
Clanguage
Reference Manual

• SiliconGraphiC$
Computer Systems

Document nlMl'lber: 007.(1701.(110

C Language
Reference Manual

Version 1.0

Document Number 007-0701-010

Teclinical Publications:

Robert Reimann

Engineering:

Greg Boyd
Jim Terhorst

© Copyright 1987, Silicon Graphics, Inc.

All rights reserved.

(

This document contains proprietary information of Silicon GraPhiCS,,(· .
Inc., and is protected by Federal copyright law. The information may
not be disclosed to third parties or copied or duplicated in any form, in
whole or in part, without prior written consent of Silicon Graphics, Inc.

The information in this document is subject to change without notice.

C Language Reference Manual
Version 1.0
Document Number 007-0701-010

Silicon Graphics, Inc.
Mountain View, California

(

Contents

1. Introduction

2. Lexical Conventions • • .
2.1 Comments . • •
2.2 Identifiers (Names) .
2.3 Keywords. • • • • .
2.4 Constants. •• •••....

2.4.1 Integer Constants •
2.4.2 Explicit Long Constants .
2.4.3 Character Constants . • . . .
2.4.4 Floating Constants
2.4.5 Enumeration Constants .

2.5 String Literals . •
2.6 Syntax Notation . • • • . .

3. Storage Class and Type . • • .
3.1 Storage Class . •• .••.
3.2 Type . • . . •
3.3 Objects and Ivalues

4. Operator Conversions • • • • . . . •
4.1 Characters and Integers • . . •• •..
4.2 Float and Double • • . . •
4.3 Floating and Integral . • .• ...
4.4 Pointers and Integers
4.5 Unsigned • . . • • .
4.6 Arithmetic Conversions
4.7 Void•. .•....•

5. Expressions and Operators
5.1 Primary Expressions • •
5.2 Unary Operators . • .
5.3 Multiplicative Operators • • .
5.4 Additive Operators
5.5 Shift Operators • • • . . •

1-1

2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-4
2-4
2-4
2-4

3-1
3-1
3-2
3-3

4-1
4-1
4-2
4-2
4-2
4-3
4-3
4-4

5-1
5-2
5-4
5-6
5-7
5-8

5.6 Relational Operators · · · · · · · · 5-8
5.7 Equality Operators · · · · · · · · · 5-9 (
5.8 Bitwise AND Operator · · · · · · · · 5-9
5.9 Bitwise Exclusive OR Operator · · · · · · · 5-9
5.10 Bitwise Inclusive OR Operator · · · · · · · 5-10
5.11 Logical AND Operator · · · · · · · · 5-10
5.12 Logical OR Operator · · · · · · · · 5-10
5.13 Conditional Operator · · · · · · · · · · 5-11
5.14 Assignment Operators · · · 0 · · · · · 5-11
5.15 Comma Operator · · · · · · · · · 5-12

6. Declarations · · · · · · · · · · 6-1
6.1 Storage Class Specifiers · · · · · · · 6-1
6.2 Type Specifiers · · · · · · · · 6-2
6.3 Declarators · · · · · · · · · 6-3
6.4 Meaning of Declarators · · · · · · · 6-4
6.5 Structure and Union Declarations · · · · 6-7
6.6 Enumeration Declarations · · · · · · · · 6-9 (
6.7 Initialization · · · · · · · · · · · 6-11
6.8 Type Names · · · · · · · · · · · · · 6-13
6.9 Implicit Declarations · 0 · · · · · · · · 6-14
6.10 typedef · · · · · · · · · · 6-14

7. Statements . · · · · · · · · · · · · 7-1
7.1 Expression Statement • 0 · · · · · · 7-1
7.2 Compound Statement or Block · · · · · 7-1
7.3 Conditional Statement • · · · · · · · 7-2
7.4 while Statement · · · · · · · · · 7-2
7.5 do Statement · · · · · · · · · · 7-3
7.6 for Statement · · · · · · · · · · 7-3
7.7 switch Statement · · · · · · · · · 7-4
7.8 break Statement · · · · · · · 7-5
7.9 continue Statement · · · · · · · · 7-5
7.10 return Statement · · · · · · · · · 7-6 (
7.11 goto Statement · · · · · · · · 7-6
7.12 Labeled Statement · · · · · · · 7-6
7.13 Null Statement · · · · · · · · · · · · 7-7

8. External Definitions · · · 0 · · 8-1

8.1
8.2

External Function Definitions
External Data Definitions •

9. Scope Rules . .. •..
9.1 Lexical Scope ••.
9.2 Scope of Externals •

10. Compiler Control lines
10.1 Token Replacement
10.2 File Inclusion. •• •••
10.3 Conditional Compilation • • • •
10.4 Line Control • • • • •

11. Types Revisited • . • . .
11.1 Structures and Unions •••
11.2 Functions . • . • • •
11.3 Arrays, Pointers, and Subscripting
11.4 Explicit Pointer Conversions •

12. Constant Expressions . . •

13. Portability Considerations .•.

14. Syntax Summary
14.1 Expressions • •• •••
14.2 Declarations . . • • •
14.3 Statements • • . • • • .
14.4 External Definitions •••.
14.5 Preprocessor ••.•••

A: C on the IRI5-4D
A.1 vararg.h Macros • • .
A.2 Deviations • • • • • • • • •
A.3 Extensions • • • • • • •
A.4 Translation Limits • • .
A.5 Storage Mapping • • •

A.5.1 Alignment, Size, and Value
Ranges • . • • • .

A.5.2 Arrays, Structures, and Unions
A.5.3 Storage Classes • • • • • .

A.6 Compiler Options • • • • • . • • •

8-1
8-2

9-1
9-1
9-2

10-1
10-1
10-2
10-3
10-4

11-1
11-1
11-2
11-3
11-4

12-1

13-1

14-1
14-1
14-3
14-6
14-7
14-8

A-2
A-1
A-2
A-2
A-3
A-4

A-4
A-5
A-9

A-10

(

(

(

1. Introduction

This document contains a summary of the grammar and syntax rules of the
C Programming Language as implemented on the IRIS-4D Series
workstations. Appendix A discusses details of MIPS C as implemented for
the IRIS-4D Series.

Version 1.0 Introduction 1-1

(

(

(

2. Lexical Conventions

There are six classes of tokens: identifiers, keywords, constants, string
literals, operators, and other separators. Blanks, tabs, new-lines, and
comments (collectively, "white space") as described below are ignored
except as they serve to separate tokens. Some white space is required to
separate otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the
next token is taken to include the longest string of characters that could
possibly constitute a token.

2.1 Comments

The characters 1* introduce a comment that terminates with the characters
*1. Comments do not nest.

2.2 Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a
letter. The underscore C) counts as a letter. Uppercase and lowercase
letters are different. There is no limit on the length of a name. Other
implementations may collapse case distinctions for external names, and may
reduce the number of significant characters for both external and non­
external names.

Version 1.0 Lexical Conventions 2-1

2.3 Keywords

The following identifiers are reserved for use as keywords and may not be
used otherwise:

asm const external long static void
auto default float register struct volatile
break do for return switch while
case double goto short typedef
char else if signed union
continue enum int sizeof unsigned

Some implementations also reserve the word fortran.

2.4 Constants

There are several kinds of constants. Each has a type; an introduction to
types is given in Chapter 3, Storage Oass and Type.

2.4.1 Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if
it begins with 0 (digit zero). An octal constant consists of the digits 0
through 7 only. A sequence of digits preceded by Ox or OX (digit zero) is
taken to be a hexadecimal integer. The hexadecimal digits include a or A
through f or F with values 10 through 15. Otherwise, the integer constant is
taken to be decimal. A decimal constant whose value exceeds the largest
signed machine integer is taken to be long; an octal or hex constant that
exceeds the largest unsigned machine integer is likewise taken to be long.
Otherwise, integer constants are int.

2·2 C Language Reference Manual IRIS-4D Series

(

(

(

2.4.2 Explicit long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by I
(letter ell) or L is a long constant. As discussed below, integer and long
values may be considered identical.

2.4.3 Character Constants

A character constant is a character enclosed in single quotes, as in 'x'. The
value of a character constant is the numerical value of the character in the
machine's character set. Certain nongraphic characters, the single quote (')
and the backslash (\), may be represented according to the escape sequences
shown in Table 2-1.

Character Name Symbol Escape Sequence

new-line NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote \'
corresponding character ddd 'ddd

Table 2-1. Escape Sequences for Nongraphic Characters

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits
that are taken to specify the value of the desired character. A special case of
this construction is \0 (not followed by a digit), which indicates the ASCII
character NUL. If the character following a backslash is not one of those
specified, the behavior is undefined. An explicit new-line character is illegal
in a character constant. The type of a character constant isint.

Version 1.0 Lexical Conventions 2-3

2.4.4 Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction
part, an e or E, and an optionally signed integer exponent. The integer and
fraction parts both consist of a sequence of digits. Either the integer part or
the fraction part (not both) may be missing. Either the decimal point or the (
e and the exponent (not both) may be missing. Every floating constant has ..
type double.

2.4.5 Enumeration Constants

Names declared as enumerators (see Section 6.5, Structure and Union
Declarations and Section 6.6, Enumeration Declarations) have type int.

2.5 String Literals

A string literal is a sequence of characters surrounded by double quotes, as
in" ••• ". A string literal has type "array of char" and storage class static (
(see Chapter 3) and is initialized with the given characters. The compiler
places a null byte (\0) at the end of each string literal so that programs that
scan the string literal can find its end. In a string literal, the double quote
character (") must be preceded by a \; in addition, the same escapes as
described for character constants may be used.

A \ and the immediately following new-line are ignored. All string literals,
even when written identically, are distinct.

2.6 Syntax Notation

Syntactic categories are indicated by italic type and literal words and
characters by bold type. Alternative categories are listed on separate lines.
An optional entry is indicated by the subscript ., opt" , so that

{ expression }
opt

indicates an optional expression enclosed in braces.

2-4 C Language Reference Manual IRIS-4D Series

(

3. Storage Class and Type

The C language bases the interpretation of an identifier upon two attributes
of the identifier: its storage class and its type. The storage class detennines
the location and lifetime of the storage associated with an identifier; the type
detennines the meaning of the values found in the identifier's storage.

3.1 Storage Class

There are four declarable storage classes:

• automatic

• static

• external

• register

Automatic variables are local to each invocation of a block (see Section 7.2,
Compound Statement or Block) and are discarded upon exit from the block.
Static variables are local to a block but retain their values upon reentry to a
block even after control has left the block. External variables exist and
retain their values throughout the execution of the entire program and may
be used for communication between functions, even separately compiled
functions. Register variables are (if possible) stored in the fast registers of
the machine; like automatic variables, they are local to each block and
disappear on exit from the block.

Version 1.0 Storage Class and Type 3-1

3.2 Type

The C language supports several fundamental types of objects. Objects
declared as characters (char) are large enough to store any member of the
implementation's character set. If a genuine character from that character
set is stored in a char variable, its value is equivalent to the integer code for (
that character. Other quantities may be stored into character variables, but .-
the implementation is machine dependent. In particular, char may be
signed or unsigned by default. In this implementation the default is
unsigned.

Up to three sizes of integer, declared short int, int, and long int, are
available. Longer integers provide no less storage than shorter ones, but the
implementation may make either short integers or long integers, or both,
equivalent to plain integers. Plain integers have the natural size suggested
by the host machine architecture. The other sizes are provided to meet
special needs. The sizes are shown in Table 3-1.

Type Size

char
int
short
long
float
double

float range

double range

8 bits
32
16
32
32
64

±10 ±38

±10 ±308

Table 3-1. Hardware Characteristics

The properties of enum types (see Chapter 6, Declarations) are identical to
those of some integer types. The implementation may use the range of
values to determine how to allot storage.

(

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo (
2n where n is the number of bits in the representation.

Single-precision floating point (float) and double precision floating point
(double) may be synonymous in some implementations. This is not the case
in this implementation.

3·2 C Language Reference Manual IRIS-4D Series

Because objects of the foregoing types can usefully be interpreted as
numbers, they will be referred to as arithmetic types. Char, int of all sizes
whether unsigned or not, and enum will collectively be called integral
types. The float and double types will collectively be called floating types.
Arithmetic types and pointers will be collectively referred to as scalar
types.

The void type specifies an empty set of values. It is used as the type
returned by functions that generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite
class of derived types constructed from the fundamental types in the
following ways:

• arrays of objects of most types

• functions that return objects of a given type

• pointers to objects of a given type

• structures containing a sequence of objects of various types

• unions capable of containing anyone of several objects of various types

In general these methods of constructing objects can be applied recursively.

3.3 Objects and Ivalues

An object is a manipulatable region of storage. An lvalue is an expression
referring to an object. An obvious example of an lvalue expression is an
identifier. There are operators that yield lvalues: for example, if E is an
expression of pointer type, then * E is an lvalue expression referring to the
object to which E points. The name "lvalue" comes from the assignment
expression El = E2 in which the left operand El must be an lvalue
expression. The discussion of each operator below indicates whether it
expects lvalue operands and whether it yields an lvalue.

Version 1.0 Storage Class and Type 3-3

(

(

(

4. Operator Conversions

A number of operators may, depending on their operands, cause conversion
of the value of an operand from one type to another. This part explains the
result to be expected from such conversions. The conversions demanded by
most ordinary operators are summarized under Arithmetic Conversions in
this chapter. The summary will be supplemented as required by the
discussion of each operator.

4.1 Characters and Integers

A character or a short integer may be used wherever an integer may be used.
In all cases the value is converted to an integer. Conversion of a shorter
integer to a longer preserves sign. It is guaranteed that a member of the
standard character set is non-negative.

On machines that treat characters as signed, the characters of the AScn set
are all non-negative. However, a character constant specified with an octal
escape suffers sign extension and may appear negative; for example, ''1377'
has the value -1.

When a longer integer is converted to a shorter integer or to a char, it is
truncated on the left. Excess bits are simply discarded.

Version 1.0 Operator Conversions 4-1

4.2 Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a
float appears in an expression it is lengthened to double by zero padding its
fraction. When a double must be converted to float, for example by an
assignment, the double is rounded before truncation to float length. This (
result is undefined if it cannot be represented as a float. This
implementation supports an extension (invoked by the -float switch) which
will limit the precision in which floating-point expressions are computed to
float, unless the expression contains doubles.

4.3 Floating and Integral

Conversions of floating values to integral type are rather machine
dependent. In particular, the direction of truncation of negative numbers
varies. The result is undefined if it will not fit in the space provided.

Conversions of integral values to floating type behave well. Some loss of
accuracy occurs if the destination lacks sufficient bits.

4.4 Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer;
in such a case, the first is converted as specified in the discussion of the
addition operator. Two pointers to objects of the same type may be
subtracted; in this case, the result is converted to an integer as specified in
the discussion of the subtraction operator.

4-2 C Language Reference Manual IRIS·4D Series

(

(

4.5 Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain
integer is converted to unsigned and the result is unsigned. The value is the
least unsigned integer congruent to the signed integer (modulo 2wordsize). In
a 2's complement representation, this conversion is conceptual; and there is
no actual change in the bit pattern.

When an unsigned short integer is converted to long, the value of the result
is the same numerically as that of the unsigned integer. Thus, the
conversion amounts to padding with zeros on the left.

4.6 Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar
way. This pattern will be called the "usual arithmetic conversions."

1. First, any operands of type char or short are converted to int, and any
operands of type unsigned char or unsigned short are converted to
unsigned int.

2. Then, if either operand is float or double, both are converted to double
and that is the type of the result. (Floats are not extended to doubles in
some instances if the -float switch is used. See Section A.6, Compiler
Options.)

3. Otherwise, if either operand is unsigned long, the other is converted to
unsigned long and that is the type of the result.

4. Otherwise, if either operand is long, the other is converted to long and
that is the type of the result.

5. Otherwise, if one operand is long, and the other is unsigned int, they are
both converted to unsigned long and that is the type of the result.

6. Otherwise, if either operand is unsigned, the other is converted to
unsigned and that is the type of the result.

7. Otherwise, both operands must be int, and that is the type of the result.

Version 1.0 Operator Conversions 4-3

4.7 Void

The (nonexistent) value of a void object may not be used in any way, and
neither explicit nor implicit conversion may be applied. Because a void
expression denotes a nonexistent value, such an expression may be used
only as an expression statement (see Section 7.1, Expression Statement) or (
as the left operand of a comma expression (see Section 5.15, Comma
Operator).

An expression may be converted to type void by use of a cast. For example,
this makes explicit the discarding of the value of a function call used as an
expression statement.

4-4 C Language Reference Manual IRIS-4D Series

(

(

5. Expressions and Operators

The precedence of expression operators is the same as the order of the major
subsections of this section, highest precedence first. Thus, for example, the
expressions referred to as the operands of + (see Additive Operators in this
chapter) are those expressions defined under Primary Expressions, Unary
Operators; and Multiplicative Operators in this chapter. Within each
subpart, the operators have the same precedence. Left- or right-associativity
is specified in each subsection for the operators discussed therein. The
precedence and associativity of all the expression operators are summarized
in the grammar of Chapter 14, Syntax Summary.

Otherwise, the order of evaluation of expressions is undefined. In particular,
the compiler considers itself free to compute subexpressions in the order it
believes most efficient even if the subexpressions involve side effects.
Expressions involving a commutative and associative operator (*, +, &, I. A)
may be rearranged arbitrarily even in the presence of parentheses; to force a
particular order of evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is
undefined. Most existing implementations of C ignore integer overflows;
treatment of division by 0 and all floating-point exceptions varies between
machines and is usually adjustable by a library function.

Version 1.0 Expressions and Operators 5-1

5.1 Primary Expressions

Primary expressions involving ., ->, subscripting, and function calls group
left to right.

primary-expression:
identifier
constant
string literal
(expression)
primary-expression.[expression J
primary-expression (. expression-list t)
primary-e.xpression . identifier op
primary-expression -> identifier

expression-list:
expression
expression-list. expression

(

An identifier is a primary expression provided it has been suitably declared
as discussed below. Its type is specified by its declaration. If the type of the
identifier is "array of ... ", then the value of the identifier expression is a
pointer to the first object in the array; and the type of the expression is (
"pointer to ... ". Moreover, an array identifier is not an lvalue expression.
Likewise, an identifier that is declared "function returning ... ", when used
except in the function-name position of a call, is converted to "pointer to
function returning ... ".

A constant is a primary expression. Its type may be int, long. or double
depending on its form. Character constants have type int and floating
constants have type double.

A string literal is a primary expression. Its type is originally "array of
char". but following the same rule given above for identifiers, this is
modified to "pointer to char" and the result is a pointer to the first character
in the string literal. (There is an exception in certain initializers; see Section
6.7. Initialization.)

A parenthesized expression is a primary expression whose type and value (
are identical to those of the unadorned expression. The presence of
parentheses does not affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a
primary expression. The intuitive meaning is that of a subscript. Usually,

5-2 C Language Reference Manual IRI5-4D Series

the primary expression has type "pointer to ... ", the subscript expression is
int, and the type of the result is " ... ". The expression El [E2] is identical
(by definition) to *«El)+(E2)). All the clues needed to understand this
notation are contained in this subpart together with the discussions on
identfiers in "Unary Operators" and "Additive Operators" in this chapter, *
and +, respectively. The implications are summarized in Section 11.3,
Arrays, Pointers, and Subscripting.

A function call is a primary expression followed by parentheses containing a
possibly empty, comma-separated list of expressions that constitute the
actual arguments to the function. The primary expression must be of type
"function returning ... ", and the result of the function call is of type " ... ".
As indicated below, a hitherto unseen identifier followed immediately by a
left parenthesis is contextually declared to represent a function returning an
integer.

If a corresponding function prototype is in force which specifies a type for
the argument being evaluated, it is converted to that type. Otherwise, the
argument is converted according to the following default argument
promotions:

• type float is converted to double

• types unsigned short and unsigned char are converted to unsigned int

• types signed short and signed char are converted to signed int

• array and function names are converted to nd functions

In preparing for the call to a function, a copy is made of each actual
parameter. Thus, all argument passing in C is strictly by value. A function
may change the values of its formal parameters, but these changes cannot
affect the values of the actual parameters. It is possible to pass a pointer on
the understanding that the function may change the value of the object to
which the pointer points. An array name is a pointer expression. As the
order of evaluation of arguments is undefined by the language, this
implementation reserves the right to evaluate arguments in whatever order is
considered optimal. In particular, side effects of the argument evaluation
(e.g. postincrement) may be delayed until after all arguments are evaluated.
Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an
expression. The first expression must be a structure or a union, and the

Version 1.0 Expressions and Operators 5·3

identifier must name a member of the structure or union. The value is the
named member of the structure or union, and it is an Ivalue if the first
expression is an Ivalue.

A primary expression followed by an arrow (built from - and >) followed
by an identifier is an expression. The first expression must be a pointer to a (
structure or a union and the identifier must name a member of that structure
or union. The result is an Ivalue referring to the named member of the
structure or union to which the pointer expression points. Thus the
expression El->MOS is the same as (*El).MOS. Structures and unions
are discussed in Chapter 6.

5.2 Unary Operators

Expressions with unary operators group right to left.

unary-expression:
* expression
& lvalue
- expression
! expression
~ expression
++ [value
--lvalue
Ivalue ++
lvalue --
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means "indirection"; the expression must be a pointer,
and the result is an lvalue referring to the object to which the expression
points. If the type of the expression is "pointer to ... ", the type of the result
is" ... ".

The result of the unary & operator is a pointer to the object referred to by
the lvalue. If the type of the lvalue is " ... ", the type of the result is "pointer
to ... ".

5·4 C Language Reference Manual IRIS-4D Series

(

(

The result of the unary - operator is the negative of its operand. The usual
arithmetic conversions are perfonned. The negative of an unsigned quantity
is computed by subtracting its value from 2n where n is the number of bits
in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator! is one if the value of its
operand is zero, zero if the value of its operand is nonzero. The type of the
result is int. It is applicable to any arithmetic type or to pointers.

The ~ operator yields the 1 's complement of its operand. The usual
arithmetic conversions are perfonned. The type of the operand must be
integral.

The object referred to by the lvalue operand of prefix ++ is incremented.
The value is the new value of the operand but is not an lvalue. The
expression ++x is equivalent to x += 1. See the discussions "Additive
Operators" and "Assignment Operators" for infonnation on conversions.

The lvalue operand of prefix - - is decremented analogously to the prefix
++ operator.

When postfix ++ is applied to an Ivalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is incremented
in the same manner as for the prefix ++ operator. The type of the result is
the same as the type of the lvalue expression.

When postfix - - is applied to an lvalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is decremented
in the manner as for the prefix - - operator. The type of the result is the
same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes
conversion of the value of the expression to the named type. This
construction is called a cast. Type names are described in Section 6.8, Type
Names.

Version 1.0 Expressions and Operators 5-5

The sizeof operator yields the size in bytes of its operand. (A byte is
undefined by the language except in terms of the value of sizeof. However,
in all existing implementations, a byte is the space required to hold a char.)
When applied to an array, the result is the total number of bytes in the array.
The size is determined from the declarations of the objects in the expression.
This expression is semantically an unsigned constant and may be used (
anywhere a constant is required. Its major use is in communication with
routines like storage allocators and I/O systems.

The sizeof operator may also be applied to a parenthesized type name. In
that case it yields the size in bytes of an object of the indicated type.

The construction sizeof(type) is taken to be a unit, so the expression
sizeof(type)-2 is the same as (sizeof(type »)-2.

5.3 MultipUcative Operators

The multiplicative operators *. /, and % group left to right. The usual
arithmetic conversions are performed.

multiplicative expression:
expression * expression
expression / expression
expression % expression

The binary * operator indicates multiplication. The * operator is
associative, and expressions with several multiplications at the same level
may be rearranged by the compiler. The binary / operator indicates division.
The operands must be arithmetic.

The binary % operator yields the remainder from the division of the first
expression by the second. The operands must be integral.

When positive integers are divided, truncation is toward 0; but the form of
truncation is machine-dependent if either operand is negative. On all
machines covered by this manual, the remainder has the same sign as the
dividend. It is always true that (aIb)*b + a %b is equal to a (if b is not 0).

5·6 C Language Reference Manual IRIS-4D Series

(

(

5.4 Additive Operators

The additive operators + and - group left to right. The usual arithmetic
conversions are performed. In general, the operands must be of arithmetic
type; however there are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an
object in an array and a value of any integral type may be added. The latter
is in all cases converted to an address offset by multiplying it by the length
of the object to which the pointer points. The result is a pointer of the same
type as the original pointer that points to another object in the same array,
appropriately offset from the original object. Thus if P is a pointer to an
object in an array, the expression P+l is a pointer to the next object in the
array. No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the
same level may be rearranged by the compiler.

The result of the - operator is the difference of the operands. The usual
arithmetic conversions are performed. Additionally, a value of any integral
type may be subtracted from a pointer, and then the same conversions for
addition apply.

If two pointers to objects of the same type are subtracted, the result is
converted (by division by the length of the object) to an iot representing the
number of objects separating the pointed-to objects. This conversion will in
general give unexpected results unless the pointers point to objects in the
same array, since pointers, even to objects of the same type, do not
necessarily differ by a multiple of the object length.

Version 1.0 Expressions and Operators 5-7

5.5 Shift Operators

The shift operators « and » group left to right. Both perfonn the usual
arithmetic conversions on their operands, each of which must be integral.
Then the right operand is converted to int; the type of the result is that of the
left operand. The result is undefined if the right operand is negative or (~
greater than or equal to the length of the object in bits.

shift-expression:
expression < < expression
expression> > expression

The value of El«E2 is El (interpreted as a bit pattern) left-shifted E2 bits.
Vacated bits are 0 filled. The value ofEl»E2 is El right-shifted E2 bit
positions. The right shift is guaranteed to be logical (0 fill) if El is
unsigned; otherwise, it may be arithmetic.

5.6 Relational Operators

The relational operators group left to right.

relational-expression:
expression < expression
expression> expression
expression <= expression
expression >= expression

The operators < (less than). > (greater than), <= (less than or equal to), and
>= (greater than or equal to) all yield 0 if the specified relation is false and I
if it is true. The operands must be arithmetic or compatible pointers. The
type of the result is int. The usual arithmetic conversions are perfonned.
Two pointers may be compared; the result depends on the relative locations
in the address space of the pointed-to objects. Pointer comparison is
portable only when the pointers point to objects in the same array.

5·8 C Language Reference Manual IRIS-4D Series

(

(

5.7 Equality Operators

equality-expression:
expression == expression
expression! = expression

The == (equal to) and the != (not equal to) operators are exactly analogous
to the relational operators except for their lower precedence. (Thus
a<b == c<d is I whenever a<b and c<d have the same truth value.) The
operands must be arithmetic or compatible pointers.

A pointer may be compared to an integer only if the integer is the constant
O. A pointer to which a has been assigned is guaranteed not to point to any
object and will appear to be equal to O. In conventional usage, such a
pointer is considered to be null.

5.8 Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be
rearranged. The usual arithmetic conversions are perfonned. The result is
the bitwise AND function of the operands. The operator applies only to
integral operands.

5.9 Bitwise Exclusive OR Operator

exclusive-or-expression:
expression A expression

The " operator is associative, and expressions involving 1\ may be
rearranged. The usual arithmetic conversions are perfonned; the result is
the bitwise exclusive OR function of the operands. The operator applies
only to integral operands.

Version 1.0 Expressions and Operators 5-9

5.10 Bitwise Inclusive OR Operator

inclusive-or-expression:
expression / expression

The \ operator is associative, and expressions involving \ may be rearranged. (
The usual arithmetic conversions are performed~ the result is the bitwise
inclusive OR function of its operands. The operator applies only to integral
operands.

5.11 Logical AND Operator

logical-and-expression: .
expression && expression

The && operator groups left to right. It returns 1 if both its operands
evaluate to nonzero, 0 otherwise. Unlike &, && guarantees left to right
evaluation; moreover, the second operand is not evaluated if the first
operand evaluates to O. (

The operands need not have the same type, but must be scalar. The result is
always int.

5.12 Logical OR Operator

logical-or-expression:
expression / / expression

The \I operator groups left to right. It returns I if either of its operands
evaluates to nonzero, 0 otherwise. Unlike \, \I guarantees left to right
evaluation; moreover, the second operand is not evaluated if the value of the
first operand evaluates to nonzero.

The operands need not ~ave the same type, but each must be scalar. The
result is always into

5-10 C Language Reference Manual IRIS-4D Series

c

5.13 Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is
evaluated; and if it is nonzero, the result is the value of the second
expression, otherwise that of third expression. If possible, the usual
arithmetic conversions are performed to bring the second and third
expressions to a common type. If both are structures or unions of the same
type, the result has the type of the structure or union. If both pointers are of
the same type, the result has the common type. Otherwise, one must be a
pointer and the other the constant 0, and the result has the type of the
pointer. Only one of the second and third expressions is evaluated.

5.14 Assignment Operators

There are a number of assignment operators, all of which group right to left.
All require an lvalue as their left operand, and the type of an assignment
expression is that of its left operand. The value is the value stored in the left
operand after the assignment has taken place.

assignment-expression:
Ivalue = expression
lvalue += expression
lvalue -= expression
lvalue *= expression
lvalue /= expression
lvalue %= expression
lvalue »= expression
lvalue «= expression
lvalue &= expression
Ivalue = expression
lvalue / = expression

In the simple assignment with =, the value of the expression replaces that of
the object referred to by the lvalue. If both operands have arithmetic type,
the right operand is converted to the type of the left preparatory to the
assignment. Second, both operands may be structures or unions of the same

Version 1.0 Expressions and Operators 5-11

type. Finally, if the left operand is a pointer, the right operand must in
general be a pointer of the same type. However, the constant 0 may be
assigned to a pointer; it is guaranteed that this value will produce a null
pointer distinguishable from a pointer to any object.

The behavior of an expression of the form El op = E2 may be inferred by
taking it as equivalent to El = El op (E2); however, El is evaluated only (
once. In += and -=, the left operand may be a pointer, in which case the
(integral) right operand is converted as explained in "Additive Operators" in
this chapter. All right operands and all nonpointer left operands must have
arithmetic type.

5.15 Comma Operator

comma-expression:
expression, expression

A pair of expressions separated by a comma is evaluated left to right, and
the value of the left expression is discarded. The type and value of the result
are the type and value of the right operand. This operator groups left to (
right. In contexts where comma is given a special meaning, e.g., in lists of .
actual arguments to functions (see Section 5.1, Primary Expressions) and
lists of initializers (see Section 6.7, Initialization), the comma operator as
described in this section can only appear in parentheses. For example,

f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

(:

5·12 C Language Reference Manual IRIS-4D Series

6. Declarations

Declarations are used to specify the intetpretation that C gives to each
identifier; they do not necessarily reserve storage associated with the
identifier. Declarations have the form

declaration:
decl-specifiers declarator-list ;

opt
The declarators in the declarator-list contain the identifiers being declared.
The decl-specifiers consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers
sc-specifier decl-specifiers opt

opt
The list must be self-consistent in a way described below.

6.1 Storage Class Specifiers

The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a "storage class
specifier" only for syntactic convenience. See Section 6.10, typedef for
more information. The meanings of the various storage classes were
discussed in Chapter 2, Lexical Conventions.

Version 1.0 Declarations 6·1

The auto, static, and register declarations also serve as definitions in that
they cause an appropriate amount of storage to be reserved. In the extern
case, there must be an external definition (see Chapter 8, External
Definitions) for the given identifiers somewhere outside the function in
which they are declared.

A register declaration is best thought of as an auto declaration, together (
with a hint to the compiler that the variables declared will be heavily used.
Only the first few such declarations in each function are effective.
Moreover, only variables of certain types will be stored in registers. One
other restriction applies to variables declared using register storage class:
the address-of operator, &, cannot be applied to them. Smaller, faster
programs can be expected if register declarations are used appropriately.

At most, one sc-specifier may be given in a declaration. If the sc-specifier is
missing from a declaration, it is taken to be auto inside a function, extern
outside. Exception: functions are never automatic.

6.2 Type Specifiers

The type-specifiers are

type-specifier:
struct-or-union-specifier
typedej-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
signed
unsigned
float
double
void

6-2 C Language Reference Manual IRIS-4D Series

(

(

At most one of the words long or short may be specified in conjunction
with int; the meaning is the same as if int were not mentioned. The word
long may be specified in conjunction with float; the meaning is the same as
double. Either signed or unsigned may be specified alone, or in
conjunction with int or any of its short or long varieties, or with char.

Otherwise, at most on type-specifier may be given in a declaration. In
particular, adjectival use of long, short, or unsigned is not permitted with
typedef names. If the type-specifier is missing from a declaration, it is
taken to be int.

Specifiers for structures, unions, and enumerations are discussed in later in
this chapter. Declarations with typedef names are discussed in "typedef' in
this chapter.

6.3 Declarators

The declarator-list appearing in a declaration is a comma-separated
sequence of declarators, each of which may have an initializer:

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator initializer opt

Initializers are discussed in Section 6.7, Initialization. The specifiers in the
declaration indicate the type and storage class of the objects to which the
declarators refer. Declarators have the syntax:

declarator:
identifier
(declarator)
* declarator
declarator (parameter-type-list ~

declarator [constant-expressiO~Pt J

The grouping is the same as in expressions.

Version 1.0 Declarations 6·3

6.4 Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the
same form as the declarator appears in an expression, it yields an object of
the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is
declared. If an unadorned identifier appears as a declarator, then it has the
type indicated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the
binding of complex declarators may be altered by parentheses. See the
examples below. ..

Now imagine a declaration

TDI

where T is a type-specifier Qike int, etc.) and Dl is a declarator. Suppose
this declaration makes the identifier have type " . .. T", where the " ... " is
empty if Dl is just a plain identifier (so that the type of x in "int x" is just
int). Then if Dl has the form

*D

the type of the contained identifier is " ... pointer to T ."

If Dl has the form

D (parameter-type-list opt)

then the contained identifier has the type I, ... function returning. T."

If Dl has the form

D[constant-expression 1

or

D[]

then the contained identifier has type " . .. array of T," In the first case, the
constant expression is an expression whose value is determinable at compile

(

(

time, whose type is int, and whose value is positive. (Constant expressions (
are defined precisely in Chapter 12.) When several "array of" specifications
are adjacent, a multi-dimensional array is created; the constant expressions
that specify the bounds of the arrays may be missing only for the first
member of the sequence. This elision is useful when the array is external

6·4 C Language Reference Manual IRIS-4D Series

and the actual definition, which allocates storage, is given elsewhere. The
first constant expression may also be omitted when the declarator is
followed by initialization. In this case the size is calculated from the
number of initial elements supplied.

An array may be constructed from one of the basic types, from a pointer,
from a structure or union, or from another array (to generate a multi­
dimensional array).

A parameter-type-list declares the types of, and may declare identifiers for,
the fonnal parameters of a function. When a function is invoked for which a
function prototype is in scope, each actual parameter is converted to the type
of the corresponding fonnal parameter specified in the function prototype.
After this conversion, any parameter of size less than that of type int is
widened according to the default argument promotions. In particular, floats
specified in the type list are not converted to double before the call. If the
list tenninates with an elipsis (...), only the parameters specified in the
prototype have their types checked; additional parameters are converted
according to the default argument promotions (see Section 5.1). Otherwise,
the number of parameters appearing in the parameter list at the point of call
must agree in number with those in the function prototype. Neither the
absence of a parameter-type-list nor the definition of the prototype function
indicate any infonnation about the number and/or types of the function
parameters which is used during argument conversion, i.e., only the
infonnation supplied by the prototype is used to supercede the default
argument promotions.

The following is an example of function prototypes:

double foo(int *first, float second, •••);
int *fip(int a, long I, int (*fl)(float»;

The first prototype declares a function foo, returning a double, which has (at
least) two parameters: a pointer to an int, and a float. Further parameters
may appear in an instance of the function, and are unspecified. The second
prototype declares a function fip, which returns a pointer to an int. fip has
three parameters: an int, a long, and a pointer to a function returning an int
which has a single (float) argument.

Version 1.0 Declarations 6-5

Not all the possibilities allowed by the syntax above are actually permitted.
The restrictions are as follows: functions may not return arrays or functions
although they may return pointers; there are no arrays of functions although
there may be arrays of pointers to functions. Likewise, a structure or union
may not contain a function; but it may contain a pointer to a function.

As an example, the declaration

int i, *ip, fO, *fipO, (*pfi)O;

declares an integer i, a pointer ip to an integer, a function f returning an
integer, a function fip returning a pointer to an integer, and a pointer pfi to a
function, which returns an integer. It is especially useful to compare the last
two. The binding of *fipO is *(fip(». The declaration suggests, and the
same construction in an expression requires, the calling of a function fip,
and then using indirection through the (pointer) result to yield an integer. In
the declarator (*pfi)0, the extra parentheses are necessary, as they are also
in an expression, to indicate that indirection through a pointer to a function
yields a function, which is then called; it returns an integer.

As another example,

float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. (
Finally,

static int x3d[3][S][7];

declares a static 3-dimensional array of integers, with rank 3x5><7. In
complete detail, x3d is an array of three items; ea~ item is an array of five
arrays; each of the latter arrays is an array of seven integers. Any of the
expressions x3d, x3d [i], x3d [i] U], x3d [i][j][k] may reasonably appear in
an expression. The first three have type "array" and the last has type int.

6-6 C Language Reference Manual IRI5-4D Series

(

6.5 Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each
member may have any type. A union is an object that may, at a given time,
contain anyone of several members. Structure and union specifiers have the
same fonn.

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the
structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a
structure or union. A structure member may also consist of a specified
number of bits. Such a member is also called a field; its length, a non­
negative constant expression, is separated from the field name by a colon.

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

Within a structure, the objects declared have addresses that increase as the
declarations are read left to right. Each non-field member of a structure
begins on an addressing boundary appropriate to its type; therefore, there
may be unnamed holes in a structure. Field members are packed into
machine integers; they do not straddle words. A field that does not fit into

Version 1.0 Declarations 6-7

the space remaining in a word is put into the next word. No field may be
wider than a word. (See Section A.S for the sizes of basic types.)

A struct~dec1arator with no declarator, only a colon and a width, indicates an
unnamed field useful for padding to confonn to extema11y~imposed layouts.
As a special case, a field with a width of 0 specifies alignment of the next (_
field at an implementation dependent boundary.

The language does not restrict the types of things that are deolared as fields.
Moreover, even int fields may be considered to be unsigned. For these
reasons, it is strongly recommended that fields·be declared as unsigned
where that is the intent. There are no arrays of fields, and the address~of
operator, &, may not be applied to them, so that there are no PQinters to
fields. . ..,

A union may be thought of as a structure all of whose members begin at
offsetO and who~e size is sufficient to «OJ;ltain any of its members. At most,
one of the members can be stored in a union at any time.

A structure or union specifier of the second fonn, that is, one of

struct identifier { struct~decl~list }
union identifier { struct~decl~list }

declares the identifier to be the structure tag (or union tag) of the structure (
specified by the list. A subsequent declaration may then use the third fonn
of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self':'referential structures. Structure tags
also pennit the long part of the declaration to be given once and used several
times. It is illegal to declare a structure or union that contains an instance of
itself, but a structure or union may contain a pointer to an instance of itself.

The third fonn of a structure or union specifier may be used prior to a
declaration that gives the complete specification of the structure or union in
situations in which the size of the structure or union is unnecessary. The
size is unnecessary in two situations: when a pointer to a structure or union
is being declared and when a typedef name is declared to be a synonym for (
a structure or union. This, for example, allows the declaration of a pair of
structures that contain pointers to each other.

6-8 C Language Reference Manual IRIS-4D Series

--- --------------- - -----_. --------

The names of members do not conflict with each other or with ordinary
variables. A particular member name may not be used twice in the same
structure, but it may be used in several different structures in the same
scope. Names which are used for tags do not conflict with other names or
with names used for tags in an enclosing scope.

A simple but important example of a structure declaration is the following
binary tree structure:

struct tnode
{

} ;

char tword [201 ;
int count;
struct tnode *left;
struct tnode *right;

which contains an array of 20 characters, an integer, and two pointers to
similar structUres. Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a
structure of the given sort. With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s.lefl

refers to the left subtree pointer of the structure s; and

s.right->tword [0]

refers to the first character of the tword member of the right subtree of s.

6.6 Enumeration Declarations

Enumeration variables and constants have integral type.

Version 1.0 Declarations 6-9

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and may appear
wherever constants are required. If no enumerators with = appear, then the
value~ ofthes:orresponding constants begin at ° and increase by 1 as the
declaration is read from left to right. An enumerator with = gives the
associated identifier the value indicated; subsequent identifiers continue the
progression from the assigned value.

The names of enumerators in the same scope must all be distinct from each
other and from those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to that
of the structure tag in a struct-specifier; it names a particular enumeration.
For example,

enum color { chartreuse, burgundy, claret-20, w~nedark }:

enum color *cp, col:

col - claret;
cp = &col:

if (*cp -= burgundy)

makes color the enumeration-tag of a type describing various colors, and
then declares cp as a pointer to an object of that type and col as an object of
that type. The possible values are drawn from the set {O,1,20,21}.

6-10 C Language Reference Manual IRIS-4D Series

(

(

(,

6.7 Initialization

A declarator may specify an initial value for the identifier being declared.
The initializer is preceded by = and consists of an expression or a list of
values nested in braces.

initializer:
= expression
= { initializer-list}
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external variable must be
constant expressions, which are described in Chapter 12, Constant
Expressions, or expressions that reduce to the address of a previously
declared variable, possibly offset by a constant expression. Automatic or
register variables may be initialized by arbitrary expressions involving
constants and previously declared variables and functions.

Static and external variables that are not initialized are guaranteed to start
off as zero. The value of automatic and register variables that are not
initialized is undefined.

When an initializer applies to a scalar (a pointer or an object of arithmetic
type), it consists of a single expression, perhaps in braces. The initial value
of the object is taken from the expression; the same conversions as for
assignment are performed.

When the declared variable is an aggregate (a structure or array), the
initializer consists of a brace-enclosed, comma-separated list of initializers
for the members of the aggregate written in increasing subscript or member
order. If the aggregate contains subaggregates, this rule applies recursively
to the members of the aggregate. If there are fewer initializers in the list
than there are members of the aggregate, then the aggregate is padded with
zeros. It is not permitted to initialize unions or automatic aggregates.

Braces may in some cases be omitted. If the initializer begins with a left
brace, then the succeeding comma-separated list of initializers initializes the
members of the aggregate; it is erroneous for there to be more initializers

Version 1.0 Declarations 6-11

than members. If, however, the initializer does not begin with a left brace,
then only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to initialize the
next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string literal. (
In this case successive characters of the string literal initialize the members
of the array.

For example,

int x [] = { 1,3,5 };

declares and initializes x as a one-dimensional array that has three members,
since no size was specified and there are three initializers.

float y[4][3] =
{

};

{ 1,3,5 },
{ 2,4,6},
{3, 5, 7},

is a completely-bracketed initialization: 1,3, and 5 initialize the first row of ("
the array y[O], namelyy[O][O], y[O][I], and y[O][2]. Likewise, the next
two lines initialize y[l] and y[2]. The initializer ends early and therefore
y[3] is initialized with O. Precisely, the same effect could have been
achieved by

float y[4][3] =
{

1, 3, 5, 2, 4, 6, 3, 5, 7
};

The initializer for y begins with a left brace but that for y [0] does not;
therefore, three elements from the list are used. Likewise, the next three are
taken successively for y[l] and y[2]. Also,

float y[4][3] =
{

{ 1 }, { 2 }, { 3 }, { 4 }
};

initializes the first column of y (regarded as a two-dimensional array) and
leaves the rest O.

6-12 C Language Reference Manual IRIS-4D Series

(

Finally,

char msg [] = "Syntax error on line % sm" ;

shows a character array whose members are initialized with a string literal.
The length of the string (or size of the array) includes the tenninating NUL
character, \0.

6.8 Type Names

In three contexts (to specify type conversions explicitly by means of a cast,
in a function prototype, and as an argument of sizeof) , it is desired to supply
the name of a data type; This is accomplished using a "type name", which
in essence is a declaration for an object of that type that omits the name of
the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator (parameter-type-list ~

abstract-declarator [constant-expressiO~Pt]

To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it
is possible to identify uniquely the location in the abstract-declarator where
the identifier would appear if the construction were a declarator in a
declaration. The named type is then the same as the type of the hypothetical
identifier. For example,

int
int *
int *[3]
int (*) [3]
int * ()
int (*) ()
int (* [3]) 0

Version 1.0 Declarations 6-13

name respectively the types "integer", "pointer to integer", "array of three
pointers to integers", "pointer to an array of three integers". "function
returning pointer to integer", "pointer to function returning an integer", and
"array of three pointers to functions returning an integer. "

6.9 Implicit Declarations

It is not always necessary to specify both the storage class and the type of
identifiers in a declaration. The storage class is supplied by the context in
external definitions and in declarations of formal parameters and structure
members. In a declaration inside a function, if a storage class but no type is
given, the identifier is assumed to be int; if a type but no storage class is
indicated, the identifier is assumed to be auto. An exception to the latter
rule is made for functions because auto functions do not exist. If the type of
an identifier is "function returning ... ", it is implicitly declared to be
extern.

In an expression, an identifier followed by (and not already declared is
contextually declared to be "function returning int".

6.10 typedef

Declarations whose "storage class" is typedef do not define storage but
instead define identifiers that can be used later as if they were type keywords
naming fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier
appearing as part of any declarator therein becomes syntactically equivalent
to the type keyword naming the type associated with the identifier in the
way described in Section 6.4, Meaning of Declarators.

6·14 C Language Reference Manual IRIS-4D Series

(

(

(

For example, after

typedefint MILES, *KLICKSP;
typedef struct { double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is
"pointer to int", and that of z is the specified structure. The zp is a pointer
to such a structure.

The typedef does not introduce brand-new types, only synonyms for types
that could be specified in another way. Thus in the example above distance
is considered to have exactly the same type as any other int object.

Version 1.0 Declarations 6·15

(

(

(

7. Statements

Except as indicated, statements are executed in sequence.

7.1 Expression Statement

Most statements are expression statements, which have the form

expression;

Usually expression statements are assignments or function calls.

7.2 Compound Statement or Block

So that several statements can be used where one is expected, the compound
statement (also, and equivalently, called "block") is provided:

compound-statement:
{ declaration-list opt statement-list opt}

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the
outer declaration is hidden for the duration of the block, after which it
resumes its force.

Version 1.0 Statements 7-1

Any initializations of auto or register variables are perfOlmed each time the
block is entered at the top. It is currently possible (but a bad practice) to
transfer into a block; in that case the initializations are not performed.
Initializations of static variables are performed only once when the program
begins execution. Inside a block, extern declarations do not reserve storage
so their initialization is not permitted.

7.3 Conditional Statement

The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

In both cases, the expression is evaluated; if it is nonzero, the first
substatement is executed. If it is zero, the second substatement is executed.
An else clause which follows multiple sequential else-less if statements is
associated with the most recent one in the same block (i.e., not in an
enclosed block).

7.4 while Statement

The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the
expression remains nonzero. The test takes place before each execution of
the statement.

7·2 C Language Reference Manual IRIS-4D Series

(

(

(

7.5 do Statement

The do statement has the fonn

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression
becomes O. The test takes place after each execution of the statement.

7.6 for Statement

The for statement has the fonn:

for (exp-1opt .. exp-2 opt" exp-3 opt) statement

Except for the behavior of continue, this statement is equivalent to

exp-l;
while (exp-2)
{

}

statement
exp-3 ..

Thus the first expression specifies initialization for the loop; the second
specifies a test, made before each iteration, such that the loop is exited when
the expression becomes O. The third expression often specifies an
incrementing that is perfonned after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes the
implied while clause equivalent to while(l); other missing expressions are
simply dropped from the expansion above.

Version 1.0 Statements 7-3

7.7 switch Statement

The switch statement causes control to be transferred to one of several
statements depending on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the
result must be int. The statement is typically compound. Any statement
within the statement may be labeled with one or more case prefixes as
follows:

case constant-expression:

where the constant expression must be int. No two of the case constants in
the same switch may have the same value. Constant expressions are
precisely defined in Chapter 12.

There may also be at most one statement prefix of the form

default:

which properly goes at the end of the case constants.

(

When the switch statement is executed, its expression is evaluated and (-
compared in turn with each case constant. If one of the case constants is
equal to the value of the expression, control is passed to the statement
following the matched case prefix. If no case constant matches the
expression and if there is a default prefix, control passes to the statement
prefixed by default. If no case matches and if there is no default, then none
of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which
continues unimpeded across such prefixes. That is, once a case constant is
matched, all case statements (and the default) from there to the end of the
switch are executed. To exit from a switch, see Section 7.8, break.

Usually, the statement that is the subject of a switch is compound.
Declarations may appear at the head of this statement, but initializations of
automatic or register variables are ineffective.

7-4 C Language Reference Manual IRIS-4D Series

(

A simple example of a complete switch statement is:

switch (c) {
case '0':

case 'p':

case 'r':

default :

7.8 break Statement

of lag = TRUE;
break;

pflag = TRUE;
break;

rflag = TRUE;
break;

(void) fprintf(stderr,
"Unknown option\n");

exit(2);

The statement break ; causes termination of the smallest enclosing while,
do, for, or switch statement; control passes to the statement following the
terminated statement.

7.9 continue Statement

The statement continue ; causes control to pass to the loop-continuation
portion of the smallest enclosing while, do, or for statement; that is to the
end of the loop. More precisely, in each of the statements

while (...)
{

contin: ;
}

do
{

contin: ;
} while (...);

for (...)
{

contin: ;
}

a continue is equivalent to goto contino (Following the contin: is a null
statement; see Section 7.13, Null Statement.)

Version 1.0 Statements 7-5

7.10 return Statement

A function returns to its caller by means of the return statement, which has
one of the forms

return ;
return expression;

In the first case (which is implicit if the end of the function is reached
without executing a return) the returned value is undefined. In the second
case, the value of the expression is returned to the caller of the function. If
required, the expression is converted, as if by assignment, to the type of
function in which it appears.

7.11 goto Statement

Control may be transferred unconditionally by means of the statement

goto identifier;

The identifier must be a label (see Section 7.12, Labeled Statement.)
located in the current function.

7.12 Labeled Statement

Any statement may be preceded by label prefixes of the form

identifier:

which serve to declare the identifier as a label. The only use of a label is as
a target of a goto. The scope of a label is the current function, excluding
any subblocks in which the same identifier has been redeclared. See
Chapter 9, Scope Rules.

7·6 C Language Reference Manual IRIS·4D Series

(I

(

(

7.13 Null Statement

The null statement has the form

A null statement is useful to carry a label just before the } of a compound
statement or to supply a null body to a looping statement such as while.

Version 1.0 Statements 7·7

(

(

(

8. External Definitions

A C program consists of a sequence of external definitions. An external
definition declares an identifier to have storage class extern (by default) or
perhaps static, and a specified type. The type-specifier (see Section 6.2,
Type Specifiers) may also be empty, in which case the type is taken to be
int. The scope of external definitions persists to the end of the file in which
they are declared just as the effect of declarations persists to the end of a
block. The syntax of external definitions is the same as that of all
declarations except that only at this level may the code for functions be
given.

8.1 External Function Definitions

Function definitions have the form

function-definition:
decl-specifiers Junction-declarator function-body

opt
The only sc-specifiers allowed among the decl-specifiers are extern or
static; see Section 9.2, Scope of Externals for the distinction between them.
A function declarator is similar to a declarator for a "function returning ... "
except that it lists the formal parameters of the function being defined.

Junction-declarator:
declarator (parameter-listopt)

parameter-list:
identifier
identifier, parameter-list

Version 1.0 External Definitions 8-1

The function-body has the form

function-body,'
declaration-list opt compound-statement

The identifiers in the parameter list, and only those identifiers, may be
declared in the declaration list. Any identifiers whose type is not given are
taken to be into The only storage class that may be specified is register; if it
is specified, the corresponding actual parameter will be copied, if possible,
into a register at the outset of the function.

A simple example of a complete function definition is

int max (a, b, 0)
int a, b, OJ

int m;

m = (a > b) ? a : b;
return ((m > 0) ? m : 0) i

Here int is the type-specifier; max(a, b, c) is the function-declarator;
int a, b, c; is the declaration-list for the formal parameters; { ••. } is the
block giving the code for the statement.

The C program converts all float actual parameters to double, so fomlal
parameters declared float have their declaration adjusted to read double.
All char and short formal parameter declarations are similarly adjusted to
read int. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the
array, declarations of fotmal parameters declared "array of ... " are adjusted
to read "pointer to "

8.2 External Data Definitions

An external data definition has the fotm

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static,
but not auto or register.

8-2 C Language Reference Manual IRIS-4D Series

(

(

9. Scope Rules

A C program need not all be compiled at the same time. The source text of
the program may be kept in several files, and precompiled routines may be
loaded from libraries. Communication among the functions of a program
may be carried out both through explicit calls and through manipulation of
external data.

Therefore, there are two kinds of scopes to consider: first, what may be
called the lexical scope of an identifier, which is essentially the region of a
program during which it may be used without drawing "undefined identifier"
diagnostics; and second, the scope associated with external identifiers,
which is characterized by the rule that references to the same external
identifier are references to the same object.

9.1 Lexical Scope

The lexical scope of identifiers declared in external definitions persists from
the definition through the end of the source file in which they appear. The
lexical scope of identifiers that are formal parameters persists through the
function with which they are associated. The lexical scope of identifiers
declared at the head of a block persists until the end of the block. The
lexical scope of labels is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a
block, including the block constituting a function, any declaration of that
identifier outside the block is suspended until the end of the block.

Remember also that tags, identifiers associated with ordinary variables, and
identities associated with structure and union members fonn three disjoint
classes which do not conflict. Members and tags follow the same scope
rules as other identifiers. The enum constants are in the same class as

Version 1.0 Scope Rules 9-1

ordinary variables and follow the same scope rules. The typedef names are
in the same class as ordinary identifiers. They may be redeclared in inner
blocks, but an explicit type must be given in the inner declaration:

typedef float distance;

int distance;

The int must be present in the second declaration, or it would be taken to be
a declaration with no declarators and type distance.

9.2 Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere
among the files or libraries constituting the complete program there must be
at least one external definition for the identifier. All functions in a given
program that refer to the same external identifier refer to the same object, so
care must be taken that the type and size specified in the definition are
compatible with those specified by each function that references the data.

(

It is illegal to explicitly initialize any external identifier more than once in (
the set of files and libraries comprising a multi-file program. It is legal to
have more than one data definition for any external non-function identifier;
explicit use of extern does not change the meaning of an external
declaration.

In restricted environments, the use of the extern storage class takes on an
additional meaning. In these environments, the explicit appearance of the
extern keyword in external data declarations of identities without
initialization indicates that the storage for the identifiers is allocated
elsewhere, either in this file or another file. It is required that there be
exactly one definition of each external identifier (without extern) in the set
of files and libraries comprising a multiple-file program.

Identifiers declared static at the top level in external definitions are not
visible in other files. Functions may be declared static.

9-2 C Language Reference Manual IRIS-4D Series

(

10. Compiler Control Lines

The C compilation system contains a preprocessor capable of macro
substitution, conditional compilation, and inclusion of named files. Lines
beginning with # communicate with this preprocessor. There may be any
number of blanks and horizontal tabs between the # and the directive, but no
additional material (such as comments) is permitted. These lines have
syntax independent of the rest of the language; they may appear anywhere
and have effect that lasts (independent of scope) until the end of the source
program file.

10.1 Token Replacement

A control line of the form

#define identifier token-string opt

causes the preprocessor to replace subsequent instances of the identifier with
the given string of tokens. Semicolons in or at the end of the token-string
are part of that string. A line of the form

#define identifier(identifier, ...) token-string
opt

where there is no space between the first identifier and the (, is a macro
definition with arguments. There may be zero or more formal parameters.
Subsequent instances of the first identifier followed by a (, a sequence of
tokens delimited by commas, and a) are replaced by the token string in the
definition. Each occurrence of an identifier mentioned in the formal
parameter list of the definition is replaced by the corresponding token string
from the call. The actual arguments in the call are token strings separated
by commas; however, commas in quoted strings or protected by parentheses
do not separate arguments. The number of formal and actual parameters
must be the same. Strings and character constants in the token-string are

Version 1.0 Complier Control Lines 10-1

scanned for fonnal parameters, but strings and character constants in the rest
of the program are not scanned for defined identifiers to replace.

In both fonns the replacement string is rescanned for more defined
identifiers. In both fonns a long definition may be continued on another line
by writing \ at the end of the line to be continued. This facility is most (_
valuable for definition of "manifest constants" , as in

tdefine TABSIZE 100

int table[TABSIZE];

A control line of the fonn

#Under identijier

causes the identifier's preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no
intervening #Under, then the two token-strings are compared textually. If
the two token-strings are not identical (all white space is considered as
equivalent), then the identifier is considered to be redefined.

10.2 File Inclusion

A control line of the fonn

#include ''filename''

causes the replacement of that line by the entire contents of the filejilename.
The named file is searched for first in the directory of the file containing the
#include, and then in a sequence of specified or standard places.
Alternatively, a control line of the fonn

#include <filename>

searches only the specified or standard places and not the directory of the
#include. (How the places are specified is not part of the language. See
cpp(l) for a description of how to specify additional libraries.)

#includes may be nested.

10-2 C Language Reference Manual IRIS-4D Series

(

(

10.3 Conditional Compilation

A compiler control line of the form

#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to nonzero.
(Constant expressions are discussed in Chapter 12, Constant Expressions;
the following additional restrictions apply here: the constant expression
may not contain sizeof, casts, or an enumeration constant.)

A restricted-constant expression may also contain the additional unary
expression

defined identifier

or

defined (identifier)

which evaluates to one if the identifier is currently defined in the
preprocessor and zero if it is not.

All currently defined identifiers in restricted-constant-expressions are
replaced by their token-strings (except those identifiers modified by
defined) just as in normal text. The restricted-constant expression will be
evaluated only after all expressions have finished. During this evaluation,
all undefined (to the procedure) identifiers evaluate to zero.

A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e.,
whether it has been the subject of a #define control line. It is equivalent to
#if defined (identifier).

A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is
equivalent to #if !defined (identifier).

Version 1.0 Complier Control Lines 10-3

All three forms are followed by an arbitrary number of lines, possibly
containing a control line

#else

and then by a control line

#endif

If the checked condition is true, then any lines between #else and #endif are
ignored. If the checked condition is false, then any lines between the test
and a #else or, lacking a #else, the #endif are ignored.

Another control directive is

#elif restricted-constant-expression

An arbitrary number of #elif directives can be included between #if, #ifdef,
or #ifndef and #else, or #endif directives. These constructions may be
nested.

10.4 Line Control

For the benefit of other preprocessors that generate C programs, a line of the
form

#line constant ''filename''

causes the compiler to believe, for purposes of error diagnostics, that the
line number of the next source line is given by the constant and the current
input file is named by ''filename''. If ''filename'' is absent, the remembered
file name does not change.

10-4 C Language Reference Manual IRIS-4D Series

(

(

11. Types Revisited

This part summarizes the operations that can be performed on objects of
certain types.

11.1 Structures and Unions

Structures and unions may be assigned, passed as arguments to functions,
and returned by functions. Other plausible operators, such as equality
comparison and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of the
-> or the. must specify a member of the aggregate named or pointed to by
the expression on the left. In general, a member of a union may not be
inspected unless the value of the union has been assigned using that same
member. However, one special guarantee is made by the language in order
to simplify the use of unions: if a union contains several structures that
share a common initial sequence and if the union currently contains one of
these structures, it is permitted to inspect the common initial part of any of
the contained structures.

Version 1.0 Types Revisited 11-1

For example, the following is a legal fragment:

union

struct

} n;
struct
{

int type;

int type;
int intnode;

} u;

nil
struct
{

nf;

int
float

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type == FLOAT)

type;
floatnode;

... sin (u.nf.floatnode)

11.2 Functions

There are only two things that can be done with a function: call it or take its
address. If the name of a function appears in an expression not in the
function-name position of a call, a pointer to the function is generated.
Thus, to pass one function to another, one might say

int f () ;

g(f);

11·2 C Language Reference Manual IRIS-4D Series

(

(

(

Then the definition of g might read

g(funcp)
int (*funcp) 0;

(*funcp) ();

Notice that fmust be declared explicitly in the calling routine since its
appearance in g(f) was not followed by (.

11.3 Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is
converted into a pointer to the first member of the array. Because of this
conversion, arrays are not lvalues. By definition, the subscript operator [] is
interpreted in such a way that El[E2] is identical to *«El)+(E2».
Because of the conversion rules that apply to +, if El is an array and E2 an
integer, then El [E2] refers to the E2 -th member of El. Therefore, despite
its asymmetric appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multidimensional arrays. If E is
an n-dimensional array of rank ixjx ... xk, then E appearing in an expression
is converted to a pointer to an (n-l)-dimensional array with rankjx ... xk. If
the * operator, either explicitly or implicitly as a result of subscripting, is
applied to this pointer, the result is the pointed-to (n-l)-dimensional array,
which itself is immediately converted into a pointer.

For example, consider int x[3][S]; Here x is a 3x5 array of integers. When
x appears in an expression, it is converted to a pointer to (the first of three)
5-membered arrays of integers. In the expression x[i], which is equivalent
to *(x+i), x is first converted to a pointer as described; then i is converted to
the type of x, which involves multiplying i by the length the object to which
the pointer points, namely 5-integer objects. The results are added and
indirection applied to yield an array (of five integers) which in tum is
converted to a pointer to the first of the integers. If there is another
subscript, the same argument applies again; this time the result is an integer.

Version 1.0 Types Revisited 11-3

Arrays in C are stored row-wise Oast subscript varies fastest) and the first
subscript in the declaration helps detennine the amount of storage consumed
by an array. Arrays play no other part in subscript calculations.

11.4 Explicit Pointer Conversions

Certain conversions. involving pointers are pennitted but have
implementation-dependent aspects. They are all specified by means of an
explicit type-conversion operator, see Section S.2,Unary Operators and
Section 6.8, Type Names.

A pointer may be converted to any of the integral types large enough to hold
it. Whether an int or long is required is machine dependent. The mapping
function is also machine dependent but is intended to be unsurprising to
those who know the addressing structure of the machine.

An object of integral type may be explicitly converted to' a pointer. The
mapping always carries an integer converted from a pointer back to the
same pointer but is otherwise machine dependent.

(

A pointer to one type may be converted to a pointer to another type. The (
resulting pointer may cause addressing exceptions upon use if the subject .
pointer does not refer to an object suitably aligned in storage. It is
guaranteed that a pointer to an object of a given size may be converted to a
pointer to an object of a smaller size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an
object to allocate, and return a char pointer; it might be used in this way.

extern char *alloc();
double *dp;

dp = (double *) alloc(sizeof(double»i
*dp = 22.0 / 7.0;

The alloc must ensure (in a machine':"dependent way) that its return value is
suitable for conversion to a pointer to double; then the use of the function is
portable.

11-4 C Language Reference Manual IRIS-4DSeries

(

12. Constant Expressions

In several places C requires expressions that evaluate to a constant: after
case, as array bounds, and in initializers. In the first two cases, the
expression can involve only integer constants, character constants, casts to
integral types, enumeration constants, and sizeof expressions, possibly
connected by the binary operators

+ - * / % & I «» == != < > <= >= && II
or by the unary operators

or by the ternary operator

1:

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as
discussed above, one can also use floating constants and arbitrary casts and
can also apply the unary & operator to external or static objects and to
external or static arrays subscripted with a constant expression. The unary
& can also be applied implicitly by appearance of unsubscripted arrays and
functions. The basic rule is that initializers must evaluate either to a
constant or to the address of a previously declared external or static object
plus or minus a constant.

Version 1.0 Constant Expressions 12-1

(

(

(

13. Portability Considerations

Certain parts of C are inherently machine dependent. The following list of
potential trouble spots is not meant to be all-inclusive but to point out the
main ones.

Purely hardware issues like word size and the properties of floating point
arithmetic and integer division have proven in practice to be not much of a
problem. Other facets of the hardware are reflected in differing
implementations. Some of these, particularly sign extension (converting a
negative character into a negative integer) and the order in which bytes are
placed in a word, are nuisances that must be carefully watched. Most of the
others are only minor problems.

The number of register variables that can actually be placed in registers
varies from machine to machine as does the set of valid types. Nonetheless,
the compilers all do things properly for their own machine; excess or invalid
register declarations are ignored.

The order of evaluation of function arguments is not specified by the
language. The order in which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharacter
character constants may be permitted. The specific implementation is very
machine dependent because the order in which characters are assigned to a
word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on some
machines and left to right on other machines. These differences are
invisible to isolated programs that do not indulge in type punning (e.g., by
converting an int pointer to a char pointer and inspecting the pointed-to
storage) but must be accounted for when conforming to externally-imposed
storage layouts.

Version 1.0 Portability Considerations 13-1

(~

(

(

14. Syntax Summary

This summary of C syntax is intended more for aiding comprehension than
as an exact statement of the language. In particular, the syntax of function
prototypes is not inc1uced. (See Section 6.4.)

14.1 Expressions

The basic expressions are:

Version 1.0

expression:
primary
* expression
& lvalue
- expression
! expression
expression

++ lvalue
--lvalue
lvalue ++
lvalue --
sizeof expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression? expression: expression
lvalue asgnop expression
expression, expression

Syntax Summary 14-1

primary:
identifier
constant
string literal
(expression)
primary (expression-list)

. [. J opt przmary expresswn
primary. identifier
primary -> identifier

lvalue:
identifier
primary [expression J
lvalue . identifier
primary -> identifier
* expression
(lvalue)

The primary-expression operators

o [] . ->

have highest priority and group left to right. The unary operators

* & - ! - ++ - - sizeof (type-name)

have priority below the primary operators but higher than any binary
operator and group right to left. Binary operators group left to right; they
have priority decreasing as indicated below.

binop:
* I %
+ -
» «
< > <= >=
-- !=
&

I
&&
II

The conditional operator groups right to left.

14-2 CLanguage Reference Manual IRIS-4D Series

(

(

(

Assignment operators all have the same priority and all group right to left.

asgnop:
= += -= *= /= %= »= «= &= "'= 1=

The comma operator has the lowest priority and groups left to right.

14.2 Declarations

declaration:
decl-specifiers init-declarator-list opt;

Version 1.0

decl-specifiers:
type-specifier decl-specifiers opt
sc-specifier decl-specifiers opt

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
struct-or-union-specifier
typedeJ-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

Syntax Summary 14-3

basic-type:
char
short
int
long
unsigned
float
double
void

enum-specifier:
enum { enum-list}
enum identifier { enum-list}
enum identifier

enum-list:
enumerator
enum"list, enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializer opt

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expression opt J

14-4 C Language Reference Manual

(

(

(

IRIS-4D Series

Version 1.0

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list}
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-dec laration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator • struct-declarator-list

struct-dec larator:
declarator
declarator: constant-expression
: constant-expression

initializer:
= expression
= { initializer-list}
= { initializer-list • }

initializer-list:
expression
initializer-list • initializer-list
{ initializer-list}
{ initializer-list • }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression opt J

Syntax Summary 14-5

typedef-name:
identifier

14.3 Statements

compound-statement:
{ declaration-list opt statement-list opt}

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statement
expression;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (exp opt;exp opt;exp opt) statement
switch (expresszon) statement
case constant-expression : statement
default: statement
break;
continue;
return;
return expression;
goto identifier;
identifier : statement

14-6 C Language Reference Manual

(

(

(

IRIS-4D Series

14.4 External Definitions

Version 1.0

program:
external-definition
external-definition program

external-definition:
junction-definition
data-definition

junction-definition:
decl-specifier op/unction-declarator function-body

junction-declarator:
declarator (parameter-list opt)

parameter-list:
identifier
identifier, parameter-list

junction-body :
declaration-list opt compound-statement

data-definition:
extern declaration;
static declaration ;

Syntax Summary 14-1

14.5 Preprocessor

#define identifier token-string
#define identifier(identifier, .•• f!&ken-stringo t
#Undef identifier P
#include "filename"
#include <.filename>
#if restricted-constant-expression
#ifdef identifier
#ifudef identifier
#elif restricted-constant-expression
#else
#endif
#line constant "filename"

14-8 C Language Reference Manual IRIS·4D Series

('

(

(

Appendix A: C on the IRIS-4D

The C language supported by the IRIS-4D Series cc compiler is an
implementation of the language defined in The C Programming Language
by Kernighan and Ritchie (prentice Hall, 1978). This appendix covers the
following topics:

• specifying vararg macros, a requirement for all functions that take a
variable number of arguments

• deviations and extensions to the C language, as defined in The C
Programming Language by Kerninghan and Ritchie (Prentice-Hall)

• translation limits

• storage mapping

A.1 vararg.h Macros

If a function takes a variable number of arguments (for example, the C
library functions print/and scan!>, you must use the macros (defined in the
varargs.h header file) shown below.

/* @(t)varargs.h 1.2 */
typedef char *va list;
tdefine va dcl int va alist;
tdefine va-start (list) list = (char *) &va_alist
tdefine va-end(list)
tdefine va=arg(list, mode) «mode *) (list = \

(char *) (sizeof (mode) > 4 ? (int) list +2*8 - 1 & -8 \
: (int) list + 2*4 - 1 & -4») [-1]

Version 1.0 C on the IRIS-4D A-1

The va_del macro declares the formal parameter va_alist, which is
either the format descriptor for the remaining parameters or a parameter
itself.

va _start must be called within the body of the function whose argument list
is to be traversed. The function can then transverse the list or pass its va_list (
pointer to other functions to transverse the list. The type of the va_start
argument is va_list; it is defined by the typedefstatement in varargs.h.

The va _ arg macro accesses the value of an argument rather than obtaining
its address. The macro handles those type names that can be transformed
into the appropriate pointer type by appending an asterisk (*), which handles
most simple cases. The argument type in a variable argument list must
never be an integer type smaller than int, and the type of the first argument
must not be floating point.

For more information on the varargs.h macros, see the varargs man page in
the IRIS-4D User's Reference Manual.

A.2 Deviations

IRIS-4D Series C does not support the entry keyword, which has no defined
use. Additionally, IRIS-4D Series C does not support the asm keyword, as
implemented by some C compilers to allow for the inclusion of assembly
language instructions.

A.3 Extensions

Extensions to IRIS-4D Series C include the following:

(

• the enumeration type, a set of values represented by identifiers called
enumeration constants; enumeration constants are specified when the type
is defined. For information on the alignment, size, and value ranges of
the enumeration type. see the section on ,. Storage Mapping" in this (
appendix .

• the void type, which allows you to specify that no value be returned from
a function.

A-2 C Language Reference Manual IRIS-4D Series

• the volatile type modifier, which is used when programming I/O devices
and the signed type. In addition, the const keyword has been reserved for
future use. For more information on the volatile modifier, see Section
A.5, Storage Mapping section of this appendix .

• function prototypes which specify the types of some or all of the
function's formal parameters. These may be used to force implicit
coercion of actual parameters to the types of the corresponding formal
parameters declared in the prototype. For more information, see Chapter
6.

A.4 Translation Limits

Table A-I shows the maximum limits imposed on certain items by the C
compiler.

C Specification Maximum

Nesting levels 30
Compound statements
Iterations
Selections
Conditional compilations
Type modifiers 9
Case labels 500
Function call parameters 150
Significant characters 32
External identifiers
Internal identifiers

Table A-1. IRIS-4D Series C Limitations

Version 1.0 C on the IRIS-4D A-3

A.S Storage Mapping

This section describes how the compiler maps C variables into storage and
contains the following topics:

• Alignment, Size, and Value Ranges

• Arrays, Structures, and Unions

• Storage Classes

A.S.1 Alignment, Size, and Value Ranges

Table A-2 describes how the C compiler implements size, alignment, and
value ranges for the data types.

Value Range

Type Size Alignment Signed Unsigned

int 32 bits Wordl _2 31 to 231 - 1 Ot02 32 _1 long

enum 32 bits Word 1 -2 31 to 2 31 - 1

short 16 bits Hallword 2 -32,768 .. 32,767 0 .. 65,535

char4 8 bits Byte -128 .. 127 0 .. 255

fioat5 32 '!i"its Word1 See note.

double6 64 bits DoubleworJ See note.

pointer 32 bit Wordl o to 2 32 - 1

1 Byte boundary divisible by four.
2Byte boundary divisible by two.
3Byte boundary divisible by eight.
4char is assumed to be unsigned, unless the signed attribute is used.
51EEE single precision. See note following this table for valid ranges.
61EEE double preCision. See note following this table for valid ranges.

Table A-2. Size, Alignment, and Value Ranges for C Data Types

A-4 C Language Reference Manual IRIS-4D Series

(

(

(

NOTE: Approximate valid ranges for float and double are:

1 float
double

1
float
double

Maximum Value

3.40282356*10"8
1.7976931348623158*10308

Minimum Values

Denormalized Normalized

1.40129846*10-46 1.17549429*1038

4.9406564584124654*10-324 2.2250738585072012*-308

For characters to be treated as signed, either use the compiler option
-signed, or use the keyword signed in conjunction with char, as shown in
the following example:

signed char c;

The header files limits.h andfloat.h (usually found in lusrlinclude) contain C
macros that define minimum and maximum values for the various data
types. Refer to these files for the macro names and values.

A.S.2 Arrays, Structures, and Unions

Arrays. Arrays have the same boundary requirements as the data type
specified for the array. The size of an array is the size of the data type
multiplied by the number of elements. For example, for the following
declaration:

double x[2] [3]

The size of the resulting array is 48 (2*3*8, where 8 is the size ofthe
double floating point type).

Version 1.0 C on the IRIS-4D A-5

Structures. Each member of a structure begins at an offset from the
structure base. The offset corresponds to the order in which a member is
declared; the first member is at offset O.

The size of a structure in the object file is the size of its combined members
plus padding added, where necessary, by the compiler. The following rules (~
apply to structures:

• Structures must align on the same boundary as that required by the
member with the most restrictive boundary requirement. The boundary
requirements by degree ofrestrictivenessare: byte, halfword, word, and
double word, with double word being the mostrestrictive .

• The compiler tenninates the structure on the same· alignment boundary on
which it begins. For example, if a structure begins on an even-byte
boundary, it also ends on an even-byte boundary.

For example, the following structure: ~

struct S {
int Vi
char n[lO]i

is mapped out in storage as follows:

I v I v I v I v I nO I n1 I n2 I n3 I
Byte 0 1 2 3 4 5 6 7

I n4 I n5 I n6 I n71 nB I n9 1!!i:~\!ITI\;~l~;::j\;i;::~;:1
Byte B 9 10 11 12 13 14 15

lEI Padded bytes

Note that the length of the structure is 16 bytes, even though the byte count
as defined by the int v and the char n component s is only 14. Because int
has a stricter boundary requirement (word boundary) than char (byte
boundary), the structure must end on a word boundary (a byte offset
divisible by four). The compiler therefore adds two bytes of padding to meet
this requirement.

A-6 C Language Reference Manual IRIS-4D Series

(

(

An array of data structures illustrates the reason for this requirement. For
example, if the above structure were the element-type of an array, some of
the int v components wouldn't be aligned properly without the two-byte
pad.

Alignment requirements may cause padding to appear in the middle of a
structure. For example, by rearranging the structure in the last example to
the following:

struct S {
char n[10];
int V;

The compiler maps the structures as follows:

I nO I n1 I n2 I n3 I n4 I n5 I n6 I n7 I
Byte o 1 2 3 4 5 6 7

I nB I n9
Byte B 9 10 11 12 13 14 15

Ilm Padded bytes

Note that the size of the structure remains 16 bytes, but two bytes of
padding follow the n component to align v on a word boundary.

Bit fields are packed from the most significant bit to least significant bit in a
word and can be no longer than 32 bits; bit fields can be signed or unsigned.
The following structure:

typedef struct {
unsigned offset :12;
unsigned page :10;
unsigned segment 9;
unsigned supervisor : 1;

virtual_address;

Version 1.0 C on the IRIS-4D A-7

is mapped out as follows:

Byte O:..-________ ~----......_--...___;3

I offset page I segmentl I
Bit 31 19 9 1tO

supervisor

The compiler moves fields that overlap a word boundary to the next word.

The compiler aligns a nonbit field that follows a bit-field declaration to the
next boundary appropriate for its type. For example, the following
structure:

struct {
unsigned a :3;
char b;
short Cj

}x;

is mapped out as follows:

31 28 23 16

1m! Padded bits.

c
o

Note that five bits of padding are added after unsigned a so that char b
aligns on a byte boundary, as required.

(

Unions. A union must align on the same boundary as the member with the
most restrictive boundary requirement. The boundary requirements by
increasing degree of restrictiveness are: byte, halfword, word, and (
doubleword. For example, a union containing char, int , and double data
types must align on a a doubleword boundary, as required by the double
data type.

A-a C Language Reference Manual IRIS-4D Series

A.S.3 Storage Classes

Auto. An auto declaration indicates that storage is allocated at execution
and exists only for the duration of that block activation.

Static. The compiler allocates storage for a static declara tion at compile
time. This allocation remains fixed for the duration of the program. Static
variables reside in the program bss section if they are not initialized,
otherwise they are placed in the data section.

Register. The compiler allocates variables with the register storage class to
registers. For programs compiled using the -0 (optimize) option, the
optimization phase of the compiler tries to assign all variables to registers,
regardless of the storage class specified.

Extern. The extern storage class indicates that the variable refers to storage
defined elsewhere in an external data definition. The compiler doesn't
allocate storage to extern variable declarations; it uses the following logic
in defining and referencing them:

Extern is omitted. If an initializer is present, a definition for the symbol is
emitted. Having two or more such definitions among all the files
comprising a program results in an error at link time or before. If no
initializer is present, a common definition is emitted. Any number of
common definitions of the same identifier may coexist.

Extern is present. The compiler assumes that declaration refers to a name
defined elsewhere. A declaration having an initializer is illegal. If a
declared identifier is never used, the compiler doesn't issue an external
reference to the linker.

Volatile. The volatile storage class is specified for those variables that may
be modified in ways unknown to the compiler. For example, volatile might
be specified for an object corresponding to a memory mapped input/output
port or an object accessed by an asynchronously interrupting function.
Except for expression evaluation, no phase of the compiler optimizes any of
the code dealing with volatile objects.

Version 1.0 C on the IRIS-4D A-9

NOTE. If a pointer specified as volatile is assigned to another pointer
without the volatile specification, the compiler treats the other pointer as
non-volatile. In the following example:

volatile int *i;
int *j;

(volatile*)j = i;
3108282356*10

the compiler treats j as a non-volatile pointer and the object it points to as
non-volatile, and may optimize it.

The compiler option -volatile causes all objects to be compiled as volatile.

A.6 Compiler Options

The following is a list of the compiler options specific to MIPS C. For a list

(

of general options, see Chapter I of the IRIS-4D Series Compiler Guide. (

-signed Causes all char declarations to be signed char declarations;
the default is to treat char as unsigned char.

-volatile Causes all variables to be treated as volatile.

-varargs Prints warnings for lines that may require the varargs.h
macros.

-float Normally, expressions involving floating-point are always
computed in double-precision in C, even if the highest
precision involved is float. This option allows the compiler to
evaluate floating-point expressions which do not involve
double-precision data in single-precision. This option has no
effect on the promotion of floats to doubles when they are
passed as parameters. NOTE: This switch is non-standard
and may not be supported across product lines.

A-10 C Language Reference Manual IRIS-4D Series

(

•
Date

Your name

Title

Department

Company

Address

Phone

Silicon Graphics, Inc.

COMMENTS

Manual title and version ______________________ _

Please list any errors, inaccuracies, or omissions you have found in this manual

Please list any suggestions you may have for improving this manual

~

BUSINESS REPLY MAIL
FIRSTCLASS PERMIT NO. 45 MOUNTAIN VIEW, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Silicon Graphics, Inc.
Attention: Technical Publications
2011 Stierlin Road
Mountain View, CA 94043-1321

~ ~

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

