400N Users Guide

IRIS-40) Series

%4% SiliconGraphics

Computer Systems

Documen t number: 007-0820-010

‘4DDN User’s Guide

Version 1.0

Document Number 007-0820-010

9/90

Technical Publications:

Kevin Walsh)
Diane Wilford (¢
Engineering:

Vemon Schryver
Andrew Cherenson

© Copyright 1987, Technology Concepts Inc.
© Copyright 1988, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary and confidential information of
Silicon Graphics, Inc., and is protected by Federal copyright law. The
contents of this document may not be disclosed to third parties, copied
or duplicated in any form, in whole or in part, without the express
written permission of Silicon Graphics, Inc.

This manual has been adapted from the CommUnity-UNIX User's

Guide by Technology Concepts, Inc. This material may be changed

without notice by Technology Concepts and Silicon Graphics, Inc.

Technology Concepts Inc. is not responsible for any errors that may (
appear herein.

U.S. Government Limited Rights

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (b) (2) of the Rights in Technical Data and Computer

Software clause at 52.227-7013. Contractor/manufacturer is Silicon

Graphics Inc., 2011 N. Shoreline Bvld., Mountain View, CA 94039-
7311.

4DDN User's Guide
Version 1.0
Document Number 007-0820-010

Silicon Graphics, Inc. ()
Mountain View, California

The words IRIS, Geometry Link, Geometry Partners, Geometry Engine

and Geometry Accelerator are trademarks of Silicon Graphics, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

IRIX is a trademark of Silicon Graphics, Inc.

DECnet, RSX, ULTRIX, VAX and VMS are trademarks of Digital Equipment Corporation.

Contents

1. Introduction

1.1
1.2
1.3
14
1.5

Services Provided by 4DDN
Structure of the Guide
Conventions .

Related Documentatlon
Product Support

2. Network Virtual Terminal Utility

2.1
2.2
23

.

Establishing a Virtual Terminal Session .

Software Prerequisites
The sethost Command

.

2.4 Terminating a Virtual Terminal Session .

25

2.4.1

Comments

3. Network File Access Commands

3.1
3.2

3.3

34

35

Software Requirement at the Remote Node

Remote File Specifications .
3.2.1
The dncp Command . .
3.3.1 Description .
3.3.2 Diagnostics
333 Remarks
3.3.4 Sample dncp Usage
3.3.5 dncp Error Messages .
3.3.6 File Record Formats .
The dnlsCommand . . .
3.4.1 Description
3.4.2 Remarks . .
3.4.3 Sample dnis Usage
The dnrmCommand . . .
3.5.1 Description

.

.

)

Logging out of the Remote Node
2.4.2 Aborting the Virtual Terminal Session

.

Supplying Access Control Informatuon

.

.

.

1-1
1-1
1-2
1-3
1-3
1-4

2-1
2-2

2-3
2-3

2-3

3-2
3-3

3-6
3-7
3-8
3-9
3-10
3-17
3-19
3-21
3-22
3-23
3-24
3-27
3-27

3.5.2
3.5.3

Error Messages
Sample dnrm Usage

3.6 The dnmvCommand .

3.6.1
3.6.2
3.6.3

Description
Error Messages
Sample dnmv Usage .

3.7 Remote File Access from a VAX/VMS Node

4. Network File Access for User Programs .
Network File Access Routines (NFARS) -
Description

4.1

4.2

411
41.2
413
414
415
4.1.6
4.1.7
4.1.8
4.1.9

Opening and Creatmg Flles .
Reading and Writing to Opened Files
Closing Remote Files
Deleting Remote Files
Renaming Remote Files
Wildcard Name Expansion
NFARS ErrorHandling
HeaderFiles . . . e e e e
Linking to the NFARS lerary e e e s

Network File Access Routines (NFARS) -
Reference

4.2.1
422
423
424
425
4.2.6
4.2.7

4.2.8

429
4.2.10

4.2.11

net_open - Opening a Remote Flle

‘net_read - Reading From a Remote File

net_write - Writing to a Remote File
net_close - Closing a Remote File
net_perror - Printing Error Messages
net_delete - Deleting Remote Files .
net_rename - Renaming a Remote File .
net_find - Wildcard Name Expansion
net_fnext - Wildcard Name Retriever
net_fstop - Aborting a Wildcard
Expansion e e e
Wildcard Expansion Stmcture .« e .

4.3 NFARS ErrorMessages

3-28
3-29
3-32

3-32
3-33 (:

3-36

4-2
43
4-4
4-6
4-7
48
49
410
411
4-11 (
412
413
4-16
4-18
4-20
4-21
4-23
424
4-26
4-28

4-30
4-31

4-34 (

5. Task-To-Task Communication

5.1

5.2

53

54
55
5.6
5.7
5.8
5.9

Logical Links .
5.1.1 Client and Server
5.1.2 Exchange of Data . .
5.1.3 Multiple Concurrent Logical Lmks .
Establishing, Using, and Terminating a Logical
Link . . « « « v v o v e e
5.2.1 Establishing a Logical Link: Client
5.2.2 Registering 4DDN Processes as Servers
5.2.3 Transmitting and Receiving Data .
5.2.4 Terminating The Logical Link
Task-To-Task Communication - Reference .
5.3.1 Header Files and Libraries .
5.3.2 The ermrno External Variable . . .
Opening a Logical Link Device .
Requesting a LogicalLink . . .
Registering the Server Program . .
Receiving Access Control Information . .
Accepting or Rejecting a Logical Link Request
Selecting the Data Format and /O Mode

5.10 Determining the Maximum Transmit Buffer Size
5.11 Receiving Data Across a Logical Link

5.11.1 StreamFormat

5.11.2 Record Format e e e .

5.12 Sending Data Across a Logical Llnk .

5.13 Transmitting Interrupt Data e

5.12.1 StreamFormat

5.12.2 RecordFormat

5.14 Accepting and Receiving Interrupt Data .

5.141 ACCEPT_INTioetl

5.14.2 RECV_INTERRUPT ioctl .

5.15 Disconnecting a LogicalLink
5.16 Abortinga LogicalLink
5.17 Closing the Logical Link . . . e

5.18 Obtaining Link Status
5.19 Printing Error Messages .

5-2
5-2

5-3

5-4
5-4
55

5-9
5-10
5-10
5-10
5-11
5-13
5-18
5-20
5-22
5-25
5-29
5-30
5-30
5-31
5-34
5-34
5-35
5-38
5-40
5-40
5-41
5-44
5-47
5-50
5-51
5-83

: 4DDN Error Codes
: Sample Programs
B.1 client.c
B.2 server.c

: Glossary . .

1. Introduction

IRIS-4DDN is a software communications product that enables your IRIS-
4D workstation to communicate on a DECriet Phase IV network as an
Ethemnet end node. 4DDN is an implementation of the Digital Network
Architecture (DNA) protocols.

This document provides an overview of the IRIS4DDN user software, an
explanation of Network Virtual Terminal, the Network File Access System,
and task-to-task communication. It also provides guidelines on how to write

network application programs. A glossary is provided at the end to define
some technical terms.

1.1 Services Provided by 4DDN

IRIS-4DDN enables you to:

o Transfer files to, from, or between remote nodes on the network using the
dncp (copy) command.

o List the contents of directories on a remote node on the network using the
dnlis (list) command.

« Remove a specified file in a remote directory on the network using the
dnrm (remove) command.

e Move a specified file to a remote directory on the network using the dnmv
(rename) command.

o Log on to a remote node on the network using the sethost command. Your
terminal acts as though it were connected to that computer, with that
computer executing commands you type at your terminal.

Version 1.0 Introduction 1-1

« Control and monitor the network using the Network Control Program

(ncp).

« Write programs that exchange data with programs on other computers.

1.2 Structure of the Guide

This manual consists of five chapters and three appendices.

Chapter 1:
Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Appendix A:

Appendix B:

Appendix C:

This chapter contains general information about IRIS-4DDN.

This chapter describes the Network Virtual Terminal utility,
sethost.

This chapter describes the Network File Access commands:
dncp (copy), dnls (directory), dnrm (delete), and dnmv
(rename). Error messages generated by these commands are
explained. '

This chapter describes the programmer’s interface to the
Network File Access Routines (NFARS). It is intended for

experienced programmers.

This chapter provides a detailed explanation of task-to-task
communication (session layer) for the experienced
programmer. It also contains the programmer’s reference
guide with the specifications required for writing task-to-task
network applications in the C programming language.

This appendix contains the 4DDN programming error codes
and the corresponding recommended actions.

This appendix contains two sample programs: one program is
provided for the server; and a second program is provided for
the client.

This appendix contains a glossary of terms that are used
throughout this manual.

1-2 4DDN User’s Guide IRIS-4D Series

1.3 Conventions

This document uses the standard IRIX™ convention when referring to
entries in the IRIX documentation. The entry name is followed by a section
number in parentheses. For example, cc(1) refers to the cc manual entry in
Section 1 of the IRIS4D User's Reference Manual, Volume 1.

In command syntax descriptions and examples, square brackets surrounding
an argument indicate that the argument is optional. Variable parameters are
in iralics. You replace these variables with the appropriate string or value.

In text descriptions, filenames and IRIX commands are also in izalics.
Names of variables and error codes used in the VMS environment are in
uppercase.

Other conventions used in the DECnet environment are listed below:

CAPITAL Words that are capitalized and in bold type are
commands that must be entered by the user. Press Retumn
after making the entry.

node-name Multi-word variables are hyphenated.

[] Square brackets indicate an optional argument.

O Function calls are denoted by a pair of parentheses

immediately following the name of the function.

1.4 Related Documentation

Silicon Graphics, Inc.

4DDN Network Manager’s Guide 007-0821-010
Digital Equipment Corporation DEC part #:
DECnet Digital Network Architecture ~ AA-NI49A-TC
(Phase IV) General Description

Digital Equipment Corporation DEC part #:
Guide to Networking on VAX/VMS AA-YS512A-TE

Version 1.0 Introduction 1-3

1.5 Product Support
Silicon Graphics, Inc., provides a comprehensive product support and

maintenance program for IRIS products. For further information, contact
your service organization.

1-4 4DDN User’s Guide IRIS-4D Series

2. Network Virtual Terminal Utility

This chapter explains how to connect to a remote node (IRIS<4DDN or
VAX/VMS) and log on to that node using 4DDN or DECnet software.

The following operations are possible:

e Logging on to a remote VAX/ULTRIX/RSX node running DECnet from
a 4DDN node

e Logging on to a remote 4DDN node from a VAX/ULTRIX/RSX node

2.1 Establishing a Virtual Terminal Session

Before logging on to a remote system, first establish a connection between
your node and a process called the virtual terminal server at the remote
node. The sethost command establishes this connection using 4DDN’s
task-to-task interface.

When the virtual terminal session is established, the remote system prompts
you for the necessary log on information. Once you are logged onto a
remote node, you can issue any commands that a user on that node can
issue. The operating system at the remote node interprets the commands
and performs the desired operations.

For example, you can log on to a remote node and edit a file residing there,
direct a file to be printed on the remote system'’s printer, or compile a
program using the remote system’s compiler.

Version 1.0 Network Virtual Terminal Utility 2-1

2.2 Software Prerequisites

In order to use the sethost command, the remote node you want to connect
to must be running a virtual terminal server.

2.3 The sethost Command (7‘

The sethost command is used to log on to a remoie node from your 4DDN
system. The command resides in the directory /usr/bin/dn.

Command Syntax

sethost [-r] node-name
sethost [-r] node-address

Where

-r

node-name

node-address

The —r option displays the release and revision numbers
of sethost and the 4DDN product. (

is one of the remote node names. A node name is a group
of not more than 6 letters and/or numbers. The first
character must be a letter. The node name must be unique
across the network.

is the address of an active remote node. It must conform
to the <area-number.node-number> format. If the
remote node is in the same network area as the local
node, you can simply use the node number.

The area number identifies a group of nodes in the
network. The area number must be an integer in the 1-63
range.

The node number must be an integer in the 1-1023 range.
Node numbers must be unique across your network area. (

If node-name or node-address is omitted, you are prompted to enter the

information.

2-2 4DDN User's Guide IRIS-4D Series

Next, you are prompted to supply the log on information required by the
remote node.

2.4 Terminating a Virtual Terminal Session

You can normally terminate a virtual terminal session by returning to the
remote operating system prompt and then logging out. Also, you can abort
the virtual terminal session in the middle of a program.

2.4.1 Logging out of the Remote Node

To log out of a remote node, issue the log out command for that remote
node (e.g., LOGOUT for VAX/VMS).

3

2.4.2 Aborting the Virtual Terminal Session

To abort the virtual terminal session from your terminal, type the <CTRL>-
Y key combination twice. The following prompt is displayed:

Do you wish to abort the network virtual terminal session ?

A Yes (Y) answer returns you to the local system’s command level.

A No (N) answer terminates the currently executing program and returns to
the remote host system’s command level.

2.5 Comments

1. If your terminal is a VT100 or compatible, in the terminal set-up
options, WRAP needs to be set to ON, and NEWLINE needs to be set to
OFF.)

2. If you are logging into a VMS system, you can put a SET
TERM/INQUIRE command in your LOGIN.COM file and VMS
automatically determines your terminal type and sets the appropriate
terminal characteristics.

Version 1.0 Network Virtual Terminal Utility 2-3

3. Network File Access Commands

This chapter discusses the following 4DDN file access commands:

e dncp transfers files to, from, and between remote systems;

e dnls provides the listing of the contents of a directory on a remote system;
e dnrm removes specified file(s) on a remote directory;

e dnmv renames specified file(s) on a remote system.

The commands follow the IRIX conventions for command line syntax.
Thus, each command line consists of a command name followed by
command options and file specifications for the local and/or remote files.
These commands reside in /usr/bin/dn, which should be added to your
shell’s path environment variable.

Version 1.0 Network File Access Commands 3-1

3.1 Software Requirement at the Remote Node

All of the Network File Access Commands may be used with remote nodes
that provide the File Access Listener (FAL) object. The dncp and dnis
commands are the most commonly-used commands. They communicate
with the subset of FAL operations supported by most remote nodes.

The dncp and dnls can be used with almost any node. The dnrm and dnmv
commands require a facility that not all remote FALSs possess. If the dnrm
or dnmyv program prints a message about unsupported operations, it is not
likely that the remote node’s FAL is capable of the requested operation.
This should be verified with the system administrator of the remote node.

3-2 4DDN User's Guide " IRIS-4D Series

3.2 Remote File Specifications

A complete remote file specification consists of a node identifier (name or
address), access control information and a file specification that must
conform to the rules that apply on the remote system. The syntax is:

node"access-information"::file-spec
node: :file-spec

Node

The node identifier must be a DECnet node name or address. The node
name can be up to six characters long, and the node address must conform to
the area-number.system-number format The node identifier must be
followed by a double colon (::) if no access control information is specified.

Access-information

The access control information syntax is:

"user password account-id"
"user password" (The account-id is optional.)
"user" (The user is prompted for the password.)

Access control information establishes the user’s privileges or the reading,
writing, or executing files on a remote system. The account ID is not
currently used by 4DDN, but can be used on some DECnet systems to
indicate the party to be billed for network access time. The user name
identifies the user on the remote system in whose name the access is to be
performed. Password identifies the password that the indicated user would
use to log in.

The access control information must be enclosed in double quotes with each
access control word separated by a space. The remote file specification must
appear directly after the double colon following the node identifiers. If the
remote file specification’s password is missing and this is an argument to a
RFAS program, the program prompts the user for the password.

Version 1.0 Network File Access Commands 3-3

File-spec

The Remote File Specification must be entered in the same way that it
would be entered by a user on the remote system. Also, the Remote File
Specification must conform to the default environment for the user specified
in the access control information. Wildcard characters can be used in the
commands the same way as they would be used on the remote system.

(

EXAMPLE

dncp ‘ginsu"rob boston"::/usr/rob/myfilel’ myfilel

node access remote local
name information file-spec destination

CAUTION: Single quotes (*) must be used to enforce the literal
interpretation of the file specification. If quotes are not used,
then the shell might improperly interpret the file specification
text. To ensure proper identification of embedded access
control information, it must be surrounded by double quotes
(M. (See the examples included in the description of the dncp

command.) (

3-4 4DDN User's Guide IRIS-4D Series

- 3.2.1 Supplying Access Control Information

You can supply access control information in one of three ways:

1. You can include the access information within the remote file
specification, as previously discussed.

"node"access_info"::remote_file specification’

Access control information specified using this method takes precedence
over the information specified through the other two methods.

2. This method enables you to specify the user, password, and account ID
as command line options. The syntax for this method is:

-u user -p password -a account ’'node::remote_file description’

—u User: The argument following —u is the default usename used to
access all remote files on the command line.

-p Password: The argument following —p is used as the default
password for the specified user name. If —p is omitted, the user is
prompted to enter the password with echoing characters turned off
for security. A null password can be specified with—p" ".

—a Account-ID: The argument following —a is the account string used
to access all the files specified on the command line. Use —a "" to
retumn to a no-account string later in the command line.

3. Set the environment variables NET_USER and NET_ACCOUNT using
the appropriate shell command(s). These commands are used to preset
the usemame and account string for all remote file accesses. For
security reasons, a password cannot be specified with this method. The
values of these environment variables are overridden when different
access control information is included in the command line.

NOTE: Passwords given on the command line are visible to the IRIX
ps(1) command. Do not specify a password on the command
line if you are concerned about security.

Version 1.0 Network File Access Commands 3-5

3.3 The dncp Command

The dncp command is used to:

« Copy a local file or group of files to a remote system,

« Copy a remote file or group of files to a local system;

« Copy a remote file or group of files to a remote system.

Command Syntax

dnecp [-options] filel file2
dncp [-options] file ... directory

where

options

filel, file

file2

directory

Can be one or more of the following:

v Verbatim

i Interactive

1 Logging '
n Noisy (
r Release

t Total

Local or remote file specification for the source file to be
copied. Filel is the source file specification to be copied.
This file can contain wildcards and can refer to a local or
remote file. Filel can not be a directory specification.

This file is the target file specification. This file specification
must not include wildcard specifications. File2 can referto a
local or remote file.

Local or remote target directory specification into which files

are copied. A remote directory specification must include all :
trailing punctuation (everything up to the first letter of the (
filename that would normally follow the directory).

3-6 4DDN User's Guide IRIS-4D Series

In addition, access control information can be supplied in any one of the
three methods discussed in the section *‘Supplying Access Control
Information.’* Specific examples are presented below.

3.3.1 Description

The dncp copies files between DECnet and 4DDN nodes. The file and
pathname arguments can be either simple file specifications of local files or
the more lengthy remote file specifications. (See the ‘‘Remote File
Specifications’’ section.)

The standard input device, such as the keyboard, can be used in place of the
source input file by substituting a — (hyphen) symbol. A standard output
device, such as the display screen, can be used in place of the target file or
target directory by substituting a — (hyphen) symbol.

When specifying multiple source input files, the target destination must be a
remote or local directory or the standard output. The output files retain
much of their original names. Some reduction in length by the destination
node may be performed.

When remote files are copied to a target directory on a 4DDN node, their
names are converted, if necessary, to names that are suitable for use on the
IRIX system. Files are stripped of version numbers, and, if the files are
from a non-case-sensitive system like VAX/VMS, they are converted to
lower case, e.g., "SYS$SYSDEVICE:[LEE.PROJ1JMYFIL.RNO" becomes
"myfil.mo" on IRIX. The names of files from another UNIX system (such’
as ULTRIX), or case-sensitive system, are unchanged.

Command options are used to modify commands. You can place the option
characters anywhere on the command line and in any order. The —u, —a, and
—-p command options are exceptions as they affect filespecs appearing only

- to their right. The options can be grouped as several letters following a
minus sign. The options are:

v- Verbatim: All the input files are transferred byte for byte, without
record format conversion and with no bytes lost, altered, or inserted.
Output files are created with a record format appropriate to their
byte-stream nature. On VMS, the output files always have FIXED
RECORD format and NO RECORD attributes. When copying from
one UNIX system to another UNIX system, the Verbatim mode
increases copying speed.

Version 1.0 Network File Access Commands 3-7

i Interactive: Before each input file is copied, the user is prompted to
confirm the operation by entering Y, y (yes), T, t, or 1 (true). Any
other response skips the current file and proceeds to the next file. The
interactive option is particularly useful in a selective transfer with
wildcard specification.

1 Logging Information: Logging information is printed on the standard
output to indicate the start of data transfer. The logging message
format is the following: (

source-file => destination-file

n Noisy: A message is printed on the standard error stream indicating
when there is an attempt to connect to FAL, the remote file transfer
server. This often takes several seconds, and the message provides a
way to monitor the operation.

r Release Number: This option is used to specify the release and
revision numbers of dncp and its components. If the Release Number
switch is the sole argument to dncp, dncp prints the release
information and terminates.

t Total: The total number of bytes and files transferred are printed.

3.3.2 Diagnostics

Whenever dncp fails to complete the requested operation, diagnostic
messages are printed on the standard output device. Generally, these
messages are self-explanatory.

Also, when dncp is executed, a status value is returned to the shell. A status
value equal to 0 means that the dncp command was successfully completed.
Any other value indicates a failure.

3-8 4DDN User's Guide IRIS-4D Series

3.3.3 Remarks

1. If you are copying a file to or from a system that supports global, or
wildcard characters (e.g., * and ? on IRIX and ULTRIX), these
characters can be used in your file specification. See the examples with
wildcard specifications.

2. A new file is always created for the output file of a copy. Ona
VAX/VMS system, when a specified target file name already exists, a
new version of the same file is created. On a UNIX system, when a
specified target file name already exists, and is not write-protected, a
new file is created and the existing file is deleted.

3. The protection mode of the output files is the default protection mode
which is in effect for the accessing user, i.e., the remote user for remote
files.

4. The creation and modification times are not copied from the input file.
The creation and modification times for the output file are the time of
the creation of the new file.

5. Do not try to copy multiple input files to a single output file. Multiple
input files can only be copied to a directory or to the standard output
device.

6. If a remote file specification cannot be opened, the file specification and
a diagnostic message are output. If a password was specified, in the
access control information, it is not displayed. .

7. When copying from one UNIX-based system (e.g., IRIX and ULTRIX)
to another UNIX-based system, use the verbatim option (-v). Ina
UNIX-to-UNIX copy, there is no need for the record format conversions
that are performed in a non-verbatim copy. Eliminating the record
format conversions increases the copying speed.

8. When copying files from a remote node to a remote node, the resulting
files will have the same record attributes as if they had originated on the
local system. '

Version 1.0 Network File Access Commands 3-9

3.3.4 Sample dncp Usage

EXAMPLE

Copying a local IRIX file to a remote VAX/VMS file with embedded access -
control information: ('

.

Input:
dncp -1ln /usr/max/bow.c ’gorgo"lee wiz"::[lee]testl.c’

Local IRIX Remote Remote VAX
filespec node name filespec
with user
and password

Output:

Waiting for response from FAL on node gorgo ... ok
/usr/max/bow.c => gorgo"lee"::[lee]testl.c;1l

EXAMPLE

Copying a local IRIX file to a remote VAX/VMS file with access control
information specified as options:

Input:

dncp -1ln /usr/max/bow.c -u lee -p wiz ’‘gorgo::[lee]testl.c’

Local IRIX User and Remote VAX

filespec password filespec
Output:
Waiting for response from FAL on node gorgo ... ok)
/usr/max/bow.c => gorgo"lee"::[lee]testl.c;1

3-10 4DDN User’'s Guide . IRIS-4D Series

EXAMPLE

Copying a local IRIX file to a remote VAX/VMS file with the user name
specified by the environment variable:

Input:

csh: setenv NET_USER LEE
sh: NET_USER=LEE ; export NET_USER

dncp -1ln /usr/max/bow.c ‘gorgo::[lee]testl.c’

Local IRIX Remote VAX
filespec filespec
Prompt:
Password [gorgo::lee]: <User enters password with no echo>
Output:
Waiting for response from FAL on node gorgo ... ok

/usr/max/bow.c => gorgo"lee"::[lee]testl.c;1

Version 1.0 Network File Access Commands 3-11

EXAMPLE

Copying a VMS file to a local file:

Input:

dncp -u lee -p wiz 'gorgo:: [lee]mad.exe’ /usr/lee/test -ln (i
Access Info Remote VAX filespec UNIX target

specification

Output:

Waiting for response from FAL on node gorgo ... ok
gorgo"lee"::[leelmad.exe => /usr/lee/test

EXAMPLE

Local wildcard to remote directory:

Input: (
dncp /usr/max/*.c 'gorgo"lee wiz"::user:[lee]’ -ln -
Local IRIX Remote VAX/VMS Directory
filespec specification with access
information
Output:

Waiting for response from FAL on node gorgo ... ok
/usr/max/bow.c => gorgo::user:[lee]bow.c
/usr/max/yow.c => gorgo::user:[lee]yow.c
/usr/max/zow.c => gorgo::user:[lee]zow.c

3-12 4DDN User’s Guide IRIS-4D Series

EXAMPLE

Local wildcards to remote directory:

Input:
dncp -1 *.h *.c ‘gorgo"lee wiz"::user:[lee]’
Local IRIX Remote VAX/VMS Directory
filespec specification with access
information
Output:
foo.h => gorgo"lee"::[lee]lfoo.h

bar.h => gorgo"lee"::[lee]lbar.h
bow.c => gorgq!lee"::[leelbow.c
yow.c => gorgo"lee"::[lee]yow.cC

EXAMPLE

Remote file to local directory (current directory):

Input:
dncp ’‘gorgo::[max]lhello.c’ . -lnr
Remote filespec Target specification:
current working dir.
Output:

dncp: Version 3.028 date 20-Jan-88 16:27:34
NFARS: Version 3.064 date 20-Jan-88 16:30:00
NFTL: Version 3.040 date 1l1-Jan-88 16:33:11
Build SGI 4DDN Release 1.0

Waiting for response from FAL on node gorgo ... ok
gorgo:: [max]lhello.c => ./hello.c

Version 1.0 Network File Access Commands 3-13

EXAMPLE

Remote file to redirected output piped to "more":

Input:
dncp -u lee ’'gorgo::[max]lhello.c’ - | more
Remote filespec Standard output (i
as destination
Prompt:

Password [gorgo::lee]:

Output:

main ()

{
}

printer ("Hello world\n");

EXAMPLE (

Printing files on GORGO's line printer:
dncp uses redirected input from a pipe with pr:

Input:

pr =160 *.h *.c | dnep - gorgo::lcal:source.list -lt

Standard Remote VAX/VMS

Input Printer with Named
Listing
Output:
STDIO => gorgo::lca0l:source.list (:
1 file (32596 bytes) copied. 5

3-14 4DDN User's Guide IRIS-4D Series

EXAMPLE

Remote file to local directory with password prompt:

.

Input:

dncp -u lee -ln ’'gorgo::[leelmad.exe’ bin
Access Remote VAX Target
Control filespec directory

info

Prompt:

Password [gorgo::lee]: <User enters password>

Output:

Waiting for response from FAL on node gorgo ... ok

gorgo"lee"::[lee]lmad.exe => bin/mad.exe

EXAMPLE

Local file to remote file (IRIX -> RSX):
Input:

dncp bow.c ’‘gdzila"sga test"::dr0:[210,20l1]test.c’ -1

Local IRIX Remote RSX filespec with
filespec access information
Output:

bow.c => gdzila"sga"::dr0:[210,201]test.c

Version 1.0 Network File Access Commands

3-15

EXAMPLE
Remote file to local file RSX -> IRIX):

Input:

dncp 'gdzila"sga test"::dro:[210,20l)test.c’

EXAMPLE
Local file to remote file (IRIX -> IRIX or ULTRIX):

Input:

dncp -ln bow.c '‘mutant"sqga test"::/uO/usr/sga/testl.c’

Local IRIX Remote UNIX filespec

filespec with access information
Output:
Waiting for response from FAL on node mutant ... ok

bow.c => mutant"sga"::/u0/usr/sga/testl.c

EXAMPLE
Remote file to local file RIX or ULTRIX -> IRIX):
Input:

dncp -ln ’‘mutant::/u0/usr/sqga/testl.c’
Output:

Waiting for response from FAL on node mutant ... ok
mutant::/u0/usr/sga/testl.c => ./testl.c

3-16 4DDN User’s Guide IRIS-4D Series

3.3.5 dncp Error Messages

When an error occurs during a file transfer operation, a dncp, NFARS, or
task-to-task error message is printed.

The dncp error messages are listed below. Each message includes an
explanation and recommended action. For some error conditions, it may be
necessary to consult the system manager. Other messages indicate software
errors and these errors should be reported. If an error message is not listed in
this section, then the error is an NFARS or a task-to-task communication
error message. (See ‘‘“NFARS Error Messages’’ in Chapter 4 and Appendix
A, “4DDN ERROR CODES”’, for more information.)

There is one other source of dncp error messages. Operations on local files
may cause local error messages to be printed. These messages are printed
by calls to "perror". A complete explanation can be found in intro(2)
manual page in the IRIS<4D Programmer’s Reference Manual.

operation LOCAL to LOCAL not supported
operation STDIO to LOCAL not supported
operation LOCAL to STDIO not supported
operation STDIO to STDIO not supported

Meaning: Copying from the specified file type to the specified
file type is not supported.

Recommended Action: Use cp(1), cat(1) or an editor.

source filespec4cannot be a directory

Meaning: dncp determined that the source filespec is a
directory and this is not permitted. The source of
any transfer must be a file specification that results
in a list of files. The destination specification may
be a directory.

Recommended Action: Respecify the source as a list of files.

Version 1.0 Network File Access Commands 3-17

remote wildcards require a destination directory

Meaning: A destination directory is required when either
multiple source files, or a source file specification
including wildcards is specified. This restriction
includes a wildcard file specification that results in
a single file. (

Recommended Action: Specify a directory as the destination.

Failed: <source> => <destination>

Meaning: This is a notification that the copying operation for
the indicated file failed. The complete reason is
explained by an earlier message. :

can’t delete old destination file
can’t rename destination file

Meaning: The destination file already exists. A temporary
working file is created to protect the existing data.
Upon completing the transfer, the temporary file (
replaces the original file. These messages indicate
that the original file cannot be deleted or that the
temporary file cannot be renamed.

dncp: std-input and interactive are inconsistent

Meaning: - The dncp command determined that the given
command requires both interactive mode and input
from standard input to be used at the same time.
The dncp command does not simultaneously
support these operations.

Recommended Action: Execute the command again without interactive
mode or without std-input as a file. The most (
logical action is to omit the interactive mode.

3-18 4DDN User’s Guide IRIS-4D Series

dncp: stdin to stdout is not permitted

Meaning: The dncp command determined that both stdin and
stdout would be used as the source and destination
for a transfer. The dncp command does not support
this operation.

Recommended Action: Use one of the operating systems text editors or
similar facilities.

3.3.6 File Record Formats

The IRIX file format is often different from the file formats of non-UNIX
systems on a DECnet Phase IV network. The dncp command recognizes
these differences when copying a file to/from a IRIX system and a non-IRIX
system.

IRIX files contain record structured character data, i.e., lines of text or
source code. The end-of-record is delineated with a newline character
(usually a line-feed or ASCII 10).

Files on VAM/VMS or other DEC operating systems can be stored in a
variety of file formats, including several stream formats, variable and fixed
record formats. (See Digital’s Guide to VAX/VMS File Applications for
more information on file formats.) Unlike UNIX files, DEC files are stored
with information indicating the file’s format and its record attributes (e.g.,
carriage control).

To compensate for these differences in file record format, the dncp
command has two distinct modes of operation: the default conversion mode
and the verbatim (or image mode, as it is often referred to in the VAX/VMS
world.) The verbatim mode can be selected through an option (-v) in the
command line.

When copying a file (in the default conversion mode) from the local IRIX
system to a VAX/VMS system, the file created on VAX/VMS is always in
the Variable Record format, with the Carriage Return Carriage Control
record attribute.

Version 1.0 Network File Access Commands 3-19

In the default mode, dncp transfers data in line per record mode. This works
for source code, etc., but causes certain types of files to become useless. The
contents of each record (stripped of original record delimiting information)
are written to the IRIX file with IRIX-style line delimiters.

In Verbatim mode, dncp copies the source file byte for byte to the

destination. When copying a file verbatim mode from a IRIX system to a
VAX/VMS system, the created VAX/VMS file is in Fixed Record Format (V
with NO RECORD attributes. It is recommended that the Verbatim option

be used for copying binary image files, such as object files or executable

program images. The Verbatim option is not recommended for user text.

In reading under verbatim mode, a VMS Variable source file would be
reproduced on the IRIX destination with the record delineation bytes of the
VMS Variable type such as the 2 byte length and possibly a pad byte.

In this release, there is no capability of writing records of any type other
than fixed-length 512-byte records (for verbatim) to all systems and
Variable with carriage control to VMS systems or Stream-LF to other
systems.

3-20 4DDN User’'s Guide IRIS-4D Series

3.4 The dn/s Command

The dnls command lists the contents of each remote directory name
specified. If the name is a file specification, the files matching it are listed.
The file specification must conform to the wildcard rules of the remote
system. Both the remote file specification format and the methods of
specifying access control information are the same as for dncp.

Command Syntax

dnls [-options] name ...

Whére

options Can be one or several of the following:
h headers not printed

1 list in long format

7]

print out size of file

c time of creation

1 print out in one column

C Print out in multi-column format

r Print out release and version number
t Sort by time

U Time of last access

name represents one or more directories or file specifications on the
* remote system.

Version 1.0 . Network File Access Commands 3-21

3.4.1 Description

The dnls command lists the files for each remote directory specified.
Optionally, you can include a file name, rather than a directory name, in the
command line. In this case, dnis lists all the files that match the name you
specify. The file specification must conform to the wildcard rules of the
remote system.

The files are sorted alphabetically by name, as a default condition. The —t
switch causes the sort to be performed by the time of last modification, with
the latest files appearing first. The dnls command understands the following
options:

h

Headers that describe the directory that the following files belong to,
are not printed (by default, they are printed).

List files in long format. The protection mode, owner, size in bytes
and time of last modification are listed along with the name of the file.

When the long output format is requested, the 12 character protection
mode is printed showing 4 protection levels:

System, for the system user (a VMS concept)
Owner, for the owner of the file

Group, for users in the owner’s (or the file’s, on IRIX) group

ol

World, for all other users

Each set of three characters specifies the privileges for the designated
users to read, write and execute (or list, for a directory) a file. The
privileges are as follows:

r if the file may be read.

w if the file may be written to

x if the file may be executed (or listed if a directory).
~ for a permission not granted.

The size of the file in 512-byte blocks is printed before the rest of
each file's information.

3-22 4DDN User's Guide IRIS-4D Serles

The time of creation is listed instead of the last modification time.
When used together with the —t option, files will be sorted according
to the time of creation.

The time of last access is listed instead of the modification time.
when used with the —t (Sort by time) option, files are sorted according
to the time of last access.

Only one file entry is printed on each line; this is the default mode for
long format or when the standard output is not a terminal.

Multi-column listing format is used; this is the default when the
output is to a terminal.

When dnls generates multi-column output, it checks the environment
variable COLUMNS for the number of columns that can be displayed
on the standard output device. (The default value is 80.) Then, dnis
formats each line of the listing accordingly. (The (1) command also
uses COLUMNS for this purpose.)

Displays dnis’ release and version levels.

Sorting is performed by time instead of alphabetically.

3.4.2 Remarks

. The file listing in each separate directory are preceded by the line
"Directory NODE::remote-directory” to identify the resolved pathname
of the listed directory. A blank line separates directory groups in one
listing.

. By default, file names are sorted alphabetically, in ASCII order. When
files containing embedded numbers such as version or generation
numbers, then the alphabetical listing can be different from the natural
listing order on the original system.

. All output is written to the standard output device except for some
diagnostic messages, which are sent to the standard error stream.

. The "system" protection bits are only meaningful if the system, which
the directory list comes from, maintains system protections. If the
remote system is UNIX-based, then the protection bits have whatever
value the UNIX FAL assigns to system protection.

Version 1.0 Network File Access Commands 3-23

5. The value shown for the size of a file on a remote system is the number
of bytes allocated to store it in its own record format. If the file is then
copied to a UNIX system with dncp, the size of the resulting file may
differ from the size shown by dnls, if a record format conversion is

executed.

3.4.3 Sample dnis Usage

EXAMPLE

Remote directory listing of a VAX/VMS node:

Input:

dnls ‘gorgo”lee wiz"::[lee]’

Output:
DIRECTORY GORGO: :DUAl: [LEE]

TEST1.C;2 JFEP.TXT; 11
TEST1.C;1 TEST2.C;1

3-24 4DDN User's Guide -

DQU.RNO;1

IRIS-4D Series

EXAMPLE

Remote directory listing of a VAX/VMS node using the -1 (long format)

option:
Input:

dnls -1 -u lee ’'gorgo::[lee]’

Prompt:

PASSWORD: [gorgo::lee]:

Output:

‘

DIRECTORY GORGO::DUAl: [LEE]

IWXIWwXr-xr-- [(200,134] 3190 O03-MAR-86 14:22 CNTRCHART.RNO;1
IWXIWXr-xr-- [200,134) 7728 03-MAR-B6 14:17 DUMPCH3.XXX;3
IWXIWXr=-xr-- [200,134) 4090 O03-MAR-B6 14:17 DUMPCH4.XXX;4
Protections UIcC Bytes Modification Filename

(User ID Code)

Version 1.0

Date Time

Network File Access Commands

3-25

EXAMPLE

Remote directory using wildcard and release, filesize and sort by time
options of users login directory:

Input:

dnls =-srt ’'gorgo"lee" wiz"::n*’ (j

Output:

dnls: version 3.005 date 0l-Dec-87 11:09:00
NFARS version 3.064 date 20-Jan-88 16:30:00
NFTL version 3.040 date 11-Jan-88 16:33:11
Build SGI 4DDN Release 1.0

DIRECTORY GORGO: :DUAl: [LEE]

2 NETSERVER.LOG; 48
3 NETSERVER.LOG; 47
2 NETSERVER.LOG; 46
4 NFARS_INTRO.DOC;2

EXAMPLE : (

dnls command of remote ULTRIX directory:
Input:

dnls '‘mutant"sqa test"::/u0/usr/sqa/’

EXAMPLE

dnls command of remote RSX directory:

Input: (
dnls ’gdzila"sqga test"::dr0:[210,201)}°

3-26 4DDN User’s Guide ' IRIS-4D Series

3.5 The dnrm Command

The dnrm command is used to delete specified remote files. Both the
remote file specification and the methods of specifying access control
information are the same as for dncp.

Command Syntax

dnrm [-options] filespec
Where
options Can be one or several of the following:
i .interactive
1 logging
n print progress
r print version information

filespec Remote file specification of file(s) to be deleted

3.5.1 Description

i Interactive - The user is prompted to confirm each file deletion by
entering one of the following responses:

Yory Delete the file and continue the interactive file deletion
mode.

Norn Do not delete the file and continue the interactive file
deletion mode.

Rorr Delete the file and all the remaining files. This terminates
the interactive file deletion mode.

Qorqg Do not delete the file and terminate the interactive deletion
mode.

Version 1.0 Network File Access Commands 3-27

1 Logging information: Following the deletion of a remote file, an
acknowledgement is printed on the standard output terminal in the
form:

<node>: :<filespec> removed

n Noisy: A message is printed on the standard error stream indicating
when there is an attempt to connect to FAL, the remote file transfer
server. This often takes several seconds, and the message provides a
way to monitor the operation.

r Release Number: This option is used to specify the release and
revision numbers of dnrm and its components. The release option, by
itself, simply displays the revision numbers.

-3.5.2 Error Messages

When an error occurs during a dnrm command execution an error message
in the form shown below is displayed:

node: :<file spec> not removed: <error description>

The error message is displayed, even if the logging option was not selected. (

NOTE: Support for this command may not be provided by the remote
node’s FAL. This would be indicated by a message that indicates
the words "unsupported operation”. This does not constitute a
problem with dnrm. '

3-28 4DDN User's Guide IRIS-4D Series

3.5.3 Sample dnrm Usage

EXAMPLE
Deleting a file on a remote VAX/VMS system:
Input:

dnrm ‘gorgo"sga"::[sgaltest.obj’
Prompt:

Password [gorgo::sga)

EXAMPLE

Deleting files on a VAX/VMS remote system using wildcard notation and
specifying access control information:

Input:

dnrm -u sga -p test ‘gorgo::[sga]*.obj’

Version 1.0 Network File Access Commands 3-29

EXAMPLE

Deleting files on a VAX/VMS remote system using wildcard notation with
interaction and logging options:

Input:

dnrm -1 -i ’'gorgo'"sga test"::[sga]*.obj’

Interaction

remove gorgo::[sqgaltestl.obj (y/n/zr/q) ? y
gorgo::[sgaltestl.obj removed

remove gorgo::[sgaltest2.obj (y/n/r/q) ? n
gorgo::[sgajtestl.obj not removed

remove gorgo::[sgaltest3.obj (y/n/r/q) ? r
gorgo::[sgaltest4.obj removed
gorgo::[sgaltest5.0obj removed

EXAMPLE

Deleting multiple files on two different VAX/VMS nodes:
Input:

dnrm 'gorgo"sgal testl"::[sgal]*.obj’
-u sga2 -p test2 ‘'galaxy::[sgal]test.*’

3-30 4DDN User’s Guide IRIS-4D Series

EXAMPLE
Deleting a file from an IRIX or ULTRIX node:

Input:

dnrm ‘mutant"sga test"::/u0/usr/sqa’/hello.o’ -1

Output:

mutant"sga"::/ul/usr/sga/hello.o removed

EXAMPLE
Deleting a file from a RSX node:

Input:

dnrm -1 ’'gdzila"sga test"::dr0:[210,20l]hello.obj’

Output:

gdzila"sga"::dr0:[210,201)hello.obj removed

Version 1.0 Network File Access Commands

3-31

3.6 The dnmv Command

The dnmv command is used to move files from one directory to another
directory. This command also renames the moved file or a group of files.
Both the remote file specification and the methods of specifying access
control information are the same as for dncp.

Command Syntax

dnmv [-options] source-filespec destination-filéspec
dnmv [-options] filel file2 ... destination-filespec

Where

options Can be one or several of the following:
i interactive
1 logging of activity
n print progress

r print release number

3.6.1 Description

The dnmv command moves a file or a group of files. When moving a file,
two filespecs are required: the source and the destination. There is a choice
of moving the filename, directory or both. When moving a group of files,
specify a filespec for each of the source files and then specify the destination
filespec. A wildcard option can be used in the filespec to move more than
one file to a new directory. Each of the files is moved to the new directory
listed in the destination filespec.

The dnmv command understands the following options:

i Interactive: Before each input file is copied, the user is prompted to
confirm the operation by entering Y, y (yes), T, t, or 1 (true). Any
other response skips the current file and proceeds to the next file. The
interactive option is particularly useful in a selective move with
wildcard specification.

3-32 4DDN User's Guide IRIS-4D Series

1 Logging: When the move is successful, an acknowledgement is
displayed on the screen for each file moved.

n Noisy: A message is printed on the standard error stream indicating
when there is an attempt to connect to FAL, the remote file transfer
server. This often takes several seconds, and this message provides a
way to monitor the operation.

r Release Number: This option is used to specify the release and
revision numbers of dnmv and its components. The release number
option, by itself, simply displays the revision numbers.

source-filespec
This is the complete file specification for the file that is going to be
moved.

destination-filespec
This is the complete file specification for the destination file.

3.6.2 Error Messages

When an error occurs during a dnmv command execution an error message
in the form shown below is displayed:

node: :<file spec> <error description>

The error message is displayed, even if the logging option was not selected.

NOTE: Support for this command may not be provided by the remote
node’s FAL. This would be indicated by a message that indicates
the words "unsupported operation”. This does not constitute a
problem with dnmv.

Version 1.0 Network File Access Commands 3-33

3.6.3 Sample dnmv Usage

EXAMPLE
Using the VAX node name in the first filespec:

Input:

dnmv ‘gorgo::dual:[dirl]filel.tst’ ‘'dual:[dirl]file2.tst’

EXAMPLE
Using the VAX node name in both filespecs:

Input:

dnmv ‘gorgo::dual:[dirl]filel.tst’
"gorgo::dual:[dirl])file2.tst’

EXAMPLE

Renaming files from two directories (dirl) and (dir2) to another directory
(dir3): '

Input:

dnmv ’‘gorgo::dual:[dirl]filel.tst’
‘dual: [dir2)file2.tst’ ‘[dir3]’

3-34 4DDN User’s Guide IRIS-4D Series

EXAMPLE

Using the usename option with a remote UNIX node:

Input:

dnmv -u sga quaser::/u0O/user/filel /u0/user2

EXAMPLE

Renaming files on a UNIX node:
Input:

dnmv mutant::/u0/userl/filel /uO/user2/file2 -1

Output:

moved mutant::/u0/userl/filel to /uO/user2/file2

EXAMPLE

Wildcard renaming on a VMS node:

Input:

dnmv ‘gorgo::dual:[dirl]file*.tst’ 'dual:[dir2]’

Version 1.0 : Network File Access Commands

3-35

3.7 Remote File Access from a VAX/VMS Node
The VAX/VMS COPY command is used on a VAX/VMS node to copy a
file locally on the VAX/VMS node or remotely across the network.

The VAX/VMS DIRECTORY command is used on a VAX/VMS node to
list the contents of a directory on the VAX/VMS node or on a remote node
on the network.

When copying to or from a 4DDN node, you must substitute the VAX/VMS
file specification format for the IRIX file specification format whenever you
use wildcards in the file specification. For example, when copying a file
from a remote 4DDN node named quasar to a VAX/VMS node, the
recommended file specification format is as follows:

$ COPY quasar::usr[sam.sub]*.* (note VMS format)

rather than the usual UNIX format:

$ COPY quasar::"/usr/sam/sub/*"

When listing the contents of a directory named /usr/sam/memos on a remote
4DDN node named quasar from a VAX/VMS node, and wildcards are used,
it is recommended that you use VAX/VMS syntax, e.g.,

$ DIR quasar::usr:[sam.memos]
Otherwise, you must explicitly specify the wildcards, e.g.,

$ DIR quasar::"/usr/sam/memos/*"

NOTE: When indicating a file that resides in the root directory (/) such as
/unix, the "device’ part of the name is root so /unix is root:[]unix.

Other examples are:

IRIX VMS
/etc/passwd etc: []passwd
/usr/bin/more usr: [bin]more
/d/baa/src/test.c d: [baa.src]ltest.c
/unix root: [Junix

3-36 4DDN User's Guide IRIS-4D Series

LIMITATIONS
1. No case distinction can be realized with VMS.

2. No dots may appear in any directory component. For example,
/uO/baa/rfas.doc/doc.n is illegal.

3. Only one dot may appear in the filename; two are rarely possible.
For example, "a.b.c.d" is illegal.

The limitations are deeply rooted within the 'design’ of VMS. They

cannot be fixed by altering 4DDN.

Version 1.0 Network File Access Commands 3-37

4. Network File Access for User
Programs

The 4DDN Network File Access Routines (NFARS) provide a
programmer’s interface to file systems on remote nodes running 4DDN or
DECnet Phase IV. The Network File Access Routines use DNA'’s Data
Access Protocol (DAP) for file transfers. The interface to the DAP protocol
was designed to closely emulate IRIX basic I/O system calls.

The material presented in the chapter is for the experienced user who is
comfortable with the C programming language and can utilize the IRIX
primitive I/O operations: open, read, write, and close.

Version 1.0 Network File Access for User Programs 4-1

4.1 Network File Access Routines (NFARS) -
Description

The programmer’s interface to the Remote File Access System is through a
set of routines called the Network File Access Routines (NFARS). The
NFARS are included in an object-code library, with which application
programs can be built. (The RFAS programs dncp, dnls, dnmv, and dnrm are
all built using the NFARS facilities described in this chapter.)

The NFARS provides the following functions:

e Open or create a remote file '

o Write data to the currently open file

« Read data from the currently open file

» Delete a remote file

o Rename a remote file

o Display the cause of an error encountered in an NFARS call

The following subsections provide a description of the NFARS facility. The
last two subsections of this section describe the include files and libraries
and how to involve them. These sections are followed by reference
materials for the individual routines.

4-2 4DDN User’s Guide IRIS-4D Series

(

4.1.1 Opening and Creating Files

Remote file access is initiated with the net_open function. Depending on the
value of the option argument, it can open an existing remote file for reading
or create a new remote file for writing. The net_open function returns an
integer value that can be either a network file descriptor or a negative value
to signal a failure.

A network file descriptor is a small, non-negative integer value that is used
by the NFARS to reference an open network stream. This file descriptor is
similar to the IRIX local file descriptor returned by the open and create
system calls, and should NEVER be used in place of it.

Version 1.0 Network File Access for User Programs 4-3

4.1.2 Reading and Writing to Opened Files

Data is transferred to or from remote files with the net_read and net_write
functions. These functions are used the same way as the IRIX basic I/O
read and write functions. A remote file opened for reading only supports
the net_read function, and a file created or opened for writing supports only
the net_write function; this is a restriction imposed by the subset of the
DAP protocol that is used to implement the NFARS, and is also an IRIX
restriction on files opened by the net_open function. Calls to net_read and
net_write functions may not be intermixed on the same file descriptor as
they may in certain cases on the IRIX file system when a file is opened for
both read and write.

Data access to a file opened without the RFM_VERBATIM option is line
oriented. The data obtained with a call to net_read is one or more lines of
text. A line is merely a collection of characters (including control
characters) terminated by the local line terminator. On IRIX, this line
terminator is the line-feed known in IRIX parlance as a ‘newline’. Any
fragments from a block of data read from the remote file but not delivered to
the user are stored for combination with later incoming records and
subsequent delivery to the user.

The caller of net_read receives a sequence of lines resembling the source
file. Data given to net_write is written to the remote file a line at a time.
Each line of source data is placed into a separate record for transport. The
DAP transport is heavily record oriented. This forms the basic reason for
the limitations of the capabilities of NFARS. These limitations include file
record format selection, no seeking, etc.

Any fragments of lines given to net_write are left for combination with
subsequent net_writes. Thus, partial lines may be given to net_write. If the
file was opened for writing, the resultant file is proper for a file of user text
on the remote system. The file is line oriented. On VMS, this means
Variable record with Carriage Return Carriage Control. On IRIX, this
concept is basically meaningless except that the file is a set of lines of text.

If the RFM_VERBATIM option is specified when a file is opened, the line
orientation of NFARS is disengaged. Data may be written to net_write
much as it is to write, without regard to structure or line orientation. Data
obtained from net_read is merely data; it is not line oriented.

4-4 4DDN User's Guide IRIS-4D Series

NFARS reads and writes (net_read and net_write) should generally be of
smaller sizes than those that IRIX may be capable of dealing with. Itis
recommended that the largest size of a read or write be restricted to 512
bytes. Larger reads or writes are strongly discouraged. The dncp program
uses ONLY reads and writes of 512 bytes.

When writing programs that use NFARS library, be aware of the differences
between IRIX and VAX/VMS record formats. These differences are
discussed in ‘‘The dncp Command’’ section in Chapter 3.

Version 1.0 Network File Access for User Programs 4-5

4.1.3 Closing Remote Files

When a network file descriptor is no longer needed, it should be closed
immediately, with net_close, to release the network resources it occupies.

All of the network files left open when an NFARS application exits (or is
terminated) automatically close, but it is desirable to use net_close on

remote files opened for writing to prevent the loss of data. If a file opened

for writing is not closed with net_close, data is lost. (

4-6 4DDN User’s Guide IRIS-4D Series

4.1.4 Deleting Remote Files

Remote files may be deleted with a call to the net_delete function. It should
be noted that there may be restrictions on what can be deleted applied by the
remote node. Also certain access rules will be applied by the REMOTE
NODE. Some remote nodes are not capable of supporting this feature. The
user might consult the section of Network File Access Commands that
covers the dnrm program. It should be noted that the dnrm command
supports wildcards while the ner_delete function is not represented as
supporting wildcards. A wildcard call of net_delete may work.

This function has no formal relationship with the net_open function, A file
does NOT have to be ner_open’ed before deleting. In fact this function
should never be called on an opened file.

Version 1.0 " Network File Access for User Programs 4-7

4.1.5 Renaming Remote Files

Remote files may be renamed with a call to net_rename. It should be noted
that the two filespecs MUST be on the same node. There may be
restrictions about the renaming of files on the same node. The restrictions
deal with renaming across devices and access control. The user may consult
the section of the Network File Access Commands chapter that describes the
dnmv program. It should be noted that the dnmv command supports
wildcards while the net_rename function is not stated as supporting
wildcards.

This function has no formal relationship with the net_open function. A file
does NOT have to have been opened before renaming. It is better not to
have the file open when it is renamed.

4-8 4DDN User’s Guide IRIS-4D Series

(

4.1.6 Wildcard Name Expansion

The wildcard name expansion facility provides the identification of files that
match specified naming requirements. The names are specified by a
wildcard specification, i.e., a filespec with or without wildcards. This
facility is initiated by a call to the ner_find routine. Each name is retrieved
using repeated calls of the ner_fnext routine. If the wildcard list must be
aborted or terminated, the net_fstop call should be issued.

The name is stored in its three components filename, directory, and volume.
If requested, the user may also request file attributes to be collected. The
attributes are placed in a "File_attr" structure, which is described at the end
of the reference section.

Version 1.0 Network File Access for User Programs 4-9

4.1.7 NFARS Error Handling

It is possible that an NFARS routine may fail to perform its operation. The
value returned by the function always indicates whether it succeeded or
failed. In the event of a failure, the external variable nfars_errno is set to a
code identifying the cause of the failure.

The net_perror routine can be called to print a descriptive message based on (
this error code. It may also include a user-defined string that can identify

the application program that generated the message. The NFARS error

messages are listed at the end of this chapter.

4-10 4DDN User’s Guide IRIS-4D Series

4.1.8 Header Files

Any C program making use of the NFARS should contain the following line
before any NFARS references:

#include <dn/nfars.h>

There is another header file that may be included: the nferror.h file. The
nferror.h file contains the symbolic constants corresponding to the possible
error codes. The comments near the values are similar to the messages
printed by net_perror. Include this file to check the values of nfars_errno.
It is included with: :

#include <dn/nferror.h>

A third file is required to understand the attributes of files discovered by
using the wildcard expansion system based upon net_find and ner_fnext. It
may be included with:

#include <dn/nfattr.h>

4.1.9 Linking to the NFARS Library
The NFARS routines are supplied in an archived object library called

/usr/lib/libdn.a. To link user programs that use the NFARS routines to the
NFARS object library, use the cc(1) command:

cc example.c —o example -ldn

Version 1.0 Network File Access for User Programs 4-11

4.2 Network File Access Routines (NFARS) -
Reference

This section is a reference for the supported NFARS routines. At the end of
this section, the wildcard file attribute structure is explained.

4-12 4DDN User's Guide ' IRIS-4D Serles

4.2.1 net_open - Opening a Remote File

The net_open function opens a file on a remote DECnet node.

Call Synopsis

#include <dn/nfars.h>

int

net_open (filespec, options, attrib)
char *filespec;
int options;

File_attr ‘*attrib;

Description

The net_open function initiates a logical link to the remote node and opens
the file at the remote node. The logical link remains connected for
subsequent NFARS calls until the file is closed. At which time, the logical
link is marked idle, to be reused during the session. (In a later version of
4DDN, a mechanism may be supported that permits complete closure of a
logical link.) This call can be used to open existing files or create new ones
on remote systems.

File Spec

The filespec argument points to a null-terminated string, which is the
complete network file specification of the remote file to be opened. The
format is described in the ‘‘Remote File Specifications’’ in Chapter 3. If
access controls are used, they must be embedded in double quotes after the
node name. NFARS routines have no ability to ask the user for the
password nor to incorporate environment variables. The filespec must
provide ALL access information.

Version 1.0 Network File Access for User Programs 4-13

Options

The options argument determines if the remote file is to be opened for
reading, writing, or creation. Possible values are:

RFO_READ opens an existing file on a remote system for read access
only. ‘

RFO_WRITE opens an existing file on a remote system for writing only (
and overwrites the existing data. '

RFO_CREATE creates a new file on the remote system and opens it for
writing only.

These values are defined in the <dn/nfars.h> header file. Only one of these
values should be assigned to options. They may NOT be ORed. If they are
ORed, the resultant operation is most likely either write or create.

Additionally, the RFM_VERBATIM option may be ORed in using the
bitwise operator (). RFM_VERBATIM performs a byte-for-byte file
transfer on subsequent read or write, operations. If RFM_VERBATIM is
ORed with RFO_CREATE, the file created has a record format appropriate
for byte-stream access. On VAX/VMS systems a file created in Verbatim
Mode has Fixed Record Format, No Record Attributes, and 512 byte-

records. (

Attrib

Attrib is a pointer to a structure describing the file. It is only used when the
RFO_CREATE function is selected. If the file is open for a read or write,
specify (File_attr *) 0. NOTE: This release of NFARS does not use mode
to determine the protection of remote files. It uses the default protection of
the remote user, so mode may always be specified as (File_attr *) 0. This is
provided for upward compatibility.)

4-14 4DDN User's Guide IRIS-4D Series

Results

Upon successful completion, net_open retumns a valid network file
descriptor, that is, a small, non-negative number. The network file
descriptor is used for subsequent net_read, net_write, and net_close
operations on the specified file. The value is analogous to the file description
returned by a call to open. Beware as they are not interchangeable nor are
they directly related; DO NOT mix them.

If the net_open call fails, a negative value is returned and nfars_errno is set
to indicate the cause of the failure.

Version 1.0 Network File Access for User Programs 4-15

4.2.2 net_read - Reading From a Remote File

The net_read function reads from an open remote file.
Call Synopsis

int

net_read(nfd, buffer, size)
int nfd;
char *buffer;
int size;

Description

The net_read function attempts to read a number of bytes of data (specified
by the size argument) from the remote file identified by nfd, the network file
descriptor.

It returns the number of bytes actually read, which may be less than the
value specified by size. A return of 0 indicates that the end of the remote
file has been reached. A retumn of less than O indicates that an error occurred
and nfars_errno is set to the appropriate error code.

nfd is an NFARS network file descriptor returned from a successful call to
net_open. '

Buffer is a pointer to the area of memory where the data read from the
remote file will be placed. It should have at least the number of bytes
specified by the size argument.

Size specifies the maximum number of bytes to read. It is recommended
that all reads be less than or equal to 512 bytes in size.

4-16 4DDN User's Guide IRIS-4D Series

(

C

Unless the RFM_VERBATIM bit was set in the options word when the file
was opened, record-formatted data is retuned by ner_read as UNIX stream
format data, with newlines (\n) marking the end of each record. Note that
net_read returns an arbitrary segment of stream data that is not related to the
record structure of the remote file. If RFM_VERBATIM was set, net_read
returns the bytes of the remote file in the original record format, without
interpretation. Certain files read without verbatim result in error and
nfars_errno being set to NFEBADDATA. These files may be read with
verbatim.

Results

There is no guarantee that the number of bytes specified in size are read.
Upon successful completion, nez_read returns the number of characters
actually read, which is no more than the value of size, but may be less.

net_read always returns 0, when the end of file has been reached.

If there is an error, —1 is returned and nfars_errno is set to the appropriate
error code. When an error occurs or end-of-file is reached, the stream
should be closed with net_close.

Version 1.0 Network File Access for User Programs 4-17

4.2.3 net_write — Writing to a Remote File

The nez_write function is used to write to a remote file.
Call Synopsis

int

net_write (nfd, buffer, size)
int nfd;
char *buffer;
int size;

Description

The net_write function writes the number of bytes of data specified in size
from the specified buffer to the remote file. net_write returns the number of
characters actually written.

nfd is an NFARS file descriptor returned from a successful net_open.

Buffer points to the beginning of the area of memory containing the data to
be written.

Size is the number of bytes to be written. It should be greater than zero. It
is recommended that all ner_writes be less than or equal to 512 bytes in size.

Unless RFM_VERBATIM is set, data being written is assumed to be in the
UNIX canonical record format and is converted into a format suitable for
the remote system. Care should be taken to give data to net_write that is
correct for the mode of file operation with respect to RFM_VERBATIM. If
non line oriented data is written and RFM_VERBATIM is NOT set, an error
occurs and nfars_errno is set to NFEBADDATA.

4-18 4DDN User's Guide IRIS-4D Serles

Results

The net_write function returns the number of characters actually written.
This may not be the same as the value of size. If there is an error, -1 is
returned. The variable nfars_errno is set to the appropriate error code to
indicate the cause of the failure. When an error occurs, the stream should

then be closed with net_close.

Version 1.0 Network File Access for User Programs 4-19

4.2.4 net_close - Closing a Remote File

The ner_close function is used to close a remote file.
Call Synopsis

int
net_close (nfd)
int nfd;

Description

The net_close function is used to close a remote file. It forces the
completion of all pending write operations and frees the logical link
initiated by net_open. Explicitly close an opened remote file using
net_close. Failure to do so could result in a loss of data written to the file.

nfd is any NFARS network file descriptor returned by net_open.

Results

Upon successful completion, net_close returns 0. If there is an error, a non-
zero value is returned and the variable nfars_errno is set to indicate the
cause of the failure. After a failure, the descriptor can be presumed closed
and should not be used with any other NFARS calls.

The net_close function should be called only on OPEN network file
descriptors. Hence, net_close should never be called more than once on the
same descriptor.

4-20 4DDN User’s Guide IRIS-4D Series

4.2.5 net_perror - Printing Error Messages

The net_perror function prints an informative error message.
Call Synopsis

net_perror (string)
char *string;

Description

The net_perror function displays a meaningful message explaining the last
error that occurred in an NFARS call. The net_perror function writes one
line to the standard error file, which is usually the terminal. This line
consists of the indicated string followed by a colon and the appropriate
NFARS error message. The message is written to the standard error stream,
stderr.

This function makes no effort to deal with long strings that may cause the
line to ‘wrap the screen’.

Version 1.0 Network File Access for User Programs 4-21

Results

The net_perror function has no return value.

EXAMPLE:

net_perror ("util");

DISPLAY:

util: access permission violation

4-22 4DDN User’s Guide IRIS-4D Series

4.2.6 net_delete - Deleting Remote Files

The net_delete function deletes remote file(s).
Call Synopsis

int
net_delete (filespec)
char *filespec;

Description

The filespec is identical to the filespec in the net_open function. There are
no other arguments. The caller must be aware that not all remote FALs
support the DAP delete file command. This function should not be invoked
with wildcards.

Arguments

filespec - remote filespec to be deleted

Return Values

0 ~ if the file is removed _
non-zero - if the file is not removed (see nfars_errno)

Version 1.0 Network File Access for User Programs 4-23

4.2.7 net_rename - Renaming a Remote File

The net_rename function renames a remote file.
Call Synopsis

int

net_rename (old filespec, new_filespec)
char *old_filespec;
char *new_filespec;

Description

The net_rename function renames remote files. It takes two filespecs. The
first filespec must be a remote filespec; the second filespec may be remote,
but it specifies the new filename. The caller must be aware that not all
FALs support the DAP rename file command. The two remote filespecs
MUST be on the SAME system. This function should not be invoked with
wildcards.

Arguments

old_filespeé - original remote filespec
new_filespec - the new name of the remote file

Return Values

0 - if the value is renamed
non-zero - if the file is not renamed (see nfars_errno)

4-24 4DDN User's Guide IRIS-4D Series

Limitations

This function may fail for a number of different non-protocol reasons. On
some systems that communicate using DAP, the rules conceming the
‘rename’ of a file may differ substantially. For example, it may be
impossible to ‘rename’ a file to another directory. It may also be impossible
to ‘rename’ a file from one device to another device.

Version 1.0 Network File Access for User Programs 4-25

4.2.8 net_find - Wildcard Name Expansion

This function is used to initiate the wildcard name expansion.

Call Synopsis

int (j

net_find (filespec, attributes)
char *filespec;
int attributes;

Description

This function MUST be sent to start the wildcard name expansion. Its

primary mission is to send the remote wildcard name. The wildcard filespec

is the first argument and conforms to the format of the ‘filespecs’ section.

The second argument is the specification of the set of information about

each file, called ‘attributes’ such as file size, protection, and access dates

that the remote host is requested to provide. If successful, this function

returns a *‘network wildcard descriptor’’, which is a descriptor similar to the {
nfd. It is used by net_fnext and net_fstop to refer to this wildcard expansion. (

Arguments

filespec - remote wildcard spec
attributes - attributes desired (see below)

The attributes field is a bitmask that is used to request information of the
remote host about each file. It MUST be provided at the time of the nez_find
call.

RFA_NOATTRIBUTES
RFA_ATTRIBUTES
RFA_PROTECTION
RFA_DATE

fetch no file attributes
file type and size

file protection (j

file access, modification dates

4-26 4DDN User’s Guide IRIS-4D Series

NOTE: RFA_NOATTRIBUTES must be used alone while the other three
may be ORed to produce the desired information. The number of
attributes affects directly the information about each file. It also
affects the speed of wildcard expansion.

Return Values

nwd - network wildcard descriptor (like nfd)
-1 - some error occurred (see nfars_errno)

Version 1.0 Network File Access for User Programs 4-27

4.2.9 net_fnext - Wildcard Name Retriever

This function retrieves the wildcard name generated in response to a
previous net_find call.

Call Synopsis

int
net_fnext (nwd, name_p, vol_p, dir_p, attrib_p)
int nwd;
char **name_p;
char **vol p;
char **dir p;
File_attr **attrib_p;

Description

This function is called to retrieve the name of an individual file from a
wildcard expansion. It can be called ONLY AFTER a net_find was called
successfully. This function allocates space to contain the various
components of the generated filespec and the attributes structure. The
information requested by the attributes field of net_find is placed in a
structure allocated for the user.

Arguments

nwd network wildcard descriptor

name_p - address.of a pointer to a buffer for the name.
vol_p -~ address of a pointer to a buffer for the volume.
dir_p - address of a pointer to a buffer for the directory.
attrib p - address of a pointer to a buffer for the file

attribute structure.

4-28 4DDN User’s Guide IRIS-4D Series

Return Values

0 - the name is present.
non-zero - if the name is not present, or an error occurred, or
end of list.

Version 1.0 Network File Access for User Programs 4-29

4.2.10 net_fstop — Aborting a Wildcard Expansion

Call Synopsis

int
net_£stop (nwd)
int nwd;

Description

If a wildcard expansion must be aborted for any programmatic reason, the
net_fstop call should be issued. It aborts the current expansion and renders

the DAP link to a neutral state.

Arguments -

nwd - network wildcard descriptor (from net_find)

Return Value

The net_fstop function has no return value.

4-30 4DDN User's Guide

IRIS-4D Serles

4.2.11 Wildcard Expansion Structure

The wildcard expansion operation may be directed to produce an attributes
structure about each file generated by wildcard expansion. The following C
preprocessor directive includes the definition for the attributes structure.

#include <dn/nfattr.h>

It must be noted that the values within the structure are filled in with
information the caller of ne:_find requests. Therefore, if the date
information is necessary, RFA_DATE must be specified, etc. This section
deals with material that is oriented to VMS. The structure follows:

typedef struct file att {
/* Date-time information in UNIX time format */

long . fa_cdt; /* file creation */
long fa_rdt; /* last modification */
long fa_adt; /* last access */

/* Owner identification */
char *fa_owner; /* user code of file owner */

/* File protection */

unsigned char fa_powner; /* file owner */
unsigned char fa_pgroup; /* group */
unsigned char fa_ pworld; /* world */

unsigned char fa_psystem; /* system */

/* Attributes information */

short fa_org; /* file organization */

short fa_bsz; /* # of bits per byte */

short fa_bls; /* # of bytes per block */

short fa_rfm; /* format of records */ .

short fa_mrs; /* length of each file record (bytes) */
short fa_£ffb; /* first free byte in EOF block */ '
short fa_rat; /* attribute of individual records */
long fa_alg; /* allocation quantity {(blocks) */

long fa_ebk; /* # of last block */

} File_attr;

The times are stored in a format that is identical to the return of a call to the
IRIX time(2) system call. Thus it may be involved in a call to ctime to print
the date in a pleasing local format.

Version 1.0 Network File Access for User Programs 4-31

The fa_owner element is a pointer to a string that contains a sequence of
characters, generated by the remote system, that describe the owner of the
file. On VMS this is a set of numbers, on UNIX it is a pair of names from
the /etc/passwd file.

The protection attributes are grouped four bits to the attribute byte
describing the access rights of that particular entity. It is similar to IRIX
with the addition of the "system" entity, which is similar to the operator
concept on some systems. Each byte of permissions may be tested with the
following masks to test for access. If the bits are set they have the following
meaning:

P_READ file may be read
P_WRITE file may be written
P_EXECUTE file may be executed
P_DELETE file may be deleted

The meanings are similar to the meanings on IRIX except that the delete
concept is associated with the file and not the directory.

The fa_org element contains a code that may be tested to determine the files
organization. The organizations are specific to VMS. Only Sequential files
may be transferred using NFARS. Only one of these values is possible.
The test symbols are:

ORG_SEQUENTIAL the file is sequential in structure
ORG_RELATIVE the file is relative in structure
ORG_ INDEXED the file is indexed in structure

The fa_bsz element contains a number that is the number of bits per byte.
This is normally 8. It may be considered to be 8 if itissetto 0.

The fa_bls element is the number of bytes per block. Its normal value is
512 bytes. If the value in this element is O the number of bytes per block
may be considered to be 512.

4-32 4DDN User’s Guide IRIS-4D Series

The fa_rfm element contains a code that may be tested to determine the
record format of the file. Only one of the following symbols may be true:

RFM_UNDEFINED the record format is undefined

RFM_FIXED fixed length records

RFM_VARIABLE variable length records

RFM_VARFC variable with fixed control records
RFM_STREAM stream format (basically non-record)
RFM_STREAMLF stream-LF format (lines ending with \n)
RFM_STREAMCR stream-CR format (lines ending with \I)

The fa_mrs element contains the maximum number of bytes per record. Its
default value is 512 bytes. If the entry is 0 it may be assumed to be 512
bytes.

The fa_ffb element contains the number of the first free byte in the last
block. The number of bytes in the file is computed using this element by the
following: size =(ebk- 1) * bls + ffb.

The fa_rat element contains some additional record attributes. The symbols
that follow may be combined in a bitwise manner using the OR operator.
This field is extremely VMS oriented.

RAT_FORTRAN Record contains FORTRAN carriage control

RAT_CR record has an implied LF/CR envelope

RAT_PRN print file carriage control is in
fixed part of VFC

RAT_BLK records to not span blocks

RAT EMB embedded format control

RAT_LSA line sequenced — ASCII number in
fixed part of VFC

RAT_MACY RSX-11 compatible format

The fa_alg element contains the number of blocks allocated to contain the
file. This number may be larger than the number of bytes actually involved.

The fa_ebk element contains the number of blocks actually involved in the
file. More precisely it is the number of the last block.

Version 1.0 Network File Access for User Programs 4-33

4.3 NFARS Error Messages

Network File Access Routines (NFARS) are the building blocks used in the
construction of RFAS programs such as dncp, dnls, etc. This section lists
the error messages observed by NFARS.

Each NFARS error message listed below includes an explanation and
recommended action. For some error conditions, it may be necessary to
consult the system manager. Other messages indicate software errors and
these errors should be reported. If an error message is not included in this
section, then the error message is a task-to-task error message. (See
Appendix A, 4DDN Error Codes, for more information.)

local discovered protocel error
remote discovered protocol error
unknown error

DAP error detected

state table error

unsupported operation

network operation failed at remote
message building failed

Meaning: The above messages explain the general cause of
the error. The messages include a set of codes that
explain the exact cause of the problem. The
message may indicate an incompatibility between
the system or a shortcoming in an implementation.

Recommended Action: Report the error to your service organization.
Please include the following: 4DDN software
product version (dncp -r); remote node’s vendor
name and operating system version, i.e., DEC
VAX/VMS 4.6 etc.; the exact command line; a

- printout of the results of the command line (please
be precise); and a full directory listing showing the
subject file(s). If encountered with use of an
NFARS routine, please include source code for
sufficient analysis.

4-34 4DDN User’s Guide IRIS-4D Series

operation aborted
Meaning:

Recommended Action:

The remote host aborted the assigned operation. No
explanation is available.

Try executing the command again and if the error
persists, report it to your service organization for
analysis.

link was not established
cannot alloc NFARS NCB structure

Meaning:

Recommended Action:

These errors are extremely unlikely to occur.

Report the error to your service organization.
Please include the following: 4DDN software
product version (dncp -1); remote node’s vendor
name and operating system version, i.e., DEC
VAX/VMS 4.6 etc.; the exact command line; a
printout of the results of the command line (please
be precise); and a full directory listing showing the
subject file(s). If encountered with use of NFARS,
please indicate source code for sufficient analysis.

invalid wildcard operation

Meaning:

Recommended Action:

Version 1.0

This message indicates that a call to a function
capable of performing wildcard operations was
given an invalid wildcard operation. The system
on which the function was called cannot perform
the wildcard operation.

Attempt the operation again using a single file
operation. Note: this message does not occur from
the RFAS programs.

Network File Access for User Programs 4-35

invalid NFD/NWD
inactive DAP link
inconsistent arguments
inappropriate operation

Meaning: The above messages all indicate that the user
provided wrong information to one of the follow-
on NFARS functions: net_read, net_write, or)
net_fnext. These messages do not occur from the (
RFAS commands dncp, dnls, dnrm, or dnmv.

Recommended Action: Make certain that the functions are called with the
proper arguments.

invalid or missing filespec
invalid device or volume
invalid directory

invalid file

invalid version

Meaning: The above messages all indicate that the remote
system has found an error in the indicated part of a
filespec. It may mean an invalid character,
unknown element (directory, device, etc.), or an
incorrect format. (

Recommended Action: Review the specification rules for the remote
system.

no file attributes for dir list
error in reading name for dir list
error in reading attribs; dir list
unable to recover; dir list

Meaning: These messages indicate very rare problems in the
creation of parts of a directory list. They may
occur in any of the RFAS programs, as well as
with the net_find and net_fnext functions.

Recommended Action: These errors are unavoidable and have no known
‘ work-around, other than to use a less ambiguous -
filespec and avoid the files that have strong access (
control.

4-36 4DDN User's Guide IRIS-4D Series

no more files (wildcard expansion)

Meaning: This message is obtained after the last item of a
wildcard expansion has been retrieved. Any further
calls to ner_fnext result in failures.

error deleting full directory
error deleting a locked file
error deleting a file

Meaning: These messages occur when problems are
encountered with calls to net_delete. The messages
are self explanatory. These messages occur only
with dnrm and calls to net_delete.

2 different devices in rename
cannot rename v©ld file systems
invalid directory rename operation
inconsistent nodes for rename
rename mismatch Access Control info
rename failed; file lost

Meaning: These messages occur only with dnmv and calls to
net_rename. Renaming a file is valid only on a
single NODE. There may be restrictions about
renaming across devices on that node. Since
renaming may be specified with two sets of access
control information for a given operation, these sets
must be identical. '

file not found

Meaning: This message originates from any NFARS routine
that uses a filespec as an argument and means that
the desired file does not exist.

Recommended Action: Verify the name of the file and try again.

Version 1.0 Network File Access for User Programs 4-37

file already exists

Meaning:

Recommended Action:

When a call to net_open with RFO_CREATE is
executed, the specified file already exists.

If this results from a net_open with a
RFO_CREATE, then the caller should try again
and use RFO_WRITE instead of RFO_CREATE.

access permission violation
privilege violation (OS denies access)
file is locked by another user

Meaning:

Recommended Action:

These messages are the result of an access to a file
being denied with either improper access
permission or a conflict in a current access.

Check the access to the target file(s). If locked by
another user, the caller should retry the call later.

error in opening file
error in reading file
error in writing file
device or file are full
error in closing file

Meaning:

end of file

Meaning:

These messages are the result of problems
encountered during the execution of ordinary
NFARS functions and they are self explanatory.
These errors may occur in the dncp program and
the operation has, most likely, failed. However,
part of the operation may have been performed and
the file may contain unpredictable data.

This is an informative message received by
net_read when the read reaches the end of the

. open file.

4-38 4DDN User's Guide IRIS-4D Series

bad data format

Meaning: This error concems the data that a user provides to
net_write. Data for the non-verbatim mode, i.e.,
without the RFM_VERBATIM bit masked with
RFO_WRITE or RFO_CREATE, must have local
line terminations at suitable intervals. The largest
number of characters in a line (between
terminators) is 510 bytes.

Recommended Action: Use the verbatim mode to transfer the data since it
is binary information and not line oriented.

Version 1.0 Network File Access for User Programs 4-39

5. Task-To-Task Communication

IRIS4DDN'’s task-to-task communication services support the exchange of
data between processes on different nodes. The same program interface
used by 4DDN’s own network services, virtual terminal, remote file access,
and network management, is made available to user applications. The
advantage of this program interface is that the users need not be concerned
with, or even aware of, lower-level network details such as topology,
transmission sharing techniques, or type of communication linkage (e.g.,
local versus long-distance). 4DDN provides appropriate mechanisms to
ensure reliable, effective communication between tasks, regardless of their
location in the network.

This chapter contains a description of the logical link, explains the
procedure to establish, maintain, and terminate a logical link.

Version 1.0 Task-To-Task Communication 5-1

5.1 Logical Links

Processes that run on different nodes and exchange data are connected by
logical links. Logical links are temporary software data paths established
between two communicating processes in a 4DDN network. The exchange
of data between two processes over a logical link is called task-to-task
communication.

5.1.1 Client and Server

Task-to-task communication involves two processes, usually (but not
necessarily) running on different nodes, and communicating over a logical
link.

To establish a logical link between two processes, one process must inform
the other process that it wishes to communicate with it.

The process that requests the connection is called the client. The other
process is called the server.

The server must first inform the network software that it wants to be a

server. The client supplies the server with access control information so it
can decide whether or not to accept the logical link. (See ‘‘Establishing a
Logical Link: Client’’ below.) The server can accept or reject the request.

If accepted, the logical link is established. Once the logical link is
established, either process can send or receive data. There is no distinction
between a client and a server once the link has been established.

5.1.2 Exchange of Data

After establishing the logical link connection, the two processes can
exchange data. In additior, they can transmit interrupt data. Interrupt data
is special high-priority information that is transmitted immediately.

Prior to the exchange of data, the I/O data format and the input mode are
selected.

4DDN supports two 1/O data formats, STREAM and RECORD.

5-2 4DDN User's Guide IRIS-4D Series

« In STREAM format, data is passed across the network in a buffer. There
is no indication whether the buffer contains a complete message. A
process only receives the number of bytes sent in the buffer.

« In RECORD format, a process uses a structure to send and receive data.
This structure contains the address of the data buffer and a special status
field that indicates if the buffer contains the beginning, the middle, the
end of a message, or a complete message. RECORD format allows
applications to perform their own data segmentation.

The two input modes are BLOCKING and NON-BLOCKING.

o With a BLOCKING read, a process waits until the available data has been
written into a user-supplied buffer.

o With a NON-BLOCKING read, the number of bytes read is returned or
the process is notified that data is unavailable. Optionally, a special
signal may be registered to notify the process when data becomes
available.

5.1.3 Multiple Concurrent Logical Links

A process can set up more than one logical link. For example, it can set up
multiple logical links to communicate with different processes. It can also
set up several logical links to communicate with the same process if
separate data streams are intended for different purposes. These decisions
are application dependent.

Version 1.0 Task-To-Task Communication 5-3

5.2 Establishing, Using, and Terminating a
Logical Link

Logical links are established through the standard IRIX I/O calls (open(),

close(), read(), and write()) and ioctl() system calls. The logical link

between two processes is comparable to an I/O channel over which both

processes can send and receive data. ‘ (

To establish a logical link and transmit data across it, calls must be issued to
the 4DDN logical link device.

5.2.1 Establishing a Logical Link: Client

The client must first issue an open(), which activates the logical link device
(called /dev/dn_II). The logical link device is a virtual I/O device
responsible for controlling logical links. The open() returns a file descriptor
for the logical link. This file descriptor must be used in all subsequent task-
to-task calls over this logical link. The open() must be specified for each
logical link that is to be established.

Once a file descriptor has been obtained by the client, the connect request is

made by passing access control information to the server. This information (
identifies the server process and the client. It is sent by issuing an ioctl() .
request. The server process must be available for connection at the time the
request is made. ’

After reéeption. the server may either accept or reject the link request. A
logical link is established only after the server accepts the logical link
request.

The ioctl(), issued by the client returns the status from the server. If the link
was rejected, the status indicates a failure and the client must free the file
descriptor by issuing a close. If the link was accepted, the status indicates
success. The logical link is then established and the exchange of data can
take place.

5-4 4DDN User's Guide IRIS-4D Series

5.2.2 Registering 4DDN Processes as Servers

A 4DDN server process can be coded to start automatically or explicitly.
Automatically started servers are those started by the dnserver process, a
process that registers itself for the purpose of accepting all requests for
objects not previously explicitly registered.

Explicitly started servers are those server processes that register to receive a
specific or explicit object.

The benefits of starting a server automatically are:

o Since it is automatic, there is no need to "pre-start” the server in
anticipation of a connection.

e Access control is enforced.

Explicitly Started Servers

A server process that is started explicitly by a user or through a shell script
must open a logical link and register as a server (either by NAME or
NUMBER).

The server process must first issue an open() to activate the logical link
device and receive a file descriptor. This file descriptor is used in
subsequent task-to-task commands over this logical link.

The server process must then register itself to the 4DDN networking
software as a server by specifying an object type number or task name to
which it will respond. This is accomplished through an ioctl() request.

Once this call has been issued, the server process issues an ioctl() request to
wait for a connection request and to receive the access control information
transmitted by the client.

Registering 4DDN processes as servers must be performed before the client
initiates a logical connection to a server. The server process must have
opened a link and have registered as a server before any clients can connect
to it.

The server process may use the control information received to decide
whether or not to accept the request and then issues an ioctl request to
accept or reject the link.

Version 1.0 Task-To-Task Communication 5-5

When the ioctl() to accept the link completes successfully, the link is
established and ready for the exchange of data between processes.

When the ioctl() to reject the link completes successfully, the link must be
close()’d by both processes. In order for new logical links to be accepted by
the server, the server process must re-register itself as a server. The process
must then repeat the procedure of registering as a server.

Automatically Started Servers

Servers can be started automatically by the dnserver, a continuously running
IRIX process. Whenever 4DDN receives a connection for an object (by
name or number) that is not currently registered, the connection is given to
the dnserver. The dnserver performs the following actions:

1. The dnserver checks to see if a username and password are specified in
the OpenBlock. If they are specified but not valid according to the
letc/passwd file or Yellow Pages passwd database, the connection is
rejected.

2. The dnserver checks in /usr/etc/dn/servers.reg for an entry for the
requested object. It checks for an object name or object number. Most
servers are registered by number. The number 0 is not valid and means
that the object is known by name only. The servers.reg file consists of
entries of the form:

<obj-number> <obj-name> <path>

17 FAL /usr/etc/dn/fal

3. If no entry is found and the connection was by name, then the login
directory of the user specified in username is searched for a runnable file
named "objectname".

4. If no server can be found, the link is rejected; if the server is found, the
dnserver forks a process with group and user privileges associated with
the username and runs the server process. The process’s working
directory is that of the login directory of the user.

5-6 4DDN User’s Guide IRIS-4D Series

In this case, the server is started with the logical link opened but not yet
accepted or rejected. The server is started with the following file-
descriptors:

0 (stdin) The logical link (read only)

1 (stdout) The logical link (write only)

2 (stderr) A log file opened by dnserver
argv[l] The logical link (read and write)

The process specified by the path found in /usr/etc/dn/servers.reg or
found in the users’s login directory is started with a single argument.
That argument is the file descriptor number of the logical link. The
process is started as follows:

execl ("/usr/etc/dn/fal","fal","4",0):;

If main is defined by:

main (argec,argv)
int arge:;
char *argvl[]:;

The result is:

argec = 2;
argv[0] = "fal";
argv([l] = "4";

Version 1.0 Task-To-Task Communication 5-7

The server may do another SES_GET_AI ioctl to get the OpenBlock if
desired. The server MUST perform a SES_ACCEPT ioctl before the
logical link is really active or a SES_REJECT to explicitly reject it.

A server can be coded to run either explicitly or automatically as
follows:

#include <ctype.h>

if (argc == 2 && isdigit (argv([1][0])) {
/* automatic start */

} else { .
/* explicit start */

}

5-8 4DDN User’'s Guide IRIS-4D Series

5.2.3 Transmitting and Receiving Data

After the link has been established, normal or interrupt data can be sent or
received across the logical link through a series of calls using the assigned
file descriptor.

An ioctl request allows a process to specify the I/O data format (RECORD
or STREAM), and input mode (BLOCKING or NON-BLOCKING,) for the
read()’s.

read() is used by the process to receive data. write() is used by the process
to send data.

Interrupt data is transmitted and received through ioct! requests.

5.2.4 Terminating The Logical Link

At any time, either process can terminate the logical link and optionally
transmit data explaining the reason for termination.

If no optional data is to be sent, close() is sufficient to terminate the logical
link. close() automatically disconnects the link.

If optional data is to be sent to the remote process, a disconnect or abort
ioctl request is first issued, followed by close().

Disconnecting a logical link guarantees that all data that has been
transmitted is delivered before the link is closed.

Note: Successful disconnect indicates that the remote node has received,
‘but not necessarily processed, all transmitted data. An application-
level acknowledgement is necessary for assurance.

Aborting a link means that outstanding data is discarded before the link is
terminated. The link is terminated whether or not the remote node has
acknowledged receipt of previously transmitted data.

Processes should normally disconnect, not abort, a link. A process may
choose to abort in response to an error condition.

After the logical link has been close()’d, the server process must re-register
itself as a server in order to be a server for another logical link connection.

Version 1.0 Task-To-Task Communication 5-9

5.3 Task-To-Task Communication — Reference

This remainder of this chapter is a programmer’s guide explaining each
subroutine call in task-to-task communication. It is intended for C language
programmers who require use of the task-to-task communications facilities
provided within IRIS-4DDN.

5.3.1 Header Files and Libraries

The <dn/defs.h> header file contains constants and data structure definitions
used in the 4DDN task-to-task communication function calls. The
<dn/defs.h> file should be included when you write networking applications
using the 4DDN C program interface.

The <fcntl.h> file is a standard IRIX header file that should be included in
your source files. The <fcntl.h> file is only needed for the open(call. It
contains the definitions for the different open modes (read only, write only,
read and write).

Programs that call the dn_perror library routine should link with the library
lusr/lib/libdn.a:

cc example.c -o example -ldn

5.3.2 The errno External Variable

If a 4DDN task-to-task function call returns a value of -1, it indicates that
the function did not execute successfully. When this occurs, the external
variable errno is set to the appropriate error code. errno is not changed
under any other circumstances. Refer to Appendix A for more information
on 4DDN error codes and recommended actions. Other error codes may be
generated by IRIX. Referto intro(2) in the IRIS-4D Programmer’s
Reference Manual for those errors. The library routine dn_perror can be
called to print a descriptive message based on the ermo value. It may also
include a user-defined string that can identify the application program that
generated the message. (This routine is described below.)

5-10 4DDN User’'s Guide IRIS-4D Series

5.4 Opening a Logical Link Device

The open() call opens the logical link device and retumns a unique logical
link file descriptor to be used in subsequent calls associated with this logical
link. This is the first step in establishing a logical link. It must be issued by
the server and the client for each logical link desired.

Call ,Usage

int open_mode;
int link:;
link = open (DN_LINK, open_mode) ;

Description

link Logical link file descriptor. link is assigned -1 if an error
' occurred; otherwise it receives the logical link identifier.

DN_LINK Logical link device name defined in <dn/defs.h>.

open_mode Indicates the open mode for the logical link. These codes
are defined in <fcntl.h>.

Results

Upon successful completion, the open() call returns a unique logical link file
descriptor. This file descriptor is used for all subsequent I/O function calls
pertaining to the associated logical link. In case of error, open() returns -1,
and the external variable ermo is set to the appropnate error code (See
Appendix A for recommended actions.)

Version 1.0 Task-To-Task Communication 5-11

Error Codes

LOCAL_RESOUR Local node does not have resources for the link

5-12 4DDN User’s Guide IRIS-4D Serles

5.5 Requesting a Logical Link

The SES_LINK_ACCESS ioctl call, issued by a client, transmits
information identifying the client and the server to which it wants to
connect.

The information is passed in a data structure called an OpenBlock.
Call Usage

int link;

OpenBlock ob;

int ret;

ret = ioctl(link, SES_LINK_ACCESS, &ob);

Description

OpenBlock ' typedef defined in <dn/defs.h>
See below for more details.

link ‘ Logical link file descriptor

SES_LINK_ACCESS ioctl function code.

ob Structure containing the information transmitted to
the server by the client. Refer to the explanation of
the OpenBlock below.

ret Value retummed by ioctl().

Version 1.0 Task-To-Task Communication 5-13

Results

Upon successful completion, this ioct! call returns 0, and the logical link is
established with the server program. If there is an error or the server
program rejected the logical link request, ioct!() returns —1 and the external
variable ermo is set to the appropriate error code. (See Appendix A for
recommended actions.) Additional data sent by the server and

accompanying the acceptance or rejection of the connection is placed into

the op_opt_data field of the OpenBlock.

The open_block Structure

typedef struct image_16 {
char im_length;
char im_data[DATA_LEN];
char im rsvd;

} Imagelé6;

/* Open Block Data

*

* The open_block structure contains the access control

* information necessary for establishing a logical link.
* This structure must be used in the SES_LINK_ACCESS and
*

SES_SET AI IOCTL function calls.

#define
#define
#define
#define
#define

NODE_LEN 7
TASK_LEN 17
USER_LEN 32
ACCT_LEN 16
PASS_LEN 32

typedef struct open_ block {

short
char
char
char
char
char

op_object_nbr;
op_node_name [NODE_LEN] ;
op_’ task | name[TASK LEN];
op_userid[USER_LEN];
op_account[ACCT_LEN],
op_password[PASS_LEN];

Imagelé op_opt_data;
unsigned short op_proxy_uid;
} OpenBlock:

5-14 4DDN User’'s Guide

/*
/*
/*
/*
/*
/*
/*
/*

Object number

Node
Task
User
User
User

name
name

name

account number
password

Optional data
UID for proxy-login */

*/
*/
*/
*/
*/
*/
*/

IRIS-4D Series

Description

op_node_name

op_task_name

op_object_number

op_userid

op_account

op_password

op_opt_data

Version 1.0

is the system name or number of the server system
for the connection. It is a null-terminated string.
Legal values are:

1. A character string, the name of the remote
system, must begin with an alphabetic
character. It should not end with a colon (":").

2. A character string, in the form aa.nnn,

representing the system number of the remote
system; aa is the area number and nnn is the
system number. If no period is detected in the
string, the value is treated as a system number
in the same area as the local system.

3. A null string indicates a connection to an object

on the local system

is the name of the server program. It is a null-
terminated string. See Special Addressing Rules
below.

is a binary value of the server object number on the
remote system. Legal values range between 1 and
255. See Special Addressing Rules below.

is the name used by the remote system to identify
the connections client (required by some remote
systems). It is a null-terminated string.

is the accounting information (if required) used by
the remote system in allowing the connection. It is
a null-terminated string.

is the password (if required) used by the remote
system in accepting the connection. It is a null-
terminated string.

is connection-dependent optional data used by the
remote application. im_length indicates the length
of the data. im_length should be set by the
requesting program when sending optional data to

Task-To-Task Communication 5-15

the server program. When a server program returns
optional data with the acceptance or rejection,
im_length will be set to the number of bytes
received. It should be set to O if no data is desired.

iin_data contains the data. im_rsvd must be binary zero.
Server Addressing Rules

1. To address a server program, a logical link request specifies either a task
name or object number, but not both.

2. To address a server program by task name, op_object_nbr must be set to
0 and op_task_name set to an ASCII name.

3. To address a target program by object number, op_object_nbr must be
an integer between 1 and 255 and op_object_name must be set to null.
User-defined objects must be integers between 128 and 255. Numbers
between 1 and 127 are reserved for use by privileged tasks.

5-16 4DDN User’'s Guide IRIS-4D Series

Error Codes

ACCESS_CONT
ALREADY
BAD_OBJECT
BY_OBJECT
LOCAL_RESOUR
LOCAL_SHUT
MANAGEMENT
NET_RESOUR
NODE_DOWN
NODE_FAILED
NODE_NAME
NODE_UNREACH
OBJ_NAME
OBJ_BUSY
OUT_OF_SPACE
REMOTE_ABORT
UNKNOWN_ERR

Version 1.0

Remote system or program rejected access information
Logical link file descriptor already in use
Specified remote object does not exist

Local or remote program has closed the link
Local node does not have resources for the link
Local node is not accepting new links

Link was disconnected by network

Insufficient network resources

Remote system is not accepting new links
Remote system failed to respond
Unrecognized system name

Remote system is currently inactive

Specified task name invalid

Insufficient resources at remote system
Temporarily out of kemel buffers

Link was aborted by remote program

Status code sent by remote system is

undefined at local system

Task-To-Task Communication 5-17

5.6 Registering the Server Program

The SES_NUM_SERVER and SES_NAME_SERVER ioctl calls are used
when a program wants to register itself as a server. A program canbe a
server for either an object number or object name.

Call Usage (
int link;
int ret;

short object_number;

ret = ioctl(link, SES_NUM_SERVER, &object_number);
or

char task name[TASK_LEN];

ret = ioctl(link, SES_NAME SERVER, task_name);

Description
link Logical link file descriptor ‘
SES_NUM_SERVER Appropriate ioct! request codes. (
SES_NAME_SERVER Appropriate ioctl request codes.
object_number Task or object number of the server program.
User-defined object numbers must be
integers between 128 and 255.
task_name Null-terminated ASCII string specifying a
task or object name of server program.
ret Value returned by ioctl().
Results
This call returns 0 when the server is registered correctly. It retumns —1 if
there is an error and the external variable errno is set to indicate the (

appropriate error code. (See Appendix A for recommended actions.)

5-18 4DDN User’s Guide IRIS-4D Series

Error Codes

ALREADY
LOCAL_RESOUR
LOCAL_SHUT
OBJ_NAME
OUT_OF_SPACE
UNKNOWN_ERR

«

Version 1.0

Logical link file descriptor already in use

Local system does not have resources for the link
Local system is not accepting new links
Specified task name is invalid

Temporarily out of kemnel buffers

Status code sent by remote system is

undefined at local node

Task-To-Task Communication 5-19

5.7 Receiving Access Control Information

The SES_GET_Al ioctl call, used to receive access control information, is

issued by the server program after it has registered itself. If alogical link

request has already been received before this call is issued, then the

OpenBlock structure is returned with access control information. If this call

is issued before a request has been received, this call blocks and waits until (:
a request is received. !

The SES_GET_AI_NB IOCTL call can be used to poll for an incoming
connection. It returns a NOT_CONNECTED error if no connect request is
pending. Otherwise, it returns success and fills in the OPEN BLOCK
STRUCTURE.

Call Usage

int link;

OpenBlock ob;

int ret;

ret = ioctl(link, SES_GET_AI, é&ob);

Description

OpenBlock typedef defined in <dn/defs.h>.
link Logical link file descriptor.
SES_GET_AI ioctl request code.

SES_GET_AI_NB ioctl polling call.

ob OpenBlock structure to receive the access control
information transmitted by the client to the server.

ret Value returned by ioctl().

5-20 4DDN User's Guide IRIS-4D Series

Results

When a logical link request is received, the content of the client’s
OpenBlock is copied into the server’s allocated OpenBlock, and the call
returns 0. If an error occurs, ioctl() returns —1 and the external variable
ermo is set to the appropriate error code. (See Appendix A for
recommended actions.)

Error Codes

BY_OBJECT The remote user disconnected the link
LOCAL_SHUT The network software has been shut off while waiting for
NOT CONNECTED The logical link does not exist the connect request
OUT_OF_SPACE Temporarily out of kernel buffers
REMOTE_ABORT The remote user aborted the link
UNKNOWN_ERR Error code sent by remote system

undefined at local system

Version 1.0 Task-To-Task Communication 5-21

5.8 Accepting or Rejecting a Logical Link
Request '

The server pmgram has the option of accepting or rejecting the logical link
request through the ioct! calls SES_ACCEPT and SES_REJECT.

Call Usage

typedef struct session_data {
short sd_reason;
Imagelé sd_data;
char sd_rsvd[4];

} SessionData;

int link;
SessionData sd;
int ret;

ret = ioctl(link, SES_ACCEPT, &sd);
Or

ret = ioctl(link, SES_REJECT, &sd);

5-22 4DDN User's Guide IRIS-4D Series

Description

Image16 Typedef defined in <dn/defs.h>.
SessionData Typedef defined in <dn/defs.h>.
link Logical link file descriptor.

SES_ACCEPT ioctl request code.
SES_REJECT ioctl request code.

sd Structure that contains the acceptance or rejection data to
be sent to the client. The value of sd_data.im_data is
application dependent. If no data are to be sent, the
sd_data.im_length field must set to 0.

sd_reason contains a user-defined code sent by the
SES_ACCEPT ioctl call.

sd_data.im_rsvd and sd_rsvd must be binary zero.

ret Value returned by ioctl().

Version 1.0 Task-To-Task Communication 5-23

Results

If the SES_ACCEPT call returns 0, the link is accepted and readied for the
exchange of data. If it returns —1, an error occurred and the external
variable errno is set to the appropriate error code. (See Appendix A for
recommended actions.)

Upon successful completion, the SES_REJECT call returns 0 and the link is (
rejected. (To terminate the logical link, refer to *‘Closing the Logical Link”’ -
below) If the call returns —1, an error occurred and the external variable,

errno, is set to the appropriate error code. (See Appendix A for

recommended actions.) Also, the logical link file descriptor must be

released by a close() if an error occurs.

Comment

The acceptance or rejection data passed in the sd.sd_data field is sent to the
client. The client receives this data in the optional data field (op_op?_data)
of the OpenBlock structure that was used to request a logical link.

Once a logical link request is rejected by the server program, the logical link

must be explicitly close()’d by the rejecting program in order to free the

descriptor for future use. If the logical link is not closed, it remains open (
and unavailable for any connection requests.

To accept new logical link connection requests, the server program must re-
open the logical link device and re-register itself as a server.

Error Codes

BY_OBIJECT The remote user disconnected the link

LOCAL_SHUT The local node has been shut down

OUT_OF_SPACE Temporarily out of kernel buffers

REMOTE_ABORT The remote user aborted the link

UNKNOWN_ERR Error code sent by remote node is
undefined at local node

5-24 4DDN User's Guide IRIS-4D Series

5.9 Selecting the Data Format and I/O Mode

The SES_IO_TYPE ioctl function command is used to select the options for
sending and receiving data prior to issuing a read or write. The options are:
1/O data format; STREAM or RECORD; and the I/O mode, BLOCKING or
NON-BLOCKING. The data format and I/O mode selected must be used on
all subsequent read() or write() calls.

Note: This ioc# request is optional. If omitted, the defaults, STREAM
format and BLOCKING mode, are used.

Data Formats

In STREAM format, data is passed across the network in a buffer. There is
no indication whether the buffer contains a complete or incomplete
message. A program only receives the number of bytes sent in the buffer.
Stream data format is the default.

In RECORD format, a program uses a structure to send and receive data.
This structure contains the address of the data buffer and a special status
field that indicates if the buffer contains the beginning, the middle, the end
of the message, or a complete message. RECORD format allows
applications to perform their own data segmentation. Note that one end of
the link may run in STREAM format and the other in RECORD format.

Version 1.0 Task-To-Task Communication 5-25

I/0 Modes

In BLOCKING I/O mode, a read function retumns to the calling program,
only after the available data written into a user-supplied buffer. In this
mode, the user program is blocked until data becomes available on the link.
BLOCKING I/O mode is the default.

In BLOCKING I/O mode, a write function blocks until the data in the user- (
supplied buffer is copied to a network buffer for transmission. If the link is
flow-controlled, a write function does not return (blocks) until the remote

program starts reading. As memory for transmit and receive buffers

becomes scarce, flow control is automatically activated by the network

software. When activated, the receiving system notifies the transmitting

system to stop sending data messages. After this occurs, the transmitting

system must wait for a message from the receiving system, before resuming
transmission of data messages.

NON-BLOCKING input mode may be used by polling the logical link for
data availability, or with a signal notification indicating that data is
available.

In NON-BLOCKING input mode, a read returns immediately with either:

buffer OR

2. -1 and the external variablé ermo set to NO_DATA_AVAIL indicating
that no data is available.

In NON-BLOCKING I/O mode with polling, a program must issue read
commands to determine if data is available. In NON-BLOCKING I/O mode
with signal notification, a program receives a notification of data availability
prior to issuing a read. If you register a signal number with 4DDN, you
must register a signal handler with IRIX (See signal(2) in the IRIS4D
Programmer’s Reference Manual). 4DDN signals your process when data
becomes available on the link. When all the existing data is received
(through reads) and new data becomes available, your process is signaled
again.

In NON-BLOCKING I/O mode, a write function returns immediately if the
logical link is not flow-controlled. If the logical link is flow-controlled, a ("

1. The number of bytes received and written into the user-supplied data (

write function returns immediately with a —1 and the external variable
errno is set to the error code FLOW_CONTROL.

5-26 4DDN User's Guide IRIS-4D Series

Call Usage

typedef struct io_options {

short io_record;

short io_nonblocking;
short io_rsvd[2]:

int io_signo;

} IoOptions;

int link;
IoOptions opt;
int ret;

ret = ioctl(link, SES_IO_TYPE, &opt):

Description

Io_Options
link
SES_IO_TYPE

opt.io_record

opt.io_nonblocking

opt.io_rsvd

opt.io_signo

ret

Version 1.0

Typedef defined in <dn/defs.h>.
Logical link file descriptor.
Appropriate ioct! function code.

Indicates the data format:
SES_IO_STREAM_MODE,
SES_IO_RECORD_MODE.

Indicates the input type: SES_IO_BLOCKING,
SES_IO_NON_BLOCKING.

Must be binary zero.

Number to signal when data becomes available on
the link. The signal must be registered with the
signal(2) system call before this call is issued. This
field is only used when the non-blocking I/O mode
is chosen.

Value returned by the ioctl()

Task-To-Task Communication 5-27

Results

Upon successful completion, the ioctl SES_IO_TYPE function call returns
0. If it returns —1, an error occurred and the external variable, errno, is set
to the appropriate error code. (See Appendix A for recommended actions.)

Rules

1. If non-blocking I/O with signal notification is chosen, the signal must be
registered with IRIX before this call is issued.

2. This call may be issued only once, before any I/O takes place on the
logical link.

Error Codes

BAD_COMMAND Invalid ioctl command

5-28 4DDN User’s Guide IRIS-4D Series

5.10 Determining the Maximum Transmlt
Buffer Size

A program can inquire about the maximum number of bytes allowed in a
single write request or returned by a single read request by issuing the
SES_MAX_IO ioctlQ.

Note: When using record-mode I/O programs can send and receive
messages that are longer than can be specified in a single write or
read request.

Call Usage

long length; |
int ret;
ret = ioctl(link, SES_MAX_IO, &length):;

Description

link Logical link file descriptor.

SES_MAX_IO Appropriate ioct! function code.

length Variable where the maximum transmit length (in bytes) is
returned by ioctl().

ret Value returned by ioctlQ.

Results

A successful return of 0 indicates that the maximum length was placed into
the length field. When an error occurs, —1 is returned and the external
variable, errno, is set to the appropriate error code.

Version 1.0 Task-To-Task Communication 5-29

5.11 Receiving Data Across a Logical Link

5.11.1 Stream Format

Call Usage
int link;
char *buf;
int nbytes;
int ret;

ret = read(link, buf, nbytes):;

Description

link Logical link file descriptor.

buf Character buffer in which data from the link is to be (
placed. ,

nbytes The size in bytes of buf.

ret - The number of bytes read or —-1.

Results

The read function call attempts to read (receive) a message that is no longer
than the value specified in the nbytes parameter.

Upon successful completion, the number of bytes placed in the allocated

buffer is returned. If the number of bytes requested (nbytes) is smaller than

the size of the data available to be read, the buffer is filled with the amount

of data requested in the nbytes field. In this mode, no attempt is made to _
inform the user that more data is available. Subsequent read()’s will return (
any further data.

5-30 4DDN User’'s Guide IRIS-4D Series

If read() returns —1, an error has occurred. In this case, the external
variable, errno, is set to the appropriate error code.

If the I/O mode is SES_IO_BLOCKING, this read() will block until there is

data available, or until an error occurs. If the I/O mode is

SES_IO_NON_BLOCKING, and there is no data available, the read(
returns —1, and the external variable errno is set to NO_DATA_AVAIL.

Error Codes

BY_OBJECT Local or remote program has closed the link
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond

NOT_CONNECTED Logical link does not exist

OUT_OF_SPACE Temporarily out of kemnel buffers

REMOTE_ABORT Link was aborted by remote program

UNKNOWN_ERR Error code sent by remote node is
undefined at local node

5.11.2 Record Format

Call Usage

typedef struct session_record {
short sr_status;
char *sr_buffer;
char sr_reserved[6];

} SesRecord;

SesRecord sesrec;

int link;

int nbytes;

int ret;

ret = read(link, &sesrec, nbytes);

Version 1.0 Task-To-Task Communication

5-31

Description

SesRecord Typedef defined in <dn/defs.h>.
link Logical link file descriptor.
sesrec Structure holding address of buffer in which data from

the link is placed, and status information about this data. ()
sr_reserved must be zero., :

nbytes The size in bytes of sesrec.sr_buffer.
ret The number of bytes read or —1.
Results

The read() function call attempts to read (receive) a message, no longer than
the value specified in the nbytes parameter.

Upon successful completion, the number of bytes placed in the allocated

buffer is returned. If the number of bytes requested is smaller than the size

of the data available to be read, the buffer is filled with the amount of data
requested in the nbytes field, and the user is informed that more data is ,
available by the value in the sr_status field of the SesRecord. (

If read() returns -1, then an error has occurred, and the external variable,
errno, is set to the appropriate error code. (See Appendix A, ‘‘4DDN Error
Codes,’’ for recommended actions.)

If the I/O mode is BLOCKING, the read() function call blocks until there is
data available, or until an error occurs. If the I/O mode is NON-
BLOCKING, and there is no data available, the read() returns —1 and errno
is set to NO_DATA_AVAIL.

This function call places the status of the data into sr_status. If the status
returned is BEG_OF_MESSAGE or MID_OF_MESSAGE, one or more
subsequent readQs must be issued to receive the rest of the data sent.

(

5-32 4DDN User's Guide IRIS-4D Series

Example

Let a remote program issue a write with sr_szatus set to COMPLETE and
nbytes = 512. If the local program issues a read() with nbytes = 100, then
the whole message cannot be read with one read() call. The first read(Q
returns 100 to ret and BEG_OF_MESSAGE to sr_status. In order to read
the 512 bytes, several read()s must be issued (in a loop) until the
END_OF_MESSAGE status is returned. In this particular example, the
second, third, fourth and fifth read()s retums a MID_OF_MESSAGE status.
The sixth read() returns 12 to rer and END_OF_MESSAGE to sr_status.

Error Codes

BY_OBJECT ., Local or remote program has closed the link
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond
NOT_CONNECTED Logical link does not exist
OUT_OF_SPACE Temporarily out of kernel buffers
REMOTE_ABORT Link was aborted by remote program
UNKNOWN_ERR Error code sent by remote node is
undefined at local node

Version 1.0 Task-To-Task Communication 5-33

5.12 Sending Data Across a Logical Link

5.12.1 Stream Format

In STREAM format, the write function causes the specified number of bytes
to be transmitted from the given buffer as a COMPLETE data message.

Call Usage

int link:

char *buf;

int nbytes;

int ret;

ret = write(link, buf, nbytes):;

Description

link Logical link file descriptor.

buf Data buffer from which the data is taken.

nbytes The length of the buffer (in bytes) to transmit. The

maximum length supported by 4DDN is found through
the ioctl call SES_MAX_IO.

ret The actual number of bytes that were sent.

Results

The write() call retumns a value representing the number of bytes sent. If -1
is returned, an error has occurred, and the external variable, errno, is set to
the appropriate error code. (See Appendix A for recommended actions.)

If the I/O mode is BLOCKING, then the write() function blocks until the
data buffer is copied to the kemnel for transmission.

5-34 4DDN User’s Guide IRIS-4D Serles

If the I/O mode is NON-BLOCKING, then the write() function retums
immediately. If the logical link is flow-controlled, a -1 is returned and the
external variable, errno, is set to FLOW_CONTROL.

Error Codes

BY_OBJECT Local or remote program closed the link
MANAGEMENT . Link was disconnected by network
NODE_FAILED Remote node failed to respond

NOT_CONNECTED Logical link does not exist

OUT_OF_SPACE Temporarily out of kemel buffers

REMOTE_ABORT Link was aborted by remote program

UNKNOWN_ERR Error code sent by remote node is
undefined at local node

5.12.2 Record Format

In RECORD format, the write() function results in the transmission of a
specified number of bytes from the given buffer. The number of bytes is
specified in the SR_STATUS field. Sending messages in an incorrect order,
(e.g., COMPLETE after BEG_OF_MESSAGE) results in unpredictable
results.

Call Usage

typedef struct session_record {
short sr_status;
char *sr_buffer;
char sr_reserved([6];

} SesRecord;

SesRecord sesrec;

int link;

int nbytes;

int ret;

ret = write(link, &sesrec, nbytes);

Version 1.0 Task-To-Task Communication 5-35

Description

SesRecord typedef defined in <dn/defs.h>
link Logical link file descriptor

sesrec Structure containing: the address of the buffer containing
transmission data; and which data to transmit is taken, and
status information about this data.

The status of the read is placed in the sr_status field.

- The sesrec.sr_status field is set to a value that indicates
where this block of data fits within a message. Possible
values are:

BEG_OF_MESSAGE
MID_OF_MESSAGE
END_OF_MESSAGE
COMPLETE

(See Appendix A for more information on these completion
codes.)
, sesrec.sr_reserved must be zero.
ret The actual number of bytes that were sent.

nbytes The length of the buffer (in bytes) to transmit. The
maximum length supported by 4DDN is found by using the
ioctl call SES_MAX_IO.

5-36 4DDN User’s Guide IRIS-4D Series

Results

Write() retumns a value representing the number of bytes sent. If this value is
-1, then an error was detected and the external variable, errno, is set to the
appropriate error code. (See Appendix A for recommended actions.)

If the I/O mode is BLOCKING, then the write() function blocks until the
data buffer is copied to the controller for transmission.

If the I/O mode is NON-BLOCKING, then the write() function retumns
immediately. If the logical link is flow-controlled, then a -1 is returned and
the external variable, errno, is set to FLOW_CONTROL.

Comment

If the statuses from multiple record format write() function calls are sent out
of sequence (e.g., MID_OF_MESSAGE before BEG_OF_MESSAGE),
results are unpredictable.

Error Codes

BY_OBJECT Local or remote program closed the link
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond

NOT_CONNECTED Logical link does not exist

OUT_OF_SPACE Temporarily out of kemel buffers

REMOTE_ABORT Link was aborted by remote program

UNKNOWN_ERR Error code sent by remote node is
undefined at local node

Version 1.0 Task-To-Task Communication 5-37

5.13 Transmitting Interrupt Data

Interrupt data is high-priority information that is immediately transmitted
through an ioct! call.

The XMIT_INTERRUPT ioct! returns immediately with a success or failure
indication. Because of the importance of interrupt data, the exchange of
interrupt data is flow controlled by 4DDN software. For this reason the
XMIT_INTERRUPT ioctl returns a -1, and the external variable, errno, is
set to FLOW_CONTROL providing that the previous XMIT_INTERRUPT
ioctl has not yet been received by the remote program.

Call Usage

typedef struct image_16 {
char im_length;
char im_data [DATA_LEN];
char im_rsvd;

} Imagelé;

int link;
Imagelé data;
int ret;
ret = ioctl(link, XMIT_ INTERRUPT, &data);

Description

Imagel6 Typedef defined in <dn/defs.h>.
link Logical link file descriptor.
XMIT_INTERRUPT ioctl request code.
data.im_length Length of data (0-16 bytes).
data.im_data Interrupt data.

data.im_rsvd Must be zeroed.

ret Value returned by ioctl().

5-38 4DDN User's Guide ' IRIS-4D Series

Results

Upon successful completion, this ioct/() call returns 0. If it returns -1, then
an error has occurred and the external variable, errno, is set to the
appropriate error code. (See Appendix A for recommended actions).

An errno of FLOW_CONTROL indicates a non-fatal, temporary condition.
In the case of this error, the transmit may be retried.

Error Codes

BY_OBJECT Local or remote program closed the link
FLOW_CONTROL Transmit failed. The logical link has been flow controlled
MANAGEMENT Link was disconnected by network

NODE_FAILED Remote node failed to respond

NOT_CONNECTED Logical link does not exist

OUT_OF_SPACE Temporarily out of kemel buffers

REMOTE_ABORT Link was aborted by remote program

UNKNOWN_ERR Error code sent by remote node is
undefined at local node

Version 1.0 Task-To-Task Communication 5-39

5.14 Accepting and Receiving Interrupt Data

Receiving interrupt data is a two-step process. First, an ACCEPT_INT ioctl
request must be issued. This call is issued only once. It instructs the logical
link device driver when the program interrupt data is received. This is
accomplished through the specified signal.

The second step is performed every time data is received. The
RECV_INTERRUPT ioct! request places interrupt data into the im_data
field. See the second part of this section for more information and an
example of this 2-step process.

5.14.1 ACCEPT_INT ioctl

Call Usage

int link;
int ret;

int sig_no;
void func():

signal (sig_no, func);
ret = joctl(link, ACCEPT_ INT, &sig_no);

Description

link Logical link file descriptor.

sig_no Signal sent when interrupt data are received.

func func is the name of the function to be called when

interrupt data are received. See below.
ACCEPT_INT Appropriate ioct! function code.
ret Value returned by ioctl().

5-40 4DDN User’'s Guide IRIS-4D Series

«

Results

Ioctl(Q) returns O when it completes successfully. If it retums -1, an error
occurred and the external variable, errno, is set to the appropriate error code.
(See Appendix A for recommended actions.)

5.14.2 RECV_INTERRUPT ioctl

Call Usage

typedef struct image_16 {
char im_length;
char im_data [DATA_LEN]:;
char im_rsvd;

} Imagel6;

int link;

~ Imagel6 id;

int ret;
ret = ioctl(link, RECV_INTERRUPT, &id):;

Description

Image16 Typedef defined in <dn/defs.h>.

link Logical link file descriptor.

-RECV_INTERRUPT Appropriate ioctl function code.

id.im_length Contains the length of the data when the ioct!
returns.

id.im_data Buffer used for storing the received interrupt data.

ret Value returned by ioctl call.

Version 1.0 Task-To-Task Communication 5-41

Results

The RECV_INTERRUPT ioct! request places interrupt data into the

id.im_daa field. The value of id.im_length is set to the number of bytes

received. If the call takes place successfully, the ioct!Q retumns zero. If -1

is returned, and the external variable, errno, is set to NO_DATA_AVAIL,

then there was no interrupt data for this link. If -1 is retuned and the
external variable, errno, is not set to NO_DATA_AVAIL, then an error (
occurred, and the external variable, errno, contains the appropriate error

code. (See Appendix A for recommended actions.)

Error Codes

BY_OBIJECT _ Local or remote program closed the link
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond

NOT_CONNECTED Logical link does not exist

NO_DATA_AVAIL No data available (read only)

OUT_OF_SPACE Temporarily out of kemel buffers

REMOTE_ABORT Link was aborted by remote program

UNKNOWN_ERR . Error code sent by remote node is (
undefined at local node

Rules

1. The signal number must be registered with the signal(2) call before this
ioctl is issued.

2. The ACCEPT_INT ioctl call may be issued only once, before any I/O
takes place on the logical link.

5-42 4DDN User's Guide IRIS-4D Series

Example

The following program illustrates the 2-step process to accept and receive
interrupt data.

int link;

int ret;

Imagelé int_data;

void int_handler ()

int sig_no = SIGNAL_NUMBER;

/* Main routine or subroutine */

routine ()
{
/*
* STEP 1l: register the signal handler, then
* issue ioctl to accept interrupt data.
*/

signal (sig_no, int_handler);
ret = ioctl(link, ACCEPT_INT, &sig_no);
}

/* Interrupt notification routine -
* Issue ioctl to receive interrupt data and
* reregister the signal.

*/

void
int_handler ()
{

/*)
* STEP 2: if interrupt data is available, issue the
* RECV_INTERRUPT ioctl call to get the interrupt data.
*/ :

ret = ioctl (link, RECV_INTERRUPT, &int_data)
/* Re-register the signal handler */

signal (sig_no, int_handler);

Version 1.0 Task-To-Task Communication 5-43

5.15 Disconnecting a Logical Link

A disconnect operation is initiated at either end of a logical link connection.

v

Call Usage

typedef struct image_l6 {
char im_length;
char im_data[DATA_LEN];
char im rsvd;

} Imagelé6;

typedef struct session_data {
short sd_reason;
Imagel6 sd_data;
char sd_xrsvd[4];

} SessionData;

int link;
SessionData sd;
int ret;

ret = ioctl(link, SES_DISCONNECT,

5-44 4DDN User’s Guide

&sd) ;

IRIS-4D Series

Description

SessionData
Image16

link
SES_DISCONNECT
sd

ret

Version 1.0

Typedef defined in <dn/defs.h>.
Typedef defined in <dn/defs.h>.
Logical link file descriptor.
Appropriate ioct! function code

Disconnect data sent to the program at the other
end of the logical link.

sd_data.im_length indicates the length of the data.
sd_reason gives the reason for disconnect and is
application dependent.

The value of sd_data.im_data is application
dependent.

Disconnect data is optional. If omitted, sd_rsvd and
sd_data.im_rsvd must be binary zero.

Value returned by ioctl().

Task-To-Task Communication 5-45

Results

Upon successful completion, 0 is returned. If there is an error, then -1 is
returned and the external variable, errno, is set to the appropriate error code.
(See Appendix A for recommended actions.)

Comments

This ioctl request is issued by the client or the server.

Following a successful disconnect operation, the logical link must be closed
to release the descriptor for subsequent use. Then a server program must
issue a new open() and re-register itself as a server.

Disconnect guarantees the delivery of outstanding data (data that was sent,
but whose receipt has not been acknowledged) before the link is terminated.
The disconnect ioct/ blocks until all transmitted data is received by the
remote process.

Error Codes

BY_OBIJECT Local or remote program closed or rejected the link
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond

NOT_CONNECTED Logical link does not exist

OUT_OF_SPACE Temporarily out of kemel buffers

REMOTE_ABORT Link was aborted by remote program

UNKNOWN_ERR Error code sent by remote node is
undefined at local node

5-46 4DDN User’s Guide IRIS-4D Series

5.16 Aborting a Logical Link

This ioctl request is issued by the client or the server.

Call Usage

typedef struct image_16 {
char im_length;
char im_data [DATA_LEN];

char im_rsvd;
} Imagelé6;

typedef struct session_data {
short sd_reason;
Imagel6é sd_data;
char sd_rsvd[4];

} SessionData;

int link;
SessionData sd;
int ret;

ret = ioctl (link,

Version 1.0

SES_ABORT, &sd);

Task-To-Task Communication 5-47

Description
SessionData
link
SES_ABORT
sd

ret

Typedef defined in <dn/defs.h>.
Logical link file descriptor.
ioctl request code.

Abort data sent to the program at the other end of the
logical link. Values are application-dependent.
sd.sd_data.im_length indicates the length of the data.
sd.sd_reason gives the reason for abort and is application
dependent.

The value of sd.sd_data.m_data is application dependent.
Abort data is optional. If omitted, sd.sd_data.im_length
must be set to 0.

sd.sd_rsvd and sd.sd_data.im_rsvd must be binary zero.

Value returned by ioctl().

5-48 4DDN User’s Guide IRIS-4D Series

(

Results

Upon successful completion, 0 is returned. On error, —1 is returned and the
external variable, errno, is set to the appropriatg error code. (See Appendix
A for recommended actions.)

Data not yet sent is discarded when the abort is sent to the remote node.
Comments
Following a successful abort operation, the logical link device must be

closed to release the descriptor for subsequent use. Then a server program
issues a new open() and re-registers itself as a server.

An abort constitutes an abnormal termination of the logical link.

Error Codes

BY_OBIJECT Local or remote program closed or rejected the link
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond

NOT_CONNECTED Logical link is not connected

OUT_OF_SPACE Temporarily out of kemel buffers

REMOTE_ABORT Link was aborted by remote program

UNKNOWN_ERR Error code sent by remote node is
undefined at local node

Version 1.0 Task-To-Task Communication 5-49

5.17 Closing the Logical Link

A logical link must be closed by issuing a close() function call. Both the
client and the server must issue this command. The close() function call
terminates the logical ink and frees the logical link file descriptor for
subsequent use. However, the close() function does not permit the
transmission of data to the remote node before the logical link termination.

There are two other methods for terminating a logical link: it can be
disconnected or aborted.

Call Usage

int ret;
ret = close(link);

Description

link Logical link file descriptor.
ret Value returned by close().
Results

Upon successful completion, O is returned. On error, -1 is returned and the
external variable, errno, is set to the appropriate error code. (See Appendix
A for recommended actions.)

Comment

If optional data is desired, a disconnect, or abort ioctl, must be issued before
close(). ‘

The close() call always terminates the link. It also frees the logical link
identifier without sending optional data.

5-50 4bDN User's Guide IRIS-4D Series

5.18 Obtaining Link Status

A program can inquire about the status of a logical link at any time.

Call Usage

long status;
int ret;
ret = ioctl(link, SES_STATUS, &status)

Description
link Logical link file descriptor.
SES_STATUS Appropriate ioct! function code.
status Status code for the link. Possible status values are the
following:
NO_LINK No logical link for given file descriptor
- LINK_OPEN Logical link open but link not yet
established
LINK_CONNECT Logical link device open and logical
link established '
CLOSING Remote system closed the logical link,

waiting for local close()

ABORTED Remote system aborted the logical
link, waiting for local close()

ret Value returned by ioctl().

Version 1.0 Task-To-Task Communication 5-51

Resuits

A successful return of 0 indicates that an error code was placed into the
status field. On error, —1 is returned and the external variable, errno, is set

to the appropriate error code.

5-52 4DDN User’s Guide IRIS-4D Series

5.19 Printing Error Messages

The dn_perror function prints an informative error message based on the
errno variable. The function writes one line to the stderr (standard error)
stream, which is usually the terminal. This line consists of the indicated

string followed by a colon and the appropriate error message.

Call Usage

char *string;

dn_perror (string);

Description

string A character array or a string constant.

Results

The dn_perror function has no return value.

Version 1.0 Task-To-Task Communication

5-53

CLIENT

SERVER

open() logical link device
create logical link fd.

ioctl() to register as a server
(SES_NUM_SERVER or
SES_NAME_SERVER)

ioctl() to wait for connect
request (SES_GET_AI)

open() logical link device
create logical link fd

ioctl() to request logical
link and pass access
control information
(SES_LINK_ACCESS)

server
waits

client

waits

for response
(accept or reject)
from server

receive access control info

ioctl() to accept link request
(SES_ACCEPT)

or

ioctl() to reject link request
(SES_REJECT)

close() the logical link

Logical link has been established and the following
calls may be issued by server and client

ioctl() to define I/O data format and input mode (SES_IO_TYPE)
ioctl() to determine the maximum transmit buffer size

read() and write() for normal data

ioctl() to transmit interrupt data (XMIT_INTERRUPT) -

ioctl() to receive interrupt data (ACCEPT_INT and RCV, _INTERRUPT)
ioctl() for logical link status (SES_STATUS)

ioctl() to disconnect logical link (SES_DISCONNECT)
ioctl() to abort logical link (SES_ABORT)

Table 5-1. Sequence of Task-to-task Communication Commands

5-54 A4DDN User's Guide

IRIS-4D Series

(

Appendix A: 4DDN Error Codes

Table A-1 lists the error codes retumned in errno with the appropriate

recommended actions.

Name Meaning Recommended
Actions

NOT_CONNECTED The logical link Check program.

does not exist.
— —PROC_ERROR- -Remote node Contact your

received too much service
connect data. organization.

BAD_LINK An invalid logical Check the program.
link ID was Probably trying to
specified. access a closed link.

BY_OBJECT The local orremote This indicates a
process has closed normal close of the
or rejected the link. link. .

Version 1.0 4DDN Error Codes A-1

Table A-1 Error Codes and Recommended Actions (continued)

Name Meaning Recommended
C Actions
NET_RESOUR Insufficient network ~ Try again.
resources.
NODE_NAME Unrecognized node Check the NCP
name. database with the
"show known

nodes” command to
make sure the node

exists.
NODE_DOWN The remote node is Try again. The
not accepting new remote node is
links. being disconnected
from the network.
BAD_OBIJECT The specified Either the object
remote objectdoes ~— number/taskname—
not exist. passed in the
OpenBlock is
wrong or the
requested server has
not been registered

on the remote node.

A-2 4DDN User's Guide IRIS-4D Series

Table A-1 Error Codes and Recommended Actions (continued)

Name Meaning Recommended
Actions

OBJ_NAME The specified task Change the program

name is invalid. to correct the
format. Verify that
the task name
format follows the
rules in Chapter 4.

OBJ_BUSY Insufficient Try again later.
resources at the
remote node.

MANAGEMENT The link was Try again later.
disconnected by the ~ The remote node
network. may have become

inactive.

REMOTE_ABORT The link was Check the remote
aborted by the program. It may
remote process. have crashed.

BAD_NAME The node name is Verify that the node
invalid. - name in the

OpenBlock is valid.

LOCAL_SHUT The local node is Set the node

' not accepting new STATE to ON
links. The STATE using NCP.
of the node is OFF.

ACCESS_CONT The remote node or Check the access
process rejected the control information
access information. given in the

OpenBlock.
Version 1.0 4DDN Error Codes A-3

Table A-1 Error Codes and Recommended Actions (continued)

Name Meaning Recommended
Actions
'LOCAL_RESOUR The local node does Too many links are
not have resources currently open. Kill
for a new link. unneeded programs
with open links.

NODE_FAILED

NODE_UNREACH

ALREADY

A-4 A4DDN User’s Guide

The remote node
failed to respond.

The remote node is
currently inactive.

Logical link
identifier is already
in use.

Check if the remote
node is responding,
then retry.

Use the shownet
command to
determine the status
of the remote node
and try again when
the remote node
becomes active.

Check the program.

IRIS-4D Series

Table A-1 Error Codes and Recommended Actions (continued)

Name Meaning Recommended
Actions
USER_ABORT Program aborted by ~ This status code
interactive user at will not be returned
terminal. in the current
version.
INV_ACCESS_MODE Invalid access Reopen the link
attempt on read or with the correct
write. address modes.

NO_DATA_AVAIL

BAD_RECORD_STAT

INVALID_SIZE

Version 1.0

No data available in
non-blocking input
mode.

The status given in
record format
during a write is
invalid.

Size of transmit
buffer is greater
than DN_MAX_IO.

No action required.

Modify the status in
the sr_status_field.

Issue the ioctl
SES_MAX_IOto
determine the
maximum transmit
buffer size. Then
reduce the size of
the transmit buffer.

4DDN Error Codes A-5

Table A-1 Error Codes and Recommended Actions (continued)

Name Meaning Recommended
Actions
OUT_OF_SPACE No kernel buffer Retry the program
' space available. later.
BAD_COMMAND Invalid ioctl Check the
command. program'’s ioctl
calls.
FLOW_CONTROL Transmit failed. Normal status in
Logical link has non-blocking I/O
been flow mode. Reissue the
controlled and I/O transmit with the
mode is non- same buffer address
blocking. and length.
CL_DATA_AVAIL The link was closed Continue reading
by the remote node from the link to
but data is still receive all available
available to be read. data or just close
the link to discard
the data.
INT_DATA Internal 4DDN No action required.

A-6 4DDN User's Guide

status. Will not be
returned to the user.

IRIS-4D Series

Table A-1 Error Codes and Recommended Actions (continued)

Name Meaning Recommended
Actions
BEG_OF_MESSAGE Read returned the Continue reading
first part of a until the
message that is END_OF_MESSAGE
larger than the input status.
buffer specified.
MID_OF_MESSAGE Read returned the Continue reading
next part of a until the
message that is END_OF_MESSAGE
larger than the status.
input.
END_OF_MESSAGE Read returned the No action is
last part of a required.
message that is
larger than the input
buffer specified.
COMPLETE READ returned a No action is
complete message. required.
UNKNOWN_ERR Error code sent by Try again. If it does
remote node is not work, contact
undefined at local your service
system. organization.

Version 1.0

4DDN Error Codes A-7

Table A-1 Error Codes and Recommended Actions (continued)

Name Meaning

Recommended
Actions

DUPE_NODE_NAME Duplicate node
name detected.

DUPE_NODE_NUM Duplicate node

number detected.

NODE_NUM_REQUIRED Node records
, require the node
numbers.

NOT_SUPPORTED Function not yet
supported.

A-8 4DDN User’s Guide

Check the contents
of the NCP
database. If 4DDN
was initialized with
this node name
associated with a
different node
number, change the
name with the NCP
"set node" and
"define node"
commands.

Check the contents
of the NCP
database. If 4DDN
was initialized with
this node associated
with a different
node number,
change the name
with the NCP "set
node" and "define
node" commands.

Check the contents
of the NCP
database.

Should not appear.

IRIS-4D Series

Appendix B: Sample Programs

These sample test programs illustrate task-to-task communication by
showing an exchange of data using 4DDN. These programs exist in the
directory /usr/etc/dn/examples.

B.1 client.c

/'
* Module: CLIENT.C =~ Example DECnet Client Program

*

R R R N R N R R R A R TR R AR R R R AN A TR T R R T R R A P T T R R T AN TR T T R IR AN RN RN

* COPYRIGHT 1985, 1986 BY TECHNOLOGY CONCEPTS INC. *
* SUDBURY, MASSACHUSETTS 1776 *
* COPYRIGHT 1988 SILICON GRAPHICS, INC. ’ *
* == ALL RIGHTS RESERVED =-- *

* THIS SOFTWARE IS FURNISHED UNDER LICENSE AND MAY BE USED AND COPIED

*

*

* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION*

OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER COPIES THEREOF*
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO *

* TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED.

-

*

* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE AND*
* SHOULD NOT BE CONSTRUED AS A COMMITMENT BY TECHNOLOGY CONCEPTS INC. AND *

* SILICON GRAPHICS INC.

- DECnet is a trademark of Digital Equipment Corporation

*

*

*

*

R R R R N A AN R R R R R RN R P A A AR R R R R N N R NN NP A N TN P AT A NI N TR F RN AN RN TR r S

*

* Version: 1 Revision: 1
*

* Facility: Example client program

Version 1.0 Sample Programs

B-1

* Abstract:

This program demonstrates how to exchange messages with a
This operation is called
task-to-task communication and is performed by issuing commands

remote node using IRIS-DN.
to the IRIS-DN network software.

This program demonstrates how to:

* 1) Establish a logical link as the client

-

* A logical link must be established between this host and
* the remote node before messages can be exchanged. To

* establish a logical link, one node must initiate the link
* request. The initiating node, or program, is called the

* client and the receiving program is called the server.

* This program is an example of the client. It requests

* a logical link, or connection, to a server.

*

* 2) Exchange messages over the logical link

*

* Once the logical link is established, no distinction is

* made between the client and the server. Both programs

* can receive and send messages across the logical link using
*

the read() and write() functions respectively.

* 3) Terminate the logical link

«

- Before a client program terminates, it must close
* the logical link.

PO T s R R A R R A S AL LR R SR A A AR Al s sy

/* Include files ¥/
#include <stdio.h>
#include <fentl.h>
#include <dn/defs.h>

/* Constant definitions */
#define NUM_BYTES 100

/* Global data definitions */

/.

Maximum number of bytes to read */

int 11; /* Logical link identifier */

char buffer [NUM_BYTES+1]; /* Character buffer */

OpenBlock opblk; /* OpenBlock typedef is defined in
<dn/defs.h> */

/* Program description
*

* In this example, our node name will be “CLIENT".

We will make a logical

* 1link request to the task name "EXAMPLE" on a remote node specified

B-2 4DDN User’s Guide

IRIS-4D Series

(

(

(|

* on the command line. If the server accepts our logical link request, we

* will send it the message "This is an example”. We will then wait for the

* reply message, “Got it". After we receive this message we will terminate

* the connection and exit the program successfully. If an error is returned
* from any IRIS-DN function call, error() or the library routine dn_perror ()
* is called to display the error message.

main(argec, argv)
int argc;
char **argv; /* argv([l] is the server’s node name */

int ret;
int len;

/* Before establishing a logical link, we must first open the
* logical link device, DN_LINK.
*/

if ((11 = openyDN_LINK, O_RDWR)) < 0) {
dn_perror (“Open Fail: *);
exit(1);

/* Next, we must make the logical link reguest to the server.

* To do this, we must specify the remote node and the server task
* we want to connect to. In addition, we must identify ourself
* so the server knows who is making the request.

* This information is contained in a data structure called the
* OpenBlock. We will fill in an OpenBlock with the necessary

* data, then issue the SES_LINK ACCESS ioctl() function to make
* the logical link request to the server., The loctl() function
* will return a 0 if the link is established to the server.

* If it returns a -1, the link is not open. The reason or error
* number is contained in the external variable errno.

bzero((char *) &opblk, sizeof (opblk)); /* Any field not used must be zero */
1f (argc == 2) { :
strcpy (opblk.op_node_name, argv(l]); /* Remote node name */
} else {
strcpy (opblk.op_node_name, “SERVER"); /* default 1f not given */
}
strcpy {opblk.op_task_name, “EXAMPLE"); /* Server task name */
strecpy (opblk.op_userid, ®CLIENT"); /* Our ID */

if (ioctl(ll, SES_LINK_ACCESS, &opblk) < 0) {
error(*link");

Version 1.0 Sample Programs B-3

/* The logical link is established once our connect request is

* accepted by the server. We may now proceed to send and receive

* data across the link using the read() and write() functionms.

* We will now send the message "This is an example"” to the server.

* We will then wait to receive the response message before terminating
« the connection. Note that we are using the default I/O options

* (stream data format and blocking reads).

/* First, copy the message to send into the character buffer allocated
* The copied string is NULL-terminated so we must add 1 to the
* string length for the NULL byte. Then send the message.
*/

strepy (buffer, "This is an example™);
len = strlen(buffer) + 1;

if ((ret = write(ll, buffer, lenm)) < 0) {
error (“write%);

/* Walt to receive the response message. */

if ((ret = read(ll, buffer, NUM_BYTES)) < 0) {
error (“read");

/* If the read was successful, display the message. Note that ret
* contains the actual number of bytes received.
*/

display_msg (buffer, ret);
/* Terminate the connection before successfully exiting the program.

* This example chooses not to send the optional disconnect data
* Therefore, only close() 1s needed.

*/
close (11);
}
/t
* Display message routine
*/

display_msg (buf, count)
char *buf;
int count;

-B-4 A4DDN User’s Guide IRIS-4D Series

0.
’

buf[count] =
printf ("Received reply ‘%s’\n", buf);

/t
* Error handler routine

*/

error (where)
char *where;

/* An error has occurred. Dn_perror displays the appropriate
* message based on the external variable errno. The close()
* system call will disconnect the logical link.

*/

dn_perror (where);
close (11);
exit (1);

Version 1.0 Sample Programs B-5

B.2 server.c

/t

* Module:

-

SERVER.C -~ Example DECnet Server Program

P T T 2 2 2 2 2 R R R R A R 2 R 2 SRS R AL A AR A AR SR ARl bttt i

*

*

*

*

*

*

COPYRIGHT (C) 1985, 1986 BY TECHNOLOGY CONCEPTS INC. *
SUDBURY, MASSACHUSETTS 1776 .

COPYRIGHT 1988 SILICON GRAPHICS, INC. *
-- ALL RIGHTS RESERVED —- *

*

THIS SOFTWARE IS FURNISHED UNDER LICENSE AND MAY BE USED AND COPIED *

ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION*
OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER COPIES THEREOF*
MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO *

TITLE

TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED. *

*

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE AND*
SHOULD NOT BE CONSTRUED AS A COMMITMENT BY TECHNOLOGY CONCEPTS INC. AND *
SILICON GRAPHICS INC. *

DECnet

*

is a trademark of Digital Equipment Corporation *

*

P 2 2 22 2 222 R R R R A R R R S A RS R RS RS RIS R R AR SRRttt

*

-

-

* % *

*

Version:

Facility:

Abstract:

1 Revision: 1
Example server program

This program demonstrates how to exchange messages with
a remote node using IRIS-DN. This operation is called

task-to-task communication and is performed by calling
system routines to access the IRIS-DN network software.

This program demonstrates how to:

1) Establish a logical link as a server
A logical link must be established between this host and
the remote node before messages can be exchanged. To
establish a logical link, one node must initiate the
logical link request. The initiating program is called the
client and the receiving program is called the server.
This program is an example of the server. It demonstrates
how a server program registers itself and waits for a
logical link request. It also demonstrates how a server
may use the access control information received with a
request to decide whether to accept or reject the logical

B-6 4DDN User’s Guide IRIS-4D Series

link request.
2) Exchange messages over the logical link

Once the logical link is established, no distinction is
made between the client and the server. Both programs

can receive and send messages across the logical link using

the read() and write() functions respectively.

3) Terminate the logical link

Before a server program terminates, it must close() the

logical link. Before it can receive additional logical
link requests, a server program must reopen the logical
link device and reregister itself.

AR R R T TR N R R AR AN R R R P T R A AN A AN N R AR R AN A RN AR RN RN AR I NI I TN TR AT RARN N TR W/

/*

Include files */

#include <stdio.h>
#include <fcntl.h>
#include <dn/defs.h>

/* Constant definitions */

#define NUM_BYTES 100 /* Maximum number of bytes to read */
/* Global data definitions */
int 11; /* logical link identifier */
char buffer [NUM_BYTES+1]; /* Character buffer */
OpenBlock opblk; /* OpenBlock typedef is defined
in <dn/defs.h> */
/* Program description
-
* In this example, we will register ourself as a server for the task
* name "EXAMPLE™ and wait for a logical link request. If the request
* received is for the user name "CLIENT", we will accept the logical
* link request, otherwise we will reject it. Once a logical link is
* established, we will wait to receive the message "This is an example™.
* Upon receiving it, we will display it and send back the reply message,
* "Got it*, Then we will terminate the connection and exit the program
* successfully. If an error is returned from any IRIS-DN function call,
* error() or the IRIS-DN error message routine dn_perror() is called to
* display the error message.
*/

Version 1.0 Sample Programs

main()

{
int len;
int ret;
SessionData sd;

/* Before establishing a logical link, we must first open the -
* logical link device, DN_LINK. (}
*/
if ((11 = open(DN_LINK, O_RDWR)) < 0) {
dn_perror (“open*");
exit (1)

/* Next, we must register ourself as a server for the task name "“EXAMPLE".
*/

if (ioctl(ll, SES_NAME_SERVER, “EXAMPLE") < 0) {
error (*name server");

/* Once registered as a server, we must walt for the access

* control information from a client with the SES_GET_AI ioctl ()
* function. When a link request comes in, the client’s access

* control information will be copied into opblk. Note that this

* ioctl() function will block until a request is made for this (
* server Or an error occurs.
*/

if (ioctl(ll, SES_GET_AI, &opblk) < 0) {
error (“Get AI");
} else {

/* We received a logical link request and OpenBlock.

* We must now determine whether or not we want to accept or

* reject the request. This determination is application

* dependent. We will use the access control information in the
* OpenBlock just received to make this determination. In this
* example, we will accept the request i1f it is from the user

* CLIENT, otherwise we will reject it. In this example, we do
* not send any return codes in the Session Data block with the
* SES_ACCEPT or SES_REJECT.

bzero((char *) &sd, sizeof(sd)):;
if (strcmp(opblk.op_userid, “CLIENT®) == 0) { (A
if (ioctl(ll, SES_ACCEPT, &sd) < 0) {
error (*accept”®);

B-8 4DDN User's Guide IRIS-4D Series

} else {
if (ioctl(ll, SES_REJECT, &sd) < 0) {
error (“reject™);

/* B close() must always be issued after a SES_REJECT..*/
close(ll);

/* Return an error to the shell. */
exit(1);

/* The logical link is established once we (the server) accept the
* link request. We may now proceed to send and receive data across
* the link using the read() and write() functions. We will first
* wait to receive the message "This is an example® from the remote
* node. Upon receiving it, we will display it and send back the
* message "Got it". Then we will terminate the connection. Note
* that we are using the default I/O data format and Input mode. They
* are stream data format and blocking reads.

/* Walt to receive a message from the remote node */

if ((ret = read(ll, buffer, NUM_BYTES)) < 0) {
error (“read");

/* 1If no error occurred, display the message. Note that ret
* contains the actual number of bytes received.
*/

display_msg (buffer, ret);

/* Copy the response message into the allocated character buffer.
* The copied string is NULL-terminated, so we must add 1 to the
* string length for the NULL byte. Then send the response message.
*/

strepy (buffer, “Got it");
len = strlen(buffer) + 1;

if ((ret = write(ll, buffer, len)) < 0) {
error (*write");

/* Terminate the connection before successfully exiting the program.
* In this example, we not to send optional disconnect data.

Version 1.0 Sample Programs

* Therefore, only the close() function is needed.

*/

close(ll);

/t
* Display message routine
*/
display_msg (buf, count)
char *buf;

int count;

bufcount] = * ’;

printf ("Received message ’%s’\n",

/i
* Error handler routine
*/

error (where)
char *where;

/* An error has occurred. Dn_perror displays the appropriate
* message based on the external variable errno. The close()

* system call will disconnect the logical link.

*/
dn_perror (where);

close(1ll);
exit (1);

B-10 4DDN User's Guide

IRIS-4D Series

Appendix C: Glossary

Access control information
Information contained in the OpenBlock structure that is
needed to access a remote node. This information
includes username, password, and account.

Active and adjacent node
A node that is currently communicating or ready to
communicate with another node.

Application-dependent
The application programmer has the option of filling
some fields in the data structures with user-defined data.

Area number
The area number identifies a group of nodes in the
network. The area number must be an integer in the 1-63
range.

Blocking I/O
Input mode. When blocking I/O is selected, read
operations wait until data becomes available.

Client
Local process that requests a logical link connection in
task-to-task communication.

Collision
Simultaneous transmissions by two or more nodes on an
ethernet network.

Congestion

Occurs when there are too many packets to be queued.

Version 1.0 Glossary C-1

Counters
Performance variables providing network management
information. These may be displayed by using the
SHOW COUNTERS command. They may be zeroed by
using the ZERO COUNTERS command.

Datagram
When a unit of data is received, the routing control ('

information is removed and the remaining information is
called a datagram.

DNA
The Digital Network Architecture developed by Digital
Equipment Corporation as the networking architecture for
DEC systems.

Ethemnet
A local area network using a Carrier-Sense Multiple
Access with Collision Detect scheme to arbitrate the use
of a 10 megabit per second baseband coaxial cable.

Inactive node
A node that is not currently communicating or ready to
communicate with another node on the ethernet. -

Flow control (‘
The function performed by a receiving node to limit the
amount or rate of data that is sent by a transmitting node.
Flow control is automatically activated by the network
software as memory for transmit and receive. buffers
becomes scarce. When activated, the receiving node
notifies the transmitting node to stop sending data
messages. After this occurs, the transmitting node must
wait for a message from the receiving node to resume the
transmission of data messages.

Frame
A packet in ethernet terminology.

Inactive node ,
A node that is not currently communicating or ready to
communicate with another system on the ethernet. (

C-2 4DDN User’s Guide IRIS-4D Series

Interrupt data

Logical link

Special high-priority control information that is
transmitted immediately.

A virtual circuit between two application programs.

Logical link device

A virtual I/O device responsible for controlling logical
links.

Network Control Program (NCP)

Non-blocking 1/0

A utility at the user level that interfaces with lower level
modules. It provides a set of interactive commands that
the user enters at the terminal.

Input mode. If non-blocking I/O is selected, the process

~ does not wait until data is available before performing a

read operation. If a special interrupt signal is registered,
the process is notified when data becomes available.

Null-terminated string

Object number

A string that ends with zero.

A number used instead of a name for addressing a process
in task-to-task communication.

OpenBlock Structure

Optional data

Packet

Version 1.0

The data structure created by a 4DDN client process
containing the information needed to establish a DECnet
connection. This includes the node name, object type or

- name, user name, and the password.

Special data field that is generally used by the application
program to explain the reason for termination of a logical
link.

A unit of data to be routed from a source node to a
destination node. When its routing header is removed and
the packet is passed to the End Communication Layer, it
becomes a datagram.

Glossary C-3

Record
I/0 data format. When this format is selected, a process
passes and receives data in a structure indicating whether
the message is complete or incomplete. If incomplete, a
special status field indicates whether it is the beglnmng.
the middle, or the end of the message.

Server
Remote process that accepts or rejects a logical link
connection when a process is attempting to establish a
logical link in task-to-task communication Stream I/O
data format. In stream format, a process receives data as
it appears across the logical link without distinguishing
where messages begin and end.

Task-to-task communications
The exchange of data between two processes via a logical
link.

C-4 4DDN User’s Guide IRIS-4D Series

