NFS Reference
Manual Pages

IRIS-40 Series

ﬁ‘% SiliconGraphics
Computer Systems

Documen! t number: 007-0627-030



NFS Reference
Manual Pages

Document Version 3.0

Document Number 007-0627-030

8/90



© Copyright 1990, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary information of Silicon Graphics,
Inc. The contents of this document may not be disclosed to third
parties, copied or duplicated in any form, in whole or in part, without
the prior written permission of Silicon Graphics, Inc.

Restricted Rights Legend

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 52.227-7013, and/or in similar or successor
clauses in the FAR, or the DOD or NASA FAR Supplement.
Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

NFS Reference Manual Pages
Document Version 3.0
Document Number 007-0627-030

Silicon Graphics, Inc.
Mountain View, California

IRIS, IRIX, Geometry Link, Geometry Partners, Geometry Engine
and Geometry Accelerator are trademarks of Silicon Graphics, Inc.
UNIX is a trademark of AT&T, Inc.

NFS is a trademark of Sun Microsystems, Inc.

()



Preface

Here are your NFS Reference Manual Pages. You may place them behind
you NF'S User’s Guide or put them in the binder labelled /RIS-4D Optional
Manual Pages. You received this binder with your IRIS-4D Series
Reference Manuals.






DOMAINNAME(1) Silicon Graphics DOMAINNAME(1)

NAME
domainname — set or display name of current YP domain

SYNOPSIS
domainname [ nameofdomain ]

DESCRIPTION
Without an argument, domainname displays the name of the current Yellow
Pages domain. Only the super-user can set the domain name by giving an
argument; this is usually done in the startup script /etc/init.d/network.
Currently, the Yellow Pages uses domains only to refer collectively to a
group of hosts.

SEE ALSO
ypinit(1M)

April 1990 -1- Version 3.0



ON(1C) Silicon Graphics ON(1C)

NAME
on — execute a command remotely

SYNOPSIS
on[—i][—m][—d] host command [ argumentv]

DESCRIPTION

The on program is used to execute commands on another system, in an
environment similar to that invoking the program. All environment vari-
ables are passed, and the current working directory is preserved. To
preserve the working directory, the working file system must be either
already mounted on the host or be exported to it. Relative path names will
only work if they are within the current file system; absolute path names
may cause problems.

Standard input is connected to standard input of the remote command, and
standard output and standard error from the remote command are sent to the
corresponding files for the on command.

OPTIONS
—i  Interactive mode: use remote echoing and special character process-
ing. This option is needed for programs that expect to be talking to a
terminal. All terminal modes and window size changes are pro-
pagated. :

-n  No Input: this option causes the remote program to get end-of-file
when it reads from standard input, instead of passing standard input
from the standard input of the on program. For example, —n is neces-
sary when running commands in the background with job control.

—d  Debug mode: print out some messages as work is being done.

SEE ALSO
rexd(1M), exports(4)

DIAGNOSTICS
unknown host
Host name not found.

cannot connect to server
Host down or not running the rexd server.

can’t find .
Problem finding the working directory.

can’t locate mount point
Problem finding current file system.

April 1990 -1- Version 3.0




ON(1C) Silicon Graphics ON(1C)

Other error messages may be passed back from the server.

BUGS

The window size is not set properly when executing interactively on Sun
workstations.

April 1990 -2- Version 3.0



RUP(1C) Silicon Graphics RUP(1C)

NAME
rup — show host status of local machines (RPC version)

SYNOPSIS
rup[-h][-1]1[—-t][host... ]

DESCRIPTION
Rup gives a status similar to uptime for remote machines; it broadcasts on
the local network, and displays the responses it receives.

Normally, the listing is in the order that responses are received, but this
order can be changed by specifying one of the options listed below.

When host arguments are given, rather than broadcasting rup will only
query the list of specified hosts.

A remote host will only respond if it is running the rstatd daemon, which is
normally started up from inetd(1M).

OPTIONS
—h  sort the display alphabetically by host name.

-1 sort the display by load average.
—t  sort the display by up time.

SEE ALSO
ruptime(1C), inetd(1M), rstatd(1M)

BUGS
Broadcasting does not work through gateways.

April 1990 -1- Version 3.0



RUSERS(1C) Silicon Graphics RUSERS(1C)

NAME
rusers — who’s logged in on local machines (RPC version)

SYNOPSIS
rusers [-a][-h][—][-1]1[—-ul[host... ]

DESCRIPTION
The rusers command produces a listing of users on remote machines. It
broadcasts on the local network, and prints the responses it receives. Nor-
mally, the listing is in the order that responses are received, but this order
can be changed by specifying one of the options listed below. When host
arguments are given, rather than broadcasting rusers will only query the list
of specified hosts.

The default is to print out a listing with one line per machine. When the -1
flag is given, a who(1) style listing is used. In addition, if a user hasn’t
typed to the system for a minute or more, the idle time is reported.

A remote host will only respond if it is running the rusersd daemon, which
is normally started up from inetd.

OPTIONS
-a gives a report for a machine even if no users are logged on.

-h sort alphabetically by host name.

—i sort by idle time.
-1 Give a longer listing in the style of who.
-u sort by number of users.

SEE ALSO

rwho(1C), inetd(1M), rusersd(1M)

BUGS
Broadcasting does not work through gateways.

April 1990 -1- Version 3.0



RWALL(1) Silicon Graphics RWALL(1)

NAME
rwall — write to all users over a network

SYNOPSIS
rwall hostl host2 ...
rwall —n netgroupl netgroup? ...
rwall —h host —n netgroup

DESCRIPTION
Rwall reads a message from standard input until end-of-file. It then sends
this message, preceded by the line ‘‘Broadcast Message ...”", to all users

logged in on the specified host machines. With the -n option, it sends to the
specified network groups, which are defined in netgroup(4).

A machine can only receive such a message if it is running rwalld(1m),
which is normally started up by the daemon inetd(1m).

SEE ALSO
wall(1), rwalld(1M), netgroup(4)

BUGS
The timeout is fairly short in order to be able to send to a large group of
machines (some of which may be down) in a reasonable amount of time.
Thus the message may not get through to a heavily loaded machine.

April 1990 -1- Version 3.0




YPCAT(1) Silicon Graphics YPCAT(1)

NAME
ypcat — print values in a YP data base

SYNOPSIS
ypeat [ -k ] [ =t ] [ —d domainname 1 mname
ypcat —x

DESCRIPTION
ypcat prints out values in a Yellow Pages (YP) map specified by mname,
which may be either a mapname or a map nickname. Since ypcat uses the
YP network services, no YP server is specified.

To look at the network-wide password database, passwd.byname, (with the
nickname passwd), type in:

ypcat passwd
Refer to ypfiles(4) and ypserv(1M) for an overview of the Yellow Pages.

OPTIONS
-k Display the keys for those maps in which the values are null or the
key is not part of the value. (None of the maps derived from files
that have an ASCII version in /etc fall into this class.)
—t Inhibit translation of mname to mapname. For example, ypcat —t

passwd will fail because there is no map named passwd, whereas
ypcat passwd will be translated to ypcat passwd.byname .

—d Specify a domain other that the default domain. The default
domain is returned by domainname.

-X Display the map nickname table. This lists the nicknames
( mnames ) the command knows of, and indicates the mapname
associated with each nickname.

SEE ALSO
ypfiles(4), ypserv(1M), ypmatch(1), domainname(1)

April 1990 -1- Version 3.0



YPCHPASS(1) Silicon Graphics YPCHPASS(1)

NAME

ypchpass — change selected Yellow Pages passwd fields
SYNOPSIS

ypchpass [—f fullname] [-h home] [—s shell] [name]
DESCRIPTION

Ypchpass changes selected passwd(4) fields associated with the user name
(your own name by default) in the Yellow Pages. The Yellow Pages fields
that can be modified with ypchpass may have different contents from those
for the same user in the local /etc/passwd file. :

If invoked without options, ypchpass invokes the editor named by the
environment variable EDITOR, or vi(1) if EDITOR is null or unset, to edit a
template of selected passwd fields. After the user has edited this template
and changed or added appropriate field contents, ypchpass checks the
updated contents. If they are well-formed, it updates the Yellow Pages.
Otherwise it prompts the user to re-edit the template.

If invoked with options, ypchpass updates the Yellow Pages based on the
options’ arguments and does not interactively acquire new field contents
using an editor.

—f fullname . Change the user’s real name field to contain fullname.
A useful convention, observed by finger(1), divides this
field into four comma-separated parts: the user’s real
name, office, extension, and home phone.

—h home Change the initial working directory field to home.
—s shell Change the shell field to shell.
Only the owner of name may change its passwd fields.

SEE ALSO

yppasswd(1), ypfiles(4), rpc.passwd(1M)

April 1990 -1- Version 3.0




YPMATCH(1) Silicon Graphics YPMATCH(1)
NAME
ypmatch — print the value of one or more keys from a YP map
SYNOPSIS
ypmatch [ —d domain 1 [ -k ] [ -t ] key ... mname
ypmatch —x
DESCRIPTION

ypmatch prints the values associated with one or more keys from the Yel-
low Pages (YP) map (database) specified by a mname, which may be either
a mapname oOr an map nickname.

Multiple keys can be specified; the same map will be searched for all. The
keys must be exact values insofar as capitalization and length are con-
cerned. No pattern matching is available. If a key is not matched, a diag-
nostic message is produced.

OPTIONS
—d

-k

SEE ALSO

Specify a domain other that the default domain.

Before printing the value corresponding to a key, print the key
itself, followed by a colon (‘:’). This is useful only if the keys are
not duplicated in the values, or you’ve specified so many keys that
the output could be confusing.

Inhibit translation of nickname to mapname. For example,
ypmatch —t zippy passwd will fail because there is no map named
passwd, while ypmatch zippy passwd will be translated to ypmatch
zippy passwd.byname.

Display the map nickname table. This lists the nicknames
(mnames) the command knows of, and indicates the mapname
associated with each nickname.

ypcat(1), ypfiles(4)

April 1990

-1- Version 3.0



YPPASSWD(1) Silicon Graphics YPPASSWD(1)

NAME

yppasswd — change login password in Yellow Pages

SYNOPSIS

yppasswd [ name ]

DESCRIPTION

Yppasswd changes (or installs) a password associated with the user name
(your own name by default) in the Yellow Pages. The Yellow Pages pass-
word may be different from the one on your own machine.

Yppasswd prompts for the old Yellow Pages password and then for the new
one. The caller must supply both. The new password must be typed twice,
to forestall mistakes.

New passwords must be at least four characters long if they use a
sufficiently rich alphabet and at least six characters long if monocase.
These rules are relaxed if you are insistent enough.

Only the owner of the name or the super-user may change a password; in
either case you must prove you know the old password.

SEE ALSO

BUGS

passwd(1), ypfiles(4), rpc.passwd(1M)

The update protocol passes all the information to the server in one rpc call,
without ever looking at it. Thus if you type in your old password
incorrectly, you will not be notified until after you have entered your new
password.

April 1990 -1- Version 3.0




YPWHICH(1) Silicon Graphics YPWHICH(1)

NAME
ypwhich — print the YP server or map master hostname

SYNOPSIS
ypwhich [ —d domain 1 [ —=V1 | —=V2 ] [ hostname ]
ypwhich [ —t ] [ —-d domain ] —m mname
ypwhich —x

DESCRIPTION
ypwhich tells which YP server supplies Yellow Pages services to a YP
client, or which server is the master for a map. If invoked without argu-
ments, it prints the YP server for the local machine. If hostname is
specified, that machine is queried to find out which YP server it is using.

Refer to ypfiles(4) and ypserv(1M) for an overview of the Yellow Pages.

OPTIONS
—d domain  Use domain instead of the default domain.

-V1 Which server is serving v.l YP protocol-speaking client
processes?
-V2 Which server is serving v.2 YP protocol client processes?

If neither version is specified, ypwhich attempts to locate the
server that supplies the (current) v.2 services. If there is no
v.2 server currently bound, ypwhich then attempts to locate
the server supplying the v.1 services. Since YP servers and
YP clients are both backward compatible, the user need sel-
dom be concerned about which version is currently in use.

—m mname Find the master YP server for a map. No hostname can be
specified with —m. mname can be a mapname, or a nickname
for a map.

~t Inhibit nickname translation. This option is useful if there is
a mapname identical to a nickname, which is not true of any
SGI-supplied map.

—X Display the map nickname table. This lists the nicknames
(mnames) the command knows of, and indicates the map-
name associated with each nickname.

SEE ALSO
rpcinfo(1M), ypserv(1M), ypset(1M), ypfiles(4)

April 1990 -1- Version 3.0



AUTOMOUNT(1M) Silicon Graphics AUTOMOUNT(1M)

NAME

automount — automatically mount NFS filesystems

SYNOPSIS

/usr/etc/automount [ —mnTv ] [ -D name=value 1 [ —f master-file ]
[ =M mount-directory ] [ —tl duration ] [ —tm interval ]
[ —tw interval 1 [ directory mapname [ —mount-options 11 ...

DESCRIPTION

automount is a daemon that automatically and transparently mounts an NFS
filesystem as needed. It monitors attempts to access directories that are
associated with an automount ‘‘map.”’ You can assign a map to a directory
using an entry in a direct automount map, or by specifying an indirect map
on the command line.

The automount daecmon is started during system initialization from the
letclinit.d/network script if the configuration flags ‘‘nfs’” and ‘‘automount’’
are set (see chkconfig(1M) and network(1M)). Site-dependent options and
arguments to automount belong in the file /etc/configlautomount.options.

automount appears to be an NFS server to the kernel. automount uses the
map contained in the mapname argument to determine a server, exported
filesystem, and appropriate mount options for a given filesystem. It then
mounts the filesystem in a temporary location, and creates a symbolic link
to the temporary location. If the filesystem is not accessed within an
appropriate interval (five minutes by default), the daemon unmounts the
filesystem and removes the symbolic link.

By default, automount mounts everything under the directory /tmp_mnt.
For instance, if a user wants to mount a remote directory src under /usr/src,
the actual mount point will be /tmp_mnt/usrisrc, and /usr/src will be a sym-
bolic link to that location. As with any other kind of mount, a mount
affected through the automounter on a non-empty mount point will hide the
original contents of the mount point for as long as the mount is in effect.

The name-to-location binding is dynamic, making updates to a Yellow
Pages (YP) map transparent to the user. This obviates the need to ‘‘pre-
mount’’ shared file systems for applications that have ‘‘hard-coded’’ refer-
ences to files. Nor is there a need to maintain records of which hosts must
be mounted for what applications.

If the directory argument does not exist, automount creates it, and it is
removed automatically when automount exits.

If the directory argument is a pathname, the map argument must be an
indirect map. In an indirect map, the key for each entry is a simple name (as
opposed to a full pathname) that represents a symbolic link within directory
to an NFS mount point.

April 1990 -1- ' Version 3.0

(



AUTOMOUNT(1M) Silicon Graphics AUTOMOUNT(1M)

If the directory argument is ‘/-’, the map that follows must be a direct map.
A direct map is not associated with a single directory. Instead, the key for
each entry is a full pathname that will itself appear to be a symbolic link to
an NFS mount point.

A map can be a file or a YP map; if a file, the map argument must be a full
pathname.

The —mount-options argument, when supplied, consists of the leading dash
and a comma-separated list of mount(1M) options. If these options are sup-
plied, they become the default mount options for all entries in the map.
Mount options provided within a map entry override these defaults.

OPTIONS
—D var=value
Assign value to the indicated automount (environment) variable.
—f master-file
Read a local file for initialization, before reading the auto.master
YP map. The information in master-file will take precedence.
—m Suppress initialization of directory—mapname pairs listed in the

auto.master YP database.

—M mount-directory
Mount temporary filesystems in the named directory, instead of
/tmp_mnt.

-n Disable dynamic mounts. With this option, references through the
automount daemon only succeed when the target filesystem has
been previously mounted.

~T Trace. Expand each NFS call and display it on the standard output.

—tl duration
Specify a duration, in seconds, that a looked up name remains
cached when not in use. The default is 5 minutes.

—tm interval
Specify an interval, in seconds, between attempts to mount a
filesystem. The default is 30 seconds.

—tw interval
Specify an interval, in seconds, between attempts to dismount
filesystems that have exceeded their cached times. The default is 1
minute.

-v Verbose. Log status and/or warning messages to the console.

April 1990 -2- Version 3.0



AUTOMOUNT(1M) Silicon Graphics AUTOMOUNT(1M)

ENVIRONMENT

USAGE

Environment variables can be used within an automount map. For instance,
if SHOME appeared within a map, automount would expand it to its current
value for the HOME variable. Environment variables are expanded only
for the automounter’s environment — not for the environment of a user
using the automounter’s services.

Map Entry Format

A simple map entry (mapping) takes the form:
key [ -mount-options ] location ...

where key is the full pathname of the directory to mount when used in a
direct map, or simple name in an indirect map. mount-options is a comma-
separated list of mount options, and location specifies a remote filesystem
from which the directory may be mounted. In the simple case, location
takes the form:

hostname:pathname

Replicated Filesystems

Multiple location fields can be specified for replicated read-only filesys-
tems, in which case automount sends multiple mount requests; automount
mounts the filesystem from the first host that replies to the mount request.
This request is first made to the local net or subnet. If there is no response,
any connected server may respond. Since automount does not monitor the
status of the server while the filesystem is mounted, it will not use another
location in the list if the currently mounted server crashes. This support for
replicated filesystems is available only at mount time. Once unmounted,
another location may be used for subsequent mounts of the filesystem.

If each location in the list shares the same pathname then a single location
may be used with a comma-separated list of hostnames.

hostnamel,hostname2:pathname

Sharing Mounts

If location is specified in the form:
hostname:pathname:subdir

hostname is the name of the server from which to mount the filesystem,
pathname is the pathname of the directory to mount, and subdir, when sup-
plied, is the name of a subdirectory to which the symbolic link is made.
This can be used to prevent duplicate mounts when multiple directories in
the same remote filesystem may be accessed. With a map for /home such
as:

April 1990 -3- Version 3.0




AUTOMOUNT(1M) Silicon Graphics AUTOMOUNT(1M)

bart  homes:/home/simpsons:bart
homer homes:/home/simpsons:homer

and a user attempting to access a file in /home/bart, automount mounts
homes:/homelsimpsons, but creates a symbolic link called /home/bart to the
bart subdirectory in the temporarily-mounted filesystem. If a user immedi-
ately tries to access a file in /home/homer , automount needs only to create a
symbolic link that points to the homer subdirectory; /homelsimpsons is
already mounted.

With the following map:

bart  homes:/home/simpsons/bart
homer homes:/home/simpsons/homer

automount would have to mount the filesystem twice.

Comments and Quoting
A mapping can be continued across input lines by escaping the NEWLINE
with a backslash. Comments begin with a # and end at the subsequent
NEWLINE.

Characters that have special significance to the automount map parser may
be protected either with double quotes (") or by escaping with a backslash
(V). Pathnames with embedded whitespace, colons (:) or dollar ($) should be
protected.

Directory Pattern Matching
The ‘&’ character is expanded to the value of the key field for the entry in
which it occurs. In this case:

bart  homes:/home/simpsons:&

the & expands to bart. The ‘*’ character, when supplied as the key field, is
recognized as the catch-all entry. Such an entry will be used if any previous
entry has not successfully matched the key being searched for. For instance,
if the following entry appeared in the indirect map for /home:

*  &:/home/&

this would allow automatic mounts in /home of any remote filesystem
whose location could be specified as:

hostname:/home/hostname

Multiple Mounts
A multiple mount entry takes the form:

key [ /[mountpoint [ -mount-options ] location ... ] ...

April 1990 -4- Version 3.0



AUTOMOUNT(1M) Silicon Graphics AUTOMOUNT(1M)

The initial / within the /[mountpoint] is required; the optional mountpoint is
taken as a pathname relative to the destination of the symbolic link for key.
If mountpoint is omitted in the first occurrence, a mount point of / is

implied.
Given the direct map entry:
[tools \
/ -ro dill:/tools mint:/tools \
/1.0 —ro mint:/tools/1.0 dill:/tools/1.0 \
/1.0/man —ro dill:/tools/1.0/man mint:/tools/1.0/man

automount would automatically mount /tools, /tools/1.0 and /tools/1.0/man,
as needed, from either dill or mint, whichever host responded first. If the
mounts are hierarchically related, mounts closer to the root must appear
before submounts. All the mounts of a multiple mount entry will occur
together and will be unmounted together. This is important if the filesys-
tems reference each other with relative symbolic links. Multiple mount
entries can be used both in direct maps and in indirect maps.

Included Maps
The contents of another map can be included within a map with an entry of
the form:

+mapname

mapname can either be a filename, or the name of a YP map, or one of the
special maps described below. If the key being searched for is not located in
an included map, the search continues with the next entry.

Special Maps
There are two special maps currently available: —hosts, and —null. The
—hosts map uses the YP hosts.byname map to locate a remote host when the
hostname is specified. This map specifies mounts of all exported filesystems
from any host. For instance, if the following automount command is already

~ in effect:

automount /net —hosts

then a reference to /net/lambadalusr would initiate an automatic mount of
all filesystems from lambada that automount can mount; references to a
directory under /net/lambada will refer to the corresponding directory rela-
tive to lambada’s root.

The —null map, when indicated on the command line, cancels any subse-
quent map for the directory indicated. It can be used to cancel a map given
in auto.master or for a mount point specified as an entry in a direct map.

April 1990 -5- Version 3.0



AUTOMOUNT(1M) Silicon Graphics AUTOMOUNT(1M)

Configuration and the auto.master Map

FILES

automount normally consults the auto.master YP configuration map for a
list of initial automount maps, and sets up automatic mounts for them in
addition to those given on the command line. If there are duplications, the
command-line arguments take precedence over a local —f master map and
they both take precedence over a YP auto.master map. This configuration
database contains arguments to the automount command, rather than map-
pings; unless —f is in effect, automount does not look for an auto.master file
on the local host.

Maps given on the command line, or those given in a local auto.master file
specified with —f override those in the YP auto.master map. For instance,
given the command:

automount —f /etc/auto.master /home —null /— /etc/auto.direct
and a file named /etc/auto.master that contains:
/home auto.home

automount would ignore the /home entry in /etc/auto.master.

/tmp_mnt
directory under which filesystems are dynamically mounted

SEE ALSO

NOTE

mount(1M), network(1M)

The —hosts map must mount all the exported filesystems from a server. If
frequent access to just a single filesystem is required it is more efficient to
access the filesystem with a map entry that is tailored to mount just the
filesystem of interest.

When it receives signal number 1, SIGHUP, automount rereads the
letc/mtab file to update its internal record of currently-mounted filesystems.
If a filesystem mounted with automount is unmounted with the umount (1M)
command, automount should be forced to reread the file.

An Is(1) listing of the entries in the directory for an indirect map shows
only the symbolic links for currently mounted filesystems. This restriction is
intended to avoid unnecessary mounts as a side effect of programs that read
the directory and stat(2) each of the names.

Mount points for a single automounter must not be hierarchically related.
automount will not allow an automount mount point to be created within an
automounted filesystem.

April 1990 -6- Version 3.0



AUTOMOUNT(1M) Silicon Graphics AUTOMOUNT(1M)

BUGS

automount must not be terminated with the SIGKILL signal. Without an
opportunity to unmount itself, the automount mount points will appear to
the kernel to belong to a non-responding NFS server. The recommended
way to terminate automount services is to send a SIGTERM signal to the
daemon:

/etc/killall ~TERM automount

This allows the automounter to catch the signal and unmount not only its
daemon but also any mounts in /tmp_mnt. Mounts in /tmp_mnt that are
busy will not be unmounted.

Since each direct map entry results in a separate mount for the mount dae-
mon such maps should be kept short. Entries added to a direct map will
have no effect until the automounter is restarted.

Entries in both direct and indirect maps can be modified at any time. The
new information will be used when automount next uses the map entry to
do a mount. automount does not cache map entries.

The bg mount option is not recognized by the automounter.

Since automount is single-threaded, any request that is delayed by a slow or
non-responding NFS server will delay all subsequent automatic mount
requests until it completes.

Programs that read /etc/mtab and then touch files that reside under
automatic mount points will introduce further entries to the file.

April 1990 -7- Version 3.0



BOOTPARAMD(1M) Silicon Graphics BOOTPARAMD(1M)

NAME

bootparamd — boot parameter server

SYNOPSIS

/usr/etc/rpe.bootparamd [—d] [—i]

DESCRIPTION

bootparamd is a server process that provides information to diskless clients
necessary for booting. It consults the bootparams database. If the client is
not found there, or if the Yellow Pages service is not running, then the
/etc/bootparams file is consulted.

bootparamd can be invoked either by inetd(1M) or by the user.

OPTIONS
—d

—i

NOTES

Display the debugging information.

Ignore inter-domain ‘‘whoami’” requests. If instances of
ypserv(1M) on directly connected networks are invoked with the -i
option, and if hosts in the local Yellow Pages domain have primary
hostnames formed by concatenating a name containing no periods,
a period, and the YP domain name, use —i with bootparamd.

In the absence of —i, instances of bootparamd in different domains may
receive a ‘‘whoami’’ broadcast, consult YP to find the requester’s hostname
by its address, receive the answer from a different domain (owing to ypserv
-i), and reply with the wrong domain name.

FILES

/etc/bootparams

SEE ALSO

bootparams(4), inetd(1M), ypserv(1M)

April 1990

-1- Version 3.0



CL_INIT(1M) Silicon Graphics CL_INIT(1M)

NAME
cl_init — init program for diskless software installation
SYNOPSIS
letc/cl_init
DESCRIPTION
cl_init is the init(1M) program in diskless share tree. When client worksta-
tion installs its software using PROM menu, the workstation will use the

share tree as the root and process 1 will be running cl_init instead of the
regular /etc/init.

cl_init will prompt user for the following questions:
Do you want to use server XXX for software installation (y/n)

where XXX is the default server name used in the tapedevice or bootfile
PROM variables. When doing installation, this default is the name of the
server that contains the share tree. If the client tree will be installed on a
different server, user should answer n here.

Enter server name :

Enter the correct server name for client tree. ¢l init will check the server
name with the /etc/hosts file in the share tree. If the server name is not in
this host file, cl_init will re-prompt the user for appropriate action.

Do you want to install client YYY on server XXX (y/n) ?

where XXX is the server name, and YYY is the hostname that is set in PROM
variable hostname, or translated from netaddr using bootparamd(1M) ser-
vice.

Enter password for autoinst :

If the autoinst login entry at server machine requires password, user should
key in the password at this prompt. Once the password is accepted, the
inst(IM) menu will appear on the screen.

Ready to exit (y/n) ?

cl_init will repeat the installation procedure again if the answer is n. Other-
wise, it will set PROM variables, netaddr and bootfile, and reboot itself.

cl_init always login the server using default login name autoinst. User can
set environment variable dllogin in the PROM to change the login name.
For example, typing

setenv dllogin root

at prom manual mode will cause the diskless workstation login the server
using root. ‘

April 1990 -1- Version 3.0



CL_INIT(1M) Silicon Graphics CL_INIT(1M)

When using default login - autoinst, all messages before the inst(1M) menu
are filtered. If there is a need for examining the login messages, such as for
debugging purposes, it is possible to disable the feature by typing two or
more escape characters before entering the password.

CAVEAT
cl_init is to be used only by diskless client installation package. If c/_init is
invoked on a shell command line, the shell will hang. If the hung shell
receives an INTR signal, the system will be shutdown silently.

SEE ALSO
init(1M), bootparamd(1M), inst(1M)

April 1990 -2- Version 3.0



CLINST(1M) Silicon Graphics CLINST(1M)

NAME

clinst — diskless client software installation tool

SYNOPSIS

clinst —c class [ —d ] share
clinst —c class —h host [ —d ] client
clinst —r

DESCRIPTION

Clinst is the tool for diskless workstation users to install the system
software. When multiple users are using the same version of software, only
one copy is needed. This single software tree is called a share tree which
will be shared among the users. Each user has to create an private tree that
contains mostly symbolic links to the share tree except for those files that
can not be shared. This private tree is called a client tree. A share tree
represents a class. Each use should select the class when installing the
client tree. clinst serves the purposes of both installing and removing the
share or client tree.

For each class, clinst needs a parameter file in the directory fusr/etc/boot to
supply the necessary configuration information. Class.dat (where class
should be replaced by the actual name of the class) should be created in
Jusr/etc/boot by copying the template clinst.dat from the same directory and
modify the parameters according to the desired local configuration. Since
clinst.dat is a shell script that will be invoked from within the clinst, it
should always be executable. A good practice to modify the file is to
change the strings within the double quotes only. clinst.dat contains the fol-
lowing variables:

DISKLESS optional directory prefix for share root, client root, swap
file and dump file
CLROOT directory name for client root

0

SHAREHOST hostname for the share root. If share tree locates on dif-
ferent server then client tree, clinst should be run on
shared server with target share, and on client tree server
with target client.

SHARE directory name for share root

SWAP name of directory where swap file will be created. The
swap directory must be on the same server as client root.

April 1990 -1- Version 3.0




CLINST(1M) Silicon Graphics CLINST(1M)

SWAPSIZE size of swap file. The default is set to 20 MB.

DUMP name of directory where dump file will be created. The
dump directory must be on the same server as client root.

GFXBOARD type of graphics board
CPUBOARD type of cpu board

MACH type of machine

BOOTP_DIR  the home directory of bootp(1M)

YP indicates whether yp is used

clinst is a shell script that will call inst(1M) to perform the software instal-
lation. It also modified the resulting tree so that diskless workstation can be
brought up correctly. clinst creates the swap file, dump file, and client boot
parameters for each installation, it also exports the directories created to the
appropriate host.

There are two modes for clinst to operate, the manual mode and automatic
mode. In manual mode, clinst is used as a regular UNIX command with
command line parameters described in the following sections. In automatic
mode, clinst is invoked from remote login with user name autoinst. Diskless
client will automatically enter this mode when software installation option
is selected at prom level. Server should have an entry for autoinst in its
password file with user id and group id set to O and /usr/etc/boot/rclinst,
which invokes clinst with — flag, designated as shell. System administrator
should determine whether the password is necessary.

OPTIONS
—c class Using class class. The file class.dat should exist in
[usr/etc/boot directory.

—h host Indicates the client tree is created for workstation named
host. The host must be a valid hostname, i.e. it should
have already been assigned an IP address. This parameter
does not have any effect when creating share tree.

—d To remove the diskless tree. The default is to install the
tree.

April 1990 -2- Version 3.0



CLINST(1M) Silicon Graphics CLINST(1M)

share | client  To create a share tree if share is specified, and to create a
client tree when client is specified. When creating client
tree, the host must be supplied.

EXAMPLE
/usr/etc/boot/clinst -c 4D20 share
will create a share tree for class 4D20. The /usrletc/boot/4D20.dat file
should exist before you run the command.
FILES
[usr/etc/boot/clinst
/usr/etc/boot/clinst.dat Template for class.dat
SEE ALSO
inst(1M), rclinst(1M)

April 1990 -3- Version 3.0



EXPORTES(1M) Silicon Graphics EXPORTFS(1M)

NAME

exportfs — export and unexport directories to NFS clients

SYNOPSIS

lusr/etc/exportfs [ —aiuv ] [ —o options ] [ directory ]

DESCRIPTION

Exportfs makes a local directory (or file) available for mounting over the
network by NFS clients. It is normally invoked at boot time by the
letclinit.d/network script, and uses information contained in the /etc/exports
file to export a directory (which must be specified as a full pathname). The
super-user can run exporifs at any time to alter the list or characteristics of
exported directories. Directories that are currently exported are listed in
the file /etc/xtab.

With no optionis or arguments, exportfs prints out the list of directories
currently exported.

OPTIONS

-a All. Export all directories listed in /etc/exports, or if —u is
specified, unexport all of the currently exported directories.

-V Verbose. Print each diréctory as it is exported or unexported.
-u Unexport the indicated directories.

—i Ignore the options in /etc/exports. Normally, exportfs will consult
letclexports for the options associated with the exported directory.

—0 options
Specify a comma-separated list of optional characteristics for the
directory being exported. Options are described in exports(4).

FILES
fetc/exports static export information
fetc/xtab current state of exported directories
/etc/netgroup
SEE ALSO
exports(4), netgroup(4)
WARNINGS

You cannot export a directory that is either a parent- or a sub-directory of
one that is currently exported and within the same filesystem. It would be
illegal, for example, to export both /usr and /usr/local if both directories
resided in the same disk partition.

April 1990 -1- Version 3.0



LOCKD(1M) Silicon Graphics : LOCKD(IM)

NAME
lockd — network lock daemon

SYNOPSIS
usr/etc/rpeockd [ —t timeout ] [ —g graceperiod ]

DESCRIPTION
lockd provides the inherently stateful locking services within the stateless
NFS environment. It allows the locking of records and files between appli-
cations running on different physical machines.

Locks are presently advisory only. The lock style implemented by lockd is
that specified in the SVID (see lockf(3C) and fcntl(2)). There is no interac-
tion between the lockd’s locks and flock (3B) style locks.

lockd is started from inetd(1M). It processes lock requests that are either
sent locally by the kernel or remotely by another lock daemon. In the case
of local lock requests for remote data, lockd forwards the lock requests to
the server site’s lock daemon through the RPC/XDR(3R) package. lockd
then requests the local status monitor daemon, statd(1M), for monitor ser-
vice of the server. The reply to the lock request will not be sent to the kernel
until the status daemon and the server site’s lock daemon have replied.

When a server recovers, it waits for a grace period for all client site lockds
to submit reclaim requests. Client site lockds are notified by the statd of
the server recovery and promptly resubmit previously granted lock requests.
If a lockd fails to secure a previously granted lock at the server site, it sends
SIGUSR1 to the application process.

OPTIONS
—t timeout lockd uses timeout (seconds) as the interval instead of the
default value (15 seconds) to retransmit lock request to the
remote server.

—g graceperiod
lockd uses graceperiod (seconds) as the grace period duration
instead of the default value (45 seconds).
NOTE
The reply to a lock request for remote data is delayed until all daemons
become available.

In the Sun implementation, lockd sends SIGLOST. The IRIX implementa-
tion sends SIGUSRI1.

SEE ALSO
fentl(2), inetd(1M), lockf(3C), signal(2), statd(1M)

April 1990 -1- Version 3.0




MAKEDBM(1M) Silicon Graphics MAKEDBM(1M)

NAME
makedbm — make a Yellow Pages dbm file

SYNOPSIS
/usr/etc/yp/makedbm [ —i yp_input file ] [ —0 yp_output_name ]
[ —d yp_domain_name ] [ —m yp_master_name ]
infile outfile
/usr/etc/yp/makedbm [ —u dbmfilename |

DESCRIPTION

Makedbm takes infile and converts it to a pair of files in dbm(3B) format,
namely outfile.pag and outfile dir. Each line of the input file is converted to
a single dbm record. All characters up to the first tab or space form the key,
and the rest of the line is the data. If a line ends with\ then the data for that
record is continued on to the next line. It is left for the clients of the Yellow
Pages to interpret #; makedbm does not itself treat it as a comment charac-
ter. infile can be —, in which case standard input is read.

Makedbm is meant to be used in generating dbm files for the Yellow Pages,
and it generates a special entry with the key yp_last_modified, which is the
date of infile (or the current time, if infile is —).

OPTIONS
—i Create a special entry with the key yp_input_file.

-0 Create a special entry with the key yp_output_name.
—d Create a special entry with the key yp_domain_name.

-m Create a special entry with the key yp_master_name. If no master
host name is specified, yp_master_name will be set to the local
host name.

-u Undo a dbm file. That is, print out a dbm file one entry per line,
with a single space separating keys from values.

EXAMPLE

It is easy to write shell scripts to convert standard files such as /etc/passwd
to the key value form used by makedbm. For example,

#!/usr/bin/awk -f
BEGIN { FS = ":"; OFS = "\t"; }
{ print $1, $0 }
takes the /etc/passwd file and converts it to a form that can be read by mak-

edbm to make the Yellow Pages file passwd.byname. That is, the key is a
username, and the value is the remaining line in the /etc/passwd file.

April 1990 -1- Version 3.0



MAKEDBM(1M)

SEE ALSO
yppasswd(1M), dbm(3B)

April 1990

Silicon Graphics

MAKEDBM(1M)

Version 3.0




MOUNTD(1M) Silicon Graphics MOUNTD(1M)

NAME
mountd — NFS mount request server

SYNOPSIS
/usr/etc/rpc.mountd [ —n ]

DESCRIPTION
Mountd is an rpc(4) server that answers file system mount requests. It
reads the file /etc/exports, described in exports(4), to determine which file
systems are available to which machines and users. It also provides infor-
mation as to which clients have file systems mounted. This information can
be printed using the showmount(1M) command.

Normally, mountd only accepts requests from clients using a privileged
(i.e., secure) port. The —n option disables this check and allows mountd to
accept requests from any port.

The mountd daemon is normally invoked by inetd(1m).

SEE ALSO
inetd(1M), showmount(1M), exports(4), services(4)

April 1990 -1- Version 3.0



NFSD(1M) Silicon Graphics NFSD(1M)

NAME

nfsd, biod — NFS daemons

SYNOPSIS

fusr/etc/nfsd [ nservers ]
lusr/etc/biod [ nservers |

DESCRIPTION

FILES

nfsd starts the nfs(4) server daemons that handle client filesystem requests.
Nservers is the number of file system request daemons to start. This
number should be based on the load expected on this server. Four seems to
be a good number.

Biod starts nservers asynchronous block I/O daemons. This command is
used on a NFS client to buffer cache handle read-ahead and write-behind.
The magic number for nservers in here is also four.

These daemons are started during system initialization from the
Jetc/init.d/metwork script if the configuration flag ‘‘nfs’’ is set on (see
network(1M)).

When a file that is opened by a client is unlinked (by the server), a file with
a name of the form .nfsXXX (where XXX is a number) is created by the
client. When the open file is closed, the .nfsXXX file is removed. If the
client crashes before the file can be closed, the .nfsXXX file is not removed.

.nfsXXX  client machine pointer to an open-but-unlinked file

SEE ALSO

exportfs(1M), mountd(1M), network(1M), exports(4)

April 1990 -1- Version 3.0

y

(



NFSSTAT(1M) Silicon Graphics NFSSTAT(1M)

NAME
nfsstat — display Network File System statistics

SYNOPSIS
/usr/etc/nfsstat [ —csnrdz ] [ unix ] [ core ]

DESCRIPTION
Nfsstat displays statistical information about the Network File System
(NFS) and Remote Procedure Call (RPC) interfaces to the kernel. It can
also be used to reinitialize this information. If no options are given the
default is

nfsstat —csnr

That is, print everything and reinitialize nothing. The optional arguments
unix and core may be used to indicate another system namelist and kernel
memory image, respectively.

OPTIONS
—C Display client information. Only the client side NFS and RPC
information will be printed. Can be combined with the —n and —r
options to print client NFS or client RPC information only.

-s Display server information. Works like the —¢ option above.

-n Display NFS information. NFS information for both the client and
server side will be printed. Can be combined with the —c¢ and —s
options to print client or server NFS information only.

-r Display RPC information. Works like the —n option above.

-z Zero (reinitialize) statistics. Can be combined with any of the
above options to zero particular sets of statistics after printing
them. The user must have super-user privilege for this option to
work.

FILES
Junix system namelist
/dev/kmem  kernel memory

April 1990 -1- Version 3.0



RARPD(1M) Silicon Graphics RARPD(1M)

NAME

rarpd — DARPA Reverse Address Resolution Protocol daemon

SYNOPSIS

lusr/etc/rarpd [—d] [-1 logfile] [interface...]

DESCRIPTION

Rarpd responds to Reverse Address Resolution Protocol (Reverse ARP,
RARP) requests. It puts itself in the background, and requires root
privileges.

The Reverse ARP protocol is used by machines at boot time to discover
their 32-bit Internet Protocol (IP) address given their 48-bit Ethernet
address. In order for a RARP request to be answered, the requesting
machine’s name-to-IP-address entry must exist in the /etc/hosts file and its
name-to-Ethernet-address entry must exist in the /etc/ethers file. Note that
if the server machine running rarpd is using the Yellow Pages, the server’s
[etc files are ignored and the appropriate Yellow Pages maps are queried.

Normally rarpd serves all configured IP interfaces which support broadcast-
ing. Optional interface arguments restrict service to only those interfaces.
The —d option causes rarpd to run in the foreground and log diagnostics on
its standard error output. The -1 option causes rarpd to record requests in

logfile.

FILES
[fusr/adm/SYSLOG system log
fetc/init.d/network networking start-up script
fetc/config/rarpd configuration switch
fetc/config/rarpd.options configuration options
SEE ALSO

chkconfig(1M), ifconfig(1M), ethers(4), hosts(4).

Finlayson, Ross, Timothy Mann, Jeffrey Mogul, and Marvin Theimer, A
Reverse Address Resolution Protocol, RFC 903, Network Information
Center, SRI International, Menlo Park, CA, June 1984.

April 1990 -1- Version 3.0




RCLINST(1M) Silicon Graphics RCLINST(1M)

NAME
rclinst — diskless client software auto-installation tool

SYNOPSIS
/usr/ete/boot/rclinst

DESCRIPTION
rclinst is the script that should be used for the autoinst entry in the
fetc/passwd file. The autoinst entry in the password file is needed in order
to enable diskless workstation to install the software from the local
machine. The format of the entry should look like:

autoinst::0:0:/usr/etc/boot:/usr/etc/boot/rclinst
will invoke clinst(1M) using the —r option.

SEE ALSO
clinst(1M), cl_init(1M)

April 1990 -1- Version 3.0



REGISTRAR(1M) Silicon Graphics REGISTRAR(1M)

NAME
registrar — IP address update command for yp hosts data base

SYNOPSIS
fusr/etc/yp/registrar host-file "make hosts"

DESCRIPTION
registrar, which runs on yp master only, is a YP hostname data base update
program. A hostname registration request can be sent from either
yp_host(1M) command, or from the PROM IP address auto-registration
function. This requests is initially sent to a rpc daemon process
rpc.ypupdated(1M). registrar is invoked indirectly by rpc.ypupdated(1M)
via an intermediate make file updaters(4).

The host-file parameter should be the host file that is used in YP data base
makefile, /usr/etc/yp/Makefile. Usually, it is fetc/hosts.

registrar knows how to receive the input parameters from
rpc.ypupdated(1M). The input parameters tell registrar whether to allocate
a new IP address, to change the existing hostname entry, or to delete the
entry, along with the necessary information to service the request.

When adding new hostname entry, there is no authentication checking. As
long as the new hostname and the aliases are not yet used, the registration
request will always be executed. When changing or deleting hostname
entry, the yp master root password has to be passed along with the com-
mand.

The new IP address will be selected with the first available address that is in
the same network/subnet specified in the request. System administrator can,
however, mark a specific range in the /etc/hosts for address allocation by a
special comment line. The format of this line should be

# registrar start=xxx end=yyy mask=0xzzzzzzzz

where xxx is the IP address with the smallest local network address in the
range, yyy is the IP address with largest local network address in the range,
and zzzzzzzz is the 8-byte hexadecimal mask value. The xxx and yyy must
fall into the same network, or subnet if netmask is specified.

There can be several lines of comment for the address allocation for the
same network or subnet. The registrar will use the first available address
by searching through the comment lines sequentially. In case all address
ranges described by the comment lines are used, registrar will choose the
lowest available IP address that is in the same network or subnet.

April 1990 -1- Version 3.0




REGISTRAR(1M) Silicon Graphics REGISTRAR(1M)

FILES
fetc/hosts
/usr/etc/yp/updaters

EXAMPLE
Use

#registrar start=192.26.1.10 end=192.26.1.20 mask=0xffffff00

to reserve 192.26.1.10 through 192.26.1.20 for network 192.26.1.

SEE ALSO
yp_host(1M), updaters(4), ypupdated(1M)

April 1990 -2- Version 3.0



REXD(1M) Silicon Graphics REXD(1M)

NAME .
rexd — RPC-based remote execution server

SYNOPSIS
/usr/etc/rpc.rexd

DESCRIPTION

rexd is the rpc(4) server for remote program execution. This daemon is
started by inetd(1M) whenever a remote execution request is made (see the
note below). For non-interactive programs standard file descriptors are
connected directly to TCP connections. Interactive programs involve
pseudo-terminals, similar to the login sessions provided by rlogin(1C).
This daemon may use the NFS to mount file systems specified in the remote
execution request.

rexd should be used on trusted networks only. It is not automatically
enabled in the /usr/etclinetd.conf file. To enable rexd, edit inetd.conf and
remove the comment character preceding the rexd entry and signal inetd to
read the file:

/etc/killall -HUP inetd

DIAGNOSTICS
Diagnostic messages are logged to syslogd(1M), and returned to the reques-
ter.

RESTRICTIONS
The super-user cannot execute commands using rexd client programs such
ason(1C).

FILES
[dev/ttyqn pseudo-terminals used for interactive mode.
fetc/passwd authorized users.

SEE ALSO
on(1C), exports(4), rpc(4), inetd(1M)

BUGS
Access control is not secure.

Does not properly handle window size information sent by Sun worksta-
tions.

April 1990 -1- Version 3.0




RPC.PASSWD(1M) Silicon Graphics RPC.PASSWD(1M)

NAME

rpc.passwd — server for modifying Yellow Pages password file

SYNOPSIS

/usr/etc/rpc.passwd file [ —m argl arg2 ... ]

DESCRIPTION

FILES

rpc.passwd is a server that handles password change requests from
yppasswd(1). It changes a password entry in file, which is assumed to be in
the format of passwd(4). An entry in file will only be changed if the pass-
word presented by yppasswd(1) matches the encrypted password of that
entry.

If the —m option is given, then after file is modified, a make (1) will be per-
formed in /usr/etc/yp. Any arguments following the flag will be passed to
make .

This server should be run on the host serving as the Yellow Pages master.
It is started from the /etc/init.d/network startup script if the ‘‘yp’” and
‘“‘ypmaster’’ configuration flags are set on (see network(1M)). The startup
script invokes the server using /etc/passwd as the Yellow Pages password
file and causes password changes to be propagated immediately. To use a
different YP  passwd file, put the file’'s name in
letc/configirpc.passwd.options and change the PWFILE variable in
lusrletc/yp/Makefile .

[ust/etc/yp/Makefile

SEE ALSO

network(1M), ypmake(1M), yppasswd(1), passwd(4), ypfiles(4)

CAVEAT

This server will eventually be replaced with a more general service for
modifying any map in the Yellow Pages

April 1990 -1- Version 3.0



RSTATD(1M) Silicon Graphics RSTATD(1IM)

NAME
rstatd — kernel statistics server

SYNOPSIS
/usr/etc/rpe.rstatd

DESCRIPTION
Rstatd is an rpc(4) server which returns performance statistics obtained
from the kernel. The rstatd daemon is normally invoked by inetd (1M).

SEE ALSO
inetd(1M)

April 1990 -1- Version 3.0

(



RUSERSD(1M) Silicon Graphics RUSERSD(1M)

NAME
rusersd — network username server

SYNOPSIS
usr/etc/rpc.rusersd

DESCRIPTION
Rusersd is an rpc(4) server that returns a list of users on the network. The
rusersd daemon is normally invoked by inetd(1M).

SEE ALSO
rusers(1C), services(4), inetd(1M)

April 1990 -1- Version 3.0



RWALLD(1M) Silicon Graphics RWALLD(1M)

NAME
rwalld — network rwall server

SYNOPSIS
/usr/etc/rpe.rwalld

DESCRIPTION
Rwalld is a server that handles rwall(1) and shutdown(1l) requests. It is
implemented by calling wall(1) to all the appropriate network machines.
The rwalld daemon is normally invoked by inetd (1M).

SEE ALSO
rwall(1), wall(1), inetd(1M)

April 1990 -1- Version 3.0

(



SHOWMOUNT(1M) Silicon Graphics SHOWMOUNT(1M)

NAME
showmount — show all remote mounts

SYNOPSIS
letc/showmount [—-a] [-d] [—e] [—x] [host]

DESCRIPTION
Showmount lists all the clients that have remotely mounted a filesystem
from host. This information is maintained by the mountd(1M) server on
host, and is saved across crashes in the file /etc/rmtab. The default value
for host is the value returned by hostname(1).

OPTIONS
—a Print all remote mounts in the format hostname:directory where

hostname is the name of the client, and directory is the root of the
file system that has been mounted.

—d List directories that have been remotely mounted by clients.

—e Print the list of exported file systems. For each file system, list the
clients given mount access.

-X Print the list of exported file systems and all of their export
options, in the format described by exports(4). This option option
overrides the —e option.

SEE ALSO
mountd(1M), exportfs(1M), exports(4)
BUGS

If a client crashes, its entry will not be removed from /etc/rmtab until it
reboots and executes umount —a.

April 1990 . -1- Version 3.0



SPRAY(1M) Silicon Graphics - SPRAY(1M)

NAME
spray — spray packets

SYNOPSIS
lusr/etc/spray host [ —¢ count ] [ —d delay 1 [ —i delay 1[ -1 length ]

DESCRIPTION
spray sends a one-way stream of packets to host using RPC, and then
reports how many were received by host and what the transfer rate was.
The host name can be either a name or an Internet address.

OPTIONS
—c count  Specifies how many packets to send. The default value of
count is the numbers of packets required to make the total
stream size 100000 bytes.

—d delay  Specifies how may microseconds to pause between sending
: each packet. The default is O.

—i Use ICMP echo packets rather than RPC. Since ICMP
automatically echos, this creates a two way stream.

—llength  The length parameter is the numbers of bytes in the ethemnet
packet that holds the RPC call message. Since the data is
encoded using XDR, and XDR only deals with 32 bit quanti-
ties, not all values of length are possible, and spray rounds up
to, the nearest possible value. When length is greater than
1514, then the RPC call can no longer be encapsulated in one
Ethernet packet, so the length field no longer has a simple
correspondence to Ethernet packet size. The default value of
length is 86 bytes (the size of the RPC and UDP headers)

SEE ALSO
icmp(7P), ping(1M), sprayd(1M)

April 1990 ) -1- Version 3.0



SPRAYD(1M) Silicon Graphics SPRAYD(1M)

NAME
sprayd — spray server
SYNOPSIS
[usr/etc/rpe.sprayd

DESCRIPTION
rpc.sprayd is a server which records the packets sent by spray(1M). The
rpc.sprayd daemon is normally invoked by inetd(1M).

SEE ALSO
inetd(1M), spray(1M).

April 1990 -1- Version 3.0



STATD(1M) Silicon Graphics STATD(1M)

NAME

statd — network status monitor daemon

SYNOPSIS

{usr/etc/rpe.statd

DESCRIPTION

statd is an intermediate version of the status monitor. It implements a sim-
ple protocol which allows applications to monitor the status of other
machines. lockd (1M) uses statd to detect both client and server failures.

statd is started during system initialization if the chkconfig(1IM) ‘‘lockd”’
flag is set on.

Applications use RPC to register machines they want monitored by statd.
The status monitor maintains a database of machines to track and the
corresponding applications to notify of crashes. It also maintains a database
of machines to notify upon recovery of its own host machine and a counter
of the number of times it has "recovered”.

FILES
[ust/etc/statd.d/sm machines to monitor
[usr/etc/statd.d/sm.bak machines to notify upon recovery
[usr/etc/statd.d/state recovery counter (a.k.a. version number)
SEE ALSO
network(1M), lockd(1M), statmon(4)
BUGS

The crash of a site is only detected upon its recovery.

April 1990 -1- Version 3.0

(:



UPDBOOTPARAM(1M) Silicon Graphics UPDBOOTPARAM(1M)

NAME
updbootparam — YP bootparams database update program

SYNOPSIS
fust/etc/yp/updbootparam bootparams-file "make bootparams”

DESCRIPTION
Updbootparam, which runs on yp master only, is the YP bootparams(4)
update program that will modify the data base upon request. An update
request is sent from yp_bootparam(1M) command using rpc call. Updboot-
param is invoked indirectly by rpc daemon rpc.ypupdated(1M) via an inter-
mediate makefile updaters(4).
Updbootparam is designed to be used in the make file updaters(4). The
parameter bootparams-file should be the bootparams file used in YP data
base makefile, /usr/etc/yp/Makefile. Usually, it is /etc/bootparams. The
update request tells updbootparam whether to add or delete an bootparams
entry.

FILES
fusr/etc/ypfupdaters

SEE ALSO

bootparams(4), updaters(4), ypupdated(1M)

April 1990 -1- Version 3.0



YP_BOOTPARAM(1M) Silicon Graphics YP_BOOTPARAM(1IM)

NAME
yp_bootparam — update yp bootparams data base

SYNOPSIS
yp_bootparam —h host —a [ -b ] [ -k key_file ] —f file
yp_bootparam —h host —a [ -b ] [ -k key_file ] params
yp_bootparam —h host —d [ -b ] [ —k key_file ]

DESCRIPTION
yp_bootparam is the user interface tool to update yp bootparams(4) data
base directly on client workstation without running on ypmaster.
yp_bootparam uses the ypupdated(1IM) service on ypmaster to update the
bootparams data base.

User can either add an entry to data base, or delete an entry. As long as the
hostname is registered in the yp hosts data base and the bootparam entry
does not exist, user can always add an entry to the bootparams data base. In
this process, a security key can be requested on return. When deleting an
entry, the same key (if there is one) must be submitted in the same com-
mand line. Otherwise, the request will be rejected. The update daemon on
ypmaster stores the keys in /usr/etc/boot/keystore, while yp bootparam
saves the key in the file specified by the input parameter.

OPTIONS

—h host Use host as the key in bootparams data base. The host
will be checked against yp hosts data base unless —b is
specified. If host is an alias, the real key found in hosts
data base will be used instead.

-a To add an entry

-d To remove an entry.

-b use host as key without checking yp hosts data base.

—k key _file When adding an entry, the key file is used to save the
returned key. When deleting an entry, it is used to pass
the original key.

—f file The file will contain the data part in the bootparam entry.
It should have the following format:

April 1990 -1- Version 3.0




YP_BOOTPARAM(1M) Silicon Graphics YP_BOOTPARAM(1M)

root=root_server:root_path

share=share_server:share path

swap=root_server:swap_path

dump=root_server:dump_path
The dump value is optional.

params If —f is not used, the boot parameters should be passed at
command level.

EXAMPLE
yp_bootparam —a —h bonnie —k /mykey
root=clyde:/bonnie share=clyde:/share
swap=clyde:/swap/bonnie

will create a bootparam entry in ypmaster. The security key returned will
be left in /mykey.
FILES
fust/etc/yp/yp_bootparam
[usr/etc/boot/keystore
fusr/include/rpcsvc/ypeint.h Error code listing
SEE ALSO
bootparams(4), updbootparam(1M), ypupdated(1M)

April 1990 -2- Version 3.0



YP_HOST(1M) Silicon Graphics YP_HOST(1M)

NAME
yp_host — update yp hosts data base
SYNOPSIS
yp_host —r —h host [ —n net [ -m mask 1] [ —a aliases ]
yp_host —¢ —h host —w newname [ —a aliases ]
yp_host —d —h host
DESCRIPTION

yp_host is the user command to update yp hosts data base directly on client
workstation without running on ypmaster. yp_host uses the ypupdated(1M)
service on ypmaster to update the hosts data base.

Users can add an entry to data base, change existing data base or delete an
entry. As long as the host name is not used in the current data base, there
are no restrictions for creating an entry. However, to modify or delete an
entry, users will be prompted for the root password of ypmaster.

yp_host is provided to avoid using editor on /etc/hosts directly when modi-
fying the hosts file. The single threaded nature of ypupdated(1M) guaran-
tees the data base is consistent under multiple updating. In network with
Silicon Graphics diskless workstations, this feature is especially important
because the automatic registration request will be received by ypmaster at
random time due to installation of a new diskless workstation.

OPTIONS

-r To register the host name in yp hosts data base.

—h host Use host as the key in updating hosts data base.

—n net To specify the network that host will be in. This parame-
ter should follow the "." notation of Internet address. If
-m is used, the net should be a four bytes Internet
address. If —m is not used, the net should be an Internet
network number.

—m mask To specify the network mask that will be used. This mask

should have the form of Oxffffffff, where "f' must be a
valid hexadecimal character. This parameter "and"ed
with net represents the target Internet subnet number.

April 1990 -1- Version 3.0




YP_HOST(1M) Silicon Graphics YP_HOST(1M)

—a aliases To specify the aliases of the new host. Multiple aliases
should be quoted (") in command line.

—C To change the existing entry.

—W newname To modify the entry to use newname as the new key for
hosts data base.

-d To delete an entry.

EXAMPLE
yp_host —a —h bonnie —n 192.26.88 —a "bonnie.1 bonnie.2" will create
an entry in ypmaster. The network that new IP address will be using is
"192.26.88".

yp_host —a —h bonnie —n 192.26.88.200 —m Oxffffffc0 —a "bonnie.1 bon-
nie.2". The subnet that new IP address will be in is "192.26.88.192".

FILES

[etc/hosts

fusr/etc/yp/yp_host

fusr/include/rpcsvc/ypelint.h Error code listing
SEE ALSO

registrar(1M), ypupdated(1M)

April 1990 -2- Version 3.0



YPINIT(1M) Silicon Graphics YPINIT(1M)

NAME

ypinit — build and install Yellow Pages database

SYNOPSIS

[usr/etc/yp/ypinit —m
/usr/etc/yp/ypinit —s master_name

DESCRIPTION

ypinit sets up a Yellow Pages database on a YP server. It can be used to set
up a master or a slave server. You must be the superuser to run it. It asks a
few, self-explanatory questions, and reports success or failure to the termi-
nal.

It sets up a master server using the simple model in which that server is
master to all maps in the data base. This is the way to bootstrap the YP sys-
tem; later if you want you can change the association of maps to masters.
All databases are built from scratch, either from information available to the
program at runtime, or from the ASCII data base files in /etc. These files
are listed below under FILES . All such files should be in their "traditional”
form, rather than the abbreviated form used on client machines.

A YP database on a slave server is set up by copying an existing database
from a running server. The master_name argument should be the hostname
of YP server (either the master server for all the maps or a server on which
the data base is up-to-date and stable).

Refer to ypfiles(4) and ypserv(1m) for an overview of the Yellow Pages.

OPTIONS

FILES

—m Indicates that the local host is to be the YP master.
—s Set up a slave database.

fetc/passwd
fetc/group
fetc/hosts
fetc/networks
[fetc/services
/etc/protocols
fetc/netgroup
fetc/ethers

SEE ALSO

makedbm(1M), ypfiles(4), yppush(1M), ypxfr(1M), ypmake(1M),
ypserv(1M)

April 1990 -1- Version 3.0



YPMAKE(1M) Silicon Graphics YPMAKE(1M)

NAME
ypmake — rebuild Yellow Pages database

SYNOPSIS
cd /usr/etc/yp; ypmake [ map ]

DESCRIPTION
On YP master machines, the file called Makefile in /usr/etc/yp is used by
ypmake to build the Yellow Pages databases. With no arguments, ypmake
creates dbm(3B) databases for any YP maps that are out-of-date, and then
executes yppush(1M) to notify slave servers that there has been a change.

If invoked with map, ypmake will update that map only. Typing ypmake
passwd will create and yppush the password database (assuming it is out of
date). Likewise, ypmake hosts and ypmake networks will create databases
from the host and network files, /etc/hosts and /etc/networks and yppush the
databases to the slave servers.

cron(1M) executes ypmake at regular intervals in order to maintain con-
sistency between YP servers’ databases. Once a day, ypmake rebuilds and
transfers copies of all of the YP databases to the slave servers, and moves
the log file /usrletc/yplypmake.log to /usrietc/yplypmake.log.old to keep it
from growing too large.

ypmake reads the file /etc/config/lypmaster.options so that users may
configure the following variables:

ALIASES .
full pathname of the aliases file used to build the aliases database.
(Default location is /usr/lib/aliases.)

DIR the directory of the source files. (Default is /etc.)
DOM used to construct a domain other than the master’s default domain;

NOPUSH
when non-null, inhibits doing a yppush of the new database files.
(Default is the null string.)

PWFILE
full pathname of the password file used to build the passwd data-
base. (Default location is /etc/passwd.)

YPDIR directory containing YP programs (e.g., makedbm, yppush, etc.).
(Default is /usr/etc/yp.)

For instance, to change the location of the password file used by ypmake to
letc/passwd.yp, include:

April 1990 -1- Version 3.0



YPMAKE(IM) Silicon Graphics YPMAKE(1M)

PWFILE=/etc/passwd.yp
in /etc/config/ypmaster.options.

Refer to ypfiles(4) and ypserv(1M) for an overview of the Yellow Pages.

FILES
[usr/etc/yp/ypmake.log

SEE ALSO
cron(1M), make(1), makedbm(1M), ypserv(1M)

April 1990 -2- Version 3.0



YPPOLL(1M) Silicon Graphics YPPOLL(1M)

NAME
yppoll — what version of a YP map is at a YP server host

SYNOPSIS
{usr/etc/yp/yppoll [ —h host ] [ —d domain 1 mapname

DESCRIPTION
Yppoll asks a ypserv process what the order number is, and which host is
the master YP server for the named map. If the server is a v.1 YP protocol
server, yppoll uses the older protocol to communciate with it. In this case,
it also uses the older diagnostic messages in case of failure.

OPTIONS
—h host Ask the ypserv process at host about the map parameters.
If host isn’t specified, the YP server for the local host is
used. That is, the default host is the one returned by
ypwhich(1M).
—d domain Use domain instead of the default domain.

SEE ALSO
ypserv(1M), ypfiles(4)

April 1990 -1- - Version 3.0



YPPUSH(1M) Silicon Graphics YPPUSH(1M)

NAME
yppush — force propagation of a changed YP map

SYNOPSIS
lusr/etc/yp/yppush [ —d domain ] [ —v 1 mapname

DESCRIPTION
Yppush copies a new version of a Yellow Pages (YP) map from the master
YP server to the slave YP servers. It is normally run only on the master YP
server by the Makefile in /usr/etc/yp after the master databases are changed.
It first constructs a list of YP server hosts by reading the YP map ypservers
within the domain. Keys within the map ypservers are the ASCII names of
the machines on which the YP servers run.

A “‘transfer map’’ request is sent to the YP server at each host, along with
the information needed by the transfer agent (the program which actually
moves the map) to call back the yppush . When the attempt has completed
(successfully or not), and the transfer agent has sent yppush a status mes-
sage, the results may be printed to stdout. Messages are also printed when a
transfer is not possible; for instance when the request message is undeliver-
able, or when the timeout period on responses has expired.

Refer to ypfiles(4) and ypserv(1M) for an overview of the Yellow Pages.

OPTIONS
—d Specify a domain.

-V Verbose. This causes messages to be printed when each server is
called, and for each response. If this flag is omitted, only error
messages are printed.

FILES
[usr/etc/yp/domainname/ypservers.{dir, pag}

SEE ALSO
ypserv(1M) ypxfr(1M), ypfiles(4)

BUGS

In the current implementation (version 2 YP protocol), the transfer agent is
ypxfr, which is started by the ypserv program. If yppush detects that it is
speaking to a version 1 YP protocol server, it uses the older protocol, send-
ing a version 1 YPPROC_GET request and issues a message to that effect.
Unfortunately, there is no way of knowing if or when the map transfer is
performed for version 1 servers. yppush prints a message saying that an
"old-style" message has been sent. The system administrator should later
check to see that the transfer has actually taken place.

April 1990 -1- Version 3.0



YPSERV(IM) Silicon Graphics YPSERV(1M)

NAME
ypserv, ypbind — Yellow Pages server and binder processes

SYNOPSIS
lusr/etc/ypserv [ —iv ] [ —L logflags ]
[usr/etc/ypbind

DESCRIPTION

The Yellow Pages (YP) provides a simple network lookup service consist-
ing of databases and processes. The databases are files in a directory tree
rooted at /usr/etc/yp. These files are described in ypfiles(4). The processes
are /usr/etc/ypserv, the YP database lookup server, and /usr/etc/ypbind,
the YP binder. The programmatic interface to YP is described in
ypcint(3N). Administrative tools are described in yppush(1M) ypxfr(1M)
yppoll(1M) ypwhich(1), and ypset(1M). Tools to see the contents of YP
maps are described in ypcat(1), and ypmatch(1). Database generation and
maintenance tools are described in ypinit(IM), ypmake(1M), and
makedbm(1M).

Both ypbind and ypserv are daemon processes typically activated at system
startup time from /etc/init.d/network if the configuration flags ‘‘yp’’ and
“‘ypserv’’ are set on (see network(1M)). The yp configuration state must be
on for ypserv to be on.

ypserv runs only on YP server machines with a complete YP database.
ypbind runs on all machines using YP services, both YP servers and
clients.

The ypserv daemon’s primary function is to look up information in its local
database of YP maps. The operations performed by ypserv are defined for
the implementor by the YP protocol specification, and for the programmer
by the header file <rpcsvc/yp_prot.h>. Communication to and from ypserv
is by means of RPC calls. Lookup functions are described in ypclnt(3N),
and are supplied as C-callable funtions in /usr/lib/libsun.a. There are four
lookup functions, all of which are performed on a specified map within
some YP domain: Match, Get_first, Get_next, and Get_all. The Match
operation takes a key, and returns the associated value. The Ger first
operation returns the first key-value pair from the map, and Get_next can be
used to enumerate the remainder. Get_all ships the entire map to the reques-
ter as the response to a single RPC request.

Two other functions supply information about the map, rather than map
entries: Get_order_number, and Get_master_name. In fact, both order
number and master name exist in the map as key value pairs, but the server
will not return either through the normal lookup functions. (If you examine
the map with makedbm (1M), however, they will be visible.) Other func-
tions are used within the YP subsystem itself, and are not of general interest

April 1990 -1- Version 3.0



YPSERV(IM) Silicon Graphics YPSERV(IM)

to YP clients. They include Do_you_serve_this domain?, Transfer_map,
and Reinitialize_internal_state.

The function of ypbind is to remember information that lets client
processes on a single node communicate with some ypserv process.

ypbind must run on every machine which has YP client processes; ypsery
may or may not be running on the same node, but must be running some-
where on the network.

The information ypbind remembers is called a binding — the association of
a domain name with the internet address of the YP server, and the port on
that host at which the ypserv process is listening for service requests. The
process of binding is driven by client requests. As a request for an unbound
domain comes in, the ypbind process broadcasts on the net trying to find a
ypserv process that serves maps within that domain. Since the binding is
established by broadcasting, there must be at least one ypserv process on
every net. Once a domain is bound by a particular ypbind, that same bind-
ing is given to every client process on the node. The ypbind process on the
local node or a remote node may be queried for the binding of a particular
domain by using the ypwhich(1) command.

Bindings are verified before they are given out to a client process. If
ypbind is unable to speak to the ypserv process it’s bound to, it marks the
domain as unbound, tells the client process that the domain is unbound, and
tries to bind the domain once again. Requests received for an unbound
domain will fail immediately. In general, a bound domain is marked as
unbound when the node running ypserv crashes or gets overloaded. In such
a case, ypbind will to bind any YP server (typically one that is less-heavily
loaded) available on the net.

ypbind also accepts requests to set its binding for a particular domain. The
request is usually generated by the YP subsystem itself. ypset(1M) is a
command to access the Set_domain facility. It is for unsnarling messes, not
for casual use.

YPSERYV OPTIONS
—f forklimit
limits the number of processes ypserv can fork at any given time.
(The default is 20.)
—i allows ypserv to resolve non-local host name and address lookups
with the 4.3BSD Internet domain name server, named(1M).
—L logflags

specifies the type(s) of information to be logged in
lusrletc/yplypserv.log (see below), in addition to error messages.
logflags is a comma-separated list of one or more of: dispatch,

April 1990 -2- Version 3.0



YPSERV(1M) Silicon Graphics YPSERV(1IM)

interdomain and querycache.
-V ‘““Verbose™ — display messages to stderr instead of the logfile.

FILES
If the file /usr/etc/yp/ypserv.log exists when ypserv starts up, log informa-
tion will be written to this file.

SEE ALSO
named(1M), network(1M), ypcat(1), ypmatch(1), yppush(1M), ypwhich(1),
ypxfr(1M), ypset(1M), ypcInt(3N), ypfiles(4), YP protocol specification

April 1990 -3- Version 3.0



YPSET(1M) Silicon Graphics YPSET(1M)

NAME .

ypset — point ypbind at a particular server
SYNOPSIS

lusr/etc/yp/ypset [ —V11-V2 ] [ —h host ] [ —d domain ] server
DESCRIPTION

Ypset tells ypbind to get YP services for the specified domain from the
ypserv process running on server. If server is down, or isn’t running
ypserv, this is not discovered until a YP client process tries to get a binding
for the domain. At this point, the binding set by ypset will be tested by
ypbind. If the binding is invalid, ypbind will attempt to rebind for the same
domain.

Ypset is useful for binding a client node which is not on a broadcast net, or
is on a broadcast net which isn’t running a YP server host. It also is useful
for debugging YP client applications, for instance where a YP map only
exists at a single YP server host.

In cases where several hosts on the local net are supplying YP services, it is
possible for ypbind to rebind to another host even while you attempt to find
out if the ypset operation succeeded. That is, you can type "ypset hostl",
and then "ypwhich", which replies: "host2", which can be confusing. This
is a function of the YP subsystem’s attempt to load-balance among the
available YP servers, and occurs when host! does not respond to ypbind
because it is not running ypserv (or is overloaded), and host2, running
ypserv, gets the binding.

Server indicates the YP server to bind to, and can be specified as a name or
an IP address. If specified as a name, ypset will attempt to use YP services
to resolve the name to an IP address. This will work only if the node has a
current valid binding for the domain in question. In most cases, server
should be specified as an IP address.

Refer to ypfiles(4) and ypserv(1M) for dn overview of the Yellow Pages.

OPTIONS
-V1 Bind server for the (old) v.1 YP protocol.

—V2  Bind server for the (current) v.2 YP protocol.

If no version is supplied, ypset, first attempts to set the domain for
the (current) v.2 protocol. If this attempt fails, ypset, then attempts
to set the domain for the (old) v.1 protocol.

—h host Set ypbind’s binding on host, instead of locally. host can be
specified as a name or as an Internet address.

April 1990 -1- Version 3.0




YPSET(1M) Silicon Graphics YPSET(1M)

—d domain
Use domain instead of the default domain.

SEE ALSO
ypwhich(1), ypserv(1M), ypfiles(4)

April 1990 -2- Version 3.0



YPUPDATED(1M) Silicon Graphics YPUPDATED(1M)

NAME
ypupdated — server for changing YP information

SYNOPSIS
[usr/etc/rpc.ypupdated

DESCRIPTION
ypupdated is a daemon that updates information in the Yellow Pages, nor-
mally started up by inetd(1M). ypupdated consults the file updaters(4) in
the directory /usr/etc/yp to determine which YP maps should be updated
and how to change them.

By default, the daemon requires the most secure method of authentication
available to it, which currently is AUTH_UNIX. The DES authentication
method is not implemented at the time.

FILES :
/fusr/etc/yp/updaters

SEE ALSO
inetd(1M), updaters(4)

BUGS
Access control is insecure. Use only on a trusted network.

April 1990 : -1- Version 3.0




YPXFR(1M) Silicon Graphics YPXFR(1M)

NAME

ypxfr — transfer a YP map from some YP server to here

SYNOPSIS

[usr/etc/yp/ypxfr [ —f ] [ —h host 1 [ —d domain ]
[ —c 1 [ —C tid prog ipadd port 1 mapname

DESCRIPTION

Ypxfr moves a YP map to the local host by making use of normal YP ser-
vices. It creates a temporary map in the directory /ust/etc/yp/domain
(which must already exist), fills it by enumerating the map’s entries, fetches
the map parameters (master and order number) and loads them. It then
deletes any old versions of the map and moves the temporary map to the
real mapname.

If ypxfr is run interactively, it writes its output to the terminal. However, if
it’'s invoked without a controlling terminal, and if the log file
lusrletclyplypxfr.log exists, it will append all its output to that file. Since
ypxfr is run from /usri/spoolicron/crontabsiroot, or by ypserv, you can use
the log file to retain a record of what was attempted, and what the results
were.

For consistency between servers, ypxfr should be run periodically for every
map in the YP data base. Different maps change at different rates: the
services.byname map may not change for months at a time, for instance,
and may therefore be checked only once a day in the wee hours. You may
know that mail.aliases or hosts.byname changes several times per day. In
such a case, you may want to check hourly for updates. A crontab entry
can be used to perform periodic updates automatically (see cron(1M).
Rather than having a separate crontab entry for each map, you can group
comands to update several maps in a shell script. Examples are in
lusrletclyp: ypxfr_lpd.sh, (transfer once per day) ypxfr 2pd.sh, (transfer
twice per day) and ypxfr _Iphr.sh (transfer once per hour). They can serve
as reasonable first cuts.

Refer to ypfiles(4) and ypserv(1M) for an overview of the Yellow Pages.

OPTIONS
—f Force the transfer to occur even if the version at the master is
not more recent than the local version.
—C Don’t send a "Clear current map" request to the local ypserv

process. Use this flag if ypserv is not running locally at the
time you are running ypxfr. Otherwise, ypxfr will complain
that it can’t talk to the local ypserv, and the transfer will fail.

April 1990 -1- Version 3.0



YPXFR(1M) Silicon Graphics YPXFR(IM)

—h host Get the map from host, regardless of what the map says the
- master is. If host is not specified, ypxfr will ask the

YP service for the name of the master, and try to get the map
from there. host may be a name or an Internet address in the
form a.b.c.d (see inet(3N)).

—d domain  Specify a domain other than the default domain.

—C tid prog ipadd port
This option is only for use by ypserv. When ypserv invokes
ypxfr, it specifies that ypxfr should call back a yppush process
at the host with Internet address ipaddr, registered as pro-
gram number prog, listening on port port, and waiting for a
response to transaction #id.
FILES
Jusr/etc/yp/ypxfr.log
fusr/etc/yp/ypxfr_lpd.sh
[ust/etc/yp/ypxfr_2pd.sh
fust/etc/yp/ypxfr_lph.sh
fust/spool/cron/crontabs/root
SEE ALSO )
ypserv(1M), yppush(1M), ypfiles(4)

April 1990 - -2- Version 3.0



NFSSVC(2) Silicon Graphics NFSSVC(2)

NAME
nfssvc, async_daemon — NFS daemons

SYNOPSIS
nfssve(sock)
int sock;

async_daemon()
DESCRIPTION
Nfssve starts an NFS daemon listening on socket sock. The socket must be

AF_INET, and SOCK_DGRAM (protocol UDP/IP). The system call will
return only if the process is killed.

Async_daemon implements the NFS daemon that handles asynchronous I/O
for an NFS client. The system call never returns.

BUGS
These two system calls allow kernel processes to have user context.

SEE ALSO
mountd(1M)

April 1990 -1- Version 3.0



ETHERS(3Y) Silicon Graphics ETHERS(3Y)

NAME

ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line — ethernet
address mapping operations

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>
#include <net/ifh>

#include <netinet/in.h>
#include <netinet/if_ether.h>

char *°
ether_ntoa(e)
struct ether_addr *e;

struct ether_addr *
ether_aton(s)
char *s;

ether_ntohost(hostname, e)
char *hostname;
struct ether_addr *e;

ether_hostton(hostname, e)
char *hostname;
struct ether_addr *e;

ether_line(l, e, hostname)
char *I;
struct ether_addr *e;
char *hostname;

DESCRIPTION

These routines are useful for mapping 48 bit ethernet numbers to their
ASCII representations or their corresponding host names, and vice versa.

The function ether_ntoa converts a 48 bit ethernet number pointed to by e
to its standard ACSII representation; it returns a pointer to the ASCII string.
The representation is of the form: “‘x:x:x:x:x:x’’ where x is a hexadecimal
number between O and ff. The function ether aton converts an ASCII
string in the standard representation back to a 48 bit ethernet number; the
function returns NULL if the string cannot be scanned successfully.

The function ether_ntohost maps an ethernet number (pointed to by e) to its
associated hostname. The string pointed to by hostname must be long
enough to hold the hostname and a null character. The function returns
zero upon success and non-zero upon failure. Inversely, the function

April 1990 -1- Version 3.0

«



ETHERS(3Y) Silicon Graphics ETHERS(3Y)

ether_hostton maps a hostname string to its corresponding ethernet number;
the function modifies the ethernet number pointed to by e. The function
also returns zero upon success and non-zero upon failure.

The function ether_line scans a line (pointed to by [) and sets the hostname
and the ethernet number (pointed to by ¢). The string pointed to by host-
name must be long enough to hold the hostname and a null character. The
function returns zero upon success and non-zero upon failure.

SEE ALSO
ethers(4)

April 1990 -2- Version 3.0



EXPORTENT(3) Silicon Graphics EXPORTENT(3)

exportent, getexportent, setexportent, addexportent, remexportent, endex-
portent, getexportopt — get exported file system information

SYNOPSIS

. #include <stdio.h>

#include <exportent.h>

FILE *setexportent()

struct exportent *getexportent(filep)

FILE *filep;
int addexportent(filep, dirname, options)
FILE *filep;

char *dirname;
char *options;

int remexportent(filep, dirname)
FILE *filep;
char *dirname;

char *getexportopt(xent, opt)
struct exportent *xent;
char *opt;

void endexportent(filep)
FILE *filep;

DESCRIPTION

These routines access the exported filesystem information in /etc/xtab .

setexportent opens the export information file and returns a file pointer to
use with getexportent, addexportent, remexportent, and endexportent.
getexportent reads the next line from filep and returns a pointer to an object
with the following structure containing the broken-out fields of a line in the

file, /etc/xtab. The fields have meanings described in exports(4).

#define ACCESS_OPT ‘‘access’’ /% machines that can mount fs */
#define ROOT_OPT ‘‘root’’ /* machines with root access of fs */
#define RO_OPT ‘‘ro’! /* export read-only */

#define RW_OPT Yirw’ ! /* export read-mostly */

#define ANON_OPT ‘‘anon'' /* uid for anonymous requests */
#define NOHIDE_OPT ‘‘nohide’’ /* visible from upper-exported fs */

struct exportent {

char *xent_dirname;

char *xent_options;

}s

April 1990

/*
/*

directory (or file) to export */

options, as above */

-1- Version 3.0



EXPORTENT(3) Silicon Graphics EXPORTENT(3)

addexportent adds the exportent to the end of the open file filep. It returns O
if successful and -1 on failure. remexportent removes the indicated entry
from the list. It also returns O on success and —1 on failure. getexportopt
scans the xent_options field of the exportent structure for a substring that
matches opt. It returns the string value of opt, or NULL if the option is not
found.

endexportent closes the file.

NOTE
The NOHIDE_OPT option is specific to IRIX.
To compile and link a program that calls these routines, follow the pro-
cedures for section (3Y) routines as described in intro(3).
FILES
[etc/exports
fetc/xtab
SEE ALSO
exportfs(1M), exports(4).
DIAGNOSTICS
NULL pointer (0) returned on EOF or error.
BUGS

The returned exportent structure points to static information that is
overwritten in each call.

April 1990 -2- Version 3.0



GETMNTENT(3)

NAME

Silicon Graphics GETMNTENT(3)

setmntent, getmntent, addmntent, endmntent, hasmntopt — get file system

descriptor file entry

SYNOPSIS
#include <stdio.h>
#include <mntent.h>

FILE *setmntent(filep, type)

char *filep;
char *type;

struct mntent *getmntent(filep)

FILE *filep;

int addmntent(filep, mnt)

FILE *filep;
struct mntent *mnt;

char *hasmntopt(mnt, opt)

struct mntent *mnt;
char *opt;

int endmntent(filep)
FILE *filep;

DESCRIPTION

These routines replace the getfsent routines for accessing the file system
description file /etc/fstab. They are also used to access the mounted file
system description file /etc/mtab.

Setmntent opens a file system description file and returns a file pointer
which can then be used with getmntent, addmntent, or endmntent. The type
argument is the same as in fopen(3S). Getmntent reads the next line from
filep and returns a pointer to an object with the following structure contain-
ing the broken-out fields of a line in the filesystem description file,
<mntent.h>. The fields have meanings described in fstab(4).

struct mntent {

char
char
char
char
int
int

April 1990

*mnt_fsname;

*mnt_dir;
*mnt_type;
*mnt_opts;
mnt_freq;
mnt_passno;

/* file system name */

/* file system path prefix */

/* dbg, efs, nfs */
/* ro, hide, etc. */
/* dump frequency, in days */
/* pass number on parallel fsck */

Version 3.0

(



GETMNTENT(3) Silicon Graphics GETMNTENT(3)

Addmntent adds the mntent structure mnt to the end of the open file filep.
Note that filep has to be opened for writing if this is to work. Hasmntopt
scans the mnt_opts field of the mntent structure mnt for a substring that
matches opt. It returns the address of the substring if a match is found, 0
otherwise. Endmntent closes the file.

NOTE
To compile and link a program that calls these routines, follow the pro-
cedures for section (3Y) routines as described in intro(3).

FILES
fetc/fstab
Jetc/mtab

SEE ALSO
fstab(4)
DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
The returned mntent structure points to static information that is overwritten
in each call.

April 1990 -2- Version 3.0



GETNETGRENT(3Y) Silicon Graphics GETNETGRENT(3Y)

NAME

getnetgrent, setnetgrent, endnetgrent, innetgr — get network group entry

SYNOPSIS

innetgr(netgroup, machine, user, domain)
char *netgroup, *machine, *user, *domain;

setnetgrent(netgroup)
char *netgroup

endnetgrent()

getnetgrent(machinep, userp, domainp)
char **machinep, **userp, **domainp;

DESCRIPTION

FILES

Innetgr returns 1 or 0, depending on whether netgroup contains the
machine, user, or domain triple as a member. Any of the three strings
machine, user, or domain can be NULL, in which case it signifies a wild
card.

Getnetgrent returns the next member of a network group. After the call,
machinep will contain a pointer to a string containing the name of the
machine part of the network group member, and similarly for userp and
domainp. If any of machinep, userp or domainp is returned as a NULL
pointer, it signifies a wild card. Getnetgrent will malloc(3) space for the

- name. This space is released when a endnetgrent call is made. Getnetgrent

returns 1 if it succeeding in obtaining another member of the network
group, O if it has reached the end of the group.

Setnetgrent establishes the network group from which getnetgrent will
obtain members, and also restarts calls to getnetgrent from the beginning of
the list. If the previous setnetgrent call was to a different network group
and there has been no intervening call to endnetgrent, an endnetgrent call is
implied. Endnetgrent frees the space allocated during the getnetgrent calls.

[usr/etc/netgroup

April 1990 -1- Version 3.0




MOUNT(3R) Silicon Graphics MOUNT(3R)

NAME
mount — keep track of remotely mounted filesystems

SYNOPSIS
#include <rpcsve/mount.h>

RPC INFORMATION
Program number:

MOUNTPROG
XDR routines:

xdr_exportbody (xdrs, ex)

XDR *xdrs;

struct exports *ex;
xdr_exports (xdrs, ex);

XDR *xdrs;

struct exports **ex;
xdr_nexportbody (xdrs, nex)

XDR *xdrs;

struct nexports *nex;
xdr_nexports(xdrs, nex);

XDR *xdrs;

struct nexports **nex;
xdr_fhandle (xdrs, fh);

XDR *xdrs;

fhandle t *fp;
xdr_fhstatus(xdrs, fhs);

XDR *xdrs;

struct fhstatus *fhs;
xdr_groups (xdrs, gr);

XDR *xdrs;

struct groups *gr;
xdr_mountbody (xdrs, ml)

XDR *xdrs;

struct mountlist *ml;
xdr mountlist(xdrs, ml);

XDR *xdrs;

struct mountlist **ml;
xdr_path(xdrs, path);

XDR *xdrs;

char **path;

April 1990 -1- Version 3.0



MOUNT(3R)

Silicon Graphics

Procedures:

MOUNTPROC_MNT

MOUNT(3R)

Argument of xdr path, returns fhstatus.

Requires unix authentication.
MOUNTPROC_DUMP

No arguments, returns struct mountlist.

MOUNTPROC_UMNT
Argument of xdr_path, no results.
Requires unix authentication.
MOUNTPROC_UMNTALL
No arguments, no results.
Requires unix authentication.
Unmounts all remote mounts of sender.
MOUNTPROC_EXPORT
MOUNTPROC_EXPORTALL

No arguments, returns struct exports if program version

is MOUNTPROG_ORIG, struct nexports if program version

is MOUNTPROG_NEWSGI.

Versions:

MOUNTVERS_ORIG

Universal program version.
MOUNTVERS_NEWSGI

SGI enhanced version for complete exports inquiry.

Structures:

April 1990

struct mountlist { /* what is mounted */

char *ml_name;

char *ml_path;

struct mountlist *ml_ nxt;
}i
struct fhstatus {

int fhs_status;

fhandle t fhs_ fh;

/*

* List of exported directories.

* An export entry with ex _groups NULL indicates an entry

* which is exported to the world.
*/

struct exports {

(

(

dev_t ex_dev; /* dev of directory */

char : *ex name; © /* name of directory */

struct groups *ex_groups; /* groups given access */
-2- Version 3.0



MOUNT(3R) Silicon Graphics MOUNT(3R)

struct exports *ex next;
}i
struct groups {
char *g_name;
struct groups *g next;
}i
/%
* List of exported directories with all options documented
* in exports(4).
*/
struct nexports {
char *nex_name;
struct groups *nex_access;
struct groups *nex root;
bool t nex_ro;
struct groups *nex_rw;
int nex_anon;
bool t nex_nohide;
struct nexports*nex_ next;

}:

SEE ALSO
exportfs(1M), mount(1M), showmount(1M), mountd(1M), exports(4).

April 1990 -3- Version 3.0



RNUSERS(3R) Silicon Graphics RNUSERS(3R)

NAME
rnusers, rusers — return information about users on remote machines

SYNOPSIS
#include <rpesve/rusers.h>

rnusers(host)
char *host

rusers(host, up)
char *host
struct utmpidlearr *up;

DESCRIPTION
Rnusers returns the number of users logged on to host (-1 if it cannot deter-
mine that number). Rusers fills the utmpidlearr structure with data about
host, and returns O if successful. The relevant structures are:

struct utmparr { /* RUSERSVERS_ORIG */
struct utmp **uta_arr;
int uta_cnt
)5
struct utmpidle {
struct utmp ui_utmp;
unsigned ui_idle;

I

struct utmpidlearr { /* RUSERSVERS_IDLE */
struct utmpidle **uia_arr;
int uia_cnt

};

RPC INFO

program number:
RUSERSPROG

xdr routines:
int xdr_utmp(xdrs, up)

XDR *xdrs;

struct utmp *up;
int xdr_utmpidle(xdrs, ui);
XDR *xdrs;
struct utmpidle *ui;
int xdr_utmpptr(xdrs, up);
XDR *xdrs;
struct utmp **up;
int xdr_utmpidleptr(xdrs, up);

April 1990 -1- Version 3.0




RNUSERS(3R) Silicon Graphics RNUSERS(3R)

XDR *xdrs;
struct utmpidle **up;
int xdr_utmparr(xdrs, up);
XDR *xdrs;
struct utmparr *up;
int xdr_utmpidlearr(xdrs, up);
XDR *xdrs;
struct utmpidlearr *up;

procs:
RUSERSPROC_NUM
No arguments, returns number of users as an unsigned long.
RUSERSPROC_NAMES
No arguments, returns utmparr or
utmpidlearr, depending on version number.
RUSERSPROC_ALLNAMES
No arguments, returns utmparr or
utmpidlearr, depending on version number.
* Returns listing even for itmp entries satisfying nonuser() in utmp.h.
versions:
RUSERSVERS_ORIG
RUSERSVERS_IDLE

April 1990 -2- Version 3.0



RWALL(3R) Silicon Graphics RWALL(3R)

NAME
rwall — write to specified remote machines

SYNOPSIS
#include <rpcsve/rwall.h>

rwall(host, msg);
char *host, *msg; ( ]
DESCRIPTION

Rwall causes host to print the string msg to all its users. It returns O if suc-
cessful.

RPC INFO
program number:
WALLPROG

procs:
WALLPROC_WALL
Takes string as argument (wrapstring), returns no arguments.
Executes wall on remote host with string.
versions:
RSTATVERS_ORIG

SEE ALSO
rwall(1), shutdown(1m), rwalld(1m)

April 1990 -1- Version 3.0




YP_UPDATE(3R) Silicon Graphics YP_UPDATE(3R)

NAME
yp_update — changes yp information

SYNOPSIS
#include <rpcsve/ypclnt.h>

yp_update(domain, map, ypop, key, keylen, data, datalen)
char *domain;
char *map;
unsigned ypop
char *key;
int keylen;
char *data;
int datalen;

DESCRIPTION

yp_update() is used to make changes to the YP database. The syntax is the
same as that of yp_match() except for the extra parameter ypop which may
take on one of four values. If it is YPOP_CHANGE, then the data associ-
ated with the key will be changed to the new value. If the key is not found
in the database, then yp_update() will return YPERR_KEY. If ypop has
the value YPOP_INSERT, then the key-value pair will be inserted into the
database. The error YPERR_KEY is returned if the key already exists in
the database. To store an item into the database without concern for
whether it exists already or not, pass ypop as YPOP_STORE and no error
will be returned if the key already or does not exist. To delete an entry, the
value of ypop should be YPOP_DELETE.

SEE ALSO
ypupdated(1M), updaters(1M)

April 1990 -1- Version 3.0



YPCLNT(3Y) Silicon Graphics YPCLNT(3Y)

NAME
ypelnt  yp_get_default_ domain yp_bind yp_unbind yp_match yp_first
yp_next yp_all yp_order yp_master yperr_string ypprot_err — yellow pages
client interface

SYNOPSIS , . o
#include <rpcsve/ypeint.h> ' (

yp_bind(indomain);
char *indomain;

void yp_unbind(indomain)
char *indomain;

yp_get_default_domain(outdomain);
char **outdomain;

yp_match(indomain, inmap, inkey, inkeylen, outval, outvallen)
char *indomain; ' ‘
- char *inmap;
char *inkey;
int inkeylen;
char **outval;
" int *outvallen;

char *indomain;
char *inmap;
char **outkey;
int *outkeylen;
char **outval;
int *outvallen;

yp_first(indomain, inmap, outkey, outkeylen, outval, outvallen) (’

yp_next(indomain, inmap, inkey, inkeylen, outkey,
outkeylen, outval, outvallen);
char *indomain;
char *inmap;
char *inkey;
int inkeylen;
char **outkey;
int *outkeylen;
char **outval;
int *outvallen; (
\

yp_all(indomain, inmap, incallback);
char *indomain;

char *inmap;

struct ypall_callback incallback;

April 1990 -1- Version 3.0




YPCLNT(3Y) Silicon Graphics YPCLNT(3Y)

yp_order(indomain, inmap, outorder);
char *indomain;

char *inmap;

int *outorder;

yp_master(indomain, inmap, outname);
char *indomain;

char *inmap;

char **outname;

char *yperr_string(incode)
int incode;

ypprot_err(incode)
unsigned int incode;

DESCRIPTION
This package of functions provides an 1nterface to the Yellow Pages (YP)
network lookup service. The package can be loaded from the library,
{usr/lib/libsun.a. Refer to ypfiles(4) and ypserv(1M) for an overview of the
yellow pages, including the definitions of map and domain , and a descrip-
tion of the various servers, databases, and commands that comprise the YP.

All input parameters names begin with in. Output parameters begin with
out. Output parameters of type char ** should be addresses of uninitialized
character pointers. Memory is allocated by the YP client package using
malloc(3), and may be freed if the user code has no continuing need for it.
For each outkey and outval, two extra bytes of memory are allocated at the
end that contain NEWLINE and NULL, respectively, but these two bytes
are not reflected in outkeylen or outvallen . indomain and inmap strings
must be non-null and null-terminated. String parameters which are accom-
panied by a count parameter may not be null, but may point to null strings,
with the count parameter indicating this. Counted strings need not be null-
terminated.

All functions in this package of type int return O if they succeed, and a
failure code (YPERR_xxxx) otherwise. Failure codes are described under
DIAGNOSTICS below.

The YP lookup calls require a map name and a domain name, at minimum.
It is assumed that the client process knows the name of the map of interest.
Client processes should fetch the node’s default domain by calling
yp_get_default_domain() , and use the returned outdomazn as the
indomain parameter to successive YP calls.

April 1990 -2- Version 3.0



YPCLNT(3Y) Silicon Graphics YPCLNT(3Y)

To use the YP services, the client process must be ‘‘bound”’ to a YP server

that serves the appropriate domain using yp bind. Binding need not be

done explicitly by user code; this is done automatically whenever a YP

lookup function is called. yp_bind can be called directly for processes that

make use of a backup strategy (e.g., a local file) in cases when YP services

are not available. ( ,
)

Each binding allocates (uses up) one client process socket descriptor; each
bound domain costs one socket descriptor. However, multiple requests to
the same domain use that same descriptor. yp_unbind() is available at the
client interface for processes that explicitly manage their socket descriptors
while accessing multiple domains. The call to yp unbind() make the
domain unbound, and free all per-process and per-node resources used to
bind it.

If an RPC failure results upon use of a binding, that domain will be
unbound automatically. At that point, the ypclnt layer will retry forever or
until the operation succeeds, provided that ypbind is running, and either

a) the client process can’t bind a server for the proper domain, or
b) RPC requests to the server fail.

If an error is not RPC-related, or if ypbind is not running, or if a bound

Ypserv process returns any answer (success or failure), the ypclnt layer will

return control to the user code, either with an error code, or a success code ( o
and any results.

yp_match returns the value associated with a passed key. This key must be
exact; no pattern matching is available.

yp_first returns the first key-value pair from the named map in the named
domain.

yp_next() returns the next key-value pair in a named map. The inkey
parameter should be the outkey returned from an initial call to yp_first() (to
get the second key-value pair) or the one returned from the nth call to
yp_next() (to get the nth + second key-value pair).

The concept of first (and, for that matter, of next) is particular to the struc-
ture of the YP map being processed; there is no relation in retrieval order to
either the lexical order within any original (non-YP) data base, or to any
obvious numerical sorting order on the keys, values, or key-value pairs.

on a particular map, and then the yp_next() function is repeatedly called on
the same map at the same server until the call fails with a reason of
YPERR_NOMORE, every entry in the data base will be seen exactly once.
Further, if the same sequence of operations is performed on the same map
at the same server, the entries will be seen in the same order.

The only ordering guarantee made is that if the yp_first() function is called (

April 1990 -3- Version 3.0



YPCLNT(3Y) Silicon Graphics YPCLNT(3Y)

Under conditions of heavy server load or server failure, it is possible for the
domain to become unbound, then bound once again (perhaps to a different
server) while a client is running. This can cause a break in one of the
enumeration rules; specific entries may be seen twice by the client, or not at
all. This approach protects the client from error messages that would other-
wise be returned in the midst of the enumeration. The next paragraph
describes a better solution to enumerating all entries in a map.

yp_all provides a way to transfer an entire map from server to client in a
single request using TCP (rather than UDP as with other functions in this
package). The entire transaction takes place as a single RPC request and
response. You can use yp_all just like any other YP procedure, identify the
map in the normal manner, and supply the name of a function which will be
called to process each key-value pair within the map. You return from the
call to yp_all only when the transaction is completed (successfully or
unsuccessfully), or your ‘‘foreach’’ function decides that it doesn’t want to
see any more key-value pairs.

The third parameter to yp_all is
struct ypall_callback *incallback {
int (*foreach)();
char *data;
Y

The function foreach is called

foreach(instatus, inkey, inkeylen, inval, invallen, indata);
int instatus;

char *inkey;

int inkeylen;

char *inval;

int invalllen;

char *indata;

The instatus parameter will hold one of the return status values defined in
<rpcsvclyp_prot.h> — either YP_TRUE or an error code. (See ypprot_err,
below, for a function which converts a YP protocol error code to a ypclnt
layer error code.)

The key and value parameters are somewhat different than defined in the
synopsis section above. First, the memory pointed to by the inkey and inval
parameters is private to the yp_all function, and is overwritten with the
arrival of each new key-value pair. It is the responsibility of the foreach
function to do something useful with the contents of that memory, but it
does not own the memory itself. Key and value objects presented to the
foreach function look exactly as they do in the server’s map — if they were
not newline-terminated or null-terminated in the map, they won’t be here

April 1990 -4- Version 3.0



YPCLNT(3Y) Silicon Graphics YPCLNT(3Y)

FILES

either.

The indata parameter is the contents of the incallback->data element
passed to yp_all . The data element of the callback structure may be used to
share state information between the foreach function and the mainline code.
Its use is optional, and no part of the YP client package inspects its contents
— cast it to something useful, or ignore it as you see fit.

The foreach function is a Boolean. It should return zero to indicate that it
wants to be called again for further received key-value pairs, or non-zero to
stop the flow of key-value pairs. If foreach returns a non-zero value, it is
not called again; the functional value of yp_all is then 0.

yp_order returns the order number for a map.
yp_master returns the machine name of the master YP server for a map.

yperr_string returns a pointer to an error message string that is null-
terminated but contains no period or newline.

ypprot_err takes a YP protocol error code as input, and returns a ypclnt
layer error code, which may be used in turn as an input to yperr_string .

fusr/include/rpcsvc/ypclnt.h
Jusr/include/rpcsve/yp_prot.h

SEE ALSO

ypfiles(4), ypserv(1M),

DIAGNOSTICS

All integer functions return O if the requested operatioh is successful, or one
of the following errors if the operation fails.

#define YPERR_BADARGS 1 1* ai’gs to function are bad */

#define YPERR_RPC 2 /* RPC failure - domain has been unbound */
#define YPERR_DOMAIN 3 /* can’t bind to server on this domain */
#define YPERR_MAP - 4 /* no such map in server’s domain */
#define YPERR_KEY 5 /* no such key in map */

#define YPERR_YPERR 6 /* internal yp server or client error */
#define YPERR_RESRC 7 /* resource allocation failure */

#define YPERR_NOMORE 8 /* no more records in map database */
#define YPERR_PMAP 9 /* can’t communicate with portmapper */
#define YPERR_YPBIND 10 /¥ can’t communicate with ypbind */
#define YPERR_YPSERYV 11 /* can’t communicate with ypserv */
#define YPERR_NODOM 12 /* local domain name not set */

April 1990 -5- Version 3.0

(



YPPASSWD(3R) Silicon Graphics YPPASSWD(3R)

NAME
yppasswd — update user password in Yellow Pages

SYNOPSIS
#tinclude <rpcsve/yppasswd.h>

yppasswd (oldpass, newpw)
char *oldpass
struct passwd *newpw;

DESCRIPTION
If oldpass is indeed the old user password, this routine replaces the pass-
word entry with newpw. It returns O if successful.

RPC INFO
program number:
YPPASSWDPROG
xdr routines:
xdr_ppasswd(xdrs, yp)
XDR *xdrs;
struct yppasswd *yp;
xdr_yppasswd(xdrs, pw)
XDR *xdrs;
struct passwd *pw;
procs:
YPPASSWDPROC_UPDATE
Takes siruct yppasswd as argument, returns integer.
Same behavior as yppasswd() wrapper.
Uses UNIX authentication.
versions:
YPPASSWDVERS_ORIG
structures:
struct yppasswd {
char *oldpass;  /* old (unencrypted) password */
struct passwd newpw; /* new pw structure */
K
SEE ALSO

yppasswd(1), rpc.passwd(1M)

April 1990 -1- Version 3.0



BOOTPARAMS(4) Silicon Graphics BOOTPARAMS(4)

NAME
bootparams — boot parameter data base

SYNOPSIS
/etc/bootparams

DESCRIPTION
The bootparams file contains the list of client entries that diskless clients
use for booting. For each diskless client the entry should contain the fol-
lowing information:
name of client
a list of keys, names of servers, and pathnames.

The first item of each entry is the name of the diskless client. The subse-
quent item is a list of keys, names of servers, and pathnames.

Items are separated by TAB or SPACE characters.

EXAMPLE
Here is an example of the /etc/bootparams file:

myclient root=myserver:/nfsroot/myclient \
swap=myserver:/nfsswap/myclient \
dump=myserver:/nfsdump/myclient

FILES
/etc/bootparams

SEE ALSO
bootparamd(1m)

April 1990 -1- Version 3.0

(



ETHERS(4) Silicon Graphics ETHERS(4)

NAME
ethers — ethernet address to hostname database

DESCRIPTION
The ethers file contains information regarding the known (48 bit) ethernet
addresses of hosts on the internet. For each host on an ethemet, a single
line should be present with the following information:

cthernet address
official host name

Items are separated by any number of blanks and/or tabs. A “#’ indicates
the beginning of a comment extending to the end of line.

The standard form for ethernet addresses is ‘‘x:x:x:x:x:x’’ where x is a hex-
adecimal number between 0 and ff, representing one byte. The address
bytes are always in network order. Host names may contain any printable
character other than a space, tab, newline, or comment character. It is
intended that host names in the ethers file correspond to the host names in
the hosts(4) file.

The ether_line() routine from the ethernet address manipulation library,
ethers(3Y) may be used to scan lines of the ethers file.

FILES
[etc/ethers

SEE ALSO
ethers(3Y), hosts(4)

April 1990 -1- Version 3.0



EXPORTS(4) Silicon Graphics EXPORTS(4)

NAME _

exports — list of NFS filesystems being exported
SYNOPSIS

/etc/exports
DESCRIPTION

The file /etc/exports describes the filesystems which are being exported to
NFS clients. It is created by the system administrator using a text editor
and processed by exportfs(1M) at system startup and by the mount request
daemon, mountd(1M), each time a mount request is received. Exporifs
should be re-executed after making changes to the file.

The file consists of a list of filesystems, the netgroup(4) or machine names
allowed to remote mount each filesystem, and possibly a list of options.
The filesystem names are left justified and followed by a list of names
separated by white space. The names will be looked up in /etc/netgroup
and then in /etc/hosts. A hyphen indicates the start of the options list. Mul-
tiple options are separated by commas. The default options are
rw,hide,anon=nobody.

ro Export the directory read-only. If not specified, the directory is
exported read-write.

rw=hostname[:hostname] . ..
Export the directory read-mostly. Read-mostly means exported
read-only to most machines, but read-write to those specified. If no
hosts are specified, the directory is exported read-write to all.

anon=uid

If a request comes from an unknown user, use uid as the effective
user ID. uid may be either a name or an integer user-id from
letc/passwd. The default value for this option is ‘‘nobody’’ (uid
—2). Setting the value of ‘‘anon’’ to —1 disables anonymous
access. Note: root users (uid 0) are always considered "unknown"
by the NFS server, unless they are included in the "root" option
below.

root=hostname[:hostname] . ..
Give root access only to the root users from a specified hostname.
The default is for no hosts to be granted root access.

access=client[:client] ...
Give mount access to each client listed. A client can either be a
hostname, or a netgroup (see netgroup(4)). Each client in the list
is first checked for in the /etc/netgroup database, and then the
letc/hosts database. The default value allows any machine to
mount the given directory.

April 1990 -1- Version 3.0



EXPORTS(4)

hide

nohide

wsync

Silicon Graphics EXPORTS(4)

Prevents a client who mounts this entry’s parent filesystem from
accessing files in this filesystem. Instead, clients who mount a
filesystem containing a hidden filesystem access the directory on
which the hidden child is mounted, not the child filesystem’s root
directory.

Allows a client who mounts this entry’s parent filesystem to access
files in this filesystem.

Causes all writes to this file system to be performed synchronously
to the disk. With this option, the server waits until the data is safely
written to the disk before sending a positive response to the client.
Without this option, the server performs delayed-writes (i.c.,
responds to the client then writes the data at its convenience or
when a sync(2) is executed). Delaying writes provides a great per-
formance boost, but also introduces the risk of losing data should
the server crash before the data is written to the disk. Use the
wsync option if this risk is unacceptable.

A filesystem name which is not followed by a name list is exported to
everyone. A ‘‘#” anywhere in the file indicates a comment extending to
the end of the line on which it appears. Lines beginning with white space
are continuation lines.

EXAMPLES
/fusr/local # export to the world
fusr clients # export to my clients
fusr2  bonnie clyde # export to only these machines
fusr3  —anon=guest # map client root & anonymous to guest
/ -10 # export the root and usr filesystems
fusr —ro,nohide # export all local filesystems read-only

Exporting all your machine’s local filesystems requires enumerating
all local mount points, and using ‘‘nohide’” for each root filesystem:

-10
—ro,nohide
—ro,nohide

The rootid option is a backward-compatible IRIX synonym for anon.
The hide, nohide and wsync options are specific to IRIX.

/

fusr

/d
NOTE
FILES

_ Jetc/exports

April 1990

-2- Version 3.0



EXPORTS(4)

SEE ALSO

Silicon Graphics

exportfs(1M), mountd(1M), netgroup(4)

April 1990

EXPORTS(4)

Version 3.0



HOSTS.EQUIV(4) Silicon Graphics HOSTS.EQUIV(4)

NAME
hosts.equiv — list of trusted hosts

DESCRIPTION
The /etc/hosts.equiv file contains a list of trusted hosts. When an rcp(1C),
rdist(1C), rlogin(1C) or rsh(1C) request from such a host is made, and the
initiator of the request is in /efc/passwd, then, no further validity checking is
done. That is, rlogin does not prompt for a password, and rsh completes
successfully. So a remote user is ‘‘equivalenced’’ to a local user with the
same user name when the remote user is in hosts.equiv.

The format of hosts.equiv is a list of names, as in this example:

host1

host2

+@groupl

-@group2
A line consisting of a simple host name means that anyone logging in from
that host is trusted. A line consisting of +@group means that all hosts in
that network group (see netgroup(4)) are trusted. A line consisting of
—@group means that hosts in that group are not trusted. Programs scan
hosts.equiv linearly, and stop at the first hit (either positive for hostname
and +@ entries, or negative for —@ entries). A line consisting of a single +
means that everyone is trusted.

The .rhosts file has the same format as hosts.equiv. When user XXX exe-
cutes rcp, rdist, rlogin, or rsh, the .rhosts file from XXX’s home directory
is conceptually concatenated onto the end of hosts.equiv for permission
checking. However, @ entries are not sticky. If a user is excluded by a
minus entry from hosts.equiv but included in .rhosts, then that user is con-
sidered trusted. In the special case when the user is root, then only the
l.rhosts file is checked. '

It is also possible to have two names (separated by white space) on a line of
these files. In this case, if the remote host is equivalenced by the first name,
then the user named by the second name is allowed to log in as anyone, that
is, specify any name to the —1 flag (provided that name is in the /etc/passwd
file, of course). Thus the entry

gotham batman

in /etc/hosts.equiv allows batman to log in from gotham as anyone. The
usual usage would be to put this entry in the .rhosts file in the home direc-
tory for robin .

April 1990 -1- Version 3.0



HOSTS.EQUIV(4) Silicon Graphics HOSTS.EQUIV(4)

Then batman may log in as robin when coming from gotham. The second
entry may be a netgroup, thus

+@groupl +@group2
“ allows any user in group2 coming from a host in groupl to log in as any-
one.
FILES A .
[etc/hosts.equiv
~/.rhosts
WARNING
The references to network groups (+@ and —@ entries) in hosts.equiv and

rhosts are only supported when the netgroup file is supplied by the Yellow
Pages.

SEE ALSO
rcp(1C), rdist(1C), rlogin(1C), rsh(1C), ruserok(3N), netgroup(4), rhosts(4)

April 1990 -2- Version 3.0




NETGROUP(4) Silicon Graphics NETGROUP(4)

NAME

netgroup — list of network groups

DESCRIPTION

FILES

Netgroup defines network wide groups, used for permission checking when
doing remote mounts, remote logins, and remote shells. For remote mounts,
the information in netgroup is used to classify machines; for remote logins
and remote shells, it is used to classify users. Each line of the netgroup file
defines a group and has the format

groupname memberl member? ....
where memberi is either another group name, or a triple:
(hostname, username, domainname)

Any of three fields can be empty, in which case it signifies a wild card.
Thus '

universal (,,)

defines a group to which everyone belongs. Field names that begin with
something other than a letter, digit or underscore (such as *‘-’”) work in pre-
cisely the opposite fashion. For example, consider the following entries:

justmachines  (analytica,-,sun)
justpecple (-,babbage,sun)

The machine analytica belongs to the group justmachines in the domain
sun, but no users belong to it. Similarly, the user babbage belongs to the
group justpeople in the domain sun, but no machines belong to it.

Network groups are contained in the yellow pages, and are accessed
through these files:

[etc/yp/domainname/netgroup.dir
[etc/yp/domainname/netgroup.pag
[etc/yp/domainname/netgroup.byuser.dir
fetc/yp/domainname/netgroup.byuser.pag
[etc/yp/domainname/netgroup.byhost.dir
fetc/yp/domainname/netgroup.byhost.pag

These files can be created from /etc/netgroup using makedbm (1M).

fetc/netgroup
fetc/yp/domainname/netgroup.dir
[etc/yp/domainname/netgroup.pag
[etc/yp/domainname/netgroup.byuser.dir
[etc/yp/domainname/netgroup.byuser.pag

April 1990 -1- Version 3.0



NETGROUP(4) Silicon Graphics

fetc/yp/domainname/netgroup.byhost.dir
[etc/yp/domainname/netgroup.byhost.pag

SEE ALSO :
getnetgrent(3), makedbm(1M), ypserv(1M)

April 1990 -2.

NETGROUP(4)

Version 3.0




RMTAB(4) Silicon Graphics RMTAB(4)

NAME

rmtab — remotely mounted file system table

DESCRIPTION

FILES

Rmtab resides in the directory /etc and contains a record of all clients that
have done remote mounts of file systems from this machine. Whenever a
remote mount is done, an entry is made in the rmtab file of the machine
serving up that file system. Umount removes entries of a remotely mounted
file system. Umount —a broadcasts to all servers, and informs them that
they should remove all entries from rmtab created by the sender of the
broadcast message (this is done automatically during system startup). The
table is a series of lines of the form:

hostname:directory

This table is used only to preserve information between crashes, and is read
only by mountd(1M) when it starts up. Mountd keeps an in-core table,
which it uses to handle requests from programs like showmount(1) and
shutdown(1M).

Jetc/rmtab

SEE ALSO

BUGS

showmount(1), mountd(1M), mount(1M), umount(1M), shutdown(1M)

Although the rmtab table is close to the truth, it is not always 100% accu-
rate.

April 1990 -1- Version 3.0



STATMON(4) Silicon Graphics STATMON(4)

NAME
sm, sm.bak, state — statd directories and file structures

SYNOPSIS
[usr/etc/statd.d/sm
usr/etc/statd.d/sm.bak
/usr/etc/state

DESCRIPTION
Jusr/etc/statd.d/sm and /usr/etc/statd.d/sm.bak are directories generated
by statd. Each entry in /usr/etc/statd.d/sm represents the name of a
machine to be monitored by statd. Each entry in /usr/etc/statd.d/sm.bak
represents the name of a machine to be notified of statd’s recovery.

lusr/etc/statd.d/state is a file generated by statd to record its version
number. This version number is incremented each time a crash or recovery
takes place.

FILES ’
fusr/etc/statd.d/sm
[fusr/etc/statd.d/sm.bak
fusr/etc/statd.d/state

SEE ALSO
lockd(1M), statd(1M)

April 1990 -1- Version 3.0




UPDATERS(4) Silicon Graphics UPDATERS(4)

NAME

updaters — configuration file for YP updating

SYNOPSIS

/usr/etc/yp/updaters

DESCRIPTION

FILES

The file /usrletc/yp/updaters is a makefile (see make(1)) which is used for
updating YP databases. Each entry in the file is a make target for a particu-
lar YP database. For example, if there is a YP database named
passwd.byname that can be updated, there should be a make target named
passwd.byname in the updaters file with the command to update the file.

The information necessary to make the update is passed to the update com-
mand through standard input. The information passed is described below
(all items are followed by a NEWLINE, except for 4 and 6)

¢ Network name of client wishing to make the update (a string)
® Kind of update (an integer)

® Number of bytes in key (an integer)

¢ Actual bytes of key

e Number of bytes in data (an integer)

® Actual bytes of data

After getting this information through standard input, the command to
update the particular database should decide whether the user is allowed to
make the change. If not, it should exit with the status YPERR_ACCESS. If
the user is allowed to make the change, the command should make the
change and exit with a status of zero. If there are any errors that may
prevent the updater from making the change, it should exit with the status
that matches a valid YP error code described in <rpcsvc/ypcint.h>.

fusr/etc/yp/updaters

SEE ALSO

BUGS

make (1), ypupdated (1M)

Access control is insecure. Use only on a trusted network.

April 1990 -1- Version 3.0



YPFILES(4) Silicon Graphics YPFILES(4)

NAME
ypfiles — the Yellow Pages database and directory structure

DESCRIPTION
The yellow pages (YP) network lookup service uses a database of dbm(3B)
files in the directory hierarchy at /usr/etc/yp. A dbm database consists of
two files, created by calls to the dbm library package. One has the filename
extension .pag and the other has the filename extension .dir. For instance,
the database named hosts.byname, is implemented by the pair of files
hosts.byname pag and hosts.byname.dir. A dbm database served by the YP
is called a YP map. A YP domain is a named set of YP maps. Each YP
domain is implemented as a subdirectory of /usr/etc/yp containing the map.
Any number of YP -domains can exist. Each may contain any number of
maps. .

No maps are required by the YP lookup service itself, although they may be
required for the normal operation of other parts of the system. There is no
list of maps which YP serves - if the map exists in a given domain, and a
client asks about it, the YP will serve it. For a map to be accessible con-
sistently, it must exist on all YP servers that serve the domain. To provide
data consistency between the replicated maps, entries to run ypxfr periodi-
cally exist in /usr/spool/cron/crontabsiroot on each server. More informa-
tion on this topic is in ypxfr(1M).,

YP maps should contain two distinguished key-value pairs. The first is the
key YP_LAST_MODIFIED, having as a value a ten-character ASCII order
number. The order number should be the UNIX time in seconds when the
map was built. The second key is YP_MASTER_NAME, with the name of
the YP master server as a value. makedbm(1M) generates both key-value
pairs automatically. A map that does not contain both key-value pairs can
be served by the YP, but the ypserv process will not be able to return values
for ‘“‘Get order number’” or ‘‘Get master name’’ requests. In addition,
values of these two keys are used by ypxfr when it transfers a map from a
master YP server to a slave. If ypxfr cannot figure out where to get the map,
or if it is unable to determine whether the local copy is more recent than the
copy at the master, you must set extra command line switches when you run
1it.

YP maps must be generated and modified only at the master server. They
are copied to the slaves using ypxfr(1M) to avoid potential byte-ordering
problems among YP servers running on machines with different architec-
tures, and to minimize the amount of disk space required for the dbm files.
The YP database can be initially set up for both masters and slaves by using
ypinit(1M).

April 1990 -1- Version 3.0



YPFILES(4) Silicon Graphics YPFILES(4)

After the server databases are set up, it is probable that the contents of some
maps will change. In general, some ASCII source version of the database
exists on the master, and it is changed with a standard text editor. The
update is incorporated into the YP map and is propagated from the master
to the slaves by running /usr/etc/yp/ypmake. ypmake executes the file
lusrletc/yp/Makefile and logs its activity in /usrletc/yp/ypmake.log.
lusrletc/yp/Makefile contains entries for all supplied maps; if you add a YP
map, edit this file to support the new map. The makefile uses makedbm to
generate the YP map on the master, and yppush to propagate the changed
map to the slaves. yppush is a client of the map ypservers , which lists all
the YP servers. For more information on this topic, see yppush(1M).

SEE ALSO
makedbm(1M), ypinit(1M), ypmake(1M), ypxfr(1M), yppush(1M),
yppoll(1M), ypserv(1M), rpcinfo(1M), dbm(3B)

April 1990 -2- Version 3.0






