
Assembly language
Programmers Guide

~ SiliconGraphics
.,. Computer Systems

Document number: 007.07»010

Assembly Language
Programmer's Guide

Version 1.0

Document Number 007-0730-010

Technical Publications:

Robert Reimann

Engineering:

Greg Boyd

© Copyright 1987, Silicon Graphics, Inc.

All rights reserved.

This document contains proprietary information of Silicon Graphics,
Inc., and is protected by Federal copyright law. The information may
not be disclosed to third parties or copied or duplicated in any form, in
whole or in part, without prior written consent of Silicon Graphics, Inc.

The information in this document is subject to change without notice.

Assembly Language Programmer's Guide
Version 1.0
Document Number 007~0730-010

Silicon Graphics, Inc.
Mountain View, California

UNIX is a registered trademark of AT&T.

(

(

(

Preface

This book describes the assembly language supported by the compiler sys­
tem, it's syntax rules, and shows how to write some assembly programs.
For information about assembling and linking programs written in assem­
bler language, see the IRIS-4D Series Compiler Guide.

The assembler converts assembly language statements into machine code.
In most assembly languages, each instruction corresponds to a single ma­
chine instruction; however, some assembly language instructions can gener­
ate several machine instructions. This feature results in assembly programs
that can run without modification on future machines, which might have
different machine instructions. See Appendix B for more information
about assembler instructions that generate multiple machine instructions.

Who Should Read This Book?

This book assumes that you are an experienced assembly language pro­
grammer.

The assembler exists primarily to produce object modules from the assem­
bly instructions that the C and Fortran 77 compilers generate. It therefore
lacks many functions normally present in assemblers. Therefore, we rec­
ommend that you use the assembler only when you need to:

• maximize the efficiency of a routine, which might not be possible in C
or Fortran 77-for example, to write low-level I/O drivers

• access machine functions unavailable from high-level languages or sat­
isfy special constraints such as restricted register usage

• change the operating system

• change the compiler system

Version 1.0 Preface 1

What Does This Book Cover?

This book has these chapters:

• Chapter 1-Registers describes the format for the general registers, (~
the special registers, and the floating point registers. ~

• ~ Chapter 2-Addressing describes how addressing works.

• Chapter 3-Exceptions describes exceptions you might encounter with
assembly programs.

• Chapter 4-Lexical Conventions describes the lexical conventions
that the assembler follows.

• Chapter 5-Instruction Set describes the main processor's instruction
set, including notation, load and store instructions, computational in­
structions, and jump and branch instructions.

• Chapter 6-Coprocessor Instruction Set describes the coprocessor
instruction sets.

• Chapter 7-Linkage Conventions describes linkage conventions for all ("_
supported high-level languages. It also discusses memory allocation
and register use.

• Chapter 8-Pseudo-Operations describes the assembler's pseudo-op­
erations (directives).

• Chapter 9-0bject File Format provides an overview of the compo­
nents comprising the object file and describes the headers and sections
of the object file.

• Chapter 10-The Symbol Table describes the purpose of the Symbol
Table and the format of entries in the table. This chapter also lists
the symbol table routines that are supplied.

• Appendix A summarizes all instructions.

• Appendix B describes instructions that generate more than one ma­
chine instruction.

2 Assembly Language Programmer's Guide IRIS-4D Series

(

Contents

1. Registers , .. ,., , ,.. 1-1
1 .1 Register Format 1-1

1 .1 .1 Big-Endian Machines 1-2
1 .2 General Registers " 1-2
1 .3 Special Registers ... ,................................ 1-4
1 .4 Floating Point Registers " 1-4

2. Addressing , , 2-1
2.1 Address Formats 2-2
2.2 Address Descriptions " 2-3

3. Exceptions , , 3-1
3.1 Main Processor Exceptions ' ... , ,....... 3-1
3.2 Floating Point Exceptions , " 3-2

4. Lexical Conventions , , , 4-1
4.1 Tokens , " 4-2
4.2 Comments .. 4-2
4.3 Identifiers ... 4-2
4.4 Constants .. 4-3

4.4.1 Scalar Constants 4-3
4.4.2 Floating Point Constants 4-4
4.4.3 String Constants 4-4

4.5 Multiple Lines Per Physical Line 4-5
4.6 Sections and Location Counters 4-6
4.7 Statements ... 4-7

4.7.1 Label Definitions " 4-7
4.7.2 Null Statements 4-8
4.7.3 Keyword Statements............................ 4-8

4.8 Expressions ... 4-8
4.8.1 Precedence 4-9
4.8.2 Expression Operators 4-9
4.8.3 Data Types 4-10
4.8.4 Type Propagation in Expressions 4-13

5. Instruction Set ... 5-1
5.1 Instruction Notation " 5-2
5.2 Load and Store Instructions 5-2

5.2.1 Load and Store Formats 5-2
5.2.2 Load Instruction Descriptions 5-4
5.2.3 Store Instruction Descriptions 5-8 (

5.3 Computational Instructions 5-11
5.3.1 Computational Formats 5-11
5.3.2 Computational Instruction Descriptions 5-13

5.4 Jump and Branch Instructions 5-25
5.4.1 Jump and Branch Formats 5-25
5.4.2 Jump and Branch Instruction Descriptions 5-27

5.5 Special Instructions 5-31
5.5.1 Special Formats 5-31
5.5.2 Special Instruction Descriptions 5-32

5.6 Coprocessor Interface Instructions .. 5-33
5.6.1 Coprocessor Interface Formats 5-33
5.6.2 Coprocessor Interface Instruction Descriptions " 5-35

6. Coprocessor Instruction Set 6-1
6.1 Instruction Notation. .. 6-1
6.2 Floating Point Instructions 6-2

6.2.1 Floating Point Formats 6-3
6.2.2 Floating Point Load and Store Formats 6-3 (
6.2.3 Floating Point Load and Store Descriptions 6-4
6.2.4 Floating Point Computational Formats , 6-5
6.2.5 Floating Point Computational Instruction

Descriptions 6-7
6.3 Floating Point Relational Operations , 6-10

6.3.1 Floating Point Relational Formats 6-12
6.3.2 Floating Point Relational Instruction Descriptions 6-13
6.3.3 Floating Point Move Formats 6-17
6.3.4 Floating Point Move Instruction Descriptions 6-18

6.4 System Control Coprocessor Instructions 6-18
6.4.1 System Control Coprocessor Formats 6-19
6.4.2 System Control Coprocessor

Instruction Descriptions 6-19
6.5 Control and Status Register 6-20

6.5.1 Exception Trap Processing 6-23
6.5.2 Floating Point Rounding 6-26

7. Linkage Conventions 7-1 (
7.1 Introduction .. 7-1
7.2 Program Design 7-2

7.2.1 Register Use and Linkage 7-2
7.2.2 The Stack Frame 7-4
7.2.3 The Shape of Data 7-9

7.3 Examples ... 7-9
7.4 Learning by Doing 7-13

7.4.1 Calling a High-Level Language Routine 7-13
7.4.2 Calling an Assembly Language Routine 7-16

7.5 Memory Allocation , 7-18

8. Pseudo-Op Codes 8-1

9. Object File Format 9-1
9.1 Overview ... 9-1
9.2 The File Header 9-4

9.2.1 File Header Magic Field (f_magic) 9-5
9.2.2 Flags (f_flags) 9-6

9.3 Optional Header 9-8
9.3.1 Optional Header Magic Field (magic) 9-9

9.4 Section Headers 9-9
9.4.1 Section Name (s_name) 9-10
9.4.2 Line Number Entries (sJnnoptr and s_nlnno) 9-11
9.4.3 Flags (s_flags) 9-11

9.5 Section Data .. 9-12
9.6 Section Relocation Information 9-13

9.6.1 Relocation Table Entry 9-13
9.6.2 Assembler and Link Editor Processing 9-15

9.7 Object Files .. 9-20
9.7.1 Impure Format (OMAGIC) Files 9-21
9.7.2 Shared Text (NMAGIC) Files 9-22
9.7.3 Demand Paged (ZMAGIC) Files 9-23
9.7.4 Loading Object Files. .. 9-25

9.8 Archive Files 9-26
9.9 Link Editor Defined Symbols 9-26

10. The Symbol Table 10-1
10.1 Overview " " 10-1
10.2 Format of Symbol Table Entries 10-8

10.2.1 Symbolic Header 10-8
10.2.2 Line Numbers " 10-10
10.2.3 Procedure Descriptor Table 10-15
10.2.4 Local Symbols 10-16
10.2.5 Optimization Symbols 10-20
10.2.6 Auxiliary Symbols 10-21
10.2.7 File Descriptor Table 10-24
10.2.8 External Symbols 11-26

A. Instruction Summaries•.............. A-1

B. Basic Machine Definition , B-1
B.1 Load and Store Instructions .. , ,., .. ".,., , B-1
B.2 Computational Instructions ., ,'., B-2 (.
B.3 Branch Instructions , B-3 .. .
B.4 Coprocessor Instructions , , , B-3
B.5 Special Instructions B-3

(

(

1. Registers

Chapter 1 discusses the registers and describes how memory organization
affects them. Refer to Chapter 7 for information regarding register use
and linkage.

The machine has these registers:

• general registers, which are always one word wide

• coprocessor registers (for example, floating point registers)

• two special registers that hold the results of multiplication and division
instructions

You must use general registers where the assembly instructions expect gen­
eral registers and floating point registers where the assembly instructions
expect floating point registers. If you confuse the two, the assembler is­
sues an error message.

1.1 Register Format

A machine's byte ordering scheme (or endian issues) affects memory or­
ganization and defines the relationship between address and byte position
of data in memory. R2000 machines can be big-endian or little-endian.
Big-endian machines store the sign bit in the lowest address byte. Little­
endian machines store the sign bit in the highest address byte. The R2000
processors used in the IRIS-4D Series workstations are configured as big­
endian.

Version 1.0 Registers 1-1

1.1.1 Big-Endian Machines

Big-endian machines number the bytes of a word from 0 to 3. Byte 0
holds the sign and most significant bits.

For halfwords, big-endian machines number the bytes from 0 to 1. Byte (
o holds the sign and most significant bits.

Big-endian machines number the bits of each byte from 0 to 7, using this
format:

• Bit 0 holds the most significant bit.

• Bit 7 holds the least significant bit.

1.2 General Registers

Each general register has 32 bits. The assembler reserves all register
names, and you must use lowercase for the names. All register names
start with a dollar sign ($).

The general registers have the names $0 .. $31. By including the file reg­
deJ.h (use #include regdef.h) in your program, you can use software _
names for some general registers. The operating system and the assembler
use the general registers $1, $26, $27, $28, and $29 for specific purposes.
(NOTE: Attempts to use these general registers in other ways can produce
unexpected results.) If a program uses the names $1, $26, $27. $28, $29
rather than the names Sat, $ktO, $ktl, $gp, Ssp respectively, the assem­
bler issues warning messages.

General register $0 always contains the value O. All other general registers
are equivalent, except that general register $31 also serves as the implicit
link register for jump and link instructions. See Chapter 7 for a descrip­
tion of register assignments.

1-2 Assembly Language Programmer's Guide IRIS-4D Series

(

(

Register Name

$0

$at

$2 .. $3

$4 .. $7

$8 .. $15

$16 .. $23

$24 .. $25

$ktO .. $ktl

$28 or $gp

$29 or $sp

$30 or $fp

$31

Version 1.0

Software Name
(from regdef. h)

vO-vl

aO-a3

to-t7

sO-s7

t8-t9

kO-kl

gp

sp

fp

ra

Use and Linkage

always has the value 0

reserved for the assembler

used for expression evaluations and to hold
the integer type function results. Also used
to pass the static link when calling nested
procedures.

used to pass the first 4 words of integer
type actual arguments, their values are
not preserved across procedure calls

temporary registers used for expression evalu­
ations; their values aren't preserved across
procedure calls.

saved registers. Their values must be pre­
served across procedure calls.

temporary registers used for expression evalu­
ations; their values aren't preserved across
procedure calls.

(

reserved for the operating system kernel

contains the global pointer

contains the stack pointer

contains the frame pointer (if needed);
otherwise a saved register '(like sO-s7)

contains the return address and used
for expression evaluation

Table 1-1. General Registers

Registers 1-3

1.3 Special Registers

The machine has two 32 bit special registers. The hi and 10 special regis­
ters hold the results of the multiplication (mult and multu) and division
(div and divu) instructions.

You usually do not need to refer explicitly to these special registers. In­
structions that use the special registers refer to them automatically.

Name

hi

10

Description

Multiply/Divide special register holds the most significant
32 bits of multiply, remainder of divide

Multiply/Divide special register holds the least significant
32 bits of multiply, quotient of divide

Table 1-2. Special Registers

1.4 Floating Point Registers

There are 32 32-bit (or 16 64-bit) floating point registers on the R2000
processor, numbered $fO .. $f31. All references to these registers by float­
ing point instructions must be to an even register, so most applications
should use even-based register pairs as well as double-precision floating
point values. Chapter 7 further describes floating point register use.

1-4 Assembly Language Programmer's Guide IRIS~4D Series

(

(

$fO:

$f2:

$f4:

$f6:

$f8:

$f10:

$g12

$f14:

$f16:

$f18

$f20

$f22

$f24

$f26

$f28

$f30

:

:

:

:

:

:

:

I" Double Precision ------.! .. I
1- Single Precision--l

$fO $f1

$f2 $f3

$f4 $f5

$f6 $f7

$f8 $f9

$f10 $f11

$g12 $f13

$f14 $f15

$f16 $f17

$f18 $f19

$f20 $f21

$f22 $f23

$f24 $f25

$f26 $f27

$f28 $f29

$f30 $f31

\ _-- 32 bits ---..j"1
1 ------- 64 bits --------Il0l .. 1

Figure 1-1. Floating Point Register Set

Version 1.0 Registers 1-5

(

(

2. Addressing

Chapter 2 describes the formats that you can use to specify addresses.
The machine uses a byte addressing scheme. Access to halfwords requires
alignment on even byte boundaries, and access to words requires align­
ment on byte boundaries that are divisible by four. Any attempt to ad­
dress a data item that does not have the proper alignment causes an align­
ment exception.

The unaligned assembler load and store instructions may generate multiple
machine language instructions. They do not raise alignment exceptions.
These instructions load and store unaligned data:

• load word left (lwl)

• load word right (lwr)

• store word left (swl)

• store word right (swr)

• unaligned load word (ulw)

• unaligned load halfword (ulh)

• unaligned load halfword unsigned (ulhu)

• unaligned store word (usw)

• unaligned store halfword (ush)

• unaligned store halfword unsigned (ushu)

Version 1.0 Addressing 2-1

These instructions load and store aligned data:

• load word (lw)

• load halfword (lh)

• load halfword unsigned (lhu)

• load byte (lb)

• load byte unsigned (lbu)

• store word (sw)

• store halfword (sh)

• store byte (sb)

2.1 Address Formats

The assembler accepts these formats for addr~sses:

Format

(base register)

expression

expression (base register)

reloca table-symbol

relocatable-symbol ± expression

Address

base address (zero
offset assumed)

absolute address

based address

relocatable
address

relocatable address

relocatable-symbol ± expression (index register) indexed relocatable
address

Table 2-1. Formats for Addresses

2~2 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

2.2 Address Descriptions

The assembler accepts any combination of the constants and operations
described in Chapter 4 for expressions in address descriptions. Table 2-2
describes expressions and their address descriptions.

Expression

(base-register)

expression

expression (base-register)

relocatable-symbol

relocatable-symbol ± expression

Address Description

Specifies an indexed address,
which assumes a zero offset. The
base-register's contents specify the
address.

Specifies an absolute address. The
assembler generates the most lo­
cally efficient code for referencing
a value at the specified address.

Specifies a based address. To get
the address, the machine adds the
value of the expression to the con­
tents of the base-register.

Specifies a relocatable address.
The assembler generates the neces­
sary instruction(s) to address the
item and generates relocatable in­
formation for the link editor.

Specifies a relocatable address. To
get the address, the assembler adds
or subtracts the value of the ex­
pression, which has an absolute
value, from the relocatable symbol.
The assembler generates the neces­
sary instruction(s) to address the
item and generates relocatable in­
formation for the link editor. If
the symbol name does not appear
as a label anywhere in the assem­
bly, the assembler assumes that the
symbol is external.

Table 2-2. Address Descriptions

Version 1.0 Addressing 2-3

Expression

relocatable-symbol (base-register)

relocatable-symbol ± expression

(base-register)

Address Description

Specifies an indexed relocatable ad­
dress. To get the address, the ma­
chine adds the index-register to
the relocatable symbol's address.
The assembler generates the neces­
sary instruction(s) to address the
item and generates relocatable in­
formation for the link editor. If
the symbol name does not appear
as a label anywhere in the assem­
bly, the assembler assumes that the
symbol is external.

Specifies an indexed relocatable
address. To get the address, the
assembler adds or subtracts the
relocatable symbol, the expression,
and the contents of the index-reg­
ister. The assembler generates the
necessary instruction(s) to address
the item and generates relocation
information for the link editor. If
the symbol does not appear as a
label anywhere in the assembly, the
assembler assumes that the symbol
is external.

Table 2-2. Address Descriptions (continued)

2-4 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

3. Exceptions

Chapter 3 describes the exceptions that you can encounter while running
assembly programs. The machine detects some exceptions directly, and
the assembler inserts specific tests that signal other exceptions. This chap­
ter lists only those exceptions that occur most frequently.

3.1 Main Processor Exceptions

For the assembly language programmer, these are the most common main
processor exceptions:

• address error exceptions, which occur when the machine references a
data item that is not on its proper memory alignment or when an ad­
dress is invalid for the executing process

• overflow exceptions, which occur when arithmetic operations compute
signed values and the destination lacks the precision to store the result

• bus exceptions, which occur when an address is invalid for the execut­
ing process

• divide-by-zero exceptions, which occur when a divisor is zero

Version 1.0 Exceptions 3-1

3.2 Floating Point Exceptions

These are the floating point exceptions (not implemented for first release
of the IRIS-4D Series):

• invalid operation exceptions

o magnitude subtraction of infinities, for example: +00 - -00

o multiplication of 0 by 00 with any signs

o division of % or 00/00 with any signs

o conversion of a binary floating-point number to an integer format
when an overflow or the operand value for the infinity or NaN
precludes a faithful representation in the format (see Chapter 6)

o comparison of predicates that have unordered operands, and that
involve Greater Than or Less Than without Unordered.

o any operation on a signaling NaN

• divide-by-zero exceptions

• overflow exceptions-these occur when a rounded floating point result
exceeds the destination format's largest finite number

• underflow exceptions-these occur when a result has lost accuracy and

also when a nonzero result is between ±2Emin (plus or minus 2 to
the minimum expressable exponent).

• inexact exceptions

3-2 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

4. Lexical Conventions

Chapter 4 discusses lexical conventions for these topics:

• tokens

• comments

• identifiers

• constants

• multiple lines per physical line

• sections and location counters

• statements

• expressions

This chapter uses the following notation to describe syntax:

• I (vertical bar) means "or"

• [] (square brackets) enclose options

• ± indicates both addition and subtraction operations

Version 1.0 Lexical Conventions 4-1

4.1 Tokens

The assembler has these tokens:

• identifiers

• constants

• operators

The assembler lets you put blank characters and tab characters anywhere
between tokens; however, it does not allow these characters within tokens
(except for character constants). A blank or tab must separate adjacent
identifiers or constants that are not otherwise separated.

4.2 Comments

(

The pound sign character (#) introduces a comment. Comments that start
with a # extend through the end of the line on which they appear. You
can also use C-Ianguage notation /* ... */ to delimit comments. (

The assembler uses cpp (the C language preprocessor) to preprocess as-
sembler code. Because cpp interprets #s in the first column as pragmas
(compiler directives), do not start a # comment in the first column.

4.3 Identifiers

An identifier consists of a case-sensitive sequence of alphanumeric charac­
ters, including these:

• . (period)

• _ (underscore)

• $ (dollar sign)

Identifiers can be up to 31 characters long, and the first character cannot
be numeric.

4-2 Assembly Language Programmer's Guide IRIS-4D Series

(

If an identifier is not defined to the assembler (only referenced), the as­
sembler assumes that the identifier is an external symbol. The assembler
treats the identifier as if a .globl pseudo-operation was encountered (see
Chapter 8). If the identifier is defined to the assembler and the identifier
has not been specified as global, the assembler assumes that the identifier
is a local symbol.

4.4 Constants

The assembler has these constants:

• scalar constants

• floating point constants

• string constants

4.4.1 Scalar Constants

The assembler interprets all scalar constants as twos complement numbers.
Scalar constants can be any of the digits 0123456789abcdefABCDEF.

Scalar constants can be one of these constants:

• decimal constants, which consist of a sequence of decimal digits with­
out a leading zero

• hexadecimal constants, which consist of the characters Ox (or OX)
followed by a sequence of digits

• octal constants, which consist of a leading zero followed by a sequence
of digits in the range 0 .. 7

Version 1.0 Lexical Conventions 4-3

4.4.2 Floating Point Constants

Floating point constants can appear only in .float and . double pseudo-op­
erations (directives)-see Chapter 8. Floating point constants follow this
form:

:edl[.d2] [eIE:ed3]

Where:

• dl is written as a decimal integer and denotes the integral part of the
floating point value

• d2 is written as a decimal integer and denotes the fractional part of
the floating point value

• d3 is written as a decimal integer and denotes a power of 10

• the "+" symbol is optional

For example:

21.73E-3

represents the number .02173.

4.4.3 String Constants

String constants begin and end with double quotation marks (").

The assembler observes C language backslash conventions. For octal no­
tation, the backslash conventions require three characters when the next
character could be confused with the octal number. For hexadecimal no­
tation, the backslash conventions require two characters when the next
character could be confused with the hexadecimal number (i.e., use a 0
for the first character of a single character hex number).

The assembler follows the backslash conventions listed in Table 4-1:

4-4 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Convention Meaning

\a

\b

\f

\n

\r

\t

\v

\\

\"

\'

\000

\Xnn

alert (Ox07)

backspace (Ox08)

form feed (OxOc)

newline (OxOa)

carriage return (OxOd)

horizontal tab (Ox09)

vertical feed (OxOb)

backslash (Ox5c)

quotation mark (Ox22)

single quote (0x27)

character whose octal value is 000

character whose hexadecimal value is nn

Table 4-1. Backslash Conventions

4.5 Multiple Lines Per Physical Line

You can include multiple statements on the same line by separating the
statements with semicolons. The assembler does not recognize semicolons
as separators when they follow comment symbols (# or 1*).

Version 1.0 Lexical Conventions 4-5

4.6 Sections and Location Counters

Assembled code and data fall in one of six sections as illustrated in Figure
4-1:

.. text section

.. read-only data section

.. , data section

small data section, addressed
through register $gp

.. small bss section, addressed
through register $gp

.. bss (block started by storage)
section, which holds zero­
initialized data

Figure 4-1. Location Counters

(For more information on section data, see Chapter 9 of this manual.)

The assembler always generates the text section before other sections.
Additions to the text section happen in four-byte units. Each section has

4-6 Assembly Language Programmer's Guide IRIS-4D Series

(

(

an implicit location counter, which begins at zero and increments by one
for each byte assembled in the section.

The bss section holds zero-initialized data. If a .lcomm pseudo-op de­
fines a variable (see Chapter 8), the assembler assigns that variable to the
bss (block started by storage) section or to the sbss (short block started
by storage) section depending on the variable's size. The default variable
size for sbss is 512 or fewer bytes.

The command line option -G for each compiler (C, Pascal, Fortran 77,
or the assembler), can increase the size of sbss to cover all but extremely
large data items. The link editor issues an error message when the -G
value gets too large. If a -G value is not specified to the compiler, 512 is
the default. Items smaller than, or equal to, the specified size go in sbss.
Items greater than the specified size go in bss.

Because you can address items much more quickly through $gp than
through a more general method, put as many items as possible in sdata or
sbss. The size of sdata and sbss combined must not exceed 64K bytes.

4.7 Statements

Each statement consists of an optional label, an operation code, and the
operand(s). The machine allows these statements:

• null statements

• keyword statements

4.7.1 Label Definitions

A label definition consists of an identifier followed by a colon. Label
definitions assign the current value and type of the location counter to the
name. An error results when the name is already defined, the assigned
value changes the label definition, or both conditions exists.

Label definitions always end with a colon. You can put a label definition
on a line by itself.

A generated label is a single numeric value (1...255). To reference a
generated label, put an f (forward) or a b (backward) immediately after

Version 1.0 Lexical Conventions 4-7

the digits. The reference tells the assembler to look for the nearest gener­
ated label that corresponds to the number in the lexically forward or back­
ward direction.

4.7.2 Null Statements

A null statement is an empty statement that the assembler ignores. Null
statements can have label definitions. For example, this line has three
null statements in it:

labell :

4.7.3 Keyword Statements

A keyword statement begins with a predefined keyword. The syntax for
the rest of the statement depends on the keyword. All instruction op­
codes are keywords. All other keywords are assembler pseudo-operations
(directives) .

4.8 Expressions

An expression is a sequence of symbols that represent a value. Each ex­
pression and its result have data types. The assembler does arithmetic in
twos complement integers with 32 bits of precision. Expressions follow·
precedence rules and consist of:

• operators

• identifiers

• constants

Also, you may use a single character string in place of an integer within an
expression. Thus:

.byte "a" .word "a"+Ox19

is equivalent to

.byte Ox6l .word Ox7a

4-8 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

4.8.1 Precedence

Unless parentheses enforce precedence, the assembler evaluates all opera­
tors of the same precedence strictly from left to right. Because parenthe­
ses also designate index-registers, ambiguity can arise from parentheses in
expressions. To resolve this ambiguity, put a unary + in front of parenthe­
ses in expressions.

The assembler has three precedence levels, which are listed in Table 4-2
from lowest to highest precedence:

least binding,
lowest precedence:

most binding
highest precedence:

binary +.-

b· * /, n-/ A &, I Inary 70, «, », ,

unary - +, -

Table 4-2. Precedence Levels

NOTE: The assembler's precedence scheme differs from that of the C
language.

4.8.2 Expression Operators

For expressions, you can rely on the precedence rules, or you can group
expressions with parentheses. The assembler has these operators: .

Version 1.0 Lexical Conventions 4-9

Operator Meaning

+ addition

subtraction

* multiplication

/ division

% remainder

« shift left

» shift right (sign NOT extended)

bitwise EXCLUSIVE OR

& bitwise AND

bitwise OR

minus (unary)

+ identity (unary)

complement

Table 4-3. Operators

4.8.3 Data Types

The assembler manipulates several types of expressions. Each symbol you
reference or define belongs to one of the categories listed in Table 4-4:

4-10 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Type

undefined

sundefined

absolute

text

data

sdata

Version 1.0

Description .

Any symbol that is referenced but not defined be~
com,es global undefined, and this module will at­
tempt to import it. The assembler uses 32-bit ad­
dressing to access these symbols. (Declaring such
a symbol in a .globl pseudo-op merely makes its
status clearer).

A symbol defined by a . extern pseudo-op be­
comes global small undefined if its size is greater
than zero but less than the ,number of bytes speci­
fied by the -G option on the command line (which
defaults to 512). The linker places these symbols
within a 64k byte region pointed to by the $gp
register, so that the assembler can use economical
16-bit addressing to access them.

A constant defined in an "=" expression.

The text section contains the program's instruc­
tions, which are not modifiable during execution.
Any symbol defined while the . text pseudo-op is
in effect belongs to the text section.

The data section contains memory which the
linker can initialize to nonzero values before your
program begins to execute. Any symbol defined
while the . data pseudo-op is in effect belongs to
the data section. The assembler uses 32-bit ad­
dressing to access these symbols.

This category is similar to data, except that defin­
ing a symbol while the .sdata ("small data")
pseudo-op is in effect causes the linker to place it
within a 64k byte region pointed to by the $gp
register, so that the assembler can use economical
16-bit addressing to access it.

Table 4-4. Data Types

Lexical Conventions 4-11

Type

rdata

Description

Any symbol defined while the .rdata pseudo-op is
in effect belongs to this category, which is similar
to data, but may not be modified during execu- (
tion. ~

bss and sbss The bss and sbss sections consist of memory
which the kernel loader initializes to zero before
your program begins to execute. Any symbol de­
fined in a . comm or .lcomm pseudo-op belongs to
these sections (except that a .data, .sdata, or
.rdata pseudo-op can override a .comm direc­
tive). If its size is less than the number of bytes
specified by the -G option on the command line
(which defaults to 512). it belongs to sbss ("small
bss") , and the linker places it within a 64k byte
region pointed to by the $gp register so that the
assembler can use economical 16-bit addressing to
access it. Otherwise, it belongs to bss and the
assembler uses 32-bit addressing.

Local symbols in bss or sbss defined by .lcomm (
are allocated memory by the assembler; global
symbols are allocated memory by the link editor;
and symbols defined by .comm are overlaid upon
like-named symbols (in the fashion of Fortran
"COMMON" blocks) by the link editor.

Table 4-4. Data Types (continued)

Symbols in the undefined and small undefined categories are always global
(that is, they are visible to the link editor and can be shared with other mod­
ules of your program). Symbols in the absolute, text, data, sdata, rdata, bss,
and sbss categories are local unless declared in a .globl pseudo-op.

4-12 Assembly Language Programmer's Guide IRIS-4D Series

(

4.8.4 Type Propagation in Expressions

When expression operators combine expression operands, the result's type
depends on the types of the operands and on the operator. Expressions
follow these type propagation rules:

• If an operand is undefined, the result is undefined.

• If both operands are absolute, the result is absolute.

• If the operator is + and the first operand refers to a relocatable text­
section, data-section, bss-section, or an undefined external, the result
has the postulated type and the other operand must be absolute.

• If the operator is - and the first operand refers to a relocatable
text-section, data-section, or bss-section symbol, the second operand
can be absolute and the result has the first operand's type; or the sec­
ond operand can have the same type as the first operand and the re­
sult is absolute. If the first operand is external undefined, the second
operand must be absolute.

• The operators *, I, %, «, », - A, &, and I apply only
to absolute symbols.

Version 1.0 Lexical Conventions 4-13

("I,
,I

5. Instruction Set

Chapter 5 describes instruction notation and discusses assembler instruc­
tions for the main processor. Chapter 6 describes coprocessor notation
and instructions.

The assembler has the classes of instructions for the main processor listed
in Table 5-1:

Instruction

Load and Store Instructions

Computational Instructions

Jump and Branch Instructions

Coprocessor Interface

Special Instructions

Description

These instructions load immediate
values and move data between
memory and general registers.

These instructions do arithmetic
and logical operations for values in
registers.

These instructions change program
control flow.

These instructions provide standard
interfaces to the coprocessors.

These instructions do miscellaneous
tasks.

Table 5-1. Instruction Classes

Version 1.0 Instruction Set 5-1

5.1 Instruction Notation

The tables in Chapter 5 list the assembler format for each load, store,
computational, jump, branch, coprocessor, and special instruction. The
format consists of an op-code and a list of operand formats. The tables ("
list groups of closely related instructions; for those instructions, you can
use any op-code with any specified operand. Operands can take any of
these formats:

• memory references-for example a relocatable symbol +/- an expres­
sion(register)

• expressions (for immediate values)

• two or three operands-for example, add $3,$4 is the same as add
$3,$3,$4

5.2 Load and Store Instructions

The machine has general-purpose load and store instructions.

5.2.1 Load and Store Formats

Table 5-2 lists operands and their descriptions. Table 5-3 shows the for­
mats of available load and store instructions.

Operand Description

destination the destination register

address a symbolic expression (see Chapter 2)

source

expression

the source register

an absolute value

Table 5-2. Load and Store Operands

5-2 Assembly Language Programmer's Guide IRIS-4D Series

(

(

Description

Load Address
Load Byte
Load Byte Unsigned
Load Halfword
Load Halfword Unsigned
Load Word
Load Word Left
Load Word Right
Load Double

Op-code

la
lb
lbu
lh
lhu
lw
lwl
lwr
ld

Unaligned Load Halfword ulh
Unaligned Load Halfword Unsigned ulhu
Unaligned Load Word ulw

Load Immediate li
Load Upper Immediate lui

Store Byte sb
Store Double sd
Store Halfword sh
Store Word Left swl
Store Word Right swr
Store Word sw
Unaligned Store Halfword ush
Unaligned Store Word usw

Operands

destination, address

destination, expression

source, address

Table 5-3. Load and Store Instruction Formats

Version 1.0 Instruction Set 5-3

5.2.2 Load Instruction Descriptions

For all machine load instructions, the effective address is the 32-bit
twos-complement sum of the contents of the index-register and the (sign­
extended) 16-bit offset. Instructions that have symbolic labels imply an
index-register, which the assembler determines. The assembler supports (
additional load instructions, which can produce multiple machine instruc- ..
tions. NOTE: Load instructions can generate many code sequences for
which the link editor must fix the address by resolving external data items.

Instruction Name

Load Address (la)

Load Byte (lb)

Description

Loads the destination register with
the effective address of the speci­
fied data item.

Loads the least significant byte of
the destination register with the
contents of the byte that is at the
memory location specified by the
effective address. The machine
treats the loaded byte as a signed ,(
value: bit seven is extended to fill

Load Byte Unsigned (lbu)

the three most significant bytes.

Loads the least significant byte of
the destination register with the
contents of the byte that is at the
memory location specified by the
effective address. Because the ma­
chine treats the loaded byte as an
unsigned value, it fills the three
most significant bytes of the desti­
nation register with zeros.

Table 5-4. Load Instruction Descriptors

5-4 Assembly Language Programmer's Guide IRIS-4D Series

(

Instruction Name

Load Double (ld)

Load Halfword (lh)

Load Halfword Unsigned (lhu)

Description

Loads the register pair (destination
and destination + 1) with the two
successive words specified by the
address. The destination register
must be the even register of the
pair. When the address is not on
a word boundary, the machine sig­
nals an address error exception.
NOTE: For compatibility with fu­
ture machines, we recommend the
use of double word alignment for
all double word operands.

Loads the two least significant
bytes of the destination register
with the contents of the halfword
that is at the memory location
specified by the effective address.
The machine treats the loaded
halfword as a signed value. If the
effective address is not even, the
machine signals an address error
exception.

Loads the least significant bits of
the destination register with the
contents of the halfword that is at
the memory location specified by
the effective address. Because the
machine treats the loaded halfword
as an unsigned value, it fills the
two most significant bytes of the
destination register with zeros. If
the effective address is not even,
the machine signals an address er­
ror exception.

Table 5-4. Load Instruction Descriptors (continued)

Version 1.0 Instruction Set 5-5

Instruction Name

Load Immediate (Ii)

Load Upper Immediate (lui)

Load Word (lw)

Description

Loads the destination register with
the value of an expression that can
be computed at assembly time.

NOTE: Load Immediate can
generate any efficient code se­
quence to put a desired value in
the register.

Loads the most significant half of a
register with the expression's value,
The machine fills the least signifi­
cant half of the register with zeros.
The expression's value must be in
the range -32768 ... 65535.

Loads the destination register with
the contents of the word that is at
the memory location. The ma­
chine replaces all bytes of the reg­
ister with the contents of the
loaded word.

The machine signals an address er­
ror exception when the effective
address is not divisible by four.

Table 5-4. Load Instruction Descriptors (continued)

5-6 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Instruction Name

Load Word Left (lwl)

Load Word Right (lwr)

Description

Loads the sign-that is, Load
Word Left loads the destination
register with the most significant
bytes of the word specified by the
effective address. The effective
address must specify the byte con­
taining the sign. In a big-endian
machine, the effective address
specifies the lowest numbered byte,
and in a little-endian machine the
effective address specifies the high­
est numbered byte.

Only the bytes which share the
same aligned word in memory are
merged into the destination regis­
ter.

Loads the lowest precision bytes­
that is, Load Word Right loads
the destination register with the
least significant bytes of the word
specified by the effective address.
The effective address must specify
the byte containing the least signifi­
cant bits. In a big-endian ma­
chine, the effective address speci­
fies the highest numbered byte,
and in a little-endian machine the
effective address specifies the low­
est numbered byte.

Only the bytes which share the
same aligned word in memory are
merged into the destination regis­
ter.

Table 5-4. Load Instruction Descriptors (continued)

Version 1.0 Instruction Set 5-7

Instruction Name

Unaligned Load Halfword (ulh)

Unaligned Load Halfword
Unsigned (ulhu)

Unaligned Load Word (ulw)

Description

Loads a halfword into the destina­
tion register from the specified ad­
dress and extends the sign of the
halfword. Unaligned Load
Halfword loads a halfword regard­
less of the halfword's alignment in
memory.

Loads a halfword into the destina­
tion register from the specified ad­
dress and zero extends the
halfword. Unaligned Load
Halfword Unsigned loads a
halfword regardless of the
halfword's alignment in memory.

Loads a word into the destination
register from the specified address.
Unaligned Load Word loads a

(

word regardless of the word's align- (
ment in memory.

Table 5-4. Load Instruction Descriptors (continued)

5.2.3 Store Instruction Descriptions

For all machine store instructions, the effective address is the 32-bit twos­
complement sum of the contents of the index-register and the (sign-ex­
tended) 16-bit offset. The assembler supports additional store instruc­
tions, which can produce multiple machine instructions. Instructions that
have symbolic labels imply an index-register, which the assembler deter­
mines.

5-8 Assembly Language Programmer's Guide IRIS-4D Series

(

Instruction Name

Store Byte (sb)

Store Halfword (sh)

Store Word (sw)

Store Double (sd)

Description

Stores the contents of the source
register's least significant byte in
the byte specified by the effective
address.

Stores the two least significant
bytes of the source register in the
halfword that is at the memory lo­
cation specified by the effective ad­
dress. The effective address must
be divisible by two, otherwise the
machine signals an address error
exception.

Stores the contents of a word from
the source register in the memory
location specified by the effective
address. The effective address
must be divisible by four, otherwise
the machine signals an address er­
ror exception.

Stores the contents of the register
pair in successive words, which the
address specifies. The source reg­
ister must be the even register of
the pair, and the storage address
must be word aligned. NOTE:
For compatibility with future ma­
chines, we recommend that you
use double word alignment.

Table 5-5. Store Instruction Descriptors

Version 1.0 Instruction Set 5-9

Instruction Name

Store Word Left (swl)

Store Word Right (swr)

Unaligned Store Halfword (ush)

Unaligned Store Word (usw)

Description

Stores the most significant bytes of
a word in the memory location
specified by the effective address. (,
The contents of the word at the
memory location, specified by the
effective address, are shifted right
so that the leftmost byte of the un-
aligned word is in the addressed
byte position. The stored bytes re-
place the corresponding bytes of
the effective address. The effec-
tive address's last two bits deter-
mine how many bytes are involved.

Stores the least significant bytes of
a word in the memory location
specified by the effective address.
The contents of the word at the
memory location, specified by the
effective address, are shifted left so
that the right byte of the unaligned (
word is in the addressed byte posi- ,
tion. The stored bytes replace the
corresponding bytes of the effective
address. The effective address's
last two bits determine how many
bytes are involved.

Stores the contents of the two least
significant bytes of the source regis­
ter in a halfword that the address
specifies. The machine does not
require alignment for the storage
address.

Stores the contents of the source
register in a word specified Oy the
address. The machine does not
require alignment for the storage
address. (

Table 5-5. Store Instruction Descriptors (continued)

5-10 Assembly Language Programmer's Guide IRIS-4D Series

-----------------.--- -----~-- -----

5.3 Computational Instructions

The machine has general-purpose and coprocessor-specific computational
instructions (for example, the floating point coprocessor). This part of the
book describes general-purpose computational instructions.

5.3.1 Computational Formats

Table 5-6 shows computational operands and their descriptions. Table
5-7 shows the formats of computational instructions.

Version 1.0

Operand

destination/src 1

destination

immediate

srcl,src2

Description

the destination register is
also source register 1

the destination register

the immediate value

the source registers

Table 5-6. Computational Operands

Instruction Set 5-11

Description Op-code Operand

Add (with overflow) add destination, src i, src2

Add (without overflow) addu destination/src i,src2

AND and destination,srei,

Divide (signed) div immediate

Divide (unsigned) divu destination/srci,

(,

EXCLUSIVE OR xor immediate

Multiply mul

Multiply with Overflow mulo
Multiply with Overflow Unsigned mulou
NOT OR nor
OR or
Set Equal seq
Set Greater sgt
Set Greater/Equal sge
Set Greater/Equal Unsigned sgeu
Set Greater Unsigned sgtu
Set Less sIt
Set Less/Equal sle
Set Less/Equal Unsigned sleu (
Set Less Unsigned sItu
Set Not Equal sne
Subtract (with overflow) sub
Subtract (without overflow) subu

Table 5-7. Computational Instruction Formats

(

5-12 Assembly Language Programmer's Guide IRIS-40 Series

Description

Remainder (signed)
Remainder (unsigned)
Rotate Left
Rota te Right
Shift Right Arithmetic
Shift Left Logical
Shift Right Logical

Absolute Value
Negate (with overflow)
Negate (without overflow)
NOT

Move

Multiply
Multiply (unsigned)

Op-code

rem
remu
rol
ror
sra
sl1
srl

abs
neg
negu
not

move

mult
multu

Operand

destination,srcl, src2
destination/src 1, src2
destination,src1,

immediate
destination/src 1,

immediate

destina tion, src 1
destina tionl src1

destination, src 1

srcl,src2

Table 5-7. Computational Instruction Formats (continued)

5.3.2 Computational Instruction Descriptions

Table 5-8 shows the descriptions of computational instructions.

Version 1.0 Instruction Set 5-13

Instruction Name

Absolute Value (abs)

Add (with overflow) (add)

Add (without overflow) (addu)

AND (and)

Description

Computes the absolute value of the
contents of src 1 and puts the result
in the destination register. If the
value in src1 is -2147483648, the
machine signals an overflow excep­
tion.

Computes the twos complement
sum of two signed values. This in­
struction adds the contents of src 1
to the contents of src2, or it can
add the contents of src 1 to the im­
mediate value. Add (with over­
flow) puts the result in the destina­
tion register. When the result can­
not be extended as a 32-bit num­
ber, the machine signals an over­
flow exception.

Computes the twos complement
sum of two 32-bit values. This in­
struction adds the contents of src 1
to the contents of src2, or it can
add the contents of src 1 to the im­
mediate value. Add (without
overflow) puts the result in the
destination register. Overflow ex­
ceptions never occur.

Computes the Logical AND of two
values. This instruction ANDs
(bit-wise) the contents of src1 with
the contents of src2, or it can
AND the contents of src 1 with the
immediate value. The immediate
value is not sign extended. AND
puts the result in the destination
register.

Table 5-8. Computational Instruction Descriptions

5-14 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Instruction Name

Divide (signed) (div)

Divide (unsigned) (divu)

Description

Computes the quotient of two val­
ues. Divide (with overflow) treats
src1 as the dividend. The divisor
can be src2 or the immediate
value. The instruction divides the
contents of src 1 by the contents of
src2, or it can divide src1 by the
immediate value. It puts the quo­
tient in the destination register. If
the divisor is zero, the machine
signals an error. The div instruc­
tion rounds toward zero. Overflow
is signaled when dividing
-2147483648 by -1.

NOTE: The special case

div $O,srcl,srC2

generates the real machine divide
instruction and leaves the result in
the hillo register. The hi register
contains the remainder and the 10
register contains the quotient. No
checking for divide by zero is per­
formed.

Computes the quotient of two un­
signed 32-bit values. Divide
(without overflow) treats src1 as
the dividend. The divisor can be
src2 or the immediate value. This
instruction divides the contents of
src1 by the contents of src2, or it
can divide the contents of src 1 by
the immediate value. Divide
(without overflow) puts the quo­
tient in the destination register. If
the divisor is zero, the machine
signals an exception.

Table 5-8. Computational Instruction Descriptions (continued)

Version 1.0 Instruction Set 5-15

Instruction Name

EXCLUSIVE OR (xor)

Move (move)

Multiply (muI)

Multiply (mult)

Description

See the note for div concerning $0
as a destination.

Overflow exceptions never occur.

Computes the XOR of two values.
This instruction XORs (bit-wise)
the contents of src 1 with the con-
tents of src2, or it can XOR the
contents of src 1 with the immedi-
ate value. The immediate value is
not sign extended. EXCLUSIVE
OR puts the result in the destina-
tion register.

Moves the contents of src 1 to the
destina tion register.

Computes the product of two val­
ues. This instruction puts the
32-bit product of src1 and src2, or
the 32-bit product of src1 and the
immediate value, in the destination
register. The machine does not
report overflow.

NOTE: Use mul when you do not
need overflow protection: it's often
faster than mulo and mulou. For
multiplication by a constant, the
mul instruction produces faster ma­
chine instruction sequences than
mult or multu instructions can
produce.

Computes the 64-bit product of
two 32-bit signed values. This in­
struction multiplies the contents of
src 1 by the contents of src2 and
puts the result in the hi and 10

(

(

registers (see Chapter 1). No (
overflow is possible. .

Table 5-8. Computational Instruction Descriptions (continued)

5-16 Assembly Language Programmer's Guide IRIS-4D Series

Instruction Name

Multiply Unsigned (multu)

Multiply with Overflow (mulo)

Multiply with Overflow Unsigned
(mulou)

Description

NOTE: The mult instruction is a
real machine language instruction.

Computes the product of two un­
signed 32-bit values. It multiplies
the contents of src1 and the con­
tents of src2 and puts the result in
the hi and 10 registers (see Chap­
ter 1). No overflow is possible.

NOTE: The multu instruction is a
real machine language instruction.

Computes the product of two
32-bit signed values. Multiply
with Overflow puts the 32-bit
product of src 1 and src2, or the
32-bit product of src1 and the im­
mediate value, in the destination
register. When a overflow occurs,
the machine signals an overflow
exception.

NOTE: For multiplication by a
constant, mulo produces faster ma­
chine instruction sequences than
mult or multu can produce; how­
ever, if you do not need overflow
detection, use the mul instruction.
It's often faster than mulo.

Computes the product of two
32-bit unsigned values. Multiply
with Overflow Unsigned puts the
32-bit product of src1 and src2, or
the product of src 1 and the imme­
diate value, in the destination reg­
ister. This instruction treats the
multiplier and multiplicand as
32-bit unsigned values. When an
overflow occurs, the machine sig­
nals an overflow exception.

Table 5-8. Computational Instruction Descriptions (continued)

Version 1.0 Instruction Set 5-17

Instruction Name

Negate (with overflow) (neg)

Negate (without overflow)
(negu)

NOT (not)

NOT OR (nor)

Description

NOTE: For multiplication by a
constant, mulou produces faster
machine instruction sequences than (~
mult or multu can produce; how-
ever, if you do not need overflow
detection, use the mul instruction.
It's often faster than mulou.

Computes the negative of a value.
This instruction negates the con­
tents of src 1 and puts the result in
the destination register. If the
value in src1 is -2147483648, the
machine signals an overflow excep­
tion.

Negates the integer contents of
src1 and puts the result in the des­
tination register. The machine
does not report overflows.

Computes the Logical NOT of a
value. This instruction comple­
ments (bit-wise) the contents of
src 1 and puts the result in the des­
tination register.

Computes the NOT OR of two val­
ues. This instruction combines the
the contents of src 1 with the con­
tents of src2 (or the immediate
value). NOT OR complements the
result and puts it in the destination
register.

(

Table 5-8. Computational Instruction Descriptions (continued)

(

5-18 Assembly Language Programmer's Guide IRIS-4D Series

Instruction Name

OR (or)

Remainder (signed) (rem)

Description

Computes the Logical OR of two
values. This instruction ORs (bit­
wise) the contents of src 1 with the
contents of src2, or it can OR the
contents of src 1 with the immedi­
ate value. The immediate value is
not sign extended. OR puts the
result in the destination register.

Computes the remainder of the di­
vision of two unsigned 32-bit val­
ues. The machine defines the re­
mainder rem(i,j) as i-U*div(i,j))
where j -:;i: O. Remainder (with
overflow) treats src1 as the divi­
dend. The divisor can be src2 or
the immediate value. This instruc­
tion divides the contents of src 1 by
the contents of src2, or it can di­
vide the contents of src 1 by the
immediate value. It puts the re­
mainder in the destination register.
The rem instruction rounds toward
zero, rather than toward negative
infinity. For example,
div(5,-3)=-1, and rem(5,-3)=2.
If the divisor is zero, the machine
signals an error.

Table 5-8. Computational Instruction Descriptions (continued)

Version 1.0 Instruction Set 5-19

Instruction Name

Remainder (unsigned) (remu)

Rotate Left (rol)

Description

Computes the remainder of the di­
vision of two unsigned 32-bit val-
ues. The machine defines the re- (
mainder rem(i,j) as i-U*div(i,j)) .
where j ¥= O. Remainder Un-
signed treats src1 as the dividend.
The divisor can be src2 or the im­
mediate value. This instruction di­
vides the contents of src 1 by the
contents of src2, or it can divide
the contents of src 1 by the imme­
diate value. Remainder Unsigned
puts the remainder in the destina-
tion register. If the divisor is zero,
the machine signals an error.

Rotates the contents of a register
left (toward the sign bit). This in­
struction inserts in the least signifi­
cant bit any bits that were shifted
out of the sign bit. The contents (
of src 1 specify the value to shift,
and the contents of src2 (or the '
immediate value) specify the
amount to shift. Rotate Left puts
the result in the destination regis-
ter. If src2 (or the immediate
value) is greater than 31, src1
shifts by (src2 MOD 32).

Table 5-8. Computational Instruction Descriptions (continued)

(

5-20 Assembly Language Programmer's Guide IRIS-4D Series

Instruction Name

Rotate Right (ror)

Set Equal (seq)

Set Greater (sgt)

Set Greater/Equal (sge)

Description

Rotates the contents of a register
right (toward the least significant
bit). This instruction inserts in the
sign bit any bits that were shifted
out of the least significant bit. The
contents of src 1 specify the value
to shift, and the the contents of
src2 (or the immediate value)
specify the amount to shift. Ro­
tate Right puts the result in the
destination register. If src2 (or the
immediate value) is greater than
32, src1 shifts by src2 MOD 32.

Compares two 32-bit values. If
the contents of src1 equal the con­
tents of src2 (or src 1 equals the
immediate value) this instruction
sets the destination register to one;
otherwise, it sets the destination
register to zero.

Compares two signed 32-bit values.
If the contents of src1 are greater
than the contents of src2 (or src1
is greater than the immediate
value), this instruction sets the des­
tination register to one; otherwise,
it sets the destination register to
zero.

Compares two signed 32-bit values.
If the contents of src1 are greater
than or equal to the contents of
src2 (or src1 is greater than or
equal to the immediate value), this
instruction sets the destination reg­
ister to one; otherwise, it sets the
destination register to zero.

Table 5-8. Computational Instruction Descriptions (continued)

Version 1.0 Instruction Set 5-21

Instruction Name

Set Greater/Equal Unsigned
(sgeu) .

Set Greater Unsigned (sgtu)

Set Less (sIt)

Set Less/Equal (sle)

Description

Compares two unsigned 32-bit val- (
ues. If the contents of src1 are
greater than or equal to the con-
tents of src2 (or src1 is greater
than or equal to the immediate
value), this instruction sets the des­
tination register to one; otherwise,
it sets the destination register to
zero.

Compares two unsigned 32-bit val­
ues.. If the contents of src1 are
greater than the contents of src2
(or src1 is greater than the imme­
diate value), this instruction sets
the destination register to one; oth­
erwise, it sets the destination regis­
ter to zero.

Compares two signed 32-bit values.
If the contents of src1 are less
than the contents of src2 (or src1
is less than the immediate value),
this instruction sets the destination
register to one; otherwise, it sets
the destination register to zero.

Compares two signed 32-bit values.
If the contents of src 1 are less
than or equal to the contents of
src2 (or src1 is less than or equal
to the immediate value), this in­
struction sets the destination regis­
ter to one; otherwise, it sets the
destination register to zero.

(

Table 5-8. Computational Instruction Descriptions (continued) (I

5-22 Assembly Language Programmer's Guide IRIS-4D Series

Instruction Name

Set Less/Equal Unsigned (sleu)

Set Less Unsigned (sItu)

Set Not Equal (sne)

Shift Left Logical (sl1)

Description

Compares two unsigned 32-bit val­
ues. If the contents of src1 are
less than or equal to the contents
of src2 (or src 1 is less than or
equal to the immediate value) this
instruction sets the destination reg­
ister to one; otherwise, it sets the
destination register to zero.

Compares two unsigned 32-bit val­
ues. If the contents of src1 are
less than the contents of src2 (or
src1 is less than the immediate
value), this instruction sets the des­
tination register to one; otherwise,
it sets the destination register to
zero.

Compares two 32-bit values. If
the contents of scd do not equal
the contents of src2 (or src 1 does
not equal the immediate value),
this instruction sets the destination
register to one; otherwise, it sets
the destination register to zero.

Shifts the contents of a register left
(toward the sign bit) and inserts
zeros at the least significant bit.
The contents of src 1 specify the
value to shift, and the contents of
src2 or the immediate value specify
the amount to shift. If src2 (or
the immediate value) is greater
than 31 or less than 0, src1 shifts
by src2 MOD 32.

Table 5-8. Computational Instruction Descriptions (continued)

Version 1.0 Instruction Set 5-23

Instruction Name

Shift Right Arithmetic (sra)

Shift Right Logical (srI)

Subtract (with overflow) (sub)

Description

Shifts the contents of a register
right (toward the least significant
bit) and inserts the sign bit at the
most significant bit. The contents
of src 1 specify the value to shift,
and the contents of src2 (or the
immediate value) specify the
amount to shift. If src2 (or the
immediate value) is greater than 31
or less than 0, src1 shifts by the
result of src2 MOD 32.

Shifts the contents of a register
right (toward the least significant
bit) and inserts zeros at the most
significant bit. The contents of
src 1 specify the value to shift, and
the contents of src2 (or the imme­
diate value) specify the amount to
shift. If src2 (or the immediate
value) is greater than 31 or less
than 0, src1 shifts by the result of
src2 MOD 32.

Computes the twos complement
difference for two signed values.
This instruction subtracts the con­
tents of src2 from the contents of
src1, or it can subtract the con­
tents of the immediate from the
src1 value. Subtract puts the re­
sult in the destination register.
When the true result's sign differs
from the destination register's sign,
the machine signals an overflow
exception.

Table 5-8. Computational Instruction Descriptions (continued)

5-24 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Instruction Name Description

Subtract (without overflow)
(subu) Computes the twos complement

difference for two 32-bit values.
This instruction subtracts the con­
tents of src2 from the contents of
src1, or it can subtract the con­
tents of the immediate from the
src1 value. Subtract Unsigned
puts the result in the destination
register. Overflow exceptions
never happen.

Table 5-8. Computational Instruction Descriptions' (continued)

5.4 Jump and Branch Instructions

The jump and branch instructions let you change an assembly program's
control flow.

5.4.1 Jump and Branch Formats

Table 5-9 shows jump and branch operands and th~ir descriptions. Table
5-10 shows the formats of jump and branch instructions.

Version 1.0

Operand

address

src1,src2

label

immediate

Description

an expression

the source registers

a symbol label

an expression with an absolute value

Table 5-9. Jump and Branch Operands

Instruction Set 5-25

Description Op-code Operand

Jump j address
Jump and Link jal src1

Branch on Equal beq src1,src2,label (
Branch on Greater bgt srcl, immediate, label
Branch on Greater/Equal bge

Branch on Greater/Equal Unsigned bgeu

Branch on Greater Unsigned bgtu

Branch on Less bIt

Branch on Less/Equal ble

Branch on Less/Equal Unsigned bleu

Branch on Less Unsigned bItu

Branch on Not Equal bne

Branch on Equal to Zero beqz src1,label
Branch on Greater/Equal Zero bgez

Branch on Greater Than Zero bgtz

Branch on Less/Equal Zero blez

Branch on Less Than Zero bltz (
Branch on Not Equal to Zero bnez

Branch b label

Branch and Link bal

Branch on Less Than Zero and Link bltzal

Branch on Greater or Equal to Zero bgezal
and Link

Table 5-10. Jump and Branch Instruction Formats

(

5-26 Assembly Language Programmer's Guide IRIS-4D Series

5.4.2 Jump and Branch Instruction Descriptions

In the following branch instructions, branch destinations must be defined
in the source being assembled. Table 5-11 shows descriptions of jump
and branch instructions.

Instruction Name

Branch (b)

Branch and Link (bal)

Branch on Equal (beq)

Branch on Equal to Zero (beqz)

Branch on Greater (bgt)

Branch on Greater/Equal Unsigned
(bgeu)

Description

Branches unconditionally to the
specified label.

Branches unconditionally to the
specified label and puts the return
address in general register $ 31.

Branches to the specified label
when the contents of src1 equal
the contents of src2, or it can
branch when the contents of src 1
equal the immediate value.

Branches to the specified label
when the contents of src 1 equal
zero.

Branches to the specified label
when the contents of src 1 are
greater than the contents of src2,
or it can branch when the contents
of src 1 are greater than the imme­
diate value. The comparison treats
the comparands as signed 32-bit
values.

Branches to the specified label
when the contents of src 1 are
greater than or equal to the con­
tents of src2, or it can branch
when the contents of src 1 are
greater than or equal to the imme­
diate value. The comparison treats
the comparands as unsigned 32-bit
values.

Table 5-11. Jump and Branch Instruction Descriptions

Version 1.0 Instruction Set 5-27

Instruction Name

Branch on Greater/Equal Zero
(bgez)

Description

Branches to the specified label
when the contents of src 1 are
greater than or equal to zero.

Branch on Greater/Equal Zero and Link
(bgezal) Branches to the specified label

when the contents of src 1 are
greater than or equal to zero and
puts the return address in general
register $31.

Branch on Greater or Equal
(bge)

(

Branches to the specified label
when the contents of src 1 are
greater than or equal to the con­
tents of src2, or it can branch
when the contents of src 1 are
greater than or equal to the imme­
diate value. The comparison treats
the comparands as signed 32-bit
values. (

Branch on Greater Than Unsigned
(bgtu)

Branch on Greater Than Zero
(bgtz)

Branches to the specified label
when the contents of src 1 are
greater than the contents of src2,
or it can branch when the contents
of src1 are greater than the imme­
diate value. The comparison treats
the comparands as unsigned 32-bit
values.

Branches to the specified label
when the contents of src 1 are
greater than zero.

Table 5-11. Jump and Branch Instruction Descriptions (continued)

5-28 Assembly Language Programmer's Guide IRIS-4D Series

(

Instruction Name

Branch on Less (bIt)

Branch on Less/Equal Unsigned
(bleu)

Branch on Less/Equal Zero
(blez)

Branch on Less or Equal (ble)

Branch on Less Than Unsigned
(bltu)

Description

Branches to the specified label
when the contents of src 1 are less
than the contents of src2, or it can
branch when the contents of src 1
are less than the immediate value.
The comparison treats the com­
parands as signed 32-bit values.

Branches to the specified label
when the contents of src 1 are less
than or equal to the contents of
src2, or it can branch when the
contents of src 1 are less than or
equal to the immediate value. The
comparison treats the comparands
as unsigned 32-bit values.

Branches to the specified label
when the contents of src 1 are less
than or equal to zero. The pro­
gram must define the destination.

Branches to the specified label
when the contents of src1 are less
than or equal to the contents of
src2, or it can branch when the
contents of src 1 are less than or
equal to the immediate value. The
comparison treats the comparands
as signed 32-bit values.

Branches to the specified label
when the contents of src 1 are less
than the contents of src2, or it can
branch when the contents of src 1
are less than the immediate value.
The comparison treats the com­
parands as unsigned 32-bit values.

Table 5-11. Jump and Branch Instruction Descriptions (continued)

Version 1.0 Instruction Set 5-29

Instruction Name

Branch on Less Than Zero
(bltz)

Branch on Less Than Zero and Link

Description

Branches to the specified label
when the contents of src 1 are less
than zero. The program must de­
fine the destination.

(bltzal) Branches to the specified label
when the contents of src 1 are less
than zero and puts the return ad­
dress in general register $ 31.

Branch on Not Equal (bne)

Branch on Not Equal to Zero
(bnez)

Jump (j)

Branches to the specified label
when the contents of src 1 do not
equal the contents of src2, or it
can branch when the contents of
src1 do not equal the immediate
value.

Branches to the specified label
when the contents of src 1 do not
equal zero.

Unconditionally jumps to a speci­
fied location. A symbolic address
or a general register specifies the
destination. The instruction j $31
returns from the a jal call instruc­
tion.

Table 5-11. Jump and Branch Instruction Descriptions (continued)

5-30 Assembly Language Programmer's Guide IRIS-4D Series

(

(

Instruction Name

Jump And Link (jal)

Description

Unconditionally jumps to a speci­
fied location and puts the return
address in general register $31. A
symbolic address or a general regis­
ter specifies the destination. The
instruction jal procname transfers
to procname and saves the return
address.

The machine does not allow a
Jump and Link to register $31.

Table 5-11. Jump and Branch Instruction Descriptions (continued)

5.5 Special Instructions

The main processor's special instructions do miscellaneous tasks.

5.5.1 Special Formats

Table 5-12 shows special format operands. Table 5-13 shows the formats
of special instructions.

Version 1.0

Operand

register

breakcode

Description

destination or source register

value that determines the break type

Table 5-12. Special Operands Instructions

Instruction Set 5-31

Description Op-code Operand

Break break breakcode

Restore From Exception rfe
Syscall syscall

Move From HI Register mfhi register
Move To HI Register mthi
Move From LO Register mno
Move To LO Register mtlo

Table 5-13. Special Instruction Formats

5.5.2 Special Instruction Descriptions

Table 5-14 shows descriptions of special instructions.

Instruction Name

Break (break)

Move From HI Register (mfhi)

Move From LO Register (mHo)

Move To HI Register (mthi)

Move To LO Register (mtlo)

Description

Unconditionally transfers control to
the exception handler. The break­
code operand is interpreted by
software conventions.

Moves the contents of the HI reg­
ister to a general purpose register.

Moves the contents of the LO reg­
ister to a general purpose register.

Moves the contents of a general
purpose register to the HI register.

Moves the contents of a general
purpose register to the LO register.

Table 5-14. Special Instruction Descriptions

5-32 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Instruction Name

Restore From Exception (rfe)

Syscall (syscall)

Description

Restores the previous interrupt
callee and user/kernel state. This
instruction can execute only in ker­
nel state and is unavailable in user
mode.

Causes a system call trap. The op­
erating system interprets the infor­
mation set in registers to determine
what system call to do.

Table 5-14. Special Instruction Descriptions (continued)

5.6 Coprocessor Interface Instructions

The coprocessor interface instructions provide standard ways to access the
machine's coprocessors.

Note: You cannot use coprocessor load and store instructions with the
system control coprocessor (cpO).

5.6.1 Coprocessor Interface Formats

Table 5-15 shows coprocessor interface operands. Table 5-16 shows the
formats of coprocessor interface descriptions.

Version 1.0 Instruction Set 5-33

Operand Description

z

destination

dest-gpr

address

a coprocessor number in the range 0 ... 3

the destination coprocessor register

the destination general register

a symbolic expression
source

src-gpr

operation

label

a coprocessor register from which values are assigned

a general register from which values are assigned

the coprocessor specific operation

a symbolic label

Table 5-15. Coprocessor Interface Operands

Description Op-code Operand

Load Word Coprocessor z lwcz destination, address

Store Word Coprocessor z swcz source, address

Move From Coprocessor z mfcz dest-gpr, source

Move To Coprocessor z mtcz src-gpr, destination

Branch Coprocessor z False bczf label
Branch Coprocessor z True bczt

Coprocessor z Operation cz expression

Control From Coprocessor z cfcz dest-gpr, source

Control To Coprocessor z ctcz src-gpr, destination

Table 5-16. Coprocessor Interface Instruction Formats

5-34 Assembly Language Programmer's Guide IRIS-4D Series

------ ------------

(

(

()

5.6.2 Coprocessor Interface Instruction Descriptions

Table 5-17 shows descriptions of coprocessor interface instructions.

Instruction Name

Branch Coprocessor z True
(bczt)

Branch Coprocessor z False
(bczf)

Control From Coprocessor z
(cfcz)

Control To Coprocessor z
(ctcz)

Coprocessor z Operation (cz)

Description

Branches to the specified label
when the specified coprocessor as­
serts a true condition. The z se­
lects one of the coprocessors. A
previous coprocessor operation sets
the condition.

Branches to the specified label
when the specified coprocessor as­
serts a false condition. The z se­
lects one of the coprocessors. A
previous coprocessor operation sets
the condition.

Stores the contents of the
coprocessor control register speci­
fied by the source in the general
register specified by dest-gpr.

Stores the contents of the general
register specified by src-gpr in the
coprocessor control register speci­
fied by the destination.

Executes a coprocessor-specific op­
eration on the specified coproces­
sor. The z selects one of four dis­
tinct coprocessors.

Table 5-17. Coprocessor Interface Instruction Descriptions

Version 1.0 Instruction Set 5-35

Instruction Name

Load Word Coprocessor z
(lwcz)

Move From Coprocessor z
(mfcz)

Move To Coprocessor z (mtcz)

Store Word Coprocessor z
(swcz)

Description

Loads the destination with the con­
tents of a word that is at the mem­
ory location specified by the effec­
tive address. The z selects one of
four distinct coprocessors. Load
Word Coprocessor replaces all
register bytes with the contents of
the loaded word. If bits 0 and 1
of the effective address are not
zero, the machine signals an ad­
dress exception.

Stores the contents of the
coprocessor register specified by
the source in the general register
specified by dest-gpr.

Stores the contents of the general
register specified by src-gpr in the
coprocessor register specified by
the destination.

Stores the contents of the
coprocessor register in the memory
location specified by the effective
address. The z selects one of four
distinct coprocessors. If bits 0 and
1 of the effective address are not
zero, the machine signals an ad­
dress error exception.

Table 5-17. Coprocessor Interface Instruction Descriptions (continued)

5-36 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

6. Coprocessor Instruction Set

Chapter 6 describes the coprocessor instructions for these coprocessors:

• system control coprocessor (cpO) instructions

• floating point coprocessor instructions

See Chapter 5 for a description of the main processor's instructions and
the coprocessor interface instructions.

6.1 Instruction Notation

The tables in this chapter list the assembler format for each coprocessor's
load, store, computational, jump, branch, and special instructions. The
format consists of an op-code and a list of operand formats. The tables
list groups of closely related instructions; for those instructions, you can
use any op-code with any specified operand. NOTE: The system control
coprocessor instructions do not have operands. Operands can have any of
these formats:

• memory references-for example a relocatable symbol +/- an expres­
sion(register)

• expressions (for immediate values)

• two or three operands-for example, add $3,$4 is the same as add
$3,$3,$4

Version 1.0 Coprocessor Instruction Set 6-1

The following terms are used to discuss floating point operations:

• infinite-A value of +00 or -00.

• infinity-A symbolic entity that represents values with magnitudes
greater than the largest value in that format.

• ordered-The usual result from a comparison, namely: <,=, or >

• NaN-Symbolic entities that represent values not otherwise available in
floating point formats. There are two kinds of NaNs. Quiet NaNs
represent unknown or uninitialized values. Signaling NaNs represent
symbolic values and values that are too big or too precise for the for­
mat. Signaling NaNs raise an invalid operation exception whenever an
operation is attempted on them.

• unordered-The condition that results from a floating-point compari­
son when one or both operands are NaNs.

6.2 Floating Point Instructions

Table 6-1 shows the classes of the floating point coprocessor instructions.

Instruction

Load and Store Instructions

Computational Instructions

Relational Instructions

Move Instructions

Description

Load values and move data be­
tween memory and coprocessor
registers.

Do arithmetic and logical opera­
tions on values in coprocessor reg­
isters.

Compare two floating point values.

Move data between registers.

Table 6-1. Floating Point Coprocessor Instructions

A particular floating point instruction may be implemented in hardware,
software, or a combination of hardware and software.

6-2 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

6.2.1 Floating Point Formats

The formats for the single and double precision floating point constants
are shown below.

o 1 8 9 31 (big-endian)

1~1~1-8-b-h~sl~---2-3-b-its----~1

31 30 23 22 o (little-endian)

Single Precision

o 1 1112

11111 bits 1 52 bits

63 62 52 51

Double Precision

Figure 6-1. Floating Point Formats

6.2.2 Floating Point Load and Store Formats

(big-endian)

63

o
(little-endian)

Floating point load and store instructions must use even registers. Table
6-2 shows floating point operands. Table 6-3 shows the floating point
load and store formats.

Version 1.0 Coprocessor Instruction Set 6-3

Operand Meaning

destination the destination register

address offset (base)

source the source register

Table 6-2. Floating Point Load and Store Operands

Description Op-code Operand

Load Fp
Double l.d destination, address

Single l.s

Store Fp

Double s.d source, address
Single S.S

Table 6-3. Floating Point Load and Store Formats

6.2.3 Floating Point Load and Store Descriptions

Table 6-4 groups the instructions by function. Please consult Table 6-3
for the op-codes.

6-4 Assembly Language Programmer's Guide IRIS-4D Series

- --------------- ---

(

(

(

Instruction

Load Fp Instructions

Store Fp Instructions

Description

Load eight bytes for double preci­
sion and four bytes for single preci­
sion from the specified effective
address into the destination regis­
ter, which must be an even regis­
ter. The bytes must be word
aligned. NOTE: To ensure com­
patibility with future machines, we
recommend that you use double
word alignment for double preci­
sion operands.

Stores eight bytes for double preci­
sion and four bytes for single preci­
sion from the source floating point
register in the destination register,
which must be an even register.
NOTE: To ensure compatibility
with future machines, we recom­
mend that you use double word
alignment for double precision op­
erands.

Table 6-4. Floating Point Load and Store Descriptors

6.2.4 Floating Point Computational Formats

This part of Chapter 6 describes floating point computational instructions.
Table 6-5 shows floating point computational operands. Table 6-6 shows
the formats of floating point computational instructions.

Version 1.0

Operand

destination

source

gpr

Meaning

the destination register

the source register

general purpose register

Table 6-5. Floating Point Computational Operands

Coprocessor Instruction Set 6-5

Description Op-code Operand

Absolute Value Fp
Double abs.d destination, srei
Single abs.s (Negate Fp

I

Double neg.d

Single neg.s

Add Fp
Double add.d destination, srei, src2
Single add.s

Divide Fp
Double div.d
Single div.s

Multiply Fp
Double mul.d
Single mul.s

Subtract Fp
Double sub.d
Single sub.s

Table 6-6. Floating Point Computational Instruction Formats
(

(

6-6 Assembly Language Programmer's Guide IRIS-4D Series

Description

Convert Source to
Specified Fp Precision

Double to Single Fp
Fixed Point to Single Fp
Single to Double Fp

Fixed Point to Double Fp
Single to Fixed Point Fp
Double to Fixed Point Fp

Truncate and Round
Operations

Truncate to Single Fp
Truncate to Double Fp

Round to Single Fp
Round to Double Fp

Op-code

cvt.s.d
cvt.s.w
cvt.d.s

cvt.d.w
cvt.w.s
cvt.w.d

trunc.w.s
trunc.w.d

round.w.s
round.w.d

Operand

destination, src1

destination, src, gpr

Table 6-6. Floating Point Computational Instruction Formats
(continued)

6.2.5 Floating Point Computational Instruction Descriptions

Table 6-7 groups the instructions by function. Please consult Table 6-6
for the op-code names.

Version 1.0 Coprocessor Instruction Set 6-7

Instruction

Absolute Value Fp Instructions

Add Fp Single Instructions

Description

Compute the absolute value of the
contents of src1 and put the speci­
fied precision floating point result
in the destination register.

Add the contents of src 1 (or the
destination) to the contents of src2
and put the result in the destina­
tion register. When the sum of
two operands with opposite signs is
exactly zero, the sum has a positive
sign for all rounding modes except
round toward -00. For that
rounding mode, the sum has a
negative sign.

Convert Source to Another Precision Fp Instructions
Convert the contents of src1 to the
specified precision, round accord­
ing to the rounding mode, and put

(i

the result in the destination regis- (.-
ter.

Truncate and Round Instructions
The trunc instructions truncate the
value in the source floating-point
register and put the resulting inte­
ger in the destination floating-point
register, using the third (general­
purpose) register to hold a tempo­
rary value. (This is a macro-in­
struction.) The round instructions
work like trunc, but round the
floating-point value to an integer
instead of truncating it.

Table 6-7. Floating Point Computational Instruction Descriptions

6-8 Assembly Language Programmer's Guide IRIS-4D Series

(

Instruction

Divide Fp Instructions

Multiply Fp Instructions

Negate FP Instructions

Subtract Fp Instructions

Description

Compute the quotient of two val­
ues. These instructions treat src1
as the dividend and src2 as the di­
visor. Divide Fp instructions di­
vide the contents of src 1 by the
contents of src2 and put the result
in the destination register. If the
divisor is a zero, the machine sig­
nals a error if the divide-by-zero
exception is enabled.

Multiplies the contents of srcl (or
the destination) with the contents
of src2 and puts the result in the
destination register.

Compute the negative value of the
contents of src1 and put the speci­
fied precision floating point result
in the destination register.

Subtract the contents of src2 from
the contents of src1 (or the desti­
nation) . These instructions put the
result in the destination register.
When the difference of two oper­
ands with the same signs is exactly
zero, the difference has a positive
sign for all rounding modes except
round toward -00. For that
rounding mode, the sum has a
negative sign.

Table 6-7. Floating Point Computational Instruction Descriptions
(continued)

Version 1.0 Coprocessor Instruction Set 6-9

6.3 Floating Point Relational Operations

Table 6-8 summarizes the floating point relational instructions. The first
column under Condition gives a mnemonic for the condition tested. As
the "branch on true/false" condition can be used to logically negate any (
condition, the second column supplies a mnemonic for the logical negation . ~
of the condition in the first column. This provides a total of 32 possible
conditions. The four columns under Relations give the result of the com­
parison based on each condition. The final column states if an invalid
operation is signaled for each condition.

For example, with an equal condition CEQ mnemonic in the True col­
umn) , the logical negation of the condition is not equal CNEQ) , and a
comparison that is equal is True for equal and False for greater than, less
than, and unordered, and no Invalid Operation Exception is given if the
relation is unordered.

Condition Relations Invalid

Mnemonic Operation

Greater Less Exception if

True False Than Than Equal Unordered Unordered

F T F F F F no
UN OR F F F T no
EQ NEQ F F T F no

UEQ OLG F F T T no
OLT UGE F T F F no
ULT OGE F T F T no
OLE UGT F T T F no
ULE OGT F T T T no

SF ST F F F F yes
NGLE GLE F F F T yes
SEQ SNE F F T F yes
NGL GL F F T T yes
LT NLT F T F F yes

NGE GE F T F T yes
LE NLE F T T F yes

NGT GT F T T T yes

Table 6-8. Floating Point Relational Operators

6-10 Assembly Language Programmer's Guide IRIS-4D Series

(

(

The mnemonics in Table 6-8 have the following meanings:

F False T True
UN Unordered OR Ordered
EQ Equal NEQ Not Equal
UEQ Unordered or Equal OLG Ordered or

Less Than
or Greater
Than

OLT Ordered Less Than UGE Unordered or
Greater Than
or Equal

ULT Unordered or Less Than OGE Ordered
Greater Than

OLE Ordered Less Than UGT Unordered or
or Equal Greater Than

ULE Unordered or Less OGT Ordered
Than or Equal Greater Than

SF Signaling False ST Signaling True
NGLE Not Greater Than or GLE Greater Than,

Less Than or Equal or Less
Than or Equal

SEQ Signaling Equal SNE Signaling Not
Equal

NGL Not Greater than or GL Greater Than
or Less Than

LT Less Than NLT Not Less Than
NGE Not Greater Than GE Greater Than

or Equal or Equal
LE Less Than or Equal NLE Not Less Than

or Equal
NGT Not Greater Than GT Greater Than

To branch on the result of a relational:

/* branching on a compare result */

c . eq. s $f1, $f2
belt true
bc1f false

/* compare the single precision values */
/* if $f1 equals $f2, branch to true */

Version 1.0

/* if $f1 does not equal $f2, branch to */
/* false */

Coprocessor Instruction Set 6-11

6.3.1 Floating Point Relational Formats

In Table 6-9 srcl and src2 refer to the source registers.

Description Op-code Operand

Compare F
Double c.f.d src1,src2
Single c.f.s

Compare UN
Double c.un.d
Single c.un.s

*Compare EQ
Double c.eq.d
Single

Compare UEQ
c.eq.s

Double c.ueq.d

Single c.ueq.s
Compare OLT

Double c.olt.d
Single c.olt.s

Compare ULT
Double c.ult.d
Single c.ult.s

Compare OLE
Double c.ole.d
Single c.ole.s

Compare ULE
Double c.ule.d
Single c.ule.s

Compare SF
Double c.sf.d
Single c.sf.s

• These are the most common Compare Instructions.
The machine provides other Compare Instructions for
IEEE compatibility.

Table 6-9. Floating Point Relational Instruction Formats

6-12 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Description Op-code Operand

Compare NGLE
Double c.ngle.d srcl, src2

Single c.ngle.s
Compare SEQ

Double c.seq.d
Single c.seq.s

Compare NGL
Double c.ngl.d
Single c.ngl.s

*Compare LT
Double c.lt.d

Single c.lt.s
Compare NGE

Double c.nge.d
Single c.nge.s

*Compare LE
Double c.le.d
Single c.le.s

Compare NGT
Double c.ngt.d
Single c.ngt.s

• These are the most common Compare instructions.
The machine provides other Compare Instructions for
IEEE compatibility.

Table 6-9. Floating Point Relational Instruction Formats
(continued)

6.3.2 Floating Point Relational Instruction Descriptions

This part of Chapter 6 describes the relational instruction descriptions by
function. Refer to Chapter 1 for information regarding registers. Please
consult Table 6-9 for the op-code names.

Version 1.0 Coprocessor Instruction Set 6-13

Instruction

Compare EQ Instructions

Compare F Instructions

Compare LE Instructions

Compare L T Instructions

Compare NGE Instructions

Description

Compare the contents of src 1 with
the contents of src2. If src 1
equals src2 a true condition results; (
otherwise, a false condition results.
The machine does not signal an
exception for unordered values.

Compare the contents of src 1 with
the contents of src2. These in­
structions always produce a false
condition. The machine does not
signal an exception for unordered
values.

Compare the contents of src 1 with
the contents of src2. If src1 is less
than or equal to src2, a true condi­
tion results; otherwise, a false con­
dition results. The machine signals
an exception for unordered values.

Compare the contents of src 1 with
the contents of src2. If src 1 is less
than src2, a true condition results;
otherwise, a false condition results.
The machine signals an exception
for unordered values.

Compare the contents of src 1 with
the contents of src2. If src 1 is less
than src2 (or the contents are un­
ordered), a true condition results;
otherwise, a false condition results.
The machine signals an exception
for unordered values.

(

Table 6-10. Floating Point Relational Instruction Descriptions

(

6-14 Assembly Language Programmer's Guide IRIS-4D Series

Instruction

Compare NGL Instructions

Compare NGLE Instructions

Compare NGT Instructions

Compare OLE Instructions

Compare OLT Instructions

Description

Compare the contents of src 1 with
the contents of src2. If src1
equals src2 or the contents are un­
ordered, a true condition results;
otherwise, a false condition results.
The machine signals an exception
for unordered values.

Compare the contents of srcl with
the contents of src2. If src1 is un­
ordered, a true condition results;
otherwise, a false condition results.
The machine signals an exception
for unordered values.

Compare the contents of src1 with
the contents of src2. If src1 is less
than or equal to src2 or the con­
tents are unordered, a true condi­
tion results; otherwise, a false con­
dition results. The machine signals
an exception for unordered values.

Compare the contents of src1 with
the contents of src2. If src 1 is less
than or equal to src2, a true condi­
tion results; otherwise, a false con­
dition results. The machine does
not signal an exception for unor­
dered values.

Compare the contents of src 1 with
the contents of src2. If src 1 is less
than src2, a true condition results;
otherwise, a false condition results.
The machine does not signal an
exception for unordered values.

Table 6-10. Floating Point Relational Instruction Descriptions
(continued)

Version 1.0 Coprocessor Instruction Set 6-15

Instruction

Compare SEQ Instructions

Description

Compare the contents of src 1 with
the contents of src2. If src1
equals src2, a true condition re- (
sults; otherwise, a false condition ...
results. The machine signals an
exception for unordered values.

Compare SF Instructions

Compare ULE Instructions

Compare UEQ Instructions

Compare UL T Instructions

Compare the contents of src 1 with
the contents of src2. This always
produces a false condition. The
machine signals an exception for
unordered values.

Compare the contents of src 1 with
the contents of src2. If src 1 is less
than or equal to src2 (or src 1 is
unordered), a true condition re­
sults; otherwise, a false condition
results. The machine does not sig­
nal an exception for unordered
values.

Compare the contents of src 1 with
the contents of src2. If src 1
equals src2 (or srci and src2 are
unordered), a true condition re­
sults; otherwise, a false condition
results. The machine does not sig­
nal an exception for unordered
values.

Compare the contents of src 1 with
the contents of src2. If src 1 is less
than src2 (or the contents are un­
ordered), a true condition results;
otherwise, a false condition results.
The machine does not signal an
exception for unordered values.

Table 6-10. Floating Point Relational Instruction Descriptions
(continued)

6-16 Assembly Language Programmer's Guide IRIS-4D Series

(

(

Instruction

Compare UN Instructions

Description

Compare the contents of src 1 with
the contents of src2. If either src 1
or src2 is unordered, a true condi­
tion results; otherwise, a false con­
dition results. The machine does
not signal an exception for unor­
dered values.

Table 6-10. Floating Point Relational Instruction Descriptions
(continued)

6.3.3 Floating Point Move Formats

The floating point coprocessor's move instructions move data from source
to destination registers (only floating point registers are allowed).

Description

Move Fp
Double

Single

Op-code Operand

mov.d destination, src1

mov.s

Table 6-11. Floating Point Move Instruction Formats

Version 1.0 Coprocessor Instruction Set 6-17

6.3.4 Floating Point Move Instruction Descriptions

This part of Chapter 6 describes the floating point move instructions.
Please consult Table 6-11 for the op-code names.

Instruction

Move Fp Instructions

Description

Move the double or single preci­
sion contents of srcl to the desti­
nation register, maintaining the
specified precision.

Table 6-12. Floating Point Move Instruction Descriptions

6.4 System Control Coprocessor Instructions

The system control coprocessor (cpO) handles all functions and special
and privileged registers for the virtual memory and exception handling sub-
systems. The system control coprocessor translates addresses from a large (
virtual address space into the machine's physical memory space. The _
coprocessor uses a translation lookaside buffer (TLB) to translate virtual
addresses to physical addresses.

Primarily, only people who need to change the operating system need
these instructions.

6-18 Assembly Language Programmer's Guide IRIS-4D Series

------- ----- .. ----.---._----._------------- -- ---------------------- ~---- - ---

(

6.4.1 System Control Coprocessor Formats

These coprocessor system control instructions do not have operands:

Description Op-code Operand

Translation Lookaside Buffer Probe tlbp
Translation Lookaside Buffer Read tlbr
Translation Lookaside Buffer Write Random tlbwr
Translation Lookaside Write Index tlbwi

Table 6-13. System Control Instruction Formats

6.4.2 System Control Coprocessor Instruction Descriptions

This part of Chapter 6 describes the system control coprocessor instruc­
tions.

Instruction

Translation Lookaside Buffer Probe
(tlbp)

Translation Lookaside Buffer Read
(tlbr)

Description

Probes the translation lookaside
buffer (TLB) to see if the TLB has
an entry that matches the contents
of the EntryHi register. If a
match occurs, the machine loads
the Index register with the number
of the entry that matches the
EntryHi register. If no TLB entry
matches, the machine sets the
high-order bit of the Index regis­
ter.

Loads the EntryHi and EntryLo
registers with the contents of the
translation lookaside buffer (TLB)
entry specified in the TLB Index
register.

Table 6-14. System Control Coprocessor Instruction Descriptions

Version 1.0 Coprocessor Instruction Set 6-19

Instruction Description

Translation Lookaside Buffer Write Random
(tlbwr) Loads the specified translation

lookaside buffer (TLB) entry with (
tEhe coLntents .of the ETnhtrYHi and f '

ntry 0 regIsters. e contents 0

the TLB Random register specify
the TLB entry to be loaded. .

Translation Lookaside Buffer Write Index
(tlbwi) Loads the specified translation

lookaside buffer (TLB) entry with
the contents of the EntryHi and
EntryLo registers. The contents of
the TLB Index register specify the
TLB entry to be loaded.

Table 6-14. System Control Coprocessor Instruction Descriptions
(continued)

6.5 Control and Status Register

Floating-point coprocessor control register 31 contains status and control
information. It controls the arithmetic rounding mode and the enabling of
user-level traps, and indicates exceptions that occurred in the most re­
cently executed instruction, and any exceptions that may have occurred
without being trapped.

6-20 Assembly Language Programmer's Guide IRIS-4D Series

(

(

31 2423 22 18 17 12 11 7 6 210

0
1 Cl 0 exceptions enables

1

sticky- IRMI bits

BITS: 8 1 5 6 5 5 2

Control and Status Register

(c = compare bit)

1110 9 8 7 171615141312 6 5 432

~ IEljzl~~II BTIIJ
Enable Bits Exception Bits Sticky Bits

Figure 6-2. Floating Point Control and Status Register 31

The exception bits are set for instructions that cause an IEEE standard
exception or an optional exception used to emulate some of the more
hardware-intensive features of the IEEE standard.

The exception field is loaded as a side-effect of each floating-point opera­
tion (excluding loads. stores, and unformatted moves). The exceptions
which were caused by the immediately previous floating-point operation
can be determined by reading the exception field.

The meaning of each bit in the exception field is given in Table 6-15. If
two exceptions occur together on one instruction. the field will contain the
inclusive OR of the bits for each exception.

Version 1.0 Coprooessor Instruotlon Set 6-21

Exception
Field Bit

E

v

Description

Unimplemented Operation

Invalid Operation

Z Division by Zero

I Inexact Exception

o Overflow Exception

U Underflow Exception

Table 6-15. Exception Field Bit Descriptions

The unimplemented operation exception is normally invisible to user-level
code. It is provided to maintain IEEE compatibility for non-standard im­
plementa tions.

The five IEEE standard exceptions are listed below:

Field Description

V Invalid Operation

Z Division by Zero

I Inexact Exception

0 Overflow Exception

U Underflow Exception

Table 6-16. IEEE Standard Exceptions

(

(

Each of the five exceptions is associated with a trap under user control, which (
is enabled by setting one of the five bits of the enable field, shown above.

When an exception occurs, both the corresponding exception and status
bits are set. If the corresponding enable flag bit is set, a trap is taken. In
some cases the result of an operation is different if a trap is enabled.

6-22 Assembly Language Programmer's Guide IRIS-4D Series

The status flags are never cleared as a side effect of floating-point operations,
but may be set or cleared by writing a new value into the status register, using
a "move to coprocessor control" instruction.

The floating-point compare instruction places the condition which was de­
tected into the "c" bit of the control and status register, so that the state of
the condition line may be saved and restored. The "c" bit is set if the condi­
tion is true, and cleared if the condition is false, and is affected only by
compare and move to control register instructions.

6.5.1 Exception Trap Processing

For each IEEE standard exception, a status flag is provided that is set on
any occurrence of the corresponding exception condition with no corre­
sponding exception trap signaled. It may be reset by writing a new value
into the status register. The flags may be saved and restored individually,
or as a group, by software. When no exception trap is signaled, a default
action is taken by the floating-point coprocessor, which provides a substi­
tute value for the original, exceptional, result of the floating-point opera­
tion. The default action taken depends on the type of exception, and in
the case of the Overflow exception, the current rounding mode.

Invalid operation exception

The invalid operation exception is signaled if one or both of the operands
are invalid for an implemented operation. The result, when the exception
occurs without a trap, is a quiet NaN when the destination has a floating­
point format, and is indeterminate if the result has a fixed-point format.
The invalid operations are

1. Addition or subtraction: magnitude subtraction of infinities, such as
(+00)-(-00)

2. Multiplication: 0 times 00, with any signs

3. Division: 0 over 0 or 00 over 00, with any signs

4. Square root: rx, where x is less than zero

5. Conversion of a floating-point number to a fixed-point format when
an overflow, or operand value of infinity or NaN, precludes a faithful
representation in that format

Version 1,0 Coprocessor Instruction Set 6-23

6. Comparison of predicates involving < or > without ?, when the oper­
ands are "unordered"

7. Any operation on a signaling NaN.

Software may simulate this exception for other operations that are invalid (.. ,!
for the given source operands. Examples of these operations include
IEEE-specified functions implemented in software, such as Remainder: x
REM y, where y is zero or x is infinite; conversion of a floating-point
number to a decimal format whose value causes and overflow or is infinity
of NaN; and trancendental functions, such as In (-5) or cos -\3).

Division-by-zero exception

The division by zero exception is signaled on an implemented divide opera­
tion if the divisor is zero and the dividend is a finite nonzero number. The
result, when no trap occurs, is a correctly signed infinity.

If division by zero traps are enabled, the result register is not modified, and
the source registers are preserved.

Software may simulate this exception for other operations that produce a (',
signed infinity, such as In(O), sec (1T/2) , csc(O) or 0 -1.

Overflow exception

The overflow exception is signaled when what would have been the magni­
tude of the rounded floating-point result, were the exponent range un­
bounded, is larger than the destination format's largest finite number.
The result, when no trap occurs, is determined by the rounding mode and
the sign of the intermediate result.

If overflow traps are enabled, the result register is not modified, and the
source registers are preserved.

Underflow exception

Two related events contribute to underflow. One is the creation of a tiny

non-zero result between + or - 2 E min (minimum expressable exponent)
which, because it is tiny, may cause some other exception later. The

6-24 Assembly Language Programmer's Guide IRIS-4D Series

(

other is extraordinary loss of accuracy during the approximation of such
tiny numbers by denormalized numbers.

The IEEE standard permits a choice in how these events are detected, but
requires that they must be detected the same way for all operations.

The IEEE standard specifies that "tininess" may be detected either: "after
rounding" (when a nonzero result computed as though the exponent range

were unbounded would lie strictly between + or - 2 E min, or "before
rounding" (when a nonzero result computed as though the exponent range
and the precision were unbounded would lie strictly between + or -

2 E min. The architecture requires that tininess be detected after round­
ing.

Loss of accuracy may be detected as either "denormalization loss" (when
the delivered result differs from what would have been computed if the
exponent range were unbounded), or "inexact result" (when the delivered
result differs from what would have been computed if the exponent range
and precision were both unbounded). The architecture requires that loss
of accuracy be detected as inexact result.

When an underflow trap is not enabled, underflow is signaled (via the un­
derflow flag) only when both tininess and loss of accuracy have been de­
tected. The delivered result might be zero, denormalized, or + or -

2 E min. When an underflow trap is enabled, underflow is signaled when
tininess is detected regardless of loss of accuracy.

If underflow traps are enabled, the result register is not modified, and the
source registers are preserved.

Inexact exception

If the rounded result of an operation is not exact or if it overflows without
an overflow trap, then the inexact exception is signaled. The rounded or
overflowed result is delivered to the destination register, when no inexact
trap occurs. If inexact exception traps are enabled, the result register is
not modified, and the source registers are preserved.

Unimplemented operation exception

If an operation is specified that the hardware may not perform, due to an
implementation restriction on the supported operations or supported for-

Version 1.0 Coprocessor Instruction Set 6-25

mats, an unimplemented operation exception may be signaled, which al­
ways causes a trap, for which there are no corresponding enable or flag
bits. The trap cannot be disabled.

This exception is raised at the execution of the unimplemented instruction.
The instruction may be emulated in software, possibly using implemented
floating-point unit instructions to accomplish the emulation. Normal in­
struction execution may then be restarted.

This exception is also raised when an attempt is made to execute an in­
struction with an operation code or format code which has been reserved
for future architectural definition. The unimplemented instruction trap is
not optional, since the current definition contains codes of this kind.

This exception may be signaled when unusual operands or result condi­
tions are detected, for which the implemented hardware cannot properly
handle the condition. These may include (but are not limited to). denor­
malized operands or results, NaN operands. trapped overflow or underflow
conditions. The use of this exception for such conditions is optional.

6.5.2 Floating Point Rounding

(

Bits 0 and 1 of the coprocessor control register 31 sets the rounding mode (
for floating point. The machine allows four rounding modes:

• Round to nearest rounds the result to the nearest representable value.
When the two nearest representable values are equally near, this mode
rounds to the value with the least significant bit zero. To select this
mode, set bits 1..0 of control register 31 to O.

• Round toward zero rounds toward zero. It rounds to the value that
is closest to and not greater in magnitude than the infinitely precise
result. To select this mode, set bits 1..0 of control register 31 to 1.

• Round toward positive infinity rounds to the value that is closest to
and not less than the infinitely precise result. To select this mode. set
bits 1..0 of control register 31 to 2.

• Round toward negative infinity rounds toward negative infinity. It
rounds to the value that is closest to and not greater than the infinitely (" '.'
precise result. To select this mode, set bits 1..0 of control register 31 .
to 3.

6-26 Assembly Language Programmer's Guide IRIS-4D Series

To set the rounding mode:

1* setting the
RoundNearest
RoundZero
RoundPoslnf

rounding mode *1
OxO
Ox1
Ox2

RoundNeglnf Ox3
c fc1 rt2. $31
and rt. Oxfffffffc
or rt. RoundZero
ctc1 rt. $f31

Version 1.0

move from coprocessor 1
zero the round mode bits
set mask as round to zero
move to coprocessor 1

Coprocessor Instruction Set 6-27

(

(

7. Linkage Conventions

This chapter gives rules and examples to follow when designing an assem­
bly language program. The chapter concludes with a "learn by doing"
technique that you can use if you still have any doubts about how a par­
ticular calling sequence should work. This involves writing a skeleton ver­
sion of your prospective assembly routine using a high level language, and
then compiling it with the -S option to generate a human-readable assem­
bly language file. The assembly language file can then be used as the
starting point for coding your routine.

7.1 Introduction

When you write assembly language routines, you should follow the same
calling conventions that the compilers observe, for two reasons:

• Often your code must interact with compiler-generated code, accepting
and returning arguments or accessing shared global data.

• The symbolic debugger gives better assistance in debugging programs
using standard calling conventions.

Version 1.0 Linkage Conventions 7-1

The conventions for the compiler system are a bit more complicated than
some, mostly to enhance the speed of each procedure call. Specifically:

• The compilers use the full, general calling sequence only when neces­
sary; where possible, they omit unneeded portions of it. For exam­
ple, the compilers don't use a register as a frame pointer whenever
possible.

• The compilers and debugger observe certain implicit rules rather than
communicating via instructions or data at execution time. For exam­
ple, the debugger looks at information placed in the symbol table by a
".frame" directive at compilation time, so that it can tolerate the lack
of a register containing a frame pointer at execution time.

7.2 Program Design

This section describes three general areas of concern to the assembly lan­
guage programmer:

• usable and restricted registers

• stack frame requirements on entering and exiting a routine

• the "shape" of data (scalars, arrays, records, sets) laid out by the vari­
ous high level languages

7.2.1 Register Use and Linkage

The main processor has 32 32-bit integer registers. The uses and restric­
tions of these registers are described in Table 7-1.

The floating point coprocessor has 16 floating point registers. Each regis­
ter can hold either a single precision (32 bit) or a double precision (64
bit) value. All references to these registers uses an even register number
(e.g., $f4). Refer to Table 7-2.

7-2 Assembly Language Programmer's Guide IRIS-4D Series

()

(

(

register name

$0

$at

$2 .. $3

$4 .. $7

$8 .. $15

$16 .. $23

$24 .. $25

$ktO .. $ktl

$28 or $gp

$29 or $sp

$30 or $fp

$31

Version 1.0

software name

(from regdef. h)

vO-v1

aO-a3

1O-t7

sO-s7

t8-t9

kO-k1

gp

sp

fp

ra

use and linkage

always has the value 0

reserved for the assembler

used for expression evaluations and to

hold the integer type functions results.

Also used to pass the static link when

calling nested procedures.

used to pass the first 4 words of integer

type actual arguments, whose values are

not preserved across procedure calls

temporary registers, used for expression

evaluations, whose values are not preserved

across procedure calls.

saved registers, whose values must be

preserved across procedure calls.

temporary registers, used for expression

evaluations, whose values are not pre­

served across procedure calls.

reserved for the operating system kernel

contains the global pointer

contains the stack pointer

contains the frame pointer (if needed)

contains the return address; used for

expression evaluation.

Table 7-1. Integer Registers

Linkage Conventions 7-3

register name use and linkage .

$fO .. f3 used to hold floating point type function

resultS ($fO) and complex type function

results($fO has the real part, $f2 has

the imaginary part)

$f4 .. f10 . temporary registers, used for expression

evaluation, whose values are not pre-

.:served across procedure calls.

$f12 .. $f14 used to pass the first 2 single or double

.. precision actual arguments, whose values

are not preserved across procedure calls.

$f16 .. $f18 temporary registers, used for expression

evaluations, whose values are not pre-

served across procedure calls.

$f20 .. $f30 saved registers, whose values must be

preserved across procedure calls.

Table 7:"':2. Floating Point Registers

7.2.2 The Stack Frame

The compilers classify each routine into one of of the following categories:

• non-leaf routines, that is, routines that call other procedures

• leaf routines, that is, routines that do not themselves execute any pro­
cedure calls. Leaf routines are of two types:

o leaf routines that require stack storage for local variables

(

(

o leaf routines that do not require stack storage for local variables. (

You must decide the routine category before determining the calling se-
quence.

7-4 Assembly Language Programmer's Guide IRIS:''4D Series

To write a program with proper stack frame usage and debugging capabili­
ties, use the following procedure:

1. Regardless of the type of routine, you should include a .ent pseudo­
op and an entry label for the procedure. The .ent pseudo-op is for
use by the debugger, and the entry label is the procedure name. The
syntax is:

.ent procedure_name
procedure_name:

2. If you are writing a leaf procedure that does not use the stack, skip to
step 3. For leaf procedure that uses the stack or non-leaf procedures,
you must allocate all the stack space that the routine requires. The
syntax to adjust the stack size is:

subu $sp,framesize

where jramesize is the size of frame required. Space must be allo­
cated for:

• local variables

• saved general registers. Space should be allocated only for those
registers saved. For non-leaf procedures, you must save $31,
which is used in the calls to other procedures from this routine. If
you use registers $16-$23, you must also save them.

• saved floating point registers. Space should be allocated only for
those registers saved. If you use registers $f20-$f30 you must also
save them.

• Procedure call argument area. You must allocate the maximum
number of bytes for arguments of any procedure that you call
from this routine.

NOTE: Once you have modified Ssp, you should not modify it again
for the rest of the routine.

3. Now include a .frame pseudo-op:

frame framereg,framesize,returnreg

The virtual frame pointer is a frame pointer as used in other compiler
systems but has no register allocated for it. It consists of the jramereg
($sp, in most cases) added to the jramesize (see step 2 above). Fig­
ure 7-1 illustrates the stack components.

Version 1.0 Linkage Conventions 7-5

high memory

virtual frame

pointer ($fp) ... {

frame
offset

stack
pointer ($sp) ...

(framereg)

low memory

argument n

argument 1

local & temporaries

saved registers

(including return reg)

argument build

Figure 7-1. Stack Organization

framesize

The returnreg specifies the register the return address is in (usually
$ 31) . These usual values may change if you use a varying stack point­
er or are specifying a kernel trap routine.

4. If the procedure is a leaf procedure that does not use the stack, skip
to step 7. Otherwise you must save the registers you allocated space
for in step 2.

To save the general registers. use the following operations:

. mask bi tmask, frameoffset
sw reg,framesize+frameoffset-N($sp)

7-6 Assembly Language Programmer's Guide IRIS-4D Series

(i

(

(

The . mask directive specifies the registers to be stored and where they
are stored. A bit should be on in bitmask for each register saved (for
example, if register $31 is saved, bit 31 should be '1' in bitmask. Bits
are set in bitmask in little-endian order, even if the machine configu­
ration is big-endian). The frameoffset is the offset from the virtual
frame pointer (this number is usually negative). N should be 0 for the
highest numbered register saved and then incremented by four for
each subsequently lower numbered register saved. For example:

sw $31,framesize+frameoffset($sp)
sw $17,framesize+frameoffset-4($sp)
sw $16,framesize+frameoffset-8($sp)

Figure 7-2 illustrates this example.

high memory

virtual frame

pointer ($fp) {

frame
offset 1----s-a-ve-d-$-3-1-----I

I----------~~~------~ saved $17

saved $16

stack
pointer ($sp) 1------------+

low memory

Figure 7-2. Stack Example

framesize

Version 1.0 Linkage Conventions 7-7

Now save any floating point registers that you allocated space for in
step 2 as follows:

.fmask
s. [sd]

bitmask,frameoffset
reg,framesize+frameoffset-N($sp)

Notice that saving floating point registers is identical to saving general (
registers except we use the .fmask pseudo-op instead of .mask, and
the stores are of floating point singles or doubles. The discussion re-
garding saving general registers applies here as well, but remember that
N should be incremented by 8 for doubles.

5. This step describes parameter passing: how to access arguments passed
into your routine and passing arguments correctly to other procedures.

As specified in step 2, space must be allocated on the stack for all
arguments even though they may be passed in registers. This provides
a saving area if their registers are needed for other variables.

General registers $4-$7 and float registers $fl2, $fl4 must be used for
passing the first four arguments (if possible). You must allocate a pair
of registers (even if it's a single precision argument) that start with an
even register for floating point arguments appearing in registers.

In the table below, the 'fN' arguments are considered single and dou- (
ble precision floating point arguments, and 'nN' arguments are every-
thing else. The elipses (oo.) mean that the rest of the arguments do
not go in registers regardless of their type. The 'stack' assignment
means that you do not put this argument in a register. The register
assignments occur in the order shown in order to satisfy optimizing
compiler protocols.

Arguments

(fl, f2, ...)

(fl, nl, f2, ...)

(fl, nl, n2, ...)

(nl, n2, n3, n4, ...)

(nl, n2, n3, fl, ...)

(nl, n2, fl, ...)

(nl, fl, ...)

Register Assignments

fl -> $fl2, f2 -> $fl4

fl -> $fl2, nl -> $6, f2 -> stack

f1 -> $f12, nl -> $6, n2 -> $7

nl -> $4, n2 -> $5, n3 -> $6, n4 -> $7

nl ->$4, n2-> $5, n3->$6, fl->~~k

nl -> $4, n2 -> $5, f1 -> ($6, $6)

nl -> $4, f1 -> ($6,$7)

Table 7-3. Arguments

7-8 Assembly Language Programmer's Guide IRIS-4D Series

(

6. Next, you must restore registers that were saved in step 4. To restore
general purpose registers:

lw reg,framesize+frameoffset-N($sp)

To restore the floating point registers:

1. [sd] reg,framesize+frameoffset-N($sp)

(Refer to step 4 for a discussion of the value of N.)

7. Get the return address:

lw $31,framesize+frameoffset($sp)

8. Clean up the stack:

addu $sp, framesize

9. Return:

j $31

10. To end the procedure:

.end procedurename

7.2.3 The Shape of Data

In most cases, high-level language routine and assembly routines commu­
nicate via simple variables: pointers, integers, booleans, and single- and
double-precision real numbers. Describing the details of the various high­
level data structures (arrays, records, sets, and so on) is beyond our scope
here. If you need to access such a structure as an argument or as a
shared global variable, refer to the "Learn by Doing" technique described
at the end of this section.

7.3 Examples

This section contains the examples that illustrate program design rules;
each example shows a procedure written and C and its equivalent written
in assembly language.

Version 1.0 Linkage Conventions 7-9

Figure 7-3 shows a non-leaf procedure. Notice that it creates a stack­
frame, and also saves its return address since it must put a new return
address into register $31 when it invokes its callee:

float
nonleaf(i, j)

int i, *j;
{
double atofO;
int temp;

temp = i - *j;
if (i < *j) temp -temp;
return atof(temp) ;

1

2

3
4

nonleaf:

5
6

7

B

. globl nonleaf
float
nonleaf(i, j)

int i, *j;
{

.ent nonleaf 2

subu $sp, 24
sw $31, 20($sp)
.mask OxBOOOOOOO,-4
. frame $sp, 24, $31

double atof 0 ;
int temp;

i - *j;

create stackframe
Save the return address

temp
lw
subu

$2, 0($5) ## Arguments are in $4 and $5

9

$32:
10

if (i <
bge
negu

return
move
jal
cvt.s.d
lw
addu
j
.end

$3, $4, $2
*j) temp = -temp;
$4, $2, $32## Note: $32 is a label, not a register
$3, $3

atof(temp) ;
$4, $3
atof
$fO, $fO ## Return value goes in $fO
$31, 20($sp) ## Restore return address
$sp, 24 ## Delete stackframe
$31 ## Return to caller
nonleaf

Figure 7-3. Non-Leaf Procedure

7-10 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Figure 7-4 shows a leaf procedure that does not require stack space for
local variables. Notice that it creates no stackframe, and saves no return
address:

int
leaf(p1, p2)

int p1, p2;
{
return (p1 > p2) ? p1 p2;
}

1
2
8
4

leaf:

5

$82:

$88:

6

.globl leaf
int
leaf (p1, p2)

int p1, p2;

.ent leaf 2

. frame Ssp, 0, $81
return (p1 > p2) ? p1 :

ble $4, $5, $32
move $8, $4
b $33

move

move

j

}

.end leaf

$8, $5

$2, $3

#81

p2;
Arguments in $4 and $5

Return value goes in $2

Return to caller

Figure 7-4. Leaf Procedure Without Stack Space for Local Variables

Figure 7-5 shows a leaf procedure that requires stack space for local vari­
ables. Notice that it creates a stack frame, but does not save a return
address.

Version 1.0 Linkage Conventions 7-11

char
leaf_storage (i)

int i;
{
char a[16);
int j;

for (j 0; j < 10; j++) (

f a[j~ 'O':j; . _
or (J 10; J < 16; J++)
a[j) 'a' + j;

return a[i);
}

.globl leaf_storage
1 char
2 leaf_storage (i)
3 int i;
4 { ## "2" is the lexical level of the

.ent leaf_storage 2
leaf_storage: ## procedure. You may omit it.

subu $sp, 24 ## Create stackframe
. frame $sp, 24, $31

5 char a[16) ;
6 int j;
7
8 for (j = 0; j < 10; j.++)

sw $0, 4($sP)
addu $3, $sp, 24

$32:
9 a[j) = '0' + j;

lw $14, 4($sp)
addu $15, $14, 48
addu $24, $3, $14
sb $15, -16($24)
lw $25, 4($sp)
addu $8, $25,1
sw $8, 4 ($sp)
blt $8, 10, $32

10 for (j = 10; j < 16; j++)
Ii $9, 10
sw $9, 4($sp)

$33:
11 a[j) = 'a' +j;

lw $10, 4($sp)
addu $11, $10, 97
addu $12, $3, $10
sb $11, -16($12)
lw $13, 4($sp)
addu $14, $13, 1
sw $14, 4 ($sp)
blt $14, 16, $33

12 return ali);
addu $lfi, $3, $4 ## Argument is in $4
lbu $2, -16($15)
addu $sp, 24
j $31

Return value goes in $2 (~.
Delete stackframe
Return to caller

. end leaf_storage

Figure 7-5. Leaf Procedure With Stack Space for Local Variables

7-12 Assembly Language Programmer's Guide IRIS-4D Series

7.4 Learning by Doing

The rules and parameter requirements required between assembly language
and other languages are varied and complex. The simplest approach to
coding an interface between an assembly routine and a routine written in a
high-level language is to do the following:

• Use the high-level language to write a skeletal version of the routine
that you plan to code in assembly language.

• Compile the program using the -S option, which creates an assembly
language (.s) version of the compiled source file.

• Study the assembly-language listing and then, imitating the rules and
conventions used by the compiler, write your assembly language code.

The next two sections illustrate techniques to use in creating an interface
between assembly language and high-level language routines. The exam­
ples shown are merely to illustrate what to look for in creating your inter­
face. Details such as register numbers will vary according to the number,
order, and data types of the arguments. You should write and compile
realistic examples of your own code in writing your particular interface.

7.4.1 Calling a High-Level Language Routine

The following steps show a technique to follow in writing an assembly lan­
guage routine that calls atof. a routine written in C that converts ASCII
characters to numbers; for more information, see the atof(3) in the
IRIS-4D Programmer's Reference Manual.

1. Write a C program that calls at of. Pass global rather than local vari­
ables; this makes them to recognize in the assembly language version
of the C program. (and ensures that optimization doesn't remove any
of the code on the grounds that it has no effect.)

Figure 7-6 is an example of a C program that calls atof.

Version 1.0 Linkage Conventions 7-13

char = "3.1415";
double d, atof();
float f;
caller()

{
d = atof(c
f = (float) atof(c);
}

c is declared as a
global variable.

Figure 7-6. C Program that Calls ataf

2. Compile the program using the using the compiler options shown be­
low:

cc -s -0 caller.c

The -S option causes the compiler to produce the assembly-language
listing; the -0 option, though not required, reduces the amount of
code generated, making the listing easier to read.

3. After compilation, look at the file caller.s (shown below). The high­
lighted section of the listing shows how the parameters are passed, the
execution of the call, and how the returned values are retrieved.

7-14 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

la $4, c ## load address of c
jal atof ## call atof
s.d $fo, d f = (float) atof(c) ;

7 ## store result in d
la $4, c ## load address of c
jal atof ## call atof
cvt.s.d $f4, $fO ## convert double result to float

Figure 7-7. Compilation Listing

Version 1.0 Linkage Conventions 7-15

7.4.2 Calling an Assembly language Routine

This section shows a technique to follow in writing an assembly language
routine that calls a routine written in a high-level language (Pascal is used
in this example).

1. Write a facsimile of the assembly language routine you wish to call. In
the body of the routine, write statements that use the same arguments
you intend to use in the final assembly language routine. Copy the
arguments to global variables rather than local variables to make it
easy for you to read the resulting assembly language listing.

Figure 7-8 shows the Pascal facsimile of the assembly language pro­
gram.

type
str = packed array [1 .. 10] of char;
subr = 2 .. 5;

var
global_r: real;
global_c: subr;
global s: str;
global_b: boolean;

function callee(var r: real; c: subr; s: str): boolean;
begin
global r := r;
global_c .- c;
global_s .- s;
cal lee .- c = 3;
end;

Figure 7-8. Pascal Facsimile

2. Compile the program using the using the compiler options shown be­
low:

cc -8 -0 caller.c

The -S option causes the compiler to produce the assembly-language
listing; the -0 option, though not required, reduces the amount of
code generated, making the listing easier to read.

3. After compilation, look at the file caller.s (shown below). The high­
lighted section of the listing shows how the parameters are passed, the
execution of the call, and how the returned values are retrieved.

7-16 Assembly Language Programmer's Guide IRIS-4D Series

(

(

For array "s". the caller
addu 8 ## pointer at 8($sp). If you
.set noat ## it as a call-by-value
addu $24, $15, 10 ## Pascal does (that is, if you want to

$32: ## be able to modify a local copy wi
lbu $1, 0($15) ## affecting the global copy) then you
addu $15, $15, 2 ## must copy it into your stack frame as
sb $1, 0($14) ## shown here (the code enclosed
lbu $1, -1($15) ## noat" is a tight byte-copying
addu ## Otherwise, you may simply use the

Figure 7-9. Compilation Listing

Version 1.0 Linkage Conventions 7-17

7.5 Memory Allocation

The machine's default memory allocation scheme gives every process two
storage areas, that can grow without bound. A process exceeds virtual
storage only when the sum of the two areas exceeds virtual storage space. (
The link editor and assembler use the scheme shown in Figure 7-10; an
explanation of each area in the alocation scheme follows the figure.

Oxffffffff

Ox8fffffff
Ox7fffffff

Ox7ffffOOO
Ox7fffefff

$sp ...

$gp ...

Ox10000000
Oxfffffff

Ox400000
Ox3fffff

OxO

Reserved for Kernel
(accessible from Kernel Mode)

(2GB) II

Not Accessible
(by convention, not a hardware

implementation)
(4KB)

Activation Stack
(grows toward zero)

Protected
(grows from either edge)

Heap
(grows up)

.bss

.sbss

.sdata

.data

.rdata

Reserved for
Shared Libraries

Not Used

Program . text
(including header)

Reserved
(4MB)

Figure 7-10. Memory Layout (User Program View)

7-18 Assembly l.anguage Programmer's GuIde IRIS-4D SerIes

(

(

IT] Reserved for kernel operations.

[gJ Reserved for operating system use.

~ Used for local data in C programs.

@] Not allocated until a user requests it, as in System V shared mem­
ory regions.

lliJ The heap is reserved for sbrk and break system calls, and it not
always present.

rnJ The machine divides all data into one of five sections:

• bss -Uninitialized data with a size greater than the value
specified by the -G command line option.

• sbss -Data less than or equal to the -G command line op­
tion. (512 is the default value for the -G option.)

• sdata (small data)-Data initialized and specified for the sdata
section.

• data (data)-Data initialized and specified for the data sec­
tion.

• rdata (read-only data)-Data initialized and specified for the
rdata section.

ill Reserved for any shared libraries.

[BJ Contains the . text section

rm Reserved.

Version 1.0 Linkage Conventions 7-19

(i

(

(,

8. Pseudo Op-Codes

The keywords in Chapter 8 describe pseudo op-codes (directives). These
pseudo op-codes influence the assembler's later behavior. In the text,
boldface type specifies a keyword and italics represents an operand that
you define.

The assembler has the pseudo op-codes shown in Table 8-1.

Pseudo-Op

. align expression

Version 1.0

Description

Advance the location counter to make the
expression low order bits of the counter
zero.

Normally, the .half, .word, . float, and
.double directives automatically align their
data appropriately. For example, . word
does an implicit .align 2 (.double does a
.align 3). You disable the automatic
alignment feature with .align O. The as­
sembler reinstates automatic alignment at
the next .text, .data, .rdata, or .sdata
directive.

Labels immediately preceding an automatic
or explicit alignment are also realigned.
For example, foo: .align 3; . word 0 is the
same as . align 3; foo: . wordO .

Table 8-1. Pseudo Op-Codes

Pseudo Op-Codes 8-1

Pseudo-Op

. ascii string f, string] ...

asciiz string f, string] ...

.asmO

.bgnb symno

Description

Assembles each string from the list into
successive locations. The .ascii directive
does not null pad the string. You MUST
put quotation marks (") around each
string. You can use the backslash escape
characters. For a list of the backslash
characters, see Chapter 4.

Assembles each string in the list into suc­
cessive locations and adds a null. You can
use the backslash escape characters. For a
list of the backslash characters, see Chap­
ter 4.

Tells the assembler's second pass that this
assembly came from the first pass. (For
use by compilers.)

(For use by compilers.) Sets the beginning
of a language block. The. bgnb and
.endb directives delimit the scope of a
variable set. The scope can be an entire
procedure, or it can be a nested scope (for
example a "{}" block in the C language).
The symbol number symno refers to a
dense number in a . T file. To set the end
of a language block, see .endb .

. byte expression1 f,
f, expressionN]

expression2] ...
Truncates the expressions from the
comma-separated list to 8-bit values, and
assembles the values in successive loca­
tions. The expressions must be absolute.
The operands can optionally have the
form: expression1 [: expression2]. The
expression2 replicates expression 1 '8 value
expression2 times.

Table 8-1. Pseudo Op-Codes (continued)

8-2 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Pseudo-Op

.comm name, expression

.data

Description

Unless defined elsewhere, name becomes a
global common symbol at the head of a
block of expression bytes of storage. The
linker overlays like-named common
blocks, using the maximum of the expres­
sions.

Tells the assembler to add all subsequent
data to the data section.

. double expression [,
[, expressionN

expression2] ...

.end [proc_nameJ

.endb symno

.endr

.ent proc_name

Initializes memory to 64-bit floating point
numbers. The operands can optionally
have the form: expression1 [: expression2
] . The expression1 is the floating point
value. The optional expression2 is a non­
negative expression that specifies a repeti­
tion count. The expression2 replicates ex­
pression1 's value expression2 times. This
directive automatically aligns its data and
any preceding labels to a double-word
boundary. You can disable this feature by
using .align O.

Sets the end of a procedure. Use this di­
rective when you want to generate informa­
tion for the debugger. To set the begin­
ning of a procedure, see .ent.

Sets the end of a language block. To set
the beginning of a language block, see
.bgnb.

Signals the end of a repeat block. To start
a repeat block, see .repeat.

Sets the beginning of the procedure
proc_name. Use this directive when you
want to generate information for the
debugger. To set the end of a procedure,
see .end.

Table 8-1. Pseudo Op-Codes (continued)

Version 1.0 Pseudo Op-Codes 8-3

Pseudo-Op

.extern name expression

.err

.file file_number
file _name _st ring

Description

name is a global undefined symbol whose
size is assumed to be expression bytes.
The advantage of using this directive, in­
stead of permitting an undefined symbol to
become global by default, is that the as­
sembler can decide whether to use the
economical $gp-relative addressing mode,
depending on the value of the -G option.
As a special case, if expression is zero, the
assembler refrains from using $gp to ad­
dress this symbol regardless of the size
specified by -G.

Signals an error. Any compiler front-end
that detects an error condition puts this
directive in the input stream. When the
assembler encounters a . err, it quietly
ceases to assemble the source file. This
prevents the assembler from continuing to
process a program that is incorrect. (For
use by compilers.)

Specifies the source file corresponding to
the assembly instructions that follow. (For
use by compilers.)

.float expression1 { , expression2 }... [, expressionN}
Initializes memory to single precision
32-bit floating point numbers. The oper­
ands can optionally have the form: expres­
sion1 [: expression2]. The optional ex­
pression2 is a non-negative expression that
specifies a repetition count. This optional
form replicates expression1 's value expres­
sion2 times. This directive automatically
aligns its data and preceding labels to a
word boundary. You can disable this fea­
ture by using .align O.

Table 8-1. Pseudo Op-Codes (continued)

8-4 Assembly Language Programmer's Guide IRIS-4D Series

(!

(

(

Pseudo-Op

. fmask mask offset

. frame frame-register offset
returnyc _register

.globl name

Description

Sets a mask with a bit turned on for each
floating point register that the current rou­
tine saved. The least-significant bit corre­
sponds to register $fO. The offset is the
distance in bytes from the virtual frame
pointer at which the floating point registers
are saved. The assembler saves higher
register numbers closer to the virtual frame
pointer. You must use . ent before . fmask
and only one . fmask maybe used per
. ent. Space should be allocated for those
registers specified in the .fmask .

Describes a stack frame. The first register
is the frame-register, the offset is the dis­
tance from the frame register to the virtual
frame pointer, and the second register is
the return program counter (or, if the first
register is $0, this directive shows that the
return program counter is saved four bytes
from the virtual frame pointer). You must
use .ent before .frame and only one
.frame may be used per .ent. No stack
traces can be done in the debugger without
. frame.

Makes the name external. If the name is
otherwise defined (by its appearance as a
label), the assembler will export the sym­
bol; otherwise it will import the symbol.
In general, the assembler imports unde­
fined symbols (that is, it gives them the
UNIX storage class "global undefined" and
requires the linker to resolve them).

Table 8-1. Pseudo Op-Codes (continued)

Version 1.0 Pseudo Op-Codes 8-5

Pseudo-Op Description

.half expression1 [, expression2 J ... [, expressionN}
Truncates the expressions in the comma-
separated list to 16-bit values and assem- (.
bles the values in successive locations.

.lab label_name

.lcomm name, expression

The expressions must be absolute. This
directive can optionally have the form: ex­
pression1 [: expression2]. The expres-
sion2 replicates expressionl's value expres-
sion2 times. This directive automatically
aligns its data appropriately. You can dis-
able this feature by using .align O.

Associates a named label with the current
location in the program text. (For use by
compilers) .

Makes the name's data type bss. The as­
sembler allocates the named symbol to the
bss area, and the expression defines the
named symbol's length. If a .globl direc­
tive also specifies the name. the assembler
allocates the named symbol to external
bss. The assembler puts bss symbols in
one of two bss areas. If the defined size
is smaller than the size specified by the
assembler or compiler's -G command line
option, the assembler puts the symbols in
the sbss area and uses $gp to address the
data.

Table 8-1. Pseudo Op-Codes (continued)

8-6 Assembly Language Programmer's Guide IRIS-4D Series

(

(

Pseudo-Op

.loc file_number
line_number

. mask mask offset

nop

Description

Specifies the source file and the line within
that file that corresponds to the assembly
instructions that follow. The assembler
ignores the file number when this directive
appears in the assembly source file. Then,
the assembler assumes that the directive
refers to the most recent . file directive.
When a .loc directive appears in the bi­
nary assembly language . G file, the file
number is a dense number pointing at a
file symbol in the symbol table . T file.
For more information about . G and . T
files, see the IRIS-4D Series Compiler
Guide .

Sets a mask with a bit turned on for each
general purpose register that the current
routine saved. Bit one corresponds to reg­
ister $1. The offset is the distance in
bytes from the virtual frame pointer where
the registers are saved. The assembler
saves higher register numbers closer to the
the virtual frame pointer. Space should be
allocated for those registers appearing in
the mask. If bit zero is set it is assumed
that space is allocated for all 31 registers
regardless of whether they appear in the
mask. (For use by compilers).

Tells the assembler to put in an instruction
that has no effect on the machine state.
While several instructions cause no-opera­
tion, the assembler only considers the ones
generated by the nop directive to be wait
instructions. This directive puts an explicit
dela y in the instruction stream.

Table 8-1. Pseudo Op-Codes (continued)

Version 1.0 Pseudo Op-Codes 8-7

Pseudo-Op

.option options

Description

Tells the assembler that certain options
were in effect during compilation. (These
options can, for example, limit the assem- (-
bIer's freedom to perform branch optimiza­
tions.) This option is intended for com­
piler-generated .s files rather than for
hand-coded ones.

.repeat expression

.rdata

.sdata

Repeats all instructions or data between the
.repeat directive and the .endr directive.
The expression defines how many times
the data repeats. With the .repeat direc­
tive, you CANNOT use labels, branch in­
structions, or values that require relocation
in the block. To end a . repeat, see
.endr.

Tells the assembler to add subsequent data
into the rdata section.

Tells the assembler to add subsequent data
to the sdata section.

Table 8-1. Pseudo Op-Codes (continued)

8-8 Assembly Language Programmer's Guide IRIS-4D Series

(

(

Pseudo-Op

.set option

Version 1.0

Description

Instructs the assembler to enable or to dis­
able certain options. Use set options only
for hand-crafted assembly routines. The
assembler has these default options: reor­
der, macro, and at. You can specify only
one option for each .set directive. You
can specify these .set options:

• The reorder option lets the assembler
reorder machine language instructions
to improve performance.

• The noreorder option prevents the as­
sembler from reordering machine lan­
guage instructions. If a machine lan­
guage instruction violates the hardware
pipeline constraints, the assembler is­
sues a warning message.

• The macro option lets the assembler
generate multiple machine instructions
from a single assembler instruction.

• The nomacro option causes the assem­
bler to print a warning whenever an
assembler operation generates more
than one machine language instruction.
You must select the noreorder option
before using the no macro option; oth­
erwise, an error results.

• The at option lets the assembler use
the $at register for macros, but gener­
ates warnings if the source program
uses $at.

Table 8-1. Pseudo Op-Codes (continued)

Pseudo Op-Codes 8-9

Pseudo-Op

.space expression

.struct expression

Description

• When you use the noat option and an
assembler operation requires the $at
register, the assembler issues a warning
message; however, the noat option
does let source programs use $at with­
out issuing warnings.

• The nomove options tells the assem­
bler to mark each subsequent instruc­
tion so that it cannot be moved during
reorganization. Because the assembler
can still insert nap instructions where
necessary for pipeline constraints, this
option is less stringent than noreorder.
The assembler can still move instruc­
tions from below the nomove region to
fill delay slots above the region or vice
versa. The nomove option has part of
the effect of the "volatile" C declara­
tion; it prevents otherwise independent
loads or stores from occurring in a dif­
ferent order than intended.

• The move option cancels the effect of
nomove.

Advances the location counter by the value
of the specified expression bytes. The as­
sembler fills the space with zeros.

This permits you to layout a structure us­
ing labels plus directives like . word, . byte,
and so forth. It ends at the next segment
directive (.data,. text, etc.). It does not
emit any code or data, but defines the la­
bels within it to have values which are the
sum of expression plus their offsets from
the .struct itself.

Table 8-1. Pseudo Op-Codes (continued)

8-10 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Pseudo-Op

(symbolic equate)

. text

· verstamp major minor

· vreg register offset symno

Description

Takes one of these forms: name = expres­
sion or name = register. You must define
the name only once in the assembly, and
you CANNOT redefine the name. The
expression must be computable when you
assemble the program, and the expression
must involve operators, constants, and
equated symbols. You can use the name
as a constant in any later statement.

Tells the assembler to add subsequent code
to the text section. (This is the default.)

Specifies the major and minor version
numbers (for example, version 0.15 would
be . verst amp 0 15).

(For use by compilers). Describes a regis­
ter variable by giving the offset from the
virtual frame pointer and the symbol num­
ber symno (the dense number) of the sur­
rounding procedure.

· word expression1 t, expression2] ... t, expressionN]

Version 1.0

Truncates the expressions in the comma­
separated list to 32-bits and assembles the
values in successive locations. The expres­
sions must be absolute. The operands can
optionally have the form: expression1 [:
expression2]. The expression2 replicates
expression1 's value expression2 times.
This directive automatically aligns its data
and preceding labels to a word boundary.
You can disable this feature by using
.align O.

Table 8-1. Pseudo Op-Codes (continued)

Pseudo Op-Codes 8-11

(

(

(

9. Object File Format

This chapter provides information on the object file format and has the
following major topics:

• An overview of the components that make up the object file, and the
differences between the object-file format and the UNIX System V
common object file format (COFF).

• A description of the headers and sections of the object file. Detailed
information is given on the logic followed by the assembler and link
editor in handling relocation entries.

• The format of the three types of object files (OMAGIC, NMAGIC,
and ZMAGIC). and information used by the system loader in loading
object files at run-time.

• Archive files and link editor defined symbols.

9.1 Overview

The assembler and the link editor generate object files in the order shown
in Figure 9-1. Any areas empty of data are omitted, except that the Op­
tional Header is always present.

Version 1.0 Object File Format 9-1

The fields of the Symbol table portion (indicated in Figure 9-1) that ap­
pear in the final object file format vary, as follows:

•

•

The Line Numbers, Optimization Symbols, and Auxiliary Symbols
subtables appear only when debugging is on (when the user specifies
one of the compiler -g1, -g2 or -g3 options).

When the user specifies the -x option (strip non-globals) for the link
edit phase, the link editor strips the Local Symbols, Optimization
Symbols, Auxiliary Symbols subtables from the object file, and updates
the Procedure Descriptor table.

• The link editor strips the entire Symbol table from the object file
when the user specifies the -s option (strip) for the link edit phase.

Any new assembler or link editor designed to work with the compiler sys­
tem should layout the object file in the order shown in Figure 9-1. The
link editor can process object files that are ordered differently, but per­
formance may be degraded.

9-2 Assembly Language Programmer's Guide IRIS-4D Series

(/

(

(

Created only if
debugging is on

fI Missing if stripped of
non-globals

Version 1.0

File Header

Optional Headers

Section Headers

Section Data

text
read-only data

large data
small data

small bss (0 size)

Section Relocation
Information

text
read-only data

large data

External Symbols

Figure 9-1. Object Files

Symbol table.
Missing if fully
stripped

Object File Format 9-3

Readers already familiar with standard UNIX System V COFF (common
object file format) may be interested in the difference between it and the
compiler system format, as described next.

The compiler system File Header definition is based on UNIX System V
header file filehdr.h with the following modifications.

• The symbol table file pointer and the number of symbol table entries
now specify the file pointer and the size of the Symbolic Header
respectively (described in Chapter 10).

• All tables that specify symbolic information have their file pointers and
number of entries in this Symbolic Header.

The Optional Header definition has the same format as the UNIX System
V header file aouthdr.h (the standard UNIX system a.outheader) except
the following fields have been added: bss_start, gprmask, cprmask, and
gp_value. See Table 9-4.

The Section Header definition has the same format as the UNIX System
V's header file scnhdr.h. except the line number fields (s_lnnoptr and
s_nlnno) aren't used. See Table 9-6.

(

The relocation information definition is similar to Berkeley UNIX, which (
has "local" relocation types; however, you should read the topic Section
Relocation Information in this chapter to be aware of differences that do
exist.

9.2 The File Header

Table 9-1 shows the format of the File Header; the header file filehdr.h
contains its definition.

9-4 Assembly Language Programmer's Guide IRIS-4D Series

(

Declaration

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

Field

Cmagic;
Cnscns;
Ctimdat;
Csymptr;
f_nsyms;
Copthdr;
Cflags;

Description

magic number
number of section
time and date stamp
file pointer to symbolic header
size of symbolic header
size of optional header
flags

Table 9-1. File Header Format

The f_symptr points to the Symbolic Header of the Symbol table, and the
f_nsyms gives the size of the header. For a description of the Symbolic
Header, see Chapter 10. Other fields in the File Header are described in
the sections that follow.

9.2.1 File Header Magic Field (f_magic)

The magic number in the f_magic entry in the File Header specifies the
target machine on which an object file can execute. Table 9-2 shows the
values and mnemonics for the magic numbers; the header file filehdr.h
contain the preprocessor macro definitions.

Version 1.0 Object File Format 9-5

Symbol Value

MIPSEBMAGIC Ox0160

MIPSELMAGIC Ox0162

SMIPSEBMAGIC Ox6001

SMIPSELMAGIC Ox620 1

Description

big-endian target (headers and tables
have same byte sex as host machine.

little-endian target (headers and tables
have same byte sex as host machine.)

big-endian target (headers and tables
have opposite byte sex as host machine.)

little-endian target (headers and tables
have opposite byte sex as host machine)

Table 9-2. File Header Magic Numbers

9.2.2 Flags (f_flags)

The fJlags field describes the object file characteristics. Table 9-3 de­
scribes the flags and gives their hexadecimal bit patterns. The table notes
those flags that don't apply to compiler system object files.

9-6 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Symbol Value

F_RELFLG OxOOOl

F_EXEC OxOOO2

F_LNNO OxOOO4

F_LSYMS OxOOO8

F_MINMAL OxOO10

F_UPDATE OxOO20

F_SWABD OxOO40

F_AR16WR OxOO80

F _AR32WR OxOl00

F _AR32W Ox0200

F _PATCH Ox0400

F _NODF Ox0400

Description

relocation information stripped from file

file is executable (i.e. no unresolved
external references)

line numbers stripped from file

local symbols stripped from file

1minimal object file (" .m") output of fextract

1 fully bound update file, output of ogen

1file whose bytes were swabbed (in names)

1file has the byte ordering of an AR16WR
(e.g.11170) machine (it was created there,
or was produced by conv)

file has the byte ordering of an AR32WR
machine (e.g. vax)

1file has the byte ordering of an AR32W machine
(e.g. 3b,maxi,MC68000)

1file contains "patch" list in Optional Header

1 (minimal file only) no decision functions for
replaced functions.

lNot used by compiler system object modules.

Table 9-3. File Header Flags

Version 1.0 Object File Format 9-7

9.3 Optional Header

The link editor and the assembler fill in the Optional Header, and the
system (kernel) loader (or other program that loads the object module at
run-time) uses the information it contains, as described in the section (Loading Object Files in this chapter.

Table 9-4 shows the format of the Optional Header; the header file
aouthdr. h contains its definition.

Symbol Value Description

short magic; See Table 9.5.

short vstamp; version stamp

long tsize; text size in bytes, padded to double-word
boundary

long dsize; initialized data in bytes, padded to
double-word boundary

long bsize; uninitialized data in bytes, padded to (
double-word boundary

long entry; entry point

long text_start; base of text used for this file

long data_start; base of data used for this file

long bss_start; base of bss used for this file

long gprmask; general purpose register mask

long cprmask[4]; co-processor register masks

long gp_value; the gp value used for this object

Table 9-4. Optional Header Definition (

The next section describes the magic field in the Optional Header.

9-8 Assembly Language Programmer's Guide IRIS-4D Series

9.3.1 Optional Header Magic Field (magic)

Table 9-5 shows the values of the magic field for the Optional Header;
the header file aouthdr.h contains the preprocessor macro definitions.

Symbol Value

OMAGIC 0407

NMAGIC 0410

ZMAGIC 0413

Description

Impure Format. The text is not write-protected or
sharable; the data segment is contiguous with the
text segment.

Shared Text. The data segment starts at the next
page following the text segment and the text seg­
ment is write-protected.

Demand Paged. The object file is to be demand
loaded (each page is copied into memory directly
from load module on the first reference to that
page), the file has a special format, and the text
and data segments start at fixed addresses. The
text segment is write-protected (the default).

Table 9-5. UNIX Magic Numbers

See the Object Files section in this chapter for information on the format
of OMAGIC, NMAGIC, and ZMAGIC files.

9.4 Section Headers

Table 9-6 shows the format of the Section Header; the header file
scnhdr.h. contains the definition.

Version 1.0 Object File Format 9-9

Declaration

char
long
long
long
long
long
long
unsigned short
unsigned short
long

Field

s_name[8];
s-paddr;
s_vaddr;
s_size;
s_scnptr;
sJelptr;
s_lnnoptr;
s_nreloc;
s_nlnno;
s_flags;

Description

section name
physical address
virtual address
section size
file pointer to raw data for section
file pointer to relocation
file pointer to line numbers (not used)
number of relocation entries
number of line number entries (not used)
flags

Table 9-6. Section Header Format

The sections that follow describe in detail some of the entries in the Sec­
tion Header.

9.4.1 Section Name (s_name)

Table 9-7 shows the constants for section names that can appear in the
s_name field of the Section Header; the header file scnhdr.h contains the
preprocessor macro definitions.

Declaration Field Description

_TEXT " .text" text section

- RDATA " .rdata" read only data section
DATA " .data" large data section

_SDATA " .sdata" small data section
_BSS " .bss" large bss section

SBSS " .sbss" small bss section -

Table 9-7. Section Header Constants for Section Names

9-10 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

9.4.2 Line Number Entries (sJnnoptr and s_nlnno)

The link editor fills the line number fields with zeros. The compiler and
link editor don't use the line number entries in the Section Header, be­
cause line number information appears only once in the object file, not
once per section. The compiler instead places line numbers in the Line
Numbers subtables of the Symbol table, as described in Chapter 10.

9.4.3 Flags (s_flags)

Table 9-8 shows the flags that appear in s_flags and notes those flags that
apply to compiler system object files; the header file scnhdr.h contains
their definition.

Symbol

STYP_REG
STYP_DSECT
STYP _NOLOAD
STYP_GROUP
STYP_PAD

STYP_COPY

STYP_TEXT
STYP_RDATA
STYP_DATA
STYP_SDATA
STYP_SBSS
STYP_BSS

Value

OxOO
OxOl
Ox02
Ox04
Ox08

Oxl0

Ox20
Oxl00
Ox40
Ox200
Ox80
Ox400

Description

regular section; allocated, relocated, loaded
1 dummy; not allocated, relocated, not loaded
1noload; allocated, relocated, not loaded
1 grouped; formed of input sections
1padding; not allocated, not relocated,
loaded
1 copy; for decision function used by field
update; not allocated, not relocated,
loaded; relocated, and line number entries
processed normally
text only
read only data only
data only
small data only
contains small bss only
bss only

1Not used by complier system object modules.

Table 9-8. Format of s_flags Section Header Entry

Version 1.0 Object File Format 9-11

NOTE: For performance reasons, the link editor uses the sJlags entry
instead of s_name to determine the type of section. However, the link
editor does correctly fill in the s_name entry.

9.5 Section Data

A section represents the smallest portion of the object file; compiler
systme files are represented in six sections: .text, .rdata (read-only data),
.data (data) 1 .sdata (small data), .sbss (small block started by storage),
and .bss (block started by storage). The .text section contains the ma­
chine instructions that are to be executed; the .rdata, .data, and .sdata
contain initialized data; and the .sbss, and .bss sections reserve space for
uninitialized data that is created by the kernel loader for the program be­
fore execution and filled with zeros.

Figure 9-2 shows the layout of the six sections.

. text ::J- text segment

,rdata

.data

.sdata
} data segment

.sbss

.bss
} bss segment

Figure 9-2. Organization of Section Data

(

(

As noted in Figure 9-2, the sections are grouped into the text segment
(containing the .text section), the data segment (.rdata, .data, and (
s.data) and the bss segment (.sbss and .bss). A section is described in '
and referenced through the Section Header, and segments through the
Optional Header.

9-12 Assembly Language Programmer's Guide IRIS-4D Series

The link editor references the data shown in Figure 9-2 both as sections
and segments, through the Section Header and Optional Header respec­
tively. However, the system (kernel) loader, when loading the object file
at run-time, references the same data only by segment, through the Op­
tional Header.

9.6 Section Relocation Information

This portion of the chapter is divided into the following parts:

• The format of a relocation table entry and an explanation of its fields.

• The logic followed by the assembler and the link editor is creating and
updating an entry.

9.6.1 Relocation Table Entry

Table 9-9 shows the format of an entry in the Relocation Table; the
header file reloc.h contains the definition.

Declaration Field

long
unsigned

r_vaddr;
r_symnclx:24,

r_reserved:3,
r_type:4,
r _extern: 1;

Description

(virtual) address of an item to be relocated.
index into external symbols or section
number; see r_extern below.

relocation type
= 1 for an external relocation entry;
r_symnclx is an index into External Symbols.
= 0 for a local, relocation entry; r_symndx
is the number of the section containing the
symbol.

Table 9-9. Format of a Relocation Table Entry

The sections that follow describe some of the fields shown in Table 9-9.

Version 1.0 Object File Format 9-13

Symbol Index (r_symndx) and Extern Field (r_extern)

For external relocation entries, r _extern is set to 1 and r_symnndx is the
index into External Symbols for this entry. In this case, the value of the
symbol is used as the value for relocation.

For local relocation entries, r _extern is set to 0, and r_symndx contains a
constant that refers to a section. In this case, the starting address of the
section to which the constant refers is used as the value for relocation.

Table 9-10 gives the section numbers for r_symndx; the reloc.h file con­
tains their preprocessor macro definitions.

Symbol Value Description

R_SN_TEXT 1 . text section
R_SN_RDATA 2 .rdata section
R_SN_DATA 3 .data section
R_SN_SDATA 4 .sdata section
R_SN_SBSS 5 .sbss section
R_SN_BSS 6 . bss section

Table 9-10. Section Numbers for Local Relocation Entries

Relocation Type (r_type)

Table 9-11 shows valid symbolic entries for the relocation type (r_type)
field; the header file reloc.h contains their preprocessor macro defini­
tions.

9-14 Assembly Language Programmer's Guide IRIS-4D Series

(.

(

(

Symbol Value Description

R_ABS OxO relocation already performed.

R_REFHALF Oxl 16-bit reference to the symbol's virtual address

R_REFWORD Ox2 32-bit reference to the symbol's virtual address

R_JMPADDR Ox3 26-bit jump reference to the symbol's virtual
address

R_REFHI Ox4 reference to the high 16-bits of symbol's
virtual address

R_REFLO Ox5 reference to the low 16-bits of symbol's
virtual address

R_GPREL Ox6 reference to the offset from the global pointer
to the symbol's virtual address

Table 9-11. Relocation Types

9.6.2 Assembler and Link Editor Processing

Compiler system executable object modules with all external references
defined, have the same format as relocatable modules and are executable
without re-link editing.

Local relocation entries must be used for symbols that are defined.
Therefore, external relocations are used only for undefined symbols. Fig­
ure 9-3 gives an overview of the Relocation Table entry for an undefined
external symbol.

Version 1.0 Object File Format 9-15

Relocation Table Entry
External Symbols

n-<>VT<>nded to 32 bits

Figure 9-3. Relocation Table Entry for Undefined External Symbols

The assembler creates this entry as follows:

• Sets r _vaddr to point to the item to be relocated.

• Places a constant to be added to the value for relocation at the
address for the item to be relocated (r _vaddr).

• If the width of the constant is less than 32 bits, sign-extends the
constant to 32 bits.

• Adds the value for relocation (the value of the symbol) to the
constant and places it back in the address to be relocated.

• Sets r _symndx to the index of the External Symbols entry that
contains the symbol value.

• Sets r _type to the constant for the type of relocation types. Table
9-11 shows the valid constants for the relocation type.

• Sets r _extern to 1.

NOTE: The assembler always sets the value of the undefined entry in
External Symbols to O. It may assign a constant value to be added to the
relocated value at the address where the location is to be done. If the

9-16 Assembly lilnguage Programmer's Guide IRIS-4D Series

(

(

(,

width of the constant is less than a full word, and an overflow occurs after
relocation, the link editor flags this as an error.

When the link editor determines that an external symbol is defined, it
changes the Relocation Table entry for the symbol to a local relocation
entry. Figure 9-4 gives an overview of the new entry.

Relocation Table Entry

Section Data

Sign-extended to 32 bits

Figure 9-4. Relocation Table Entry for a Local Relocation Entry

To change this entry from an external relocation entry to a local reloca­
tion entry, the link editor:

• Picks up the constant from the address to be relocated (r _vaddr).

• If the width of the constant is less than 32 bits, sign-extends the
constant to 32 bits.

• Adds the value for relocation (the value of the symbol) to the
constant and places it back in the address to be relocated.

• Sets r _symndx to the section number that contains the external
symbol.

• Sets r _extern to O.

Version 1.0 Object File Format 9-17

Examples

The examples that follow use external relocation entries.

Example 1: 32-Bit Reference-R_REFWORD. This example shows
assembly statements that set the value at location b to the global data (
value y .

. globl y

.data
b: .word y #R_REFWORD relocation type at address b for symbol y

In processing this statement, the assembler generates a ,relocation entry of
type R_REFWORD for the address b and the symbol yr. After determining
the address for the symbol y, the loader adds the 32-bit address of y to
the 32-bit value at location b, and places the sum in location b. The
loader handles 16-bit addresses (R_REFHALF) in the same manner, ex­
cept it checks for overflow after determining the relocation value.

Example 2: 26-Bit Jump-R_JMPADDR. This example shows assem­
bly statements that call routine x from location c .

x:

c:

. text
;routine x

jal x #R_JMPADDR relocation type at address c for symbol x

In processing these statements, the assembler generates a relocation entry
of type R_JMP ADDR for the address c and the symbol x. After deter­
mining the address for the routine, the loader shifts the address right two
bits, adds the low 26 bits of the result to the low 26 bits of the instruction
at address c, and places the results back into the low 26 bits at address c.

R_JMPADDR relocation entries are produced for the assembler's j (Jump)
and jal (Jump and Link) instructions. These instructions take the high
four bits of the target address from the address of their instruction. The
link editor makes sure that the same four bits are in the target address
after relocation; if not, it generates an error message.

If the entries are local relocation types, the target of the Jump instruction
is assembled in the instruction at the address to be relocated. The high
four bits of the jump target are taken from the high 4 bits of the address
of the instruction to be relocated.

9-18 Assembly Language Programmer's Guide IRIS-4D Series

(

(

Example 3: High/Low Reference-R_REFHIIR_REFLO. This example
shows an assembler macro that loads the absolute address y, plus a con­
stant, into Register 6:

lw $r6,constant+y

In processing this statement, the assembler generates a 0 as the value y,
and the following machine language statements:

f: lui $at,constant»16

g: addiu $r6,constant&Oxffff($at)

#R_REFHI relocation type at
address f for symbol y
#R_REFLO relocation type at
address g for symbol y

In this example, the assembler produces two relocation entries.

NOTE: When a R_REFHI relocation entry appears, the next relocation
entry must always be the corresponding R_REFLO entry. This is required
in order to reconstruct the constant that is to be added to the value for
relocation.

In determining the final constant values for the two instructions, the as­
sembler must take into account that the ad diu instruction of the
R_REFLO relocation entry, sign-extends the immediate value of the con­
stant.

In determining the sum of the address for the symbol y and the constant,
the assembler does the following:

• It uses the low 16 bits of this sum for the immediate value of the
R_REFLO relocation address.

• Because all instructions that are marked with a R_REFLO perform a
signed operation, the assembler adjusts the high portion of the sum if
Bit 15 is set. Then it uses the high 16 bits of the sum for the
immediate value of the R_REFHI instruction at the relocation address.
For example:

Version 1.0 Object File Format 9-19

lw $r6,Ox10008000

lui
lw

$at,Ox10001
$r6,Ox8000($at)

at = 100010000
+ FFFF8000

10008000

Figure 9-5.

Example 4: Offset Reference-R_GPREL. This example shows an as­
sembly macro that loads a global pointer relative value y into Register 6:

lw $r6, y

In processing this statement, the assembler generates a 0 as the value y
and the following machine language statement:

(

#R_GPREL relocaticn type at address h for symbol y ~

and a R_GPREL relocation entry would be produced. The assembler then
uses the difference between the address for the symbol y and the address

h: lw $r6,O($gp)

of the global pointer, as the immediate value for the instruction. The link
editor gets the value of the global pointer used by the assembler from
gp_value in the Optional Header (Table 9-4).

9.7 Object Files

This section describes the three object-file formats created by the link edi­
tor, namely the Impure (OMAGIC), Shared Text (NMAGIC), and De­
mand Paged (ZMAGIC) formats. Before reading this section, you should
be familiar in the format and contents of the text, data, and bss segments
as described in the Section Data section of this chapter.

9-20 Assembly Language Programmer's Guide IRIS-4D Series

(

9.7.1 Impure Format (OMAGIC) Files

An OMAGIC file has the format shown in Figure 9-6.

.bss

.sbss } bss segment

.sdata

.data

.rdata
} data segment

-
. text ~ text segment

aligned on a-byte boundary

Figure 9-6. Layout of OMAGIC Files in Virtual Memory

The OMAGIC format has the following characteristics:

• Each section follows the other in virtual address space aligned on an
8-byte boundary.

• No blocking of sections.

• Text, data and bss segments can be placed anywhere in the virtual
address space using the link editor's -T, -D and -B options.

• The addresses specified for the segments must be rounded to 8-byte
boundaries.

• The text segment contains only the .text section.

• The sections in the data segment are ordered as follows: .rdata, .data
and .sdata

• The sections in the bss segment are ordered as follows: .sbss and .bss.

Version 1.0 Object File Format 9-21

9.7.2 Shared Text (NMAGIC) Files

An NMAGIC file has the format shown in Figure 9-7.

Pagesize boundary

.bss I~
.sbss bss segment

.sdata n~ .data

.rdata J data segment

.text]- text segment
~

aligned on a-byte boundary

Figure 9-7. Layout of NMAGIC Files in Virtual Memory

An NMAGIC file has the following characteristics:

• The virtual address of the data segment is rounded up to the next
pagesize boundary.

• No 'blocking of sections.

• Each section follows the other in virtual address space aligned on an
8-byte boundary.

• Only the start of the text section, using the link editor's - T option,
can be specified for a shared text format file; the start of the text
section must be a multiple of the pagesize.

9-22 Assembly Language Programmer's Guide IRIS-4D Series

(I

(

(

9.7.3 Demand Paged (ZMAGIC) Files

A ZMAGIC file is a demand, paged file in the format shown in Figure
9-8.

A ZMAGIC file has the following characteristics:

• The text segment and the data segment are blocked, with page size as
the blocking factor. Blocking reduces the complexity of paging in the
files.

2G 1 I~
.... _ uiiliD.aiiila.e_-I....- 32K (not accessible

2G-32K rib)
I Stack Area I y user .

a fill area

256M

32K + header

32K

.... _____ + .. __ bottom of stack

sbrk arena

.bss

data segment
(blocked by pagesize)

text segment
(blocked by pagesize)

Figure 9-8. Layout of ZMAGIC Files in Virtual Memory

Version 1.0 Object File Format 9-23

• The size of the sum of the of the File, Section, and Optional Headers
(Tables 9-1, 9-4, and 9-6) rounded to 8 bytes is included in
blocking of the text segment.

• The .text section must start at Ox8000 (32K) or higher, plus the size (.
of the sum of the headers again rounded to 8 bytes. With the
standard software, the .text section starts at Ox400000 + header size.

NOTE: This is required because the first 32K bytes of memory are
reserved for future use by the compiler system to allow data access
relative to the constant register O.

• Only the start of the text section, uSing the link editor's -T option
can be specified for a demand paged format file and must be a
multiple of the pagesize.

Figure 9-9 shows a ZMAGIC file as it appears in a disk file.

Symbol Table

o Fill Area

.sdata

.data

.rdata

fill area

. text

headers

.... ...

...

~ data segment
(blocked by pagesize)

II-- text segment
(blocked by pagesize)

Figure 9-9. Layout of a ZMAGIC File on Disk

9-24 Assembly Language Programmer's Guide IRIS-4D Series

(

(

9.7.4 Loading Object Files

The link editor produces object files with their sections in a fixed order
similar to UNIX system object files that existed before COFF. See Figure
9-2 for the a description of the sections and how they are formatted.

The sections are grouped into segments, which are described in the Op­
tional Header. In loading the object module at run-time, the system (ker­
nel) loader needs only the magic number in the File Header and the Op­
tional Header to load an object file for execution.

The starting addresses and sizes of the segments for all types of object files
are specified similarly, and they are loaded in the same manner.

After reading in the File Header and the Optional Header, the system
(kernel) loader must examine the file magic number to determine if the
program can be loaded. Then, the system (kernel) loader loads the text
and data segments.

The starting offset in the file for the text segment is given by the macro

N_TXTOFF (f , a)

in the header file a.out.h, where f is the File Header structure and a is
the option header structure for the object file to be loaded. The tsize
field in the Optional Header (Table 9-4) contains the size of the text seg­
ment and text_start contains the address at which it is to be loaded.

The starting offset of the data segment follows the text segment. The
d_size field in the Section Header (Table 9-6) contains the size of the
data segment; data3tart contains the address at which it is to be loaded.

The system (kernel) loader must fill the bss segment with zeros. The
bss3tart field in the Optional Header specifies the starting address; bsize
specifies the number of bytes to be filled with zeros. In ZMAGIC files,
the link editor adjusts bsize to account for the zero filled area it created in
the data segment that is part of of the .sbss or . bss sections.

If the object file itself does not load the global pointer register it must be
set to the 'lP_value field in the Optional Header (Table 9-4).

The other fields in the Optional Header are gprmask and cprmask[4],
whose bits show the registers used in the . text section. They can be used
by the operating system, if desired, to avoid save register relocations on
context-switch.

Version 1.0 Object File Format 9-25

9.8 Archive Files

The link editor can link object files in archives created by the archiver.
The archiver and the format of the archives are based on the UNIX Sys-
tem V portable archive format. To improve performance, the format of (
the archives symbol table was changed so that it is a hash table, not a lin-
ear list.

The archive hash table is accessed through the ranhashinit and ran­
lookupO library routines in libmld.a, which are documented in the manual
page ranhash (3x). The archive format definition is in the header file
ar.h.

9.9 Link Editor Defined Symbols

Certain symbols are reserved and their values are defined by the link edi­
tor. A user program can reference these symbols, but not define one, or
else an error is generated. Table 9-12 lists the names and values of these
symbols; the header file sym.h contains their preprocessor macro defini- ,('
tions.

Symbol Value Description

_ETEXT "etext" first location after the . text section
_EDATA "edata" first location after the .sdata section

(all initialized data)
_END "end" first location after the .bss section (all data)
_FTEXT "~ftext" 1first location of the .text section
_FDATA "_fdata" 1first location of the .data section
_FBSS "_fuss" 1 first location of the . bss section
_OP "~p" 1the value of the global pointer

1compiler system only

Table 9-12. Link Editor Defined Symbols (

9-26 Assembly Language Programmer's Guide IRIS-4D Series

The first three symbols come from the standard UNIX system link editors
and the rest are compiler system specific. The last symbol is used by the
start up routine to set the value of the global pointer, as shown in the fol­
lowing assembly language statements:

globl _GP
la $gp,_GP

The assembler generates the following machine instructions for these state­
ments:

a: lui gp,o
b: add gp,o

R_REFHI relocation type at address a for symbol _GP
R_REFLO relocation type at address b for symbol _GP

which would cause the correct value of the global pointer to be loaded.

Version 1.0 Object File Format 9-27

()

(

(

10. The Symbol Table

This chapter describes the symbol table and symbol table routines used to
create and make entries in the table. The chapter contains the following
major sections:

• Overview, which gives the purpose of the Symbol table, a summary of
its components, and their relationship to each other.

• Format of Symbol Table Entries, which shows the structures of Symbol
table entries and the values you assign them through the Symbol Table
routines.

• Symbol Table Routine Reference, which lists the symbol table routines
supplied with the compiler and summarizes the function of each.

NOTE: Third Eye Software, Inc. owns the copyright (dated 1984) to the
format and nomenclature of the Symbol Table used by the compiler sys­
tem as documented in this chapter.

Third Eye Software, Inc. grants reproduction and use rights to all parties,
PROVIDED that this comment is maintained in the copy.

Third Eye makes no claims about the applicability of this symbol table to
a particular use.

10.1 Overview

The symbol table in created by the compiler front-end as a stand-alone
file. The purpose of the table is to provide information to the link editor
and the debugger in performing their respective functions. At the option
of the user, the link editor includes information from the Symbol table in
the final object file for use by the debugger. See Figure 9-1 in Chapter 9
for details.

Version 1.0 The Symbol Table 10-1

Created only if debugging
is ON.

11 table per compilation.

Procedure Descriptor Table

Local Symbols

Optimization Symbols

Auxiliary Symbols

D 1 table per source file and
per include file.

Figure 10-1. The Symbol Table - Overview

(

(

The elements that make up the Symbol table are shown in Figure 10-1. (-
The front-end creates one group of tables (the shaded areas in Figure
10.1) that contain global information relative to the entire compilation. It
also creates a unique group of tables (the unshaded areas in the figure)
for the source file and each of its include files.

10-2 Assembly Language Programmer's Guide IRIS-4D Series

Compiler front-ends, the assembler, and the link editor interact with the
symbol table as summarized below:

• The front-end, using calls to routines supplied with the compiler
system, enters symbols and their descriptions in the table.

• The assembler fills in line numbers, optimization symbols, updates
Local Symbols and External Symbols, and updates the Procedure
Descriptor table.

• The link editor eliminates duplicate information in the External
Symbols and the External Strings tables, removes tables with duplicate
information, updates Local Symbols with relocation information, and
creates the Relative File Descriptor table.

The major elements of the table are summarized in the paragraphs that
follow. Some of these elements are explored in more detail later in ~he
chapter.

Symbolic Header. The Symbolic Header (HDRR for HeadDeR Record)
contains the sizes and locations (as an offset from the beginning of the ..
file) of the subtables that make up the Symbol Table. Figure 10-2 shows
the symbolic relationship of the header to the other tables.

I Symbolic Header I .-
Line Numbers ..

Dense Numbers ..
Procedure .. Descriptor Table

Local Symbols ..
Optimization Symbols ..
Auxllary Symbols ... - Local Strings -. External Strings .. .

File Descriptor Table

Figure 10-2. Functional Overview of the Symbolic Header

Version 1.0 The Symbol Table 10-3

Line Numbers. The assembler creates the Line Number table. It creates
an entry for every instruction. Internally, the information is stored in an
encoded form. The debugger uses the entries to map instruction to the
source lines and vice versa.

Dense Numbers. The Dense Number table is an array of pairs. An in­
dex into this table is called a dense number. Each pair consists of a file
table index (ifd) and an index (isym) into Local Symbols. The table fa­
cilitates symbol look-up for the assembler, optimizer, and code generator
by allowing direct table access rather than hashing.

Procedure Descriptor Table. The Procedure Descriptor table contains
register and frame information, and offsets into other tables that provide
detailed information on the procedure. The front-end creates the table
and links it to the Local Symbols table. The assembler enters information
on registers and frames. The debugger uses the entries in determining the
line numbers for procedures and frame information for stack traces.

Local Symbols. The Local Symbols table contains descriptions of pro­
gram variables, types, and structures, which the debugger uses to locate
and interpret runtime values. The table gives the symbol type, storage
class, and offsets into other tables that further define the symbol.

A unique Local Symbols table exists for every source and include file; the
compiler locates the table through an offset from the file descriptor entry (
that exists for every file. The entries in Local Symbols can reference re-
lated information in the Local Strings and Auxiliary Symbols subtables.
This relationship is shown in Figure 10-3.

(

10-4 Assembly Language Programmer's Guide IRIS-4D Series

Entry for File 1

Entry for File 2

Entry for File n

Figure 10-3. Logical Relationship between the File Descriptor Table and
Local Symbols

Optimization Symbols. To be defined at a future date.

Auxiliary Symbols. The Auxiliary Symbols tables contain data type infor­
mation specific to one language. Each entry is linked to an entry in Local
Symbols. The entry in Local Symbols can have multiple, contiguous en­
tries. The format of an auxiliary entry depends on the symbol type and
storage class. Table entries are required only when the compiler debug­
ging option is ON.

Local Strings. The Local Strings subtables contain the names of local
symbols.

External Strings. The External Strings table contains the names of exter­
nal symbols.

Version 1.0 The Symbol Table 10-5

File Descriptor. The File Descriptor table contains one entry each for
each source file and each of its include files. (The structure of an entry is
given in Table 10-12 later in this chapter.) The entry is composed of
pointers to a group of subtables related to the file. The physical layout of
the subtables is shown in Figure 10-4.

I File Descriptor Table I
I File Descriptor Entry I

p Line Numbers

- Procedure
n""t'!rlntnr T::IhIA .. - Local Symbols .. - Optimization Symbols ..

p Auxllary Symbols

...
Local Strings ..

Relative File Descriptor -

Figure 10-4. Physical Relationship of a File Descriptor Entry to Other
Tables

The file descriptor entry allows the compiler to access a group of subtables
unique to one file. The logical relationship between entries in this table
and in its subtables is shown in 10-5.

10-6 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

I File Descriptor Table I
Entry for File 0 ..

p

Entry for File 1 r-- Line Numbers ..
Entry for File 2 r- ..

Procedure - Descriptor Table
- -.. Local Symbols
-

~

.. Optimization Symbols

- Auxllary Symbols

.. Local Strings

Relative File Descriptor

.. ..
Line Numbers - Procedure .. Descriptor Table

.. Local Symbols

...

... Optimization Symbols

.. Auxllary Symbols

.. Local Strings
p

Relative File Descriptor

Figure 10-5. Logical Relationship Between the File Descriptor Table
and Other Tables

Relative File Descriptor. See the section Link Editor Processing later in
this chapter.

Version 1.0 The Symbol Table 10-7

External Symbols. The External Symbols contains global symbols entered
by the front-end. The symbols are defined in one module and referenced
in one or more other modules. The assembler updates the entries, and
the link editor merges the symbols and resolves their addresses.

10.2 Format of Symbol Table Entries

10.2.1 Symbolic Header

The structure of the Symbolic Header is shown below in Table 10-1; the
sym.h header file contains the header declaration.

10-8 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Declaration Name Description

short magic to verify validity of the table
short vstamp version stamp
long ilineMax number of line number entries
long cbLine number of bytes for line number entries
long cbLineOffset index to start of line numbers
long idnMax max index into dense numbers
long cbDnOffset index to start dense numbers
long ipdMax number of procedures
long cbPdOffset index to procedure descriptors
long isymMax number of local symbols
long cbSymOffset index to start of local symbols
long ioptMax maximum index into optimization entries
long c bOptOffset index to start of optimization entries
long iauxMax number of auxiliary symbols
long cbAuxOffset index to the start of auxiliary symbols
long issMax max index into local strings
long cbSsOffset index to start of local strings
long issExtMax max index into external strings
long c bSsExtOffset index to the start of external strings
long ifdMax number of file descriptors
long cbFdOffset index to file descriptor
long crfd number of relative file descriptors
long cbRfdOffset index to relative file descriptors
long iextMax maximum index into external symbols
long cbExtOffset index to the start of external symbols

Table 10-1. Format of the Symbolic Header

The lower byte of the vstamp field contains LS_STAMP and the upper
byte MS_STAMP (see the stamp.h header file). These values are defined
in the stamp.h file. The iMax fields and the cbOffset field must be set to
o if one of the tables shown in Table 10-1 isn't present. The magic field
must contain the constant magicSym, also defined in longsymconst.h.

Version 1.0 The Symbol Table 10-9

10.2.2 Line Numbers

Table 10-2 shows the format of an entry in the Line Numbers table; the
sym.h header file contains its declaration.

Declaration Name

typedef long LINER, * PLINER

Table 10-2. Format of a Line Number Entry

The line number section in the Symbol table is rounded to the nearest
four-byte boundary.

Line numbers map executable instructions to source lines; one line num­
ber is stored for each instruction associated with a source line. It is stored
as a long integer in memory and in packed format on disk.

The layout on disk is as follows:

Bit 8 4 0

I==CSCJ~
Delta Count

Figure 10-6. Disk Layout of Line Numbers

The compiler assigns a line number to only those lines of source code that
generate one or more executable instructions.

(

(

Delta is a four-bit value in the range -7 ... 7, defining the number of
source lines between the current source line, and the previous line gener-
ating executable instructions. The Delta of the first line number entry is (
the displacement from the InLow field in the Procedure Descriptor Table.

Count is a four-bit field with a value in the range 0 ... 15 indicating the
number (1.. .16) of executable instructions associated with a source line.

10-10 Assembly Language Programmer's Guide IRIS-4D Series

If more than 16 instructions (15+1) are associated with a source line, new
line number entries are generated with Delta = O.

An extended format of the line number entry is used when Delta is out­
side the range of -7 ... 7.

The layout of the extended field on disk is as follows:

Bit

Bit

Bit

8 4 a

Constant -8 Count

Upper eight bits of Delta

840

LIl222lLI
Lower eight bits of Delta

Figure 10-7. Disk Layout of Extended Field

NOTE: The compiler allows a maximum of 32,767 comment lines, blank
lines, continuation lines and other lines not producing executable instruc­
tions, between two source lines that do.

Line number example. This section gives an example of how the com­
piler assigns line numbers. For the source listing shown in Figure 10-8,
the compiler generates line numbers only for the highlighted lines (6, 7,
17, 18, and 19); the other lines are either blank or contain comments.

Version 1.0 The Symbol Table 10-11

17 printf("%c", c);

18 } 1* end while *1

19 1* end main *1

Figure 10-8. Source Listing for Line Number Example

Figure 10-9 (on the next page) shows the instructions generated for lines
3, 7, 17, 18, and 19. Figure 10-10) shows the compiler-generated liner
entries for each source line.

10-12 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Liner
Source
Line Contents Meaning

3 02 delta 0, count 2

6 31 delta 3, count 1

7 1f delta 1, count 15

7 03 delta 0, count 3

171 82 00 Oa
1

-8 , count 2, delta 10
18 1 f delta 1, count 15

iff 03 delta 0 2, count 3

19 15 delta 1, count 5

1 Extended format (count is greater than
seven lines).

2 Continuation.

Figure 10-9. Source Listing for Line Number Example

Version 1.0 The Symbol Table 10-13

3,
3,
3,

[main:7, Ox4001b8]
[main:7, Ox4001bc]
[main:7, Ox4001cO]
[main:7, Ox4001c4]
[main:7, Ox4001c8]
[main:7, Ox4001cc]
[main:7, Ox4001dO]
[main:7, Ox4001d4]
[main:7, Ox4001d8]
[main:7, Ox4001dc]
[main:7, Ox4001eO]
[main:7, Ox4001e4]
[main:7, Ox4001eB]
[main:7, Ox4001ec]
[main:7, Ox400lfO]
[main:7, Ox400lf4]
[main:7, ox400lfB]
[main:7, Ox400lfc]

[n:1B, Ox400 10]
[main:1B, Ox400214]
[main:1B, Ox400218]
[main:1B, Ox40021c]
[main:1B, Ox400220]
[main:1B, Ox400224]
[main:1B, Ox400228]
[main:18, Ox40022c]
[main:1B, Ox400230]
[main:1B, Ox400234]
[main:1B, Ox40023B]
[main:1B, Ox40023c]
[main:1B, Ox400240]
[main:1B, Ox400244]
[main:1B, Ox40024B]
[main:18, Ox40024c]
[main:1B, Ox400250]
[main:18, Ox400254]
[main:18, Ox40025B]

[main:19, Ox400260]
[main:19, Ox400264]
[main:19, Ox400268]
[main:19, Ox40026c]
[main:19, Ox400270]
[main:19, Ox400274]

addiu
sw
sw
jal

nop
addiu
bltz
sw
lw
nop
lbu
addiu
sb
b
sw
jal
addiu
move
sb
lbu
li
beq

nop
addiu
bltz
sw
lw
nop
Ibu
addiu
sb
b
sw
jal
addiu
move
sb
Ibu
Ii
bne

b
nop
lw
lw
jr
addiu

sp,sp,-32
r31,20(Sp)
r16,16(sp)
printf

r15,r14,-1
r15,Ox4001e4
r15, -32552 (gp)
r24,-32548(gp)

r25,0(r24)
r8,r24,1
r25,31(Sp)
Ox4001f4
rB, -3254B (gp)
filbuf -

r4,gp,-32552
r16,r2
r16,31(Sp)
r9,31(sp)
r1,-1
r9,r1,Ox400260

rll,rlO,-l
rll ,Ox400240
rll, -32552 (gp)
r12,-32548(gp)

r13,0(r12)
r14,r12,1
r13,3l(SP)
Ox400250
r14,-32548(gp)
_filbuf
r4,gp,-32552
r16,r2
r16,3l(sp)
r15,3l(sp)
rl,-l
r15,rl,Ox400204

Ox40026B

r31,20(sp)
r16,16(sp)
r3l
sp,sp,32

•

•

•
Figure 10-10. Source Listing for Line Number Example

10-14 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

10.2.3 Procedure Descriptor Table

Table 10-3 shows the format of an entry in the Procedure Descriptor ta­
ble; the sym.h header file contains its declaration.

Declaration Name Description

unsigned, long adr memory address of start of procedure
long isym start of local symbols
long Hine procedure's line numbers
long regmask saved register mask
long regoffset saved register offset
long iopt procedure's optimization symbol

entries
long fregmask save floating point register mask
long fregoffset save floating point register offset
long frameoffset frame size
long framereg frame pointer register
long pcreg index or reg of return program

counter
long InLow lowest line in the procedure
long InHigh highest line in the procedure
long cbLineOffset byte offset for this procedure from

the base of the file descriptor
entry.

Table 10-3. Format of a Procedure Descriptor Table Entry

Version 1.0 The Symbol Table 10-15

10.2.4 Local Symbols

Table 10-4 shows the format of an entry in the Local Symbols table; the
sym.h header file contains its declaration.

Declaration

long
long
unsigned
unsigned
unsigned
unsigned

Name

iss
value
st : 6
sc : 5
reserved: 1
index: 20

Description

index into local strings of symbol name
value of symbol. See Table 10-5.
symbol type. See Table 10-6.
storage class. See Table 10-7.

index into local or auxiliary symbols
See Table 3-5.

Table 10-4. Format of a Local Symbols Entry

(/

The meanings of the fields in a local symbol entry are explained in the (.
following paragraphs., ,

iss. The iss (for index into string space) is an offset from the issBase
field of an entry in the file descriptor table, to the name of the symbol.

value. An integer representing an address, size, offset from a frame
pointer. The value is determined by the symbol type, as illustrated in Ta­
ble 10-5.

st and sc. The symbol type (st) defines the symbol; the storage class
(sc) , where applicable explains how to access the symbol type in memory.
The valid st and sc constants are given in Tables 10-6 and 10-7. These
constants are defined in symconst.h.

index. The index is an offset into either Local Symbols or Auxiliary
Symbols, depending of the storage type (st) as shown in Table 10-5. The
compiler uses isymBase in the file descriptor entry as the base for a Local
Symbol entry and iauxBase for an Auxiliary Symbols entry. (

10-16 Assembly Language Programmer's Guide IRIS-4D Series

Symbol Type

stFile
stLabel
stGlobal
stStatic
stParam

stLocal

stProc

stStaticProc
stMember
enumeration
structure
union

Storage Class

scText
scTex\
scD/B
scD/Bl
scAbs
scRegister
scVar
scVarRegister
scAbs
scRegister
scText
scNil
sc Undefined
scText

scInfo
scInfo
scInfo

Index Value

isymMac address
indexNil address
iaux address
iaux address
iaux frame offset 1
iaux register numb2er
iaux frame offset
iaux register number
iaux frame offset 2
iaux register number
iaux address
iaux address
iaux address
iaux address

indexNil ordinal 3
iaux bit offset
iaux bit offset

lscD/B is the storage class determined by the assembler, either
large/small or data/bss.

2frame offset is the offset from the virtual frame pointer.

~it offset is computed from the beginning of the procedure.

Table 10-5 (Part 1 of 2). Index and Value as a Function of Symbol
Type and Storage Class

Version 1.0 The Symbol Table 1 0-17

Symbol Type Storage Class Index Value

stBlock
. M 1 enumeration scInfo lsym ac max enumeration

structure scInfo isymMac size
text bock scText isymMac relative addres81-
common block scCommon isymMac size
variant scVariant isymMac isymTag 3 4
variant arm scInfo isymMac iauxRanges
union scInfo isymMac size

stEnd
enumeration scInfo isymStart 5 0
file scText isymStart relative address2

procedure scText isymStart relative addres~
structure scInfo isymStart 0
text block scText isymStart relative address2

union scInfo isymStart 0
common block scCommon isymStart 0
variant scVariant isymStart 0
variant arm scInfo isymStart 0

stTypedef scInfo iaux 0

1isymMac is the isym of the corresponding stEnd symbol plus 1.

2relative address is the relative displacement from the beginning of the
procedure.

3isymTab is the isym to the symbol that is the tag for the variant.

4iauxRanges is the iaux to ranges for the variant arm.

5isymStart is the isym of the correspodning begin block (stBlock, stFile,
stProc, etc.)

Table 10-5 (Part 2 of 2). Index and Value as a Function of Symbol
Type and Storage Class

(

(

The link editor ignores all symbols except the types stProc, stStatic,
stLabel, stStaticProc, which it will relocate. Other symbols are used only
by the debugger, and need be entered in the table only when the compiler (
debugger option is ON. '

10-18 Assembly Language Programmer's Guide IRIS-4D Series

Symbol Type (st). Table 10-6 gives the allowable constants that can be
specified in the st field of Local Symbols entries; the symconst.h header
file contains the declaration for the constants.

Constant Value Description

stNil 0 Dummy entry
stGlobal 1 external symbol
stStatic 2 static
stParam 3 procedure argument
stLocal 4 local variable
stLabel 5 label
stProc 6 Procedure
stBlock 7 start of block
stEnd 8 end block, file, or procedures
stMember 9 member of structure, union, or

enumeration.
stTypedef 10 type definition
stFile 11 file name
stS ta ticProc 14 load time only static procs
stConstant 15 const

Table 10-6. Symbol Type (st) Constants Supported by the Compiler

Version 1.0 The Symbol Table 10-19

Storage Class (st) Constants. Table 10-7 gives the allowable constants
that can be specified in the sc field of Local Symbols entries; the sym-
const.h header file contains the declaration for the constants.

Constant Value Description (
scNil 0 dummy entry.
scText 1 text symbol
scData 2 initialized data symbol
scBss 3 un-initialized data symbol
scRegister 4 value of symbol is register number
scAbs 5 symbol value is absolute; not to be

relocated.
sc Undefined 6 Used but undefined in the current module.
reserved 7
scBits 8 this is a bit field
scDbx 9 dbx internal use
scReglmage 10 register value saved on stack
scInfo 11 symbol contains debugger information
scUserStruct 12 address in struct user for current process
scSData 13 (load time only) small data (
scSBss 14 (load time only) small common
scRData 15 (load time only) read only data
scVar 16 Var parameter (Fortran or Pascal)
scCommon 17 common variable
scSCommon 18 small common
scVarRegister 19 var parameter in a register
scVariant 20 variant records
sc Undefined 21 small undefined

Table 10-7. Storage Class Constants Supported by the Compiler

10.2.5 Optimization Symbols (!
Reserved for future use.

10-20 Assembly Language Programmer's Guide IRIS-4D Series

10.2.6 Auxiliary Symbols

Table 10-8 shows the format of an entry, which is a union, in Auxiliary
Symbols; the sym.h file contains its declaration.

Declaration

TIR
RNDXR
long
long
long
long
long

long

Name

ti
rndx
dnLow
dnHigh
isym
iss
width

count

Description

type information record
relative index into local symbols
low dimension
high dimension
index into local symbols for stEnd
index into local strings (not used)
width of a structure field not
declared with the default value
for size.
count of ranges for variant arm

Table 10-8. Storage Class Constants Supported by the Compiler

All of the fields except the ti field are explained in the order they appear
in the above layout. The ti field is explained last.

rndx. Relative File Index. The front-end fills this field in describing
structures, enumerations, and other complex types. The relative file index
is a pair of indexes. One index is an offset from the start of the File De­
scriptor table to one of its entries. The second is an offset from the file
descriptor entry to an entry in the Local Symbols or Auxiliary Symbols
table.

dnLow. Low Dimension of Array.

dnHigh. High Dimension of Array.

isym. Index into Local Symbols. This index is always an offset to an
stEnd entry denoting the end of a procedure.

Version 1.0 The Symbol Table 10-21

width. Width of Structured Fields.

count. Range Count. Used in describing case variants. Gives how many
elements are separated by commas in a case variant.

ti. Type Information Record. Table 10-9 shows the format of a ti en- (- J'

try; the sym.h file contains its declaration.

Declaration Name Description

unsigned fBitfield : 1 setif bit width is specified
unsigned continued: 1 next auxiliary entry has

tq info
unsigned bt : 6 basic type
unsigned tq4 :4 Type qualifier.
unsigned tqS : 4
unsigned tqO : 4
unsigned tq1 : 4
unsigned tq2 4
unsigned tq3 : 4

Table 10-9. Format of a ti Type Information Record Entry

All groups of auxiliary entries have a type information record with the fol­
lowing entries:

• fbitfield. Set if the basic type (bt) is of non-strandard width.

• bt (for basic type) specifies if the symbol is integer, real complex,
numbers , a structure, etc. The valid entries for this field are shown in
Table 10-10; the sym.h file contains its declaration.

• tq (for type qualifier) defines whether the basic type (bt) has an
array of, function returning, or pointer to qualifier. The valid entries
for this field are shown in Table 10-11; the sym.h file contains its
declaration.

10-22 Assembly Language Programmer's Guide IRIS-4D Series

(

(

Default
Constant Value Size'" Description

btNil 0 0 undefined, void
btAdr 1 32 address - same size as
pointer
btChar 2 8 symbol character
btUChar 3 8 unsigned character
btShort 4 16 short (16 bits)
btU Short 5 16 unsigned short
btInt 6 32 integer
btUInt 7 32 unsigned integer
btLong 8 32 long (32 bits)
btU Long 9 32 unsigned long
btFloat 10 32 floating point (real)
btDouble 11 64 double-precision floating
point real
btStruct 12 n/a structure (Record)
btUnion 13 n/a union (variant)
btEnum 14 32 enumerated
btTypedef 15 n/a defined via a typedef;

rndx points at a
stTypedef symbol.

btRange 16 32 subrange of integer
btSet 17 32 pascal sets
btComplex 18 64 fortran complex
btDComplex 19 128 fortran double complex
btIndirect 20 Indirect definition;rndx

points to TIR aux
btMax 64

*Size in bits.

Table 10-10. Basic Type (bt) Constants

Version 1.0 The Symbol Table 10-23

Constant

tqNil
tqPtr
tqProc
tqArray
tqVol
tqMax

Value

o
1
2
3
5
8

Description

Place holder. No qualifier.
pointer to
function returning
array of
volatile

Table 10-11. Type Qualifier (tq) Constants

10.2.7 File Descriptor Table

Table 10-12 shows the format of an entry in the File Descriptor table;
the sym.h file contains its declaration.

10-24 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Declaration

unsigned, long
long
long
long
long
long
long
long
long
long
short
short
long
long
long
long
unsigned
unsigned
unsigned

unsigned

unsigned
long
long

Version 1.0

Name

adr
rss
issBase
cbSs
isymBase
csym
ilineBase
cline
ioptBase
copt
ipdFirst
cpd
iauxBase
caux
rfdBase
crfd
lang: 5
fMerge : 1
fReadin : 1

fBigendian :

reserved : 22
cbLineOffset
cbLine

1

Description

memory address of start of file
source file name
start of local strings
number of bytes in local strings
start of local symbol entries
count of local symbol entries
start of line number entries
count of line number entries
start of optimization symbol entries
count of optimization symbol entries
start of procedure descriptor table
count of procedures descriptors
start of auxiliary symbol entries
count of auxiliary symbol entries
index into relative file descriptors
relative file descriptor count
language for this file
whether this file can be merged
true if it was read in (not
just created)
if set, was compiled on big endian
machine aux's is in compile
host's sex
reserved for future use
byte offset from header or file In's

Table 10-12. Format of File Descriptor Entry

The Symbol Table 10-25

10.2.8 External Symbols

The External Symbols table has the same format as Local Symbols, except
an offset (ifd) field into the File Descriptor table has been added. This
field is used to locate information associated with the symbol in an Auxil-
iary Symbols table. Table 10-13 shows the format of an entry in External (
Symbols; the sym.h file contains its declaration. . .

Declaration

short
short
SYMR

Name

reserved
ifd
asym

Description

reserved for future use
pointer to file descriptor entry
Same as Local Symbols

Table 10-13. Format of an Entry in External Symbols

10-26 Assembly Language Programmer's Guide IRIS-4D Series

(

(

Appendix A: Instruction Summaries

In the tables in this appendix, the operand terms have the following mean­
ings:

Operand

destination
address
source
expression
immediate
label
breakcode

Description

destination register
expression
source register
aboslute value
immediate value
symbol label
value that determines the break

Table A-1. Operand Meanings

Version 1.0 Instruction Summaries A-1

Description Op-code Operand

Load Address la destination, address
Load Byte Ib
Load Byte Unsigned Ibu

(Load Halfword Ih
Load Halfword Unsigned Ihu
Load Word lw
Load Coprocessor z lwcz
Load Word Left lwl
Load Word Right lwr

Store Byte sb source, address
Store Halfword sh
Store Word sw
Store Word Coprocessor z swcz
Store Word Left swl
Store Word Right swr
Unaligned Load Halfword ulh
Unaligned Load Halfword Unsigned ulhu
Unaligned Load Word ulw
Unaligned Store Halfword ush
Unaligned Store Word usw (

Table A-2. Main Processor Instruction Summary

(

A-2 Assembly Language Programmer's Guide IRIS-4D Series

Description Op-code Operand

Load Immediate Ii destination, expression
Load Upper Immediate lui
Restore From Exception rfe
Syseall syseall

Absolute Value abs destination, sre 1
Negate (with overflow) neg destination/ sre 1
Negate (without overflow) negu
NOT not

Add (with overflow) add destination,sreI, sre2
Add (without overflow) addu destination/sreI, sre2
AND and destination,sreI, immediate
Divide (with overflOW) div destination/sreI, immediate
Divide (without overflow) divu
EXCLUSIVE OR xor
Multiply mul
Multiply (with overflow) mulo
Multiply (with overflow) mulou

Unsigned
NOT OR nor
OR or
Remainder rem
Remainder Unsigned remu
Rotate Left rol
Rotate Right ror
Set Equal seq
SEt Less Than sIt
Set Less Than Unsigned sltu
Set Less/Equal sle
Set Less/Equal Unsigned sleu
Set Greater Than sgt
Set Greater Than Unsigned sgut
Set Greater/Equal sge
Set Greater/Equal Unsigned sgeu
Set Not Equal sne
Shift Left Logical sl1
Shift Right Arithmetic sra
Shift Right Logical srI
Subtract (with overflow) sub
Subtract (without overflow) subu

Multiply mult sreI,sre2
Multiply Unsigned multu

Table A-2. Main Processor Instruction Summary (continued)

Version 1.0 Instruction Summaries A-3

Description Op-code Operand

Branch b label
Branch Coprocessor z True bczt
Branch Coprocessor z False bczf

(Branch on Equal beq src I , src2 ,label
Branch on Greater bgt srcl,immediate,label
Branch on Greater/Equal bge
Branch on Greater/Equal Unsigned bgeu
Branch on Greater Than Unsigned bgtu
Branch on Less bIt
Branch on Less/Equal ble
Branch on Less/Equal Unsigned bleu
Branch on Less Than Unsigned bItu
Branch on Not Equal bne

Branch and Link bal label
Branch on Less Than Zero and Link bltzal
Branch on Greater or Equal to zero bgezal
and Link

Branch on Equal Zero beqz srcl,label
Branch on Greater/Equal Zero bgez
Branch on Greater Than Zero bgtz
Branch on Less/Equal Zero blez

(Branch on Less Than Zero bltz
Branch on Not Equal Zero bnqz

Jump j address
Jump and Link jal src1

Break break breakcode

Coprocessor z Operation cz expression

Move move destination, src I

Move From HI Register mfhi register
Move To HI Register mthi
Move From LO Register mflo
Move To LO Register mtlo

Move From Coprocessor z mfcz dest-gpr, source
Move To Coprocessor z mtcz src-gpr, destination

Control From Coprocessor z cfcz src-gpr, destination (
Control to Coprocessor z ctcz dest-gpr, source

Table A-2. Main Processor Instruction Summary (continued)

A-4 Assembly Language Programmer's Guide IRIS-4D Series

Description

Translation Lookaside Buffer Probe
Translation Lookaside Buffer Read
Translation Lookaside Buffer Write Random
Translation Lookaside Write Index

Op-code

tlbp
tlbr
tlbwr
tlbwi

Operand

Table A-3. System Coprocessor Instruction Summary

Description Op-code Operand

Load Fp

Double 1.d destination, offset(base)

Single 1.s

Store FP

Double s.d source, offset(base)

Single s.s

Absolute Value Fp

Double abs.d destination, src1

Single abs.s

Add Fp

Double add.d destination, src 1, src2

Single add.s

Divide Fp

Double div.d
Single div.s

Multiply

Double mu1.d
Single mu1.s

Subtract Fp

Double sub.d
Single sub.s

Table A-4. Floating Point Instruction Summary

Version 1.0 Instruction Summaries A-5

Description

Convert Source to

Specified Precision Fp

Double to Single

Fixed Point to Single

Fixed Point to Double

Single to Double

Double to Fixed Point

Single to Fixed Point

Negate Floating Point

Op-code

cvt. s. d

cvt.s.w

cvt.d. w

cvt.d.s

cvt.w.d

cvt.w.s

Double neg. d

Single neg.s

Operand

destination, src2

Table A-4. Floating Point Instruction Summary (continued)

A-6 Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Description Op-code Operand

Compare Fp
F Single c.f.s srcl,src2
F Double c.f.d

UN Single c.un.s
UN Double c.un.d

*EQ Single c.eq.s
*EQ Double c.eq.d

UEQ Single c.ueq.s
UEQ Double c.ueq.d

OLT Single c.olt.s
OLT Double c.olt.d

ULT Single c. ult.s
ULT Double c. ult.d

OLE Single c.ole.s
OLE Double c.ole.d

ULE Single c. ule.s
ULE Double c. ule. d

SF Single c. sf. s
SF Double c.sf.d

NGLE Single c.ngle.s
NGLE Double c.ngle.d

SEQ Single c.deq.s
SEQ Double c.seq.d

NGL Single c.ngl.s
NGL Double c.ngl.d

Table A-4. Floating Point Instruction Summary (continued)

NOTE: Starred items (*) are the most common Compare instructions.
The machine has the other Compare instructions for IEEE compatibility.

Version 1.0 Instruction Summaries A-7

Description Op-code Operand

Compare Fp

*LT Single c.lt. s srcl,src2
*LT Double c.lt. d

NGE Single c.nge.s

NGE Double c.nge.d

*LE Single c.le.s
*LE Double c.le.d

NGT Single c.ngt.s

NGT Double c.ngt.d

Move Fp

Single mov.s destina tion, src 1

Double mov.d

Table A-4. Floating Point Instruction Summary (continued)

NOTE: Starred items (*) are the most common Compare instructions.
The machine has the other Compare instructions for IEEE compatibility.

A-a Assembly Language Programmer's Guide IRIS-4D Series

(

(

(

Appendix B: Basic Machine Definition

The assembly language instructions described in this book are a superset of
the actual machine instructions. Generally, the assembly language instruc­
tions match the machine instructions; however, in some cases the assembly
language instruction are macros that generate more than one machine in­
struction (the assembly language multiplication instructions are examples).

You can, in most instances, consider the assembly instructions as machine
instructions; however, for routines that require tight coding for perform­
ance reasons, you must be aware of the assembly instructions that generate
more than one machine language instruction, as described in this appen­
dix.

B.1 Load and Store Instructions

If you use an address as an operand in an assembler Load or Store in­
struction and the address references a data item that is not addressable
through register $gp or the data item does not have an absolute address in
the range -32768 ... 32767, the assembler instruction generates a lui (load
upper immediate) machine instruction and generates the appropriate offset
to $at. The assembler then uses $at as the index address for the refer­
ence. This condition occurs when the address has a relocatable external
name offset (or index) from where the offset began.

The assembler's la (load address) instruction generates an addiu (add un­
signed immediate) machine instruction. If the address requires it, the la
instruction also generates a lui (load upper immediate) machine instruc­
tion. The machine requires the la instruction because la couples
relocatable information with the instruction for symbolic addresses.

Version 1.0 Basic Machine Definition B-1

Depending on the expression's value, the assembler's Ii (load immediate)
instruction can generate one or two machine instructions. For values in the
-32768 ... 65535 range or for values that have zeros as the 16 least signifi­
cant bits, the Ii instruction generates a single machine instruction;, other­
wise it generates two machine instructions ..

B.2 Computational Instructions

If a computational instruction immediate value falls outside the 0 ... 65535
range for Logical ANDs, LogicalORs, or Logical XORs (exclusive or), the
immediate field causes the machine to explicitly load a constant to a tem­
porary register. Other instructions generate a single machine instruction
when a value falls in the -32768 ... 32767 range.

The assembler's seq (set equal) and sne (set not equal) instructions gener­
ate three machine instructions each.

If one operand is a literal outside the range -32768 ... 32767, the assem­
bler's sge (set greater than or equal to) and sle (set less/equal) instruc­
tions generate two machine instructions each.

The assembler's mulo and mulou (multiply) instructions generate machine
instructions to test for overflow and to move the result to a general regis..;
ter; if the destination register is $0, the check and move are not gener­
ated.

The assembler's mul (multiply unsigned) instruction generates a machine
instruction to move the result to a general register; if the destination regis­
ter is $0, the move and divide-by-zero checking is not generated. The
assembler's divide instructions, div (divide with overflow) and divu (divide
without overflow), generate machine instructions to check for division by
zero and to move the quotient into a general register; if the destination
register is $0, the move is not generated.

The assembler's rem (signed) and remu (unsigned) instructions also gen­
erate multiple instructions.

(

(

The rotate instructions ror (rotate right) and rol (rotate left) generate (~
three machine instructions each.

The abs (absolute value) instruction generates three machine instructions.

B-2 Assembly Language Programmer's Guide IRIS-4D Series

B.3 Branch Instructions

If the immediate value is not zero, the branch instructions beq (branch on
equal) and bne (branch on not equal), each generate a load literal ma­
chine instruction. The relational instructions generate a slt (set less than)
machine instruction to determine whether one register is less than or
greater than another. Relational instructions can reorder the operands and
branch on either zero or not zero as required to do an operation.

B.4 Coprocessor Instructions

For symbolic addresses, the coprocessor interface Load and Store instruc­
tions, lcz (load coprocessor z) and scz (store coprocessor z) can generate
a lui (load upper immediate) machine instruction.

B.5 Special Instructions

The assembler's break instruction packs the break code operand in unused
register fields. An operating system convention determines the position.

Version 1.0 Basic Machine Definition B-3

(

(

(

~
Date

Your name

Title

Department

Company

Address

Phone

Silicon Graphics, Inc.

COMMENTS

Manual title and version ______________________ _

Please list any errors, inaccuracies, or omissions you have found in this manual

Please list any suggestions you may have for improving this manual

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 45 MOUNTAIN VIEW. CA

POSTAGE WILL BE PAID BY ADDRESSEE

Silicon Graphics, Inc.
Attention: Technical Publications
2{)11 Stierlin Road
Mountain View, CA 94043·1321

~ ~
.----./

~
"'--.J

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

