
IRIS-4D User's Guide

IRIS-4D Series

SiliconGraphics
Computer Systems

Document number: 007-0605-010

IRIS-4D User's Guide

Version 1.0

Document Number 007-0605-010

Technical Publications:

Marcia Allen
Kathleen Chaix

Special Thanks to the Technical Marketing Group

© Copyright 1987, Silicon Graphics, Inc.

All rights reserved.

This document contains proprietary information of Silicon Graphics,
Inc., and is protected by Federal copyright law. The information may
not be disclosed to third parties or copied or duplicated in any form, in
whole or in part, without prior written consent of Silicon Graphics, Inc.

The information in this document is subject to change without notice.

IRIS-4D User's Guide
Version 1.0
Document Number 007-0605-010

Silicon Graphics, Inc.
Mountain View, California

UNIX is a registered trademark of AT&T.

(

(

Contents

Preface
Purpose ... xiii

System Overview ... xiii
UNIX System Tutorials ... xiii
Reference Information ... xiv

Notation Conventions ... xvi

1. What Is the UNIX System?
What the UNIX System Does .. 1-1
How the UNIX System Works .. 1-2

The Kernel ... 1-3
The File System .. 1-4

Ordinary Files ... 1-4
Directories ... 1-5
Special Files ... 1-5

The Shell ... 1-7
Commands .. 1-8

What Commands Do .. 1-8
How to Execute Commands ... 1-9
How Commands Are Executed 1-11

2. Basics for UNIX System Users
Getting Started With UNIX ... 2-1

Required Terminal Settings ... 2-1
Keyboard Characteristics .. 2-2
Typing Conventions ... 2-2

The Command Prompt ... 2-4
Correcting Typing Errors .. 2-4
Using Special Characters as Literal Characters 2-6
Typing Speed '" ... 2-6
Stopping a Command ... 2-7
Using Control Characters ... 2-7

Obtaining a Login Name .. 2-8
Establishing Contact with the UNIX System 2-9

Login Procedure .. 2-1 0
Password ... 2-10

-i-

Possible Problems when Logging In 2-13
Simple Commands .. 2-15
Logging Off .. 2-16

3. Using the UNIX File System (
Preparing To Use The File System ... 3 .. 1
How the File System is Structured .. 3-2
Your Place in the File System .. 3-4

Your Home Directory ... 3-4
Your Current Directory .. 3-6
Pathnames .. 3-7

Full Pathnames ... 3-8
R,.elative Pathnames .. 3-11
Naming Directories and Files 3-14

Organizing a Directory ... 3-16
Creating Directories: the mkdir Command 3-16
Listing the Contents of a Directory: the Is Command 3-17

Frequently Used Is Options ... 3-20
Changing Your Current Directory: the cd Command 3-25
Removing Directories: the rmdir Command 3-27 (

Accessing and Manipulating Files ... 3-29
Basic Commands .. 3-29

Displaying a File's Contents: cat, pg, and pr 3-31
Requesting a Paper Copy: the lp Command 3-42
Making a Duplicate: the cp Command 3-44
Moving and Renaming a File: the mv Command 3-46
Removing a File: the rm Command 3-49
Counting in a File: the we Command 3-51
Protecting Your Files: the chmod Command 3-53

Advanced Commands ... 3-60
Identifying Differences: the diff Command 3-61
Searching a File for a Pattern: the grep Command ... 3-63
Sorting and Merging Files: the sort Command : 3-64

Summary ... 3-68

4. Overview of the Tutorials
Tutorial Overview ... 4-1
Text Editing .. 4-2

What is a Text Editor? ... 4-2
How Does a Text Editor Work? .. .4-2

-ii-

Text Editing Buffers4-2
Modes of Operation4-3

Screen Editor. .. 4-4
Line Editor ... 4-4

The Shell .. 4-5
Customizing Your Computing Environment4-5
Programming in the SheiL .. .4-7

Communicating Electronically4-9
Programming in the System4-10

5. Screen Editor Tutorial (vi)
The vi Editor ... 5-1

Suggestions for Reading this Tutorial 5-3
Getting Started ... 5-4

Setting the Terminal Configuration 5-4
Changing Your Environment ... 5-5
Setting the Automatic Return .. 5-5

Creating a File ... 5-7
How to Create Text: the Append Mode 5-8
How to Leave Append Mode ... 5-9

Editing Text: The Command Mode ... 5-1 0
How to Move the Cursor ... 5-10
Moving the Cursor to the Right or Left 5-11
How to Delete Text... ... 5-13
How to Add Text .. 5-15

Quitting vi. .. 5-17
Exercise 1 .. 5-20
Moving the Cursor Around the Screen 5-21

Positioning the Cursor on a Character 5-21
Moving the Cursor on a Line 5-22
Searching for a Character on a Line 5-24

Line Positioning ... 5-25
The Minus Sign Motion Command 5-25
The Plus Sign Motion Command 5-25

Word Positioning ... 5-25
Positioning the Cursor by Sentences 5-30
Positioning the Cursor by Paragraphs 5-31
Positioning in the Window ... 5-32

Positioning the Cursor in Undisplayed Text.. 5-38
Scrol!ing the Text. .. 5-38

-iii-

The <ctrl-f> Command ... 5-38
The <ctrl-d> Command ... -.5-39
The <ctrl-b> Command .. 5-39
The <ctrl-u> Command .. 5-41 (\

Go toa Specified Line ... 5-41 _
Line Numbers .. 5-41
Searching for a Pattern of Characters 5-42

Exercise 2 .. 5-49
Creating Text ... 5-51

Appending Text ... 5-51
Inserting Text ... 5-51
Opening a Line for Text.. ... 5-53

Exercise 3 .. 5-56
Deleting Text .. 5-57

Undoing Entered Text in Text Input Mode 5-57
Undo the Last Command .. 5-58
Delete Commands in Command Mode 5-59

Deleting Words ... 5-59
Deleting Paragraphs ... 5-61 (_
Deleting Lines .. ' 5-61
Deleting Text After the Cursor 5-61

Exercise 4 .. 5-63
Modifying Text ... 5-64

Replacing Text .. 5-64
Substituting Text. ... 5-65
Changing Text ... 5-66

Cutting And Pasting Text Electronically 5-71
Moving Text ... 5-71
Fixing Transposed Letters ... 5-71
Copying Text .. 5-72
Copying or Moving Text Using Registers 5-73

Exercise 5 ... 5-75
Special Commands .. 5-76

Repeating the Last Command .. 5-76
Joining Two Lines .. 5-76 (-
Clearing and Redrawing the Window 5-77
Making Lowercase Uppercase and Vice Versa 5-77

Using Line Editing Commands in vi... 5-79
Temporarily Returning to the Shell... 5-79
Writing Text to a New File: the;w Command 5-80

-iv-

Finding the Line Number. .. 5-80
Deleting the Rest of the Buffer .. 5-81
Adding a File to the Buffer. .. 5-82
Making Global Changes .. 5-82

Quitting vi ... 5-85
Special Options For vi ... 5-87

Recovering a File Lost by an Interrupt.. 5-87
Editing Multiple Files ... 5-87
Viewing a File .. 5-88

Exercise 6 .. 5-89
Answers To Exercises ... 5-90

Exercise 1 .. 5-90
Exercise 2 .. 5-91
Exercise 3 .. 5-93
Exercise 4 .. 5-94
Exercise 5 .. 5-95
Exercise 6 .. 5-95

6. Line Editor Tutorial (ed)
The ed Editor. ... 6-1
Suggestions for Using this Tutorial .. 6-2
Getting Started ... 6-3

How to Enter ed ... 6-3
How to Create Text ... 6-3
How to Display Text .. 6-4
How to Delete a Line of Text ... 6-6
How to Move Up or Down in the File 6-7
How to Save the Buffer Contents in a File 6-8
How to Quit the Editor ... 6-9

Exercise 1 .. 6-12
General Format of ed Commands ... 6-13
Line Addressing ... 6-14

Numerical Addresses .. 6-14
Symbolic Addresses .. 6-15

Symbolic Address of the Current Line 6-15
Symbolic Address of the Last Line 6-16
Symbolic Address of the Set of All Lines 6-17
Symbolic Address of a Set of Lines 6-17
Adding or Subtracting from the Current Line 6-18
Character String Addresses 6-19

-v-

Specifying a Range of Lines 6-22
Specifying a Global Search .. 6-23

Exercise 2 .. 6-27
Displaying Text in a File ... 6-28

Displaying Text Alone: the p Command 6-28 (
Displaying Text with Line Addresses: the n Command 6-29

Creating Text ... 6-31
Appending Text: the a Command 6-31
Inserting Text: the i Command ... 6-34
Changing Text: the c Command 6-36

Exercise 3 .. 6-38
Deleting Text. ... 6-40

Deleting Lines: the d Command 6-40
Undoing the Previous Command: the u Command 6-41
How to Delete in Text Input Mode 6-43

Escaping the Delete Function 6-43
Substituting Text .. 6-45

Substituting on the Current Line .. 6-46
Substituting on One Line ... 6-47
Substituting on a Range of Lines 6-48
Global Substitution .. 6-49

(
Exercise 4 .. 6-53
Special Characters .. 6-55
Exercise 5 .. 6-65
Moving Text ... 6-67

Move Lines of Text .. 6-67
Copy Lines of Text .. 6-69
Joining Contiguous Lines .. 6-71
Write Lines of Text to a File .. 6-72
Problems ... 6-73
Read in the Contents of a File ... 6-73

Exercise 6 .. 6-76
Other Useful Commands and Information 6-77

Help Commands ... 6-77
Display Nonprinting Characters .. 6-80 (
The Current File Name .. 6-81
Escape to the Shell ... 6-83
Recovering From System Interrupts 6-84
Conclusion ... 6-85

Exercise 7 .. 6-87

-vi-

Answers to Exercises .. 6-88
Exercise 1 .. 6-88
Exercise 2 .. 6-90
Exercise 3 .. 6-93
Exercise 4 .. 6-96
Exercise 5 .. 6-99
Exercise 6 .. 6-102
Exercise 7 .. 6-105

7. The Bourne Shell Tutorial
The Bourne Shell ... 7-1
Shell Command Language .. 7-2

Metacharacters .. 7-4
The Asterisk (*) Metacharacter 7-4
The Question Mark (?) Metacharacter 7-7
Using the * or? to Correct Typing Errors 7-7
The Bracket ([]) Metacharacters 7-8

Special Characters .. 7-10
The Ampersand (&) .. 7-10
The Semicolon (;) ... 7-11
The Backslash 0 ... 7-12
Quotes .. 7-12
Using Quotes to Turn Off the Meaning of a Space 7-13

Input and Output Redirection .. 7-14
Redirecting Input: the < Sign 7-15
Redirecting Output to a File: the> Sign 7-15
Appending Output to a File: the» Symbol. 7-16
Useful Applications of Output Redirection 7-17
Background Mode and Output Redirection 7-19
Redirecting Output to a Command: the Pipe (I) 7-19
A Pipeline Using the cut and date Commands 7-20
Substituting Output for an Argument 7-24

Executing and Terminating Processes 7-24
Running Commands with batch and at.. 7-24
Obtaining the Status of Running Processes 7-30
Terminating Active Processes 7-31
Using the nohup Command .. 7-32

Command Language Exercises ... 7-34
Shell Programming .. 7-35

Shell Programs .. 7 -36

-vii-

Creating a Simple Shell Program 7-36
Executing a Shell Program ... 7-37
Creating a bin Directory for Executable Files 7-37
Warnings about Naming Shell Programs 7-39

Variables ... 7-40
Positional Parameters ... 7-40

('
Special Parameters .. 7-44
Named Variables .. 7-47
Assigning a Value to a Variable 7-49

Shell Programming Constructs ... 7-56
Comments .. 7-57
The here Document .. 7 -57
Using ed in a Shell Program 7-60
Return Codes .. 7-62
Looping ... 7-63
The Shell's Garbage Can: Idev/null 7-69
Conditional Constructs .. 7-69
Unconditional Control Statements 7-80

Debugging Programs .. 7-81
Modifying Your Login Environment... 7-86 (

Adding Commands to Your .profile 7-86
Setting Terminal Options ... 7-87
Using Shell Variables .. 7-88

Shell Programming Exercises ... 7-91
Answers To Exercises ... 7-92

Command Language Exercises .. 7 -92
Shell Programming Exercises ... 7-93

8. An Introduction to the C Shell
The C Shell .. 8-1
The C Shell Language Interpreter ... 8-2

Terminal Usage of the Shell... ... 8-2
The Basic Notion of Commands 8-2
Optional Arguments .. 8-4
Redirecting Output to Files ... 8-4
Special Characters in the Shell 8-5 (
Redirecting Input From a File 8-5

Filenames .. 8-7
Arguments Enclosed in Quotations 8-10
Terminating Commands .. 8-10

-viii-

Working In the C Shell .. 8-14
Details on the Shell for Terminal Users 8-15

Shell Startup and Termination ... 8-15
Shell Variables .. 8-16
The History List .. 8-19
The Alias Mechanism .. 8-22
Redirection Commands for Terminal Users 8-23
Background, Foreground, or Suspended Jobs 8-24
Working Directories ... 8-31
Useful Built-in Commands ... 8-34
Additional Information '" 8-37

Executing Commands Through Shell Scripts 8-38
The Make Program ... 8-38
Invocation and the argv Variable 8-38
Substituting Variables .. 8-39
Expressions ... 8-41
Sample Shell Script ... 8-42
Other Control Structures ... 8-45
Supplying Input to Commands .. 8-46
Catching Interrupts .. 8-47
Other Shell Features ... 8-47
Loops at the Terminal; Variables as Vectors 8-48
Braces { ... } in Argument Expansion 8-49
Command Substitution .. 8-50
Additional Information .. 8-50

C Shell Special Characters .. 8-51
C Shell Glossary .. 8-52

9. Communication Tutorial
Communicating With UNIX System Users 9-1
Exchanging Messages ... 9-2
mail .. 9-3

Sending Messages .. 9-3
Undeliverable Mail .. 9-4
Sending Mail to One Person ... 9-5
Sending Mail to Several People Simultaneously 9-6

Sending Mail to Remote Systems 9-7
Managing Incoming Mail ... 9-11

Sending and Receiving Files ... 9-14
Sending Small Files: the mail Command 9-14

-ix-

Sending Large Files .. 9-15
Getting Ready: Do You Have Permission? 9-15
The oocp Command .. 9-17
Command Line Syntax .. 9-18
Sample Usage of Options with the oocp Command 9-19 ()
How the oocp Command Works .. 9-21
The ooto Command .. 9-23
Sending a File: the m Option and oostat Command 9-24
Receiving Files Sent with ooto .. 9-28

Networking ... 9-32
Connecting a Remote Terminal .. 9-32

Command Line Format ... 9-33
Sample Command Usage .. 9-33

Calling Another UNIX System ... 9-34
Command Line Format ... 9-35
Sample Command Usage .. 9-37

Executing Commands on a Remote System 9-39
Command Line Format ... 9-39'
Sample Command Usage .. 9-40

A. Summary of the File System
(

The UNIX System Files ... A-1
File System Structure ... A-1

UNIX System Directories .. A-3

B. Summary of UNIX System Commands
Basic UNIX System Commands .. : .. B-1

C. Summary of Shell Command Language
Summary of Shell Command Language C-1

The Vocabulary of Shell Command Language C-1
Special Characters in the Shell C-1
Redirecting Input and Output C-1
Executing and Terminating Processes C-2

~:~~~~e~ ~~~~.~~~~~~.i~~~.~~.~~~.~.~.~.I~.::::::::::::::::::::::::::g~~ (-
Variables Used in the System C-3

Shell Programming Constructs ... C-4
Here Document ... C-4
For Loop ... C-4

-x-

While Loop ... C-5
If ... Then .. C-5
If ... Then ... Else .. C-6
Case Construction .. C-7
break and continue Statements C-7

D. Setting Up the Terminal
Setting the TERM Variable ... 0-1

Acceptable Terminal Names .. 0-2
Example .. 0-3

Glossary
Glossary .. G-1

-xi-

(\

(

(

Purpose

The material in this guide is organized into two major parts: an overview of the
UNIX operating system and a set of tutorials on the main tools available on the
UNIX system. A brief description of each part follows. The last section of this
Preface, "Notation Conventions", describes the typographical notation with which
all the chapters of this guide conform. You may want to refer back to this section
from time to time as you read the guide.

System Overview
This part consists of Chapters 1-3, which introduce you to the basic principles

of the UNIX operating system. Each chapter builds on information presented in
preceding chapters, so it is important to read them in sequence.

• Chapter 1, "What is the UNIX System?", provides an overview of the
operating system.

• Chapter 2, "Basics for UNIX System Users", discusses the general rules and
guidelines for using the UNIX system. It covers topics related to using your
terminal, obtaining a system account, and establishing contact with the
UNIX system.

• Chapter 3, "Using the File System", introduces commands for building your
own directory structure, accessing and manipulating the subdirectories and
files you organize within it, and examining the contents of other directories
in the system for which you have access permission.

UNIX System Tutorials
The second part of the guide consists of tutorials on the following topics: the vi

text editor, the ed text editor, the shell command language and programming
language, and electronic communication tools. For a thorough understanding of the
material, we recommend that you work through the examples and exercises as you
read each tutorial.

• Chapter 4, "Overview of the Tutorials", introduces the four chapters of
tutorials in the second half of the guide. It highlights UNIX system capabili­
ties such as command execution, text editing, electronic communication,
programming, and aids to software development.

• Chapter 5, "Screen Editor Tutorial (vi)", teaches you how to use the visual
text editor, vi, to create and modify text on a video display terminal.

Preface xiii

Purpose

• Chapter 6, "Line Editor Tutorial (ed)", teaches you to how to use the ed text
editor to create and modify text on a video display terminal or paper printing
terminal.

vi, the visual editor, is based on software developed by The University of Califor­
nia, Berkeley, California; Computer Science Division, Department of Electrical
Engineering and Computer Science, and is owned and licensed by the Regents of
the University of California.

• Chapter 7, "The Bourne Shell", teaches you to how to use the Bourne shell,
both as a command interpreter and as a programming language, to create
shell programs. At the end of this chapter you will find an appendix describ­
ing the most commonly used ed commands.

• Chapter 8, "An Introduction to the C Shell", is based on a paper by William
Joy describing the C shell command language interpreter. Also included in
this chapter are a perforated quick reference card for use next to your termi­
nal, a section describing special characters in the C Shell, and a glossary of
terms.

• Chapter 9, "Communication Tutorial", teaches you how to send messages (.
and files to users of both your system and other UNIX systems.

Reference Information

Four appendices and a glossary of UNIX system terms are provided for quick
reference at the end of this book.

• Appendix A, "Summary of the File System", illustrates how information is
stored in the UNIX operating system.

• Appendix B, "Summary of UNIX System Commands", describes each
UNIX system command discussed in the guide.

• Appendix C, "Summary of Shell Command Language", is a summary of the
shell command language, notation, and programming constructs, as dis­
cussed in Chapter 6, "The Bourne Shell Tutorial".

• Appendix D, "Setting Up the Terminal", explains how to configure your ter­
minal for use with the UNIX system.

• The Glossary defines terms used in this book pertaining to the UNIX system.

xiv IRIS-4D User's Guide

(

Notation Conventions

The following notation conventions are used throughout this guide.

bold

italic

typewriter font

<>

<ctrl-char>

[]

command(number)

User input, such as commands, options and argu­
ments to commands, variables, and the names of
directories and files, appear in bold.

Names of variables to which values must be assigned
(such as password) appear in italic.

UNIX system output, such as prompt signs and
responses to commands, appear in typewriter
font.

Input that does not appear on the screen when typed,
such as passwords, tabs, or return, appear between
angle brackets.

Control characters are shown between angle brackets
because they do not appear on the screen when
typed. To type a control character, hold down the
control key while you type the character specified by
char. For example, the notation <ctrl-d> means to
hold down the control key while pressing the d key;
the letter d will not appear on the screen.

Command options and arguments that are optional,
such as [-msCj], are enclosed in square brackets.

The vertical bar separates optional arguments from
which you may choose one. For example, when a
command line has the following format:

command [argl I arg2]

You may use either argl or arg2 when you issue the
command.

Ellipses after an argument mean that more than one
argument may be used on a single command line.

Arrows on the screen (shown in examples in Chapter
5) represent the cursor.

A command name followed by a number in
parentheses refers to the part of a UNIX system
reference manual that documents that command.

Preface xv

Notation Conventions

(There are three reference manuals: the IRIS-4D
User's Reference Manual. IRIS-4D Programmer's
Reference Manual. andIRIS-4D System
Administrator's Reference Manual.) For example,
the notation cat(l) refers to the page in section 1 (of
the UNIX User's Reference Manual) that documents
the cat command.

In sample commands the % sign is used as the shell command prompt. This is
not true for all systems, different systems use different prompts. The Bourne shell,
for example, uses $ as the shell prompt. Whichever symbol your system uses, keep
in mind that a prompt is produced by the system; you are not meant to type it.

In all chapters. full and partial screens are used to display how your screen will
look when you interact with the UNIX system. These examples show how to use
the UNIX system editors, write short programs, and execute commands. All exam­
ples apply regardless of the type of terminal you use.

The commands discussed in each section of a chapter are reviewed at the end
of that section. At the end of some sections, exercises are provided so you can
experiment with the commands. The 'answers to all the exercises in a chapter are at
the end of that chapter.

The text in the UNIX User's Guide was prepared with the UNIX system text editors
described in the guide and formatted with the Documenter's Workbench Software:
trotT, tbl, pic, and mm macros.

xvi IRIS-4D Useri,s Guide

(~

(

(

What the UNIX System Does

The UNIX operating system is a set of programs that controls the computer. It
acts as the link between you and the computer, providing tools to help you do your
work. It is designed to provide an uncomplicated, efficient, and flexible computing
environment. Specifically, the UNIX system offers the following:

• a general-purpose system for performing a variety of jobs or applications

• an interactive environment that allows you to communicate directly with the
computer and receive immediate responses to your requests and messages

• a multi-user environment that allows you to share the computer's resources
with other users without sacrificing productivity

This technique is called timesharing. The UNIX system interacts between
users on a rotating basis so quickly that it appears to be interacting with all
users simultaneously.

• a multi-tasking environment that enables you to execute more than one pro­
gram simultaneously.

The organization of the UNIX system is based on four major components:

the kernel

the file system

the shell

commands

The kernel constitutes the nucleus of the operating sys­
tem; it coordinates the functioning of the computer's
internals (such as allocating system resources). The ker­
nel works invisibly; you need never be aware of it while
doing your work.

The file system provides a method of handling data that
makes it easy to store and access information.

The shell serves as the command interpreter. It acts as a
liaison between you and the kernel, interpreting and exe­
cuting your commands. Because it reads input from you
and sends you messages, it is described as interactive.

Commands are programs that you request the computer
to execute. Packages of programs are called tools. The
UNIX system provides tools for jobs such as creating
and changing text, writing programs and developing
software tools, and exchanging information with others.

What Is the UNIX System? 1·1

How the UNIX System Works

Each circle represents one of the main components of the UNIX system: the
kernel, the shell, and user programs or commands. The arrows suggest the shell's
role as the medium through which you and the kernel communicate. The remainder (.
of this chapter describes each of these components, along with another important
feature of the UNIX system, the file system. Figure 1-1 is a model of the UNIX
system.

('o.~~~
~\o~ '"

0' Programming
~.." Environment

co~~~;:;;:;'" &1~~~~Ii~ Texl
Processing

·········II~II···········
Additional

Utility
Programs

Information
Management

Figure 1-1: Model of the UNIX System

1-2 IRIS-4D User's Guide

(

(

How the UNIX System Works

The Kernel

The nucleus of the UNIX system is called the kernel. The kernel controls
access to the computer, manages the computer's memory, maintains the file system,
and allocates the computer's resources among users. Figure 1-2 is a functional
view of the kernel.

Manages
memory

Allocates
system

resources

Controls
access to
computer

Figure 1-2: Functional View of the Kernel

Maintains
file system

What Is the UNIX System? 1-3

How the UNIX System Works

The File System

The file system is the cornerstone of the UNIX operating system. It provides a (
logical method of organizing, retrieving, and managing information. The structure .
of the file system is hierarchical; if you could see it, it might look like an organiza-
tion chart or an inverted tree as shown in Figure 1-3.

Figure 1-3: The Hierarchical Structure of the File System

o
o "" Directories

o = Ordinary Files

V '"' Special Flies

The file is the basic unit of the UNIX system and it can be anyone of three
types: an ordinary file, a directory, or a special file. (See Chapter 3, "Using the
UNIX File System.")

Ordinary Files

An ordinary file is a collection of characters that is treated as a unit by the sys­
tem. Ordinary files are used to store information you want to save. They may con­
tain text for letters or reports, code for the programs you write, or commands to run
your programs. Once you have created a file, you can add material to it, delete
material from it, or remove it entirely when it is no longer needed.

1-4 IRIS-4D User's Guide

(

(

How the UNIX System Works

Directories

A directory is a super-file that contains a group of related files. For example, a
directory called sales may hold files containing monthly sales figures called jan,
feb, mar, and so on. You can create directories, add or remove files from them, or
remove directories themselves at any time.

All the directories that you create and own will be located in your home direc­
tory. This is a directory assigned to you by the system when you receive a recog­
nized login. You have control over this directory; no one else can read or write files
in it without your explicit permission.

The UNIX system maintains several directories for its own use. These direc­
tories, which include /unix (the kernel) and several important system directories,
are located directly under the root directory in the file hierarchy. The root directory
(designated by /) is the source of the UNIX file structure; all directories and files are
arranged hierarchically under it.

Special Files

Special files constitute the most unusual feature of the file system. A special
file represents a physical device such as a terminal, disk drive, magnetic tape drive,
or communication link. The system reads and writes to special files in the same
way it does to ordinary files. However, the system's read and write requests do not
activate the normal file-access mechanism; instead, they activate the device handler
associated with the file.

Some operating systems require you to define the type of file you have and to
use it in a specified way. In those cases, you must consider how the files are stored
since they might be sequential, random-access, or binary files. To the UNIX sys­
tem, however, all files are alike. This makes the UNIX system file structure easy to
use. For example, you need not specify memory requirements for your files since
the system automatically does this for you. Or if you or a program you write needs
to access a certain device, such as a printer, you specify the device just as you
would another one of your files. In the UNIX system, there is only one interface for
all input from you and output to you; this simplifies your interaction with the sys­
tem.

Figure 1-4 shows an example of a typical file system. Notice that the root
directory contains the kernel (/unix) and several important system directories.

What Is the UNIX System? 1-5

How the UNIX System Works

Figure 1-4: Example of a File System

o '" Direclories

o =- Ordinary Files

V = Special Files

In summary, the directories and files you create comprise the portion of the file
system that you control. Other parts of the file system are provided and maintained
by the operating system, such as Ibin, Idev, lete, llib, Itmp, and lusr,

/bin contains many executable programs and utilities

Idev contains special files that represent peripheral devices such as the
console, the line printer, user terminals, and disks

1·6 IRIS-4D User's Guide

(

(

(

How the UNIX System Works

lete contains programs and data files for system administration

/lib contains libraries for programs and languages

Itmp contains temporary files that can be created by any user

lusr contains other directories including mail, which contains files for
storing electronic mail, and news, which contains files for storing
newsworthy items.

You will learn more about the file system in other chapters. Chapter 3 shows
you how to organize a file system directory structure and how to access and mani­
pulate files. Chapter 4 gives an overview of the UNIX system and describes the
capabilities of the shells. The effective use of these capabilities depends on your
familiarity with the file system and your ability to access information stored within
it. Chapters 5 and 6 are tutorials designed to teach you how to create and edit files.

The Shell

The shell is a unique command interpreter that allows you to communicate with
the operating system. It reads the commands you enter and interprets them as
requests to execute other programs, access files, or provide output.

There are two standard shells for the UNIX system. The Bourne shell, sh, and
the C Shell, esh, are included in the Silicon Graphics, Inc. UNIX system package.
Each of the shells has its own specific use but both shells can be used as interactive
command interpreters and as programming languages.

seh is a subset of sh and includes the interactive commands you will most
likely use to move between the shells. The primary purpose of seh is to translate
command lines typed at a terminal into system actions. For more information on the
shells see the IRIS-4D User's Reference Manual.

A shell is a powerful programming language, not unlike the C programming
language, that provides conditional execution and control-flow features. The model
of a UNIX system in Figure 1-1 shows the two-way flow of communication
between you and the computer via the shell.

Chapter 7 is a tutorial that teaches you how to write simple Bourne shell pro­
grams, called shell scripts, and how to custom tailor your environment. Chapter 8 is
a paper written by William Joy which describes the C shell and its various uses as a
command language interpreter.

What Isthe UNIX System? 1-7

How the UNIX System Works

Commands
A program is a set of instructions to the computer. Programs that can be exe- -

cuted by the computer without need for translation are called executable programs (
or commands. As a typical user of the UNIX system, you have many standard pro­
grams and tools available to you. If you use the UNIX system to write programs
and develop software, you can also draw on system calls, subroutines, and other
tools. Of course, any programs you write will be at your disposal, too.

This book introduces you to many of the UNIX system programs and tools that
you will use on a regular basis. If you need additional information on these or other
standard programs, refer to the IRIS-4D User's Reference Manual. For information
on tools and routines, consult the IRIS-4D Programmer's Reference Manual.

The reference manuals may also be available online. (On-line documents are
stored in your computer's file system.) You can summon pages from the on-line
manuals by executing the command man (short for manual page). For details on
how to use the man command, refer to the man(1) page in theIRlS-4D User's
Reference Manual.

What Commands Do

The outer circle of the UNIX system model in Figure 1-1 organizes the system
programs and tools into functional categories. These functions include:

text processing

information management

electronic communication

programming environment

1-8 IRIS-4D User's Guide

The system provides programs such as line
and screen editors for creating and chang­
ing text, a spelling checker for locating
spelling errors, and optional text formatters
for producing high-quality paper copies
that are suitable for publication.

The system provides many programs that
allow you to create, organize, and remove
files and directories.

Severnl programs, such as mail, enable you
to transmit information to other users and
to other UNIX systems.

Severnl UNIX system programs establish a
friendly programming environment by pro­
viding UNIX-to-programming language
interfaces and by supplying numerous util­
ity programs.

(

(

additional utilities

How to Execute Commands

How the UNIX System Works

The system also offers capabilities for gen­
erating graphics and performing calcula­
tions.

To make your requests comprehensible to the UNIX system, you must present
each command in the correct format, or command line syntax. This syntax defines
the order in which you enter the components of a command line. Just as you must
put the subject of a sentence before the verb in an English sentence, so must you put
the parts of a command line in the order required by the command line syntax. Oth­
erwise, the UNIX system shell will not be able to interpret your request. Here is an
example of the syntax of a UNIX system command line.

command option(s) ar gume nt(s) <return>

• a command is the name of the program you want to run

• an option modifies how the command runs

• an argument specifies data on which the command is to operate (usually the
name of a directory or file)

On every UNIX system command line you must type at least two components:
a command name and the return key. A command line may also contain either
options or arguments, or both.

In command lines that include options and/or arguments, the component words
are separated by at least one blank space. (You can insert a blank by pressing the
space bar.) If an argument name contains a blank, enclose that name in double quo­
tation marks. For example, if the argument to your command is sample 1, you
must type it as follows: "sample 1". If you forget the double quotation marks, the
shell will interpret sample and 1 as two separate arguments.

Some commands allow you to specify multiple options and/or arguments on a
command line. Consider the following command line:

What Is the UNIX System? 1-9

How the UNIX System Works

command

options

l
A~
we -I-w

arguments

1 ,,.-_-----J,,,..,... ___ ____,
filel file2 file3

In this example, we is the name of the command and two options, -I and -w,
have been specified. (The UNIX system usually allows you to group options such
as these to read -lw if you prefer.) In addition, three files (file1 ,file2, andfile3) are
specified as arguments. Although most options can be grouped together, arguments
cannot.

The following examples show the proper sequence and spacing in command
line syntax:

Incorrect

wefile

we-Vile
we -I w file

we file1file2

Correct

we file

we -I file

we -Iw file

or
we-l -w file

we file1 file2

Remember, regardless of the number of components, you must end every com­
mand line by pressing <return>.

1-10 IRIS-4D User's Guide

c

(

(

How the UNIX System Works

How Commands Are Executed

Figure 1-5 shows the flow of control when the UNIX system executes a com­
mand.

YOUR
REQUEST

INPUT
SHELL

!mr~~'--:O~UT~P~UT~ (COMMAND .mmm LANGUAGE
INTERPRETER) PROGRAM

EXECUTION

DIRECTORY
SEARCH

PROGRAM
RETRIEVAL

Figure 1-5: Execution of a UNIX System Command

To execute a command, enter a command line when a prompt (such as a %

sign) appears on your screen. The shell considers your command as input, searches
through one or more directories to retrieve the program you specified, and conveys
your request, along with the program requested, to the kernel. The kernel then fol­
lows the instructions in the program and executes the command you requested.
After the program has finished running, the shell signals that it is ready for your
next command by printing another prompt.

This chapter has described some basic principles of the UNIX operating sys­
tem. The following chapters will help you apply these principles according to your
computing needs.

What Is the UNIX System? 1-11

(

c

Getting Started With UNIX

This chapter acquaints you with the general rules and guidelines for working on
the UNIX system. Specifically, it lists the required terminal settings, explains how
to use the keyboard, obtain a login, log on and off the system, and enter simple
commands.

To establish contact with the UNIX system, you need:

• a terminal

• a login name (a name by which the UNIX system identifies you as one of its
authorized users)

• a password that verifies your identity

• instructions for dialing in and accessing the UNIX system if your terminal is
not directly connected or hard-wired to the workstation

This chapter follows the notation conventions used throughout this guide. For
a description of them, see the Preface.

Required Terminal Settings

Regardless of the type of terminal you use, you must configure it properly to
communicate with the UNIX system. If you have not set options before, you might
feel more comfortable seeking help from someone who has.

How you configure a terminal depends on the type of terminal you are using.
Some terminals are configured with switches; others are configured directly from
the keyboard by using a set of function keys. To determine how to configure your
terminal, consult the owner's manual provided by the manufacturer.

The following is a list of configuration checks you should perform before try­
ing to log in on the UNIX system.

1. Tum on the power.

2. Set the terminal to on-line or remote operation. This setting ensures the ter­
minal is under the direct control of the computer.

3. Set the terminal to full-duplex mode. This mode ensures two-way com­
munication (input/output) between you and the UNIX system.

4. If your terminal is not directly connected or hard-wired to the computer,
make sure the acoustic coupler or data phone set you are using is set to the
full-duplex mode.

Basics for UNIX System Users 2-1

Getting Started With UNIX

5. Set character generation to lowercase. If your terminal generates only
uppercase letters, the UNIX system will accommodate it by pripting every­
thing in uppercase letters.

6. Set the terminal to no parity.

7. Set the baud rate. This is the speed at which the computer communicates
with the terminal, measured in characters per second. (For example, a ter­
minal set at a baud rate of 4,800 sends and receives 480 characters per
second.) Depending on the computer and the terminal, baud rates between
300 and 19,200 are available. Some computers may be capable of process­
ing characters at higher speeds.

Keyboard Characteristics

There is no standard layout for terminal keyboards. However, all terminal key­
boards share a standard set of 128 characters called the ASCII character set.
(ASCII is an acronym for American Standard Code for Information Interchange.)
While the keys are labeled with characters that are meaningflll to you (such as the

c

letters of the alphabet), each one is also associated with an ASCII code that is (.
meaningful to the computer.

The keyboard layout on a typical ASCII terminal is basically the same as a
typewriter's, with a few additional keys for functions such as interrupting tasks.

While terminal and typewriter keyboards both have alphanumeric keys, termi­
nal keyboards also have keys designed for use with a computer. These keys are
labeled with characters or symbols that remind the user of their functions. How­
ever, their placement may vary from terminal to terminal because there is no stan­
dard keyboard layout.

Typing Conventions

To interact effectively with the UNIX system, you should be familiar with its
typing conventions. The UNIX system requires that you enter commands in lower­
case letters (unless the command includes an uppercase letter). Other conventions
enable you to perform tasks, such as erasing letters or deleting lines, by pressing
one key or entering a specific combination of characters. Characters associated
with tasks in this way are known as special characters. Figure 2-1 lists the conven­
tions based on special characters. Detailed explanations are provided on the next
few pages.

2·2 IRIS·4D User's Guide

(

Key(s)

%

<ctrl·u>

<ctrl·c>

<escape>

<return>"''''

<ctrl·d>t

<ctrl·h>

<ctrl·i>

<ctrl·s>

<ctrl·q>

Getting Started With UNIX

Meaning

System's command prompt (your cue to issue a command)

Erase or kill an entire line

Stop execution of a program or command

When used with another character, performs a specific function (called an
escape sequence)

When used in an editing session with the vi editor, ends the text input
mode and returns you to the command mode

This ends a line of typing and puts the cursor on a new line.

Stop input to the system or log off

Backspace for terminals without a backspace key

Horizontal tab for terminals without a tab key

Temporarily stops output from printing on the screen

Makes the output resume printing on the screen after it has been stopped
by the <ctrl-s> command

'" Nonprinting characters are shown in angle brackets « ».

"''''

t

The IRIS-4D "Return Key" is labeled "ENTER". Press the ENTER key whenever <return> is used in
this manual.

Characters preceded by a (ctrl·) are called control characters and are pronounced control·leller. To
type a control character, hold down the control key and press the specified leuer.

Figure 2-1: UNIX System Typing Conventions

The Command Prompt

The standard UNIX system command prompt in the C shell in the (%) symbol.
The Bourne shell prompt is the ($) symbol. When the prompt appears on your ter­
minal screen, the UNIX system is waiting for instructions from you. The appropri­
ate response to the prompt is to issue a command and press <return>.

Basics for UNIX System Users 2·3

Getting Started With UNIX

Chapter 7 explains how to change the default prompt if you would prefer
another character or character string as your command prompt.

Correcting Typing Errors

There are two keys you can use to delete text so that you can correct typing
errors. The @ (at) sign key kills the current line and the # (pound) sign key erases
the last character typed. These keys are available by default to perform these func­
tions. However, if you want to use other keys, you can reassign the erase and kill
functions. (For instructions, see "Reassigning the Delete Functions" later in this
section and "Setting Terminal Options" in Chapter 7.)

Deleting the Current Line: the @ Sign

The @ sign key kills the current line. When you press it, an @ sign is added to
the end of the line, and the cursor moves to the next line. The line containing the
error is not erased from the screen but is ignored.

The @ sign key works only on the current line; be sure to press it before you
press <return> if you want to kill a line. In the following example, a misspelled
command is typed on a command line; the command is cancelled with the @ sign:

whooo@
who<return>

Deleting the Last Characters Typed: the # Sign Key

The # (pound) sign key deletes the character(s) last typed on the current line.
When you type a # sign, the cursor backs up over the last character and lets you
retype it, thus effectively erasing it. This is an easy way io correct a typing error.

You can delete as many characters as you like as long as you type a
corresponding number of # signs. For example, in the following command line, two
characters are deleted by typing two # signs.

dattw##e<return>

The UNIX system interprets this as the date command, typed correctly.

The Backspace Key

(

(

Many people prefer to use the backspace key for the erase function instead of
the # sign key. When you press <backspace>, the cursor backs up over your errors,
erasing them as it goes. It does not print anything, unlike the # sign key, which (
prints a # sign on your screen between an error and a correction. When you have
finished correcting an error with the backspace key, the line of text on the screen
looks as though it was typed perfectly.

2-4 IRIS-4D User's Guide

Getting Started With UNIX

The # sign and backspace keys are equally effective at deleting characters, but
using the backspace key gives you better visual information about what you are
doing.

Some tenninals may not recognize the # sign key as a delete character.

Reassigning the Delete Functions
As stated earlier, you can change the keys that kill lines and erase characters.

If you want to change these keys for a single working session, you can issue a com­
mand to the shell to reassign them; the delete functions will revert to the default
keys (# and @) as soon as you log off. If you want to use other keys regularly, you
must specify the reassignment in the .profile file in the Bourne shell or the .login
file in the C shell. Instructions for making both temporary and permanent key reas­
signments, along with a description of .profile, are given in Chapter 7. See Chapter
8 for key reassignment instructions and a description of .login.

There are three points to keep in mind if you reassign the delete functions to
non-default keys. First, the UNIX system allows only one key at a time to perform
a delete function. When you reassign a function to a non-default key, you also take
that function away from the default key. For example, if you reassign the erase
function from the # sign key to the backspace key, you will no longer be able to use
the # sign key to erase characters. Neither will you have two keys that perform the
same function.

Secondly, such reassignments are inherited by any other UNIX system program
that allows you to perform the function you have reassigned. For example, the
interactive text editor called ed (described in Chapter 6) allows you to delete text
with the same key you use to correct errors on a shell command line (as described
in this section). Therefore, if you reassign the erase function to the backspace key,
you will have to use the backspace key to erase characters while working in the ed
editor as well. The # sign key will no longer work.

Finally,keep in mind that any reassignments you have specified in your .profile
or .login do not become effective until after you log in. Therefore, if you make an
error while typing your login name or password, you must use the # sign key to
correct it.

Whichever keys you use, remember that they work only on the current line. Be
sure to correct your errors before pressing <return> at the end of a line.

Basics for UNIX System Users 2-5

Getting Started With UNIX

Using Special Characters as Literal Characters

What happens if you want to use a special character as a unit of text? Since the
UNIX system's default behavior is to interpret special characters as commands, you (~'.
must tell the system to ignore or escape from a character's special meaning when- _
ever you want to use it as a literal character. The backslash (\) enables you to do
this. Type a \ before any special character that you want to have treated as it
appears. By doing this you essentially tell the system to ignore this character's spe-
cial meaning and treat it as a literal unit of text.

For example, suppose you want to add the following sentence to a file:

Only one # appears on this sheet of music.

To prevent the UNIX system from interpreting the # sign as a request to delete a
character, enter a \ in front of the # sign. If you do not, the system will erase the
space after the word one and print your sentence as follows:

Only one appears on this sheet of music.

To avoid this, type your sentence as follows:

Only one \# appears on this sheet of music.

Typing Speed

Mter the prompt appears on your terminal screen, you can type as fast as you
want, even when the UNIX system is executing a command or responding to one.
Since your input and the system's output appear on the screen simultaneously, the
printout on your screen will appear garbled. However, while this may be incon­
venient for you, it does not interfere with the UNIX system's work because the
UNIX system has read-ahead capability. This capability allows the system to han­
dle input and output separately. The system takes and stores input (your next
request) while it sends output (its response to your last request) to the screen.

Stopping a Command

If you want to stop the execution of a command, simply press <break> or
<delete>. The UNIX system will stop the program and print a prompt on the
screen, signalling that it has stopped the last command and is ready for your next
command.

2·6 IRIS·4D User's Guide

(

(

Getting Started With UNIX

Using Control Characters

Locate the control key on your tenninal keyboard. It may be labeled control or
ctrl and is probably to the left of the A key or below the Z key. The control key is
used in combination with other characters to perfonn physical controlling actions
on lines of type. Commands entered in this way are called control characters.
Some control characters perform mundane tasks such as backspacing and tabbing.
Others define commands that are specific to the UNIX system. For example, one
control character <ctrl-s> temporarily halts output that is being printed on a termi­
nal screen.

To type a control character, hold down the control key and press the appropri­
ate alphabetic key. Most control characters do not appear on the screen when typed
but are shown between angle brackets (see "Notation Conventions" in the Preface).

The two functions for which control characters are most often used are to con­
trol the printing of output on the screen and to log off the system. To prevent infor­
mation from rolling off the screen on a video display tenninal, type <ctrl-s>; the
printing will stop. When you are ready to read more output, type <ctrl-q> and the
printing wm resume.

To log off the UNIX system, type <ctrl-d>. (See "Logging Off' later in this
chapter for a detailed description of this procedure.)

In addition, the UNIX system uses control characters to provide capabilities
that some terminals fail to make available through function-specific keys. If your
keyboard does not have a backspace key, you can use the <ctrl-h> key instead.
You can also set tabs without a tab key by typing <ctrl-i> if your tenninal is set
properly. (Refer to the section in this chapter entitled "Possible Problems When
Logging In" for infonnation on how to set the tab key.)

Now that you have configured the terminal and inspected the keyboard, you
must obtain a login name.

Basics for UNIX System Users 2-7

Obtaining a Login Name

A login name is the name by which the UNIX system verifies that you are an
authorized user when you request access to it. It is so called because you must enter
it every time you want to log in. (The expression "logging in" is derived from the (
fact that the system maintains a log for each user, in which it records the type and
amount of system resources being used.)

To obtain a login name, set up a UNIX system account through your local sys­
tem administrator. There are a few rules governing your choice of a login name.
Typically, it is three to eight characters long. It can contain any combination of
lowercase alphanumeric characters, as long as it starts with a letter. It cannot con­
tain any symbols.

However, your login name will probably be determined by local practices. The
system users may use their initials, last names, or nicknames as their login names.
Here are a few examples of legal login names: starship. mary2, and jmrs.

2·8 IRIS·4D User's Guide

(

(

Establishing Contact with the UNIX System

Typically, you will be using either a workstation console that communicates
directly with a workstation, or a terminal that communicates with a workstation
over a telephone line.

This section describes a typical procedure for logging in, but may not apply to your
system. There are many ways to log in on a UNIX system over a telephone line.
Security precautions on your system may require that you use a special telephone
number or other security code. For instructions on logging in on your UNIX sys-
tem from outside your computer installation site, see your system administrator.

Turn on your terminal. If it is directly connected, the login: prompt will
immediately appear in the upper-Iefthand corner of the screen.

If you are going to communicate with the workstation over a telephone line,
you must now establish a connection. The following procedure is an example of a
method you might use to do this. (For the procedure required by your system, see
your system administrator.)

1. Dial the telephone number that connects you to the UNIX system. You will
hear one of the following:

D A busy signal. This means that either the circuits are busy or the line is
in use. Hang up and dial again.

D Continuous ringing and no answer. This usually means that there is
trouble with the telephone line or that the system is inoperable because
of mechanical failure or electronic problems. Hang up and dial again
later.

D A high-pitched tone. This means that the system is accessible.

2. When you hear the high-pitched tone, place the handset of the phone in the
acoustic coupler or momentarily press the appropriate button on the data
phone set. Replace the handset in the cradle.

3. After a few seconds, the login: prompt will appear in the upper-Iefthand
comer of the Screen.

4. A series of meaningless characters may appear on your screen. This means
that the telephone number you called serves more than one baud rate; the
UNIX system is trying to communicate with your terminal, but is using the
wrong speed. Press <break> or <return>; this signals the system to try
another speed. If the UNIX system does not display the login: prompt
within a few seconds, press <break> or <return> again.

Basics for UNIX System Users 2-9

Establishing Contact with the UNIX System

Login Procedure

When the login: prompt appears, type your login name and press <return>.
For example, if your login name is starship, your login line will look like this:

login: starship<return>

Remember to type in lowercase letters. If you use uppercase from the time you log
in, the UNIX system will expect and respond in uppercase exclusively until the
next time you log in. It will accept and run many commands typed in uppercase,
but will not allow you to edit files.

Password

(

Next, the system prompts you for your password. Type your password and
press <return>. For security reasons, the UNIX system does not print (or echo) (
your password on the screen.

If both your login name and password are acceptable to the UNIX system, the
system may print the message of the day and/or current news items and then the
default command prompt (%). (The message of the day might include a schedule for
system maintenance, and news items might include an announcement of a new sys­
tem tool.) When you have logged in, your screen will look similar to this:

lCXJin: starship<return>
password:
UNIX system news
%

2-10 IRIS-4D User's Guide

(

Establishing Contact with the UNIX System

If you make a typing mistake when logging in, the UNIX system prints the
message login incorrect on your screen. Then it gives you a second chance to
log in by printing another login: prompt.

login: ttarshlp<return>
password:
login incorrect
login:

The login procedure may also fail if the communication link between your ter­
minal and the UNIX system has been dropped. If this happens, you must reestab­
lish contact with the workstation (specifically, with the data switch that links your
terminal to the workstation) before trying to log in again. Procedures for doing this
vary from site to site. Ask your system administrator to give you exact instructions
for getting a connection on the data switch.

If you have never logged in on the UNIX system, your login procedure may
differ from the one just described. This is because some system administrators fol­
low the optional security procedure of assigning temporary passwords to new users
when they set up their accounts. If you have a temporary password the system will
force you to choose a new password before it allows you to log in.

By forcing you to choose a password for your exclusive use, this extra step
helps to ensure a system's security. Protection of system resources and your per­
sonal files depend on keeping your password private.

The actual procedure you follow will be determined by the administrative pro­
cedures at your installation site. However, it will probably be similar to the follow­
ing example of a first-time login procedure.

1. You establish contact; the UNIX system displays the login: prompt.
Type your login name and press <return>.

2. The UNIX system prints the password prompt. Type your temporary pass­
word and press <return>.

Basics for UNIX System Users 2-11

Establishing Contact with the UNIX System

3. The system tells you your temporary password has expired and you must
select a new one.

4. The system asks you to type your old password again. Type your tem­
porary password.

S. The system prompts you to type your new password. Type the password
you have chosen.

Passwords must be constructed to meet the following requirements:

o Each password must have at least six characters. Only the first eight
characters are significant.

o Each password must contain at least two alphabetic characters and at
least one numeric or special character. Alphabetic characters can be
uppercase or lowercase letters.

o Each password must differ from your login name and any reverse or
circular shift of that login name. For comparison purposes, an upper­
case letter and its corresponding lowercase letter are equivalent.

o A new password must differ from the old by at least three characters.

(

For comparison purposes, an uppercase letter and its corresponding (
lowercase letter are equivalent.

6.

Examples of valid passwords are: mar84ch, JonathOn, and BRA V3S.

The UNIX system you are using may have different requirements to consider when
choosing a password. Ask your system administrator for details.

For verification, the system asks you to reenter your new password. Type
your new password again.

7. If you do not reenter the new password exactly as typed the first time, the
system tells you the passwords do not match and asks you to try the pro­
cedure again. On some systems, however, the communication link may be
dropped if you do not reenter the password exactly as typed the first time.
If this happens, you must return to step 1 and begin the login procedure
again. When the passwords match, the system displays the prompt. (_

The following screen summarizes this procedure (steps 1 through 6) for first-
time UNIX system users.

2-12 IRIS-4D User's Guide

login: starship<return>
password: <return>

Establishing Contact with the UNIX System

Your password has expired.
Choose a new one.
Old password: <return>
New password: <return>
Re-enter new password: <return>
%

Possible Problems when Logging In

A terminal usually behaves predictably when you have configured it properly.
Sometimes, however, it may act peculiarly. For example, the carriage return may
not work properly.

Some problems can be corrected simply by logging off the system and logging
in again. If logging in a second time does not remedy the problem, you should first
check the following and try logging in once again:

the keyboard

the data phone set
or modem

the switches

Keys labeled caps, local, block, and so on should not
be enabled (put into the locked position). You can
usually disable these keys simply by pressing them.

If your terminal is connected to the computer
via telephone lines, verify that the baud rate and
duplex settings are correctly specified.

Some terminals have several switches that must be
set to be compatible with the UNIX system. If this
is the case with the terminal you are using, make
sure they are set properly.

Refer to the section "Required Terminal Settings" in this chapter if you need
information to verify the terminal configuration. If you need additional information
about the keyboard, terminal, data phone, or modem, check the owner's manuals for
the appropriate equipment.

Basics for UNIX System Users 2-13

Establishing Contact with the UNIX System

Figure 2-2 presents a list of procedures you can follow to detect, diagnose, and
correct some problems you may experience when logging in. If you need further
help, contact your system administrator.

Prohlemt

Meaningless characters

Input/output appears in uppercase
letters

Input appears in uppercase, out­
put in lowercase

Input is printed twice

Tab key does not work properly

Conununication link cannot be
established although high -pitched
tone is heard when dialing in

Conununication link (terminal to
UNIX system) is repeatedly
dropped

Possible Cause

UNIX system at wroog speed

Terminal configuration includes
uppercase setting

Key labeled caps (or caps lock) is
enabled

Terminal i. set to haJf-duplex
mode

Tabs are not set correctly

Terminal is set to local or off-line
mode

Bad telephooe line or bad com­
munications port

ActionlRemedy

Press <return> or <break> key

Log off and set character genera­
tion to lowercase

Press <caps> or <caps lock> to
disable setting

Change setting to full-duplex
mode

Type stty -tabs:j:

Sel terminal to on-line mode try
logging in again

Call system administrator

* Numerous problems can occur if your terminal is not configured properly. To eliminate these possi­
bilities before attempting to log in, perform the configuration checks listed under "Required Terminal
Settings."

t Some problems may be specific to your terminal, data phone set, or modem. Check the owner's
manual for the appropriate equipment if suggested actions do not remedy the problem.

Typing stty -tabs corrects the tab setting for your current computing session. To ensure a correct
tab setting for all sessions, add the line stty -tabs to your .profile or to your .login (see Chapter 7 or
8 respectively for details).

Figure 2-2: Troubleshooting Problems When Logging In*

2-14 IRIS-4D User's Guide

(

(

(

Establishing Contact with the UNIX System

Simple Commands

When the prompt appears on your screen, the UNIX system has recognized you
as an authorized user and is waiting for you to request a program by entering a com­
mand.

For example, try running the date command. After the prompt, type the com­
mand and press <return>. The UNIX system accesses a program called date, exe­
cutes it, and prints its results on the screen, as shown below.

% date<return>
Wed Oct 15 09:49:44 EDT 1986
%

As you can see, the date command prints the date and time, using the 24-hour
clock.

Now type the who command and press <return>. Your screen will look some­
thing like this:

% who<return>
starship ttyOO Oct 12 8:53
mary2 tty02 Oct 12 8:56
acct123 tty05 Oct 12 8:54
jmrs tty06 Oct 12 8:56
%

The who command lists the login names of everyone currently working on your
system. The tty designations refer to the special files that correspond to each user's

Basics for UNIX System Users 2-15

Establishing Contact with the UNIX System

terminal. The date and time at which each user logged in are also shown.

Logging Off

When you have completed a session with the UNIX system, type <ctrl-d> after
the prompt. (Remember that control characters such as <ctrl-d> are typed by hold­
ing down the control key and pressing the appropriate alphabetic key. Because they
are nonprinting characters, they do not appear on your screen.) After several
seconds, the UNIX system will display the login: prompt again.

% <ctrl-d>
login:

This shows that you have logged off successfully and the system is ready for some­
one else to log in.

Always log off the UNIX system by typing <ctrl-d> before you tum
off the terminal or hang up the telephone. If you do not, you may
not be logged off the system.

(~ \

The exit command also allows you to log off but is not used by most users. It (
may be convenient if you want to include a command to log off within a shell pro- .
gram. (For details, see the "Special Commands" section of the sb(1) page in the
IRIS-4D User's Reference Manual.)

(J

2-16 IRIS-4D User's Guide

Preparing To Use The File System

To use the UNIX file system effectively you must be familiar with its structure,
know something about your relationship to this structure, and understand how the
relationship changes as you move around within it. This chapter prepares you to
use this file system.

The first two sections ("How the File System is Structured" and "Your Place in
the File System") offer a working perspective of the file system. The rest of the
chapter introduces UNIX system commands that allow you to build your own direc­
tory structure, access and manipulate the subdirectories and files you organize
within it, and examine the contents of other directories in the system for which you
have access permission.

Each command is discussed in a separate subsection. Tables at the end of these
subsections summarize the features of each command so that you can later review a
command's syntax and capabilities quickly. Many of the commands presented in
this section have additional, sophisticated uses. These, however, are left for more
experienced users and are described in other UNIX system documentation. All the
commands presented here are basic to using the file system efficiently and easily.
Try using each command as you read about it.

Using the UNIX File System 3-1

How the File System is Structured

The file system is comprised of a set of ordinary files, special files, and direc­
tories. These components provide a way to organize, retrieve, and manage informa-
tion electronically. Chapter 1 introduced the properties of directories and files; this (-.
section will review them briefly before discussing how to use them.

• An ordinary file is a collection of characters stored on a disk. It may contain
text for a report or code for a program.

• A special file represents a physical device, such as a terminal or disk.

• A directory is a collection of files and other directories (sometimes called
subdirectories). Use directories to group files together on the basis of any
criteria you choose. For example, you might create a directory for each pro­
duct that your company sells or for each of your student's records.

The set of all the directories and files is organized into a tree-shaped structure.
Figure 3-1 shows a sample file structure with a directory called root (/) as its source.
By moving down the branches extending from root, you can reach several other
major system directories. By branching down from these, you can, in tum, reach all
the directories and files in the file system.

In this hierarchy, files and directories that are subordinate to a directory have (
what is called a parent/child relationship. This type of relationship is possible for .
many layers of files and directories. In fact, there is no limit to the number of files
and directories you may create in any directory that you own. Neither is there a
limit to the number of layers of directories that you may create. Thus you have the
capability to organize your files in a variety of ways, as shown in Figure 3-1.

3-2 IRIS-4D User's Guide

(

Figure 3-1: A Sample File System

How the File System is Structured

o "" Directories

o '" Ordinary Flies

V "" Special Flies

Using the UNIX File System 3-3

Your Place in the File System

Whenever you interact with the UNIX system, you do so from a location in its
file system structure. The UNIX system automatically places you at a specific point C
in its file system every time you log in. From that point, you can move through the
hierarchy to work in any of your directories and files and to access those belonging
to others that you have permission to use.

The following sections describe your position in the file system structure and
how this position changes as you move through the file system.

Your Home Directory

When you successfully complete the login procedure, the UNIX system places
you at a specific point in its file system structure called your login or home direc­
tory. The login name assigned to you when your UNIX system account was set up
is usually the name of this home directory. Every user with an authorized login
name has a unique home directory in the file system.

The UNIX system is able to keep track of all these home directories by main­
taining one or more system directories that organize them. For example, the home
directories of the login names starship, mary2, andjmrs are contained in a system
directory called user!. Figure 3-2 shows the position of a system directory such as
user! in relation to the other important UNIX system directories discussed in
Chapter 1.

3-4 IRIS-4D User's Guide

(

(

Figure 3-2: Directory of Home Directories

Your Place in the File System

o =Oireclorles

o =OrdmaryFiles

V '" SpecIal files

= Branch

Using the UNIX File System 3-5

Your Place In the File System

Within your home directory, you can create files and additional directories
(sometimes called subdirectories) in which to group them. You can move and
delete your files and directories, and you can control access to them. You have full
responsibility for everything you create in your home directory because you own it. (
Your home directory is a vantage point from which to view all the files and direc-
tories it holds, and the rest of the file system, all the way up to root.

Your Current Directory

As long as you continue to work in your home directory, it is considered your
current working directory. If you move to another directory, that directory becomes
your new current directory.

The UNIX system command pwd (short for print working directory) prints the
name of the directory in which you are now working. For example, if your login
name is starship and you execute the pwd command in response to the first prompt
after logging in, the UNIX system will respond as follows:

% pwd<return>
/userl/ starship
%

The system response gives you both the name of the directory in which you are
working (starship) and the location of that directory in the file system. The path­
name /userl/ starship tells you that the root directory (shown by the leading / in
the line) contains the directory userl which, in turn, contains the directory starship.
(All other slashes in the pathname other than root are used to separate the names of

(

directories and files, and to show the position of each directory relative to root.) A (
directory name that shows the directory's location in this way is called a full or
complete directory name or pathname. In the next few pages we will analyze and
trace this pathname so you can start to move around in the file system.

3-6 IRIS-4D User's Guide

Your Place in the File System

Remember, you can determine your position in the file system at any time sim­
ply by issuing a pwd command. This is especially helpful if you want to read or
copy a file and the UNIX system tells you the file you are trying to access does not
exist. You may be surprised to find you are in a different directory than you
thought.

Figure 3-3 provides a summary of the syntax and capabilities of the pwd com­
mand.

Command Recap

pwd - print full name of working directory

command options arguments

pwd none none

Description: pwd prints the full pathname of the directory in which you
are currently working.

Figure 3-3: Summary of the pwd Command

Pathnames

Every file and directory in the UNIX system is identified by a unique path­
name. The pathname shows the location of the file or directory, and provides direc­
tions for reaching it. Knowing how to follow the directions given by a pathname is
your key to moving around the file system successfully. The first step in learning
about these directions is to learn about the two types of pathnames: full and rela­
tive.

Using the UNIX File System 3-7

Your Place in the File System

Full Path names

A full pathname (sometimes called an absolute pathname) gives directions that
start in the root directory and lead you down through a unique sequence of direc- (~

tories to a particular directory or file. You can use a full pathname to reach any file
or directory in the UNIX system in which you are working.

Because a full pathname always starts at the root of the file system, its leading
character is always a I (slash). The final name in a full pathname can be either a file
name or a directory name. All other names in the path must be directories.

To understand how a full pathname is constructed and how it directs you, con­
sider the following example. Suppose you are working in the starship directory,
located in luserl. You issue the pwd command and the system responds by print­
ing the full pathname of your working directory: /userl/ starship. Analyze the
elements of this pathname using the following diagram and key.

3-8 IRIS·4D User's Guide

(

c

/ (leading)

userl

root

Your Place in the File System

system
directory

deHmite!
~r,

/userl/ starship

home
directory

the slash that appears as the first character in the pathname is the root
of the file system

== system directory one level below root in the hierarchy to which root
points or branches

/ (subsequent) == the next slash separates or delimits the directory names userl and
starship

starship == current working directory

Now follow the bold lines in Figure 3-4 to trace the full path to /userl/starship.

Using the UNIX File System 3-9

Your Place In the File System

Figure 3-4: Full Pathname of the /userl/starship Directory

3·10 IRIS·4D User's Guide

o .. Direclorles

o 1I0fdi".ry Flies

\l . Splelel Fill'

c

(

(

Your Place in the File System

Relative Path names

A relative pathname gives directions that start in your current working direc­
tory, and lead you up or down through a series of directories to a particular file or
directory. By moving down from your current directory, you can access files and
directories you own. By moving up from your current directory, you pass through
layers of parent directories to the grandparent of all system directories, root. From
there you can move anywhere in the file system.

A relative pathname begins with one of the following: a directory or file name;
a. (pronounced dot), which is a shorthand notation for your current directory; or a ..
(pronounced dot dot), which is a shorthand notation for the directory immediately
above your current directory in the file system hierarchy. The directory represented
by •• (dot dot) is called the parent directory of. (your current directory).

For example, say you are in the directory starship in the sample system and
starship contains directories named draft, letters, and bin and a file named mbox.
The relative pathname to any of these is simply its name, such as draft or mbox.
Figure 3-5 traces the relative path from starship to draft.

Using the UNIX File System 3-11

Your Place In the File System

o = Directories

o =Ordlnary Files

Figure 3-5: Relative Pathname of the draft Directory

The draft directory belonging to starship contains the files outline and table.
The relative pathname from starship to the file outline is draft/outline.

Figure 3-6 traces this relative path. Notice that the slash in this pathname
separates the directory named draft from the file named outline. Here, the slash is
a delimiter showing that outline is subordinate to draft; that is, outline is a child of
draft.

3-12 IRIS-4D User's Guide

(

(

(

Your Place In the File System

o = Directories

o =Ordinary Flies

Figure 3-6: Relative Pathname from starship to outline

So far, the discussion of relative pathnames has covered how to specify names
of files and directories that belong to, or are children of, your current directory.
You now know how to move down the system hierarchy level by level until you
reach your destination. You can also, however, ascend the levels in the system
structure and descend into other files and directories.

To ascend to the parent of your current directory, you can use the .. notation.
This means that if you are in the directory named draft in the sample file system, ..
is the pathname to starship, and .. is the pathname to starship's parent directory,
userl.

From draft, you can also trace a path to the file sanders by using the pathname
.JIetters/sanders. The .. brings you up to starship. Then the names letters and
sanders take you down through the letters directory to the sanders file.

Using the UNIX File System 3-13

Your Place In the File System

Keep in mind that you can always use a full pathname in place of a relative
one.

Figure 3-7 shows some examples of full and relative pathnames.

Path Name

I

Ibin

Meaning

full pathname of the root directory

full pathname of the bin directory (contains most
executable programs and utilities)

luserl/starshiplbin/tools full pathname of the tools directory belonging to the

bin/tools

bin directory that belongs to the starship directory
belonging to userl that belongs to root

relative patbname to the file or directory tools in the
directory bin

(

If the current directory is I. then the UNIX system (.
searches for /bin/tools. However, if the current

tools

directory is starship, then the system searches the
full path luserllstarship/bin/tools.

relative pathname of a file or directory tools in the
current directory.

Figure 3-7: Example Pathnames

You may need some practice before you can use pathnames such as these to
move around the file system with confidence.

Naming Directories and Flies
You can give your directories and files any names you want, as long as you (

observe the following rules:

• The name of a directory (or file) can be from one to 14 characters long.

3·14 IRI5-4D User's Guide

Your Place In the File System

• All characters other than I are legal.

• Some characters are best avoided, such as a space, tab, backspace, and the
following:

?@#$A&*()'[]\ 1;"'<>

If you use a blank or tab in a directory or file name, you must enclose the
name in quotation marks on the command line.

• Avoid using a +, -, or •• as the first character in a file name.

• Uppercase and lowercase characters are distinct to the UNIX system. For
example, the system considers a directory (or file) named draft to be dif­
ferent from one named DRAFT.

The following are examples of legal directory or file names:

memo
file.d

MEMO
cbap3+4

section2
iteml·lO

ref: list
outline

The rest of this chapter introduces UNIX system commands that enable you to
examine the file system.

Using the UNIX File System 3·15

Organizing a Directory

This section introduces four UNIX system commands that enable you to organ­
ize and use a directory structure: mkdir,ls, cd, and rmdir.

mkdir

Is

cd

rmdir

enables you to make new directories and subdirectories
within your current directory

lists the names of all the subdirectories and files in a
directory

enables you to change your location in the file system
from one directory to another

enables you to remove an empty directory

These commands can be used with either full or relative pathnames. Two of
the commands, Is and cd, can also be used without a pathname. Each command is
described more fully in the four sections that follow.

Creating Directories: the mkdir Command

(

It is recommended that you create subdirectories in your home directory (
according to a logical and meaningful scheme that will facilitate the retrieval of
information from your files. If you put all files pertaining to one subject together in
a directory, you will know where to find them later.

To create a directory, use the command mkdir (short for make directory).
Simply enter the command name, followed by the name you are giving your new
directory or file. For example, in the sample file system, the owner of the draft
subdirectory created draft by issuing the following command from the home direc­
tory (/userl/starship):

% mkdir draft <return>
%

The second prompt shows that the command has succeeded; the subdirectory draft
has been created.

Still in the home directory, this user created other subdirectories, such as
letters and bin, in the same way.

% mkdir letters<return>
% mkdir bin<return>
%

The user could have created all three subdirectories (draft, letters, and bin)

3-16 IRIS-4D User's Guide

(

Organizing a Directory

simultaneously by listing them all on a single command line.

% mkdir draft letters bin<return>
%

You can also move to a subdirectory you created and build additional subdirec­
tories within it. When you build directories or create files, you can name them any­
thing you want as long as you follow the guidelines listed earlier under "Naming
Directories and Files. "

Figure 3-8 summarizes the syntax and capabilities of the mkdir command.

Command Recap

mkdir - make a new directory

command options arguments

mkdir none directoryname(s)

Description: mkdir creates a new directory (subdirectory).

Remarks: The system returns a prompt (% by default) if the directory
is successfully created.

Figure 3-8: Summary of the mkdir Command

Listing the Contents of a Directory: the Is
Command

All directories in the file system have information about the files and directories
they contain, such as name, size, and the date last modified. You can obtain this
information about the contents of your current directory and other system direc­
tories by executing the command Is (short for list).

Using the UNIX File System 3-17

Organizing a Directory

The Is command lists the names of all files and subdirectories in a specified
directory. If you do not specify a directory, Is lists the names of files and directories
in your current directory. To understand how the Is command works, consider the
sample file system (Figure 3-1) once again.

Say you are logged in to the UNIX system and you run the pwd command.
The system responds with the pathname /userl/starship. To display the names of
files and directories in this current directory, you then type Is and press <return>.
After this sequence, your terminal will read:

% pwd<return>
%/userl/starship
% Is<return>
bin
draft
letters
list
mbox
%

As you can see, the system responds by listing, in alphabetical order, the names
of files and directories in the current directory starship. (If the first character of
any of the file or directory names had been a number or an uppercase letter, it
would have been printed first.)

To print the names of files and subdirectories in a directory other than your
current directory without moving from your current directory, you must specify the
name of that directory as follows:

Is pathname<return>

The directory name can be either the full or relative pathname of the desired direc­
tory. For example, you can list the contents of draft while you are working in star­
ship by entering Is draft and pressing <return>. Your screen will look like this:

3-18 IRIS-4D User's Guide

(

(

% Is drafl<return>
outline
table
%

Organizing a Directory

Here, draft is a relative pathname from a parent (starship) to a child (draft) direc­
tory.

You can also use a relative pathname to print the contents of a parent directory
when you are located in a child directory. The •• (dot dot) notation provides an easy
way to do this. For example, the following command line specifies the relative
pathname from starship to userl:

% Is .. <return>
jmrs
mary2
starship
%

You can get the same results by using the full pathname from root to user!. If you
type Is luserl and press 8<return>, the system will respond by printing the same
list.

Similarly, you can list the contents of any system directory that you have per­
mission to access by executing the Is command with a full or relative pathname.

The Is command is useful if you have a long list of files and you are trying to
determine whether one of them exists in your current directory. For example, if you
are in the directory draft and you want to determine if the files named outline and
notes are there, use the Is command as follows:

Using the UNIX File System 3-19

Organizing a Directory

% Is outline notes<return>
outline
notes not found
%

The system acknowledges the existence of outline by printing its name, and says
that the file notes is not found.

The Is command does not print the contents of a file. If you want to see what a
file contains, use the cat, pg, or pr command. These commands are described in
"Accessing and Manipulating Files," later in this chapter.

Frequently Used Is Options

(

The Is command also accepts options that cause specific attributes of a file or ('
subdirectory to be listed. There are more than a dozen available options for the Is
commands. Of these, the -a and -I will probably be most valuable in your basic
use of the UNIX system. Refer to the Is(l) page in theIRIS-4D User's Reference
Manual for details about other options.

Listing All Names in a File

Some important file names in your home directory, such as .profile, begin with
a period. When a file name begins with a dot, it is not included in the list of files
reported by the Is command. If you want the Is to include these files, use the -a
option on the command line.

For example, to list all the files in your current directory (starship), including
those that begin with a., type Is -a and press <return>.

3-20 IRIS-4D User's Guide

(

% Is -a<return>

.profile
bin
draft
letters
list
mbox
%

listing Contents in Short Format

Organizing a Directory

The -C and -F options for the Is command are frequently used. Together,
these options list a directory's subdirectories and files in columns, and identify exe­
cutable files (with an *) and directories (with a /). Thus, you can list all files in your
working directory starship by executing the command line shown here:

% Is -CF <return>
binI
draft/
%

letters/
list *

Listing Contents in Long Format

mbox

Probably the most informative Is option is -I, which displays the contents of a
directory in long format, giving mode, number of links, owner, group, size in bytes,
and time of last modification for each file. For example, say you run the Is -I com­
mand while in the starship directory.

Using the UNIX File System 3-21

Organizing a Dlrectory(--------------------

% Is -I<return>
total 30
d.r:wxr-xr-x 3 starship project 96 Oct 27 08:16 bin
d.r:wxr-xr-x 2 star ship project 64 Nov 1 14:19 draft
drwxr-xr-x 2 star ship project 80 Nov 8 08:41 letters
-rwx------ 2 starship project 12301 Nov 2 10:15 list
-rw------ 1 starship project 40 Oct 27 10:00 mbox
%

The first line of output (total 30) shows the amount of disk space used, measured
in blocks. Each of the rest of the lines comprises a report on a directory or file in
starship. The first character in each line (d, -, b, or c) tells you the type of file.

d = directory

ordinary disk file

b = block special file

c = character special file

Using this key to interpret the previous screen, you can see that the starship direc­
tory contains three directories and two ordinary disk files.

The next several characters, which are either letters or hyphens, identify who
has permission to read and use the file or directory. (permissions are discussed in
the description of the chmod command under "Accessing and Manipulating Files"
later in this chapter.)

The following number is the link count. For a file, this equals the number of
users linked to that file. For a directory, this number shows the number of direc­
tories immediately under it plus two (for the directory itself and its parent direc­
tory).

3-22 IRIS-4D User's Guide

(

(

(

Organizing a Directory

Next, the login name of the file's owner appears (here it is starship), followed
by the group name of the file or directory (project).

The following number shows the length of the file or directory entry measured
in units of information (or memory) called bytes. The month, day, and time that the
file was last modified is given next. Finally, the last column shows the name of the
directory or file.

Figure 3-9 identifies each column in the rows of output from the
Is -I command.

number of
blocks used

owner
name

number
of links

+ total 30 r-n
_
x

3 starship
File ~ d rwxr-xr-x 2 starship
type d rwxr-xr-x 2 starship

- x------ 2 starship
- ------- 1 starship

'-v---1

I
permissions

group
name

~
project 96 Oct 27 08:16
project 64 Nov 114:19
project 80 Nov 808:41
project 12301 Nov 210:15
project 40 Oct2710:00

'--v----J

i
time/date last

modified

Figure 3-9: Description of Output Produced by the Is -I Command

name

+
bin
draft
letters
list
mbox

Figure 3-10 summarizes the syntax and capabilities of the Is command and two
available options.

Using the UNIX File System 3-23

Organizing a Directory

*

Command Recap

Is - list contents of a directory

command options arguments

Is -a, -I, and others* directoryname(s)

Description: Is lists the names of the files and subdirectories in the
specified directories. If no directory name is given as an
argument, the contents of your working directory are
listed.

Options:
-a Lists all entries, including those beginning with •

(dot).

-I Lists contents of a directory in long format fur-
nishing mode, permissions, size in bytes, and
time of last modification.

Remarks: If you want to read the contents of a file, use the cat
command.

See the Is(l) page in the IRIS4D User's Reference Manual for all available options and an explana­
tion of their capabilities.

Figure 3-10: Summary of the Is Command

3·24 IRIS-4D User's Guide

(

(

(

Organizing a Directory

Changing Your Current Directory: the cd
Command

When you first log in on the UNIX system, you are placed in your home direc­
tory. As long as you work in it, it is also your current working directory. However,
by using the command cd (short for change directory), you can work in other direc­
tories as well. To use this command, enter cd, followed by a pathname to the direc­
tory to which you want to move.

cd pathname _ oL newdirectory<return>

Any valid pathname (full or relative) can be used as an argument to the cd com­
mand. If you do not specify a pathname, the command will move you to your home
directory. Once you have moved to a new directory, it becomes your current direc­
tory.

For example, to move from the starship directory to its child directory draft
(in the sample file system), type cd draft and press <return>. (Here draft is the
relative pathname to the desired directory.) When you get a prompt, verify your
new location by typing pwd and pressing <return> . Your terminal screen will look
like this:

% cd draft<return>
% pwd<return>
/userl/starship/draft
%

Now that you are in the draft directory you can create subdirectories in it by using
the mkdir command, and new files, by using the ed and vi editors. (Chapter 5 cov­
ers the vi editor commands and Chapter 6 covers the ed editor commands.)

It is not necessary to be in the draft directory to access files within it. You can
access a file in any directory by specifying a full pathname for it. For example, to
cat the sanders file in the letters directory (/userl/starship/letters) while you are
in the draft directory (/userl/starship/draft), specify the full pathname of sanders
on the command line.

Using the UNIX File System 3-25

Organizing a Directory

cat /userllstarship/letters/sanders<return>

You may also use full pathnames with the cd command. For example, to move
to the letters directory from the draft directory, specify /userl/starship/letters on (
the command line, as follows:

cd /userl/starship/letters<return>

Also, because letters and draft are both children of starship, you can use the
relative pathname .Jletters with the cd command. The •. notation moves you to
the directory starship, and the rest of the pathname moves you to letters.

Figure 3-11 summarizes the syntax and capabilities of the cd command.

Command Recap

cd - change your working directory

command options arguments

cd none directoryname

Description: cd changes your position in the file system from the
current directory to the directory specified. If no directory
name is given as an argument, the cd command places you
in your home directory.

Remarks: When the shell places you in the directory specified, the
prompt (% by default) is returned to you. To access a
directory that is not in your working directory, you must
use the full or relative pathname in place of a simple direc-
tory name.

Figure 3-11: Summary of the cd Command

3-26 IRIS-4D User's Guide

(

(

Organizing a Directory

Removing Directories: the rmdir Command

If you no longer need a directory. you can remove it with the command rmdir
(short for remove a directory). The standard syntax for this command is:

rmdir directoryname(s)<return>

You can specify more than one directory name on the command line.

The rmdir command will not remove a directory if you are not the owner of it
or if the directory is not empty. If you want to remove a file in another user's direc­
tory, the owner must give you write permission for the parent directory of the file
you want to remove.

If you try to remove a directory that still contains subdirectories and files (that
is, is not empty), the rmdir command prints the message directoryname not
errpty. You must remove all subdirectories and files; only then will the command
succeed.

For example, say you have a directory called memos that contains one sub­
directory, tech, and two files, june.30 andjuly.31. (Create this directory in your
home directory now so you can see how the rmdir command works.) If you try to
remove the directory memos (by issuing the rmdir command from your home
directory), the command responds as follows:

% rmdir memos<return>
r:mdir: rremos not errpty
%

To remove the directory memos, you must first remove its contents: the subdirec­
tory tech, and the files june.30 and july.31. You can remove the tech subdirectory
by executing the rmdir command. For instructions on removing files, see "Access­
ing and Manipulating Files" later in this chapter.

Using the UNIX File System 3·27

Organizing a Directory

Once you have removed the contents of the memos directory, memos itself can
be removed. First, however, you must move to its parent directory (your home
directory). The rmdir command will not work if you are still in the directory you
want to remove. From your home directory. type:

rmdir memos<return>

If memos is empty, the command will remove it and return a prompt.

Figure 3-12 summarizes the syntax and capabilities of the rmdir command.

Command Recap

rmdir - remove a directory

command options arguments

rmdir none directoryname(s)

Description: rmdir removes specified directories if they do not con-
tain files and/or subdirectories.

Remarks: If the directory is empty. it is removed and the system
returns a prompt. If the directory contains files or sub-

i ~.~~~S!ttJn~,~x:;,~
directoryname not errpty.

Figure 3-12: Summary of the rmdir Command

3-28 IRIS-4D User's Guide

(

e

(

Accessing and Manipulating Files

This section introduces several UNIX system commands that access and mani­
pulate files in the file system structure. Information in this section is organized into
two parts; basic and advanced. The part devoted to basic commands is fundamental
to using the file system; the advanced commands offer more sophisticated informa­
tion processing techniques for working with files.

Basic Commands

This section discusses UNIX system commands that are necessary for access­
ing and using the files in the directory structure. Figure 3-13 lists these commands.

Using the UNIX File System 3-29

Accessing and Manipulating Flies

Command Function

-
cat prints the contents of a specified file on a

terminal (

pg print'l the contents of a specified file on a
terminal in chunks or pages

pr prints a partially formatted version of a
specified file on the terminal

Ip requests a paper copy of a file from a line
printer

ep makes a duplicate copy of an existing file

mv moves and renames a file

rm removes a file
(

we reports the number of lines, words, and
characters in a file

ehmod changes permission modes for a file (or a
directory)

Figure 3-13: Basic Commands for Using Files

(

3-30 IRIS-4D User's Guide

Accessing and Manipulating FlIes

Each command is discussed in detail and summarized in a table that you can
easily reference later. These tables will allow you to review the syntax and capabil­
ities of these commands at a glance.

Displaying a File's Contents: cat, pg, and pr

The UNIX system provides three commands for displaying and printing the
contents of a file or files: cat, pg, and pr. The cat command (short for concaten­
ate) outputs the contents of the file(s) specified. This output is displayed on your
terminal screen unless you tell cat to direct it to another file or a new command.

The pg command is particularly useful when you want to read the contents of a
long file because it displays the text of a file in pages a screenful at a time. The pr
command formats specified files and displays them on your terminal or, if you so
request, directs the formatted output to a printer (see the lp command in this.
chapter).

The following sections describe how to use the cat, pg, and pr commands.

Concatenate and Print Contents of a File: the cat Command

The cat command displays the contents of a file or files. For example, say you
are located in the directory letters (in the sample file system) and you want to
display the contents of the file johnson. Type the command line shown on the
screen and you will receive the following output:

Using the UNIX File System 3-31

Accessing and Manipulating Flies

% cat johnson<retum>
M3rch 5, 1986

Mr. Ron Johnson
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this lOOming
aloout your conpany' s plans to automate
your business.
Enclosed please find
the material you ~ested
aloout AB&C's line of computers
and office automation software.

If I can be of further assistance to you,

please don't hesitate to call.

Yours truly,

John Howe
%

To display the contents of two (or more) files, simply type the names of the
files you want to see on the command line. For example, to display the contents of
the files johnson and sanders, type:

% cat johnson sanders<return>

The cat command reads johnson and sanders and displays their contents in that
order on your terminal.

3-32 IRIS-4D User's Guide

(

(

(

% cat johnson sanders<return>
March 5, 1986

Mr. Ron Johnson
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this morning

Yours truly,

John Howe

March 5, 1986

Mrs. D.L. Sanders
Sanders Research, Inc.
43 Nassau Street
Princeton, N.J.

Dear Mrs. Sanders:

Accessing and Manipulating Files

My colleagues and I have been following, with great interest,

Sincerely,

John Howe
%

To direct the output of the cat command to another file or to a new command,
see the sections in Chapter 7 that discuss input and output redirection.

Figure 3-14 summarizes the syntax and capabilities of the cat command.

Using the UNIX File System 3-33

Accessing and Manipulating Files

*

Command Recap

cat - concatenate and print a file's contents

command options arguments

cat available* filename(s)

Description: The cat command reads the name of each file specified on
the command line and displays its contents.

Remarks: If a specified file exists and is readable, its contents are
displayed on the terminal screen; otherwise, the message
cat: cannot open filename appears on the screen.

To display the contents of a directory, use the Is com-
mand.

-

See the cat(l) page in the IRIS-4D User'lI Reference Manual for all avail/lble options and
an explanation of their capabilities.

Figure 3-14: Summary ofthe cat Command

Paging Through the Contents of a File: the pg Command

The command pg (short for page) allows you to examine the contents of a file
or files, page by page, on a terminal. The pg command displays the text of a file in
pages (chunks) followed by a colon prompt (:), a signal that the program is waiting
for your instructions. Possible instructions you can then issue include requests for
the command to continue displaying the file's contents a page at a time, and a
request that the command search through the file(s) to locate a specific character
pattern. Figure 3-15 summarizes some of the available instructions.

3-34 IRIS-4D User's Guide

(

(

(

*

t

Command*

h

q or Q

<return>

d or <ctrl-d>

. or <ctrl-l>

f

n

p

%

/pattern

?pattern

Accessing and Manipulating Files

Function

help; display list of available pgt commands

quit pg perusal mode

display next page of text

display next line of text

display additional half page of text

redisplay current page of text

skip next page of text and display following one

begin displaying next file you specified
on command line

display previous file specified on command line

display last page of text in file currently displayed

search forward in file for specified character pattern

search backward in file for specified character pattern

Most commands can be typed with a number preceding them. For example, + 1 (display
next page), -1 (display previous page), or 1 (display first page of text).

See the JRIS-4D User's Reference Manual for a detailed explanation of all available pg
commands.

Figure 3-15: Summary of Commands to Use with pg

The pg command is useful when you want to read a long file or a series of files
because the program pauses after displaying each page, allowing time to examine it.
The size of the page displayed depends on the terminal. For example, on a terminal
capable of displaying 24 lines, one page is defined as 23 lines of text and a line
containing a colon. However, if a file is less than 23 lines long, its page size will
be the number of lines in the file plus one (for the colon).

Using the UNIX File System 3-35

Accessing and Manipulating Files

To peruse the contents of a file with pg, use the following command line for­
mat:

pg filename(s) <return>

For example, to display the contents of the file outline in the sample file sys- (
tern, type:

pg outline<return>

The first page of the file will appear on the screen. Because the file has more lines
in it than can be displayed on one page, a colon appears at the bottom of the screen.
This is a reminder to you that there is more of the file to be seen. When you are
ready to read more, press the return key and pg will print the next page of the file.

The following screen summarizes our discussion of the pg command this far.

% pg outline<return>
After you analyze the subject for your
report, you must consider organizing and
arranging the material you want to use in
writing it.

An outline is an effective method of
organizing the material. The outline
is a type of blueprint or skeleton,
a framework for you the builder-writer
of the report; in a sense it is a recipe
: <return>

After you press the return key, pg will resume printing the file's contents on the
screen.

3·36 IRIS-4D User's Guide

(

(

that contains the narres of the
ingredients and the order in which
to use them.

Your outline need not be elaborate or
overly detailed; it is simply a guide you
may consult as you write, to be varied,
if need be, when additional important
ideas are suggested in the actual writing.
(EOF) :

Accessing and Manipulating Files

Notice the line at the bottom of the screen containing the string (EOF):. This
expression (EOF) means you have reached the end of the file. The colon prompt is
a cue for you to issue another command.

When you have finished examining the file, press the return key; a prompt will
appear on your terminal. (Typing q or Q and pressing the return key also gives you
a prompt.) Or you can use one of the other available commands, depending on your
needs. In addition, there are a number of options that can be specified on the pg
command line (see the pg(l) page in the IRIS-4D User's Reference Manual).

Proper execution of the pg command depends on specifying the type of termi­
nal you are using. This is because the pg program was designed to be flexible
enough to run on many different terminals; how it is executed differs from terminal
to terminal. By specifying one type, you are telling this command:

• how many lines to print

• how many columns to print

• how to clear the screen

• how to highlight prompt signs or other words

• how to erase the current line

To specify a terminal type, assign the code for your terminal to the 1ERM vari­
able in your .profile or .login files. (For more information about 1ERM, see
Chapter 7 for the Bourne shell or Chapter 8 for the C shell; for instructions on set­
ting the TERM variable. see Appendix D.)

Using the UNIX File System 3-37

Accessing and Manipulating Files

*

Figure 3-16 summarizes the syntax and capabilities of the pg command.

Command Recap

pg - display a file's contents in chunks or pages

command options arguments

pg available* ftlename(s)

Description: The pg command displays the contents of the
specified file(s) in pages.

Remarks: After displaying a page of text, the pg command
awaits instructions from you to do one of the follow-
ing: continue to display text, search for a pattern of
characters, or exit the pg perus~l mode. In addition,
a number of options are available. For example, you
can display a section of a file beginning at a specific
line orata line containing a certain sequence or pat-
tern. You can also opt to go back and review text
that has already been displayed.

--

See the pg(l) page in the IRIS4D User's Reference ManlUll for all available options and
an explanation of their capabilities.

Figure 3-16: Summary of the pg Command

Print Partially Formatted Contents of a File: the pr Command

(

(

The pr command is used to prepare files for printing. It supplies titles and
headings, paginates, and prints a file, in any of various page lengths and widths, on (
your terminal screen. . .

3-38 IRIS-4DUser's Guide

Accessing and Manipulating Files

You have the option of requesting that the command print its output on another
device, such as a line printer (read the discussion of the lp command in this sec­
tion), You can also direct the output of pr to a different file (see the sections 011

input and output redirection in Chapter 7).

If you choose not to specify any of the available options, the pr command pro­
duces output in a single column that contains 66 lines per page and is preceded by a
short heading. The heading consists of five lines: two blank lines; a line containing
the date, time, file name, and page number; and two more blank lines. The format­
ted file is followed by five blank lines. (Complete sets of text-formatting tools are
available on UNIX systems equipped with the Documenter's Workbench Software.)

The pr command is often used together with the lp command to provide a
paper copy of text as it was entered into a file. (See the section on the Ip command
for details.) However, you can also use the pr command to format and print the
contents of a file on your terminal. For example, to review the contents of the file
johnson in the sample file system, type:

pr johnson<return>

The following screen gives an example of output from this command.

Using the UNIX File System 3-39

Accessing and Manipulating Flies

% pr johnson<return>

Mar 5 15:43 1986 johnson Page 1

March 5, 1986

Mr. Ron J·ohnson
Layton Printing
52 Hudson Street
New York, N.Y.

Dear Mr. Johnson:

I enjoyed speaking with you this morning
about your company's plans to autorrete
your business.
Enclosed please find
the rreterial you requested
about AB&C's line of computers
and office automation software.

If I can be of further assistance to you,
please don't hesitate to call.

Yours truly,

John Howe

%

The ellipses after the last line in the file represent the remaining lines (all blank
in this case) that pr formatted into the output (so that each page contains a total of

(

(

66 lines). If you are working on a video display terminal, which allows you to view (
24 lines at a time, the entire 66 lines of the formatted file will be printed rapidly ~

without pause. This means that the first 42 lines will roll off the top of your screen,
making it impossible for you to read them unless you have the ability to roll back a
screen or two. However, if the file you are examining is particularly long, even this
ability may not be sufficient to allow you to read the file.

3-40 IRIS-4D User's Guide

Accessing and Manipulating Files

In such cases, type <ctrl·s> to interrupt the flow of printing on your screen.
When you are ready to continue, type <ctrl-q> to resume printing.

Figure 3-17 summarizes the syntax and capabilities of the pr command.

command
pr

Description:

Remarks:

Command Recap

pr - print formatted contents of a file

options arguments
available* filename(s)

The pr command produces a formatted copy of a
file(s) on your terminal screen unless you specify oth­
erwise. It prints the text of the file(s) on 66 line
pages, and places five blank lines at the bottom of
each page and a five-line heading at the top of each
page. The heading includes: two blank lines; a line
containing the date, time, file name, and page
number; and two additional blank lines.

If a specified file exists, its contents are formatted and
displayed; if not, the message pr: can't open
filename is printed.

The pr command is often used with the Ip command
'~(ff(ee'1:t'Patyef"e~"t)nfi'}e. 'ftt!mri!l~I'''~'~''-'~' ,"'""","""""
to review a file on a video display terminal. To stop
and restart the printing of a file on a terminal, type
<ctrl-s> and <ctrl-q>, respectively.

* See the pr(l) page in the IRIS4D User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-17: Summary of the pr Command

Using the UNIX File System 3-41

Accessing and Manipulating Files

Requesting a Paper Copy: the Ip Command

Some terminals have built-in printers that allow you to get paper copies of files,
If you have such a terminal, you can get a paper copy of your file simply by turning (
on the printer and executing the cat or pr command, However, if you are using a
video display terminal, you must send a request for a paper copy of a file to a
printer, The command Ip (short for line printer) allows you to do this,

To execute Ip, follow this format:

Ip ftlename<return>

For example, to print the file johnson on a line printer, type the following command
line:

Ip johnson<return>

The system responds with the name (or type) of the printer on which the file will be
printed, and an identification (ill) number for your request.

% lp johnson<return>
request id is laser-688S (1 file)
%

The system response shows that your job is to be printed on a laser printer (this (
system's default type of printer), has a request ill number of 6885, and includes one
file,

The -ddest (short for destination) option on the command line causes your file
to be printed on another available device that you specify in the dest argument. The
-m option causes mail to be sent to you stating the job has been completed,

To cancel a request to a printer, type the command cancel and specify the
request ID number, For example, to cancel your request for a printing of the file
letters (request ill laser-6885), type:

cancel laser·6885<return>

To check the status of a line printer job that it is in progress, or to get its request
ill number, execute the lpstat command, This command also provides a complete
listing of every printer available on your system. Which printers are available to
you depends on your UNIX system facility, Ask your system administrator for the (
names of available line printers, or type the following command line:

Ipstat -v<return>

3-42 IRIS-4D User's Guide

*

Accessing and Manipulating Flies

Figure 3-18 summarizes the syntax and capabilities of the Ip command.

Command Recap

Ip - request paper copy of file from a line printer
command options arguments

Ip -d, -m, and others* file(s)
Description: The Ip command requests that specified files be

printed by a line printer, thus providing paper copies
of the contents.

Options:
-detest Allows you to choose dest as the printer or

type of printer to produce the paper copy.
If you do not use this option, the Jp pro-
gram specifies the printer for you.

-m Sends a message to you via mail after the
printing is complete.

Remarks: You can cancel a request to the line printer by typing
cancel and the request ID furnished to you by the
system when the request was acknowledged.

Check with your system administrator for informa-
tion on additional and/or different commands for
printers that may be available at your location.

See the Jp(l) page in the IRIS-4D User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-18: Summary ofthe Ip Command

Using the UNIX File System 3-43

Accessing and Manipulating Files

Making a Duplicate: the cp Command

When using the UNIX system, you may want to make a copy of a file. For
example, you might want to revise a file while leaving the original version intact. (
The command cp (short for copy) copies the complete contents of one file into
another. The cp command also allows you to copy one or more files from one
directory into another while leaving the original file or files in place.

To copy the file named outline to a file named new.outline in the sample direc­
tory, simply type cp outline new.outline and press the return key. The system
returns the prompt when the copy is made. To verify the existence of the new file,
you can type Is and press the return key. This command lists the names of all files
and directories in the current directory, in this case draft. The following screen
summarizes these activities.

% cp outline new.outline<return>
% Is<return>
new. outline
outline
table
%

The UNIX system does not allow you to have two files with the same name in a
directory. In this case, because there was no file called new.outline when the cp
command was issued, the system created a new file with that name. However, if a
file called new. outline had already existed, it would have been replaced by a copy
of the file outline; the previous version of new.outline would have been deleted.

If you had tried to copy the file outline to another file named outline in the
same directory, the system would have told you the file names were identical and
returned the prompt to you. If you had then listed the contents of the directory to
determine exactly how many copies of outline existed, you would have received the
following output on your screen:

3-44 IRIS-4D User's Guide

(

(

% cp outline outline<return>
cp: outline and outline are identical
% ls<return>
outline
table
%

Accessing and Manipulating Flies

The UNIX system does allow you to have two files with the same name as long
as they are in different directories. For example, the system would let you copy the
file outline from the draft directory to another file named outline in the letters
directory. If you were in the draft directory, you could use anyone of four com­
mand lines. In the first two command lines, you specify the name of the new file
you are creating by making a copy.

• cp outline /userl/starshiplIettersioutline<return> (full pathname
specified)

• cp outline •. IIetters/outline<return> (relative pathname specified)

However, the cp command does not require that you specify the name of the
new file. If you do not include a name for it on the command line, cp gives your
new file the same name as the original one, by default. Therefore you could also
use either of these command lines:

• cp outline /userl/starshiplIetters<return> (full pathname specified)

• cp outline . .!letters<return> (relative pathname specified)

In any of these four cases, cp will make a copy of the outline file in the letters
directory and call it outline, too.

Of course, if you want to give your new file a different name, you must specify
it. For example, to copy the file outline in the draft directory to a file named
outline.vers2 in the letters directory, you can use either of the following command
lines:

• cp outline /userl/starshiplIetters/outline.vers2<return> (full pathname)

Using the UNIX File System 3-45

Accessing and Manipulating Files

• cp outline .Jletters/outline.vers2<return> (relative pathname)

When assigning new names, keep in mind the conventions for naming directories
and files described in "Naming Directories and Files" in this chapter.

Figure 3-19 summarizes the syntax and capabilities of the cp command.

Command Recap

cp - make a copy of a file

command options arguments

file1 file2
cp none file(s) directory

Description: cp allows you to make a copy offilel and call itfile2
leavingfilel intact or to copy one or more files into a
different directory.

Remarks: When you are copyingfilel to file2 and a file called
file2 already exists, the cp command overwrites the
first version offile2 with a copy offilel and calls it
file2. The first version offile2 is deleted.

You cannot copy directories with the cp command.

Figure 3-19: Summary of the cp Command

Moving and Renaming a File: the mv Command

The command mv (short for move) allows you to rename a file in the same
directory or to move a file from one directory to another. If you move a file to a dif­
ferent directory, the file can be renamed or it can retain its original name.

3-46 IRIS-4D User's Guide

(

(

(

Accessing and Manipulating Files

To rename a file within one directory, follow this format:

mv filel file2<return>

The mv command changes a file's name from filel to file2 and deletes filel.
Remember that the namesfilel andfile2 can be any valid names, including path­
names.

For example, if you are in the directory draft in the sample file system and you
would like to rename the file table to new.table, simply type mv table new. table
and press the return key. If the command executes successfully, you will receive a
prompt To verify that the file new.table exists, you can list the contents of the
directory by typing Is and pressing the return key. The screen shows your input and
the system's output as follows:

% mv table new.table<return>
% Is<return>
new.table
outline
%

You can also move a file from one directory to another, keeping the same name
or changing it to a different one. To move the file without changing its name, use
the following command line:

mv file(s) directory<return>

The file and directory names can be any valid names, including pathnames.

For example, say you want to move the file table from the current directory
named draft (whose full pathname is /userl/starship/draft) to a file with the same
name in the directory letters (whose relative pathname from draft is • .!Ietters and
whose full pathname is /userl/starship/letters), you can use anyone of several
command lines, including the following:

Using the UNIX File System 3·47

Accessing and Manipulating Files

mv table luserl/starship/letters<return>

mv table luserl/starship/letters/table<return>

mv table .Jletters<return>

mv table .Jletters/table<return>

mv /userl/starship/draftltable luserllstarship/letters/table<return>

Now suppose you want to rename the file table as table2 when moving it to the
directory letters. Use any of these command lines:

mv table luserllstarship/letters/table2<return>

mv table .Jletters/table2<return>

mv /userl/starship/draftltable2/userllstarshipiletters/table2<return>

You can verify that the command worked by using the Is command to list the con­
tents of the directory.

Figure 3-20 summarizes the syntax and capabilities of the mv command.

3-48 IRIS·4D User's Guide

(

(

(

Accessing and Manipulating Files

Command Recap

mv - move or rename files

command options arguments

filel file2
mv none file(s) directory

Description: mv allows you to change the name of a file or to
move a file(s) into another directory.

Remarks: When you are movingfilel to file2, if a file called
file2 already exists, the mv command overwrites the
first version offile2 withfilel and renames itfile2.
The first version offile2 is deleted.

Figure 3-20: Summary of the mv Command

Removing a File: the rm Command

When you no longer need a file, you can remove it from your directory by exe­
cuting the command rm (short for remove). The basic format for this command is:

rm file(s)<return>

You can remove more than one file at a time by specifying those files you want
to delete on the command line with a space separating each filename:

rmfilel file2 file3<return>

The system does not save a copy of a file it removes; once you have executed this
command, your file is removed permanently.

After you have issued the rm command, you can verify its successful execution
by running the Is command. Since Is lists the files in your directory, you'll immedi­
ately be able to see whether or not rm has executed successfully.

Using the UNIX File System 3-49

Accessing and Manipulating files

For example, say you have a directory that contains two files, outline and
table. You can remove both files by issuing the rm command once. If rm is exe­
cuted successfully, your directory will be empty. Verify this by running the Is com­
mand.

% rm outline table <return>
% Is
%

The prompt shows that outline and table were removed.

*

Figure 3-21 summarizes the syntax and capabilities of the rm command.

Command Recap

rm - remove a file

command options arguments

rm available* fi/e(s)

Description: rm allows you to remove one or more files.

Remarks: Files specified as arguments to the rm command are
removed permanently.

See the nn(!) page in the IRIS4D User' 8 Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-21: Summary of the rm Command

3·50 IRIS-4D User's Guide

(

(

(

Accessing and Manipulating Files

Counting In a File: the we Command

The command we (short for word count) reports the number of lines, words,
and characters there are in the file(s) named on the command line. If you name
more than one file, the we program counts the number of lines, words, and charac­
ters in each specified file and then totals the counts. In addition, you can direct the
we program to give you only a line, a word, or a character count by using the -I,
-w, or -e options, respectively.

To determine the number of lines, words, and characters in a file, use the fol­
lowing format on the command line:

we file1<return>

The system responds with a line in the following format:

w c filel

where

• I represents the number of lines infile1

• w represents the number of words infilel

• c represents the number of characters infilel

For example, to count the lines, words, and characters in the file johnson
(located in the current directory, letters), type the following command line:

% we johnson<return>
24 66 406 johnson
%

The system response means that the file johnson has 24 lines, 66 words, and 406
characters.

To count the lines, words, and characters in more than one file, use this format:

we file1 file2<return>

Using the UNIX File System 3-51

Accessing and Manipulating Files

The system responds in the following format:

w
w
w

c
c
c

file1
file2
total

Lindeth, word, b~d cdharacter counts forthfile11 anl~filbe2 ~de dthiSPlayedd on separate lines (
an e com me counts appear on e ast me est e e war total.

For example, ask the we program to count the lines, words, and characters in
the files johnson and sanders in the current directory.

% we johnson sanders<return>

%

24 66 406 johnson
28
52

92
158

559 sanders
965 total

The first line reports that the johnson file has 24 lines, 66 words, and 406 charac­
ters. The second line reports 28 lines, 92 words, and 559 characters in the sanders
file. The last line shows that these two files together have a total of 52 lines,
158 words, and 965 characters.

To get only a line, a word, or a character count, select the appropriate com­
mand line format from the following lines:

we -I file1 <return> (line count)
we -w file1 <return> (word count)
we -e file1 <return> (character count)

For example, if you use the -I option, the system reports only the number of
lines in sanders.

% we -I sanders<return>
28 sanders

%

3·52 IRIS-4D User's Guide

(

(

Accessing and Manipulating Files

If the -w or -c option had been specified instead, the command would have
reported the number of words or characters, respectively, in the file.

Figure 3-22 summarizes the syntax and capabilities of the wc command.

Command Recap

wc - count lines, words, and characters in a file

command options arguments

wc -I, -w,-c ftle(s)

Description: wc counts lines, words, and characters in the specified
file(s), keeping a total count of all tallies when more than
one file is specified.

Options -1 counts the number of lines in the specified file(s)

-w counts the number of words in the specified file(s)

-c counts the number of characters in the specified file(s)

Remarks: When a file name is specified in the command line,
it is printed with the count(s) requested.

Figure 3-22: Summary of the wc Command

Protecting Your Files: the chmod Command

The command chmod (short for change mode) allows you to decide who can
read, write, and use your files and who cannot. Because the UNlX operating system
is a multi-user system, you usually do not work alone in the file system. System
users can follow pathnames to various directories and read and use files belonging
to one another, as long as they have permission to do so.

If you own a file, you can decide who has the right to read it, write in it (make
changes to it), or, if it is a program, to execute it. You can also restrict permissions
for directories with the chmod command. When you grant execute permission for a
directory, you allow the specified users to cd to it and list its contents with the Is
command.

Using the UNIX File System 3-53

Accessing and Manipulating Files

To assign these types of pennissions, use the following three symbols:

r allows system users to read a file or to copy its contents

wallows system users to write changes into a file (or a copy of it)

x allows system users to run an executable file

To specify the users to whom you are granting (or denying) these types of per­
mission, use these three symbols:

u you, the owner of your files and directories (u is short for user)

g members of the group to which you belong (the group could consist of
team members working on a project, members of a department, or a
group arbitrarily designated by the person who set up your UNIX sys­
tem account)

o all other system users

When you create a file or a directory, the system automatically grants or denies
permission to you, members of your group, and other system users. You can alter
this automatic action by modifying your environment (see Chapter 7 for details on

(

how to modify your environment in the Bourne shell, and Chapter 8 on how to (~
modify your environment in the C shell). Moreover, regardless of how the pennis- .
sions are granted when a file is created, as the owner of the file or directory you
always have the option of changing them. For example, you may want to keep cer-
tain files private and reserve them for your exclusive use. You may want to grant
permission to read and write changes into a file to members of your group and all
other system users as well. Or you may share a program with members of your
group by granting them pennission to execute it.

How to Determine Existing Permissions

You can determine what pennissions are currently in effect on a file or a direc­
tory by using the command that produces a long listing of a directory's contents:
Is -I. For example, typing Is -I and pressing the return key while in the directory
named starship/bin in the sample file system produces the following output:

3-54 IRIS-4D User's Guide

(

Accessing and Manipulating Files

% Is -I<return>
total 35
-rwxr-xr-x 1 starship project 9346 Nov 1 08:06 display
-rw-r--r-- 1 starship project 6428 Dec 2 10:24 list
drwx--x--x 2 starship project 32 Nov 8 15:32 tools
%

Pennissions for the display and list files and the tools directory are shown on
the left of the screen under the line total 35, and appear in this format:

-rwxr-xr-x (for the display file)
-rw-r--r-- (for the list file))
drwx--x--- (for the tools directory)

After the initial character, which describes the file type (for example,
a - (dash) symbolizes a regular file and a directory), the other nine characters that
set the pennissions comprise three sets of three characters. The first set refers to
pennissions for the owner, the second set to permissions for group members, and
the last set to permissions for all other system users. Within each set of characters,
the r, w, and x show the pennissions currently granted to each category. If a dash
appears instead of an r, w, or x, pennission to read, write, or execute is denied.

The following diagram summarizes this breakdown for the file named display.

Using the UNIX File System 3-55

Accessing and Manipulating Files

user group others

\1/
~

rwx r-xr-x

read/1 ~
write

execute

Permission to write to
the file denied to
group and other

As you can see, the owner has r, w, and x permissions and members of the group
and other system users have r and x permissions.

(

There are two exceptions to this notation system. Occasionally the letter s or (
the letter 1 may appear in the permissions line, instead of an r, W, or x. The letter
s (short for set user ID or set group ID) represents a special type of permission to
execute a file. It appears where you normally see an x (or -) for the user or group
(the first and second sets of permissions). From a user's point of view it is
equivalent to an x in the same position; it implies that execute permission exists. It
is significant only for programmers and system administrators. (See the IRIS-4D
System Administrator's Guide for details about setting the user or group ID.)

The letter 1 is the symbol for lock enabling. It does not mean that the file has
been locked. It simply means that the function of locking is enabled, or possible,
for this file. The file mayor may not be locked; that cannot be determined by the
presence or absence of the letter 1.

How to Change Existing Permissions

Mter you have determined what permissions are in effect, you can change
them by executing the chmod command in the following format:

chmod who+permission filer s)<return>

or

chmod who=permission filer s)<return>

The following list defines each component of this command line.

3·56 IRIS-4D User's Guide

(

chmod

who

Accessing and Manipulating Files

name of the program

one of three user groups (0, g, or 0)
0== user
g == group
0== others

+ or - instruction that grants (+) or denies (-) permission

permission any combination of three authorizations (r, w, and x)
r == read

file(s)

W== write
x == execute

file (or directory) name(s) listed; assumed to be branches from
your current directory, unless you use full pathnames.

The chmod command will not work if you type a space(s) between who, the
instruction that gives (+) or denies (-) permission, and the permission.

The following examples show a few possible ways to use the chmod com­
mand. As the owner of display, you can read, write, and run this executable file.
You can protect the file against being accidentally changed by denying yourself
write (w) permission. To do this, type the command line:

chmod D-W display<retDrn>

After receiving the prompt, type Is -I and press the return key to verify that this
permission has been changed, as shown in the following screen.

Using the UNIX File System 3-57

Accessing and Manipulating Files

% chmod u-w display <return>
% Is -kreturn>
total 35
-r-xr-xr-x 1 starship project
rw-r--r-- 1 starship
drwx--x--x 2 starship
%

project
project

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

As you can see, you no longer have permission to write changes into the file. You
will not be able to change this file until you restore write permission for yourself.

Now consider another example. Notice that permission to write into the file
display has been denied to members of your group and other system users. How­
ever, they do have read permission. This means they can copy the file into their
own directories and then make changes to it. To prevent all system users from
copying this file, you can deny them read permission by typing:

chmod go-r display<return>

The g and 0 stand for group members and all other system users, respectively, and
the -r denies them permission to read or copy the file. Check the results with the
Is -I command.

% chmod go-r display<return>
% Is -kreturn>
total 35
-rwx--x--x 1 starship
~r--r-- 1 starship
drwx--x--x 2 starship
%

3·58 IRIS-4D User's Guide

project
project
project

9346 Nov 1 08:06 display
6428 Dec 2 10:24 list

32 Nov 8 15:32 tools

(

(

(-

Accessing and Manipulating Files

A Note on Permissions and Directories

You can use the chmod command to grant or deny permission for directories as
well as files. Simply specify a directory name instead of a file name on the com­
mandline.

However, consider the impact on various system users of changing permissions
for directories. For example, say you grant read permission for a directory to your­
self (u), members of your group (g), and other system users (0). Every user who
has access to the system will be able to read the names of the files contained in that
directory by running the Is -I command. Similarly, granting write permission
allows the designated users to create new files in the directory and remove existing
ones. Granting permission to execute the directory allows designated users to move
to that directory (and make it their current directory) by using the cd command.

An Alternative Method

There are two methods by which the chmod command can be executed. The
method described above, in which symbols such as r, w, and x are used to specify
permissions, is called the symbolic method.

An alternative method is the octal method. Its format requires you to specify
permissions using three octal numbers, ranging from 0 to 7. (The octal number sys­
tem is different from the decimal system that we typically use on a day-to-day
basis.) To learn how to use the octal method, see the chmod(l) page in the IRIS-4D
User's Reference Manual.

Figure 3-23 summarizes the syntax and capabilities of the chmod command.

Using the UNIX File System 3-59

Accessing and Manipulating Flies

Command Recap

chmod - change permission modes for files (and directories)

command instruction arguments

chmod who + - permission filename(s)
directoryname(s)

Description: chmod gives (+) or removes (-) penuission to read,
write, and execute files for three categories of system
users: user (you), group (members of your group),
and other (all other users able to access the system
on which you are working).

Remarks: The instruction set can be represented in either octal
or symbolic tenus.

Figure 3-23: Summary of the chmod Command

Advanced Commands

Use of the commands already introduced will increase your familiarity with the
file system. As this familiarity increases, so might your need for more sophisticated
information processing techniques when working with files. This section introduces
three commands that provide just that.

3-60 IRIS-4D User's Guide

(

(

(

Accessing and Manipulating Files

diff finds differences between two files

grep searches for a pattern in a file

sort sorts and merges files

For additional information about these commands refer to the IRIS-4D User's
Reference Manual.

Identifying Differences: the diff Command

The diff command locates and reports all differences between two files and
tells you how to change the first file so that it is a duplicate of the second. The basic
format for the command is:

diff filel file2<return>

If filel and file2 are identical, the system returns a prompt to you. If they are not,
the diff command instructs you on how to change the first file so it matches the
second by using ed (line editor) commands. (See Chapter 5 for details about the
line editor.) The UNIX system flags lines infilel (to be changed) with the < (less
than) symbol, and lines infile2 (the model text) with the > (greater than) symbol.

For example, say you execute the diff command to identify the differences
between the files johnson and mcdonough. The mcdonough file contains the same
letter that is in the johnson file, with appropriate changes for a different recipient.
The diff command will identify those changes as follows:

3,6c3,6
< Mr. Ron Johnson
< Layton Printing
< 52 Hudson Street
< New York, N.Y.

> Mr. J.J. McDonough
> Ubu Press
> 37 Chico Place
> Springfield, N.J.
9c9
< Dear Mr. Johnson:

> Dear Mr. McDonough:

Using the UNIX File System 3-61

Accessing and Manipulating Files

The first line of output from ditT is :

3,6c3,6

This means that if you want johnson to match mcdonough, you must change (c)
lines 3 through 6 in johnson to lines 3 through 6 in mcdonough. The ditT com­
mand then displays both sets of lines. If you make these changes the johnson file
will be identical to the mcdonough file. Remember, the ditT command identifies
differences between specified files. If you want to make an identical copy of a file,
use the cp command.

Figure 3-24 summarizes the ditT command.

Command Recap

ditT - finds differences between two files

command options arguments

ditT available* file1 file2

Description: The ditT command reports what lines are different in
two files and what you must do to make the first file
identical to the second.

Remarks: Instructions on how to change a file to bring it into
agreement with another file are line editor (ed) com-
mands: a (append), c (change), and d (delete).
Numbers given with a, c, or d show the lines to be
modified. Also used are the symbols < (showing a
line from the first file) and> (showing a line from the
second file).

* See the dlff(l) page in the IRIS-4D User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 3-24: Summary of the diff Command

3-62 IRIS-4D User's Guide

(

(

(

Accessing and Manipulating Files

Searching a File for a Pattern: the grep Command

You can instruct the UNIX system to search through a file for a specific word,
phrase, or group of characters by executing the command grep (short for globally
search for a regular expression and print). Put simply, a regular expression is any
pattern of characters (be it a word, a phrase, or an equation) that you specify.

The basic format for the command line is:

grep pattern jile(s)<return>

For example, to locate any lines that contain the word automation in the file
johnson, type:

grep automation johnson<return>

The system responds:

% grep automation johnson<return>
and office autaration software.
%

The output consists of all the lines in the file johnson that contain the pattern for
which you were searching (automation).

If the pattern contains multiple words or any character that conveys special
meaning to the UNIX system, (such as %, I, *, ?, and so on), the entire pattern must
be enclosed in single quotes. (See the Chapter 7 section "Metacharacters".) For
example, say you want to locate the lines containing the pattern office autorra­
tion. Your command line and the system's response will read:

% grep 'office automation' johnson<return>
and office autaration software.
%

But what if you cannot recall which letter contained a reference to office auto­
mation; your letter to Mr. Johnson or the one to Mrs. Sanders? Type the following
command line to find out:

% grep 'office automation' johnson sanders<return>
johnson:and office autorration software.
%

This tells you that the pattern office autaration is found once in the johnson
file. In addition to the grep command, the UNIX system provides variations of it
called egrep and fgrep, along with several options that enhance the searching
powers of the command. See the grep(l), egrep(l), and fgrep(l) pages in the
IRIS-4D User's Reference Manual for further information about these commands.

Using the UNIX File System 3-63

Accessing and Manipulating Flies

Figure 3-25 summarizes the syntax and capabilities of the grep command.

Command Recap

grep - searches a file for a pattern

command options arguments

grep available* pattern ftle(s)

Description: The grep command searches through specified file(s)

*

for lines containing a pattern and then prints the lines
on which it finds the pattern. If you specify more
than one file, the name of the file in which the pattern
is found is also reported.

Remarks: If the pattern you give contains multiple words or
special characters, enclose the pattern in single
quotes on the command line.

See the grep(l) page in the IRIS4D User's Reference Manual for all available options
and an explanation of their capabilities.

Figure 3-25: Summary of the grep Command

Sorting and Merging Files: the sort Command

The UNIX system provides an efficient tool called sort for sorting and merging
files. The format for the command line is:

sort ftle(s)<return>

(

(

This command causes lines in the specified files to be sorted and merged in the fol- (
lowing order.

• Lines beginning with numbers are sorted by digit and listed before lines
beginning with letters.

3-64 IRIS-4D User's Guide

Accessing and Manipulating Files

• Lines beginning with uppercase letters are listed before lines beginning with
lowercase letters .

• Lines beginning with symbols such as * or @, are sorted on the basis of the
symbol's ASCII representation.

For example, let's say you have two files, group! and group2, each containing
a list of names. You want to sort each list alphabetically and then interleave the two
lists into one. First, display the contents of the files by executing the cat command
on each.

% cat groupl<return>
Smith, Allyn
Jones, Barbara
Cook, Karen
Moore, Peter
Wolf, Robert
% cat group2<return>
Frank, M. Jay
Nelson, James
West, Donna
Hill, Charles
Morgan, Kristine
%

(Instead of printing these two files individually, you could have requested both files
on the same command line. If you had typed cat group! group2 and pressed the
return key, the output would have been the same.)

Now sort and merge the contents of the two files by executing the sort com­
mand. The output of the sort program will be printed on the terminal screen unless
you specify otherwise.

Using the UNIX File System 3-65

Accessing and Manipulating Flies

% sort groupl group2<return>
Cook, Karen
Frank, M. Jay
Hill, Charles
Jones, Barbara
Moore, Peter
Morgan, Kristine
Nelson, Jarres
Smith, Allyn
West, Donna
Wolf, Robert
%

In addition to combining simple lists as in the example, the sort command can
rearrange lines and parts of lines (called fields) according to a number of other
specifications you designate on the command line. The possible specifications are
complex and beyond the scope of this text. Refer to the IRIS-4D User's Reference
Manual for a full description of available options.

Figure 3-26 summarizes the syntax and capabilities of the sort command.

3·66 IRIS-4D User's Guide

(

(~

(

*

Accessing and Manipulating Files

Command Recap

sort - sorts and merges files

command options arguments

sort available* filers)

Description: The sort command sorts and merges lines from a file
or files you specify and displays its output on your
terminal screen.

Remarks: If no options are specified on the command line, lines
are sorted and merged in the order defined by the
ASCII representations of the characters in the lines.

See the sort(l) page in thelRIS4D User's Reference Manual for all available options
and an explanation of their capabilities.

Figure 3-26: Summary of the sort Command

Using the UNIX File System 3-67

Summary

This chapter described the structure of the file system and presented ways to
use and to navigate through the file system by using UNIX system commands. The
next chapter gives you an overview of a variety of UNIX system capabilities: text (-- \
editing, using the shell as a command language, communicating electronically with
other system users, and programming and developing software.

(

(

3-68 IRIS-4D User's Guide

Tutorial Overview

This chapter serves as a transition between the overviews that comprise the first
three chapters and the tutorials in the following five chapters. Specifically, it pro­
vides an overview of the subjects covered in these tutorials: Text Editing, Working
in the Shell, and Communicating Electronically. Text editing is covered in Chapter
5. "Screen Editor Tutorial," and Chapter 6, "Line Editor Tutorial". How to work
and program in the Bourne shell is taught in Chapter 7, "Shell Tutorial"; working
and programming in the C Shell is discussed in Chapter 8, "The C Shell"; and elec­
tronic communication is covered in Chapter 9, "Communication Tutorial".

Overview of the Tutorials 4-1

Text Editing

Using the file system is a way of life in a UNIX system environment. This sec-
tion will teach you how to create and modify files with a software tool called a text (__ .-
editor. The section begins by explaining what a text editor is and how it works. _
Then it introduces two types of text editors supported on the UNIX system: the
screen editor, vi, (short for visual editor) and the line editor, ed. For detailed infor­
mation about vi and ed, see Chapters 5 and 6.

What is a Text Editor?

Whenever you revise a letter, memo, or report, you must perform one or more
of the following tasks: insert new or additional material, delete unneeded material,
transpose material (sometimes called cutting and pasting), and, finally, prepare a
clean, corrected copy. Text editors perform these tasks at your direction, making
writing and revising text much easier and quicker than if done by hand.

The UNIX system text editors, like the UNIX system shell, are interactive pro­
grams; they accept your commands and then perform the requested functions. From
the shell's point of view, the editors are executable programs.

A major difference between a text editor and the shell, however, is the set of
commands that each recognizes. All the commands introduced up to this point
belong to the shell's command set. A text editor has its own distinct set of com­
mands that allow you to create, move, add, and delete text in files, as well as
acquire text from other files.

How Does a Text Editor Work?

To understand how a text editor works, you need to understand the environ­
ment created when you use an editing program and the modes of operation under­
stood by a text editor.

Text Editing Buffers

(

When you use a text editor to create a new file or modify an existing one, you
first ask the shell to put the editor in control of your computing session. As soon as (
the editor takes over, it allocates a temporary work space called the editing buffer;
any information that you enter while editing a file is stored in this buffer where you
can modify it.

4-2 IRIS-4D User's Guide

Text Editing

Because the buffer is a temporary work space, any text you enter and any
changes you make to it are also temporary. The buffer and its contents will exist
only as long as you are editing. If you want to save the file, you must tell the text
editor to write the contents of the buffer into a file. The file is then stored in the
computer's memory. If you do not, the buffer's contents will disappear when you
leave the editing program. To prevent this from happening, the text editors remind
you to write your file if you attempt to end an editing session without doing so.

If you have made a critical mistake or are unhappy with the edited version, you can
choose to leave the editor without writing the file. By doing so, you leave the origi­
nal file intact; the edited copy disappears.

Regardless of whether you are creating a new file or updating an existing one,
the text in the buffer is organized into lines. A line of text is simply a series of char­
acters that appears horizontally across the screen and is ended when you press
<return>. Occasionally, files may contain a line of text that is too long to fit on the
terminal screen. Some terminals automatically display the continuation of the line
on the next line; others do not.

Modes of Operation

Text editors are capable of understanding two modes of operation: command
mode and text input mode. When you begin an editing session, you will be placed
automatically in command mode. In this mode you can move around in a file,
search for patterns in it, or change existing text. However, you cannot create text
while you are in command mode. To do this you must be in text input mode.
While you are in this mode, any characters you type are placed in the buffer as part
of your text file. When you have finished entering text and want to run editing com­
mands again, you must return to command mode.

Because a typical editing session involves moving back and forth between
these two modes, you may sometimes forget which mode you are working in. You
may try to enter text while in command mode or to enter a command while in input
mode. This is something even experienced users do from time to time. It will not
take long to recognize your mistake and determine the solution after you complete
the tutorials in Chapters 5 and 6.

Overview of the Tutorials 4-3

Text Editing

Screen Editor
The screen editor, accessed by the vi command, is a display-oriented, interac- (

'1 tive software tool. It allows you to view the file you are editing a page at a time.
This editor works most efficiently when used on ff video display terminal operating
at 1,200 baud or higher. ..

For the most part, you modify a file by adding, deleting, or changing text by
positioning the cursor at the point on the screen where the modification is to be
made and then making the change. The screen edi,tor immediately displays the
results of your editing; you can see the change you made in the context of the sur­
rounding text. Because of this feature, the screen editor is considered more sophis­
ticated than the line editor.

Furthermore, the screen editor offers a choice of commands. For example, a
number of screen editor commands allow you to move the cursor around a file.
Other commands scroll the file up or down. Still other commands allow you to
change existing textor to create new text. In addition to its own set of commands,
the screen editor can access line editor commands.

The trade-off for the screen editor's speed, visual appeal, efficiency, and power
is the demand it places on the computer's processing time. Every time you make a (
change vi must update the screen. Despite this drawback, vi is considered the most
useful editing tool. Chapter 6, "Screen Editor Tutorial," contains a vi quick refer-
ence card to tear out and use next to your workstation or terminal. Chapter 6 also
includes detailed instructions on how to use the vi editor.

Line Editor
The line editor, accessed by the ed command, is a fast, versatile program for

preparing text files. It is called a line editor because it manipUlates text on a line­
by-line basis. This means you must specify, by line number, the line containing the
text you want to change. Then ed prints the line on the screen where you can
modify it.

This text editor provides commands with which you can change lines, print
lines, read and write files, and enter text. In addition, you can invoke the line editor
from a shell program; something you cannot do with the screen editor.

The line editor (ed) works well on video display terminals and paper printing
terminals. It will also work if you are using a slow-speed telephone line. (The
visual editor,vi, can be used only on video display terminals.) See the appendix
following Chapter 6 for a summary of line editor commands.

4-4 IRIS-4D User's Guide

()

The Shell

Every time you log in to the UNIX system you start communicating with the
shell you choose to work with, and continue to do so until you log off the system.
However, while you are using one of the text editors, your interaction with the shell
is suspended; it resumes as soon as you stop using the editor.

The shell is much like other programs, except that instead of performing one
job, as cat or Is does, it is central to yoUr interactions with the UNIX system. The
shell's primary function is to act as a command interpreter between you and the
computer system. As an interpreter, the shell translates your requests into language
the computer understands, calls requested programs into memory, and executes
them.

This section introduces methods of using the shell to enhance your ability to
use system features. In addition to using the shell to run a single program, you may
also use the shell to:

• interpret the name of a file or a directory you enter in an abbreviated way
using a type of shell shorthand

• redirect the flow of input and output of the programs you run

• execute multiple programs simultaneously or in a pipeline format

• tailor your computing environment to meet your individual needs

In addition to being the command language interpreter, the shell is a program­
ming language. For detailed information on how to use the Bourne shell as a com­
mand interpreter and a programming language, refer to Chapter 7. For information
on using the C shell, see Chapter 8.

Customizing Your Computing Environment

This section deals with another control provided by each of the shells: your
environment. When you log in to the UNIX system, the shell you choose automati­
cally sets up a computing environment for you. The default environment set up by
the Bourne shell includes these variables (the C shell variables are always lower­
case):

Overview of the Tutorials 4-5

The Shell

HOME

LOGNAME

PATH

your login directory

your login name

route the shell takes to search for executable files or com­
mands (typically PATH=:/bin:/usr/bin)

The PATH variable tells the shell where to look for the executable program
invoked by a command. Therefore it is used every time you issue a command. If
you have executable programs in more than one directory, you will want all of them
to be searched by the shell to make sure every command can be found.

You can use the default environment supplied by your system or you can tailor
an environment to meet your needs. If you choose to modify any part of your
environment, you can use either of two methods to do so. If you want to change a
part of your environment for the duration of your cunent computing session,
specify your changes in a command line (depending on the shell you are using, see
Chapters 7 or 8 for details). However, if you want to use a different environment
(not the default environment) regularly, you can specify your changes in a file that
will set up the desired environment for you automatically every time you log in.
This file must be called .proffie in the Bourne shell and must be located in your
home directory. (In the C shell, .login sets up your environment when you log in
and .cshrc sets up new environments as you open subsequent windows or new
shells.)

The .proffie and .login files typically perform some or all of the following
tasks: check for mail; set data parameters, terminal settings, and tab stops; assign a
character or character string as your login prompt; and assign the erase and kill
functions to keys. You can define as few or as many tasks as you want in your
.proffie or .login. You can also change parts of it at any time. For instructions on
modifying a .profile, see "Modifying Your Login Environment" in Chapter 7. To
modify your .login, see "Shell Startup and Termination" in Chapter 8.

If you are using the Bourne shell, check to see whether or not you have a
.profile. If you are not already in your home directory, cd to it. Then examine your
.proffie by issuing this command:

cat .proffie

If you have a .proffie, its contents will appear on your screen. If you do not have a

(

(

.profile you can create one with a text editor, sueh as ed or vi. (See "Modifying (
Your Login Environment" in Chapter 7 for instructions.) Follow the same pro-
cedure using the .login file if you are using the C shell.

4·6 IRIS-4D User's Guide

The Shell

Programming in the Shell

The shell is not only the command language interpreter; it is also a command
level programming language. This means that instead of always using the shell
strictly as a liaison between you and the computer, you can also program it to repeat
sequences of instructions automatically. To do this, you must create executable
files containing lists of commands. These files are called shell procedures or shell
scripts. Once you have a shell script for a particular task, you can simply request
that the shell read and execute the contents of the script whenever you want to per­
form that task.

Like other programming languages, the shell provides such features as vari­
ables, control structures, subroutines, and parameter passing. These features enable
you to create your own tools by linking together system commands.

For example, you can combine three UNIX system programs (the date, who,
and we commands) into a simple shell script called users that tells you the current
date and time, and how many users are working on your system. If you use the vi
editor (described in Chapter 5) to create your script, you can follow this procedure.
First, create the file users with the editor by typing

vi users<return>

The editor will draw a blank page on your screen and wait for you to enter text.

cursor

"users" [New file]

Enter the three UNIX system commands on one line:

Overview of the Tutorials 4·7

The Shell

date; who I we -I

Then write and quit the file. Make users executable by adding execute pennission
with the ehmod command.

chmod ug+x users<return>

Now try running your new command. The following screen shows the kind of out­
put you will get.

% users<return>
Sat Mar 1 16:40:12 EST 1986

4
%

The output tells you that four users were logged in on the system when you
typed the command at 16:40 on Saturday, March 1, 1986.

For step-by-step instructions on writing shell scripts and information about
more sophisticated Bourne shell and C shell programming techniques, see Chapter
7, "The Bourne Shell Tutorial", and Chapter 8, "An Introduction to the C Shell".

4·8 IRIS-4D User's Guide

(

(

(

Communicating Electronically

As a UNIX system user, you can send messages or transmit information stored
in files to other users who work on your system or another UNIX system. To do so,
you must be logged in on a UNIX system that is capable of communicating with the
UNIX system to which you want to send information. The command you use to
send information depends on what you are sending. This guide introduces you to
these communication programs:

mail

uucp

uuto/uupick

UUX

This command allows you to send messages or files to other
UNIX system users, using their login names as addresses. It
also allows you to receive messages sent by other users. mail
holds messages and lets the recipient read them at his or her
convenience.

This command is used to send files from one UNIX system to
another. (Its name is an acronym for UNIX to UNIX system
copy.) You can use uucp to send a file to a directory you
specify on a remote computer. When the file has been
transferred, the owner of the directory is notified of its arrival
by mail.

These commands are used to send and retrieve files. You can
use the uuto command to send a file to a public directory;
when it is available, the recipient is notified by mail that the
file has arrived. The recipient then can use the uupick com­
mand to copy the file from the public directory to a directory
of choice.

This command lets you execute commands on a remote com­
puter. It gathers files from various computers, executes the
specified command on these files, and sends the standard out­
put to a file on the specified computer.

Chapter 9 offers tutorials on each of these commands.

Overview of the Tutorials 4-9

Programming in the System

The UNIX system provides a powerful and convenient environment for pro­
gramming and software development, using the C programming language and FOR-
TRAN. The UNIX system provides some sophisticated tools designed to make (
software development easier and to provide a systematic approach to programming. . ..

For information on the general topic of programming in the UNIX system
environment, see theIRIS-4D Programmer's Guide. Besides supplementing texts
on programming languages, theIRIS-4D Programmer's Guide provides tutorials on
the following tools:

make

lex

yacc

maintains programs

generates programs for simple lexical tasks

generates parser programs

4-10 IRIS-4D User's Guide

(

(

The vi Ed itor
This chapter is a tutorial on the screen editor, vi (short for visual editor). The

vi editor is a powerful and sophisticated tool for creating and editing files. It is
designed for use with a video display terminal which is used as a window through
which you can view the text of a file. A few simple commands allow you to make
changes to the text that are quickly reflected on the screen.

The vi editor displays from one to many lines of text. It allows you to move the
cursor to any point on the screen or in the file (by specifying places such as the
beginning or end of a word, line, sentence, paragraph, or file) and create, change, or
delete text from that point. Also included in this chapter are some ex, or line editor
commands. ex commands include the powerful global commands which allow you
to change mUltiple occurrences of the same character string by issuing one com­
mand.

In order to use vi effectively you must know how to manipulate the text on
your screen. To move through the file, vi allows you to scroll the text forward or
backward, revealing the lines below or above the current window, as shown in Fig­
ure 5-1.

Not all terminals have text scrolling capability; whether or not you can take advan­
tage of vi's scrolling feature depends on what type of tenninal you have.

Screen Editor Tutorial (vi) 5-1

The vi Editor

TEXT FILE

You are in the screen editor.

This part of the file is above
the display window. You can
place it on the screen by
scrolling backward.

This part of the file
is in the display window.

You can edit it.

This part of the file is below
the display window. You can
place it on the screen by
scrolling forward.

Figure 5-1: Displaying a File with a vi Window

There are more than 100 commands within vi. This chapter covers the basic
commands that will enable you to use vi simply but effectively. Specifically, it
explains how to do the following tasks:

• set up your terminal so that vi is accessible

5-2 IRIS-4D User's Guide

()

(

The vi Editor

• enter vi, create text, delete mistakes, write the text to a file, and quit

• move text within a file

• electronically cut and paste text

• use special commands and shortcuts

• temporarily escape to the shell to execute shell commands

• use ex commands available within vi

• edit several files in the same session

• recover a file lost by an interruption to an editing session

• change your shell environment to set your terminal configuration and an
automatic carriage return

Suggestions for Reading this Tutorial
As you read this tutorial, keep in mind the notation conventions described in

the Preface. In the screens in this chapter arrows are also used to show the position
of the cursor.

The commands discussed in each section are reviewed at the end of the section.
At the end of some sections, exercises are given so you can experiment. The
answers to all the exercises are at the end of this chapter.

A list of vi commands is found in a perforated quick-reference card at the
beginning of this chapter. Tear it out and use it next to your workstation for quick
access to the vi commands.

The best way to learn vi is by doing the examples and exercises as you read the
tutorial. Log in on the UNIX system when you are ready to read this chapter.

Screen Editor Tutorial (vi) 5-3

Getting Started

The UNIX system is flexible; it can run on many types of computers and can be
accessed from many kinds of terminals. However, because it is internally struc-
tured to be able to operate in so many ways, it needs to know what kind of hardware (
is being used in a given situation. .

The UNIX system offers various optional features for using your terminal that
you may want to incorporate into your computing session routine. Your choice of
these options, together with your hardware specifications, comprise your login
environment. Once you have set up your login environment, the shell implements
these specifications and options automatically every time you log in.

This section describes two parts of the login environment: setting the terminal
configuration, which is essential for using vi properly, and setting the wrapmargin,
or automatic carriage return, which is optional.

Setting the Terminal Configuration

Before you enter vi, you must set your terminal configuration. This simply
means that you tell the UNIX system what type of terminal you are using. This is (
necessary because the software for vi is executed differently on different terminals.

Each type of terminal has several code names that are recognized by the UNIX
system. Appendix D, "Setting Up the Terminal," tells you how to find a recognized
name for your terminal. Keep in mind that many computer installations add termi­
nal types to the list of terminals your UNIX system supports. It is a good idea to
check with your local system administrator for the most up-to-date list of available
terminal types.

To set your terminal configuration, type

TERM=terminal name<return>
export TERM<return>
tput inikreturn>

The first line puts a value (a terminal type) in a variable called TERM. The second
line exports this value; it conveys the value to all UNIX system programs whose
execution depends on the type of terminal being used. (

The tput command on the third line initializes (sets up) the software in your
terminal so that it functions properly with the UNIX system. It is essential to run
the tput init command when you are setting your terminal configuration because
terminal functions such as tab settings will not work properly unless you do.

5-4 IRIS-4D User's Guide

Getting Started

Do not experiment by entering names for tenninal types other than your tenni­
nal. This might confuse the UNIX system, and you may have to log off, hang up, or
get help from your system administrator to restore your login environment.

Changing Your Environment

If you are going to use vi regularly, you should change your login environment
permanently so you do not have to configure your tenninal each time you log in.
Your login environment is controlled by a file in your home directory called .profile
in the Bourne shell. (For details, see Chapter 7.) .login controls the environment in
the C shell. (For details, see Chapter 8.)

If you specify the setting for your tenninal configuration in your .profile, your
terminal will be configured automatically every time you log in. You can do this by
adding the TERM assignment, export command, and tput command to your
.profile. (For detailed instructions, see Chapter 7.)

Setting the Automatic Return

To set an automatic return you must know how to create a file. If you are familiar
with another text editor, such as ed, follow the instructions in this section. If you
do not know how to use an editor but would like to have an automatic return set­
ting, skip this section for now and return to it when you have learned the basic
skills taught in this chapter.

If you want <return> to be entered automatically, create a file called .exrc in
your home directory. You can use the .exrc file to contain options that control the
vi editing environment.

To create a .exrc file, enter an editor with that file name. Then type in one line
of text: a specification for the wrapmargin (automatic carriage return) option. The
format for this option specification is

wm=n<return>

n represents the number of characters from the righthand side of the screen where
you want an automatic carriage return to occur. For example, say you want a car­
riage return at 20 characters from the righthand side of the screen. Type

wm=20<return>

Screen Editor Tutorial (vi) 5-5

Getling Started

Finally, write the buffer contents to the file and quit the editor (see "Text Editing
Buffers" in Chapter 4). The next time you log in,this file will give you an
automatic return.

To check your settings for the terminal and Wrapmargin when you are in vi, (
enter the command

:set<return>

vi will report the terminal type and the wrapmargio; as well as any other options
you may have specified. You can also use the :set command to create or change the
wrapmargin option. Try experimenting with it.

5-6 IRIS-4D User's Guide

(

(

Creating a File

To enter vi type vi and the name of the file you want to create or edit.

vi file name<returu>

For example, say you want to create a file called stutT. When you type the vi com­
mand with the file name stutT, vi clears the screen and displays a window in which
you can enter and edit text.

"stuff" [New file]

The _ (underscore) on the top line shows the cursor waiting for you to enter a
command there. (On video display terminals the cursor may be a blinking under­
score or a reverse color block.) Every other line is marked with a - (tilde), the sym­
bol for an empty line.

If, before entering vi, you have forgotten to set your terminal configuration or
have set it to the wrong type of terminal, you will see an error message.

Screen Editor Tutorial (vi) 5-7

Creating a File

% vi stuff<return>
terminal_name: unknown terminal type

[Using open model
"stuff" [New filel

You cannot set the tenninal configuration while you are in the editor; you must be
in the shell. Leave the editor by typing

: q<return>

Then set the correct tenninal configuration.

How to Create Text: the Append Mode

If you have successfully entered vi, you are in command mode and vi is waiting
for your commands. How do you create text?

• Press the A key «a» to enter the append mode of vi. (Do not press
<return>.) You can now add text to the file; (An A is not printed on the
screen.)

• Type in some text.

• To begin a new line, press <return>.

If you have specified the wrapmargin option in a .exrc file, you will get a
new line whenever you get an automatic return (see "Setting the Automatic
Return").

5·8 IRIS-4D User's Guide

('

(

(

Creating a File

How to Leave Append Mode

When you finish creating text, press <escape> to leave append mode and return
to command mode. Then you can edit any text you have created or write the text in
the buffer to a file.

<a>Create some text<return>
in the screen editor<return>
and return to<return>
command mode.<escape>

If you press <escape> and a bell sounds, you are already in command mode.
The text in the file is not affected by this, even if you press <escape> several times.

Screen Editor Tutorial (vi) 5-9

Editing Text: The Command Mode

To edit an existing file you must be able to add, change, and delete text. How­
ever, before you can perform those tasks you must be able to move to the part of the
file you want to edit. vi offers an array of commands for moving from page to page, ('
between lines, and between specified points in a line. These commands, along with
commands for deleting and adding text, are introduced in this section.

How to Move the Cursor

To edit your text, you need to move the cursor to the point on the screen where
you will begin the correction. This is easily done with four keys that are grouped
together on the keyboard: h, j, k, and 1.

<h> moves the cursor one character to the left

<j> moves the cursor down one line

<k> moves the cursor up one line

<I> moves the cursor one character to the right

The <j> and <k> commands maintain the column position of the cursor. For exam- (
pIe, if the cursor is on the seventh character from the left, when you type <j> or .
<k> it goes to the seventh character on the new line. If there is no seventh charac-
ter on the new line, the cursor moves to the last character.

Many people who use vi find it helpful to mark these four keys with arrows
showing the direction in which each key moves the cursor.

: q<return>

Some tenninals have special cursor control keys that are marked with arrows. Use
them in the same way you use the <h>, <.I>, <k>, and <I> commands.

Watch the cursor on the screen while you press <h>, <j>, <k>, and <I>.
Instead of pressing a motion command key a number of times to move the cursor a
corresponding number of spaces or lines, you can precede the command with the (
desired number. For example, to move two spaces to the right, you can press <I>
twice or enter <21>. To move up four lines, press <k> four times or enter <4k>. If
you cannot go any farther in the direction you have requested, vi will sound a bell.

5-10 IRIS-4D User's Guide

Editing Text: The Command Mode

Now experiment with the j and k motion commands. First, move the cursor up
seven lines. Type

<7k>

The cursor will move up seven lines above the current line. If there are less than
seven lines above the current line, a bell will sound and the cursor will remain on
the current line.

Now move the cursor down 35 lines. Type

<35j>

vi will clear and redraw the screen. The cursor will be on the thirty-fifth line below
the current line, appearing in the middle of the new window. If there are less than
35 lines below the current line, the bell will sound and the cursor will remain on the
current line. Watch what happens when you type the next command.

<35k>

Like most vi commands, the <h>, <j>, <k>, and <I> motion commands are
silent; they do not appear on the screen as you enter them. The only time you
should see characters on the screen is when you are in append or insert mode and
are adding text to your file. If the motion command letters appear on the screen,
you are still in append mode. Press <escape> to return to command mode and try
the commands again.

Moving the Cursor to the Right or Left

In addition to the motion command keys <h> and <I>, the space bar and the
backspace key can be used to move the cursor right or left to a character on the
current line.

<space bar>

<nspace bar>

<backspace>

<nbackspace>

move the cursor one character to the right

move the cursor n characters to the right

move the cursor one character to the left

move the cursor n characters to the left

Try typing a number before the command key. Notice that the cursor moves
the specified number of characters to the left or right. In the example below, the
cursor movement is shown by the arrows.

Screen Editor Tutorial (vi) 5-11

Editing Text: The Command Mode

To move the cursor quickly to the right or left, prefix a number to the com­
mand. For example, suppose you want to create four columns in your screen. After
you've finished typing the headings for the first three columns, you notice a typing
mistake.

Colurm 1 Column 2 column

i
<escape>

You want to correct your mistake before continuing. Exit insert mode and return to
command mode by pressing <escape>; the cursor will move to the n. Then use the
<h> command to move back five spaces.

Colurm 1 Column 2 column

Colurm 1 Column 2 column

5-12 IRIS·4D User's Guide

(

(

Editing Text: The Command Mode

Erase the c by typing <X>. Then change to insert mode «i», enter a C, followed
by pressing <escape>. Use the <I> motion command to return to your earlier posi­
tion.

Colurm 1 colurm 2 Colurm

t
<51>

Colurm 1 Colurm 2 Colurm

t

How to Delete Text

If you want to delete a character, move the cursor to that character and press
the <x>. Watch the screen as you do so; the character will disappear and the line
will readjust to the change. To erase three characters in a row, press <X> three
times. In the following examples, the arrows under the letters show the cursor posi­
tion.

<X>

<nx>

delete one character

delete n characters, where n is the number of characters
you want to delete

Screen Editor Tutorial (vi) 5-13

Editing Text: The Command Mode

Hello wurld!

Hello wrld!

Now try preceding <x> with the number of characters you want to delete. For
example, delete the second occurrence of the word deep from the text shown in the
following screen. Put the cursor on the first letter of the string you want to delete,
and delete five characters (for the four letters of deep plus an extra space).

Tomorrow the Loch Ness monster
shall slither forth from
the deep dark deep depths of the lake.

t

5·14 IRIS-4D User's Guide

(

(

(

Torrorrow the Loch Ness rronster
shall slither forth from
the deep dark depths of the lake.

t

Editing Text: The Command Mode

Notice that vi adjusts the text so that no gap appears in place of the deleted
string. If, as in this case, the string you want to delete happens to be a word, you
can also use the vi command for deleting a word. This command is described later
in the section "Word Positioning."

How to Add Text

There are two basic commands for adding text: the insert «i» and append
«a» commands. To add text with the insert command at a point in your file that is
visible on the screen, move the cursor to that point by using <h>, <j>, <k>, and
<I>. Then press <i> and start entering text. As you type, the new text will appear
on the screen to the left of the character on which you put the cursor. That charac­
ter and all characters to the right of the cursor will move right to make room for
your new text. The vi editor will continue to accept the characters you type until
you press <escape>. If necessary. the original characters will even wrap around
onto the next line.

Screen Editor Tutorial (vi) 5-15

Editing Text: The Command Mode

Hello Wrld!

Hello World!

<escape>

You can use the append command in the same way. The only difference is that
the new text will appear to the right of the character on which you put the cursor.

Later in this tutorial you willieam how to move around on the screen or scroll
through a file to add or delete characters, words, or lines.

5-16 IRIS-4D User's Guide

(

(

(

Quitting vi

When you have finished your text, you will want to write the buffer contents to
a file and return to the shell. To do this, hold down the shift key and press Z twice
«ZZ». The editor remembers the file name you specified with the vi command at
the beginning of the editing session, and moves the buffer text to the file of that
name. A notice at the bottom of the screen gives the file name and the number of
lines and characters in the file. Then the shell gives you a prompt.

<a> This is a test file. <return>
I am adding text to<return>
a temporary buffer and <return>
now it is perfect.<return>
I want to write this fiIe,<return>
and return to the shell.<escape><ZZ>

"stuff" [New file] 7 lines, 151 characters
%

You can also use the :w and :q commands of the line editor for writing and
quitting a file. (Line editor commands begin with a colon and appear on the bottom
line of the screen.) The :w command writes the buffer to a file. The:q command
leaves the editor and returns you to the shell. You can type these commands
separately or combine them into the single command :wq.

Screen Editor Tutorial (vi) 5-17

Quitting vi

<:1> This is a test file.<return>
I am adding text to <return>
a temporary buffer and<return>
now it is perfect.<return>
I want to write this file,<return>
and return to the shell.<escape>

:wq<return>
%

5-18 IRIS-4D User's Guide

(

(

(

Quitting vi

Figure 5-2 summarizes the basic commands you need to enter and use vi.

Command Function

TERM=lerminal name
export TERM set the terminal configuration

tput init initialize the terminal as defined by terminal_name

vi filename enter vi editor to edit the file called filename

<a> add text after the cursor

<h> move one character to the left

<j> move down one line

<k> move up one line

<I> move one character to the right

<x> delete a character

<return> carriage return

<escape> leave append mode, and return to vi
command mode

:w write to a file

:q quit vi

:wq write to a file and quit vi

<zz> write to a file and quit vi

Figure 5-2: Summary of Commands for the vi Editor

Screen Editor Tutorial (vi) 5-19

Exercise 1

Answers to the exercises are given at the end of this chapter. However, keep in
mind that there is often more than one way to perform a task in vi. If your method
works, it is correct.

As you give commands in the following exercises, watch the screen to see how
it changes or how the cursor moves.

1-1. If you have not logged in yet, do so now. Then set your terminal
configuration.

1-2. Enter vi and append the following five lines of text to a new file called
exerl.

This is an exercise!
Up, down,
left, right,
build your terminal's
muscles bit by bit

1-3. Move the cursor to the first line of the file and the seventh character from
the right. Notice that as you move up the file, the cursor moves in to the
last letter of the file, but it does not move out to the last letter of the next
line.

1-4. Delete the seventh and eighth characters from the right.

1-5. Move the cursor to the last character on the last line of the text.

1-6. Append the following new line of text:

and byte by byte

1-7. Write the buffer to a file and quit vi.

1-8. Reenter vi and append two more lines of text to the file exerl.
What does the notice at the bottom of the screen say once you have reen­
tered vi to edit exerl?

5·20 IRIS-4D User's Guide

(

(

(

Moving the Cursor Around the Screen

Until now you have been moving the cursor with the <h>, <j>, <k>, <1>, back­
space key, and the space bar. There are several other commands that can help you
move the cursor quickly around the screen. This section explains how to position
the cursor in the following ways:

• by characters on a line

• by lines

• by text objects

D words

D sentences

D paragraphs

• in the window

There are also commands that position the cursor within parts of the vi editing
buffer that are not visible on the screen. These commands will be discussed in the
section, "Positioning the Cursor in Undisplayed Text."

To follow this section of the tutorial, you should enter vi with a file that con­
tains at least 40 lines. If you do not have a file of that length, create one now.
Remember, to execute the commands described here, you must be in command
mode of vi. Press <escape> to make sure that you are in command mode rather
than append mode.

Positioning the Cursor on a Character

There are three ways to position the cursor on a character in a line.

• by moving the cursor right or left to a character

• by specifying the character at either end of the line

• by searching for a character on a line

The first method was discussed earlier in this chapter under "Moving the Cursor to
the Right or Left." The following sections describe the other two methods.

Screen Editor Tutorial (vi) 5-21

Moving the Cursor Around the Screen

Moving the Cursor on a Line

The second method of positioning the cursor on a line is by using one of three
commands that put the cursor on the first or last character of a line.

<0> (zero)

<A> (circumflex)

puts the cursor on the last character of a line

puts the cursor on the first character of a line

puts the cursor on the first nonblank character of a line

The following examples show the movement of the cursor produced by each of
these three commands.

Go to the end of the line!

Go to the end of the line!

t

5·22 IRIS·4D User's Guide

(

(

(

Go to the beginning of the line!

t
<0>

Go to the beginning of the line!

I

Go to the first character
of the line

that is not blank!

t
<A>

Go to the first character
of the line

that is not blank!

t

Moving the Cursor Around the Screen

Screen Editor Tutorial (vi) 5-23

Moving the Cursor Around the Screen

Searching for a Character on a Line

The third way to position the cursor on a line is to search for a specific charac-
ter on the current line. If the character is not found on the current line, a bell sounds (
and the cursor does not move. (There is also a command that searches a file for pat-
terns. This will be discussed in the next section.) There are six commands you can
use to search within a line: <f>, <F>, <t>, <T>, <;>, and <,>. You must specify a
character after all of them except the <;> and <,> commands.

<fx> Move the cursor to the right to the specified character x.

<Fx> Move the cursor to the left to the specified character x.

<tx> Move the cursor right to the character just before the specified charac­
ter x.

<Tx> Move the cursor left to the character just after the specified character x.

<;> Continue the search specified in the last command, in the same direc­
tion. The; remembers the character and seeks out the next occurrence
of that character on the current line.

<,> Continue the search specified in the last command, in the opposite
direction. The, remembers the character and seeks out the previous
occurrence of that character on the current line.

For example, in the following screen vi searches to the right for the first
occurrence of the letter A on the current line.

Go forward to the letter A on this line.

I
Go forward to the letter A on this line.

I

Try the search commands on one of your files.

5-24 IRIS-4D User's Guide

(

(

Moving the Cursor Around the Screen

Line Positioning

Besides the <j> and <k> commands that you have already used, the <+>, <->,
and <return> commands can be used to move the cursor to other lines.

The Minus Sign Motion Command
The <-> command moves the cursor up a line, positioning it at the first non­

blank character on the line. To move more than one line at a time, specify the
number of lines you want to move before the <-> command. For example, to move
the cursor up 13 lines, type:

<13->

The cursor will move up 13 lines. If some of those lines are above the current win­
dow, the window will scroll up to reveal them.

Now try to move up 100 lines. Type:

<100->

What happened to the window? If there are less then 100 lines above the current
line a bell will sound, telling you that you have made a mistake, and the cursor will
remain on the current line.

The Plus Sign Motion Command

The plus sign command «+>) or the <return> command moves the cursor
down a line. Specify the number of lines you want to move before the <+> com­
mand. For example, to move the cursor down nine lines, type:

<9+>

If some of those lines are below the current screen, the window will scroll down to
reveal them.

Now try to do the same thing by pressing <return>. Were the results the same
as when you pressed the + key?

Word Positioning

The vi editor considers a word to be a string of characters that may include
letters, numbers, or underscores. There are six word positioning commands: <W>,
, <e>, <W>, , and <E>. The lowercase commands «w>, , and <e»
treat any character other than a letter, digit, or underscore as a delimiter, signifying

Screen Editor Tutorial (vi) 5-25

Moving the Cursor Around the Screen

the beginning or end of a word. Punctuation before or after a blank is considered a
word. The beginning or end of a line is also a delimiter.

The uppercase commands «W>, , and <E» treat punctuation as part of
the word; words are delimited by blanks and new lines only.

The following is a summary of the word positioning commands.

<w> Move the cursor forward to the first character in the next word. You
may press <w> as many times as you want to reach the word you
want, or you can prefix the necessary number to the <w>.

<nw> Move the cursor forward n number of words to the first character of
that word. The end of the line does not stop the movement of the cur­
sor; instead, the cursor wraps around and continues counting words
from the beginning of the next line.

The <w> corrmand
leaps word by word through the
file. Mlve from THIS word forward

«w>l
six words to THIS word.

t

5-26 IRIS-4D User's Guide

(

(

(

The <w> corrroand
leaps word by word through the
file. Move from THIS word forward
six words to THIS word.

1

Moving the Cursor Around the Screen

<W> Ignore all punctuation and move the cursor forward to the word after
the next blank.

<e> Moves the cursor forward in the line to the last character in the next
word.

Go forward one word to the end of
the next word in this line

r
<e>

Screen Editor Tutorial (vi) 5-27

Moving the Cursor Around the Screen

Go forward one word to the end of
the next word in this line

t

Go to the end of the third word after the current word.

t

Go to the end of the third word after the current word.

<E> Ignores all punctuation except blanks, delimiting words only by
blanks.

5-28 IRIS-4D User's Guide

(

(

(

Moving the Cursor Around the Screen

 Move the cursor backward in the line to the first character of the previ­
ousword.

<nb> Move the cursor backward n number of words to the first character of
the nth word. The command does not stop at the beginning of a
line, but moves to the end of the line above and continues moving
backward.

 Can be used just like the command, except that it delimits the
word only by blank spaces and new lines. It treats all other punctua­
tion as letters of a word.

Leap backward word by word through
the file. Go back four words from here.

r
<4b>

the file. Go back four words from here.

I

Screen Editor Tutorial (vi) 5-29

Moving the Cursor Around the Screen

Positioning the Cursor by Sentences

The vi editor also recognizes sentences. In vi a sentence ends in ! or . or ?
If these delimiters appear in the middle of a line, they must be followed by two
blanks for vi to recognize them. You should get used to the vi convention of recog­
nizing two blanks after a period as the end of a sentence, because it is often useful
to be able to operate on a sentence as a unit.

You can move the cursor from sentence to sentence in the file with the «>
(open parenthesis) and <» (close parenthesis) commands.

< (> Move the cursor to the beginning of the current sentence.

< n(> Move the cursor to the beginning of the nth sentence above the current
sentence.

<) > Move the cursor to the beginning of the next sentence.

< n) > Move the cursor to the beginning of the nth sentence below the current
sentence.

(

The example in the following screens shows how the open parenthesis moves (
the cursor around the screen.

Suddenly we spotted whales in the
distance. Daniel was the first to see them.

t
«>

(

5-30 IRIS-4D User's Guide

Moving the Cursor Around the Screen

distance. Daniel was the first to see them.

t

Now repeat the command, preceding it with a number. For example, type:

<3(> (or)
<5»

Did the cursor move the correct number of sentences?

Positioning the Cursor by Paragraphs

vi recognizes paragraphs if they begin after a blank line. If you want to be able
to move the cursor to the beginning of a paragraph (or later in this tutorial, to delete
or change a whole paragraph), then make sure each paragraph ends in a blank line.

<}>

<n}>

Move the cursor to the beginning of the current paragraph,
which is delimited by a blank line above it.

Move the cursor to the beginning of the nth paragraph above
the current paragraph.

Move the cursor to the beginning of the next paragraph.

Move the cursor to the nth paragraph below the current line.

The following two screens show how the cursor can be moved to the beginning
of another paragraph.

Screen Editor Tutorial (vi) 5·31

Moving the Cursor Around the Screen

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

t
<}>

"Hey look! Here carre the whales!" he cried excitedly.

Suddenly, we spotted whales in the

distance. Daniel was the first to see them .

..
"Hey look! Here carre the whales!" he cried excitedly.

Positioning in the Window

The vi editor also provides three commands that help you position the cursor in
the window. Try out each command. Be sure to type them in uppercase.

Move the cursor to the first line on the screen.

Move the cursor to the middle line on the screen.

Move the cursor to the last line on the screen.

5-32 IRIS-4D User's Guide

(

(

(

Moving the Cursor Around the Screen

This part of the file is
above the display window.

Type <H> (Home) to move the cursor here.

t
Type <M> (Middle) to move the cursor here.

t
Type <L> (Last line on screen) to move t the cursor here.

This part of the file is
below the display window.

Figures 5-3 through 5-6 summarize the vi commands for moving the cursor by
positioning it on a character, line, word, sentence, paragraph, or position on the
screen. (Additional vi commands for moving the cursor are summarized in Figure
5-7, later in the chapter.)

Screen Editor Tutorial (vi) 5-33

Moving the Cursor Around the Screen

Positioning on a Character

<h> Move the cursor one character to the left.

<I> Move the cursor one character to the right.
(

<backspace> Move the cursor one character to the left.

<space bar> Move the cursor one character to the right.

<fx> Move the cursor to the right to the specified character
x.

<Fx> Move the cursor to the left to the specified character
x.

<tx> Move the cursor to the right, to the character just
before the specified character x.

<Tx> Move the cursor to the left, to the character just after (
the specified character x.

<;> Continue searching in same direction on the line for
the last character requested with <f>, <F>, <b, or
<T>. The ; remembers the character and finds the
next occurrence of it on the current line.

<,> Continue searching in opposite direction on the line
for the last character requested with <f>, <F>, <b,
or <T>. The, remembers the character and finds
the next occurrence of it on the current line.

Figure 5-3: Summary of vi Motion Commands (Sheet 1 of 4)

(

5-34 IRIS-4D User's Guide

Moving the Cursor Around the Screen

Positioning on a Line

<k> Move the cursor up to the same column in the previous
line (if a character exists in that column).

<j> Move the cursor down to the same column in the next line
(if a character exists in that column).

<-> Move the cursor up to the beginning of the previous line.

<+> Move the cursor down to the beginning of the next line.

<return> Move the cursor down to the beginning of the next line.

Figure 5-4: Summary of vi Motion Commands (Sheet 2 of 4)

Screen Editor Tutorial (vi) 5-35

Moving the Cursor Around the Screen

Positioning on a Word

<W> Move the cursor forward to the first character in the next
word. (

<W> Ignore all punctuation and move the cursor forward to the
next word delimited only by blanks.

<h> Move the cursor backward one word to the first character
of that word.

 Move the cursor to the left one word, which is delimited
only by blanks.

<e> Move the cursor to the end of the current word.

<E> Delimit the words by blanks only. The cursor is placed
on the last character before the next blank space, or end
of the line. (

Figure 5-5: Summary of vi Motion Commands (Sheet 3 of 4)

(

5-36 IRIS-4D User's Guide

Moving the Cursor Around the Screen

Positioning on a Sentence

«> Move the cursor to the beginning of the current sentence.

<» Move the cursor to the beginning of the next sentence.

Positioning on a Paragraph

<{> Move the cursor to the beginning of the current para-
graph.

<}> Move the cursor to the beginning of the next paragraph.

Positioning in the Window

<H> Move the cursor to the first line on the screen (the home
position).

<M> Move the cursor to the middle line on the screen.

<L> Move the cursor to the last line on the screen.

Figure 5-6: Summary of vi Motion Commands (Sheet 4 of 4)

Screen Editor Tutorial (vi) 5·37

Positioning the Cursor in Undisplayed Text

How do you move the cursor to text that is not shown in the current editing
window? One option is to use the <20j> or <20k> command. However, if you are
editing a large file, you need to move quickly and accurately to another place in the (
file. This section covers those commands that can help you move around within the
file in the following ways:

• by scrolling forward or backward in the file

• by going to a specified line in the file

• by searching for a pattern in the file

Scrolling the Text

Four commands allow you to scroll the text of a file. The <ctrl·f> and <ctrl­
d> commands scroll the screen forward. The <ctrl.b> and <ctrl-u> commands
scroll the screen backward.

The <ctrl-f> Command

The <ctrl-f> command scrolls the text forward one full window of text below
the current window. To do this vi clears the screen and redraws the window. The
three lines that were at the bottom of the current window are placed at the top of the
new window. If there are not enough lines left in the file to fill the window, the
screen displays a - (tilde) to show that there are empty lines.

vi clears and redraws the screen as follows:

5-38 IRIS-4D User's Guide

(

(

Positioning the Cursor In Undisplayed Text

These last three lines of the current
window become the first two lines of
the new window.

This part of the file
is below the display
window.

You can scroll forward
to place this text in the
display window.

The <ctrl-d> Command

The <ctrl-d> command scrolls down a half screen to reveal text below the win­
dow. When you type <ctrl-d>, the text appears to be rolled up at the top and
unrolled at the bottom. This allows the lines below the screen to appear on the
screen, while the lines at the top of the screen disappear. If there are not enough
lines in the file, a bell will sound.

The <ctrl-b> Command

The <ctrl-b> command scrolls the screen back a full window to reveal the text
above the current window. To do this, vi clears the screen and redraws the window
with the text that is above the current screen. Unlike the <ctrl-f> command, <ctrl­
b> does not leave any reference lines from the previous window. If there are not
enough lines above the current window to fill a full new window, a bell will sound
and the current window will remain on the screen.

Screen Editor Tutorial (vi) 5-39

Positioning the Cursor in Undisplayed Text

This part of the file
is above the display
window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is re­
drawn with the text above the window.

Now try scrolling backward. Type

<ctrl-b>

vi clears the screen and draws a new screen.

This part of the file
is above the display window.

You can scroll backward
to place this text in the
display window.

Any text in this display window
will be placed below the current
window.
The current window clears and is
redrawn with the text above the
window.

Any text that was in the display window is placed below the current window.

5·40 IRIS·4D User's Guide

(

(

(

Positioning the Cursor in Undisplayed Text

The <ctrl-u> Command

The <ctrl-u> command scrolls up a half screen of text to reveal the lines just
above the window. The lines at the bottom of the window are erased. Now scroll
down in the text, moving the portion below the screen into the window. Type:

<ctrl-u>

When the cursor reaches the top of the file, a bell sounds to notify you that the file
cannot scroll further.

Go to a Specified Line

The <G> command positions the cursor on a specified line in the window; if
that line is not currently on the screen, <G> clears the screen and redraws the win­
dow around it. If you do not specify a line, <G> goes to the last line of the file.

<G> go to the last line of the file

<nG> go to the nth line of the file

Line Numbers

Each line of the file has a line number corresponding to its position in the
buffer. To get the number of a particular line, position the cursor on it and type
<ctrl-g>. The <ctrl-g> command gives you a status notice at the bottom of the
screen which tells you:

• the name of the file

• if the file has been modified

• the line number on which the cursor rests

• the total number oflines in the buffer

• the percentage of the total lines in the buffer represented by the current line

Screen Editor Tutorial (vi) 5-41

Positioning the Cursor in Undisplayed Text

This line is the 35th line of the buffer.

<ctrl-g>

There are several more lines in the
buffer_

"file.narre" [modified] line 36 of 116 --34%--

Searching for a Pattern of Characters

(

The fastest way to reach a specific place in your text is by using one of the
search commands: I,?, <n>, or <N>. These commands allow you to search for­
ward or backward in the buffer for the next occurrence of a specified character pat-
tern. The I and ? commands are not silent; they appear as you type them, along (
with the search pattern, on the bottom of the screen. The <n> and <N> commands,
which allow you to repeat the requests you made for a search with a I or ? com-
mand, are silent.

The I, followed by a pattern (/pattern), searches forward in the buffer for the
next occurrence of the characters in pattern, and puts the cursor on the first of those
characters. For example, the command line

!Hello world<return>

finds the next occurrence in the buffer of the words Hello world and puts the cursor
under the H.

The?, followed by a pattern (?pattern), searches backward in the buffer for the
first occurrence of the characters in pattern, and puts the cursor on the first of those
characters. For example, the command line

?data set design<return>

finds the last occurrence in the buffer (before your current position) of the words
data set design and puts the cursor under the d in data.

5·42 IRIS-4D User's Guide

(

Positioning the Cursor in UndispJayed Text

These search commands do not wrap around the end of a line while searching
for two words. For example, say you are searching for the words Hello world. If
Hello is at the end of one line and world is at the beginning of the next, the search
command will not find that occurrence of Hello world.

However, they do wrap around the end or the beginning of the buffer to con­
tinue a search. For example, if you are near the end of the buffer, and the pattern
for which you are searching (with the /pattern command) is at the top of the buffer,
the command will find the pattern.

The <n> and <N> commands allow you to continue searches you have
requested with /pattern or ?pattern without retyping them.

<n> Repeat the last search command.

<N> Repeat the last search command in the opposite direction.

For example. say you want to search backward in the file for the three-letter pattern
the. Initiate the search with ?the and continue it with <0>. The following screens
offer a step-by-step illustration of how the <0> searches backward through the file
and finds four occurrences of the character string the.

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

"Hey look! Here come the whales!" he cried excitedly.

?the

Screen Editor Tutorial (vi) 5-43

Positioning the Cursor in Undisplayed Text

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

"Hey look! -. -r ;;bale,'" he cried excibilly.
(

(1)

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

"Hey look! Here corre the whales!" he cried excitedly.

r
(

<n>

(

5-44 IRIS-4D User's Guide

Positioning the Cursor In Undisplayed Text

Suddenly, we sp::>tted whales in the
distance. Daniel was the first to

(2)

"Hey look! Here come the whales!" he cried excitedly.

Suddenly, we sp::>tted whales in the
distance. Daniel was the first to see them.

1
<n>

"Hey look! Here come the whales!" he cried excitedly.

Screen Editor Tutorial (vi) 5-45

Positioning the Cursor in Undisplayed Text

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

I (
(3)

"Hey look! Here carre the whales!" he cried excitedly.

Suddenly, we spotted whales in the
distance. Daniel was the first to see them.

1
<D>

(
"Hey look! Here carre the whales!" he cried excitedly.

Suddenly, we spotted whales in the

1
(4)

distance. Daniel was the first to see them.

"Hey look! Here carre the whales!" he cried excitedly.
(

5-46 IRIS-4D User's Guide

Positioning the Cursor in Undisplayed Text

The / and? search commands do not allow you to specify particular
occurrences of a pattern with numbers. You cannot, for example, request the third
occurrence (after your current position) of a pattern.

Figure 5-7 summarizes the vi commands for moving the cursor by scrolling the
text, specifying a line number, and searching for a pattern.

Screen Editor Tutorial (vi) 5-47

Positioning the Cursor in Undisplayed Text

Scrolling

<ctrl-f> Scroll the screen forward a full window, revealing the window
of text below the current window.

<ctrl-d> Scroll the screen down a half window, revealing lines below
(

the current window.

<ctrl-b> Scroll the screen back a full window, revealing the window of
text above the current window.

<ctrl-u> Scroll the screen up a half window, revealing the lines of text
above the current window.

Positioning on a Numbered Line

<1G> Go to the first line of the file.

<G:> Go to the last line of the file.

<ctrl-g:> Give the line number and file status.

Searching for a Pattern (
/pattern Search forward in the buffer for the next occurrence of the

pattern. Position the cursor on the first character of the pat-
tern.

?pattern Search backward in the buffer for the first occurrence of the
pattern. Position the cursor under the first character of the
pattern.

<n:> Repeat the last search command.

<N:> Repeat the search command in the opposite direction.

Figure 5-7: Summary of Additional vi Motion Commands

(

5-48 IRIS-4D User's Guide

Exercise 2

2-1. Create a file called exer2. Type a number on each line, numbering the
lines from 1 to 50. Your file should look similar to the following.

1
2
3

48
49
50

2-2. Try using each of the scroll commands, noticing how many lines scroll
through the window. Try the following:

<ctrl-f>
<ctrl-b>
<ctrl-u>
<ctrl-d>

2-3. Go to the end of the file. Append the following line of text.

123456789 123456789

What number does the command <7h> place the cursor on? What number
does the command <3b place the cursor on?

2-4. Try the command <$> and the command <0> (number zero).

Screen Editor Tutorial (vi) 5-49

Exercise 2

2-5. Go to the first character on the line that is not a blank. Move to the first
character in the next word. Move back to the first character of the word to
the left. Move to the end of the word.

2-6. Go to the first line of the file. Place the cursor in the middle of the window, (­
on the last line of the window, and on the first line of the window.

2-7. Search for number 8. Find the next occurrence of number 8. Find 48.

(

(

5-50 IRIS-4D User's Guide

Creating Text

There are three basic commands for creating text:

<a> append text

<i> insert text

<0> open a new line on which text can be entered

Mter you finish creating text with anyone of these commands, you can return
to the command mode of vi by pressing <escape>.

Appending Text

<a> append text after the cursor

<A> append text at the end of the current line

You have already experimented with the <a> command in the "Creating a File"
section. Make a new file named junk2. Append some text using the <a> com­
mand. To return to command mode of vi, press <escape>. Then compare the <a>
command to the <A> command.

Inserting Text

<i> insert text before the cursor

<I> insert text at the beginning of the current line before the first character
that is not a blank:

To return to the command mode of vi, press <escape>.

In the following examples you can compare the append and insert commands.
The arrows show the position of the cursor, where new text will be added.

Screen Editor Tutorial (vi) 5-51

Creating Text

Append three spaces AFTER the H of Here

t (

Append three spaces AFTER the H of H

<escape>

Insert three spaces BEFDRE the H of Here.

t
(

Insert three spaces BEFDRE the H of Here .

<escape>

Notice that in both cases, the user has left text input mode by pressing <escape>.

(

5-52 IRIS-4D User's Guide

Creating Text

Opening a Line for Text

<0> Create text from the beginning of a new line below the current line.
You can issue this command from any point in the current line.

<0> Create text from the beginning of a new line above the current line.
This command can also be issued from any position in the current line.

The open command creates a blank line directly above or below the current
line, and puts you into text input mode. For example, in the following screens the
<0> command opens a line above the current line, and the <0> command opens a
line below the current line. In both cases, the cursor waits for you to enter text from
the beginning of the new line.

Create text ABOVE the current line.

t
[blank line]
t Create text ABOVE the current line.

Screen Editor Tutorial (vi) 5-53

Creating Text

Now create text BELOW the current line.

r
<0>

Now create text BELOW the current line.
[blank line]

t

Figure 5-8 summarizes the commands for creating and adding text with the vi
editor.

5-54 IRIS-4D User's Guide

(

(

(

Creating Text

Command Function

<a> Create text after the cursor.

<A> Create text at the end of the current line.

<i> Create text in front of the cursor.

<I> Create text before the first character on
the current line that is not a blank.

<0> Create text at the beginning of a new
line below the current line.

<0> Create text at the beginning of a new
line above the current line.

<escape> Return vi to command mode from any
of the above text input modes.

Figure 5-8: Summary of vi Commands for Creating Text

Screen Editor Tutorial (vi) 5-55

Exercise 3

3-1. Create a text file called exer3.

3-2. Insert the following four lines of text.

Append text
Insert text
a computer's
job is boring.

3-3. Add the following line of text above the last line:

financial statement and

3-4. Using a text insert command, add the following line of text above the third
line:

Delete text

3-5. Add the following line of text below the current line:

byte of the budget

3-6. Using an append command, add the following line of text below the last
line:

But, it is an exciting machine.

3-7. Move to the first line and add the word some before the word text.

Now practice using each of the six commands for creating text.

3-8. Leave vi and go on to the next section to find out how to delete any mis­
takes you made in creating text.

5-56 IRIS-4D User's Guide

(

(

(

Deleting Text

You can delete text with various commands in command mode, and undo the
entry of small amounts of text in text input mode. In addition, you can undo
entirely the effects of your most recent command.

Undoing Entered Text in Text Input Mode

To delete a character at a time when you are in text input mode use the back­
space key.

The backspace key backs up the cursor in text input mode and deletes each
character that the cursor backs across. However, the deleted characters are not
erased from the screen until you type over them or press <escape> to return to com­
mandmode.

In the following example, the arrows represent the cursor.

Mary had a litttl

<backspace> <backspace>

Mary had a litttl

<escape>

Mary had a litt

Notice that the characters are not erased from the screen until you press <escape>.

There are two other keys that delete text in text input mode. Although you may
not use them often, you should be aware that they are available. To remove the spe­
cial meanings of these keys so that they can be typed as text, see the section on spe­
cial commands.

Screen Editor Tutorial (vi) 5-57

Deleting Text

When you type <ctrl-w>, the cursor backs up over the word last typed and
waits on the first character. It does not literally erase the word until you press
<escape> or enter new characters over the old ones. The @ sign behaves in a simi­
lar manner except that it removes all text you have typed on the current line since
you last entered input mode. (

Undo the Last Command

Before you experiment with the delete commands, you should try the u com­
mand. This command undoes the last command you issued.
Undo the last command." Ijust

Command Function

<a> Create text after the cursor.

<A> Create text at the end of the current line.

<i> Create text in front of the cursor.

<I> Create text before the first character on
the current line that is not a blank.

<0> Create text at the beginning of a new
line below the current line.

<0> Create text at the beginning of a new
line above the current line.

<escape> Return vi to command mode from any
of the above text input modes.

Figure 5-8: Summary of vi Commands for Creating Text

<u> undo the last command

<U> restore the current line to its state before you changed it

5-58 IRIS-4D User's Guide

(

(

Deleting Text

If you delete lines by mistake, type <u>; your lines will reappear on the
screen. If you type the wrong command, type <u> and it will be nullified. The
<U> command will nullify all changes made to the current line as long as the
cursor has not been moved from it.

If you type <u> twice in a row, the second command will undo the first;
your undo will be undone! For example, say you delete a line by mistake and
restore it by typing <u>. Typing <u> a second time will delete the line again.
Knowing this command can save you a lot of trouble.

Delete Commands in Command Mode

You know that you can precede a command by a number. Many of the com­
mands in vi, such as the delete and change commands, also allow you to enter a cur­
sor movement command after another command. The cursor movement command
can specify a text object such as a word, line, sentence, or paragraph. The general
format of a vi command is:

[number] [command] text_object

The brackets around some components of the command format show that those
components are optional.

All delete commands issued in command mode immediately remove unwanted
text from the screen and redraw the affected part of the screen.

The delete command follows the general format of a vi command.

[number]dtext _object

Deleting Words

You can delete a word or part of a word with the <dw> command. Move the
cursor to the first character to be deleted and type <dw>. The character under the
cursor and all subsequent characters in that word will be erased.

Screen Editor Tutorial (vi) 5-59

Deleting Text

the deep dark depths of the lake.

t

the dark depths of the lake.

t

The <dw> command deletes one word or punctuation mark and the space(s)
that follow it. You can delete several words or marks at once by specifying a
number before the command. For example, to delete three words and two commas,
type <5dw>.

the deep, deep, dark depths of the lake

I
<Sdw>

5·60 IRIS-4D User's Guide

(

(

(

the depths of the lake

Deleting Paragraphs

To delete paragraphs, use the following commands.

<d{> or <d}>

Deleting Text

Observe what happens to your file. Remember, you can restore the deleted text
with <u>.

Deleting Lines

To delete a line, type <dd>. To delete multiple lines, specify a number before
the command. For example, typing

dOdd>

will erase 10 lines. If you delete more than a few lines, vi will display this notice on
the bottom of the screen:

10 lines deleted

If there are less than 10 lines below the current line in the file, a bell will sound and
no lines will be deleted.

Deleting Text After the Cursor

To delete all text on a line after the cursor, put the cursor on the first character
to be deleted and type

<D> or <d$>.

Neither of these commands allows you to specify a number of lines; they can be
used only on the current line.

Screen Editor Tutorial (vi) 5-61

Deleting Text

Figure 5-9 summarizes the vi commands for deleting text.

Command Function (
For INSERT Mode:

<backspace> Delete the current character.

<ctrl-h> Delete the current character.

<ctrl-W> Delete the current word.

<@> Delete the current line of new text or
delete all new text on the current line.

For COMMAND Mode:

<u> Undo the last command.

<U> Restore current line to its previous state.

<x> Delete the current character.

<mix> Delete n number of text objects of type x. (
<dw> Delete the word at the cursor through the

next space or to the next punctuation
mark.

<dW> Delete the word and punctuation at the
cursor through the next space.

<dd> Delete the current line.

<D> Delete the portion of the line to the right
of the cursor.

<d» Delete the current sentence.

<d}> Delete the current paragraph.

Figure 5-9: Summary of Delete Commands (

5·62 IRIS-4D User's Guide

Exercise 4

4-1. Create a file called exer4 and put the following four lines of text in it:

When in the course of human events
there are many repetitive, boring
chores, then one ought to get a
robot to perform those chores.

4-2. Move the cursor to line two and append to the end of that line:

tedious and unsavory.

Delete the word unsavory while you are in append mode.

Delete the word boring while you are in command mode.

What is another way you could have deleted the word boring?

4-3. Insert at the beginning of line four:

congenial and computerized.

Delete the line.

How can you delete the contents of the line without removing the line
itself?

Delete all the lines with one command.

4-4. Leave the screen editor and remove the empty file from your directory.

Screen Editor Tutorial (vi) 5-63

Modifying Text

The delete commands and text input commands provide one way for you to
modify text. Another way you can change text is by using a command that lets you
delete and create text simultaneously. There are three basic change commands:
<r>, <s>, and <c>.

Replacing Text

<r> Replace the current character (the character shown by the cursor).
This command does not initiate text input mode, and so does not need
to be followed by pressing <escape>.

<nr> Replace n characters with the same letter. This command automati­
cally terminates after the nth character is replaced. It does not need to
be followed by <escape>.

<R> Replace only those characters typed over until the escape command is
given. If the end of the line is reached, this command will append the
input as new text.

The <r> command replaces the current character with the next character that is
typed in. For example, suppose you want to change the word acts to ants in the fol­
lowing sentence:

The circus has mmy acts.

Place the cursor under the c of acts and type

<r>D

The sentence becomes

The circus has mmy ants.

To change mmy to 7777, place the cursor under the m of rranyand type

<4r7>

The <r> command changes the four letters of mmy to four occurrences of the
number seven.

The circus has 7777 ants.

5-64 IRIS-4D User's Guide

(

(

(

Modifying Text

Substituting Text

The substitute command replaces characters, but then allows you to continue to
insert text from that point until you press <escape>.

<s> Delete the character shown by the cursor and append text. End the text
input mode by pressing <escape>.

<ns> Delete n characters and append text. End the text input mode by press­
ing <escape>.

<S> Replace all the characters in the line.

When you enter the <s> command, the last character in the string of characters
to be replaced is overwritten by a $ sign. The characters are not erased from the
screen until you type over them, or leave text input mode.

Notice that you cannot use an argument with either <f> or <s>. Did you try?

Suppose you want to substitute the word million for the word hundred in the
sentence My salary is one hundred dollars. Put the cursor under the h of
hundred and type <7s>. Notice where the $ sign appears.

My salary is one hundred dollars.

t

Then type million.

Screen Editor Tutorial (vi) 5-65

Modifying Text

My salary is one hundre$ dollars.

t
million

My salary is one million dollars.

Changing Text

The substitute command replaces characters. The change command replaces
text objects, and then continues to append text from that point until you press
<escape>.

The change command can take an argument. You can replace a character,
word, or an entire line with new text.

<ncx>

<cw>

Replace n number of text objects of type x, such as sentences
(shown by <») and paragraphs (shown by <}».

Replace a word or the remaining characters in a word with new
text. The vi editor prints a $ sign to show the last character to be
changed.

5-66 IRIS-4D User's Guide

(

(

(

<ncw>

<cc>

<ncc>

Modifying Text

Replace n words.

Replace all the characters in the line.

Replace all characters in the current line and up to n lines of text.

Replace the remaining characters in the line, from the cursor to
the end of the line.

Replace the remaining characters from the cursor in the current
line and replace all the lines following the current line up to n
lines.

The change commands, <cw> and <C>, use a $ sign to mark the last letter to
be replaced. Notice how this works in the following example:

They are now due to arrive on Tuesday.

I
<cW>

They are now due to arrive on Tuesda$.

t
VVednesday<escape>

Screen Editor Tutorial (vi) 5-67

Modifying Text

They are now due to arrive on Wednesday.

t

Notice that the new word (W3dnesday) has more letters than the word it replaced
(Tuesday). Once you have executed the change command you are in text input
mode and can enter as much text as you want. The buffer will accept text until you
press <escape>.

The <C> command, when used to change the remaining text on a line, works in
the same way. When you enter the command it uses a $ sign to mark the end of the
text that will be deleted, puts you in text input mode, and waits for you to type new
text over the old. The following screens offer an example of the C command.

This is line 1.
Oh, I must have the wrong number.

I
This is line 3.
This is line 4.

5-68 IRIS-4D User's Guide

(

(

(

This is line 1.

Oh, I must have the wrong nurrber$

This is line 2.<escape>
This is line 3.
This is line 4.

This is line 1.
This is line 2.
This is line 3.
This is line 4.

Modifying Text

Now try combining arguments. For example, type

<c{>

Because you know the undo command, do not hesitate to experiment with different
arguments or to precede the command with a number. You must press <escape>
before using the <u> command, since <c> places you in text input mode.

Compare <S> and <cc>. The two commands should produce the same results.

Figure 5-10 summarizes the vi commands for changing text.

Screen Editor Tutorial (vi) 5·69

Modifying Text

Command Function

<r> Replace the current character.

<R> Replace only those characters typed over with new
(

characters until the <escape> is pressed.

<s> Delete the character the cursor is on and append text.
End the append mode by pressing <escape>.

<8> Replace all the characters in the line.

<cc> Replace all the characters in the line.

<ncx> Replace n number of text objects of type x, such as
sentences (shown by <») and paragraphs (shown by
<}».

<cw> Replace a word or the remaining characters in a word
with new text. (

<C> Replace the remaining characters in the line, from the
cursor to the end of the line.

Figure 5-10: Summary of vi Commands for Changing Text

(

5-70 IRIS-4D User's Guide

Cutting And Pasting Text Electronically

vi provides a set of commands that cut and paste text in a file. Another set of
commands copies a portion of text and places it in another section of a file.

Moving Text

You can move text from one place to another in the vi buffer by deleting the
lines and then placing them at the required point. The last text that was deleted is
stored in a temporary buffer. If you move the cursor to that part of the file where
you want the deleted lines to be placed and press the p key, the deleted lines will be
added below the current line.

<p> Place the contents of the temporary buffer after the cursor.

A partial sentence that was deleted by the <D> command can be placed in the
middle of another line. Position the cursor in the space between two words, then
press <p>. The partial line is placed after the cursor.

Characters deleted by <nx> also go into a temporary buffer. Any text object
that was just deleted can be placed somewhere else in the text with <p>.

The <p> command should be used right after a delete command since the tem­
porary buffer only stores the results of one command at a time. The <p> command
is also used to copy text placed in the temporary buffer by the yank command. The
yank command «y» is discussed in "Copying Text"

Fixing Transposed Letters

A quick way to fix transposed letters is to combine the <x> and the <p> com­
mands as <xp>. <X> deletes the letter. <p> places it after next character.

Notice the error in the next line.

A line of tetx

This error can be changed quickly by placing the cursor under the tin tx and then
pressing the <x> and <p> keys, in that order. The result is:

A line of text

Screen Editor Tutorial (vi) 5-71

Cutting And Pasting Text Electronically

Try this. Make a typing error in your file and use the <xp> command to correct
it. Why does this command work?

Copying Text

You can yank (copy) one or more lines oftext into a temporary buffer, and then
put a copy of that text anywhere in the file. To put the text in a new position type
<p>; the text will appear on the next line.

The yank command follows the general format of a vi command.

[number]y[text _object]

Yanking lines of text does not delete them from their original position in the file. If
you want the same text to appear in more than one place, this provides a convenient
way to avoid typing the same text several times. However, if you do not want the
same text in multiple places, be sure to delete the original text after you have put the
text into its new position.

Figure 5-11 summarizes the ways you can use the yank command.

Command Function

<nyx> Yank n number of text objects of type x, (such as
sentences and paragraphs).

<yw> Yank a copy of a word.

<yy> Yank a copy of the current line.

<nyy> Yank n lines.

<y» Yank all text up to the end of a sentence.

<y}> Yank all text up to the end of the paragraph.

Figure 5-11: Summary of the Yank Command

Notice that this command allows you to specify 'the number of text objects to be
yanked.

5-72 IRIS·4D User's Guide

(

(

(

Cutting And Pasting Text Electronically

Try the following commands and see what happens on your screen.
(Remember, you can always undo your last command.) Type:

<5yw>

Move the cursor to another spot. Type:

<p>

Now try yanking a paragraph <y}> and placing it after the current paragraph. Then
move to the end of the file <G> and place that same paragraph at the end of the file.

Copying or Moving Text Using Registers

Moving or copying several sections of text to a different part of the file is tedi­
ous work. vi provides a shortcut for this: named registers in which you can store
text until you want to move it. To store text you can either yank or delete the text
you wish to store.

Using registers is useful if a piece of text must appear in many places in the
file. The extracted text stays in the specified register until you either end the editing
session, or yank or delete another section of text to that register.

The general format of the command is:

[number] ["x]command[text _object]

The x is the name of the register and can be any single letter. It must be preceded
by a double quotation mark. For example, place the cursor at the beginning of a
line. Type:

<3"ayy>

Type in more text and then go to the end of the file. Type:

<"ap>

Did the lines you saved in register a appear at the end of the file?

Figure 5-12 summarizes the cut and paste commands.

Screen Editor Tutorial (vi) 5-73

Cutting And Pasting Text Electronically

Command Function

<p> Place the contents of the temporary buffer containing
the text obtained from the most recent delete or yank
command into the text after the cursor.

<yy> Yank a line of text and place it into a temporary
buffer.

<nyx> Yank a copy of n number of text objects of type x
and place them in a temporary buffer.

<"xyn> Place a copy of a text object of type n in the register
named by the letter x.

<"xp> Place the contents of the register -x after the cursor.

Figure 5-12: Summary of vi Commands for Cutting and Pasting Text

(

(

5-74 IRIS·4D User's Guide

Exercise 5

5-1. Enter vi with the file called exer2. that you created in Exercise 2.

Go to line eight and change its contents to END OF FILE

5-2. Yank the first eight lines of the file and place them in register z. Put the
contents of register z after the last line of the file.

5-3. Go to line eight and change its contents to eight is great

5-4. Go to the last line of the file. Substitute EXERCISE for FILE and replace
OF with TO

Screen Editor Tutorial (vi) 5-75

Special Commands

Here are some special commands that you will find useful.

<.> repeat the last command

join two lines together

<etrl-l> clear the screen and redraw it

<-> change lowercase to uppercase and vice versa

Repeating the Last Command

The • (period) repeats the last command to create, delete, or change text in the
file. It is often used with the search command.

For example, suppose you forget to capitalize the S in United States. However,
you do not want to capitalize the s in chemical states. One way to correct this prob­
lem is by searching for the word states. The first time you find it in the expression

(

United States, you can change the s to S. Then continue your search. When you (
find another occurrence, you can simply type a period; vi will remember your last
command and repeat the substitution of s for S.

Experiment with this command. For example, if you try to add a period at the
end of a sentence while in command mode, the last text change will suddenly
appear on the screen. Watch the screen to see how the text is affected.

Joining Two Lines

The <J> command joins lines. To enter this command, place the cursor on the
current line, and press the shift and j keys simultaneously. The current line is
joined with the following line.

For example, suppose you have the following two lines of text:

Dear Mr.

Smith:

To join these two lines into one, place the cursor under any character in the first line
and type:

5·76 IRIS-4D User's Guide

(

Special Commands

You will immediately see the following on your screen:

Dear Mr. Smith:

Notice that vi automatically places a space between the last word on the first line
and the first word on the second line.

Clearing and Redrawing the Window

If another UNIX system user sends you a message using the write command
while you are editing with vi, the message will appear in your current window, over
part of the text you are editing. To restore your text after you have read the mes­
sage, you must be in command mode. (If you are in text input mode, press
<escape> to return to command mode.) Then type <ctrl-l>. vi will erase the mes­
sage and redraw the window exactly as it appeared before the message arrived.

Making Lowercase Uppercase and Vice Versa

A quick way to change any lowercase letter to uppercase, or vice versa, is by
putting the cursor on the letter to be changed and typing a <-> (tilde). For example,
to change the letter a to A, press -. You can change several letters by typing­
several times, but you cannot precede the command with a number to change
several letters with one command.

Figure 5-13 summarizes the special commands.

Screen Editor Tutorial (vi) 5-77

Special Commands

Command Function

<.> Repeat the last command. (
<J> Join the line below the current line with the current line.

<ctrl·1> Clear and redraw the current window.

<-> Change lowercase to uppercase, or vice versa.

Figure 5·13: Summary of Special Commands

(

(

5·78 IRIS-4D User's Guide

Using Line Editing Commands in vi

The vi editor has access to many of the commands provided by a line editor
called ex. (For a complete list of ex commands see the ex(l) page in the User's
Reference Manual.) This section discusses some of those most commonly used.

The ex commands are very similar to the ed commands discussed in Chapter 6.
If you are familiar with ed, you may want to experiment on a test file to see how
many ed commands also work in vi.

Line editor commands begin with a :(colon). After the colon is typed, the cur­
sor will drop to the bottom of the screen and display the colon. The remainder of
the command will also appear at the bottom of the screen as you type it.

Temporarily Returning to the Shell

When you enter vi, the contents of the buffer fill your screen, making it impos­
sible to issue any shell commands. However, you may want to do so. For example,
you may want to get information from another file to incorporate into your current
text. You could get that information by running one of the shell commands that
display the text of a file on your screen, such as the cat or pg command. However,
quitting and reentering the editor is time-consuming and tedious. vi offers two
methods of escaping the editor temporarily so that you can issue shell commands
(and even edit other files) without having to write your buffer and quit: the:! com­
mand and the :sh command.

The :! command allows you to escape the editor and run a shell command on a
single command line. From the command mode of vi, type :!. These characters will
be printed at the bottom of your screen. Type a shell command immediately after
the!. The shell will run your command, give you output, and print the message
[Hit return to continue]. When you press <return> vi will refresh the screen
and the cursor will reappear exactly where you left it.

The ex command :sh allows you to do the same thing, but behaves differently
on the screen. From the command mode of vi type :sh and press <return>. A shell
command prompt will appear on the next line. Type your command(s) after the
prompt as you would normally do while working in the shell. When you are ready
to return to vi, type <ctrl-d> or exit; your screen will be refreshed with your buffer
contents and the cursor will appear where you left it.

Screen Editor Tutorial (vi) 5-79

Using line Editing Commands In vi

Even changing directories while you are temporarily in the shell will not
prevent you from returning to the vi buffer where you were editing your file when
you type exit or <ctrl-d>.

Writing Text to a New File: the:w Command

The :w (for write) command allows you to create a file by copying lines of text
from the file you are currently editing into a file that you specify. To create your
new file you must specify a line or range of lines (with their line numbers), along
with the name of the new file, on the command line. You can write as many lines as
you like. The general format is:

: line_number [,line_number Jw file name

For example, to write the third line of the buffer to a line named three, type:

:3w three<return>

vi reports the successful creation of your new file with the following information:

"three" [New file] 1 line, 20 characters

To write your current line to a file, you can use a. (period) as the line address:

:.w junk<return>

A new file called junk will be created. It will contain only the current line in the vi
buffer.

You can also write a whole section of the buffer to a new file by specifying a
range of lines. For example, to write lines 23 through 37 to a file, type the follow­
ing:

:23,37w newfile<return>

Finding the Line Number

To determine the line number of a line, move the cursor to it and type

(

(

(colon). The colon will appear at the bottom of the screen. Type .= after it and (.
press <return>.

5·80 IRIS·4D User's Guide

If you want to know the number
of this line, type :.=<return>

Using Line Editing Commands in vi

As soon as you press <return>, your command line will disappear from the bottom
line and be replaced by the number of your current line in the buffer.

If you want to know the number
of this line, type in :.=<return>

34

You can move the cursor to any line in the buffer by typing: and the line
number. The command line

:n<return>

means to go to the nth line of the buffer.

Deleting the Rest of the Buffer

One of the easiest ways to delete all the lines between the current line and the
end of the buffer is by using the line editor command d with the special symbols for
the current and last lines.

: .,$d <return>

The • represents the current line; the $ sign, the last line.

Screen Editor Tutorial (vi) 5·81

Using Line Editing Commands In vi

Adding a File to the Buffer

To add text from a file below a specific line in the editing buffer, use the :r (
(read) command. For example, to put the contents of a file called data into your
current file, place the cursor on the line above the place where you want it to
appear. Type:

:r data<return>

You may also specify the line number instead of moving the cursor. For example,
to insert the file data below line 56 of the buffer, type

:56r data<return>

Do not be afraid to experiment; you can use the <u> command to undo ex com­
mands, too.

Making Global Changes

One of the most powerful commands in ex is the global command. The global (..
command is given here to help those users who are familiar with the line editor.
Even if you are not familiar with a line editor, you may want to try the command on
a test file.

For example, say you have several pages of text about the DNA molecule in
which you refer to its structure as a helix. Now you want to change every
occurrence of the word helix to double helix. The ex editor's global command
allows you to do this with one command line. First, you need to understand a series
of commands.

: g/ pattern/ command<return>

For each line containing pattern, execute the ex command named
command. For example, type: :g!helix<return>. The line editor
will print all lines that contain the pattern helix.

:s!pattern/new _ wordsl<return>

This is the substitute command. The line editor searches for the first
instance of the characters pattern on the current line and changes them
to new words.

5·82 IRIS-4D User's Guide

(

Using Line Editing Commands in vi

:slpattern/new _ words/g<return>

If you add the letter g after the last delimiter of this command line, ex
will change every occurrence of pattern on the current line. If you do
not, ex will change only the first occurrence.

:g/helix/si/double helix/g<return>

This command line searches for the word helix. Each time helix is
found, the substitute command substitutes two words, double helix, for
every instance of helix on that line. The delimiters after the s do not
need to have helix typed in again. The command remembers the word
from the delimiters after the global command g. This is a powerful
command. For a more detailed explanation of global and substitution
commands, see Chapter 6.

Figure 5-14 summarizes the line editor commands available in vi.

Screen Editor Tutorial (vi) 5-83

Using line Editing Commands in vi

Command Function

: Shows that the commands that follow are
line editor commands. (

:sh<return> Temporarily returns you to the shell to per-
form shell commands.

<ctrl-d> Escapes the temporary shell and returns you
to the current window of vi to continue edit-
ing.

:n<return> Goes to the nth line of the buffer.

:x,yw data<return> Writes lines from the number x through the
number y into a new file (data).

:$<return> Goes to the last line of the buffer.

: .,$d<return> Deletes all the lines in the buffer from the
current line to the last line.

:r shell.file<return> Inserts the contents of shell file after the
current line of the buffer.

(
:sltextlnew words/<return> Replaces the first instance of the characters

text on the current line with new words.

:sltextlnew _ words/g<return> Replaces every occurrence of text on the
current line with new words.

:g/textlsllnew _ words/g<return> Replaces every occurrence of text in the file
with new words.

Figure 5-14: Summary of Line Editor Commands

(

5-84 IRIS-4D User's Guide

Quitting vi

There are five basic command sequences to quit the vi editor. Commands that
are preceded by a colon (:) are line editor commands.

<ZZ> or :wq<return>

:w filename <return>
:q<return>

:w! filename <return>
:q<return>

:qkreturn>

:q<return>

Write the contents of the vi buffer to the UNIX file
currently being edited and quit vi.

Write the temporary buffer to a new file named filename
and quit vi.

Overwrite an existing file called filename with the con­
tents of the buffer and quit vi.

Quit vi without writing the buffer to a file, and discard all
changes made to the buffer.

Quit vi without writing the buffer to a UNIX file. This
works only if you have made no changes to the buffer;
otherwise vi will warn you that you must either save the
buffer or use the :qkreturn command to terminate.

The <ZZ> command and :wq command sequence both write the contents of
the buffer to a file, quit vi, and return you to the shell. You have tried the <ZZ>
command. Now try to exit vi with :wq. vi remembers the name of the file currently
being edited, so you do not have to specify it when you want to write the buffer's
contents back into the file. Type

:wq<return>

The system responds in the same way it does for the <ZZ> command. It tells you
the name of the file, and reports the number of lines and characters in the file.

What must you do to give the file a different name? For example, suppose you
want to write to a new file called junk. Type:

:w junk<return>

Mter you write to the new file, leave vi. Type:

:q<return>

Screen Editor Tutorial (vi) 5-85

Quitting vi

If you try to write to an existing file, you will receive a warning. For example,
if you try to write to a file called johnson, the system will respond with:

"johnson" File exists - use "w! johnson" to overwrite

If you want to replace the contents of the existing file with the contents of the (
buffer, use the :w! command to overwrite johnson.

:w! johnson<return>

Your new file will overwrite the existing one.

If you edit a file called memo, make some changes to it, and then decide you
don't want to keep the changes, or if you accidentally press a key that gives vi a
command you cannot undo, leave vi without writing to the file. Type:

:q!<return>

Figure 5-15 summarizes the quit commands.

Command Function

<ZZ> Write the file and quit vi.

:wq<return> Write the file and quit vi.

:w filename<return> Write the editing buffer to a new file (filename) and quit
:q<return> vi.

:w! filename<return> Overwrite an existing file (filename) with the contents of
:q<return> the editing buffer and quit vi.

:q!<return> Quit vi without writing buffer to a file.

:q<return> Quit vi without writing the buffer to a file.

Figure 5-15: Summary of the Quit Commands

5·86 IRIS·4D User's Guide

(

(~

Special Options For vi

The vi command has some special options. It allows you to:

• recover a file lost by an interrupt to the UNIX system

• place several files in the editing buffer and edit each in sequence

• view the file at your own pace by using the vi cursor positioning commands

Recovering a File Lost by an Interrupt

If there is an interrupt or disconnect, the system will exit the vi command
without writing the text in the buffer back to its file. However, the UNIX system
will store a copy of the buffer for you. When you log back in to the UNIX system
you will be able to restore the file with the -r option for the vi command. Type

vi -r filename<return>

The changes you made to filename before the interrupt occurred are now in the vi
buffer. You can continue editing the file, or you can write the file and quit vi. vi
will remember the file name and write to that file.

Editing Multiple Files

If you want to edit more than one file in the same editing session, issue the vi
command, specifying each file name. Type

vifilel file2<return>

vi responds by telling you how many files you are going to edit. For example:

2 files to edit

After you have edited the first file, write your changes (in the buffer) to the file
(filel). Type

:w<return>

The system response to the :w <return> command will be a message at the bottom
of the screen giving the name of the file, and the number of lines and characters in
that file. Then you can bring the next file into the editing buffer by using the:n
command. Type

:n<return>

Screen Editor Tutorial (vi) 5-87

Special Options For vi

The system responds by printing a notice at the bottom of the screen, telling you the
name of the next file to be edited and the number of characters and lines in that file.

Select two of the files in your current directory. Then enter vi and place the
two files in the editing buffer at the same time. Notice the system responses to your
commands at the bottom of the screen. (\

Viewing a File

It is often convenient to be able to inspect a file by using vi's powerful search
and scroll capabilities. However, you might want to protect yourself against
accidentally changing a file during an editing session. The read-only option
prevents you from writing in a file. To avoid accidental changes, you can set this
option by invoking the editor as view rather than vi.

Figure 5-16 summarizes the special options for vi.

Option Function

vifilel file2 file3<return> Enter three files (filel • file2 , andfile3) into
the vi buffer to be edited.

:w<return> Write the current file and call the next file
:n<return> into the buffer.

vi -r filel <return> Restore the changes made to filel.

Figure 5-16: Summary of Special Options for vi

5·88 IRIS·4D User's Guide

(

(

Exercise 6

6-1. Try to restore a file lost by an interrupt.

Enter vi, create some text in a file called exer6. Tum off your terminal
without writing to a file or leaving vi. Tum your terminal back on, and log
in again. Then try to get back into vi and edit exer6.

6-2. Place exerl and exer2 in the vi buffer to be edited. Write exerl and call in
the next file in the buffer, exer2.

Write exer2 to a file called junk.

Quit vi.

6-3. Try out the command:

vi exer*<return>

What happens? Try to quit all the files as quickly as possible.

6-4. Look at exer4 in read-only mode.

Scroll forward.

Scroll down.

Scroll backward.

Scroll up.

Quit and return to the shell.

Screen Editor Tutorial (vi) 5-89

Answers To Exercises

There is often more than one way to perform a task in vi. Any method that
works is correct. The following are suggested ways of doing the exercises.

Exercise 1

1-1. Ask your system administrator for your terminal's system name. Type:

TERM=terminal name<return>

1-2. Enter the vi command for a file called exerl:

vi exerl<return>

Then use the append command «a» to enter the following text in your
file:

This is an exercisekreturn>
Up, down <return>
left, right,<return>
build your tenninal's<return>
muscles bit by bit<escape>

1-3. Use the <k> and <h> commands.

1-4. Use the <X> command.

1-5. Use the <j> and <I> commands.

1-6. Enter vi and use the append command «a» to enter the following text:

and byte by byte<escape>

Then use <j> and <I> to move to the last line and character of the file. Use
the <a> command again to add text. You can create a new line by pressing

5-90 IRIS·4D User's Guide

(

(

(

Answers To Exercises

<return>. To leave text input mode, press <escape>.

1-7. Type:

1-8. Type:

vi exerl<return>

Notice the system response:

Exercise 2

2-1. Type:

"exer1" 7 lines, 102 characters

vi exer2<return>
<a> l<return>
2<return>
3<return>

48<return>
49<return>
SO<escape>

Screen Editor Tutorial (vi) 5-91

Answers To Exercises

2-2. Type:
<ctrl-I>
<ctrl-b:>
<ctrl-u:>
<ctrl-d:> (

Notice the lirte numbers as the screen changes.

2-3. Type:
<G:>
<0:>
123456789 123456789<escape:>
<7h>
<31>

Typing <7h> puts the cursor
on the 2 in the second set of numbers.
Typing <31> puts the cursor
on the 5 in the
second set of numbers.

2-4. $ = end of line
o = first character in the line

2-5. Type: (
<A>

<W>

<e>

2-6. Type:
<IG>
<M>
<L>
dl>

2-7. Type:
/8
<n>
/48

(

5-92 IRIS-4D User's Guide

Exercise 3

3-1. Type:

3-2. Type:

3-3. Type:

3-4. Type:

vi exer3<return>

<a> Append text <return>
Insert text <return>
a computer's <return>
job is boring.<escape>

<0>
financial statement and <escape>

<3G>
<i>Delete text<return><escape>

The text in your file now reads:

Append text
Insert text
Delete text
a carrputer's
financial statement and
job is boring.

Answers To Exercises

3-5. The current line is a corrputer's. To create a line of text below that line
use the <0> command.

3-6. The current line is byte of the budget.
<G> puts you on the bottom line.
<A> lets you begin appending at the end of the line.
<return> creates the new line.
Add the sentence: But, it is an exciting machine.
<escape> leaves append mode.

3-7. Type:
<lG>
ftext
<i>some<space bar><escape>

Screen Editor Tutorial (vi) 5·93

Answers To Exercises

3-8. <ZZ> will write the buffer to exer3 and return you to the shell.

Exercise 4

4-1. Type:
vi exer4<return>
<a> When in the course of human events<return>
there are many repetitive, boring<return>
chores, then one ought to get a<return>
robot to perform those chores.<escape>

4-2. Type:

4-3.

<2G>
<A> tedious and unsavory<8backspace><return>
<escape>

Press <h> until you get to the b of boring. Then type:
<dw>. (You can also use <6x>.)

You are at the second line. Type:
<2j>
<I> congenial and computerized<escape>
<dd>

To delete the line and leave it blank, type in:
<0> (zero moves the cursor to the beginning of the line)
<D>

<H>
<3dd>

4-4. Write and quit vi.

Remove the file.

rm exer4<return>

5-94 IRIS-4D User's Guide

(\

(

(

Exercise 5

5-1. Type:

5-2. Type:

5-3. Type:

5-4. Type:

Exercise 6

6-1. Type:

vi exer2<return>
<8G>
<cc> END OF FILE <escape>

<1G>
<8"zyy>
<G>
<"zp>

<8G>
<cc> 8 is greakescape>

<G>
<2w>
<cw>
EXERCISE<escape>
db>
<cw>
TO<escape>

vi exer6<return>
<a> (append several lines of text)
<escape>

Tum off the tenninal.

Turn on the tenninal.
Log in on your UNIX system. Type:

vi -r exer6<return>
:wq<return>

Answers To Exercises

Screen Editor Tutorial (vi) 5·95

Answers To Exercises

6-2. Type:

6-3. Type:

vi exerl exer2<return>
:w<return>
:n<return>

:w junk <return>
<ZZ>

vi exer*<return>

(Response:)

(

8 files to edit (vi calls all files with names that begin with exer.)

6-4. Type:
view exer4<return>
<ctrl·f>
<ctrl·d>
<ctrl·b>
<ctrl·u>
:q<return>

5·96 IRIS·4D User's Guide

(

(\

The ed Editor

This chapter is a tutorial on the line editor, ed. ed is versatile and requires little
computer time to perform editing tasks. It can be used on any type of terminal. The
examples of command lines and system responses in this chapter will apply to your
terminal, whether it is a video display terminal or a paper printing terminal. The ed
commands can be typed in at your terminal or they can be used in a shell program
(see Chapter 7, "The Bourne Shell Tutorial").

ed is a line editor; during editing sessions it is always pointing to a single line
in the file called the current line. When you access an existing file, ed makes the
last line the current line so you can start appending text easily. Unless you specify
the number of a different line or range of lines, ed will perform each command you
issue on the current line. In addition to letting you change, delete, or add text on
one or more lines, ed allows you to add text from another file to the buffer.

During an editing session with ed, you are altering the contents of a file.in a
temporary buffer, where you work until you have finished creating or correcting
your text. When you edit an existing file, a copy of each file is placed in the buffer
and your changes are made to this copy. The changes have no effect on the original
file until you instruct ed, by using the write command, to move the contents of the
buffer into the file.

After you have read through this tutorial and tried the examples and exercises,
you will have a good working knowledge of ed. The following basics are included:

• entering the line editor ed, creating text, writing the text to file, and quitting
ed

• addressing particular lines of the file and displaying lines of text

• deleting text

• substituting new text for old text

• using special characters as shortcuts in search and substitute patterns

• moving text around in the file, as well as other useful commands and infor­
mation

Line Editor Tutorial (ed) 6-1

Suggestions for Using this Tutorial

The commands discussed in each section are reviewed at the end of that sec­
tion. A summary of all ed commands introduced in this chapter is found in a quick
reference guide immediately following this chapter. (

At the end of some sections, exercises are given so you can experiment with
the commands. The answers to all exercises are at the end of this chapter.

The notation conventions used in this chapter are those used throughout this
guide. They are described in the Preface.

6-2 IRIS·4D User's Guide

(

(

Getting Started

The best way to learn ed is to log in to the UNIX system and try the examples
as you read this tutorial. As you experiment and try out ed commands, you will
learn a fast and versatile method of text editing.

In this section you will learn the commands used to:

• enter ed

• append text

• move up or down in the file to display a line of text

• delete a line of text

• write the buffer to a file

• quited

How to Enter ed

To enter the line editor, type ed and a file name:

ed jilename<return>

Choose a name that reflects the contents of the file. If you are creating a new
file, the system responds with a question mark and the file name:

% ed new-file<return>
?new-file

If you going to edit an existing file, ed responds with the number of characters in
the file:

% ed old-file<return>
235

How to Create Text

The editor receives two types of input, editing commands and text, from your
terminal. To avoid confusing them, ed recognizes two modes of editing work:
command mode and text input mode. When you work in command mode, any char­
acters you type are interpreted as commands. In input mode, any characters you
type are interpreted as text to be added to a file.

Line Editor Tutorial (ed) 6-3

Getting Started

Whenever you enter ed you are put into command mode. To create text in your
file, change to input mode by typing a (for append), on a line by itself, and
pressing <return>:

a<return>

Now you are in input mode; any characters you type from this point will be added
to your file as text. Be sure to type a on a line by itself; if you do not, the editor will
not execute your command.

After you have finished entering text, type a period on a line by itself. This
takes you out of the text input mode and returns you to the command mode. Now
you can give ed other commands.

The following example shows how to enter ed, create text in a new file called
try-me, and quit text input mode with a period.

% ed try·me<:return>
? try-me
a<:return>
This is the first line of text.<:return>
This is the second line,<:return>
and this is the third line.<:return>
.<:return>

Notice that ed does not respond to the period; it waits for a new command. If
ed does not respond to a command, you may have forgotten to type a period after
entering text and may still be in text input mode. Type a period and press <return>
to regain command mode. For example, if you added unwanted characters or lines
to your text, you can delete them once you have returned to command mode.

How to Display Text

(

(

To display a line of a file, type p (for print) on a line by itself. The p command (
prints the current line, that is, the last line on which you worked. Continue with the
previous example. You have just typed a period to exit input mode. Now type the
p command to see the current line.

6-4 IRIS·4D User's Guide

% ed try.me<return>
? try-me
a<return>
This is the first line of text.<return>
This is the second line,<return>
and this is the third line.<return>
.<return>
p<return>
and this is the third line.

Getting Started

You can print any line of text by specifying its line number (also known as its
address). The address of the first line is 1; of the second, 2; and so on. For exam­
ple, to print the second line in the file try-me, type:

2p<return>
This is the second line,

You can also use line addresses to print a span of lines by specifying the
addresses of the first and last lines of the section you want to see, separated by a
comma. For example, to print the first three lines of a file, type:

1,3p<return>

You can even print the whole file this way. For example, you can display a
20-line file by typing 1,20p. If you do not know the address of the last line in your
file, you can substitute a $ sign, the ed symbol for the address of the last line.
(These conventions are discussed in detail in the section "Line Addressing. ")

1,$p<return>
This is the first line of text.
This is a second line,
and this is the third line.

Line Editor Tutorial (ed) 6-5

Getting Started

If you forget to quit text input mode with a period, you will add text that you do
not want. Try to make this mistake. Add another line of text to your try-me file
and then try the p command without quitting text input mode. Then quit text input
mode and print the entire file.

p<return>
and this is the third line.
a<return>
This Is the fourth line.<return>
p<return>
.<return>
1,Sp<return>
This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line.
p

What did you get? The next section will explain how to delete the unwanted line.

How to Delete a Line of Text

To delete text, you must be in the command mode of ed. Typing d deletes the
current line. Try this command on the last example to remove the unwanted line
containing p. Display the current line (p command), delete it (d command), and
display the remaining lines in the file (p command). Your screen should look like
this:

6-6 IRI5-4D User's Guide

(

(

(

p<return>
p
d<return>
1,$p<return>
This is the first line of text.
This is a second line,
and this is the third line.
This is the fourth line.

Getting Started

ed does not send you any messages to confirm that you have deleted text. The
only way you can verify that the d command has succeeded is by printing the con­
tents of your file with the p command. To receive verification of your deletion, you
can put the d and p together on one command line. If you repeat the previous
example with this command, your screen should look like this:

p<return>
p
dp<return>
This is the fourth line.

How to Move Up or Down in the File

To display the line below the current line, press <return> while in command
mode. If there is no line below the current line, ed responds with a ? and contin­
ues to treat the last line of the file as the current line. To display the line above the
current line, press the minus key (-). The following screen provides examples of
how both of these commands are used:

Line Editor Tutorial (ed) 6·7

Getting Started

p<return>
This is the fourth line.
-<return>
and this is the third line.
-<return>
This is a second line,
-<return>
This is the first line of text.
<return>
This is a second line,
<return>
and this is the third line.

Notice that by typing -<return>, you can display a line of text without typing the p
command. These commands are also line addresses. Whenever you type a line
address and do not follow it with a command, ed assumes that you want to see the
line you have specified. Experiment with these commands: create some text, delete
a line, and display your file.

How to Save the Buffer Contents in a File

As we discussed earlier, during an editing session, the system holds your text in
a temporary storage area called a buffer. When you have finished editing, you can
save your work by writing it from the temporary buffer to a permanent file in the
computer's memory. By writing to a file, you are simply putting a copy of the con­
tents of the buffer into the file. The text in the buffer is not disturbed, and you can
make further changes to it.

It is a good idea to write the buffer text into your file frequently. If an interrupt
occurs (such as an accidental loss of power to your terminal), you may lose the
material in the buffer, but you will not lose the copy written to your file.

(~

(

To write your text to a file, enter the w command. You do not need to specify a (
file name; simply type wand press <return>. If you have just created new text, ed
creates a file for it with the name you specified when you entered the editor. If you
have edited an existing file, the w command writes the contents of the buffer to that
file by default.

6-8 IRIS-4D User's Guide

Getting Started

If you prefer, you can specify a new name for your file as an argument on the w
command line. Be careful not to use the name of a file that already exists unless
you want to replace its contents with the contents of the current buffer. ed will not
warn you about an existing file; it will simply overwrite that file with your buffer
contents.

For example, if you decide you would prefer the try-me file to be called stuff,
you can rename it:

% ed try-me<return>
? try-me
a<return>
This is the first line of text.<return>
This is the second line,<return>
and this is the third line.<return>

w stuff <return>
85

Notice the last line of the screen. This is the number of characters in your text.
When the editor reports the number of characters in this way, the write command
has succeeded.

How to Quit the Editor

When you have completed editing your text, write it from the buffer into a file
with the w command. Then leave the editor and return to the shell by typing q (for
quit).

Line Editor Tutorial (ad) 6-9

Getting Started

w<return>
85
q<return>
%

The system responds with a shell prompt. At this point the editing buffer vanishes.
If you have not executed the write command, your text in the buffer has also van­
ished. If you did not make any changes to the text during your editing session, no
harm is done. However, if you did make changes, you could lose your work in this
way. Therefore, if you type q after changing the file without writing it, ed warns
you with a ? You then have a chance to write and quit.

q<return>
?

w<return>
85
q<return>
%

If, instead of writing, you insist on typing q a second time, ed assumes you do
not want to write the buffer's contents to your file and returns you to the shell.
Your file is left unchanged and the contents of the buffer are wiped out.

You now know the basic commands needed to create and edit a file using ed.
Figure 6-1 summarizes these commands.

6-10 IRIS-4D User's Guide

(

(

Getting Started

Command Function

edfile enter ed to edit file

a append text after the current line

. quit text input mode and return to ed command
mode.

p print text on your terminal

d delete text

<return> display the next line in the buffer (literally, carriage
return)

+ display the next line in the buffer

- display the previous line in the buffer

w write the contents of the buffer to the file

q quit ed and return to the shell

Figure 6-1: Summary of ed Editor Commands

Line Editor Tutorial (ed) 6-11

Exercise 1

Answers for all the exercises in this chapter are found at the end of the chapter.
However, they are not necessarily the only possible correct answers. Any method (
that enables you to perform a task specified in aI) exercise is correct, even if it does
not match the answer given. .

1-1. Enter ed with a file named junk. Create a line of text containing Hello
World, write it to the file and quit ed.

Now use ed to create a file called stuff. Create a line of text containing
two words, Goodbye world, write this text to the file, and quit ed.

1-2. Enter ed again with the file named junk. What was the editor's response?

1-3.

Was the character count for it the same as the character count reported by
the w command in Exercise I-I?

Display the contents of the file. Is that your file junk?

How can you return to the shell? Try q without writing the file. Why do
you think the editor allowed you to quit without writing to the buffer?

Enter ed with the file junk. Add a line:

Wendy's horse came through the window.

Since you did not specify a line address, where do you think the line was
added to the buffer? Display the contents of the buffer. Try quitting the
buffer without writing to the file. Try writing the buffer to a different file
called stuff. Notice that ed does not warn you that a file called stuff
already exists. You have erased the contents of stuff and replaced them
with new text.

6-12 IRIS-4D User's Guide

(

(

General Format of ed Commands

ed commands have a simple and regular format:

[addressl [,address2]]command[argument]<return>

The brackets around addressl, address2, and argument show that these are
optional. The brackets are not part of the command line.

addressl,address2
The addresses give the position of lines in the buffer.
Addressl through address2 gives you a range of lines that
will be affected by the command. If address2 is omitted, the
command will affect only the line specified by addressl.

command The command is one character and tells the editor what task
to perform.

argument The arguments to a command are those parts of the text that
will be modified, or a file name, or another line address.

This format will become clearer to you when you begin to experiment with the
ed commands.

Line Editor Tutorial (ed) 6-13

Line Addressing

A line address is a character or group of characters that identifies a line of text.
Before ed can execute commands that add, delete, move, or change text, it must (.-
know the line address of the affected text. Type the line address before the com-
mand:

[addressl] ,[address2] command<returo>

Both addressl and address2 are optional. Specify addressl alone to request
action on a single line of text; both addressl and address2 to request a span of lines.
If you do not specify any address, ed assumes that the line address is the current
line.

The most common ways to specify a line address in ed are:

• by entering line numbers (assuming that the lines of the files are consecu-
tively numbered from 1 to n, beginning with the first line of the file)

• by entering special symbols for the current line, last line, or a span of lines

• by adding or subtracting lines from the current line

• by searching for a character string or word on the desired line

You can access one line or a span of lines, or make a global search for all lines
containing a specified character string. (A character string is a set of successive
characters, such as a word.)

Numerical Addresses
ed gives a numerical address to each line in the buffer. The first line of the

buffer is 1, the second line is 2, and so on, for each line in the buffer. Any line can
be accessed by ed with its line address number. To see how line numbers address a
line, enter ed with the file try-me and type a number.

6-14 IRIS-4D User's Guide

(

(

% ed try·me<return>
110
l<return>
This is the first line of text.
3<return>
and this is the third line.

Line Addressing

Remember that p is the default command for a line address specified without a
command. Because you gave a line address, ed assumes you want that line
displayed on your terminal.

Numerical line addresses frequently change in the course of an editing session.
Later in this chapter you will create lines, delete lines, or move a line to a different
position. This will change the line address numbers of some lines. The number of a
specific line is always the current position of that line in the editing buffer. For
example, if you add five lines of text between line 5 and 6, line 6 becomes line 11.
If you delete line 5, line 6 becomes line 5.

SymbOlic Addresses

Symbolic Address of the Current Line

The current line is the line most recently acted on by any ed command. If you
have just entered ed with an existing file, the current line is the last line of the
buffer. The symbol for the address of the current line is a period. Therefore you
can display the current line simply by typing a period (.) and pressing <return>.

Try this command in the file try-me:

Line Editor Tutorial (ed) 6-15

Line Addressing

% ed try-me<return>
110
.<return>
This is the fourth line.

The . is the address. Because a command is not specified after the period, ed exe­
cutes the default command p and displays the line found at this address.

To get the line number of the current line, type the following command:

.=<return>

ed responds with the line number. For example, in the try-me file, the current line
is 4.

.<return>
This is the fourth line .
. =<return>
4

Symbolic Address of the Last Line

The symbolic address for the last line of a file is the $ sign. To verify that the $
si~ accesses the last line, access the try-me file with ed and specify this address on
a line by itself. (Keep in mind that when you first access a file, your current line is
always the last line of the file.)

6-16 IRIS-4D User's Guide

(

(

(

% ed try-me<return>
110
.<return>
This is the fourth line.
$<return>
This is the fourth line.

Line Addressing

Symbolic Address of the Set of All Lines

When used as an address, a comma (,) refers to all the lines of a file, from the
first through the last line. It is an abbreviated form of the string mentioned earlier
that represents all lines in a file, 1,$. Try this shortcut to print the contents of try­
me:

,p<return>
This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line.

Symbolic Address of a Set of Lines

The semicolon (;) represents a set of lines beginning with the current line and
ending with the last line of a file. It is equivalent to the symbolic address .,$. Try it
with the file try-me:

Line Editor Tutorial (ed) 6-17

Line Addressing

2p<return>
This is the second line,
;p<return>
This is the second line,
and this is the third line.
This is the fourth line.

Adding or Subtracting from the Current line

You may often want to address lines with respect to the current line. You can
do this by adding or subtracting a number of lines from the current line with a plus
(+) or a minus (-) sign. Addresses derived in this way are called relative addresses.
To experiment with relative line addresses, add several more lines to your file try­
me, as shown in the following screen. Also, write the buffer contents to the file so
your additions will be saved:

% ed try·me<return>
110
.<return>
This is the fourth line.
a<return>
five<return>
six<return>
seven<return>
eighkreturn>
nine<return>
ten <return>
.<return>
w<return>
140

Now try adding and subtracting line numbers from the current line.

6-18 IRIS-4D User's Guide

(

(

(

4<return>
This is the fourth line.
+3<return>
seven
-S<return>
This is a second line,

Line Addressing

What happens if you ask for a line address that is greater than the last line, or if you
try to subtract a number greater than the current line number?

S<return>
five
-6<return>
?
.=<return>
5
+7<return>
?

Notice that the current line remains at line 5 of the buffer. The current line changes
only if you give ed a correct address. The? response means there is an error.
"Other Useful Commands and Information," at the end of this chapter, explains how
to get a help message that describes the error.

Character String Addresses

You can search forward or backward in the file for a line containing a particu-
1ar character string. To do so, specify a string, preceded by a delimiter.

Delimiters mark the boundaries of character strings; they tell ed where a string
starts and ends. The most common delimiter is / (slash), used in the following for­
mat:

/pattern

Line Editor Tutorial (ed) 6·19

Line Addressing

When you specify a pattern preceded by a / (slash), ed begins at the current line and
searches forward (down through subsequent lines in the buffer) for the next line
containing the pattern. When the search reaches the last line of the buffer, ed
wraps around to the beginning of the file and continues its search from line 1.

The following rectangle represents the editing buffer. The path of the arrows (
shows the search initiated by a / : ..

r----'
I

1 I
I

+

1
I I L ____ .J

first line

current line

last line

Another useful delimiter is 1. If you specify a pattern preceded by a 1, (1 pat­
tern), ed begins at the current line and searches backward (up through previous
lines in the buffer) for the next line containing the pattern. If the search reaches the
first line of the file, it will wrap around and continue searching upward from the last
line of the file.

The following rectangle represents the editing buffer. The path of the arrows
shows the search initiated by a 1 :

6·20 IRIS-4D User's Guide

(

(

Line Addressing

r----.,
I I

I

i first line

I
I current line

t

I last line
I I L ____ .J

Experiment with these two methods of requesting address searches on the file
try-me. What happens if ed does not find the specified character string?

% ed try-me<return>
140
.<return>
ten
?first<return>
This is the first line of text.
Ifourth<return>
This is the fourth line.
Ijunk<return>
?

In this example, ed found the specified strings first and fourth. Then, because
no command was given with the address, it executed the p command by default,
displaying the lines it had found. When ed cannot find a specified string (such as
junk), it responds with a ?

Line Editor Tutorial (ed) 6-21

Line Addressing

You can also use the' (slash) to search for multiple occurrences of a pattern
without typing it more than once. First, specify the pattern by typing 'pattern, as
usual. After ed has printed the first occurrence, it waits for another command.
Type , and press <return>; ed will continue to search forward through the file for (__'
the last pattern specified. Try this command by searching for the word line in the
file try-me:

.<return>
This is the first l:ine of text.
lIine<return>
This is the second l:ine,
l<return>
and this is the third line.
I<return>
This is the fourth line.
I<return>
This is the first l:ine of text.

Notice that after ed has found all occurrences of the pattern between the line
where you requested a search and the end of the file, it wraps around to the begin­
ning of the file and continues searching.

Specifying a Range of Lines

There are two ways to request a group of lines. You can specify a range of
lines, such as address) through address2, or you can specify a global search for all
lines containing a specified pattern.

The simplest way to specify a range of lines is to use the line numbers of the
first and last lines of the range, separated by a comma. Place this address before the
command. For example, if you want to display lines 2 through 7 of the editing
buffer, give address} as 2 and address2 as 7 in the following format:

2,7p<return>

Try this on the file try-me:

6-22 IRIS-4D User's Guide

(

(

2,7p<return>
This is the second line,
and this is the third line.
This is the fourth line.
five
six
seven

Line Addressing

Did you try typing 2,7 without the p? What happened? If you do not add the p
command, ed prints only address2, the last line of the range of addresses.

Relative line addresses can also be used to request a range of lines. Be sure
that address} precedes address2 in the buffer. Relative addresses are calculated
from the current line, as the following example shows:

4<return>
This is the fourth line
-2,+3p<return>
This is the second line,
and this is the third line.
This is the fourth line.
five
six
seven

Specifying a Global Search
There are two commands that do not follow the general format of ed com­

mands: g and v. These are global search commands that specify addresses with a
character string (pattern). The g command searches for all lines containing the
string pattern and performs the command on those lines. The v command searches
for all lines that do not contain the pattern and performs the command on those
lines.

Line Editor Tutorial (ad) 6-23

Line Addressing

The general format for these commands is:

glpatternl command<return>
vlpatternl command<return>

Try these commands by using them to search for the word line in try-me:

g/lineip<return>
This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line

v/lineip<return>
five
six
seven
eight
nine
ten

Notice the function of the v command: it finds all the lines that do not contain
the word specified in the command line.

Once again, the default command for the lines addressed by g or v is p; you do
not need to include a p as the last delimiter on your command line.

6-24 IRIS-4D User's Guide

(

(

(

g/I1ne<return>
This is the first line of text.
This is the second line,
and this is the third line.
This is the fourth line

Line Addressing

However, if you are giving line addresses to be used by other ed commands, you
need to include beginning and ending delimiters. You can use any of the methods
discussed in this section to specify line addresses for ed commands. Figure 6-2
summarizes the symbols and commands available for addressing lines.

Line Editor Tutorial (ed) 6-25

Line Addressing

Address Description

n ... the number of a line in the buffer (
the current line (the line most recently acted on by an ed com-
mand)

.- the command used to request the line number of the current line

$ the last line of the file

, the set of lines from line 1 through the last line

; the set of lines from the current line through the last line

+n the line that is located n lines after the current line

-n the line that is located n lines before the current line

labc the command used to search forward in the buffer for the first line
that contains the pattern abc

?abc the command used to search backward in the buffer for the first
line that contains the pattern abc (

g/abc the set of all lines that contain the pattern abc

v/abc the set of all tines that do NOT contain the pattern abc

Figure 6-2: Summary of Line Addressing

(

6-26 IRIS-4D User's Guide

Exercise 2

2-1. Create a file called tOWDS with the following lines:

My kind of town is
Chicago
Like being no where at all in
Toledo
I lost those little town blues in
New York
I lost my heart in
San Francisco
I lost$$ in
Las Vegas

2-2. Display line 3.

2-3. If you specify a range of lines with the relative address -2,+3p, what lines
are displayed ?

2-4. What is the current line number? Display the current line.

2-5. What does the last line say?

2-6. What line is displayed by the following request for a search?

?toWD<return>

After ed responds, type this command alone on a line:

?<return>

What happened?

2-7. Search for all lines that contain the pattern in. Then search for all lines that
do NOT contain the pattern in.

Line Editor Tutorial (ed) 6-27

Displaying Text in a File

ed provides two commands for displaying lines of text in the editing buffer: p
andn.

Displaying Text Alone: the p Command

You have already used the p command in several examples. You are probably
now familiar with its general format:

[address1,address2]p<return>

p does not take arguments. However, it can be combined with a substitution com­
mand line. This will be discussed later in this chapter.

Experiment with the line addresses shown in Figure 6-3 on a file in your home
directory. Try the p command with each address and see if ed responds as
described in the figure.

Specify this Address

1,$p<return>

-Sp<return>

+2p<return>

l,1x1p<return>

Check for this Response

ed should display the entire file on your ter­
minal.

ed should move backward five lines from
the current line and display the line found
there.

ed should move forward two lines from the
current line and display the line found there.

ed displays the set of lines from line one
through the first line after the current line
that contains the character x. It is important
to enclose the letter x between slashes so
that ed can distinguish between the search
pattern address (x) and the ed command (p).

Figure 6-3: Sample Addresses for Displaying Text

6-28 IRIS-4DUser's Guide

(

(

(

Displaying Text in a File

Displaying Text with Line Addresses: the n
Command

The n command displays text and precedes each line with its numerical line
address. It is helpful when you are deleting, creating, or changing lines. The gen­
eral command line format for n is the same as that for p.

[address] ,address2]n<return>

Like p, n does not take arguments, but it can be combined with the substitute com­
mand.

Try running n on the try-me file:

% ed try-me<return>
140
1,$n<return>
1 This is the first line of text.
2 This is the second line,
3 and this is the third line.
4 This is the fourth line.
5 five
6 six
7 seven
8 eight
9 nine
10 ten

Figure 6-4 summarizes the ed commands for displaying text.

Line Editor Tutorial (ed) 6-29

Displaying Text in a File

Command Function

p displays specified lines of text in the editing buffer on your ter- (
minal

n displays specified lines of text in the editing buffer with numeri-
cal line addresses on your terminal

Figure 6-4: Summary of Commands for Displaying Text

(

(

6-30 IRIS-4D User's Guide

Creating Text

ed has three basic commands for creating new lines of text:

a append text

insert text

c change text

Appending Text: the a Command

The append command, a, allows you to add text after the current line or a
specified address in the file. You have already used this command in the "Getting
Started" section of this chapter. The general format for the append command line
is:

[addressl]a<return>

Specifying an address is optional. The default value of addressl is the current line.

In previous exercises, you used this command with the default address. Now
try using different line numbers for addressl. In the following example, a file
called new-file is created. In the first append command line, the default address is
the current line. In the second append command line, line 1 is specified as
addressl. The lines are displayed with n so that you can see their numerical line
addresses. Remember, the append mode is ended by typing a period (.) on a line
by itself.

Line Editor Tutorial (ed) 6-31

Creating Text

% ed new-file<return>
?new-file
a<return>
Create some lines
of text in
this file .
. <return>
1,$n<return>
1
2

3
la<return>

Create some lines
of text in
this file.

This will be line 2<return>
This will be line 3<return>
.<return>
1,$n<return>
1 Create some lines
2 This will be line 2

3 This will be line 3
4 of text in
5 this file.

Notice that after you append the two new lines, the line that was originally line
2 (of text in) becomes line 4.

You can take shortcuts to places in the file where you want to append text by
combining the append command with symbolic addresses. The following three
command lines allow you to move through and add to the text quickly in this way .

• a<return> appends text after the current line

$a<return> appends text after the last line of the file

Oa<return> appends text before the first line of the file (at a symbolic
address called line 0)

(

(

To try using these addresses, create a one-line file called lines and type the (
examples shown in the following screens. (The examples appear in separate .
screens for easy reference only; it is not necessary to access the lines file three
times to try each append symbol. You can access lines once and try all three con­
secutively.)

6-32 IRIS-4D User's Guide

% ed Iines<return>
?lines
a<return>
This is the current line.<return>
.<return>
p<return>
This is the current line .
. a<return>
This line is after the current line.<return>
.<return>
-l,.p<return>
This is the current line.
This line is after the current line.

$a<return>
This is the last line now.<return>
.<return>
% <return>
This is the last line now.

Creating Text

Line Editor Tutorial (ed) 6-33

Creating Text

Oa<return>
This is the first line now.<retum>
This Is the second line now.<return>
The line numbers change<retum>
as lines are added.<return>
.<return>
1,4n<return>
1
2
3
4

This is the first line now.
This is the second line now.
The line numbers change
as lines are added.

Because the append command creates text after a specified address, the previ­
ous example refers to the line before line 1 as the line after line O. To avoid such
circuitous references, use another command provided by the editor: the insert com­
mand, i.

Inserting Text: the i Command

The insert command (i), allows you to add text before a specified line in the
editing buffer. The general command line format for i is the same as that for a.

[addressl]kreturo>

As with the append command, you can insert one or more lines of text. To quit
input mode, you must type a period (.) alone on a line.

Create a file called insert in which you can try the insert command (i):

6-34 IRIS·4D User's Guide

(

(

% ed insert<return>
?insert
a<return>
Line l<return>
Line 2<return>
Line 3<return>
Line 4<return>
.<return>
w<return>
69

Creating Text

Now insert one line of text above line 2 and another above line 1. Use the n com­
mand to display all the lines in the buffer:

2i<return>
This is the new line 2.<return>
.<return>
l,$n<return>
1 Line 1
2
3
4
5
ll<return>

This is the new line 2.
Line 2
Line 3
Line 4

This is the beginning.<return>
.<return>
l,$n<return>
1 In the beginning
2 Line 1
3
4
5
6

Now this is line 2
Line 2
Line 3
Line 4

Line Editor Tutorial (ed) 6-35

Creating Text

Experiment with the insert command by combining it with symbolic line
addresses, as follows:

•. kreturu>

• $i<return>

Changing Text: the c Command

The change text command (c) erases all specified lines and allows you to create
one or more lines of text in their place. Because c can erase a range of lines, the
general format for the command line includes two addresses.

[addressl,address2]c<return>

The change command puts you in text input mode. To leave input mode, type a
period alone on a line.

Addressl is the first and address2 is the last of the range of lines to be replaced
by new text. To erase one line of text, specify only addressl. If no address is
specified, ed assumes the current line is the line to be changed.

Now create a file called change in which you can try this command. After (
entering the text shown in the screen, change lines one through four by typing 1,4c:

1,5n<return>
1 line 1
2 line 2
3 line 3
4 line 4
5 line 5
1,4c<return>
Change line l<return>
and lines 2 through 4<return>
.<return>
1,$n<return>
1 change line 1
2 and lines 2 through 4
3 line 5

6-36 IRIS-4D User's Guide

(

Now experiment with c and try to change the current line:

.<return>
line 5
c<return>
This is the new line 5 .
. <return>
.<return>
This is the new line 5.

Creating Text

If you are not sure whether you have left text input mode, it is a good idea to
type another period. If the current line is displayed, you know you are in the com­
mand mode of ed.

Figure 6-5 summarizes the ed commands for creating text.

Command Function

a append text after the specified line in the buffer

i insert text before the specified line in the buffer

c change the text on the specified line(s) to new text

. quit text input mode and return to ed command mode

Figure 6-5: Summary of Commands for Creating Text

Line Editor Tutorial (ed) 6·37

Exercise 3

3-1. Create a new file called ex3. Instead of using the append command to
create new text in the empty buffer, try the insert command. What hap­
pens?

3-2. Enter ed with the file towns. What is the current line?

3-3.

Insert above the third line:

Illinois<return>

Insert above the current line:

or<return>
Naperville<return>

Insert before the last line:

hotels in<return>

Display the text in the buffer preceded by line numbers.

In the file towns, display lines 1 through 5 and replace lines 2 through 5
with:

London<return>

Display lines 1 through 3.

3-4. Mter you have completed exercise 3-3, what is the current line?

Find the line of text containing:

Toledo

6-38 IRIS-4D User's Guide

(

(

(

Replace

Toledo

with

Peoria

Display the current line.

Exercise 3

3-5 With one command line search for and replace:

New York

with:

Iron City

Line Editor Tutorial (ed) 6·39

Deleting Text

This section discusses two types of commands for deleting text in ed. One type
is used when you are working in command mode: d deletes a line and u undoes the
last command. The other type of command is used in text input mode: <#> (the ('
pound sign) deletes a character and <@> (the at sign) kills a line. The delete keys
that are used in input mode are the same keys you use to delete text that you enter
after a shell prompt. They are described in detail in "Correcting Typing Errors" in
Chapter 2.

Deleting Lines: the d Command
You have already deleted lines of text with the delete command «d» in the

"Getting Started" section of this chapter.

The general format for the d command line is:

[addressl,address2]d<return>

You can delete a range of lines (addressl through address2) or you can delete one
line only (addressl). If no address is specified, ed deletes the current line.

The next example displays lines one through five and then deletes lines two (
through four:

1,5n<return>
1 1 horse
2 2 chickens
3 3 ham tacos
4 4 cans of mustard
5 5 bales of hay
2,4dc:return>
1,$nc:return>
1 1 horse
2 5 bales of hay

(

6-40 IRI5-4D User's Guide

Deleting Text

How can you delete only the last line of a file? Using a symbolic line address
makes this easy:

$d<return>

How can you delete the current line? One of the most common errors in ed is
forgetting to type a period to leave text input mode. When this happens, unwanted
text may be added to the buffer. In the next example, a line containing a print com­
mand (l,$p) is accidentally added to the text before the user leaves input mode.
Because this line was the last one added to the text, it becomes the current line. The
symbolic address. is used to delete it.

a<return>
Last line of texkreturn>
1,$p<return>
.<return>
p<return>
1,$p
.d<return>
p<return>
Last line of text.

Before experimenting with the delete command, you may first want to learn
about the undo command, u.

Undoing the Previous Command: the u Command

The command u (short for undo) nullifies the last command and restores any
text changed or deleted by that command. It takes no addresses or arguments. The
format is:

u<return>

One purpose for which the u command is useful is to restore text you have mis­
takenly deleted. If you delete all the lines in a file and then type p, ed will respond
with a ? since there are no more lines in the file. Use the u command to restore
them.

Line Editor Tutorial (ed) 6-41

Deleting Text

l,$p<return>
This is the first line.
This is the middle line.
This is the last. line.
l,$d<return>
p<return>
?

u<return>
p<return>
This is the last line.

Now experiment with u: use it to undo the append command.

.<return>
This is the only line of text
a<return>
Add this line<return>
.<return>
l,$p<return>
This is the only line of text
Add this line
u<return>
1,$p<returD>
This is the only line of text

u cannot be used to undo the write command (w) or the quit command (q). Howe
ever, u can undo an undo command (u).

6-42 IRIS-4D User's Guide

(

(

(

Deleting Text

How to Delete in Text Input Mode

While in text input mode, you can correct the current line of input with the
same keys you use to correct a shell command line. By default, there are two keys
available to correct text. The @ sign key kills the current line. The # sign key
backs up over one character on the current line so you can retype it, thus effectively
erasing the original character. (See "Correcting Typing Errors" in Chapter 2 for
details.)

As mentioned in Chapter 2, you can reassign the line kill and character erase
functions to other keys if you prefer. (See "Modifying Your Login Environment" in
Chapter 7 for instructions.) If you have reassigned these functions, you must use
the keys you chose while working in ed; the default keys (@ and #) will no longer
work.

Escaping the Delete Function

You may want to include an @ sign or a # sign as a character of text. To avoid
having these characters interpreted as delete commands, you must precede them
with a \ (backslash), as shown in the following example.

a<return>
leave San Francisco \@ 20:15 on flight '#347 <return>
.<return>
p<return>
leave San Francisco @ 20:15 on flight #347

Figure 6-6 summarizes the ed commands and shell commands for deleting text
in ed.

Line Editor Tutorial (ed) 6-43

Deleting Text

Command Function

In command mode:

<d:;.. delete one or more lines of text

<u> undo the previous command

<@> delete the current command line

In text input mode:

<@> delete the current line

<It> or
<backspace> delete the last character typed in

Figure 6-6: Summary of Commands for Deleting Text

(

(

6·44 IRI8-4D User's Guide

Substituting Text

You can modify your text with a substitute command. This command replaces
the first occurrence of a string of characters with new text. The general command
line format is

[addressl ,address2]s/old _text/new _text/[command] <return>

Each component of the command line is described below.

addressl,address2
The range of lines being addressed by s. The address can be
one line, (addressl), a range of lines (addressl through
address2), or a global search address. If no address is given,
ed makes the substitution on the current line.

s The substitute command

lold text The argument specifying the text to be replaced is usually
delimited by slashes, but can be delimited by other characters
such as a ? or a period. It consists of the words or characters
to be replaced. The command will replace the first
occurrence of these characters that it finds in the text.

lnew text The argument specifying the text to replace old_text. It is
delimited by slashes or the same delimiters used to specify
the old text. It consists of the words or characters that are to
replace the old_text.

Icommand Anyone of the following four commands:

g

n

p

Change all occurrences of old _text on the specified lines.

Display the last line of substituted text, including nonprinting
characters. (See the last section of this chapter, "Other Use­
ful Commands and Information.")

Display the last line of the substituted text preceded by its
numerical line address.

Display the last line of substituted text.

Line Editor Tutorial (ed) 6-45

Substituting Text

Substituting on the Current Line

The simplest example of the substitute command is making a change to the
current line. You do not need to give a line address for the current line.

s/old _text/new _text/<return>

The next example contains a typing error. While the line that contains it is still
the current line, you make a substitution to correct it. The old text is the ai of airor
and the new text is er.

a<return>
In the beginning, I made an airor .
. <return>
.p<return>
In the beginning, I made an airor.
s/ai/er<return>

Notice that ed gives no response to the substitute command. To verify that the
command has succeeded in this case, you either have to display the line with p or n,
or include p or n as part of the substitute command line. In the following example,
n is used to verify that the word file has been substituted for the word toad .

. p<return>
This is a test toad
sltoadlftleln<return>
1 This is a test file

6·46 IRIS-4D User's Guide

(

(

(

Substituting Text

However, ed allows you one shortcut: it prints the results of the command automat­
ically, if you omit the last delimiter after the new _text argument:

.p<return>
This is a test file
s161e1frog<return>
This is a test frog

Substituting on One Line

To substitute text on a line that is not the current line, include an address in the
command line, as follows:

[addressl]s/old _text/new _text/<return>

For example, in the following screen the command line includes an address for
the line to be changed (line 1) because the current line is line 3:

1,3p<return>
This is a pest toad
testing testing
corre in toad
.<return>
corre in toad
lslpest/test<return>
This is a test toad

As you can see, ed printed the new line automatically after the change was made,
because the last delimiter was omitted.

Line Editor Tutorial (ed) 6-47

Substituting Text

Substituting on a Range of Lines

You can make a substitution on a range of lines by specifying the first address
(addressl) through the last address (address2).

[addressl ,address2]slold _text/new _textl<return>

If ed does not find the pattern to be replaced on a line, no changes are made to that
line.

In the following example, all the lines in the file are addressed for the substitute
command. However, only the lines that contain the string es (the old _text argu­
ment) are changed.

1,$p<return>
This is a test toad
testing testing
come in toad
testing 1, 2, 3
1,$sIes/ES/n<return>
4 tESting 1, 2, 3

When you specify a range of lines and include p or n at the end of the substitute
line, only the last line changed is printed.

To display all the lines in which text was changed, use the n or p command
with the address 1,$.

6-48 IRIS-4D User's Guide

(

(

(

Substituting Text

1,$n<return>
1 This is a tESt toad
2 tESting testing
3 corre in toad
4 tESting 1, 2, 3

Notice that only the first occurrence of es (on line 2) has been changed. To
change every occurrence of a pattern, use the g command, described in the next sec­
tion.

Global Substitution

One of the most versatile tools in ed is global substitution. By placing the g
command after the last delimiter on the substitute command line, you can change
every occurrence of a pattern on the specified lines. Try changing every occurrence
of the string es in the last example. If you are following along, doing the examples
as you read this, remember you can use u to undo the last substitute command.

u<return>
1,$p<return>
This is a test toad
testing, testing
corre in toad
testing 1, 2, 3
1,$s/es/ES/g<retum>
1,$p<return>
This is a tESt toad
tESting tESting
corre in toad
tESting 1, 2, 3

Line Editor Tutorial (ed) 6-49

Substituting Text

Another method is to use a global search pattern as an address instead of the
range of lines specified by 1,$.

1,$p<return>
This is a test toad
testing testing
came in toad
testing 1, 2, 3
vjtest/s/es/ES/g<return>
1,$p<return>
This is a tESt toad
tESting tESting
carre in toad
tESting 1, 2, 3

If the global search pattern is unique and matches the argument old _text (text to be
replaced), you can use an ed shortcut: specify the pattern once as the global search
address and do not repeat it as an old _text argument. ed will remember the pattern
from the search address and use it again as the pattern to be replaced.

glold_textls/lnew _textlg<return>

Whenever you use this shortcut, be sure to include two slashes (If) after the s.

6-50 IRIS-4D User's Guide

(

(

(

1,$p<return>
This is a test toad
testing testing
carre in toad
testing 1, 2, 3
g/esIs1IES/g<return>
1,$p<return>
This is a tESt toad
tESting tEsting
carre in toad
tESting 1, 2, 3

Substituting Text

Experiment with other search pattern addresses:

Ipattern<return>
?pattern<return>
vlpattern<return>

See what they do when combined with the substitute command. In the following
example, the vlpattern search format is used to locate lines that do not contain the
pattern testing. Then the substitute command (s) is used to replace the existing
pattern (in) with a new pattern (out) on those lines.

v/testlng/s1in/out<return>
This is a test toad
carre out toad

Line Editor Tutorial (ed) 6-51

Substituting Text

Notice that the line This is a test toad was also printed, even though no
substitution was made on it. When the last delimiter is omitted, all lines found with
the search address are printed, regardless of whether or not substitutions have been
made on them.

Now search for lines that do contain the pattern testing with the g command.

g/testing/s//jumping<return>
jumping testing
jumping 1, 2, 3

(

Notice that this command makes substitutions only for the first occurrence of the
pattern (testing) in each line. Once again, the lines are displayed on your term i- (
nal because the last delimiter has been omitted.

(

6-52 IRIS-4D User's Guide

Exercise 4

4-1. In your file towns change town to city on all lines but the line with lit­
tle town on it.

The file should read:

My kind of city is
London
Like being no where at all in
Peoria
I lost those little town blues in
Iron City
I lost my heart in
San Francisco
I lost $$ in
hotels in
Las Vegas

4-2. Try using? as a delimiter. Change the current line

Las Vegas

to

Toledo

Because you are changing the whole line, you can also do this by using the
change command, c.

4-3. Try searching backward in the file for the word

lost

and substitute

found

using the ? as the delimiter. Did it work?

4-4. Search forward in the file for

no

Line Editor Tutorial (ed) 6-53

Exercise 4

and substitute

NO

for it. What happens if you try to use? as a delimiter?

Experiment with the various command combinations available for addressing a
range of lines and doing global searches.

What happens if you try to substitute something for the $$? Try to substitute
Big $ for $ on line 9 of your file. Type:

9s/$/Big $<return>

What happened?

6·54 IRIS·4D User's Guide

(

(

(

Special Characters

If you try to substitute the $ sign in the line

I lost Il¥ $ in Las Vegas

you will find that instead of replacing the $, the new text is placed at the end of the
line. The $ is a special character in ed that is symbolic for the end of the line.

ed has several special characters that give you a shorthand for search patterns
and substitution patterns. The characters act as wild cards. If you have tried to type
in any of these characters, the result was probably different than what you had
expected.

The special characters are:

*

.*

Match anyone character.

Match zero or more occurrences of the preceding character.

Match zero or more occurrences of any character following the
period.

Match the beginning of the line.

$ Match the end of the line.

\ Take away the special meaning of the special character that fol­
lows.

& Repeat the old text to be replaced in the new text of the replace­
ment pattern.

[•.•] Match the first occurrence of a character in the brackets.

[A ...] Match the first occurrence of a character that is NOT in the brack­
ets.

In the following example, ed searches for any three-character sequence ending
in the pattern at.

Line Editor Tutorial (ed) 6-55

Special Characters

1,$p<return>
rat
cat
turtle
cow
goat
g1.at<return>
rat
cat
goat

Notice that the word goat is included because the string oat matches the string .at.

The * (asterisk) represents zero or more occurrences of a specified character in
a search or substitute pattern. This can be useful in deleting repeated occurrences
of a character that have been inserted by mistake. For example, suppose you hold

(

down the R key too long while typing the word broke. You can use the * to delete (
every unnecessary R with one substitution command.

p<return>
brrroke
slbr*lbr<return>
broke

Notice that the substitution pattern includes the b before the first r. If the b
were not included in the search pattern, the * would interpret it, during the search,
as a zero occurrence of r, make the substitution on it, and quit. (Remember, only (
the first occurrence of a pattern is changed in a substitution, unless you request a ..
global search with g.) The following screen shows how the substitution would be
made if you did not specify both the b and the r before the *.

6-56 IRIS-4D User's Guide

p<return>
brrroke
slr*/r<return>
rbrrroke

Special Characters

If you combine the period and the *, the combination will match all characters.
With this combination you can replace all characters in the last part of a line:

p<return>
Toads are slimy, cold creatures
slare.*/are wonderful and wann<return>
Toads are wonderful and warm

The . * can also replace all characters between two patterns.

p<return>
Toads are slimy, cold creatures
slare. *crelare wonderful and warm cre<return>
Toads are wonderful and warm creatures

Line Editor Tutorial (ed) 6-57

Special Characters

If you want to insert a word at the beginning of a line, use the ~ (circumflex) for
the old text to be substituted. This is very helpful when you want to insert the same
pattern in the front of several lines. The next example places the word an at the
beginning of each line:

l,$p<return>
creatures great and small
things wise and wonderful
things bright and beautiful
l,$srtall/<return>
l,$p<return>
all creatures great and small
all things wise and wonderful
all things bright and beautiful

The $ sign is useful for adding characters at the end of a line or a range of lines:

1,$p<return>
I love
I need
I use
The IRS wants my
1,sII money.<return>
1,$p<return>
I love money.
I need money.
I use money.
The IRS wants my money.

In these examples, you must remember to put a space after the word all or
before the word rroney because ed adds the specified characters to the very begin­
ning or the very end of the sentence. If you forget to leave a space before the word
rroney, your file will look like this:

6-58 IRIS-4D User's Guide

(

(

(

1,sIlmoney/<return>
1,$p<return>
I lovemoney
I needmoney
I usem:mey
The IRS wants mymoney

Special Characters

The $ sign also provides a handy way to add punctuation to the end of a line:

1,$p<return>
I love money
I need money
I use money
The IRS wants my rroney
1,Ss/$1 J<return>
1,$p/ <return>
I love money.
I need money.
I use money.
The IRS wants my rroney.

Because. is not matching a character (old text), but replacing a character (new
text), it does not have a special meaning. To change a period in the middle of a
line, you must take away the special meaning of the period in the old text. To do
this, simply precede the period with a backslash (\). This is how you take away the
special meaning of some special characters that you want to treat as normal text
characters in search or substitute arguments. For example, the following screen
shows how to take away the special meaning of the period:

Line Editor Tutorial (ed) 6-59

Special Characters

p<return>
Way to go. Wow!
sAJ!<return>
Way to go! Wow!

The same method can be used with the backslash character itself. If you want
to treat a \as a normal text character, be sure to precede it with a \ For example, if
you want to replace the \ symbol with the word backslash, use the substitute com­
mand line shown in the following screen:

1,2p<return>
This chapter explains
how to use the \.
sAVbackslash<return>
how to use the backslash.

If you want to add text without changing the rest of the line, the & provides a
useful shortcut. The & (ampersand) repeats the old text in the replacement pattern,
so you do not have to type the pattern twice. For example:

6-60 IRIS-4D User's Guide

(

(

(

p<retum>
The neanderthal skeletal remains
s/thal/& man's/<return>
p<retum>
The neanderthal man's skeletal remains

Special Characters

ed automatically remembers the last string of characters in a search pattern or
the old text in a substitution. However, you must prompt ed to repeat the replace­
ment characters in a substitution with the % sign. The % sign allows you to make
the same substitution on multiple lines without requesting a global substitution. For
example, to change the word money to the word gold, repeat the last substitution
from line 1 on line 3, but not on line 4.

l,$n<return>
1 I love money
2 I need food
3 I use money
4 The IRS wants rrw money
ls/money/gold<return>
I love gold

3s//% %c:rtm'n>
I use gold
l,$n<return>
1 I love gold
2 I need food
3 I use gold
4 The IRS wants rrw Il'Oney

ed automatically remembers the word rroney (the old text to be replaced), so
that string does not have to be repeated between the first two delimiters. The %
sign tells ed to use the last replacement pattern, gold.

Line Editor Tutorial (ed) 6-61

Special Characters

ed tries to match the first occurrence of one of the characters enclosed in brack­
ets and substitute the specified old text with new text. The brackets can be at any
position in the pattern to be replaced.

In the following example, ed changes the first occurrence of the numbers 6,
7, 8, or 9 to 4 on each line in which it finds one of those numbers:

1,$p<return>
Monday 33,000
Tuesday 75,000
Wednesday 88,000
Thursday 62,000
l,$s/[6789j/4<return>
Monday 33,000
Tuesday 45,000
Wednesday 48,000
Thursday 42,000

The next example deletes the Mr or Ms from a list of names:

1,$p<return>
Mr Arthur Middleton
Mr Matt Lewis
Ms Anna Kelley
Ms M. L. Hodel
1,$sIM[rsjl/<return>
1,$p<return>
Arthur Middleton
Matt Lewis
Anna Kelley
M. L. Hodel

6-62 IRIS-4D User's Guide

(

(

(

Special Characters

If a A (circumflex) is the first character in brackets, ed interprets it as an instruc­
tion to match characters that are NOT within the brackets. However, if the
circumflex is in any other position within the brackets, ed interprets it literally, as a
circumflex.

1,$p<return>
grade A Computer Science
grade B Robot Design
grade A Boolean Algebra
grade D Jogging
grade C Tennis
1,$sIgrade ["AB]/grade A<return>
1,$p<return>
grade A Computer Science
grade B Robot Design
grade A Boolean Algebra
grade A Jogging
grade A Tennis

Whenever you use special characters as wild cards in the text to be changed,
remember to use a unique pattern of characters. In the above example, if you had
used only

1,$s/r AB]/ A<returo>

you would have changed the g in the word grade to A. Try it.

Experiment with these special characters. Find out what happens (or does not
happen) if you use them in different combinations.

Figure 6-7 summarizes the special characters for search or substitute patterns.

Line Editor Tutorial (ed) 6-63

Special Characters

Command Function

. Match anyone character in a search or substitute pattern. (
* Match zero or more occurrences of the preceding character in a

search or substitute pattern.

!"I' Match zero or more occurrences of any characters following the
period.

A Match the beginning of the line in the substitute pattern to be
replaced or in a search pattern.

$ Match the end of the line in the substitute pattern to be replaced.

\ Take away the special meaning of the special character that fol-
lows in the substitute or search pattern.

& Repeat the old text to be replaced in the new text replacement
pattern. (

% Match the last replacement pattern.

[...] Match the first occurrence of a character in the brackets.

[A, ••] Match the first occurrence of a character that is NOT in the
brackets.

Figure 6-7: Summary of Special Characters

(

6-64 IRIS-4D User's Guide

Exercise 5

5-1. Create a file that contains the following lines of text.

A Computer Science
D Jogging
C Tennis

What happens if you try this command line:

1,$s/r AB]/ AI <return>

Undo the above command. How can you make the C and D unique?
(Hint: they are at the beginning of the line, in the position shown by the A.)
Do not be afraid to experiment!

5-2. Insert the following line above line 2:

These are not really my grades.

Using brackets and the A character, create a search pattern that you can use
to locate the line you inserted. There are several ways to address a line.
When you edit text, use the way that is quickest and easiest for you.

5-3. Add the following lines to your file:

I love money
I need money
The IRS wants my money

Now use one command to change them to:

It's my money
It's my money
The IRS wants my money

Line Editor Tutorial (ed) 6-65

Exercise 5

5-4.

Using two command lines, do the following: change the word on the first
line from money to gold, and change the last two lines from money to
gold without using the words money or gold themselves.

How can you change the line

1020231020

to

10202031020

without repeating the old digits in the replacement pattern?

5-5. Create a line of text containing the following characters.

.\&%A

Substitute a letter for each character. Do you need to use a backslash for
every substitution?

6-66 IRIS-4D User's Guide

(

(

(

Moving Text

You have now learned to address lines, create and delete text, and make substi­
tutions. ed has one more set of versatile and important commands. You can move,
copy, or join lines of text in the editing buffer. You can also read in text from a file
that is not in the editing buffer, or write lines of the file in the buffer to another file
in the current directory. The commands that move text are:

m move lines of text

t copy lines of text

j join contiguous lines of text

w write lines of text to a file

r read in the contents of a file

Move Lines of Text

The m command allows you to move blocks of text to another place in the file.
The general format is:

[address} ,address2]m[address3] <return>

The components of this command line include:

address} ,address2
The range of lines to be moved. If only one line is moved, only
address} is given. If no address is given, the current line is
moved.

m The move command.

address3 Place the text after this line.

Try the following example to see how the command works. Create a file that
contains these three lines of text:

Type:

I want to move this line.
I want the first line
below this line.

Im3<return>

Line Editor Tutorial (ed) 6-67

Moving Text

ed will move line 1 below line 3.

;-- I want to rove this line.

I want the first line
below this line.

~ I want to rove this line.

The next screen shows how this will appear on your terminal:

l,$p<return>
I want to IlDve this line.
I want the first line
below this line.
1m3 <return>
l,$p<return>
I want the first line
below this line.
I want to IlDve this line.

If you want to move a paragraph of text, have address} and address2 define the
range of lines of the paragraph. ..

In the following example, a block of text (lines 8 through 12) is moved below
line 65. Notice the n command that prints the line numbers of the file:

6·68 IRIS·4D User's Guide

(

(

(

8,12n <return>
8
9
10
11
12
64,65n<return>
64
65
8,12m65<return>
59,65n<return>
59
60
61
62
63
64
65

This is line 8.
It is the beginning of a
very short paragraph.
This paragraph ends
on this line.

Move the block of text
below this line.

Move the block of text
below this line.
This is line 8.
It is the beginning of a
very short paragraph.
This paragraph ends
on this line.

Moving Text

How can you move lines above the first line of the file? Try the following
command.

3,4mO<return>

When address3 is 0, the lines are placed at the beginning of the file.

Copy Lines of Text

The copy command t (transfer) acts like the m command except that the block
of text is not deleted at the original address of the line. A copy of that block of text
is placed after a specified line of text. The general format of the command line is
also similar.

Line Editor Tutorial (ed) 6-69

Moving Text

The general format of the t command also looks like the m command.

[address} ,address2]t[address3]<return>

address} ,address2

t

The range of lines to be copied. If only one line is copied, only
address} is given. If no address is given, the current line is
copied.

The copy command.

address3 Place the copy of the text after this line.

The next example shows how to copy three lines of text below the last line.

Safety procedures:

If there is a fire in the building:
Close the door of the room to seal off the fire

Break glass of nearest alann.
,-- Pull lever.

Locate and use fire extinguisher.

.

.
A chemical fire in the lab requires that yo u:

Break glass of nearest alann
Pull lever

~ Locate and use fire extinguisher

The commands and ed's responses to them are displayed in the next screen.
Again, the n command displays the line numbers:

6-70 IRIS-4D User's Guide

(

(

(

Moving Text

5,8n<return>
5 Close the door of the room, to seal off the fire.
6 Break glass of nearest alarm.
7 Pull lever.
8 Locate and use fire extinguisher.
30n<return>
30 A chemical fire in the lab requires that you:
6,8t30<return>
30,$n <return>
30 A chemical fire in the lab requires that you:
31 Break glass of nearest alarm
32 Pull lever
33 Locate and use fire extinguisher
6,8n <return>
6 Break glass of nearest alarm
7 Pull lever
8 Locate and use fire extinguisher

The text in lines 6 through 8 remains in place. A copy of those three lines is
placed after line 50.

Experiment with m and t on one of your files.

Joining Contiguous Lines

The j command joins the current line with the following line. The general for­
mat is:

[addressl,addressl]j<return>

The next example shows how to join several lines together. An easy way of
doing this is to display the lines you want to join using p or D.

Line Editor Tutorial (ed) 6·71

Moving Text

1,2p<return>
Now is the time to join
the team.
p<return>
the team.
Ip<return>
Now is the time to join
j<return>
p<return>
Now is the time to jointhe team.

Notice that there is no space between the last word (join) and the first word of
the next line (the), and the last word (play). You must place a space between them
by using the s command.

Write Lines of Text to a File

The w command writes text from the buffer into a file. The general format is:

[address} ,address2]w [filename]<return>

address} ,address2

w

filename

The range of lines to be placed in another file. If you do not use
address} or address2, the entire file is written into a new file.

The write command.

The name of the new file that contains a copy of the block of text.

In the following example the body of a letter is saved in a file called memo, so
that it can be sent to other people.

6-72 IRIS-4D User's Guide

(

(

(

Moving Text

1,$n<return>
1 March 17, 1986
2 Dear Kelly,
3 There will be a meeting in the
4 green roam at 4:30 P.M. today.
5 Refreshments will be served.
3,6w memo<return>
87

The w command places a copy of lines three through six into a new file called
memo. ed responds with the number of characters in the new file.

Problems

The w command overwrites preexisting files; it erases the current file and puts
the new block of text in the file without warning you. If, in our example, a file
called memo had existed before we wrote our new file to that name, the original file
would have been erased.

In "Other Useful Commands and Information," later in this chapter, you will
learn how to execute shell commands from ed. Then you can list the file names in
the directory to make sure that you are not overwriting a file.

Another potential problem is that you cannot write other lines to the file memo.
If you try to add lines 13 through 16, the existing lines (3 through 6) will be erased
and the file will contain only the new lines (13 through 16).

Read in the Contents of a File

The r command can be used to append text from a file to the buffer. The gen­
eral format for the read command is:

[addressl]r fliename<return>

L1na Editor Tutorial (ad) 6·73

Moving Text

addressl The text will be placed after the line addressl. If addressl is not
given, the file is added to the end of the buffer.

r The read command.

filename The name of the file that will be copied into the editing buffer.

Using the example from the write command, the next screen shows a file being
edited and new text being read into it.

1,$n<return>
1 March 17, 1986
2 Dear Michael,
3 Are you free later today?
4 Hope to see you there.
3r memo<return>
87
3,$n<return>
3 Are you free later today?
4

5
6
7

There is a meeting in the
green room at 4:30 P.M. today.
Refreshments will J::e served.
Hope to see you there.

ed responds to the read command with the number of characters in the file being
added to the buffer (in the example, memo).

It is a good idea to display new or changed lines of text to be sure that they are
correct.

Figure 6-8 summarizes the ed commands for moving text.

6-74 IRIS-4D User's Guide

(

(

(

Moving Text

Command Function

m move lines of text

t copy lines of text

j join contiguous lines

w write text into a new file

r read in text from another file

Figure 6-8: Summary of ed Commands for Moving Text

Line Editor Tutorial (ed) 6-75

Exercise 6

6-1. There are two ways to copy lines of text in the buffer: by issuing the copy
command; or by using the write and read commands to first write text to a
file and then read the file into the buffer.

Writing to a file and then reading the file into the buffer is a longer process.
Can you think of an example where this method would be more practical?

What commands can you use to copy lines 10 through 17 of file exer into
the file exer6 at line 7?

6-2. Lines 33 through 46 give an example that you want placed after line 3, and
not after line 32. What command performs this task?

6-3. Say you are on line 10 of a file and you want to join lines 13 and 14. What
commands can you issue to do this?

6·76 IRIS-4D User's Guide

(

(

(

Other Useful Commands and Information

There are four other commands and a special file that will be useful to you dur­
ing editing sessions.

h,H accesses the help commands, which provide error messages

I displays characters that are not normally displayed

f displays the current file name

ed.hup

temporarily escapes ed to execute a shell command

When a system interrupt occurs, the ed buffer is saved in a special
file named ed.hup.

Help Commands

You may have noticed when you were editing a file that ed responds to some of
your commands with a ? The ? is a diagnostic message issued by ed when it has
found an error. The help commands give you a short message to explain the reason
for the most recent diagnostic.

There are two help commands:

h Displays a short error message that explains the reason for the most recent
?

H Places ed into help mode so that a short error message is displayed every
time the? appears. (To cancel this request, type n.)

You know that if you try to quit ed without writing the changes in the buffer to
a file, you will get a ? Do this now. When the ? appears, type h:

Line Editor Tutorial (ed) 6-77

Other Useful Commands and Information

q<return>
?
h<return>
WaTI1:ing: expecting 'w'

The ? is also displayed when you specify a new file name on the ed command
line. Give ed a new file name. When the? appears, type h to find out what the
error message means.

ed newfiie<return>
? newfile
h<return>
cannot open input file

This message means one of two things: either there is no file called new file or there
is such a file but ed is not allowed to read it.

As explained earlier, the H command responds to the? and then turns on the
help mode of ed, so that ed gives you a diagnostic explanation every time the ? is
subsequently displayed. To tum off help mode, type H again. The next screen
shows H being used to tum on help mode. Sample error messages are also
displayed in response to some common mistakes:

6-78 IRIS-4D User's Guide

(

(

(

% ed newfile<return>
e newfile<return>
?newfile
H<return>
cannot open input file
Ihello<return>
?
illegal suffix
1,22p<return>
?

line out of range
a<retum>
I am appending this line to the buffer •
• <return>
sI$ tea party<return>
?

illegal or missing delimiter
,sI/ tea party<retum>
?

unknown cormand
H<return>
q<retum>
?
h<retum>
warning: expecting 'w'

Other Useful Commands and Information

These are some of the most common error messages that you may encounter during
editing sessions:

illegal suffix
ed cannot find an occurrence of the search pattern hello because the buffer
is empty.

line out of range
ed cannot print any lines because the buffer is empty or the line specified is
not in the buffer.

A line of text is appended to the buffer to show you some error messages associated
with the s command.

Line Editor Tutorial (ed) 6-79

Other Useful Commands and Information

illegal or missing delimiter
The delimiter between the old text to be replaced and the new text is miss­
ing.

unknown carmand ("
addressl was not typed in before the comma; ed does not recognize ,$.

Help mode is then turned off and h is used to determine the meaning of the last
? While you are learning ed, you may want to leave help mode turned on. If so,
use the H command. However, once you become adept at using ed, you will only
need to see error messages occasionally. Then you can use the h command.

Display Nonprinting Characters

If you are typing a tab character, the terminal will normally display up to eight
spaces covering the space up to the next tab setting.

If you want to see how many tabs you have inserted into your text, use the 1
(list) command. The general format for the 1 command is the same as for n and p.

[addressl,address2]kreturn>

The components of this command line are:

addressl,address2
The range of lines to be displayed. If no address is
given, the current line will be displayed. If only
addressl is given, only that line will be displayed.

The command that displays the nonprinting characters
along with the text

The I command denotes tabs with a > (greater than) character. To type control
characters, hold down the control key and press the appropriate alphabetic key. The
key that sounds the bell is <ctrl-g>. It is displayed as 'l(J7 which is the octal
representation (the computer's code) for <ctrl-g>.

(

Type in two lines of text that contain a <ctrl-g> and a tab. Then use the I com- ("
mand to display the lines of text on your terminal.

6·80 IRIS·4D User's Guide

Other Useful Commands and Information

a<return>
Add a <ctrl-g> to this line.<return>
Add a <tab> (tab) to this line.<return>
.<return>
1,21<return>
1\dd a \07 (control-g) to this line.<return>
1\dd a > (tab) to this line.<return>

Did the bell sound when you typed <ctrl-g>?

The Current File Name

In a long editing session, you may forget the file name. The f command will
remind you which file is currently in the buffer. Or, you may want to preserve the
original file that you entered into the editing buffer and write the contents of the
buffer to a new file. In a long editing session, you may forget, and accidentally
overwrite the original file with the customary w and q command sequence. You
can prevent this by telling the editor to associate the contents of the buffer with a
new file name while you are in the middle of the editing session. This is done with
the f command and a new file name.

The format for displaying the current file name is f alone on a line:

f<return>

To see how f works, enter ed with a file. For example, if your file is called oldfile,
ed will respond as shown in the following screen:

Line Editor Tutorial (ed) 6-81

Other Useful Commands and Information

ed oldfile<return>
323
f<return>
oldfile

To associate the contents of the editing buffer with a new file name use this
general format:

f newfile<return>

(

If no file name is specified with the write command, ed remembers the file
name given at the beginning of the editing session and writes to that file. If you do
not want to overwrite the original file, you must either use a new file name with the
write command, or change the current file name using the f command followed by
the new file name. Because you can use f at any point in an editing session, you can (
change the file name immediately. You can then continue with the editing session
without worrying about overwriting the original file.

The next screen shows the commands for entering the editor with oldfile and
then changing its name to newfile. A line of text is added to the buffer and then the
write and quit commands are issued.

6-82 IRIS-4D User's Guide

(

Other Useful Commands and Information

ed old6Ie<return>
323
f<return>
oldfile
f newfile<return>
newfile
a<return>
Add a line of text.<return>
.<return>
w<return>
343
q<return>

Once you have returned to the shell, you can list your files and verify the
existence of the new file, newfile. Newfile should contain a copy of the contents of
old file plus the new line of text.

Escape to the Shell
How can you make sure you are not overwriting an existing file when you write

the contents of the editor to a new file name? You need to return to the shell to list
your files. The! allows you to temporarily return to the shell, execute a shell com­
mand, and then return to the current line of the editor.

The general format for the escape sequence is:

!shell command line <return>
shell response to the command line

When you type the ! as the first character on a line, the shell command must
follow on that same line. The program's response to your command will appear as
the command is running. When the command has finished executing, the! will
appear alone on a line. This means that that you are back in the editor at the current
line.

Line Editor Tutorial (ed) 6-83

Other Useful Commands and Information

For example, if you want to return to the shell to find out the correct date, type!
and the shell command date.

p<return>
This is the current line
! date<return>
Tue Apr 1 14:24:22 EST 1986

p<return>
This is the current line.

The screen first displays the current line. Then the command is given to tem­
porarily leave the editor and display the date. After the date is displayed, you are
returned to the current line of the editor.

(

If you want to execute more than one command on the shell command line, see
the discussion on; in the section called "Special Characters" in Chapter 7. (

Recovering From System Interrupts

What happens if you are creating text in ed and there is an interrupt to the sys­
tem, you are accidentally hung up on the system, or your terminal is unplugged?
When an interrupt occurs, the UNIX system tries to save the contents of the editing
buffer in a special file named ed.bup. Later you can retrieve your text from this file
in one of two ways. First, you can use a shell command to move ed.bup to another
file name, such as the name the file had while you were editing it (before the inter­
rupt). Second, you can enter ed and use the f command to rename the contents of
the buffer. An example of the second method is shown in the following screen:

6-84 IRIS-4D User's Guide

(

ed ed.hup<return>
928
f myfile<return>
myfile

Other Useful Commands and Information

If you use the second method to recover the contents of the buffer, be sure to
remove the ed.hup file afterward.

Conclusion
You now are familiar with many useful commands in ed. The commands that

were not discussed in this tutorial, such as G, P, Q and the use of () and { }, are dis­
cussed on the ed(1) page of the User's Reference Manual. You can experiment
with these commands and try them to see what tasks they perform.

Figure 6-9 summarizes the functions of the commands introduced in this sec-
tion.

Line Editor Tutorial (ed) 6-85

other Useful Commands and Information

Command Function

h Displays a short error message for the preceding diagnos-
tic 1.

H Tum on help mode. An error message will be given with
each diagnostic? The second H turns off help mode.

I Display nonprinting characters in the text.

r Display the current file name.

r newftle Change the current file name associated with the editing
buffer to newftle.

!cmd Temporarily escape to the shell to execute a shell com-
mandcmd.

ed.hup The editing buffer is saved in ed.hup if the terminal is
hung up before a write command.

Figure 6-9: Summary of Other Useful Commands (

(

6·86 IRI5-4D User's Guide

Exercise 7

7-1. Create a new file called newfilel. Access ed and change the file's name to
currentl. Then create some text and write and quit ed. Run the Is com­
mand to verify that there is not a file called newfilel in your directory. If
you do the shell command Is, you will see the directory does not contain a
file called newfilel.

7-2. Create a file named filel. Append some lines of text to the file. Leave
append mode but do not write the file. Turn off your terminal. Then turn
on your terminal and log in again. Issue the Is command in the shell. Is
there a new file called ed.hup? Place ed.hup in ed. How can you change
the current file name to filel? How can you change the current file name
to filel? Display the contents of the file. Are the lines the same lines you
created before you turned off your terminal?

7-3. While you are in ed, temporarily escape to the shell and send a mail mes­
sage to yourself.

Line Editor Tutorial (ed) 6-87

Answers to Exercises

Exercise 1

1-2.

1-1.

% ed junk<retum>
7 junk.
a<return>
Hello world.<return>
.<return>
w<return>
12
q<return>
%

% ed Junk<return>
12
1,$p<return>
Hello world.<return>
q<return>
%

(

(

The system did not respond with the warning question mark because you did (
not make any changes to the buffer.

6·88 IRI8-4D User's Guide

1-3.

% ed junk<return>
12
a<return>
Wendy's horse came through the window.<retum>
.<return>
1,$p<return>
Hello world.
Wendy's horse carre through the window.
q<return>
?
w stuif<return>
60
q<retum>
%

Answers to Exercises

Line Editor Tutorial (ed) 6-89

Answers to Exercises

Exercise 2
2-1.

2-2.

% ed towns<return>
? towns
a<return>
My kind of town is<return>
Chicago<return>
Like being no where at all in<return>
Toledo<return>
I lost those little town blues in <return>
New York <return>
I lost my heart in <return>
San Francisco<return>
I lost $$ in <return>
Las Vegas<return>
.<return>
w<return>
164

3<return>
Like being no where at all in

6-90 IRIS-4D User's Guide

(

(

(

2-3.

2-4.

-2,+3p<return>
My kind of town is
Chicago
Like being no where at all in
Toledo
I lost those little town blues in
New York

.=<return>
6

6<return>
New York

Answers to Exercises

Line Editor Tutorial (ed) 6-91

Answers to Exercises

2-5.

2-6.

%<return>
Las Vegas

?town<returo>
I lost those little town blues in
?<return>
My kind of town is

6-92 IRIS-4D User's Guide

(

(

(

2-7:

g/in<return>
My kind of town is
Like being no where at all in
I lost those little town blues in
I lost my heart in
I lost $$ in

v/in <return>
Chicago
Toledo
New York
San Francisco
Las Vegas

Exercise 3
3-1.

% ed ex3<return>
?ex3

i<return>

q<return>

Answers to Exercises

The ? after the i means there is an error in the command. There is no current
line before which text can be inserted.

Line Editor Tutorial (ed) 6-93

Answers to Exercises

3-2.

6-94

% ed towns<return>
164
.n<return>
10 Las Vegas
3i<return>
llIinois<return>
.<return>
.i<return>
or <return>
Naperville<return>
.<return>
$i<return>
hotels in<return>
1,$n<return>

1 my kind of town is
2 Chicago
3 or
4 Naperville
5 Illinois
6 Like being no where
7 Toledo
8 I lost those little
9 New York

10 I lost my heart in
11 San Francisco
12 I lost $$ in
13 hotels in
14 Las Vegas

at all in

town blues

IRIS-4D User's Guide

(

(

in

(

3-3,

3-4.

1,5n<return>
1 My kind of town is
2 Chicago
3 or
4 Naperville
5 Illinois
2,5c<return>
London<return>
.<return>
1,3n<return>
1 My kind of town is
2 London
3 Like being no where at all

. <return>
Like being no where at all
trol<return>
Toledo
c<return>
Peoria<return>
.<return>
.<return>
Peoria

Answers to Exercises

Line Editor Tutorial (ed) 6-95

Answers to Exercises

3-5.

.<return>
/New Y/c<return>
Iron City<return>
.<return>
.<return>
Iron City

Your search string need not be the entire word or line. It only needs to be
unique.

Exercise 4
4-1.

vllittle town/s/town/city<return>
My kind of city is
London
Like being no where at all in
Peoria
Iron City
I lost my heart in
San Francisco
I lost $$ in
hotels in
Las Vegas

6-96 IRIS-4D User's Guide

(

(

(

Answers to Exercises

The line

I lost those little town blues in

was not printed because it was NOT addressed by the v command.

4-2.

4-3.

.<return>
Las Vegas

s?Las Vegas?Toledo<return>
Toledo

?Iost?s??found<return>
I found $$ in

Line Editor Tutorial (ed) 6-97

Answers to Exercises

4-4.

/no?s??NO<return>
?

/no/s//NO<return>
Like being NO where at all in

You cannot mix delimiters such as / and? in a command line.

The substitution command on line 9 produced this output:

I found $$ inBig $

It did not work correctly because the $ sign is a special character in ed.

6·98 IRIS·4D User's Guide

(

(

(

Exercise 5
5-1.

% ed file1<return>
? filel
a<return>
A Computer Science<return>
D Jogging<return>
C Tennis<return>
.<return>
1,$s/[" AB]I AI <return>
1,$p<return>
A Computer Science
A Jogging
A Tennis
u<return>

1,$s/TAB]/A<return>
1,$p<return>
A Computer Science
A Jogging
A Tennis

Answers to Exercises

Line Editor Tutorial (ed) 6-99

Answers to Exercises

5-2.

5-3.

6-100

2i<return>
These are not really my grades.<return>
1,$p<return>
A Computer Science
These are not really my grades.
A Tennis
A Jogging
ITA]<return>
These are not really my grades
?A[T]<return>
These are not really my grades

1,$p<return>
I love rroney
I need rroney
The IRS wants my money
g/AIIslI.*m lIt's my m<return>
It's my money
It's my money

IRIS-4D User's Guide

(

(

(

5-4.

5-5.

Islmoney/gold<return>
It's ll\Y gold
2,$sII% <return>
The IRS wants ll\Y gold

sll02021 &O<return>
10202031020

a<return>
* . \ & % ' *<return>
.<return>
s/*/a<return>
a.\&%'*
sI*lb<return>
a.\&%'b

Answers to Exercises

Because there were no preceding characters, ... substituted for itself.

Line Editor Tutorial (ed) 6·101

Answers to Exercises

sI \Jc<return>
ac\&%"b
sI Wd<return>
a c d & % " b
sI&/e<return>
acde%"b
sI%/f<return>
acdef"b

The & and % are only special characters in the replacement text.

sI Wg<return>
acdefgb

Exercise 6

6· 1. Any time you have lines of text that you may want to have repeated several
times, it may be easier to write those lines to a file and read in the file at
those points in the text.

If you want to copy the lines into another file you must write them to a file
and then read that file into the buffer containing the other file.

6-102 IRIS-4D User's Guide

(

(

(

6-2.

ed exer<:return>
725
10,17 w temp<:return>
210
q<:return>
ed exer6<:return>
305
7r temp<:return>
210

The file temp can be called any file nam(!.

33,46m3<return>

Answers to Exercises

Line Editor Tutorial (ed) 6-103

Answers to Exercises

6-3.

.=<return>
10
13p<return>
This is line 13.
j<return>
.p<return>
This is line 13.and line 14.

Remember that.= gives you the current line.

6-104 IRIS-4D User's Guide

(

(

(

Exercise 7
7-1.

7-2.

% ed newfilel<return>
? newfilel
f currentl <return>
current 1
a<return>
This is a line of text<return>
Will it go into newfilel<return>
or into currentl<return>
.<return>
w<return>
66
q<return>
% Is<return>
bin
current 1

ed filel <return>
? filel
a<return>
I am adding text to this file. <return>
Will it show up in ed.hup?<return>
.<return>

Tum off your terminal.

Log in again.

Answers to Exercises

Line Editor Tutorial (ed) 6-105

Answers to Exercises

7-3.

eel ed.hup<return>
58
rmel<return>
filel
l,$p<return>
I am adding text to this file.
will it show up in ed.hup?

% ed mel <return>
58
! mail mylogln<return>
You wlII get mail when <return>
you are done editing! <return>
.<return>

6-106 IRIS-4D USer's Guide

(

(

The Bourne Shell

This chapter describes how to use the UNIX system shell to do routine tasks.
For example, it shows you how to use the shell to manage your files, to manipulate
file contents, and to group commands together to make programs the shell can exe­
cute for you.

The chapter has two major sections. The first section, "Shell Command
Language," covers in detail using the shell as a command interpreter. It tells you
how to use shell commands and characters with special meanings to manage files,
redirect standard input and output, and execute and terminate processes. The
second section, "Shell Programming," covers in detail using the shell as a program­
ming language. It tells you how to create, execute, and debug programs made up of
commands, variables, and programming constructs like loops and case statements.
Finally, it tells you how to modify your login environment.

The chapter offers many examples. You should login to your UNIX system
and recreate the examples as you read the text. As in the other examples in this
guide, different type (bold, italic, and tyrewriter font) is used to distinguish
your input from the UNIX system's output. See "Notation Conventions" in the Pre­
face for details.

In addition to the examples, there are exercises at the end of both the "Shell
Command Language" and "Shell Programming" sections. The exercises can help
you better understand the topics discussed. The answers to the exercises are at the
end of the chapter.

Your UNIX system might not have all commands referenced in this chapter. If you
cannot access a command, check with your system administrator.

If you want an overview of how the shell functions as both command inter­
preter and programming language, see Chapters 1 and 4 before reading this chapter.
Also, refer to Appendix C, Summary of Shell Command Language.

The Bourne Shell Tutorial 1-1

Shell Command language

This section introduces commands and, more importantly, some characters with
special meanings that let you

• find and manipulate a group of files by using pattern matching

• run a command in the background or at a specified time

• run a group of commands sequentially

• redirect standard input and output from and to files and other commands

• terminate processes

This chapter covers the characters that have special meanings to the shell and the
commands and notations needed to carry out the tasks listed above. Figure 7-1
summarizes the characters with special meanings discussed in this chapter.

7-2 IRIS-4D User's Guide

(

Shell Command Language

Character Function

*? [1 metacharacters that provide a shortcut for specifying file
names by pattern matching

& places commands in background mode, leaving your terminal
free for other tasks

; separates multiple commands on one command line

\ turns off the meaning of special characters such as *, ? , [1,
&,;, >, <, and I.

, , single quotes turn off the delimiting meaning of a space and ...
the special meaning of all special characters

" " double quotes turn off the delimiting meaning of a space and ...
the special meaning of all special characters except $ and '

> redirects output of a command into a file (replaces existing
contents)

< redirects input for a command to come from a file

» redirects output of a command to be added to the end of an
existing file

1 creates a pipe of the output of one command to the input of
another command

, ,
grave accents allow the output of a command to be used ...
directly as arguments on a command line

$ used with positional parameters and user-defined variables.

Figure 7-1: Characters with Special Meanings in the Shell Language

The Bourne Shell Tutorial 7-3

Shell Command Language

Metacharacters

Metacharacters, a subset of the special characters, represent other characters. ,(-
They are sometimes called wild cards, because they are like the joker in card games
that can be used for any card. The metacharacters'" (asterisk), ? (question mark),
and [] (brackets) are discussed here.

These characters are used to match file names or parts of file names, thereby
simplifying the task of specifying files or groups of files as command arguments.
(The files whose names match the patterns formed from these metacharacters must
already exist.) This is known as file-name expansion. For example, you may want
to refer to all file names containing the letter "a", all file names consisting of five
letters, and so on.

The Asterisk (*) Metacharacter

The asterisk ("') matches any string of characters, including a null (empty)
string. You can use the * to specify a full or partial file name. The * alone refers to
all the file and directory names in the current directory. To see the effect of the "',
try it as an argument to the echo(l) command. Type:

echo *<return>

The echo command displays its arguments on your screen. Notice that the system
response to echo'" is a listing of all the file names in your current directory. How­
ever, the file names are displayed horizontally rather than in vertical columns such
as those produced by the Is command.

Figure 7-2 summarizes the syntax and capabilities of the echo command.

7-4 IRIS-4D User's Guide

(

(

Shell Command Language

Command Recap

echo - write any arguments to the output

command options arguments

echo none any character(s)

Description: echo writes arguments, which are separated by
blanks and ended with <return> , to the output.

Remarks: In shell programming, echo is used to issue instruc-
tions, to redirect words or data into a file, and to pipe
data into a command. All these uses will be dis-
cussed later in this chapter.

Figure 7-2: Summary of the echo Command

V The' " a pow"rul """"'te.-. Fm "=pl,. If yoo typo 'm 'yoo will ,,~, all
the files in your current directory. Be very careful how you use it!

For another example, say you have written several reports and have named
them report, reportl, reportla, reportlb.Ol, report2S, and report316. By typ­
ing reportl * you can refer to all files that are part of reportI, collectively. To find
out how many reports you have written, you can use the Is command to list all files
that begin with the string "report," as shown in the following example.

The Bourne Shell Tutorial 7-5

Shell Command Language

$ Is report*<return>
report
report 1
reportla
reportlb.Ol
report 25
report316
$

The * matches any characters after the string "report," including no letters at all.
Notice that * matches the files in numerical and alphabetical order. A quick and
easy way to print the contents of your report files in order on your screen is by typ­
ing the following command:

pr report*<return>

Now try another exercise. Choose a character that all the file names in your
current directory have in common, such as a lowercase "a". Then request a listing (
of those files by referring to that character. For example, if you choose a lowercase
"a", type the following command line:

Is *a*<return>

The system responds by printing the names of all the files in your current directory
that contain a lowercase "a".

The * can represent characters in any part of the file name. For example, if you
know that several files have their first and last letters in common, you can request a
list of them on that basis. For such a request, your command line might look like
this:

Is F*E<return>

The system response will be a list of file names that begin with F, end with E, and
are in the following order:

F123E
FATE
FE
Fig3.4E

The order is determined by the ASCII sort sequence: (1) numbers; (2) uppercase
letters; (3) lowercase letters.

7-6 IRIS-4D User's Guide

(

Shell Command Language

The Question Mark (1) Metacharacter

The question mark (?) matches any single character of a file name. Let's say
you have written several chapters in a book that has 12 chapters, and you want a list
of those you have finished through Chapter 9. Use the Is command with the? to list
all chapters that begin with the string "chapter" and end with any single character,
as shown below:

$ Is chapter?<return>
chapterl
chapter2
chapter5
chapter9
$

The system responds by printing a list of all file names that match.

Although? matches anyone character, you can use it more than once in a file
name. To list the rest of the chapters in your book, type:

Is chapter??<return>

Of course, if you want to list all the chapters in the current directory, use the *:

Is chapter*

Using the * or 1 to Correct Typing Errors

Suppose you use the mV(I) command to move a file, and you make an error
and enter a character in the file name that is not printed on your screen. The system
incorporates this non-printing character into the name of your file and subsequently
requires it as part of the file name. If you do not include this character when you
enter the file name on a command line, you get an error message. You can use * or
? to match the file name with the non-printing character and rename it to the correct
name.

The Bourne Shell Tutorial 7·7

Shell Command Language

Try the following example.

1. Make a very short file called trial.

2. Type: mv trial triai<etrl-g>l<return>

3. Type: Is triall<return>

The system will respond with an error message:

$ Is triall <return>
triall: no such file or directory
$

4. Type: Is trial?l<return>

The system will respond with the file name triall (including the non­
printing character), verifying that this file exists. Use the ? again to correct
the file name.

$ mv trial?1 triall<return>
$ Is triall<return>
triall
$

The Bracket ([]) Metacharacters

Use brackets ([]) when you want the shell to match anyone of several possible
characters that may appear in one position in the file name. For example, if you
include [erf] as part of a file-name pattern, the shelLwilllook for file names that
have the letter "c", the letter "r", or the letter Iff' in the specified position, as the fol­
lowing example shows.

7-8 IRIS-4D User's Guide

(

(

(

$ Is [crfjakreturn>
cat
fat
rat
$

Shell Command Language

This command displays all file names that begin with the letter "c", "r", or "f' and
end with the letters "at". Characters that can be grouped within brackets in this way
are collectively called a "character class",

Brackets can also be used to specify a range of characters, whether numbers or
letters. For example, if you specify

chapter[1-S]

the shell will match any files named chapterl through chapterS. This is an easy
way to handle only a few chapters at a time.

Try the pr command with an argument in brackets:

pr chapter [2-4]<return>

This command will print the contents of chapter2, chapter3, and chapter4, in that
order, on your terminal.

A character class may also specify a range of letters. If you specify [A-Z], the
shell will look only for uppercase letters; if [a-z], only lowercase letters.

The uses of the metacharacters are summarized in Figure 7-3. Try the meta­
characters on the files in your current directory.

The Bourne Shell Tutorial 7-9

Shell Command Language

Character Function

... matches any string of characters, including an empty (null)
string

? matches any single character

[] matches one of the sequence of characters specified within the
brackets

[-] matches one of the range of characters specified

Figure 7-3: Summary of Metacharacters

Special Characters

The shell language has other special characters that perform a variety of useful
functions. Some of these additional special characters are discussed in this section;
others are described in the next section, "Input and Output Redirection."

The Ampersand (&)

Some shell commands take considerable time to execute. The ampersand (&)
is used to execute commands in background mode, thus freeing your terminal for
other tasks. The general format for running a command in background mode is

command &<return>

You should not run interactive shell commands, for example read (see "Using the
read Command" in this chapter), in the background.

(

(

In the example below, the shell is performing a long search in background (
mode. Specifically, the grep(1) command is searching for the string "delinquent" in
the file accounts. Notice the & is the last character of the command line:

7-10 IRIS-4D User's Guide

$ grep delinquent accounts &<return>
21940
$

Shell Command language

When you run a command in the background, the UNIX system outputs a process
number; 21940 is the process number in the example. You can use this number to
stop the execution of a background command. (Stopping the execution of processes
is discussed in the "Executing and Terminating Processes" section.) The prompt on
the last line means the terminal is free and waiting for your commands; grep has
started running in background.

Running a command in background affects only the availability of your termi­
nal; it does not affect the output of the command. Whether or not a command is run
in background, it prints its output on your terminal screen, unless you redirect it to a
file. (See "Redirecting Output," later in this chapter, for details.)

If you want a command to continue running in background after you log off,
you can submit it with the nohup(l) command. (This is discussed in "Using the
nohup Command," later in this chapter.)

The Semicolon (;)

You can type two or more commands on one line as long as each pair is
separated by a semicolon (;) • as follows:

command1; command2; command3 <return>

The UNIX system executes the commands in the order that they appear in the line
and prints all output on the screen. This process is called sequential execution.

Try this exercise to see how the; works. First, type

cd; pWd; Is<return>

The shell executes these commands sequentially:

1. cd changes your location to your login directory

2. pwd prints the full path name of your current directory

3. Is lists the files in your current directory

If you do not want the system's responses to these commands to appear on your
screen, refer to "Redirecting Output" for instructions.

The Bourne Shell Tutorial 7-11

Shell Command Language

The Backslash (\)

The shell interprets the backslash (\) as an escape character that allows you to
turn off any special meaning of the character immediately after it. To see how this ('.
works, try the following exercise. Create a two-line file called trial that contains .
the following text:

The all * garre
was held in Summit.

Use the grep command to search for the asterisk in the file, as shown in the follow­
ing example:

$ grep \ * triakreturn>
The all * garre
$

The grep command finds the * in the text and displays the line in which it appears.
Without the \ the * would be a metacharacter to the shell and would match all file
names in the current directory.

Quotes

Another way to escape the meaning of a special character is to use quotation (
marks. Single quotes (' ... ') turn off the special meaning of any character. Double
quotes (" ... ") turn off the special meaning of all characters except $ and' (grave
accent), which retain their special meanings within double quotes. An advantage of
using quotes is that numerous special characters can be enclosed in the quotes; this
can be more concise than using the backslash.

For example, if your file named trial also contained the line

He really wondered why? Why???

you could use the grep command to match the line with the three question marks as
follows:

$ grep '???' triakreturn>
He really wondered why? Why???
$

If you had instead entered the command

grep ??? triakreturn>

the three question marks would have been used as shell metacharacters and matched
all file names of length three.

7-12 IRIS-4D User's Guide

(

Shell Command Language

Using Quotes to Turn Off the Meaning of a Space

A common use of quotes as escape characters is for turning off the special
meaning of the blank space. The shell interprets a space on a command line as a
delimiter between the arguments of a command. Both single and double quotes
allow you to escape that meaning.

For example, to locate two or more words that appear together in text, make the
words a single argument (to the grep command) by enclosing them in quotes. To
find the two words "The all" in your file trial, enter the following command line:

$ grep 'The all' triakreturn>
The all * garre
$

grep finds the string "The all" and prints the line that contains it. What would
happen if you did not put quotes around that string?

The ability to escape the special meaning of a space is especially helpful when
you are using the banner(l) command. This command prints a message across a
terminal screen in large, poster-size letters.

To execute banner, specify a message consisting of one or more arguments (in
this case usually words), separated on the command line by spaces. The banner
will use these spaces to delimit the arguments and print each argument on a separate
line.

To print more than one argument on the same line, enclose the words in double
quotes. For example, to send a birthday greeting to another user, type:

banner happy birthday to you <return>

The command prints your message as a four-line banner. Now print the same mes­
sage as a three-line banner. Type:

banner happy birthday "to you"<return>

Notice that the words "to" and "you" now appear on the same line. The space
between them has lost its meaning as a delimiter.

Figure 7-4 summarizes the syntax and capabilities of the banner command.

The Bourne Shell Tutorial 7-13

Shell Command Language

Command Recap

banner - make posters

command options arguments

banner none characters

Description: banner displays up to 10 characters in large letters

Remarks: Later in this chapter you will learn how to redirect
the banner command into a file to be used as a
poster.

Figure 7-4: Summary of the banner Command

Input and Output Redirection

In the UNIX system, some commands expect to receive their input from the
keyboard (standard input) and most commands display their output at the terminal
(standard output). However, the UNIX system lets you reassign the standard input
and output to other files and programs. This is known as redirection. With redirec­
tion, you can tell the shell to

• take its input from a file rather than the keyboard

• send its output to a file rather than the terminal

• use a program as the source of data for another program

You use a set of operators, the less than sign «), the greater than sign (», two
greater than signs (»), and the pipe (I) to redirect input and output.

7-14 IRIS-4D User's Guide

(

(

(

Shell Command Language

Redirecting Input: the < Sign

To redirect input, specify a file name after a less than sign «) on a command
line:

command < jile<return>

For example, assume that you want to use the mail(l) command (described in
Chapter 8) to send a message to another user with the login colleague and that you
already have the message in a file named report. You can avoid retyping the mes­
sage by specifying the file name as the source of input:

mail colleague < report<return>

Redirecting Output to a File: the> Sign

To redirect output, specify a file name after the greater than sign (» on a com­
mandline:

command > jile<return> V If you reru",,' Output In • file !hoi oke"", ex"~. 1he oulpn, of yo'" w=md will
overwrite the contents of the existing file.

Before redirecting the output of a command to a particular file, make sure that a
file by that name does not already exist, unless you do not mind losing it. Because
the shell does not allow you to have two files of the same name in a directory, it will
overwrite the contents of the existing file with the output of your command if you
redirect the output to a file with the existing file's name. The shell does not warn
you about overwriting the original file.

To make sure there is no file with the name you plan to use, run the Is com­
mand, specifying your proposed file name as an argument. If a file with that name
exists, Is will list it; if not, you will receive a message that the file was not found in
the current directory. For example, checking for the existence of the files temp and
junk would give you the following output.

The Bourne Shell Tutorial 7-15

Shell Command Language

$ Is temp<return>
temp
$ Is junk<return>
junk: no such file or directory
$

This means you can name your new output file junk, but you cannot name it temp
unless you no longer want the contents of the existing temp file.

Appending Output to a File: the» Symbol

To keep from destroying an existing file, you can also use the double redirec­
tion symbol (»), as follows:

command » filename<return>

This appends the output of a command to the end of the file filename. If file name
does not exist, it is created when you use the» symbol this way.

The following example shows how to append the output of the cat command to
an existing file. First, the cat command is executed on both files without output
redirection to show their respective contents. Then the contents of trial2 are added
after the last line of triall by executing the cat command on trial2 and redirecting
the output to trial!.

7-16 IRI5-4D User's Guide

(

(

(

$ cat trlaJl<retum>
This is the first line of triall.
Hello.
This is the last line of triall.
$
$ cat trlaI2<return>
This is the beginning of trial2.
Hello.
This is the end of tria12.
$
$ cat trial2 » trlaJl<return>
$ cat trlal1<retum>
This is the first line of triall.
Hello.
This is the last line of triall.
This is the beginning of tria12.
Hello.
This is the end of trial2.
$

Shell Command Language

Useful Applications of Output Redirection

Redirecting output is useful when you do not want it to appear on your screen
immediately or when you want to save it. Output redirection is also especially use­
ful when you run commands that perform clerical chores on text files. Two such
commands are spell and sort.

The spell Command

The spell program compares every word in a file against its internal vocabulary
list and prints a list of all potential misspellings on the screen. If spell does not
have a listing for a word (such as a person's name), it will report that as a misspel­
ling, too.

Running spell on a lengthy text file can take a long time and may produce a list
of misspellings that is too long to fit on your screen. spell prints all its output at
once; if it does not fit on the screen, the command scrolls it continuously off the top
until it has all been displayed. A long list of misspellings will roll off your screen
quickly and may be difficult to read.

The Bourne Shell Tutorial 7-17

Shell Command Language

You can avoid this problem by redirecting the output of spell to a file.
following example, spell searches a file named memo and places a list of
misspelled words in a file named misspell:

$ spell memo> misspelkreturn>

In the

Figure 7-5 summarizes the syntax and capabilities of the spell command.

*

Command Recap

spell- find spelling errors

command options arguments

spell available* file

Description: spell collects words from a specified file
or files and looks them up in a spelling
list. Words that are not on the spelling
list are displayed on your terminal.

Options: spell has several options, including one
for checking British spellings.

Remarks: The list of misspelled words can be
redirected into a file.

See the spell(l) manual page in the IRIS4D User's Reference Manual for all available options and
an explanation of their capabilities.

Figure 7-5: Summary of the spell Command

7-18 IRIS-4D User's Guide

(

(

(

Shell Command Language

The sort Command

The sort command arranges the lines of a specified file in alphabetical order
(see Chapter 3 for details). Because users generally want to keep a file that has
been alphabetized, output redirection greatly enhances the value of this command.

Be careful to choose a new name for the file that will receive the output of the
sort command (the alphabetized list). When sort is executed, the shell first empties
the file that will accept the redirected output. Then it performs the sort and places
the output in the blank file. If you type

sort list> list<return>

the shell will empty list and then sort nothing into list.

Background Mode and Output Redirection

Running a command in background does not affect the command's output;
unless it is redirected, output is always printed on the terminal screen. If you are
using your terminal to perform other tasks while a command runs in background,
you will be interrupted when the command displays its output on your screen.
However, if you redirect that output to a file, you can work undisturbed.

For example, in the "Special Characters" section you learned how to execute
the grep command in background with &. Now suppose you want to find
occurrences of the word "test" in a file named schedule. Run the grep command in
background and redirect its output to a file called testfile:

$ grep test schedule> testme &<return>

You can then use your terminal for other work and examine testfile when you have
finished it.

Redirecting Output to a Command: the Pipe (I)
The I character is called a pipe. Pipes are powerful tools that allow you to take

the output of one command and use it as input for another command without creat­
ing temporary files. A multiple command line created in this way is called a pipe­
line.

The general format for a pipeline is:

command1 I command2 I command3 ... <return>

The output of command1 is used as the input of command2. The output of com­
mand2 is then used as the input for command3 .

The Bourne Shell Tutorial 7-19

Shell Command Language

To understand the efficiency and power of a pipeline, consider the contrast
between two methods that achieve the same results.

• To use the input/output redirection method, run one command and redirect
its output to a temporary file. Then run a second command that takes the
contents of the temporary file as its input. Finally, remove the temporary
file after the second command has finished running.

• To use the pipeline method, run one command and pipe its output directly
into a second command.

For example, say you want to mail a happy birthday message in a banner to the
owner of the login david. Doing this without a pipeline is a three-step procedure.
You must

1. Enter the banner command and redirect its output to a temporary file:

banner happy birthday> message.tmp

2. Enter the mail command using message.tmp as its input:

mail david < message.tmp

3. Remove the temporary file:

rm message.tmp

However, by using a pipeline you can do this in one step:

banner happy birthday I mail david<return>

A Pipeline Using the cut and date Commands

The cut and date commands provide a good example of how pipelines can
increase the versatility of individual commands. The cut command allows you to
extract part of each line in a file. It looks for characters in a specified part of the
line and prints them. To specify a position in a line, use the -c option and identify

(

(

the part of the file you want by the numbers of the spaces it occupies on the line, (
counting from the left-hand margin.

For example, say you want to display only the dates from a file called birth­
days. The file contains the following list:

7-20 IRIS-4D User's Guide

Shell Command Language

Anne 12/26
Klaus 7/4
Mary 10/18
Peter 11/9
Nandy 4/22
Sam 8/12

The birthdays appear between the ninth and thirteenth spaces on each line. To
display them, type:

cut -c9-13 birthdays<return>

The output is shown below:

12/26
7/4
10/18
11/9
4/23
8/12

Figure 7-6 summarizes the syntax and capabilities of the cut command.

The Bourne Shell Tutorial 7-21

Shell Command Language

Command Recap

cut - cut out selected fields from each line of a file

command options arguments

cut -clist file
-Hist [-d]

Description: cut extracts columns from a table or fields from each
line of a file

Options: -c lists the number of character positions from the
left. A range of numbers such as characters \-9 can
be specifled by -c1-9

-f lists the field number from the left separated by a
delimiter described by -d.

-d gives the field delimiter for -f. The default is a
space. If the delimiter is a colon, this would be
specified by -d : .

Remarks: If YOll find the cut command useful, you may also
want to use the paste command and the split com-
mand.

Figure 7-6: Summary of the cut Command

The cut command is usually executed on a file. However, piping makes it pos­
sible to run this command on the output of other commands, too. This is useful if
you want only part of the information generated by another command. For exam­
ple, you may want to have the time printed. The date command prints the day of
the week, date, and time, as follows:

$ date<return>
Sat Dec 27 13:12:32 EST 1986

Notice that the time is given between the twelfth and nineteenth spaces of the line.
You can display the time (without the date) by piping the output of date into cut,

7-22 IRIS-4D User's Guide

(

(

(

Shell Command Language

specifying spaces 12-19 with the -c option. Your command line and its output will
look like this:

$ date I cut -c12·19<return>
13:14:56

Figure 7-7 summarizes the syntax and capabilities of the date command.

Command Recap

date - display the date and time

command options arguments

date +%m%d%y* available*
+%H%%M%S

Description: date displays the current date and time on your ter-
minal

Options: +% followed by m (for month), d (for day), y (for year),
H (for hour), M (for month), and S (for second) will
echo these back to your terminal. You can add explana-
tions such as:

date '+%H:%M is the time'

Remarks: If you are working on a small computer system of
which you are both a user and the system administra-
tor, you may be allowed to set the date and time
using optional arguments to the date command.
Check your reference manual for details. When
working in a multiuser environment, the arguments
are available only to the system administrator.

Figure 7-7: Summary of the date Command

* See the date(1) manual page in the IRIS4D User's Reference Manual for all available options and
an explanation of their capabilities.

The Bourne Shell Tutorial 7-23

Shell Command Language

Substituting Output for an Argument

The output of any command may be captured and used as arguments on a
command line. This is done by enclosing the command in grave accents C ... ') and (
placing it on the command line in the position where the output should be treated as .
arguments. This is known as command substitution.

For example, you can substitute the output of the date and cut pipeline com­
mand used previously for the argument in a banner printout by typing the following
command line:

$ banner 'date I cut -c12-19'<return>

Notice the results: the system prints a banner with the current time.

The "Shell Programming" section in this chapter shows you how you can also
use the output of a command line as the value of a variable.

Executing and Terminating Processes

This section discusses the following topics:

• how to schedule commands to run at a later time by using the batch or at
command

• how to obtain the status of active processes

• how to terminate active processes

• how to keep background processes running after you have logged off

Running Commands with batch and at

The batch and at commands allow you to specify a command or sequence of
commands to be run at a later time. With the batch command, the system deter­
mines when the commands run; with the at command, you determine when the
commands run. Both commands expect input from the terminal; commands entered
from the terminal must be ended by pressing <ctrl-d>.

(

The batch command is useful if you are running a process or shell program (
that uses a large amount of system time. The batch command submits a batch job .
(containing the commands to be executed) to the system. The job is put in a queue,
and runs when the system load falls to an acceptable level. This frees the system to
respond rapidly to other input and is a courtesy to other users.

7-24 IRIS-4D User's Guide

The general format for batch is:

batch<return>
first command<return>

last command<return>
<ctrl·d>

Shell Command Language

If there is only one command to be run with batch, you can enter it as follows:

batch command line <return>
<ctrl·d>

The next example uses batch to execute the grep command at a convenient
time. Here grep searches all files in the current directory and redirects the output to
the file dol.file.

$ batch grep dollar • > dol.fIIe<return>
<ctrl·d>
job 155223141.b at Sun Dec 7 11:14:54 1986
$

After you submit a job with batch, the system responds with a job number, date,
and time. This job number is not the same as the process number that the system
generates when you run a command in the background.

Figure 7·8 summarizes the syntax and capabilities of the batch Command.

The Bourne Shell Tutorial 7·25

SheH Command Language

Command Recap

batch - execute commands at a later time

command options input (
batch none command lines

Description: batch submits a batch job, which is placed in a queue
and executed when the load on the system falls to an
acceptable level.

Remarks: The list of commands must end with a <ctrl·d>.

Figure 7·8: Summary of the batch Command

The at command allows you to specify an exact time to execute the commands. (
The general format for the at command is

at time<return>
first command<return>

last command<return>
<ctrl-d>

The time argument consists of the time of day and, if the date is not today, the
date.

The following example shows how to use the at command to mail a happy
birthday banner to login emily on her birthday:

7-26 IRIS·4D User's Guide

(

$ at 8:15am Feb 27<return>
banner happy birthday I mail emily<return>
<ctrl·d>
job 453400603.a at Thurs Feb 27 08:15:00 1986

$

Shell Command Language

Notice that the at command, like the batch command, responds with the job
number, date, and time.

If you decide you do not want to execute the commands currently waiting in a
batch or at job queue, you can erase those jobs by using the -r option of the at
command with the job number. The general format is

at -r jobnumber<return>

Try erasing the previous at job for the happy birthday banner. Type in:

at -r 453400603.a<return>

If you have forgotten the job number, the at -I command will give you a list of the
current jobs in the batch or at queue, as the following screen shows:

$ at -kreturn>
user = mylogin 168302040.a at Sat Nov 29 l3:00:00 1986
user = mylogin 453400603.a at Fri Feb 27 08:15:00 1987
$"

Notice that the system displays the job number and the time the job will run.

The Bourne Shell Tutorial 7-27

Shell Command Language

Using the at command, mail yourself the file memo at noon, to tell you it is
lunch time. (You must redirect the file into mail unless you use the "here docu­
ment," described in the "Shell Programming" section.) Then try the at command
with the -I option:

$ at 12:0Opm<return>
mail mylogin < memo<return>
<ctrl·d>
job 263131754.a at Jun 30 12:00:00 1986
$
$ at -I<return>
user = mylogin263131754.a at Jun 30 12:00:00 1986
$

Figure 7-9 summarizes the syntax and capabilities of the at command.

7-28 IRIS-4D User's Guide

(

(

(~

Shell Command Language

Command Recap

at - execute commands at a specified time

command options argwnents

at -r time (date)
-I jobnumber

Description: Executes commands at the lime specified. You can
use between one and four digits, and am or pm to
show the time. To specify the date, give a month
name followed by the number for the day. You do
not need to enter a date if you want your job to run
the same day. See the at(l) manual page in the
IRIS-4D User's Reference Manual for other default
times.

Options: The -r option with the job number removes previ-
ously scheduled jobs.

The -I option (no arguments) reports the job number
and status of all scheduled at and batch jobs.

Remarks: Examples of how to specify times and dates with the
at command:

at 08:15am Feb 27
at 5:14pm Sept 24

Figure 7-9: Summary of the at Command

The Bourne Shell Tutorial 7-29

Shell Command Language

The next section, "Tenninating Active Processes," discusses how you can use
the PIO (process identification) number to stop a command from executing. A PIO
is a number from 1 to 30,000 that the UNIX system assigns to each active process.

In the following example, grep is run in the background, and then the ps com- (
mand is issued. The system responds with the process identification (PID) and the
tenninal identification (TTY) number. It also gives the cumulative execution time
for each process (TIME), and the name of the command that is being executed (CCM­
MANn).

$ grep word * > temp &<return>
28223
$
$ ps<return>
PID

28124
28223
28224
$

TTY TIME CQM)1AN])

tty10 0 :00 SQ

tty10 0 :04 grep

tty10 0: 04 ps

Notice that the system reports a PID number for the grep command, as well as
for the other processes that are running: the ps command itself, and the sh (shell)
command that runs while you are logged in. The shell program sh interprets the
shell commands and is discussed in Chapters 1 and 4.

Figure 7-10 summarizes the syntax and capabilities of the ps command.

7-30 IRI5-4D User's Guide

(

(

*

Shell Command Language

Command Recap

ps - report process status

command options arguments

ps several* none

Description: ps displays information about active processes.

Options: Several. If none are specified, ps displays the status
of all active processes you are running.

Remarks: Gives you the PID (process ID). This is needed to
kill a process (stop the process from executing).

See the ps(l) manual page in the IRIS4D User's Reference Manual for all available options and an
explanation of their capabilities.

Figure 7-10: Summary of the ps Command

Terminating Active Processes

The kill command is used to terminate active shell processes. The general for­
mat for the kill command is

kill PID<return>

You can use the kill command to terminate processes that are running in back­
ground. Note that you cannot terminate background processes by pressing <break>
or <delete>.

The following example shows how you can terminate the grep command that
you started executing in background in the previous example.

$ kill 28223<return>
28223 TeIminated
$

The Bourne Shell Tutorial 7-31

Shell Command Language

Notice the system responds with a message and a $ prompt, showing that the
process has been killed. If the system cannot find the PID number you specify, it
responds with an error message:

*

kill:28223:No such process

Figure 7-11 summarizes the syntax and capabilities of the kill command.

Command Recap

kill - terminate a process

command options arguments

kill available* job number or PID

Description: kill terminates the process specified by the PID
number.

See the kill(l) manual page in the IRIS4D User's Reference Manual for all available options and an
explanation of their capabilities.

Figure 7-11: Summary of the kill Command

Using the nohup Command

All processes are killed when you log off. If you want a background process to
continue running after you log off, you must use the nohup command to submit that
background command.

To execute the nohup command, follow this format:

nohup command &<return>

Notice that you place the nohup command before the command you intend to run
as a background process.

7-32 IRIS-4D User's Guide

(

(

(

Shell Command Language

For example, say you want the grep command to search all the files in the
current directory for the string "word" and redirect the output to a file called
word.list, and you wish to log off immediately afterward. Type the command line
as follows:

nohup grep word * > word.1ist & <return>

You can terminate the nohup command by using the kill command. Figure 7-12
summarizes the syntax and capabilities of the nohup command.

Command Recap

nohup - prevents interruption of command execution by hang ups

command options arguments

nohup none command line

Description: Executes a command line, even if you hang up or
quit the system.

Figure 7-12: Summary of the nohup Command

Now that you have mastered these basic shell commands and notations, use
them in your shell programs! The exercises that follow will help you practice using
shell command language. The answers to the exercises are at the end of the
chapter.

The Bourne Shell Tutorial 7-33

Command Language Exercises

1-1. What happens if you use an * (asterisk)at the beginning of a file name?
Try to list some of the files in a directory using the * with the last letter of
one of your file names. What happens?

1-2. Try the following two commands; enter them as follows:

cat[O·9]*<return>
echo *<return>

1-3. Is it acceptable to use a ? at the beginning or in the middle of a file name
generation? Try it.

1-4. Do you have any files that begin with a number? Can you list them without
listing the other files in your directory? Can you list only those files that
begin with a lowercase letter between a and m? (Hint: use a range of
numbers or letters in [D.

1-5. Is it acceptable to place a command in background mode on a line that is
executing several other commands sequentially? Try it. What happens?
(Hint: use; and &.) Can the command in background mode be placed in

(

any position on the command line? Try placing it in various positions. (
Experiment with each new character that you learn to see the full power of
the character.-

1-6. Redirect the output of pwd and Is into a file by using the following com­
mandline:

cd; pWd; Is; ed triakreturn>

Remember, if you want to redirect both commands to the same file, you
have to use the » (append) sign for the second redirection. If you do not,
you will wipe out the information from the pwd command.

1-7. Instead of cutting the time out of the date response, try redirecting only the
date, without the time, into banner. What is the only part you need to
change in the time command line?

banner 'date I cut -c12·19'<return>

7·34 IRIS·4D User's Guide

(

Shell Programming

You can use the shell to create programs-new commands. Such programs are
also called "shell procedures." This section tells you how to create and execute
shell programs using commands, variables, positional parameters, return codes, and
basic programming control struCtures.

The examples of shell programs in this section are shown two ways. First, the
cat command is used in a screen to display the contents of a file containing a shell
program:

$ cat testfile<return>
first command

last command
$

Second, the results of executing the shell program appear after a command line:

$ tesljile<return>
pro gram_output
$

You should be familiar with an editor before you try to create shell programs.
Refer to the tutorials in Chapter 5 (for the vi editor) and Chapter 6 (for the ed edi­
tor).

The Bourne Shell Tutorial 7·35

Shell Programming

Shell Programs

Creating a Simple Shell Program

We will begin by creating a simple shell program that will do the following
tasks.

• print the current directory

• list the contents of that directory

• display this message on your terminal: "This is the end of the shell" pro­
gram.

Create a file called dl (short for directory list) using your choice of editor, and
enter the following:

pwd<return>
ls<return>
echo This is the end of the shell program.<return>

(

Now write and quit the file. You have just created a shell program! You can cat (
the file to display its contents, as the following screen shows: _

$ cat dl<return>
pwd
1s
echo This is the end of the shell program.
$

7·36 IRIS·4D User's Guide

(

Shell Programming

Executing a Shell Program

One way to execute a shell program is to use the sh command. Type:

sh dkretorn>

The dl command is executed by sh, and the pathname of the current directory is
printed first, then the list of files in the current directory, and finally, the comment
This is the end of the shell program. The sh command provides a good
way to test your shell program to make sure it works.

If dl is a useful command, you can use the chmod command to make it an exe­
cutable file; then you can type dl by itself to execute the command it contains. The
following example shows how to use the chmod command to make a file execut­
able and then run the Is -I command to verify the changes you have made in the
permissions.

$ chmod u+x dl<return>
$ Is -I<return>
total 2

-rw------- 1 login login 3661 Nov 2
-rwx------ 1 login login 48 Nov 15
$

10:28 mbox
10:50 dl

Notice that chmod turns on permission to execute (+X) for the user (0). Now
dl is an executable program. Try to execute it. Type:

dkretorn>

You get the same results as before, when you entered sh dl to execute it. For
further details about the chmod command, see Chapter 3.

Creating a bin Directory for Executable Files

To make your shell programs accessible from all your directories, you can
make a bin directory from your login directory and move the shell files to your hin.

The Bourne Shell Tutorial 7-37

Shell Programming

You must also set your shell variable PATH to include your bin directory:

PATH=$PATH:$HOMElbin

See "Variables" and "Using Shell Variables" in this chapter for more information (
about PATH.

The following example will remind you which commands are necessary. In
this example, dl is in the login directory. Type these command lines:

cd<return>
mkdir bin <return>
mv dl bin/dkreturn>

Move to the bin directory and type the Is -I command. Does dl still have execute
permission?

Now move to a directory other than the login directory, and type the following
command:

dkreturn>

What happened?

Figure 7-13 summarizes your new shell program, dl.

Shell Program Recap

dl- display the directory path and directory contents (user defined)

command arguments

dl none

Description: dl displays the output of the shell command pwd and
Is.

Figure 7-13: Summary of the dl Shell Program

It is possible to give the bin directory another name; if you do so, you need to
change your shell variable PATH again.

7·38 .IRIS-4D User's Guide

(

()

Shell Programming

Warnings about Naming Shell Programs

You can give your shell program any appropriate file name. However, you
should not give your program the same name as a system command. If you do, the
system will execute your command instead of the system command. For example, if
you had named your dl program mv, each time you tried to move a file, the system
would have executed your directory list program instead of mv.

Another problem can occur if you name the dl file Is, and then try to execute
the file. You would create an infinite loop, since your program executes the Is com­
mand. After some time, the system would give you the following error message:

Too many processes, cannot fork

What happened? You typed in your new command, Is. The shell read and executed
the pwd command. Then it read the Is command in your program and tried to exe­
cute your Is command. This formed an infinite loop.

One way to keep this from happening is to give the pathname for the system's
Is command, /bin/Is, when you write your own shell program.

The following Is shell program would work:

$ cat Is<return>
pwd

/bin/ls
echo This is the end of the shell program

If you name your command Is, then you can only execute the system Is com­
mand by using its full pathname, /bin/Is.

The Bourne Shell Tutorial 7·39

Shell Programming

Variables

Shell programs manipulate variables as well as files. Here we discuss three
types of variables and how you can use them:

• positional parameters

• special parameters

• named variables

Positional Parameters

A positional parameter is a variable within a shell program whose value is set
from an argument specified on the command line invoking the program. Positional
parameters are numbered and are referred to with a preceding $: $1, $2, $3, and so
on.

A shell program may reference up to nine positional parameters. If a shell pro­
gram is invoked on a command line that appears like this:

shell.prog ppl pp2 pp3 pp4 pp5 pp6 pp7 pp8 pp9<return>

then positional parameter $1 within the program will be assigned the value ppl,
positional parameter $2 within the program will be assigned the value pp2, and so
on.

Create a file called pp (short for positional parameters) to practice positional
parameter substitution. Then enter the echo commands shown in the following
screen. Enter the command lines so that running the cat command on your com­
pleted file will produce the following output:

$ cat pp<return>
echo The first positional parameter is: $l<return>
echo The second positional parameter is: $2<return>
echo The third positional parameter is: $3<return>
echo The fourth positional parameter is: $4<return>
$

If you execute this shell program with the arguments one, two, three, and four, you

7-40 IRIS-4D User's Guide

(

(

Shell Programming

will obtain the following results (first you must make the shell program pp execut­
able using the chmod command):

$ chmod u+x pp<return>
$
$ pp one two three four<return>
The first positional parameter is: one
The second positional pararreter is: two
The third positional parameter is: three
The fourth positional pararreter is: four
$

The following screen shows the shell program bbday, which mails a greeting
to the login entered in the command line:

$ cat bbday<return>
banner happy birthday I mail $1

Try sending yourself a birthday greeting. If your login name is sue, your com­
mand line will be:

bbday sue <return>

Figure 7-14 summarizes the syntax and capabilities of the bbday shell program.

The Bourne Shell Tutorial 7-41

Shell Programming

Shell Program Recap

bbday - mail a banner birthday greeting (user defined)

command arguments

bbday login

Description: bbday mails the message happy birthday, in poster-
sized letters, to the specified login.

Figure 7-14: Summary of the bbday Command

The who command lists all users currently logged in to the system. How can
you make a simple shell program called whoson, that will tell you if the owner of a
particular login is currently working on the system?

(

Type the following command line into a file called whoson: (

who Igrep %l<return>

The who command lists all current system users, and grep searches the output of
the who command for a line containing the string contained as a value in the posi­
tional parameter % 1.

Now try using your login as the argument for the new program whoson. For
example, say your login is sue. When you issue the whoson command, the shell
program substitutes sue for the parameter % 1 in your program and executes as if it
were:

who I grep sue <return>

The output is shown on the following screen:

7-42 IRIS-4D User's Guide

(

Shell Programming

$ whoson sue<return>
sue tty26 Jan 24 13 :35
$

If the owner of the specified login is not currently working on the system, grep fails
and the whoson prints no output.

Figure 7-15 summarizes the syntax and capabilities of the whoson command.

Shell Program Recap

whoson - display login information if user is logged in (user defined)

command arguments

whoson login

Description: If a user is on the system, whoson displays the user's login,
the TTY number, and the time and date the user logged in.

Figure 7-15: Summary of the whoson Command

The shell allows a command line to contains 128 arguments. However, a shell
program is restricted to referencing nine positional parameters, $1 through $9, at a
given time. The special parameter $*, described in the next section, can also be
used to access the values of all command line arguments.

The Bourne Shell Tutorial 7-43

Shell Programming

Special Parameters

$# This parameter, when referenced within a shell program, contains the
number of arguments with which the shell program was invoked. Its value (
can be used anywhere within the shell program.

Enter the command line shown in the following screen in an executable shell
program called get.num. Then run the cat command on the file:

$ cat get.num<return>
echo The number of arguments is: $#
$

The program simply displays the number of arguments with which it is
invoked. For example:

$ get.num test out this program<return>
The number of arguments is: 4
$

Figure 7-16 summarizes the get.num shell program.

7-44 IRI5-4D User's Guide

(

(

Shell Programming

Shell Program Recap

get.num - count and display the number of arguments (user defined)

command arguments

get.num (character_string)

Description: get.num counts the number of arguments given to the com-
mand and then displays the total.

Remarks: This command demonstrates the special parameter $#.

Figure 7-16: Summary ofthe get.Dum Shell Program

$* This special parameter, when referenced within a shell program, contains a
string with all the arguments with which the shell program was invoked,
starting with the first. You are not restricted to nine parameters as with the
positional parameters $1 through $9.

You can write a simple shell program to demonstrate $*. Create a shell pro­
gram called show.param that will echo all the parameters. Use the command line
shown in the following completed file:

$ cat show.param<return>
echo The parameters for this command are: $*
$

show.param will echo all the arguments you give to the command. Make
show.param executable and try it out, using these parameters:

The Bourne Shell Tutorial 7-45

Shell Programming

Hello. How are you?

$ show.param Hello. How are you?<return>
The pararreters for this ccmnand are: Hello. How are you?
$

Notice that show.param echoes Hello. How are you? Now try
show.param using more than nine arguments:

$ show.param one two 3 4 5 six 7 8 9 10 llc:return>
The pararreters for this ccmnand are: one two 3 4 5 six 7 8 9 10 11
$

Once again, show.param echoes all the arguments you give. The $* parameter can
be useful if you use file-name expansion to specify arguments to the shell com­
mand.

Use the file-name expansion feature with your show.param command. For
example, say you have several files in your directory named for chapters of a book:
chap!, chap2, and so on, through chap7. show.param will print a list of all those
files.

7-46 IRIS-4D User's Guide

(

(

$ show.param chap?<return>
The pararreters for this =rrmand are: chapl chap2 chap3
chap4 chapS chap6 chap7
$

Figure 7-17 summarizes the show.param shell program.

Shell Program Recap

Shell Programming

show.param - display all positional parameters (user defined)

command arguments

show.param (any positional parameters)

Description: show.param displays all the parameters.

Remarks: If the parameters are file-name generations, the command will
display each of those file names.

Figure 7-17: Summary of the show.param Shell Program

Named Variables

Another form of variable that you can use within a shell program is a named
variable. You assign values to named variables yourself. The format for assigning
a value to a named variable is

named variable = value<return>

Notice that there are no spaces on either side of the = sign.

The Bourne Shell Tutorial 7-47

Shell Programming

In the following example, varl is a named variable, and myname is the value
or character string assigned to that variable:

varl=myname<return>

A % is used in front of a variable name in a shell program to reference the
value of that variable. Using the example above, the reference $varl tells the shell
to substitute the value myname (assigned to varl), for any occurrence of the char-
acter string $varl.

The first character of a variable name must be a letter or an underscore. The
rest of the name can be composed of letters, underscores, and digits. As in shell
program file names, it is not advisable to use a shell command name as a variable
name. Also, the shell has reserved some variable names you should not use for
your variables. A brief explanation of these reserved shell variable names follows:

• CDPATH defines the search path for the cd command.

• HOME is the default variable for the cd command (home directory).

• IFS defines the internal field separators (normally the space, the tab, and the
carriage return).

• LOGNAME is your login name.

• MAIL names the file that contains your electronic mail.

• PATH determines the search path used by the shell to find commands.

• PSI defines the primary prompt (default is $).

• PS2 defines the secondary prompt (default is».

• TERM identifies your terminal type. It is important to set this variable if
you are editing with vi.

• TERMINFO identifies the directory to be searched for information about
your terminal, for example, its screen size.

• TZ defines the time zone (default is EST5EDT).

Many of these variables are explained in "Modifying Your Login Environment"
later in this chapter. You can also read more about them on the sh(l) manual page
in theIRIS-4D User's Reference Manual.

(

(

You can see the value of these variables in your shell in two ways. First, you (
can type .

echo $variable _name

The system outputs the value of variable_name. Second, you can use the env(l)
command to print out the value of all defined variables in the shell. To do this, type

7-48 IRIS-4D User's Guide

Shell Programming

env on a line by itself; the system outputs a list of the variable names and values.

Assigning a Value to a Variable

If you edit with vi. you know you can set the TERM variable by entering the
following command line:

TERM = terminal name<return>

This is the simplest way to assign a value to a variable.

There are several other ways to do this:

• Use the read command to assign input to the variable.

• Redirect the output of a command into a variable by using command substi­
tution with grave accents (' ... ').

• Assign a positional parameter to the variable.

The following sections discuss each of these methods in detail.

Using the read Command

The read command used within a shell program allows you to prompt the user
of the program for the values of variables. The general format for the read com­
mandis:

read variable<return>

The values assigned by read to variable will be substituted for $variable wherever
it is used in the program. If a program executes the echo command just before the
read command. the program can display directions such as Type in The
read command will wait until you type a character string. followed by <return>.
and then make that string the value of the variable.

The following example shows how to write a simple shell program called
num.please to keep track of your telephone numbers. This program uses the fol­
lowing commands for the purposes specified:

echo to prompt you for a person' s last name

read to assign the input value to the variable name

grep to search the file list for this variable

Your finished program should look like the one displayed here:

The Bourne Shell Tutorial 7-49

Shell Programming

$ cat num.please<return>
echo Type in the last name:
read narre
grep $narre list
$

Create a file called list that contains several last names and phone numbers.
Then try running num.please.

The next example is a program called mknum, which creates a list. mknum
includes the following commands for the purposes shown.

• echo prompts for a person's name

• read assigns the person's name to the variable name

• echo asks for the person's number

• read assigns the telephone number to the variable num

• echo adds the values of the variables name and num to the file list

If you want the output of the echo command to be added to the end of list, you must
use;$> to redirect it. If you use >, list will contain only the last phone number you
added.

Running the cat command on mknum displays the program's contents. When
your program looks like this, you will be ready to make it executable (with the
chmod command):

7-50 IRIS-4D User's Guide

(

(

(

$ cat mknum<return>
echo Type in narre
read narre
echo Type in number
read num
echo $narre $num » list
$ chmod u+x mknum<return>
$

Shell Programming

Try out the new programs for your phone list. In the next example, mknum
creates a new listing for Mr. Niceguy. Then num.please gives you Mr. Niceguy's
phone number:

$ mknum<return>
Type in the narre
Mr. Niceguy<return>
Type in the n1.ll'Cber
668·0007 <return>
$ num.please<return>
Type in last narre
Niceguy <return>
Mr. Nioeguy 668-0007
$

Notice that the variable name accepts both Mr. and Niceguy as the value.

Figures 7-18 and 7-19 summarize the mknum and num.please shell programs,
respectively.

The Bourne Shell Tutorial 7-51

Shell Programming

Shell Program Recap

mknum - place name and number on a phone list

command arguments
(

mknum (interactive)

Description: Asks you for the name and number of a person and adds that
name and number to your phone list.

Remarks: This is an interactive command.

Figure 7-18: Summary of the mknum Shell Program

(
Shell Program Recap

num.please - display a person's name and number

command arguments

num.please (interactive)

Description: Asks you for a person's last name, and then displays the
person's full name and telephone number.

Remarks: This is an interactive command.

Figure 7-19: Summary of the num.please Shell Program

(

7-52 IRIS-4D User's Guide

Shell Programming

Substituting Command Output for the Value of a Variable

You can substitute a command's output for the value of a variable by using
command substitution, This has the following format:

variable = 'command'<return>

The output from command becomes the value of variable.

In one of the previous examples on piping, the date command was piped into
the cut command to get the correct time. That command line was the following:

date I cut -c12-19<return>

You can put this in a simple shell program called t that will give you the time.

$ cat kreturn>
tine='date I cut -c12-19'
echo The tine is: $time
$

Remember there are no spaces on either side of the equal sign. Make the file exe­
cutable, and you will have a program that gives you the time:

$ chmod u+x kreturn>
$ kreturn>
The time is: 10:36
$

The Bourne Shell Tutorial 7-53

Shell Programming

Figure 7-20 summarizes your t program.

Shell Program Recap
(

t - display the correct time

command arguments

t none

Description: t gives you the correct time in hours and minutes.

Figure 7-20: Summary of the t Shell Program

Assigning Values with Positional Parameters

You can assign a positional parameter to a named parameter by using the fol- (
lowing format:

var} =$l<return>

The next example is a simple program called simp.p that assigns a positional
parameter to a variable. The following screen shows the commands in simp.p:

$ cat simp.p<return>
varl=$l
echo $varl
$

Of course, you can also assign the output of a command that uses positional param­
eters to a variable, as follows:

7-54 IRIS-4D User's Guide

(

Shell Programming

person= 'who I grep $1' <return>

In the next example, the program log. time keeps track of your whoson pro­
gram results. The output of whoson is assigned to the variable person, and added
to the file login.file with the echo command. The last echo displays the value of
$person, which is the same as the output from the whoson command:

$ cat log.time<return>
person='who I grep $'
echo $person » login. file
echo $person
$

The system response to log. time is shown in the following screen:

$ log.time maryann<return>
maryann tty61 Apr 11 10:26
$

Figure 7-21 summarizes the log.time shell program.

The Bourne Shell Tutorial 7-55

Shell Programming

Shell Program Recap

log.time -log and display a specified login (user defined)

command arguments

log.time login

Description: If the specified login is currently on the system,log.time
places the line of information from the who command into the
file login.file and then displays that line of information on
your terminal.

Figure 7~21: Summary of the log.time Shell Program

Shell Programming Constructs

The shell programming language has several constructs that give added flexi­
bility to your programs:

• Comments let you document a program's function.

• The "here document" allows you to include within the shell program itself
lines to be redirected to be the input to some command in the shell program.

• The exit command lets you terminate a program at a point other than the end
of the program and use return codes.

• The looping constructs, for and while, allow a program to iterate through
groups of commands in a loop.

• The conditional control commands, if and case, execute a group of com­
mands only if a particular set of conditions is met.

• The break command allows a program to exit unconditionally from a loop.

7-56 IRIS·4D User's Guide

(\

(

(

Shell Programming

Comments

You can place comments in a shell program in two ways. All text on a line fol­
lowing a # (pound) sign is ignored by the shell. The # sign can be at the beginning
of a line, in which case the comment uses the entire line, or it can occur after a com­
mand, in which case the command is executed but the remainder of the line is
ignored. The end of a line always ends a comment. The general format for a com­
ment line is

#comment<return>

For example, a program that contains the following lines will ignore them when
it is executed:

This program sends a generic birthday greeting. <:return>
This program needs a login as<:return>
the positional pararoeter.<:return>

Comments are useful for documenting a program's function and should be included
in any program you write.

The here Document

A "here document" allows you to place into a shell program lines that are
redirected to be the input of a command in that program. It is a way to provide
input to a command in a shell program without needing to use a separate file. The
notation consists of the redirection symbol « and a delimiter that specifies the
beginning and end of the lines of input. The delimiter can be one character or a
string of characters; the ! is often used.

Figure 7-22 shows the general format for a here document.

center,box; 1.

command «delimiter<return> ... input lines ... <return> delimiter<return>

Figure 7-22: Format of a here Document

This program sends a generic birthday greeting. <:return>
This program needs a login as<:return>
the positional pararoeter.<:return>

The Bourne Shell Tutorial 7-57

Shell Programming

In the next example, the program gbday uses a here document to send a gen­
eric birthday greeting by redirecting lines of input into the mail command:

$ cat gbday<return>
mail $ «1
Best wishes to you on your birthday.

$

7-58 IRIS-4D User's Guide

(

(

(

Shell Programming

When you use this command, you must specify the recipient's login as the argument
to the command. The input included with the use of the here document is:

Best wishes to you on your birthday

For example, to send this greeting to the owner of login mary, type:

$ gbday mary<return>

Login mary will receive your greeting the next time she reads her mail messages:

$ mail<return>
From mylogin Wed M3.y 14 14 :31 eDT 1986
Best wishes to you on your birthday
$

Figure 7-23 summarizes the format and capabilities of the gbday command.

Shell Program Recap

gbday - send a generic birthday greeting (user defined)

command arguments

gbday login

Description: gbday sends a generic birthday greeting to the owner
of the login specified in the argument.

Figure 7-23: Summary of the gbday Command

The Bourne Shell Tutorial 7-59

Shell Programming

Using ed in a Shell Program

The here document offers a convenient and useful way to use ed in a shell
script. For example, suppose you want to make a shell program that will enter the
ed editor, make a global substitution to a file, write the file, and then quit ed. The
following screen shows the contents of a program called ch.text which does these
tasks.

$ cat ch.text<retum>
echo Type in the file name.
read filel
echo Type in the exact text to be changed.
read old text
echo Type in the exact new text to replace the above.
read new text
ed - ilel «!
g/$old_text/s//$new_text/g
w
q

$

Notice the - (minus) option to the ed command. This option prevents the char­
acter count from being displayed on the screen. Notice, also, the format of the ed
command for global substitution:

glold_textlsllnew _textlg<return>

The program uses three variables: filel, old _text, and new _text. When the program
is run, it uses the read command to obtain the values of these variables. The vari­
ables provide the following information:

file the name of the file to be edited

old text the exact text to be changed

new text the new text

7-60 IRIS-4D User's Guide

(I

(

(

Shell Programming

Once the variables are entered in the program, the here document redirects the
global substitution, the write command, and the quit command into the ed com­
mand. Try the new ch.text command. The following screen shows sample
responses to the program prompts:

$ ch.text<return>
Type in the filename.
memo<return>
Type in the exact text to J::e changed.
Dear John:<return>
Type in the exact new text to replace the above.
To whom it may concern:<return>
$ cat memo<return>
To whom it may concern:
$

Notice that by running the cat command on the changed file, you could exam­
ine the results of the global substitution.

Figure 7-24 summarizes the format and capabilities of the ch.text command.

The Bourne Shell Tutorial 7-61

Shell Programming

Shell Program Recap

ch.text - change text in a file

command arguments

ch.text (interactive)

Description: Replaces text in a file with new text.

Remarks: This shell program is interactive. It will prompt you
to type in the arguments.

Figure 7-24: Summary of the ch.text Command

If you want to become more familiar with ed, see Chapter 6, "Line Editor
Tutorial (ed)." The stream editor sed can also be used in shell programming. (

Return Codes
Most shell commands issue return codes that indicate whether the command

executed properly. By convention, if the value returned is 0 (zero) than the com­
mand executed properly; any other value indicates that it did not. The return code
is not printed automatically, but is available as the value of the shell special parame­
ter $1.

Checking Return Codes

After executing a command interactively, you can see its return code by typing

echo $1

Consider the following example:

7-62 IRIS-4D User's Guide

(

$ cat hi
This is file hi.
$ echo $?
o
$ cat hello
cat: cannot open hello
$ echo $?
2
$

Shell Programming

In the first case, the file hi exists in your directory and has read permission for you.
The cat command behaves as expected and outputs the contents of the file. It exits
with a return code of 0, which you can see using the parameter $? In the second
case, the file either does not exist or does not have read permission for you. The cat
command prints a diagnostic message and exits with a return code of 2.

Using Return Codes With the exit Command

A shell program normally terminates when the last command in the file is exe­
cuted. However, you can use the exit command to terminate a program at some
other point. Perhaps more importantly, you can also use the exit command to issue
return codes for a shell program. For more information about exit, see the exit(2)
manual page in the Programmer's Reference Manual.

Looping

In the previous examples in this chapter, the commands in shell programs have
been executed in sequence. The for and while looping constructs allow a program
to execute a command or sequence of commands several times.

The for Loop

The for loop executes a sequence of commands once for each member of a list.
It has the following format:

The Bourne Shell Tutorial 7·63

Shell Programming

for variable<return>
in aJist_oLvalues<return>

do<return>
command 1 <return>
command 2<return>

last command<return>
done<return>

Figure 7-25: Format of the for Loop Construct

For each iteration of the loop, the next member of the list is assigned to the
variable given in the for clause. References to that variable may be made anywhere
in the commands within the do clause.

(

It is easier to read a shell program if the looping constructs are visually clear. (
Since the shell ignores spaces at the beginning of lines, each section of commands
can be indented as it was in the above format. Also, if you indent each command
section, you can easily check to make sure each do has a corresponding done at the
end of the loop.

The variable can be any name you choose. For example, if you call it var, then
the values given in the list after the keyword in will be assigned in turn to var;
references within the command list to $var will make the value available. If the in
clause is omitted, the values for var will be the complete set of arguments given to
the command and available in the special parameter $*. The command list between
the keywords do and done will be executed once for each value.

When the commands have been executed for the last value in the list, the pro­
gram will execute the next line below done. If there is no line, the program will
end.

The easiest way to understand a shell programming construct is to try an exam- (~
pIe. Create a program that will move files to another directory. Include the follow-
ing commands for the purposes shown:

7-64 IRIS-4D User's Guide

Shell Programming

echo to prompt the user for a pathname to the new direc­
tory.

read to assign the pathname to the variable path

for variable to call the variable file; it can be referenced as $file
in the command sequence.

in list _01_ values to supply a list of values. If the in clause is omitted,
the list of values is assumed to be $* (all the argu­
ments entered on the command line).

do command _sequence to provide a command sequence. The construct for
this program will be:

do
mv $file $pathl$file<return>

done

The following screen shows the text for the shell program mv.file:

$ cat mv.fiIe<return>
echo Please type in the directory path
read path
for file

in trerrol trerro2 trerro3
do

mv $file $path/$file
done
$

In this program the values for the variable file are already in the program. To
change the files each time the program is invoked, assign the values using positional
parameters or the read command. When positional parameters are used, the in key­
word is not needed, as the next screen shows:

The Bourne Shell Tutorial 7-65

Shell Programming

$ cat mv.fiIe<return>
echo type in the directory path
read path
for file
do

mv $file $path/$file
done
$

You can move several files at once with this command by specifying a list of
file names as arguments to the command. (This can be done most easily using the
file-name expansion mechanism described earlier).

Figure 7-26 summarizes the my.file shell program.

Shell Program Recap

my.file - move files to another directory (user defined)

command arguments

my.file filenames
(interactive)

Description: Moves files to a new directory.

Remarks: This program requires file names to be given as argu-
ments. The program prompts for the path to the new
directory.

Figure 7-26: Summary of mv.file Shell Program

7-66 IRIS-4D User's Guide

(

(

(

Shell Programming

The while Loop

Another loop construct, the while loop, uses two groups of commands. It will
continue executing the sequence of commands in the second group, the do ... done
list, as long as the final command in the first group, the while list, returns a status of
true (meaning the command can be executed).

The general format of the while loop is shown in Figure 7 -27.

while<return>
command 1 <return>

last command<return>
do<return>

command 1 <return>

last command<return>
done<return>

Figure 7-27: Format of the while Loop Construct

For example, a program called enter .name uses a while loop to enter a list of
names into a file. The program consists of the following command lines:

$ cat enter.name<return>
while

read x
do

echo $x»xfile
done
$

The Bourne Shell Tutorial 7-67

Shell Programming

With some added refinements, the program becomes:

$ cat enter.name<return>
echo Please type in each person's name and then a <return>
echo Please end the list of names with a <ctrl-d>
while read x
do

echo $x»xfile
done
echo xfile contains the following names:
cat xfile
$

Notice that after the loop is completed, the program executes the commands below
the done.

You used special characters in the first two echo command lines, so you must
use quotes to tum off the special meaning. The next screen shows the results of
enter.name:

$ enter.name<return>
P lease type in each person's narre and then a <return>
Please end the list of narres with a <ctrl-d>
Mary Lou<return>
Janice<return>
<ctrl·!!>
xfile contains the following narres:
Mary Lou
Janice
$

7-68 IRIS-4D User's Guide

(

(

(

Shell Programming

Notice that after the loop completes, the program prints all the names contained in
xfile.

The Shell's Garbage Can: Idev/null

The file system has a file called Idev/null where you can have the shell deposit
any unwanted output.

Try out Idev/null by destroying the results of the who command. First, type in
the who command. The response tells you who is on the system. Now, try the who
command, but redirect the output into Idev/null:

who > Idev/nulkreturn>

Notice that the system responded with a prompt. The output from the who
command was placed in /dev/null and was effectively discarded.

Conditional Constructs

if ... then

The if command tells the shell program to execute the then sequence of com­
mands only if the final command in the if command list is successful. The if con­
struct ends with the keyword fi.

The general format for the if construct is shown in Figure 7 -28.

The Bourne Shell Tutorial 7-69

Shell Programming

if<return>
command1 <return>

last commanckreturn>
then<return>

command1 <return>

last command<return>
fkreturn>

Figure 7-28: Format of the if ... then Conditional Construct

For example, a shell program called search demonstrates the use of the
if ... then construct. search uses the grep command to search for a word in a file. If
grep is successful, the program will echo that the word is found in the file. Copy
the search program (shown on the following screen) and try it yourself:

$ cat search <return>
echo Type in the word and the file name.
read word file
if grep $word $file

fi
$

then echo $word is in $file

7-70 IRIS-4D User's Guide

(

(

(

Shell Programming

Notice that the read command assigns values to two variables. The first char­
acters you type, up until a space, are assigned to word. The rest of the characters,
including embedded spaces, are assigned to file.

A problem with this program is the unwanted display of output from the grep
command. If you want to dispose of the system response to the grep command in
your program, use the file /dev/null, changing the if command line to the following:

if grep $word $file > /dev/nulkreturn>

Now execute your search program. It should respond only with the message
specified after the echo command.

if ... then ... else

The if ... then construction can also issue an alternate set of commands with
else, when the if command sequence is false. It has the following general format:

if<return>
command] <return>

last command<return>
then<return>

command] <return>

last command<return>
else<return>

command] <return>

last command<return>
fi<return>

Figure 7-29: Format of the if ... then ... else Conditional Construct

The Bourne Shell Tutorial 7-71

Shell Programming

You can now improve your search command so it will tell you when it cannot
find a word, as well as when it can. The following screen shows how your
improved program will look:

$ catsearch<return>
echo Type in the word and the file name.
read word file
if

grep $word $file >/dev/null
then

echo $word is in $file
else

fi
$

echo $word is NOT in $file

Figure 7-30 summarizes your enhanced search program.

Shell Program Recap

search - tells you if a word is in a file (user defined)

command arguments

search interactive

Description: Reports whether a word is in a file.

Remarks: The command prompts you for the arguments (the
word and the file)

Figure 7-30: Summary of the search Shell Program

7-72 IRIS-4D User's Guide

(

(

(

Shell Programming

The test Command for Loops

The test command, which checks to see if certain conditions are true, is a use­
ful command for conditional constructs. If the condition is true, the loop will con­
tinue. If the condition is false, the loop will end and the next command will be exe­
cuted. Some of the useful options for the test command are:

test -r jile<return>

test -w jile<return>

test -x jile<return>

test -s jile<return>

true if the file exists and is readable

true if the file exists and has write permission

true if the file exists and is executable

true if the file exists and has at least one character

test varl-eq var2<return> true ifvarl equals var2

test varl -ne var2 <return> true if var 1 does not equal var2

You may want to create a shell program to move all the executable files in the
current directory to your bin directory. You can use the test -x command to select
the executable files. Review the example of the for construct that occurs in the
mv.fiIe program, shown in the following screen:

$ cat mv.fiIe<return>
echo type in the directory path
read path
for file
do

mv $file $path/$file
done
$

Create a program called mv.ex that includes an if test -x statement in the
do ••• done loop to move executable files only. Your program will be as follows:

The Bourne Shell Tutorial 7-73

Shell Programming

$ cat mv.ex<return>
echo type in the directory path
read path
for file

do
if test -x $file

then
mv $file $path/$file

fi
done

$

The directory path will be the path from the current directory to the bin direc­
tory. However, if you use the value for the shell variable HOME, you will not need
to type in the path each time. $HOME gives the path to the login directory.
$HOMEibin gives the path to your bin.

(

In the following example, mv.ex does not prompt you to type in the directory (
name, and therefore, does not read the path variable:

$ cat mv.ex<return>
for file

do
if test -x $file

then

fi
done

$

mv $file $HOME/bin/$file

Test the command, using all the files in the current directory, specified with the
* metacharacter as the command argument. The command lines shown in the fol­
lowing example executes the command from the current directory and then changes
to bin and lists the files in that directory. All executable files should be there.

7·74 IRIS-4D User's Guide

(

Shell Programming

$ mv.ex *<return>
$ cd; cd bin; \s<return>
list_oLexecutable Jiles
$

Figure 7-31 summarizes the format and capabilities of the mv.ex shell pro­
gram.

Shell Program Recap

mv.ex - move all executable files in the current
directory to the bin directory

command arguments

mv.ex * (all file names)

Description: Moves all files in the current directory with execute
permission to the bin directory.

Remarks: All executable files in the bin directory (or any direc-
tory shown by the PATH variable) can be executed
from any directory.

Figure 7-31: Summary of the mv.ex Shell Program

The Bourne Shell Tutorial 7-75

Shell Programming

case .. esac

The case ... esac construction has a multiple choice format that allows you to
choose one of several patterns and then execute a list of commands for that pattern.
The pattern statements must begin with the keyword in, and a) must be placed after (
the last character of each pattern. The command sequence for each pattern is ended .
with ;;. The case construction must be ended with esac (the letters of the word case
reversed).

The general format for the case construction shown in Figure 7-32:

(

(

7-76 IRIS-4D User's Guide

case word<return>
in<return>

patternl)<return>
command line 1 <return>

last command line <return>
;;<return>
pattern2)<return>

command line 1 <return>

last command line <return>
;;<return>
pattern3)<return>

command line 1 <return>

last command line <return>
;;<return>
*)<return>

command 1 <return>

last command<return>
;;<return>

esac<return>

Figure 7-32: The case ... esac Conditional Construct

Shell Programming

The case construction tries to match the word following the word case with the pat­
tern in the first pattern section. If there is a match, the program executes the com­
mand lines after the first pattern and up to the corresponding ;; .

The Bourne Shell Tutorial 7-77

Shell Programming

If the first pattern is not matched, the program proceeds to the second pattern.
Once a pattern is matched, the program does not try to match any more of the pat­
terns, but goes to the command following esac.

The * used as a pattern matches any word, and so allows you to give a set of (
commands to be executed if no other pattern matches. To do this, it must be placed
as the last possible pattern in the case construct, so that the other patterns are
checked first. This provides a useful way to detect erroneous or unexpected input.

The patterns that can be specified in the pattern part of each section may use
the metacharacters *, ?, and [] as described earlier in this chapter for the shell's
file-name expansion capability. This provides useful flexibility.

The set.term program contains a good example of the case ... esac construction.
This program sets the shell variable TERM according to the type of terminal you
are using. It uses the following command line:

TERM=terminal name<return>

(For an explanation of the command~ used, see the vi tutorial in Chapter 5.) In the
following example, the terminal is a Teletype 4420, Teletype 5410, or Teletype
5420.

set.term first checks to see whether the value of term is 4420. If it is, the pro- ("-
gram makes T4 the value of TERM, and terminates. If it the value of term is not ,
4420, the program checks for other values: 5410 and 5420. It executes the com-
mands under the first pattern that it finds, and then goes to the first command after
the esac command.

The pattern * , meaning everything else, is included at the end of the terminal
patterns. It will warn that you do not have a pattern for the terminal specified and
will allow you to exit the case construct:

7-78 IRIS-4D User's Guide

(

$ cat set.term<return>
echo If you have a TTY 4420 type in 4420
echo If you have a TTY 5410 type in 5410
echo If you have a TTY 5420 type in 5420
read term
case $term

in
4420)

TERM=T4

5410)
TERM=T5

5420)
TERM=T7

*)

Shell Programming

echo not a correct terminal type

esac
export TERM

echo end of program
$

Notice the use of the export command. You use export to make a variable
available within your environment and to other shell procedures. What would hap­
pen if you placed the * pattern first? The set. term program would never assign a
value to TERM, since it would always match the first pattern *, which means every­
thing.

Figure 7-33 summarizes the format and capabilities of the setterm shell pro­
gram.

The Bourne Shell Tutorial 7-79

Shell Programming

Shell Program Recap

set.term - assign a value to TERM (user defined)

command arguments

set.term interactive

Description: Assigns a value to the shell variable TERM and then
exports that value to other shell procedures.

Remarks: This command asks for a specific terminal code to be
used as a pattern for the case construction.

" Figure 7-33: Summary of the set.term Shell Program

Unconditional Control Statements

The break command unconditionally stops the execution of any loop in which
it is encountered, and goes to the next command after the done, fl, or esac state­
ment. If there are no commands after that statement, the program ends.

In the example for set.term, you could have used the break command instead
of echo to leave the program, as the next example shows:

7·80 IRIS-4D User's Guide

(

(

Shell Programming

$ cat set.term<return>
echo If you have a TTY 4420 type in 4420
echo If you have a TTY 5410 type in 5410
echo If you have a TTY 5420 type in 5420
read term
case $term

esac

in
4420)
~T4

5410)
~T5

5420)
~T7

*)

break

export TERM
echo end of program
$

The continue command causes the program to go immediately to the next
iteration of a do or for loop without executing the remaining commands in the loop.

Debugging Programs

At times you may need to debug a program to find and correct errors. There
are two options to the sh command (listed below) that can help you debug a pro­
gram:

sh -v shellprogramname

sh -x shellprogramname

prints the shell input lines as they are read by the
system

prints commands and their arguments as they
are executed

The Bourne Shell Tutorial 7-81

Shell Programming

To tryout these two options, create a shell program that has an error in it. For
example, create a file called bug that contains the following list of commands:

$ cat bug<return>
today=' date'
echo enter person
read person
mail $1
$person
When you log off corre into my office please.
$today.
Mill

$

Notice that today equals the output of the date command, which must be
enclosed in grave accents for command substitution to occur.

The mail message sent to Tom ($1) at login tommy ($2) should read as the fol­
lowing screen shows:

$ maikreturn>
From mlh Thu Apr 10 11:36 CST 1984
Tom
When you log off come into my office please.
Thu Apr 10 11:36:32 CST 1986
Mill
?

If you try to execute bug, you will have to press the break or delete key to end
the program.

7·82 IRIS-4D User's Guide

(

(

(

Shell Programming

To debug this program, try executing bug using sh -v. This will print the lines
of the file as they are read by the system, as shown below:

$ sh -v bug tom <return>
today='date'
echo enter person
enter person
read person
tommy
nail $1

Notice that the output stops on the mail command, since there is a problem
with mail. You must use the here document to redirect input into mail.

Before you fix the bug program, try executing it with sh -x, which prints the
commands and their arguments as they are read by the system:

$ sh -x bug tom tommy<return>
+date
today=Thu Apr 10 11:07:23 CST 1986
+ echo enter person
enter person
+ read person
tommy
+ mail tom
$

Once again, the program stops at the mail command. Notice that the substitu­
tions for the variables have been made and are displayed.

The Bourne Shell Tutorial 7-83

Shell Programming

The corrected bug program is as follows:

$ cat bug<return>
today=' date'
echo enter person
read person
mail $1 «!
$person
When you log off carre into my office please.
$today
Mill

$

The tee command is a helpful command for debugging pipelines. While sim-

(

ply passing its standard input to its standard output, it also saves a copy of its input (
into the file whose name is given as an argument. .

The general format of the tee command is:

commandl I tee saverfile I command2<CR

saver file is the file that saves the output of commandl for you to study.

For example, say you want to check on the output of the grep command in the
following command line:

who I grep $1 I cut -cl-9<return>

You can use tee to copy the output of grep into a file called check, without disturb­
ing the rest of the pipeline.

who I grep $1 I tee check I cut -c1-9<return>

The file check contains a copy of the grep output, as shown in the following screen:

7-84 IRIS-4D User's Guide

(

$ who I grep mlhmo I tee check I cut -cl·9<return>
mlhmo
$ cat check<return>
mlhmo tty61 Apr 10 11:30
$

Shell Programming

The Bourne Shell Tutorial 7-85

Modifying Your Login Environment

The UNIX system lets you modify your login environment in several ways.
One modification that users commonly want to make is to change the default values (-
of the erase (#) and line kill (@) characters.

When you log in, the shell first examines a file in your login directory named
.profile (pronounced "dot profile"). This file contains commands that control your
shell environment.

Because the .profile is a file, it can be edited and changed to suit your needs.
On some systems you can edit this file yourself, while on others, the system
administrator does this for you. To see whether you have a .profile in your home
directory, type:

ls-al$HOME

If you can edit the file yourself, you may want to be cautious the first few
times. Before making any changes to your .profile, make a copy of it in another file
called safe.profile. Type:

cp .profile safe.profile<return>

You can add commands to your .profile just as you add commands to any other (
shell program.

Adding Commands to Your .profile

Practice adding commands to your .profile. Edit the file and add the following
echo command to the last line of the file:

echo Good Morning! I am ready to work for you.

Write and quit the editor.

Whenever you make changes to your .profile and you want to initiate them in
the current work session, you may cause the commands in .profile to be executed
directly using the. (dot) shell command. The shell will reinitialize your environ­
ment by reading executing the commands in your .profile. Try this now. Type:

•• profile<return>

The system should respond with the following:

Good Morning! I am ready to work for you.
$

7-86 IRIS-4D User's Guide

(

Modifying Your Login Environment

Setting Terminal Options

The stty command can make your shell environment more convenient. There
are three options you can use with stty: -tabs, erase <ctrI-h>, and echoe.

stty -tabs This option preserves tabs when you are printing. It
expands the tab setting to eight spaces, which is the
default. The number of spaces for each tab can be
changed. (See stty(l) in the IRIS-4D User's Refer­
ence Manual for details.)

stty erase <ctrl-h> This option allows you to use the erase key on your
keyboard to erase a letter, instead of the default
character #. Usually the backspace key is the erase
key.

stty echoe If you have a terminal with a screen, this option
erases characters from the screen as you erase them
with the backspace key.

If you want to use these options for the stty command, you can create those
command lines in your .profile just as you would create them in a shell program. If
you use the tail command, which displays the last few lines of a file, you can see
the results of adding those four command lines to your .profile:

$ tail -4 .profile<return>
echo Good Morning! I am ready to work for you
stty -tabs
stty erase <ctrl-h>
sttyechoe
$

Figure 7-34 summarizes the format and capabilities of the tail command.

The Bourne Shell Tutorial 7-87

Modifying Your Login Environment

Command Recap

tail- display the last portion of a file

command options arguments

tail -n filename

Description: Displays the last lines of a file.

Options: Use -n to specify the number of lines n (default is ten
lines), You can specify a number of blocks (-nb) or
characters (-nc) instead of lines.

Figure 7-34: Summary of the tail Command

Using Shell Variables

Several of the variables reserved by the shell are used in your .profile. You
can display the current value for any shell variable by entering the following com­
mand:

echo $variable _name

Four of the most basic of these variables are discussed next.

HOME

This variable gives the pathname of your login directory. Use the cd
command to go to your login directory and type:

pwd<return>

What was the system response? Now type:

echo $HOME<return>

Was the system response the same as the response to pWd?

7-88 IRIS-4D User's Guide

(

(

(~

Modifying Your Login Environment

$HOME is the default argument for the cd command. If you do not
specify a directory, cd will move you to $HOME.

PATH

This variable gives the search path for finding and executing com­
mands. To see the current values for your PATH variable type:

echo $PATH<return>

The system will respond with your current PATH value.

$ echo $PATH<return>
:/mylogin/bin:/bin:/usr/bin:/usr/lib
$

The colon (:) is a delimiter between pathnames in the string assigned
to the $P A TH variable. When nothing is specified before a: , then the
current directory is understood. Notice how, in the last example, the sys­
tem looks for commands in the current directory first, then in
Imylogin/bin/, then in /bin, then in lusr/bin, and finally in lusrlIib.

If you are working on a project with several other people, you may
want to set up a group bin, a directory of special shell programs· used only
by your project members. The path might be named Iprojectl/bin. Edit
your .profile, and add :/projectl/bin to the end of your PATH, as in the
next example.

PATH=" :/mylogin/bin:/bin:/usr/lib:/projectl/bin" <return>

The Bourne Shell Tutorial 7-89

Modifying Your Login Environment

TERM

This variable tells the shell what kind of terminal you are using. To
assign a value to it, you must execute the following three commands in this
order:

TERM:=terminal name <return>
export TERM<return>
tput init

The first two lines, together, are necessary to tell the computer what type
of terminal you are using. The last line, containing the tput command, tells
the terminal that the computer is expecting to communicate with the type
of terminal specified in the TERM variable. Therefore this command must
always be entered after the variable has been exported.

If you do not want to specify the TERM variable each time you log
in, add these three command lines to your .profile; they will be executed
automatically whenever you log in. To determine what terminal name to
assign to the TERM variable, see the instructions in Appendix D, "Setting
Up the Terminal." This appendix also contains details about the tput com­
mand.

If you log in on more than one type of terminal, it would also be useful (
to have your set.term command in your .profile.

PSI

This variable sets the primary shell prompt string (the default is the $
sign). You can change your prompt by changing the PSI variable in your
.profile.

Try the following example. Note that to use a multi-word prompt, you
must enclose the phrase in quotes. Type the following variable assignment
in your .profile.

PSI:="¥our command is my wish<return> "

Now execute your .profile (with the . command) and watch for your new
prompt sign.

$ •• profile<return>
Your corrmand is rt¥ wish

The mundane $ sign is gone forever, or at least until you delete the PSI
variable from your .profile.

7-90 IRIS~4D User's Guide

(

Shell Programming Exercises

2-1. Create a shell program called time from the following command line:

banner 'date I cut -c12-19'<return>

2-2. Write a shell program that will give only the date in a banner display. Be
careful not to give your program the same name as a UNIX system com­
mand.

2-3. Write a shell program that will send a note to several people on your sys­
tem.

2-4. Redirect the date command without the time into a file.

2-5. Echo the phrase Dear colleague in the same file that contains the date com­
mand, without erasing the date.

2-6. Using the above exercises, write a shell program that will send a memo to
the same people on your system mentioned in Exercise 2-3. Include in
your memo:

The current date and the words Dear colleague at the top of the memo

The body ofthe memo (stored in an existing file)

The closing statement

2-7. How can you read variables into the mv.file program?

2-8. Use a for loop to move a list of files in the current directory to another
directory. How can you move all your files to another directory?

2-9. How can you change the program search, so that it searches through
several files?

Hint:

for file
in $*

2-10. Set the stty options for your environment.

2-11. Change your prompt to the word Hello.

2-12. Check the settings of the variables $HOME, $TERM, and $PATH in your
environment.

The Bourne Shell Tutorial 7-91

Answers To Exercises

Command Language Exercises

1-1. The * at the beginning of a file name refers to all files that end in that file
name, including that file name.

$ Is *t<return>
cat
123t
new.t
t

$

1-2. The command cat [0-9]* will produce the following output:

1rraro
lOOdata
9
05name

The command echo * will produce a list of all the files in the current direc­
tory.

1-3. You can place? in any position in a file name.

1-4. The command Is [0-9]* will list only those files that start with a number.

1-5.

The command Is [a-m]* will list only those files that start with the letters
"a" through "m".

If you placed the sequential command line in the background mode, the
immediate system response was the PID number for the job.

No, the & (ampersand) must be placed at the end of the command line.

7-92 IRIS-4D User's Guide

(

(

(

Answers To Exercises

1-6. The command line would be:

cd; pwd > junk; Is » junk; ed triakreturn>

1-7 . Change the -c option of the command line to read:

banner 'date I cut -cl-lO'<return>

Shell Programming Exercises

2-1.

$ cat time<return>
banner 'date I cut --c12-19'
$
$ chmod u+x time<return>
$ time <return>
(banner display of the time 10:26)
$

The Bourne Shell Tutorial 7-93

Answers To Exercises

2-2.

2-3.

$ cat mydate<:return>
barmer 'date I cut --cl-10'
$

$ cat tofriends<:return>
echo Type in the name of the file containing the note.
read note
mail janice marylou bryan < $note
$

Or, if you used parameters for the logins, instead of the logins themselves,
your program may have looked like this:

$ cat tofriends<:return>
echo Type in the name of the file containing the note.
read note
mail $ * < $note
$

7-94 IRIS-4D User's Guide

(

(

(

Answers To Exercises

2-4. date I cut -c1·l0 > file1<return>

2-5. echo Dear colleague » file1<return>

The Bourne Shell Tutorial 7·95

Answers To Exercises

2-6.

2-7.

$ cat send.memo<return>
date I cut -cl-10 > merrol
echo Dear colleague » merrol
cat memo » memol
echo A memo from M. L. Kelly» merrol
mail janice marylou bryan < memol
$

$ cat mv.file<return>
echo tyt:e in the directory path
read path
echo tyt:e in file names, end with <ctrl-d>

while
read file

do
mv $file $path/$file

done
echo all done

$

7-96 IRIS·4D User's Guide

(

(

(

2-8.

$ cat mv.file<return>
echo Please type in directory path
read path
for file in $*

do

$

mv $file $path/$file
done

Answers To Exercises

The command line for moving all files in the current directory is:

$ mv.file *<return>

2-9. See hint given with exercise 2-9.

$ cat search<return>
for file

$

in $*
do

if grep $word $file >/dev/null
then echo $word is in $file
else echo $word is NOT in $file
fi

done

The Bourne Shell Tutorial 7-97

Answers To Exercises

2-10. Add the following lines to your .profile.

stty -tabs<return>
stty erase <ctrl·h><return>
stty echoe<return>

2-11. Add the following command lines to your .profile

PSl=Hello<return>
export PSI

2-12. To check the values of these variables in your home environment:

c $ echo $HOME<return>

c $ echo $TERM<return>

c $ echo $PATH<return>

7-98 IRIS·4D User's Guide

(

(

(

The C Shell

csh is a new command language interpreter for UNIX systems. It incorporates
good features of other shells and a history mechanism similar to the redo of INTER­

USP. While incorporating many features of other shells which make writing shell
programs (shell scripts) easier, most of the features unique to csh are designed more
for the interactive UNIX user.

UNIX users who have read a general introduction to the system will find a
valuable basic explanation of the shell here. Simple terminal interaction with csh is
possible after reading just the first section of this chapter. The second section
describes the shell's capabilities which you can explore after you have begun to
become acquainted with the shell. Later sections introduce features which are use­
ful, but not necessary for all users of the shell.

This chapter includes an appendix listing special characters of the shell and a
glossary of terms and commands introduced in this manual.

An Introduction to the C Shell 8·1

The C Shell Language Interpreter

A shell is a command language interpreter. csh is the name of one particular
command interpreter on UNIX. The primary purpose of csh is to translate com- ('
mand lines typed at a terminal into system actions, such as invocation of other pro- _
grams. csh is a user program just like any you might write. Hopefully, csh will be
a very useful program for you in interacting with the UNIX system.

In addition to this document, you will want to refer to a copy of the IRIS-4D
Programmer's Manual. The csh documentation in the manual provides a full
description of all features of the shell and is a final reference for questions about the
shell.

Terminal Usage of the Shell

The Basic Notion of Commands

A shell in UNIX acts mostly as a medium through which other programs are
invoked. While it has a set of built-in functions which it performs directly, most
commands cause execution of programs that are, in fact, external to the shell. The (C
shell is thus distinguished from the command interpreters of other systems both by ,
the fact that it is just a user program, and by the fact that it is used almost
exclusively as a mechanism for invoking other programs.

Commands in the UNIX system consist of a list of strings or words interpreted
as a command name followed by arguments. Thus the command

mail bill

consists of two words. The first word, mail, names the command to be executed, in
this case the mail program which sends messages to other users. The shell uses the
name of the command in attempting to execute it for you. It will look in a number
of directories for a file with the name mail which is expected to contain the mail
program.

The rest of the words of the command are given as arguments to the command
itself when it is executed. In this case we specified also the argument bill which is
interpreted by the mail program to be the name of a user to whom mail is to be sent. (
In normal terminal usage we might use the mail command as follows.

8-2 IRIS-4D User's Guide

% mail bill
I have a question about the csh documentation.
My document seems to be missing page 5.
Does a page five exist?

Bill<ctrl·D>
%

The C Shell Language Interpreter

Here we typed a message to send to bill and ended this message with a ctrl-D.
The mail program then echoed the characters 'EOT' and transmitted our message.
The characters '%' were printed before and after the mail command by the shell to
indicate that input was needed.

After typing the '%' prompt the shell was reading command input from our
terminal. We typed a complete command

mail bill

The shell then executed the mail program with argument bill and went dormant
waiting for it to complete. The mail program then read input from our terminal
until we signaled an end-of-file by typing a ctrl-D. The shell noticed that mail had
completed and signaled us that it was ready to read from the terminal again by
printing another '%' prompt.

This is the essential pattern of all interaction with UNIX through the shell. A
complete command is typed at the terminal, the shell executes the command and
when this execution completes, it prompts for a new command. If you run the edi­
tor for an hour, the shell will patiently wait for you to finish editing and obediently
prompt you again whenever you finish editing.

An example of a useful command you can execute now is the tset command,
which sets the default erase and kill characters on your terminal- the erase charac­
ter erases the last character you typed and the kill character erases the entire line
you have entered so far. By default, the erase character is '#' and the kill character
is '@'. Most people who use CRT displays prefer to use the backspace character as
their erase character since it is then easier to see what you have typed so far. To do
this type:

tset

This tells the program tset to set the erase character, and its default setting for this
character is a backspace.

An Introduction to the C Shell 8-3

The C Shell Language Interpreter

Optional Arguments
A useful notion in UNIX is that of a flag argument. While many arguments to

commands specify file names or user names, some arguments specify an optional
capability of the command which you wish to invoke. By convention, such argu­
ments begin with the character '-' (hyphen). Thus the command

Is

will produce a list of the files in the current working directory. The option -s is the
size option, and the command

Is -s

causes Is to also give, for each file the size of the file in blocks of 512 characters.
The manual section for each command in the UNIX Reference Manual gives the
available options for each command. The Is command has a large number of useful
and interesting options. Most other commands have either no options or only one or
two options. It is hard to remember options of commands which are not used very
frequently, so most UNIX utilities perform only one or two functions rather than
having a large number of hard-to-remember options.

Redirecting Output to Files
Commands that normally read input or write output on the terminal can also be

executed with this input and/or output done to a file.

Suppose we wish to save the current date in a file called now. The command

date

will print the current date on our terminal. This is because our terminal is the
default standard output for the date command. The shell lets us redirect the stan­
dard output of a command through a notation using the metacharacter '>' and the
name of the file where output is to be placed.

Thus, the command

date> now

This command places the current date and time into the file now. It is important to
know that the date command was unaware that its output was going to a file rather
than to the terminal. The shell performed this redirection before the command
began executing.

One other thing to note here is that the file now need not have existed before
the date command was executed; the shell would have created the file if it did not
exist. And if the file did exist? If it had existed previously these previous contents
would have been discarded! The shell option noclobber exists to prevent this from
happening accidentally.

8·4 IRIS-4D User's Guide

(

(

(

The C Shell Language Interpreter

The system normally keeps files which you create with '>' and all other files.
Thus the default is for files to be permanent. If you wish to create a file which will
be removed automatically, you can begin its name with a '#' character, this
'scratch' character denotes the fact that the file will be a scratch file. The system
will remove such files after a couple of days, or sooner if file space becomes very
tight. Thus, in running the date command above, we don't really want to save the
output forever, so we would more likely do

date >#now

Special Characters In the Shell
The shell has a large number of special characters (like '>') which indicate spe­

cial functions. We say that these notations have syntactic and semantic meaning to
the shell. In general, most characters which are neither letters nor digits have spe­
cial meaning to the shell. We shall shortly learn a means of quotation which allows
us to use metacharacters without the shell treating them in any special way.

Metacharacters normally have effect only when the shell is reading our input.
We need not worry about placing shell metacharacters in a letter we are sending via
mail, or when we are typing in text or data to some other program. Note that the
shell is only reading input when it has prompted with '% '.

Redirecting Input From a File

We learned above how to redirect the standard output of a command to a file.
It is also possible to redirect the standard input of a command from a file. This is
not often necessary since most commands will read from a file whose name is given
as an argument. We can give the command

sort < data

to run the sort command with standard input, where the command normally reads
its input, from the file data. We would more likely type

sort data

letting the sort command open the file data for input itself since this is less to type.

We should note that if we just typed sort then the sort program would sort lines
from its standard input. Since we did not redirect the standard input, it would sort
lines as we typed them on the terminal until we typed a ctrl-D to indicate an end­
of-file.

An Introduction to the C Shell 8-5

The C Shell Language Interpreter

Combining the standard output of one command with the standard input of
another or running the commands in a sequence known as a pipeline. For instance
the command

Is -s

normally produces a list of the files in our directory with the size of each in blocks
of 512 characters. Combining the sort command with the Is argument allows the
user to sort differently.

The -n option of sort specifies a numeric sort rather than an alphabetic sort.
Thus

Is -s I sort-o

specifies that the output of the Is command run with the option -s is to be piped to
the command sort run with the numeric sort option. This would give us a sorted list
of our files by size, but with the smallest first. We could then use the reverse sort
option -r and the head command in combination with the previous command.

Is -s I sort -0 -r I head -5

Here we have taken a list of our files sorted alphabetically, each with the size in
blocks. We have run this to the standard input of the sort command asking it to sort
numerically in reverse order (largest first). This output has then been run into the
command head which gives us the first few lines. In this case we have askedhead
for the first five lines. This command gives us the names and sizes of our five larg­
est files.

The notation introduced above is called the pipe mechanism. Commands
separated by 'I' characters are connected together by the shell and the standard out­
put of each is run into the standard input of the next.

The leftmost command in a pipeline will normally take its standard input from
the terminal and the rightmost will place its standard output on the terminal. Other
examples of pipelines will be given later when we discuss the history mechanism;
one important use of pipes is in the routing of information to the line printer.

Filenames
Many commands to be executed will need the names of files as arguments.

(

(

UNIX pathnames consist of a number of components separated by 'j'. Each com- (-
ponent except the last names a directory in which the next component resides, in _
effect specifying the path of directories to follow to reach the file. Thus the path-
name

I~tdmotd

8-6 IRIS-4D User's Guide

The C Shell Language Interpreter

specifies a file in the directory etc which is a subdirectory of the root directory 'f'.
Within this directory the file named is motd which stands for 'message of the day'.

A pathname that begins with a slash is said to be an absolute pathname since it
is specified from the absolute top of the entire directory hierarchy of the system (the
root). Pathnames which do not begin with 'I' are interpreted as starting in the
current "working directory" , which is, by default, your home directory and can be
changed by cd, the change directory command.

Such pathnames are said to be "relative" to the working directory since they are
found by starting in the working directory and descending to lower levels of direc­
tories for each component of the pathname. If the pathname contains no slashes at
all then the file is contained in the working directory itself and the pathname is
merely the name of the file in this directory. Absolute pathnames have no relation
to the working directory.

Most filenames consist of a number of alphanumeric characters and '. 's (dots).
In fact, all printing characters except 'f' (slash) may appear in filenames. It is
inconvenient to have most non-alphabetic characters in filenames because many of
these have special meaning to the shell. The character'.' (dot) is not a shell­
metacharacter and is often used to separate the extension of a file name from the
base of the name. Thus

prog.c prog.o prog.errs prog.output

are four related files. They share a base portion of a name (a base portion being that
part of the name that is left when a trailing'.' and following characters which are
not'.' are stripped oft). The file prog.c might be the source for a C program, the
file prog.o the corresponding object file, the file prog.errs the errors resulting from a
compilation of the program, and the file prog.output the output of a run of the pro­
gram.

If we wished to refer to all four of these files in a command, we could use the
notation

prog.*

This word is expanded by the shell, before the command to which it is an argument
is executed, into a list of names which begin with pro g. The character' *' here
matches any sequence (including the empty sequence) of characters in a file name.
The names which match are alphabetically sorted and placed in the argument list of
the command. Thus the command

echo prog.*

will echo the names

prog.c prog.errs prog.o prog.output

Note that the names are in sorted order here, and a different order than we listed

An Introduction to the C Shell 8-7

The C Shell Language Interpreter

them above. The echo command receives four words as arguments, even though
we only typed one word as argument directly. The four words were generated by
filename expansion of the one input word.

Other notations for filename expansion are also available. The character '?'
matches any single character in a filename. Thus

echo? ?? ???

will echo a line of filenames; first those with one character names, then those with
two character names, and finally those with three character names. The names of
each length will be independently sorted.

Another mechanism consists of a sequence of characters between' [' and 'J'.
This metasequence matches any single character from the enclosed set. Thus

prog.[co]

will match

prog.c prog.o

in the example above. We can also place two characters around a '-' in this nota­
tion to denote a range. Thus

chap.[1-5]

might match files

chap.1 chap.2 chap.3 chap.4 chap.5

if they existed. This is shorthand for

chap.{12345]

and otherwise equivalent.

An important point to note is that if a list of argument words to a command (an
argument list) contains file-name expansion syntax, and if this file-name expansion
syntax fails to match any existing file names, then the shell considers this to be an
error and prints a diagnostic

No match

and does not execute the command.

(

(

Another very important point is that files with the character'.' at the beginning (_
are treated specially. Neither '*' or '?' or the '[' ']' mechanism will match it. This
prevents accidental matching of the filenames '.' and ' . .' in the working directory
which have special meaning to the system, as well as other files such as .cshrc
which are not normally visible. We will discuss the special role of the file .cshrc
later.

8-8 IRIS-4D User's Guide

The C Shell Language Interpreter

Another file-name expansion mechanism gives access to the pathname of the
home directory of other users. This notation consists of the character - (tilde) fol­
lowed by another users' login name. For instance the word -bill would map to the
pathname lusr/bill if the home directory for bill was lusr/bill. Since, on large sys­
tems, users may have login directories scattered over many different disk volumes
with different prefix directory names, this notation provides a reliable way of
accessing the files of other users.

A special case of this notation consists of a - alone, e.g. -Imbox. This notation
is expanded by the shell into the file mbox in your home directory, i.e. into
lusr/bilIlmbox for me on Ernie Co-vax, the DCB Computer Science Department
VAX machine, where this document was prepared. This can be very useful if you
have used cd to change to another directory and have found a file you wish to copy
using cpo If I give the command

cp thatfile -

the shell will expand this command to

cp thatfile lusr/bill

since my home directory is lusr/bill.

There also exists a mechanism using the characters '{' and '}' for abbreviating
a set of words which have common parts but cannot be abbreviated by the above
mechanisms because they are the names of files which do not yet exist. This
mechanism will be described later, in "Braces in Argument Expansion".

Arguments Enclosed in Quotations
We have already seen a number of metacharacters used by the shell. These

metacharacters pose a problem in that we cannot use them directly as parts of
words. Thus the command

echo *
will not echo the character '*'. It will either echo a sorted list of file names in the
current working directory, or print the message 'No match' if there are no files in
the working directory.

The recommended mechanism for placing characters which are neither
numbers, digits, 'f', '.', or '-' in an argument word to a command is to enclose it
with single quotation characters "'.

echo '*'
There is one special character'!' which is used by the history mechanism of the
shell and which cannot be escaped by placing it within '" characters. It and the

An Introduction to the C Shell 8-9

The C Shell Language Interpreter

character'" itself can be preceded by a single '\' to prevent their special meaning.
Thus

echo \'\!

prints

'!

These two mechanisms suffice to place any printing character into a word which is
an argument to a shell command. They can be combined, as in

echo \"*'

which prints

since the first '\' escaped the first P, and the '*' was enclosed between '" charac­
ters.

Terminating Commands
When you are executing a command and the shell is waiting for it to complete

there are several ways to force it to stop. For instance if you type the command

cat /etdpasswd

the system will print a copy of a list of all users of the system on your terminal.
This is likely to continue for several minutes unless you stop it. You can send an
interrupt signal to the cat command by typing the delete or rubout key on your ter­
minal.

Many users use stty (1) to change the interrupt character to ie.

Since cat does not take any precautions to avoid or otherwise handle this signal,
the interrupt will cause it to terminate. The shell notices that cat has terminated and
prompts you again with %. If you hit interrupt again, the shell will just repeat its
prompt.

Another way in which many programs terminate is when they get an end-of-file
from their standard input. Thus the mail program in the first example above was
terminated when we typed a ctrl-D which generates an end-of-file from the stan­
dard input. The shell also terminates when it gets an end-of-file printing 'logout';
UNIX then logs you off the system. Since this means that typing ctrl-D too many
times can accidentally log you off, the shell has a mechanism for preventing this.
The ignoreeof option will be discussed in "Shell Variables" later in this chapter.

8-10 IRIS-4D User's Guide

(

(

(

The C Shell Language Interpreter

If a command has its standard input redirected from a file, then it will normally
terminate when it reaches the end of this file. Thus if we execute

mail bill < prepared. text

the mail command will terminate without our typingctrl-D. This is because it read
to the end-of-file of our file prepared.text in which we placed a message for 'bill'
with an editor program. We could also have done

cat prepared. text I mail bill

since the cat command would then have written the text through the pipe to the
standard input of the mail command. When the cat command completed it would
have terminated, closing down the pipeline. The mail command would have
received an end-of-file from it and terminated. Using a pipe here is more compli­
cated than redirecting input so we would more likely use the first form. These com­
mands could also have been stopped by sending an interrupt.

Another possibility for stopping a command is to suspend its execution tem­
porarily, with the possibility of continuing execution later. This is done by sending
a stop signal via typing a ctrl-Z. This signal causes all commands running on the
terminal (usually one but more if a pipeline is executing) to be suspended. The
shell notices that the command(s) have been suspended, types 'Stopped' and then
prompts for a new command.

The previously executing command has been suspended, but otherwise unaf­
fected by the stop signal. Any other commands can be executed while the original
command remains suspended. The suspended command can be continued using the
fg command with no arguments.

The shell will then retype the command to remind you which command is
being continued, and cause the command to resume execution. Unless any input
files in use by the suspended command have been changed in the meantime, the
suspension has no effect whatsoever on the execution of the command. This feature
can be very useful during editing, when you need to look at another file before con­
tinuing. An example of command suspension follows.

An Introduction to the C Shell 8-11

The C Shell Language Interpreter

% mail harold
Someone just copied a big file into my directory and its name is
<ctrl·Z>
Stopped
% Is
funnyfile
prog.c
prog.o
% jobs
[1] + Stopped mail harold
% fg
mail harold
funnyfile. Do you know who did it?
EOT
%

In this example the user was sending a message to Harold and forgot the name of

(

the file he wanted to mention. The mail command was suspended by typing ctrl-Z. (
When the shell noticed that the mail program was suspended, it typed 'Stopped' and
prompted for a new command. Then the Is command was typed to find out the
name of the file. The jobs command was run to find out which command was
suspended. At this time the fg command was typed to continue execution of the
mail program. Input to the mail program was then continued and ended with a
ctrl-D which indicated the end of the message at which time the mail program
typed EOT. The jobs command will show which commands are suspended. The
ctrl-Z should only be typed at the beginning of a line since everything typed on the
current line is discarded when a signal is. sent from the keyboard. This also happens
on interrupt and quit signals.

More information on suspending jobs and controlling them is given "Back­
ground, Foreground, or Suspending Jobs" later in this chapter.

If you write or run programs which are not fully debugged then it may be
necessary to stop them somewhat ungracefully. This can be done by sending them
a quit signal, sent by typing a ctrl-e. This will usually provoke the shell to produce
a message like:

Quit (Core dumped)

indicating that a file 'core' has been created containing information about the
program's state when it was terminated. You can examine this file yourself, or for­
ward information to the maintainer of the program telling him/her where the core

8-12 IRI5-4D User's Guide

(

The C Shell Language Interpreter

file is.

If you run background commands then these commands will ignore interrupt
and quit signals at the terminal. To stop them you must use the kill command.

If you want to examine the output of a command without having it move off the
screen as the output of the

cat letc/passwd

command will, you can use the command

more letdpasswd

The more program pauses after each complete screenful and types '-More-' at
which point you can press the space bar to get another screenful, a return to get
another line, or a 'q' to end the more program. You can also use more as a filter,
i.e.

cat letc/passwd I more

For stopping output of commands not involving more you can use the ctrl-S
key to stop the output. The output will resume when you hit ctrl-Q or any other
key, but ctrl-Q is normally used because it only restarts the output and does not
become input to the program which is running. This works well on low-speed ter­
minals, but at 9600 baud it is hard to type ctrl-S and ctrl-Q fast enough to paginate
the output nicely, and a program like more is usually used.

An additional possibility is to use the ctrl-O flush output character; when this
character is typed, all output from the current command is thrown away until the
next input read occurs or until the next shell prompt. This can be used to allow a
command to complete without having to suffer through the output on a slow termi­
nal. ctrl-O is a toggle, so flushing can be turned off by typing ctrl-O again while
output is being flushed.

Working In the C Shell
We have so far seen a number of mechanisms of the shell and learned a lot

about the way in which it operates. The remaining sections will go yet further into
the internals of the shell, but you will surely want to try using the shell before you
go any further. To try it you can log in to UNIX and type the following command
to the system:

chsh myname Ibin/csh

Here myname should be replaced by the name you typed to the system prompt of
'login:' to get onto the system. You only have to do this once; it takes effect at next
login. You are now ready to use csh.

An Introduction to the C Shell 8-13

The C Shell Language Interpreter

Before you do the chsh command, the shell you are using when you log into
the system is Ibinlsh. In fact, much of the above discussion is applicable to Ibinlsh.
The next section will introduce many features particular to csh so you should
change your shell to csh before you begin reading it.

8-14 IRIS-4D User's Guide

(,

(

(

Details on the Shell for Terminal Users

Shell Startup and Termination

When you login, the shell is started by the system in your home directory and
begins by reading commands from a file .cshrc in this directory. All shells which
you may start during your terminal session will read from this file. We will later
see what kinds of commands are usefully placed there. For now we need not have
this file and the shell does not complain about its absence.

A login shell, executed after you log in to the system, will, after it reads com­
mands from .cshrc, read commands from a file .login also in your home directory.
This file contains commands which you wish to do each time you login to the UNIX
system. My .login file looks something like:

set ignoreeof
set mail=(/usr/spool/mail/bill)
echo "$ (prorrpt }users" ; users
alias ts \
ts; stty intr tc kill tu crt
set time=15 history=lO
msgs -f
if (-e $mail) then

endif

echo "$ (prorrpt }mail"
mail

This file contains several commands to be executed by UNIX each time I login.
The first is a set command which is interpreted directly by the shell. It sets the shell
variable ignoreeof which causes the shell to not log me off if I hit ctrl-D. Rather, I
use the logout command to log off of the system. By setting the mail variable, I ask
the shell to watch for incoming mail to me. Every 5 minutes the shell looks for this
file and tells me if more mail has arrived there. An alternative to this is to put the
command

biffy

An Introduction to the C Shell 8-15

Details on the Shell for Terminal Users

in place of this set; this will cause me to be notified immediately when mail arrives,
and to be shown the first few lines of the new message.

Next I set the shell variable 'time' to '15' causing the shell to automatically
print out statistics lines for commands which execute for at least 15 seconds of cpu (
time. The variable 'history' is set to 10 indicating that I want the shell to remember
the last 10 commands I type in its history list (described in "The History List" later
in this chapter).

I create an alias "ts" which executes a tset (1) command setting up the modes
of the terminal. The parameters to tset indicate the kinds of terminal which I usu­
ally use when not on a hardwired port. I then execute "ts" and also use the stty
command to change the interrupt character to ctrl-C and the line kill character to
ctrl-U.

I then run the msgs program, which provides me with any system messages
which I have not seen before; the '-f' option here prevents it from telling me any­
thing if there are no new messages. Finally, if my mailbox file exists, then I run the
mail program to process my mail.

When the mail and msgs programs finish, the shell will finish processing my
.login and begin reading commands from the terminal, prompting for each with %.

When I log off (by giving the logout command) the shell will print 'logout' and (
execute commands from the file' .logout' if it exists in my home directory. After
that, the shell will terminate and UNIX will log me off the system. If the system is
not going down, I will receive a new login message. In any case, after the 'logout'
message the shell is committed to terminating and will take no further input from
my terminal.

Shell Variables

The shell maintains a set of variables. We saw above the variables history and
time which had values '10' and '15'. In fact, each shell variable has as value an
array of zero or more strings. Shell variables may be assigned values by the set
command. It has several forms, the most useful of which was given above and is

set name=value

Shell variables may be used to store values which are to be used in commands (
later through a substitution mechanism. The shell variables most commonly refer- I

enced are, however, those which the shell itself refers to. By changing the values of
these variables one can directly affect the behavior of the shell.

8·16 IRIS-4D User's Guide

Details on the Shell for Terminal Users

One of the most important variables is the variable "path". This variable con­
tains a sequence of directory names where the shell searches for commands. The
set command with no arguments shows the value of all variables currently defined
(we usually say set) in the shell. The default value for "path" will be shown by set
to be

% set
argv 0
cwd /usr/bill
home lusr/bill
path C. lusr/ucb /bin lusrlbin)
prompt %
shell Ibin/csh
status 0
term c100rv4pna
user bill
%

This output indicates that the variable path points to the current directory '.' and
then '/usr/ucb', '/bin' and '/usr/bin'. Commands which you may write might be in
'.' (usually one of your directories). Commands developed at Berkeley, live in
'/usr/ucb' while commands developed at Bell Laboratories live in '/bin' and
'/usr/bin' .

A number of locally developed programs on the system live in the directory
'/usr/local'. If we wish that all shells which we invoke to have access to these new
programs we can place the command

set path=(. lusr/ucb Ibin lusr/bin lusr/local)

in our file .csbrc in our home directory. Try doing this and then logging out and
back in and do

set

again to see that the value assigned to path has changed.

One thing you should be aware of is that the shell examines each directory
which you insert into your path and determines which commands are contained
there. Except for the current directory'.', which the shell treats specially, this
means that if commands are added to a directory in your search path after you have
started the shell, they will not necessarily be found by the shell. If you wish to use a

An Introduction to the C Shell 8-17

Details on the Shell for Terminal Users

command which has been added in this way, you should give the command

rehash

to the shell, which will cause it to recompute its internal table of command loca-
tions, so that it will find the newly added command. Since the shell has to look in (
the current directory' .' on each command, placing it at the end of the path
specification usually works the same way and reduces overhead.

Other useful built-in variables are the variable home, which shows your home
directory, cwd, which contains your current working directory, and the variable
ignoreeof, which can be set in your .login file to tell the shell not to exit when it
receives an end-of-file from a terminal. The variable ignoreeof is one of several
variables which the shell does not care about the value of, only if it is set or unset.
To set this variable you simply do

set ignoreeof

and to unset it do

unset ignoreeof

These give the variable ignoreeof no value, but none is desired or required.

Finally, some other built-in shell variables of use are the variables noclobber
and mail. The metasyntax

> filename

which redirects the standard output of a command, will overwrite and destroy the
previous contents of the named file. In this way you may accidentally overwrite a
file which is valuable. If you would prefer that the shell not overwrite files in this
way you can

set noclobber

in your .1ogin file. Then trying to do

date> now

would cause a diagnostic if 'now' existed already. You could type

date >! now

if you really wanted to overwrite the contents of 'now'. The '>1' is a special
metasyntax indicating that clobbering the file is OK.

8-18 IRIS-4D User's Guide

(

(

Details on the Shell for Terminal Users

The History List
The shell can maintain a "history list" into which it places the words of previ-

0us commands. It is possible to use a notation to reuse commands or words from
previous commands in forming new commands.

The following figures give a sample session involving typical usage of the his­
tory mechanism of the shell.

An Introduction to the C Shell 8-19

Details on the Shell for Terminal Users

% cat bug.c
mainO

printf("hello);

% cc!$
cc bug.c
"bug.c", line 4: newline in string or char constant
"bug.c" , line 5: syntax error
% ed!$
ed bug.c
29
4sf);f'&/p

w
30
q

printf("hello");

%f1 !e
ee bug.e
% a.out
hello% !e
ed bug.c
30
4s/l0/l0\\n/p

w
32
q

printf("hello\n");

% !c-obug
cc bug.c -0 bug
% size a.out bug
a.out: 2784+364+1028 = 4176b = Ox1050b
bug: 2784+364+1028 = 4176b = Ox1050b
%ls-l!*
Is -1 a.out bug
-rwxr-xr-x 1 bill
-rwXf-)u-X 1 bill
% bug
hello

3932 Dec 1909:41 a.out
3932 Dec 1909:42 bug

8-20 IRIS-4D User's Guide

(

(

(

% nwn bug.c I spp
spp: Command not found.
% isppissp
nwn bug.c I ssp

1 mainO
3 (
4 printf("hello\n");
5 }

%l!llpr
num bug.c I ssp Ilpr
%

Details on the Shell for Terminal Users

In this example we have a very simple C program which has a bug (or two) in it in
the file 'bug.c', which we 'cat' out on our terminal. We then try to run the C com­
piler on it, referring to the file again as '1$', meaning the last argument to the previ­
ous command. Here the 'I' is the history metacharacter, and the '$' stands for the
last argument.

The shell echoed the command, as it would have been typed without use of the
history mechanism, and then executed it. The compilation yielded error diagnostics
so we now run the editor on the file we were trying to compile, fix the bug, and run
the C compiler again, this time referring to this command simply as 'lc', which
repeats the last command which started with the letter 'c'. If there were other com­
mands starting with 'c' done recently we could have said '!cc' or even '!cc:p'
which would have printed the last command starting with 'cc' without executing it.

After this recompilation, we ran the resulting 'a.out' file, and then noting that
there still was a bug, ran the editor again. After fixing the program we ran the C
compiler again, but tacked onto the command an extra '-0 bug' telling the compiler
to place the resultant binary in the file 'bug' rather than 'a.out'. In general, the his­
tory mechanisms may be used anywhere in the formation of new commands and
other characters may be placed before and after the substituted commands.

We then ran the size command to see how large the binary program images we
have created were, and then an Is -I command with the same argument list, denot­
ing the argument list '*'. Finally we ran the program 'bug' to see that its output is
indeed correct.

An Introduction to the C Shell 8-21

Details on the Shell for Terminal Users

To make a numbered listing of the program we ran the 'num' command on the
file 'bug.c'. In order to compress out blank lines in the output of 'num' we ran the
output through the filter 'ssp', but misspelled it as spp. To correct this we used a
shell substitute, placing the old text and new text between 'j' characters. This is
similar to the substitute command in the editor. Finally, we repeated the same com- ()
mand with '!!', but sent its output to the line printer. .

There are other mechanisms available for repeating commands. The history
command prints out a number of previous commands with numbers by which they
can be referenced. There is a way to refer to a previous command by searching for
a string which appeared in it, and there are other, less useful, ways to select argu­
ments to include in a new command. A complete description of all these mechan­
isms is given in the C shell manual pages in the IRIS-4D Programmer's Manual.

The Alias Mechanism

The shell has an alias mechanism which can be used to make transformations
on input commands. This mechanism can be used to simplify the commands you
type, to supply default arguments to commands, or to perform transformations on
commands and their arguments. The alias facility is similar to a macro facility.

As an example, suppose that there is a new version of the mail program on the
system called 'newmail' you wish to use, rather than the standard mail program
which is called 'mail'. If you place the shell command

alias mail newmail

in your .cshrc file, the shell will transform an input line of the form

mail bill

into a call on 'newmail'. More generally, suppose we wish the command Is to
always show sizes of files, that is to always do -so We can do

alias Is Is -s

or even

alias dir Is -s

creating a new command syntax dir which does an Is -so If we say

dir -bill

then the shell will translate this to

Is -s Imntlbill

8-22 IRI5-4D User's Guide

(

(

Details on the Shell for Terminal Users

The alias mechanism can be used to provide short names for commands, to pro­
vide default arguments, and to define new short commands in terms of other com­
mands. It is also possible to define aliases which contain multiple commands or
pipelines, showing where the arguments to the original command are to be substi­
tuted using the facilities of the history mechanism. Thus the definition

alias cd 'cd \!* j Is '

would do an Is command after each cd command. We enclosed the entire alias
definition in ", characters to prevent most substitutions from occurring and the
character ';' from being recognized as a metacharacter. The '!' is escaped with a '\'
to prevent it from being interpreted when the alias command is typed in. The '\!*'
here substitutes the entire argument list to the pre-aliasing cd command, without
giving an error if there were no arguments. The ';' separating commands is used
here to indicate that one command is to be done and then the next. Similarly the
definition

alias whois 'grep \!! letdpasswd'

defines a command which looks up its first argument in the password file.

The shell currently reads the .cshrc file each time it starts up. If you place a large
number of commands there, shells will tend to start slowly.

Redirection Commands for Terminal Users
There are a few more notations useful to the terminal user which have not been

introduced yet.

In addition to the standard output, commands also have a diagnostic output
which is normally directed to the terminal even when the standard output is
redirected to a file or a pipe. It is occasionally desirable to direct the diagnostic out­
put along with the standard output. For instance, if you want to redirect the output
of a long-running command into a file, and wish to have a record of any error diag­
nostic it produces, you can do

command >& file

The '>&' here tells the shell to route both the diagnostic output and the standard
output into 'file'. Similarly you can give the command

command I & lpr

to route both standard and diagnostic output through the pipe to the line printer dae­
mon lpr. A command form

An Introduction to the C Shell 8-23

Details on the Shell for Terminal Users

command >&! file

exists, and is used when noclobber is set and file already exists. Finally, it is possi­
ble to use the form

command» file

to place output at the end of an existing file.

If noclobber is set, then an error will result if file does not exist, otherwise the shell
will create file if it doesn't exist. A fonn command »! file makes it alright for file
not to exist when noclobber is set.

Background, Foreground, or Suspended Jobs
When one or more commands are typed together as a pipeline or as a sequence

of commands separated by semicolons, a single job is created by the shell. Single
commands without pipes or semicolons create the simplest jobs. Usually, every line
typed to the shell creates a job. Some lines that create jobs (one per line) are

sort < data
Is -s I sort -n I head -5
mail harold

If the metacharacter '&' is typed at the end of the commands, then the job is
started as a background job. This means that the shell does not wait for it to com­
plete but immediately prompts and is ready for another command. The job runs in
the background at the same time that normal jobs, called foreground jobs, continue
to be read and executed by the shell. Thus

du> usage &

would run the du program, which reports on the disk usage of your working direc­
tory (as well as any directories below it), put the output into the file usage and
return immediately with a prompt for the next command without waiting for du to
finish. The du program would continue executing in the background until it
finished. When a background job terminates, a message is typed by the shell just
before the next prompt, telling you that the job has completed.

In the following example the du job finishes sometime during the execution of
the mail command and its completion is reported just before the prompt after the
mail job is finished.

8-24 IRIS-4D User's Guide

(

(

(

% du> usage &
[1] 503
% mail bill

Details on the Shell for Terminal Users

How do you know when a background job is finished?
EOT
[1] - Done du> usage
%

If the job did not terminate, the 'Done' message might say something else like
'Killed'. If you want the terminations of background jobs to be reported at the time
they occur (possibly interrupting the output of other foreground jobs), you can set
the notify variable. In the previous example this would mean that the 'Done' mes­
sage might have come right in the middle of the message to Bill. Background jobs
are unaffected by any signals from the keyboard like the stop, interrupt, or quit sig­
nals mentioned earlier.

Jobs are recorded in a table inside the shell until they terminate. In this table,
the shell remembers the command names, arguments, and the "process numbers" of
all commands in the job as well as in the working directory where the job was
started. Each job in the table is either running in the foreground with the shell wait­
ing for it to terminate, running in the background, or suspended.

Only one job can be running in the foreground at one time, but several jobs can
be suspended or running in the background at once. As each job is started, it is
assigned a small identifying number called the "job number" which can be used
later to refer to the job in the commands described below. Job numbers remain the
same until the job terminates.

When a job is started in the backgound using' &' , its number, as well as the
process numbers of all its (top-level) commands, is typed by the shell before
prompting you for another command. For example,

% Is -s I sort -n > usage &
[2] 2034 2035
%

runs the Is program with the -s options, pipes this output into the sort program with
the -n option which puts its output into the file usage. Since the '&' was at the end
of the line, these two programs were started together as a background job. Mter
starting the job, the shell prints the job number in brackets (2 in this case) followed
by the process number of each program started in the job. Then the shell immedi­
ately prompts for a new command, leaving the job running simultaneously.

An Introduction to the C Shell 8-25

Details on the Shell for Terminal Users

As mentioned before, foreground jobs become suspended by typing iz which
sends a stop signal to the currently running foreground job. A background job can
become suspended by using the stop command described below. When jobs are
suspended they merely stop any further progress until started again, either in the
foreground or the backgound. The shell notices when a job becomes stopped and (
reports this fact, much like it reports the termination of background jobs. For fore- .
ground jobs this looks like

% du > usage
iz
Stopped
%

The 'Stopped' message is typed by the shell when it notices that the du program
stopped. For background jobs, using the stop command, it is

% sort usage &

[1] 2345
% stop %1
[1] + Stopped (signal)
%

sort usage

Suspending foreground jobs can be very useful when you need to temporarily
change what you are doing (execute other commands) and then return to the
suspended job. Also, foreground jobs can be suspended and then continued as
background jobs using the bg command, allowing you to continue other work and
stop waiting for the foreground job to finish. Thus

8-26 IRIS-4D User's Guide

(

(

% du > usage
iz
stopped
%bg
[1] du > usage &

%

Details on the Shell for Terminal Users

starts du in the foreground, stops it before it finishes, then continues it in the back­
ground allowing more foreground commands to be executed. This is especially
helpful when a foreground job ends up taking longer than you expected.

All job control commands can take an argument that identifies a particular job.
All job name arguments begin with the character' %', since some of the job control
commands also accept process numbers (printed by the ps command.) The default
job (when no argument is given) is called the current job and is identified by a '+' in
the output which shows you which jobs you have. When only one job is stopped or
running in the background (the usual case) it is always the current job and no argu­
ment is needed. If a job is stopped while running in the foreground it becomes the
current job and the existing current job becomes the previous job identified by a '-'
in the output of jobs. When the current job terminates, the previous job becomes
the current job. When given, the argument is either '%-' (indicating the previous
job); '%#', where # is the job number; '%pref' where pref is some unique prefix of
the command name and arguments of one of the jobs; or '%?' followed by some
string found in only one of the jobs.

The jobs command types the table of jobs, giving the job number, commands
and status (,Stopped' or 'Running') of each backgound or suspended job. With the
'-1' option the process numbers are also typed.

An Introduction to the C Shell 8-27

Details on the Shell for Terminal Users

% d:u > usage &

[1] 3398
% is -s I sort -n > myfile &

[2] 3405
% mail bill
tz
stopped
% jobs
[1] - Running
[2] Running
[3] + Stopped
% fg Us
is -s I sort -n > myfile
% more myfile

d:u > usage
is -s I sort -n > myfile
mail bill

The fg command runs a suspended or background job in the foreground. It is

(

used to restart a previously suspended job or change a background job to run in the (
foreground (allowing signals or input from the terminal). .

In the above example we used fg to change the 'Is' job from the background to
the foreground since we wanted to wait for it to finish before looking at its output
file.

The bg command runs a suspended job in the background. It is usually used
after stopping the currently running foreground job with the stop signal. The com­
bination of the stop signal and the bg command changes a foreground job into a
background job. The stop command suspends a background job.

The kill command terminates a background or suspended job immediately. In
addition to jobs, it may be given process numbers as arguments, as printed by ps.
Thus, in the example above. the running du command could have been terminated
by the command

8-28 IRI5-4D User's Guide

(

% kill %1
[1] Terminated
%

Details on the Shell for Terminal Users

du > usage

The notify command (not the variable mentioned earlier) indicates that the ter­
mination of a specific job should be reported at the time it finishes instead of wait­
ing for the next prompt.

If a job running in the background tries to read input from the terminal it is
automatically stopped. When such a job is then run in the foreground, input can be
given to the job. If desired, the job can be run in the background again until it
requests input again. This is illustrated in the following sequence where the's'
command in the text editor might take a long time.

% ed bigfile
120000
1,$s/thisword/thatwordl
iz
Stopped
% bg
[1] ed bigfile &
%
. .. some foreground commands
[1] Stopped (tty input)
% fg
ed bigfile
w
120000
q
%

ed big file

So after the s command was issued, the ed job was stopped with iz and then put in
the background using bg. Some time later when the s command was finished, ed
tried to read another command and was stopped because jobs in the backgound can­
not read from the terminal. The fg command returned the ed job to the foreground

An Introduction to the C Shell 8-29

Details on the Shell for Terminal Users

where it could once again accept commands from the terminal.

The command

stty tostop

causes all background jobs run on your terminal to stop when they are about to (
write output to the terminal. This prevents messages from background jobs from
interrupting foreground job output and allows you to run a job in the background
without losing terminal output. It also can be used for interactive programs that
sometimes have long periods without interaction. Thus, each time it outputs a
prompt for more input it will stop before the prompt. It can then be run in the fore-
ground using fg, more input can be given and, if necessary stopped and returned to
the background. This stty command might be a good thing to put in your .login file
if you do not like output from background jobs interrupting your work. It also can
reduce the need for redirecting the output of background jobs if the output is not
very big:

% stty tostop
% we huge file &

[1] 10387
% ed text

• some time later
q

[1] Stopped (tty output)
% fg we
we huge file

13371 30123 302577
% stty -tostop

we huge file

Thus after some time the we command, which counts the lines, words and charac­
ters in a file, had one line of output. When it tried to write this to the terminal it
stopped. By restarting it in the foreground we allowed it to write on the terminal
exactly when we were ready to look at its output. Programs which attempt to

(

change the mode of the terminal will also block, whether or not tostop is set, when (
they are not in the foreground, as it would be very unpleasant to have a background
job change the state of the terminal.

8-30 IRIS-4D User's Guide

Details on the Shell for Terminal Users

Since the jobs command only prints jobs started in the currently executing
shell, it knows nothing about background jobs started in other login sessions or
within shell files. The ps can be used in this case to find out about background jobs
not started in the current shell.

Working Directories
The shell is always in a particular working directory. The change directory

command (cd) changes the working directory of the shell, that is, changes the direc­
tory you are located in.

It is useful to make a directory for each project you wish to work on and to
place all files related to that project in that directory. The make directory command
(mkdir) creates a new directory. The print working directory command (pwd)
reports the absolute pathname of the working directory of the shell, that is, the
directory you are located in. Thus in the example below:

% pwd
/usr/bill
% mkdir newpaper
% chdir newpaper
% pwd
/usr/bill/newpaper
%

the user has created and moved to the directory newpaper where, for example, he
might place a group of related files.

No matter where you have moved to in a directory hierarchy, you can return to
your 'home' login directory by doing just cd with no arguments. The name' .. '
always means the directory above the current one in the hierarchy, thus

cd ••

changes the shell's working directory to the one directly above the current one. The
name' .. ' can be used in any pathname, thus,

cd • .Iprograms

means change to the directory 'programs' contained in the directory above the

An Introduction to the C Shell 8-31

Details on the Shell for Terminal Users

current one. If you have several directories for different projects under, say, your
home directory, this shorthand notation permits you to switch easily between them.

The shell always remembers the pathname of its current working directory in
the variable cwd. The shell can also be requested to remember the previous direc- (-
tory when you change to a new working directory. If the 'push directory' command _
pushd is used in place of the cd command, the shell saves the name of the current
working directory on a "directory stack" before changing to the new one. You can
see this list at any time by typing the 'directories' command dirs.

% pushd newpaper/references
/newpaper/references -
% pushd /usr/lib/tmac
/usr/lib/tmac -/newpaper/references -
% dirs
/usr/lib/tmac -/newpaper/references -
% popd
-/newpaper/references -
% popd

%

The list is printed in a horizonta1line, reading left to right, with a tilde n as short­
hand for your home directory-in this case '/usr/bill'. The directory stack is printed
whenever there is more than one entry on it and it changes. It is also printed by a
dirs command. dirs is usually faster and more informative than pwd since it shows
the current working directory as well as any other directories remembered in the
stack.

The pushd command with no argument alternates the current directory with the
first directory in the list. The 'pop directory' (popd) command without an argument
returns you to the directory you were in prior to the current one, discarding the pre­
vious current directory from the stack (forgetting it). Typing popd several times in
a series takes you backward through the directories you had been in (changed to) by
pushd command. There are other options to pushd and popd to manipulate the
contents of the directory stack and to change to directories not at the top of the
stack; see the csh manual page for details.

8-32 IRIS-4D User's Guide

(

Details on the Shell for Terminal Users

Since the shell remembers the working directory in which each job was started,
it warns you when you might be confused by restarting a job in the foreground
which has a different working directory than the current working directory of the
shell. Thus if you start a background job, then change the shell's working directory
and then cause the background job to run in the foreground, the shell warns you that
the working directory of the currently running foreground job is different from that
of the shell.

% dirs -1
fmnt/bill
% cd llM'roject
% dirs
-fllM'roject
% ed prog.c
1143
iz
Stopped
% cd ..
% Is
llM'roject
text file
% fg
ed prog.c (wd: -/llM'roject)

This way the shell warns you when there is an implied change of working directory,
even though no cd command was issued. In the above example the 'ed' job was
still in Imnt/biWproject even though the shell had changed to Imnt/bill. A similar
warning is given when such a foreground job terminates or is suspended (using the
stop signal) since the return to the shell again implies a change of working direc­
tory.

An Introduction to the C Shell 8-33

Details on the Shell for Terminal Users

% fg
ed prog.c (wd: -/myproject)
..• after sorre editing

q
(wd now: -)
%

These messages are sometimes confusing if you use programs that change their own
working directories, since the shell only remembers which directory a job is started
in, and assumes it stays there. The -I option of jobs will type the working directory
of suspended or background jobs when it is different from the current working
directory of the shell.

Useful Built-in Commands

(:

We now give a few of the useful built-in commands of the shell describing how (
they are used.

The alias command described above is used to assign new aliases and to show
the existing aliases. With no arguments it prints the current aliases. It may also be
given only one argument such as

alias Is

to show the current alias for, e.g., Is.

The echo command prints its arguments. It is often used in shell scripts or as
an interactive command to see what filename expansions will produce.

The history command will show the contents of the history list. The numbers
given with the history events can be used to reference previous events which are
difficult to reference using the contextual mechanisms introduced above. There is
also a shell variable called prompt. By placing a 'I' character in its value the shell
will there substitute the number of the current command in the history list. You can
use this number to refer to this command in a history substitution. Thus you could

set prompt=' \I % '

Note that the 'I' character had to be escaped here even within '" characters.

8-34 IRIS-4D User's Guide

(

Details on the Shell for Terminal Users

The limit command is used to restrict use of resources. With no arguments it
prints the current limitations:

cputirre
filesize
datasize
stacksize
coredumpsize

unlimited
unlimited
5616 kbytes
512 kbytes
unlimited

An Introduction to the C Shell 8-35

Details on the Shell for Terminal Users

Limits can be set, e.g.:

limit coredumpsize 128k

Most reasonable units abbreviations will work; see the csh manual page for more
details.

The logout command can be used to tenninate a login shell which has
ignoreeof set.

The rehash command causes the shell to recompute a table to direct you to
where commands are located. This is necessary if you add a command to a direc­
tory in the current shell's search path and wish the shell to find it, since otherwise
the hashing algorithm may tell the shell that the command wasn't in that directory
when the hash table was computed.

The repeat command can be used to repeat a command several times. Thus to
make 5 copies of the file one in the file five you could do

repeat 5 cat one » five

The setenv command can be used to set variables in the environment. Thus

setenv TERM adm3a

will set the value of the environment variable TERM to 'adm3a'. A user program
printenv exists which will print out the environment. It might then show:

% printenv
HCME=/usr/bill
SHELL=/bin/csh
PATH=:/usr/ucb:/bin:/usr/bin:/usr/local
TERM=adm3a
USER=bill
%

The source command can be used to force the current shell to read commands
from a file. Thus

source .cshrc

can be used after editing in a change to the .cshrc file which you wish to take effect
before the next time you login.

8-36 IRIS-4D User's Guide

(

(

(

Details on the Shell for Terminal Users

The time command can be used to cause a command to be timed no matter
how much time it takes. Thus

% time cp /ete/re /usr/bill/re
O.OU 0.15 0:01 8% 2+lk 3+2io Ipf+Ow
% time we /ete/re /usr/bill/re

52 178 1347 /ete/re
52 178 1347 /usr(bill/re

104 356 2694 total
O.lu 0.15 0:00 13% 3+3k 5+3io 7pf+Ow
%

indicates that the ep command used a negligible amount of user time (u) and about
l/10th of a system time (s); the elapsed time was 1 second (0:01), there was an
average memory usage of 2K bytes of program space and lK bytes of data space
over the cpu time involved (2+ lK); the program did three disk reads and two disk
writes (3+2io), and took one page fault and was not swapped (lpf+Ow). The word
count command we on the other hand used 0.1 seconds of user time and 0.1 seconds
of system time in less than a second of elapsed time. The percentage '13 %' indi­
cates that over the period when it was active the command we used an average of
13 percent of the available cpu cycles of the machine.

The unalias and unset commands can be used to remove aliases and variable
definitions from the shell, and unsetenv removes variables from the environment.

Additional Information
This concludes the basic discussion of the shell for terminal users. There are

more features of the shell to be discussed here, and all features of the shell are dis­
cussed in its manual pages. One useful feature which is discussed later is the
foreaeh built-in command which can be used to run the same command sequence
with a number of different arguments.

An Introduction to the C Shell 8-37

Executing Commands Through Shell Scripts

It is possible to place commands in files and to cause shells to be invoked to
read and execute commands from these files, which are called "shell scripts." We (
here detail those features of the shell useful to the writers of such scripts.

The Make Program
It is important to first note what shell scripts are not useful for. There is a pro­

gram called make which is useful for maintaining a group of related files or per­
forming sets of operations on related files. For instance, a large program consisting
of one or more files can have its dependencies described in a Makefile which con­
tains definitions of the commands used to create these different files when changes
occur.

Definitions of the means for printing listings, cleaning up the directory in which
the files reside, and installing the resultant programs are easily, and most appropri­
ately, placed in this Makefile. This format is superior and preferable to maintaining
a group of shell procedures to maintain these files.

Similarly when working on a document a Makefile may be created which (
defines how different versions of the document are to be created and which options
of DrotT or trotT are appropriate.

Invocation and the argv Variable
A csh command script may be interpreted by saying

% csh script ...

where script is the name of the file containing a group of csh commands and ' ... ' is
replaced by a sequence of arguments. The shell places these arguments in the vari­
able argv and then begins to read commands from the script. These parameters are
then available through the same mechanisms which are used to reference any other
shell variables.

If you make the file script executable by doing

% chmod 755 script

and place a shell comment at the beginning of the shell script (i.e. begin the file with
a '#' character) then a Ibinlcsh will automatically be invoked to execute script
when you type

% script

8·38 IRIS-4D User's Guide

(

Executing Commands Through Shell Scripts

If the file does not begin with a '#' then the standard shell/binlsh will be used to
execute it. This allows you to convert your older shell scripts to use csh at your
convenience.

Substituting Variables
After each input line is broken into words and history substitutions are done on

it, the input line is parsed into distinct commands. Before each command is exe­
cuted a mechanism know as variable substitution is done on these words. Keyed by
the character $ this substitution replaces the names of variables by their values.
Thus

% echo $argv

when placed in a command script would cause the current value of the variable
argv to be echoed to the output of the shell script. It is an error for argv to be unset
at this point.

A number of notations are provided for accessing components and attributes of
variables. The notation

% $?name

expands to '1' if name is set or to '0' if name is not set. It is the fundamental
mechanism used for checking whether particular variables have been assigned
values. All other forms of reference to undefined variables cause errors.

The notation

$#name

expands to the number of elements in the variable name. Thus

An Introduction to the C Shell 8-39

Executing Commands Through Shell Scripts

% set argv=(a b c)

% echo $?argv
1
% echo $#argv
3
% unset argv
% echo $?argv
o
% echo$argv
Undefined variable: argv.
%

It is also possible to access the components of a variable which has several
values. Thus

$argv[l]

gives the first component of argv or in the example above 'a'. Similarly

$argv[$#argv]

would give c, and

$argv[1-2]

would give a b. Other notations useful in shell scripts are

$n

where n is an integer as a shorthand for

$argv[n]

the nth parameter and

$*

which is a shorthand for

$argv

The form $$ expands to the process number of the current shell. Since this process
number is unique in the system it can be used in generation of unique temporary file
names. The form

8-40 IRIS-4D User's Guide

(

(

(

Executing Commands Through Shell Scripts

is quite special and is replaced by the next line of input read from the shell's stan­
dard input (not the script it is reading). This is useful for writing shell scripts that
are interactive, reading commands from the terminal, or even writing a shell script
that acts as a filter, reading lines from its input file. Thus the sequence

echo 'yes or no?\c'
set a=($<)

would write out the prompt 'yes or no?' without a newline and then read the answer
into the variable a. In this case $#a would be 0 if either a blank line or end-of-file
(iD) was typed.

One minor difference between $n and $argv[n] should be noted here. The
form $argv[n] will yield an error if n is not in the range l-$#argv while $n will
never yield an out-of-range subscript error. This is for compatibility with the way
older shells handled parameters.

Another important point is that it is never. an error to give a subrange of the
form n-; if there are less than n components of the given variable then no words are
substituted. A range of the form m-n likewise returns an empty vector without giv­
ing an error when m exceeds the number of elements of the given variable, pro­
vided the subscript n is in range.

Expressions
In order for interesting shell scripts to be constructed it must be possible to

evaluate expressions in the shell based on the values of variables. In fact, all the
arithmetic operations of the language C are available in the shell with the same pre­
cedence that they have in C. In particular, the operations == and != compare strings
and the operators && and I I implement the boolean and/or operations. The special
operators =- and !- are similar to == and != except that the string on the right side
can have pattern matching characters (like *, ? or []) and the test is whether the
string on the left matches the pattern on the right.

The shell also allows file enquiries of the form

-? filename

where '?' is replaced by a number of single characters. For instance the expression
primitive

-e file name

tells whether the file filename exists. Other primitives test for read, write, and exe­
cute access to the file, whether it is a directory, or has non-zero length.

An Introduction to the C Shell 8·41

Executing Commands Through Shell Scripts

It is possible to test whether a command terminates normally, by a primitive of
the form' { command}' which returns true, i.e. '1' if the command succ.eeds exiting
normally with exit status 0, or '0' if the command terminates abnormally or with
exit status non-zero. If more detailed information about the execution status of a
command is required, it can be executed and the variable $status examined in the (
next command. Since $status is set by every command, it is very transient. It can .
be saved if it is inconvenient to use it only in an immediately following single com-
mand.

For a full list of expression components available see the IRIS-4D
Programmer's Reference Manual.

Sample Shell Script
A sample shell script which makes use of the expression mechanism of the

shell and some of its control structure follows:

% cat copyc

Copyc copies those C programs in the specified list
to the directory -/backup if they differ from the files
already in -/backup

set noglob
foreach i ($argv)

end

if ($i r *.c) continue # not a .c file so do nothing

if (! -r -/backup/$i:t) then
echo $i:t not in backup ... not cp\" ed
continue

endif

cmp -8 $i -/backup/$i:t # to set $stams

if ($stams != 0) then
echo new backup of $i
cp $i -/backup/$i:t

endif

8-42 IRIS-4D User's Guide

(

(

Executing Commands Through Shell Scripts

This script makes use of the foreach command, which causes the shell to exe­
cute the commands between the foreach and the matching end for each of the
values given between '(' and ')' with the named variable, in this case i set to suc­
cessive values in the list. Within this loop we may use the command break to stop
executing the loop and continue to prematurely terminate one iteration and begin
the next. Mter the foreach loop the iteration variable (i in this case) has the value
at the last iteration.

We set the variable noglob here to prevent filename expansion of the members
of argv. This is a good idea, in general, if the arguments to a shell script are
filenames which have already been expanded or if the arguments may contain
filename expansion metacharacters. It is also possible to quote each use of a '$'
variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form

if (expression) then
command

endif

The placement of the keywords here is not flexible due to the current implementa­
tion of the shell. The following two formats are not currently acceptable to the
shell:

and

if (expression)
then

endif

Won't work!

command

if (expression) then command endif# Won't work

The shell does have another form of the if statement of the form

if (expression) command

which can be written

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The command must
not involve' I " '&' or ';' and must not be another control command. The second
form requires the final '\' to immediately precede the end-of-line.

An Introduction to the C Shell 8-43

Executing Commands Through Shell Scripts

The more general 'if' statements above also admit a sequence of else-if pairs
followed by a single 'else' and an 'endif,' e.g.:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in shell scripts is the: modifier. We can
use the modifier :r here to extract a root of a filename or :e' to extract the extension.
Thus if the variable i has the value '/mnt/foo.bar' then

% echo $i $i:r $i:e
Irnntlfoo.bar Irnntlfoo bar
%

shows how the :r modifier strips off the trailing' .bar' and the the :e modifier leaves
only the 'bar'. Other modifiers will take off the last component of a pathname leav­
ing the head ':h' or all but the last component of a pathname leaving the tail ':t'.
These modifiers are fully described in the csh manual pages in the IRIS-4D
Programmer's Manual. It is also possible to use the command substitution mechan­
ism described in the next section to perform modifications on strings to then reenter
the shells environment. Since each usage of this mechanism involves the creation
of a new process, it is much more expensive to use than the: modification mechan­
ism.

It is also important to note that the current implementation of the shell limits
the number of: modifiers on a '$' substitution to 1. Thus

% echo $i $i:h:t
/a/b/c /a/b:t
%

does not do what one would expect.

8·44 IRIS-4D User's Guide

(

(

(

Executing Commands Through Shell Scripts

Finally, we note that the character '#' lexically introduces a shell comment in
shell scripts (but not from the terminal). All subsequent characters on the input line
after a '#' are discarded by the shell. This character can be quoted using' -, or '\' to
place it in an argument word.

Other Control Structures

The shell also has control structures while and switch similar to those of C.
These take the forms

while (expression)

end

and

switch (word)

case str1:

case strn:

default:

endsw

commands

commands
breaksw

commands
breaksw

commands
breaksw

For details see the manual section for csh. C programmers should note that we use
breaksw to exit from a switch while break exits a while or foreach loop. A com­
mon mistake to make in csh scripts is to use break rather than breaksw in switches.

Finally, csh allows a goto statement, with labels looking like~they do in C, i.e.:

loop:
commands
goto loop

An Introduction to the C Shell 8-45

Executing Commands Through Shell Scripts

Supplying Input to Commands
Commands run from shell scripts receive by default the standard input of the (

shell which is running the script. This is different from previous shells running .
under UNIX. It allows shell scripts to fully participate in pipelines, but mandates
extra notation for commands which are to take inline data.

Thus we need a metanotation for supplying inline data to commands in shell
scripts. As an example, consider this script which runs the editor to delete leading
blanks from the lines in each argument file

% cat deblank
deblank - remove leading blanks
foreach i ($argv)
ed - $i « 'BOF'
1,$s/i[J* /I
w
q
'BOF'
end
%

The notation '« 'EOF" means that the standard input for the ed command is to
come from the text in the shell script file up to the next line consisting of exactly
''EOF''. The fact that the 'EOF' is enclosed in ", characters, i.e. quoted, causes
the shell to not perform variable substitution on the intervening lines. In general, if
any part of the word following the '«' which the shell uses to terminate the text to
be given to the command is quoted then these substitutions will not be performed.
In this case since we used the form '1,$' in our editor script we needed to insure
that this '$' was not variable substituted. We could also have insured this by
preceding the '$' here with a '\', Le.:

1,\$s;i[]*/1

but quoting the 'EOP' terminator is a more reliable way of achieving the same
thing.

8·46 IRIS-4D User's Guide

(

(

Executing Commands Through Shell Scripts

Catching Interrupts
If our shell script creates temporary files, we may wish to catch interruptions of

the shell script so that we can clean up these files. We can then do

onintr label

where label is a label in our program. If an interrupt is received the shell will do a
'goto label' and we can remove the temporary files and then do an exit command
(which is built in to the shell) to exit from the shell script. If we wish to exit with a
non-zero status we can do

exit(1)

e.g. to exit with status' l' .

Other Shell Features
There are other features of the shell useful to writers of shell procedures. The

verhose and echo options and the related -v and -x command line options can be
used to help trace the actions of the shell. The -n option causes the shell only to
read commands and not to execute them and may sometimes be of use.

One other thing to note is that csh will not execute shell scripts which do not
begin with the character '#', that is shell scripts that do not begin with a comment.
Similarly, the /hin/sh on your system may well defer to csh to interpret shell scripts
which begin with 'W. This allows shell scripts for both shells to live in harmony.

There is also another quotation mechanism using "" which allows only some of
the expansion mechanisms we have so far discussed to occur on the quoted string
and serves to make this string into a single word as ,-, does.

An Introduction to the C Shell 8-47

Executing Commands Through Shell Scripts

loops at the Terminal; Variables as Vectors

It is occasionally useful to use the foreach control structure at the terminal to (
aid in performing a number of similar commands. For instance, there were at one .
point three shells in use on the Cory UNIX system at Cory Hall, Ibin/sh, !bin/ush,
and Ibin/csh. To count the number of persons using each shell one could have
issued the commands

% grep -c csh$/etc/passwd
27
% grep -c nsh$/etc/passwd
128
% grep -c -v sh$ letc/passwd
430
%

Since these commands are very similar we can use foreach to do this more easily.

% foreachi Csh$' 'csh$' '-v sh$')
? grep -c $i letc!passwd
? end
27
128
430
%

Note here that the shell prompts for input with '? ' when reading the body of the
loop.

8-48 IRIS-4D User's Guide

(

(

Executing Commands Through Shell Scripts

Variables which contain lists of filenames or other words are useful with loops.
You can, for example, do

% set a=('ls')
% echo $a
esh.n csh.rm
% Is
esh.n
esh.rm
% eeho$#a
2
%

The set command here gave the variable a as value a list of all the filenames in the
current directory. We can then iterate over these names to perform any chosen
function.

The output of a command within ", characters is converted by the shell to a list
of words. You can also place the'" quoted string within '''' characters to take each
(non-empty) line as a component of the variable; preventing the lines from being
split into words at blanks and tabs. A modifier ':x' exists which can be used later to
expand each component of the variable into another variable splitting it into
separate words at embedded blanks and tabs.

Braces { ... } in Argument Expansion
Another form of filename expansion involves the characters' {' and')'. These

characters specify that the contained strings, separated by ',' are to be consecutively
substituted into the braces and the results expanded left to right. Thus

A {strl,str2, ... strn) B

expands to

AstrlB Astr2B ... AstrnB

This expansion occurs before the other filename expansions, and may be applied
recursively (i.e. nested). The results of each expanded string are sorted separately,
left to right order being preserved. The resulting filenames are not required to exist
if no other expansion mechanisms are used. This means that this mechanism can be

An Introduction to the C Shell 8-49

Executing Commands Through Shell Scripts

used to generate arguments which are not filenames, but which have common parts.

A typical use of this would be

mkdir -/ {hdrs,retrofi t,csh }

to make subdirectories hdrs, retrofit, and csh in your home directory. This (
mechanism is most useful when the common prefix is longer than in this example,
i.e.

chown root !usr/ {uc b/ {ex,edit} ,Iib/ {ex? . ?* ,how_ex}}

Command Substitution
A command enclosed in ", characters is replaced, just before filenames are

expanded, by the output from that command. Thus it is possible to do

set pwd='pwd'

to save the current directory in the variable pwd or to do

ex 'grep -I TRACE *.c'

to run the editor ex supplying as arguments those files whose names end in '.c' (
which have the string 'TRACE' in them.

Command expansion also occurs in input redirected with '«' and within ,,,,
quotations. Refer to the IRIS-4D Programmer's Manual for full details.

Additional Information
In particular circumstances it may be necessary to know the exact nature and

order of different substitutions performed by the shell. The exact meaning of cer­
tain combinations of quotations is also occasionally important. These are detailed
fully in the manual sections.

The shell has a number of command line option flags you can use to write
UNIX programs and debug shell scripts. See the shell's manual section for a list of
these options.

8-50 IRIS-4D User's Guide

(

C Shell Special Characters

The following table lists the special characters of csh and the UNIX system. A
number of these characters also have special meaning in expressions. See the csh
manual section for a complete list. Syntactic metacharacters

I
()
&

separates commands to be executed sequentially
separates commands in a pipeline
brackets expressions and variable values
follows commands to be executed without waiting for completion

Filename metacharacters

/
?
*
[]

{ }

separates components of a file's pathname
expansion character matching any single character
expansion character matching any sequence of characters
expansion sequence matching any single character from a set
used at the beginning of a filename to indicate home directories
used to specify groups of arguments with common parts

Quotation metacharacters

\ prevents meta-meaning of following single character
prevents meta-meaning of a group of characters
like " but allows variable and command expansion

Input/output metacharacters

<
>

indicates redirected input
indicates redirected output

Expansion/substitution metacharacters

$

t

indicates variable substitution
indicates history substitution
precedes substitution modifiers
used in special forms of history substitution
indicates command substitution

Other metacharacters

%

begins scratch file names; indicates shell comments
prefixes option (flag) arguments to commands
prefixes job name specifications

An Introduction to the C Shell 8·51

C Shell Glossary

This glossary lists the most important terms introduced in Chapter 8 and gives
references to sections of the chapter for further information about them. References
of the form pr (1) indicate that the command pr is in the UNIX Programmer's (
Manual in section 1. You can get an on-line copy of its manual page by doing

man Ipr

Your current directory has the name '.' as well as the name printed by the com­
mand pwd; see also dirs. The current directory' .' is usually the first component of
the search path contained in the variable path, thus commands which are in '.' are
found first The character '.' is also used in separatfug components of filenames.
The character' .' at the beginning of a component of a pathname is treated specially
and not matched by the file-name expansion metacharacters '?', '*', and '[' ']'
pairs.

Each directory has a file' .. ' in it which is a reference to its parent direc­
tory. After changing into the directory with ehdir, i.e.:

ehdir paper

you can return to the parent directory by doing

ehdir ••

The current directory is printed by pwd.

a.out
Compilers which create executable images create them, by default, in the
file a.out •.

absolute pathname

alias

A pathname which begins with a '/' is absolute since it specifies the path
of directories from the beginning of the entire directory system - called
the root directory. Pathnames which are not absolute are called relative
(see definition of relative pathname).

An alias specifies a shorter or different name for a UNIX command, or a
transformation on a command to be performed in the shell. The shell has

(

a command alias which establishes aliases and can print their current (~
values. The command unalias is used to remove aliases.

argument
Commands in UNIX receive a list of argument words. Thus the com­
mand

eehoa be

8-52 IRIS-4D User's Guide

argv

C Shell Glossary

consists of the command name 'echo' and three argument
words 'a', 'b' and 'c'. The set of arguments after the
command name is said to be the argument list of the command.

The list of arguments to a command written in the shell language (a shell
script or shell procedure) is stored in a variable called argv within the
shell. This name is taken from the conventional name in the C program­
ming language.

backgrouud

base

bg

bin

A type of program execution where you request the shell to run a com­
mand away from the interaction between you and the computer ("in the
background"). While this command runs, the shell prompts you to enter
other commands through the terminal.

A file name is sometimes thought of as consisting of a base part, before
any '.' character, and an extension - the part after the' .'. See filename
and extension.

The bg command causes a suspended job to continue execution in the
background.

A directory containing binaries of programs and shell scripts to be exe­
cuted is typically called a bin directory. The standard system bin direc­
tories are /bin which contains the most heavily used commands and
/usr/bin which contains most other user programs. Programs developed
at UC Berkeley live in /usr/ucb, while locally written programs live in
/usr/local. Games are kept in the directory /usr/games. You can place
binaries in any directory. If you wish to execute them often, the name of
the directories should be a component of the variable path.

break
Break is a built-in command used to exit from loops within the control
structure of the shell.

breaksw
The breaksw built-in command is used to exit from a switch control
structure, like a break exits from loops.

builtin
A command executed directly by the shell is called a built-in command.
Most commands in UNIX are not built into the shell, but rather exist as
files in bin directories. These commands are accessible because the

An Introduction to the C Shell 8-53

C Shell Glossary

case

cat

cd

directories in which they reside are named in the path variable.

A case command is used as a label in a switch statement in the shell's
control structure, similar to that of the language C. Details are given in (
the shell documentation 'csh(l)'.

The cat program catenates a list of specified files on the standard output.
It is usually used to look at the contents of a single file on the terminal, to
'cat a file'.

The cd command is used to change the working directory. With no
arguments, cd changes your working directory to be your home direc­
tory.

chdir

chsh

cmp

The chdir command is a synonym for cd. cd is usually used because it is
easier to type.

The chsh command is used to change the shell which you use on UNIX.
By default, you use an different version of the shell which resides in (
/bin/sh. You can change your shell to /bin/csh by doing

chsh your-login-name /binlcsh

Thus I would do

chsh billlbinlcsh

It is only necessary to do this once.
The next time you log in to UNIX after doing this command,
you will be using csh rather than the shell in /bin/sh.

cmp is a program which compares files. It is usually used on binary files,
or to see if two files are identical. For comparing text files the program
diff, described in diff (1) is used.

command
A function performed by the system, either by the shell (a built-in com-
mand) or by a program residing in a file in a directory within the UNIX (.
system, is called a command.

command name
When a command is issued, it consists of a command name, which is the
first word of the command, followed by arguments. The convention on
UNIX is that the first word of a command names the function to be

8-54 IRIS-4D User's Guide

C Shell Glossary

perfonned.

command substitution
The replacement of a command enclosed in ,-, characters by the text out­
put by that command is called command substitution.

component
A part of a pathname between 'J' characters is called a component of that
pathname. A variable which has multiple strings as value is said to have
several components; each string is a component of the variable.

continue

ctrl-

A built-in command which causes execution of the enclosing foreach or
while loop to cycle prematurely. Similar to the continue command in the
programming language C.

Certain special characters, called control characters, are produced by
holding down the control key on your tenninal and simultaneously press­
ing another character, much like the shift key is used to produce upper­
case characters. Thus ctrl-C is produced by holding down the control key
while pressing the 'c' key.

core dump

cp

csh

When a program tenninates abnonnally, the system places an image of
its current state in a file named 'core'. This "core dump" can be exam­
ined with the system debugger 'adb(1)' or 'sdb(1)' in order to detennine
what went wrong with the program. If the shell produces a message of
the fonn

Illegal instruction (core dumped)

(where Illegal instruction is only one of several possible
messages), you should report this to the author of the program
or a system administrator, saving the 'core' file.

The cp (copy) program is used to copy the contents of one file into
another file. It is one of the most commonly used UNIX commands).

The name of the shell program that this document describes .

. cshrc
The file .cshrc in your home directory is read by each shell as it begins
execution. It is usually used to change the setting of the variable path
and to set alias parameters which are to take effect globally.

An Introduction to the C Shell 8-55

C Shell Glossary

cwd
The cwd variable in the shell holds the absolute pathname of the current
working directory. It is changed by the shell whenever your current
working directory changes and should not be changed otherwise.

debugging
Debugging is the process of correcting mistakes in programs and shell
scripts. The shell has several options and variables which may be used to
aid in shell debugging.

default
The label default is used within shell switch statements, as it is in the C
language to label the code to be executed if none of the case labels
matches the value switched on.

delete
The delete or mbout key on the terminal normally causes an interrupt to
be sent to the current job. Many users change the interrupt character to
be ctrl-C.

detached
A command that continues running in the background after you logout is
said to be detached.

diagnostic
An error message produced by a program is often referred to as a diag­
nostic. Most error messages are not written to the standard output, since
that is often directed away from the terminal. Error messsages are
instead written to the diagnostic output which may be directed away from
the terminal, but usually is not. Thus diagnostics will usually appear on
the terminal.

directory
A structure which contains files. At any time you are in one particular
directory whose names can be printed by the command pwd. The chdir
command will change you to another directory, and make the files in that
directory visible. The directory in which you are when you first login is
your home directory.

directory stack

(

(

The shell saves the names of previous working directories in the direc- (
tory stack when you change your current working directory via the
pushd command. The directory stack can be printed by using the dirs
command, which includes your current working directory as the first
directory name on the left.

8-56 IRIS-4D User's Guide

dirs

du

echo

else

C Shell Glossary

The dirs command prints the shell's directory stack.

The du command is a program (described in 'du(1)') which prints the
number of disk blocks is all directories below and including your current
working directory.

The echo command prints its arguments.

The else command is part of the 'if-then-else-endif' control command
construct.

endif

EOF

If an 'if' statement is ended with the word 'then', all lines following the
if up to a line starting with the word endif or else are executed if the con­
dition between parentheses after the if is true.

An end-of-file is generated by the terminal by a ctrl-d, and whenever a
command reads to the end of a file which it has been given as input.
Commands receiving input from a pipe receive an "end-of-file" when the
command sending them input completes. Most commands terminate
when they receive an end-of-file. The shell has an option to ignore end­
of-file from a terminal input which may help you keep from logging out
accidentally by typing too many ctrl-d's.

escape
A character '\' used to prevent the special meaning of a metacharacter is
said to escape the character from its special meaning. Thus:

echo *

will echo the character ,*, while just

echo *
will echo the names of the file in the current directory.
In this example, \ escapes '*'.
There is also a non-printing character called escape,
usually labelled escap or altmode on terminal keyboards.
Some older UNIX systems use this character to indicate that
output is to be suspended.
Most systems use ctrl-s to stop the output and ctrl-q to start it.

An Introduction to the C Shell 8-57

C Shell Glossary

letc/passwd

exit

This file contains information about the accounts currently on the system.
It consists of a line for each account with fields separated by ':' charac­
ters. You can look at this file by saying:

cat !etc!passwd

The commands finger and grep
are often used to search for information in this file.
See 'finger(1)'. 'passwd(5)', and 'grep(l)' for more details.

The exit command is used to force termination of a shell script, and is
built into the shell.

exit status
A command which discovers a problem may reflect this back to the com­
mand (such as a shell) which invoked (executed) it. It does this by
returning a non-zero number as its exit status, a status of zero being con­
sidered normal termination. The exit command can be used to force a
shell command script to give a non-zero exit status.

expansion

(

The replacement of strings in the shell input which contain metacharac- (
ters by other strings is referred to as the process of expansion. Thus the
replacement of the word ,*, by a sorted list of files in the current direc-
tory is a filename expansion. Similarly the replacement of the characters
'!!' by the text of the last command is a history expansion. Expansions
are also referred to as substitutions.

expressions
Expressions are used in the shell to control the conditional structures
used in the writing of shell scripts and in calculating values for these
scripts. are those of the language C.

"extension"

fg

Filenames often consist of a base name and an extension separated by the
character'.'. By convention, groups ofrelated files often share the same
root name. Thus if prog.c were a C program, then the object file for this
program would be stored in prog.o. Similarly a paper written with the
-me nroff macro package might be stored in paper.me while a formatted
version of this paper might be kept in paper.out and a list of spelling
errors in paper.errs.

The job control command fg is used to run a background or suspended
job in the foreground.

8-58 IRIS·4D User's Guide

(

C Shell Glossary

filename
Each file in UNIX has a name consisting of up to 14 characters and not
including the character 'j' which is used in pathname building. Most
filenames do not begin with the character' .' , and contain only letters and
digits with perhaps a '.' separating the base portion of the filename from
an extension.

filename expansion

flag

Filename expansion uses the metacharacters '*', '?' and '[' and']' to
provide a convenient mechanism for naming files. Using filename
expansion it is easy to name all the files in the current directory, or all
files which have a common root name. Other filename expansion
mechanisms use the metacharacter ,-, and allow files in other users'
directories to be named easily.

Many UNIX commands accept arguments which are not the names of
files or other users but are used to modify the action of the commands.
These are referred to as flag options, and by convention consist of one or
more letters preceded by the character '-'. Thus the Is (list files) com­
mand has an option '-s' to list the sizes of files. This is specified

Is-s

foreach
The foreach command is used in shell scripts and at the terminal to
specify repetition of a sequence of commands while the value of a cer­
tain shell variable ranges through a specified list.

foreground

goto

grep

When commands are executing in the normal way such that the shell is
waiting for them to finish before prompting for another command they
are said to be foreground jobs or running in the foreground. Foreground
jobs can be stopped by signals from the terminal caused by typing dif­
ferent control characters at the keyboard.

The shell has a command goto used in shell scripts to transfer control to a
given label.

The grep command searches through a list of argument files for a
specified string. Thus

grep bill /etc/passwd

will print each line in the file /etc/passwd which contains the string 'bill'.

An Introduction to the C Shell 8·59

C Shell Glossary

head

Actually, grep scans for regular expressions in the sense of the editors
ed(l) and ex(l). grep stands for 'globally find regular expression and print'.

The head command prints the first few lines of one or more files. If you
have a bunch of files containing text which you are wondering about it is (..
sometimes useful to run head with these files as arguments. This will
usually show enough of what is in these files to let you decide which you
are interested in. Head is also used to describe the part of a pathname
before and including the last 'j' character. The tail of a pathname is the
part after the last 'j'. The ':h' and ':t' modifiers allow the head or tail of
a pathname stored in a shell variable to be used.

history
The history mechanism of the shell allows previous commands to be
repeated, possibly after modification to correct typing mistakes or to
change the meaning of the command. The shell has a history list where
these commands are kept, and a history variable which controls how
large this list is.

home directory

if

Each user has a home directory, which is given in your entry in the pass­
word file, /etc/passwd. This is the directory which you are placed in
when you first login. The cd or chdir command with no arguments takes (
you back to this directory, whose name is recorded in the shell variable .
home. You can also access the home directories of other users in form-
ing filenames using a filename expansion notation and the character' '.

A conditional command within the shell, the if command is used in shell
command scripts to make decisions about what course of action to take
next.

ignoreeof
Normally, your shell will exit, printing 'logout' if you type a ctrl-d at a
prompt of '%'. This is the way you usually log off the system. You can
set the ignoreeof variable if you wish in your .login file and then use the
command logout to logout. This is useful if you sometimes accidentally
type too many ctrl-d characters, logging yourself off.

input
Many commands on UNIX take information from the terminal or from
files which they then act on. This information is called input. Com­
mands normally read for input from their standard input which is, by
default, the terminal. This standard input can be redirected from a file
using a shell metanotation with the character' <'. Many commands will
also read from a file specified as argument. Commands placed in

8-60 IRI5-4D User's Guide

C Shell Glossary

pipelines will read from the output of the previous command in the pipe­
line. The leftmost command in a pipeline reads from the terminal if you
neither redirect its input nor give it a filename to use as standard input.
Special mechanisms exist for supplying input to commands in shell
scripts.

interrupt

job

An interrupt is a signal to a program that is generated by hitting the
rubout or delete key (although users can and often do change the inter­
rupt character, usually to ctrl-C. It causes most programs to stop execu­
tion. Certain programs, such as the shell and the editors, handle an inter­
rupt in special ways, usually by stopping what they are doing and
prompting for another command. While the shell is executing another
command and waiting for it to finish, the shell does not listen to inter­
rupts. The shell often wakes up when you hit interrupt because many
commands die when they receive an interrupt.

One or more commands typed on the same input line separated by 'I' or
';' characters are run together and are called a job. Simple commands
run by themselves without any 'I' or ';' characters are the simplest jobs.
Jobs are classified as foreground, background, or suspended.

job control
The built-in functions that control the execution of jobs are called job
control commands. These are bg, fg, stop, and kill.

job number

jobs

kill

When each job is started it is assigned a small number called a job
number which is printed next to the job in the output of the jobs com­
mand. This number, preceded by a % character, can be used as an argu­
ment to job control commands to indicate a specific job.

The jobs command prints a table showing jobs that are either running in
the background or are suspended.

A command which sends a signal to a job causing it to terminate .

.login
The file .login in your home directory is read by the shell each time you
login to UNIX and the commands there are executed. There are a
number of commands which are usefully placed here, especially set com­
mands to the shell itself.

An Introduction to the C Shell 8-61

C Shell Glossary

login shell
The shell that is started on your terminal when you login is called your
login shell. It is different from other shells which you may run (e.g. on
shell scripts) in that it reads the .login file before reading commands from
the terminal and it reads the .logout file after you logout.

logout
The logout command causes a login shell to exit. Normally, a login shell
will exit when you hit ctrl-d generating an end-of-file, but if you have set
ignoreeof in your .login file then this will not work and you must use
logout to log off the UNIX system .

.logout

lpr

Is

mail

When you log off of UNIX the shell will execute commands from the file
.logout in your home directory after it prints logout.

The command lpr is the line printer daemon. The standard input of Ipr
spooled and printed on the UNIX line printer. You can also give Ipr a
list of filenames as arguments to be printed. It is most common to use Ipr
as the last component of a pipeline.

The Is command is one of the most commonly used UNIX commands.
With no argument filenames it prints the names of the files in the current
directory. It has a number of useful flag arguments, and can also be
given the names of directories as arguments, in which case it lists the
names of the files in these directories.

The mail program is used to send and receive messages from other UNIX
users.

make
The make command is used to maintain one or more related files and to
organize functions to be performed on these files. In many ways make is
easier to use, and more helpful than shell command scripts.

makefile
The file containing commands for make is called makefile.

(

(

manual (-
The manual often referred to is the UNIX Programmer's Manual. It con-
tains a number of sections and a description of each UNIX program. An
on-line version of the manual is accessible through the man command.
Its documentation can be obtained on-line via

man man

8-62 IRIS-4D User's Guide

C Shell Glossary

metacharacter
Many characters which are neither letters nor digits have special mean­
ing either to the shell or to UNIX. These characters are called metachar­
acters. If it is necessary to place these characters in arguments to com­
mands without them having their special meaning then they must be
quoted. An example of a metacharacter is the character '>' which is
used to indicate placement of output into a file. For the purposes of the
history mechanism, most unquoted metacharacters form separate words.
The appendix to this user's manual lists the metacharacters in groups by
their function.

mkdir
The mkdir command is used to create a new directory.

modifier
Substitutions with the history mechanism, keyed by the character'!' or
of variables using the metacharacter '$', are often subjected to
modifications, indicated by placing the character':' after the substitution
and following this with the modifier itself. The command substitution
mechanism can also be used to perform modification in a similar way,
but this notation is less clear.

more
The program more writes a file on your terminal allowing you to control
how much text is displayed at a time. More can move through the file
screenful by screenful, line by line, search forward for a string, or start
again at the beginning of the file. It is generally the easiest way of view­
ing a file.

noclobber
The shell has a variable noclobber which may be set in the file .login to
prevent accidental destruction of files by the '>' output redirection
metasyntax of the shell.

noglob
The shell variable noglob is set to suppress the filename expansion of
arguments containing the metacharacters '-', '*', '?', '[' and T.

notify
The notify command tells the shell to report on the termination of a
specific background job at the exact time it occurs as opposed to waiting
until just before the next prompt to report the termination. The notify
variable, if set, causes the shell to always report the termination of back­
ground jobs exactly when they occur.

An Introduction to the C Shell 8-63

C Shell Glossary

oninti'
The onintr command is built into the shell and is used to control the
action of a shell command script when an interrupt signal is received.

output (
Many commands in UNIX result in some lines of text which are called
their output. This output is usually placed on what is known as the stan-
dard output which is normally connected to the user's terminal. The
shell has a syntax using the metacharacter '>' for redirecting the standard
output of a command to a file. Using the pipe mechanism and the meta­
character 'I' it is also possible for the standard output of one command to

become the standard input of another command.

Certain commands such as the line printer daemon p do not place
their results on the standard output but rather in more useful places such
as on the line printer. Similarly the write command places its output on
another user's terminal rather than its standard output.

Commands also have a diagnostic output where they write their error
messages. Normally these go to the terminal even if the standard output
has been sent to a file or another command, but it is possible to direct
error diagnostics along with standard output using a special metanota­
tion.

pushd

path

The pushd command, which means push directory, changes the shell's
working directory and also remembers the current working directory
before the change is made, allowing you to return to the same directory
via the popd command later without retyping its name.

The shell has a variable path which gives the names of the directories in
which it searches for the commands which it is given. It always checks
first to see if the command it is given is built into the shell. If it is, then it
need not search for the command as it can do it internally. If the com­
mand is not built-in, then the shell searches for a file with the name given
in each of the directories in the path variable, left to right. Since the nor­
mal definition of the path variable is

path (. lusr/ucb Ibin lusr/bin)

(

the shell normally looks in the current directory, and then in (
the standard system directories lusrlucb, /bin, and lusr/bin for the named .
command. If the command cannot be found the shell
will print an error diagnostic. Scripts of shell commands
will be executed using another shell to interpret
them if they have execute permission set. This is normally true

8-64 IRIS-4D User's Guide

C Shell Glossary

because a command of the fonn

chmod 755 script

was executed to turn this execute pennission on.
If you add new commands to a directory in the path, you should issue
the command rehash.

path name
A list of names, separated by 'j' characters, forms a pathname. Each
component, between successive 'f' characters, names a directory in
which the next component file resides. Pathnames which begin with the
character 'j' are interpreted relative to the root directory in the file sys­
tem. Other pathnames are interpreted relative to the current directory as
reported by pwd. The last component of a pathname may name a direc­
tory, but usually names a file.

pipeline

popd

port

pr

A group of commands which are connected together, the standard output
of each connected to the standard input of the next, is called a pipeline.
The pipe mechanism used to connect these commands is indicated by the
shell metacharacter 'I'.

The popd command changes the shell's working directory to the direc­
tory you most recently left using the pushd command. It returns to the
directory without having to type its name, forgetting the name of the
current working directory before doing so.

The part of a computer system to which each terminal is connected is
called a port. Usually the system has a fixed number of ports, some of
which are connected to telephone lines for dial-up access, and some of
which are pennanently wired directly to specific terminals.

The pr command is used to prepare listings of the contents of files with
headers giving the name of the file and the date and time at which the file
was last modified.

printenv
The printenv command is used to print the current setting of variables in
the environment.

process
An instance of a running program is called a process. UNIX assigns
each process a unique number when it is started - called the process
number. Process numbers can be used to stop individual processes using

An Introduction to the C Shell 8-65

C Shell Glossary

the kill or stop commands when the processes are part of a detached
background job.

program
Usually synonymous with command; a binary file or shell command (-
script which performs a useful function is often called a program.

prompt

ps

Many programs will print a prompt on the terminal when they expect
input. Thus the editor ex(l) will print a ':' when it expects input. The
shell prompts for input with % and occasionally with? when reading
commands from the terminal. The shell has a variable prompt which
may be set to a different value to change the shell's main prompt. This is
mostly used when debugging the shell.

The ps command is used to show the processes you are currently run­
ning. Each process is shown with its unique process number, an indica­
tion of the terminal name it is attached to, an indication of the state of the
process (whether it is running, stopped, awaiting some event (sleeping),
and whether it is swapped out), and the amount of cpu time it has used so
far. The command is identified by printing some of the words used when
it was invoked. Shells, such as the csh you use to run the ps command, (
are not normally shown in the output.

pwd

quit

The pwd command prints the full pathname of the current working direc­
tory. The dirs built-in command is usually a better and faster choice.

The quit signal, generated by a ctrl-e, is used to terminate programs
which are behaving unreasonably. It normally produces a core image
file.

quotation
The process by which metacharacters are prevented their special mean­
ing, usually by using the character" in pairs, or by using the character
'\' , is referred to as quotation.

redirection
The routing of input or output from or to a file is known as redirection of
input or output.

rehash
The rehash command tells the shell to rebuild its internal table of which
commands are found in which directories in your path. This is necessary
when a new program is installed in one of these directories.

8-66 IRIS-4D User's Guide

(

C Shell Glossary

relative pathname
A pathname which does not begin with a 'j' is called a relative pathname
since it is interpreted relative to the current working directory. The first
component of such a pathname refers to some file or directory in the
working directory, and subsequent components between 'j' characters
refer to directories below the working directory. Pathnames that are not
relative are called absolute pathnames.

repeat

root

The repeat command iterates another command a specified number of
times.

The directory that is at the top of the entire directory structure is called
the root directory since it is the 'root' of the entire tree structure of direc­
tories. The name used in pathnames to indicate the root is '/'. Path­
names starting with 'j' are said to be absolute since they start at the root
directory. Root is also used as the part of a pathname that is left after
removing the extension. See filename for a further explanation.

rubout
The rubout or delete key sends an interrupt to the current job. Most
interactive commands return to their command level upon receipt of an
interrupt, while non-interactive commands usually terminate, returning
control to the shell. Users often change interrupt to be generated by ctrl­
C rather than delete by using the stty command.

scratch file
Files whose names begin with a '#' are referred to as scratch files, since
they are automatically removed by the system after a couple of days of
non-use, or more frequently if disk space becomes tight.

script

set

Sequences of shell commands placed in a file are called shell command
scripts. It is often possible to perform simple tasks using these scripts
without writing a program in a language such as C, by using the shell to
selectively run other programs.

The built-in set command is used to assign new values to shell variables
and to show the values of the current variables. Many shell variables
have special meaning to the shell itself. Thus by using the set command
the behavior of the shell can be affected.

An Introduction to the C Shell 8-67

C Shell Glossary

setenv

shell

Variables in the environment environ(5) can be changed by using the
setenv built-in command. The printenv command can be used to print
the value of the variables in the environment.

A shell is a command language interpreter. It is possible to write and run
your own shell, as shells are no different than any other programs as far
as the system is concerned. This manual deals with the details of one
particular shell, called csh.

shell script
See script.

signal

sort

A signal in UNIX is a short message that is sent to a running program
which causes something to happen to that process. Signals are sent either
by typing special control characters on the keyboard or by using the kill
or stop commands.

The sort program sorts a sequence of lines in ways that can be controlled
by argument flags.

source
The source command causes the shell to read commands from a specified
file. It is most useful for reading files such as .cshrc after changing them.

special character
See metacharacters.

standard
We refer often to the standard input and standard output of commands.
See input and output.

status
A command normally returns a status when it finishes. By convention a
status of zero indicates that the command succeeded. Commands may
return non-zero status to indicate that some abnormal event has occurred.
The shell variable status is set to the status returned by the last command.
It is most useful in shell commmand scripts.

(

(

~ (
The stop command causes a background job to become suspended.

string
A sequential group of characters taken together is called a string. Strings
can contain any printable characters.

8-68 IRIS-4D User's Guide

stty

C Shell Glossary

The stty program changes certain parameters inside UNIX which deter­
mine how your terminal is handled. See stty(l) for a complete descrip­
tion.

substitution
The shell implements a number of substitutions where sequences indi­
cated by metacharacters are replaced by other sequences. Notable exam­
ples of this are history substitution keyed by the metacharacter '!' and
variable substitution indicated by '$'. We also refer to substitutions as
expansions.

suspended
A job becomes suspended after a stop signal is sent to it, either by typing
a ctrl-z at the terminal (for foreground jobs) or by using the stop com­
mand (for background jobs). When suspended, a job temporarily stops
running until it is restarted by either the fg or bg command.

switch
The switch command of the shell allows the shell to select one of a
number of sequences of commands based on an argument string. It is
similar to the switch statement in the language C.

termination

then

time

tset

When a command which is being executed finishes we say it undergoes
termination or terminates. Commands normally terminate when they
read an end-of-file from their standard input. It is also possible to ter­
minate commands by sending them an interrupt or quit signal. The kill
program terminates specified jobs.

The then command is part ofthe shell's if-then-else-endif control con­
struct used in command scripts.

The time command can be used to measure the amount of cpu and real
time consumed by a specified command as well as the amount of disk
I/O, memory utilized, and number of page faults and swaps taken by the
command.

The tset program is used to set standard erase and kill characters and to
tell the system what kind of terminal you are using. It is often invoked in
a .login file.

An Introduction to the C Shell 8-69

C Shell Glossary

tty
tty is a historical abbreviation for 'teletype' which is frequently used in
UNIX to indicate the port to which a given tenninal is connected. The
tty command will print the name of the tty or port to which your terminal
is presently connected. (I

unalias
The unalias command removes aliases.

UNIX
UNIX is an operating system on which csh runs. UNIX provides facili­
ties which allow esh to invoke other programs such as editors and text
fonnatters which you may wish to use.

unset
unset The unset command removes the definitions of shell variables.

variable expansion
See variables and expansion.

variables
Variables in esh hold one or more strings as value. The most common
use of variables is in controlling the behavior of the shell. See path,
noc1obber, and ignoreeof for examples. Variables such as argv are also (
used in writing shell programs (shell command scripts).

verbose

we

The verbose shell variable can be set to cause commands to be echoed
after they are history expanded. This is often useful in debugging shell
scripts. The verbose variable is set by the shell's -v command line
option.

The wc program calculates the number of characters, words, and lines in
the files whose names are given as arguments.

while
The while built-in control construct is used in shell command scripts.

word
A sequence of characters which fonns an argument to a command is
called a word. Many characters which are neither letters, digits, '-', '.' (
nor '/' fonn words all by themselves even if they are not surrounded by
blanks. Any sequence of characters may be made into a word by sur-
rounding it with'" characters except for the characters'" and'!' which
require special treatment. This process of placing special characters in
words without their special meaning is called quoting.

8·70 IRIS·4D User's Guide

C Shell Glossary

working directory
At any given time you are in one particular directory, called your work­
ing directory. This directory's name is printed by the pwd command and
the files listed by Is are the ones in this directory. You can change work­
ing directories using chdir.

write
The write command is used to communicate with other users who are
logged in to UNIX.

An Introduction to the C Shell 8-71

(

(

(l

Communicating With UNIX System Users

The UNIX system offers a choice of commands that enable you to communi­
cate with other UNIX system users. Specifically, they allow you to send and
receive messages from other users (on either your system or another UNIX system),
exchange files, and form networks with other UNIX systems. Through networking,
a user on one system can exchange messages and files between computers, and exe­
cute commands on remote computers.

To help you take advantage of these capabilities, this chapter will teach you
how to use the following commands.

For exchanging messages:

For exchanging files:

For networking:

mail, uname, and uuname

uucp, uuto, uupick, and uustat

ct, cu, and uux

Communication Tutorial 9-1

Exchanging Messages

To send messages, use the mail command. This command delivers your mes-
sage to a file belonging to the recipient When the recipient logs in (or while (!
already logged in), he or she receives a message that says you have rreil. The
recipient can use the mail command to read your message and reply at any time.

You can also use mail to send short files containing memos, reports, and so on.
However, if you want to send someone a file that is over a page long, use one of the
commands designed for transferring files: uuto or uucp. (See "Sending Large
Files" later in this chapter for descriptions of these commands.)

9-2 IRIS-4D User's Guide

mail

This section presents the mail command. It discusses the basics of sending
mail to one or more people simultaneously, whether they are working on the local
system (the same system as you) or on a remote system. It also covers receiving
and handling incoming mail.

Sending Messages

The basic command line format for sending mail is

mail login<return>

where login is the recipient's login name on a UNIX system. This login name can
be either of the following:

• a login name if the recipient is on your system (for example, bob)

• a system name and login name if the recipient is on another UNIX system
that can communicate with yours (for example, sys2!bob)

For the moment, assume that the recipient is on the local system. (We will deal
with sending mail to users on remote systems later.) Type the mail command at the
system prompt, press <return>, and start typing the text of your message on the
next line. When you have finished typing it, send the message by typing a period (.)
or a <ctrl-d> at the beginning of a new line.

The following example shows how this procedure will appear on your screen.

% mail phyllis<return>
My meeting with Smith's<return>
group tomorrow has been moved<return>
up to 3:00 so I won't be able to<return>
see you then. Could we meet<return>
in the morning instead?<return>
.<return>
%

The prompt on the last line means that your message has been queued (placed in a
waiting line of messages) and will be sent.

Communication Tutorial 9-3

mail

Undeliverable Mall

If you make an error when typing the recipient's login, the mail command will
not be able to deliver your mail. Instead, it will print two messages telling you that (. \
it has failed and that it is returning your mail. Then it will return your mail in a
message that includes the system name and login name of both the sender and
intended recipient, and an error message stating the reason for the failure.

For example, say you (owner of the login kol) want to send a message to a user
with the login chris on a system called marmaduk. Your message says The
rreeting has been changed to 2: 00. Failing to notice that you have incorrectly
typed the login as cris, you try to send your message.

% mail crls<return>
The meeting has been changed to 2:00 •
• <return>
mail: Can't send to cris
mail: Return to kol
you have mail in lusr/mail/kol
%

The mail that is waiting for you in /usr/mail will be useful if you do not know why
the mail command has failed, or if you want to retrieve your mail so that you can
resend it without typing it in again. It contains the following:

9-4 IRIS-4D User's Guide

(

(

mail

% mail<return>
From kol Sat Jan 18 17:33 EST 1986
>From kol Sat Jan 18 17:33 EST 1986 forwarded by kol
***** UNDELIVERABLE MAIL sent to cris, being returned by marmaduk!kol *****
mail: ERROR # 8 ' Invalid recipient' enccuntered on system marmaduk

The meeting has been changed to 2: 00.

?

To learn how to display and handle this message see "Managing Incoming Mail"
later in this chapter.

Sending Mail to One Person

The following screen shows a typical message.

% mail tommy<return>
Tom,<return>
There's a meeting of the review committee<return>
at 3:00 this afternoon. D.F. wants your<return>
comments and an idea of how long you think<return>
the project will take to complete. <return>
B.K.<return>
.<return>
%

When Tom logs in at his terminal (or while he is already logged in), he receives a
message that tells him he has mail waiting:

% you have mail

To find out how he can read his mail, see the section "Managing Incoming Mail" in
this chapter.

Communication Tutorial 9-5

mail

You can practice using the mail command by sending mail to yourself. Type
in the mail command and your login ID. and then write a short message to yourself.
When you type the final period or <ctrl-d>. the mail will be sent to a file named
after your login ID in the lusr/mail directory, and you will receive a notice that you (
have mail.

Sending mail to yourself can also serve as a handy reminder system. For exam­
ple, suppose you (login ID bob) want to call someone the next morning. Send your­
self a reminder in a mail message.

% mail bob <return>
Call Accounting and find out<return>
why they haven't returned my 1985 figureskreturn>
.<return>
%

When you log in the next day, a notice will appear on your screen informing you
that you have mail waiting to be read.

Sending Mail to Several People Simultaneously

You can send a message to a number of people by including their login names
on the mail command line. For example:

% mail tommy jane wombat dave<return>
Diamond cutters,<return>
The game is on for tonight at diamond three.<return>
Don't forget your gloveskreturn>
Your Manager<return>
.<return>
%

9-6 IRIS-4D User's Guide

(

(

mail

Figure 9-1 summarizes the syntax and capabilities of the mail command.

Command Recap

mail- sends a message to another user's login

command options arguments

mail none [system_name! J login

Description: Typing mail followed by one or more login names,
sends the message typed on the lines following the
command line to the specified login(s).

Remarks: Typing a period or a <ctrl-d> (followed by
<return» at the beginning of a new line sends the
message.

Figure 9-1: Summary of Sending Messages with the mail Command

Sending Mail to Remote Systems

Until now we have assumed that you are sending messages to users on the local
UNIX system. However, your company may have three separate computer sys­
tems, each in a different part of a building, or you may have offices in severalloca­
tions, each with its own system.

You can send mail to users on other systems simply by adding the name of the
recipient'S system before the login ID on the command line.

mail sys2!bob<return>

Notice that the system name and the recipient's login ID are separated by an excla­
mation point.

Communication Tutorial 9-7

mail

Before you can run this command, however, you need three pieces of informa­
tion:

• the name of the remote system

• whether or not your system and the remote system communicate

• the recipient's login name

The uname and uuname commands allow you to find this information.

If you can, get the name of the remote system and the recipient's login name
from the recipient. If the recipient does not know the system name, have him or her
issue the following command on the remote system:

uname -u<return>

The command will respond with the name of the system. For example:

% uname -n<return>
dumbo
%

Once you know the remote system name, the uuname command can help you

(

verify that your system can communicate with the remote system. At the prompt, (
type:

uuname<return>

This generates a list of remote systems with which your system can communicate.
If the recipient's system is on that list, you can send messages to it by mail.

You can simplify this step by using the grep command to search through the
uuname output. At the prompt, type:

uuname I grep system<return>

(Here system is the recipient's system name.) If grep finds the specified system
name, it prints it on the screen. For example:

% uuname I grep dumbo<return>
dumbo
%

This means that dumbo can communicate with your system. If dumbo does not (
communicate with your system, uuname returns a prompt.

% uuname I grep dumbo<return>
%

9·8 IRIS-4D User's Guide

mail

To summarize our discussion of uname and uuname, consider an example.
Suppose you want to send a message to login sarah on the remote system dumbo.
Verify that dumbo can communicate with your system and send your message. The
following screen shows both steps.

% uuname I grep dumbo<return>
dumbo
% mail dumbo!sarah<return>
Sarah,<return>
The final counts for the writing seminar<return>
are as follows: <return>
<return>
Our department - 18<return>
Your department - 20<return>
<return>
Tom<return>
.<return>
%

Figures 9-2 and 9-3 summarize the syntax and capabilities of the uname and
uuname commands, respectively.

Communication Tutorial 9-9

mail

Command Recap

uname - displays the system name

command options arguments

uname -n and others* none

Description: uname -n displays the name of the system on which
your login resides.

Figure 9-2: Summary of the uname Command

* See the uname(l) manual page in the IRIS-4D User's Reference Manual for
all available options and an explanation of their capabilities.

Command Recap

uuname - displays a list of networked systems

command options arguments

uuname none none

Description: uuname displays a list of remote systems that can
communicate with your system.

Figure 9-3: Summary of the uuname Command

9·10 IRIS·4D User's Guide

(

(

(~

mail

Managing Incoming Mail

As stated earlier, the mail command also allows you to display messages sent
to you by other users on your screen so you can read them. If you are logged in
when someone sends you mail, the following message is printed on your screen:

you have mail

This means that one or more messages are being held for you in a file called
lusr/maiI/your _login, usually referred to as your mailbox. To display these mes­
sages on your screen, type the mail command without any arguments:

mail<return>

The messages will be displayed one at a time, beginning with the one most
recently received. A typical mail message display looks like this:

% mail
From tommy Wed May 21 15:33 CST 1986
Bob,

Looks like the meeting has been cancelled.
Do you still want the material for the technical review?
Tom

The first line, called the header, provides information about the message: the login
name of the sender and the date and time the message was sent. The lines after the
header (up to the line containing the?) comprise the text of the message.

If a long message is being displayed on your terminal screen, you may not be
able to read it all at once. You can interrupt the printing by typing <ctrl-s>. This
will freeze the screen, giving you a chance to read. When you are ready to con­
tinue, type <ctrl-q> and the printing will resume.

After displaying each message, the mail command prints a ? prompt and waits
for a response. You have many options, for example, you can leave the current
message in your mailbox while you read the next message; you can delete the
current message; or you can save the current message for future reference. For a
list of mail's available options, type a ? in response to mail's? prompt.

Communication Tutorial 9-11

mail

To display the next message without deleting the current message, press
<return> after the question mark.

?<return>

The current message remains in your mailbox and the next message is displayed. If
you have read all the messages in your mailbox, a prompt appears.

To delete a message, type a d after the question mark:

? d<return>

The message is deleted from your mailbox. If there is another message waiting. it is
then displayed. If not, a prompt appears as a signal that you have finished reading
your messages.

To save a message for later reference, type an s after the question mark:

? s<return>

This saves the message, by default, in a file called mbox in your home directory.
To save the message in another file, type the name of that file after the s command.

For example, to save a message in a file called mailsave (in your current direc­
tory), enter the response shown after the question mark:

? s mailsave<return>

If mailsave is an existing file, the mail command appends the message to it. If
there is no file by that name, the mail command creates one and stores your mes­
sage in it. You can later verify the existence of the new file by using the Is com­
mand. (Is lists the contents of your current directory.)

You can also save the message in a file in a different directory by specifying a
pathnarne. For example:

? s projectl/memo<return>

This is a relative pathname that identifies a file called memo (where your message
will be saved) in a subdirectory (projectl) of your current directory. You can use
either relative or full pathnames when saving mail messages. (For instructions on
using pathnames, see Chapter 3.)

9-12 IRIS-4D User's Guide

(

(

(

mail

To quit reading messages, enter the response shown after the question mark:

? q<return>

Any messages that you have not read are kept in your mailbox until the next time
you use the mail command.

To stop the printing of a message entirely, press <break>. Themail command
will stop the display, print a ? prompt, and wait for a response from you.

Figure 9-4 summarizes the syntax and capabilities of the mail command for
reading messages.

Command R~cap

mail - reads messages sent to your login

command options arguments

mail available* none

Description: When issued without options, the mail command
displays any messages waiting in your mailbox (the
system file lusr/maiIlyour _login).

Remarks: A question mark (?) at the end of a message means
that a response is expected. A full list of possible
responses is given in the IRIS-4D User's Reference
Manual.

Figure 9-4: Summary of Reading Messages with the mail Command

* See the mail(l) manual page in the IRIS4D User's Reference Manual for all
available options and an explanation of their capabilities.

Communication Tutorial 9-13

Sending and Receiving Files

This section describes the commands available for transferring files: the mail
command for small files (a page or less), and the uucp and uuto commands for long (_
files. The mail command can be used for transferring a file either within a local
system or to a remote system. The uucp and uuto commands transfer files from
one system to another.

Sending Small Files: themail Command

To send a file in a mail message, you must redirect the input to that file on the
command line. Use the < (less than) redirection symbol as follows:

mail login <filename<return>

(For further information on input redirection, see Chapter 7.) Here login is the
recipient's login ill and filename is the name of the file you want to send. For exam­
ple, to send a copy of a file called agenda to the owner of login sarah (on your sys­
tem) type the following command line:

% mail sarah < agenda<return>
%

The prompt that appears on the second line means the contents of agenda have
been sent. When sarah issues the mail command to read her messages, she will
receive agenda.

To send the same file to more than one user on your system, use the same com­
mand line format with one difference; in place of one login ill, type several,
separated by spaces. For example:

% mail sarah tommy dingo wombat < agenda<return>
%

Again, the prompt returned by the system in response to your command is a signal
that your message has been sent.

The same command line format, with one addition, can also be used to send a
file to a user on a remote system that can communicate with yours. In this case, you
must specify the name of the remote system before the user's login name. Separate
the system name and the login name with an! (exclamation point):

mail system!login <filename<return>

For example:

9-14 IRI5-4D User's Guide

(

(

Sending and Receiving File~

% mail dumbo!wombat < agenda<return>
%

The system prompt on the second line means that your message (containing the file)
has been queued for sending.

Sending Large Files

The uucp and uuto commands allow you to transfer files to a remote computer.
uucp allows you to send files to the directory of your choice on the destination sys­
tem. If you are transferring a file to a directory that you own, you will have permis­
sion to put the file in that directory. (See Chapter 3 for information on directory and
file permissions.) However, if you are transferring the file to another user's direc­
tory, you must be sure, in advance, that the user has given you permission to write a
file to his or her directory. In addition, because you must specify pathnarnes that
are often long and accuracy is required, uucp command lines may be cumbersome
and lead to error.

The uuto command is an enhanced version of uucp. It automatically sends
files to a public directory on the recipient's system called lusrlspooI/uucppublic.
This means you cannot choose a destination file. However, it also means that you
can transfer a file at any time without having to request write permission from the
owner of the destination directory. Finally, the uuto command line is shorter and
less complicated than the uucp command line. When you type a uuto command
line, the likelihood of making an error is greatly reduced.

Getting Ready: Do You Have Permission?
Before you actually send a file with the uucp or uuto command, you need to

find out whether or not the file is transferable. To do that, you must check the file's
permissions. If they are not correct, you must use the chmod command to change
them, if you own the files. (permissions and the chmod command are covered in
Chapter 3.)

There are two permission criteria that must be met before a file can be
transferred using uucp or uuto .

• The file to be transferred must have read permission (r) for others .

• The directory that contains the file must have read (r) and execute (x) per­
mission for others.

Communication Tutorial 9-15

Sending and Receiving Files

For example, assume that you have a file named chicken, under a directory
named soup (in your home directory). You want to send a copy of the chiclten file
to another user with the nuto command. First, check the permissions on soup:

% Is -kreturn>
total 4
drwxr-xr-x
%

2 reader groupl 45 Feb 9 10:43 soup

The response of the Is command shows that soup has read (r) and execute (x) per­
missions for all three groups; no changes have to be made. Now use the cd com­
mand to move from your home directory to soup, and check the permissions on the
file chicken:

% Is -I chlcken<return>
total 4

-rw------- 1 reader group1 3101
%

Mar 1 18:22 chicken

The command's output means that you (the user) have permission to read the file
chicken, but no one else does. To add read permissions for your group (g) and oth­
ers (0), use the chmod command:

% chmod gOH chicken<return>

Now check the permissions again with the Is -I command:

9·16 IRI5-4D User's Guide

(

(

(

% Is -I chicken<return>
total 4
-rw-r--r-­
%

1 reader group1 3101

Sending and Receiving Files

Mar01 18:22 chicken

This confirms that the file is now transferable; you can send it with the uucp or
uuto command. Mter you send copies of the file, you can reverse the procedure
and replace the previous permissions.

The uucp Command

The command uucp (short for UNIX-to-UNIX system copy) allows you to
copy a file directly to the home directory of a user on another computer, or to any
other directory you specify and for which you have write permission.

uucp is not an interactive command. It performs its work silently, invisible to
the user. Once you issue this command you may run other processes.

Transferring a file between computers is a multiple-step procedure. First, a
work file, containing instructions for the file transfer, must be created. When
requested, a data file (a copy of the file being sent) is also made. Then the file is
ready to be sent. When you issue the uucp command, it performs the preliminary
steps described above (creating the necessary files in a dedicated directory called a
spool directory), and then calls the uucico daemon that actually transfers the file.
(Daemons are system processes that run in background.) The file is placed in a
queue and uucico sends it at the first available time.

Thus, the uucp command allows you to transfer files to a remote computer
without knowing anything except the name of the remote computer and, possibly,
the login ID of the remote user(s) to whom the file is being sent.

Communication Tutorial 9-17

Sending and Receiving Files

Command Line Syntax

uucp allows you to send:

• one file to a file or a directory or

• multiple files to a directory

To deliver your file(s), uucp must know the full pathname of both the source-file
and the destination-file. However, this does not mean you must type out the full
pathname of both files every time you use the uucp command. There are several
abbreviations you can use once you become familiar with their formats; uucp will
expand them to full pathnames.

To choose the appropriate designations for your source-file and destination-file,
begin by identifying the source-file'S location relative to your own current location
in the file system. (We'll assume, for the moment, that the source-file is in your
local system.) If the source-file is in your current directory, you can specify it by its
name alone (without a path). If the source-file is not in your current directory, you
must specify its full pathname.

How do you specify the destination-file? Because it is on a remote system, the
destination-file must always be specified with a pathname that begins with the name
of the remote system. After that, however, uucp gives you a choice: you can
specify the full path or use either of two forms of abbreviation. Your destination-
file should have one of the following three formats:

• system_name!fullyath

• system_name! login_name [Jdirectory _name/filename]

• systemname! /10 gin_name [Jdirectory _name/filename]

The login name, in this case, belongs to the recipient of the file.

Until now we have described what to do when you want to send a file from
your local system to a remote system. However, it is also possible to use uucp to
send a file from a remote system to your local system. In either case, you can use
the formats described above to specify either source-files or destination-files. The

(

(

important distinction in choosing one of these formats is not whether a file is a (
source-file or a destination-file, but where you are currently located in the file sys- .
tern relative to the files you are specifying. Therefore, in the formats shown above,
the login_name could refer to the login of the owner or the recipient of either a
source-file or a destination-file.

9·18 IRIS-4D User's Guide

Sending and Receiving Files

For example, let's say you are login kol on a system called mickey. Your
home directory is lusr/kol and you want to send a file called chapl (in a directory
called text in your home directory) to login wsm on a system called minnie. You
are currently working in lusr/kolltext, so you can specify the source-ftle with its
relative pathname, chapl. Specify the destination-file in any of the ways shown in
the following command lines:

• Specify the destination-file with its full pathname:

uucp chapl minnie!/usr/wsm/receive/chapl

• Specify the destination-file with login_name (which expands to the name of
the recipient's home directory) and a name for the new file.

uucp chapl minnie! wsm/receive/chapl

(The file will go to minnie!/usr/wsm/receive/chapl.)

• Specify the destination-ftle with login_name (which expands to the
recipient's home directory) but without a name for the new file; uucp will
give the new file the same name as the source-file.

uucp chapl minnie! wsm/receive

(The file will go to minnie!/usr/wsm/receive/chapl.)

• Specify the destination-file with Ilogin_name. This expands to the
recipient's subdirectory in the public directory on the remote system.

uucp chapl minnie! Iwsm

(The file will go to minnie!/usr/usrlspooI/uucppublic/wsm)

Sample Usage of Options with the uucp Command

Suppose you want to send a file called minutes to a remote computer named
eagle. Enter the command line shown in the following screen:

Communication Tutorial 9-19

Sending and Receiving Flies

% uucp -m --s status -j minutes eagle!/usr/gwslminutes<retum>
eagleN3f45
%

This sends the file minntes (located in your current directory on your local com­
puter) to the remote computer eagle, and places it under the pathname Insr/gws in a
file named minntes. When the transfer is complete, the user gws on the remote
computer is notified by mail.

The -m option ensures that you (the sender) are also notified by mail as to
whether or not the transfer has succeeded. The -s option, followed by the name of
the file (statns), asks the program to put a status report of the file transfer in the
specified file (status).

Be sure to include a file name after the -s option. If you do not, you will get this
message: uucp failed ccrcpletely.

The job ID (eagleN3f4S) is displayed in response to the -j option.

Even if uucp does not notify you of a successful transfer soon after you send a
file, do not assume that the transfer has failed. Not all systems equipped with net­
working software have the hardware needed to call other systems. Files being
transferred from these so called passive systems must be collected periodically by
active systems equipped with the required hardware (see "How the uucp Command
Works" for details). Therefore, if you are transferring files from a passive system,
you may experience some delay. Check with your system administrator to find out
whether your system is active or passive.

The previous example uses a full pathname to specify the destination-file.
there are two other ways the destination-file can be specified:

(

(

• The login directory of gws can be specified through use of the - (tilde), as (
shown below: -

eagle!-gws/minutes

is interpreted as:

9·20 IRIS-4D User's Guide

Sending and Receiving Files

eagle!/usr/gws/minutes

• The uucppublic area is referenced by a similar use of the tilde prefix to the
pathname. For example:

eagle!-/gws/minutes

is interpreted as:

/usr/spooIluucppublic/gws/minutes

How the uucp Command Works

This section is an overview of what happens when you issue the uucp com­
mand. An understanding of the processes involved may help you to be aware of the
command's limitations and requirements: why it can perform some tasks and not
others, why it performs tasks when it does, and why you mayor may not be able to
use it for tasks that uucp performs. For further details see the IRIS-4D System
Administrator's Guide and the IRIS-4D System Administrator's Reference Manual.

When you enter a uucp command, the uucp program creates a work file and
usually a data file for the requested transfer. (uucp does not create a data file when
you use the -c option.) The work file contains information required for transferring
the file(s). The data file is simply a copy of the specified source file. After these
files are created in the spool directory, the uucico daemon is started.

The uucico daemon attempts to establish a connection to the remote computer
that is to receive the file(s). It first gathers the information required for establishing
a link to the remote computer from the Systems file. This is how uucico knows
what type of device to use in establishing the link. Then uucico searches the Dev­
ices file looking for the devices that match the requirements listed in the Systems
file. After uucico finds an available device, it attempts to establish the link and log
in on the remote computer.

When uucico logs in on the remote computer, it starts the uucico daemon on
the remote computer. The two uucico daemons then negotiate the line protocol to
be used in the file transfer(s). The local uucico daemon then transfers the file(s)
that you are sending to the remote computer; the remote uucico places the file in the
specified pathname(s) on the remote computer. After your local computer com­
pletes the transfer(s), the remote computer may send files that are queued for your
local computer. The remote computer can be denied permission to transfer these
files with an entry in the Permissions file. If this is done, the remote computer must
establish a link to your local computer to perform the transfers.

Communication Tutorial 9-21

Sending and Receiving Files

If the remote computer or the device selected to make the connection to the
remote computer is unavailable, the request remains queued in the spool directory.
Each hour (default), uudemoD.hour is started by crOD which in tum starts the
uusched daemon. When the uusched daemon starts, it searches the spool directory (
for the remaining work files, generates the random order in which these requests are
to be processed, and then starts the transfer process (uucico) described in the previ-
ous paragraphs.

The transfer process described generally applies to an active computer. An
active computer (one with calling hardware and networking software) can be set up
to poll a passive computer. Because it has networking software, a passive computer
can queue file transfers. However, it cannot call the remote computer because it
does not have the required hardware. The Poll file (/usr/lib/uucp/Poll) contains a
list of computers that are to be polled in this manner.

Figure 9-5 summarizes the syntax and capabilities of the uucp command.

9·22 IRIS·4D User's Guide

(

(

Sending and Receiving Files

Command Recap

uucp - copies a file from one computer to another

command options arguments

uucp -jl, -m, -s and others* source-file

Description: uucp performs preliminary tasks required to copy a
file from one computer to another, and calls uucico,
the daemon (background process) that transfers the
file. The user need only issue the uucp command for
a file to be copied.

Remarks: By default, the only directory to which you can write
files is lusrlspool/uucppublic. To write to direc-
tories belonging to another user, you must receive
write permission from that user. Although there are
several ways of representing pathnames as argu-
ments, it is recommended that you type full path-
names to avoid confusion.

Figure 9-5: Summary of the uucp Command

* See the uucp(l) manual page in the IRIS4D User's Reference Manual for all
available options and an explanation of their capabilities.

The uuto Command

The uuto command allows you to transfer files to the public directory of
another system. The basic format for the uuto command is:

uuto filename system! 10 gin<return>

where filename is the name of the file to be sent, system is the recipient's system,
and login is the recipient's login name.

Communication Tutorial 9-23

Sending and Receiving Files

If you send a file to someone on your local system, you may omit the system
name and use the following format:

uuto filename iogin<return>

Sending a File: the m Option and uustat Command

Now that you know how to determine if a file is transferable, let's take an
example and see how the whole thing works.

The process of sending a file by uuto is referred to as a job. When you issue a
uuto command, your job is not sent immediately. First, the file is stored in a queue
(a waiting line of jobs) and assigned a job number. When the job's number comes
up, the file is transmitted to the remote system and placed in a public directory
there. The recipient is notified by a mail message and must use the uupick com­
mand (discussed later in the chapter) to retrieve the file.

For the following discussions, assume this information:

wombat your login name

sysl your system name

marie

sys2

money

recipient's login name

recipient's system name

file to be sent

Also assume that the two systems can communicate with each other.

To send the file money to login marie on system sys2, enter the following:

% uuto money sys2!marie<return>
%

The prompt on the second line is a signal that the file has been sent to a job queue.
The job is now out of your hands; all you can do is wait for confirmation that the
job reached its destination.

How do you know when the job has been sent? The easiest method is to alter
the uuto command line by adding a -m option, as follows:

% uuto -m money sys2!marie<return>
%

This option sends a mail message back to you when the job has reached the
recipient's system. The message may look something like this:

9-24 IRIS-4D User's Guide

(

(

(

% maikreturn>
From uucp Thur Apr3 09:45 EST 1986
file /sys1/wombat/money, system sys1
copy succeeded
?

Sending and Receiving Files

If you would like to check if the job has left your system, you can use the uustat
command. This command keeps track of all the uucp and uuto jobs you submit
and reports the status of each on demand. For example:

% uustakreturn>
1145 wombat sys2 10/05-09:31 10/05-09:33 JOB IS QUEUED
%

The elements of this sample status message are as follows:

• 1145 is the job number assigned to the job of sending the file money to
marie on sys2.

• wombat is the login name of the person requesting the job.

• sys2 is the recipient's system.

• 10/05-09: 31 is the date and time the job was queued.

• 10/05-09: 33 is the date and time this uustat message was sent.

Communication Tutorial 9-25

Sending and Receiving Files

• The final part is a status report on the job. Here the report shows that the job
has been queued, but has not yet been sent.

To receive a status report on only one uuto job, use the -j option and specify
the job number on the command line:

uustat -jjobnumber<return>

For example, to get a report on the job described in the previous example, specify
1145 (the job number) after the -j option:

% uustat - j114S<return>
1145 wombat sys2 10/05-09:31 10/05-09:37 COPY FINISHED,JOB DELETED
%

This status report shows that the job was sent and deleted from the job queue; it is
now in the public directory of the recipient's system. Other status messages and
options for the uustat command are described in the IRIS-4D User's Reference
Manual.

That is all there is to sending files. To practice, try sending a file to yourself.

Figures 9-6 and 9-7 summarize the syntax and capabilities of the uuto and uus­
tat commands, respectively.

9-26 IRIS-4D User's Guide

(

(

(

Sending and Receiving Files

Command Recap

uuto - sends files to another login

command options arguments

uuto -m and others* file system !login

Description: uuto sends a specified file to the public directory of a
specified system, and notifies the intended recipient
(by mail addressed to his or her login) that the file
has arrived there.

Remarks: Files to be sent must have read permission for others;
the file's parent directory must have read and execute
permissions for others.

The -m option notifies the sender by mail when the
file has arrived at its destination.

Figure 9-6: Summary of the uuto Command

* See the uuto(l) manual page in the IRIS-4D User's Reference ManULll for all
available options and an explanation of their capabilities.

Communication Tutorial 9-27

Sending and Receiving Flies

Command Recap

uustat - checks job status of a uucp or uuto job

command options arguments

uustat -j and others'" none

Description: uustat reports the status of all uucp and uuto jobs
you have requested.

Remarks: The -j option, followed by a job number, allows you
to request a status report on only the specified job.

Figure 9-7: Summary of the uustat Command

'" See the uustat(l) manual page in lhe IRIS4D User's Reference Manual for all
available options and an explanation of their capabilities.

Receiving Files Sent with uuto

When a file sent by uuto reaches the public directory on your UNIX system,
you receive a mail message. To continue the previous example, the owner of login
marie receives the following mail message when the file money has arrived in her
system's public directory:

9-28 IRI5-4D User's Guide

(

(

(

Sending and Receiving Files

% mail
From uucp Wed M3.y 14 09:22 EST 1986
lusrlspoo1/uucppublic/receive/marie/sys111money from sys1!wombat arrived
%

The message contains the following pieces of information:

• The first line tells you when the file arrived at its destination.

• The second line, up to the two slashes (If), gives the pathname to the part of
the public directory where the file has been stored.

• The rest of the line (after the two slashes) gives the name of the file and the
sender.

Once you have disposed of the mail message, you can use the uupick com­
mand to store the file where you want it. Type the following command after the
system prompt:

%uupick<return>

The command searches the public directory for any files sent to you. If it finds any,
it reports the filename(s). It then prints a ? prompt as a request for further instruc­
tions from you.

For example, say the owner of login marie issues the uupick command to
retrieve the money file. The command will respond as follows:

% uupick<return>
fram system sysl: file money
?

There are several available responses; we will look at the most common responses
and what they do.

The first thing you should do is move the file from the public directory and
place it in your login directory. To do so, type an m after the question mark:

Communication Tutorial 9·29

Sending and Receiving Files

?
m<return>
%

This response moves the file into your current directory. If you want to put it in (
some other directory instead, follow the m response with the directory name:

?
mother _ directory<return>

If there are other files waiting to be moved, the next one is displayed, followed by
the question mark. Ifnot, uucpick returns a prompt.

If you do not want to do anything to that file now, press the RETURN key after
the question mark:

?
<return>

The current file remains in the public directory until the next time you use the
uupick command. If there are no more messages, the system returns a prompt.

If you already know that you do not want to save the file, you can delete it by
typing d after the question mark:

?
d<return>

This response deletes the current file from the public directory and displays the next
message (if there is one). If there are no additional messages about waiting files,
the system returns a prompt.

Finally, to stop the uupick command, type a q after the question mark:

?
q<return>

Any unmoved or undeleted files will wait in the public directory until the next time
you use the uupick command.

Other available responses are listed in theIRIS-4D User's Reference Manual.

Figure 9-8 summarizes the syntax and capabilities of the uupick command.

9-30 IRIS-4D User's Guide

(

(

Sending and Receiving Files

Command Recap

uupick - searches for files sent by uuto or uucp

command options arguments

uupick -s system name

Description: uupick searches the public directory of your system
for files sent by uuto or uucp. If any are found, the
command displays information about the file and
prompts you for a response.

Remarks: The question mark (?) at the end of the.message
shows that a response is expected. A complete list of
responses is given in theIRIS-4D User's Reference
Manual.

Figure 9-8: Summary of the uupick Command

Communication Tutorial 9·31

Networking

Networking is the process of linking computers and terminals so that users may
be able to:

• log in on a remote computer as well as a local one

• log in and work on two computers in one work session (without alternately
logging off one and logging in on the other)

• exchange data between computers

The commands presented in this section make it possible for you to perform
these tasks. The ct command allows you to connect your computer to a remote ter­
minal that is equipped with a modem. The cu command enables you to connect
your computer to a remote computer, and the DUX command lets you run commands
on a remote system, without being logged in on it.

On some small computers, the presence of these commands may depend on
whether or not networking software is installed. If it is not installed on your sys­
tem, you will receive a message such as the following when you type a networking
command:

cu: not found

Check with your system administrator to verify the availability of networking com­
mands on your UNIX system.

Connecting a Remote Terminal

The ct command connects your computer to a remote terminal equipped with a
modem, and allows a user on that terminal to log in. To do this, the command dials
the phone number of the modem. The modem must be able to answer the call
automatically. When ct detects that the call has been answered, it issues a getty
(login) process for the remote terminal and allows a user on it to log in on the com­
puter.

(

(

This command can be useful when issued from the opposite end, that is, from
the remote terminal itself. If you are using a remote terminal that is far from your
computer and want to avoid long distance charges, you can use ct to have the com- (
puter place a call to your terminal. Simply call the computer, log in, and issue the
ct command. The computer will hang up the current line and call your (remote) ter-
minal back.

9·32 IRIS-4D User's Guide

Networking

If ct cannot find an available dialer, it tells you that all dialers are busy and asks
if it should wait until one becomes available. If you answer yes, it asks how long
(in minutes) it should wait for one.

Command Line Format

To execute the ct command, follow this format:

ct [options] teino<return>

The argument teino is the telephone number of the remote terminal.

Sample Command Usage

Suppose you are logged in on a computer through a local terminal and you
want to connect a remote terminal to your computer. The phone number of the
modem on the remote terminal is 932-3497. Enter this command line:

ct -b -wS -s1200 9=9323497 <return>

The equal sign (=) represents a secondary dial tone, and dashes (-) following the
phone number represent delays (the dashes are useful following a long distance
number).

ct will call the modem, using a dialer operating at a speed of 1200 baud. If a dialer
is not available, the -wS option will cause ct to wait for a dialer for five minutes
before quitting. The -b option tells ct not to disconnect the local terminal (the ter­
minal on which the command was issued) from the computer.

Now imagine that you want to log in on the computer from home. To avoid
long distance charges, use ct to have the computer call your terminal:

ct -s1200 9=9323497<return>

Because you did not specify the -w option, if no device is available, ct sends you
the following message:

1 busy dialer at 1200 baud Wait for dialer?

If you type n (no), the ct command exits. If you type y (yes), ct prompts you to
specify how long ct should wait:

Tirre, in minutes?

If a dialer is available, ct responds with:

Allocated dialer at 1200 baud

Communication Tutorial 9-33

Networking

This means that a dialer has been found. In any case, ct asks if you want the line
connecting your remote terminal to the computer to be dropped:

Confirm hangup?

If you type y (yes), you are logged off and ct calls your remote terminal back when (
a dialer is available. If you type n (no), the ct command exits, leaving you logged
in on the computer.

Figure 9-9 summarizes the syntax and capabilities of the ct command.

Command Recap

ct - connect computer to remote terminal

command options arguments

ct -h, -w, -s and others* telno

Description: ct connects the computer to a remote terminal and
allows a user to log in from that terminal.

Remarks: The remote terminal must have a modem capable of
answering phone calls automatically.

Figure 9-9: Summary of the ct Command

* See the ct(l) manual page in the IRIS4D User's Reference Manualfor all
available options and an explanation of their capabilities.

Calling Another UNIX System

The Cll command connects a remote computer to your computer and allows you

(

to be logged in on both computers simultaneously. This means that you can move (
back and forth between the two computers, transferring files and executing com-
mands on both, without dropping the connection.

9·34 IRIS-4D User's Guide

Networking

The method used by the cu command depends on the infonnation you specify
on the command line. You must specify the telephone number or system name of
the remote computer. If you specify a phone number, it is passed on to the
automatic dial modem. If you specify a system name, cu obtains the phone number
from the Systems file. If an automatic dial modem is not used to establish the con­
nection, the line (port) associated with the direct link to the remote computer can be
specified on the command line.

Once the connection is made, the remote computer prompts you to log in on it.
When you have finished working on the remote tenninal, log off it and tenninate
the connection by typing < .>. You will still be logged in on the local computer.

The cu command is not capable of detecting or correcting errors; data may be lost
or corrupted during file transfers. After a transfer, you can check for loss of data by
running the sum command or the Is -1 command on the file that was sent and the
file that was received. Both of these commands will report the total number of
bytes in each file; if the totals match, your transfer was successful. The sum com­
mand checks more quickly and gives output that is easier to interpret. (See the
sum(l) and the ls(l) manual pages in the IRIS 4D User's Reference Manual for
details.)

Command Line Format

To execute the cu command, follow this fonnat:

cu [options] teino / systemname<return>

The components of the command line are:

teino the telephone number of a remote computer

Equal signs (=) represent secondary dial tones and dashes (-)
repreent four-second delays.

systemname a system name that is listed in the Systems file.

The cu command obtains the telephone number and baud rate
from the Systems file and searches for a dialer. The -s, -n, and
-I options should not be used together with systemname. (To
see the list of computers in the Systems file, run the uuname
command.)

Once your terminal is connected and you are logged in on the remote computer,
all standard input (input from the keyboard) is sent to the remote computer. Figures
9-10 and 9-11 show the commands you can execute while connected to a remote
computer through cu.

Communication Tutorial 9-35

Networking

String Interpretation

-. Terminate the link.

-! Escape to the local computer without dropping the
link. To return to the remote computer, type <ctrl·
d>.

-!command Execute command on the local computer.

-$command Run command locally and send its output to the
remote system.

-%cdpath Change the directory on the local computer where
path is the pathname or directory name.

-%takefrom [to] Copy a file namedfrom (on the remote computer) to
a file named to (on the local computer). If to is omit-
ted, the from argument is used in both places. (

-%putfrom [to] Copy a file namedfrom (on the local computer) to a
file named to (on the remote computer). If to is omit-
ted, the from argument is used in both places.

--... Send a line beginning with - (--•••) to the remote
computer.

-%break Transmit a BREAK to the remote computer (can also
be specified as -%b).

Figure 9-10: Command Strings for Use with cu (Sheet 1 of 2)

(

9·36 IRIS-4D User's Guide

Networking

String Interpretation

-%nostop Tum off the handshaking protocol for the remainder
of the session. This is useful when the remote com-
puter does not respond properly to the protocol char-
acters.

-%debug Tum the -d debugging option on or off (can also be
specified as -%d).

-t Display the values of the terminal I/O (input/output)
structure variables for your terminal (useful for
debugging).

-I Display the values of the termio structure variables
for the remote communication line (useful for debug-
ging).

Figure 9-11: Command Strings for Use with cu (Sheet 2 of 2)

The use of -%put requires stty and cat on the remote computer. It also requires
that the current erase and kill characters on the remote computer be identical to the
current ones on the local computer.

The use of -%take requires the existence of the echo and cat commands on the
remote computer. Also, stty tabs mode should be set on the remote computer if
tabs are to be copied without expansion.

Sample Command Usage

Suppose you want to connect your computer to a remote computer called eagle.
The phone number for eagle is 847-7867. Enter the following command line:

cu -s1200 9=8477867 <return>

The -s1200 option causes cu to use a 1200 baud dialer to call eagle. If the -s
option is not specified, cu uses a dialer at the default speed, 300 baud.

Communication Tutorial 9-37

Networking

When eagle answers the call, eu notifies you that the connection has been
made, and prompts you for a login ID:

connected
login:

Enter your login ID and password.

The take command allows you to copy files from the remote computer to the
local computer. Suppose you want to make a copy of a file named proposal for
your local computer. The following command copies proposal from your current
directory on the remote computer and places it in your current directory on the local
computer. If you do not specify a file name for the new file, it will also be called
proposal.

- Stake proposakreturn>

The put command allows you to do the opposite: copy files from the local
computer to the remote computer. Say you want to copy a file named minutes from
your current directory on the local computer to the remote computer. Type:

- $put minutes minutes.9-18<return>

(

In this case, you specified a different name for the new file (minutes.9-18). There- (
fore the copy of the minutes file that is made on the remote computer will be called
minutes.9-18.

Figure 9-12 summarizes the syntax and capabilities of the eu command.

(

9-38 IRIS-4D User's Guide

Networking

Command Recap

cu - connects computer to remote computer

command options arguments

cu -s and others* telno (or) systemname

Description: cu connects your computer to a remote computer and
allows you to be logged in on both simultaneously.
Once you are logged in, you can move between com-
puters to execute commands and transfer files on
each without dropping the link.

Figure 9-12: Summary of the cu Command

* See the cu(l) manual page in the IRIS4D User's Reference Manual for all
available options and an explanation of their capabilities.

Executing Commands on a Remote System

The command uux (short for UNIX-to-UNIX system command execution)
allows you to execute UNIX system commands on remote computers. It can gather
files from various computers, execute a command on a specified computer, and send
the standard output to a file on a specified computer. The execution of certain com­
mands may be restricted on the remote machine. The command notifies you by
mail if the command you have requested is not allowed to execute.

Command Line Format

To execute the uux command, follow this format:

uux [options] command-string<return>

The command-string is made up of one or more arguments. All special shell char­
acters (such as "<>r") must be quoted either by quoting the entire command-string
or quoting the character as a separate argument. Within the command-string the
command and file names may contain a system name! prefix. Arguments without a
system name are read as command arguments. A file name may be either a full
pathname or the name of a file under the current directory (on the local computer).

Communication Tutorial 9·39

Networking

Sample Command Usage

If your computer is hard-wired to a larger host computer you can use uux to get
printouts of files that reside on your computer by entering:

pr minutes I uux -p host!1p<return>

This command line queues the file minutes to be printed on the area printer of the
computer host.

Figure 9-13 summarizes the syntax and capabilities of the uux command.

Command Recap

uux - executes commands on a remote computer

command options arguments

uux -1, -p, and others* command-string

Description: uux allows you to run UNIX system commands on
remote computers. It can gather files from various
computers, run a command on a specified computer,
and send the standard output to a file on a specified
computer.

Remarks: By default, users of the uux command have permis-
sion to run only the mail command. Check with
your system administrator to find out if users on your
system have been granted permission to run other
commands.

Figure 9-13: Summary of the uux Command

* See the uux(l) manual page in the IRIS4D User's Reference Manual for all
available options and an explanation of their capabilities.

9-40 IRIS-4D User's Guide

(

(

(

The UNIX System Files

This appendix summarizes the description of the file system given in Chapter I
and reviews the major system directories in the root directory.

File System Structure

The UNIX system files are organized in a hierarchy; their structure is often
described as an inverted tree. At the top of this tree is the root directory, the source
of the entire file system. It is designated by a / (slash). All other directories and
files descend and branch out from root, as shown in Figure A-I.

Figure A-I: Directory Tree from root

o = Direclorles

o = Ordinary Files

'V = Special Files

One path from root leads to your home directory. You can organize and store
information in your own hierarchy of directories and files under your home direc­
tory.

Other paths lead from root to system directories that are available to all users.
The system directories described in this book are common to all UNIX system ins­
tallations and are provided and maintained by the operating system.

Summary of the File System A-1

The UNIX System Files

In addition to this standard set of directories, your UNIX system may have
other system directories. To obtain a list of the directories and files in the root
directory on your UNIX system, type the following command line:

Is -1 I <return>

To move around in the file structure, you can use pathnames. For example, you
can move to the directory Ibin (which contains UNIX system executable files) by
typing the following command line:

cd Ibin<return>

To list the contents of a directory, issue one of the following command lines:

Is<return>
Is -l<return>

for a list of file and directory names
for a detailed list of file and
directory names

To list the contents of a directory in which you are not located, issue the Is
command as shown in the following examples:

Is Ibin<return>
Is -llbin<return>

for a short listing
for a detailed listing

The following section provides brief descriptions of the root directory and the
system directories under it, as shown in Figure A-I.

A-2 IRI5-4D User's Guide

(

(

(

UNIX System Directories

I The source of the file system (called root directory)

Ibin Contains many executable programs and utilities, such as the fol­
lowing:

cat
date
login
grep
mkdir
who

llib Contains available program libraries and language libraries, such
as

libc.a

libm.a

system calls, standard I/O

math routines and support for languages
such as C, Fortran, and Basic.

Idev Contains special files that represent peripheral devices, such as:

console
Ip
ttyn
dsk/*

console
line printer
user terminal(s)
disks

letc Contains programs and data files for system administration

Itmp Contains temporary files, such as the buffers created for editing a
file

lusr Contains the following subdirectories which, in tum, contain the
data listed below:

news important news items
mail electronic mail
spool files waiting to be printed on the line

printer

Summary of the File System A-3

(

(

(

Basic UNIX System Commands

at Request that a command be run in background mode at a time you
specify on the command line. If you do not specify a time, at(l)
displays the job numbers of all jobs you have running in at(l),
batch(l), or background mode.

banner

batch

A sample format is:

at 8:45am Jun 09<return>
commandl <return>
command2 <return>
<Ad>

If you use the at command
without the date,
the command executes within twenty-four hours
at the time specified.

Display a message (in words up to 10 characters long) in large
letters on the standard output.

Submit command(s) to be processed when the system load is at an
acceptable level. A sample format of this command is:

batch<return>
commandl <return>
command2 <return>
<ctrl-d>

You can use a shell script for a command in batch(l).
This may be useful and save time if you have a set of commands
you frequently submit using this command.

cat Display the contents of a specified file at your terminal. To halt
the output on an ASCII terminal temporarily, use <ctrl-s>; type
<ctrl-q> to restart the output. To interrupt the output and return
to the shell on an ASCII terminal, press <break> or <delete>.

cd Change directory from the current one to your home directory. If
you include a directory name, the directory will change from the
current one to the directory specified. By using a pathname in
place of the directory name, you can jump several levels with one
command.

Summary of UNIX System Commands B-1

Basic UNIX System Commands

cp Copy a specified file into a new file, leaving the original file intact.

cut Cut out specified fields from each line of a file. This command
can be used to cut columns from a table, for example.

date Display the current date and time.

ditT Compare two files. The ditT(1) command reports which lines are
different and what changes should be made to the second file to
make it the same as the first file.

echo

ed

grep

kill

lex

lp

lpstat

Is

mail

Display input on the the terminal, including the carriage return,
and return a prompt.

Edit a specified file using the line editor. If there is no file by the
name specified, the ed(l) command creates one. See Chapter 5
for detailed instructions on using the ed(l) editor.

Search a specified file(s) for a pattern and print those lines that
contain the pattern. If you name more than one file, grep(l)
prints the file that contains the pattern.

Terminate a background process specified by its process
identification number (PID). You can obtain a PID by running
the ps(l) command.

Generate programs to be used in simple lexical analysis of text,
perhaps as a first step in creating a compiler. See theIRlS-4D
User's Reference Manual for details.

Print out the contents of a specified file on a line printer.

Display the status of any requests made to the line printer.
Options are available for requesting detailed information.

List the names of all files and directories except those whose
names begin with a dot (.). Options are available for listing
detailed information about the files in the directory. (See the Is(I)
entry in the IRIS-4D User's Reference Manual for details.)

Display any electronic mail you may have received at your termi-
nal, one message at a time. Each message ends with? prompt;
mail(l) waits for you to request an option such as saving, for-
warding, or deleting a message. To obtain a list of the available
options, type ?

When followed by a login name, mail(l) sends a message to the
owner of that name. You can type as many lines of text as you
want. Then type <ctrl-d> to end the message and send it to the

B·2 IRIS·4D User's Guide

(

(

(

maiIx

make

mkdir

mv

nohup

pg

pr

ps

pwd

rm

rmdir

Basic UNIX System Commands

recipient. Press <break> key to interrupt the mail session.

mailx(l) is a more sophisticated, expanded version of electronic
mail.

Maintain and support large programs or documents on the basis of
smaller ones. See the make(l) page in theIRIS-4D User's Refer­
ence Manual for details.

Make a new directory. The new directory becomes a subdirectory
of the directory in which you issue the mkdir command. To
create subdirectories or files in the new directory, you must first
move into the new directory with the cd command.

Move a file to a new location in the file system. You can move a
file to a new file name in the same directory or to a different
directory. If you move a file to a different directory, you can use
the same file name or choose a new one.

Place execution of a command in the background, so it will con­
tinue executing after you log off the system. Error messages are
placed in a file called nohup.out.

Display the contents of a specified file on your terminal, a page at
a time. Mter each page, the system pauses and waits for your
instructions before proceeding.

Display a partially formatted version of a specified file at your ter­
minal. The pr(1) command shows page breaks, but does not
implement any macros supplied for text formatter packages.

Display the status and number of every process currently running.
The ps(l) command does not show the status of jobs in the at(l)
or batch(l) queues, but it includes these jobs when they are exe­
cuting.

Display the full pathname of the current working directory.

Remove a file from the file system. You can use metacharacters
with the rm(1) command but should use them with caution; a
removed file cannot be recovered easily.

Remove a directory. You cannot be in the directory you want to
delete. Also, the command will not delete a directory unless it is
empty. Therefore, you must remove any subdirectories and files
that remain in a directory before running this command on it.
(See rm -r in theIRIS-4D User's Reference Manual for the abil­
ity to remove directories that are not empty.)

Summary of UNIX System Commands B-3

Basic UNIX System Commands

sort Sort a file in ASCII order and display the results on your terminal.
ASCII order is as follows:

1. numbers before letters
2. uppercase before lowercase (-
3. alphabetical order

There are other options for sorting a file. For a complete list of
sort(l) options, see the sort(l) page in the IRIS-4D User's Refer-
ence Manual.

spell Collect words from a specified file and check them against a spel-
ling list. Words not on the list or not related to words on the list
(with suffixes, prefixes, and so on) are displayed.

uname Display the name of the UNIX system on which you are currently
working.

uuep Send a specified file to another UNIX system. (See the uuep(l)
page in the IRIS-4D User's Reference Manual for details.)

uuname List the names of remote UNIX systems that can communicate
with your UNIX system.

uupick Search the public directory for files sent to you by the uuto(1) (command. If a file is found, uupick(l) displays its name and the
system it came from, and displays a ? prompt.

uustat Report the status of the uuto(1) command you issued to send files
to another user.

uuto Send a specified file to another user. Specify the destination in the
format system! login. The system must be on the list of systems
generated by the uuname(l) command.

vi Edit a specified file using the vi(1) screen editor. If there is no file
by the name you specify, vi(l) creates one. (See Chapter 6 for
detailed information on using the vi(l) editor.)

we Count the number of lines, words, and characters in a specified file
and display the results on your terminal.

who Display the login names of the users currently logged in on your
UNIX system. List the terminal address for each login and the (time each user logged in.

yaee Impose a structure on the input of a program. See the IRIS-4D
User's Reference Manual for details.

8-4 IRIS-4D User's Guide

Summary of Shell Command Language

This appendix is a summary of the shell command language and programming
constructs discussed in Chapter 7, "The Bourne Shell Tutorial" and Chapter 8, "An
Introduction to the C Shell." The first section reviews metacharacters, special char­
acters, input and output redirection, variables, and processes. The second section
contains models of the shell programming constructs.

The Vocabulary of Shell Command Language

Special Characters in the Shell

* ? []. Metacharacters; used to provide a shortcut to referencing file
names through pattern matching.

& Executes commands in background mode.

\

" n

Sequentially executes several commands typed on one line, each
pair separated by;.

Turns off the meaning of the immediately following special char­
acter.

Enclosing single quotes turns off the special meaning of all char­
acters.

Enclosing double quotes turns off the special meaning of all char­
acters except $ and ' .

Redirecting Input and Output

< Redirects the contents of a file into a command.

> Redirects the output of a command into a new file, or replaces the
contents of an existing file with the output.

» Redirects the output of a command so it is appended to the end of
a file.

Directs the output of one command so that it becomes the input of
the next command.

Summary of Shell Command Language C-1

Summary of Shell Command language

'command' Substitutes the output of the enclosed command in place of 'com­
mand'.

Executing and Terminating Processes

batch

at

at -I

at -r

ps

kill PID

Submits the following commands to be processed at a time when
the system load is at an acceptable level. <ctrl-d> ends the batch
command.

Submits the following commands to be executed at a specified
time. <ctrl-d> ends the at command.

Reports which jobs are currently in the at or batch queue.

Removes the at or batch job from the queue.

Reports the status of the shell processes.

Terminates the shell process with the specified process ID (PID).

nohup command list &
Continues background processes after logging off.

Making a File Accessible to the Shell

chmod u+xfilename
Gives the user permission to execute the file (useful for shell pro­
gram files).

mv filename $HOME/binifilename
Moves your file to the bin directory in your home directory. This
bin holds executable shell programs that you want to be accessi­
ble. Make sure the PATH variable in your .profile file specifies
this bin. If it does, the shell will search in $HOME/bin for your
file when you try to execute it. If your PATH variable does not
include your bin, the shell will not know where to find your file
and your attempt to execute it will fail.

filename The name of a file that contains a shell program becomes the com­
mand that you type to run that shell program.

C-2 IRIS-4D User's Guide

(I

(

(

Summary of Shell Command Language

Variables

positional parameter

echo

$#

$*

named variable

A numbered variable used within a shell program to reference
values assigned by the shell from the command line arguments
invoking the program.

A command used to print the value of a variable on your ter­
minal.

A special parameter that contains the number of arguments
with which the shell program has been executed.

A special parameter that contains the values of all arguments
with which the shell program has been executed.

A variable to which the user can give a name and assign
values.

Variables Used in the System

HOME Denotes your home directory; the default variable for the cd
command.

PA TH Defines the path your login shell follows to find commands.

CDPATH Defines the search path for the cd command.

MAIL Gives the name of the file containing your electronic mail.

PSI PS2 Define the primary and secondary prompt strings.

TERM Defines the type of terminal.

LOGNAME Login name of the user.

IFS Defines the internal field separators (normally the space, the
tab, and the carriage return).

TERMINFO Allows you to request that the curses and terminfo subrou­
tines search a specified directory tree before searching the
default directory for your terminal type.

TZ Sets and maintains the local time zone.

Summary of Shell Command Language C-3

Summary of Shell Command Language

Shell Programming Constructs

Here Document

For Loop

command «~I
input lines

for variable<returu>
in this list of values<return>

do the following commands<return>
command 1 <return>
command 2<return>

.<return>

.<return>
last command<return>

done<return>

C-4 IRIS-4D User's Guide

(

(

(

While Loop

H ... Then

Summary of Shell Command Language

while command list<return>
do<return>

command1 <return>
command2 <return>

.<return>

.<return>
last command<return>

done<return>

if this command is successfukreturn>
then command1 <return>

command2 <return>
.<return>
.<return>

last command<return>
fkreturn>

Summary of Shell Command Language C-S

Summary of Shell Command Language

If ... Then ... Else

if command list<return>
then command list<return>
else command list<returo>

fkreturn>

C-6 IRIS-4D User's Guide

(

(

(

Case Construction

case word<return>
in<return>

Summary of Shell Command Language

pattern1)<return>
command line 1 <return>

.<return>

.<return>
last command line<return>

;;<return>
pattern2)<return>

command line 1 <return>
.<return>
.<return>

last command line<return>
;;<return>
pattern3)<return>

command line 1 <return>
.<return>
.<return>

last command line<return>
;;<return>

esac<return>

break and continue Statements

A break or continue statement forces the program to leave any loop and exe­
cute the command following the end of the loop.

Summary of Shell Command Language C·7

(

(

Setting the TERM Variable

Because some commands are terminal dependent, the UNIX system must know
what type of terminal you are using whenever you log in. The system determines
the characteristics of your terminal by checking the value of a variable called
TERM which holds the name of a terminal. If you have put the name of your ter­
minal into this variable, the system will be able to execute all programs in a way
that is suitable for your terminal.

This method of telling the UNIX system what type of terminal you are using is
called setting the terminal configuration. To set your terminal configuration, type
the command lines shown on the following screen, substituting the name of your
terminal for terminal name.

% TERM=terminal_ name<retum>
% export TERM<return>
% tput Inlt<return>

These lines must be executed in the order shown and the procedure must be
repeated every time you log in. To expedite this process most users put these lines
into a file called .profile that is automatically executed every time they log in. For
details about the .profile file, see Chapter 7.

The first two lines in the screen tell the UNIX system shell what type of termi­
nal you are using. The tput init command line instructs your terminal to behave in
ways the UNIX system expects a terminal of that type to behave. For example, it
sets the terminal's left margin and tabs, if those capabilities exist for the terminal.

The tput command uses the entry in this database to make terminal-dependent
capabilities and information available to the shell. Because the values of these
capabilities differ for each type of terminal, you must execute the tput init com­
mand line every time you change the TERM variable.

Setting Up the Terminal 0-1

Setting the TERM Variable

For each terminal type, a set of capabilities is defined in a database. This data­
base is usually found in either the lusr/Iib/terminfo or lusr/lib.COREterm direc­
tory, depending on the system.

Every system has at least one of these directories; some may have both. Your sys­
tem administrator can tell you whether your system has the termlnfo and/or the
.COREterm directory.

The following sections describe how you can determine what terminal_names
are acceptable. Further information about the capabilities in the terminfo database
can be found on the terminfo(4) manual page in theIRIS-4D Programmer's Refer­
ence Manual.

Acceptable Terminal Names

The UNIX system recognizes a wide range of terminal types. Before you put a
terminal name into the TERM variable, you must make sure that your terminal is
within this range.

You must also verify that the name you put into the TERM variable is a recog­
nized terminal name. Do not put a terminal name in the TERM variable until you
have verified that the system recognizes it.

The tput command provides a quick way to make sure your terminal is sup­
ported by your system. Type:

tput - Tterminal_ name longname<return>

If your system supports your terminal it will respond with the complete name of
your terminal. Otherwise, you will get an error message.

To find an acceptable name that you can put in the TERM variable, find a list­
ing for your terminal in either of two directories: lusr/lib/terminfo or
lusrllib/.COREterm. Each of these directories is a collection of files with single­
character names. Each file, in turn, holds a list of terminal names that all begin with
the name of the file. Find the file whose name matches the first character of your
terminal's name. Then list the file's contents and look for your terminal.

You can also check with your system administrator for a list of terminals sup­
ported by your system, and the acceptable names you can put in the TERM vari­
able.

0·2 IRIS·40 User's Guide

(

(

('

Example

Suppose your terminal is an AT&T model 5425. Your login isjim and you are
currently in your home directory. First, you verify that your system supports your
terminal by running the tput command. Next, you find an acceptable name for it in
the /usr/Iib/.COREterm/A directory. The following screen shows which com­
mands you need to do this:

% tput - T5425 longname<return>
AT&T 4425/5425
% cd /usrlIib/.COREterm/A<return>
% Is
ATT4410
ATT4415
ATT4418
ATT4424
ATT4424-2
ATT4425
ATT4426
ATT513
ATT5410
ATT5418
ATT5420
ATT5420-2
ATT5425
ATT5620
ATT610BCT
ATTPT505
%

Now you are ready to put the name you found, ATT5425, in the TERM variable.
Whenever you do this, you must also export TERM and execute tput init.

Setting Up the Terminal 0-3

Example

% TERM=ATI5425<return>
% export TERM<return>
% tput inikreturn>
%

The UNIX system now knows what type of terminal you are using and will
execute commands appropriately.

0·4 IRIS-40 User's Guide

(

(

Glossary

acoustic coupler
A device that permits transmission of data over an ordinary telephone
line. When you place a telephone handset in the coupler, you link a com­
puter at one end of the phone line to a peripheral device, such as a user
terminal, at the other.

address
Generally, a number that indicates the location of information in the
computer's memory. In the UNIX system, the address is part of an edi­
tor command that specifies a line number or range.

append mode
A text editing mode in which the characters you type are entered as text
into the text editor's buffer. In this mode you enter (append) text after
the current position in the buffer. See text input mode, compare with
command mode and insert mode.

argument
The element of a command line that specifies data on which a command
is to operate. Arguments follow the command name and can include
numbers, letters, or text strings. For instance, in the command
lp -m myfile, lp is the command and myfile is the argument. See
option.

ASCII
(pronounced as'-kee) American Standard Code for Information Inter­
change, a standard for data transmission that is used in the UNIX system.
ASCII assigns sets of Os and Is to represent 128 characters, including
alphabetical characters, numerals, and standard special characters, such
as #, $, %, and &.

background
A type of program execution where you request the shell to run a com­
mand away from the interaction between you and the computer ("in the
background"). While this command runs, the shell prompts you to enter
other commands through the terminal.

baud rate
A measure of the speed of data transfer from a computer to a peripheral
device (such as a terminal) or from one device to another. Common
baud rates are 300, 1200,4800, and 9600. As a general guide, divide a
baud rate by 10 to get the approximate number of English characters
transmitted each second.

Glossary G-1

Glossary

buffer
A temporary storage area of the computer used by text editors to make
changes to a copy of an existing file. When you edit a file, its contents
are read into a buffer, where you make changes to the text. For the (._
changes to become a part of the permanent file, you must write the buffer
contents back into the file. See permanent file.

child directory
See subdirectory.

command
The name of a file that contains a program that can be executed by the
computer on request. Compiled programs and shell programs are forms
of commands.

command file
See executable file.

command language interpreter
A program that acts as a direct interface between you and the computer.
In the UNIX system, a program called the shell takes commands and
translates them into a language understood by the computer.

command line
A line containing one or more commands, ended by typing a carriage
return «return». The line may also contain options and arguments for
the commands. You type a command line to the shell to instruct the
computer to perform one or more tasks.

command mode
A text editing mode in which the characters you type are interpreted as
editing commands. This mode permits actions such as moving around in
the buffer, deleting text, or moving lines of text. See text input mode,
compare with append mode and insert mode.

context search
A technique for locating a specified pattern of characters (called a string)

- when in a text editor. Editing commands that cause a context search scan
the buffer, looking for a match with the string specified in the command.
See string.

control character
A nonprinting character that is entered by holding down the control key
and typing a character. Control characters are often used for special pur­
poses. For instance, when viewing a long file on your screen with the cat
command, typing ctrl-s stops the display so you can read it, and typing
ctrl-q continues the display.

G·2 IRIS·4D User's Guide

(

(,

Glossary

current directory
The directory in which you are presently working. You have direct
access to all files and subdirectories contained in your current directory.
The shorthand notation for the current directory is a dot C.).

cursor
A cue printed on the terminal screen that indicates the position at which
you enter or delete a character. It is usually a rectangle or a blinking
underscore character.

default
An automatically assigned value or condition that exists unless you expli­
citly change it. For example, the shell prompt string has a default value
of % unless you change it.

delimiter
A character that logically separates words or arguments on a command
line. Two frequently used delimiters in the UNIX system are the space
and the tab.

diagnostic
A message printed at your terminal to indicate an error encountered
while trying to execute some command or program. Generally, you need
not respond directly to a diagnostic message.

directory
A type of file used to group and organize other files or directories. You
cannot directly enter text or other data into a directory. (For more detail,
see Appendix A, Summary of the File System.)

electronic mail
The feature of an operating system that allows computer users to
exchange written messages via the computer. The UNIX system mail
command provides electronic mail in which the addresses are the login
names of users.

environment
The conditions under which you work while using the UNIX system.
Your environment includes those things that personalize your login and
allow you to interact in specific ways with the UNIX system and the
computer. For example, your shell environment includes such things as
your shell prompt string, specifics for backspace and erase characters,
and commands for sending output from your terminal to the computer.

Glossary G-3

Glossary

erase character
The character you type to delete the previous character you typed. The
UNIX system default erase character is #; some users set the erase char­
acter to the backspace key.

escape
A means of getting into the shell from within a text editor or other pro­
gram.

execute
The computer's action of running a program or command and perform­
ing the indicated operations.

executable file

file

A file that can be processed or executed by the computer without any
further translation. When you type in the file name, the commands in the
file are executed. See shell procedure.

A collection of information in the form of a stream of characters. Files
may contain data, programs, or other text. You access UNIX system
files by name. See ordinary file, permanent file, and executable file.

file name
A sequence of characters that denotes a file. (In the UNIX system, a
slash character (j) cannot be used as part of a file name.)

file system

filter

A collection of files and the structure that links them together. The
UNIX file system is a hierarchical structure. (For more detail, see
Appendix A, Summary of the File System.)

A command that reads the standard input, acts on it in some way, and
then prints the result as standard output.

final copy
The completed, printed version of a file of text.

foreground

(

(

The normal type of command execution. When executing a command in
foreground, the shell waits for one command to end before prompting
you for another command. In other words, you enter something into the (
computer and the computer "replies" before you enter something else. .

full-duplex
A type of data communication in which a computer system can transmit
and receive data simultaneously. Terminals and modems usually have

G·4 IRIS-4D User's Guide

Glossary

settings for half-duplex (one-way) and full-duplex communication; the
UNIX system uses the full-duplex setting.

full pathname
A pathname that originates at the root directory of the UNIX system and
leads to a specific file or directory. Each file and directory in the UNIX
system has a unique full pathname, sometimes called an absolute path­
name. See pathname.

global
A term that indicates the complete or entire file. While normal editor
commands commonly act on only the first instance of a pattern in the file,
global commands can perform the action on all instances in the file.

hardware
The physical machinery of a computer and any associated devices.

hidden character
One of a group of characters within the standard ASCII character set that
are not printable. Characters such as backspace, escape, and <ctrl-d> are
examples.

home directory
The directory in which you are located when you log in to the UNIX sys­
tem; also known as your login directory.

input/output
The path by which information enters a computer system (input) and
leaves the system (output). An input device that you use is the terminal
keyboard and an output device is the terminal display.

insert mode
A text editing mode in which the characters you type are entered as text
into the text editor's buffer. In this mode you enter (insert) text before
the current position in the buffer. See text input mode, compare with
append mode and command mode.

interactive
Describes an operating system (such as the UNIX system) that can han­
dle immediate-response communication between you and the computer.
In other words, you interact with the computer from moment to moment.

line editor
An editing program in which text is operated upon on a line-by-line basis
within a file. Commands for creating, changing, and removing text use
line addresses to determine where in the file the changes are made.
Changes can be viewed after they are made by displaying the lines
changed. See text editor, compare with screen editor.

Glossary G-5

Glossary

login
The procedure used to gain access to the UNIX operating system.

login directory
See home directory.

login name
A string of characters used to identify a user. Your login name is dif­
ferent from other login names.

log off
The procedure used to exit from the UNIX operating system.

metacharacter
A subset of the set of special characters that have special meaning to the
shell. The metacharacters are *, ?, and the pair [J. Metacharacters are
used in patterns to match file names.

mode
In general, a particular type of operation (for example, an editor's append
mode). In relation to the file system, a mode is an octal number used to
determine who can have access to your files and what kind of access they
can have. See permissions.

modem
A device that connects a terminal and a computer by way of a telephone
line. A modem converts digital signals to tones and converts tones back
to digital signals, allowing a terminal and a computer to exchange data
over standard telephone lines.

multitasking
The ability of an operating system to execute more than one program at a
time.

multiuser
The ability of an operating system to support several users on the system
at the same time.

nroff
A text formatter available as an add-on to the UNIX system. You can
use the nrotT program to produce a formatted on-line copy or a printed
copy of a file. See text formatter.

operating system
The software system on a computer under which all other software runs.
The UNIX system is an operating system.

G-6 IRIS-4D User's Guide

(

(

(/

Glossary

option
Special instructions that modify how a command runs. Options are a
type of argument that follow a command and usually precede other argu­
ments on the command line. By convention, an option is preceded by a
minus sign (-); this distinguishes it from other arguments. You can
specify more than one option for some commands given in the UNIX
system. For example, in the command Is -I -a directory, -I and -a
are options that modify the Is command. See argument.

ordinary file
A file, containing text or data, that is not executable. See executable file.

output
Information processed in some fashion by a computer and delivered to
you by way of a printer, a terminal, or a similar device.

parameter
A special type of variable used within shell programs to access values
related to the arguments on the command line or the environment in
which the program is executed. See positional parameter.

parent directory
The directory immediately above a subdirectory or file in the file system
organization. The shorthand notation for the parent directory is two dots
(..).

parity
A method used by a computer for checking that the data received
matches the data sent.

password
A code word known only to you that is called for in the login process.
The computer uses the password to verify that you may indeed use the
system.

pathname
A sequence of directory names separated by the slash character (J) and
ending with the name of a file or directory. The pathname defines the
connection path between some directory and the named file.

peripheral device
Auxiliary devices under the control of the main computer, used mostly
for input, output, and storage functions. Some examples include termi­
nals, printers, and disk drives.

Glossary G-7

Glossary

permanent file
The data stored permanently in the file system structure. To change a
permanent file, you can make use of a text editor, which maintains a tem-
porary work space, or buffer, apart from the permanent files. Once (~
changes have been made to the buffer, they must be written to the per-
manent file to make the changes permanent. See bnffer.

permissions

pipe

Access modes, associated with directories and files, that permit or deny
system users the ability to read, write, and/or execute the directories and
files. You determine the permissions for your directories and files by
changing the mode for each one with the chmod command.

A method of redirecting the output of one command to be the input of
another command. It is named for the character I that redirects the out­
put. For example, the shell command who I wc -I pipes output from
the who command to the wc command, telling you the total number of
people logged into your UNIX system.

pipeline
A series of filters separated by I (the pipe character). The output of each
filter becomes the input of the next filter in the line. The last filter in the (
pipeline writes to its standard output, or may be redirected to a file. See
filter.

positional parameters
Numbered variables used within a shell procedure to access the strings
specified as arguments on the command line invoking the shell pro­
cedure. The name of the shell procedure is positional parameter $0. See
variable and shell procedure.

prompt
A cue displayed at your terminal by the shell, telling YOIl that the shell is
ready to accept your next request. The prompt can be a character or a
series of characters. The UNIX system default prompt is the percent sign
character (%).

printer
An output device that prints the data it receives from the computer on
paper.

process
Generally a program that is at a stage of execution. In the UNIX system,
it also refers to the execution of a computer environment, including con­
tents of memory. name of the current directory, status of files, informa­
tion recorded at login time, and various other items.

G-B IRIS·4D User's Guide

Glossary

program
The instructions given to a computer on how to do a specific task. Pro­
grams are user-executable software.

read-ahead capability
The ability of the UNIX system to read and interpret your input while
sending output information to your terminal in response to previous
input. The UNIX system separates input from output and processes each
correctly.

relative pathname
The pathname to a file or directory which varies in relation to the direc­
tory in which you are currently working.

remote system

root

A system other than the one on which you are working.

The source directory of all files and directories in the file system; desig­
nated by the slash character (f).

screen editor
An editing program in which text is operated on relative to the position
of the cursor on a visual display. Commands for entering, changing, and
removing text involve moving the cursor to the area to be altered and
performing the necessary operation. Changes are viewed on the terminal
display as they are made. See text editor, compare with line editor.

search pattern
See string.

search string
See string.

secondary prompt

shell

A cue displayed at your terminal by the shell to tell you that the com­
mand typed in response to the primary prompt is incomplete. The UNIX
system default secondary prompt is the "greater than" character (».

A UNIX system program that handles the communication between you
and the computer. The shell is also known as a command language inter­
preter because it translates your commands into a language understand­
able by the computer. The shell accepts commands and causes the
appropriate program to be executed.

Glossary G-9

Glossary

shell procedure
An executable file that is not a compiled program. A shell procedure
calls the shell to read and execute commands contained in a file. This
lets you store a sequence of commands in a file for repeated use. It is (
also called a shell program or command file. See executable file. . .

silent character
See hidden character.

software
Instructions and programs that tell the computer what to do. Contrast
with hardware.

source code
The uncompiled version of a program written in a language such as C or
Pascal. The source code must be translated to machine language by a
program known as a compiler before the computer can execute the pro­
gram.

special character
A character having special meaning to the shell program and used for
common shell functions such as file redirection, piping, background exe-
cution, and file-name expansion. The special characters include <, >, I, ;, (
&, *, ?, [, and].

special file
A file (called a device driver) used as an interface to an input/output dev­
ice, such as a user terminal, a disk drive, or a line printer.

standard input
An open file that is normally connected directly to the keyboard. Stan­
dard input to a command normally goes from the keyboard to this file
and then into the shell. You can redirect the standard input to come from
another file instead of from the keyboard; use an argument in the form
< file. Input to the command will then come from the specified file.

standard output
An open file that is normally connected directly to a primary output dev­
ice, such as a terminal printer or screen. Standard output from the com­
puter normally goes to this file and then to the output device. You can
redirect the standard output into another file instead of to the printer or (
screen; use an argument in the form> file. Output will then go to the ,
specified file.

string
Designation for a particular group or pattern of characters, such as a
word or phrase, that may contain special characters. In a text editor, a

G-10 IRIS-4D User's Guide

Glossary

context search interprets the special characters and attempts to match the
specified pattern with a string in the editor buffer.

string variable
A sequence of characters that can be the value of a shell variable. See
variable.

subdirectory
A directory pointed to by a directory one level above it in the file system
organization; also called a child directory.

system administrator
The person who monitors and controls the computer on which your
UNIX system runs; sometimes referred to as a super-user.

terminal
An input/output device connected to a computer system, usually consist­
ing of a keyboard with a video display or a printer. A terminal allows
you to give the computer instructions and to receive information in
response.

text editor
Software for creating, changing, or removing text with the aid of a com­
puter. Most text editors have two modes--an input mode for typing in
text and a command mode for moving or modifying text. Two examples
are the UNIX system editors ed and vi. See line editor and screen edi­
tor.

text formatter
A program that prepares a file of text for printed output. To make use of
a text formatter, your file must also contain some special commands for
structuring the final copy. These special commands tell the formatter to
justify margins, start new paragraphs, set up lists and tables, place
figures, and so on. Two text formatters available as add-ons to your
UNIX system are nroff and troff.

text input mode
A text editing mode in which the characters you type are entered as text
into the text editor's buffer. To execute a command, you must leave text
input mode. See command mode, compare with append mode and
insert mode.

timesharing
A method of operation in which several users share a common computer
system seemingly simultaneously. The computer interacts with each user
in sequence, but the high-speed operation makes it seem that the com­
puter is giving each user its complete attention.

Glossary G-11

Glossary

tool

trofT

tty

A package of software programs.

A text formatter available as an add-on to the UNIX system. The trofT
program drives a phototypesetter to produce high-quality printed text
from a file. See text formatter.

Historically, the abbreviation for a teletype terminal. Today, it is gen­
erally used to denote a user terminal.

user-defined
Something determined by the user.

user-defined variable
A named variable given a value by the user. See variable.

UNIX system
A general-purpose, multiuser, interactive,time-sharing operating system
developed by AT&T BeIlLaboratories. The UNIX system allows lim­
ited computer resources to be shared by several users and efficiently
organizes the user's interface to a computer system.

utility
Software used to carry out routine functions or to assist a programmer or
system user in establishing routine tasks.

variable
A symbol whose value may change. In the shell, a variable is a symbol
representing some string of characters (a string value). Variables may
be used in an interactive shell as well as within a shell procedure. Within
a shell procedure, positional parameters and keyword parameters are two
forms of variables.

video display terminal
A terminal that uses a television-like screen (a monitor) to display infor­
mation. A video display terminal can display information much faster
than printing terminals.

visual editor
See screen editor.

working directory
See current directory.

G-12 IRIS-4D User's Guide

•
Date

Your name

Title

Department

Company

Address

Phone

Silicon Graphics, Inc.

COMMENTS

Manual title and version ____________________ _

Please list any errors, inaccuracies, or omissions you have found in this manual

Please list any suggestions you may have for improving this manual

.~

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 45 MOUNTAIN VIEW, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Silicon Graphics, Inc.
Attention: Technical Publications
2011 N. Shoreline Boulevard
Mountain View, CA 94039-7311

~\ ,~

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATE:

