Getting Started
with
Your IRIS Workstation

<75

S\ ‘

NN

VA S

Silicon Graphics, Inc.
2011 Stierlin Road
Mountain View, CA 94043

Document Number 007-7001-010

Technical Publications:

Marcia Allen

Lori Blankenbecler
Robin E. Florentine
Gail Kesner

Steven A. Locke
Susan Luttner
Amy B. W. Smith
Celia Szente

Diane M. Wilford

® Copyright 1986, Silicon Graphics, Inc.
All rights reserved.

This document contains proprietary information of
Silicon Graphics, Inc., and is protected by Federal
copyright law. The information may not be disclosed
to third parties or copied or duplicated in any form, in
whole or in part, without prior written consent of
Silicon Graphics, Inc.

The information in this document is subject to change
without notice.

Getting Started with
Your IRIS Worsktation
Document number: 007-7001-010

Ethernet and VMS are trademarks of Xerox Corporation.
VMS is a trademark of Digital Equipment Corporation.

To the Reader

Getting Started with Your IRIS Workstation is designed for programmers
with little or no UNIX experience. By investing only one hour in this book,
you will learn how to:

« issue some basic UNIX commands
o use the text editor, vi

« create and run two simple graphics programs

You will also learn where you can find more detailed sources of
information about UNiX and your IRIS Workstation.

Table of Contents

e To the Reader

e Table of Contents

1. Trying Out Your IRIS
® Logging In
e [ssuing Commands
e Creating Graphics Programs Using vi
¢ Compiling and Running Your Graphics Programs

¢ Logging Out

2. A Basic Lesson on UNIX
® The UNIx Directory System
¢ Using Directories and Files

e Summary of Important Commands

3. Where to Find More Information
e [RIS Documentation
e UNIX Documentation
e Silicon Graphics Geometry Hotline

e Additional Reading

O W NN

17
17
19
29

35
35
37
37
38

1. Trying Out Your IRIS

To get started with your IRIS, you need access to a working system. If
your IRIS is not installed yet, see chapters 2-4 of the [RIS Workstation
Guide, Series 2000 or [RIS Series 3000 Owner’s Guide to learn how to install,
boot, and back up your system. You will also learn how to run the flight
simulator demo.

This chapter takes you through a typical session with the IRIS, after it has
been installed and booted. It shows you how to:

* log in to the guest account
« issue commands to the UNIX operating system

« create simple C and FORTRAN programs using the vi
text editor

» compile and run those programs

* log out

We use the following conventions in this book:

1. All text that you will see on your IRIS screen, whether you
type it or the IRIS displays it, is printed in this typewriter
font.

2. UNix file names and commands are printed in italics.

3. Special keys you press, such as |[RETURN|, are printed in a box.

Your IRIS is case-sensitive; that is, it distinguishes between upper and
lower case letters. If we show you a command that consists of all lower
case letters, or one that consists of a combination of lower and upper case
letters, be sure to type in the command exactly as it is printed on the

page.

2 GETTING STARTED

Logging In

After you boot the IRIS, it is running the UNIX operating system and is
waiting for you to log in. This is what you see on the screen:

IRIS login:

To log in, type:
guest RETURN]

This is what you see:

IRIS login: guest

Silicon Graphics, Inc.
IRIS Workstation

%

Chapter 4 of your IRIS Workstation Guide, Series 2000 or [RIS Series 3000
Owner’s Guide tells you how to set up user accounts and passwords so you
can log in using your own login name. For now, you are logged in to the
“guest’” account.

Issuing Commands

The percent sign is the system prompt; it means the IRIS is ready to
accept your commands. After you type in the name of a command, press
RETURN| and the command is executed. Erase characters by pressing the
BACK SPACE| key. Abort a command and start over on a new line by

pressing the |BREAK| key, or by pressing |CNTRL-U|.

Try issuing this command:

date ‘RETURN

VERSION 1.0 3

The system responds with the time and date:

% date
Tue Dec 10 10:25:14 PST 1985
%

After the IRIS executes the command, it displays a percent sign to prompt
you for more commands.

Creating Graphics Programs Using vi

Now that you are logged in and you know how to issue commands, you
can do what you were meant to do with the IRIS — write, compile, and
execute a graphics program. In the next sections, you actually create two
programs: one in C and one in FORTRAN. (Note: FORTRAN is an option
on the IRIS, so you can compile and run the FORTRAN program only if
you have this option.)

You write programs (i.e. create source files) on the IRIS by using the vi
text editor. The C and FORTRAN programs you write in this chapter
produce the same effect on the screen, but the algorithms are slightly
different, as you will see. We recommend that you write both programs
(if your IRIS has the FORTRAN option), even if you intend to use only
one of the languages.

After you have created a source file, you need to compile it. There are
two compiler commands: cc and f77. cc uses your C source file to create
an executable file, and f77 uses your FORTRAN source file the same way.
After compilation, the original source file is still available to be changed
and compiled again.

To execute the compiled file, type the name of the file as you would type
the name of a UNIX command (such as date).

4

GETTING STARTED

Starting the vi Text Editor

First, create the source file for the C program by typing:

vi blue.c |RETURN

This starts the vi (vee-eye) text-editing program. blue.c is the
name of the file. The ".¢” is a required convention that means the
file is a source file in the C programming language. Your screen

looks like this:

"blue.c" [New file]

The cursor box at the top of the screen points to the place in the
file where you can insert text. The arrow keys at the upper right
corner of the main keyboard move the cursor around in the file.
Since blue.c is empty, there is only one place for the cursor to be.
If you try to move it, the IRIS will beep. The tildes (~) fill up the
part of the screen that does not yet contain text.

Inserting Text

vi has two modes: command mode and insert mode. Right now it
is in command mode — the next character you type will be
interpreted as a command. The first command you need to know
is i. When you type i, you put vi into insert mode, and vi inserts
any new text before the cursor position. Everything you type
after i (including carriage returns) is inserted into your working
buffer. Try typing i, followed by any text you want. Include
some |[RETURN|s. Press |[BACK SPACE| to correct or erase characters

VERSION 1.0 5

on a line ([BACK SPACE| will not move to a previous line). When
you have inserted a few lines of text, press |ESC| to return to
command mode.

Moving the Cursor

When you press [ESC|, vi goes back into command mode and the
next character you type is interpreted as a command. When you
press |ESC| just once, you do not get any feedback telling you that
you have successfully changed modes. If you are not sure which
mode you are in, press |[ESC| twice and you'll hear a beep — this
assures you that you are in command mode. Now you can move
the cursor with the keyboard arrows and insert text somewhere
else in the file. Try moving the cursor with the arrows. Pick a
place in your text and insert some more text by typing i followed
by the new text. When you are done, type |ESC|. You can now
move the cursor again and insert more text somewhere else.

Deleting Text

There are two basic commands for deleting text: x and dd. x
deletes the character within the cursor box. You can use x
whenever you're in command mode and it is executed
immediately. You don’t need to type |RETURN| or |ESC|. Try
deleting some of your text with the x command. Move the cursor
to the character you want to delete and press x.

dd deletes the entire line of text in which the cursor is located.
Move the cursor to a line you want to delete and press dd (no
|RETURN| or |[ESC| is needed).

Writing Your C Program

Now type your C program into the file blue.c. First, delete all the
text from the screen using dd. When everything is gone, the
cursor is in the upper left corner of the screen and the system
beeps if you press dd or any of the keyboard arrows. Type in the
following program by first typing i to put vi into the insert mode.

6 GETTING STARTED

Type the following text, using a carriage return after each line:
#include "gl.h"

main()

{
ginit();
color (BLUE) ;
clear();

sleep(5);
gexit () ;

}

Your text should look exactly like this. Make sure that you press
RETURN| after the final }. Use |BACK SPACE| to correct typing errors
betore you move on to the next line. If you need to change a line
after you’ve moved on to another, use the commands you learned
in the previous sections:

+ Press |[ESC| to complete vour insertion and return to command
mode.

» Use the keyboard arrows to move the cursor to a new position.
» Use x and dd to delete text.
» Use i to insert more text.

Another text-insertion command you should know is a, which
inserts text after the cursor position. (Remember that i inserts
text before the cursor position.)

Saving Your Edits

None of the text on the screen is saved in the file blue.c until you
tell the system to save it. Instead, it's held in the working buffer,
which is displayed on the screen. When you've typed in the
correct text (and pressed [ESC| to complete the last insert
command), you need to press the colon key (:).

This makes a colon appear at the bottom of the screen. To write
the text in the working buffer into the file blue.c (i.e., to save the
text as blue.c), type w, which also appears at the bottom of the
screen, followed by |RETURN|.

VERSION 1.0 7

This is what your screen looks like after you save your edits:

#include "gl.h"

main ()

{
ginitQ;
color (BLUE) ;
clear();

sleep(5);
gexit();

}
O

~

"blue.c" [New file] 12 lines, 80 characterﬂ

As soon as blue.c is saved, you are back in command mode. You
can continue to edit blue.c by moving the cursor and using the
insertion and deletion commands. Any time you want to save
your changes, press [ESC| and tell vi to “write”” tne file by typing:

:w [RETURN|
Note that each time you save blue.c in this way, you overwrite the
previous version.

Exiting vi

To exit vi, type:
:q [RETURN

If you get a message that says you can’t exit vi, it means you
haven’t saved your edits with the :w command. Try typing:

:wq [RETURN|

which saves your edits and exits vi all at once.

8 GETTING STARTED

If you ever want to exit vi without saving the changes you have
made, you can do so by typing :q! [RETURN]. Do this only if
you're sure you don’t want to save your changes.

Listing the Files in Your Directory

After exiting the vi text editor, you can prove your file exists by
typing the “list” command, 1s. Type:

1s [RETURN

This is what appears on the screen:

% 1s

blue.c

%

You may find files other than blue.c in the guest directory if
someone else has been using it. 1s is very useful; you can use
several options with it to get more informative listings.

Summary of vi Commands

move cursor one character to the right
move cursor one character to the left
move cursor down one line

move cursor up one line

itext...ESC insert text before the cursor
atext...ESC insert text after the cursor

x delete character
dd delete line

:w |[RETURN| write to file
q|RE URN| exit vi
:q'[RETURN| exit vi without saving edits

VERSION 1.0 9

Compiling and Running Your Graphics Programs

To compile a C spurce file into a binary file that can be executed by the
IRIS, use the cc command. cc is a key command that you should read
about in the UNix Programmer’s Manual, Vol. IA. To compile blue.c, type:

cc blue.c -Zg|RETURN

Wait for a few seconds until the percent sign appears again.

Many UNIX commands have “options” that provide additional
functionality. An option is usually specified by a hyphen and one or more
characters. In this case, cc takes the option ““-Zg”, which tells the
compiler that there are graphics routines in the program.

After the program has been compiled, type 1s to see that an executable
file called a.out has been created in your directory.

% 1s
a.out blue.c

%

Every program you compile this way is called “a.out”. Next time, you'll
see how to use an option that lets you name the executable file whatever
you want. If you get any error messages from the compiler, check to
make sure blue.c contains exactly the same text as is listed here, edit it if
necessary, and recompile it.

Running a Program

Now that you have compiled your program, you are ready for the
easiest and most enjoyable part of the procedure — running the
program. All you have to do is type:

a.out |[RETURN

10 GETTING STARTED

The screen clears to blue and stays that way for five seconds.
(The cursor might appear in red on the screen, but don't worry
about that.) When the program is done, your textport appears on
the screen and you can communicate with UNIX again. You have
just completed your first graphics program. Now that you've
compiled the program, you can run it any time you want.

Changing Your Program

Suppose you want to change blue.c. You need to edit it, compile it
and run it again. This is the typical process for developing a
graphics program. You write something, run it, and see what
happens; then you change it and run it again until you get it the
way you want it.

To edit blue.c, you need to go into vi again. Type:

vi blue.c [RETURN]

This is what you see on the screen:

Hinclude "gl.h"

main()

{
ginit();
color (BLUE) ;
clear();

sleep(5);
gexit();

~

~

"blue.c" 12 lines, 80 characters

VERSION 1.0 11

Let’s briefly discuss what some of this code means.

#include "gl.h"

main()

ginit();

color (BLUE) ;

clear();

sleep(5);

gexit();

Included in all graphics programs.
Defines type definitions, useful
constants, and external definitions for
all commands.

The name of the main program
segment in all C programs. The
brackets ({,}) contain the contents ot
main.

Begins the graphical part of every
graphics program. It initializes the
hardware and sottware so that you can
write simpler programs. Note that this
command, like all the commands in
this program, ends with a semi-colon.

Tells the IRIS to use blue for all
following drawing commands (until
the color is changed by another color
command).

The only drawing command in this
program. It paints the whole screen in
the current color, which is blue.

A UNIX routine that tells the IRIS to do
something else for five seconds. This
command allows you to see what
you've drawn for a while before the
textport pops up when the program is
finished.

The final command in all graphics
programs.

The logical place to add commands to this program is after the
clear () command and before the sleep(5) command. Move the
cursor down to the blank line after clear () using the down arrow
on the keyboard. Then type i followed by

color (RED) ;

rectfi(10, 10, 300, 300);

and |ESC|.

12 GETTING STARTED

This is what the new lines mean:

color (RED) ;

rectfi(10, 10, 300, 300);

Note that the IRIS screen goes

Changes the drawing color so
that any new drawing will be red.

Draws rectangles. This is a
variation of the rect command.
The f in rectfi means the
rectangle is filled, rather than
outlined. The i means the
coordinates that follow are
integers, rather than floating
point numbers. The two 10s are
the x and y coordinates of the
lower left corner of the rectangle,
and the two 300s are the
coordinates of the upper right
corner.

from 0 to 1023 along the x axis

(left-to-right) and 0 to 767 along the y axis (bottom-to-top).

This is what your new program should look like:

#include "gl.h"

main()
{
ginit();
color (BLUE) ;
clear();
color (RED) ;
rectfi(10, 10, 300
sleep(5);
gexit () ;

lllllY

, 300)E]

VERSION 1.0 13

If the program is correct, save it and exit vi by pressing |ESC| and
typing:

:wq [RETURN|

If you list your files with 1s, you'll see that there is still just one
blue.c. The contents of the old blue.c were replaced by your new
program when you saved it. If we had wanted to save the old
blue.c we could have named the new file something else when we
saved it; or, we could have copied the old one and renamed it
before we saved the new one. Both of these tasks are discussed in
the next chapter ot this document.

Compile the program, but this time add an option that names the
executable file “bluec’’:

cc blue.c -Zg -o bluec RETURN|

The “-o” (minus-oh, not minus-zero) stands for output. The
name that immediately follows the -o is the name of the
executable file.

When you see the percent sign prompt, run your program by
typing:

bluec[RETURN

A red box appears in the lower lett corner over a blue background.
You have now written two successful graphics programs.

14 GETTING STARTED

Writing a FORTRAN Program

Now you can write a FORTRAN version of the same program.
This is what it looks like:

$ INCLUDE /usr/include/fgl.h
C

INTEGER I
C

CALL GINIT

CALL COLOR(BLUE)

CALL CLEAR

CALL COLOR(RED)
CALL RECTFI(10, 10, 300, 300)
DO 10 I=0,999999
10 CONTINUE
CALL GEXIT
STOP
END

Use vi to create the FORTRAN source file called “blue.f":

vi blue.f [RETURN]

Use |TABJs to line up the columns of routine calls.

Let's look at the differences between this version and the C
version.

Traditionally, most of the letters are upper case.

The “INCLUDE" line has a dollar sign in the first position, and
the entire pathname of the include file is specified.

The lines that begin with “C” are comment lines and
sometimes contain text that describes parts of the program. In
this program they are used to distinguish the different sections
of code.

The “INTEGER [I” line declares the variable “I” as an integer
that we can use later in the program.

All the FORTRAN routines are preceded by the word “CALL”.

The sleep() routine we used in the C version isn't available
for a FORTRAN program, so we use a simple iterative loop to
create a pause before the program stops.

VERSION 1.0 15

Once you have created blue.f, save it, quit working on the file,
then compile it with the £77 command, which operates just like
cc:

£77 blue.f -Zg -o bluef |RETURN

Note that we call the executable file ““bluef "’ to distinguish it from
the C program. The compiler will print information on the screen
that looks like this:

% £77 blue.f -Zg -o bluef

% MC68000 FORTRAN 77 Compiler V2.4
(C) Copyright 1981, 1985 Silicon Valley Software, Inc.

0 errors. 122 lines. File /usr/people/guest/ctm005644
% MC68000 Code Generator V2.4

(C) Copyright 1980, 1985 Silicon Valley Software, Inc.

% MC68000 Umix Object Code Formatter V2.4
(C) Copyright 1982, 1985 Silicon Valley Software, Inc.

If you see any error messages, check your source file for mistakes,
edit it, and recompile it. To run the program, type:

bluef |RETURN|

The same red box on a blue background appears on the screen for
a few seconds. Then the textport reappears.

% bluef

Programmed STOP
%

You have now successfully written and executed a FORTRAN
graphics program.

16 GETTING STARTED

Logging out

When you are ready to log out, type:
logout [RETURN]

This is what you see:

IRIS login:

Now the system is ready for you or someone else to log in.

2. A Basic Lesson on UNIX

The IRIS uses the UNIX operating system; so, to use the IRIS, you need to
know some of the basics about UNIX. The previous chapter, Trying Out
Your [RIS, took you through a sample programming session; this chapter
gives you a further introduction to UNIX. Specifically, it:

o describes the UNIX directory system
« explains how to manipulate directories and files
e provides a summary list of useful commands

Log in as “guest’” so that you can try out commands as they are discussed
in this chapter. (See page 2 if you've forgotten how to log in.)

The UNIX Directory System

To the user, UNIX appears as a hierarchy of directories and files. At the
top of the hierarchy is the “root” directory, which is written as / (slash).
The root directory contains various directories and files, which in turn
contain other directories and files, and so on.

/ m—— Root Directory

bin

AN

staff csh

joe kim

bluec | | blue.c

18 GETTING STARTED

Pathnames

A “"pathname’ is the list of directories that you must go through
in order to get to a particular directory or file. For example, in the
diagram on the previous page, the path that you must follow to
get to bluec is /usr/people/guest. Therefore, bluec’s full pathname is
{usr/people/guest/bluec.

Current Working Directory

Whenever you use UNIX, vou are “‘located” somewhere in the file
system, in one of the directories. Your location at a given time is
called your “current working directory”’. Rather than always
referring to a file or a directory by its entire pathname, you can
refer to the file in terms relative to your current working directory.
For example, if your current working directory is /usr/staff/ joe, you
can refer to the file /usr/staffl joe/test as test, rather than using its full
pathname. Whenever you type a name without a preceding /",
the IRIS assumes that it is in your current working directory.
Note that if you do put a “/” at the beginning of a name, the
system will look in the / (root) directory for the name that follows
the slash.

To find out where you are right now, type:
pwd [RETURN

pwd stands for “print working directory’”” and displays where you
are located in the file system. Since you are logged in as "‘guest”,
this is what you see:

% pwd
/usr/people/guest
%

lusr/people/guest is the ‘‘home directory” for guest. The home
directory is the one in which you are automatically placed each
time you log in. Chapter 4 of the IRIS Series 3000 Owner’s Guide
and the [RIS Workstation Guide, Series 2000 tells you how to specity
a user’s home directory.

VERSION 1.0 19

Using Directories and Files

Making New Directories

As you create more and more files, you will find it convenient to
organize them into subdirectories. Create a subdirectory called
“sub”’ in the guest directory by typing:

mkdir sub RETURN]

Now use the 1s command to look for your new subdirectory.
Type:

1s |[RETURN

Here is what you see:

% mkdir sub
% ls
a.out bluec bluef blue.c blue.f sub

%

Understanding the Contents of a Directory

At this point your guest directory has several files in it, and you
may not remember what each different name means. If, for
example, you had named the new subdirectory “‘blues”, you might
not know whether it was a subdirectory or a file the next time you
logged in.

Your IRIS can give you a more informative listing about the
contents of your directory when you use the -F option with the 1s
command. Try it now by typing;:

1s -F |[RETURN|

20 GETTING STARTED

This is what you see:

% 1ls -F
a.out* bluec* bluef* blue.c blue.f sub/

%

When you use the -F option (F stands for tlag), 1s:

e puts an asterisk next to all executable (or binary) files,
such as a.out, bluec, and bluef

o puts a trailing /" after all subdirectories, such as sub
« does not add any marks to text (e.g., source) files, such

as blue.c and blue. f

Since this directory is fairly full, let's start fresh and put some files
into the new subdirectory. Just as you were “moved” into the
guest directory when you logged in so it would be convenient to
work with the files in that directory, you can now move into the
sub directory to make it convenient to work with new files.

Changing to a New Working Directory

cd, which stands for ‘“change directory”’, is the command you use
to change to a new working directory. To move into the sub
directory, type:

cd sub ‘RETURN]

Note that you could also move into sub by typing the full
pathname:

cd /usr/people/guest/sub |[RETURN| .

VERSION 1.0 21

Use pwd to make sure that you know where you are:

% pwd
/usr/people/guest/sub
%

An 1s shows that there are no files or directories in sub:

% 1s
%

You can create files in sub, just as you did in guest, using vi. You
can also create subdirectories in sub using mkdir.

Copying Files

A third way to create files in sub is by copying them from another
directory with the cp command. To use cp, you need to include:

« the pathname of the file you want to copy

« the pathname of the new file

As usual, these pathnames can be full pathnames (from / on
down) or pathnames relative to the current working directory.
Let’s copy one of your files from guest into sub.

First, change directories (cd) to the guest directory. Type:

cd /usr/people/guest |[RETURN]|

oo

There is also an easier way to do it. ““..” (two periods) is always
equivalent to the name of the “parent” of your current working
directory. The parent of your current directory is the directory
which contains your current directory. For example, if you are
located in /usr/people/quest, **..” is [usr/people. If your current
directory is /usr/people, “*.."" is /usr. So, another way you could
have moved from /usr/people/quest/sub to /usr/people/guest, would
have been to type: cd .. |RETURN|.

22 GETTING STARTED

Check where you are now by using pwd.

% pwd
/usr/people/guest
%

Now do an 1s -F to see what’s in guest.

% 1ls -F
a.out* bluec* bluef* blue.c blue.c sub/

%

To copy blue.c into sub, type:

cp blue.c sub/blue.cl_RETURN|

To make sure blue.c was copied, move into sub and do an 1s:

% cd sub
% 1s
blue.c

%

You could compile blue.c if you wanted and create an executable
file in sub. But instead, let’s try copying bluec from guest into sub.
To do this, use “.."” to specify guest instead of writing out the
entire pathname. Type:

cp ../bluec bluec |RETURN

VERSION 1.0 23

Now do an 1s to see what’s in sub.

% cp ../bluec bluec

% 1s
bluec blue.c

%

Looking at the Contents of a File

If you want to see what’s in a text file without entering vi, you
can use the cat command or the more command. cat, which
stands for concatenate, displays the contents of a text file on the
screen. (The name comes from one of the functions of the
command, which is to join files together.) If the file is long, it
keeps scrolling off the top of the screen, and you have a chance to
read only the final screenful. Try displaying blue.c in the guest
directory by typing:

cat blue.c RETURN]

This shows up on the screen:

#include "gl.h"

main()
{
ginit();
color (BLUE) ;
clear();

sleep(5);
gexit () ;

}
%

The more command also displays text files, but it only shows one
screenful at a time. more displays the first screenful of the file
with a message at the bottom of the screen indicating what

24 GETTING STARTED

percentage of the file has been displayed. When you want to see
more of the file, you can either press |RETURN| to see one more
line, or you can press | SPACEBAR| to see the next screenful.

Try the more command with blue.c.

%more blue.c
#include "gl.h"

main()
{
ginit();
color (BLUE) ;
clear();

sleep(5);
gexit();

}
%

It looks the same as cat because the file is less than one screenful
long. Later, when you need to look at a longer file, try more
again.

Note that if you use cat or more on an executable file, strange
characters will be displayed on the screen. That's because
executable files are binary files, not ASCII files, and they contain
some non-printable characters.

VERSION 1.0 25

Moving (or Renaming) Files

The mv (move) command changes the pathname of a file. This has
the effect of renaming it. You could rename a file using the
commands you already know by copying the file and then
removing the original. An easier way is to type mv followed by
the name of the file yvou want to rename and the new name. For
example, you can change blue.c to red.c by typing:

mv blue.c red.c |RETURN

An 1s shows the new name:

% 1s
bluec bluef blue.f red.c
%

Since you don’t want to be confused about the contents of the file,
change it back to blue.c.

% mv red.c blue.c

% 1s

bluec bluef blue.c blue.f
%

26 GETTING STARTED

Removing Files

Occasionally you will need to remove (or delete) files from a
directory. This is done with the rm command. Be careful when
you remove a file because it can be recovered only from a backup
tape which you have made.

Let's try removing blue.c from the sub directory. Remember you
still have a copy in guest. First make sure you are in sub:

% pwd
/usr/people/guest/sub
%

Then type the following to remove blue.c:

% rm blue.c

%

Do an 1s, and see that blue.c is gone.

% 1s
bluec

%

VERSION 1.0 27

Removing Directories

The rmdir command removes subdirectories from a directory. To
remove sub from guest, you must first empty sub of all its files and
subdirectories. The only thing in sub is bluec. Remove it by

typing:
rm bluec |RETURN

An 1s shows that the sub directory is empty.

% rm bluec
% 1s
%

Now move up to guest by typing:
cd .. |[RETURN|

Remove sub by typing:

rmdir sub |[RETURN

To make sure sub is really gone, do an 1s.

% 1s
bluec bluef blue.c blue.f

%

28 GETTING STARTED

The man Command

To find out more about system commands, type man (which
stands for “manual page”) followed by the name of the command.
Your RIS displays the following information:

« a brief description of what the command does;
« a “synopsis” that shows the syntax of the command;
+ a longer description of the command and its flags;

o a “see also” section that lists related commands.
There may also be sections on files, diagnostics, and bugs.
Try typing:

man cd RETURN}

After a few seconds, the ‘“manual” page for the cd command
appears on your screen. The documentation is displayed one
screenful at a time. Press [SPACEBAR] to display the next screenful.

VERSION 1.0 29

Summary of Important Commands

The previous sections have introduced you to the fundamental UNix
commands. This section summarizes their basic functions. You should
read about these commands in the UNiX Programmer’s Manual, Vol. IA,
since they have more functionality than has been discussed here.

Most Useful Commands

login user-namie

log in to the system

pwd print current working directory
cd directory change current working directory
1s list contents of directory

cat textfile
more textfile

display contents of text file
display contents of text file (by screenfuls)

cp oldfile newfile
rm file
mv oldname newname

copy a file
remove or delete a file
move or rename a file

mkdir directory
rmdir directory

make a subdirectory
remove or delete a subdirectory

man command-name

display a manual page

logout

log out of the system

Other Useful Commands

This section lists commands you may want to read about in the
UNIX Programmer’s Manual, Vol. [. This should give you an idea
about what commands are available to you.

30 GETTING STARTED

Manipulating and Displaying Files and Directories

awk pattern scanning and processing language
cat display contents of a file

cd change current working directory

cmp compare two files

comm select or reject lines common to two sorted files
cp copy a file

diff display the differences between two files
find find files

grep search a file for a pattern

head give first few lines of a file

1s list contents of a directory

mkdir make a new subdirectory

more display contents of a file (by screentul)

nv move (rename) a file

pT format a file for printing

pwd print current working directory

rm remove (delete) a tile

rmdir remove (delete) a directory

sort sort and/or merge files

spell tind spelling errors

split split a file into pieces

uniq report repeated lines in a file

we count lines, words, and characters in a file

whereis locate source, binary, and/or manual for a program

Communications
mail
mesg
wall

write

VERSION 1.0

send mail to users or read mail
permit or deny displaying of messages
write to all users

write to another user

Programming Tools

adb
cc
£77
lint

make

od

touch

general-purpose debugging program
C and FORTRAN compiler
FORTRAN compiler

C program checker

maintain, update, and regenerate groups
programs

octal dump

update access and modification times of a file

System Status and Administration

chmod
chown
chgrp

cpio

df
du
file
fsck

kill

change the access mode of a file
change owner of a file

change group of a file

31

of

copy file archives in and out (mostly used for tape

backups)

report number of free disk blocks
summarize disk usage

determine file type

file consistency check and interactive repair

terminate a process

32 GETTING STARTED

multi switch the system to multi-user mode
ncheck generate file names from inode numbers
passwd change login password

ps report process status

reboot UNIX bootstrapping procedures
shutdown terminate all processing

su become super-user or another user
sync update the super block

tar tape archiver

umask set file-creation mode mask

who who is on the system

Editing, Formatting, and Printing Documents

eqn format mathematical text for nroff or troff

1p send or cancel requests to an LD spooling system
nroff format text

sed stream editor

tbl format tables for nroff or troff

vi screen-oriented (visual) display editor

System-to-system Functions (XNS Communications)
xcp copy files to or from a remote system
xlogin log in to a remote system

xx run a program on a remote system

VERSION 1.0 33

System-to-system Functions (TCP/IP Communications)

rcp copy files to or from a remote system

rlogin log in to a remote system

rsh run a program on a remote system
Miscellaneous

at execute commands at a later time

clear clear terminal screen

csh the “¢’’ shell, the standard interactive shell for the

IRIS

date print and set the date

echo echo arguments

gclear clear IRIS graphics screen

help ask for help

login log in to system

logout log out of the system

man display a manual page

sleep suspend execution for an interval

stty set options for a terminal

tty display the terminal’s name

tset change the attribute settings on a terminal

3. Where to Find More Information

You have four good sources of more detailed information about your IRIS
and UNIX. They are:

The IRIS documentation that you received with your IRIS
The UNIX documentation that you received with your IRIS

Silicon Graphics Geometry Hotline

W N e

Additional books written on UNIX and on computer graphics

IRIS Documentation

Your workstation was shipped with these three IRIS documents:

o Getting Started with Your IRIS Workstation

e [RIS Series 3000 Owner’s Guide or
IRIS Workstation Guide, Series 2000

o [RIS User’s Guide

You are reading the first of these documents right now. The other two
are described in this section.

36 GETTING STARTED

Owner’s Guide or Workstation Guide

These documents contain information about system installation
and administration. Use them to find out how to:

« Install and boot your workstation.

« Install optional peripherals, ASCII terminals, and non-standard
video monitors.

o Perform administrative tasks, such as making accounts for new
users, backing up your system, and recontiguring your disk.

IRIS User’s Guide

The [RIS User’s Guide describes the Graphics Library, the set of
graphics routines developed for the IRIS. The graphics routines
are presented in two forms:

e The Programming Guide is a narrative description of the
routines, divided into chapters according to subject matter:
objects, coordinate transformations, and curves and surfaces,
for example.

e The Reference Manual is a collection of alphabetized manual
pages, similar in structure to the UNIX manual pages.

The [RIS User’s Guide contains two other useful chapters:

e The [RIS Window Manager describes mex, Silicon Graphics’
Multiple Exposure window manager.

o Programming Examples provides useful, commented examples of
IRIS graphics programming.

VERSION 1.0 37

UNIX Documentation

UNIX Programmer’s Manual
This manual contains two volumes of two books each.

o Volume [contains manual pages, hard copies of what you see on
your screen when you issue the man command.

o Volume Il contains papers that describe how to use the UNIX
system. These papers cover the following topics:

» General Works

« Editors

+ Document Preparation
+ Programming
 Support Tools

If you're not familiar with the UNIX system, you'll probably want
to browse through these four books rather than try to read them
cover to cover. You'll soon discover which parts are worth
spending more time on.

Silicon Graphics Geometry Hotline

Silicon Graphics provides a comprehensive support and maintenance
program for the IRIS 2000 and 3000 series products. For further
information, contact Customer Service through the Geometry Hotline.

Silicon Graphics Geometry Hotline
(800) 252-0222 U.S. except California (toll-free)

(800) 345-0222 California (toll-free)
(415) 962-0606 Worldwide (collect)

38 GETTING STARTED

Additional Reading

The following books may help you with UNix and computer graphics.

UNIX:

o A Practical Guide to the UNix Operating System, Mark G. Sobell, The
Benjamin/Cummings Publishing Company, Inc., 1984

e The UNIX System, S.R. Bourne, Addison-Wesley Publishing Company,
1983

e The UNIX Programming Environment, Brian W. Kernighan and Rob Pike,
Prentice-Hall, Inc., 1984

Graphics:

e Principles of Interactive Graphics, William M. Newman and Robert F.
Sproull, McGraw-Hill Book Company, 1979

o Fundamentals of Interactive Graphics, James D. Foley and Andries Van
Dam, Addison-Wesley Publishing Company, 1983

	000
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	35
	36
	37
	38

