a remote host running UNIX.

rlogin initiates a login on a remote host running UNIX.

rwho displays a list of the current users on remote UNIX hosts.

ruptime displays the status of remote UNIX systems.

Mail executes network mail.

Chapter 4 describes the network applications utilities telnet and ftp.' rlogin
and rcp are more robust than telnet and fip; if possible, use rlogin and rcp.

3.1 Using rcp, the Remote Copy Program |

The address notation used by rcp has changed. Use the address notation
below with GL2-W3.6 and subsequent software releases.

user@host

When using the new notation, make sure that your sty shell does not use the
at sign (@) as an erase character.

Version 3.0 Series 3000

3-2 TCP/IP User’s Guide Network Application Utilities

rcp copies a file from one system to another. You specify the source
machine, user, and the pathname for the file, followed by the destination
machine, user, and the destination pathname for the file.

rcp [[user@]host:lpathname [[user@)destination:pathname

The square brackets indicate that the information contained within them is
optional. If you do not specify a name for either the source or destination
machines, the system assumes the local machine.

Below are some examples for using rcp. In these examples, you must either
have accounts on both hosts with the same user name or else specify the
user’s and host’s name as shown below.

user@host
The user names on each machine must be equivalent to each other, through
either /etc/hosts.equiv or the user’s .rhosts file.

3.1.1 Copying Files from Local to Remote Machines

This example copies the file sgiral.c in the current directory on the local
machine to the file sgiral.c in the directory /oh4/doclinstall on a destination
machine named opus. The system assumes that the local machine is the
source of the file, because no machine is specified for the file sgiral.c.

rcp sqgiral.c opus:/ohd Idoé/ install/sqiral.c

A .rhost file can help if you have difficulty transferring files to a specific
directory in your home directory. See Section 2.4.3 for information on
_rhosts. Follow this format to transfer files to a specific directory.

xcp filename user@host: user/pathname
Another way to solve the file transfer problem is tovoopy the files to /tmp.

rcp sqiral.c opus:/tmp

Series 3000 Version 3.0

Network Application Utilities TCP/IP User’s Guide 3-3

3.1.2 Copying Files from Remote to Local Machines

This example copies the file /usr/includelstdio.h from the remote machine
sting to the file test on the local machine. The system assumes that the local
machine is the destination for the file, because no machine is specified for
the file stdio.h.

rcp sting:/usr/include/stdio.h tast

3.1.3 Copying Files between Remote Machines

This example copies the file temp_vi from a remote machine named puppy
to a file with the same name on a remote machine named sting. The system
assumes that the user’s directory exists on both machines since no home
directory is specified.

rcp puppy:temp vi sting:temp_vi

3.1.4 Copying Directory Trees

You can also use rcp to copy the entire directory tree from a remote
machine to the local machine. The —r option causes recursive copying thag
copies the directory tree. In this example, all files and directories from
lusrlinclude on the remote machine sting are copied to the directory
localinclude on the local host.

rcp -r sting:/usr/include localinclude

Using rcp with the —v flag copies files in verbose mode, i.e., a list of the
files being transferred is displayed on the monitor. This verifies that rcp is
copying files.

Version 3.0 Series 3000

3-4 TCP/IP User’s Guide Network Application Utilities

3.2 Using rsh, the Remote Shell Program

rsh connects your system to a remote host and executes the commands you
specify. Like rcp, this network utility assumes that you have accounts under
the same user name on both the remote and local hosts. If you do not have
an account on the remote machine, you can log in under another account
name that you must prefix with -1. This is the rsh syntax:

xsh hostname [~-1 username] command

For example, to find the load average on another machine, type:

rsh hostname -1 pat uptime

If you do not specify a command for rsh to execute, rsh initiates an rlogin
(remote login) on the remote machine. (See Section 3.3, below, on using
rlogin.)

Interactive commands such as vi(1) do not run correctly when executed
using rsh.

3.3 Using rlogin, the Remote Login Program

rlogin initiates a login on a remote host across the network. The program
takes the remote system name as an argument. This is the rlogin syntax:

rlogin hostname [-1 username]
For example, to log in remotely to a system named opus, type:
rlogin opus

The specified remote system must be listed in the file /etc/hosts. (See
Section 2.4.1.)

If your system is listed in the remote host’s /etc/hosts.equiv file, you can
rlogin to the remote host without a user name or password. Alternatively,
you can provide an .rhosts file in your home directory on a remote machine.
An rhosts file specifies an account on a host that is considered to be

Series 3000 Version 3.0

Network Application Utilities TCP/IP User’s Guide 3-5

equivalent to your local account. (See Section 2.4 for information on
letc/hosts.equiv and .rhosts.) The .rhost file allows you to log in to a remote
system as another user. In this example, the user logs in to the system opus
as a user named rick.

rlogin opus -1 rick

This example assumes that the user, rick, has an account on both the local
and remote systems. :

3.4 Using rwho

The rwho(1C) command generates a list of users on all UNIX systems on
the local network. In addition to the user’s login name, rwho lists the
terminal name, the system name, and the login time for each user currently
logged in. The list of hosts used to generate the names is obtained from the
file /usr/spool/rwho. See Section 2.7.3 for information on enabling rwho.

To display a list of all users logged in to UNIX hosts on the network, type:
rwho

A list of users similar to the example below appears on the screen:

percy opus:ttyl5 Mar 14 08:17
arnold opus:ttyp4 Mar 14 08:35:25
root knot :console Mar 12 15:42
mary knot :tty03 Mar 14 09:38

In this display, the first column lists the name of the user; the second column
lists the name of the host followed by the terminal name; the third column
lists the login date and time as follows:

month day hour:minute:second

If a user has not typed to the system for a minute or more, rwho reports this
idle time. If the user has not typed to the system for one hour or more, rwho
does not display that user at all. To display a list of users that includes those
who have not used their system for more than one hour, use the —a argument
to rwho.

Version 3.0 Series 3000

3-6 TCP/P User’s Guide Network Application Utilities

To obtain a list of users on a particular system, specify the host name as an
argument to the rwho command. For example, to display a list of users on
the host named knot, type:

rwho knot

3.5 Using ruptime

The ruptime(1C) utility displays the status of all UNIX hosts on the local
network. Along with the name of the host, ruptime displays the current
time, how long the system has been up, and the average number of jobs in
the run queue for each system.

To display the status information for all UNIX systems on the network,
type:

ruptime
The status list displayed is similar to this example:

opus up 12+18:54 4 users, load 1.10, 0.83, 0.75
knot down 18+13:25
percival up 5+02:45 10 users, load 4.51, 3.87, 3.51

In the status list the first column displays the system name, and the second
column indicates whether the system is up or down and the amount of time
it has been in this condition. This column uses this format:

days + hours:minutes

The third column lists the number of users logged in to the system and the
average number of jobs in the event queue in the last 5, 10, and 15 minutes
(for UNIX 4.3BSD systems only).

ruptime does not report users who are idle for more than one hour unless
you use the —a flag with ruptime.

NOTE: rwho and ruptime do not work well in large networks or over
gateways. ‘
Series 3000 Version 3.0

\

Network Application Utilities TCP/IP User’s Guide 3-7

3.6 Using Mail

TCP/IP software extends the UNIX system mail facility to allow users to
send mail to other users on the network. To send mail to another user on
another machine, first type the command Mail, and the user’s login name
followed by the at sign (@) and the host machine. Use this notation:

Mail user@host

Then, type your message. Press to end the message. For example,
to send mail to user masa who gets mail on the machine edo, address your
message:

Mail masa@edo

If you are sending mail to a user at a host on another network, you can use
the user@host notation and put both the gateway machine’s name and the
destination machine’s name in the address. The gateway machine is
separated from the host machine by a period (.). For example, to send mail
to user masa at host edo, which is linked to your network by the gateway
machine fuji, type:

Mail masa@edo.fuji

This address shows the machine edo is in the domain fuji. A domain is a
hierarchical naming scheme that runs right to left. Depending on your
network configuration, you may find it easier to use one of these address
notations:

Mail masasedo@fuji
or
Mail fuji'edo!masa

Talk with your system or network administrators to determine which
address notation is most effective with your network. For information on
configuring the files on your machine to enable network mail, see Section
2.7.1.

Version 3.0 Series 3000

4. Using ARPANET Ultilities

The utilities telnet and fip are documented in this chapter. telnet and fip are
ARPANET-derived. This means they are commonly used in the ARPANET
community. rlogin and rcp perform the same functions as telnet and fip,
and are faster and more reliable.

4.1 Using telnet, a Remote Login Program

Like rlogin, telnet initiates a login on a remote host across the network.
Unlike rlogin, telnet uses the TELNET protocol for remote logins.

To use the telnet program, follow these steps:

1. To start the telnet program, use the name of the remote machine
as an argument. For example, to log in remotely to a machine

named puppy, type:

telnet puppy
The screen shows:

Trying...,
Connected to puppy.
Escape character is *].

login:

2. Execute commands on the remote machine

Version 3.0 Series 3000

4-2 TCP/IP User’s Guide Using ARPANET Utilities

3. To disconnect from the remote machine, type logout. If you do
not get the local machine prompt, exit the telnet program by
pressing This gets the attention of the telnet program.
At the telnet> prompt, type:

quit
The telnet program has these options:
? [command] get help on commands.
status show status of telnet.
escape [esc-char] change character for exiting telnet.
close ' close a TELNET session.
open host_[port] open connection on host.
sendcrlf send a carriage return/line feed.
See telnet(1C) for details.
4.2 Using fip, the File Transfer Program
fip is a program for transferring files using the ARPANET File Transfer

Protocol. Below is a brief description of some of the ftp commands. For
more information, see fip(1C). See Section 4.2.2 for file transfer commands.

4.2.1 Entering and Exiting fip

This procedure describes how to enter and exit fip.

1. To start the ftp program, type:

ftp hostname

Series 3000 Version 3.0

Using ARPANET Utilities TCP/IP User’s Guide 4-3

hostname is the name of the machine with which you wish to
communicate. For example, to connect to the host named
abbott, type:

ftp abbott
After you execute the above command, the: screen shows:

Connected to abbott.
220 FTP server

(Version 4.81 Mon Sep 26 08:36:28 PDT 1983)
ready.

The host then requests your name and password. This example
assumes the user’s name is peter.

Remote User Name: peter
331 Password required for peter.

Enter your password and the host replies:
230 User peter logged in.
After you have logged in, the fip prompts appears:

£tp>

2. Now you are ready to send and receive files. See Section 4.2.2
below for examples of file transfer commands. To see a list of
the commands for fip, type:

help

3. To exit from fip after you finish transferring files, type:

quit

If you frequently copy files from a remote host using ftp, you can create a
-netrc file in your home directory to allow you to log in without a password.

Version 3.0 Series 3000

4-4 TCP/IP User’s Guide Using ARPANET Utilities

To create .netrc, edit it so that it contains the name of the remote machine,
your user id, and your password. After you create it, use chown to make
.netrc readable only by you. Below is a sample .netrc file.

machine machine_name
user user_name
password password_on_machine

4.2.2 ftp Commands

Each section below describes some of the commands that you can use with
ftp. Other commands are: available; see ftp(lC) for more information. Both
the command syntax and an example for that’ command are given.
Transferring Files from Local to Remote Machines
To send one file to the remote host, use this syntax:

send localfile [remotefile]

For example, this command sends the file myfile to the remote machine
using the same file name as the file on the local machine:

send mytilo

ftp displays messages to indicate that the ﬁle has been sent to the remote
machine. An fip message generated by the above command looks like:

200 PORT command okay.

150 Opening Data connection for myflle (47.0.0.131,1601)
226 Transfer complete.

21 bytes send in 0.031 seconds (0.62 Kbytes/s)

To append a file to another file on the remote machine, use this syntax:

append localfile remotefile

Series 3000 Version 3.0

Using ARPANET Utilities TCP/IP User’s Guide 4-5

For example, to append the file dictionary.a to dictionary.b, type:
append dictionary.a dictionary.b

The current working directory on the remote machine is the assumed
destination for the file. If you do not specify a remote file name, the local
file name is used as the file name on the remote machine.

To transfer multiple files from the local machine to a directory on the
remote machine, type:

cd remote-directory
mput localfile]l localfile2 ...

For example, to transfer the files thisfile and thatfile to the directory
lusrljohn/filexfer, type:

cd /usr/john/filexfer
mput thisfile thatfile

ftp displays messages to indicate that the files have been sent to the remote
machine.
Transferring Files from Remote to Local Machines
To bring a file from the remote machine to the local machine, type:
get remotefile localfile

For example, this command gets the file yourfile from the remote host and
stores it on the local machine in the current directory as myfile:

get yourfile myfile

Jfip prints messages to indicate that the file has been received by the local
machine.

Another command for obtaining a file from a remote machine has this
syntax:

xecv remotefile [localfile]

Version 3.0 Series 3000

4-6 TCP/IP User’s Guide Using ARPANET Utilities

For example, to get the file sgiral.c from the remote machine and give it the
same name on the local machine, type:

recv sqgiral.c

To lransfer mult1p1e ﬁles from the remote machme to the local machine into
the current directory, type: .

‘mget remotefile] reinoteﬁléZ
For example, to transfer the files localinclude and graph.c, type:
mget localinclude graph.c |

The screen indicates that the files have been received.

Executing Local Commands

To invoke commands on the local machine, precede the ebmmahd with an
exclamation point (!). For example, to see if the file that you sent to the
local machine has been received, type:

tls

This command dlsplays a hstmg of the current dmectory on the local
machine.

To put a listing of remote files in a local file, type:
‘mls remotefiles localfile

For example, to make a listing of the ﬁles local .h, ﬁoat h, and graphzcs hin
the file includefiles on the local machine, type: :

mls local.h float.h graphics.h includefiles
To change directories on the local machine, type:

led directory

Series 3000 Version 3.0

- Using ARPANET Utilities TCP/IP User’s Guide 4-7

For example, to change your local directory to fish on the local machine,
type: : .

led f£fish

Executing Remote Commands

Commands on the remote machine do not need to be preceded by an
exclamation point. The commands explained below fall into this category.
To change your working directory on the remote machine, use the
command:

ed remote_directory

For example, to change 'your working directory to localinclude, type:
ed localinclude

To print the current working directory on the remote machine, type:
pwd

To print the contents of a remote directory, type:
dir [remote_directory] [localfile]

If you specify a local file name, the contents of the directory are placed in
this local file. If you do not specify a local file name, the list is displayed on
the screen. If you do not specify a remote directory, the current working
directory is assumed.

Transferring Binary or ASCII Files

You can transfer either binary or ASCII files with fip. By default, ftr
transfers ASCII files. To transfer binary files, type:

binary

Version 3.0 Series 3000

4-8 TCP/IP User’s Guide Using ARPANET Utilities

After issuing this command, any subsequent files are transferred in bmary
mode. To return to the default of transferring ASCII files, type: ’

ascii : ‘

The fip commands work identically for either ASCII or binary file transfer.

Series 3000 Version 3.0

S. Network Connections Within a Program

This chapter describes three programs, accept, select, and connect. These
programs are examples of how to make a TCP/IP connection between
machines from within a program. A listing of these _programs is given in this
chapter.

To compile and run accept, select, and connect, follow the instructions
below: :

1. Create the Makefile by typing in the text below. See make(1).

all: tccept connect select

~accept: accopt c
cc -0 accept.c -o accopt -lbsd

connect :connect.c
cc -0 connoct.c -o connect -lbsd -ldbm

select: selaect.c
cec -0 select.c -0 select -1bad

clean: rm -f accept connect select

2. Compile the files accept.c, select.c, and connect.c with the
Makefile. This builds the executable files accept, select, and
connect. To compile accept.c, select.c, and connect.c, type:

make

3. Run accept on one machine; then run connect on another
machine. Everything you type on the connect side appears on
the accept side.

Version 3.0 Series 3000

5-2 TCP/IP User’s Guide Network Connections Within a Program

For example, at site A, type:
accept
Atsite B, type:

connect hostA
this is a message

Back at site A, the following appears on your screen:

this is a message

4. To end the session, type:

EOF

5. You can also run select on one machine and run connect on
another machine. For example, at site A, type:

select

At site B, use the command connect with the name of the
machine to which you want to connect. For example, at site B,

type:

connect hostA
At site A, type a message:

This is a message.
The message appears:

This is a message.
sending <This is a message.\n>

Series 3000 Version 3.0

Network Connections Within a Program TCP/IP User’s Guide 5-3

Back at site A, the following appears on your screen:
This is a message.

To end the connection at site B, press

On site A, you see a message:
waiting for a connection

This message repeats until a connect message is received from
site B again, another machine or until you press [CTRL-c

NOTE: The programming interface for the TCP/IP software is based on
UNIX 4.3 BSD. ‘

Version 3.0 / Series 3000

5-4 TCP/IP User’s Guide Network Connections Within a Program

5.1 The accept Program

#include <sys/types.h> 4
#include <sys/socket.h>

#include <netinet/in.h>

#include <bsd/netdb.h>

#include <stdio.h>

main ()

{

/*

/*

/*

/*

int sock, length;
struct sockaddr_in sin;
int msgsock;

char line([80}];

int i, ent;

create a socket */

if ((sock = socket (AF_INET,SOCK_STREAM,O)) < 0) {
perror ("opening stream socket");
exit (0);
}

initialize socket data structure */

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons (IPPORT_RESERVED + 1):;

bind socket data structure to this socket */

if (bind (sock,&sin,sizeof(sin))) {
perror ("binding stream socket");
! {

getsockname fills in the socket structure with information,
such as the port number assigned to this socket */

Series 3000 Version 3.0

Network Connections Within a Program TCP/IP User’s Guide 5-5

length = sizeof (sin);
if (getsockname (sock, &sin, &length)) {
perror ("getting socket name");
exit (0);
}
printf ("Socket has port# %d\n",htons(sin.sin_port));

/* prepare socket queue for connection requests and accept
connections */

listen((sock,5);

if ((msgsock = accept (sock,0,0)) <= 0) {
perror ("accept on socket");
exit (0);
}

/* read from the message socket and write to standard out */

while ((cnt = read(msgsock, line, 80)) > 0)
write(1l,1line,cnt);

close (msgsock) ;
printf ("Done\n") ;

Version 3.0 Series 3000

5-6 TCP/IP User’s Guide Network Connections Within a Program

5.2 The connect Program

#include <sys/types.h> ‘
#include <sys/socket.h>

#include <netinet/in.h>

#include <bsd/netdb.h>

#include <stdio.h>

main (argc,argv)
int argec;

char **argv;

{

/*

/*

int cnt, sock;

struct sockaddr_in sin;

struct hostent *hp, *gethostbyname ();
char line(80];

if (argc != 2) { @
printf ("usage:%s host0,argv([0]);
exit (0);

open socket */

if ((sock = socket (AF_INET,SOCK STREAM,0)) < 0} {
perror ("opening stream socket");
exit (0);
}

initialize socket data structure */

sin.sin_family = AF_INET;

hp = gethostbyname (argv[1l]); /* to get host address */ ‘
beopy (hp->h_addr, &(sin.sin_addr.s_addr), hp->h length);
sin.sin_port = htons (IPPORT_RESERVED+1) ;

Series 3000 Version 3.0

Network Connections Within a Program TCP/IP User’s Guide 5-7

-/* connect to remote host */

if (connect (sock, &sin,sizeof (sin)) < 0) {
close(sock);
perror ("connection streams socket");
exit (0);
}

while ((cnt = read(0,line,80)) > 0) {
printf ("sending <");
fflush (stdout) ;
write (1, line, cnt-1);
printf ("\n>\n");
fflush (stdout) ;

/* send input to remote host */
if (write(sock,line,cnt) < 0) {
perror ("writing on stream socket");
exit (0);
}

printf ("Done\n");
close (sock) ;

Version 3.0 Series 3000

5-8 TCP/IP User’s Guide Network Connections Within a Program

5.3 The select Program

#include <sys/types.h>
#include <sys/socket.h> ‘
#include <netinet/in.h>

#include <bsd/netdb.h>

#include <stdio.h>

#include <time.h>

#define TRUE 1

main ()

{

/*

/*

int sock, length;

struct sockaddr_in sin;

int msgsock;

char line(80];

int ready, i, cnt;

struct tm to; 1

create a socket */

sock = socket (AF_INET,SOCK_STREAM,O):
if (sock < 0) {
perror ("opening stream socket");
exit (0);
}

initialize socket data structure */
sin.sin_family = AF_INET;

sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(IPPORT_RESERVED + 1});

Series 3000 - Version 3.0

Network Connections Within a Program TCP/IP User’s Guide 5-9

/* bind socket data structure to this socket */

if (bind (sock, &sin,sizeof (sin))) {
perror ("binding stream socket");

}

/* getsockname fills in the socket
structure with information, such as the
port number assigned to this socket */

length = sizeof (sin);

if (getsockname (sock,&sin,&length)) {
perror ("getting socket name");
exit (0);
}

/* prepare socket queue for connection requests
and accept connections */

listen(sock,5);
do {
ready = 1l<<sock;
/* accept connections requests on this socket */
to.tm sec = 5;
select (20, &xeady, 0,0, &t0) ;
/* are there any requests ? */
if (ready) {
msgsock = accept (sock,0,0);
while ((cnt = read(msgsock, line, 80)) > 0)
write(l,line,cnt);
close (msgsock) ;
}
else printf ("Waiting for connection\n");
} while (TRUE);

printf ("Done\n") ;

Version 3.0 Series 3000

P

[enuew siy} Buinoidwy Joj eAey Aew nok suolisebbns Aue jsi| eses|g

auoyd

[EnUBW Sy} Ul PUNOJ BABY NOA SUOISSILO IO ‘SBIoRINOOEUI ‘siole Aue isi| oses]d

UOISIaA puUe a|i} [enuepy

SINIWWNOD

"ou] ‘soiydesy) uoaijis

ssalppy
Auedwo)
swyedaqg
SN

SWEBU INOA

eleg

S31V1S @31INN
JHL NI
a3TIviN di
AHVSS3O3N
3HV1SOd ON

LZEL-EPOV6 VO ‘MSIA UlejuUNON
peoy ullJens L10e

suoljedl|gnd |eoluyos] :uoljusny
-ou| ‘solydesy) uodi|is

33SS34AAV A8 AIvd 38 17IM 39V1iSOd

VO ‘M3IA NIVINNOW G¥ 'ON LIWd3d SSV10 LSsHid

TIVIN A1d3d SS3INISNY

