FORTRAN 77 Reference
Manual Pages

IRIS-40 Series

%Pg SiliconGraphics
Computer Systems

Documen t number: 007-0621-030

FORTRAN 77 Reference
Manual Pages

Document Version 3.0

Document Number 007-0621-030

9/90

© Copyright 1990, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary and confidential information of
Silicon Graphics, Inc., and is protected by Federal copyright law. The
contents of this document may not be disclosed to third parties, copied
or duplicated in any form, in whole or in part, without the express
written permission of Silicon Graphics, Inc. ' ‘

U.S. Government Limited Rights

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject Lo restrictions as set forth in
subdivision (b) (2) of the Rights in Technical Data and Computer
Software clause at 52.227-7013. Contractor/manufacturer is Silicon
Graphics Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-
7311.

FORTRAN 77 Reference Manual Pages
Document Version 3.0
Document Number 007-0621-030

Silicon Graphics, Inc.
Mountain View, California

TRIS™, IRIX™, and POWER FORTRAN Accelerator™ are trademarks of
Silicon Graphics, Inc. UNIX™ is a trademark of AT&T Bell Laboratories.

Preface

Here are your FORTRAN 77 Reference Manual Pages. You may place them
behind your FORTRAN 77 Programmer’s Guide or FORTRAN 77 Reference
Manual or put them in the binder labelled IRIS-4D Optional Manual Pages.

You received this binder with your IRIS-4D Series Reference Manuals.

ASA(1) Silicon Graphics ASA(1)

NAME
asa — interpret ASA carriage control characters

SYNOPSIS
asa [files]

DESCRIPTION
Asa interprets the output of FORTRAN programs that utilize ASA carriage
control characters. It processes either the files whose names are given as
arguments or the standard input if no file names are supplied. The first
character of each line is assumed to be a control character; their meanings
are:

” * (blank) single new line before printing

0 double new line before printing

1 new page before printing

+ overprint previous line.

Lines beginning with other than the above characters are treated as if they
began with ” *. The first character of a line is not printed. If any such lines
appear, an appropriate diagnostic will appear on standard error. This pro-
gram forces the first line of each input file ta start on a new page.

EXAMPLE
To correctly view the output of FORTRAN programs which use ASA car-
riage control characters, asa could be used as a filter thusly:

a.out | asa | Ipr

and the output, properly formatted and paginated, would be directed to the
line printer. FORTRAN output sent to a file could be viewed by:

asa file

SEE ALSO
fsplit(1)

ORIGIN
AT&T V.3

April 1990 -1- Version 3.0

F77(1)

NAME

Silicon Graphics F77(1)

£77 — MIPS FORTRAN 77 compiler

SYNOPSIS

77 [option] ... file

DESCRIPTION

{77, the MIPS ucode FORTRAN 77 compiler, produces files in the follow-
ing formats: MIPS object code in MIPS extended coff format (the normal
result), binary or symbolic ucode, ucode object files and binary or symbolic

assembly language.

f77 accepts several types of file arguments. file argument types are indi-
cated by suffixes. Intermediate files and results files are usually placed in
files whose names are generated from file by removing leading directories
from file and substituting a different suffix. The suffixes accepted and gen-
erated by f77 are the following:

Suffix

ok QEubEL SO F =~

~

.U

File Type

FORTRAN source file

C macro preprocessor output

PFA listing file

PFA intermediate file

object file

M4 preprocessor output

RATFOR source file

symbolic assembly language source

ucode object file

binary ucode produced by the front end
FORTRAN source file .

binary assembly language produced by the code
generator and the symbolic to binary assembler
binary ucode produced by the ucode merger
binary ucode produced by the optimizer

binary ucode produced by the ucode object file
splitter

symbol table for binary ucode, symbolic ucode,
or binary assembly language

symbolic ucode

file arguments whose suffixes are f or .F are compiled, and each resulting
object program is placed in a .o file. The .0 file is deleted when a single
source program is compiled and loaded all at once.

April 1990

-1- Version 3.0

F77(1)

Silicon Graphics F77(1)

RATFOR source programs, .r files, are first transformed by ratfor(1) and
then compiled by f77 producing .o files.

J77 always defines the C preprocessor macros sgi, mips, host_mips, unix,
SVR3, SYSTEM_SYSYV, and MIPSEB to the C macro preprocessor. 77
automatically calls the C preprocessor cpp(1), and defines the C preproces-
sor macro LANGUAGE_FORTRAN when a f or .r file is being compiled.

If the highest level of optimization is specified (with the —O3 flag) or only
ucode object files are to be produced (with the —j flag) each FORTRAN 77
or RATFOR source file is compiled into a ucode object file (.u).

Symbolic assembly language source programs, .s files, are assembled and
produce a .o file. f77 will define the C preprocessor macro
LANGUAGE_ASSEMBLY when a s file is being compiled.

file arguments whose names end with .B, .0, .S, .M, and .T primarily aid
compiler development and are not generally used.

If the environment variable TMPDIR is set, the value is used as the direc-
tory to place any temporary files rather than the default /tmp.

The following options are interpreted by f77. See ld(1) for load-time
options.

—C Suppress the loading phase of the compilation and force an object
file to be produced even if only one program is compiled.

—g0 Have the compiler produce no symbol table information for sym-
bolic debugging. This is the default.

—gl Have the compiler produce symbol table information for accurate
but limited symbolic debugging of partially optimized code. This
option overrides the optimization options (-0, —01, —02, —03).

—gor—g2
Have the compiler produce additional symbol table information
for full symbolic debugging and not do optimizations that limit
full symbolic debugging. These options override the optimization
options (-0, -01, -02, -03).

—g3 Have the compiler produce additional symbol table information
for full symbolic debugging for fully optimized code. This option
makes the debugger inaccurate. This option can be used with the
optimization options (-0, —-01, -02, —03).

-w Suppress warning messages.

April 1990 -2- Version 3.0

F77(1)

Silicon Graphics F77(1)

Do not permit any profiling. If loading happens, the standard run-
time startup routine (crt/.0) is used; no profiling library is loaded.

—p or —pl

-00
-01

Set up for profiling by periodically sampling the value of the pro-
gram counter. This option only effects the loading. When load-
ing happens, this option replaces the standard runtime startup rou-
tine with the profiling runtime startup routine (mcrtl.o) and
searches the level 1 profiling library (libprofl.a) When profiling
happens, the startup routine calls monstartup(3) and produces a
file mon.out that contains execution-profiling data for use with the
postprocessor prof(1).

Turn off all optimizations.

Turn on all optimizations that can be done quickly. This is the
default.

-0 or-02

-03

Invoke the global ucode optimizer.

Do all optimizations, including global register allocation. With
this option, a ucode object file is created for each FORTRAN 77
or RATFOR source file and left in a .u file. The newly created
ucode object files, the ucode object files specified on the com-
mand line, the runtime startup routine, and all of the runtime
libraries are ucode linked. Optimization is done on the resulting
ucode linked file and then it is linked as normal producing an
a.out file. No resulting .o file is left from the ucode linked result
as in previous releases. —c cannot be specified with —03.

—feedback file

—cord

-

April 1990

Used with the —cord option to specify file to be used as a feed-
back file. This file is produced by prof(1) with its —feedback
option from an execution of the program produced by pixie(1).
Multiple feedback files may be provided as —feedbackfilel
—feedbackfile2... —feedbackfilen.

Run the procedure rearranger, cord(1), on the resulting file after
linking. The rearrangement is done to improve the caching and
paging performance of the program’s text. The output of cord(1)
is left in the file specified by the —o output option or ‘a.out’ by
default. At least one —feedback file must be specified.

Compile the specified source programs, and leave the ucode
object file output in .u files. Please note that this switch is non-
standard and may not be supported across product lines.

-3- Version 3.0

F77(1)

Silicon Graphics F77(1)

~ko output

—0 output

Name the output file created by the ucode loader as output. This
file is not removed. If this file is compiled, the object file is left in
a file whose name consists of output with the suffix changed to a
.0. If output has no suffix, a .o suffix is appended to ‘output.
Please note that this switch is non-standard and may not be sup-
ported across product lines.

Pass options that start with a —k to the ucode loader. This option
is used to specify ucode libraries (with —klx) and other ucode
loader options. Please note that this switch is non-standard and
may not be supported across product lines.

Comopile the specified source programs and leave the symbolic
assembly language output in corresponding files suffixed with .s.
If the —O3 option is used, then a single file, u.out.s, is produced.

Run only the C macro preprocessor and put the result for each
source file (i.e., f, .r, or .s file) in a corresponding .i file after
being preprocessed by the appropriate preprocessors. The .i file
has no “‘#°* lines in it.

Run only the C macro preprocessor on the files (regardless of any
suffix or not), and send the result to the standard output. This is

also done for .f and .r files after being processed by appropriate
preprocessors.

Name the final output file output. If this option is used, the file
a.out is undisturbed.

~Dname=def

—Dname

—Uname
~Idir

-G num

April 1990

Define the name to the C macro preprocessor, as if by *‘#define’’.
If no definition, def, is given, the name is defined as "1".

Remove any initial definition of name.

“#include”’ files whose names do not begin with */”* are always
sought first in the directory of the file argument, then in direc-
tories specified in —I options, and finally in the standard directory
(/usrlinclude). »

This option will cause ““#include’’ files never to be searched for
in the standard directory (/usr/include).

Specify the maximum size, in bytes, of a data item that is to be
accessed from the global pointer. num is assumed to be a decimal
number. If num is zero, no data is accessed from the global
pointer. The default value for num is 8 bytes. Data stored off of
the global pointer can be accessed by the program quickly, but

-4- Version 3.0

F77(1)

Silicon Graphics F77(1)

this space is limited. Large programs may overflow the space
accessed by the global pointer at load time. If the loader gives the
error message Bad -G num value, recompile with a smaller
—G num value (less than 8). Please note that this switch is non-
standard and may not be supported across product lines.

-V Print the passes as they execute with their arguments and their
input and output files.

e\ Print the version of the driver and the versions of all passes. This
is done with the what(1) command. Please note that this switch is
non-standard and may not be supported across product lines.

—cpp Run the C macro preprocessor on the files before compiling. This
is the default.

—nocpp Do not run the C macro preprocessor on C and assembly source
files before compiling.

—Olimit num

Specify the maximum size, in basic blocks, of a routine that will
be optimized by the global optimizer. If a routine has more than
this number of basic blocks it will not be optimized and a mes-
sage will be printed. An option specifying that the global optim-
izer is to be run (-0, —02, —03) must also be specified. num is
assumed to be a decimal number. The default value for num is
500 basic blocks.

The following options are specific for f77:

—mp

Enable the multiprocessing directives.

—mp_keep

—pfa

April 1990

Keep the compiler generated temporary file and generate correct
line numbers for debugging multiprocessed DO loops. This switch
should be used with either the —mp or the —pfa switch. The saved
file name has the form:
$TMPDIR/P<user_subroutine_name><machine_name><pid>. If
the TMPDIR environment variable is not set, then the file can be
found in /tmp.

Run the pfa(1) preprocessor to automatically discover parallelism
in the source code. This also enables the multiprocessing direc-
tives. There are two optional arguments: —pfa list will run pfa,
and also produce a listing file with suffix ./ explaining which loops
were parallelized, and if not, why not. —pfa keep runs pfa, pro-
duces the listing file, and also keeps the transformed multipro-
cessed FORTRAN intermediate file in a file with suffix .m.

-5- Version 3.0

F77(1)

Silicon Graphics F77(1)

—pfaprepass

This option permits source code to be passed through pfa multiple
times. pfa is run using the options found on the —pfaprepass
option, except that no parallel compiler directives are generated.
The output from this pre-pass is then fed back into pfa, using the
normal options. This is occasionally useful on a few programs. In
the vast majority of cases, multiple passes have no effect. This
option should only be used when it has already determined that
there is a good reason for doing so. Options to pfa appear on the
—pfaprepass option exactly as in the —WK option. Multiple
—pfaprepass options may be used; they are executed in left to
right order.

—mp_schedtype=type

Has the same effect as putting a CSMP_SCHEDTYPE=type direc-
tive at the beginning of the file. The supported types are simple,
interleave, dynamic, gss, and runtime. See the FORTRAN 77
Programmer’ s Guide for more details.

—chunk=integer

Has the same effect as putting a CSCHUNK =integer directive at
the beginning of the file. See the FORTRAN 77 Programmer’s
Guide for more details.

Make the default integer constants and variables short (2 bytes).
All logical quantities will be short.

Make the default integer constants and variables long (4 bytes).
All logical quantities will be long. This is the default.

—onetrip or—1

—66

Compile DO loops that execute at least once if reached. (FOR-
TRAN 77 DO loops are not executed if the upper limit is smaller
than the lower limit.)

Suppress extensions that enhance FORTRAN 66 compatibility.

—check_bounds

-C

-U

April 1990

Generate code for runtime subscript range checking. The default
suppresses range checking.

Do not “‘fold’” cases. f77 is normally a case-insensitive language
(for example a is equivalent to A). The —U option causes f77 to
treat uppercase and lowercase separately. Note that the compiler
only recognizes keywords in lowercase when this flag is used.

-6- Version 3.0

F77(1)

Silicon Graphics F77(1)

-u Make the default type of a variable undefined, rather than using the
default FORTRAN rules.

-wl Suppress the warning message for unused variables (but permit
other warnings unless —w is specified. Please note that this switch
is non-standard and may not be supported across product lines.
This is the default.

-w0 Do not suppress the warning message for unused variables. Please
note that this switch is non-standard and may not be supported
across product lines.

—w66 Suppress only FORTRAN 66 compatibility warnings messages.

-F Apply the RATFOR preprocessor to relevant files and put the result
in files whose names have their suffix changed to f. (No .o files
are created.)

-m Apply the M4 preprocessor, m4(1), to each RATFOR source file
before transforming it with the ratfor(1) preprocessor. The tem-
v porary file used as the output of m4(1), is a .p file. This temporary

file is removed unless the —K option is specified.

-R Use any remaining characters in the argument as RATFOR options
whenever processing a .r file. The temporary file used as the out-
put of the RATFOR preprocessor is that of the last component of
the source file with a f substituted for the .». This temporary file is
removed unless the —K option is specified.

—automatic
Place local variables on the runtime stack. The same restrictions
apply for this option as they do for the automatic keyword. This is
the default.

—static Cause all local variables to be statically allocated.

—noextend_source
Cause the compiler is to restrict the range of FORTRAN source
text from column 1 through column 72.

—extend_source
Pad each source line if necessary to make it 132 bytes long and
give a warning if it exceeds 132 bytes.

—d_lines
The d_lines option specifies that lines with a D in column 1 are to
be compiled and not to be treated as comment lines. The default is
to treat lines with a D in column 1 as comment lines.

April 1990 . -7- Version 3.0

F77(1)

Silicon Graphics F77(1)

—col72 Sets the source statement format to the following:

Column - Contents
1-5 Statement label
6 Continuation indicator
7-72 Statement body
73-end Ignored
—col12(0

Sets the source statement format to the following:
Column Contents
1-5 Statement label
6 : Continuation indicator
7-120 _ Statement body
121-end Ignored

—old_rl Use 'pre-4D1-3.2 release record length specification for unformat-
ted direct access file i.e. the record length specifier is interpreted as
the number of bytes instead of number of words.

—vms_cc
Use VMS FORTRAN carriage control interpretation on unit 6.

—vms_stdin
Allow rereading from stdin after EOF has been encountered.

—vms_endfile
Write a VMS endfile record to the output file when ENDFILE
statement is executed and allow subsequent reading from an input
file after an endfile record is encountered.

~N[qgxscnl]nnn
Make static tables in the compiler bigger. The compiler will com-
plain if it overflows its tables and suggest you apply one or more of
these flags. These flags have the following meanings:

q Maximum number of equivalenced variables. Default is
150.

b Maximum number of external names (common block
names, subroutine and function names). Default is 200.

S Maximum number of statement numbers. Default is 401.

c Maximum depth of nesting for control statements (e.g.

DO loops). Default is 20.

April 1990 -8- Version 3.0

F77(1)

Silicon Graphics F77(1)
n Maximum number of identifiers. Default is 1009.
1 Maximum number of labels. Default is 125.

—-ZG Load the program with IRIS-4D Series compatible FORTRAN
library routines getarg and iargc. NOTE: This option is main-
tained for backward compatibility with older IRIS systems only
and should not be used. Instead, the FORTRAN code should be
modified to use the IRIS-4D Series default library routines
getarg (3f) and iargc(3f).

~We,argll,arg2]...
Pass the argument[s] argi to the compiler pass ¢. The c is one of
[pfjusmocablKyz]. The c¢ selects the compiler pass in the same
way as the —t option (see —t below). Please note that this switch is
not standard and may not be supported across product lines.

When using either the Graphics Library (-Igl), the Shared Graphics Library
(-lgl_s), or the Distributed Graphics Library (—1dgl) you must also specify
the Fortran Graphics Library Interface (—Ifgl) on the link line. For exam-
ple:

£77 file.f -1fgl -1gl_s

Use the Shared Graphics Library (—lgl_s) to ensure portability across the
IRIS-4D product line.

The following three options when used at compile time generate various
degrees of misaligned data in common blocks, and the code to deal with the
misalignment. You must include these options to f77 in the compilation of
all modules that reference or define common blocks with misaligned data.
Failure to do so could cause core dumps (if the trap handler is not used), or
mismatched common blocks.

To load the system libraries capable of handling misaligned data, use the
—L/usr/lib/align switch at load time. The trap handler may be needed to
handle misaligned data passed to system libraries not included in the
lusrlliblalign directory (see fixade (3f) and unaligned(3x)).

—align8 Permits objects larger than 8 bits to be aligned on 8-bit boundaries.
Using this option will have the largest impact on performance.

—align16
Permits objects larger than 16 bits to be aligned on 16-bit boun-
daries; 16-bit objects must still be aligned on 16-bit boundaries
(MC68000-like alignment rules).

April 1990 -9~ : Version 3.0

F77(1) Silicon Graphics F77(1)

—align32
Permits objects larger than 32 bits to be aligned on 32-bit boun-
daries; 16-bit objects must still be aligned on 16-bit boundaries,
and 32-bit objects must still be aligned on 32-bit boundaries.

The options described below primarily aid compiler development and are
not generally used:

—Hc Halt compiling after the pass specified by the character ¢, produc-
ing an intermediate file for the next pass. The ¢ can be [fjusmoca]
(see —t below for definitions). It selects the compiler pass in the
same way as the —t option. If this option is used, the symbol table
file produced and used by the passes, is the last component of the
source file with the suffix changed to .T and is not removed.
Please note that this switch is non-standard and may not be sup-
ported across product lines.

-K Instead of putting intermediate files in /tmp or TMPDIR, use the
standard algorithm for generating file names with the conventional
suffix for the type of file (for example .B file for binary ucode pro-
duced by the front end). These intermediate files are never
removed even when a pass encounters a fatal error. When ucode
linking is performed and the —K option is specified the basename
of the files created after the ucode link is u.out by default. If —ko
output is specified, the basename of the object file is output with
the appropriate suffix appended at the end if output has no suffix.
Please note that this switch is non-standard and may not be sup-
ported across product lines.

The options —t[hpfjusmocablrFIUMKnyz], —hpath, and —Bstring select a
name to use for a particular pass, startup routine, or standard library. These
arguments are processed from left to right so their order is significant.
When the —B option is encountered, the selection of names takes place
using the last —h and —t options.

Therefore, the —B option is always required when using —h or —t. Sets of
these options can be used to select any combination of names.

Any of the —p[01] options and any of the —g[0123] options must precede all
—B options because they can affect the location of runtimes and what run-
times are used.

If no —t argument has been processed before the —B then a —Bstring is
passed to the loader to use with its —Lx arguments.

April 1990 -10 - Version 3.0

F77(1) Silicon Graphics F77(1)

—t[hpfjusmocablr FIUMKnyz]
Select the names. The names selected are those designated by the
characters following the —t option according to the following table:

- Name Character : v

include h (see note below)
cpp
pfa
fcom
ujoin
uld
usplit
umerge
uopt
ugen’
as0
asl
d
[m]crt[1n].0
libF77.a
libl77.a
libU77.a
libisam.a
libm.a
libprofl.a
ftoc
cord

NeEZuommT o8 60 ®ESTRD

Note: although f77 may be used to compile source files in such languages as
C and Pascal, only the name used for the front-end of the FORTRAN com-
piler is selected by the —tf option.

—hpath Use path rather than the directory where the name is normally
found. Please note that this switch is non-standard and may not be
supported across product lines.

—Bstring ’ : : :

Append string to all names specified by the —t option. If no —t
option has been processed before the —B, the —t option is assumed
to be ‘‘hpfjusmocabllFTUMKnyz”’. This list designates all names.
Invoking the compiler with a name of the form f77string has the
same effect as using a —Bstring option on the command line.

Other arguments are assumed to be either loader options or FORTRAN 71
compatible object files, typically produced by an earlier f77 run, or perhaps
libraries of FORTRAN 77 compatible routines. These files, together with
the results of any compilations specified, are loaded in the order given,

April 1990 -11- Version 3.0

F77(1)

FILES

BUGS

Silicon Graphics F77(1)

producing an executable program with the default name a.ouz.

/tmp/ctm*
/usr/lib/cpp
fusr/lib/pfa
fust/lib/fcom
/ust/lib/ujoin
fust/bin/uld
fust/lib/usplit
fust/lib/umerge
/ust/lib/uopt
/usr/lib/ugen
/usr/lib/as0
fusr/lib/as1
fusr/lib/cord
fust/lib/ftoc
fust/lib/crtl.o
fusr/lib/crtn.o
fust/lib/mertl.o
fusr/lib/libc.a
fust/lib/libfgl.a
fust/lib/libfpe.a
/ust/lib/libgl.a
fust/lib/libgl_s.a
/ust/lib/libprof1.a
fust/lib/libF77.a

/usr/lib/libI77_mp.a

fust/lib/libI77.a
fust/lib/libU77.a
fust/lib/libm.a
/fust/lib/libisam.a
/usr/include
fusr/bin/1d
[fusr/bin/ratfor
mon.out

temporary
C macro preprocessor

PFA preprocessor

FORTRAN 77 front end A

binary ucode and symbol table joiner

ucode loader

binary ucode and symbol table splitter
procedure intergrator

optional global ucode optimizer

code generator ’ .
symbolic to binary assembly language translator
binary assembly language assembler and reorganizer
procedure rearranger ,

feedback file to reorder list translator

runtime startup

runtime startup

startup for profiling

standard library, see intro(3)

FORTRAN graphics library interface

floating point exception handler library, see fsigfpe (3f)
graphics library

shared graphics library

level 1 profiling library

FORTRAN intrinsic function library
Multi-processing routines

FORTRAN I/O library

FORTRAN UNIX interface library

math library

indexed sequential access method library
standard directory for ¢‘#include’’ files

MIPS loader

rational FORTRAN dialect preprocessor

file produced for analysis by prof(1)

The compiler attempts to continue after finding semantic errors. These
errors may result in compiler internal errors.

SEE ALSO
as(1), asa(1), cc(1), cord(1), cpp(1), dbx(1), edge(1), fsplit(1), ftoc(1), 1d(1),
m4(1), pfa(l), pixie(1), prof(1), ratfor(1), uconv(1), what(1), fixade(3f),
fsigfpe(3f), monstartup(3c), mp(3f), unaligned(3x).

April 1990

-12- Version 3.0

F77(1)

Silicon Graphics F77(1)

IRIS-4D Series Compiler Guide

FORTRAN 77 Programmer’s Guide
FORTRAN 77 Language Reference Manual
POWER FORTRAN Accelerator User's Guide

DIAGNOSTICS

NOTES

ORIGIN

The diagnostics produced by 77 are intended to be self-explanatory. Occa-
sional messages can be produced by the assembler or loader.

The standard library, /usr/lib/libc.a, is 1oaded by using the —ic loader option
and not a full path name. The wrong one could be loaded if there are files
with the name libc.astring in the directories specified with the —L loader
option or in the default directories searched by the loader.

The handling of include directories and libc.a is confusing.

Since cpp does not recognize FORTRAN comments, a FORTRAN com-
ment containing the character sequence ‘‘/*’” will result in deleting the rest
of the FORTRAN program. The FORTRAN error message will usually
refer to the last source line which can be very confusing. When this hap-
pens, try the —nocpp option.

MIPS Computer Systems

April 1990 -13- Version 3.0

FSPLIT(1) Silicon Graphics FSPLIT(1)
NAME
fsplit — split FORTRAN or RATFOR files
SYNOPSIS
fsplit options files
DESCRIPTION
Fisplit splits the named file (s) into separate files, with one procedure per
file. A procedure includes blockdata, function, main, program, and subrou-
tine program segments. Procedure X is put in file X.f, X.r, or X .e depending
on the language option chosen, with the following exceptions: main is put
in the file MAIN.[efr] and unnamed blockdata segments in the files
blockdataN .[efr] where N is a unique integer value for each file.
The following options pertain:
—f (default) Input files are FORTRAN.
—r Input files are RATFOR.
=8 Strip FORTRAN input lines to 72 or fewer characters with trailing
blanks removed.
NOTES
The characters dot (.), underbar (), and dollar ($) are allowed as name
characters in MIPS FORTRAN. If used in subroutine or function names
they are also used in the file names of the created files,
If more than one main program is encountered in the list of file (s), fsplit
will write those after the first in files named MAINn [efr] where the “‘n’’ is
1 for the second main, 2 for the third, etc.
Comment lines after an end and before the next non-comment line are dis-
carded. Comment lines before the first non-comment line are discarded.
SEE ALSO
csplit(1), split(1).
ORIGIN
AT&T V.3

April 1990 -1- Version 3.0

RATFOR(1) Silicon Graphics RATFOR(1)

NAME
ratfor — rational FORTRAN dialect

SYNOPSIS
ratfor [option ...] [filename ...]

DESCRIPTION
. Ratfor converts a rational dialect of FORTRAN into ordinary irrational (
" FORTRAN. Ratfor prov1des control flow constructs essentially identical to
those in C:.

statement grouping:
{ statement; statement; statement }
decision—makmg.
if (condition) statement [else statement]
switch (integer value) {
case integer: statement

[default:] statement

}

loops: while (condition) statement
~ for (expression; condition; expression) statement
do limits statement
repeat statement [until (condition)] (
break
next

and some syntactic sugar to make programs easier to read and write:

free form input:
multiple statements/line; automatic continuation

comments:
this is a comment

translation of relationals:
>, >=, etc., become .GT., .GE., etc.

return (expression)
returns expression to caller from function

define: define name replacement
include: include filename : (
Ratfor is best used with f77(1). .

April 1990 -1- Version 3.0

RATFOR(1) Silicon Graphics K RATFOR(1)

SEE ALSO
£77(1)
B. W. Kemighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

ORIGIN
AT&T V.3

April 1990 -2- Version 3.0

UCONYV(1) Silicon Graphics UCONV(1)

NAME _
uconv — convert FORTRAN unformatted file
SYNOPSIS
uconv [—ic] [filel] [—r num] [—o file2]
DESCRIPTION

uconv converts a FORTRAN unformatted data file either from IRIS Series
2000 or IRIS Series 3000 FORTRAN form to IRIS-4D Series FORTRAN
form, or vice versa. uconv allows FORTRAN users to port their otherwise
non-portable data files opened as FORM="UNFORMATTED".

The uconv command has the following options:

—i Identifies the input file as an IRIS Series 2000 or IRIS Series 3000
FORTRAN unformatted data file. This is the default. Note: the —¢
option may not be specified with this option.

— Identifies the input file as an IRIS4D Series FORTRAN unformat-
ted data file. Note: the —i option may not be specified with this
option.

—r num Identifies the input and output files as FORTRAN unformatted
direct access data files, with record length num. Absence of this
switch identifies the files as FORTRAN unformatted sequential
access data files. :

filel The input file to be converted. Default is stdin.

—ofile2 Specifies the output file to be created. file2 must not exist. If this
option is absent, output is printed to stdout.

AUTHOR
Deborah Ryan

NOTES
uconv can not convert IRIS Series 2000 or IRIS Series 3000 FORTRAN
data files opened as FORM="BINARY". uconv can not convert IRIS Series
2000 or IRIS Series 3000 FORTRAN data files opened as
FORM="UNFORMATTED" with the $BINARY option.

SEE ALSO
Porting FORTRAN Code to IRIS-4D Series Workstations.

ORIGIN
Silicon Graphics, Inc.

April 1990 -=1- Version 3.0

ACCESS(2)

NAME

Silicon Graphics ACCESS(2)

access — determine accessibility of a file

FORTRAN SYNOPSIS

integer function access (name, mode)
character*(*) name, mode

DESCRIPTION

Path points to a path name naming a file. access checks the named file for
accessibility according to mode using the real user ID in place of the effec-
tive user ID and the group access list (including the real group ID) in place
of the effective group ID. The variable mode may include in any order and
in any combination one or more of:

r test for read permission
w test for write permission
X test for execute permission

(blank) test for existence

access will fail if one or more of the following are true:

[ENOTDIR]
[ENOENT]

[ENOENT]
[EACCES]

A component of the path prefix is not a directory.

Read, write, or execute (search) permission is
requested for a null path name.

The named file does not exist.

Search permission is denied on a component of the
path prefix.

[ENAMETOOLONG] The length of path exceeds {PATH_MAX}, or a path-

[ELOOP]

[EROFS]

[ETXTBSY]

[EACCES]

[EFAULT]

April 1990

name component is longer than {NAME _MAX]}.

Too many symbolic links were encountered in
translating the pathname.

Write access is requested for a file on a read-only file
system.

Write access is requested for a pure procedure (shared
text) file that is being executed.

Permission bits of the file mode do not permit the
requested access.

Path points outside the allocated address space for the
process.

-1- Version 3.0

ACCESS(2) Silicon Graphics ACCESS(2)

" The owner of a file has permission checked with respect to the “‘owner™
read, write, and execute mode bits. Members of the file’s group other than
the owner have permissions checked with respect to the *‘group™ mode
bits, and all others have permissions checked with respect to the “‘other”’
mode bits.

SEE ALSO
chmod(2), stat(2).

DIAGNOSTICS ‘
If the requested access is permitted, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

April 1990 -2- Version 3.0

ACCT(2) Silicon Graphics ACCT(2)

NAME

acct — enable or disable process accounting

FORTRAN SYNOPSIS

integer *4 function acct (path)
character *(*) path

DESCRIPTION

acct is used to enable or disable the system process accounting routine. If
the routine is enabled, an accounting record will be written on an account-
ing file for each process that terminates. Termination can be caused by one
of two things: an exit call or a signal [see exit(2) and signal(2)]. The effec-
tive user ID of the calling process must be superuser to use this call.

path points to a pathname naming the accounting file. The accounting file
format is given in acct(4).

The accounting routine is enabled if path is non-zero and no errors occur
during the system call. It is disabled if path is zero and no errors occur dur-
ing the system call.

acct will fail if one or more of the following are true:

[EPERM] The effective user of the calling process is not superuser.

[EBUSY] An attempt is being made to enable accounting when it is
already enabled.

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] One or more components of the accounting file pathname
do not exist.

[EACCES] The file named by path is not an ordinary file.

[EROFS] The named file resides on a read-only file system.

[EFAULT] path points to an illegal address.

SEE ALSO

exit(2), signal(2), acct(4).

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of
—1is returned and errno is set to indicate the error.

April 1990 -1- Version 3.0

BLOCKPROC(2) Silicon Graphics BLOCKPROC(2)

NAME

blockproc, unblockproc, setblockprocent, blockprocall, unblockprocall, set-
blockproccntall — routines to block/unblock processes

FORTRAN SYNOPSIS

integer*4 function blockproc (pid)
integer*4 pid;

integer*4 function unblockproc (pid)
integer*4 pid;

integer*4 function setblockpfoccnt (pid, count)
integer*4 pid;

integer*4 count;

integer*4 function blockprocall (pid)

integer*4 pid;

integer*4 function unblockprocall (pid)

integer*4 pid;

integer*4 function setblockproccntall (pid, count)
integer*4 pid;

integer*4 count;

DESCRIPTION

These routines provide a complete set of blocking/unblocking capabilities
for processes. Blocking is implemented with a counting semaphore in the
kernel. Each call to blockproc decrements the count. When the count
becomes negative, the process is suspended. When unblockproc is called,
the count is incremented. If the count becomes non-negative (>= 0), the
process is restarted. This provides both a simple, race free synchronization
ability between two processes and a much more powerful capability to syn-
chronize multiple processes.

In order to guarantee a known starting place, the setblockproccnt function
may be called, which will force the semaphore count to the value given by
count. New processes have their semaphore zeroed. Normally, count
should be set to 0. If the resulting block count is greater than or equal to
zero and the process is currently blocked, it will be unblocked. If the result-
ing block count is less than zero, the process will be blocked. Using this, a
simple rendezvous mechanism can be set up. If one process wants to wait
for n other processes to complete, it could set its block count to -n. This
would immediately force the process to block. Then as each process
finishes, it unblocks the waiting process. When the n’th process finishes the
waiting process will be awakened.

April 1990 -1- Version 3.0

BLOCKPROC(2) Silicon Graphics BLOCKPROC(2)

The blockprocall, unblockprocall, and setblockproccntall system calls per-
form the same actions as blockproc, unblockproc, and setblockproccnt,
respectively, but act on all processes in the given process’ share group. A
share group is a group of processes created with the sproc(2) system call. If
a process does not belong to a share group, the effect of the plural form of a
call will be the same as that of the singular form.

A process may block another provided that standard UNIX permissions are
satisfied.

A process may determine whether another is blocked by using the preri(2)
system call. It should be noted that since other processes may unblock the
subject process at any time, the answer should be interpreted as a snapshot
only.

These routines will fail and no operation will be performed if one or more
of the following are true:
[ESRCH] The pid specified does not exist.

[EPERM] The caller is not operating on itself, its effective user ID
is not super-user, and its real or effective user ID does
not match the real or effective user ID of the target pro-

cess.
[EINVAL] The count value that would result from the requested
blockproc, unblockproc or setblockproccnt is less than
PR_MINBLOCKCNT or greater than
PR_MAXBLOCKCNT as defined in sys/prctl.h.
SEE ALSO
sproc(2), prctl(2).
DIAGNOSTICS

Upon successful completion, 0 is returned. Otherwise, a value of —1 is
returned to the calling process, and errno is set to indicate the error. When
using the blockprocall, unblockprocall, and setblockproccntall calls, an
error may occur on any of the processes in the share group. These calls will
attempt to perform the given action on each process in the share group
despite earlier errors, and set errno to indicate the error of the last failure to
occur,

April 1990 -2- Version 3.0

BRK(2) Silicon Graphics BRK(2)

NAME
brk, sbrk — change data segment space allocation

FORTRAN SYNOPSIS
integer *4 function brk (endds)
character * (*) endds

character * 4096 function sbrk (incr)
integer *4 incr

DESCRIPTION

brk and sbrk are used to change dynamically the amount of space allocated
for the calling process’s data segment [see exec(2)]. The change is made
by resetting the process’s break value and allocating the appropriate amount
of space. The break value is the address of the first location beyond the end
of the data segment. The amount of allocated space increases as the break
value increases. Newly allocated space is set to zero. If, however, the
same ‘memory space is reallocated to the same process its contents are
undefined.

brk sets the break value to endds and changes the allocated space accord-
ingly.
Sbrk adds incr bytes to the break value and changes the allocated space

accordingly. Incr can be negative, in which case the amount of allocated
space is decreased. :

brk and sbrk will fail without making any change in the allocated space if
one or more of the following are true:

[ENOMEM] Such a change would result in more space being
allocated than is allowed by the system-imposed
maximum process size {PROCSIZE_MAX}. [see
intro(2)].

[EAGAIN] There is insufficient amount of operating system
memory to hold the data structures needed to
describe the requested space. This is likely a tem-

porary failure.
SEE ALSO
exec(2), intro(2), shmop(2), getrlimit(2), ulimit(2), end(3C).
DIAGNOSTICS

Upon successful completion, brk returns a value of 0 and sbrk returns the
old break value. Otherwise, a value of —1 is returned and errno is set to
indicate the error.

April 1990 -1- Version 3.0

CHDIR(2) Silicon Graphics CHDIR(2)

NAME
chdir — change working directory
FORTRAN SYNOPSIS

integer function chdir (path)
character*(*) path

DESCRIPTION
Path points to the path name of a directory. chdir causes the named direc-
tory to become the current working directory, the starting point for path
searches for path names not beginning with /.

chdir will fail and the current working directory will be unchanged if one or
more of the following are true:

[ENOTDIR] A component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the
path name.

[EFAULT] Path points outside the allocated address space of the
process.

[ELOOP] A path name lookup involved too many symbolic
links.

[ENAMETOOLONG] The length of path exceeds {PATH_MAX], or a path-
name component is longer than {NAME_MAX} .

SEE ALSO
chroot(2), getwd(3C).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
—lisreturned and errno is set to indicate the error.

April 1990 -1- Version 3.0

CHOWN(2) Silicon Graphics CHOWN(2)

NAME
chown, fchown — change owner and group of a file (System V and 4.3BSD)

FORTRAN SYNOPSIS
integer *4 function chown (path, owner, group)
character * (*) path
integer *4 owner, group

integer *4 function fchown (fd, owner, group)
integer *4 fd, owner, group

DESCRIP’I'ION
Path points to a path name naming a file, and fd refers to the file descriptor
associated with a file. The owner ID and group ID of the named file are set
to the numeric values contained in owner and group respectively.

Only processes with effective user ID equal to the file owner or super-user
may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set-
group-ID bits of the file mode, 04000 and 02000 respectively, will be
cleared. Note that this has the side-effect of disabling mandatory file/record
locking.

The only difference between the System V and 4.3BSD versions is that the
43BSD versions allow either the owner or group ID to be left unchanged by
specifying itasa—1.

chown will fail and the owner and group of the named file will remain
unchanged if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the
path prefix.

[EPERM] The effective user ID does not match the owner of the
file and the effective user ID is not super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the allocated address space of the
process.

[ELOOP] A path name lookup involved too many symbolic
links.

[ENAMETOOLONG] The length of path exceeds {PATH_MAX}, or a path-
name component is longer than {NAME_MAX} .

April 1990 -1- Version 3.0

CHOWN(2) Silicon Graphics CHOWN(2)

fchown will fail if:

[EBADF] Fd does not refer to a valid descriptor.
[EINVAL) Fd refers to a socket, not a file.
SEE ALSO

chmod(2), fchmod(2).
chown(1) in the.User’s Reference Manual.
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

April 1990 -2- Version 3.0

CHROOT(2) Silicon Graphics CHROOT(2)

NAME
chroot — change root directory

FORTRAN SYNOPSIS
integer *4 function chroot (path)
character *(*) path

DESCRIPTION v | .
Path points to a path name naming a directory. chroot causes the named
directory to become the root directory, the starting point for path searches
for path names beginning with /. The user’s working directory is unaffected
by the chroot system call.

The effective user ID of the process must be super-user to change the root
directory.

The .. entry in the root directory is interpreted to mean the root directory
itself. Thus, .. cannot be used to access files outside the subtree rooted at

the root directory.

chroot will fail and the root directory will remain unchanged if one or more

of the following are true:

[ENOTDIR] Any component of the path name is not a directory.

[ENOENT] The named directory does not exist.

[EPERM] The effective user ID is not super-user.

[EFAULT] Path points outside the allocated address space of the
process.

[EINTR] A signal was caught during the chroot system call.

[ENOLINK] Path points to a remote machine and the link to that

-machine is no longer active.

[EMULTIHOP] Components of path require hopping to multiple remote

machines.
[ELOOP] A path name lookup involved too many symbolic links.
[ENAMETOOLONG]

A component of a path name exceeded 255 characters, or
an entire path name exceeded 1023 characters.

SEE ALSO
chdir(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
—1is returned and errno is set to indicate the error.

April 1990 -1- Version 3.0

CLOSE(2) Silicon Graphics CLOSE(2)

NAME

close — close a file descriptor

FORTRAN SYNOPSIS

integer*4 function close (fildes)
integer*4 fildes

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, fentl, or pipe
system call. close closes the file descriptor indicated by fildes. All out-
standing record locks owned by the process (on the file indicated by fildes)
are removed.

If a STREAMS [see intro(2)] file is closed, and the calling process had previ-
ously registered to receive a SIGPOLL signal [see signal(2) and sigset(2)]
for events associated with that file [see I_SETSIG in streamio(7)], the calling
process will be unregistered for events associated with the file. The last
close for a stream causes the stream associated with fildes to be dismantled.
If O_NDELAY is not set and there have been no signals posted for the
stream, close waits up to 15 seconds, for each module and driver, for any
output to drain before dismantling the stream. If the O NDELAY flag is set
or if there are any pending signals, close does not-wait for output to drain,
and dismantles the stream immediately.

The named file is closed unless one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.
[EINTR] A signal was caught during the close system call.
SEE ALSO

creat(2), dup(2), exec(2), fentl(2), intro(2), open(2), pipe(2), signal(2), sig-
set(2).
streamio(7) in the System Administrator’ s Reference Manual.

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of
—1isreturned and errno is set to indicate the error.

April 1990 -1- ' Version 3.0

CREAT(2) Silicon Graphics CREAT(2)

NAME
creat — create a new file or rewrite an existing one

FORTRAN SYNOPSIS
integer *4 function creat (path, mode)
character *(¥) path
integer *4 mode (

DESCRIPTION
creat creates a new ordinary file or prepares to rewrite an existing file
named by the path name pointed to by path.

If the file exists, the length is truncated to O and the mode and owner are
unchanged. Otherwise, the file’s owner ID is set to the effective user ID, of
the process the group ID is set to the effective group ID, of the process or o
the group ID of the directory in which the file is being created. This is
determined as follows:

If the underlying filesystem was mounted with the BSD file crea-
tion semantics flag [see fstab(4)] or the S_ISGID bit is set [sce
chmod(2)] on the parent directory, then the group ID of the new
file is set to the group ID of the parent directory, otherwise it is set
to the effective group ID of the calling process.
The low-order 12 bits of the file mode are set to the value of mode modified
as follows: (

All bits set in the process’s file mode creation mask are cleared
[see umask(2)].

The “‘sticky bit* of the mode is cleared [see chmod(2)].

Upon successful completion, a write-only file descriptor is returned and the
file is open for writing, even if the mode does not permit writing. A new
file may be created with a mode that forbids writing.

The file pointer used to mark the current position within the file is set to the
beginning of the file.

The new file descriptor is set to remain open across execve(2) system calls
[see fentl(2)].

There is a system enforced limit on the number of open file descriptors per
_process {OPEN_MAX}, whose value is returned by the getdtablesize(2)
function.

creat fails if one or more of the following are true: (

April 1990 -1- Version 3.0

CREAT(2)

[ENOTDIR]

[ENOENT]
[EACCES]

[ENOENT]
[EACCES]

[EROFS]

[ETXTBSY]

[EACCES]
[EISDIR]
[EMFILE]

[EFAULT]

[ENFILE]

[EAGAIN]

[ENOSPC]

Silicon Graphics CREAT(2)

A component of the path prefix is not a directory.
A component of the path prefix does not exist.

Search permission is denied on a component of the
path prefix.

The path name is null.

The file does not exist and the directory in which the
file is to be created does not permit writing.

The named file resides or would reside on a read-only
file system.

The file is a pure procedure (shared text) file that is
being executed.

The file exists and write permission is denied.
The named file is an existing directory.

The system imposed limit for open file descriptors per
process {OPEN_MAX] has already been reached.

Path points outside the allocated address space of the
process.

The system file table has exceeded {NFILE MAX}
concurrently open files.

The file exists, mandatory file/record locking is set,
and there are outstanding record locks on the file [see
chmod(2)].

The file system is out of inodes.

[ENAMETOOLONG] The length of path exceeds {PATH_MAX}, or a path-

[EOPNOTSUPP]

SEE ALSO

name component is longer than {NAME _MAX]} .

An attempt was made to open a socket (not currently
supported).

chmod(2), close(2), dup(2), fentl(2), Iseek(2), open(2), read(2), umask(2),

write(2), fstab(4).

DIAGNOSTICS

Upon successful completion, a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of —1 is returned and errno is set

to indicate the error.

April 1990

-2- Version 3.0

DUP(2) . Silicon Graphics DUP(2)

NAME
dup — duplicate an open file descriptor

FORTRAN SYNOPSIS
integer *4 function dup (fildes)
integer *4 fildes

DESCRIPTION
Fildes is a descriptor obtained from a creat, open, dup, fcnil, pipe, socket
or socketpair system call. dup returns a new descriptor having the follow-
ing in common with the original:

Refers to same object as the original descriptor.
Same file pointer (i.e., both file descriptors share one file pointer).
Same access mode (read, write or read/write).

Same descriptor status flags (i.e., both descriptors share the same
status flags).

Shares any file locks.

The new descriptor is set to remain open across exec system calls [see

fentl (2)].

The descriptor returned is the lowest one available.

dup will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.

[EMFILE] The system imposed limit for open file descriptors per
process {OPEN_MAX} has already been reached.
SEE ALSO
close(2), creat(2), exec(2), fentl(2), intro(2), open(2), pipe(2), lockf(3C).
DIAGNOSTICS
Upon successful completion a non-negative integer, namely the file descrip-

tor, is returned. Otherwise, a value of —1 is returned and errno is set to
indicate the error.

April 1990 -1- Version 3.0

EXIT(2)

NAME

Silicon Graphics EXIT(2)

exit, _exit — terminate process

FORTRAN SYNOPSIS

integer status
call exit (status)

DESCRIPTION

exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed. If the pro-
cess is sharing file descriptors via an sproc, other members of the share
group do NOT have their file descriptors closed.

If the parent process of the calling process is executing a wait, it is notified
of the calling process’s termination and the low order eight bits (i.e., bits
0377) of status are made available to it [see wait(2)].

If the parent process of the calling process is not executing a wait, and the
parent process is not ignoring SIGCLD, the calling process is transformed
into a zombie process. A zombie process is a process that only occupies a
slot in the process table. It has no other space allocated either in user or
kernel space. The process table slot that it occupies contains the time
accounting information [see <sys/proc.h>] to be used by times.

The parent process ID of all of the calling processes’ existing child
processes and zombie processes is set to 1. This means the initialization
process [see intro(2)] inherits each of these processes.

If the process belongs to a share group, it is removed from that group. Its
stack segment is deallocated and removed from the share group’s virtual
space. All other virtual space that was shared with the share group is left
untouched. If the prctl (PR_SETEXITSIG) option has been enabled for the
share group, than the specified signal is sent to all remaining share group
members.

Each attached shared memory segment is detached and the value of
shm_nattach in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value
[see semop(2)], that semadj value is added to the semval of the specified
semaphore.

If the process has a process, text, or data lock, an unlock is performed [see
plock(2)]. 1If the process has any pages locked, they are unlocked [see
mpin(2)].

April 1990 -1- Version 3.0

EXIT(2) Silicon Graphics EXIT(2)

An accounting record is written on the accounting file if the system’s
accounting routine is enabled [see acct (2)].

If the calling process is a process group leader (its process ID maiches its
process group ID), and it became a process group leader by invoking the
setpgrp(2) function, and it is a terminal group leader (has an associated
controlling terminal), then the SIGHUP signal is sent to each process that
has a process group ID equal to that of the calling process.

If the calling process is a process group leader (its process ID matches its
process group ID), and it became a process group leader by invoking the
setpgid(2) function, and it is a session leader [see setsid(2)], and it has an
associated controlling terminal, then the SIGHUP signal is sent to each pro-
cess in the foreground process group of the controlling terminal belonging
to calling process.

If the calling process is a process group leader (its process ID matches its
process group ID), and it became a process group leader by invoking the
setpgrp(2) function, no signal is sent.

In all cases, if the calling process is a process grodp leader and has an asso-
ciated controlling terminal, the controlling terminal is disassociated from
the process allowing it to be acquired by another process group leader.

Any mapped files are closed and any written pages flushed to disk.
A death of child signal is sent to the parent.

“The C function exit causes all file streams to be closed unless one has done

an sproc which causes the file streams to simply be flushed. The function
_exit circumvents all cleanup.

SEE ALSO
acct(2), intro(2), mmap(2), mpin(2), plock(2), prctl(2), semop(2),
setpgid(2), setpgrp(2), signal(2), sigset(2), sigaction(2), sigprocmask(2),
sigvec(3B), sigblock(3B), sigsetmask(3B), sproc(2), wait(2).

WARNING
See WARNING in signal(2).

DIAGNOSTICS
None. There can be no return from an exit system call.

April 1990 -2- Version 3.0

FCNTL(2)

NAME

Silicon Graphics FCNTL(2)

fentl - file and descriptor control

FORTRAN SYNOPSIS

integer *4 function fentl (fildes, cmd, arg)
integer *4 fildes, cmd, arg

DESCRIPTION

fenil provides for control over open descriptors. Fildes is an open descrip-
tor obtained from a creat, open, dup, fcnil, pipe, socket, or socketpair sys-

tem call.

The commands available are:

F_DUPFD

F_GETFD

F_SETFD

April 1990

Return a new descriptor as follows:

Lowest numbered available descriptor greater than or
equal to the third argument, arg, taken as an integer of
type int.

Refers to the same object as the original descriptor.

Same file pointer as the original file (i.e., both file descrip-
tors share one file pointer).

Same access mode (read, write or read/write).

Same descriptor status flags (i.e., both descriptors share
the same status flags).

Shares any file locks.

The close-on-exec flag (FD_CLOEXEC) associated with
the new descriptor is cleared to keep the file open across
calls to the exec (2) family of functions.

Get the file descriptor flags associated with the descriptor
fildes. 1f the FD_CLOEXEC flag is 0 the descriptor will
remain open across exec, otherwise the descriptor will be
closed upon execution of exec.

Set the file descriptor flags for fildes. Currently the only
flag implemented is FD_CLOEXEC. Note: this flag is a
per-process and per-descriptor flag; setting or clearing it
for a particular descriptor will not affect the flag on
descriptors copied from it by a dup(2) or F_DUPFD
operation, nor will it affect the flag on other processes
instances of that descriptor.

-1- Version 3.0

FCNTL(2)

F_GETFL

F_SETFL

F_GETLK

F_SETLK

April 1990

Silicon Graphics FCNTL(2)

Get file status flags and file access modes. The file access
modes may be extracted from the return value using the
mask O_ACCMODE.

Set file status flags to the third argument, arg, taken as
type int. Only the following flags can be set [see
fentl(5)): FAPPEND, FSYNC, FNDELAY, FNONBLOCK,
and FASYNC. FAPPEND is equivalent to O_APPEND;
FSYNC is equivalent to O_SYNC; FNDELAY is
equivalent to O_NDELAY; and FNONBLOCK is
equivalent to O_NONBLOCK. FASYNC is equivalent to
calling ioctl with the FIOASYNC command. This enables
the SIGIO facilities and is currently supported only on
sockets.

Since the descriptor status flags are shared with descrip-
tors copied from a given descriptor by a dup(2) or
F_DUPFD operation, and by other processes instances of
that descriptor a F_SETFL operation will affect those
other descriptors and other instances of the given descrip-
tors as well. For example, setting or clearing the FNDE-
LAY flag will logically cause an FIONBIO ioctl(2) to be
performed on the object referred to by that descriptor.
Thus all descriptors referring to that object will be
affected.

Flags not understood for a particular descriptor are
silently ignored.

Get the first lock which blocks the lock description given
by the variable of type struct flock pointed to by arg. The
information retrieved overwrites the information passed
to fentl in the flock structure. If no lock is found that
would prevent this lock from being created, then the
structure is passed back unchanged except for the lock
type which will be set to F_UNLCK.

Set or clear a file segment lock according to the variable
of type struct flock pointed to by arg [see fcntl(5)]. The
cmd F_SETLK is used to establish read (F_RDLCK) and
write (F_WRLCK) locks, as well as remove either type of
lock (F_UNLCK). If a read or write lock cannot be set
fentl will return immediately with an error value of —1.

“2- Version 3.0

FCNTL(2) Silicon Graphics FCNTL(2)
p

F_SETLKW This cmd is the same as F_SETLK except that if a read or
write lock is blocked by other locks, the process will sleep
until the segment is free to be locked.

F_CHKFL This flag is used internally by F_SETFL to check the
legality of file flag changes.

F_GETOWN Used by sockets: get the process ID or process group
currently receiving SIGIO and SIGURG signals; process
groups are returned as negative values.

F_SETOWN Used by sockets: set the process or process group to
receive SIGIO and SIGURG signals; process groups are
specified by supplying arg as negative, otherwise arg is
interpreted as a process ID.

A read lock prevents any process from write locking the protected area.
More than one read lock may exist for a given segment of a file at a given
time. The file descriptor on which a read lock is being placed must have
been opened with read access.

A write lock prevents any process from read locking or write locking the
protected area. Only one write lock may exist for a given segment of a file
at a given time. The file descriptor on which a write lock is being placed
must have been opened with write access.

The structure flock describes the type (I_type), starting offset (I_whence),
relative offset (I_start), size (I_len), process id (I _pid), and RFS system id
(I_sysid) of the segment of the file to be affected. The process id and sys-
tem id fields are used only with the F_GETLK cmd to return the values for a
blocking lock. Locks may start and extend beyond the current end of a file,
but may not be negative relative to the beginning of the file. A lock may be
set to always extend to the end of file by setting 1_len to zero (0). If such a
lock also has I_whence and [_start set to zero (0), the whole file will be
locked. Changing or unlocking a segment from the middle of a larger
locked segment leaves two smaller segments for either end. Locking a seg-
ment that is already locked by the calling process causes the old lock type
to be removed and the new lock type to take effect. All locks associated
with a file for a given process are removed when a file descriptor for that
file is closed by that process or the process holding that file descriptor ter-
minates. Locks are not inherited by a child process in a Jork(2) system call.

When mandatory file and record locking is active on a file, [see chmod @)1,
read and write system calls issued on the file will be affected by the record
locks in effect.

April 1990 -3- Version 3.0

FCNTL(2)

Silicon Graphics FCNTL(2)

fentl will fail if one or more of the following are true:

[EBADF]
[EINVAL]

[EMFILE]

[EINVAL}

[EAGAIN]

[ENOLCK]

[EINTR]

[EDEADLK]

[EFAULT]

[ESRCH]

SEE ALSO

Fildes is not a valid open file descriptor.

Cmd is F_DUPFD. arg is either negative, or greater than
or equal to the maximum number of open file descriptors
allowed each user [see getdtablesize(2)].

Cmd is F_DUPFD and {OPEN_MAX} file descriptors are
currently in use by this process, or no file descriptors
greater than or equal to arg are available.

Cmd is F_GETLK, F_SETLK, or SETLKW and arg or the
data it points to is not valid.

Cmd is F_SETLK the type of lock (I_type) is a read
(F_RDLCK) lock and the segment of a file to be locked is
already write locked by another process or the type is a
write (F_WRLCK) lock and the segment of a file to be
locked is already read or write locked by another pro-
cess.

Cmd is F_SETLK or F_SETLKW, the type of lock is a read
or write lock, and there are no more record locks avail-
able (too many file segments locked) because the system
maximum (FLOCK MAX} [see intro(2)], has been
exceeded. -

Cmd is F_SETLKW and a signal interrupted the process
while it was waiting for the lock to be granted.

Cmd is F_SETLKW, the lock is blocked by some lock
from another process, and putting the calling-process to

sleep, waiting for that lock to become free, would cause
a deadlock.

Cmd is F_SETLK, arg points outside the program address
space.

Cmd is F_SETOWN and no process can be found
corresponding to that specified by arg.

close(2), creat(2), dup(2), exec(2), fork(2), getdtablesize(2), intro(2),
open(2), pipe(2), fentl(5).

DIAGNOSTICS

Upon successful completion, the value returned depends on cmd as follows:

April 1990

-4- Version 3.0

FCNTL(2) Silicon Graphics FCNTL(2)

F_DUPFD A new file descriptor.

F_GETFD Value of flag (only the low-order bit is defined).
F_SETFD Value other than —1.

F_GETFL Value of file flags.

F_SETFL Value other than —1.

F_GETLK Value other than —1.

F_SETLK Value other than —1.

F_SETLKW Value other than —1.
F_GETOWN Pid of socket owner.
F_SETOWN Value other than —1.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

April 1990 -5- Version 3.0

FORK(2)

NAME

Silicon Graphics FORK(2)

fork — create a new process

FORTRAN SYNOPSIS
integer function fork()

DESCRIPTION
fork causes creation of a new process. The new process (child process) is
an exact copy of the calling process (parent process). This means the child

process inherits the following attributes from the parent process:

environment :

close-on-exec flag [see exec(2)]

signal handling settings (i.e., SIG_DFL, SIG_IGN, SIG_HOLD,
function addresses and signal masks)

set-user-ID mode bit

set-group-ID mode bit

profiling on/off status

debugger trailing status

nice value [see nice(2)]

all attached shared memory segments [see shmop(2)]

all mapped files [see mmap(2)] :

non-degrading priority [see schedctl(2)]

process group ID

tty group ID [see exit(2)] (
current working directory

root directory

file mode creation mask [see umask(2)]

file size limit [see ulimit(2)]

The child process differs from the parent process in the following ways:

April 1990

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the pro-
cess ID of the parent process).

The child process has its own copy of the parent’s file descriptors.
Each of the child’s file descriptors shares a common file pointer
with the corresponding file descriptor of the parent.

File locks previously set by the parent are not inherited by the
child [see fcntl (2)].

All semadj values are cleared [see semop(2)]. (

Process locks, text locks and data locks are not inherited by the
child [see plock(2)].

-1- Version 3.0

FORK(2) Silicon Graphics FORK(2)

The set of signals pending to the parent is not inherited by the
child.

Page locks are not inherited [see mpin(2)].

The child process’s utime, stime, cutime, and cstime are set to 0.
The time left until an alarm clock signal is reset to 0.

The time left until an itimer signal is reset to 0.

The child will not inherit the ability to make graphics calls. The
child must establish itself as a graphics process by invoking the
winopen(3G) (or ginit(3G)) call. Otherwise the child process may
receive a segmentation fault upon attempting to make a graphics
call.

The share mask is set to 0 [see sproc(2)].

Jork will fail and no child process will be created if one or more of the fol-
lowing are true:

[EAGAIN] The system-imposed limit on the total number of
processes under execution, {NPROC} [see intro(2)],
would be exceeded.

[EAGAIN] The system-imposed limit on the total number of

processes under execution by a single user
{CHILD_ _MAX} [see intro(2)], would be exceeded.

[EAGAIN] Amount of system memory required is temporarily una-
vailable.

SEE ALSO
exec(2), intro(2), mmap(2), nice(2), pcreate(3C), plock(2), ptrace(2),
schedctl(2), semop(2), shmop(2), signal(2), sigset(2), sigaction(2),
signal(3B), sigvec(3B), sproc(2), times(2), ulimit(2), umask(2), wait(2).
DIAGNOSTICS
Upon successful completion, fork returns a value of 0 to the child process
and returns the process ID of the child process to the parent process. Other-
wise, a value of —1 is returned to the parent process, no child process is
created, and errno is set to indicate the error.

April 1990 -2- Version 3.0

GETDENTS(2) Silicon Graphics GETDENTS(2)

NAME :
getdents — read directory entries and put in a file system independent format

FORTRAN SYNOPSIS
integer *4 function getdents (fildes, buf, nbyte)
integer *4 fildes i
character * (*) buf (
integer *4 nbyte

DESCRIPTION
Fildes is a file descriptor obtained from an open(2) or dup(2) system call.

getdents attempts to read nbyte bytes from the directory associated with
fildes and to format them as file system independent directory entries in the
buffer pointed to by buf. Since the file system independent directory entries
are of variable length, in most cases the actual number of bytes returned
will be strictly less than nbyte.

The file system independent directory entry is specified by the dirent struc-
ture. For a description of this see dirent(4).

On devices capable of seeking, getdents starts at a position in the file given
by the file pointer associated with fildes. Upon return from getdents, the file
pointer is incremented to point to the next directory entry.

tine [for a description see directory(3C)], and should not be used for other
purposes.

getdents will fail if one or more of the following are true:

This system call was developed in order to implement the readdir 3C) rou- (

[EBADF] Fildes is not a valid file descriptor open for reading.

[EFAULT] Buf points outside the allocated address space.

[EINVAL] nbyte is not large enough for one directory entry.

[ENOENT] The current file pointer for the directory is not located at
a valid entry.

[ENOLINK] Fildes points to a remote machine and the link to that
machine is no longer active.

[ENOTDIR] Fildes is not a directory.

[EIO] An T/O error occurred while accessing the file system.

SEE ALSO
directory(3C), dirent(4). (

April 1990 -1- Version 3.0

GETDENTS(2) Silicon Graphics GETDENTS(2)

DIAGNOSTICS
Upon successful completion a non-negative integer is returned indicating
the number of bytes actually read. A value of 0 indicates the end of the
directory has been reached. If the system call failed, a -1 is returned and
errno is set to indicate the error.

April 1990 -2- Version 3.0

GETHOSTID(2) Silicon Graphics GETHOSTID(2)

NAME
gethostid, sethostid — get/set unique identifier of current host

FORTRAN SYNOPSIS
integer *4 function gethostid ()

subroutine sethostid ()
integer *4 hostid

DESCRIPTION
Sethostid establishes a 32-bit identifier for the current processor that is
intended to be unique among all UNIX systems in existence. This is nor-
mally a DARPA Internet address for the local machine. This call is allowed
only to the super-user and is normally performed at boot time.

Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
hostid(1), gethostname(2)

BUGS
32 bits for the identifier is too small.

April 1990 =1- Version 3.0

GETHOSTNAME(2) Silicon Graphics GETHOSTNAME(2)

NAME
gethostname, sethostname — get/set name of current host

FORTRAN SYNOPSIS
integer function gethostname (name, namelen)
character *1 name (namelen)
integer namelen

DESCRIPTION
Gethostname returns the standard host name for the current processor, as
previously set by sethostname. The parameter namelen specifies the size of
the name array. The returned name is null-terminated unless insufficient
space is provided.

Sethostname sets the name of the host machine to be name, which has
length namelen. This call is restricted to the super-user and is normally
used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of
—1isreturned and an error code is placed in the global location errno.
ERRORS
The following errors may be returned by these calls:

[EFAULT)] The name or namelen parameter gave an invalid address.
[EPERM] The caller tried to set the hostname and was not the
super-user.
[EINVAL] The namelen parameter was too large.
SEE ALSO
gethostid(2)

BUGS
Host names are limited to MAXHOSTNAMELEN (from <sys/param.h>)
characters, currently 64.

April 1990 -1- Version 3.0

GETPID(2) Silicon Graphics GETPID(2)

NAME
getpid, getpgrp, getppid — get process, process group, and parent process
IDs
FORTRAN SYNOPSIS
integer function getpid()
integer function getpgrp()
integer function getppid()

DESCRIPTION
getpid returns the process ID of the calling process.

getpgrp returns the process group ID of the calling process.
getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

April 1990 -1- Version 3.0

GETSOCKOPT(2) Silicon Graphics GETSOCKOPT(2)

NAME

getsockopt, setsockopt — get and set options on sockets

FORTRAN SYNOPSIS

subroutine getsockopt (s, level, optname, optval, optlen)
integer *4 s, level, optname

character * (¥) optval

integer *4 optlen

subroutine setsockopt (s, level, optname, optval, optlen)
integer *4 s, level, optname

character * (*) optval

integer *4 optlen

DESCRIPTION

Getsockopt and setsockopt manipulate options associated with a socket.
Options may exist at multiple protocol levels; they are always present at the
uppermost ‘‘socket’’ level.

When manipulating socket options the level at which the option resides and
the name of the option must be specified. To manipulate options at the
“‘socket’” level, level is specified as SOL_SOCKET. To manipulate options
at any other level the protocol number of the appropriate protocol control-
ling the option is supplied. For example, to indicate that an option is to be
interpreted by the TCP protocol, level should be set to the protocol number
of TCP; see getprotoent (3N).

The parameters optval and optlen are used to access option values for set-
sockopt. For getsockopt they identify a buffer in which the value for the
requested option(s) are to be returned. For getsockopt, optlen is a value-
result parameter, initially containing the size of the buffer pointed to by
optval, and modified on return to indicate the actual size of the value
returned. If no option value is to be supplied or returned, optval may be
supplied as 0.

Optname and any specified options are passed uninterpreted to the appropri-
ate protocol module for interpretation. The include file <sysl/socket.h> con-
tains definitions for “‘socket’ level options, described below. Options at
other protocol levels vary in format and name; consult the appropriate
entries in section (4P).

Most socket-level options take an int parameter for optval. For setsockopt,
the parameter should non-zero to enable a boolean option, or zero if the
option is to be disabled. SO_LINGER uses a struct linger parameter,
defined in <sys/socket.h>, which specifies the desired state of the option
and the linger interval (see below).

April 1990 -1- Version 3.0

GETSOCKOPT(2)

Silicon Graphics GETSOCKOPT(2)

The following options are recognized at the socket level. Except as noted,
each may be examined with getsockopt and set with setsockopt.

SO_DEBUG
SO_REUSEADDR
SO_KEEPALIVE
SO_DONTROUTE

toggle recording of debugging information
toggle local address reuse

toggle keep connections alive

toggle routing bypass for outgoing messages

SO_LINGER linger on close if data present
SO_BROADCAST toggle permission to transmit broadcast messages
SO_OOBINLINE toggle reception of out-of-band data in band
SO_SNDBUF set buffer size for output

SO_RCVBUF set buffer size for input

SO_TYPE get the type of the socket (get only)

SO_ERROR get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules.
SO_REUSEADDR indicates that the rules used in validating addresses sup-
plied in a bind(2) call should allow reuse of local addresses.
SO_KEEPALIVE enables the periodic transmission of messages on a con-
nected socket. Should the connected party fail to respond to these mes-
sages, the connection is considered broken and processes using the socket
are notified via a SIGPIPE signal. SO_DONTROUTE indicates that outgo-
ing messages should bypass the standard routing facilities. Instead, mes-
sages are directed to the appropriate network interface according to the net-
work portion of the destination address.

SO_LINGER controls the action taken when unsent messages are queued
on socket and a close(2) is performed. If the socket promises reliable
delivery of data and SO_LINGER is set, the system will block the process
on the close attempt until it is able to transmit the data or until it decides it
is unable to deliver the information (a timeout period, termed the linger
interval, is specified in the setsockopt call when SO_LINGER is requested).
If SO_LINGER is disabled and a close is issued, the system will process the
close in a manner that allows the process to continue as quickly as possible.

The option SO_BROADCAST requests permission to send broadcast
datagrams on the socket. Broadcast was a privileged operation in earlier
versions of the system. With protocols that support out-of-band data, the
SO_OOBINLINE option requests that out-of-band data be placed in the
normal data input queue as received; it will then be accessible with recv or
read calls without the MSG_OOB flag. SO_SNDBUF and SO_RCVBUF
are options to adjust the normal buffer sizes allocated for output and input
buffers, respectively. The buffer size may be increased for high-volume
connections, or may be decreased to limit the possible backlog of incoming

April 1990 -2- Version 3.0

GETSOCKOPT(2) Silicon Graphics GETSOCKOPT(2)

data. The system places an absolute limit on these values. Finally,
SO_TYPE and SO_ERROR are options used only with setsockopt.

SO_TYPE returns the type of the socket, such as SOCK_STREAM; it is
useful for servers that inherit sockets on startup. SO_ERROR returns any
pending error on the socket and clears the error status. It may be used to
check for asynchronous errors on connected datagram sockets or for other
asynchronous errors.

RETURN VALUE
A 0 is returned if the call succeeds, —1 if it fails.

ERRORS
The call succeeds unless:
[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument s is a file, not a socket.
[ENOPROTOOPT] The option is unknown at the level indicated.
[EFAULT] The address pointed to by optval is not in a valid

part of the process address space. For getsockopt,
this error may also be returned if optlen is not in a
valid part of the process address space.
SEE ALSO
ioctl(2), socket(2), getprotoent(3N)
BUGS

Several of the socket options should be handled at lower levels of the Sys-
tem.

April 1990 -3- Version 3.0

GETUID(2) Silicon Graphics GETUID(2)

NAME
getuid, geteuid, getgid, getegid — get real user, effective user, real group,
and effective group IDs

FORTRAN SYNOPSIS
integer function getuid()
integer*2 function geteuid()
integer function getgid()
integer*2 function getegid()

DESCRIPTION
getuid returns the real user ID of the calling process.
geteuid returns the effective user ID of the calling process.
getgid returns the real group ID of the calling process.
getegid returns the effective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

April 1990 -1- Version 3.0

IOCTL(2) Silicon Graphics IOCTL(2)

NAME

ioctl — control device

FORTRAN SYNOPSIS

integer *4 function ioctl (fildes, request, arg)
integer*4 fildes, request, arg

DESCRIPTION

ioctl performs a variety of control functions on devices and STREAMS. For
non-STREAMS files, the functions performed by this call are device-specific
control functions. The request and optional third argument are passed to
the file designated by fildes and are interpreted by the device driver. For a
given device, the requests that are understood are documented in the section
7 manual page for that device. This control is infrequently used on non-
STREAMS devices, with the basic input/output functions performed through
the read(2) and write(2) system calls.

For STREAMS files, specific functions are performed by the ioctl call as
described in streamio(7).

Fildes is an open file descriptor that refers to a device. Request selects the
control function to be performed and will depend on the device being
addressed. The optional third argument represents additional information
that is needed by this specific device to perform the requested function.
The data type of the third argument depends upon the particular control
request, but it is either an integer or a pointer to a device-specific data struc-
ture.

In addition 0 device-specific and STREAMS functions, generic functions
are provided by more than one device driver, for example, the general ter-
minal interface [see termio(7)].

ioctl will fail for any type of file if one or more of the following are true:
[EACCES] Future error.
[EBADF] Fildes is not a valid open file descriptor.

[ENOTTY] Fildes is not associated with a device driver that accepts
control functions.

[EINTR] A signal was caught during the ioctl system call.

ioctl will also fail if the device driver detects an error. In this case, the error
is passed through ioctl without change to the caller. A particular driver
might not have all of the following error cases. Other requests to device
drivers will fail if one or more of the following are true:

April 1990 -1- Version 3.0

IOCTL(2)

[EFAULT]

[EINVAL]

[EIO]
[ENXIO]

Silicon Graphics IOCTL(2)

Request tequires a data transfer to or from a buffer
pointed to by the third argument but some part of the
buffer is outside the process’s allocated space.

Request or the third argument is not valid for this device.
Some physical 1/O error has occurred.

The request and the third argument are valid for this dev-
ice driver, but the service requested can not be performed
on this particular subdevice.

STREAMS errors are described in streamio(7).

SEE ALSO

streamio(7), termio(7) in the System Administrator’s Reference Manual.

DIAGNOSTICS

Upon successful completion, the value returned depends upon the device
control function, but must be a non-negative integer. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

April 1990

-2- Version 3.0

KILL(2) Silicon Graphics KILL(2)

NAME
kill — send a signal to a process or a group of processes

FORTRAN SYNOPSIS
integer function kill (pid, sig)

DESCRIPTION
kill sends a signal to a process or a group of processes. The process or
group of processes to which the signal is to be sent is specified by pid. The
signal that is to be sent is specified by sig and is either one from the list
given in signal(2), or 0. If sig is O (the null signal), error checking is per-
formed but no signal is actually sent. This can be used to check the validity
of pid.

The real or effective user ID of the sending process must match the real,
saved, or effective user ID of the receiving process, unless the effective
user ID of the sending process is super-user. An exception to this is the sig-
nal SIGCONT, which may be sent to any descendant, or any process in the
same session (having the same session ID) as the current process.

The processes with a process ID of 0 and a process ID of 1 are special
processes [see intro(2)] and will be referred to below as proc0 and procl ,
respectively.

If pid is greater than zero, sig will be sent to the process whose process ID
is equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding procO and procl
whose process group ID is equal to the process group ID of the sender.

If pid is —1 and the effective user ID of the sender is not super-user, sig will
be sent to all processes excluding procO and procl whose real user ID is
equal to the effective user ID of the sender.

If pid is —1 and the effective user ID of the sender is super-user, sig will be
sent to all processes excluding proc0 and procl.

If pid is negative but not —1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid.

kill will fail and no signal will be sent if one or more of the following are

true:

[EINVAL] Sig is not a valid signal number.

[EINVAL] Sig is SIGKILL and pid is 1 (proc1).

[ESRCH] No process can be found corresponding to that specified

by pid.

April 1990 -1- Version 3.0

KILL(2) Silicon Graphics KILL(2)

[ESRCH] The process group was given as 0 but the sending pro-
cess does not have a process group.

[EPERM] The user ID of the sending process is not super-user, and
its real or effective user ID does not match the real,
saved, or effective user ID of the receiving process.

SEE ALSO ‘ ,
exec(2), getpid(2), setpgrp(2), setsid(2), signal(2), sigset(2), sigaction(2),
sigprocmask(2), sigvec(3B), sigblock(3B), sigsetmask(3B), killpg(3B).
kill(1) in the User’s Reference Manual.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

April 1990 -2- Version 3.0

LINK(2)

NAME

link — link to a file
FORTRAN SYNOPSIS

Silicon Graphics LINK(2)

integer function link (path1l, path2)
character*(*) path1, path2

DESCRIPTION

Pathl points to a path name naming an existing file. Path2 points to a path
name naming the new directory entry to be created. link creates a new link
(directory entry) for the existing file.

link will fail and no link will be created if one or more of the following are

true:

[ENOTDIR] A component of either path prefix is not a directory.

[ENOENT] A component of either path prefix does not exist.

[EACCES] A component of either path prefix denies search permis-
sion.

[ENOENT] The file named by pathl does not exist.

[EEXIST] The link named by path2 exists.

[ENAMETOOLONG]
The length of the pathl or path? argument exceeds
{PATH_MAX}, or a pathname component is longer than
{NAME_MAX}.

[EPERM] The file named by pathl is a directory and the effective
user ID is not super-user.

[EXDEV] The link named by path2 and the file named by pathl are
on different logical devices (file systems).

[ENOENT] Path2 points to a null path name.

[EACCES] The requested link requires writing in a directory with a
mode that denies write permission.

[EROFS] The requested link requires writing in a directory on a
read-only file system.

[EFAULT] Path points outside the allocated address space of the
process.

[EMLINK] The maximum number of links to a file would be

April 1990

exceeded.

-1- Version 3.0

LINK(2) Silicon Graphics LINK(2)

SEE ALSO
unlink(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of

—1 is returned and errno is set to indicate the error.

April 1990 -2- Version 3.0

(

LSEEK(2) Silicon Graphics LSEEK(2)

NAME
Iseek — move read/write file pointer (System V and 4.3BSD)
FORTRAN SYNOPSIS
integer*4 function Iseek (fildes, offset, whence)
integer*4 fildes, offset, whence
DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or fcntl system
call. Iseek sets the file pointer associated with fildes as follows:
If whence is SEEK_SET (L_SET), the pointer is set to offset bytes.

If whence is SEEK_CUR (L_INCR), the pointer is set to its current
location plus offset.

If whence is SEEK_END (L_XTND), the pointer is set to the size of
the file plus offset.

Upon successful completion, the resulting pointer location, as measured in
bytes from the beginning of the file, is retumed. Note that if fildes is a
remote file descriptor and offset is negative, Iseek will return the file pointer
even if it is negative.

Iseek allows the file offset to be set beyond the end of existing data in the
file. If data is later written at that point, subsequent reads of the data in the
gap return bytes with the value zero until data is actually written into the

gap.

Iseek will fail and the file pointer will remain unchanged if one or more of

the following are true:

[EBADF] Fildes is not an open file descriptor.

[ESPIPE] Fildes is associated with a pipe, socket, or fifo.

[EINVAL and SIGSYS signal]
Whence is not a proper value.

[EINVAL] Fildes is not a remote file descriptor, and the resulting
file pointer would be negative.

Some devices are incapable of seeking. The value of the file pointer associ-
ated with such a device is undefined.
SEE ALSO
creat(2), dup(2), fentl(2), open(2).
DIAGNOSTICS
Upon successful completion, a non-negative integer indicating the file

pointer value is returned. Otherwise, a value of —1 is returned and errno is
set to indicate the error.

April 1990 -1- Version 3.0

MKDIR(2) Silicon Graphics MKDIR(2)

NAME
mkdir — make a directory

FORTRAN SYNOPSIS
integer *4 function mkdir (path, mode)
character * (*) path
integer *4 mode

DESCRIPTION
The routine mkdir creates a new directory with the name path. The mode of
the new directory is initialized from the mode. The protection part of the
mode argument is modified by the process’s mode mask [see umask(2)].

The directory’s owner ID is set to the process’s effective user ID. The
directory’s group ID is set to the process’s effective group ID or the group
ID of the directory in which the directory is being created. This is deter-
mined as follows:

If the underlying filesystem was mounted with the BSD file crea-
tion semantics flag [see fstab(4)] or the S_ISGID bit is set [see
chmod(2)] on the parent directory, then the group ID of the new
file is set to the group ID of the parent directory, otherwise it is set
to the effective group ID of the calling process.
The newly created directory is empty with the possible exception of entries
for"." and "..".

mhkdir will fail and no directory will be created if one or more of the follow-

ing are true:
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] A component of the path prefix does not exist.

[ENAMETOOLONG] The length of the path argument exceeds
{PATH_MAX]}, or a pathname component is longer than
{NAME_MAX].

[EACCES] Either a component of the path prefix denies search
permission or write permission is denied on the parent
directory of the directory to be created.

[ENOENT] The path is longer than the maximum allowed.

[EEXIST] The named file already exists.

[EROFS] The path prefix resides on a read-only file system.

[EFAULT] Path points outside the allocated address space of the
process.

April 1990 -1- Version 3.0

MKDIR(2)

[EMLINK]

[ENOSPC]
[EIO]

SEE ALSO

Silicon Graphics MKDIR(2)

The maximum number of links to the parent directory
would exceed {LINK_MAX}.

No space is available.

An I/O error has occurred while accessing the file sys-
tem.

mkdir(1), chmod(2), mknod(2), unlink(2), fstab(4).

DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-l isreturned, and errno is set to indicate the error.

April 1990

-2- Version 3.0

MKNOD(2) Silicon Graphics MKNOD(2)

NAME

mknod — make a directory, or a special or ordinary file

FORTRAN SYNOPSIS

integer *4 function mknod (path, mode, dev)
character * (*) path
integer *4 mode, dev

DESCRIPTION

mknod creates a new file named by the path name pointed to by path. The
mode of the new file (including file type bits) is initialized from mode. The
value of the file type bits which are permiited are:

S_IFIFO fifo special
S_IFCHR character special
S_IFBLK block special
S_IFREG ordinary file

All other mode bits are interpreted as described in chown (2).

The owner ID of the file is set to the effective user ID of the process. The
group ID of the file is set to the effective group ID of the process or the
group ID of the directory in which the file is being created. This is deter-
mined as follows:

If the underlying filesystem was mounted with the BSD file crea-
tion semantics flag [see fstab(4)] or the S_ISGID bit is set [see
chmod(2)] on the parent directory, then the group ID of the new
file is set to the group ID of the parent directory, otherwise it is set
to the effective group ID of the calling process.

Values of mode other than those above are undefined and should not be
used. The low-order 9 bits of mode are modified by the process’s file mode
creation mask: all bits set in the process’s file mode creation mask are
cleared [see umask(2)). If mode indicates a block or character special file,
dev is a configuration-dependent specification of a character or block I/O
device. If mode does not indicate a block special or character special dev-
ice, dev is ignored.

mknod may be invoked only by the super-user for file types other than FIFO
special.

mknod will fail and the new file will not be created if one or more of the
following are true:

April 1990 -1- Version 3.0

MKNOD(2)

[EPERM]
[ENOTDIR]

[ENOENT]
[EROFS]

[EEXIST]
[EFAULT]

Silicon Graphics MKNOD(2)

The effective user ID of the process is not super-user.
A component of the path prefix is not a directory.
A component of the path prefix does not exist.

The directory in which the file is to be created is
located on a read-only file system.

The named file exists.

Path points outside the allocated address space of the
process.

[ENAMETOOLONG] The length of the path argument exceeds

[ENOSPC]
[EINVAL]

SEE ALSO

{PATH_MAX}, or a pathname component is longer than
{NAME_MAX].

No space is available.

If you create files of the type fifo special, character
special, or block special on an NFS-mounted file sys-
tem.

chmod(2), exec(2), mkdir(2), umask(2), fstab(4).
mkdir(1) in the User’s Reference Manual.

DIAGNOSTICS

Upon successful completion a value of 0 is returned. Otherwise, a value of
-1 isreturned and errno is set to indicate the error.

April 1990

-2- Version 3.0

MOUNT(2) Silicon Graphics MOUNT(2)

NAME
mount — mount a file system

FORTRAN SYNOPSIS
integer *4 function mount (spec, dir, [mflag, fstyp, [data, datalen] D
character * (*) spec, dir
integer *4 mflag, fstyp
integer *4 data, datalen

DESCRIPTION

mount attaches a file system to a directory. After a successful return, refer-
ences to directory dir will refer to the root directory on the newly mounted
file system. Dir is a pointer to a pathname of a existent directory. Its old
contents are inaccessible while the filesystem is mounted. Spec and dir are
pointers to path names. Fstyp is the file system type number. The sysfs(2)
system call can be used to determine the file system type number. Note that
if the MS_FSS flag bit of mflag is off, the file system type will default to the
root file system type. Only if the bit is on will fstyp be used to indicate the
file system type.

The low-order bit of mflag is used to control write permission on the
mounted file system; if 1, writing is forbidden, otherwise writing is permit-
ted according to individual file accessibility.

mount may be invoked only by the super-user. It is intended for use only

by the mount(1M) utility.

mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not super-user.

[ENOENT] Any of the named files does not exist.

[ENOTDIR] A component of a path prefix is not a directory.

[ENOTBLK] Spec is not a block special device.

[ENXIO] The device associated with spec does not exist.

[ENOTDIR] Dir is not a directory.

[EFAULT] Spec or dir points outside the allocated address space of
the process.

[EBUSY] Dir is currently mounted on, is someone’s current work-

ing directory, or is otherwise busy.

[EBUSY] The device associated with spec is currently mounted.

[EBUSY] There are no more mount table entries.

April 1990 1= Version 3.0

MOUNT(2) Silicon Graphics MOUNT(2)

[EROFS] Spec is write protected and mflag requests write permis-
sion.
[ENOSPC] The file system state in the super-block is not FSOKAY

and mflag requests write permission.
[EINVAL] The super block has an invalid magic number or the fstyp
is invalid or mflag is not valid.
SEE ALSO
sysfs(2), umount(2), fs(4).
mount(1M) in the System Administrator’s Reference Manual.
DIAGNOSTICS

Upon successful completion a value of 0 is returned. Otherwise, a value of
-1 isreturned and errno is set to indicate the error.

April 1990 -2- Version 3.0

NICE(2) Silicon Graphics NICE(2)

NAME
nice — change priority of a process

FORTRAN SYNOPSIS
integer *4 function nice (incr)
integer *4 incr

DESCRIPTION
nice adds the value of incr to the nice value of the calling process. A
process’s nice value is a non-negative number for which a more positive
value results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed
by the system. (The default nice value is 20.) Requests for values above or
below these limits result in the nice value being set to the corresponding

limit.

[EPERM] nice will fail and not change the nice value if incr is
negative or greater than 39 and the effective user ID of
the calling process is not super-user.

SEE ALSO

exec(2), setpriority(2), schedctl(2).
nice(1), csh(1), sh(1) in the User’s Reference Manual.
DIAGNOSTICS
Upon successful completion, nice returns the new nice value minus 20.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

NOTES
The csh(1) has a version of nice as a builtin command which alas, has
slightly different syntax and semantics.

April 1990 -1- Version 3.0

OPEN(2)

NAME

Silicon Graphics OPEN(2)

open — open for reading or writing

FORTRAN SYNOPSIS

integer *4 function open (path, oflag, mode)
character * (*) path
integer *4 oflag, mode

DESCRIPTION

Path points to a path name naming a file. open opens a file descriptor for
the named file and sets the file status flags according to the value of oflag.
For non-STREAMS [see intro(2)] files, oflag values are constructed by or-
ing flags from the following list (only one of the first three flags below may

be used):

O_RDONLY Open for reading only.
O_WRONLY Open for writing only.

O_RDWR
0_NOCTTY

O_NDELAY

April 1990

Open for reading and writing.

If set, and path identifies a terminal device, the open func-
tion shall not cause the terminal device to become the con-
trolling terminal for the process.

This flag may affect subsequent reads and writes [see
read(2) and write(2)].

When opening a FIFO with O_RDONLY or O_WRONLY set:
If O_NDELAY is set:

An open for reading-only will return without
delay. An open for writing-only will return an
error if no process currently has the file open for
reading.

If O_NDELAY is clear:

An open for reading-only will block until a process
opens the file for writing. An open for writing-
only will block until a process opens the file for
reading.

When opening a file associated with a communication line:
If O_NDELAY is set:

The open will return without waiting for carrier.

-1- Version 3.0

OPEN(2) Silicon Graphics OPEN(2)

If O_NDELAY is clear:
The open will block until carrier is present.

0_NONBLOCK
This flag functions identically to O_NDELAY with regard to
the open function. [See read(2) and write(2))].

O_APPEND If set, the file pointer will be set to the end of the file prior to
each write.

O_SYNC When opening a regular file, this flag affects subsequent
writes. If set, each write(2) will wait for both the file data
and file status to be physically updated.

O_CREAT If the file exists, this flag has no effect. Otherwise, the
owner ID of the file is set to the effective user ID of the pro-
cess, the group ID of the file is set to the effective group ID
of the process or to the group ID of the directory in which
the file is being created. This is determined as follows:

If the underlying filesystem was mounted with the
BSD file creation semantics flag [see fstab(4)] or
the S_ISGID bit is set [see chmod(2)] on the parent
directory, then the group ID of the new file is set to
the group ID of the parent directory, otherwise it is
set to the effective group ID of the calling process.

The low-order 12 bits of the file mode are set to the value of
mode modified as follows [see creat(2)]:

All bits set in the file mode creation mask of the
process are cleared [see umask(2)].

The ‘‘sticky bit”’ of the mode is cleared [see

chmod(2)].
O_TRUNC If the file exists, its length is truncated to 0 and the mode
and owner are unchanged.
O_EXCL If O_EXCL and O_CREAT are set, open will fail if the file

exists.

When opening a STREAMS file, oflag may be constructed from O_NDELAY
or-ed with either O_RDONLY, O_WRONLY or O_RDWR. Other flag values
are not applicable to STREAMS devices and have no effect on them. The
value of O_NDELAY affects the operation of STREAMS drivers and certain
system calls [see read(2), getmsg(2), putmsg(2) and write(2)]. For drivers,
the implementation of O_NDELAY is device-specific. Each STREAMS dev-
ice driver may treat this option differently.

April 1990 -2- Version 3.0

OPEN(2) Silicon Graphics OPEN(2)

Certain flag values can be set following open as described in fcntl(2).

The file pointer used to mark the current position within the file is set to the
beginning of the file.

The new file descriptor is set to remain open across execve (2) system calls
[see fentl(2)].

There is a system enforced limit on the number of open file descriptors per
process {OPEN_MAX]}, whose value is returned by the getdtablesize(2) func--
tion.

The named file is opened unless one or more of the following are true:

[EACCES] A component of the path prefix denies search permis-
sion.

[ENAMETOOLONG] The length of path exceeds (PATH_MAX}, or a path-
name component is longer than (NAME MAX}.

[ELOOP] Too many symbolic links were encountered in
translating the pathname.

[EACCES] oflag permission is denied for the named file.

[EAGAIN] The file exists, mandatory file/record locking is set,
and there are outstanding record locks on the file [see
chmod (2)].

[EEXIST] O_CREAT and O_EXCL are set, and the named file
exists.

[EFAULT] ~ Path points outside the allocated address space of the
process.

[EINTR] A signal was caught during the open system call.

[EIO] A hangup or error occurred during a STREAMS open.

[EISDIR] The named file is a directory and oflag is write or
read/write.

[EMFILE] The system imposed limit for open file descriptors per
process {OPEN_MAX} has already been reached.

[ENFILE] The system file table has exceeded {NFILE MAX} con-
currently open files.

[ENOENT] O_CREAT is not set and the named file does not exist.

[ENOMEM] The system is unable to allocate a send descriptor.

April 1990 -3- Version 3.0

OPEN(2)

[ENOSPC]

[ENOSR]
[ENOTDIR]
[ENXIO]

[ENXIO]

[ENXIO]

[EROFS]

[ETXTBSY]

[EOPNOTSUPP]

SEE ALSO

Silicon Graphics OPEN(2)

O_CREAT and O_EXCL are set, and the file system is
out of inodes.

Unable to allocate a stream.
A component of the path prefix is not a directory.
The named file is a character special or block special

file, and the device associated with this special file

does not exist.

O_NDELAY is set, the named file is a FIFO,
O_WRONLY is set, and no process has the file open for
reading.

- A STREAMS module or driver open routine failed.

The named file resides on a read-only file system and
oflag is write or read/write.

The file is a pure procedure (shared text) file that is
being executed and oflag is write or read/write.

An attempt was made to open a socket (not currently
supported).

chmod(2), close(2), creat(2), dup(2), fentl(2), getdtablesize(2), intro(2),
1seck(2), read(2), getmsg(2), putmsg(2), umask(2), write(2).

DIAGNOSTICS

Upon successful completion, the file descriptor is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

April 1990

-4- Version 3.0

PAUSE(2) Silicon Graphics PAUSE(2)

NAME
pause — suspend process until signal
FORTRAN SYNOPSIS
integer *4 function pause()
DESCRIPTION
pause suspends the calling process until it receives a signal. The signal
must be one that is not currently set to be ignored by the calling process.
If the signal causes termination of the calling process, pause will not return.

If the signal is caught by the calling process and control is returned from
the signal-catching function [see signal(2)], the calling process resumes
execution from the point of suspension; with a return value of —1 from
pause and errno set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), sigpause(2), wait(2), sigaction(2), sigpend-
ing(2), sigprocmask(2), sigsuspend(2), sigvec(3B), signal(3B),
sigblock(3B), sigpause(3B), sigsetmask(3B).

April 1990 -1- Version 3.0

PIPE(2) Silicon Graphics PIPE(2)

NAME
pipe — create an interprocess channel

FORTRAN SYNOPSIS
integer *4 function pipe (fildes)
integer *4 fildes (2)

DESCRIPTION
pipe creates an I/O mechanism called a pipe and returns two file descrip-
tors, fildes[0] and fildes[1]. Fildes[0] is opened for reading and fildes[1] is
opened for writing. _
Up to PIPE_BUF (defined in limits.h) are guaranteed to be written atomi-
cally. Up to PIPE_MAX (defined in limits.h) bytes of data are buffered by

the pipe before the writing process is blocked. A read only file descriptor
fildes[0] accesses the data written to fildes[1] on a first-in-first-out (FIFO)

basis.
pipe will fail if:
[EMFILE] more than {OPEN_MAX}-2 file descriptors are currently
open.
[ENFILE] The system file table has exceeded (NFILE_MAX]} con-
currently open files.
SEE ALSO

read(2), write(2).
sh(1) in the User's Reference Manual.
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

April 1990 -1- Version 3.0

PLOCK(2) Silicon Graphics PLOCK(2)

NAME
plock — lock process, text, or data in memory

FORTRAN SYNOPSIS
integer *4 function plock (op)
integer *4 op

DESCRIPTION
plock allows the calling process to lock its text segment (text lock), its data
and stack segments (data lock), or its text, data, and stack segments (process
lock) into memory. Locked segments are immune to all routine swapping.
plock also allows these segments to be unlocked. The effective user ID of
the calling process must be super-user to use this call. Op specifies the fol-
lowing:

PROCLOCK - lock text and data segments into memory (process
lock)

TXTLOCK -~ lock text segment into memory (text lock)
DATLOCK - lock data and stack segments into memory (data lock)

UNLOCK - remove locks

plock will fail and not perform the requested operation if one or more of the

following are true:

[EPERM] The effective user ID of the calling process is not super-
user.

[EINVAL] Op is equal to PROCLOCK and a process lock, a text
lock, or a data lock already exists on the calling process.

[EINVAL] Op is equal to TXTLOCK and a text lock or a process
lock already exists on the calling process.

[EINVAL] Op is equal to DATLOCK and a data lock or a process
lock already exists on the calling process.

[EINVAL] Op is equal to UNLOCK and no type of lock exists on the
calling process.

[EAGAIN] There was insufficient lockable memory to lock the

requested segment. This may occur even though the
amount requested was less than the system-imposed
maximum number of locked pages.

[ENOMEM] The caller was not super-user and the number of pages to
be locked exceeded the per process limit {PLOCK_MAX}.

April 1990 -1- Version 3.0

PLOCK(2) Silicon Graphics PLOCK(2)

[ENOMEM] The total number of pages locked by the caller would
exceed the maximum resident size for the process [see
setrlimit(2)].

SEE ALSO
intro(2), exec(2), exit(2), getrlimit(2), mpin(2), plock(2), shmctl(2),
ulimit(2).

WARNING
If a locked data segment is grown, the newly-allocated pages are not locked
into memory.

DIAGNOSTICS

Upon successful completion, a value of 0 is returned to the calling process.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

BUGS
Shared library text and data segments and mapped files are not currently
affected by calls to plock.

April 1990 -2- Version 3.0

PRCTL(2)

NAME
prctl — operations on a process

FORTRAN SYNOPSIS

Silicon Graphics

PRCTL(2)

integer*4 prctl (option, [value, [value2]])
integer*4 option, value, value2

DESCRIPTION

pretl provides information about processes and the ability to control certain
of their attributes. Option specifies one of the following actions:

PR_MAXPROCS

PR_MAXPPROCS

PR_ISBLOCKED

PR_SETSTACKSIZE

PR_GETSTACKSIZE

PR_UNBLKONEXEC

April 1990

returns the system imposed limit on the
number of processes per user.

returns the maximum riumber of
processes the system is willing to run in
parallel.

returns 1 if the specified process is
currently blocked. value specifies the
pid. Since other processes could have
subsequently unblocked the subject pro-
cess, the result should be considered as
a snapshot only.

sets the maximum stack size for the
current process. This affects future
stack growths and forks only. The new
value, suitably rounded, is returned.
The value is expressed in terms of
bytes. This option and the
RLIMIT_STACK option of setrlimit(2)
act on the same value.

returns the current process’s maximum
stack size in bytes. This size is an
upper limit on the size of the current
process’s stack.

sets a flag so that when the calling pro-
cess subsequently calls exec(2), the pro-
cess whose pid is specified by value is
unblocked. This can be used in con-
junction with the PR_BLOCK option of
sproc(2) to provide race-free process
creation.

Version 3.0

PRCTL(2)

PR_SETEXITSIG

Silicon Graphics PRCTL(2)

controls whether all members of a share
group will be signaled if any one of
them terminates. If value is 0, then nor-
mal IRIX process termination rules
apply, namely that the parent is sent a
SIGCLD upon death of child, but no
indication of death of parent is given. If
value is a valid signal number [see sig-
nal(2)] then if any member of a share
group terminates, that signal is sent to
ALL surviving members of the share

group.

PR_RESIDENT makes the process immune to process
swapout.

PR_ATTACHADDR attaches the virtual segment containing

the address value2 in the process whose
pid is value to the calling process. Both
processes must be members of the same
share group. The address of where the
virtual segment was attached is
returned. This address has the same
logical offset into the virtual space as
the passed in address.

prctl will fail if one or more of the following are true:

[EINVAL}
[ESRCH]

[EINVAL]

[EINVAL]

[EINVAL]

[EPERM]

April 1990

option is not valid.

The value passed with the PR_ISBLOCKED or
PR_UNBLKONEXEC option doesn’t match the pid of
any process.

The value given for the new maximum stack size is
negative or exceeds the maximum process size allowed.

The value given for the PR_SETEXITSIG option is not a
valid signal number.

The calling process already has specified a process (or
the specified process is the caller itself) to be unblocked
on exec via the PR_UNBLKONEXEC option.

The caller does not have permission to unblock the pro-
cess specified by the value passed for the
PR_UNBLKONEXEC option.

-2- 4 Version 3.0

PRCTL(2) Silicon Graphics PRCTL(2)

SEE ALSO
blockproc(2), signal(2), setrlimit(2), sproc(2).
DIAGNOSTICS

Upon successful completion, prcil returns the requested information. Oth-
erwise, a value of —1 is returned to the calling process, and errno is set to
indicate the error.

April 1990 -3- Version 3.0

PROFIL(2) Silicon Graphics PROFIL(2)

NAME
profil — execution time profile

FORTRAN SYNOPSIS
integer *4 function profil (buff, buffsiz, offset, scale)
integer *2 (*) buff
integer *4 bufsiz, offset, scale

DESCRIPTION
Buff points to an area of core whose length (in bytes) is given by bufsiz.
After this call, the user’s program counter (pc) is examined each clock tick
(10 milliseconds); offset is subtracted from it, and the result multiplied by
scale. If the resulting number corresponds to a word inside buff, that word
is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with 16 bits of
fraction: 0x10000 gives a 1-1 mapping of pc’s to words in buff; 0x8000
maps each pair of instruction words together.

Since each bucket is only 16 bits, it is concievable for it to overflow. No
indication that this has occurred is given.

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective
by giving a bufsiz of 0. Profiling is turned off when an execve is executed,
but remains on in child and parent both after a fork or sproc. Profiling is
turned off if an update in buff would cause a memory fault.

SEE ALSO
fork(2), sproc(2), monitor(3X).

DIAGNOSTICS
A 0, indicating success, is always returned.

April 1990 -1- : Version 3.0

PTRACE(2) Silicon Graphics PTRACE(2)

NAME

ptrace — process trace

FORTRAN SYNOPSIS

integer *4 function ptrace (request, pid, addr, data)
integer *4 request, pid, addr, data

DESCRIPTION

Ptrace provides a way for a procéss to control the execution of another pro-
cess and to examine and change that process’s core image. Ptrace is used
primarily to implement breakpoint debugging.

There are four arguments whose interpretation depends on a request argu-
ment. Generally, pid is the process ID of the traced process. A process
being traced behaves normally until it encounters some signal, whether
internally generated (for example, “illegal instruction’’)) or externally gen-
erated (for example, *‘interrupt’”). See signal(2) for the list.

When the traced process encounters a signal, it enters a stopped state. The
process tracing it is notified by wait(2). If the the traced process stops with
a SIGTRAP, the process might have stopped for many reasons. Two status
words, which are addressable as registers, in the traced process’s uarea
qualify SIGTRAPs: TRAPCAUSE, which contains the cause of the trap,
and TRAPINFO, which contains extra information about the trap.

When the traced process is in the stopped state, its core image can be exam-
ined and modified using ptrace. Another pitrace request can cause the
traced process either to términate or to continue, possibly ignoring the sig-
nal.

The value of the request argument determines the precise action of the call:

0 This request is the only one that can be used by a child process.
Request 0 can declare that the child process is to be traced by its
parent. All other arguments are ignored. Peculiar results happen when
the parent does not expect to trace the child.)

1,2 The word in the traced process’s address space at addr is returned. If 1
and D space are separated (for example, historically on a PDP-11),
Request 1 specifies I space and Request 2 specifies D space. Addr
must be 4-byte aligned. The traced process must be stopped. The
input data is ignored.

3 The word of the system’s per-process data area that corresponds to
addr is returned. Addr is a constant defined in ptrace.h. This space
contains the registers and other information about the process. The
constants correspond to fields in the system’s user structure.

April 1990 -1- Version 3.0

PTRACE(2)

4,5

Silicon Graphics PTRACE(2)

The specified data is written at the word in the process’s address space
corresponds to addr. Addr must be 4-byte aligned. Upon successful
completion, the value written into the address space of the child is
returned to the parent. If I and D space are separated, Request 4
specifies I space and Request 5 specifies D space. Attempts to write in
pure procedure fail when another process is executing the same file.

The process’s system data is written as it is read with Request 3. Only
a few locations can be written this way: the general registers, the float-
ing point status and registers, and certain bits of the processor status
word. The old value at the address is returned.

The data argument is taken as a signal number and the traced process’s
execution continues at location addr as if it had incurred that signal.
The signal number can be 0, indicating the signal that caused the stop
should be ignored, or the signal can be the value fetched from the
process’s image, indicating what signal caused the stop. If addr is (int
*)1, execution continues from where it stopped.

The traced process terminates. The addr argument is ignored and the
data argument is the signal specified in Request 7.

Execution continues as in Request 7; however, as soon as possible
after execution of at least one instruction, execution stops again. The
signal number from the stop is SIGTRAP. TRAPCAUSE contains
CAUSESINGLE. This part of ptrace is used to implement break-
points. The addr and data arguments are defined in Request 7.

Requests 20-29 have not been fully defined or implemented.

20

This request is the same as Request 0, except it is executed by the trac-
ing process and the pid field is non-zero. That pid’s process pid stops
execution. On a signal, it becomes a traced process that returns control
to the tracing process rather than to the parent. The tracing process
must have the same user-id (uid) as the traced process.

21,22

These requesis return MAXREG general registers or MAXFREG
floating registers, respectively. Their values are copied to the locations
starting at the address in the tracing process specified by the addr argu-
ment.

24,25

April 1990

These requests are the same as Requests 20 and 21, except that they
write the registers instead of reading them.

-2- Version 3.0

PTRACE(2) Silicon Graphics PTRACE(2)

26 This request specifies a watchpoint in the data or stack segment of the
traced process. If any byte address (starting at the addr argument and
continuing for the number of bytes specified by the data argument) is
accessed in an instruction, the traced process stops execution with a
SIGTRAP. TRAPCAUSE contains CAUSEWATCH; TRAPINFO
contains the address causing the trap. Ptrace returns a wid (watch-
point identifier). MAXWIDS specifies the maximum number of
watchpoints per process.

27 This request’s data argument specifies a wid to delete.

28 This request turns off tracing for the traced process that has the
specified pid.

29 This request returns an open file descriptor for the file attached to pid.
This is useful for accessing the symbol table of an execed process.

These calls (except for Requests 0 and 20) can be used only when the sub-
Ject process has terminated. The wait call determines when a process ter-
minates. Then, the “‘termination’” status returned by wait has the value
0177 to show stoppage rather than termination. If multiple processes are
being traced, wait can be called multiple times and returns the status for the
next stopped child, terminated child, or traced process.

To prevent fraud, ptrace inhibits the set-user-id and set-group-id facilities
on later execve(2) calls. If a traced process calls execve , the process ter-
minates before executing the first instruction of the new image showing sig-
nal SIGTRAP. TRAPCAUSE contains CAUSEEXEC; TRAPINFO does
not contain anything interesting. If a traced process execs again, the same
thing happens.

If a traced process forks, both parent and child are traced, and the break-
points from the parent are copied into the child. At the time of the fork, the
child stops with a SIGTRAP. The tracing process can end the trace, if
desired. TRAPCAUSE contains CAUSEFORK; TRAPINFO contains the
its parent’s pid.

RETURN VALUE

If the call succeeds, a 0 value is returned. If the call fails, then a -1 is
returned and the global variable errno is set to indicate the error.

ERRORS
[EINVAL] The request code is invalid.
[EINVAL] The specified process does not exist.
[EINVAL] The given signal number is invalid.

April 1990 -3- Version 3.0

PTRACE(2) Silicon Graphics PTRACE(2)

[EFAULT] The specified address is out of bounds.
[EPERM] The specified process cannot be traced.
SEE ALSO ' : '

BUGS

wait(2), sigvec(2).

There is file system called /debug where each ‘‘file”” is actually an active
process. The process’ file name is /debug/processid where processid is the
process number. open(2), read(2), etc can be used to acess the (running)
process. Use fentl(2) to control the process. See <sysifsidbfcntl. k> for a list
of the control functions available. The /debug facility solves the problems
with ptrace mentioned below.

Ptrace is unique and arcane; it should be replaced with a special file that
can be opened, read, and written. The control functions could be imple-
mented with ioct!(2) calls on this file. This would be easier to understand
and have much higher performance.

The Request 0 call should specify signals that are to be treated normally and
should not cause a termination. Then, programs with simulated floating
point (which use “‘illegal instruction’’ signals at a high rate) could be
efficiently debugged.

The error indication —1 is a legitimate function value errno. See intro(2) o
disambiguate.

It should be possible to stop a process on occurrence of a system call. In
this way, a completely controlled environment could be provided.

April 1990 -4- Version 3.0

READ(2) Silicon Graphics READ(2)

NAME

read — read from file

FORTRAN SYNOPSIS

integer *4 function read (fildes, buf, nbyte)
integer *4 fildes

character * (*) buf

integer *4 byte

DESCRIPTION

Fildes is a file descriptor obtained from a creat(2), open(2), dup(2),
fentl(2), socket(2), socketpair(2), or pipe(2) system call.

read attempts to read nbyte bytes from the file associated with fildes into
the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file given
by the file pointer associated with fildes. Upon return from read, the file
pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position.
The value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually read
and placed in the buffer; this number may be less than nbyte if the file is
associated with a communication line [see ioctl(2) and termio(7)], or a
socket [see socket(2)], or if the number of bytes left in the file is less than
nbyte bytes. A value of 0 is returned when an end-of-file has been reached.

A read from a STREAMS [see intro(2)] file can operate in three different
modes: "byte-stream” mode, "message-nondiscard” mode, and "message-
discard” mode. The default is byte-stream mode. This can be changed
using the I_SRDOPT ioctl request [see streamio(7)], and can be tested with
the I_GRDOPT ioctl. In byte-stream mode, read will retrieve data from the
stream until it has retrieved nbyte bytes, or until there is no more data to be
retrieved. Byte-stream mode ignores message boundaries.

In STREAMS message-nondiscard mode, read retrieves data until it has read
nbyte bytes, or until it reaches a message boundary. If the read does not
retrieve all the data in a message, the remaining data are replaced on the
stream, and can be retrieved by the next read or getmsg(2) call. Message-
discard mode also retrieves data until it has retrieved nbyte bytes, or it
reaches a message boundary. However, unread data remaining in a mes-
sage after the read returns are discarded, and are not available for a subse-
quent read or getmsg.

April 1990 -1- Version 3.0

READ(2) Silicon Graphics READ(2)

When attempting to read from a regular file with mandatory file/record
locking set [see chmod(2)], and there is a blocking (i.e. owned by another
process) write lock on the segment of the file to be read:

If O_NDELAY or O_NONBLOCK is set, the read will return a -1
and set errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, the read will sleep
until the blocking record lock is removed.

When attempting to read from an empty pipe (or FIFO):
If O_NDELAY is set, the read will return a 0.

If O_NONBLOCK is set, the read will return a -1 and set ermo to
EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, the read will block
until data is written to the file or the file is no longer open for writ-
ing.

When attempting to read a file associated with a tty that has no data
currently available:

If O_NDELAY is set, the read will return a 0.

If O_NONBLOCK is set, the read will return a -1 and set errno to
EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, the read will block
until data becomes available.

When attempting to read a file associated with a stream that has no data
currently available:

If O_NDELAY or O_NONBLOCK is set, the read will return a -1
and set errno to EAGAIN.

If O_NDELAY and O_NONBLOCK are clear, the read will block
until data becomes available.

Due to the different semantics of O_NDELAY and O_NONBLOCK in two of
the above 4 cases, these flags must not be used simultaneously.

When reading from a STREAMS file, handling of zero-byte messages is
determined by the current read mode setting. In byte-stream mode, read
accepts data until it has read nbyte bytes, or until there is no more data to
read, or until a zero-byte message block is encountered. read then returns
the number of bytes read, and places the zero-byte message back on the
stream to be retrieved by the next read or getmsg. In the two other modes,
a zero-byte message returns a value of 0 and the message is removed from
the stream. When a zero-byte message is read as the first message on a
stream, a value of 0 is returned regardless of the read mode.

April 1990 -2- Version 3.0

READ(2) Silicon Graphics READ(2)

A read from a STREAMS file can only process data messages. It cannot
process any type of protocol message and will fail if a protocol message is
encountered at the stream head.

read will fail if one or more of the following are true:

[EAGAIN] Mandatory file/record locking was set, O_NDELAY was
set, and there was a blocking record lock.

[ENOMEM] Insufficient amount of system virtual memory is avail-
able with which to map the user pages when reading via
raw IO.

[EAGAIN] No message waiting to be read on a stream and
O_NDELAY flag set.

[EBADF] Fildes is not a valid file descriptor open for reading.

[EBADMSG] Message waiting to be read on a stream is not a data
message.

[EDEADLK] The read was going to go to sleep and cause a deadlock
situation to occur.

[EFAULT] Buf points outside the allocated address space.

[EINTR] A signal was caught during the read system call.

[EINVAL] Attempted to read from a stream linked to a multiplexor.

[ENOLCK] The system record lock table was full, so the read could
not go to sleep until the blocking record lock was
removed.

A read from a STREAMS file will also fail if an error message is received at
the stream head. In this case, errno is set to the value returned in the error
message. If a hangup occurs on the stream being read, read will continue
to operate normally until the stream head read queue is empty. Thereafter,
it will return 0.

SEE ALSO
creat(2), dup(2), fentl(2), ioctl(2), intro(2), open(2), pipe(2), getmsg(2),
socket(2).
streamio(7), termio(7) in the System Administrator’ s Reference Manual.
DIAGNOSTICS
Upon successful completion a non-negative integer is returned indicating

the number of bytes actually read. Otherwise, a —1 is returned and errno is
set to indicate the error.

April 1990 -3- Version 3.0

READLINK(2) Silicon Graphics READLINK(2)

NAME
readlink — read value of a symbolic link

FORTRAN SYNOPSIS
integer *4 function readlink (path, buf, bufsize)
character * (¥) path, buf)
integer *4 bufsize (
DESCRIPTION
Readlink places the contents of the symbolic link path in the buffer buf
which has size bufsiz. The contents of the link are not null terminated when
returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds, or
a -1 if an error occurs, placing the error code in the global variable errno.

ERRORS
Readlink will fail and the file mode will be unchanged if:

[ENOTDIR] A component of the path prefix is nota direémry.

[ENOENT] The named file does not exist.

[ENXIO] The named file is not a symbolic link.

[EACCES] Search permission is denied on a component of the path -
prefix. (

[EFAULT] Buf extends outside the process’s allocated address
space.

[ELOOP] Too many symbolic links were encountered in translating
the pathname.

SEE ALSO

stat(2), symlink(2)

April 1990 -1- Version 3.0

RMDIR(2)

NAME

Silicon Graphics RMDIR(2)

rmdir — remove a directory

FORTRAN SYNOPSIS

integer *4 function rmdir (path)
character * (*) path

DESCRIPTION

rmdir removes the directory named by the path name pointed to by path.
The directory must not have any entries other than "." and "..".

The named directory is removed unless one or more of the following are

true:

[EINVAL]
[EINVAL]
[EEXIST)]

[ENOTDIR]
[ENOENT]
[EACCES]

[EACCES]

[EACCES]

The current directory may not be removed.
The "." entry of a directory may not be removed.

The directory contains entries other than those for "."
and "..".

A component of the path prefix is not a directory.
The named directory does not exist.

Search permission is denied for a component of the
path prefix.

Write permission is denied on the directory containing
the directory to be removed.

The parent directory of the directory to be removed
has the sticky bit set and

the parent directory is not owned by the user and

the directory to be removed is not owned by the user
and

the directory to be removed is not writable by the user
and

the user is not superuser.

[ENAMETOOLONG] The length of path exceeds {PATH_MAX}, or a path-

[EBUSY]

[EROFS]

[EFAULT]

April 1990

name component is longer than {NAME_MAX].

The directory to be removed is the mount point for a
mounted file system.,

The directory entry to be removed is part of a read-
only file system.

Path points outside the process’s allocated address
space.

-1- Version 3.0

RMDIR(2) Silicon Graphics RMDIR(2)

[EIO] An /O error occurred while accessing the file system.

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of

—1is returned and errno is set to indicate the error.

SEE ALSO
mkdir(2).
rmdir(1), rm(1), and mkdir(1) in the User’s Reference Manual.

April 1990 ’ -2- Version 3.0

SEND(2) Silicon Graphics SEND(2)

NAME
send, sendto, sendmsg — send a message from a socket

FORTRAN SYNOPSIS
integer *4 function send (s, msg, len, flags)
integer *4 s
character * (*) msg
integer *4 len, flags

DESCRIPTION
Send, sendto, and sendmsg are used to transmit a message to another
socket. Send may be used only when the socket is in a connected state,
while sendto and sendmsg may be used at any time.

The address of the target is given by to with tolen specifying its size. The
length of the message is given by len. If the message is too long to pass
atomically through the underlying protocol, then the error EMSGSIZE is
returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of —1
indicate some locally detected errors. ‘

If no messages space is available at the socket to hold the message to be
transmitted, then send normally blocks, unless the socket has been placed in
non-blocking I/O mode. The select(2) call may be used to determine when
itis possible to send more data.

The flags parameter may include one or more of the following:

#define MSG_OOB 0x1 /* process out-of-band data */
#define MSG_DONTROUTE 0x4 /* bypass routing,
use direct interface */

The flag MSG_OOB is used to send ‘‘out-of-band’’ data on sockets that
support this notion (e.g., SOCK_STREAM); the underlying protocol must
also support ‘‘out-of-band’’ data. MSG_DONTROUTE is usually used
only by diagnostic or routing programs.

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or —1 if an error occurred.
ERRORS
[EBADF] An invalid descriptor was specified.
[ENOTSOCK] The argument s is not a socket.

April 1990 -1- Version 3.0

SEND(2)

[EFAULT]

[EMSGSIZE]

[EWOULDBLOCK]

[ENOBUFS]

[ENOBUFS]

SEE ALSO

Silicon Graphics SEND(2)

An invalid user space address was specified for a
parameter.

The socket requires that message be sent atomi-
cally, and the size of the message to be sent made
this impossible.

The socket is marked non-blocking and the
requested operation would block.

The system was unable to allocate an internal
buffer. The operation may succeed when buffers
become available.

The output queue for a network interface was full.
This generally indicates that the interface has
stopped sending, but may be caused by transient
congestion.

fentl(2), recv(2), select(2), getsockopt(2), socket(2), write(2)

April 1990

-2- Version 3.0

SETPGRP(2) Silicon Graphics SETPGRP(2)

NAME
setpgrp, BSDsetpgrp — set process group ID (System V and 4.3BSD)

FORTRAN SYNOPSIS
integer *4 function setpgrp ()

DESCRIPTION
The System V version of setpgrp sets the process group ID of the calling
process to the process ID of the calling process and returns the new process
group ID.

The BSD version of setpgrp set the process group of the specified process
pid to the specified pgrp. If pid is zero, then the call applies to the current
process.

If the invoker is not the super-user, then the affected process must have the
same effective user-id as the invoker or be a descendant of the invoking
process.

ERRORS: BSD VERSION ONLY
setpgrp and BSDsetpgrp will fail and the process group will not be altered if
one of the following occur:

[ESRCH] The requested process does not exist.

[EPERM] The effective user ID of the requested process is different
from that of the caller and the process is not a descendent
of the calling process.

SEE ALSO
exec(2), fork(2), getpgrp(2), getpid(2), intro(2), kill(2), setpgid(2), sig-
nal(2).

DIAGNOSTICS
The System V version of setpgrp returns the value of the new process
group ID with no possibility of error. The BSD version also returns the new
process group ID if the operation was successful. If the request failed, —1 is
returned and the global variable errno indicates the reason.

April 1990 -1- Version 3.0

SETUID(2) Silicon Graphics SETUID(2)

NAME
setuid, setgid — set user and group IDs
FORTRAN SYNOPSIS
integer *4 function setuid (uid)
integer *4 uid
integer *4 function setgid (gid)
integer *4 gid
DESCRIPTION
setuid (setgid) is used to set the real user (group) ID and effective user
(group) ID of the calling process.

If the effective user ID of the calling process is super-user, the real user
(group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not super-user, but its real
user (group) ID is equal to uid (gid), the effective user (group) ID is set to
uid (gid).

If the effective user ID of the calling process is not super-user, but the saved
set-user (group) ID from exec(2) is equal to wid (gid), the effective user
(group) ID is set to uid (gid).

setuid or setgid will fail if one or more of the following are true:

[EPERM] setuid (setgid) will fail if the real user (group) ID of the
calling process is not equal to uid (gid) and its effective
user ID is not super-user.

[EINVAL] The uid (gid) is out of range.

SEE ALSO
getuid(2), intro(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value of
—1 is returned and errno is set to indicate the error.

April 1990 -1- Version 3.0

SGINAP(2) Silicon Graphics SGINAP(2)

NAME
sginap — timed sleep and processor yield function

FORTRAN SYNOPSIS
subroutine sginap (ticks)
integer *4 ticks

DESCRIPTION
The sginap system call provides two functions. With an argument of 0, it
yields the processor to any higher or equal priority processes immediately,
thus potentially allowing another process to run. Note that because nor-
mally the user has no direct control over the exact priority of a given pro-
cess, this does not guarantee that another process will run.

With an argument which is non-zero, sginap will suspend the process for
ticks clock ticks. The length of a clock tick is defined by CLK_TCK in the
include file <limits.h>. This is the same for all IRIS-4D products.

SEE ALSO
sleep(3), alarm(2), pause(2), schedctl(2), setitimer(2).

April 1990 -1- Version 3.0

SHMOP(2) Silicon Graphics SHMOP(2)

NAME
shmop: shmat, shmdt — shared memory operations

FORTRAN SYNOPSIS
integer *4 function shmdt (shmaddr)

DESCRIPTION
shmat attaches the shared memory segment associated with the shared
memory identifier specified by shmid to the data segment of the calling pro-
cess. The segment is attached at the address specified by one of the follow-
ing criteria: :
If shmaddr is equal to zero, the segment is attached at the first
available address as selected by the system.

If shmaddr is not equal to zero and (shmfly & SHM_RND) is
““true”’, the segment is attached at the address given by (shmaddr -
(shmaddr modulus SHMLBA)).

If shmaddr is not equal to zero and (shmflg & SHM_RND) is
““false’’, the segment is attached at the address given by shmaddr.

shmdt detaches from the calling process’s data segment the shared memory
segment located at the address specified by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONLY) is “‘true’’ (

{READY}, otherwise it is attached for reading and writing {(READ/WRITE}.

shmat will fail and not attach the shared memory segment if one or more of
the following are true:

[EINVAL]. Shmid is not a valid shared memory identifier.

[EACCES] Operation permission is denied to the calling process [see
intro(2)].

[ENOMEM] The available virtual space of the caller (either total size

{PROCSIZE_MAX]} or a large enough gap between other
previously allocated virtual spaces) cannot accommodate
the shared memory segment.

[EINVAL] Shmaddr is not equal to zero, and the value of (shmaddr
- (shmaddr modulus SHMLBA)) is an illegal address.
[EINVAL] Shmaddr is not equal to zero, (shmflg & SHM_RND) is

“false”’, and the value of shmaddr is an illegal address. (

Attach addresses must be a multiple of SHMLBA [see
<sys/shm.h>].

April 1990 -1- Version 3.0

character * (*) shmaddr (

—

SHMOP(2) Silicon Graphics SHMOP(2)

[EMFILE] The number of shared memory segments attached to the
calling process would exceed the system-imposed limit
{SHMAT _MAX] [see intro(2)].

shmdt will fail and not detach the shared memory segment if one or more of
the following are true:

[EBUSY] The shared memory segment is in use by another
member of the calling process’s share group [see
sproc(2)].

[EINVAL] Shmaddr is not the start address of a shared memory seg-
ment.

SEE ALSO
exec(2), exit(2), fork(2), intro(2), shmctl(2), shmget(2), sproc(2).
DIAGNOSTICS

Upon successful completion, the return value is as follows:

shmat returns the data segment start address of the attached shared
memory segment.

shmdt returns a value of 0. »
Otherwise, a value of —1 is returned and errno is set to indicate the error.

NOTES -
The user must explicitly remove shared memory segments after the last
reference to them has been removed..

April 1990 -2- Version 3.0

SIGNAL(2) Silicon Graphics SIGNAL(2)

NAME

signal — software signal facilities (System V)

FORTRAN SYNOPSIS

integer function signal (sig, func, flag)
integer sig, func, flag
external func

DESCRIPTION

signal allows the calling process to choose one of three ways in which it is
possible to handle the receipt of a specific signal. Sig specifies the signal
and func specifies the choice.

FORTRAN interface routine signal takes an extra argument flag. if flag is a
negative value func must be an external FORTRAN procedure name. Other-
wise, func is ignored and flag can contain SIG_DFL, SIG_IGN, or the
address of a C signal-handling routine. In this case, flag will be passed to
the system call signal as func. flag may be the value returned from a previ-
ous call to signal and, thus, can be used to restore a previous action
definition. Note that flag can only be an integer variable containing the
address of a C function and not the C function itself. Sig is the signal to be
caught, and must be in the range

(0 < sig < NSIG).
Sig can be assigned any one of the following except SIGKILL or SIGSTOP:
SIGHUP 01 hangup
SIGINT 02 interrupt
SIGQUIT 03 quit
SIGILL 041 illegal instruction (not reset when caught)
SIGTRAP 051151 trace trap (not reset when caught)
SIGABRT 06! abort
SIGEMT 07141 EMT instruction
SIGFPE os!!! floating point exception
SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10"! bus error
SIGSEGV 111 segmentation violation
SIGSYS 120 pad argument to system call
~ SIGPIPE 13 write on a pipe with no one to read it
.SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSR1 16 user-defined signal 1
SIGUSR2 17 user-defined signal 2
SIGCLD 181 death of a child

April 1990 -1- Version 3.0

(

SIGNAL(2)
SIGPWR 191
SIGSTOP 20161
SIGTSTP 21161
SIGPOLL 2281
SIGIO 230
SIGURG 242
SIGWINCH 25121
SIGVTALRM 26
SIGPROF 27
SIGCONT 286l
SIGTTIN 29[61
SIGTTOU 30161
SIGXCPU 31
SIGXFSZ 32

Silicon Graphics SIGNAL(2)

power fail (not reset when caught)

stop (cannot be caught or ignored)

stop signal generated from keyboard
selectable event pending

input/output possible

urgent condition on IO channel

window size changes

virtual time alarm

profiling alarm

continue after stop (cannot be ignored)
background read from control terminal
background write to control terminal
cpu time limit exceeded [see setrlimit(2)]
file size limit exceeded [see setrlimit(2)]

Func is assigned one of three values: SIG_DFL or SIG_IGN, which are
macros (defined in <sys/signal.h>) that expand to constant expressions, or
a function address.

The actions prescribed by its value are as follows:

SIG_DFL - terminate process upon receipt of a signal

Upon receipt of the signal sig, the receiving process is to be
terminated with all of the consequences outlined in exit(2). See
SIGNAL NOTES [1] below.

SIG_IGN - ignore signal
The signal sig is to be ignored.

Note: the signals SIGKILL, SIGSTOP and SIGCONT cannot be

ignored.

Jfunction address — catch signal

Upon receipt of the signal sig, the receiving process is to exe-
cute the signal-catching function whose address is specified via
this parameter. The function will be invoked as follows:

April 1990

handler (int sig, int code, struct sigcontext *SC);

Where handler is the specified function-name. code is valid
only in the following cases:

Condition Signal Code

User breakpoint SIGTRAP BRK_USERBP

User breakpoint SIGTRAP BRK_SSTEPBP

Integer overflow SIGTRAP BRK_OVERFLOW

Divide by zero SIGTRAP BRK_DIVZERO

Multiply overflow SIGTRAP BRK_MULOVF
-2- Version 3.0

SIGNAL(2)

SIGNAL NOTES

Silicon Graphics SIGNAL(2)
Invalid virtual address SIGSEGV EFAULT
Read-only address SIGSEGV EACCESS

Read beyond mapped object ~ SIGSEGV ~ ENXIO

The third argument sc is a pointer to a struct sigcontext
(defined in <syslsignal.h>) that contains the processor context
at the time of the signal. The FORTRAN arguments are defined
in the same way except for the last argument which can be
defined either as an array of integers or as a record.

Upon return from the signal-catching function, the receiving
process will resume execution at the point it was interrupted.

Before entering the signal-catching function, the value of func
for the caught signal will be set to SIG_DFL unless the signal is
SIGILL, SIGTRAP, or SIGPWR. This means that before exiting
the handler, a signal call is necessary to again set the disposi-
tion to catch the signal.

When a signal that is to be caught occurs during a read(2), a
write(2), an open(2), or an ioctl(2) system call on a slow dev-
ice (like a terminal; but not a file), during a pause(2) system
call, or during a wait(2) system call that does not return
immediately due to the existence of a previously stopped or
zombie process, the signal catching function will be executed
and then the interrupted system call may return a —1 to the cal-
ling process with errno set to EINTR.

Note: The signals SIGKILL and SIGSTOP cannot be caught.

[1] If SIG_DFL is assigned for these signals, in addition to the process
being terminated, a ‘‘core image’’ will be constructed in the current
working directory of the process, if the following conditions are met:

April 1990

The effective user ID and the real user ID of the receiving
process are equal.

An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following
properties:

a mode of 0666 modified b; the file creation mask
[see umask(2)]

a file owner ID that is the same as the effective
user ID of the receiving process.

-3- Version 3.0

SIGNAL(2) Silicon Graphics SIGNAL(2)

a file group ID that is the same as the effective
group ID of the receiving process

NOTE: The core file may be truncated if the resultant file size would exceed
either ulimit [see ulimit(2)] or the process’s maximum core file size [see
setrlimit(2)].

[2] For the signals SIGCLD, SIGWINCH, SIGPWR, SIGURG, and SIGIO,
the handler parameter is assigned one of three values: SIG_DFL,
SIG_IGN, or a function address. The actions prescribed by these
values are:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the
calling process’s child processes will not create zombie
processes when they terminate [see exit(2)].

function address — caich signal

If the signal is SIGPWR, SIGURG, SIGIO, or SIGWINCH,
the action to be taken is the same as that described above
for a handler parameter equal to function address. The
same is true if the signal is SIGCLD with one exception:
while the process is executing the signal-catching func-
tion, all terminating child processes will be queued. The
wait system call removes the first entry of the queue. If
the signal system call is used to catch SIGCLD, the signal
handler must be re-attached when exiting the handler, and
at that time--if the queue is not empty--SIGCLD is re-
raised before signal returns. See wait(2).

In addition, SIGCLD affects the wait and exit system calls as follows:

wait If the handler parameter of SIGCLD is set to SIG_IGN and
a wait is executed, the wait will block until all of the cal-
ling process’s child processes terminate; it will then return
a value of —1 with errno set to ECHILD.

exit If in the exiting process’s parent process the handler
parameter of SIGCLD is set to SIG_IGN, the exiting pro-
cess will not create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that may
be piped into in this manner (and thus become the parent of other
processes) should take care not to set SIGCLD to be caught.

April 1990 -4- Version 3.0

SIGNAL(2)

[3]

[4]
[5]

(6]

EXAMPLES

Silicon Graphics SIGNAL(2)

SIGPOLL is issued when a file descriptor corresponding to a
STREAMS [see intro(2)] file has a "selectable” event pending. A pro-
cess must specifically request that this signal be sent using the
1_SETSIG ioctl call. Otherwise, the process will never receive SIG-
POLL. :

SIGEMT is never generated on an IRIS-4D system.

SIGTRAP is generated for breakpoint instructions, overflows, divide
by zeros, range errors, and multiply overflows. The second argument
code gives specific details of the cause of the signal. Possible values
are described in <sys/signal.h>.

The signals SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU and SIGCONT
are used by command interpreters like the C shell [see ¢sh(1)] to pro-
vide job control. The first four signals listed will cause the receiving
process to be stopped, unless the signal is caught or ignored.
SIGCONT causes a stopped process to be resumed. SIGTSTP is sent
from the terminal driver in response to the SWTCH character being
entered from the keyboard [see termio(7)]. SIGTTIN is sent from the
terminal driver when a background process attempts to read from its
controlling terminal. If SIGTTIN is ignored by the process, then the
read will return EIO. SIGTTOU is sent from the terminal driver when
a background process attempts to write 10 its controlling terminal when
the terminal is in TOSTOP mode. If SIGTTOU is ignored by the pro-
cess, then the write will succeed regardless of the state of the control-
ling terminal.

This is an example in FORTRAN:

#include <sys/signal.h>

EXTERNAL FPROC
INTEGER SIGNAL
INTEGER CPADDR

I = SIGNAL(SIGTERM, FPROC, -1)
J = SIGNAL(SIGINT, 0, CPADDR)

The first call to signal sets up the FORTRAN function fproc as the signal-
handling routine for SIGTERM. The second call sets up a C function whose
address is in the variable cpaddr as the signal-handling routine for SIGINT.

April 1990

-5- Version 3.0

SIGNAL(2) Silicon Graphics SIGNAL(2)

NOTES
signal will not catch an invalid function argument, func, and results are
undefined when an attempt is made to execute the function at the bad
address.

SIGKILL will immediately terminate a process, regardless of its state.
Processes which are stopped via job control (typically <Ctrl>-Z) will not act
upon any delivered signals other than SIGKILL until the job is restarted.
Processes which are blocked via a blockproc system call will unblock if
they receive a signal which is fatal (i.e., a non-job-control signal which the
are NOT catching), but will still be stopped if the job of which they are a
part is stopped. Only upon restart will they die. Any non-fatal signals
received by a blocked process will NOT cause the process to be unblocked
(an unblockproc(2) or unblockprocall(2) system call is necessary).

A call to signal cancels a pending signal sig except for a pending SIGKILL

signal.

[EINVAL] signal will fail if sig is an illegal signal number, includ-
ing SIGKILL and SIGSTOP.

[EINVAL] signal will fail if an illegal operation is requested (for
example, ignoring SIGCONT, which is ignored by
default).

After a fork(2) the child inherits all handlers and signal masks, but not the

set of the pending signals.

The exec(2) routines reset all caught signals to the default action; ignored
signals remain ignored; the blocked signal mask is unchanged and pending
signals remain pending.

SEE ALSO
intro(2), blockproc(2), kill(2), pause(2), ptrace(2), sigaction(2), sigset(2),
wait(2), setjmp(3C), sigvec(3B).
kill(1) in the User’s Reference Manual.

DIAGNOSTICS
Upon successful completion, signal returns the previous value of func for
the specified signal sig. Otherwise, a value of SIG_ERR is returned and
errno is set to indicate the error. SIG_ERR is defined in the header file
<sys/signal.h>.

WARNINGS
Signals raised by the instruction stream, SIGILL, SIGEMT, SIGBUS, SIG-
SEGYV will cause infinite loops if their handler returns, or the action is set to
SIG_IGN.

April 1990 -6- Version 3.0

SIGNAL(2) Silicon Graphics SIGNAL(2)

WARNING
The POSIX signal routines (sigaction(2), sigpending(2), sigprocmask(2),
sigsuspend(2), sigsetimp(3)), and the 4.3BSD signal routines (sigvec(3B),
signal(3B), sigblock(3B), sigpause(3B), sigsetmask(3B)) must NEVER be
used with signal(2) or sigset(2).

Before entering the signal-catching function, the value of func for the
caught signal will be set to SIG_DFL unless the signal is SIGILL, SIGTRAP,
or SIGPWR. This means that before exiting the handler, a signal call is
necessary to again set the disposition to catch the signal.

Note that handlers installed by signal execute with no signals blocked, not
even the one that invoked the handler.

April 1990 -7- Version 3.0

SIGSET(2) Silicon Graphics SIGSET(2)

NAME

sigset, sighold, sigrelse, sigignore, sigpause — signal management (System
V)

FORTRAN SYNOPSIS

integer *4 function sighold (sig)
integer *4 sig

integer *4 function sigrelse (sig)
integer *4 sig

integer *4 function sigignore (sig)
integer *4 sig

integer *4 function sigpause (sig)
integer *4 sig

DESCRIPTION

These functions provide signal management for application processes. sig-
set specifies the system signal action to be taken upon receipt of signal sig.
This action is either calling a process signal-catching handler func or per-
forming a system-defined action.

sighold and sigrelse are used to establish critical regions of code. sighold is
analogous to raising the priority level and deferring or holding a signal until
the priority is lowered by sigrelse. sigrelse restores the system signal
action to that specified previously by sigset.

sigignore sets the action for signal sig to SIG_IGN (see below).

sigpause suspends the calling process until it receives a signal, the same as
pause(2). However, if the signal sig had been received and held, it is
released and the system signal action taken. This system call is useful for
testing variables that are changed on the occurrence of a signal. The correct
usage is to use sighold to block the signal first, then test the variables. If
they have not changed, then call sigpause to wait for the signal.

Sig can be assigned any one of the following values except SIGKILL and
SIGSTOP:

SIGHUP 01 hangup

SIGINT 02 interrupt

SIGQUIT 03 quit

SIGILL o4l illegal instruction (not reset when caught)
SIGTRAP 05™M5] race trap (not reset when caught)
SIGABRT 06! abort

SIGEMT 07! EMT instruction

SIGFPE o8t floating point exception

April 1990 -1- Version 3.0

SIGSET(2) Silicon Graphics SIGSET(2)

SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10*! bus error

SIGSEGV 1114 segmentation violation

SIGSYS 12 bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGUSR1 16 user-defined signal 1

SIGUSR2 17 user-defined signal 2

SIGCLD 181 death of a child

SIGPWR 19" power fail (not reset when caught)
SIGSTOP 20161 stop (cannot be caught or ignored)
SIGTSTP 21161 stop signal generated from keyboard
SIGPOLL 2281 selectable event pending

SIGIO 2312 input/output possible

SIGURG 2412 urgent condition on IO channel
SIGWINCH 251 window size changes

SIGVTALRM 26 virtual time alarm

SIGPROF 27 profiling alarm

SIGCONT 28161 continue after stop (cannot be ignored)
SIGTTIN 29161 background read from control terminal
SIGTTOU 301 background write to control terminal
SIGXCPU 31 cpu time limit exceeded [see setrlimit(2)]
SIGXFSZ 32 file size limit exceeded [see setrlimit(2)]

Func is assigned one of four values: SIG_DFL, SIG_IGN, or SIG_HOLD,
which are macros (defined in <sys/signal.h>) that expand to constant
expressions, or a function address.

The actions prescribed by its value are as follows:

SIG_DFL — terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be
terminated with all of the consequences outlined in exit(2). See
SIGNAL NOTES [1] below.

SIG_IGN — ignore signal
The signal sig is to be ignored.
Note: the signals SIGKILL, SIGSTOP and SIGCONT cannot be
ignored.

SIG_HOLD - hold signal :
The signal sig is to be held upon receipt. Any pending signal
of this type remains held. Only one signal of each type is held.

April 1990 -2- Version 3.0

SIGSET(2) Silicon Graphics SIGSET(2)

function address — catch signal
Upon receipt of the signal sig, the receiving process is to exe-
cute the signal-catching function whose address is specified via
this parameter. The function will be invoked as follows:

handler (int sig, int code, struct sigcontext *sc);

Where handler is the specified function-name. code is valid
only in the following cases:

Condition Signal Code

User breakpoint SIGTRAP BRK_USERBP
User breakpoint SIGTRAP BRK_SSTEPBP
Integer overflow SIGTRAP BRK_OVERFLOW
Divide by zero SIGTRAP BRK_DIVZERO
Multiply overflow SIGTRAP BRK_MULOVF
Invalid virtual address SIGSEGV EFAULT
Read-only address SIGSEGV EACCESS

Read beyond mapped object ~ SIGSEGV ~ ENXIO

The third argument sc is a pointer to a struct sigcontext
(defined in <sys/signal.h>) that contains the processor context
at the time of the signal. The FORTRAN arguments are
defined in the same way except for the last argument which can
be defined either as an array of integers or as a record.

Before the handler is invoked the signal action will be changed
to SIG_HOLD.

The signal-catching function remains installed after it is
invoked. During normal retum from the signal-catching
handler, the system signal action is restored to func and any
held signal of this type released. If a non-local goto (longjmp)
is taken, then sigrelse must be called to restore the system sig-
nal action and release any held signal of this type.

Upon return from the signal-catching function, the receiving
process will resume execution at the point it was interrupted.
See WARNINGS below.

When a signal that is to be caught occurs during a read(2), a
write(2), an open(2), or an ioctl(2) system call on a slow dev-
ice (like a terminal; but not a file), during a pause(2) system
call, or during a wait(2) system call that does not return
immediately due to the existence of a previously stopped or
zombie process, the signal catching function will be executed
and then the interrupted system call may return a —1 to the

April 1990 -3- Version 3.0

SIGSET(2) Silicon Graphics SIGSET(2)

calling process with errno set to EINTR.
Note: The signals SIGKILL and SIGSTOP cannot be caught.

SIGNAL NOTES
[1] If SIG_DFL is assigned for these signals, in addition to the process
being terminated, a ‘‘core image’’ will be constructed in the current
working directory of the process, if the following conditions are met:

The effective user ID and the real user ID of the receiving
process are equal.

An ordinary file named core exists and is writable or can be
created. If the file must be created, it will have the following
properties:

a mode of 0666 modified by the file creation mask
[see umask(2)]

a file owner ID that is the same as the effective
user ID of the receiving process.

a file group ID that is the same as the effective
group ID of the receiving process

NOTE: The core file may be truncated if the resultant file size would exceed
either ulimit [see ulimit(2)] or the process’s maximum core file size [see
setrlimit(2)].

[2] For the signals SIGCLD, SIGWINCH, SIGPWR, SIGURG, and SIGIO,
the handler parameter is assigned one of three values: SIG_DFL,
SIG_IGN, or a function address. The actions prescribed by these
values are:

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN - ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the
calling process’s child processes will not create zombie
processes when they terminate [see exi#(2)].

function address - catch signal
If the signal is SIGPWR, SIGWINCH, SIGURG, or SIGIO,
the action to be taken is the same as that described above
for a handler parameter equal to function address. The
same is true if the signal is SIGCLD with one exception:
while the process is executing the signal-catching func-
tion, all terminating child processes will be queued. The
wait system call removes the first entry of the queue. To
ensure that no SIGCLD’s are missed while executing in a

April 1990 -4- Version 3.0

SIGSET(2)

[3]

[4]
[5]

(6]

April 1990

Silicon Graphics SIGSET(2)

SIGCLD handler, it is necessary to call sigset to re-attach
the handler before exiting from it, and at that time--if the
queue is not empty--SIGCLD is re-raised before sigset
returns. See wait(2). If the signal handler is simply exit-
ted from, then SIGCLD will NOT be re-raised automati-
cally.

In addition, SIGCLD affects the wait and exit system calls as follows:

wait If the handler parameter of SIGCLD is set to SIG_IGN and
a wait is executed, the wait will block until all of the cal-
ling process’s child processes terminate; it will then return
a value of -1 with errno set to ECHILD.

exit If in the exiting process’s parent process the handler
parameter of SIGCLD is set to SIG_IGN, the exiting pro-
cess will not create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that may
be piped into in this manner (and thus become the parent of other
processes) should take care not to set SIGCLD to be caught.

SIGPOLL is issued when a file descriptor corresponding to a
STREAMS [see intro(2)] file has a "selectable" event pending. A pro-
cess must specifically request that this signal be sent using the
I_SETSIG ioctl call. Otherwise, the process will never receive SIG-
POLL.

SIGEMT is never generated on an IRIS-4D system.

SIGTRAP is generated for breakpoint instructions, overflows, divide
by zeros, range errors, and multiply overflows. The second argument
code gives specific details of the cause of the signal. Possible values
are described in <sys/signal.h>.

The signals SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU and SIGCONT
are used by command interpreters like the C shell [see csh(1)] to pro-
vide job control. The first four signals listed will cause the receiving
process to be stopped, unless the signal is caught or ignored.
SIGCONT causes a stopped process to be resumed. SIGTSTP is sent
from the terminal driver in response to the SWTCH character being
entered from the keyboard [see termio(7)]. SIGTTIN is sent from the
terminal driver when a background process attempts to read from its
controlling terminal. If SIGTTIN is ignored by the process, then the
read will return EIO. SIGTTOU is sent from the terminal driver when
a background process attempts to write to its controlling terminal when
the terminal is in TOSTOP mode. If SIGTTOU is ignored by the

-5- Version 3.0

SIGSET(2) Silicon Graphics SIGSET(2)

process, then the write will succeed regardless of the state of the con-
trolling terminal. :

EXAMPLES

NOTES

This is an example in FORTRAN:
#include <sys/signal.h>

EXTERNAL FPROC
INTEGER SIGNAL
INTEGER CPADDR

I = SIGNAL(SIGTERM, FPROC, -1)
J = SIGNAL(SIGINT, 0, CPADDR)

The first call to signal sets up the FORTRAN function fproc as the signal-
handling routine for SIGTERM. The second call sets up a C function whose
address is in the variable cpaddr as the signal-handling routine for SIGINT.

SIGKILL will immediately terminate a process, regardless of its state.
Processes which are stopped via job control (<ctrl>z) will not act upon any
delivered signals other than SIGKILL until the job is restarted. Processes
which are blocked via a blockproc system call will unblock if they receive a -
signal which is fatal (i.e. a non-job-control signal which the are NOT catch-
ing), but will still be stopped if the job of which they are a part is stopped.
Only upon restart will they die. Any non-fatal signals received by a
blocked process will NOT cause the process to be unblocked (an unblock-
proc or unblockprocall system call is necessary).

After a fork(2) the child inherits all handlers and signal masks, but not the
set of pending signals.

The exec(2) routines reset all caught signals to the default action; ignored
signals remain ignored, the blocked signal mask is unchanged and pending
signals remain pending.

sigset will fail if one or more of the following are true:

[EINVAL] Sig is an illegal signal number (including SIGKILL and
SIGSTOP) or the default handling of sig cannot be
changed. .

[EINVAL] The requested action is illegal (e.g. ignoring SIGCONT,
: which is ignored by default).

April 1990 -6- Version 3.0

SIGSET(2) Silicon Graphics SIGSET(2)

[EINTR] A signal was caught during the system call sigpause.

DIAGNOSTICS
Upon successful completion, sigset returns the previous value of the system
signal action for the specified signal sig. Otherwise, a value of SIG_ERR is
returned and errno is set to indicate the error. SIG_ERR is defined in
<sys/signal.h>.

For the other functions, upon successful completion, a value of 0 is
returned. Otherwise, a value of —1 is returned and errno is set to indicate
the error.

SEE ALSO
csh(1), kill(2), pause(2), setrlimit(2), signal(2), ulimit(2), wait(2), sigac-
tion(2), setjmp(3C), sigvec(3B), blockproc(2).

WARNINGS
Signals raised by the instruction stream, SIGILL, SIGEMT, SIGBUS, SIG-

SEGV will cause infinite loops if their handler returns, or the action is set to
SIG_IGN.

WARNING :
The POSIX signal routines (sigaction(2), sigpending(2), sigprocmask(2),
sigsuspend(2), sigsetjmp(3)), and the 4.3BSD signal routines (sigvec(3B),
signal(3B), sigblock(3B), sigpause(3B), sigsetmask(3B)) must NEVER be
used with signal(2) or sigset(2).

April 1990 -7- Version 3.0

SOCKET(2) Silicon Graphics SOCKET(2)

socket — create an endpoint for communication

FORTRAN SYNOPSIS '
integer *4 function socket (domain, type, protocol)
integer *4 domain, type, protocol

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The domain parameter specifies a communications domain within which
communication will take place; this selects the protocol family which
should be used. The protocol family generally is the same as the address
family for the addresses supplied in later operations on the socket. These
families are defined in the include file <sys/socket.h>. The currently
understood formats are:

PF_INET (DARPA Internet protocols)
PF_RAW (Link-level protocols)
PF_UNIX (4.3BSD UNIX internal protocols)

The following are defined but currently unimplemented:

PF_NS (Xerox Network Systems protocols), and
PF_IMPLINK - (IMP “‘host at IMP” link layer).

The socket has the indicated type, which specifies the semantics of com-
munication. Currently defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection
based byte streams. An out-of-band data transmission mechanism may be
supported. A SOCK_DGRAM socket supports datagrams (connectionless,
unreliable messages of a fixed (typically small) maximum length).
SOCK_RAW sockets, which are available only to the super-user, provide
access to internal network protocols and interfaces. The types
SOCK_SEQPACKET and SOCK_RDM are currently unimplemented.

The protocol specifies a particular protocol to be used with the socket. Nor-
mally only a single protocol exists to support a particular socket type within
a given protocol family. However, it is possible that many protocols may
exist, in which case a particular protocol must be specified in this manner.
The protocol number to use is particular to the ‘‘communication domain’’
in which communication is to take place; see getprotoent (3N).

April 1990 -1- ‘ Version 3.0

SOCKET(2) Silicon Graphics SOCKET(2)

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to
pipes. A stream socket must be in a connected state before any data may be
sent or received on it. A connection to another socket is created with a con-
nect(2) call. Once connected, data may be transferred using read(2) and
write(2) calls or some variant of the send(2) and recv (2) calls. Note that for
the read and recv-style calls, the number of bytes actually read may be less
than the number requested. When a session has been completed a close(2)
may be performed. Out-of-band data may also be transmitted as described
in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM
insure that data is not lost or duplicated. If a piece of data for which the
peer protocol has buffer space cannot be successfully transmitted within a
reasonable length of time, then the connection is considered broken and
calls will indicate an error with —1 returns and with ETIMEDOUT as the
specific code in the global variable errno. The protocols optionally keep
sockets ‘‘warm’’ by forcing transmissions roughly every minute in the
absence of other activity. An error is then indicated if no response can be
elicited on an otherwise idle connection for a extended period (e.g. 5
minutes). A SIGPIPE signal is raised if a process sends on a broken stream;
this causes naive processes, which do not handle the signal, to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to
correspondents named in send(2) calls. Datagrams are generally received
with recvfrom(2), which returns the next datagram with its retarn address.

An fentl(2) call can be used to specify a process group to receive a
SIGURG signal when the out-of-band data arrives. The FIONBIO i/o con-
trol (see ioctl(2)) or the FNDELAY fcntl (see fentl(2)) enable non-blocking
I/O and asynchronous notification of I/O events via SIGIO.

The operation of sockets is controlled by socket level options. These
options are defined in the file <sys/socket.h>. setsockopt(2) and get-
sockopt(2) are used to set and get options, respectively.

RETURN VALUE :
A -1 is returned if an error occurs, otherwise the return value is a descriptor
referencing the socket.

ERRORS
The socket call fails if:

[EPROTONOSUPPORT] The protocol type or the specified protocol is
not supported within this domain.

April 1990 -2- Version 3.0

SOCKET(2) Silicon Graphics SOCKET(2)

[EMFILE] The per-process descriptor table is full.

[ENFILE] The system file table is full.

[EACCESS] Permission to create a socket of the specified
type and/or protocol is denied.

[ENOBUFS] Insufficient buffer space is available. The

socket cannot be created until sufficient
resources are freed.

SEE ALSO
accept(2), bind(2), connect(2), fentl(2), getsockname(2), getsockopt(2),
ioctl(2), listen(2), read(2), recv(2), select(2), send(2), socketpair(2),
write(2)
Network Programming chapter in the Network Communications Guide.

April 1990 -3- Version 3.0

SPROC(2) Silicon Graphics SPROC(2)

NAME
Sproc — create a new share £Zroup process

FORTRAN SYNOPSIS
integer*4 function sproc (entry, inh, arg)
external entry
integer*4 inh
integer*4 arg

DESCRIPTION

The sproc system call is a variant of the standard Sfork(2) call. Like fork,
sproc creates a new process that is a clone of the process that called sproc.
The difference is that after an sproc, the new child process shares the virtual
address space of the parent process (assuming that this sharing option is
selected, as described below), rather than simply being a copy of the parent.
The parent and the child each have their own program counter value and
stack pointer, but all the text and data space is visible to both processes.
This provides one of the basic mechanisms upon which parallel programs
can be built.

A group of processes created by sproc calls from a common ancestor is
referred to as a share group or shared process group. A share group is ini-
tially formed when a process first executes an sproc call. All subsequent
sproc calls by either the parent or other children in his share group will add
another process to the share group. In addition to virtual address space,
members of a share group can share other attributes such as file tables,
current working directories, effective userids and others described below.

The new child process resulting from sproc(2) differs from a normally
forked process in the following ways:

The child’s stack is set to a virtual address that doesn’t overlap the
stack of the parent process. There is a maximum stack size different
from the maximum allowable amount of virtual space per process.
This value may be read and set using prcil (2) or setrlimit(2).

If the PR_SADDR bit is set in ink then the new process will share ALL
the virtual space of the parent, except the PRDA (see below). During
a normal fork(2), the writable portions of the process’s address space
are marked copy-on-write. If either process writes into a given page,
then a copy is made of the page and given to the process. Thus writes
by one process will not be visible to the other forks. With the
PR_SADDR option of sproc(2), however, all the processes have
read/write privileges to the entire virtual space.

April 1990 -1- Version 3.0

SPROC(2)

Silicon Graphics SPROC(2)

The new process can reference the parent’s stack.

The new process has its own process data area (PRDA) which con-
tains, among other things, the process id. Part of the PRDA is used by
the system, part by system libraries, and part is available to the appli-
cation program [see <sys/prctl.h>]. The PRDA is at a fixed virtual
address in each process which is given by the constant PRDA defined
in pretl.h.

The machine state (general/floating point registers) is not duplicated
with the exception of the floating point control register. This means
that if a process has enabled floating point traps, these will be enabled
in the child process.

The new process will be invoked as follows:

entry(arg)

In addition to the attributes inherited during the sproc call itself, the inh flag
to sproc can request that the new process have future changes in any
member of the share group be applied to itself. A process can only request
that a child process share attributes that it itself is sharing. The creator of a
share group is effectively sharing everything. These persisting attributes
are selectable via the inh flag:

PR_SADDR All virtual space attributes (shared memory, mapped files,

data space) are shared. If one process in a share group
attaches to a shared memory segment, all processes in the
group can access that segment.

PR_SFDS The open file table is kept synchronized. If one member

of the share group opens a file, the open file descriptor
will appear in the file tables of all members of the share
group. Note that there is only one file pointer for each file
descriptor shared within a shared process group.

PR_SDIR The current and root directories are kept synchronized. If

one member of the group issues a chdir(2) or chroot(2)
call, the current working directory or root directory will
be changed for all members of the share group.

PR_SUMASK The file creation mask, umask is kept synchronized.

PR_SULIMIT The limit on maximum file size is kept synchronized.

PR_SID The real and effective user and group ids are kept syn-

April 1990

chronized.

-2- Version 3.0

SPROC(2) Silicon Graphics SPROC(2)

To take advantage of sharing all possible attributes, the constant PR_SALL
may be used.

In addition to specifying shared attributes, the ink flag can be used to pass
flags that govern certain operations within the sproc call itself. Currently
one flag is supported, PR_BLOCK, which causes the calling process to be
blocked [see blockproc(2)] before returning from a successful call. This
can be used to allow the child process access to the parent’s stack without
the possibility of collision.

No scheduling synchronization is implied between shared processes: they
are free to run on any processor in any sequence. Any required synchroni-
zation must be provided by the application using locks and semaphores [see
usinit(3P)] or other mechanisms.

If one member of a share group exits or otherwise dies, its stack is removed
from the virtual space of the share group. In addition, if the
PR_SETEXITSIG option [see prctl(2)] has been enabled then all remaining
members of the share group will be signaled.

There are two versions of sproc, one in libe.a and one in libmpec.a. Users
linking with the semaphored version of libc, libmpc.a, by using the -lmpc
flag to the compiler, will have standard routines such as prinsf and malloc
function properly even though two or more shared processes access them
simultaneously. To accomplish this, a special arena is set up [see
usinit(3P)] to hold the locks and semaphores required. Each process in the
share group needs access to this arena and requires a single file lock [see
fentl(2)]. This may require more file locks to be configured into the system
than the default system configuration provides.

sproc will fail and no new process will be created if one or more of the fol-
lowing are true:

[ENOMEM] If there is not enough virtual space to allocate a new
stack. The default stack size is settable via prctl(2), or
setrlimit(2).

[EAGAIN] The system-imposed limit on the total number of
processes under execution, {NPROC} [see intro(2)],
would be exceeded.

[EAGAIN] The system-imposed limit on the total number of
processes under execution by a single user {CHILD_MAX])
[see intro(2)], would be exceeded.

[EAGAIN] Amount of system memory required is temporarily una-
vailable.

April 1990 -3- Version 3.0

SPROC(2) Silicon Graphics SPROC(2)

NOTES

When linked with libmpc.a, in addition to the above errors sproc will fail
and no new process will be created if one or more of the following are true:

[ENOSPC] If the size of the share group exceeds the number of
users specified via usconfig(3P) (8 by default). Any
changes via usconfig (3P) must be done BEFORE the first
sproc is performed.

[ENOLCK] There are not enough file locks in the system.

New share group member pid # could not join 1/0 arena. error:<..>
if the new share group member could not properly join
the semaphored libc arena. The new process exits with a
-1.

See also the possible errors from usinit(3P).

This manual entry has described ways in which processes created by sproc
differ from those created by fork. Attributes and behavior not mentioned as
different should be assumed to work the same way for sproc processes as
for processes created by fork. Here are some respects in which the two
types of processes are the same: ‘

The parent and child after an sproc each have a unique process id
(pid), but are in the same process group.

A signal sent to a specific pid in a share group [see kill(2)] will be
received by only the process to which it was sent. Other members of
the share group will not be affected. A signal sent to an entire process
group will be received by all the members of the process group,
regardless of share group affiliations [see killpg(3B)]. See prctl(2) for
ways to alter this behavior.

If the child process resulting from an sproc dies or calls exit(2), the
parent process receives the SIGCLD signal [see sigset(2), sigaction(2),
and sigvec(3B)].

CAVEATS

Removing virtual space (e.g. unmapping a file) is an expensive operation
and effectively forces all processes in the share group to single thread.

Note that the global variable errno is shared by all processes in an sproc
share group in which address space is a shared attribute. This means that if
multiple processes in the group make system calls, the value of errno is no
longer useful, since it may be overwritten at any time by a system call in
another process in the share group. In order to allow a process in a share
group to determine the value of errno reliably, the system call modules in
libmpc.a store the error return code in a location in the PRDA that is
private to each process in the share group, in addition to storing it in the

April 1990 -4- Version 3.0

SPROC(2) Silicon Graphics SPROC(2)

global variable errno. A library routine oserror(3C) is provided in both
libc.a and libmpe.a that returns the current value errno for the process
making the call.

SEE ALSO
blockproc(2), fentl(2), fork(2), pretd(2), setrlimit(2), oserror(3C),
pcreate(3C), usconfig(3P), usinit(3P).

DIAGNOSTICS
Upon successful completion, sproc returns the process id of the new pro-
cess. Otherwise, a value of —1 is returned to the calling process, and errno
is set to indicate the error.

April 1990 -5- Version 3.0

STAT(2) Silicon Graphics STAT(2)

NAME
stat, Istat, fstat — get file status

FORTRAN SYNOPSIS
integer function stat (path, statb)
character *(*) path
integer statb (12)

integer function Istat (path, statb)
character *(*) path
integer statb (12)

integer function fstat (lunit, statb)
integer lunit, statb (12)

DESCRIPTION
Path points to a path name naming a file. Read, write or execute permis-
sion of the named file is not required, but all directories listed in the path
name leading to the file must be searchable. stat obtains information about
the named file. The order and meaning of the information returned in array
statb is identical to that returned in stat.

Istat is like stat except in the case where the named file is a symbolic link,
in which case Istat returns the information about the link, while stat returns
the information about the file the link references.

Similarly, fstat obtains information about an open file known by the file
descriptor fildes, obtained from a successful open, creat, dup, fentl, or pipe
system call.

Buf is a pointer to a stat structure into which information is placed concern-
- ing the file.

The contents of the structure pointed to by buf include the following
members: :
struct stat {
dev_t st_dev; /* ID of device containing */
/* a directory entry for this file */
ino_t st_ino; /* Inode number */
mode_t st_ mode; /* File mode; see mknod(2) */
short st_nlink; /* Number of links */
ushort st_uid; /* User ID of the file’s owner */
ushort st_gid; /* Group ID of the file’s group */
dev_t st_rdev; /*ID of device */
/* This entry is defined only for */
/* character special or block special files */
off_t st_size; /+ File size in bytes */
/* or, for fstat on block devices, */

April 1990 -1- Version 3.0

STAT(2) Silicon Graphics STAT(2)

/* device size in 512-byte blocks */
time_t st_atime; /* Time of last access */
time_t st_mtime; /* Time of last data modification */
time_t st_ctime; /* Time of last file status change */
/* Times measured in seconds since */
/% 00:00:00 GMT, Jan. 1, 1970 */
)5
st_atime
Time when file data was last accessed. Changed by the following
system calls: creat(2), mknod(2), pipe(2), utime(2), and read(2).

st_mtime
Time when data was last modified. Changed by the following sys-
tem calls: creat(2), mknod(2), pipe(2), utime(2), and write 2.

st_ctime
Time when file status was last changed. Changed by the following
system calls: chmod(2), chown(2), creat(2), link(2), mknod 2),
pipe(2), unlink(2), utime (2), and write (2).

Note: the st_size field is set for block devices only by fstat énd not by stat.
It is set only for block device files which are associated with a real disk dev-
ice.

stat and Istat will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the
path prefix.

[ENAMETOOLONG] The length of path exceeds (PATH MAX}, or a path-
name component is longer than (NAME_MAX]} .

[ELOOP] Too many symbolic links were encountered in
translating the pathname.
[EFAULT] Buf or path points to an invalid address.
[fstat will fail if one or more of the following are true:
[EBADF] Fildes is not a valid open file descriptor.
[EFAULT] Buf points to an invalid address.
SEE ALSO

chmod(2), chown(2), creat(2), link(2), mknod(2), time(2), truncate(2),
unlink(2), utime(2), utimes(3B).

April 1990 -2- Version 3.0

STAT(2) Silicon Graphics STAT(2)

DIAGNOSTICS
Upon successful completion a value of 0 is returned. Otherwise, a value of

—1 is returned and errno is set to indicate the error.

April 1990 -3- Version 3.0

STIME(2) Silicon Graphics STIME(2)

NAME
stime — set time

FORTRAN SYNOPSIS
integer *4 function stime (tp)
integer *4 tp

DESCRIPTION

stime sets the system’s idea of the time and date. Tp points to the value of
time as measured in seconds from 00:00:00 GMT January 1, 1970.

[EPERM] stime will fail if the effective user ID of the calling pro-
cess is not super-user.
SEE ALSO
time(2), gettimeofday(3B), ctime(3C).
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of
—1is returned and errno is set to indicate the error.

April 1990 -1- Version 3.0

SYMLINK(2) Silicon Graphics SYMLINK(2)

NAME
symlink — make symbolic link to a file

FORTRAN SYNOPSIS
integer *4 function symlink (namel, name2)
character * (*) namel, name2

DESCRIPTION
A symbolic link name? is created to namel (name2 is the name of the file
created, namel is the string used in creating the symbolic link). Either
name may be an arbitrary path name; the files need not be on the same file
system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs,
the error code is stored in errno and a —1 value is returned.

ERRORS
The symbolic link is made unless on or more of the following are true:

[ENOTDIR] A component of the name2 prefix is not a directory.

[ENOENT] A component of the name?2 prefix does not exist.

[EEXIST] Name?2 already exists.

[EACCES] A component of the name2 path prefix denies search per-
mission.

[EROFS] The file name2 would reside on a read-only file system.

[EFAULT] Namel or name2 points outside the process’s allocated
address space.

[ELOOP] Too may symbolic links were encountered in translating
the pathname.

SEE ALSO

link(2), In(1), readlink(2), unlink(2)

April 1990 -1- Version 3.0

SYNC(2) Silicon Graphics SYNC(2)

NAME
sync — update super block
FORTRAN SYNOPSIS
subroutine sync ()
DESCRIPTION
sync causes all information in memory that should be on disk to be written

out. This includes modified super blocks, modified i-nodes, and delayed
block I/O.

It should be used by programs which examine a file system, for example
fsck, df, etc. It is mandatory before a re-boot.

The writing, although scheduled, is not necessarily complete upon return
from sync.

April 1990 -1- Version 3.0

SYSMP(2)

NAME

Silicon Graphics SYSMP(2)

sysmp — multiprocessing control

FORTRAN SYNOPSIS

integer *4 function sysmp (cmd, argl, arg2, arg3, arg4)
integer *4 cmd, argl, arg2, arg3, argd

DESCRIPTION

sysmp provides control/information for miscellaneous system services.
This system call is usually used by system programs and is not intended for
general use. The arguments argl, arg2, arg3, arg4 are provided for
command-dependent use.

As specified by cmd, the following commands are available:

MP_PGSIZE

MP_SCHED
MP_NPROCS
MP_NAPROCS

MP_STAT

MP_EMPOWER

MP_RESTRICT

MP_CLOCK

April 1990

The page size of the system is returned [see get-
pagesize(2)].

Interface for the schedctl(2) system call.

Returns the number of processors physically configured.

Returns the number of processors that are available to
schedule unrestricted processes.

The processor ids and status flag bits of the physically
configured processors are copied into an array of
pda_stat structures to which argl points. The array must
be large enough to hold as many pda_stat structures as
the number of processors returned by the MP_NPROCS
sysmp command. The pda_stat structure and the various
status bits are defined in <sys/pda.h>.

Empowers processor numbered argl to run any unres-
tricted processes. This is the default system
configuration for all processors. This command requires
superuser authority.

Restricts processor numbered argl from running any
processes except those assigned to it by a
MP_MUSTRUN command, a runon(1) command or
because of hardware necessity. This command requires
superuser authority.

Moves the operating system software clock handling to
the processor numbered argl. This command requires
superuser authority.

-1- Version 3.0

SYSMP(2)

Silicon Graphics SYSMP(2)

MP_MUSTRUN Assigns the calling process to run only on the processor

numbered argl, except as required for communications
with hardware devices.

MP_RUNANYWHERE

Frees the calling process to run on whatever processor
the system deems suitable.

MP_KERNADDR Returns the address of various kernel data structures.

MP_SASZ

MP_SAGET1

MP_SAGET

The structure returned is selected by argl. The list of
available structures is detailed in <sys/sysmp.h>. This
option is used by many system programs to avoid having
to look in /unix for the location of the data structures.

Returns the size of various system accounting structures.
As above, the structure returned is governed by argl.

Returns the contents of various system accounting struc-
tures. The information is only for the processor specified
by arg4 . As above, the structure returned is governed by
argl. arg2 points to a buffer in the address space of the
calling process and arg3 specifies the maximum number
to bytes to transfer.

Returns the contents of various system accounting struc-
tures. The information is summed across all processors
before it is returned. As above, the structure returned is
governed by argl. arg2 points to a buffer in the address
space of the calling process and arg3 specifies the max-
imum number to bytes to transfer.

Possible errors from sysmp are:

[EPERM]

[EINVAL]

[EINVAL]
[EINVAL]

[EBUSY]

April 1990

The effective user ID is not superuser. Many of the com-
mands require superuser privilege.

The processor named by a MP_EMPOWER,
MP_RESTRICT, MP_CLOCK or MP_SAGET1 command
does not exist.

The ¢cmd argument is invalid.

The argl argument to a MP_KERNADDR command is
invalid.

An attempt was made to restrict the only unrestricted
processor or to restrict the master processor.

-2- Version 3.0

SYSMP(2) Silicon Graphics SYSMP(2)

[EFAULT] An invalid buffer address has been supplied by the cal-
ling process.
SEE ALSO
mpdmin(1), runon(1), getpagesize(2), schedctl(2).. -
DIAGNOSTICS :

Upon successful completion, the cmd dependent data is returned. Other-
wise, a value of —1 is returned and errno is set to indicate the error.

April 1990 -3- Version 3.0

UADMIN(2)

NAME

Silicon Graphics UADMIN(2)

uadmin — administrative control

FORTRAN SYNOPSIS

integer *4 function uadmin (cmd, fcn, mdep)
integer *4 cmd, fcn, mdep

DESCRIPTION

uadmin provides control for basic administrative functions. This system
call is tightly coupled to the system administrative procedures and is not
intended for general use. The argument mdep is provided for machine-
dependent use and is not defined here.

As specified by cmd, the following commands are available:
A_SHUTDOWN The system is shutdown. All user processes are killed,

A_REBOOT

A_REMOUNT

A_KILLALL

the buffer cache is flushed, and the root file system is
unmounted. The action to be taken after the system has
been shut down is specified by fcn. The functions are
generic; the hardware capabilities vary on specific
machines.

AD_HALT Halt the processor and turn off the power.
AD_BOOT Reboot the system, using /unix.

AD_IBOOT Interactive reboot; user is prompted for
system name. Not supported; it is treated
the same as AD_HALT.

The system stops immediately without any further pro-
cessing. The action to be taken next is specified by fcn
as above.

The root file system is mounted again after having been
fixed. This should be used only during the startup pro-
cess.

All processes are killed except those belonging to the
process group specified by fcn. They are sent the signal
specified by mdep.

uadmin fails if any of the following are true:

[EPERM]
DIAGNOSTICS

The effective user ID is not super-user.

Upon successful completion, the value returned depends on cmd as follows:

April 1990

-1- Version 3.0

UADMIN(2) Silicon Graphics UADMIN(2)

A_SHUTDOWN Never returns.
A_REBOOT Never returns.
A_REMOUNT 0
A_KILLALL 0

Otherwise, a value of -1 is returned and errno is set to indicate the error. (

April 1990 -2- Version 3.0

ULIMIT(2)

NAME

Silicon Graphics ULIMIT(2)

ulimit — get and set user limits

FORTRAN SYNOPSIS
integer *4 function ulimit (cmd, newlimit)
integer *4 cmd, newlimit

DESCRIPTION
This function provides for control over process limits. The cmd values
available are:
1 Get the regular file size limit of the process. The limit is in units of

SEE ALSO

512-byte blocks and is inherited by child processes. Files of any size
can be read.

Set the regular file size limit of the process to the value of newlimit.
Any process may decrease this limit, but only a process with an effec-
tive user ID of super-user may increase the limit. ulimit fails and the
limit is unchanged if a process with an effective user ID other than
super-user attempts to increase its regular file size limit. [EPERM]

Get the maximum possible break value [see brk(2)].

Get the current value of the maximum number of open files per pro-
cess configured in the system.

brk(2), setrlimit(2), write(2).

WARNING

ulimit is effective in limiting the growth of regular files. Pipes are currently

limited to 10240 bytes.

DIAGNOSTICS
Upon successful completion, a non-negative value is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

April 1990

-1- Version 3.0

UMASK(2) Silicon Graphics UMASK(2)

NAME
umask — set and get file creation mask

FORTRAN SYNOPSIS
integer *4 function umask (cmask)
integer *4 cmask

DESCRIPTION
umask sets the process’s file mode creation mask to cmask and returns the
previous value of the mask. Only the low-order 9 bits of cmask and the file
mode creation mask are used.

SEE ALSO
chmod(2), creat(2), mknod(2), open(2).
mkdir(1), sh(1) in the User’s Reference Manual.

DIAGNOSTICS
The previous value of the file mode creation mask is returned.

April 1990 -1- Version 3.0

UMOUNT(2) Silicon Graphics UMOUNT(2)

NAME
umount — unmount a file system

FORTRAN SYNOPSIS
integer *4 function umount (file)
character * (*) file

DESCRIPTION
umount requests that a previously mounted file system contained on the
block special device or directory identified by file be unmounted. File is a
pointer to a path name. After unmounting the file system, the directory
upon which the file system was mounted reverts to its ordinary interpreta-
tion.

umount may be invoked only by the super-user.

umount will fail if one or more of the following are true:

[EPERM] The process’s effective user ID is not super-user.
[EINVAL] File does not exist.
[ENOTBLK] File is not a block special device.
[EINVAL] File is not mounted.
[EBUSY] A file on file is busy.
[EFAULT] File points to an illegal address.
SEE ALSO
mount(2).
DIAGNOSTICS

Upon successful completion a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

April 1990 -1- Version 3.0

UNLINK(2)

NAME

Silicon Graphics UNLINK(2)

unlink — remove directory entry

FORTRAN SYNOPSIS

integer function unlink (path)

character *(*) path

DESCRIPTION

unlink removes the directory entry named by the path name pointed to by

path.

The named file is unlinked unless one or more of the following are true:

[ENOTDIR]

[ENOENT]
[EACCES]

[EACCES]

[EACCES]

[EPERM]

A component of the path prefix is not a directory.
The named file does not exist.

Search permission is denied for a component of the
path prefix.

Write permission is denied on the directory containing
the link to be removed.

The parent directory has the sticky bit set and
the file is not writable by the user and

the user does not own the parent directory and
the user does not own the file and

the user is not superuser.

The named file is a directory and the effective user ID
of the process is not super-user.

[ENAMETOOLONG] The length of path exceeds {PATH_MAX]}, or a path-

[ELOOP]
7 [EBUSY]
[EROFS]

[EFAULT]

name component is longer than (NAME_MAX} .

Too many symbolic links were encountered in
translating the pathname.

The entry to be unlinked is the mount point for a
mounted file system.

The directory entry to be unlinked is part of a read-
only file system.

Path points outside the process’s allocated address
space.

When all links to a file have been removed and no process has the file open,
the space occupied by the file is freed and the file ceases to exist. If one or
more processes have the file open when the last link is removed, the remo-
val is postponed until all references to the file have been closed.

April 1990

-1- Version 3.0

UNLINK(2) Silicon Graphics UNLINK(2)

SEE ALSO
close(2), link(2), open(2), rename(2), rmdir(2).
rm(1) in the User’s Reference Manual.
DIAGNOSTICS

Upon successful completion, a value of 0 is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

April 1990 -2- Version 3.0

WAIT(2) Silicon Graphics WAIT(2)

NAME
wait, waitpid, wait3 — wait for child processes to stop or terminate

FORTRAN SYNOPSIS
integer function wait (status) integer status

DESCRIPTION .
Wait functions: The wait functions suspend the calling process until one of
the immediate children terminate, or until a child that is being traced stops
because it has hit a break point. These system calls will return prematurely
if a signal is received, and if a child process stopped or terminated prior to
the call then return is immediate. If the call is successful, the process ID of
a child is returned. The two versions differ in the type of their input param-
eter (statptr), but the information conveyed is identical if the macros in
<sys/wait.h> are used (see below description in the PARAMETERS section).

Wait3: Wait3 is BSD’s extension of wait. It provides an alternate interface
for programs that must not block when collecting the status of child
processes.

Waitpid: The waitpid function is POSIX’s extension of wait. The pid argu-
ment specifies a set of child processes for which status is requested. The
waitpid function only returns the status of a child process from this set.

PARAMETERS

Statptr (all functions): If Statptr is non-zero, 16 bits of information called
status are stored in the low-order 16 bits of the location pointed to by
statptr. Status can be used to differentiate between stopped and terminated
child processes. If the child process terminated, status identifies the cause of
termination and passes useful information to the parent. A more precise
definition of the status structure is given in <sys/wait.h>. Status is inter-
preted as follows:

If the child process stopped, the predicate WIFSTOPPED(*statptr)
will evaluate to non-zero and WSTOPSIG(*statptr) will return the
signal number that caused the process to stop. (The high-order 8
bits of status will contain the signal number and the low-order 8
bits are set equal to 0177.)

If the child process terminated due to an exit call, the predicate
WIFEXITED(*statptr) ~ will evaluate to non-zero, and
WEXITSTATUS(*statptr) will return the argument that the child
process passed to _exit or exit, or the value the child process
returned from main [see exit(2)]. (The low-order 8 bits of status
will be zero and the high-order 8 bits will contain the low-order 8
bits of the exiting argument.)

April 1990 -1- Version 3.0

WAIT(2) Silicon Graphics WAIT(2)

If the child process terminated due to a signal, the predicate
WIFSIGNALED(*statptr) will evaluate to non-zero, and
WTERMSIG (*statptr) will return the signal number that caused
the termination. (The high-order 8 bits of status will be zero and
the low-order 8 bits will contain the number of the signal.) In
addition, if the low-order seventh bit (i.e., bit 0200) is set, a ‘‘core
image’’ will have been produced [see signal(2)].

Rusage (wait3): If wait3's rusage parameter is non-zero, a summary of the
resources used by the terminated process and all its children is returned
(this information is currently not available for stopped processes).

Pid (waitpid):

1) If pid is equal to -1, status is requested for any child process. In
this respect, waitpid is then equivalent to wait.

2) If pid is greater than zero, it specifies the process ID of a single
child process for which status is requested.

3) If pid is equal to zero, status is requested for any child process
whose process group ID is equal to that of the calling process.

4) If pid is less than —1, status is requested for any child process
whose process group ID is equal to the absolute value of pid.

Options (waitpid and wait3): The options argument is constructed from
the bitwise inclusive OR of zero or more of the following flags, defined in
the header <sys/wait.h>:

WNOHANG The function will not suspend execution of the calling
process if status is not immediately available for one of
the child processes.

WUNTRACED The status of child processes that are stopped due to a
SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal, and
whose status has not yet been reported since they
stopped, are reported to the requesting process.

If a parent process terminates without waiting for its child processes to ter-
minate, the parent process ID of each child process is set to 1. This means
the initialization process inherits the child processes [see intro(2)].

SIGCLD HANDLING
IRIX has three distinct version of signal routines: System V (signal(2) and
sigset(2)), 4.3BSD (signal(3B) and sigvec(3B)), and POSIX (sigaction(2)).
Each version has a method by which a parent can be certain that it waits on
all of its children even if they are executing concurrently. In each version,
the parent installs a signal handler for SIGCLD to wait for its children, but
the specific code differs in subtle, albeit vital, ways. Sample programs

April 1990 -2- Version 3.0

WAIT(2) Silicon Graphics WAIT(2)

below are used to illustrate each of the three methods.

Note that System V refers to this signal as SIGCLD, whereas BSD calls it
SIGCHLD. For compatibility with both systems they are defined to be the
same signal number, and may therefore be used interchangeably.

System V: System V’s SIGCLD mechanism guarantees that no SIGCLD
signals will be lost. It accomplishes this by forcing the process to reinstall
the handler (via signal or sigset calls) when leaving the handler. Note that
whereas signal(2) sets the signal disposition back to SIG_DFL each time the
handler is called, sigset(2) keeps it installed, so SIGCLD is the only signal
that demands this reinstallation, and that only because the installation call
allows the kernel to check for additional instances of the signal that
occurred while the process was executing in the handler. The code below is
the System V example. Note that the sigpause(2) creates a window during
which SIGCLD is not blocked, allowing the parent to enter its handler.
o
* System V example of wait-in-SIGCLD-handler usage
*/
#include <signal.h>
#include <stdio.h>
#include <sys/wait.h>

static void handler(int);

#define NUMKIDS 4
volatile int kids = NUMKIDS;

main ()

{

int i, pid;

sigset (SIGCLD, handler);
sighold (SIGCLD) ;
for (i = 0; i < NUMKIDS; i++) {

if (fork() == 0) {
printf ("Child %d\n", getpid());
exit (0);

}

while (kids > 0) {
sigpause (SIGCLD) ;
sighold (SIGCLD);

April 1990 -3- Version 3.0

WAIT(2) Silicon Graphics WAIT(2)

static void
handler(int sig)
{

int pid, status;

printf ("Parent (%d) in handler, v, getpid());

pid = wait (&status);

kids=--;

printf("child %d, now %d left\n", pid, kids);

/*
* Now reinstall handler & cause SIGCLD to be re-raised
* if any more children exited while we were in here.
x/

sigset (SIGCLD, handler);

}

BSD: 4.3BSD solved this problem differently: instead of guaranteeing that
no SIGCHLD signals are lost, it provides a WNOHANG option to wait3 that
allows parent processes to do non-blocking waits in loops, until no more
stopped or zombied children exist. Note that the handler must be able to
deal with the case in which no applicable children exist; if one or more chil-
dren exit while the parent is in the handler, all may get reaped, yet if one or
more SIGCHLD signals arrived while the parent was in its handler, the sig-
nal will remain pending, the parent will reenter the handler, and the wait3
call will return 0. Note that it is not necessary to call sigvec upon exit from
the handler.

/*
* BSD example of wait3-in-SIGCHLD handler usage
*x/

#define _BSD SIGNALS
#include <signal.h>
#include <stdio.h>
#include <sys/wait.h>

static int handler(int);

#define NUMKIDS 4
volatile int kids = NUMKIDS;

main ()

{

April 1990 -4- Version 3.0

WAIT(2) Silicon Graphics WAIT(2)

\

int i, pid;

struct sigvec vec;

vec.sv_handler = handler;
vec.sv_mask = sigmask (SIGCHLD);

vec.sv_flags = 0;

sigvec (SIGCHLD, &vec, NULL);
sigsetmask (sigmask (SIGCHLD)) ;
for (i = 0; i < NUMKIDS; i++) {

if (fork() == 0) {.
printf("Child %d\n", getpid());
exit(0);

}
while (kids > 0) {
sigpause (0);

static int
handler (int sig)
{

int pid;

union wait status;

printf("Parent (%d) in handler, ", getpid());

while ((pid = wait3(&status, WNOHANG, NULL)) > 0) {
kids--;
printf("child %d, now %d left\n", pid, kids);

}

POSIX: POSIX improved on the BSD method by providing waitpid, that
allows a parent to wait on a particular child process if desired. In addition,
the IRIX implementation of sigaction(2) checks for zombied children upon
exit from the system call if the specified signal was SIGCLD and the dispo-
sition of the signal handling was changed. If zombied children exist,
another SIGCLD is raised. This solves the problem that occurs when a
parent creates children, but a module that it links with (typically a libc rou-
tine such as system(3)) creates and waits on its own children.

April 1990 -5- Version 3.0

WAIT(2) Silicon Graphics WAIT(2)

Two problems have classically arisen in such a scheme: 1) until the advent
of waitpid, the called routine could not specify which children to wait on; it
therefore looped, waiting and discarding children until the one (or ones) it
had created terminated, and 2) if the called routine changed the disposition
of SIGCLD and then restored the previous handler upon exit, children of the
parent (calling) process that had terminated while the called routine exe-
cuted would be missed in the parent, because the called routine’s SIGCLD
handler would reap and discard those children. The addition of waitpid and
the IRIX implementation of sigaction solves both of these problems. Note
that neither the BSD nor the System V signal routines on IRIX have these
properties, in the interests of compatibility.

WARNING: programs that install SIGCLD handlers that set flags instead of
executing waitpids and then attempt to restore the previous signal handler
(via sigaction) upon return from the handler will create infinite loops.

/ *

* POSIX example of waitpid-in-SIGCHLD handler usage

*/

#include <signal.h>
#include <stdio.h>
#include <sys/wait.h>

static void handler(int);

#define NUMKIDS 4
volatile int kids = NUMKIDS;

/%
* If waitpid’s 1st argument is -1, it waits for any child.
*/

#define ANYKID -1

main ()
{
int i;
pid_t pid;
struct sigaction act;

sigset_t set, emptyset;
act.sa_handler = handler;

act.sa _mask = sigmask (SIGCHLD) ;
act.sa_flags = 0;

April 1990 -6- Version 3.0

WAIT(2)

DIAGNOSTICS

Silicon Graphics ’ WAIT(2)

sigaction(SIGCHLD, &act, NULL);
sigemptyset (&set);

sigemptyset (&emptyset);

sigaddset (&set, SIGCHLD);
sigprocmask (SIG_BLOCK, &set, NULL) ;
setbuf (stdout, NULL);

for (i = 0; i < NUMKIDS; i++) {
if (fork() == 0) {
printf("Child %d\n", getpid());
exit (0);

}
while (kids > 0) {
sigsuspend (&emptyset) ;

static void

handler(int sig)

{

pid_t pid;
int status;

printf ("Parent (%d) in handler, ", getpid());
pid = waitpid (ANYKID, &status, WNOHANG);
while (pid > 0)
kids--;
printf("child %d, now %d left\n", pid, kids);
pid = waitpid (ANYKID, &status, WNOHANG);

Wait fails and its actions are undefined if statptr points to an invalid
address. If wait, wait3, or waitpid return due to a stopped or terminated
child process, the process ID of the child is returned to the calling process.
Wait3 and waitpid retum O if WNOHANG is specified and there are
currently no stopped or exited children (although children DO exist). Other-
wise, a value of —1 is returned and errno is set to indicate the error:

[EINTR]

April 1990

wait, wait3, waitpid: The calling process received a sig-
nal.

-7-) Version 3.0

WAIT(2) Silicon Graphics WAIT(2)

[ECHILD] wait, wait3, waitpid: The calling process has no existing
unwaited-for child processes. waitpid: The process or
process group specified by pid does not exist or is not a

child of the calling process.
[EFAULT] wait3, waitpid: The rusage or statptr arguments (where
applicable) point to illegal addresses.
[EINVAL] waitpid: The value of the options argument is not valid.
SEE ALSO

exec(2), exit(2), fork(2), intro(2), pause(2), ptrace(2), signal(2), sigset(2),
sigpause(2), sigaction(2), sigsuspend(2), sigprocmask(2), signal(3B),
sigvec(3B), sigpause(3B).

NOTE
Currently, wait3 returns only the user and system time in rusage.

April 1990 -8- Version 3.0

WRITE(2) Silicon Graphics WRITE(2)

NAME

write — write on a file

FORTRAN SYNOPSIS

integer *4 function write (fildes, buf, nbyte)
integer *4 fildes

character * (*) buf

integer *4 nbyte

DESCRIPTION

fildes is a file descriptor obtained from a creat(2), open(2), dup(2), fentl (2),
pipe(2), socket(2), or socketpair(2) system call. '

write attempts to write nbyte bytes from the buffer pointed to by buf to the
file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds from the
position in the file indicated by the file pointer. Upon return from write, the
file pointer is incremented by the number of bytes actually written.

On devices incapable of seeking, writing always takes place starting at the
current position. The value of a file pointer associated with such a device is
undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be set
to the end of the file prior to each write.

For regular files, if the O_SYNC flag of the file status flags is set, write will
not return until both the file data and file status have been physically
updated. This function is for special applications that require extra reliabil-
ity at the cost of performance. For block special files, if O_SYNC is set, the
write will not return until the data has been physically updated.

A write to a regular file will be blocked if mandatory file/record locking is
set [see chmod(2)], and there is a record lock owned by another process on
the segment of the file to be written. If neither O_NDELAY or
O_NONBLOCK are set, the write will sleep until the blocking record lock is
removed, otherwise (either flag set) write returns —1 and errno is set to
EAGAIN.

For STREAMS [see intro(2)] files, the operation of write is determined by
the values of the minimum and maximum nbyte range ("packet size")
accepted by the stream. These values are contained in the topmost stream
module. Unless the user pushes [see I_PUSH in streamio(7)] the topmost
module, these values can not be set or tested from user level. If nbyte falls
within the packet size range, nbyte bytes will be written. If nbyte does not
fall within the range and the minimum packet size value is zero, write will
break the buffer into maximum packet size segments prior to sending the
data downstream (the last segment may contain less than the maximum

April 1990 -1- - Version 3.0

WRITE(2) Silicon Graphics WRITE(2)

packet size). If nbyte does not fall within the range and the minimum value
is non-zero, write will fail with errno set to ERANGE. Writing a zero-length
buffer (nbyte is zero) sends zero bytes with zero returned.

For STREAMS files, if O_NDELAY and O_NONBLOCK are not set and the
stream can not accept data (the stream write queue is full due to internal
flow control conditions), write will block until data can be accepted.
O_NDELAY or O_NONBLOCK will prevent a process from blocking due to
flow control conditions. If O_NDELAY or O_NONBLOCK is set and the
stream can not accept data, write will fail, returning —1 and setting errno to
EAGAIN. If O_NDELAY or O_NONBLOCK is set and part of the buffer has
been written when a condition in which the stream can not accept additional
data occurs, write will terminate and return the number of bytes written.

write will fail and the file pointer will remain unchanged if one or more of
the following are true:

[EAGAIN] Mandatory filefrecord locking was set, O_NDELAY or
O_NONBLOCK was set, and there was a blocking record
lock.

[EAGAIN] Total amount of system memory available when reading
via raw IO is temporarily insufficient.

[EAGAIN] Attempt to write to a stream that can not accept data with
the O_NDELAY or O_NONBLOCK flag set.

[EBADF] fildes is not a valid file descriptor open for writing.

[EDEADLK] The write was going to go to sleep and cause a deadlock
situation to occur.

[EFAULT] buf points outside the process’s allocated address space.

[EFBIG] An attempt was made to write a file that exceeds the
process’s file size limit or the maximum file size [see
ulimit (2)].

[EINTR] A signal was caught during the write system call.

[EINVAL] Attempt to write to a stream linked below a multiplexor.

[ENOLCK] The system record lock table was full, so the write could
not go to sleep until the blocking record lock was
removed.

[ENOSPC] During a write to an ordinary file, there is no free space

April 1990

left on the device.

-2- Version 3.0

WRITE(2) Silicon Graphics WRITE(2)

{ENXIO] A hangup occurred on the stream being written to.

[EPIPE and SIGPIPE signal]
An attempt is made to write to a pipe that is not open for
reading by any process.

[ERANGE] Attempt to write to a stream with nbyte outside specified
minimum and maximum write range, and the minimum
value is non-zero.

If a write requests that more bytes be written than there is room for (e.g.,
the ulimit [see ulimit(2) and setrlimit(2)] or the physical end of a medium),
only as many bytes as there is room for will be written. For example, sup-
pose there is space for 20 bytes more in a file before reaching a limit. A
write of 512-bytes will return 20. The next write of a non-zero number of
bytes will give a failure return (except as noted below).

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the
file flag word is set, then write to a full pipe (or FIFO) will return a count of
0. If the file being written is a pipe (or FIFO) and the O_NONBLOCK flag of
the file flag word is set, then write to a full pipe (or FIFO) will return —1 and
set errno to EAGAIN. Otherwise (O_NDELAY and O_NONBLOCK clear),
writes to a full pipe (or FIFO) will block until space becomes available.

A write to a STREAMS file can fail if an error message has been received at
the stream head. In this case, errno is set to the value included in the error
message.

CAVEATS
Due to the different semantics of O_NDELAY and O_NONBLOCK in the
case of pipes or FIFOs, these flags must not be used simultaneously.

SEE ALSO
creat(2), dup(2), fentl(2), intro(2), Iseek(2), open(2), pipe(2), setrlimit(2),
ulimit(2).

DIAGNOSTICS
Upon successful completion the number of bytes actually written is
returned. Otherwise, —1 is returned and errno is set to indicate the error.

April 1990 -3- Version 3.0

ABORT(3F) Silicon Graphics ABORT(3F)

NAME
abort — terminate Fortran program

SYNOPSIS
call abort ()

DESCRIPTION
abort terminates the program which calls it, closing all open files truncated
to the current position of the file pointer. The abort usually results in a core
dump.

DIAGNOSTICS
When invoked, abort prints ‘‘Fortran abort routine called”> on the standard
error output. The shell prints the message *‘abort - core dumped”’ if a core
dump results.

SEE ALSO
abort(3C).
sh(1) in the User’s Reference Manual.

ORIGIN
AT&T V.3

April 1990 -1- Version 3.0

ABS(3F) Silicon Graphics ' ABS(3F)

NAME
abs, iabs, dabs, cabs, zabs, iiabs, jiabs — FORTRAN absolute value

SYNOPSIS
integer il, i2
real rl, r2
double precision dpl, dp2
complex cx1, cx2
double complex dx1, dx2
integer*2 iil, ii2
integer*4 jil, ji2
r2 = abs(rl)

i2 = iabs(il)
i2 = abs(il)

dp2 = dabs(dpl)
dp2 = abs(dpl)

cx2 = cabs(cx1)
cx2 = abs(cx1)

dx2 = zabs(dx1)
dx2 = abs(dx1)
ii2 = iiabs(iil)
ii2 = abs(iil)
ji2 = jiabs(jil)
ji2 = abs(jil)

DESCRIPTION
abs is the family of absolute value functions. iabs returns the integer abso-
lute value of its integer argument. It accepts either integer*2 or integer*4
arguments and the result is the same type. dabs returns the double-
precision absolute value of its double-precision argument. cabs returns the
complex absolute value of its complex argument. zabs returns the double-
complex absolute value of its double-complex argument. iiabs returns the
integer*2 absolute value of its integer*2 argument. jiabs returns the
integer*4 absolute value of its integer*4 argument. The generic form abs
returns the type of its argument.

SEE ALSO
floor(3M).

CAVEAT
In two’s-complement integer (integer*2 or integer*4) representation the
absolute value of the negative integer with largest magnitude is undefined.
Some implementations trap this error, but others simply ignore it.

April 1990 -1- Version 3.0

ACOS(3F) Silicon Graphics ACOS(3F)

NAME
acos, dacos, acosd, dacosd — FORTRAN arccosine intrinsic function

SYNOPSIS
real rl, r2
double precision dp1, dp2
real*4 r3, r4
real*8 dp3, dp4

r2 = acos(rl)

dp2 = dacos(dp1)
dp2 = acos(dpl)

rd4 = acosd(r3)

dp4 = dacosd(dp3)
dp4 = acosd(dp3)

DESCRIPTION
acos returns the real arccosine of its real argument. dacos returns the
double-precision arccosine of its double-precision argument. The absolute
value of the argument for these routines must be less than or equal to one.
The result is in radians and the range is less than or equal to one. The gen-
eric form acos may be used with impunity as its argument will determine
the type of the returned value.

acosd returns the real*4 arccosine of its real*4 argument. dacosd returns
the real*8 arccosine of its real88 argument. The absolute value of the argu-
ment for these routines must be less than or equal to one and the result is in
degrees. The generic form acosd may be used with impunity for acosd
dacosd as its argument will determine the type of the returned value.

SEE ALSO
trig(3M).

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

AINT(3F) Silicon Graphics AINT(3F)

NAME
aint, dint, iint, jint, iidint, jidint - FORTRAN integer part intrinsic function
SYNOPSIS
real rl, r2
double precision dpl, dp2
real*4 r3
real*8 dp3
integer*2 ii
integer*4 ji
r2 = aint(rl)
dp2 = dint(dp1)
ii = iint(r3)
ji = jint(r3)
ii = iidint(dp3)
ji = jidint(dp3)
DESCRIPTION
aint returns the truncated value of its real argument in a real. dint returns
the truncated value of its double-precision argument as a double-precision
value. iint returns the truncated value of its real*4 argument in a integer*2.
jint returns the truncated value of its real*4 argument in a integer*4. iidint
returns the truncated value of its real*8 argument in a integer*2. jidint
returns the truncated value of its real*8 argument in a integer*4.

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

ALARM(3F) Silicon Graphics ALARM(3F)

NAME
alarm — execute a subroutine after a specified time

SYNOPSIS
integer function alarm (time, proc)
integer time
external proc
DESCRIPTION ‘
This routine arranges for subroutine proc to be called after time seconds. If

time is *‘0”, the alarm is turned off and no routine will be called. The
returned value will be the time remaining on the last alarm.

FILES
fust/lib/libU77.a
SEE ALSO
sleep(3F), signal(3F)
BUGS
Alarm and sleep interact. If sleep is called after alarm, the alarm process

will never be called. SIGALRM will occur at the lesser of the remaining
alarm time or the sleep time.

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

ASIN(3F) Silicon Graphics ASIN(3F)

NAME
asin, dasin, asind, dasind — FORTRAN arcsine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
real*4 r3, r4
real*8 dp3, dp4

r2 = asin(rl)

dp2 = dasin(dpl)
dp2 = asin(dpl)

r4 = asind(r3)

dp4 = dasind(dp3)
dp4 = asind(dp3)

DESCRIPTION
asin returns the real arcsine of its real argument. dasin returns the double-
precision arcsine of its double-precision argument. The absolute value of
the arguments for asin and dasin must be less than or equal to one. The
result is in radians and is in the range -p/2 < result < p/2. The generic form
asin may be used with impunity as it derives its type from that of its argu-
ment.

asind teturns the real*4 arcsine of its real*4 argument. dasind retums the
real*8 arcsine of its real*8 argument. The absolute value of the arguments
for asind and dasind must be less than or equal to one. The result is in
degrees. The generic form asind may be used with impunity as it derives
its type from that of its argument.

SEE ALSO
trig(3M).

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

ATAN(3F) Silicon Graphics ATAN(3F)

NAME
atan, datan, atand, datand - FORTRAN arctangent intrinsic function

SYNOPSIS
real rl, r2
double precision dp1, dp2
real*4 r3, r4
real*8 dp3, dp4

r2 = atan(rl)

dp2 = datan(dpl)
dp2 = atan(dpl)

r4 = atand(r3)

dp4 = datand(dp3)
dp4 = atand(dp3)

DESCRIPTION
atan returns the real arctangent of its real argument. datan returns the
double-precision arctangent of its double-precision argument. The generic
form atan may be used with a double-precision argument returning a
double-precision value. The result of atan and datan is in radians.

atand returns the real*4 arctangent of its real*4 argument. datand returns
the real*8 arctangent of its real*8 argument. The generic form atand may
be used with a real*8 argument returning a real*8 value. The result of
atand and datand is in degrees.

SEE ALSO
trig(3M).

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

ATAN2(3F) Silicon Graphics ATAN2(3F)

NAME

atan2, datan2, atan2d, datan2d —- FORTRAN arctangent intrinsic function

SYNOPSIS

real rl, r2, r3

double precision dpl, dp2, dp3
real*4 r4, r5, r6

real*8 dp4, dp5, dp6

r3 = atan2(rl, r2)

dp3 = datan2(dpl, dp2)

dp3 = atan2(dpl, dp2)

r6 = atan2d(r4, r5)

dp6 = datan2d(dp4, dp5)

dp6 = atan2d(dp4, dp5)

DESCRIPTION

atan2 returns the arctangent of argl/arg? as a real value. datan2 returns
the double-precision arctangent of its double-precision arguments. The
generic form atan2 may be used with impunity with double-precision argu-
ments. If the value of the first argument of atan2 or datan2 is positive, the
result is positive. When the value of the first argument is zero, the result is
zero if the second argument is positive and P if the second argument is
negative. If the value of the first argument is negative, the result is nega-
tive. If the value of the second argument is zero, the absolute value of the
result is P/2. Both arguments must not have the value zero. The result of
atan2 and datan?2 is in radians.

atan2d returns the arctangent of argl/arg? as a real*4 value. datan2d
returns the real*8 arctangent of its real*8 arguments. The generic. form
atan2d may be used with impunity with real*8 arguments. If the value of
the first argument of atan2d or datan2d is positive, the result is positive.
When the value of the first argument is zero, the result is zero if the second
argument is positive and P if the second argument is negative. If the value
of the first argument is negative, the result is negative. If the value of the
second argument is zero, the absolute value of the result is P/2. Both argu-
ments must not have the value zero. The result of atan2d and datan2d is ..
the range: -180 degrees < result < 180 degrees.

SEE ALSO

ORIGIN

trig 3M).

MIPS Computer Systems

April 1990 -1- Version 3.0

BOOL(3F)

NAME

Silicon Graphics

BOOL(3F)

bool: iand, and, iior, ior, or, jior, inot, jnot, not, iieor, jieor, icor, xor, iishft,
Jishft, ishft, Ishift, rshift, iishftc, jishftc, ishftc, iibits, jibits, ibits, iibset, jib-
set, ibset, bitest, bjtest, btest, iibclr, jibclr, ibclr, mvbits — FORTRAN bit-

wise boolean functions

SYNOPSIS

integer i, k, 1, m, n, len
integer*2 iil, ii2, ii3
logical b

logical*2 ¢

i = iand(m, n)

i = and(m, n)

ii3 = iior(iil, ii2)

i = ior(m, n)

i = or(m, n)

i = jior(m, n)

ii3 = inot(iil)

i = jnot(m)

i = not(m)

ii3 = iieor(iil, ii2)

i = jieor(m, n)

i = ieor(m, n)

i = xor(m, n)

ii3 = iishft(iil, ii2)

i = jishft(m, k)

i = ishft(m, k)

i = Ishift(m, k)

i = rshift(m, k)

ii3 = iishftc(iil, ii2, len)
i = jishftc(m, Kk, len)
i = ishftc(m, k, len)
ii3 = iibits(iil, ii2, len)
i = jibits(m, k, len)
i = ibits(m, k, len)
ii3 = iibset(iil, ii2)

i = jibset(n, k)

i = ibset(n, k)

April 1990

Version 3.0

BOOL(3F) Silicon Graphics BOOL(3F)

¢ = bitest(iil, ii2)
b = bjtest(n, k)

b = btest(n, k)

ii3 = iibclr(iil, ii2)
i = jibclr(n, k)

i = ibclr(n, k)

call mvbits(m, k, len, n, I)

DESCRIPTION
bool is the general name for the bit field manipulation intrinsic functions
and subroutines from the FORTRAN Military Standard (MIL-STD-1753).

and, or and xor return the value of the binary operations on their arguments.
not is a unary operator returning the one’s complement of its argument. ior,
iand, not, ieor — return the same results as and, or, not, and xor.

Ishift and rshift return the value of the first argument shifted left or right,
respectively, the number of times specified by the second (integer) argu-
ment.

ishft, ishftc — m specifies the integer to be shifted. k specifies the shift
count. k > 0 indicates a left shift. k = 0 indicates no shift. k <0 indicates a
right shift. In ishft, zeros are shifted in. In ishftc, the rightmost len bits are
shifted circularly k bits. If k is greater than the machine word-size, ishftc
will not shift.

iand, ior, not, ieor, and ishft accept either integer*2 or integer*4 arguments
and the result is the same type. When one of these intrinsics is specified as
an argument in a subroutine call or function reference, the compiler sup-
plies either an integer*2 or integer*4 function depending on the -i2 com-
mand line option.

Bit fields are numbered from right to left and the rightmost bit position is
zero. The length of the len field must be greater than zero.

ibits — extract a subfield of len bits from m starting with bit position k and
extending left for len bits. The result field is right justified and the remain-
ing bits are set to zero.

btest — The kth bit of argument n is tested. The value of the function is
TRUE. if the bit is a 1 and .FALSE. if the bit is 0.

ibset — the result is the value of n with the kth bit set to 1.
ibclr — the result is the value of n with the kth bit set to 0.

April 1990 -2- Version 3.0

BOOL(3F) Silicon Graphics BOOL(3F)

mvbits — len bits are moved beginning at position k of argument m to posi-
tion 1 of argument n.

ORIGIN
MIPS Computer Systems

April 1990 -3- Version 3.0

CHMOD(3F) Silicon Graphics CHMOD(3F)

NAME
chmod — change mode of a file

SYNOPSIS
integer function chmod (name, mode)
character*(*) name, mode]
DESCRIPTION (
This function changes the filesystem mode of file name. Mode can be any
specification recognized by chmod(1). Name mustbe a single pathname.

The normal returned value is 0. Any other value will be a system error

number.
FILES
fust/lib/libU77.a
/bin/chmod exec’ed to change the mode.
SEE ALSO
chmod(1)
BUGS
Pathnames can be no longer than MAXPATHLEN as defined in
<sys/param.h>.
ORIGIN

MIPS Computer Systems (

April 1990 -1- Version 3.0

CONIJG(3F) Silicon Graphics CONIJG(3F)

NAME .
conjg, dconjg — FORTRAN complex conjugate intrinsic function

SYNOPSIS
complex cx1, cx2
double complex dx1, dx2
cx2 = conjg(cx1)
dx2 = dconjg(dx1)
DESCRIPTION

conjg returns the complex conjugate of its complex argument. dconjg
returns the double-complex conjugate of its double-complex argument.

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

COS(3F) Silicon Graphics COS(3F)

NAME
cos, dcos, ccos, zcos, cosd, dcosd — FORTRAN cosine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cx1, cx2
complex*16 cdl, cd2
real*4 r3, r4
real*§ dp3, dp4

r2 = cos(rl)

dp2 = deos(dpl)
dp2 = cos(dpl)

cx2 = ccos(cx1)
¢x2 = cos(cx1)

dp4 = zcos(dp3)
dp4 = cos(dp3)

r4 = cosd(r3)

dp4 = dcosd(dp3)
dp4 = cosd(dp3)

DESCRIPTION
cos returns the real cosine of its real argument. dcos returns the double-
precision cosine of its double-precision argument. ccos returns the com-
plex cosine of its complex argument. zcos returns the complex*16 cosine
“of its complex*16 argument. The arguments for these routines must be in
radians and is treated modulo 2P. The generic form cos may be used with
impunity as its returned type is determined by that of its argument.

cosd returns the real*4 cosine of its real*4 argument. The argument for
cosd must be in degrees and is treated as modulo 360. dcosd returns the
real*8 cosine of its real*8 argument. The generic form cosd may be used
with impunity as its returned type is determined by that of its argument.

SEE ALSO
trig(3M).

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

COSH(3F) Silicon Graphics COSH(3F)

NAME
cosh, dcosh — FORTRAN hyperbolic cosine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
r2 = cosh(rl)

dp2 = dcosh(dpl)
dp2 = cosh(dpl)

DESCRIPTION
cosh returns the real hyperbolic cosine of its real argument. dcosh returns
the double-precision hyperbolic cosine of its double-precision argument.
The generic form cosh may be used to return the hyperbolic cosine in the
type of its argument.

SEE ALSO
sinh(3M).

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

DIM(3F) Silicon Graphics DIM(3F)

NAME
dim, ddim, idim, iidim, jidim — FORTRAN positive difference intrinsic
functions :
SYNOPSIS
real rl, r2, r3 double precision dpl, dp2, dp3 integer il, i2, i3
integer*2 iil, ii2, ii3 integer*4 jil, ji2, ji3
r3 = dim(rl, r2)
dp3 = ddim(dp1, dp2) dp3 = dim(dpl, dp2)
i3 = idim(i1, i2) i3 = dim(il, i2)
i3 = iidim(il, ii2) i3 = idim(iil, ii2) ii3 = dim(iil, ii2)
ji3 = jidim(jil, ji2) ji3 = idim(jil, ji2) ji3 = dim(il, ji2)

DESCRIPTION
These functions return:
argl-arg2 if argl > arg2
0 if argl <= arg2
ORIGIN
MIPS Computer Systems

April 1990 ’ -1- Version 3.0

DPROD(3F) Silicon Graphics DPROD(3F)

NAME

dprod — FORTRAN double precision product intrinsic function
SYNOPSIS

real al, a2

double precision a3
a3 = dprod(al, a2)

DESCRIPTION
dprod returns the double precision product of its real arguments.

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

ETIME(3F) Silicon Graphics ETIME(3F)

NAME
etime, dtime — return elapsed execution time
SYNOPSIS

function etime (tarray)
real tarray(2)

function dtime (tarray)
real tarray(2)

DESCRIPTION
These two routines return elapsed runtime in seconds for the calling pro-
cess. Dtime returns the elapsed time since the last call to dtime, or the start
of execution on the first call.
The argument array returns user time in the first element and system time in
the second element. The function value is the sum of user and system time.

The resolution of all timing is 1/HZ. See the system include file param.h in
lusrlincludelsys for the value of HZ.

FILES
fust/lib/libU77.a

SEE ALSO
times(2)

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

EXP(3F) Silicon Graphics . EXP(3F)

NAME
exp, dexp, cexp, zexp — FORTRAN exponential intrinsic function

SYNOPSIS
real rl, r2
double precision dp1, dp2
complex cx1, cx2
complex*16 cdl, cd2

r2 = exp(rl)

dp2 = dexp(dpl)
dp2 = exp(dpl)

cx2 = cexp(cx1)
cx2 = exp(cxl)

cd2 = zexp(cdl)
cd2 = exp(cdl)

DESCRIPTION
exp returns the real exponential function €* of its real argument. dexp
returns the double-precision exponential function of its double-precision
argument. cexp returns the complex exponential function of its complex
argument. zexp returns the complex*16 exponential function of its com-
plex*16 argument. The generic function exp becomes a call to dexp, cexp
or zexp as required, depending on the type of its argument.

SEE ALSO
exp(3M).

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

FDATE(3F) Silicon Graphics FDATE(3F)

NAME .
fdate — return date and time in an ASCII string

SYNOPSIS
subroutine fdate (string)
character*(*) string

character*(*) function fdate()

DESCRIPTION
Fdate returns the current date and time as a 24 character string in the format
described under ctime(3). Neither ‘newline’ nor NULL will be included.

Fdate can be called either as a function or as a subroutine. If called as a
function, the calling routine must define its type and length. For example:

character*24 fdate
external fdate

write(*,*) fdate()

FILES
Jusr/lib/libU77.a

SEE ALSO
ctime(3), time(3F), itime(3F), idate(3F), ltime(3F)

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

FIXADE(3F) Silicon Graphics FIXADE(3F)

NAME
fixade — FORTRAN misaligned data bus error handler and report generator

SYNOPSIS
subroutine handle_unaligned_traps

subroutine list_by_addr
subroutine summary_listing
subroutine print_unaligned_summary

DESCRIPTION

Fixade is a FORTRAN bus error handler which fields, corrects, and reports
bus errors arising due to misaligned data in FORTRAN programs. The
MIPS architecture, for performance reasons, is very restrictive on the align-
ment of data which can be used with its standard instruction set. Usually,
the compilers can guarantee this alignment. In FORTRAN, however, some
situations exist in which this guarantee cannot be made. These misalign-
ments may be necessary to satisfy equivalence statements, due to
mismatched formal/actual parameter types, or due to user-instructed
suppression of common block padding (via use of the -align switches, see
f77(1)). Unless the bus error arising due to a load or store from a
misaligned address is caught, it will cause unexpected program failure.
Routines in the fixade package provide a bus error handler to catch these
errors, correct them, and allow the program to continue execution. They
also provide a reporting facility so that the causes of these errors can be
located and remedied.

NOTE: the use of this trap handler is intended for diag-
nostic purposes only. Program efficiency may be severly
impacted by its use.

None of the routines of fixade have arguments. The routine
handle_unaligned_traps must be called to initialize the handler. If a
misaligned reference is encountered prior to calling this initialization rou-
tine, the reference will produce a core dump. No other routines of the trap
handler may be called prior to calling this initialization routine.

No other routines of the trap handler need to be called unless a report of
misaligned references is desired. A report of misaligned references consists
of two portions: a summary of the types of misaligned instructions, their
counts and relative frequency. (e.g., 'half aligned load-word occurred
fifteen times, and accounted for 2% of all misaligned references’); and a
listing based either on the instruction addresses at which the faults occurred,
or the data addresses producing the faults.

April 1990 -1- Version 3.0

FIXADE(3F) Silicon Graphics FIXADE(3F)

FILES

This listing is either an exhaustive listing (default), or a summary listing.
The summary listing will list the address (either instruction or data, as
opted) associated with the fault, and its absolute and relative frequency, as a
percentage. The exhaustive listing will list all instruction/data address pairs
producing a fault. This listing will be sorted by the address on which the
listing is based (i.e., by instruction address or data address). By default, the
listing is exhaustive. If only a summary of misalignment errors is desired,
the routine summary_listing must be called immediately after the initiali-
zation routine.

Also by default, the listing is based on instruction addresses. If it is desired
to base the listing on data addresses, the routine list by addr must be
invoked during initialization.

Prior to program exit, the routine print_unaligned_summary may be
called to print the listing of bus error events, in either summary or exhaus-
tive format, as described previously. This listing will go to the standard
output. A sample line of this listing in summary format might be

0x0042445c 1536 33% 67%

where 0x0042445¢ is the address associated with 1536 faults (33% of the
total). The final percentage is cumulative. Whether the address is of the
data causing the fault or the instruction at which it occurred is indicated in a
printed heading.

New options have been added to f77(1) to generate (much slower) code
which tolerates misalignments (see f77(1)). As discussed previously, use of
these options will suppress the padding of common usually done by the for-
tran compiler to align elements. They will also generate code which uses
pessimistic code sequences to avoid bus errors due to misalignment. No
bus errors due to misaligned data will occur in modules compiled with these
new options.

Users desiring to find and repair instances of misaligned data may use either
instruction addresses to decide which modules need to be specially com-
piled (see f77(1)), or data addresses to find misalignments. In either case, a
symbol table listing produced by nm(1), using the -Bgn options, will be
necessary to map the addresses to routine (or common block) names.

fusr/lib/fixade.o

AUTHOR

Larry Weber
Greg Boyd

April 1990 -2- Version 3.0

FIXADE(3F) Silicon Graphics FIXADE(3F)

SEE ALSO
f77(1)

DIAGNOSTICS
When making an exhaustive listing, the trap handler’s tables may overflow.
If this occurs, the message

number events not listed due to insufficient table size.

will be printed at the end of the listing.

ORIGIN
Silicon Graphics, Inc.

April 1990 -3- Version 3.0

FSEEK(3F) Silicon Graphics FSEEK(3F)

NAME
fseek, ftell — reposition a file on a logical unit

SYNOPSIS
integer function fseek (lunit, offset, from)
integer offset, from

integer function ftell (lunit)

DESCRIPTION .
lunit must refer to an open logical unit. offset is an offset in bytes relative
to the position specified by from. Valid values for from are:

0 meaning ‘beginning of the file’
1 meaning ‘the current position’
2 meaning ‘the end of the file’

The value returned by fseek will be 0 if successful, a system error code oth-
erwise. (See perror(3F))

Ftell returns the current position of the file associated with the specified log-
ical unit. The value is an offset, in bytes, from the beginning of the file. If
the value returned is negative, it indicates an error and will be the negation
of the system error code. (See perror(3F))

FILES
fust/lib/libU77.a

SEE ALSO
fseek(3S), perror(3F)

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

FSIGFPE(3F) Silicon Graphics FSIGFPE(3F)

NAME
handle_sigfpes — floating-point exception handler package

SYNOPSIS
#include <fsigfpe.h>

subroutine
handle_sigfpes(onoff,en_mask,user_routine,abort_action,abort_routine)
integer *4 onoff, en_mask, abort_action

integer *4 abort_routine, user_routine

external abort_routine, user_routine

structure /sigfpe_template/

integer * 4 repls

integer * 4 count

integer * 4 trace

integer * 4 abort

integer * 4 exit

end structure

record /sigfpe_template/ fsigfpe (0:FPE_N_EXCEPTION_TYPES)
common / sigfpe / fsigfpe (0:FPE_N EXCEPTION _TYPES)

integer * 4 results(0:FPE_N_INVALIDOP_RESULTS)
common / invalidop_results / results

integer * 4 invop(0:FPE_N_INVALIDOP OPERANDS)
common / invalidop operands/ invop

DESCRIPTION
The MIPS floating-point accelerator may raise floating-point exceptions due
to five conditions: FPE_OVERFL (overflow),
FPE_UNDERFL(underflow), FPE_DIVZERO(divide-by-zero),

FPE_INEXACT (inexact resulf), or FPE_INVALID(invalid operand, e.g.,
infinity). Usually these conditions are masked, and do not cause a floating-
point exception. Instead, a default value is substituted for the result of the
operation, and the program continues silently. This event may be inter-
cepted by causing an exception to be raised. Once an exception is raised,
the specific conditions which caused the exception may be determined, and
more appropriate action taken.

The library libfpe.a privides two methods to unmask and handle these con-
ditions: the subrouitne handle_sigfpes, and the environment variable
TRAP_FPE. Both methods provide a mechanism for unmasking each con-
dition except FPE_INEXACT, for handling and classifying exceptions
arising from them, and for substituting either a default value or a chosen
one. They also provide mechnisms to count, trace, exit or abort on enabled
exceptions. The subroutine handle_sigfpes will always override options set
by the environment variable TRAP_FPE. TRAP_FPE is supported for

April 1990 -1- Version 2.0

FSIGFPE(3F) Silicon Graphics FSIGFPE(3F)

Fortran, C and Pascal. Handle_sigfpes is supported for C and Fortran.
Arguments to handle_sigfpes have the following interpretation:

onoff is a flag indicating whether handling is being turned on (onoff ==
FPE _ON) or off (onoff == FPE_OFF). Information from the sigfpe struc-
ture will be printed if (onoff == FPE_DEBUG). (defined in fsigfpe.h).

en_mask indicates which of the four conditions should be unmasked, ena-
bling them to raise floating-point exceptions. en_mask is only valid if onoff
== FPE_ON, and is the sum of the constants FPE_EN_UNDERFL,
FPE_EN_OVERFL, FPE_EN_DIVZERO, and FPE_EN_INVALID
(defined in fsigfpe.h).

user_routine: handle_sigfpes provides a mechanism for setting the result
of the operation to any one of a set of well-known values. If full control
over the value of selected operations is desired for one or more exception
conditions, a subroutine user_routine must be provided. For these selected
exception conditions, user_routine will be called to set the value resulting
from the operation.

abort_action: If the handler encounters an unexpected condition, an incon-
sistency, or begins looping, the flag abort_action indicates what action
should be taken. Legal values are:

FPE_TURN_OFF_HANDLER_ON_ERROR instruct the floating-point-
accelerator to cease causing excep-
tions and continue. (i.e., disable
handling)

FPE_ABORT_ON_ERROR kill the process after giving an
: error message and possibly calling
a user-supplied cleanup routine.

FPE_REPLACE_HANDLER_ON_ERROR install the indicated user routine as
the handler when such an error is
encountered. Future floating-point
exceptions will branch to the user-
routine. (see signal(2))

abort_routine: When a fatal error (i.e., one described under abort_action
above) is encountered, abort_routine is used as the address of a user sub-
routine. If abort_action is FPE_ABORT_ON_ERROR, and abort_routine is
valid, it is called before aborting, and passed a pointer to the address of the
instruction causing the exception as its single argument (see below under
DIAGNOSTICS).

April 1990 -2- Version 2.0

FSIGFPE(3F) Silicon Graphics FSIGFPE(3F)

If abort_action is FPE_REPLACE_HANDLER_ON_ERROR, and
abort_routine is valid, it will be installed as the new handler. In this case,
the instruction which caused the unexpected exception will be re-executed,
causing a new exception, and abort_routine entered. (see signal(2) for the
correct interface for exception handlers)

When an exception is encountered, the handler examines the instruction
causing the exception, the state of the floating-point accelerator and the
sigfpe structure to determine the correct action to take, and the program is
continued. In the cases of FPE_UNDERFL, FPE_OVERFL,
FPE_DIVZERO, and some instances of FPE_INVALID, an appropriate
value is substituted for the result of the operation, and the instruction which
caused the exception is skipped. For most exceptions arising due to an
invalid operand (FPE_INVALID exceptions), more meaningful behavior
may be obtained by replacing an erroneous operand. For these conditions,
the operand is replaced, and the instruction re-issued.

sigfpe: For each enabled exception, the sigfpe structure contains the fields:
repls, count, trace, exit and abort. For each enabled exception <p>, and each
non-zero entry <n> in the sigfpe structure, the trap handler will take the fol-
lowing actions:

count: A count of all enabled traps will be printed to stderr at the end of
execution of the program , and every at <n>th exception <p>.

trace: A dbx stack trace will be printed to stderr every execption <p>, up to
<n> times.

abort: Core dump and abort program upon encountering the <n>th excep-
tion <p>. The abort option takes precedence over the exit option.

exit: Exit program upon encountering the <n>th exception <p>. repls:
Each of the exceptions UNDERFL, OVERFL, and DIVZERO has an
associated default value which is used as the result of the operation causing
the exception. These default values may be overridden by initializing this
integer value. This value is interpreted as an integer code used to select one
of a set of replacement values, or to indicate that the routine user_routine is
responsible for setting the value.

April 1990 -3- Version 2.0

FSIGFPE(3F) Silicon Graphics FSIGFPE(3F)

These integer codes are listed below:

FPE_ZERO use zero as the replacement value

FPE_MIN use the appropriately-typed
minimum value as the replacement.
(i.e., the smallest number which is
representable in that format without
denormalizing)

FPE_MAX use the appropriately-typed max-
imum value as the replacement

FPE_INF use the appropriately-typed value
for infinity as the replacement

FPE_NAN use the appropriately-typed value
for not-a-number as the replace-
ment. (A quiet not-a-number is
used.)

FPE_APPROPRIATE use a handler-supplied appropriate
value as the replacement. These
are different from the default
values: FPE_ZERO for
FPE_UNDERFL, FPE_MAX for
FPE_OVERFL, FPE_INF for
FPE_DIVZERO. Values for
FPE_INVALID are handled on a
case-by-case basis.

FPE_USER_DETERMINED invoke the routine user_routine
(see note) to set the value of the
operation. If this is the code used
for FPE_INVALID exceptions, all
such exceptions will defer to
user_routine to set their value. In
this case, invalidop_results_ and
invalidop_operands_ will be
ignored.

April 1990 -4- , Version 2.0

FSIGFPE(3F) Silicon Graphics FSIGFPE(3F)
The default values used as the results of floating-point exceptions are:
values for fsigfpe().repls
element
mnemonic exception condition | default value
0 (none) (ignored)
1 FPE_UNDERFL | underflow FPE_MIN
2 FPE_OVERFL overflow FPE_MAX
3 FPE_DIVZERO | divide-by-zero FPE_MAX
4 FPE_INVALID invalid operand FPE_APPROPRIATE

For FPE_INVALID exceptions, the correct action may be either to set the
result and skip the instruction, or to replace an operand and retry the
instruction. There are four cases in which the result is set. The integer array
constituting the named common invalidop_results is consulted for replace-

ment codes for these cases:

array in common block invalidop_results

element
mnemonic exception condition | default value
0 (none) (ignored)
1 FPE_MAGNITUDE_INF_SUBTRACTION | o0 —oo FPE_INF
2 FPE_ZERO_TIMES_INF 0% oo FPE_ZERO
3 FPE_ZERO_DIV_ZERO 0/0 FPE_ZERO
4 FPE_INF_DIV_INF 00 [oo FPE_INF

There are six cases in which an offending operand is replaced. An integer
array constituting the named common invalidop _operands is consulted for
user-initialized codes for these cases.

April 1990

Version 2.0

FSIGFPE(3F)

NOTE

Silicon Graphics FSIGFPE(3F)
Each element governs the following cases:
array in common block invalidop_operands
element
mnemonic exception condition default value
0 (none) (ignored) (none)
1 FPE_SQRT_NEG_X sqrt(-x) (currently not sup-
ported)
2 FPE_CVT_OVERFL conversion to real FPE_MAX
caused target to
overflow
3 FPE_TRUNK_OVERFL conversion to integer | FPE_MAX
caused target to
overflow
4 FPE_CVT_NAN conversion of NaN FPE_MAX
5 = FPE_CVT_INF conversion of e FPE_MAX
6 FPE_UNORDERED_CMP | comparison to NaN FPE_MAX
7 FPE_SNAN_OP operand was Signal- | FPE_MAX
ing Nan

Use of user_routine to set values

If the integer code defining the replacement value for a particular exception
condition is FPE_USER_DEFINED, the user-supplied routine user_routine

is called:

call user_routine(exception_parameters, value)

value is an integer * 4 array of length two into which user_routine should
store the replacement value.

April 1990

Version 2.0

FSIGFPE(3F) Silicon Graphics FSIGFPE(3F)

exception_parameters is a zero-based integer * 4 array of length five which
describes the exception condition:

array exception_parameters
element
mnemonic description

0 FPE_EXCEPTION_TYPE | the exception type (FPE_DIVZERO, etc).
1 FPE_INVALID_ACTION | value = FPE_SET_RESULT if result is
being set. Otherwise, an operand is being
replaced. This element is meaningful
only if the exception type is
FPE_INVALID.

2 FPE_INVALID_TYPE This element is meaningful only if the
exception type is FPE_INVALID It is
the index corresponding to the particular

conditions giving rise to the exception.
In conjunction with element 1, this value
uniquely determines the exception condi-
tion. (e.g., if FPE_INVALID_ACTION
is FPE_SET_RESULT and
FPE_INVALID_TYPE is 2, the
FPE_INVALID exception is due to
FPE_ZERO_TIMES_INF.)

3 FPE_VALUE_TYPE the type of the replacement value - either
FPE_SINGLE, FPE_DOUBLE or
FPE_WORD.

4 FPE_VALUE_SIGN the suggested sign user_rowtine should

use for the replacement value - either
FPE_POSITIVE or FPE_NEGATIVE.

The environment variable TRAP_FPE:

If the code has been compiled with libfpe.a, the runtime startup routine will
check for the environment variable "TRAP_FPE". The string read as the
value of TRAP_FPE will be interpreted and handle_sigfpes will be called
with the resulting values. If the program contains an explicit call to
handle_sigfpes, that call will override all actions defined by TRAP_FPE.

TRAP_FPE is read in upper case letters only. The string assigned to
TRAP_FPE may be in upper case or lower case. TRAP_FPE can take one
of two forms: either a global value, or a list of individual items.

April 1990 -7- Version 2.0

FSIGFPE(3F) Silicon Graphics FSIGFPE(3F)

global values:

""or OFF Execute the program yvil.h no trap handling
enabled. Same as TRAP_FPE undefined.
Same as linking without libfpe.a

ON Same as TRAP_FPE="ALL=DEFAULT".

Alternately, replacement values and actions may be specified for each of the
possible trap types individually. This is accomplished by setting the
environment variable as follows:

setenv TRAP_FPE "item;item;item...."
an item can be one of the following:

traptype=statuslist ~ Where traptype defines the specific
floating point exception to enable,
and statuslist defines the list of
actions upon encountering the trap.

DEBUG Confirm the parsing of the environ-
ment variable, and the trap actions.

Traptype can be one of the following literal strings:

UNDERFL underflow
OVERFL overflow
DIVZERO divide by zero
INVALID invalid operand
ALL all of the above

Statuslist is a list seperated by commas. It contains an optional symbolic
replacement value, and an optional list of actions.

symbolic replacement values:
DEFAULT Do not override the predefined default values.

IEEE Maps to integer code _APPROPRIATE.
ZERO Maps to integer code _ZERO.

MIN Maps to integer code _MIN.

MAX Maps to integer code _MAX.

INF Maps to integer code _INF.

NAN Maps to integer code _NAN.

April 1990 -8- Version 2.0

FSIGFPE(3F) Silicon Graphics FSIGFPE(3F)

All actions take an optional integer in parentheses:

Note: for any traps that have an action and no specified replacement value,
the DEFAULT replacement value will be used.

COUNT(n) A count of the trap type will be
printed to stderr every nth trap, and
at the end of the program. Default
is MAXINT.

ABORT(n) Core dump and abort the program
upon encountering the nth trap.
Defaultid 1.

EXIT(n) Exit program upon encountering
the nth trap. Defaultid 1.

TRACE(n) If atrap is encountered, Print a
stack trace to stderr up to n times.
Default is 10.

EXAMPLE
setenv TRAP_FPE "ALL=COUNT; UNDERFL=ZERO;
OVERFL=IEEE,TRACE(5), ABORT(100); DIVZERO=ABORT"

Count all traps, trace the first five overflows, abort on the first divide by
zero, or the 100th overflow. Replace zero for underflows, the "appropriate”
value for overflows, and the default values for divide by zero, and invalid
operands.

SEE ALSO
signal(3c), sigfpe(3c)

DIAGNOSTICS

If the handler encounters an unexpected condition, an inconsistency, or
begins looping, the flag abort_action and subroutine address abort _routine
(parameters to handle_sigfpes) indicate what action should be taken, If
abort_action is FPE_ABORT_ON_ERROR, the handler will be removed
leaving the exceptions enabled, an error message printed, and the instruc-
tion causing the fault re-issued, giving a core dump. Prior to this, if
abort_routine is valid, it is invoked as

call abort_routine(ptr_to_pc)

where ptr_to_pc is an integer * 4 parameter whose value is the address of
the instruction which caused the exception.

April 1990 -9- Version 2.0

FSIGFPE(3F) Silicon Graphics FSIGFPE(3F)

If abort action is FPE_REPLACE_HANDLER_ON_ERROR, and
abort_routine is valid, handle_sigfpes removes its handler and installs
abort_routine as the new handler. The instruction which caused the excep-
tion will be re-executed, causing a new exception, and abort_routine
entered. (see signal(2))

If abort_action is FPE_TURN_OFF_HANDLER_ON_ERROR
handle_sigfpes will mask (disable) floating-point exceptions and remove
its handler. The instruction which caused the fault will then be re-issued,
continuing the program as if floating-point exceptions had never been
enabled.

Any other combination of the two parameters abort_action and
abort_routine will cause handle_sigfpes to remove its handler, generate an
error message, and re-issue the instruction causing the exception, producing
a core dump. '

April 1990 -10 - Version 2.0

FTYPE(3F)

NAME

Silicon Graphics

FTYPE(3F)

ftype: int, ifix, iifix, jifix, idint, real, float, floati, floatj, sngl, dble, dfloti,
dflotj, dfloat, cmplx, demplx, ichar, char — explicit FORTRAN type conver-

sion

SYNOPSIS

integer i, j

realr, s

double precision dp, dq
complex cx, cy, cz

double complex dcx, dcy, dez
character*/ ch

integer*2 ii

integer*4 ji

real*4 rl
real*8 dpl
i = int(j)

i = int(r)

i = int(dp)
i = int(cx)

i = ifix(r)

ii = iifix(r1)
Ji = jifix(r1)

i = idint(dp)
i = idint(cx)

r = real(i)
r = real(dp)
r = real(cx)
r = real(s)
r = float(i)

rl = floati(ii)
r1 = floatj(ji)
r = sngl(dp)
r = sngl(cx)
r = sngl(s)

dp = dble(i)
dp = dble(r)
dp = dble(dq)
dp = dble(cx)
dp = dfloat(r)
dp = dfloat(dp)
dp = dfloat(cx)
dpl = dfloti(ii)

April 1990 -1-

Version 3.0

FTYPE(3F) Silicon Graphics FTYPE(3F)

dp1 = dfiotj(ji)

cx = cmplx(i)
cx = emplx(, j)
cx = cmplx(r)

cx = cmplx(r, §)

cx = cmplx(dp)

¢x = cmplx(dp, dq)
cx = cmplx(cy)

cx = cmplx(cy, cz)
¢x = cmplx(dex)

cx = cmplx(dex, dcy)

dex = demplx(i)

dex = demplx(, j)

dex = demplx(r)

dex = demplx(r, s)

dex = demplx(dp)

dex = demplx(dp, dq)
dex = demplx(cx)

dex = demplx(cx, cy)
dex = demplx(dcy)

dex = demplx(dey, dez)

i = ichar(ch)
ch = char(i)

DESCRIPTION
These functions perform conversion from one data type to another.

The function int converts to integer form its real, integer, real*4, double
precision, or complex argument. If the argument is real, integer, real*4, or
double precision, int returns the integer whose magnitude is the largest
integer that does not exceed the magnitude of the argument and whose sign
is the same as the sign of the argument (i.e. truncation). For complex the
above rule is applied to the real part. ifix converts only real arguments. int
and ifix return result type integer*2 if the -i2 option is in effect; otherwise,
the result type is integer*4. iifix and jifix convert only real*4 to integer*2
and integer*4, respectively. idint converts double precision and complex
arguments only.

The function real converts to real form an integer, integer*2, integer*4,
real, double precision, or complex argument. If the argument is double pre-
cision, as much precision is kept as is possible. If the argument is complex,
the real part is returned. float converts integer arguments only. floati and
floatj convert integer*2 and integer*4 arguments respectively to real*4.
sngl converts double, complex and real arguments to real.

April 1990 -2- Version 3.0

FTYPE(3F) Silicon Graphics FTYPE(3F)

ORIGIN

The function dble converts any integer, real, double, complex, integer*2 or
integer*4 argument to double precision form. If the argument is complex,
the real part is returned. dfloat converts real, double, and complex to dou-
ble. dfloti and dflotj convert integer*2 and integer*4 to real*8.

The function cmplx converts its integer, real, double precision, or double
complex argument(s) to complex form.

The function demplx converts to double complex form its integer, real,
double precision, or complex argument(s).

Either one or two arguments may be supplied to cmplx and demplx . If
there is only one argument, it is taken as the real part of the complex type
and an imaginary part of zero is supplied. If two arguments are supplied, the
first is taken as the real part and the second as the imaginary part.

The function ichar converts from a character to an integer depending on
the character’s position in the collating sequence. ichar returns the result
type integer*2 if the -i2 compile option is in effect; otherwise the result
type is integer*4.

The function char returns the character in the ith position in the processor
collating sequence where i is the supplied argument.

MIPS Computer Systems

April 1990 -3- Version 3.0

GETARG(3F) Silicon Graphics GETARG(3F)

NAME
getarg, iargc — return Fortran command-line argument

SYNOPSIS
character*N ¢
integer i, j
integer function iargc
call getarg(i, c)
j = iarge(
DESCRIPTION
getarg teturns the i-th command-line argument of the current process.
iargc returns the index of the last argument. '
foo argl arg2 arg3
getarg(2, ¢) would return the string *‘arg2’’ in the character variable c.
iargc would return 3 as the value of the function call.
SEE ALSO
getopt(3C).

NOTES ,
The compiler expects the existence of a Fortran MAIN_ program when
these functions are used.

ORIGIN
AT&T V.3

April 1990 -1- Version 3.0

GETC(3F) Silicon Graphics GETC(3F)

NAME
getc, fgetc — get a character from a logical unit

SYNOPSIS
integer function getc (char)
character char

integer function fgetc (lunit, char)
character char

DESCRIPTION
These routines return the next character from a file associated with a fortran
logical unit, bypassing normal fortran I/O. Getc reads from logical unit 5,
normally connected to the control terminal input.

The value of each function is a system status code. Zero indicates no error
occurred on the read; -1 indicates end of file was detected. A positive
value will be either a UNIX system error code or an £77 I[/O error code. See
perror(3F).

BUGS
fgetc(3f) does not work for FORTRAN unit numbers other than 5.

FILES
[ust/lib/libU77.a

SEE ALSO
getc(3S), intro(2), perror(3F)

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

GETENV(3F) Silicon Graphics GETENV(3F)

NAME
getenv — get value of environment variable

SYNOPSIS
subroutine getenv(ename, evalue)

character *(*) ename, evalue

DESCRIPTION
getenv returns the character-string value of the environment variable
represented by its first argument into the character variable of its second
argument. If no such environment variable exists, all blanks will be
returned.

SEE ALSO
getenv(3C), environ(5).

ORIGIN
AT&T V.3

April 1990 -1- Version 3.0

GETLOG(3F) Silicon Graphics

NAME
getlog — get user’s login name

SYNOPSIS
subroutine getlog (name)
character*(*) name

character*(*) function getlog()
DESCRIPTION ‘

GETLOG(3F)

Getlog will return the user’s login name or all blanks if the process is run-

ning detached from a terminal.

FILES
/Just/lib/libU77.a

SEE ALSO
getlogin(3)

ORIGIN
MIPS Computer Systems

April 1990 -1-

Version 3.0

IDATE(3F) Silicon Graphics IDATE(3F)

NAME
idate, itime — return date or time in numerical form

SYNOPSIS
subroutine idate (imon,iday,iyear)
integer imon,iday,iyear

subroutine itime (iarray)
integer iarray(3)

DESCRIPTION
Idate returns the current date in the variables imon, iday, and iyear. The
order is: mon, day, year. Month will be in the range 1-12. Year will be
returned as the last two digits.
Itime returns the current time in iarray. The order is: hour, minute, second.
FILES
Jusr/lib/libU77.a
SEE ALSO
ctime(3F), fdate(3F)

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

IMAG(3F) Silicon Graphics IMAG(3F)

NAME

imag, aimag, dimag —~ FORTRAN imaginary part of complex argument

SYNOPSIS

real r

complex cxr

double precision dp
double complex cxd

r = aimag(cxr)
r = imag(cxr)
dp = dimag(cxd)
dp = imag(cxd)

DESCRIPTION

ORIGIN

aimag retumns the imaginary part of its single-precision complex argument.
dimag returns the double-precision imaginary part of its double-complex
argument. The generic form imag may be used with impunity as its argu-
ment will determine the type of the returned value.

MIPS Computer Systems

April 1990 -1- Version 3.0

INDEX(3F) Silicon Graphics INDEX(3F)

NAME
index — return location of FORTRAN substring

SYNOPSIS
character*N1 chl
character*N2 ch2
integer i
i = index(chl, ch2)

DESCRIPTION
The result of index is an integer value indicating the position in the first
argument of the first substring which is identical to the second argument.
The result of index(’ ABCDEF’,’CD”), for example, would be 3. If no sub-
string of the first argument matches the second argument, the result is zero.
index returns the result type integer*2 if the -i2 compile option is in effect;
otherwise, the result type is integer*4.

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

LEN(3F) Silicon Graphics

NAME
len — return length of Fortran string

SYNOPSIS
character*N ch
integer i
i = len(ch)
DESCRIPTION
len returns the length of string ch.

ORIGIN
MIPS Computer Systems

April 1990 -1-

LEN(3F)

Version 3.0

LOC(3F) Silicon Graphics

NAME
loc — return the address of an object

SYNOPSIS
function loc(arg)

DESCRIPTION

The returned value will be the address of arg.

FILES
Just/lib/libU77.a

ORIGIN
MIPS Computer Systems

April 1990 -1-

LOC(3F)

Version 3.0

LOG(3F) Silicon Graphics LOG(3F)

NAME
log, alog, dlog, clog, zlog — FORTRAN natural logarithm intrinsic function

SYNOPSIS
real rl, r2
double precision dp1, dp2
complex cx1, cx2
complex*16 cdl, cd2

r2 = alog(rl)
r2 = log(rl)

dp2 = dlog(dpl)
dp2 = log(dp1)

cx2 = clog(cx1)
cx2 = log(cx1)

cd2 = zlog(cdl)
cd2 = log(cdl)

DESCRIPTION

alog returns the real natural logarithm of its real argument. dlog returns the
double-precision natural logarithm of its double-precision argument. The
argument of alog and dlog must be greater than zero. clog returns the com-
plex logarithm of its complex argument. The argument of clog must not be
(0.,0.). The range of the imaginary part of clog is: -p < imaginary part <=
p. zlog returns the complex*16 logarithm of its complex*16 argument.
The generic function log becomes a call to alog, dlog, clog, or zlog
depending on the type of its argument.

SEE ALSO
exp(3M).

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

LOG10(3F) Silicon Graphics LOG10(3F)

NAME
log10, alog10, dlog10 — FORTRAN common logarithm intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = alogl0(rl)
= log10(r1)

dp2 = dlogl0(dp1)
dp2 = logl0(dp1)

DESCRIPTION
alogl0 returns the real common logarithm of its real argument. dlogl0
returns the double-precision common logarithm of its double-precision
argument. The absolute value of the argument for alogl0 and dlogl0 must
be greater than zero. The generic function log10 becomes a call to alogl0
or dlog10 depending on the type of its argument.

SEE ALSO
exp(3M).

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

MALLOC(3F) Silicon Graphics MALLOC(3F)

NAME
malloc, free — main memory allocator

SYNOPSIS
pointer ptr

ptr = malloc(nbytes)
call free(ptr)

DESCRIPTION
malloc and free provide a simple general-purpose memory allocation pack-
age. malloc returns a pointer to a block of at least nbytes bytes suitably
aligned for any use.

The argument to free is a pointer to a block previously allocated by malloc;
after free is performed this space is made available for further allocation,
but its contents are left undisturbed.

Undefined results will occur if the space assigned by malloc is overrun or if
some random number is handed to free.

malloc allocates the first big enough contiguous reach of free space found
in a circular search from the last block allocated or freed, coalescing adja-
cent free blocks as it searches. It calls sbrk [see brk(2)] to get more
memory from the system when there is no suitable space already free.

DIAGNOSTICS
malloc, returns a NULL pointer if there is no available memory or if the
arena has been detectably corrupted by storing outside the bounds of a
block. When this happens the block pointed to by ptr may be destroyed.

NOTES
Search time increases when many objects have been allocated; that is, if a
program allocates but never frees, then each successive allocation takes
longer.

April 1990 -1- Version 3.0

MAX(3F) Silicon Graphics MAX(3F)

NAME
max, max0, imax0, jmax0, amax0, max1, amax1, dmax1, imax1, jmaxl,
aimax0, ajmax0 — FORTRAN maximum-value functions

SYNOPSIS
integer i, j, k, 1
integer*2 iil, ii2, ii3, ii4
integer*4 jil, ji2, ji3, ji4
real a, b, c, d
real*4 rl, r2, r3, r4
double precision dpl, dp2, dp3
k = max0(i, j)
1 = max(, j, k)
ii4 = imax0(iil, ii2, ii3)
ii4 = max(iil, ii2, ii3)
ii3 = max0(iil, ii2)
ji4 = jmax0(jil, ji2, ji3)
ji3 = max(jil, ji2)
ji4 = max0(jil, ji2, ji3)
a
a

amax0(i, j, k)
max(i, j, k)

i = maxl1(a, b)

i = max(a, b, ¢)

d = amax1(a, b, ¢)

¢ = max(a, b)

dp3 = dmax1(dpl, dp2)

dp4 = max(dpl, dp2, dp3)

iil = imax1(rl, r2)

iil = max1(rl, r2, r3)

jil = jmax1(rl, r2)

jil = max1(rl, r2, r3)

rl = aimax0(iil, ii2, ii3)

rl = amaxO0(iil, ii2, ii3)

r1 = aimax0(jil, ji2, ji3)

r1 = amax0(jil, ji2, ji3)
DESCRIPTION

The maximum-value functions return the largest of their arguments. There

may be any number of arguments, but they must all be of the same type.
max0 returns the integer form of the maximum value of its integer

April 1990 -1- Version 3.0

MAX(3F) Silicon Graphics MAX(3F)

arguments; amax0, the real form of its integer arguments; max! , the integer
form of its real arguments; amaxl, the real form of its real arguments;
dmaxl, the double-precision form of its double-precision arguments;
imaxl, the integer*2 form of its real*4 arguments; jmaxl, the integer*4
form of its real*4 arguments; aimax0, the real*4 form of its integer*2 argu-
ments; and ajmax0, the real*4 form of its integer*4 arguments. max, max0,
maxl, and amax0 are the generic forms which can be used as indicated
above.

SEE ALSO
min(3F).

ORIGIN
MIPS Computer Systems

April 1990 -2- Version 3.0

MCLOCK(3F) Silicon Graphics MCLOCK(3F)

NAME
mclock — return Fortran time accounting

SYNOPSIS
integer i
i = mclock() ,
DESCRIPTION ('j
mclock returns time accounting information about the current process and

its child processes. The value returned is the sum of the current process’s
user time and the user and system times of all child processes.

SEE ALSO
times(2), clock(3C), system(3F).

ORIGIN
AT&T V.3

April 1990 -1- Version 3.0

MIN(3F) Silicon Graphics MIN(3F)

NAME
min, min0, imin0, jmin0, amin0, min1, amin1, dmin1, imin1, jmin1, aimin0,
ajmin0 — FORTRAN minimum-value functions

SYNOPSIS
integer i, j, k, 1
integer*2 iil, ii2, i3, ii4
integer*4 jil, ji2, ji3, ji4
real a, b, ¢, d
real*4 r1, r2, r3, r4
double precision dpl, dp2, dp3
k = min0(, j)
I = min(, j, k)
ii4 = imin0(iil, ii2, ii3)
ii4 = min(iil, ii2, ii3)
ii3 = min0(iil, ii2)
ji4 = jmin0(jil, ji2, ji3)
Ji3 = min(jil, ji2)
Ji4 = min0(jil, ji2, ji3)
a = amin0(, j, k)
a = min(, j, k)
i = minl(a, b)
i = min(a, b, ¢)
d = aminl(a, b, ¢)
¢ = min(a, b)
dp3 = dminl(dpl, dp2)
dp4 = min(dpl, dp2, dp3)
iil = iminl(rl, r2)
iil = minl(rl, r2, r3)
jil = jminl(rl, r2)
jil = minl(rl, r2, r3)
rl = aimin0(iil, ii2, ii3)
r1 = amin0(iil, ii2, ii3)
rl1 = aimin0(jil, ji2, ji3)
r1 = amin0(jil, ji2, ji3)
DESCRIPTION
The minimum-value functions return the minimum of their arguments.

There may be any number of arguments, but they must all be of the same
type. min0 returns the integer form of the minimum value of its integer

April 1990 -1- Version 3.0

MIN(3F) . Silicon Graphics MIN(3F)

arguments; amin0, the real form of its integer arguments; minl, the integer
form of its real arguments; aminl, the real form of its real arguments;
dminl , the double-precision form of its double-precision arguments; iminl,
the integer*2 form of its real*4 arguments; jminl, the integer*4 form of its
real*4 arguments; aimin0, the real*4 form of its integer*2 arguments; and
ajmin0, the real*4 form of its integer*4 arguments. min, min0, minl, and
amin0 are the generic forms which can be used as indicated above.

SEE ALSO
max(3F).

ORIGIN
MIPS Computer Systems

April 1990 -2- Version 3.0

MOD(3F) Silicon Graphics MOD(3F)

NAME
mod, imod, jmod, amod, dmod — FORTRAN remaindering intrinsic func-
tions
SYNOPSIS
integer i, j, k
integer*2 iil, ii2, ii3
integer*4 jil, ji2, ji3
real r1, r2, r3
double precision dpl, dp2, dp3
k = mod(, j)
ii3 = imod(iil, ii2)
ii3 = mod(iil, ii2)
Ji3 = jmod(il, ji2)
Ji3 = mod(jil, ji2)
r3 = amod(rl, r2)
r3 = mod(rl, r2)

dp3 = dmod(dpl, dp2)
dp3 = mod(dpl, dp2)

DESCRIPTION

mod returns the integer remainder of its first argument divided by its second
argument. imod returns the integer*2 remainder of its two integer*2 argu-
ments. jmod returns the integer*4 remainder of its two integer*4 argu-
ments. amod and dmod return, respectively, the real and double-precision
whole number remainder of the integer division of their two arguments.
The generic version mod will return the data type of its arguments. The
result of these intrinsics is undefined when the value of the second argu-
ment is zero.

ORIGIN
- MIPS Computer Systems

April 1990 -1- Version 3.0

MP(3F) Silicon Graphics MP(3F)

NAME
- mp: mp_block, mp_blocktime, mp_create, mp_destroy, mp_my_threadnum,
mp_numthreads, mp_set_numthreads, mp_setup, mp_unblock — FOR-
TRAN multiprocessing utility routines

SYNOPSIS
subroutine mp_block()

subroutine mp_unblock()

subroutine mp_blocktime(iters)
integer iters

subroutine mp_setup()

subroutine mp_create(num)
integer num

subroutine mp_destroy()
integer function mp_numthreads()

subroutine mp_set_numthreads(num)
integer num

integer function mp_my_threadnum()

DESCRIPTION
These routines give some measure of control over the parallelism used in
FORTRAN jobs. They should not be needed by most users, but will help to
tune specific applications.

mp_block puts all slave threads to sleep via blockproc(2). This frees the
processors for use by other jobs. This is useful if it is known that the slaves
will not be needed for some time, and the machine is being shared by
several users. Calls to mp_block may not be nested; a warning is issued if
an attempt to do so is made.

mp_unblock wakes up the slave threads that were previously blocked via
mp_block. It is an error to unblock threads that are not currently blocked; a
warning is issued if an attempt is made to do so.

It is not necessary to explicitly call mp_unblock. When a FORTRAN paral-
lel region is entered, a check is made, and if the slaves are currently
blocked, a call is made to mp_unblock automatically.

April 1990 -1- Version 3.0

MP(3F) Silicon Graphics MP(3F)

mp_blocktime controls the amount of time a slave thread waits for work
before giving up. When enough time has elapsed, the slave thread blocks
itself. This automatic blocking is independent of the user level blocking
provided by the mp_block/mp_unblock calls. Slave threads that have
blocked themselves will be automatically unblocked upon entering a paral-
lel region. The argument to mp_blocktime is the number of times to spin in
the wait loop. By default, it is set to 10,000,000. This takes about 3
seconds on a 16MHz processor. As a special case, an argument of 0 dis-
ables the automatic blocking, and the slaves will spin wait without limit.
The environment variable MP_BLOCKTIME may be set to an integer value.
It acts like an implicit call to mp_blocktime during program startup.

mp_destroy deletes the slave threads. They are stopped by forcing them to
call exit(2). In general, doing this is discouraged. mp_block can be used in
most cases.

mp_create creates and initializes threads. It creates enough threads so that
the total number is equal to the argument. Since the calling thread already
counts as one, mp_create will create one less than its argument in new slave
threads.

mp_setup also creates and initializes threads. It takes no arguments. It sim-
ply calls mp_create using the current default number of threads. Normally
the default number is equal to the number of cpu’s currently on the
machine. If the user has not called either of the thread creation routines
already, then mp_setup is invoked automatically when the first parallel
region is entered. If the environment variable MP_SETUP is set, then
mp_setup is called during FORTRAN initialization, before any user code is
executed.

mp_numthreads returns the number of threads that would participate in an
immediately following parallel region. If the threads have already been
created, then it returns the current number of threads. If the threads have
not been created, then it returns the current default number of threads.
Knowing this can be useful in optimizing certain kinds of parallel loops by
hand.

mp_set_numthreads sets the current default number of threads to the
specified value. Note that this call does not directly create the threads, it
only specifies the number that a subsequent mp_setup call should use. If the
environment variable MP_SET NUMTHREADS is set to an integer value, it
acts like an implicit call to mp_set_numthreads during program startup. For
compatibility with earlier releases, NUM_THREADS is supported as a
synonym for MP_SET NUMTHREADS.

April 1990 -2- Version 3.0

MP(3F) Silicon Graphics MP(3F)

mp_my_threadnum returns an integer between O and n-1 where n is the
value returned by mp_numthreads. The master process is always thread 0.
This is occasionally useful for optimizing certain kinds of loops by hand.

SEE ALSO
FORTRAN 77 Programmer’s Guide

ORIGIN
Silicon Graphics, Inc.

April 1990 -3- Version 3.0

PERROR(3F) Silicon Graphics PERROR(3F)

NAME .
perror, gerror, iermo — get system error messages

SYNOPSIS
subroutine perror (string)
character*(*) string

subroutine gerror (string)
character*(*) string

character*(*) function gerror()

function ierrno()

DESCRIPTION :
Perror will write a message to fortran logical unit O appropriate to the last
detected system error. String will be written preceding the standard error
message.

Gerror returns the system error message in character variable string. Ger-
ror may be called either as a subroutine or as a function.

Ierrno will return the error number of the last detected system error. This
number is updated only when an error actually occurs. Most routines and
I/O statements that might generate such errors return an error code after the
call; that value is a more reliable indicator of what caused the error condi-

tion.
FILES
fust/lib/libU77.a
SEE ALSO
intro(2), perror(3)
D. L. Wasley, Introduction to the f77 1/0 Library
BUGS
String in the call to perror can be no longer than 127 characters.
The length of the string returned by gerror is determined by the calling pro-
gram.
NOTES

UNIX system error codes are described in intro(2). The £77 1/O error codes
and their meanings are:

100 ““error in format”’

101 ““illegal unit number”’
102 ‘‘formatted i/o not allowed’’

April 1990 -1- Version 3.0

PERROR(3F)

April 1990

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

Silicon Graphics PERROR(3F)

‘‘unformatted i/o not allowed’’
““direct i/o not allowed’’
“‘sequential i/o not allowed”’
“‘can’t backspace file’’

““off beginning of record’’

‘“‘can’t stat file’’

“‘no * after repeat count’’

““off end of record’’

“‘truncation failed”’
“‘incomprehensible list input’’
“‘out of free space”’

*“unit not connected’’

“‘invalid data for integer format term’’
““invalid data for logical format term’’
““new’ file exists’’

“‘can’t find ’old’ file’’

““‘opening too many files or unknown system error”’
“‘requires seck ability”’

‘‘illegal argument’’

“‘negative repeat count’

“‘illegal operation for unit’’

““off beginning of record”’

“‘no * after repeat count’’

‘“new’ file exists’’

“‘can’t find ’old’ file’’

‘‘anknown system error’’
“‘requires seck ability”’

“‘illegal argument’’

*“duplicate key value on write”’
“‘indexed file not open”’

‘‘bad isam argument’’

‘‘bad key description’’

‘‘too many open indexed files™
“‘corrupted isam file”’

“‘isam file not opened for exclusive access’’
“‘record locked’’

‘‘key already exists’’

‘‘cannot delete primary key”’
““beginning or end of file reached’’
*‘cannot find requested record”’
“‘current record not defined”
““jsam file is exclusively locked”’

“‘filename too long’’

-2- Version 3.0

PERROR(3F)

Silicon Graphics PERROR(3F)

146 ‘‘cannot create lock file”’
147 “‘record too long’’
148 “‘key structure does not match file structure’’
149 ““direct access on an indexed file not allowed’’
150 ‘‘keyed access on a f77sequential file not allowed’’
151 ‘‘keyed access on a relative file not allowed’’
152 “‘append access on an indexed file not allowed’’
153 ‘‘must specify record length’’
154 “‘key field value type does not match key type”’
155 ““character key field value length too long”’
156 *“fixed record on f77sequential file not allowed’’
157 “‘variable records allowed only on unformatted
f77sequential file”’
158 “‘stream records allowed only on f77formatted
f77sequential file’’
159 “‘maximum number of records in direct access file
exceeded”
160 ‘‘attempt to write to a readonly file”’
161 ‘‘must specify key descriptions’’
162 ‘‘carriage control not allowed for unformatted units”’
163 “‘indexed files only’’
164 “‘cannot use on indexed file’
165 ““‘cannot use on indexed or append file”’

ORIGIN

MIPS Computer Systems

April 1990

-3- Version 3.0

PUTC(3F) Silicon Graphics PUTC(3F)

NAME
putc, fputc — write a character to a fortran logical unit

SYNOPSIS
integer function putc (char)
character char

integer function fputc (lunit, char)
character char

DESCRIPTION
These funtions write a character to the file associated with a fortran logical
unit bypassing normal fortran 1/O. Putc writes to logical unit 6, normally
connected to the control terminal output.

The value of each function will be zero unless some error occurred; a sys-
tem error code otherwise. See perror(3F).

FILES
Just/lib/libU77.a

SEE ALSO
putc(38S), intro(2), perror(3F)

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

PUTENV(3F) Silicon Graphics PUTENV(3F)

NAME
putenv — change or add Fortran environment variable
SYNOPSIS
integer function putenv (string)
character *(*) string
DESCRIPTION
String contains a character string in the form name=value. Putenv makes

the value of the environment variable name equal to value by altering or
creating an environment variable.

FILES
Jusr/lib/libU77.a

SEE ALSO
putenv(3C)

ORIGIN
AT&T V.3

April 1990 -1- Version 3.0

QSORT(3F) Silicon Graphics QSORT(3F)

NAME
gsort — quick sort

SYNOPSIS
subroutine gsort (array, len, isize, compar)
external compar
integer*2 compar

DESCRIPTION » :
One dimensional array contains the elements to be sorted. len is the
number of elements in the array. isize is the size of an element, typically -

4 for integer and real

8 for double precision or complex

16 for double complex

(length of character object) for character arrays

Compar is the name of a user supplied integer*2 function that will deter-
mine the sorting order. This function will be called with 2 arguments that
will be elements of array. The function must return -

negative if arg 1 is considered to precede arg 2
zero if arg 1 is equivalent to arg 2
positive if arg 1 is considered to follow arg 2

On return, the elements of array will be sorted.

FILES
Jusr/lib/libU77.a

SEE ALSO
gsort(3)

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

RAND(3F) Silicon Graphics RAND(3F)

NAME
rand, irand, srand — random number generator

SYNOPSIS
integer iseed, i, irand
double precision x, rand

call srand(iseed)

i = irand()
x = rand()
DESCRIPTION

Irand generates successive pseudo-random integers in the range from 0 to
2%%15-1. rand generates pseudo-random numbers distributed in [0, 1.0].
Srand uses its integer argument to re-initialize the seed for successive invo-
cations of irand and rand.

SEE ALSO
rand(3C).

ORIGIN
AT&T V.3

April 1990 -1- Version 3.0

RENAME(3F) Silicon Graphics RENAME(3F)

NAME
rename — rename a file

SYNOPSIS
integer function rename (from, to)
character*(*) from, to

DESCRIPTION
From must be the pathname of an existing file. To will become the new
pathname for the file. If to exists, then both from and to must be the same
type of file, and must reside on the same filesystem. If fo exists, it will be
removed first.

‘The returned value will be 0 if successful; a system error code otherwise.

FILES
fust/lib/libU77.a
SEE ALSO
rename(2), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in
<sys/param.h>.

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

ROUND(3F) Silicon Graphics ROUND(3F)

NAME

round: anint, dnint, nint, inint, jnint, idnint, iidnnt, jidnnt — FORTRAN
nearest integer functions

SYNOPSIS

integer i

integer*2 ii

integer*4 ji

real rl, r2

real*4 r3

double precision dp1, dp2
real*8 dp3

r2 = anint(rl)
dp2 = dnint(dp1)
dp2 = anint(dp1)
i = nint(dp1)

ii = inint(r3)

ii = nint(r3)

Ji = jnint(r3)

ji = nint(r3)

i = idnint(dp1)

i = nint(dp1)

ii = iidnnt(dp3)
ji = jidnnt(dp3)

DESCRIPTION

anint returns the nearest whole real number to its real argument (i.e.,
int(a+0.5) if a > 0, int(a-0.5) otherwise). dnint does the same for its
double-precision argument. anint is the generic form of anint and dhnint,
performing the same operation and returning the data type of its argument.
nint returns the nearest integer to its real argument. inint returns the nearest
integer*2 to its real*4 argument. jnint returns the nearest integer*4 to its
real*4 argument. idnint returns the nearest integer to its double precision
argument. nint is the generic form of inint, jnint and idnint. idnint is also
the generic form for iidnnt, which returns the nearest integer*?2 to its real*8
argument, and jidnnt, which returns the nearest integer*4 to its real*8 argu-
ment. When nint or idnint is specified as an argument in a subroutine call
or function reference, the compiler supplies either an integer*2 or integer*4
function depending on the -i2 command line option.

April 1990 -1- Version 3.0

SIGN(3F) Silicon Graphics SIGN(3F)

NAME
sign, isign, iisign, jisign, dsign - FORTRAN transfer-of-sign intrinsic func-
tion

SYNOPSIS
integer i, j, k
integer*2 iil, ii2, ii3
integer*4 jil, ji2, ji3
real rl, r2, r3
double precision dpl, dp2, dp3
k = isign(i, j)
k = sign(i, j)
ii3 = iisign(iil, ii2)
ii3 = sign(iil, ii2)
Ji3 = jisign(jil, ji2)
Ji3 = sign(il, ji2)
r3 = sign(rl, r2)

dp3 = dsign(dpl, dp2)
dp3 = sign(dpl, dp2)

DESCRIPTION

isign returns the magnitude of its first argument with the sign of its second
argument. It accepts either integer*2 or integer*4 arguments and the result
is the same type. iisign and jisign take integer*2 and integer*4 arguments,
respectively. sign and dsign are isign’s real and double-precision counter-
parts, respectively. If the value of the first argument of isign, sign, or dsign
is zero, the result is zero. The generic version is sign and will devolve to
the appropriate type depending on its arguments.

ORIGIN
MIPS Computer Systems

‘April 1990 -1- Version 3.0

SIN(3F)

NAME

Silicon Graphics

SIN(3F)

sin, dsin, csin, zsin, sind, dsind - FORTRAN sine intrinsic function
SYNOPSIS

real rl, r2

double precision dp1, dp2

complex cx1, cx2
complex*16 cdl, cd2
real*4 r3, r4
real*8 dp3, dp4
r2 = sin(rl)

dp2 = dsin(dp1)
dp2 = sin(dpl)
cx2 = csin(cx1)
cx2 = sin(cx1)
¢d2 = zsin(cdl)
cd2 = sin(cd1)
r4 = sind(r3)
dp4 = dsind(dp3)
dp4 = sind(dp3)

DESCRIPTION
sin returns the real sine of its real argument. dsin returns the double-
precision sine of its double-precision argument. csin returns the complex
sine of its complex argument. zsin returns the complex*16 sine of its com-
plex*16 argument. The argument for these functions must be in radians and
is treated modulo 2P. The generic sin function becomes dsin, csin, or zsin
as required by argument type.

sind returns the real*4 sine of its real*4 argument or the real*$ sine of its
real*8 argument. dsind returns the real*8 sine of its real*8 argument. The
argument for sind and dsind must be in degrees and is treated as modulo

360.

SEE ALSO

ORIGIN

trig(3M).

MIPS Computer Systems

April 1990

Version 3.0

SINH(3F) Silicon Graphics SINH(3F)

NAME
sinh, dsinh —- FORTRAN hyperbolic sine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = sinh(rl)
dp2 = dsinh(dpl)
dp2 = sinh(dpl)

DESCRIPTION
sinh returns the real hyperbolic sine of its real argument. dsinh retuns the
double-precision hyperbolic sine of its double-precision argument. The
generic form sinh may be used to return a double-precision value when
given a double-precision argument.

SEE ALSO
sinh(3M).

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

SLEEP(3F) Silicon Graphics SLEEP(3F)

NAME
sleep — suspend execution for an interval

SYNOPSIS
subroutine sleep (itime)

DESCRIPTION
Sleep causes the calling process to be suspended for ifime seconds. The
actual time can be up to 1 second less than itime due to granularity in sys-
tem timekeeping.

FILES
/ust/lib/libU77.a

SEE ALSO
sleep(3)

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

SQRT(3F) Silicon Graphics SQRT(3F)

- NAME

sqrt, dsqrt, csqrt, zsqrt — FORTRAN square root intrinsic function

SYNOPSIS

real r1, r2

double precision dpl, dp2

complex cx1, cx2 (
complex*16 cdl, cd2

r2 = sqrt(rl)
dp2 = dsqrt(dpl)
dp2 = sqrt(dpl)
cx2 = csqri(ex1)
cx2 = sqrt(cx1)

cd2 = zsqrt(cdl)
cd2 = sqrt(cdl)

DESCRIPTION

sqrt returns the real square root of its real argument. dsqrt returns the
double-precision square root of its double-precision argument. The value of
the argument of sqrt and dsqrt must be greater than or equal to zero.

csqrt returns the complex square root of its complex argument. The result

of csqrt is the principle value with the real part greater than or equal to (
zero. When the real part is zero, the imaginary part is greater than or equal

to zero.

zsqrt returns the complex*16 square root of its complex*16 argument.

sqrt, the generic form, will become dsqrt, csqrt, or zsqrt as required by its
argument type.

SEE ALSO

ORIGIN

exp(3M).

MIPS Computer Systems

April 1990 -1- Version 3.0

STRCMP(3F) Silicon Graphics STRCMP(3F)

NAME
stremp: Ige, Igt, lle, 1it — FORTRAN string comparison intrinsic functions

SYNOPSIS
character*N al, a2
logical 1

1 = Ige(al, a2)
1 = Igt(al, a2)
I = lle(al, a2)
1 = lit(al, a2)
DESCRIPTION
These functions return .TRUE. if the inequality holds and .FALSE. other-
wise. They return the result type logical*2 if the $log2 compile option is in
effect; otherwise, the result type is logical*4.
ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

SYSTEM(3F) Silicon Graphics SYSTEM(3F)

NAME
system — issue a shell command from Fortran

SYNOPSIS
character*N ¢

call system(c)

DESCRIPTION
system causes its character argument to be given to sh(1) as input, as if the
string had been typed at a terminal. The current process waits until the shell
has completed.

SEE ALSO

exec(2), system(3S).

sh(1) in the User's Reference Manual.
ORIGIN

AT&T V.3

April 1990 -1- Version 3.0

TAN(3F) Silicon Graphics TAN(3F)

NAME
tan, dtan, tand, dtand - FORTRAN tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dp1, dp2
real*4 r3, r4
real*8 dp3, dp4

r2 = tan(rl)

dp2 = dtan(dp1)
dp2 = tan(dpl)

rd4 = tand(r3)

dp4 = dtand(dp3)
dp4 = tand(dp3)

DESCRIPTION
tan returns the real tangent of its real argument. dtan returns the double-
precision tangent of its double-precision argument. The argument for tan
and dtan must be in radians and is treated modulo 2P. The generic tan
function becomes dtan as required with a double-precision argument.

tand returns the real*4 tangent of its real*4 argument. The argument for
tand must be in degrees and is treated as modulo 360. dtand returns the
real*8 tangent of its real*8 argument. The generic tand function becomes
dtand as required with a real*8 argument. :

SEE ALSO
trig(3M).

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

TANH(3F) Silicon Graphics TANH(3F)

NAME
tanh, dtanh — FORTRAN hyperbolic tangent intrinsic function

SYNOPSIS

real rl, r2
double precision dpl, dp2
r2 = tanh(rl)
dp2 = dtanh(dpl)
dp2 = tanh(dpl)
DESCRIPTION .
tanh returns the real hyperbolic tangent of its real argument. dtanh returns
the double-precision hyperbolic tangent of its double-precision argument.

The generic form tanh may be used to return a double-precision value given
a double-precision argument.

SEE ALSO
sinh(3M).

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

TIME(3F) Silicon Graphics TIME(3F)

NAME
time, ctime, Itime, gmtime — return system time

SYNOPSIS
integer function time()

character*(*) function ctime (stime)
integer stime

subroutine ltime (stime, tarray)
integer stime, tarray(9)

subroutine gmtime (stime, tarray)
integer stime, tarray(9)

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in
seconds. This is the value of the UNIX system clock.

Ctime converts a system time to a 24 character ASCII string. The format is
described under ctime(3). No *newline’ or NULL will be included.

Ltime and gmtime disect a UNIX time into month, day, etc., either for the
local time zone or as GMT. The order and meaning of each element
returned in farray is described under ctime (3).

FILES
fusr/lib/libU77.a

SEE ALSO
ctime(3), itime(3F), idate(3F), fdate(3F)

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

TTYNAM(3F) Silicon Graphics TTYNAM(3F)

NAME
ttynam, isatty — find name of a terminal port

SYNOPSIS
character*(*) function ttynam (lunit)

logical function isatty (lunit)

DESCRIPTION
Ttynam returns a blank padded path name of the terminal device associated
with logical unit lunit.

Isatty returns .true. if lunit is associated with a terminal device, .false. oth-
erwise. :

FILES
[dev/*
fust/lib/libU77.a
DIAGNOSTICS

Ttynam returns an empty string (all blanks) if Junit is not associated with a
terminal device in directory ‘/dev’.

ORIGIN
MIPS Computer Systems

April 1990 -1- Version 3.0

(

(

|enuew siyj Buinoidwi 1oy aney Aew noA suolisebbns Aue 1si| ases|d euoyd

ssalppy
Auedwon
wawyedsag
[eNUBW SIY] Ul PUNO} BABY NOA SUOISSILWO IO ‘S8I0BINODRUI ‘S10118 Aue Isi| ases|d oL
BWeu INOA
UOISIaA pue 3|ll} [BNUB a1e(q
S1N3WWOD
l
S

ou| ‘soiydesyy uoal|is

i

S31V1S d3lINN
3H1 NI
CERILAAEL
AHVSS3O3N
39V1SOd ON

i

L1E2-6E016 YD ‘MBIA UIBIUNOW
pieas|nog suijaioys ‘N | 102
suonesiigng |eoiuyda] uonuany
ouj ‘saydeus) uodijis

33SS34AAY A8 dlvd 38 17IM 35ViSOd

VO 'MIIANIVINNOW S¥ 'ON 1iWH3d SSV10 1SHid

TIVIN A1d3H SSINISNE

