IRIS User’s Guide
Volume |

Programming Guide

Version 4.0

Document Number 007-1101-040

© Copyright 1987, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary and confidential information of
Silicon Graphics, Inc., and is protected by Federal copyright law. The
contents of this document may not be disclosed to third parties, copied
or duplicated in any form, in whole or in part, without the express
written permission of Silicon Graphics, Inc.

U.S. Government Limited Rights

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (b) (2) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013. Contractor/manufacturer is Silicon
Graphics Inc., 2011 Stierlin Road, Mountain View, CA 94039-7311.

IRIS User’s Guide

Volume |

"~ Programming Guide

Version 4.0

Document Number 007-1101-040

Silicon Graphics, Inc.
Mountain View, California

UNIX is a trademark of AT&T Bell Laboratories.

Contents

VOLUME |
GRAPHICS PROGRAMMING
1. Introduction 1-1
1.1 SystemOverview 1-1
1.2 TheGraphicsLibrary 1-3
1.3 Documentation Conventions 15

1.4 Related Publicatons 1-6

2. Global State Attributes 2-1
2.1 Initialization . . . e e e e e e e e e 2-1
2.2 Saving Global State Attnbutes e e e e e e e 2-7

3. Drawing Routines . . . e e e e e e e e e 3-1
3.1 Current Drawing Posntlons e e e e e e e e e 3-2
3.2 ClearingtheViewport 3-3
33 Points 0 00 .0 e 3-3
34 Lines 000 e e 3-5

3.4.1 RelativeDrawing 3-7
35 Rectangles 3-8
36 Polygons 0. .. 3-10
3.7 CirclesandArcs 3-13
371 Circles 3-13
372 Arcs . . . oL 0 00 o e e e 3-14
38 Text0 000 e 3-16
3.9 Writing and ReadingPixels 3-19

4. Coordinate Transformations 4-1
41 Modeling Transformations 4-2
4.2 Viewing Transformations 4-7
4.3 Projection Transformations 4-10
44 Viewports e e e e e e e 4-15

45 User-Defined Transformatlons e e e e e e e e 4-20

5. Linestyles, Patterns,andFonts 5-1
51 Linestyles e e e e e 5-1
5.1.1 Modifying the Lmestyle Pattern e e e e e 5-3

562 Patterns 5-6
63 Fonts 0. .. 5-9

6. DisplayandColorModes 6-1
6.1 DisplayModes 6-1
6.1.1 RGBMode e e e e e . 6-3

6.1.2 Single Buffer and Double Buffer
Modes 6-3
62 ColorMaps 6-8
6.3 ColorsandWritemasks 6-12
631 Colors 6-12
632 Writemasks 6-16
64 CUrsors v v e e e e e e e 6-19

7. Input/OutputRoutines 7-1
71 PolingandQueueing 7-1

7.2 InitializingaDevice 7-4
73 PolingaDevice 7-6
74 The EventQueue . . . o e e e 7-7

7.5 Controlling Peripheral lnput/Output Devnces o e e 7-11
7.6 Special Devices . . . e e e e e e e e e 7-14
7.6.1 Keyboard Devuces e e e e e e e e e 7-14
762 TimerDevices. 7-14
763 CursorDevices 7-15
76.4 GhostDevices 7-15
7.65 Window ManagerDevices 7-15

8. GraphicalObjects 8-1
8.1 DefiningAnObject 8-1
82 UsingObjects 8-5
8.3 ObjectEditing e e e e 8-8

8.3.1 Identifying Display LlSt ltems wnth
Tags . . . « « ¢ v o 0000 . 8-10

8.3.2 Inserting, Deleting, and Replacing within

Objects« . o .. 8-13
8.33 Example . . . e e e e 8-15
8.3.4 Object Memory Management e e e e e 8-16

9. Picking and Selecting . . . e e e e e 9-1
9.1 Mapping Screen Coordinates to World
Coordinates« + « + v« « . . 9-1

92 Picking o 00000 ... 9-2
9.21 UsingtheNameStack 9-6
9.2.2 Defining the PickingRegion 9-9
923 Example ¢ .+ . . . 9-10
9. 3 Selecting o . 0 . 9-14

10. Geometry PipelineFeedback 10-1
10.1 The Geometry Pipeline 10-1
10.2 FeedbackMode 10-6

11. CurvesandSurfaces 11-1
11.1 Curve Mathematics 11-2
11.1.1 BezierCubicCurve 11-3

11.1.2 Cardinal Spline CubicCurve 11-4

11.1.3 B-Spline CubicCurve 11-6

112 DrawingCurves « « « « « . . 11-7
11.2.1 RationalCurves 1121

11.3 DrawingSurfaces 1123

12. HiddenSurfaces 12-1
12.1 Z-BufferMode . . . e e e e e e e e 12-1
12.2 Backfacing Polygon Removal e e e e e e e e 12-6

13. Shading and Depth-Cueing 13-1
131 Shading o 13-1
132 Depth-Cueing « « . . . 13-6

14. Textports o o . o 141

USING MEX, THE IRIS WINDOW MANAGER

1. Getting Startedwithmex W-1
1.1 Whatls aWindowManager? W-1
1.2 Window Manager Terminology W-2
1.3 WhatDoesmex Do? « « . . . W-3
1.4 CreatingWindows . . . e e e e e e W-3
1.5 Interacting with the Window Manager e e e e e e W-4

1.5.1 AttachingtoWindows W-5
152 SelectingaWindow W-5
153 MovingaWindow W-5

1.5.4 ReshapingaWindow W-6
1.5.,5 Pushing and Popping Windows W-6
15.6 RemovingaWindow W-6
1.6 Selectinga Title Font . . . e e e e e e e W-7
1.7 Attaching to the Window Manager e e e e e e e W-7
1.8 Executing Graphics Programs frommex W-8

2. Programmingwithmex W-9
2.1 Openingand ClosingWindows W-9
2.2 Setting Window Constraints W-11

2.2.1 Setting Constraints for Existing

Windows« « . W6

2.3 Changing Windows Nonmteractlvely (from wnthln a
Program) . . . e e e e e e e e e e e W7
2.4 Other Window Routlnes e e e e e e e e e e« W9
25 ProgrammingHints W24

25.1 Graphics Initializaton W-24
25.2 SharedFacilites W-24
253 RasterFonts W24
254 The EventQueue . . e v e e« o« W25
2.6 Sample Program: Single BufferMode e e e e+ o+« W25
2.7 Sample Program: Double BufferMode W-27

3. MakingPop-upMenus W31
3.1 CreatingaPop-upMenu W3
3.2 CalingUpaPop-upMenu W34
3.3 Choosing Colors for Pop-upMenus W-36
34 AdvancedMenuFormats W-38

35

3.6

3.4.1 Getting Back the Default Values for Menu
Selections .

3.4.2 Changing the Return Values for Menu
Selections

3.4.3 Making a Title .

3.4.4 Binding a Functionto a Whole
Menu . . .

3.45 Bindinga Functlon to a Menu Entry .

3.4.6 Making a Nested (Rollover) Menu

An Example from cedit, a Color Editing

Program

Sample Program

. Customizing mex .

41
4.2
43

44
45
4.6

interpreting Button Events . .
Binding Colors to the Title Bar and Borders .
Binding Colors to Pop-up Menus and the
Cursor .

Setting Color Map Entnes

A Sample .mexrc

Arranging Your Desktop

. Controlling Multiple Windows from a Single
Process

W-38

W-39
W-39

W-39
W-40
W-40

W-41
W-43

W-47
W-48
W-51

W-53
W-53
W-53
W-54

W-57

SAMPLE CODE - EXAMPLES

1: Getting Started

2: Common Drawing Commands . . .

3: Object Coordinate Systems

4: Double Buffer Display Mode .

5: Input/Output Devices

6: Interactive Drawing

7: Pop-up Menus .

8: Modeling Transformations

9: Writemasks and Color Maps .

10: A Color Editor .

SAMPLE CODE - WORKSHOPS

1: diamond1.c

2: color2.c

3: double3.c

4: overiay4.c

5: poli5s.c

.

.

.

.

.

. . . .

—Vi-—

S-156
S-19
S-23
S-29
S-33
S-47
S-61

S-67

S-75
S-79
S-83
S-87

S-91

6: aim6.c

7: queue7.c .

8: menu8.c .

9: threed9.¢c . . .

10: coord10.c

11: translateti.c

12: composite12.c .

13: view13.c .

14: parabolaid.c . . .

GLOSSARY

INDEX

—Vii—

S-95

S-99
s-10'5
S-111
S-117
S-123
S-129
S-135
S-141

GL-1

VOLUME Il

REFERENCE MANUAL
Introduction
Permuted Index
Manual Pages

APPENDICES

A: Type Definitions for C and FORTRAN .

A1
A2

C Definitions . .
FORTRAN Definitions .

B: Geometry Engine Computations

C: Transformation Matrices

C.1
Cc.2
C3
C4
C5
c.6

Translation

Scaling and Mirroring
Rotation o e
Viewing Transformations .
Perspective Transformations
Orthographic Transformations

D: FeedbackParser

E: Window Manager Programs

E.1
E.2
E.3
E.4
E.5
E.6

Color Tools

Image Tools .

General Desktop Tools
Utilities e e e
Device Usage Examples .
Fantasy Demonstrations .

F: IRIS Programming Tutorial Manual Pages

A-1
A-1
A-19

C-1

C-1
Cc-2

c3
C-4

D-1
E-1
E-4
E-5

E-6
E-7

F-1

G: Fast Immediate Mode and User-Defined Display

Lists

G.1
G.2
G.3
G.4
G.5

H: Using the Image Library

H.1
H.2

H.3

H4

Introduction and Overview
User-Defined Display Lists« e e
Example -- Defining Your Own Display Lnst . .
Counting Instructions
Conclusions

Image Files
Opening and Closing an Image Flle
H.2.1 iopen - Open an Image File
H.2.2 iclose - Close an Image File
Reading from and Writing to Image Files
H.3.1 putrow - Write a Row of Pixels from Buffer to
Image File
H.3.2 getrow - Read a Row of anels from Image F|Ie to
Buffer o e e e
Miscellaneous Functions
H.4.1 isetname - Name anImageFile
H.4.2 isetcolormap - Interpret Pixel
Values .
H.4.3 scrsave - Save Rectangular Reglon of Screen to
Image File

H.5 An Example

G-1
G-1

G-10
G-15
G-16

H-1

H-1
H-2
H-3
H-3

H-5
H-6

GRAPHICS PROGRAMMING

GRAPHICS PROGRAMMING
1. Introduction 1-1
1.1 SystemOverview 1-1
1.2 The GraphicsLibrary 1-3
1.3 Documentation Conventions 1-5

1.4 Related Publications 1-6

2. Global State Attributes 2-1
2.1 Initialization . . . C e e e e e e e 2-1
2.2 Saving Global State Attnbutes e e e e e e e e 2-7

3. Drawing Routines e e e e e e e e 3-1
3.1 Current Drawing Posmons e e e e e e e e e 3-2
3.2 ClearingtheViewport 3-3
33 Points oL L0000 3-3
34 Lines00y e 3-5

3.41 RelativeDrawing 3-7
35 Rectangles 3-8
36 Polygons 3-10
37 CirclesandArcs 3-13
371 Circles 3-13
372 Arcs L oo o e e e e e 3-14
38 Text. . . . e e e e e e e 3-16
3.9 Writing and Readlng Ptxels e e e e e e e e 3-19

4. Coordinate Transformations .

4.1
4.2
4.3
4.4
45

Modeling Transformations

Viewing Transformations .

Projection Transformations .

Viewports . e e e e
User-Defined Transformatlons e e e .

5. Linestyles, Patterns, and Fonts .

5.1

5.2
53

Linestyles . .

5.1.1 Modifying the Llnestyle Pattern
Patterns . . . e .
Fonts

6. Display and Color Modes . .

6.1

6.2
6.3

6.4

Display Modes .

6.1.1 RGB Mode . .

6.1.2 Single Buffer and Double Buffer

Modes

ColorMaps

Colors and Writemasks
631 Colors
6.3.2 Writemasks . .

Cursors

7. Input/Output Routines . . .

71
7.2
73
74
75
7.6

Polling and Queueing

Initializing a Device . .
PolingaDevice
The Event Queue . . .

Controlling Peripheral Input/Output Devnces .

SpecialDevices
7.6.1 Keyboard Devices
7.6.2 Timer Devices . . .

7.6.3 Cursor Devices . .

7.6.4 Ghost Devices . . .
7.6.5 Window Manager Devices .

.

4-1
4-2
4-7

4-10

4-15

4-20

5-1
5-3
5-6
5-9

6-1
6-1
6-3

6-3

6-12
6-12
6-16
6-19

7-1
7-1
7-4
7-6
7-7
7-11
7-14
7-14
7-14
7-15
7-15
7-15

8. Graphical Objects e
8.1 Defining AnObject
82 UsingObjects
8.3 Object Editing

8.3.1 Identifying Display L|st Items wnth

Tags .
8.3.2 Inserting, Deleting, and Replacmg wuthm
Objects
8.3.3 Example

8.3.4 Object Memory Management .

9. Picking and Selecting

9.1 Mapping Screen Coordinates to World
Coordinates

9.2 Picking . .
9.2.1 Using the Name Stack
9.2.2 Defining the Picking Region
9.2.3 Example . .

9.3 Selecting

10. Geometry Pipeline Feedback .
10.1 The Geometry Pipeline
10.2 FeedbackMode

11. Curves and Surfaces

11.1 Curve Mathematics .
11.1.1 Bezier Cubic Curve
11.1.2 Cardinal Spline Cubic Curve
11.1.3 B-Spline Cubic Curve

11.2 Drawing Curves . e .
11.2.1 RationalCurves . . .

11.3 Drawing Surfaces

8-1
8-1
8-5
8-8

8-10

8-13
8-15
8-16

9-1

9-2
9-6

9-10
9-14

10-1
10-1
10-6

11-1
11-2
11-3
11-4
11-6
11-7

11-21

11-23

12. Hidden Surfaces
12.1 Z-Buffer Mode .
12.2 Backfacing Polygon Removal

13. Shading and Depth-Cueing

13.1 Shading

13.2 Depth-Cueing

14. Textports

.

.

.

.

.

.

.

12-1
12-1
12-6

13-1
13-1
13-6

14-1

1. Introduction

The IRIS (Integrated Raster Imaging System) workstation is a high-
performance, high-resolution color computing system for 2-D and 3-D
computer graphics. It provides a powerful set of graphics primitives in a
combination of custom VLSI circuits, conventional hardware, firmware, and
software.

The heart of the system is a custom VLSI chip called the Geometry

En gineTM. A pipeline of 10 or 12 Geometry Engines accepts points,
vectors, polygons, characters, and curves in user-defined coordinate systems
and transforms them to screen coordinates, with the use of rotation, clipping,
and scaling. In addition to the Geometry Pipeline, the system consists of a
general purpose microprocessor, a raster subsystem, a high-resolution color
monitor, a keyboard, and graphics input devices.

1.1 System Overview

Conceptually, the graphics hardware of the system is divided into three
pipelined components shown in Figure 1-1: the applications/graphics
processor, the Geometry Pipeline, and the raster subsystem. The
applications/graphics processor runs the applications program, and controls
the Geometry Pipeline and the raster subsystem. Graphics routines issued

- by the applications program either are sent immediately through the
pipeline, or are compiled into graphical objects (display lists of graphics
routines) which you can call later.

Graphics routines are expressed in 2-D or 3-D user-defined coordinates.
These routines go through the Geometry Pipeline, which performs matrix
transformations on the coordinates, clips the coordinates to normalized
coordinates, and scales the transformed, clipped coordinates to screen or
window coordinates. The output of the Geometry Pipeline is then sent to

Version 4.0 Introduction 1-1

Processor

Applications Geometry

Programs Pipeline Bitplane

Update

. Frame Controller
Graphics Buffer

Library Controller

Raster Subsystem

Display
Controiler

[]
|
:
UNIX e converts | e scan
applications floating : conversion
Graphics Library point | ‘ Bitplanes
7o) e transforms| e z-buffering
e clips | e shading
e scales : e depth cueing
|
|
[
The IRIS graphics hardware consists of three subsystems:
the applications/graphics processor, the Geometry Pipeline,
and the raster subsystem.
Figure 1-1. IRIS Graphics Hardware
1-2 |RIS User’s Guide

Series 3000

the raster subsystem. The raster subsystem fills in the pixels between the
endpoints of the lines and the interiors of polygons; draws bit-mapped
characters, and performs shading, depth-cueing, and hidden surface removal.
A color value for each pixel is stored in the bitplanes. The system uses the
values contained in the bitplanes to display an image on the monitor.

1.2 The Graphics Library

The Graphics Library is a set of graphics and utility routines that provide
high- and low-level support for graphics. The system software is written in
C, although you can call the routines in C, FORTRAN, and Pascal. The
graphics routines are grouped into the following categories by chapter:

e Global state routines, which initialize the hardware and control global
state attributes (Chapter 2)

e Drawing routines, which draw points, lines, polygons, circles, arcs, and
text strings, and select characteristics for drawing lines, filling polygons,
and writing text strings (Chapter 3)

e Coordinate transformation routines, which perform manipulations on
coordinate systems, including the mapping of user-defined coordinate
systems to screen coordinate systems (Chapter 4)

e Pattern and font routines, which define linestyle, patterns, and fonts
(Chapter 5)

e Display mode and color routines, which determine how the bitplane
image memory is used and how objects are colored (Chapter 6)

o Input/output routines, which initialize and read input/output devices
(Chapter 7)

e Object creation and editing routines, which provide the means to create
graphical objects and hierarchical structures of graphics routines
(Chapter 8)

e Picking and selecting routines, which identify the routines that draw to a
specified area of the screen (Chapter 9)

e Geometry Pipeline feedback commands, which provide access to the
computing capabilities of the geometry hardware (Chapter 10)

Version 4.0 Introduction 1-3

e Curve and surface routines, which draw curved lines and wire-frame
surfaces (Chapter 11)

e Hidden surface routines, including z-buffer mode, in which hidden lines
and surfaces are removed from an image, and backface mode, in which
backfacing polygons are removed from an image (Chapter 12)

e Shading routines, which draw Gouraud-shaded polygons, and depth-
cueing routines, which draw points, lines, curves, and surfaces with
intensities that vary as a function of depth to enhance 3-D display
(Chapter 13)

e Textport routines, which allocate an area of the screen for writing text
(Chapter 14) '

e Window manager routines, which create and manipulate graphics
windows (see Using mex)

Additional material is covered in the appendices:
o Appendix A contains header files for graphics programs.

o Appendix B shows the computations performed by the Geometry Engines
to transform, clip, and scale coordinate data.

¢ Appendix C gives the transformation matrices for the coordinate
transformation routines in the Graphics Library.

¢ Appendix D discusses a feedback parser, which simplifies the use of the
Geometry Engines in feedback mode.

¢ Appendix E provides manual pages for processes in the window manager
environment.

¢ Appendix F provides the manual pages for the graphics labs in the IRIS
Programming Tutorial.

o Appendix G discusses fast immediate mode macros, which speed
execution of graphics code.

» Appendix H describes the Image Library, which is a library of routines
that manipulate blocks of pixels.

1-4 IRIS User’s Guide Series 3000

1.3 Documentation Conventions

You can use the Graphics Library with three programming languages: C,
FORTRAN, and Pascal. The C specification is given first, the FORTRAN
second, and the Pascal third. For example:

move (X, y, Zz)
Coord x, y,. 2;

subroutine move (x, y, 2z)
real x, y, z

procedure move(x, y, a: Coord);

In the text, routines are printed in typewriter font, e.g., move and arguments
and arrays are printed in italics, e.g., x, y, z. Italics are also used for words
and expressions when they are defined in the text.

Each routine has a root name, such as move. The default world coordinate
system is 3D with floating point coordinates. Suffixes are added to some
routines to indicate 2D, integer (24 bits), and short integer (16 bits)
arguments. Here are examples of the move variations:

move (1.0, 2.0, 3.0) move2 (1.0, 2.0)
movei (1, 2, 3) move2i (1, 2)
moves(l, 2, 3) move2s (1, 2)

The routine names are unique to six characters to conform to standard
FORTRAN naming conventions. Routines are referred to by their full C or
Pascal name in the text.

While FORTRAN programs are restricted to a small set of predefined data
types, C and Pascal allow user-defined data types. Data types have been
defined wherever it improves readability and reliability of the code.
Appendix A gives the data type definitions used for the C and Pascal
libraries.

Most important constants have been given symbolic names, such as

XMAXSCREEN. Their values can be found in Appendix A. Other
constants are often given in hexadecimal. The C syntax is used: the
hexadecimal digits are preceded by "0x".

Sample code and programs are written in C and FORTRAN.

Version 4.0 . Introduction 1-5

1.4 Related Publications

o IRIS Programming Tutorial, C Edition

e IRIS Programming Tutorial, FORTRAN Edition

e IRIS Series 3000 Owner’s Guide

e Getting Started with Your IRIS Workstation

o UNIX Programmer’s Manual, Vol. IIA and Vol. IIB
o Learning to Debug with edge, C Edition

e Learning to Debug with edge, FORTRAN Edition

1-6 IRIS User’s Guide Series 3000

2. Global State Attributes

This chapter introduces you to the IRIS programming environment. It
describes the first steps you need to program on the IRIS:

e initializing an IRIS program
e exiting an IRIS program

 changing the global state attributes, i.e., the software and hardware
environment

Initializing a program means telling the system to activate the software and
hardware environment in which a program will run. Use winopen to
initialize your program when running the window manager. Use ginit or
gbegin when the window manager is not running.

Global state attributes are options that specify modes, linestyle, window
specifications, and hardware requirements. Unless you specify otherwise,
the global state attributes use their default values. (See Tables 2-1 and 2-2
below for the default values of the global state attributes.)

2.1 Initialization

The first Graphics Library routine in every IRIS program that is not running
under the window manager is ginit or gbegin. These routines initialize
the hardware, allocate memory for symbol tables and display list objects,
and set up default values for global state attributes (See Tables 2-1 and 2-2).
They have no arguments and should be called only once (before any other
Graphics Library routine). When you are running the window manager, use
winopen to perform the same operations. (See Using mex, the IRIS Window
Manager, Chapter 2.)

Version 4.0 Global State Attributes 2-1

2-2

Attribute Initial Value Section #
available bitplanes all bitplanes'") 6.1
blinking turned off 6.2
color undefined 6.3
color map mode one map 6.2
cursor 0 (arrow) 6.4
depthcue mode off 13.2
display mode single buffer 6.1
font 0® 53
linestyle 0 (solid) 5.1
linestyle backup off 5.1
linewidth 1 pixel 5.1
Isrepeat 1 5.1
pattern 0 (solid) 52
picking size 10x10 pixels 9.2
reset linestyle on 5.1
RGB color undefined 6.3
RGB writemask undefined 6.3
shaderange 0,7,0,1023 13.2
viewport entire screen 44
writemask all bitplanes enabled (1) 6.3
z-buffer mode off 12.1

Table 2-1. Initial Values of Global State Attributes

1. If there are more than 3 bitplane boards
installed, there are 12 displayable bitplanes.

2. Rasterfont 0 is a Helvetica-like type font.

IRIS User’s Guide

Series 3000

RGB Value

Index Name
Red Green . Blue

0 BLACK 0 0 0
1 RED 255 0 0
2 GREEN 0 255 0
3 YELLOW 255 255 0
4 BLUE 0 0 255
5 MAGENTA 255 0 255
6 CYAN 0 255 255
7 WHITE 255 255 255

all others unnamed undefined

Table 2-2. Default Color Map Values

ginit

ginit performs the initialization functions and puts the default values into

the color map (see Table 2-2) .
ginit ()
subroutine ginit

procedure ginit;

Note: Under the window manager, use winopen instead of ginit or

gbegin.

gbegin

gbegin performs all the same tasks as ginit, except it does not alter the

color map.

gbegin ()
subroutine gbegin

procedure gbegin;

Version 4.0

Global State Attributes

23

greset

greset retumns the global state attributes to their initial values. You can
call greset atany time. Table 2-1 lists the global state attributes and their
default values. It initializes the color map to the values shown in Table 2-2.

greset also performs the following tasks:

e sets up a 2-D orthographic projection transformation that maps user-
defined coordinates to the entire area of the screen (see Chapter 4,
Coordinate Transformations, Section 4.3).

o tumns on the cursor and ties it to MOUSEX and MOUSEY (see Chapter 6,
Display and Color Modes, Section 6.4 and Chapter 7, Input/Output
Routines, Section 7.3).

« unqueues each button, each valuator, and the keyboard (see Chapter 7,
Section 7.3).

« changes all buttons to FALSE (see Chapter 7).

o sets each valuator (except MOUSEY) to XMAXSCREEN/2, with a range
of 0 to XMAXSCREEN (see Chapter 7).

¢ sets MOUSEY to YMAXSCREEN/2, with range 0 to YMAXSCREEN
(see Chapter 7).

These tasks are discussed in detail throughout the /RIS Graphics
Programming Guide.

greset ()

subroutine greset

procedure greset;

2-4 IRIS User’s Guide Series 3000

gflush

When you use an IRIS terminal, the communications software buffers most
graphics routines at the host for efficient block transfer of data from the host
to the IRIS. gflush delivers all buffered but untransmitted graphics data
to the IRIS. Certain graphics routines (notably those that return values)
flush the host buffer when they execute. On the IRIS workstation, gflush
does nothing.

gflush()
subroutine gflush

procedure gflush;

setslowcom

You use setslowcomon an IRIS terminal. setslowcom sends data in 6
bits per byte as certain connections require, e.g., RS232 connections. It has
no effect on a workstation.

Boolean setslowcom()
logical function setslo ()

function setslowcom(): Boolean;

setfastcom

Youuse setfastcomon an IRIS terminal. setfastcom sends data in 8§
bits per byte as required by certain connections, e.g., some ethernet
protocalls. It has no effect on a workstation.

Boolean setfastcom()
logical function setfas ()

function setfastcom(): Boolean;

Version 4.0 Global State Attributes 2-5

gexit

gexit is the final graphics routine in an IRIS program. gexit flushes
‘communication buffers and waits for the graphics pipeline to empty.

gexit ()
subroutine gexit

procedure gexit;

setmonitor

setmonitor selects one of five types of monitors: HZ30 = 30Hz
interlaced, HZS0 = 50Hz noninterlaced, HZ60 = 60Hz noninterlaced,
NTSC = NTSC (television standard encoding), and PAL, (European
television encoding).

setmonitor (type)
short type;

subroutine setmon (type)
integer*4 type

procedure setmonitor(type: longint);

Note: For more information on using the Graphics Library subroutines
with video options, see the IRIS Owner’s Guide, Section 8.3, Using
the Graphics Library with Video Options.

getmonitor

getmonitor retumns the current monitor type.
long getmonitor()
integer*4 function getmon ()

function getmonitor: longint;

2-6 IRIS User’s Guide Series 3000

getothermonitor

getothermonitor retumns the nondisplayed monitor type. It complements
getmonitor.

long getothermonitor ()
integer*4 function getoth ()

function getothermonitor: longint;

2.2 Saving Global State Attributes

pushattributes

pushattributes saves the current global state. The IRIS maintains a
stack of global state attributes. pushattributes copies each of the
following attributes onto the stack: color or RGB color, writemask or RGB
writemask, font, linestyle, linestyle backup, reset linestyle, linewidth,
pattern, and front and back buffer mode. Chapter 5, Linestyles, Patterns,
and Fonts, and Chapter 6, Display and Color Modes, discuss these
attributes.

pushattributes ()
subroutine pushat

procedure pushattributes;

popattributes

popattributes restores the most recently saved values of the global state
attributes.

popattributes ()
subroutine popatt

procedure popattributes;

Version 4.0 Global State Attributes 2-7

3. Drawing Routines

The IRIS Graphics Library includes routines for drawing points, lines,
rectangles, polygons, circles, arcs, curves, and surfaces. It also includes
routines for shading surfaces, for drawing text strings, and for writing and
reading pixels. (See the IRIS Programming Tutorial, Chapter 3, for more
information.) The drawing routines have variations:

o the number of dimensions in which the routine draws—two dimensions
(2D) or three dimensions (3D)

e the type of numbers the routine uses in positioning arguments—integers
(24 bits), short integers (16 bits), or floating point values

e the type of image the routine draws—outlined or filled

Points, lines, polygons, and text can be positioned in 2D or 3D. You can
define rectangles, circles, and arcs in 2D, although you can translate them to
3D using the modeling routines described in Chapter 4, Coordinate
Transformations. You always specify curves in 3D, although the z
coordinate can be zero. You also specify surface patches in 3D.

The numbers you use for your argument can be integers, short integers, or
floating point values. Routines that use floating point arguments are
expressed in their original forms, e.g., move. Routines that use integers end
in the letter i, €.g., movei. Routines that use short integers end in the letter
§, €.8., moves.

Most routines that draw filled objects end in the letter f, e.g., arct.

Version 4.0 Drawing Routines 3-1

3.1 Current Drawing Positions

The IRIS maintains two current drawing positions that determine where
drawing takes place when a drawing routine is called.

The current graphics position is a 3-D position expressed in floating point
coordinates. All drawing routines, except charstr, writepixels, and
clear update it. The current graphics position is set and used in sequences
of point, line, and polygon routines. You can combine these routines with
attribute-setting routines. (See Chapter 5, Linestyles, Patterns, and Fonts
and Chapter 6, Display and Color Modes, for a discussion of attributes.)
Other routines usually do not affect the graphics position.

The current character position is a 2-D position expressed in screen or
window coordinates. It is set and used in sequences of cmov, charstr,
and the four routines that read and write pixels.

getgpos

getgpos returns the current graphics position, after transformation and
before clipping and scaling. (Use the fourth coordinate, fw, for clipping and
perspective division.)

getgpos (£x, fy, fz, fw)
Coord *fx, *fy, *fz, *fw;

subroutine getgpo (fx, fy, fz, fw)
real fx, fy, fz, fw

procedure getgpos (var fx, fy, fz, fw: Coord);

getcpos

getcpos returns the current character position.

getcpos (ix, 1iy)
Screencoord *ix, *iy;

subroutine getcpo (ix, iy)
integer*2 ix, iy

procedure getcpos (var ix, iy: Screencord);

3-2 IRIS User’'s Guide Series 3000

3.2 Clearing the Viewport

clear

clear sets the screen area within the current viewport to the current color
using the current writemask and pattern. (See Chapter 4, Section 4.4 for a
discussion of viewports; see Chapter 5, Linestyles, Patterns, and Fonts and
Chapter 6, Display and Color Modes, for descriptions of the color,
writemask, and pattern attributes.) clear leaves the current graphics
position and the current character position undefined.

clear()
subroutine clear

procedure clear;

3.3 Points

pnt

pnt draws a point at a specified position. If the point is visible in the
window, it appears as one pixel using the current color. pnt updates the
current graphics position to its location.

pnt(x, y, 2)
Coord x, y, z;

subroutine pnt(x, y, 2)
real x, y, z

procedure pnt (x, y, z: Coord);

The following program draws 100 points in a square area of the window:

Version 4.0 Drawing Routines 3-3

H C Program: SQUARE DRAWN WITH POINTS
#include "gl.h"

main ()

{

int i,3;

ginit ();
cursoff(); /* turn off cursor so it */
/* doesn’t interfere with drawing */
kcolor(BLACK); /* make BLACK the current drawing color */
clear(); /* clear the screen (to black) */
color (BLUE); /* make BLUE the current drawing color */

for (i=0; i<10; i=i+1) {
for (3j=0; 3j<10; j=3j+1)
pnti(i*5, 3*5,0);
}
sleep(5);
'gexit();

B FORTRAN Program: SQUARE DRAWN WITH POINTS

#INCLUDE /usr/include/fgl.h
#INCLUDE /usr/include/fdevice.h

INTEGER I , J

CALL GINIT
CALL CURSOF
CALL COLOR (BLACK)
CALL CLEAR
CALL COLOR (BLUE)
DO10I =0, 9
DO 20 J =0, 9
CALL PNTI (I*5,J%5,0)
20 CONTINUE
10 CONTINUE

3-4 |RIS User’s Guide Series 3000

111 CONTINUE
IF (.NOT. GETBUT (RIGHTM))GO TO 111
call color (BLACK)
call clear
CALL GEXIT
STOP
END

3.4 Lines

move and draw draw lines.
move

move changes the current graphics position to the specified position.

move (x, y, z)
Coord x, y, z;

subroutine move (x, y, z)
real x, y, 2z

procedure move(x, y, z: Coord);

draw

draw draws a line from the current graphics position to the point (x, y, z).
The appearance of the line is determined by the current linestyle, linewidth,
linestyle repeat, linestyle backup, color, and writemask (see Chapter 5,
Linestyles, Patterns, and Fonts, and Chapter 6, Display and Color Modes).
draw updates the current graphics position to the point (x, y, z).

draw(x, y, 2z)
Coord x, y, 2;

subroutine draw(x, y, 2z)
real x, y, 2

procedure draw(x, y, z: Coord);

Version 4.0 Drawing Routines 3-5

The following program draws the outline of a blue box on the screen using
move and draw.

H C Program: BLUE BOX
#include "gl.h"

B FORTRAN Program: BLUE BOX
#INCLUDE /usr/include/fgl.h
#INCLUDE /usr/include/fdevice.h

3-6

main ()

{

ginit ();

cursoff();
color (BLACK) ;
clear();
color (BLUE) ;

move2i (200,200);
draw2i (200,300) ;
draw2i (300,300);
draw2i (300,200) ;
draw2i (200,200) ;
sleep(10); /* sleep for ten seconds before returning

to textport */

gexit ();

call
call
call
call
call

call
call
call
call
call

ginit
cursof
color (BLACK)
clear

color (BLUE)

move2i (200,200)
draw2i (200, 300)
draw2i (300, 300)
draw2i (300, 200)
draw2i (200, 200)

IRIS User’s Guide

Series 3000

5 continue
if (.not. getbut (RIGHTM))go to 5
call color (BLACK)
call clear
call gexit
stop
end

3.4.1 Relative Drawing

The relative drawing routines, rmv and rdr, interpret their arguments
using the current graphics position as an origin.

rmy

rmv (a, b, c) changes the current graphics position from (x, y, z) to (x+a,
y+b, z+¢). It moves (without drawing) the graphics position the amount
specified, relative to its current value.

rmv (dx, dy, dz)
Coord dx, dy, dz:;

subroutine rmv(dx, dy, dz)
real dx, dy, dz

procedure rmv (dx, dy, dz: Coord);

rdr

rdr (a,b,c) draws a line from the current graphics position (x, y, z) to
(x+a, y+b, z+c), and sets the current graphics position to (x+a, y+b, z+c). -

rdr (dx, dy, dz)
Coord dx, dy, dz;

subroutine rdr(dx, dy, dz)
real dx, dy, dz .

procedure rdr (dx, dy, dz: Coord);

Version 4.0 Drawing Routines 3-7

3.5 Rectangles

Two points specifying opposite corners determine a rectangle. The sides of
the rectangle are parallel to the x and y axes; the z coordinate is zero.

rect

rect draws the outline of a rectangle; rectf draws a filled rectangle.
Since a rectangle is a 2-D shape, these routines take only 2-D arguments and
set the z coordinate to zero.

rect takes four arguments: x/, yl, x2, and y2. A rectangle is outlined by
four line segments using the current linestyle, linewidth, linestyle repeat,
linestyle backup, color, and writemask (Figure 3-1).

rect (x1, yl, x2, y2)
Coord x1, yl, x2, y2;

subroutine rect (x1, yl, x2, y2)
real x1, yl, x2, y2

procedure rect(xl, yl, x2, y2: Coord);

rectf

rect £ takes the same arguments as rect and produces a filled rectangular
region using the current pattern, color, and writemask (Figure 3-1). Both
rect and rectf set the current graphics position to (x/, y!).

You must specify the lower-left and upper-right comers of the rectangle in
backface mode.

rectf (x1, yl, x2, y2)
Coord x1, yl, x2, y2;

subroutine rectf(xl, yl, x2, y2)
real x1, yl, x2, y2

procedure rectf (x1, yl, x2, y2: Coord);

3-8 IRIS User’'s Guide Series 3000

recti (1,1,5,3) rectfi (1,1,5, 3)

poly2i (,parray) polf2i (6,parray)
static Icoord parray [6][2]={

{1,3},
{2,5},
{4.5},
{5,3},
{41}

’

An array of object space points defines a polygon. You can
draw rectangles and polygons as outlined or filled areas.
Specify rectangles by opposite corners.

Figure 3-1. Filled and Unfilled Rectangles and Polygons

Version 4.0 Drawing Routines 3-9

rectcopy

rectcopy copies a rectangular array of pixels defined in screen coordinates
(relative to the lower-left corner of the window under the window manager)
to another position on the screen. The lower-left corner of the new rectangle
is defined by newx and newy.

rectcopy (x1l, yl, x2, y2, newx, newy)
Screencoord x1, yl, x2, y2, newx, newy;

subroutine rectco(xl, yl, x2, y2, newx, newy)
integer*4 x1, yl, x2, y2, newx, newy

procedure rectcopy(xl, yl, x2, y2, newx, newy: Screencoord);

3.6 Polygons

poly outlines a polygonal area; polf fills a polygonal area. The specified
array of points represents a polygon,; the first and last points connect to close
the polygon. Figure 3-1 shows identical polygons: one drawn with poly
showing a solid linestyle and one drawn with polf showing a solid pattern.
poly and polf set the current graphics position to the first point in parray.

poly

poly outlines a polygon. It takes two arguments: the number of points in
the polygon (n) and the array of coordinates (parray). You can express
points in 2D or 3D, using integers, shorts, or floating point numbers. The
system draws the polygon using the current linestyle, linestyle repeat,
linestyle backup, linewidth, color, and writemask. All polygons must be
convex.

poly(n, parray)
long n;
Coord parray(][3];

subroutine poly(n, parray)
integer*4 n
real parray(3,n)

procedure poly(n: longint; var parray: Coord);

3-10 IRIS User’s Guide Series 3000

polf

polf is the same as poly, except it fills a polygon using the current
pattern, color, and writemask. All filled polygons must be convex. The
system does not report any errors if you specify concave polygons, although
they produce unpredictable results.

polf (n, parray)
long n;
Coord parrayl[][3];

subroutine polf (n, parray)
integer*4 n
real parray(3,n)

procedure polf(n: longint; var parray: Coord);

You can also draw filled polygons by specifying one vertex at atime. pmv
specifies the first point in a polygon. A sequence of pdr routines then
specifies a sequence of subsequent points in the polygon. pclos fills the
polygon specified by the preceding pmv and pdr routines using the current
color, writemask, and pattern. rpdv and rpdr are relative versions of
pmv and pmr.

Note: Do not issue any Graphics Library routines other than pdr, rpdr,
and setshade between the initial pmv or rpmv and the final
pclos.

pmv
pmv moves to the starting point of a filled polygon.

pnv(x, y, z)
Coord x, y, z;

subroutine pmv(x, y, z)
real x, y, z

procedure pmv (x, y, z: Coord);

Version 4.0 Drawing Routines 3-11

rpmv

rpmv Specifies a relative move to the starting point of a filled polygon, using
the current graphics position as the origin.

rpmv (dx, dy, dz)
Coord dx, dy, dz;

subroutine rpmv(dx, dy, dz)
real dx, dy, dz

procedure rpmv(dx, dy, dz: Coord);

pdr
pdr specifies the next point in a filled polygon.

pdr(x, y, z)
Coord x, y, z;

subroutine pdr(x, y, 2)
real x, y, z

procedure pdr(x, y, z: Coord);

rpdr

rpdr specifies the next point in a filled polygon, using the previous point
(the current graphics position) as the origin.

rpdr (dx, dy, dz)
Coord dx, dy, dz;

subroutine rpdr (dx, dy, dz)
real dx, dy, dz

procedure rpdr(dx, dy, dz: Coord);

3-12 IRIS User’s Guide Series 3000

pclos

pclos fills the polygon specified by the preceding sequence of pmv, rpmv,
pdr, or rpdr routines.

pclos ()
subroutine pclos

procedure pclos;

Note: Do not issue any Graphics Library routines other than pdr, rpdr,
and setshade between the initial pmv or rpmv and the final
pclos.

Do not confuse pclos with the UNIX system call pclose, which
closes a UNIX pipe.

3.7 Circles and Arcs

3.7.1 Circles

circ outlines a circle and circf draws filled circles. A circle is defined
by a center point (x,y) and a radius (radius) in the x-y plane, with z = 0.
Since a circle is a 2-D shape, these routines have only 2-D forms. (Note that
circles rotated outside of the 2-D x-y plane appear as ellipses.)

circ

circ outlines a circle. The circle has a center point (x,y) and a radius
(radius), which are specified in world coordinates. The IRIS draws circles
using the current linestyle, linewidth, linestyle repeat, linestyle backup,
color, and writemask.

Version 4.0 Drawing Routines 3-13

circ(x, y, radius)
Coord x, y, radius;

subroutine circ(x, y, radius)
real x, y, radius

procedure circ(x, y, radius: Coord):;

circf

circft draws filled circles. The IRIS uses the current color, pattera, and
writemask to fill the circle with center (x,y) and radius (radius). circ and
circf set the current graphics position to (x+radius, y).

circf (x, y, radius)
Coord x, y, radius;

subroutine circf(x, y, radius)
real x, y, radius

procedure circf (x, y, radius: Coord);

3.7.2 Arcs

arc outlines a circular arc and arcf draws a filled circular arc. Arcs are
defined by a center point (x.y), a radius (radius), a starting angle (startang),
and an ending angle (endang). The angles are measured from the x axis and
are specified in integral tenths of degrees; positive angles describe
counterclockwise rotations. Since an arc is a 2-D shape, these routines have
only 2-D forms. The IRIS draws an arc using the current color, linestyle,
linestyle repeat, linestyle backup, linewidth, and writemask. Figure 3-2
shows an arc and the parameters that define it.

arc and arcf leave the current graphics position undefined.

3-14 IRIS User’s Guide Series 3000

(@

endang

@d\& startahg

X

arci(x,y,radius,startang,endang);

(b)

endang

artapg

X

arcfi(x,y,radius,startang,endang);

A center point, radius, start angle, and end angle define
circular arcs. They are drawn counterclockwise in the x-y
plane, with angles measured from the x-axis.

Figure 3-2. Arcs

Version 4.0 Drawing Routines

arc

arc outlines a circular arc.

arc(x, y, radius, startang, endang)
Coord x, y, radius;
Angle startang, endang;

subroutine arc(x, y, radius, stang, endang)
real x, y, radius
integer*4 stang, endang

procedure arc(x, y, radius: Coord; startang,
endang: Angle);

arcf

arcf draws filled arcs using the current pattern, color, and writemask
(Figure 3-2). arc and arcf set the current graphics position to the
endpoint of the arc.

arcf(x, y, radius, startang, endang)
Coord x, y, radius;
Angle startang, endang;

subroutine arcf (x, y, radius, stang, endang)
real x, y, radius
integer*4 stang, endang

procedure arcf(x, y, radius: Coord; startang,
endang: Angle);

3.8 Text

Use cmovand charstrto create text. cmov determines where the
system draws text on the screen, and charstr draws a string of characters.

cmov

The current character position (see Section 3.1) determines where the IRIS
draws text on the screen. cmov moves the current character position to a
specified point (as move sets the current line drawing position). x, y, and z
are integers, shorts, or real numbers in 2D or 3D, which specify a point in

3-16 RIS User’s Guide Series 3000

world coordinates. cmov transforms the world coordinates into window
coordinates, which become the new character position. cmov does not
affect the current graphics position.

cmov (x, y, 2)
Coord x, y, z:

subroutine cmov(x, y, z)
real x, y, z

procedure cmov(x, y, z: Coord);

charstr

charstr draws a string of raster characters. The origin of the first character
in the string is the current character position. After the system draws the
string, it updates the current character position to the pixel to the right of the
last character in the string. (Character strings are null-terminated in C.) The
text string is drawn in the current font and color. (See Chapter 5, Linestyles,
Patterns, and Fonts, Section 5.3, for a discussion of fonts.)

charstr(str)
String str;

subroutine charst (str, length)
character* (*) str
integer*4 length

procedure charstr(str: pstringl28);

If the origin of a character string lies outside the viewport, none of the
characters in the string are drawn. If the origin is inside the viewport, the
characters are individually clipped to the screenmask. (Chapter 4,
Coordinate Transformations, discusses viewports and screenmasks.) The
screenmask is normally set to the same size as the viewport, although it can
be set smaller than the viewport to enable two kinds of clipping. Gross
clipping removes all strings that start outside the viewport (Figure 4-8).
Fine clipping trims individual characters to the screenmask.

The following example draws two lines of text. The program assumes the
current font is less than 12 pixels high.

Version 4.0 Drawing Routines 3-17

B C Program: TEXT
#include "gl.h"

main ()

v{

ginit () ;

cursoff(); /* turn the cursor off so it won’t interfere

with the text */
color (BLACK) ;
clear();
color (RED) ;
cmov2i (300, 380) ;
charstr("The first line is drawn ");
charstr("in two parts. ");
cmov2i (300, 368);
charstr("This line is 12 pixels lower. ");

sleep(5); /* pause for five seconds before returning

to textport */
curson(); /* turn the cursor back on */
gexit ();

B FORTRAN Program: TEXT

99

3-18

#INCLUDE /usr/include/fgl.h
#INCLUDE /usr/include/fdevice.h

CALL GINIT

call cursof

CALL COLOR (BLACK)

CALL CLEAR

CALL COLOR (RED)

CALL CMOV2I (300, 380)

CALL CHARST(’'The first line is drawn ’,24)
CALL CHARST(’in two parts. ’,14)

CALL CMOV2I (300,368)

CALL CHARST(’'This line is 12 pixels lower.
continue

if (.not. getbut (RIGHTM))go to 99

IRIS User’s Guide

Series 3000

call color (BLACK)
call clear

call curson

CALL GEXIT

STOP

END

3.9 Writing and Reading Pixels

writepixels and writeRGB paint one or more pixels on the screen. The
routines specify the number of pixels to paint and a color for each pixel.
The starting location is the current character position. The system updates
that position to the pixel that follows the last painted pixel. The current
character position becomes undefined if the next pixel position is greater
than XMAXSCREEN. The system paints pixels from left to right and clips
them to the current screenmask (see Chapter 4, Section 4.4). These routines
do not automatically wrap from one line to the next.

writepixels

writepixels paints a row of pixels on the screen in color map mode. (See
Chapter 6, Section 6.2, for an explanation of color maps.) n specifies the
number of pixels to paint and colors specifies a color for each pixel.
writepixels does not automatically wrap from one line to the next. You
can use it in single buffer and double buffer modes.

Note: For higher level constructs built with writepixels, see
Appendix H, Image Library.
writepixels (n, colors)
short n;
Colorindex colors([];
subroutine writep(n, colors)
integer*4 n

integer*2 colors(n)

procedure writepixels(n: longint; var colors: Colorindex);

Version 4.0 ‘ Drawing Routines 3-19

writeRGB

writeRGB paints a row of pixels on the screen in RGB mode. 7 specifies
the number of pixels to paint; red, green, blue specify arrays of colors for
each pixel.

writeRGB does not automatically wrap from one line to the next. It
supplies a 24-bit RGB value (8 bits each for red, green, and blue) for each
pixel. writeRGB writes the 24-bit RGB value directly into the bitplanes.
(See Chapter 6, Section 6.1, for an explanation of RGB mode.)

writeRGB(n, red, green, blue)
short n;
RGBvalue red([], green[], bluel[]:;

subroutine writeR(n, red, green, blue)
integer*4 n
character* (*) red, green, blue

procedure writeRGB(n: longint; var red, green, blue:
RGBvalue) ;

readpixels

readpixels reads pixel values from the bitplanes in color map mode. It
attempts to read up to » pixel values, starting from the current character
position and moving along a single scan line (constant y) in the direction of
increasing x. readpixels retumns the number of pixels the system
actually reads. In double buffer mode, the system reads the pixel values
from the back buffer. The values of pixels read outside the current viewport
are undefined. The IRIS updates the current character position to the pixel
to the right of the last one read. The current character position is undefined
if the new position is outside the screen. readpixels does not wrap to
the next line of pixels when the current character position encounters the
edge of the screen.

Note: For higher level constructs built with readpixels, see Appendix
H, Image Library.

3-20 IRIS User’s Guide Series 3000

long readpixels(n, colors)
short n;
Colorindex colors[];

integer*4 function readpi (n, colors)
integer*4 n
integer*2 colors(n)

function readpixels(n: longint; var colors:
Colorindex): longint;

readRGB

readRGB reads up to z pixel values from the bitplanes in RGB mode. They
are read into the red, green, and blue arrays starting from the current
character position along a single scan line (constant y) in the direction of
increasing x. readRGB returns the number of pixels the system actually
reads. The values of pixels read outside the current screen are undefined.
readRGB updates the current character position to the pixel to the right of
the last one read. The current character position is undefined if the new
position is outside the screen.

long readRGB(n, red, green, blue)
short n;
RGBvalue red[], green[], blue[l;

integer*4 function readRG(n, red, green, blue)
integer*4 n
character* (*) red, green, blue

function readRGB(n: longint; var red, green, blue:
RGBvalue): longint;

Version 4.0 Drawing Routines 3-21

4. Coordinate Transformations

The IRIS creates 3-D shapes that you can manipulate and view. You use
coordinate transformations to move, scale, and rotate these shapes; you use
viewing transformations to change your point of view; and you use
projection routines to determirie how you view the object.

There are four coordinate systems that perform coordinate transformations:

 Object coordinate system, which is the coordinates of the object itself,
e.g., the coordinate system of a cube. It is independent of other
coordinate systems.

» World coordinate system, which is the coordinates of the world in which
the object exists. Each object’s coordinates are relative to those of other
objects in its world, e.g., each cube in a stack of three cubes has different
world coordinates because it is relative to the position of the other cubes
in world space.

e Eye coordinate system, which is the coordinate system in whxch your eye
sits at the origin and looks down the -z axis.

« Screen coordinate system, which is the coordinate system in which the
transformed object appears on the screen. The viewport determines the
screen coordinates. When you use the window manager, it determines the
screen coordinates within the window.

The relationship of the above transformations is analogous to the four basic
steps in performing coordinate transformations of graphical objects:

1. Construct a graphical object using coordinates.

2. Transform the graphical object to the correct location within the world
coordinate system. (Use modeling routines such as rotate,
translate, Or scale.)

Version 4.0 Coordinate Transformations 4-1

3. Specify the eye’s position and viewing direction to transform the eye to
the origin and the object of interest along the -z axis. (Use viewing
transformation routines such as polarview or lookat.)

4. Choose a projection to specify which region of the graphical object will
appear on the screen. (Use projection routines such as ortho, ortho2,
window, Or perspective.)

Each coordinate transformation is incorporated into a transformation matrix,
which reflects the cumulative effect of all transformations. The coordinates
of every drawing routine are multiplied by the current transformation
matrix. The current transformation matrix is the top matrix in a stack of 32
4x4 floating point matrices. Eight matrices are actually in hardware; if you
use eight or fewer, you can get better performance. (See the IRIS
Programming Tutorial, Chapters 6 and 7, for detailed information on
matrices.) There are five routines you can use to manipulate the matrix
stack: loadmatrix, getmatrix, multmatrix, pushmatrix, and
popmatrix.

4.1 Modeling Transformations

Each graphical object, or geometric model, is defined in its own coordinate
system. You can manipulate the entire object using the modeling
transformation routines: rotate, rot, translate, and scale. By
combining or linking together drawing routines, you can creatc more
complex modeling transformations that express relationships between
different parts of a complex object.

4-2 IRIS User’s Guide Series 3000

rotate

rotate rotates graphical objects; it specifies an angle and an axis of
rotation. The angle is given in tenths of degrees according to the right-hand
rule, which is as follows: as you look down the positive rotation axis to the
origin, positive rotation is counterclockwise. A character, either x, y, or z,
defines the axis of rotation. (The character can be upper- or lowercase.) For
example, the object shown in Figure 4-1(a) is rotated 30 degrees with
respect to the y axis in Figure 4-1(b). All objects drawn after rotate
executes are rotated.

rotate(a, axis)

Angle a;

char axis;

subroutine rotate(a, axis)
integer*4 a

character axis

procedure rotate(a: longint; axis: longinit);

rot

rot is the same as rotate; it specifies the angle as a floating point value.

rot (a, axis)
float a;
char axis;

subroutine rot (a, axis)
real a
character axis

procedure rot(a: real; axis: longint):;

Version 4.0 Coordinate Transformations 4-3

X » X
(a) original object at (0,0,0) (b) rotate (300,2Z’);

y y

| |
(c) translate (1.,1.,0.); (d) scale (- 5,5,1.);

y

(e) scale (2.,1.,1.);

The modeling routines are rotate, translate, and scale. The
object shown in (a) is rotated in (b), translated in (c), and
scaled in (d) and (e).

Figure 4-1. Modeling Routines

4-4 |RIS User’s Guide Series 3000

translate

translate moves the object origin to the point specified in the current
object coordinate system. The object in Figure 4-1(a) is translated in Figure
4-1(c). All objects drawn after translate executes are translated.

translate(x, y, z)
Coord x, y, z;

subroutine transl(x, y, z)
real x, y, 2z

procedure translate(x, y, z: Coord);

scale

scale shrinks, expands, and mirrors objects. Its three arguments (x, y, z)
specify scaling in each of the three coordinate directions. Values with
magnitude of 1 or more expand the object; values with magnitudes of less
than 1 shrink it. Negative values cause mirroring.

All objects that are drawn after scale executes are scaled. The object
shown in Figure 4-1(a) is shrunk to one-quarter of its original size and is
mirrored about the y axis in Figure 4-1(d). It is scaled only in the x direction
in Figure 4-1(e).

scale(x, y, z)
float x, y, z;

subroutine scale(x, y, 2)
real x, y, 2z

procedure scale(x, y, z: reél);
You can combine rotate, rot, translate,and scale to produce
more complicated transformations. The order in which you apply these

transformations is important. Figure 4-2 shows two different sequences of
translate and rotate; each sequence has different results.

Version 4.0 Coordinate Transformations 4-5

-

==~

N

rot (600,'Z');

trans (4.,0.,0);

> X
trans (4.,0.,0);

rot (600,'Z');

The modeling routines are not commutative: if you reverse
the order of operations, you can get different results. (a)
shows a rotation of 60 degrees about the origin followed by a
transiation of 4 degrees in the x-direction. (b) shows the
same operations performed in the reverse order. Note that
rotations are about the origin of the coordinate system.

Figure 4-2. Modeling Routine Order

4-6 IRIS User’'s Guide

Series 3000

4.2 Viewing Transformations

The viewing transformations place the viewer and the eye coordinate system
in world space. In the process, they define the eye coordinate system.
polarviewand lookat define a right-hand world coordinate system with
x to the right, y up, and z toward the viewer. You specify all rotations with
integers in tenths of degrees. Rotations obey the right-hand rule. As the
viewer looks down a positive axis to the origin, a positive rotation about an
axis is counterclockwise. You can choose other world space orientations
and create viewing transformations from the projection routines described in
Section 4.3.

If no viewing transformation is specified, the eye is assumed to be at the
origin looking down the -z axis. The viewing transformations polarview
and lookat transform different eye points and viewing directions to this
standard orientation.

Note: A viewing transformation routine should always follow a projection
routine.

polarview

polarview defines the viewer’s position in polar coordinates. The first
three arguments, dist, azim, and inc, define a viewpoint. dist is the distance
from the viewpoint to the world space origin. azim is the azimuthal angle in
the x-y plane, measured from the y axis. inc is the incidence angle in the y-z
plane, measured from the z axis. The line of sight is the line between the
viewpoint and the world space origin. twist rotates the viewpoint around the
line of sight using the right-hand rule. All angles are specified in tenths of
degrees and are integers. Figure 4-3 shows examples of polarview.

polarview(dist, azim, inc, twist)
Coord dist;
Angle azim, inc, twist;

subroutine polarv(dist, azim, inc, twist)
real dist
integer*4 azim, inc, twist

procedure polarview(dist: Coord; azim, inc, twist: longint);

Version 4.0 Coordinate Transformations 4-7

- /

polarview(0.,0,0,0);

4 N

=

- /

polarview(10.,0,0,0);

polarview has four arguments: the viewing distance from the
origin, an incidence angle measured from the z-axis in the
y-z plane, an azimuthal angle measured from the y-axis in
the x-y plane, and a twist around the line of sight. Each
frame shows the viewpoint and viewed image as additional
arguments to polarview are supplied.

Figure 4-3. polarview

4-8 IRIS User’s Guide Series 3000

NG

N

polarview(10.,600, 300,450) ;

Figure 4-3. polarview (continued)

Version 4.0 Coordinate Transformations 4-9

lookat

lookat defines a viewpoint and a reference point on the line of sight in
world coordinates. The viewpoint is at (vx, vy, vz) and the reference point is
at (px, py, pz). These two points define the line of sight. twist measures
right-hand rotation about the z axis in the eye coordinate system. Figure 4-4
illustrates lookat.

lookat (vx, vy, vz, pX, pY, pz, twist)
Coord vx, Vy, VZ, PX, PY, PZ;
Angle twist;

subroutine lookat (vx, vy, vz, pX, py, P2z, twist)
real vx, vy, vz, pX, pPY, Pz
integer*4 twist

procedure lookat (vx, vy, vz, pX, PY, Pz:
Coord; twist: longint);

4.3 Projection Transformations

Projection transformations define the mapping from an eye coordinate
system to the screen. The eye is placed at the origin looking down the -z
axis. A viewport, which specifies a screen area to display the projected
image, is associated with each projection transformation. Projection
transformations also load the current matrix (see Section 4.5 for detailed
information).

perspective and window specify perspective viewing pyramids into the
world coordinate system and differ only in the method of defining the
pyramid, as described below. ortho defines a 3-D viewing box (a
rectangular parallelepiped) and ortho2 defines a 2-D viewing rectangle for
orthographic projections.

4-10 IRIS User's Guide Series 3000

line of sight 4

yobj K

\ /
lookat (V, V. V, 0.,0.,0.,300);

lookat defines a viewpoint, a reference point along the line of
sight, and a twist angle. The top illustrations show the viewer
and viewed image with no twist; twist is added to the lower
illustrations.

Figure 4-4. lookat

Version 4.0 Coordinate Transformations 4-11

perspective

perspective defines the viewing pyramid by indicating the field-of-view
angle (fovy) in the y direction of the eye coordinate system, the aspect ratio
(aspect) which determines the field of view in the x direction, and the
location of the near and far clipping planes (near and far) in the z direction.
The clipping planes are the boundaries of the viewing pyramid. (See the
IRIS Programming Tutorial, Chapter 7, for detailed information.) You
specify the aspect ratio as a ratio of x to y.

In general, the aspect ratio given in perspective should match the aspect
ratio of the associated viewport. For example, aspect = 2 means the
viewer’s angle of view is twice as wide in x as in y. If the viewport is also
twice as wide as it is tall, it displays the image without distortion. The
arguments near and far are distances from the viewer to the near and far
clipping planes, and are always positive. Figure 4-5 illustrates
perspective.

perspective (fovy, aspect, near, far)
Angle fovy;

float aspect;

Coord near, far;

subroutine perspe (fovy, aspect, near, far)
integer*4 fovy
real aspect, near, far

procedure perspective (fovy: longint; aspect: real;
near, far: Coord);

window

window specifies the position and size of the rectangular viewing frustum
closest to the eye (in the near clipping plane), and the location of the far
clipping plane. window projects the image onto the screen with perspec-
tive. See Figure 4-6.

window(left, right, bottom, top, near, far)
Coord left, right, bottom, top, near, far;

subroutine window(left, right, bottom, top, near, far)
real left, right, bottom, top, near, far

procedure window(left, right, bottom, top, near, far:
Coord) ;

4-12 IRIS User’s Guide Series 3000

+Z

K]

e e e — .- o= -——-

Ny

perspective (400,1.3,1.,3.);

translate (0.,0.,-2.);

perspective places the eye at world origin looking down the
-z axis. It defines a field of view, an aspect ratio, and near
and far clipping planes relative to the eye.

Figure 4-5. perspective

Version 4.0 Cbordlnate Transformations

4-13

N
m
JN
/ \
/
A

window (-5.,5.,-3.,3.,1.,3.);
translate (0.,0,,-2.)

window defines a viewing window in the x-y plane looking
down the -z axis. A perspective view of the image is
projected onto the window.

Figure 4-6. window

4-14 |RIS User’s Guide Series 3000

ortho

ortho defines a box-shaped enclosure in the eye coordinate system. left,
right, bottom, and top define the x and y clipping planes. near and far are
distances along the line of sight and can be negative. In other words, the z
clipping planes are located at z = -near and z = -far. Figure 4-7 shows an
example of a 3-D orthographic projection.

ortho (left, right, bottom, top, near, far)
Coord left, right, bottom, top, near, far;

subroutine ortho(left, right, bottom, top, near, far)
real left, right, bottom, top, near, far

procedure ortho (left, right, bottom, top, near, far: Coord);

ortho2

ortho2 defines a 2-D clipping rectangle. When you use ortho2 with 3-D
world coordinates, the z values do not change.

ortho2(left, right, bottom, top)
Coord left, right, bottom, top;

subroutine ortho2 (left, right, bottom, top)
real left, right, bottom, top

procedure ortho2(left, right, bottom, top: Coord);

4.4 Viewports

The viewport is the area of the window that displays an image. You specify
it in window coordinates. The total visible screen area is 1024 pixels wide
and 768 pixels high.

Version 4.0 Coordinate Transformations 4-15

4-16

. /

ortho (-5.,5.,-3.,3,,1.,3.);
translate (0.,0.,-2.);

ortho defines a viewing window in the x-y plane, looking
down the -z axis. An orthographic view of the object between
the near and far planes is projected onto the window.

Figure 4-7. ortho

IRIS User’s Guide Series 3000

viewport

viewport specifies, in window coordinates, the area of the window that
displays an image. Specifying the viewport is the first thing you do when
you map world coordinates to screen coordinates. Its arguments (left, right,
bottom, top) define a rectangular area on the window by specifying the left,
right, bottom, and top coordinates. The projection of the portion of world
space that window, ortho, Or perspective describe is mapped into the
viewport.

viewport (left, right, bottom, top)
Screencoord left, right, bottom, top:;

subroutine viewpo (left, right, bottom, top)
integer*4 left, right, bottom, top

procedure viewport (left, right, bottom, top: Screencoord);

getviewport

getviewport retums the current viewport. Its arguments (left, right,
bottom, top) are the addresses of four memory locations. These are assigned
the left, right, bottom, and top coordinates of the current viewport.

getviewport (left, right, bottom, top)
Screencoord *left, *right, *bottom, *top;

subroutine getvie (left, right, bottom, top)
integer*2 left, right, bottom, top

procedure getviewport (var left, right, bottom, top:
Screencoord) ; ‘

viewport sets both the viewport and the screenmask to the same area. (The
screenmask is a specified rectangular area of the screen to which all
drawings are clipped.) The viewport maps coordinates to the screen and the
screenmask specifies the portion of the screen to which the geometry can be
drawn. The screenmask is a setting that regards only the physical display
within the window. The screenmask and viewport are usually set to the
same area.

Version 4.0 Coordinate Transformations 4-17

scrmask

scrmask sets only the screenmask, which should be placed entirely within
the viewport. When the viewport is larger than the screenmask, character
strings that begin inside the viewport are clipped to the screenmask. This
process is called fine clipping. Character strings that begin outside the
viewport are clipped out; this is called gross clipping. Figure 4-8 illustrates
character clipping.

In addition to character strings, the system clips all other drawing primitives
to the screenmask. This clipping occurs on a per-pixel basis after
rasterization. Therefore, use gross clipping to a viewport to minimize the
area of rasterization and use fine clipping to a screenmask for character
strings.

scrmask (left, right, bottom, top)
Screencoord left, right, bottom, top;

subroutine scrmas (left, right, bottom, top)
integer*4 left, right, bottom, top

procedure scrmask (left, right, bottom, top:
Screencoord);

getscrmask

getscrmask retums the coordinates of the current screenmask in the
arguments left, right, bottom, and top.

getscrmask (left, right, bottom, top)
Screencoord *left, *right, *bottom, *top;

subroutine getscr(left, right, bottom, top)
integer*2 left, right, bottom, top

procedure getscrmask(var left, right, bottom, top:
Screencoord) ;

4-18 IRIS User’s Guide Series 3000

viewport
v

before clipping , screenmask

Lorgémx ipsum dolor sit amet, consectetur adi
eiusmod tempor incidunt ut labor et dol

Ut enimin ominimim veniami quis n

viewport
after gross clipping / P

screenmask

eiusmod tempor incidunt ut labore et dol
- Ut enimin ominimim veniami quis n

viewport
after fine clipping P

screenmask

‘eiusmod tempor incidunt ut labore et dok

Ut enimin ominimim veniami quis |

Gross clipping removes all strings that start outside the
viewport. Fine clipping trims individual characters to the
screenmask.

Figure 4-8. Gross and Fine Clipping

Version 4.0 Coordinate Transformations 4-19

pushviewport

The IRIS maintains a stack of viewports and the top element in the stack is
the current viewport. pushviewport duplicates the current viewport and
pushes it on the stack.

pushviewport ()
subroutine pushvi

procedure pushviewport;

popviewport

popviewport pops the stack of viewports and sets the screenmask. The
viewport on top of the stack is lost.

popviewport ()
subroutine popvie

procedure popviewport;

4.5 User-Defined Transformations

A transformation changes the size and orientation of an object by modifying
either the object itself or the position of the viewport. A transformation is
expressed as a 4x4 floating point matrix. You can build complex
transformations by linking a series of primitive transformation routines,
such as rotate, rot, translate, Or scale. IfM,V, and P are
modeling, viewing, and projection transformations, you can formulate
transformation S, which maps object space into screen space, as follows:

S=MVP

[xyzwlIMVP=[Xy Zw]

The clipping boundaries are

x=tw , y=tw , and z=tw .

4-20 IRIS User’s Guide Series 3000

The resulting screen coordinates,

,

x , pa ,and =
wow w
are scaled to the current viewport.

The Geometry Pipeline maintains a stack that holds up to 32 transformation
matrices. (Eight of the the 32 matrices are in hardware.) The system
applies the matrix on top of the stack, i.e., the current transformation
matrix, to all coordinate data.

The Geometry Pipeline forms a complex transformation matrix by
premultiplying the current matrix by each primitive transformation. It forms
transformation S, defined above, by executing coordinate transformation
routines in reverse order: first, projection routines; second, viewing
routines; and third, modeling routines. Note that the Geometry Pipeline
loads P onto the matrix stack, while both V and M premultiply the current
matrix.

The projection, viewing, and modeling routines above provide a high-level
interface that manages the transformation matrix stack. Additional routines
allow direct control over the stack. These routines load or multiply user-
defined transformation matrices, push and pop the transformation stack, and
retrieve the matrix on the top of the stack.

loadmatrix

loadmat rix loads a 4x4 floating point matrix onto the stack, replacing the
current top of the stack.

loadmatrix (m)
Matrix m;

subroutine loadma (m)
real m(4,4)

procedure loadmatrix(var m: Matrix);

Version 4.0 Coordinate Transformations 4-21

multmatrix

multmatrix premultiplies the current top of the transformation stack by
the given matrix; i.e., if T is the current matrix, multmatrix (M) replaces
T with MT.

multmatrix (m)
Matrix m;

subroutine multma (m)
real m(4,4)

procedure multmatrix(var m: Matrix);

pushmatrix

pushmat rix pushes down the transformation stack, duplicating the current
matrix. If the transformation stack contains one matrix, M, after a call to

pushmatrix, it will contain two copies of M. You can modify only the top
copy. For more information, see the IRIS Programming Tutorial, Chapter 7.

pushmatrix ()
subroutine pushma

procedure pushmatrix;
popmatrix
popmat rix pops the transformation stack.

popmatrix ()
subroutine popmat

procedure popmatrix;

4-22 |RIS User’s Guide Series 3000

getmatrix

getmatrix copies the transformation matrix from the top of the
transformation stack to an array provided by the user; the stack does not
change.

getmatrix (m)
Matrix m;

subroutine getmat (m)
real m(4,4)

procedure getmatrix(var m: Matrix);

Version 4.0 Coordinate Transformations 4-23

5. Linestyles, Patterns, and Fonts

This chapter discusses routines that determine the characteristics, or
attributes, of images the IRIS displays on the screen. Attributes include the

values for:

e linestyle, which determines whether a line appears solid or as a series of
dashes

e pattern, which determines the pattern with which shapes are filled
¢ font, which determines the font in which text strings appear

All of the above attributes determine precisely which pixels the IRIS draws
when a drawing routine executes.

5.1 Linestyles

Linestyle is a 16-bit pattern the IRIS uses to draw lines on the monitor. The
system runs this pattern repeatedly to determine which pixels in a 16-pixel
line segment it must color. For example, the linestyle OXFFFF draws a solid
line; 0XFOFO draws a dashed line; and 0x8888 draws a dotted line. The
least significant bit of the pattern is the mask for the first pixel of the line
and every sixteenth pixel thereafter. There is no performance penalty for
drawing lines that are not solid.

Version 4.0 Linestyles, Patterns, and Fonts 5-1

deflinestyle

deflinestyle defines a linestyle. Its arguments specify an index into a
table (n), which stores linestyles and a 16-bit linestyle pattern (Is). There
are 216 possible linestyle patterns; you can define up to 65,535 of those
patterns at one time. By default, index O contains linestyle OXFFFF, which
draws solid lines. You cannot redefine the linestyle at index O.

If you redefine a linestyle, the previous linestyle definition is lost.

deflinestyle(n, ls)
short n;
Linestyle 1s;

subroutine deflin(n, 1ls)
integer*4 n, 1ls

procedure deflinestyle(n: longint; ls: Linestyle);

setlinestyle

There is always a current linestyle; the IRIS uses it to draw lines and to
outline rectangles, polygons, circles, and arcs. Linestyle O is the default
linestyle. Use setlinestyle to select another linestyle. Its argument,
index, is an index into the linestyle table built with calls to
deflinestyle.

setlinestyle (index)
short index;

subroutine setlin (index)
integer*4 index

procedure setlinestyle(index: longint);

5-2 |IRIS User’s Guide Series 3000

5.1.1 Modifying the Linestyle Pattern

Four routines modify the application of the linestyle pattern: 1sbackup,
lsrepeat, resetls,and linewidth. You can get the current values for
these attributes using getstyle, getlsbckup, getresetls,
getlsrepeat, and getlwidth.

1sbackup guarantees that a line has a clearly marked endpoint. Normally,
the current linestyle is a rotating pattern:

for each pixel in the line {
if low-order bit of pattern = 1 {
write current color into pixel

}

rotate pattern right one bit;
compute next pixel;

This algorithm implies that the line can end without a clearly marked
endpoint.
Isbackup

1sbackup guarantees the last two pixels in a line are drawn, when enabled.
It takes one Boolean argument. TRUE(1) enables backup mode. FALSE(0),
the default setting, uses the linestyle as is and allows the line to have
invisible endpoints.

1sbackup (b)
Boolean b;

subroutine lsback (b)
logical b

procedure lsbackup(b: longint);

Version 4.0 Linestyles, Patterns, and Fonts 5-3

resetls

The IRIS normally uses a fresh copy of the linestyle for each new line; this
can affect the smooth appearance of curved shapes. resetls(0) allows
the drawing of a series of line segments with a continuous pattern; this
process uses many short, straight lines to approximate curved lines. It is
useful for drawing circles, arcs, or curves. If you do not reset the linestyle
between segments, the pattern of the curve appears smooth and continuous.

reset1s has one Boolean argument. FALSE(0) turns off the mode, and the
linestyle is not reset between segments. TRUE(1), the default, starts each
line with a fresh copy of the pattern. reset 1s initializes the linestyle, no
matter what argument is specified. If resetls is FALSE(0) when
setlinestyle is called, the linestyle does not change until resetls is
called. Set resetls to TRUE(1) when linestyle backup mode is enabled.

resetls (b)
Boolean b;

subroutine resetl (b)
logical b

procedure resetls(b: longint);

Isrepeat

lsrepeat creates linestyles that are longer than 16 bits. It multiplies each
bit in the pattern by factor. Consequently, each 0 in the linestyle pattern
becomes a series of factor x 0, and each 1 becomes a series of factor x 1.
For example, if the line pattern is 0000000001111111 and facror=1, the
linestyle is 9 bits off followed by 7 bits on. If factor =3, the linestyle is 27
bits off followed by 21 bits on.

lsrepeat (factor)
long factor;

subroutine lsrepe (factor)
integer*4 factor

procedure lsrepeat (factor: longint);

5-4 |RIS User’s Guide Series 3000

linewidth

linewidth specifies the width of a line. The IRIS measures the width in
pixels along the x axis or along the y axis. It defines the width of a line as
the number of pixels along the axis having the smallest difference between
the endpoints of the line. If linewidthissetton>1, resetls mustbe
TRUE(1) for reasonable results.

linewidth (n)
short n;

subroutine linewi (n)
integer*4 n

procedure linewidth(n: longint);

You can access the current values of the line drawing attributes with
getlstyle, getlsbackup, getresetls, getlsrepeat, and
getlwidth.

getistyle

getlstyle returns the index of the current linestyle.

long getlstyle()
integer*4 function getlst ()

function getlstyle: longint;

getisbackup

getlsbackup returns the current value of the linestyle backup flag.
TRUE(]) indicates that the last two pixels of a line are colored, regardless of
the linestyle. FALSE(0), the default, indicates that the line can have
invisible end points.

long getlsbackup ()
logical function getlsb()

function getlsbackup: longint;

Version 4.0 Linestyles, Patterns, and Fonts 5-5

getresetls

getresetls returns the current value of the reset linestyle flag. TRUE(1),
the default, indicates the system reinitializes the linestyle for each line
segment. FALSE(0) indicates that the linestyle is continuous across line
segment boundaries.

long getresetls()
logical function getres()

function getresetls: longint;

getisrepeat

getlsrepeat returns the factor (integer) by which the linestyle is
multiplied for patterns that are longer than 16 bits.

long getlsrepeat ()
integer*4 function getlsr()

function getlsrepeat: longint;

getlwidth

get lwidth retumns the current linewidth in pixels.

long getlwidth ()
integer*4 function getlwi ()

function getlwidth: longint;

5.2 Patterns

You can fill rectangles, polygons, and arcs with arbitrary patterns. A pattern
is an array of short integers that defines a rectangular pixel array. The
pattern controls which pixels the IRIS colors when it draws filled objects.
The system aligns the pattemn to the lower-left comer of the screen, rather
than to the filled shape, so that it appears continuous over large areas.

5-6 IRIS User’s Guide Series 3000

defpattern

defpattern defines pattems. Its arguments specify an index into a table of
patterns (n), a size (size), and an array of short integers (mask). A pattern
can be 16x16, 32x32, or 64x64. The origin of the pattern is the lower-left
corner of the screen. You define the bottom row first. You specify each row
of the pattern as a series of short integers for a 16x16 pattern. Figure 5-1
shows some possible patterns and their definitions in C. Pattern 0 is the
default solid pattern, which you cannot change.

defpattern(n, size, mask)

short n, size;

short *mask;

subroutine defpat (n, size, mask)
integer*4 n, size

integer*2 mask ((size*size) /16)

procedure defpattern(n: size: longint; var mask: Short);

setpattern

setpattern selects a defined pattern that the IRIS uses. defpattern
provides an index that you use as the argument for setpattern. Pattern 0
is the default solid pattern. Shading works only with the solid pattern.

setpattern (index)
short index;

subroutine setpat (index)
integer*4 index

procedure setpattern(index: longint);

getpattern

getpattern returns the index of the current pattern.

long getpattern ()
integer*4 function getpat ()

function getpattern: longint;

Version 4.0 Linestyles, Patterns, and Fonts 5-7

Pattern solid

= { OxFFFF, OxFFFF, OxFFFF, OxFFFF, OxFFFF, OxFFFF, OxFFFF, OxFFFF,
OxFFFF, OXFFFF, OxFFFF, OxFFFF, OxFFFF, OxFFFF, OxFFFF, OXFFFF }

Pattern checked

={ 0x3333, 0x3333, 0xCCCC, 0xCCCC, 0x3333, 0x3333, 0xCCCC, 0xCCCC,
0x3333, 0x3333, 0xCCCC, 0xCCCC, 0x3333, 0x3333, 0xCCCC, 0xCCCC }

EEEEER
a"a"s"a"n"n" Pattern halftone

={ 0x5555, 0xAAAA, 0x5555, OXAAAA, 0x5555, 0xAAAA, 0x5555, OXAAAA,
0x5555, OXAAAA, 0x5555, 0XAAAA, 0x5555, OXAAAA, 0x5555, OXAAAA }

Pattern crosshatch

={ 0x5555, 0x2222, 0x5555, 0x8888, O0x5555, 0x2222, 0x5555, 0x8888,
0x5555, 0x2222, 0x5555, 0x8888, 0x5555, 0x2222, 0x5555, 0x8888 }

A pattern is a 16X16, 32X32, or 64X64 array of bits with the
origin in the lower-left corner.

Figure 5-1. Sample Patterns

5-8 IRIS User’s Guide Series 3000

5.3 Fonts

defrasterfont

defrasterfont defines a raster font. It has six arguments. # is an index
into the font table; At is an integer that specifies the maximum height of the
font characters in pixels. nc gives the number of characters in the font,
which is the number of elements in the chars array. chars contains a
description of each character in the font. The description includes the height
and width of the character in pixels; the offsets from the character origin to
the lower-left corner of the bounding box; an offset into the array of rasters,
and the amount to add to the current character x position after drawing the
character. Figure 5-2 gives a sample character definition. raster is an array
of nr shorts of bitmap information. It is a one-dimensional array of mask
bytes ordered from left to right, then bottom to top. Mask bits are left-
justified in the character’s bounding box.

defrasterfont (n, ht, nc, chars, nr, raster)
short n, ht, nc, nr;

Fontchar chars[];

short raster([];

subrbutine defras (n, ht, nc, chars, nr, raster)
integer*4 n, ht, nc, nr
integer*2 raster(nr), chars(4*nc)

procedure defrasterfont(n, ht, nr, nc: longint; var nr:
Fontchr; chars: longint; var raster: Short);

Font 0 is the default raster font, which you cannot redefine. Itis a
Helvetica-like font with fixed-pitch characters. If the viewport is set to the
whole screen, approximately 110 of the default characters fit on a line (1
character occupies 9 pixels). If baselines are 16 pixels apart, 48 lines fit on
the screen.

Version 4.0 Linestyles, Patterns, and Fonts 5-9

h
baseline
xinc 9
defrasterfont (n, ht, nc, chars, nr, rasters);
chars['g’] ={ 724, 8 9 0, -2, 9
byte offset w h xoffset yoffset xinc
short into _rasterarray
rasterarray [1 = 1{.--
position 724 > Ox7E00, 0xC300, 0x0300, 0x0300,
0x7F00, 0xC300, 0xC300, 0xC300,
0x7E00,
}

Raster font characters are defined by a bitmap, 1 bit per
pixel. The width and height of the character, the number of
bits in one row of the bitmap, and the baseline position are
also specified. See the manual page defrasterfont in the
Reference Guide for a more complete example.

Figure 5-2. Sample Character Definition

5-10 IRIS User’s Guide Series 3000

font

font selects the font the IRIS uses whenever charstr draws a text string.
Its argument is an index into the font table (fntnum) built by
defrasterfont. This font remains the current font until another font
executes.

font (£fntnum)
short fntnum;

subroutine font (fntnum)
integer*4 fntnum

procedure font (fntnum: longint);

getfont

getfont retumns the index of the current raster font.

long getfont ()
integer*4 function getfon ()

function getfont: longint;

getheight

getheight retums the maximum height of a character in the current raster
font, including ascenders (present in tall characters, such as the letters t and
h) and descenders (present in such characters as the letters y and p, which
descend below the baseline). It returns the height in pixels.

long getheight ()
integer*4 function gethei ()

function getheight: longint;

Version 4.0 Linestyles, Patterns, and Fonts 5-11

getdescender

getdescender returns the longest descender in the current font. It returns
the number of pixels the longest descender goes below the baseline.

long getdescender():
integer*4 function getdes()

function getdescender: longint;

strwidth

strwidth returns the width of a text string in pixels, using the character
spacing parameters in the current raster font.

long strwidth(str)
String str;

integer*4 function strwid(str, length)
character* (*) str
integer*4 length

function strwidth (str: pstringl28): longint;

5-12 IRIS User’s Guide Series 3000

6. Display and Color Modes

Display and color modes tell the IRIS how to color the pixels. When the
IRIS draws a pixel, it writes a color value for it into the bitplanes. Each
bitplane corresponds to one of the bits that hold the color index value for the
pixel. For example, if your IRIS has 12 bitplanes, 12 bits are devoted to
each pixel. The bitplanes store the screen image the drawing routines
create.

The IRIS offers three display modes (single buffer, double buffer, and
RGB), which determine how it stores the color values in the bitplanes and
how the system uses the values to display a screen image. A fourth mode,
z-buffer, which removes hidden surfaces is discussed in Chapter 12, Hidden
Surfaces. For a more elementary discussion of the display and color modes,
see the IRIS Programming Tutorial, Chapter 4.

6.1 Display Modes

The IRIS stores the screen image in a set of 4 to 24 bitplanes (Figure 6-1).
Each bitplane provides 1 bit of storage per pixel. The corresponding
locations in all bitplanes represent values (from 4 to 24 bits) for each pixel.
These values determine the color of the pixel when it is displayed on the
screen. The three display modes—single buffer, double buffer, and RGB—
specify how the IRIS stores values in the bitplanes and how it uses them.

The display mode routines, RGBmode, singlebuffer, and
doublebuffer take effect only after a call to gconfig.

Version 4.0 Display and Color Modes 6-1

24-bit

RGB value
from update
controller

Single buffer mode

12-bit color
map index
from update
controller

Double buffer mode

4

-

12-bit color
map index
from update
controller ~_]

cee N = O

cee)= O

4093
4094
4095

24-bit RGB value to
display controller

Color Map

RIG|B

24-bit RGB
value to
display controller

Color Map

RIG|B

24-bit RGB
value to
display controller

In RGB mode, 24-bit RGB values are stored in the bitplanes.
In single buffer and double buffer modes, the bitplanes store

12-bit color map indices.

6-2 IRIS User’s Guide

Figure 6-1. Bitplanes and Color Maps

Series 3000

gconfig

gconfig defines the mapping from colors to bitplanes using the display
mode, color map mode (discussed in Section 6.2), and the number of
available bitplanes.

gconfig ()
subroutine gconfi

procedure gconfig;

6.1.1 RGB Mode

The RGB value determines the color of a pixel. An RGB value consists of
three 8-bit intensity values—one for red, one for green, and one for blue.
The IRIS loads these values into the three digital-to-analog converters,
which control the color and brightness of each pixel.

RGBmode

RGBmode puts the system into RGB mode. In RGB mode, the IRIS writes
an RGB value into the bitplanes when it draws a pixel. Use RGB mode only
when the system has at least 24 bitplanes (room for three 8-bit values).

RGBmode takes effect after a call to gconfig.

Note: Do not use RGB mode while running the window manager.

RGBmode ()
subroutine RGBmod

procedure RGBmode;

6.1.2 Single Buffer and Double Buffer Modes

Single buffer and double buffer modes provide other ways to use the
bitplanes. In these modes, the values contained in the bitplanes are indices
into a color map. The color map is a table of RGB values. This means that
a system with fewer than 24 bitplanes can still display the full range of
colors specified by 24-bit RGB values. For example, although each pixel in

Version 4.0 Display and Color Modes 6-3

a system with 4 bitplanes can store only 16 different values, the colors
specified in the color map can be any of the 22#=16.8 million possible RGB
colors. You can divide the color map into 16 smaller maps. (See Section
6.2 for further discussion of color maps.)

singlebuffer

In single buffer mode, the IRIS uses up to 12 bitplanes to store the color
map indices. It does not use any extra bitplanes or uses them for z-buffering
if required (see Chapter 12, Hidden Surfaces). Single buffer mode
simultaneously updates and displays images, so incomplete or changing
pictures can appear on the screen. singlebuffer invokes this display
mode. In single buffer mode, the window manager requires 2 bitplanes,
leaving 10 available for user applications.

singlebuffer takes effect after a call to gconfig.

singlebuffer()
subroutine single

procedure singlebuffer;

doublebuffer

Double buffer mode separates the bitplanes into two groups, called front
buffer and back buffer. By default, the IRIS displays the front buffer, while
the drawing routines update the back buffer. This allows the system to
display a complete image while it draws a new one. In double buffer mode,
the window manager requires 4 bitplanes, leaving 10 available for user
applications.

doublebuffer takes effect after a call to gconfig.

doublebuffer()
subroutine double

procedure doublebuffer;

6-4 IRIS User’'s Guide Series 3000

swapbuffers

swapbuf fers swaps the front and back buffers during the vertical retrace
period. After the IRIS draws an image in the back buffer, swapbuffers
displays it.

swapbuffers ()

subroutine swapbu

procedure swapbuffers;

swapinterval

swapinterval establishes a minimum time between buffer swaps. If you
specify a swap interval of 5, the screen is refreshed at least five times
between execution of successive calls to swapinterval.
swapinterval provides a way to change frames at a steady rate if the
system can create a new image within one swap interval. The default
interval is 1. swapinterval is valid only in double buffer mode; it is
ignored in single buffer and RGB modes. swapinterval takes effect
after the next call to swapbuffers.

swapinterval (i)
short 1i;

subroutine swapin (i)
integer*4 i

procedure swapinterval (i: Short);

backbuffer

It is sometimes convenient to update both the front and the back buffers, or
to update the front buffer instead of the back one. backbuffer enables
updating in the back buffer. Its argument is a Boolean value. The
backbuffer is enabled when b is TRUE(1), which is the default value. When
b is FALSE(0), the back buffer is not enabled for writing.

backbuffer (b)
Boolean b;

subroutine backbu (b)
logical b

procedure backbuffer (b: longint);

£y

Version 4.0 Display and Color Modes 6-5

frontbuffer

frontbuffer enables updating of the front buffer. Its argument is a
Boolean value. The front buffer is not enabled when b is FALSE(0), which
is the default value. When b is TRUEC(1), the front buffer is enabled for
writing.

frontbuffer (b)

Boolean b;

subroutine frontb (b)
logical b

procedure frontbuffer(b: longint);

getbuffer

getbuffer indicates which buffer(s) is enabled for writing. 1, the default
value, means the back buffer is enabled; 2 means that the front buffer is
enabled; and 3 means that both are enabled. getbuffer returns O if neither
buffer is enabled or if the IRIS is not in double buffer mode.

long getbuffer ()
integer*4 function getbuf ()

function getbuffer: longint;

getdisplaymode

getdisplaymode returns the current display mode. O indicates RGB
mode; 1 indicates single buffer mode; and 2 indicates double buffer mode.

long getdisplaymode ()
integer*4 function getdis ()

function getdisplaymode: longint;

6-6 IRIS User's Guide Series 3000

getplanes

getplanes returns the number of available bitplanes. For example, a 24-
bitplane system returns 24 available bitplanes in RGB mode and 12
available bitplanes in single buffer and double buffer modes. An 8-bitplane
system returns 8 available bitplanes in single buffer mode and 4 available
bitplanes in double buffer mode. getplanes cannot be used in RGB
mode with fewer than 24 bitplanes.

long getplanes ()
integer*4 function getpla ()

function getplanes: longint;

gsync

In single buffer and RGB modes, rapidly changing scenes should be
synchronized with the screen refresh rate. gsync waits for the next
vertical retrace period.

gsync ()
subroutine gsync

procedure gsync;

finish

Youuse finish only on anIRIS terminal that is running remote graphics.
It is useful when there are network and pipeline delays. £inish blocks
the host process until all prior routines execute. It forces all unsent routines
down the network/graphics pipeline to the bitplanes; sends a final token; and
blocks until that token has gone through the network and graphics pipeline,
and the remote graphics terminal acknowledges completion.

finish()
subroutine finish

procedure finish;

Version 4.0 Display and Color Modes 6-7

6.2 Color Maps

RGB mode writes 8 bits each of red, green, and blue intensities into the
bitplanes. It offers a palette of 22*=16.8 million different colors. A
disadvantage of RGB mode is that it is only effective in a system with at
least 24 bitplanes. Color mapping is a flexible technique—it stores indices
into the color map in the bitplanes, instead of RGB values. The color map is
a table of 24-bit RGB values. It stores 2'2=4096 RGB values.
Consequently, a system with 8 bitplanes addresses only 28=256 of the 4096
entries in the color map. Each of those entries has the full 24-bit precision
of RGB mode.

mapcolor

mapcolor sets a color map entry to a specified RGB value. Its arguments
are a color map index (color) and 8 bits each of red, green, and blue
intensities. Pixels written with the color specified by color are displayed
with the specified RGB intensities. See Section 6.3 for a discussion of the
color routines. In multimap mode, mapcolor updates only the current
color map. It ignores invalid indices.

mapcolor (color, red, green, blue)
Colorindex color;
short red, green, blue;

subroutine mapcol (color, red, green, blue)
integer*4 color, red, green, blue
integer*2 r, g, b,

procedure mapcolor(color: longint; red, green,
blue: longint);

6-8 IRIS User’s Guide Series 3000

getmcolor

getmcolor retums the red, green, and blue components of a color map
entry.

getmcolor (color, red, green, blue)

Colorindex color;

short*red, *green, *blue;

subroutine getmco (color, red, green, blue)
integer*4 color, red, green, blue

procedure getmcolor(color: longint; var red, green, blue:

Short) ;

You can use the color map in either onemap mode, the default, which
organizes the color map as described above—a single map with room for
4096 RGB entries; or multimap mode, which organizes the color map as
16 independent maps, each with a maximum of 256 RGB entries.

ohemap

onemap organizes the color map as a single map with a maximum of 4096
RGB entries. The number of entries is 27 where p is the number of
available bitplanes.

onemap takes effect after a call to gconfig.

Note: Color map indices are limited to 12 bits in onemap mode.

onemap ()
subroutine onemap

procedu re onemap;

multimap

multimap organizes the color map as 16 small maps. There are two
advantages to multimap mode:

e It allows you to rapidly switch among 16 different maps, each of which
defines up to 256 different colors.

o It provides an additional tool for altering screen images (e.g., an image
can be color-inverted by switching to a different color map).

Version 4.0 Display and Color Modes 6-9

multimap takes effect after a call to gconfig (see Section 6.1).

Note: Color map indices are limited to 8 bits in multimap mode.

multimap ()
subroutine multim

procedure multimap;

getcmmode

getcmmode returns the current color map mode. 0 indicates multimap
mode; 1 indicates onemap mode.

long getcmmode ()
integer*4 function getcmm()

function getcmmode: longint;

setmap

setmap selects which of the small maps (0 through 15) the IRIS uses in
multimap mode.

setmap (mapnum)
short mapnum;

subroutine setmap (mapnum)
integer*4 mapnum

procedure setmap (mapnum: Scoord);

getmap

getmap returns the number (from O to 15) of the current color map. 0 indi-

cates onemap mode.
long getmap ()
integer*4 function getmap ()

function getmap: longint;

6-10 IRIS User’s Guide Series 3000

cyclemap

cyclemap cycles through color maps at a specified rate. It defines a dura-
tion (in vertical retraces), the current map, and the map that follows when
the duration lapses. For example, the following routines set up multimap
mode and cycle between two maps, leaving map 1 on for ten vertical re-
traces and map 3 on for five retraces.

multimap();
gconfig () ;
cyclemap (10, 1, 3);
cyclemap(5, 3, 1);

Note: Before you exit your program, call cyclemap with all durations
set to zero. cyclemap Settings remain in effect after you exit a
program.

cyclemap (duration, map, nextmap)
short duration, map, nextmap;

subroutine cyclem(duration, map, nextmap)
integer*4 duration, map, nextmap

procedure cyclemap(duration, map, nextmap: Short);

blink

blink changes the color map entry at a specified rate. It specifies a blink
rate (rate), a color map index (color), and red, green, and blue values. rate
indicates the number of vertical retraces at which the IRIS updates the color
located at color in the current color map. color’s value is either the original
value or the new value supplied by red, green, and blue. Up to 20 colors
can blink simultaneously, each at a different rate. You can change the blink
rate by calling blink a second time with the same color but a different
rate. To terminate blinking and restore the original color, call blink with
rate =0 when color specifies a blinking color map entry.

Note: Program termination does not stop this routine; you must explicitly
set all durations to zero.

Version 4.0 Display and Color Modes 6-11

blink (rate, color, red, green, blue)
-short rate;

Colorindex color;

short red, green, blue;

subroutine blink (rate, color, red, green, blue)
integer*4 rate, color, red, green, blue

procedure blink (rate: longint; color: longint; red, green,
blue: longint);

6.3 Colors and Writemasks

This section describes the routines that set the current color. When the IRIS
draws a pixel in single buffer or double buffer mode, it writes the current
color map index into the bitplanes.

6.3.1 Colors

color

color sets the current color index in single buffer and double buffer modes.
In onemap mode, the index is in the range of 0 to 4095. These routines
work differently in multimap mode; see Section 6.2 for more information.
For more elementary information on color see the IRIS Programming
Tutorial, Chapter 5.

color (c)
Colorindex c;

subroutine color(c)
integer*4 c

procedure color(c: longint);
The program below draws a blue rectangle around a red circle. Here red and
blue are merely indices into the color map. They are defined in the file gl.h

and correspond to the color map entries that ginit set for the colors red
and blue.

6-12 IRIS User’s Guide Series 3000

W C Program: BLUE RECTANGLE
#include "gl.h"

main ()

{
ginit ();
color (BLUE) ;
recti (0, 0, 100, 100);
color (RED) ;
cirei (50, 50, 50);
gexit ();

B FORTRAN Program: BLUE RECTANGLE
#INCLUDE /usr/include/fgl.h
#INCLUDE /usr/include/fdevice.h

CALL GINIT
CALL COLOR (BLUE)
CALL RECTI(0,0,100,100)
CALL COLOR (RED)
CALL CIRCI (50,50,50)
5 continue
if (.not. getbut (RIGHTM))go to 5
call color (BLACK) -
call clear
CALL GEXIT
STOP
END

Version 4.0 Display and Color Modes 6-13

getcolor

getcolor returns the current color. The system must be in single buffer or
double buffer mode when it executes.

long getcolor()
integer*4 function getcol ()

function getcolor: longint;

RGBcolor

RGBcolor sets the current color in RGB mode. The lower-order 8 bits of
the three arguments are the intensity values for the colors red, green, and
blue. The IRIS writes these numbers into the bitplanes whenever it draws a
pixel; they directly control the intensity of the red, green, and blue the
screen displays.

Note: Do not use RGB mode under the window manager.

RGBcolor (red, green, blue)
short red, green, blue;

subroutine RGBcol (red, green, blue)
integer*4 red, green, blue

procedure RGBcolor(red, green, blue: longint);

The following program draws a blue rectangle around a red circle in RGB
mode.

B C Program: BLUE RECTANGLE (in RGB Mode)
#include "gl.h"

main ()

{
ginit();
RGBmode () ;
gconfig();
RGBcolor (0, 0, 225);
recti(0, 0, 6, 6);
RGBcolor (225, 0, 0);
circi(3, 3, 2);

6-14 IRIS User’s Guide Series 3000

gexit ();

B FORTRAN Program: BLUE RECTANGLE (in RGB Mode)

#INCLUDE /usr/include/fgl.h
#INCLUDE /usr/include/fdevice.h

call ginit

CALL RGBMOD

CALL GCONFI

CALL RGBCOL(0,0,225)

CALL RECTI(0,0,6,6)

CALL RGBCOL(225,0,0)

CALL CIRCI(3,3,2)
999 continue

if (.not. getbut (RIGHTM))go to 999

call greset

call single

call color (BLACK)

call clear

CALL GEXIT

STOP

END

Version 4.0 Display and Color Modes 6-15

6.3.2 Writemasks

To draw an object that moves across the screen while the background
remains constant, you need to redraw both the background and the object
each time the object moves to a new location. You can use writemasks to
protect the bitplane values of the background and avoid redrawing the
background. This keeps the background color constant, while the values of
the moving object change.

Writemasks layer the images that appear on the screen. For example, you
can write color values for the cursor into one bitplane. Using a writemask,
you can shield this bitplane from ordinary drawing routines (which write
values in the remaining bitplanes). As a result, the cursor always appears on
the screen. See Figures 6-2 and 6-3.

writemask

In single buffer or double buffer mode, writemask determines which
bitplanes the drawing routines affect. Its argument, wm, is a mask with

1 bit per available bitplane. The bitplanes included in the writemask are
enabled for writing. The corresponding bit in the current color index is
written into the bitplane wherever a pixel is drawn. Zeros in the writemask
mark bitplanes as read-only. These bitplanes do not change, regardless of
the bits in the current color.

writemask (wtm)
Colorindex wtm;

subroutine writem (wtm)
integer*4 wtm

procedure writemask (wtm: longint);

getwritemask

getwritemask returns the current writemask. It is an integer with up to 12
significant bits, one for each available bitplane.

long getwritemask ()
integer*4 function getwri ()

function getwritemask: longint;

6-16 IRIS User’s Guide Series 3000

new color index

er 13

writemask ‘ final color index

K
current color index in bitplanes

Writemasks determine whether or not a new value can be
stored in each bitplane. A "1" in the writemask allows the
system to store a new value (0 or 1) in the corresponding
bitplane. A "0" prevents the system from storing a new value
and the corresponding bitplane retains its current value. In
this example, the values in the first and second bits (b4 and
b,) do not change because the corresponding positions in
the writemask are zero. All the other values (originally bs,b,,
... bg) change to asa,, ... ag because the corresponding
positions in the writemask are 1. Each value ay, ... agand b,
... bg is either 0 or 1.

Figure 6-2. Writemask

Version 4.0 Disblay and Color Modes 6-17

Color Map

Bitol R]IGI[B
itplanes full range menu invisibl
[XXX of colors (background
shows throu
‘ all menu
XXXXXX| outline >
all menu menu covers
- XXXXXX text background
all menu
\ XXXXXX background
Color Map
Bitol RIG][B
itplanes (0 full range (rgen'l.(j invisic?
ackgroun
of colors shows throu
. 01 . all menu
‘ outline
o all menu menu covers
10 text background
o all menu
\ 11 background

Writemasks create a layering of images by preserving the
contents of specific bitplanes. In this example, the first two
bitplanes are reserved for a pop-up menu. Since two
bitplanes provide four possible values, the menu can use four
different parts of the color map. If the menu is invisible (or
not positioned) at a particular location, the remaining
bitplanes determine the color value for that location.

Figure 6-3. Writemasks and the Color Map

6-18 IRIS User’s Guide Series 3000

RGBwritemask

In RGB mode, RGBwritemask masks bitplanes. Its three arguments, red,
green, and blue, are masks for each of three sets of 8 bitplanes.

RGBwritemask (red, green, blue)
short red, green, blue;

subroutine RGBwri (red, green, blue)
integer*4 red, green, blue

procedure RGBwritemask(red, green, blue: longint);

gRGBmask

gRGBmask returns the current RGB writemask as three 8-bit masks. The
masks are placed in the locations addressed by redm, greenm, and bluem.

gRGBmask (redm, greenm, bluem)
short *redm, *greenm, *bluem;

subroutine gRGBma (redm, greenm, bluem)
integer*2 redm, greenm, bluem

procedure gRGBmask (var redm, greenm, bluem: Short);

6.4 Cursors

A cursor is a 16x16 array of bits, which shows the current position of a
graphics input device (see Chapter 7, Input/Output Routines).

Version 4.0 Display and Color Modes 6-19

defcursor

defcursor defines an entry in a table of cursors. As with linestyles and
patterns, its arguments are a table index and a 16x16 bitmap. By default, ’
cursor 0 is an arrow and cannot be overwritten. Figure 6-4 shows some
examples of cursors and their definitions in C.

defcursor (n, curs)

short n;

Cursor curs;

subroutine defcur(n, curs)
integer*4 n

integer*2 curs(16)

procedure defcursor(n: longint; var curs: Cursor);

setcursor

setcursor specifies the characteristics of the cursor. The first argument,
index, picks a cursor from the definition table. color and wim set a color
map index and writemask for the cursor.

Note: The system ignores color and wtm under the window manager.

setcursor (index, color, wtm)
short index;
Colorindex color, wtm;

subroutine setcur (index, color, wtm)
integer*4 index, color, wtm

procedure setcursor (index: longint; color, wtm: longint);

6-20 [IRIS User’s Guide Series 3000

Cursor arrow = { 0 x FE00, 0x FC00, 0x F800, 0x F800,
0x FC00, 0xDEOO, 0x8F00, 0x0780,
0x03C0, 0x01E0, 0xO00F0, 0x0078,
0x003C, 0xO001E, 0xO000E, 0x0004}

Cursor hourglass = { 0x 1FF0, 0x 1FF0, 0x 0820, 0 x 0820,
0x 0820, 0x0C60, 0x06C0O, 0x0100,
0x 0100, 0x06CO, 0x0C60, 0x 0820,
0x 0820, 0x0820, 0x1FFO, O0x 1FFO}

Cursor martini={0x 1FF8, 0x0180, 0x0180, 0x0180,
0x0180, 0x0180, 0x0180, 0x0180,
0x 0180, 0x0240, 0x 0720, 0x0B10,
0x 1088, O0x3FFC, 0x4022, 0x8011}

A cursor is a 16X16 array of bits with the origin in the lower-
left corner. The cursor is defined bottom-up, just as raster
characters are defined.

Figure 6-4. Sample Cursors

Version 4.0 Display and Color Modes 6-21

curorigin

curorigin sets the origin of a cursor (i.e., the place on the cursor that is
aligned with the valuators that control the cursor position). » is the index of
the cursor defined by defcursor. InRGB mode, use RGBcursor
discussed below.

curorigin(n, xorigin, yorigin)
short n, xorigin, yorigin;

subroutine curori(n, xorigin, yorigin)
integer*4 n, xorigin, yorigin

procedure curorigin(n, xorigin, yorigin: longint);

getcursor

getcursor returns the index of the glyph, the color, and the writemask
associated with the cursor and a Boolean value, which indicates whether the
system automatically displays and updates the cursor. Its arguments are
addresses of four locations where the four cursor attributes are to be
returned. The default is the glyph at index O into the cursor table; it is
displayed with the color 1 and drawn into all bitplanes. On each vertical
retrace, the system automatically displays and updates the glyph. Use
RGBcursor in RGB mode.

getcursor (index, color, wtm, b)
short *index;

Colorindex *color, *wtm;
Boolean *b;

subroutine getcur(index, color, wtm, b)
integer*2 index, color, wtm
logical b

procedure getcursor (var index: Short; var color, wtm:
Colorindex; var b: Boolean);

6-22 IRIS User’s Guide Series 3000

RGBcursor

RGBcursor allows selection of a cursor from a table of user-defined
16x16-bit patterns. Its first argument, index, picks a glyph from the
definition table. red, green, and blue specify the cursor color in RGB mode,
while redm, greenm, and bluem define an RGB writemask for the cursor.

RGBcursor (index, red, green, blue, redm, greenm, bluem)
short index;
RGBvalue red,green,blue, redm,greenm, bluem;

subroutine RGBcur (index, red, green,blue, redm, greenm, bluem)
integer*2 index, red,green,blue, redm, greenm,bluem

procedure RGBcursor (index, red,green,blue, redm, greenm,bluem:
longint);

gRGBcursor

gRGBcursor returns the six parameters of the RGBcursor and a Boolean
value, which indicates whether the the system automatically updates the
cursor position. The system must be in RGB mode when this routine
executes. '

gRGBcursor (index, red, green, blue, redm, greenm, bluem, b)
short*index, *red, *green, *blue, *redm, *greenm, *bluem;
Boolean*b;

subroutine gRGBcu (index, red, green,blue, redm, greenm, bluem,b)
integer*2 index, red,green,blue, redm, greenm,bluem
logical b

procedure gRGBcursor(var index, red,green,blue, redm,greenm,
bluem: Short; var b: Boolean);

By default, the cursor is always displayed. As it is drawn on the screen, the
system saves the image that it covers. When the cursor moves, it restores
the saved image. In single buffer and RGB modes (and in double buffer
mode when the front buffer is enabled), the image can change while the
cursor is displayed so the saved image may no longer be valid.
Accordingly, there are routines that turn the cursor on and off.

Version 4.0 ' Display and Color Modes 6-23

cursoff

cursoff removes the cursor from the screen. This routine should precede
any drawing routines that can write into the cursor bitplanes.

cursoff ()
subroutine cursof

procedure cursoff;

curson

curson tells the system to update and display a cursor automatically.
curson is usually paired with cursoff£, although you can call curson
when the automatic cursor is visible.

curson ()
subroutine curson

procedure curson;

The code segment below shows a typical drawing sequence in single buffer
mode.

greset () ;

color (BLUE) ;
cursoff ();
move2i (1, 0);
draw2i (3, 6);
draw2i (5, 0);
move2i (4, 3);
draw2i (2, 3);
curson () ;

6-24 IRIS User’s Guide Series 3000

The following is a FORTRAN version of the above code segment with some
modification. This code draws the character "A":

#include /usr/include/fgl.h
#include /usr/include/fdevice.h

call ginit

call color (BLACK)

call cursof

call clear

call color (BLUE)

call move2i (100,100)

call draw2i (300,600)

call draw2i (500,100)

call move2i (410,325)

call draw2i (190,325)
999 continue

if (.not. getbut (RIGHTM))go to 999

call color (BLACK)

call clear

call curson

call gexit

stop

end

Whether or not the cursor is visible, the IRIS automatically updates the
cursor position to reflect the values of the valuator devices to which it is
attached (see Chapter 7, Section 7.1, for a discussion of attachcursor).

blankscreen

blankscreen turns the screen refresh on and off. Its argument is a
Boolean value. TRUE(1) stops display; FALSE(0) restarts display. When
bitplanes are simultaneously viewed and updated (as in single buffer and
RGB modes, or when the front buffer is displayed in double buffer mode),
there is competition for memory. This reduces performance, especially with
noninterlaced monitors. To speed up drawing in these cases, turn off the
display while drawing.

blankscreen (bool)
Boolean bool;

subroutine blanks (bool)
logical bool

procedure blankscreen (bool: Boolean);

Version 4.0 Display and Color Modes 6-25

7. Input/Output Routines

The IRIS Graphics Library supports three classes of input devices:

e valuators, which retumn an integer value. For example, a dial and button
box is a valuator. A mouse is a pair of valuators: one reports horizontal
position and the other reports vertical position.

e buttons, which return a Boolean value: FALSE(0) when they are not
pressed and TRUE(1) when they are pressed. Keys on an unencoded
keyboard, buttons on a mouse, and switches on a dial and button box are

all buttons.

e other devices, which return information about other system events. For
example, the keyboard returns ASCII characters. See the IRIS
Programming Tutorial, Chapter 5, for more information.

Within each class, individual devices have unique device numbers.
Appendix A contains a header file, device.h, which defines symbolic names
for all of the device numbers.

7.1 Polling and Queueing

Each input device has an associated value. If the input device is a button,
the value is either 1 or 0. If the device is a valuator, such as a dial or the x
position of the mouse, its value is an integer that indicates the position of
the device. ,

A program can get the value from input devices in two ways:

« Polling immediately returns the value of a device. For example,
getbutton (LEFTMOUSE) returns 1 if the left button of the mouse is

down and returns 0 if it is up.

Version 4.0 Input/Output Routines 7-1

» Queueing uses an event queue to save changes in device values so the
program can read them later.

In certain cases, using the input queue is better than polling. For example,
getbutton returns only the current state of the button. Two successive
calls to getbutton could both indicate that a button is up, although the
user could have pressed and released the button between the two calls. If
that happens, the button press/release event is lost. When a button is
queued, the events are saved in the event queue and are available whenever
the program queries it. In a drawing program where you may want to
indicate a series of vertices and the system’s calculations cannot keep up—
queueing saves all the state changes so nothing is missed, even if the
program is doing something else when the event happens.

Devices that are queued act as asynchronous devices, independent of the
user process. Whenever a device that is queued changes state, an entry is
made in the event queue. If a program reads the queue in a timely fashion,
no events will be lost.

You can decide which devices, if any, to queue, and establish some rules
about what constitutes a state change, or event, for those devices. By
default, no devices are queued.

In addition to input routines, there are routines that control the characteris-
tics of the peripheral input/output devices of the IRIS. These routines turn
the keyboard click and the keyboard lights on and off; ring the keyboard
bell; and control the lights and text on the dial and button box. See Tables
7-1, 7-2, and 7-3 for a listing of IRIS devices and their descriptions.

7-2 IRIS User’s Guide Series 3000

Devices Description
MOUSE1 right mouse button
MOUSE2 middle mouse button
MOUSE3 left mouse button
MOUSEMIDDLE middle mouse button
MOUSELEFT left mouse button
SWO0..SW31 32 buttons on dial and button box
AKEY.PADENTER all the keys on the keyboard
LPENBUT light pen button
BPADO pen stylus or button for digitizer tablet
BPAD1 button for digitizer tablet
BPAD2 button for digitizer tablet
BPAD3 button for digitizer tablet
MENUBUTTON menu button
Table 7-1. Input Buttons
Devices Description
MOUSEX x valuator on mouse
MOUSEY y valuator on mouse
DIALO..DIALS dials on dial and button box
LPENX x valuator on light pen
LPENY y valuator on light pen
BPADX x valuator on digitizer tablet
BPADY y valuator on digitizer tablet
CURSORX x valuator attached to cursor (usually MOUSEX)
CURSORY y valuator attached to cursor (usually MOUSEY)
GHOSTX x ghost valuator
GHOSTY y ghost valuator
TIMERO..TIMER3 timer devices

Version 4.0

Table 7-2. Input Valuators

Input/Output Routines

7-3

Devices Description

KEYBD keyboard inputs ASCII characters

REDRAW notifies process to redraw

MODECHANGE indicates system change between
single and double buffer mode

INPUTCHANGE indicates change in input focus

PIECECHANGE indicates change in exposed area
of a window

Table 7-3. Other Devices

7.2 Initializing a Device

Several input devices, such as the dial and button box and the digitizing
tablet, are attached to the IRIS via a serial port. Normally, if only one such
input device is used, it is plugged into the bottom serial port on the back of
the IRIS.

devport

Use devport if more than one input device is attached. dev indicates the
device number, such as DIALO or BPADX. (See Table 7-2 for a list of input
device numbers.) portno specifies the number of the serial port to which the
device is connected.

Use devport on system startup before using any other peripheral devices.

devport (dev, portno)
Device dev;
long portno;

subroutine devpor (dev, portno)
integer*4 dev, portno

procedure devport (dev, portno: longint);

7-4 IRIS User’s Guide Series 3000

setvaluator

Valuators are single-value input devices. The value is a 16-bit integer. The
horizontal and vertical motion of a mouse, or the turning of a dial, are
valuators. setvaluator assigns an initial value init to a valuator. min
and max are the minimum and maximum values the device can assume.

Note: Useof setvaluator under the window manager can restrict
cursor movement.

setvaluator(val, init, min, max)
Device val;
short init, min, max;

subroutine setval(val, init, min, max)
integer*4 val, init, min, max

procedure setvaluator(val: Device; init, min, max: longint);

attachcursor

The cursor reflects the position of an input device that you (the user) control
(see Chapter 6, Display and Color Modes). Since the cursor moves in two
dimensions, any two valuators can determine its position. While it is
customary to use the horizontal and vertical motion of the mouse to control
the cursor, there is no restriction on which valuators you use. If desired, you
can control the cursor using two dials on the optional dial and button box.

attachcursor attaches the cursor to the movement of two valuators. Its
arguments are two valuator device numbers (vx,vy). The first valuator
determines the horizontal motion of the cursor; the second valuator
determines its vertical motion.

attachcursor (vx, vy)
Device vx, Vy;

subroutine attach (vx, vy)
integer*4 vx, vy

procedure attachcursor(vx, vy: Device);

Version 4.0 Input/Output Routines 7-5

7.3 Polling a Device

You can poll a device to determine its current state.
getvaluator

getvaluator determines the values of the valuators. You can poll any
valuator, regardless of whether or not it is queued. The argument to
getvaluator is a valuator device number (val). Its value reflects the
current state of the device.

long getvaluator(val)
Device val;

integer*4 function getval (val)
integer*4 val

function getvaluator(val: Device): longint;

getbutton

getbutton polls a button and returns its current state. Its argument is the
number of the device you want to poll. getbutton returns either
TRUE(1) or FALSE(0). TRUE(1) indicates the button is pressed.

Boolean getbutton (num)
Device num;

logical function getbut (num)
integer*4 num

function getbutton (num: Device): longint;

7-6 IRIS User’s Guide Series 3000

getdev

getdev polls up to 128 valuators and buttons at one time. You specify the
number of devices you want to poll (n) and an array of device numbers
(devs). (See Tables 7-1, 7-2, and 7-3 for listings of device numbers.) vals
returns the state of each specified device.

getdev(n, devs, vals)
long n;

Device *devs;

short *vals;

subroutine getdev (n, devs, vals)
integer*4 n
integer*2 devs(n), vals(n)

procedure getdev(n: longint; var devs: Short; var vals:
Short);

7.4 The Event Queue

Input devices can make entries in the event queue. Each entry includes the
device number and a device value. gdevice enables queueing of events
from an input device. ungdevice indicates that a device is no longer
queued. isqueued tells you if a specific device is queued.

qdevice

gdevice queues the specified device (dev), for example, a keyboard,
button, or valuator. The argument of gdevice is a device number. Each
time the device changes state, an entry is made in the event queue. The
maximum number of queue entries is 50.

gdevice (dev)
Device dev;

subroutine gdevic (dev)
integer*4 dev

procedure gdevice (dev: Device);

Version 4.0 Input/Output Routines 7-7

unqgdevice

Use unqgdevice to disable the queueing of events from a device. If the
device has recorded events in the queue that have not been read, those
events remain in the queue. (Use greset to flush the event queue.)

ungdevice (dev)
Device dev;

subroutine ungdev (dev)
integer*4 dev

procedure ungdevice (dev: Device) ;

isqueued

isqueuéd indicates whether a specific device is enabled for queueing. It
returns a Boolean value. TRUE(1) indicates that the device is enabled for
queueing; FALSE(0) indicates that the device is not.

boolean isqueued (dev)
device dev;

logical function isqueue (dev)
integer (dev)

function isqueued(dev: Device): Boolean;

hoise

Some valuators are noisy; that is, they report small fluctuations in value,
indicating movement when no event has occurred. noise allows you to
set a lower limit on what constitutes a move. The value of a noisy valuator
v must change by at least delta before the motion is significant. noise
determines how often queued valuators make entries in the event queue.
For example, noise (v, 5) means that valuator v must move at least five
units before a new queue entry is made.

7-8 IRIS User’s Guide Series 3000

noise (v, delta)
Device v;
short delta;

subroutine noise (v, delta)
integer*4 v, delta

procedure noise(v: Device; delta: longint);

tie

You can tie a queued button to one or two valuators so that whenever the
button changes state, the system records the button change and the current
valuator position in the event queue. tie takes three arguments: a button
b and two valuators v and v2. Whenever the button changes state, three
entries are made in the queue that record the current state of the button and
the current position of each valuator. You can tie one valuator to a button
by making v2 equal to zero. You can untie a button from valuators by
making both vI and v2 equal to zero.

tie(b, vl, v2)
Device b, vl, v2;

subroutine tie(b, vl, v2)
integer*4 b, vl1, v2

procedure tie(b, vl, v2: Device);

genter

genter creates event queue entries. It places entries directly into the event
queue. genter takes two 16-bit integers, gtype and val, and enters them
into the event queue. ‘

genter (qtype, val)
short qtype, val;

subroutine genter (gtype, val)
integer*4 gtype, val

procedure genter(gtype, val: longint);

Version 4.0 Input/Output Routines 7-9

Three routines read the event queue: qtest, qread, and blkgread.
qtest

gtest returns the device number of the first entry in the event queue; if the
queue is empty, it returns zero. qtest always returns immediately to the
caller, and makes no changes to the queue.

long gtest ()
integer*4 function gtest()

function gtest: longint;

qread

qread, as gtest, returns the device number of the first entry in the event
queue. However, if the queue is empty, it waits until an event is added to
the queue. gread returns the device number, writes the data part of the
entry into data, and removes the entry from the queue.

long gread (data)
short *data;

integer*4 function gread(data)
integer*2 data

function gread(var data: Short): longint;

blkqread

blkqgread retumns multiple queue entries. Its first argument, data, is an
array of short integers, and its second argument, , is the size of the array
data. blkqread retumns the number of queue entries read and data is filled
alternately with device numbers and device values. Note that the number of
entries read is at most n/2.

blkgread can provide more efficient network communication between an
IRIS terminal and a host computer. You can also use it when only the last
entry in the event queue is of interest (e.g., when a user-defined cursor is
being dragged across the screen and only its final position is of interest).

7-10 RIS User’s Guide Series 3000

long blkgread(data, n)

short *data

short n;

integer*4 function blkqgre (data, n)

integer*2 data(*)

integer*4 n

function blkgread(var data: Short; n:
longint): longint;

greset

greset removes all entries from the queue and discards them.

greset ()
subroutine greset

procedure greset;

7.5 Controlling Peripheral Input/Output
Devices

In addition to routines that poll and queue input devices, there are routines
that control the characteristics and behavior of the IRIS’s peripheral
input/output devices. For example, some of these routines turn the keyboard
click on and off (clkon and clkoff), or set the keyboard bell. You set
these controls to your preference or needs.

clkon

clkon turns on the keyboard click.
clkon ()
subroutine clkon

procedure clkon;

Version 4.0 Input/Output Routines 7-11

clkoff
clkoff turns off the keyboard click.

clkoff ()
subroutine clkoff

procedure clkoff;

lampon

lampon and lampo£f control the four lamps on the keyboard. Each 1 in
the four lower-order bits of the lamps argument to lampon turns on the
corresponding keyboard lamp.

lampon (lamps)
char lamps;

subroutine lampon (lamps)
integer*4 lamps

procedure lampon (lamps: longint);

lampoff

lampof £ turns off any or all of the keyboard lamps. Each 1 in the four
lower-order bits of the lamps argument t0 lampoff turns off the
corresponding keyboard lamp.

lampoff (lamps)
char lamps;

subroutine lampof (lamps)
integer*4 lamps

procedure lampoff (lamps: longint);

7-12 IRIS User’s Guide Series 3000

ringbell

ringbell rings the keyboard bell.
ringbell ()
subroutine ringbe

procedure ringbell;

setbell

setbell sets the duration of the keyboard bell: 0 is off; 1 is a short beep;
and 2 is a long beep.

setbell (mode)
char mode;

subroutine setbel (mode)
integer*4 mode

procedure setbell (mode: longint);

dbtext

dbtext writes text to the LED display in a dial and button box. The string
str must be eight or fewer uppercase characters.

dbtext (str)
char *str;

subroutine dbtext (str)
character* (8) str

procedure dbtext (varstr: Byte):;

Version 4.0 Input/Output Routines 7-13

setdblight

setdblights controls the 32 lighted switches on a dial and switch box.
For example, to turn on switches 3 and 7, the third and seventh bits to the
right of mask must be (1<<3)/(1<<7).

setdblights (mask)
long mask;

subroutine/éetdbl(mask)
integer*4 mask

procedure setdblights(mask: longint);

7.6 Special Devices

There are four types of special devices: keyboard, timer, cursor, and ghost
devices.

7.6.1 Keyboard Devices

The keyboard device returns ASCII values that correspond to the keys typed
on the keyboard. The device interprets keyboard movements in the standard
manner, e.g., reports an event only on a downstroke, taking into account the
‘crtl’ and ‘shift’ keys.

7.6.2 Timer Devices

The timer devices record an event every 60th of a second. You can use a
timer device to synchronize a graphics program with a real clock. To record
events less frequently, use noise. For example, if you call

noise (TIMERO, 30)

only every 30th event is recorded, so an event queue entry is made each half
second.

7-14 IRIS User’s Guide Series 3000

7.6.3 Cursor Devices

The cursor devices are pseudo devices that are equivalent to the valuators
currently attached to the cursor. (See attachcursor for more
information.)

7.6.4 Ghost Devices

Ghost devices, GHOSTX and GHOSTY, don’t correspond to any physical
devices, although they can be used to change a device under program
control. For example, to drive the cursor from software, use
attachcursor (GHOSTX, GHOSTY) to make the cursor position depend on
the ghost devices. Then use setvaluator on GHOSTX and GHOSTY to
move the cursor.

7.6.5 Window Manager Devices

The following devices can only be used within the context of the window
manager (see Using mex, the IRIS Window Manager).

REDRAW the window manager inserts a redraw token each
time the window needs to be redrawn; e.g., the user
can modify the size or shape of the window.

MODECHANGE when the process changes from single buffer mode
to double buffer mode, or vice versa.

INPUTCHANGE indicates a change in the input focus.

PIECECHANGE indicates that the window is the same size and in

the same position, but that a portion has been
exposed; e.g., when a window that obscures the
current window moves, exposing more of the
current window.

Version 4.0 Input/Output Routines 7-15

8. Graphical Objects

It is sometimes convenient to group together a sequence of drawing routines
and give it an identifier. The entire sequence can then be repeated with a
single reference to the identifier rather than by repeating all the drawing
routines. On the IRIS such sequences are called graphical objects; on other
systems they are sometimes known as display lists. A graphical object is a
list of graphics primitives (drawing routines) to display. For example, a
drawing of an automobile can be viewed as a compilation of smaller
drawings of each of its parts: windows, doors, wheels, etc. Each part (e.g., a
wheel) might be a graphical object—a series of move, draw, and poly
routines.

To make the automobile a graphical object, you would first define objects
that draw its parts—a wheel object, a door object, a body object, and so on.
The automobile object would be a series of calls to the part objects, which
together with appropriate rotation, translation, and scale routines, would put
all the parts in their correct places.

8.1 Defining An Object

You define and name objects with makeob3j. When you call makeob3, the
IRIS defines an object. Its argument (0bj) is a 31-bit integer, which is the
object’s numeric identifier. When makeobj executes, the IRIS enters the
object’s numeric identifier into a symbol table and allocates memory for its
list of drawing routines. This opens a new, empty object to which you can
add drawing routines.

When you open an object for editing, drawing routines are not executed and
drawn on the screen, but are added to the list until closeob is called.

Version 4.0 Graphical Objects 8-1

Thus, a graphical object is a list of primitive drawing routines to be
executed. Drawing the display list consists of executing each of the routines
in it from beginning to end. There is no flow control, such as looping,
iteration, or condition texts (except for bbox2, see below).

Note: Not all Graphics Library routines can be put in a display list. A
general rule is that drawing routines go into display lists, and
Graphics Library routines that return values do not. If you have a
question about a particular routine, check the manual page in the
Reference Guide.

makeobj

makeobj defines a graphical object. It takes one argument, a 31-bit integer
that is associated with the object. If obj is the number of an existing object,
the contents of that object are deleted.

When makeobj executes, the object number'is entered into a symbol table
and memory is allocated for a display list. Subsequent graphics routines are
compiled into the display list instead of executing.

makeobj (obj)
Object obj;

subroutine makeob (obj)
integer*4 obj

procedure makeobj (obj: Object):;

closeobj

closeobj terminates the object definition and closes the open object. All
the routines in the graphical object between makeobj and closeobj are
part of the object definition.

closeobj()
subroutine closeo

procedure closeobj;

Figure 8-1 shows an object definition of a simple shape named sphere, and
the figure it draws when called.

8-2 IRIS User’s Guide Series 3000

makeobj(sphere=genobj());
for (phi=0; phi<PI; phi+=PI/9){
for (theta=0; theta <2*PI; theta+=PI/18){

x=sin(theta) * cos(phi);
y=sin(theta) * sin(phi);
z=cos(theta);
if (theta==0)move(x,y,z);
else draw (x,y,z);

}

closeobj ();

The sphere above is defined as a graphical object. makeobj
creates a new object containing Graphics Library routines
between makeobj and closeobj.

Figure 8-1. Object Definition

Version 4.0 Graphical Objects

If you specify a numeric identifier that is already in use, the IRIS replaces
the existing object definition with the new one. To ensure your object’s
numeric identifier is unique, use isobj and genobj.

isobj

isobj tests whether there is an existing object with a given numeric
identifier. Its argument, obj, specifies the desired numeric identifier.
isobj returns TRUE(1) if an object exists with the specified numeric
identifier and FALSE(Q) if none exists.

long isobj (ob3j)
Object obj;

logical function isobj(obj)
integer*4 obj

function isobj(obj: Object): longint;

genobj

genobj generates a unique numeric identifier. It does not generate any
defined numeric identifiers. genob3j is useful in naming objects when it is
impossible to determine an undefined numeric identifier.

Object genobj ()
integer*4 function genobj ()

function genobj: Object;

delobj

delobj deletes an object. It frees all memory storage associated with the
object. The numeric identifier is undefined until it is reused to define a new
object. The system ignores calls to deleted or undefined objects.

delobj (obj)
Object obj;

subroutine delobj (obj)
integer*4 obj

procedure delobj(obj: Object);

8-4 IRIS User’s Guide Series 3000

8.2 Using Objects

callobj

Once you define an object, use callobj to draw it on the screen. Its

argument, obj, takes the numeric identifier of the object you want to draw.

callobj (obj)
Object obj;

subroutine callob (obj)
integer*4 obj

procedure callobj(obj: Object):;

Use callobj to call one object from inside another object. You can draw

more complex pictures when you use a hierarchy of simple objects. For

example, the program below uses a single callobj (pearls) to draw the

object, a string of peatls, by calling the previously defined object pearl

seven times.

Object pearl = 1, pearls = 2

makeobj (pearl) ;
color (BLUE) ;
for (angle=0; angle<3600; angle=angle+300) {
rotate (300, 'y’):;
circ (0.0, 0.0, 1.0);
}
closeobj();

makeobj (pearls) ;
for(i=0; i<7; i=i+1) {
translate (2.0, 0.0, 0.0);
color(i);
callobj (pearl);
}
closeobj();

Figure 8-2 shows another example using simple objects to build more

complex ones. It defines a solar system as a hierarchical object. Calling one

object, e.g., solarsystem, draws all the other objects named in its
definition (the sun, the planets, and their orbits).

Version 4.0 Graphical Objects

8-5

filled circle
planets—circle
\filled circle

circle
solarsystem — sun — sphere

\ /filled circle
planets <circle

filled circle
circle

Solarsystem, a complex object, is defined hierarchically, as
shown in the tree diagram. Branches in the tree represent
callobj routines.

Figure 8-2. Hierarchical Objects

8-6 IRIS User’s Guide Series 3000

The IRIS does not save global attributes before callobj takes effect.
Thus, if an attribute, such as color, changes within an object, the change can
affect the caller as well. When needed, use pushattributes and
popattributes 10 preserve global attributes across callobj.

When a complex object is called, the system draws the whole hierarchy of
objects in its definition. For example, in Figure 8-2, because the system
draws the whole object solarsystem, it can draw objects that are not visi-
ble in the viewport. bbox2 determines whether or not an object is within
the viewport, and whether it is large enough to be seen.

bbox2

bbox2 performs the graphical functions known as pruning and culling. Cul-
ling determines which parts of the picture are less than the minimum feature
size, and thus too small to draw on the screen. Pruning calculates whether
an object is completely outside the viewport.

bbox2 is a conditional test that you can position in a graphical object. If the
conditions indicate that the same part of the bounding box would appear on
the screen (not pruned) and was large enough (not culled), then the execu-
tion of a graphical object would proceed normally. During execution, if one
of these two tests fails, the remaining routines in the object are ignored.
bbox2 optimizes your application by avoiding the execution of graphics
that may be clipped or reduced to insignificant size.

bbox2 takes as its arguments an object space bounding box (x/, y/, x2, y2)
in coordinates and minimum horizontal and vertical feature sizes (xmin,
ymin) in pixels. The IRIS calculates the bounding box, transforms it to
screen coordinates, and compares it with the viewport. If the bounding box
is completely outside the viewport, the routines between bbox2 and the end
of the object are ignored. If the bounding box is within the viewport, the
system compares it with the minimum feature size. If it is too small in both
the x and y dimensions, the rest of the routines in the object are ignored.
Otherwise, the system continues to execute the object.

bbox2 (xmin, ymin, x1, yl, x2, y2)
Screencoord xmin, ymin;
Coord x1, yl, x2, y2;

subroutine bbox2(xmin, ymin, x1, yl, x2, y2)
integer*4 xmin, ymin

real x1, yl, x2, y2

procedure bbox2 (xmin, ymin: longint; x1, yl, x2, y2: Coord)

Version 4.0 Graphical Objects 8-7

Figure 8-3 shows some of the objects within solarsystem juxtaposed to
specified bounding boxes. The bounding boxes can perform pruning to
determine what objects will be partially in the viewport.

8.3 Object Editing

You can chzinge an object by editing it. Editing requires you to identify and-
locate the drawing routines that you want to change. You use two types of
routines when you edit an object:

e editing routines, which add, remove, or replace drawing routines

e tag routines, which identify locations of drawing routines within an
object

In the IRIS 3000 series, it is more efficient to define your own graphical
objects or to use fast immediate mode, than it is to constantly edit graphical
objects. See Appendix G, Fast Immediate Mode, for detailed information.

If you have to edit graphical objects, use your own display lists. The editing
routines that follow are for compatibility with previous products.

editobj

editobj opens an object for editing. A pointer acts as a cursor that
appends new routines. The pointer is initially set to the end of the object.
The system appends graphics routines to the object until either a closeob]
or a pointer positioning routine (objdelete, objinsert,Or
objreplace) executes.

The IRIS executes the editing routines following editobj. Use
closeobj to terminate your editing session. If you specify an undefined
object, an error message appears.

editobj (obj)
Object obj;

subroutine editob (obj)
integer*4 obj

procedure editobj (obj: Object);

8-8 IRIS User’'s Guide Series 3000

2D bounding boxes

7]

Bounding boxes are computed to determine which objects
are outside the screen viewport. If the bounding box is
entirely outside the viewport, the rest of the object display list
is not traversed. The sphere in the bounding box that lies
partially within the viewport is drawn and clipped to the edge
of the viewport.

Figure 8-3. Bounding Boxes

Version 4.0 Graphical Objects 8-9

getopenobj
To determine if any objecis are open for editing, use getopenobj. If an
object is open, it returns the object’s numeric identifier. It returns -1 if no
objects are open. Figure 8-4 illustrates object editing.

Object getopenobj ()

integer*4 function getope ()

function getopenobj: Object;

8.3.1 Identifying Display List Items with Tags

Once you define an object, you need a method of finding locations that may
require changes. You can use tags in the same manner you would use a
bookmark, i.e., to identify places you may need to locate. Tags locate
display list items that you want to edit. Editing routines require tag names
as arguments.

maketag

Use tags to mark display list items you may want to change. maketag
explicitly tags routines. You specify a 31-bit numeric identifier and the
system places a marker between two list items. You can use the same tag
name in different objects.

maketag (t)
Tag t;

subroutine maketa (t)
integer*4 t

procedure maketag(t: Tag);

8-10 IRIS User’s Guide Series 3000

makeobj (star); | makeobj (star);

color (GREEN}; color (GREEN);
maketag (BOX); .. editobj (star); maketag (BOX);
recti (1,1,99); i circi (1,5,5); recti(0,0,10,10);
maketag (INNER); = objinsert (BOX); recti (1,1,99)
color (BLUE); - recti(0,0,10,10); maketag (INNER);
poly2i (8,INNER); objreplace (INNER); color (BLACKj;
maketag (OUTER); 6 color (BLACK); poly2i (8,INNER);
color (RED); i ' delete (OUTER, maketag (OUTER);
poly2i (8,0UTER); _CENTERY); tag (CENTER);
maketag (CENTER);, ~ closeobj (); color (YELLOW);
color (YELLOW); pnt2i (5,5);
pnt2i(55); circi (1,5,5);
closeobj(); closeobj ();

The object definition on the left is being edited. Arrows
indicate the movements of the editing cursor. The resulting
object definition is on the right. The figures above show the
object as it would be drawn before and after editing.

Figure 8-4. Editing an Object Definition

Version 4.0 Graphical Objects 8-11

istag

istag tells whethef a given tag is in use within the current open object.
istag returns TRUE(]) if the tag is in use, and FALSE(Q) if it is not. The
result is undefined if there is no current open object.

Boolean istag(t)
Tag t;

logical function istag(t)
integer*4 t

function istag(t: Tag): longint;

gentag

gentag generates a unique integer to use as a tag within the current open
object.

Tag gentag ()
integer*4 function gentag()

function gentag: Tag;

deltag

deltag deletes tags from the object currently open for editing. Remember,
you cannot delete the special tags STARTTAG and ENDTAG.

deltag(t)
Tag t;

subroutine deltag(t)
integer*4 t

procedure deltag(t: Tag);

8-12 IRIS User’s Guide Series 3000

newtag

newtag also adds tags to an object, but uses an existing tag to determine its
relative position within the object. newtag defines a new tag that is offset
beyond the other tag by the number of lines given in its argument offset.

newtag (new, old, offset)
Tag new, old;
long offset;

subroutine newtag (new, old, offset)
integer*4 new, old, offset

procedure newtag(new, old: Tag; offset: Offset);

STARTTAG is a predefined tag that goes before the very first item in the list;
it marks the beginning of the list. STARTTAG does not have any effect on
drawing or modifying the object. Use it only to return to the beginning of
the list. ENDTAG is a predefined tag that is positioned after the last item on
the list; it marks the end of the list. Like STARTTAG, ENDTAG does not
have any effect on drawing or modifying the object. Use it to find the end of
the graphical object. When you call makeob3j to define a list, STARTTAG
and ENDTAG automatically appear. You cannot delete these tags. When an
object is opened for editing, there is a pointer at ENDTAG, just after the last
routine in the object. To perform edits on other items, refer to them by their
tags.

8.3.2 Inserting, Deleting, and Replacing within Objects

objinsert

objinsert objinsert adds routines to an object at the location specified in
t. objinsert takes atag as an argument, and positions an editing pointer
on that tag. The system inserts graphics routines immediately after the tag.
To terminate the insertion, use closeob3j or another editing routine
(objdelete, objinsert, Or objreplace).

Version 4.0 ' Graphical Objects 8-13

objinsert (t)
Tag t;

subroutine objins (t)
integer*4 t

procedure objinsert (t: Tag);

objdelete

objdelete removes routines from the current open object. It removes
everything between tagl and tag2—it deletes routines and other tag names.
For example, objdelete (STARTTAG, ENDTAG) would delete every rou-
tine, except the tags STARTTAG and ENDTAG themselves.

The IRIS ignores objdelete if no object is open for editing. This routine
leaves the pointer at the end of the object after it executes.

objdelete (tagl, tag2)
Tag tagl, tag2;

subroutine objdel (tagl, tag2)
integer*4 tagl, tag2

procedure objdelete (tagl, tag2: Tag);

objreplace

objreplace combines the functions of objdelete and objinsert. It
provides a quick way to replace one routine with another that occupies the
same amount of display list space. Its argument is a single tag, ¢. Graphics
* routines that follow objreplace overwrite existing routines until a
closeobj orediting routine (objinsert, objreplace, Or
objdelete) terminates the replacement.

8-14 IRIS User’s Guide Series 3000

Note: objreplace requires that the new routine be exactly the same
length in characters as the previous one. Use objdelete and
objinsert for more general replacement.

objreplace (t)
Tag t;

subroutine objrep (t)
integer*4 t

procedure objreplace(t: Tag);

8.3.3 Example

The following is an example of object editing. An object star is defined:

makeobj (star) ;
color (GREEN) ;
maketag (BOX) ;
recti(l, 1, 9, 9);
maketag (INNER) ;
color (BLUE) ;
poly2i (8, Inner);
maketag (OUTER) ;
color (RED) ;
poly2i (8, Outer);
maketag (CENTER) ;
color (YELLOW) ;
pnt2i (5, 5);

closeobj();

Version 4.0 Graphical Objects

8-15

Then this object is edited with the following routine to give a modified
object:

editobj (star) ;
circi(l, 5, 5):
objinsert (BOX) ;
recti (0, 0, 10, 10);
objreplace (INNER) ;
color (GREEN) ;
closeobj();

The object resulting from the editing session is equivalent to an object
defined by the following code.

makeobj (star) ;
color (GREEN) ;
maketag (BOX) ;
recti(0, 0, 10, 10);
recti(l, 1, 9, 9);
maketag (INNER) ;
color (GREEN) ;
poly2i (8, Inner);
maketag (OUTER) ;
color (RED) ;
poly2i (8, Outer);
maketag (CENTER) ;
color (YELLOW) ;
pnt2i (5, 5);
cireci(l, 5, 5);

closeobij();

8.3.4 Object Memory Management

Editing can require large amounts of memory. compactify,
chunksize, and getmem perform memory management tasks that you
may need.

8-16 IRIS User’s Guide Series 3000

compactify

As memory is modified by the various editing routines, an open object can
become fragmented and stored inefficiently. When the amount of wasted
space becomes large, the IRIS automatically calls compactify during the
closeobj operation. The routine allows you to perform the compaction
explicitly. Unless you insert new routines in the middle of an object,
compaction is not necessary.

Note: compactify uses a significant amount of computing time. Do not
call it unless the amount of available storage space is critical.

compactify (obj)
Object obj;

subroutine compac (obj)
integer*4 obj

procedure compactify(obj: Object);

chunksize

If there is a memory shortage, you can use chunksize to allocate memory
differently to an object. chunksize specifies the minimum amount of
memory that the system allocates to an object. When you specify chunk, its
size should vary according to the needs of the application. As the object
grows, fixed-sized chunks of memory are added to it. There are cases where
this can be inefficient. For example, if the objects are small and the chunks
are large, most objects will consist of one large chunk, most of which is
wasted space. On the other hand, if the objects are large and the chunks are
small, there is an overhead associated in keeping track of the large number
of chunks. :

Only one chunk size is allowed per application and the default size is 1020
bytes. This can be changed once to a more suitable size after a call to
winopen, ginit, gbegin, or getport, and before the first call to
makeob].

The chunk size must be large enough to hold the largest Graphics Library
routine in the display list. If your chunk size is too small (perhaps you have
polygons with a large number of sides) execution errors can occur.

Note: chunksize is a space optimization technique, and should be used
only if memory is limited for the application. Determination of the
best value for chunksize is a trial and error process.

Version 4.0 Graphical Objects 8-17

chunksize (chunk)
long chunk;

subroutine chunks (chunk)
integer*4 chunk

procedure chunksize (chunk: longint);

getmem

To determine the amount of available memory, use getmem. On a
terminal, it returns the amount of free physical memory. On a workstation
with virtual memory up to 14 megabytes, it returns 14 megabytes less the
amount in use.

long getmem()
integer*4 function getmem()

function getmem: longint;

callfunc

callfunc allows an arbitrary function call from within an object. When it
executes in the object, the function (fctn, nargs, argl, arg2, ..., argn) is
called. callfunc is useful only for writing customized terminal
programs. It cannot be called remotely, and should not be used on a
workstation.

callfunc(fctn, nargs, argl, arg2, ..., argn)
int (*fctn) ()
long nargs, argl, arg2, ..., argn;

Note: You can only use callfunc when programming in C.

8-18 IRIS User’s Guide Series 3000

9. Picking and Selecting

The previous chapters explain how to define objects in world coordinates so
the system can draw them on the screen. This chapter discusses the reverse
process: how to determine what routines define objects in a specified area of
the screen. There are two ways to do this:

« mapw takes 2-D screen coordinates and identifies the corresponding 3-D
world coordinates; or

s pick and gselect, which identify objects drawn in a specified 3-D
area.

9.1 Mapping Screen Coordinates to World
Coordinates

mapw

mapw takes a 2-D screen point and maps it onto a line in 3-D world space.
Its argument vobj contains the viewing, projection, and viewport
transformations that map the current displayed objects to the screen. mapw
reverses these transformations and maps the screen coordinates back to
world coordinates. It returns two points (wxI, wyl, wzl) and (wx2, wy2,
wz2), which specify the endpoints of the line. sx and sy specify the screen
point to be mapped.

Version 4.0 Picking and Selecting 9-1

mapw (vobj, sx, sy, wxl, wyl, wzl, wx2, wy2, wz2)
Object vobj;

Screencoord sx, sy,

Coord *wxl, *wyl, *wzl, *wx2, *wy2, *wz2;

subroutine mapw (vobj, sx, sy, wxl, wyl, wzl, wx2, wy2, wz2)
integer*4 vobj, sx, sy
real wxl, wyl, wzl, wx2, wy2, wz2

procedure mapw(vobj: Object; sx, sy: longinit; var wxl, wyl,
wzl, wx2, wy2, wz2: Coord):;

mapw2

mapw2 is the 2-D version of mapw. In 2D, the IRIS maps screen
coordinates to world coordinates rather than to a line. Again, vobj contains
the projection and viewing transformations that map the displayed objects to
world coordinates; sx and sy define screen coordinates. wx and wy return the
corresponding world coordinates. If the transformations in vobj are not 2-D
(i.e., not orthogonal projections), the result is undefined.

mapw?2 (vobj, sx, sy, wx, Wwy)
Object vobj;

Screencoord sx, sy;

Coord *wx, *wy;

subroutine mapw2 (vobj, sx, sy, wx, Wy)
integer*4 vobj, sx, sy
real wx, wy

procedure mapw2 (vobj: Object; sx, sy: longinit; var wx, wy:
Coord) ;

9.2 Picking

You use picking mode to identify objects on the screen that appear near the
cursor. To use picking effectively, your software must be structured in such
a way that you can regenerate the picture on the screen whenever picking is
required. When it is, set the system into picking mode; using pick, redraw
the image on the screen, and finally, call endpick. The results of the pick
appear in the buffer specified by pick and endpick.

9-2 |RIS User’s Guide Series 3000

While it is in picking mode, the IRIS does not draw anything on the screen.
Instead, drawing routines that would have been drawn near the cursor cause
hits to be recorded in the picking buffer in a manner described below. With
one exception, all the standard drawing routines cause hits, including clear,
points, lines, polygons, arcs, circles, curves, and patches. Raster objects,
such as character strings and pixels drawn with charstr, do not cause hits,
although cmov does. Thus, to be picked, the cursor must be near the
lower-left comer of the string. Note also that since readpixels and
readRGB are often preceded by cmov, these routines can appear to cause
hits. See Figure 9-1.

To identify the object(s) on the screen that caused hits, a name stack is
supported. The name stack is a stack of 16-bit names whose contents are
controlled by loadname, pushname, popname, and initname. In
picking mode, whenever one of the routines that alters the name stack is
issued or whenever picking mode is exited by endpick (or endselect,
which is described in a later section), the contents of the name stack is
recorded if a hit occurred since the name stack was last altered.

For example, suppose your application draws three widely spaced points on
the screen, and you want to find out which one is closest to the cursor using
picking mode. Your point-drawing code (that is executed both to draw
points and to redraw them in a picking operation), might look something
like this:

ortho (<ortho parameters>);1
loadname (0) ;

pnt (<point 0>);
loadname (1) ;

pnt (<point 1>);
loadname (2) ;

pnt (<point 2>);

When this code segment is executed in picking mode, if the cursor were
near point 1, the buffer returned after endpick would contain the name 1;
if it were near point 2, the buffer would contain the name 2; and if the cursor
weren’t near any of the points, an empty buffer would be returned.

1. Note that the complete specification for drawing the picture must be there, including any
viewing and transformation routines.

Version 4.0 Picking and Selecting 9-3

!S“'I;:EXT IS PICKED
OT PICKED

In picking mode, you can identify the parts of an image that
lie near the cursor. The cursor is shown as an arrow. The
small box at the tip of the arrow is the picking region. The
large shaded circle is picked. The text string whose origin is
in the picking region is also picked. The shaded triangle and
the other text string are not picked.

Figure 9-1. Picking

9-4 IRIS User’s Guide Series 3000

If hierarchical objects are drawn (say we draw a car with four instances of a
wheel, and each wheel has five instances of a bolt, and we would like to pick
an individual bolt from the picture), the name stack can be used effectively.
We might have one piece of code to draw each wheel that contained the
sequence:

pushname (0) ;
<draw bolt 0>
popname () ;
pushname (1) ;
<draw bolt 1>
popname () ;

The car drawing code might look like this:

loadname (0) ;
<translate>
<draw wheel>
loadname (1) ;
<translate>
<draw wheel>

Each hit on a bolt would occur with the name stack containing two names,
the first of which is the wheel number and the second of which is the bolt
number on that wheel. Deeper nesting of the hierarchy is obviously
possible.

The names reported on hits are completely application dependent. Many
drawing routines can occur between changes to the name stack, and if any of
those routines cause a hit, the contents of the name stack is reported. Since
the contents of the name stack is reported only when it changes, one hit will
be reported no matter how many of the drawing routines actually drew
something near the cusor. If more accuracy than this is required by the
application, it must simply touch the name stack more often. In the code
below, if all three points caused hits, three identical name stacks would be
reported:

Version 4.0 Picking and Selecting 9-5

loadname (1) ;
pnt (-);
loadname (1) ;
pnt (-);
loadname (1) ;
pnt (=)

pick
pick puts the system in picking mode. The numnames argument to pick
specifies the maximum number of values that the buffer can store. The

graphical items that intersect the picking region are hits and store the
contents of the name stack in buffer.

pick (buffer, numnames)
short buffer[];
long numnames;

subroutine pick (buffer, numnam)
integer*2 buffer (*)

integer*4 numnam

procedure pick(var buffer[0]: Short; numnames: longint);

9.2.1 Using the Name Stack

You maintain the name stack with loadname, pushname, popname, and
initnames. '

Each name in the name stack is 16 bits long. You can store up to 1000
names in a name stack. You can intersperse these routines with drawing
routines, or you can insert them into object definitions. See Chapter 8§,
Graphical Objects, for a discussion of objects.

9-6 IRIS User's Guide Serles 3000

loadname

loadname puts name at the top of the name stack and erases what was there
before. ' ‘

loadname (name)
short name;

subroutine loadna (name)
integer*4 name

procedure loadname (name: longint);

pushname

pushname puts name at the top of the stack and pushes all the other names
in the stack one level lower.

pushname (name)
short name;

subroutine pushna (name)
integer*4 name

procedure pushname (name: longint);

popname

popname discards the name at the top of the stack and moves all the other
names up one level.

popname ()
subroutine popnam
procedure popname;

inithames

initnames discards all the names in the stack and leaves the stack empty.

initnames ()
subroutine initna

procedure initnames;

Version 4.0 Picking and Selecting 9-7

endpick

endpick takes the IRIS out of picking mode and returns the number of hits
that occurred in the picking session. If it retumns a positive number, the
buffer stored all of the name lists. If it returns a negative number, the buffer
was too small to store all the name lists; the magnitude of the returned
number is the number of name lists that were stored.

buffer contains all of the name lists stored in picking mode, one list for each
valid hit. The first value in each name list is the length of a name list. Ifa
name stack is empty when a hit occurs, the first and only name in the list for
that hit is ‘0’.

long endpick (buffer)
short buffer(];

integer*4 function endpic (buffer)
integer*2 buffer(*)

function endpick(var buffer: Short): longint;

gethitcode

gethitcode retumns the global variable hitcode, which keeps a cumulative
record of clipping plane hits. It does not change the hitcode value. The
hitcode is a 6-bit number (see below), with 1 bit for each clipping plane.

5 4 3 2 1 0
[far | near | top | bottom | right | left |

long gethitcode ()
integer*4 function gethit ()

function gethitcode(): longint;

9-8 RIS User’s Guide Series 3000

clearhitcode

clearhitcode clears the global variable hitcode, which records clipping
plane hits in picking and selecting modes.

clearhitcode ()
subroutine clearh

procedure clearhitcode;

9.2.2 Defining the Picking Region

Picking loads a projection matrix that makes the picking region fill the
entire viewport. This picking matrix replaces the projection transformation
matrix that is normally used when drawing routines are called. Therefore,
you must restate the original projection transformation after pick to ensure
the system maps the objects to be picked to the proper coordinates. If no
projection transformation was originally issued, you must specify the
default, ortho2. When the transformation routine is restated, the product
of the transformation matrix and the picking matrix is placed at the top of
the matrix stack. If you do not restate the projection transformation, picking
does not work properly. Instead, the system typically picks every object,
regardless of cursor position and picksize (including the viewport).

picksize

The default height and width of the picking region is 10 pixels centered at
the cursor. You can change the picking region with picksize. deltax and
deltay specify a rectangle centered at the current cursor position (the origin
of the cursor glyph). (See Chapter 6, Display and Color Modes, Section 6.4
for a discussion of cursors.)

picksize (deltax, deltay)
short deltax, deltay;

subroutine picksi (deltax, deltay)
integer*4 deltax, deltay

procedure picksize(deltax, deltay: Short);

Version 4.0 Picking and Selecting 9-9

9.2.3 Example

The following program draws an object consisting of three shapes; then it
loops, until the right mouse button is pressed. Each time the middle mouse
button is pressed: .

1. The system ent;is picking mode.
2. The system calls the object.

3. The system records hits for any routines that draw into the picking
region.

4. The system prints out the contents of the picking buffer.

Note: When you call an object in picking mode, the screen does not
change. Since the picking matrix is recalculated only when pick
is called, the system exits and reenters picking mode to obtain new
cursor positions. ’

B C Program: PICKING
#include "gl.h"
#include "device.h"

main ()

{
short namebuffer[50];
long numpicked;
short type, val, i, Jj, k;

ginit ();
qgdevice (MOUSEL) ;
gdevice (MOUSE2) ;

makeobj (1) ;
color (RED) ;
loadname(l); /* load the name "1" on the name stack */
rectfi (20,20,100,100);
loadname(2); /* load the name "2", replacing "1" */
pushname(3); /* push name "3", so the stack
has "3 2" */
circi (50,500,50);

9-10 IRIS User’s Guide Series 3000

loadname (4); /* replace "3" with "4", so the stack
has "4 2" */
cireci (50,530,60);
closeobj ()

color (BLACK) ;
clear();
callobj(l); /* draw the object on the screen */

while (1) { /* loop until the right mouse button is pushed */
type = gread(&val);
if (val == 0)
continue;
switch (type) {
case MOUSEl: /* if the right mouse button is pushed,
the program exits */
gexit () ;
exit (0);
case MOUSE2: /* if the middle mouse button is pushed,
the IRIS enters pick mode */
pushmatrix()
pick (namebuffer, 50);
/* restate the projection transformation for
the object */
ortho2(-0.5, XMAXSCREEN + 0.5, -0.5,
YMAXSCREEN + 0.5);
callobj(l); /* call the object (no actual drawing
takes place) */
numpicked = endpick (namebuffer);
/* print out the number of hits and a name list
for each hit */
popmatrix ()
printf("hits: %d; ",numpicked);
j=0;
for (i = 0; i1 < numpicked; i++) {
printf(" ");
k = namebuffer[j++];
printf("sd ", k):;
for (;k; k—-)
printf ("%d ", namebuffer[j++]);
printf("|");

Version 4.0 Picking and Selecting 9-11

}
printf("\n");

B FORTRAN Program: PICKING

include "fgl.h"
include "fdevice.h"
(o]

INTEGER*2 NAMBUF (50)
INTEGER*2 VAL, I, J, K, L
INTEGER TYPE, NUMPIC

c
CALL GINIT()
Cc
CALL QDEVIC (MOUSE1l)
CALL QDEVIC (MOUSE2)
c

CALL MAKEOB (1)
CALL COLOR (RED)
c load the name "1" on the name stack
CALL LOADNA(1)
CALL RECTFI (20,20,100,100)

c load the name "2", replacing "1"
CALL LOADNA(2)
c push the name "3", so the stack has "3 2"

CALL PUSHNA (3)
CALL CIRCI(50,500,50)
C replace "3" with "4", so the stack has "4 2"
CALL LOADNA (4)
CALL CIRCI (50,530,60)
CALL CLOSEO ()

CALL COLOR (BLACK)
CALL CLEAR()
(o] draw the object on the screen

CALL CALLOB(1)

(o} loop until the left mouse button is pushed

9-12 IRIS User’s Guide Series 3000

100

c

200
300

400

CONTINUE
TYPE = QREAD (VAL)
try again if the event was a button release
IF (VAL .EQ. 0) GO TO 100

if the left mouse button is pushed, the program exits

IF (TYPE .EQ. MOUSEl) THEN
CALL GEXIT()
GO TO 400
END IF
if the middle mouse button is pushed, the IRIS
enters pick mode
CALL PUSHMA ()
IF (TYPE .EQ. MOUSE2) THEN
CALL PICK (NAMBUF, 50)
restate the projection transformation for
the object
CALL ORTHO2(-0.5, XMAXSC+0.5, -0.5, YMAXSC+0.5)
call the object (no actual drawing takes place)
CALL CALLOB (1)

print out the number of hits and a name list for

each hit)
NUMPIC = ENDPIC (NAMBUF)
CALL POPMAT ()
PRIyT *, ’Hits: ', NUMPIC
J=1
DO 300 I=1,NUMPIC
K = NAMBUF (J)
J=J+1
PRINT *,K
DO 200 L=1,K
PRINT *,’ ’ ,NAMBUF (J)
J=J+1
CONTINUE
CONTINUE
END IF
loop until the left mouse button is pushed
GO TO 100 \
CONTINUE
STOP
END

Version 4.0 Picking and Selecting

9-13

When the program is run there are five possible outcomes for each picking
session (the circles can be picked together because they overlap):

¢ nothing is picked = "hits: 0;"

o the rectangle is picked = "hits: 1; 1 11"

o the first circle is picked = "hits: 1; 22 3 |"

o the second circle is picked = "hits: 1; 224 |"

« both the first and second circle are picked = "hits: 2;2231224|"

9.3 Selecting

Selecting is a more general mechanism than picking for identifying the
routines that draw to a particular region. A selecting region is a 2-D or 3-D
area of world space. When gselect tums on selecting mode, the region
represented by the current viewing matrix becomes the selecting region.
You can change the selecting region at any time by issuing a new viewing
transformation routine. To use selecting mode:

1. Issue a viewing transformation routine that specifies the selecting <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>