NFS User's Guide

IRIS-40 Series

ﬁ% SiliconGraphics
Computer Systems

Document number: 007-0850-030

NFS User’s Guide

Document Version 3.0

Document Number 007-0850-030

9/90

Technical Publications:

Seth Katz

Amy B. W. Smith
Melissa Heinrich
Lotrie Williams

- Engineering:
Andrew Cherenson

Brendan Eich
Dana Treadwell

© Copyright 1990, Sllicon Graphics, Inc. - All rights reserved

This document contains proprietary and confidential information of
Silicon Graphics, Inc., and is protected by Federal copyright law. The
contents of this document may not be disclosed to third parties, copied
or duplicated in any form, in whole or in part, without the express
written permission of Silicon Graphics, Inc.

U.S. Government Limited Rights Legend

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (b) (1) (ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013. Contractor/manufacturer is Silicon
Graphics Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-
7311.

NFS User's Guide
Document Version 3.0
Document Number 007-0850-030

Silicon Graphics, Inc.
Mountain View, California

IRIS@ is a registered trademark and Silicon Graphics™, IRIS4Dm™, IRIX™, and
WorkSpace™, are trademarks of Silicon Graphics, Inc. Sun™ and NFS™ are
trademarks of Sun Microsystems, Inc.

Contents

1. Introduction .
1.1 Getting Started
1.2 Terminology .
1.2.1 NFS Permissions
1.2.2 NFS Commands . .
1.3 Managing NFS with the System Manager and
WorkSpace ..
1.3.1 Using the System Manager
1.3.2 Using WorkSpace
1.4 Hints about Debugging IRIX in the Network
Environment . . .
1.5 Relevant Documentatnon
1.6 Conventions
1.7 Product Support

2. Introduction to Network Concepts .

2.1 Networking Models .

2.2 Introduction to Major Services

2.3 NFS Abstract . .
2.3.1 Transparent Informanon Access .
2.3.2 Different Machines and Operating

Systems e e e e

2.3.3 Easily Extensible . .
2.3.4 Ease of Network Admmlstratxon .
2.3.5 Reliability
2.3.6 High Performance

2.4 UNIX and NFS

3. NFS Service Overview
3.1 What is NFS?
3.2 How NFS Works

1-1
12

13
1-4

1-5
1-5
1-5

1-6
1-6

1-7

2-1
2-1
2-2

2-3
2-4
2-4
2-4

2-4
2-5

3-1

3-2

3.3 How to Become an NFS Server
3.4 How to Mount a Remote File System
3.4.1 automount .
3.5 Port Registration
3.6 The Network Lock Manager
3.6.1 The Locking Protocol
3.6.2 The Network Status Monitor
3.7 Setting the Time in User Programs
3.8 Debugging NFS .
3.9 Types of Failures .
3.9.1 Remote Mount Faxled
3.9.2 Programs Do Not Respond
3.9.3 Hangs Part Way through Boot
3.9.4 Everything Works Slowly

3.9.5 Cannot Access Remote Devices .

4. Using the NFS Automounter

4.1 The Automounter . .
4.1.1 How the Automounter Works .
4.2 Preparing the Maps
4.2.1 Writing a Master Map
4.2.2 Writing an Indirect Map .
4.2.3 Writing a Direct Map
4.2.4 Multiple Locations .
4.2.5 Specifying Subdirectories .
4.2.6 Metacharacters .
4.2.7 Environment Variables . .
4.2.8 Including OtherMaps . . .
4.3 Starting automount .
4.3.1 The Temporary Mount Pomt
4.3.2 The Mount Table .
4.3.3 Modifying the Maps .
4.3.4 Mount Point Conflicts
44 Problem Solving

4.4.1 Automount Sequence of Events .

4.4.2 Error Messages Related to
automount

3-10
3-11
3-11
3-14
3-14
3-19
3-20
3-20
3-21

4-1
4-1
4-2
4-3
4-5
4-7
4-9

4-14

4-15

4-17

4-21

4-22

4-23

4-26

4-26

4-27

4-28

4-29

4-30

4-31

5. The YP Service .
5.1 The YP Service
5.1.1 The YP Map
5.1.2 The YP Domain
5.1.3 Servers and Clients .
5.1.4 Masters and Slaves .
5.2 YP Overview .
5.3 YP Installation and Admmrstratlon .
5.3.1 Setting Up a Master YP Server
5.3.2 Altering a YP Client's Files to Use YP
Services
5.3.3 Setting Up a Slave YP Server
5.3.4 Setting Up a YP Client .
5.3.5 Modifying Existing YP Maps after YP
Installation . . e .
5.3.6 Propagation of a YP Map .
5.3.7 Making New YP Maps after YP
Installation

Set . . .
5.3.9 Changing the Master Server .
5.4 Debugging a YP Client .
5.4.1 On Client: Commands Hang
5.4.2 On Client: YP Service Unavailable
5.4.3 On Client: ypbind Crashes .
5.4.4 On Client: ypwhich Inconsistent .

5.5 Debugging a YP Server . .

5.5.1 On Server: Different Versions of a YP
Map . . .
5.5.2 On Server: ypserv Crashes

5.6 YP Policies .

5.7 Changing Security wrth the YP . .
5.7.1 Global and Local YP Database Files
5.7.2 Two Other Files YP Consults .

5.7.3 Security Impiications
5.7.4 Special YP Password Change

5.3.8 Adding a New YP Server Not in the Ongrnal

5-1
5-2

5-3
5-4
5-4
5-7
5-7

5-9
5-12
5-13

5-14
5-16

5-18

5-19
5-20
5-21
5-21
5-23
5-24
5-26
5-26

5-26
5-28
5-29
5-30
5-30
5-31
5-31
5-32

5.7.5 Netgroups: Networkwide Groups of Machines and

Users . . . e e e e e e e 5-32

5.8 Adding a New Userto a Machme C e e e e 5-34
5.8.1 Edit the Master YP Server's /erc/passwd

File e e e e e e e 5-34

5.8.2 Make a Home Dlrectory e e e e e e e 5-37

5.8.3 The New User's Environment 5-38

Index ¢ . ¢ ¢ « & o o « & & o Index-1

P (VN

List of Tables

Table 5-1. YPlInstallationTopics 5-7
Table 5-2. Exampie UserGroups 533
Table 5-3. Example MachineGroups 534

1. Introduction

The Network File System is a facility for sharing files in a heterogeneous
environment of machines, operating systems, and networks. Sharing is
accomplished by mounting a remote filesystem, then reading or writing files
in place as though they were on your own machine. The NFS is open-
ended, and users are encouraged to interface it with other systems.

Operating system independence was taken as an NFS design goal, along
with machine independence, crash recovery, transparent access, and high
performance. The NFS was thus designed as a network service, and not as a
distributed operating system. As such, it is able to support distributed
applications without restricting the network to a single operating system.

The goal of NFS was to make all resources available as needed. Individual
workstations have access to all information residing anywhere on the
network, as well as resources such as printers and supercomputers.

Silicon Graphics, Inc. has adapted Sun Microsystems, Inc.'s 4.0 release of
NFS for use on the IRIS4D Series workstation. Performance on the IRIS-
4D Series workstation has been optimized. NFS has also been integrated
with the IRIS WorkSpace™ environment and System toolchest.

NFS is an option on the IRIS4D Series workstation. You can run NFS on
an IRIS-4D Series workstation only with Silicon Graphics, Inc.’s
implementation of NFS.

Version 3.0 Introduction 1-1

1.1 Getting Started

This document makes some assumptions about you and your IRIS4D Series
workstation.

* Your system is up and running and you know how to boot it. If not,
consult your owner’s guide.

* You know a little about the IRIX '™ operating system. If not, see ‘‘Using
IRIX"’ in your owner’s guide.

* You are familiar with a text editor that runs on the IRIS. If not, see
‘‘Editing Text Files with jot’’ in your owner’s guide, or the vi(1) man
page.

¢ You are familiar with TCP/IP commands. If not, read the Network
Communications Guide published by Silicon Graphics, Inc.

The sections below summarize the terms, key files, concepts, and commands
used by NFS.

1.2 Terminology

NFS uses a number of terms that have specific meaning in the NFS
environment. These terms are listed below with their meanings.

mount When you use the mount command, it announces to your
machine that there is a file system that is to be attached to the
file tree at a specified point in your directory. An NFS moun:t
allows you to put another machine’s file system on yours.
Mounting a file system is analogous to grafting a branch on a
tree. :

export To export a file system means to allow other machines to mount
your file system on their machines. You can specify which file
systems you want to export in the /etc/exports file. A machine
can export only its own file systems.

1-2 3.3 NFS User's Guide IRIS-4D Series

server A server is any machine that provides a network service. A
single machine can provide more than one service. In fact, a
typical configuration is one machine acting as an NFS server
and a YP server. In each of the NFS network services, servers
are entirely passive. The servers wait for clients to call them;
they never call the clients.

client A client is any entity that accesses a network service. A client
can be anything from an actual machine to a IRIX process
generated by a piece of software.

A machine can be both a server and a client. The degree to which clients are
bound to their server varies with each of the NFS network services. The YP
client binds randomly to one of the YP servers by broadcasting a request.

At any point, the YP client may decide to broadcast for a new server. An
NFS client may choose to mount file systems from any number of servers at
any time. “

In all cases, however, the client initiates the binding. The server completes
the binding, subject to access control rules specific to each service. Since
most network administration problems occur at bind time, a system
administrator should know how a client binds to a server and what (if any)
access control policy each server uses.

1.2.1 NFS Permissions

The configuration files listed below are used by NFS to give remote
machines access to local file systems.

/etclhosts This file contains a list of Intemnet address and machine name
pairs such as 42.0.0.5 elvis for use with TCP/IP. This file
must be kept current and must include all the machines with
which you want to communicate.

Version 3.0 Introduction 1-3

/etc/exports

NFS uses this file to grant mount permissions to other
machines. Each line of the file contains a directory plus a list
of options which might include a list of machines (see
exports(4)). The example below allows only users on abbott
and costello to mount any directory on the local machine’s
root file system and allows users on any machine to mount
any directory on the local machine’s /usr file system.

/ abbott costaelle
/usr

Note: NFS has been enhanced to allow exporting of
arbitrary files and directories.

- 1.2.2 NFS Commands

NFS uses two basic commands:

mount

umount

This command allows access to a directory exported by a
remote machine through a local directory. The remote
directory is mounted on a directory that serves as a mount
point and accessed as a directory, like a local IRIX file
system. The mount command checks for appropriate
permissions before an exported file system is mounted. After
you run the mount command with arguments, type it without
arguments, to report the remote file systems as well as the
local ones. Below is an example of the syntax for mount
with arguments:

/ete/mount host:ipathname Ipathname
This command unmounts the remote directory. You can use
either the remote name of the directory (host:/pathname) or

the local name (/pathname) as the argument. Below is an
example of the syntax for umount:

/etc/umount /pathname

You must be the superuser to run these commands. See the mount(1M) man
page for full option information.

1-4 3.3 NFS User’'s Guide IRIS-4D Series

1.3 Managing NFS with the System Manager
and WorkSpace

The IRIX System Manager Tools and WorkSpace provide an alternative to
traditional NFS management. IRIS-4D Series workstation users who prefer
the visual interface may not have to use any other tools when managing and
using NFS. If you are not yet familiar with the System Manager and
WorkSpace, read these sections in your /RIS<4D Series Owner’s Guide or
Personal IRIS Owner's Guide:

* “*Choosing an Administrator’’
* ‘““The System Manager Tools"’
* “‘Getting the Most Out of the WorkSpace’’

1.3.1 Using the System Manager

The System Manager provides a visual interface and menus for the
administration of NFS and other networking products. You can find
information about the System Manager and NFS in the IRIS-4D Series
Owner’s Guide or Personal IRIS Owner’s Guide in these sections:

* ‘‘Adding Your IRIS to a Distributed Network’’
¢ ‘“‘“Turning on Network Software -- Centralized’’

¢ ‘‘Mounting a Remote Filesystem"’

1.3.2 Using WorkSpace

Directories mounted by NFS appear identical to directories on the client in
the WorkSpace Directory View window. You can use these directories and
the files they contain in WorkSpace as you would use any other file or
directory.

Files in NFS mounted file systems can not be displayed with the correct icon
if that icon does not exist on the client or is not associated with the same file
or file type. To represent the files in a filesystem shared with NFS, you must
have the same icons associated with the same files or file types on each

Version 3.0 introduction 1-5

workstation. For more information about icons and file typing rules, see
Programming the IRIS WorkSpace.

1.4 Hints about Debugging IRIX in the Network
Environment

When you cannot perform a task that involves NFS network services, the
problem probably lies in one of the following four areas, listed below in
descending order of frequency.

1. The NFS network access control policies do not allow the operation or
architectural constraints prevent the operation.

2. The client software or environment is broken.
3. The server software or environment is broken.
4. The network is broken.

For more information on these four areas, consult the appropriate section of
this document.

1.5 Relevant Documentation

You may find useful these documents in planning and setting up your
network.

. ® Network Communications Guide, published by Silicon Graphics, Inc.

e Defense Data Network Protocol Handbook, which is available from the
Network Information Center, Defense Data Network, SRI International,
333 Ravenswood Ave., Menlo Park, California 94025, telephone: 800-
235-3155. This three-volume set contains information on TCP/IP and
UDP/IP.

o IRIS-4D Series Owner’s Guide or Personal IRIS Owner’s Guide, which
provide information on hardware installation for TCP/IP and
administration of NFS through WorkSpace. This is published by Silicon
Graphics, Inc.

1-6 3.3 NFS User’s Guide IRIS-4D Series

* [RIS-4D Programmer's Reference Manual, published by Silicon
Graphics, Inc.

1.6 Conventions

To refer to entries in IRIX ™ documentation, this manual cites the entry
name, followed by the section number in parentheses. For example, cc(1)
refers to the cc manual entry in Section 1 of the IRIS<4D Programmer’s
Reference Manual.

In command syntax descriptions and examples, square brackets ([])
surrounding an argument indicate that the argument is optional. Words in
italics represent variable parameters, which you should replace with the
string or value appropriate for the application.

In text descriptions, filenames and IRIX commands are written in italics.
Command syntax descriptions and examples are writtenin typewriter
font.

1.7 Product Support

Silicon Graphics, Inc., provides a comprehensive product support and
maintenance program for IRIS products. For further information, contact
your service organization.

Version 3.0 Introduction 1-7

2. Introduction to Network Concepts

This chapter introduces and describes network services. It describes the
services currently available and defines some useful terms for describing the
network environment.

This manual introduces and explains each of the services that are provided
by the NFS service. The NFS service is introduced and explained in Chapter
3, and the Yellow Pages service is introduced and explained in Chapter 5.
Each chapter contains information on troubleshooting for the service under
discussion.

2.1 Networking Models

There are many ways to make computers and networks interface
transparently. The two major methods are the distributed operating system
approach and the network services approach.

A distributed operating system allows the network software designer to
make assumptions about the other machines on the network. Usually two of
these assumptions are that the remote and local hardware are identical, and
that the remote and local software are identical. These assumptions allow a
quick and simple implementation of a network system in an environment
limited to specific hardware and software.

This type of distributed operating system is, by design, closed. A closed
environment is one in which it is very difficult to integrate new hardware or
software, unless it comes from the vendor of that network system. A closed
network system forces a customer to return to one vendor for solutions to all
computing needs.

Version 3.0 Introduction to Network Concepts 2-1

On the other hand, the network services approach is not closed. Network
services are made up of remote programs composed of remote procedures
called from the network. Optimally, a remote procedure computes results
based entirely on its own parameters. This procedure and the network
service are not tied to any paricular operating system or hardware. The
design of the network service makes it possible for a variety of machines
and software to talk to the network services. This enables the IRIS
workstation to talk to various types of computers.

The network services approach is more complex in design and
implementation than a closed distributed operating system. Since remote
procedures are independent of operating systems and hardware, multiple
remote procedures must sometimes be called in the NFS environment,
where a single transaction might suffice in a closed system.

2.2 Introduction to Major Services

This overview presents each of the major NFS services followed by a short
description of their functionality. The NFS services are discussed in greater
detail in this manual.

The Remote Procedure Call (RPC) facility is a library of procedures that
provide a means whereby one process (the caller process) can have another
process (the server process) execute a procedure call, as if the caller process
had executed the procedure call in its own address space (as in the local
model of a procedure call). Because the caller and the server are now two
separate processes, they no longer have to live on the same physical
machine. RPC is documented in the Network Communications Guide.

The External Data Representation (XDR) is a specification for the portable
data transmission standard. Together with RPC, it provides a kind of
standard 1/O library for interprocess communication. Thus programmers
now have a standardized access to sockets without having to be concemned
about the low-level details of socket-based IPC.

NFS is an operating system-independent service which allows users to
mount directories, even root directories, across the network, and then to treat
those directories as if they were local.

2-2 3.3 NFS User's Guide ‘ IRIS-4D Series

(

The portmapper is a utility service that all other services use. It’s a kind of
registrar that keeps track of the correspondence between ports (logical
communications channels) and services on a machine, and provides a
standard way for a client to look up the port number of any remote program
supported by the server. :

Yellow Pages (YP) is a network service designed to ease the job of
administering the large nerworks that NFS encourages. The YP is a
replicated, read-only, database service. Network file system clients use it to
access network-wide data in a manner that is entirely independent of the
relative locations of the client and the server. The YP database typically
provides password, group, network, and host information.

Network Lock Manager supports advisory file and record locking for both
local and NFS mounted files. User programs simply issue lockf{) and fcntl()
system calls to set and test file locks — these calls are then processed by
Lock Manager daemons, which maintain order at the network level.

The automount utility service is used to dynamically mount filesystems.
Filesystems can be mounted automatically when they are used, and
unmounted silently following a predetermined idle period. The automount
utility can be used for a variety of purposes, including automatically
mountng a user’'s home directory from any workstation connected by NFS.

There are other network services, such as sprayd, rstatd. and rwalld. This
secton, however, is intended as an introduction, and it covers only the
fundamental services noted above.

2.3 NFS Abstract

This section offers a discussion of some of the principles behind Silicon
Graphics, Inc.’s implementation of NFS.

2.3.1 Transparent Information Access

Users are able to get directly to the files they want without knowing the
network address of the data. To the user, all NFS-mounted filesystems look
just like private disks. There's no apparent difference between reading or

Version 3.0 Introduction to Network Concepts 2-3

writing a file on a local disk, and reading or writing a file on a disk in the
next building. Information on the network is truly distributed.

2.3.2 Different Machines and Operating Systems

No single vendor can supply tools for all the work that needs to get done, so
appropriate services must be integrated on a network. NFS provides a
flexible, operating system-independent platform for such integration.

2.3.3 Easily Extensible

A distributed system must have an architecture that allows integration of
new software technologies without disturbing the extant software
environment. Since the NFS network-services approach does not depend on
pushing the operating system onto the network, but instead offers an
extensible set of protocols for data exchange, it supports the flexible
integration of new software.

2.3.4 Ease of Network Administration

The administration of large networks can be complicated and time-
consuming, yet they should (ideally) be at least as easy to administer as a set
of local filesystems on a timesharing system. The UNIX system has a
convenient set of maintenance commands developed over the years, and the
Yellow Pages (YP), an NFS-based network database service, has allowed
them to be adapted and extended for the purpose of administering a network
of machines. The YP also allows certain aspects of network administration
to be centralized onto a small number of file servers, e.g. only server disks
must be backed up in networks of diskless clients.

2.3.5 Reliability

NFS’s reliability derives from the robustness of EFS (or Extent File System),
from the stateless NFS protocol, and from the daemon-based methodology
by which network services like file and record locking are provided. See the
section The Lock Manager for more details on locking. In addition, the file

2-4 3.3 NFS User's Guide IRIS-4D Series

server protocol is designed so that client workstations can continue to
operate even when the server crashes and reboots.

The major advantage of a stateless server is robustess in the face of client,
server, or network failures. Should a client fail, it is not necessary for a
server (or human administrator) to take any action to continue normal
operation. Should a server or the network fail, it is only necessary that
clients continue to attempt to complete NFS operations until the server or
network gets fixed. This robustess is especially important in a complex
network of heterogeneous systems, many of which are not under the control
of a disciplined operations staff, and which may be running untested
systems that are often rebooted without waming.

2.3.6 High Performance

The flexibility of the NFS allows configuration for a variety of cost and
performance trade-offs. For example, configuring servers with large, high-
performance disks, and clients with no disks, may yield better performance
at lower cost than having many machines with small, inexpensive disks.
Furthermore, it is possible to distribute the filesystem data across many
servers and get the added benefit of multiprocessing without losing
transparency. In the case of read-only files, copies can be kept on several
servers to avoid bottlenecks.

Several performance enhancements have been added to SGI's NFS, such as
fast paths for key operations, asynchronous service of multiple requests,
disk-block caching, and asynchronous read-ahead and write-behind. The
fact that caching and read-ahead occur on both client and server effectively
increases the cache size and read-ahead distance. Caching and read-ahead
do not add state to the server; nothing (except performance) is lost if cached
information is thrown away. In the case of write-behind, both the client and
server attempt to flush critical information to disk whenever necessary, to
reduce the impact of an unanticipated failure; clients do not free write-
behind blocks until the server confirms that the data is written.

Version 3.0 Introduction to Network Concepts 2-5

2.4 UNIX and NFS

Unlike many recently marketed distributed operating systems, UNIX was
originally designed without the knowledge that networks existed. This
networking ignorance presents three impediments to linking UNIX with
currently available high-performance networks.

1. UNIX was never designed to yield to a higher authority (like a network
authentication server) for critical information or services. As a result,
some UNIX semantics are hard to maintain across a network. For
example, trusting remote users to log in as roor is not always a good
idea.

2. Some UNIX execution semantics are difficult. For example, UNIX
allows a user to remove an open file, yet the file does not disappear until
closed by everyone. In a network environment, a client UNIX machine
may not own an open file. Therefore, a server may remove a client’s
open file.

3. When a UNIX machine crashes, it takes all its applications down with it.
When a network node crashes (whether client or server), it should not
drag down all of its bound neighbors. The treatment of node failure on a
network raises difficulties in any system and is especially difficult in the
UNIX environment.

NFS has implemented a system of stateless protocols to circumvent the
problem of a crashing server dragging down its bound clients. Stateless
means that a client is independently responsible for completing work,
and that a server need not remember anything from one call to the next
In other words, the server keeps no state. With no state left on the
server, there is no state to recover when the server crashes and comes
back up. So, from the client’s point of view, a crashed server appears no
different from a very slow server.

In implementing UNIX over the network, NFS attempted to remain
compatible with UNIX whenever possible. However, two kinds of
incompatibilities have been introduced. First, there are issues that would
make a networked UNIX evolve into a distributed operating system, rather
than a collection of network services. Second, there are issues that would
make crash recovery extremely dxfﬁcult from both the implementation and
administration point of view.

2-6 3.3 NFS User’'s Guide IRIS-4D Series

3. NFS Service Overview

This chapter discusses Silicon Graphics, Inc.’s implementation of Sun
Microsystem, Inc.’s Network File System (NFS). This chapter begins with
an explanation of some NFS terms and concepts. It then describes how to
create an NFS server that exports file systems, how to mount and utilize
remote file systems, how to debug NFS when problems occur, and how to
work with incompatibilities between NFS files and normal UNIX files. The
NFS services are also discussed in the following chapter. Some references
to the Yellow Pages (YP) are included in this chapter. Section 4.2 contains
a description of YP commands.

3.1 What is NFS?

NFS enables users to share file systems over the network. A client may
mount or unmount file systems from an NFS server machine. The client
always initiates the binding to a server’s file system by using the moun:(1M)
command. Typically, a client mounts one or more remote file systems at
startup by placing lines like those shown in the example below in the file
letclfstab, which mount reads when the system comes up.

titan:/usr2 /usr2 nfs zrw,hard,bg 0 0
vaenus:/usr/man /usr/man nfs rw,hard,bg 0 0

See fstab(4) for a full description of the format.

Version 3.0 NFS Service Overview 3-1

Since clients initiate all remote mounts, NFS servers control who may
mount a file system. NFS servers do this by limiting named file systems to
desired clients with an entry in the /erc/exports file. In the example below,
the file system /usr is exporied to the world, while the file system /usr2 is
limited to specific machines.

/usr § export to the world
/usr2 nixon ford reagan § export to only these machines

See exports(4) and exporifs(1M) for a full description of the format.

3.2 How NFS Works

Two remote programs implement NFS service: mountd(1M) and nfsd(1M).
The mountd service is run by an NFS client. The mountd service checks
permission to verify access by the client. If the client does have permission
to mount the file system requested, a pointer to that file system is returned.
When access to the mount point and the directories below it are requested,
this pointer leads you to the server’s nfs daemon, through a Remote
Procedure Call (RPC). The nfsd service starts the nfs(4) daemons on the
server that handle client file system requests. For more information on
Remote Procedure Calls, see the Network Communications Guide.

3.3 How to Become ah NFS Server

An NFS server is a machine that exports one or more file systems. To
enable any machine to export a file system, become the superuser (root) and
follow these steps:

1. Add the pathname from the mount point of the file system you want to
export in the file /etc/exports. See exports(4) for file format details. For
example, to export /usr, the export file would look like this:

/usr

An NFS server can export only its own file systems.

3-2 3.3 NFS User’'s Guide . IRIS-4D Series

2. Make sure mountd is available for an RPC call by checking
lusrletc/inetd.conf on the NFS server for these lines:

mountd/1 dgram rcp/udp wait root /usr/etc/rpe.mountd mountd

If the lines above are not present, add them. For details, see inetd(1M).

3. Make sure that NFS is enabled at system initialization by setting the nfs
configuration flag on:

/etc/chkconfig nfs on

The initialization script, /etc/init.d/nerwork, starts NFS automatically,
every time you boot the server, if the flag is on.

To enable NFS servers without rebooting, type:

/usr/etc/nfsd 4
/usr/etc/axportfs -va

After these steps, the NFS server should be able to export the file system
named in /etc/exports. The next section describes how to mount a remote
file system.

3.4 How to Mount a Remote File System

This section contains information on mounting a remote file system. You
can mount any exported file system onto your machine as long as you can
reach the server over the network and your machine is included in its
/etclexports list for that file system. The terms hard and soft mount are
defined as follows:

hard mount A hard mount attaches a remote file system to a local
machine in a way that causes the client to continue to call
the server until the server responds. A hard mount will
always wait until it gets a response. If the server is down
or slow, the hard mount causes the client to wait
indefinitely for any operation on that file system. A hard
mount is the default kind of mount.

Version 3.0 NFS Service Overview 3-3

soft mount A soft mount also attaches a remote file system to a local
machine. However, the client will not continue to call
indefinitely. Rather, it will call a number of times and
then give up. If a client is not able to execute any
command on a soft-mounted file system (because the
server fails to respond), it will print an error on the
console. A soft mount is an option that you must specify
when using the mount command.

On the machine on which you want to mount the file system, become the
superuser and type:

mount server_name:/pathname /directory

For example, to soft mount the /usr file system from the remote machine
elvis onto the local empty directory /usr/elvis, type:

mount -o soft,bg elvis:/usr /usr/elvis

You can mount file systems with the soft option, so that if elvis goes down,
the local machine does not keep trying to mount /usr/elvis indefinitely. This
command fails if the server goes down, rather than waiting for the server to
come back up.

You may wish to keep trying to mount /usr/elvis. For example, it may be
important to mount the filesystem as soon as elvis recovers from a crash, or
- you may want the filesystem mounted automatically if it is available. If this
is the case, you can use the hard option, along with the background option
bg, causing minimal impact on system performance:

mount -o hard,bg alvis:/usr /usr/elvis

Use the hard option when performing operations that write across the NFS
connection, or for any operation that must complete.

Note that it is advisable to use the background option with any mounts to
avoid hanging while waiting for the server to respond or recover.

To make sure you have mounted a file system where you expected, use
either df(1) or mount(1M), without an argument. Each of these commands
displays the currently mounted file systems.

Typically, you mount frequently used file systems at startup by placing
entries for them in the file /etc/fstab. See fstab(4).

3-4 3.3 NFS User’s Guide IRIS-4D Series

3.4.1 automount

Rather than mount file systems and leave them mounted at all times, the
automount command mounts file systems only when they are in use, and
unmounts them when they are not in use. Because file systems are
unmounted when not in use, automount can be used to mount any or all
filesystems available on your network, using only one mount point.

The automount command starts a daemon that mounts and unmounts file
systems when they are used. The remote file systems are accessible to the
user in the same way they would be if they were always mounted. To
access a file or directory in a remote file system use the same commands that
access files on local file systems. The file system is mounted when it is
accessed, in a manner transparent to the user. For more information on
automount, see Chapter 4, Using the NFS Automounter and the
automount(1M) manual page.

3.5 Port Registration

Every portmapper on every host is associated with port number 111. The
portmapper is the only network service that must have such a well-known
(dedicated) port. Other network services can be assigned port numbers
statically or dynamically so long as they register their ports with their host’s
portmapper. For example, a server program based on the RPC library
typically gets a port number at run time by calling an RPC library
procedure. Note that a given network service can be associated with port
number 256 on one server and with port number 885 on another; on a given
host, a service can be associated with a different port every time its server
program is started. Delegating port-to-remote program mapping to
portmappers also automates port number administration. Statically mapping
ports and remote programs in a file duplicated on each client would require
updating all mapping files whenever a new remote program was introduced
to a network. (The alternative of placing the port-to-program mappings in a
shared NFS file would be too centralized, and if the fileserver went down the
whole network would go down with it).

The port-to-program mappings which are maintained by the portmapper
server are called a portmap. The portmapper is started automatically
whenever a machine is booted. Both server programs and client programs

Version 3.0 NFS Service Overview 3-5

call portmapper procedures. As part of its initialization, a server program

calls its host’s portmapper to create a portmap entry. Whereas server

programs call portrnappers 1o update portmap entries, clients call

portmappers to query porunap entries. To find a remote program'’s port, a

client sends an RPC call message to a server’s portmapper, if the remote

program is supported on the server, the portmapper returns the relevant port :
number in an RPC reply message. The client program can then send RPC (j
call messages to the remote program’s port. A client program can minimize

its portmapper calls by caching the port numbers of recently called remote

programs.

3.6 The Network Lock Manager

SGI's NFS includes a NFS-compatible Network Lock Manager (see the

lockd(8C) man page for more details) that supports the lockf()/fcntl(),

System V style of advisory file and record locking over the network.

System V locks are generally considered superior to 4.3BSD locks,

implemented with the flock() system call, for they provide record level, and

not merely file level, locking. Record level locking is essential for database (
systems. flock() is supporned for use on individual machines, but flock() is

not intended to be used across the network. flock() locks exclude only other
processes on the same machine. There is no interaction between flock() and

lockf().

Locking prevents multiple processes from modifying the same file at the
same time, and allows cooperating processes to synchronize access to shared
files. The user interfaces with the locking service by way of the standard
lockf() system-call interface, and rarely requires any detailed knowledge of
how it works. The kemel maps user calls to flock() and fcntl() into RPC-
based messages to the local lock manager (or, if the files in question are on
EFS-mounted filesystems, into calls to EFS). The. fact that the file system
may be spread across multiple machines is really not a complication — until
a crash occurs.)

All computers crash from time to time, and in an NFS environment, where (
multiple machines can have access to the same file at the same time, the

process of recovering from a crash is necessarily more complex than in a
non-network environment. Furthermore, locking is inherently stateful. If a

server crashes, clients with locked files must be able to recover their locks.

3-6 3.3 NFS User’'s Guide IRIS-4D Series

If a client crashes, its servers must have the sense to hold the client’s locks
while it recovers. And, to preserve NFS’s overall transparency, the recovery
of lost locks must not require the intervention of the applications
themselves. This is accomplished as follows:

* Basic file access operations, such as read and write, use a stateless
protocol (the NFS protocol). All interactions between NFS servers and
clients are atomic — the server doesn’t remember anything about its
clients from one interaction to the next. In the case of a server crash,
client applications will sleep until the server comes back up and their
NFS operations can complete.

* Stateful services (those that require the server to maintain client
information from one transaction to the next) such as the locking service,
are not part of the NFS per se. They are separate services that use the
status monitor (see the section The Network Status Monitor) to ensure that
their implicit network state information remains consistent with the real
state of the network. There are two specific state-related problems
involved in providing locking in a network context:

1. If the client has crashed, the lock can be held forever by the server.

2. If the server has crashed, it loses its state (including all its lock
information) when it recovers.

The Network Lock Manager solves both of these problems by
cooperating with the Network Status Monitor to ensure that it’s notified
of relevant machine crashes. Its own protocol then allows it to recover
the lock information it needs when crashed machines recover.

The lock manager and the status monitor are both network-service
daemons — they run at user level, but they are essential to the kemnel’s
ability to provide fundamental network services, and they are therefore
run on all network machines. Like other network-service daemons —
which provide, for example, remote-execution services rexd and remote-
login services rlogind) — they are best seen as extensions to the kernel
which, for reasons of space, efficiency and organization, are implemented
as daemons. Application programs that need a network service can either
call the appropriate dacmon directly with RPC/XDR, or use a system call
(like lockf ()) to call the kemel. In this later case, the kemnel will use RPC
to call the daemon. The network daemons communicate among
themselves with RPC (see the section The Locking Protocol for details of
the lock manager protocol). It should be noted that the daemon-based

Version 3.0 NFS Service Overview 3-7

approach to network services allows for tailoring by users who need
customized services. It’s possible, for example, for users to alter the lock
manager to provide locking in a different style.

At each server site, a lock manager process accepts lock requests, made
on behalf of client processes by a remote lock manager, or on behalf of
local processes by the kemel. The client and server lock managers
communicate with RPC calls. Upon receiving a remote lock request for a
machine that it doesn’t already hold a lock on, the lock manager registers
its interest in that machine with the local status monitor, and waits for that
monitor to notify it that the machine is up. The monitor continues to
watch the status of registered machines, and notifies the lock manager is
one of them is rebooted (after a crash). If the lock request is for a local
file, the lock manager tries to satisfy it, and communicates back to the
application along the appropriate RPC path.

The crash recovery procedure is very simple. If the failure of a client is
detected, the server releases the failed client’s locks, on the assumption
that the client application will request locks again as needed. If the
recovery (and, by implication, the crash) of a server is detected, the client
lock manager retransmits all lock requests previously granted by the
recovered server. This retransmitted information is used by the server to
reconstruct its locking state. See below for more details.

The locking service. then, is essentially stateless. Or to be more precise,
its state information is carefully circumscribed within a pair of system
daemons that are set up for automatic, application-transparent crash
recovery. If a server crashes, and thus loses its state, it expects that its
clients will be be notified of the crash and send it the information that it
needs to reconstruct its state. The key in this approach is the status
monitor, which the lock manager uses to detect both client and server
failures.

3.6.1 The Locking Protocol

The lock style implemented by the network lock manager is that specified in
the AT&T System V Interface Definition, (see the lockf(2) and fcntl(2) man
pages for details). There is no interaction between the lock manager’s locks
and flock() -style locks, which remain supported, but which should be used
for non-network applications only.

3-8 3.3 NFS User's Guide IRIS-4D Series

Locks are presently advisory only, on the (well supported) assumption that
cooperating processes can do whatever they wish without mandatory locks.
Besides, mandatory locks pose serious security problems — if /etc/passwd
is locked against reading, the whole system freezes. (See the fcnrl(2) man
page for more information about advisory locks.)

There are four basic kemel to Lock Manager requests:

KLM _LOCK Lock the specified record.
KLM_UNLOCK Unlock the specified record.
KLM_TEST Test if the specified record is locked.

KLM _CANCEL Cancel an outstanding lock request.

Despite the fact that the network lock managers adheres to the lockf{)/fcntl()
semantics, there are a few subtle points about its behavior that deserve
mention. These arise directly from the nature of the network:

* The first and most important of these has to do with crashes. When an
NFS client goes down, the lock managers on all of its servers are notified
by their status monitors, and they simply release their locks, on the
assumption that it will request them again when it wants them. When a
server crashes, however, matters are different: the clients will wait for it
to come back up, and when it does, its lock manager will give the client
lock managers a grace period to submit lock reclaim requests, and during
this period will accept only reclaim requests. The client status monitors
will notify their respective lock managers when the server recovers. The
default grace period is 45 seconds.

e It is possible that, after a server crash, a client will not be able to recover a
lock that it had on a file on that server. This can happen for the simple
reason that another process may have beaten the recovering application
process to the lock. In this case the SIGLOST signal will be sent to the
process (the default action for this signal is to kill the application).

* The local lock manager does not reply to the kernel lock request until the
server lock manager has gotten back to it. Further, if the lock request is
on a server new to the local lock manager, the lock manager registers its
interest in that server with the local status monitor and waits for its reply.
Thus, if either the status monitor or the server’s lock manager are
unavailable, the reply to a lock request for remote data is delayed until it
becomes available.

Version 3.0 NFS Service Overview 3-9

3.6.2 The Network Status Monitor

The Network Status Monitor (see the statd(8C) man page for more details)
was introduced with the lock manager, which relies heavily on it to maintain
the inherently stateful locking service within the stateless NFS environment.
However, the status monitor is very general, and can also be used to support
other kinds of stateful network services and applications. Normally, crash
recovery is one of the most difficult aspects of network application
development, and requires a major design and installation effort. The status
monitor makes it more or less routine.

The status monitor works by providing a general framework for collecting
network status information. Implemented as a daemon that runs on all
network machines, it implements a simple protocol which allows
applications to easily monitor the status of other machines. Its use improves
overall robustness, and avoids situations in which applications running on
different machines (or even on the same machine) come to disagree about
the status of a site — a potentially dangerous situation that can lead to
inconsistencies in many applications.

Applications using the status monitor do so by registering with it the
machines that they are interested in. The monitor then tracks the status of
those machines, and when one of them crashes it notifies the interested
applications to that effect, and they then take whatever actions are necessary
to reestablish a consistent state.

There are several major advantages to this approach:

* Only applications that use stateful services must pay the overhead — in
time and in code — of dealing with the status monitor.

* The implementation of stateful network applications is eased, since the
status monitor shields application developers from the complexity of the
network.,

3-10 3.3 NFS User’s Guide IRIS-4D Series

3.7 Setting the Time in User Programs

Since NFS architecture differs in some minor ways from earlier versions-of
UNIX, be aware of those places where your own programs could run up
against these incompatibilities.

Because each workstation keeps its own time, the clocks will be out of sync
between the NFS server and client. You can use timed(1M) and
timeslave(1M) to synchronize the clocks of the workstations on your
network.

3.8 Debugging NFS

If you experience difficulties with NFS, review documentation regarding
NFS functionality before trying to debug NFS. Relevant material can be
found in Section 3.2, ‘‘How NFS Works’’ in this manual and the manual
pages for mount(1M), nfsd(1M), showmount(1M), exportfs(1M),
rpcinfo(1M), mountd(1M), inetd(1M), fstab(4), mtab(4), and exports(4).
You do not have to understand them fully, but be familiar with the names
and functions of the various daemons and database files.

When analyzing an NFS problem, keep in mind that, like all network
services, there are three main points of failure: the server, the client, and the
network itself. The debugging strategy outlined below tries to isolate each
individual component to find the one that is not working.

For example, here is a sample mount request made from an NFS client
machine:

mount krypton:/usr/sre /krypton.src

The example asks the server machine krypton to return a file handle (a
unique identifier) for the file system /usr. This file handle is then passed to
the kernel in the mount(2) system call. The kernel looks up the directory
lkrypton.src and, if everything is working, it ties the file handle to the file
system in a mount record. From now on, all file system requests to that file
system and below will go through the file handle to the server krypton.

Version 3.0 NFS Service Overview 3-11

The example above shows how a remote mount should work. Section 3.9
contains some general information and lists the possible errors and their
causes.

When there are network or server problems, programs that access hard-
mounted remote files fail differently from those that access soft-mounted
remote files. Hard-mounted remote file systems cause programs to continue
to try until the server responds again. Soft-mounted remote file systems
return an error message after trying for a specified number of intervals. See
mount(1) for more information.

Programs that access hard-mounted file systems will not respond until the
server responds. In this case, NFS displays the message:

server not \ responding

On a soft-mounted file system, programs that access a file whose server is
inactive get the message:

Connection timed out

Unfortunately, many IRIX programs do not check return conditions on file
System operations, so this error message may not be displayed when
accessing sofi-mounted files. Nevertheless, an NFS error message is
displayed on the console.

If a client is having NFS trouble, check first to make sure the server is up
and running. From a client, type:

/usr/etc/rpecinfo =-p server_name

This checks whether the server is running. If the server is running, this
command displays a list of program, version, protocol, and port numbers
similar to the following:

3-12 3.3 NFS User’'s Guide IRIS-4D Series

program vers proto port

100003 2 udp 2049 nfs
100012 1 udp 1087 sprayd
100011 1 udp 1089 rguotad
100005 1 udp 1091 mountd
100008 1 udp 1093 walld
100002 1 udp 1095 rusersd
100003 2 udp 1095 «zrstatd

If the server you want to use is running, also use rpcinfo to check if the
mounzd server is running by using its program number as an argument
followed by the version number. Type:

/usr/etc/rpcinfo =-u server_name 100005 1
The system responds:
program 100005 version 1 ready and waiting

If these fail, log in to the server’s console to see if it is working.

If the server is operative but your machine cannot reach it, check the
ethemet connections between your machine and the server. You can also
check other systems on your network to see if they can reach the server.

If the server and the network are working, type ps -de to check your client
daemons. portmap and several biod daemons should be running. For
example, typing ps -de produces output similar to the following:

PID TTY TIME COMMAND
87 ? 0:00 routed

102 ? 0:00 portmap
103 ? 0:00 inetd
113 ? 0:00 nfsd
116 ? 0:00 nfsd
117 ? 0:00 ~nfsd
118 ? 0:00 nfsd
119 ? 0:00 bied
121 ? 0:00 biod
123 ? 0:00 biod
128 ? 0:00 biod

Version 3.0 NFS Service Overview 3-13

3.9 Types of Failures

The four sections below describe the most common types of failure. The
first section tells what to do if your remote mount fails; the next three
sections discuss servers that do not respond once you have mounted file
systems.

3.9.1 Remote Mount Failed

This section describes problems related to mounting. If for any reason
mount fails, check the sections below for specific details about what to do.
The sections are arranged according to where the problems occur in the
mounting sequence. Each section is labeled with the error message you are
likely to see.

The mount utility gets its parameters from either the command line or the
file /etc/fstab. See mount(1M). The example below assumes command line
arguments, but the same debugging techniques described below also work if
the mount command uses /etc/fstab. '

This section explains the interaction of the various players in the mount
request. If you understand this interaction, the problem descriptions below
will make more sense. Here is the example mount request previously given
in Section 3.4;

mount krypton:/usr/sre /krypton.szc

Below are the steps mount goes through to mount a remote file system.

1. mount opens /etc/mtab and checks that this mount has not already been
done.

2. mount parses the first argument into host krypton and remote directory
lusrisrc.

3. mount uses /etc/hosts 10 translate the host name into its Internet Protocol
(IP) address for krypton. If you are using the YP service, mount uses
library routines that call ypbind to determine which server machine is a
YP server. It then calls the ypserv daemon on that machine to get the IP
address of krypton.

3-14 3.3 NFS User’s Guide IRIS-4D Series

4. mount calls krypton’s portmap daemon 1o get the port number of
mountd. See portmap(1M).

S. mount calls krypton’s mountd and passes it /usr/src.

6. krypton’s mountd reads /etc/exports and looks for the exported file
system that contains /usr.

7. krypton’s mountd calls YP to expand the host names and network groups
in the export list for /usr.

8. krypton’s mountd performs a system call on /usr/src to get the file
handle.

9. krypton’'s mountd retumns the file handle.
10. mount does a mount(2) system call with the file handle and krypton.src.

11. mount checks to see if the caller is the superuser and if /krypton.src is a
directory.

12. mount does a statfs(2) call to krypton’s NFS server (nfsd).
13. mount opens /etc/mtab and adds an entry to the end.

Any of these steps can fail, some of them in more than one way. The
section below gives detailed descriptions of the failures associated with
specific error messages.

letcimtab: No such file or directory

The mounted file system table is kept in the file /erc/mtab(4). This
file must exist before mount can succeed.

mount: ... already mounted

The file system that you are trying to mount is already mounted or
there is an incorrect entry for it in /etc/mtab.

mount: ... Block device required

You probably left off the krypton: part of

mount krypton:/usr/src /krypton.src

Version 3.0 NFS Service Overview 3-15

The mount command assumes you are doing a local mount unless it
sees a colon in the file system name or the file system type is nfs in
letcifswab. See fswab(1).

mount: ... not found in /etcifstab

If you use moun: with only a directory or file system name, but not
both, it looks in /ezcifstab for an entry with file system or directory
field matching the argument. For example,

mount /krypton.src

searches /etc/fstab for a line that has a directory name field of
lkrypton.src. If it finds an entry, such as:

krypton:/usr/src /krypton.src nfs rw,hard 0 0
it mounts as if you had typed:
mount krypton:/usr/sre /krypton.sre

If you see this message, it means the argument you gave mount is
not in any of the entries in /etc/fstab.

letcifstab: No such file or directory

mount tried to look up the name in /etc/fstab but there was no
letclfswab.

... hot in hosts database

The host name you gave is not in the /etc/hosts database. First,
check the spelling and the placement of the colon in your mount
call. Try to riogin or rcp to some other machine.

mount: directory path must begin with a slash (/).

The second argument to mount is the path of the directory to be
covered. This must be an absolute path starting at /.

3-16 3.3 NFS User’s Guide IRIS-4D Series

mount:

mount:

... server not responding: RCP: Port mapper failure

Either the server from which you are trying to mount is inactive, or
its porrmap daemon is inactive or hung. Try logging in to that
machine. If you can log in, type:

/usr/etc/rpecinfo -p hostname

This should produce a list of registered program numbers. If it does
not, start the porrmap daemon again. Note that starting the portmap
daemon again requires that you kill and restart inetd, ypbind, and
ypserv. ypbind is only active if you are using the YP service. See
network(1M) for information about how to stop and restart
daemons.

There are two methods for dealing with a server that is inactive or
whose portmap daemon is not responding. You could reboot the
server or you could do the following:

1. Onthe server, become the superuser and kill the daemons.
Type:

su
killall portmap inetd ypbind

2. Start new daemons. Type:

/usr/etc/portmap
/usr/etc/inetd
/usr/ete/ypbind

If you cannot rlogin to the server, but the server is operational,
check your ethemet connection by trying rlogin to some other
machine. Also check the server’s ethemet connection.

... server not responding: RCP: Program not registered

This means mount reached the portmap daemon but the NFS mount
daemon (rpc.mountd) was not registered.

Go to the server and be sure that /usr/etc/rpc.mountd exists and that
there is an entry in /usr/etc/inetd.conf exactly like the following:

mountd/1 dgram rcp/udp wait root /usr/etc/rpc.mountd mountd

Version 3.0 NFS Service Overview 3-17

Type ps -de to be sure that the intemet daemon (inetd) is r_fmning.
If you had to change /usr/etc/inetd.conf, type:

killall 1 inetd

- This command informs inerd that you have changed

mount:

lusrietclinetd.conf.

... No such file or directory

Either the remote directory or the local directory does not exist.
Check your spelling. Use the /s command for the local and remote
directories.

mount: not in export list for ...

mount:

mount:

Your machine name is not in the export list for the file system you
want to mount from the server. You can get a list of the server’s
exported file systems by running:

showmount -—e hostname

If the file system you want is not in the list, or your machine name
or network group name is not in the user list for the file system, log
in to the server and check the /etc/exports file for the correct file
system entry. A file system name that appears in the /etc/exports
file but not in the output from showmount, indicates that you need to

run exportfs(1M).

... Permission denied

This message is a generic indication that some authentication failed
on the server. It could simply be that you are not in the export list
(see above), the server could not figure out who you are, or the
server does not believe you are who you say you are. Check the
server’s /etc/exports. In the last case, just change your hostname in
letc/sys_id, reboot, and retry the mount.

... Not a directory

Either the remote path or the local path is not a directory. Check
your spelling and use the Is command for both the local and remote
directories.

3-18 3.3 NFS User's Guide IRIS-4D Series

mount: ... You must be root to use mount

You must do the mount as root on your machine because it affects
the file system for the whole machine, not just your directories.

3.9.2 Programs Do Not Respond

If programs stop responding while doing file related work, your NFS server
may be inactive. You may see the message:

NFS server host_name not responding, still trying

The message includes the host name of the NFS server that is down. This is
probably a problem either with one of your NFS servers or with the ethemnet
hardware. Attempt to riogin to the server to determine whether the server is
down. If you can successfully rlogin to it, its server function is probably

disabled. See Section 3.3. If rlogin fails, you may need to reboot the server.

Programs can also hang if a YP server becomes inactive. See Chapter 4 for
YP information and an explanation of YP commands.

If your machine hangs completely, check the servers from which you have
mounted. If one or more of them is down. it is not cause for concern. When
the server comes back up, your programs will continue automatically, as if
the server had not become inactive. No files will be destroyed. This
procedure assumes a hard mount.

If a soft-mounted server is inactive, other work should not be affected.
Programs that timeout trying to access sofi-mounted remote files will fail,
but you should still be able to use your other file systems.

If all of the servers are running, ask someone else who is using the same
NFS server or servers if they are having trouble. If more than one machine
is having difficulty getting service, then it is probably a problem with the
server’s NFS daemon nfsd(1M). Log in to the server and type ps -de to see
if nfsd is running and accumulating CPU time. If not, you may be able to
kill, and then restart nfsd. If this does not work, reboot the server.

If other people seem to be able to use the server, check your ethenet
connection and the connection of the server.

Version 3.0 NFS Service Overview 3-19

3.9.3 Hangs Part Way through Boot

If your workstation comes part way up after a boot, but hangs where it
would normally be doing remote mounts, one or more servers are probably
down or your network connection may be bad. See Sections 3.9.1 and 3.9.2.

This problem can be avoided entirely by using the background option to
mount, bg. For more information on the background option, see Section 3.4.

3.9.4 Everything Works Slowly

If access to remote files seems unusually slow, go to the server and type:
ps -de

Check whether the server is being slowed by a runaway daemon, bad ty
line, etc. If the server seems to be working and other people are getting good
response, make sure your block I/0 daemons are running; type ps -de on
your client workstation and look for biod. To determine whether the
processes are hung, type ps -de as shown below, then copy a large remote
file and type ps -de again. If the biods do not accumulate CPU time, they
are probably hung. To find out if they are hung, type:

pPs -de | grep biod

Kill the processes by using the killall command. Type:

killall biod

Restart the processes by typing:

/usz/etec/biod 4

If biod is working, check your ethemnet connection. The command netstat i
tells you if packets are being dropped. A packet is a unit of transmission
sent across the ethemet. Also, you can use /usr/etc/nfsstat —¢ and
lusrietcinfsstat —s 10 tell if the client or server is retransmitting a lot. A
retransmission rate of 5% is considered high. Excessive retransmission
usually indicates a bad ethemnet board, a bad ethemet tap, a mismatch

between board and tap, or a mismatch between your ethernet board and the
server’s board.

3-20 3.3 NFS User’s Guide IRIS-4D Series

3.9.5 Cannot Access Remote Devices

In NFS, you cannot access a remote mounted character or block device (i.e.,
a remote tape drive or similar peripheral).

Version 3.0 NFS Service Overview 3-21

4. Using the NFS Automounter

The NFS automount utility provides a new way to mount file hierarchies.
File hierarchies are mounted when used and unmounted when they are no
longer in use. The high level of convenience provided by automount allows
NFS users to execute relatively complex implementations, such as mounting
one’s home directory from any workstation on the network, by simply using
the desired files or directories.

4.1 The Automounter

The automount program enables users to mount and unmount remote
directories on an as-needed basis. Whenever a user on a client machine
running the automounter invokes a command that needs to access a remote
file or directory, such as opening a file with an editor, the hierarchy to which
that file or directory belongs is mounted and remains mounted for as long as
it is needed. When a certain amount of time has elapsed during which the
hierarchy is not accessed, it is automatically unmounted. No mounting is
done at boot-time, and the user no longer has to know the superuser
password to mount a directory or even use the mount and umount
commands. Itis all done automatically and transparently.

Mounting some file hierarchies with automount does not exclude the
possibility of mounting others with mount. A diskless machine must mount
/ and /usr through the mount command and the /etc/fstab file. In all cases,
the automounter should not be used to mount /usr/share.

This chapter explains how the automounter works, how to write the files
(maps) the automounter uses, how to invoke it, and which error messages
are related to it.

Version 3.0 Using the NFS Automounter 4-1

4.1.1 How the Automounter Works

Unlike mount, automount does not consult the file letc/fstab for a list of
hierarchies to mount. Rather, it consults a series of maps, which can be
either direct or indirect. The names of the maps can be passed to automount
from the command line, or from another (master) map.

The following is a simplified bird’s eye view of how the automounter
works: :

When automount is started, either from the command line or from rc.local,
it forks a daemon to serve the mount points specified in the maps and makes
the kemel believe that the mount has taken place. The daemon sleeps until a
request is made to access the corresponding file hierarchy. At that time the
daemon does the following:

1. Intercepts the request
2. Mounts the remote file hierarchy

3. Creates a symbolic link between the requested mount point and the actual
mount point under /tmp_mnt

4. Passes the symbolic link to the kernel, and steps aside

5. Unmounts the file hierarchy when a predetermined amount of time has
passed in which the link has not been touched (generally five minutes)

The automounter mounts everything under the directory /tmp_mnt, and
provides a symbolic link from the requested mount point to the actual mount
point under /tmp_mnz. For instance, if a user wants to mount a remote
directory src under /usr/src, the actual mount point will be
/tmp_mnt/usrisrc, and /usr/src will be a symbolic link to that location. Note
that, as with any other kind of mount, a mount affected through the
automounter on a non-empty mount point will hide the original contents of
the mount point for as long as the mount is in effect.

The /tmp_mnt directory is created automatically by the automounter. Its
default name can be changed, as explained later in this Chapter.

4-2 3.3 NFS User’'s Guide IRIS-4D Series

4.2 Preparing the Maps

A server never knows, nor cares, whether the files it exports are accessed
through mount or automount. Therefore, you need not do anything different
on the server for automount than for mount.

A client, however, needs special files for the automounter. As mentioned
previously, automount does not consult /etc/fstab; rather, it consuits the map
file(s) specified on the command line. If no maps are specified, it looks for
an YP map called auto.master. 1f no YP auto.master exists, automount exits
silently. Later on, in this chapter, we explain how to invoke automount so
that it consults local maps.

By convention, all automounter maps are located in the directory /etc and
their names all begin with the prefix auto.

There are three kinds of automount maps: master, indirect, and direct.

The Master Map

The master map lists (as if from the command line) all other maps,
applicable options, and mount points.

Each line in a master map, by convention called /etc/auto.master, has the
syntax:

mount-point map-name [mount-options]

where: mount-point is the full pathname of a directory. If the directory
does not exist, the automounter will create it if possible. If the directory
exists, and is not empty, mounting on it will hide its contents. The
automounter will issue a warning message in this case. map-name is the
map the automounter should use to find the mount points and locations.
mount-options is an optional, comma separated, list of options that regulate
the mounting of the entries mentioned in map-name, unless the entries in
map-name list other options.

A line whose first character is # is treated as a comment, and everything that
follows until the end of line is ignored. A backslash (\) at the end of line
permits splitting long lines into shorter ones. The notation /- as a mount
point indicates that the map in question is a direct map, and no particular
mount point is associated with the map as a whole.

Version 3.0 Using the NFS Automounter 4-3

Direct and Indirect Maps

Lines in direct and indirect maps have the syntax:

kay [mount-options] location

where key is the pathname of the mount point. The mount-options are the
options you want to apply to this particular mount. location is the location
of the resource, specified as server:pathname.

As in the master map, a line whose first character is # is treated as a
comment and everything that follows until the end of line is ignored. A
backslash at the end of line permits splitting long lines into shorter ones.

The only formal difference between a direct and an indirect map is that the
key in a direct map is a full pathname, whereas in an indirect pathname it is
a simple name (no slashes). For instance, the following would be an entry
in a direct map:

/usr/man -ro, intr goofy:/usr/man

and the following would be an entry in an indirect map:

parsley -ro,intr veggies:/usr/greens

As you can see, the key in the indirect map is begging for more information:
where is the mount point parsley really located? That is why you must
either provide that information at the command line or through another map.
For instance, if the above line is part of a map called /etc/auto.veggies, you
would have to invoke it either as:

automount /veggias /etc/auto.veggies

or specify, in the master map:

/veggies /etc/auto.veggies -ro, soft
In either case, you are associating a mount directory (/veggies) with the
entries (parsley in this case) mentioned in the indirect map

letclauto.veggies. The end result is that the hierarchy /usr/greens from the
machine veggies will be mounted on /veggies/parsley when needed.

4-4 3.3 NFS User’'s Guide IRIS-4D Series

4.2.1 Writing a Master Map

As stated above, the syntax for each line in the master map is

mount-point map-name [mount-options]

A typical auto.master file contains

#Mount-point Map Mount-options
/= /etc/auto.direct -ro,intr

/home /etc/auto.home -rw,intr, secure
/net -hosts

The automounter recognizes some special mount points and maps, which
are explained below.

Mount point /~

In the example above, the mount point /- is a filler that the automounter
recognizes as a directive not to associate the entries in /etc/auto.direct with
any directory. Rather, the mount points are to be the ones mentioned in the
map. (Remember, in a direct map the key is a full pathname.)

Mount point /home

The mount point /kome is to be the directory under which the entries listed
in /etc/auto.home (an indirect map) are to be mounted. That is, they will be
mounted under /tmp_mnt/home, and a symbolic link will be provided
between /home/directory and /tmp_mnt/homeldirectory.

Mount point /net

Finally, the automounter will mount under the directory /net all the entries
under the special map -hosts. This is a built-in map that does not use any
external files except the hosts database (/etc/hosts or the YP map
hosts.byname if YP is running). Notice that since the automounter does not

Version 3.0 Using the NFS Automounter 4-5

mount the entries until needed, the specific order is not important. Once the
automount daemon is in place, a user entering the command

example % cd /net/gumbo

will change directory to the top of the hierarchy of files (i.e., the root file
system) of the machine gumbo as long as the machine is in the hosts
database and it exports any of its file systems. However, the user may not
see under /ner/gumbo all the files and directories. This is because the
automounter can mount only the exported file systems of host gumbo, in
accordance with the restrictions placed on the exporting.

The actions of the automounter when the command in the example above is
issued are as follows:

1. ping the null procedure of the server’s mount service to see if it’s alive.
2. Request the list of exported hierarchies from the server.

3. Sort the exported list according to length of pathname.

/usxr/sre

/export /home
/usr/src/sccs
/export /root/blah

This sorting ensures that the mounting is done in the proper order, that is,
{usrisrc is done before /usrisrc/sccs.

4. Proceed down the list, mounting all the file systems at mount points in
/tmp_mnt (creating the mount points as needed).

5. Return a symbolic link that points to the top of the recently mounted
hierarchy.

Note that, unfortunately, the automounter has to mount all the file systems
that the server in question expors. Even if the request is as follows:

example % ls /net/gumbo/usr/include

the automounter mounts all of gumbo’s exported systems, not just /usr.

In addition, unmounting that occurs after a certain amount of time has
passed is from the bottom up. This means if one of the directories at the

4-6 3.3 NFS User’s Guide IRIS-4D Series

top is busy, the automounter has to remount the hierarchy and try again
later.

Nevertheless, the -hosts special map provides a very convenient way for
users to access directories in many different hosts without having to use
rlogin or rsh. (These remote commands have to establish communication
through the network every time they are invoked.) Furthermore, they no
longer have to modify their /ezc/fstab files or mount the directories by hand
as superuser.

Notice that both /ner and /home are arbitrary names. The automounter will
create them if they do not exist already.

4.2.2 Writing an Indirect Map

The syntax for an indirect map is:
key [mount-options] location
where key is the basename (not the full pathname) of the directory that will
be used as mount point. Once the key is obtained by the automounter, it is

suffixed to the mount point associated with it either by the command line or
by the master map that invokes the indirect map in question.

For instance, one of the entries in the master map presented above as an
example, reads:

/home /etc/auto.home -rw, intr, secure

Here /etc/auto.home is the name of the indirect map that will contain the
entries to be mounted under /home.

Version 3.0 Using the NFS Automounter 4-7

A typical auto.home map might contain:

fkay mount-options location

willow willow: /home/willow
cypress cypress: /homa/cypress
poplar poplar: /homa/poplar
pine pine:/aexport/pine
apple apple: /axport/home
ivy ivy:/home/ivy

peach -rw, hard peach: /export /home

As an example, assume that the map above is on host oak. If user laura has
an entry in the password database specifying her home directory as
/home/willow!/laura, then whenever she logs into machine oak, the
automounter will mount (as /tmp_mnt/home/willow) the directory
'homefwillow residing in machine willow. If one of the directories is indeed
laura, she will be in her home directory, which is mounted read/write,
interruptible and secure, as specified by the options field in the master map

entry.

Suppose, however, that laura’s home directory is specified as
/homelpeach/laura. Whenever she logs into oak, the automounter mounts
the directory /export/home’from peach under /tmp_mnt/homeipeach. Her
home directory will be mounted read/write, hard. Any option in the file
entry overrides all options in the master map or the command line.

Now, assume the following conditions occur: user laura’s home directory is
listed in the password database as /homeiwillow/laura. Machine willow
exports its home hierarchy to the machines mentioned in auto.home. All
those machines have a copy of the same auto.home and the same password
database.

Under these conditions, user laura can run login or rlogin on any of these
machines and have her home directory mounted in place for her.

Furthermore, now laura can also enter the command

% cd “brent

and the automounter will mount brent’s home directory for her (if all
permissions apply).

4-8 3.3 NFS User’s Guide IRIS-4D Serles

On a network without YP, you have to change all the relevant databases
(such as /etc/passwd) on all systems on the network in order to accomplish
this. On a network running YP, make the changes on the YP master server
and propagate the relevant databases to the slave servers.

4.2.3 Writing a Direct Map

The syntax for a direct map (like that for an indirect map) is:

kaey [mount-options] location

where: key is the full pathname of the mount point. (Remember that in an
indirect map this is not a full pathname.) mount-options are optional but, if
present, override — for the entry in question — the options of the calling

line, if any, or the defaults. location is the location of the resource, specified
as server:pathname.

Of all the maps, the entries in a direct map most closely resemble, in their
simplest form, what their corresponding entries in /ezcifstab might look like.
An entry that appears in /etc/fstab as:

dancer:/usr/local /usr/local/tmp nfs ro 0 0

appears in a direct map as:

/usr/local/tmp -ro dancer:/usr/local

Version 3.0 ; Using the NFS Automounter 4-9

The following is a typical /etc/auto.direct map:

/usr/local \

/bin -ro,soft ivy:/export/local/PIris \

/share -ro,soft 4ivy:/export/local/share\

/szrc -ro,soft ivy:/export/local/szc
/usz/man -ro,soft oak:/usr/man \

rose:/usr/man \
willow: /usr/man

/usz/gamas -ro,soft peach:/usr/games
/usz/spool/naws -ro,soft pine:/usr/spool/nevws
/usz/frame ~-ro,soft redwood:/usr/frame2.0 \

balsa:/export/frame

There are a couple of unusual features in this map:
multiple mounts and multiple locations.
These are the subject of the next two subsections.

Multiple Mounts

A map entry can describe a multiplicity of mounts, where the mounts can be
from different locations and with different mount options. Consider the first
entry in the previous example:

/usr/local \

/bin -ro,soft ivy:/export/local/Plris \
/share -ro,soft ivy:/export/local/share \
/szrc -ro,soft ivy:/export/local/szc

This is, in fact, one long entry whose readability has been improved by
splitting it into four lines by using the backslash and indenting the
continuation lines with blank spaces or tabs. This entry mounts

4-10 3.3 NFS User’s Guide IRIS-4D Series

(

lusrilocallbin, lusrilocalishare and /usr/local'src from the server jvy, with
the options read-only and soft. The entry could also read:

/usr/local \

/bin -ro, soft ivy:/export/local/Plris \
/sbare ~-rw,secure willow:/usr/local/share \
/sxrc -ro, intr oak:/homa/jonas/src

where the options are different and more than one server is used. The
difference between the above and three separate entries, for example:

/uszr/local/bin -ro, soft ivy:/export/local/PIxis
/usr/local/share -rw,secure willow:/usxr/local/share
/uszr/local/src -ro,intr oak:/homa/jones/src

is that the first case, multiple mount, guarantees that all three directories will
be mounted when you reference one of them. In the case of the separate
entries, if you, for instance, enter:

% ed /usr/local/bin

you cannot cd to one of the other directories using a relative path, because it
is not mounted yet:

$ cd ../sxc
../src: No such file or directory

A multiple mount obviates this problem. In multiple mounts, each file
hierarchy is mounted on a subdirectory within another file hierarchy. When
the root of the hierarchy is referenced, the automounter mounts the whole
hierarchy.

The concept of root here is very important. The symbolic link returned by
the automounter to the kemel request is a path to the mount root. This is the
root of the hierarchy that is mounted under Aimp_mnt. This mount point
should theoretically be specified:

parsley / -ro,intr vaeg:/usr/greaens

Version 3.0 Using the NFS Automounter 4-11

In practice, it is not specified because in a trivial case of a single mount as
above, it is assumed that the location of the mount point is a¢ the mount root
or /. So instead of the above it is perfectly acceptable, indeed preferable,
to enter:

parsley -ro,intr veg:/usr/greens

The mount point specification, however, becomes important when mounting
a hierarchy: here the automounter must have a mount point for each mount
within the hierarchy. The example above is a good illustration of multiple,
non-hierarchical mounts under /usr/local when the latter is already mounted
(oris a subdirectory of another mounted system).

When the root of the hierarchy has to be mounted also, it has to be specified
in the map, and the entry becomes a “hierarchical” mount, which is a special
case of multiple mounts.

The following illustration shows a true hierarchical mounting:

/usr/local \

/ -rw, intr peach:/axport/local \
/bin -ro, soft ivy:/export/local /PIris \
/share -rw,secure willow:/usr/local/sharae \
/sxrc -ro, intr cak:/homa/jonas/sxrc

The mount points used here for the hierarchy are /, /bin, /share, and /src.
Note that these mount point paths are relative to the mount root, not the
host’s file system root. The first entry in the example above has / as its
mount point. It is mounted ar the mount root. There is no requirement that
the first mount of a hierarchy be at the mount root. The automounter will
issue mkdir commands to build a path to the first mount point if it is not at
the mount root.

A true hierarchical mount can be problematic if the server for the root of the
hierarchy goes down. Any attempt to unmount the lower branches will fail,
since the unmounting has to proceed through the mount root, which also
cannot be unmounted while its server is down.

4-12 3.3 NFS User’s Guide IRIS-4D Series

Finally, a word about mount options. In one of the exampies above,

/usr/local \

/bin -ro,soft ivy:/export/local/PIris \
/share -ro,soft willow:/usr/local/share \
/sxrc -ro,soft oak:/homae/jones/src

all three mounts share the same options. This could be modified to:

/usr/local -ro,soft \

/bin ivy:/export/local/PIris \
/share willow:/usr/local/share \
/sxc oak:/homa/jones/src

If one of the mount points needed a different specification, you could then
write:

/usr/local -ro,soft \

/bin ivy:/export/local/PIris \
/share -Iw,secure willow:/usr/local/share \
/sxe oak:/homae/jones/src

Version 3.0 Using the NFS Automounter 4-13

4.2.4 Multiple Locations

In the example for a direct map, which was:

/usr/local \

/bin -ro,soft ivy:/export/local/PIris\

/share -ro,soft ivy:/export/local/share\

/sre ~-ro,soft ivy:/export/local/srec
/usz/man -ro,soft oak:/usr/man \

rose:/usr/man \
willow: /usr/man

/usr/games - -ro,soft peach:/usr/gamas
/usr/spool/news -ro,soft pine:/usr/spool/news
/usr/frame ~-ro,soft redwood:/usr/frame2.0 \

balsa: /export/frame

the mount points /usr/man and /usriframe list more

than one location (three for the first, two for the second).

This means that the mounting can be done from any of the replicated
locations.

This procedure makes sense only when you are mounting a
hierarchy read-only, since (at least theoretically)

you must have some control over the locations of files you

write or modify (that is, you don’t want to modify files on one
server on one occasion and, minutes later, modify the

“same” file on another server). A good example is the man pages.

In a large network, more than one server

may export the current set of manual pages.

It does not matter which server you mount them from, as long
as the server is up and running and exporting its file systems.

In the example above, multiple mount locations are expressed as
a list of mount locations in the map entry:

/usr/man -ro,soft ocak:/usr/man rose:/usr/man willow: /usr/man

4-14 3.3 NFS User’s Guide IRIS-4D Series

«

This could also be expressed as a comma separated list of servers, followed
by a colon and the pathname (as long as the pathname is the same for all the
replicated servers):

/usr/man -ro, soft oak,rose,willow:/usr/man

Here you can mount the man pages from the servers oak, rose, or willow.
From this list of servers the automounter first selects those that are on the
local network and pings these servers. This launches a series of RPC
requests to each server. The first server to respond is selected, and an
attempt is made to mount from it. Note that the list does not imply an
ordering.

This redundancy, very useful in an environment where individual servers
may or may not be exporting their file systems, is enjoyed only at mount
time. There is no status checking of the mounted-from server by the
automounter once the mount occurs. If the server goes down while the
mount is in effect, the file system becomes unavailable. An option here is to
wait five minutes until the auto-unmount takes place and try again. Next
time around the automounter will choose one of the other, available servers.
* Another option is to use the umount command, inform the automounter of
the change in the mount table and retry the mount.

4.2.5 Specifying Subdirectories

The earlier subsection, ‘*Writing an Indirect Map'* showed the following
typical auto.home file:

$key mount-options location

willow willow: /homa/willow
cypress cypress: /home/cypress
poplar poplar:/homa/poplar
pine pine:/export/pine
apple appla:/aexport /home
ivy ivy:/home/ivy

peach -rw,hard peach: /export /home

Version 3.0 Using the NFS Automounter 4-15

Given this auto.home indirect file, every time a user wants to access a home
directory in, say, /home/willow, all the directories under it will be mounted.
Another way to organize an auto.home file is by user name, as in:

fkey mount-options location

john willow: /homa/willow/john
mary willow: /homa/willow/mary
joea willow: /homa/willow/joa

The above example assumes that home directories are of the form
/home/user rather than /home/server/user. If a user now enters the following
command:

% ls john mary

the automounter has to perform the equivalent of the following actions:

mkdir /tmp mnt/home/john
mount willow:/home/willow/john /tmp mnt/homa/john
ln -s /tmp mnt/home/john /home/john

mkdir /tmp mnt/home/mary

mount willow:/home/willow/mary /tmp mnt/home/mary
in -s /tmp mnt/home/mary /home/mary

However, the complete syntax of a line in a direct or indirect map is
actually:

key [mount-option] servaer:pathnamel:subdirectory]

4-16 3.3 NFS User's Guide IRIS-4D Series

Until now you used the form server:pathname to indicate the location. This
is also an ideal place for you to indicate the subdirectory, like this:

#key mount-options location

jobn willow: /homa/willow: john
mary willow: /homa/willow:mary
joe willow: /homa/willow: joe

Here john, mary, and joe are entriés in the subdirectory field. Now when a
user refers to john’s home directory, the automounter mounts
willow:/homeiwillow. It then places a symbolic link between
/tmp_mnt/home/willow/john and /homeljohn.

If the user then requests access to mary’s home directory, the automounter
sees that willow:/home/willow is already mounted, so all it has to do is
return the link between /tmp_mnt/home/willow/mary and /home/mary. In
other words, the automounter now only does:

mkdir /tmp mnt/homa/john

mount willow:/bome/willow /tmp mnt/homa

ln -s /tmp mnt/home/john /home/john

in -s /tmp mnt/home/mary /home/mary

In general, it is a good idea to provide a subdirectory entry in the location

when different map entries refer to the same mounted file system from the
same server.

4.2.6 Metacharacters

The automounter recognizes some characters as having a special meaning.
Some are used for substitutions, some to escape other characters.

Version 3.0 Using the NFS Automounter 4-17

Ampersand (&)

If you have a map with a lot of subdirectories specified, for example:

#kay
john
mary
joa
able
baker

mount-options location
willow: /homa/willow: john
willow: /home/willow:mary
willow: /home/willow: joe
Pine:/export/home:able
peach:/export/home:baker

consider using string substitutions. You can use the ampersand character
(&) to substitute the key wherever it appears. Using the ampersand, the
above map now looks as follows:

tkey
john
mary
joa
able
baker

mount-options locatien
willow: /home/willow: &
willow:/home/willow:&
willow: /home/willow:&
pPine:/export/homa:&
peach:/export/homa: &

If the name of the server is the same as the key itself, for instance:

$key
willow
peach
Pine
ocak

poplar

mount-options location
willow: /home/willow
peach:/homa/peach
Pine:/bhome/pine
oak: /home/cak
poplar: /home/poplar

4-18 3.3 NFS User’'s Guide

IRIS-4D Series

the use of the ampersand results in:

#xey mount-options location
willow &:/bhoma/&
peach &:/bhome/&
pine &:/home/&
cak &:/home/&
poplar &:/home/&
[.]
Asterisk (*)

Notice that all the above entries have the same format. This permits you to
use the catch-all substitute character, the asterisk (*). The asterisk reduces
the whole thing to:

* &:/home/&

where each ampersand is substituted by the value of any given key. Notice
that once the automounter reads the catch-all key it does not continue
reading the map, so that the following map would be viable:

fkey mount-options location
oak &:/export/s&
poplar &:/export/&
* &:/bome/&

whereas in the next map the last two entries would always be ignored:

$key mount-options location
*

&:/home/é&
ocak &:/export/s
poplar &:/export/s

Version 3.0 Using the NFS Automounter 4-19

You can also use key substitutions in a direct map, in situations like the
following: -

/usz/man willow, cedar, poplar:/usr/man
which is a good candidate to be written as:
/usz/man willow, cedar, poplar:é

Notice that the ampersand substitution uses the whole key string, so if the
key in a direct map stans with a / (as it should), that slash is carried over,
and you could not do something like

/progs &l,&2,&3:/export/src/progs

because the automounter would interpret it as:

/progs /progsl,/progs2, /progs3:/export/src/progs

Backslash (\)

Under certain circumstances you may have to mount directories whose
names may confuse the automounter’s map parser. An example might be a
directory called rc0:dkl; this could result in an entry like:

/junk -ro vmssarver:rcO:dkl

The presence of the two colons in the location field will confuse the
automounter’s parser. To avoid this confusion, use a backslash to escape
the second colon and remove its special meaning of separator:

/junk -ro vmsserver:rcO\:dkl

4-20 3.3 NFS User’s Guide IRIS-4D Series

Double quotes (")

You can also use double quotes, as in the following example, where they are
used to hide the blank space in the name:

/smile dentist:/"front teeth"/smile

4.2.7 Environment Variables

You can use the value of an environmental variable by prefixing a dollar
sign ($) to its name. You can also use braces to delimit the name of the
variable from appended letters or digits. You can use environmental
variables anywhere in an entry line, except as a key.

The environmental variables can be inherited from the environment or can
be defined explicitly with the -D command line option. For instance, if you
want each client to mount client-specific files in the network in a replicated
format, you could create a specific map for each client according to its
name, so that the relevant line for host oak would be:

/mystuff cypress,ivy, balsa:/axport/hostfiles/ocak
and for willow it would be:
/mystuff cypress,ivy,balsa:/aexport/hostfilas/willow

This scheme is viable within a small network, but maintaining this kind of
host-specific maps across a large network would soon become unfeasible.
The solution in this case would be to start the automounter with a command
line similar to the following:

automount -D HOST=‘hostname'

and have the entry in the direct map read:

/mystuff cypress,ivy,balsa:/export/hostfiles/$HOST

Version 3.0 Using the NFS Automounter 4-21

Now each host would find its own files in the mystuff directory, and the task
of centrally administering and distributing the maps becomes easier.

4.2.8 Including Other Maps

A line of the form +mapname causes the automounter to consult the
mentioned map as if it were included in the current map. If mapname is a
relative pathname (no slashes), the automounter assumes it is an YP map. If
the pathname is an absolute pathname the automounter looks for a local map
of that name. If the mapname starts with a dash (=), the automounter
consults the appropriate built-in map.

For instance, you can have a few entries in your local auto.home map for the
most commonly accessed home directories, and follow them with the
included YP map:

ivy -rxw,intr, noquota &:/homa/&
oak -rw,intr,noquota &:/export/home
+auto.home

After consulting the included map, the automounter continues scanning the
current map if no match is found, so you can add more entries, for instance:

ivy -rw,intr, noquota &:/homa/&

ocak -xrw, intzr, noquota &:/export/home
+auto.home

* -rw &:/homa/&

Finally, as mentioned before, the map included can be a local file, or even a
built-in map:

+auto.home.financeec $ YP map

+auto.home.sales § YP map
+auto.home.engineering §# YP map
+/etc/auto.mystuff # local map
+auto.home # YP map

+-hosts # built-in hosts map
* &:/export/& § wild carxd

4-22 3.3 NFS User's Guide IRIS-4D Series

Notice that in all cases the wild card should be the last entry, because the
automounter does not continue consulting the map after it, on the
assumption that the wild card will have found a match.

4.3 Starting automount

Once the maps are written, you should make sure that there are no
equivalent entries in /etc/fstab, and that all the entries in the maps refer to
NFS exported files. The automoun:(8) manual page contains a complete
description of all automount options.

The mount-oprions that you can specify at either the command line or in the
maps are the same as those for a standard NFS mount, excepting bg
(background) and fg (foreground), which do not apply.

By default, the file /etc/init.d/network starts the automounter at boot time
through the lines:

if [-f /usr/etc/automount]; then
automount && echo -n ’ automount’
fi

That is, if the file /usr/etc/automount exists, start it. When started like this,
with no option, the automounter looks for a YP map called auto.master. If
it finds it, it follows the instructions contained there. If YP is not running,
or the map is not to be found, the automounter exits silently. The -m option
instructs the automounter not to look for the YP map. The -f option
instructs it to look for the file named immediately after the option. If no -m
or -f options are specified, the automounter expects a series of mount points
and maps (and optional mount options) specified on the command line. .

Given the following set of three maps:

auto.master
#Mount-point Map Mount-options
/net ~hosts
/home /etc/auto.home -rxw, intr, secure
/- /etc/auto.direct -ro,intr

Version 3.0 Using the NFS Automounter 4-23

auto.home

tkey mount-options locatioen
willow willow: /home/willow
cypress cypress: /home/cypress
poplar poplar: /home/poplar
pine pine:/export/pine
apple apple:/export/home
ivy ivy:/bhoma/ivy
peach -rw, hard peach: /export /home
auto.direct
/usr/local \
/bin -ro,soft ivy:/export/local/PIris \
/share -ro,soft ivy:/export/local/share\
/sze ~xro,s0ft ivy:/export/local/src
/usr/man -ro,soft oak:/usr/man \
: rose:/usr/man \
willow: /usr/man
/usr/games -ro,soft peach:/usr/games
/usz/spool/news -ro,soft pine:/usr/spool/news
/usr/frame -ro,soft redwood:/usr/framel.3 \

balsa:/export/frame

you can invoke the automounter (either from the command line or,
preferably, from rc.local) in one of the following ways:

1. You can specify all arguments to the automounter without reference to

the master map (either YP or local), as in:

automount /net -hosts /home /etc/auto.home \
-rw,intr, secure /- /etc/auto.direct ~-ro,intr

2. You can specify the same in the auto.master file, and instruct the

automounter to look in it for instructions:

automount -f /etc/auto.master

4-24 3.3 NFS User's Guide

IRIS-4D Series

3. You can specify more mount points and maps in addition to those
mentioned in the master map, as follows:

automount -f /etec/auto.mastar /src /etc/auto.src -ro, soft

or
automount /src /etc/auto.src -ro,soft

The first example specifies addit;iorfs to the local master map, the second
additions to the YP master map.

4. You can nullify one of the entries in the master map. (This is particularly
useful if you use a map that you cannot modify and does not meet the
needs of your machine):

automount -f /usr/lib/auto.master /home =-null

This cancels the entry for /home in the master map (it could also be the
YP master map).

5. You can replace one of the entries with your own:

automount -£f /usr/lib/auto.master /home /myown/auto.home -rw,intr

In the example above, the automounter first mounts all items in the map
/myown/auto.home under the directory /home. Then, when it consults the
master file /usr/lib/auto.master and reaches the line corresponding to /home
it simply ignores it, since it has already mounted on it.

Given the auto.master file of the previous example, commands (1) and (2)
are equivalent as long as your network does not have a distributed
auto.master file. This file is only available on networks running YP. If your
network includes a distributed YP auto.master file, the second example
would have to be modified in the following way to be equivalent to example
1: .

automount -m -f /etc/auto.master

The -m option instructs the automounter not to consult the master file
distributed by YP. However, if you do not run YP, you do not have to

Version 3.0 Using the NFS Automounter 4-25

specify the -m option. The automounter is completely silent when it does
not find a distributed master file.

You can log in as superuser and type any of the above commands at shell
level to start the automounter. Ideally, you should edit rc.local and include
your preferred command there.

4.3.1 The Temporary Mount Point

The default name for all mounts is /zmp_mnz. Like the other names, this is
arbitrary. It can be changed at startup time by use of the -M option. For
instance:

automount -M /auto ..

causes all mounts to happen under the directory /auto, which the
automounter will create if it does not exist. You should not designate a
directory in a read only file system, as the automounter would not be able to
modify anything then.

4.3.2 The Mount Table

Every time the automounter mounts or unmounts a file hierarchy, it modifies
/etcimrab to reflect the current situation. The automounter keeps an image
in memory of /etc/mtab, and refreshes this image every time it performs a
mounting or an automatic unmounting. If you use the wmount command to
unmount one of the automounted hierarchies (a directory under /tmp_mnr),
the automounter should be forced to re-read the /etc/mtab file. To do that,
enter the command:

example % ps -ef | grep automount | egrep -v grep

This gives you the process ID of the automounter. The automounter is
designed so that on receiving a SIGHUP signal it re-reads /etc/mtab. So, to
send it that signal, enter:

% kill -1 PID

4-26 3.3 NFS User’'s Guide IRIS-4D Series

where PID stands for the process ID you obtained from the previous ps
command.

4.3.3 Modifying the Maps

You can modify the automounter maps at any time, but that does not
guarantee that all your modifications will take effect the next time the
automounter mounts a hierarchy. It depends on what map you modify and
what kind of modification you introduce. You may have to reboot the
machine. This is generally the simplest way of restarting the automounter,
although, if it is used sparingly, you could theoretically kill it and restart it
from the command line.

Modifying the Master Map

The automounter consults the master map only at startup time. A
modification to the master map will take effect only the next time you
reboot the machine.

Modifying Indirect Maps

You can modify, delete, or add to indirect maps. The change takes effect
the next time the map is used, which is next time a mount is done.

Modifying Direct Maps

Each entry in a direct map is an automount mount point, and the entry
mounts itself at these mount points at startup. Therefore, adding or deleting
an entry in a direct map will take effect only the next time you reboot the
machine. However, existing entries can be modified (changing mount
options or server names, and so on, but not name of mount points) while the
automounter is running, and will take effect when the entry is next mounted,
because the automounter consults the direct maps whenever a mount has to
be done.

For instance, suppose you modify the file /etc/auto.direct so that the
directory /usrisrc is now mounted from a different server. The new entry

Version 3.0 Using the NFS Automounter 4-27

takes effect immediately (if /usr/src is not mounted at this time) when you
try to access it. If it is mounted now, you can wait until the auto
unmounting takes place, and then access it. If this is not satisfactory, you
can unmount with the umount command, notify automount that the mount
table has changed, and then access it. The mounting should now be done
from the new server. However, if you wanted to delete the entry, you would
have to reboot the machine for the deletion to take effect.

For this reason, and because they do not clutter the mount table like direct
maps do, indirect maps are preferable, and should be used whenever
possible.

4.3.4 Mount Point Conflicts

You can cause a mount conflict by mounting one home directory on top of
another. The conflict occurs when you have a home partition, on a local
disk, that is mounted on /home and you want to use the automounter to
mount other home directories on the same mount point. If you give it the
mount point /home then the automounter will hide the local home partition
whenever you try to reach it.

The solution is to mount the partition somewhere else, for instance on
/export/home. You would then need, for instance, an entry in /etc/fstab that
says:

/dav/z . /export/home

(where z stands for the name of the partition) and, assuming that the master
file contains a line similar to:

/home /etc/auto.home
an entry in auto.home that says:
terra terra:/export/homa

where terra is the name of the machine.

4-28 3.3 NFS User’'s Guide IRIS-4D Series

If the partition is set up such that home directories are found as
/homelmachinel/user, move all the directories at the /user level one level up,
to eliminate the /machine level:

§ cd /home
§ mov machine/* .
§ ™mdir machine

There is no need to change the /etc/passwd entry for the user. His or her
home directory will still be accessible through /home/machine/user, as
before. Instead of doing a mount, the automounter will recognize that the
file system is on the same machine and will establish a symbolic link from
'home/machine to /export/home.

4.4 Problem Solving

From time to time, you may encounter problems with the automounter.
This section is aimed at making the problem solving process easier. It is
divided into two subsections.

The first subsection expands on the bird’s eye view explanation of how the
automounter works presented at the beginning of this chapter. This
explanation is written especially for advanced system administrators and
programmers, though users may want to read it to get an idea of the issues
involved.

The second subsection presents a list of the error messages the automounter
generates. The list is divided in two parts: error messages generated by the
verbose (—v) option of automount, and error messages that may appear at
any tme.

In general, it is recommended that you start the automounter with the
verbose option, since otherwise you may experience problems without
knowing why.

Version 3.0 Using the NFS Automounter 4-29

4.4.1 Automount Sequence of Events

There are two distinct stages in the automounter’s actions: The initial stage,
boot time, when rc.local boots the automounter. The mounting stage, when
a user tries to access a file or directory in a remote machine.

At the initial stage, when rc.local invokes automount, it opens a UDP socket
and registers it with the portmapper service as an NFS server port. It then
forks off a server daemon that listens for NFS requests on the socket. The
parent process proceeds 1o mount the daemon at its mount points within the
file system (as specified by the maps). Through the mount(2) system call, it
passes the server daemon’s port number and an NFS file handle that is
unique to each mount point. The arguments to the mount(2) system call
vary according to the kind of file system; for NFS file systems, the call is

mount ("nfs", "/usr", &nfs_args);

where &nfs_args contains the network address for the NFS server. By
having the network address in &nfs_args refer to the local process (the
automount daemon), automount in fact deceives the kemel into treating it as
if it were an NFS server. Instead, once the parent process completes its calls
1o mount(2), it exits, leaving the daemon to serve its mount points.

In the second stage, when the user actually requests access to a remote file
hierarchy, the daemon intercepts the kernel NFS request and looks up the
name in the map associated with the directory.

Taking the location (server:pathname) of the remote file system from the
map, the daemon then mounts the remote file system under the directory
/tmp_mnt. It answers the kemel, saying it is a symbolic link. The kernel
sends an NFS READLINK request, and the automounter returns a symbolic
link to the real mount point under /tmp_mnt.

The behavior of the automounter is affected by whether the name is found in
a direct or an indirect map. If the name is found in a direct map, the
automounter emulates a symbolic link, as stated above. It responds as if a
symbolic link exists at its mount point. In response to a GETATTR, it
describes itself as a symbolic link. When the kernel follows up with a
READLINK it returns a path to the real mount point for the remote
hierarchy in /zmp_mntz.

If, on the other hand, the name is found in an indirect map, the automounter
emulates a directory of symbolic links. It describes itself as a directory. In

4-30 3.3 NFS User’'s Guide IRIS-4D Series

response to a READLINK, it returns a path to the mount point in /imp_mnt,
and a readdir(3) of the automounter’s mount point returns a list of the
entries that are currently mounted.

Whether the map is direct or indirect, if the file hierarchy is already
mounted and the symbolic link has been read recently, the cached symbolic
link is retumed immediately. Since the automounter is on the same host, the
response is much faster than a READLINK to a remote NFS server. On the
other hand, if the file hierarchy is not mounted, a small delay will occur
while the mounting takes place.

4.4.2 Error Messages Related to automount

The following paragraphs are labeled with the error message you are likely
to see if the automounter fails, and an indication of what the problem may
be.

Error Messages Generated by the Verbose Option
no mount maps specified

The automounter was invoked with no maps to serve, and it cannot
find the YP auto.master map. It exits. Recheck the command, or
restart YP if that was the intention.

mapname: Not found

The required map cannot be located.

This message is produced only when the -v

option is given.

Check the spelling and pathname of the map name.

leading space in map entry entry text in mapname

The automounter has discovered an entry in an automount
map that contains leading spaces. This is usually an
indication of an improperly continued map entry, e.g.

foo
/bar frobz: /usr/frotz

Version 3.0 Using the NFS Automounter 4-31

In the example above, the warning is generated when the
automounter encounters the second line, because the first line
should be terminated with a backslash (\).

bad key <key> in indirect map mapname

While scanning an indirect map the automounter has found an entry
key containing a "/". Indirect map keys must be simple names —
not pathnames.

bad key <key> in direct map mapname

While scanning a direct map the automounter has found an entry
key without a prepended "/". Keys in direct maps must be full
pathnames.

YP bind failed

The automounter was unable to communicate with the ypbind
daemon. This is information only — the automounter will continue
to function correctly provided it requires no explicit YP support. If
you need YP, check to see if there is a ypbind daemon running.

Couldn’t create mountpoint <mountpoint>: reason

The automounter was unable to create a mountpoint required for a
mount. This most frequently occurs when attempting to
hierarchically mount all of a server’s exported file systems. A
required mountpoint may exist only in a file system that cannot be
mounted (it may not be exported) and it cannot be created because
the exported parent file system is exported read only.

WARNING : mountpoint already mounted on

The automounter is attempting to mount over an existing
mountpoint. This is indicative of an internal error in the
automounter (a bug).

server:pathname already mounted on mountpoint
The automounter is attempting to mount over a previous mount of

the same file system. This could happen if an entry appears both in
/etc/fstab and in an automounter map (either by accident or because

4-32 3.3 NFS User’s Guide IRIS-4D Series

the output of mount -p was redirected to fstab). Delete one of the
redundant entries.

can’'t mount server:pathname: reason

The mount daemon on the server refuses to provide a file handle for
server:pathname. Check the export table on server.

remount server:pathname on mountpoint: server not responding

The automounter has failed to remount a file system it previously
unmounted. This message may appear at intervals until the file
system is successfully remounted.

WARNING : mountpoint not empty!

The mount point is not an empty directory. The directory
mountpoint contains entries that will be hidden while the
automounter is mounted there. This is advisory only.

General Error Messages
pathok: couldn’t find devid <device id>

An intemal automounter error (bug).

WARNING: : default option "option" ignored for map mapname
where option is an unrecognized default mount option for the map
mapname.

option ignored for key in mapname

The automounter has detected an unknown mount option. This is
advisory only. Correct the entry in the appropriate map.

bad entry in map mapname "key"
map mapname, key <key>: bad

The map entry is malformed, and the automounter cannot interpret

it. Recheck the entry; perhaps there are characters in it that need
escaping.

Version 3.0 Using the NFS Automounter 4-33

Can’t get my address

The automounter cannot find an entry for its host in /ezc/hosts (or
YP hosts.byname).

Cannor create UDP service

Automounter cannot establish a UDP connection.

svc_register failed
Automounter cannot register itself as an NFS server. Check the
kernel configuration file.

couldn’t create pathname: reason

Where pathname is /znp_mnt or the argument to the -M command
line option.

Can’t mount mountpoint: reason

The automounter couldn’t mount its daemon at mountpoint.
Can’t update pathname
Where pathname is ;ezc/mrab it means that the automounter was not
able to update the mount table. Check the permissions of the file.
exiting
This is an advisory message only. The automounter has received a
SIGTERM (has been killed) and is exiting.
WARNING: pathname: line line number: bad entry

Where pathname is /etc/mtab it means that the automounter has
detected a malformed entry in the /etc/mtab file.

server:pathname no longer mounted
The automounter is acknowledging that server:pathname which it
mounted earlier has been unmounted by the umount command. The

automounter will notice this within 1 minute of the unmount or
immediately if it receives a SIGHUP.

4-34 3.3 NFS User’s Guide IRIS-4D Series

trymany: servers not responding: reason

No serverin a replicated list is responding. This may indicate a
network problem.

server:pathname - linkname : dangerous symbolic link

The automounter is trying 1o use server:pathname as a mountpoint
but it is a symbolic link that resolves 10 a pathname referencing a
mount point outside of /tmp_mnt (or the mount point set with the
-M option). The automounter refuses to do this mount because it
could cause problems in the host’s file system, e.g. mounting on /usr
rather than in /tmp_mnt.

host server not responding

The automounter attempted to contact server but received no
response.

Mounz of server:pathname on mountpoint: reason

The automounter failed to do a mount. This may indicate a server
or network problem.

pathconf: server: server not responding

The automounter is unable to contact the mount daemon on server
that provides (POSIX) pathconf information.

pathconf: no info for server.pathname

The automounter failed to get pathconf information for pathname.

hierarchical mountpoints: pathnamel and pathname2

The automounter does not allow its mountpoints to have a
hierarchical relationship, i.e., an automounter mountpoint must not
be contained within another automounted file system.

mountpoint: Not a directory

The automounter cannot mount itself on mountpoint because it’s not
a directory. Check the spelling and pathname of the mount point.

Version 3.0 Using the NFS Automounter 4-35

dir mountpoint must start with '/’

Automounter mount point must be given as full pathname. Check
the spelling and pathname of the mount point.

mapname: yp_err

Error in looking up an entry in an YP map. May indicate YP
problems.

hostname: exports: rpc_err

Error getting export list from hosmame. This indicates a server or
network problem.

nfscast: cannot send packet: reason

The automounter cannot send a query packet to a server in a list of
replicated file system locations.

nfscast: cannot receive reply: reason

The automounter cannot receive replies from any of the servers in a
list of replicated file system locations.

nfscast:select: reason
Cannot create socket for nfs: rpc_err

These error messages indicate problems attempting to ping servers
for a replicated file system. This may indicate a network problem.

NFS server (pid@mountpoint) not responding still trying

An NFS request made to the automount daemon with PID serving
mountpoint has timed out. The automounter may be temporarily
overloaded or dead. Wait a few minutes; if the condition persists,
the easiest solution is to reboot the client. If not, use fuser(1M) to
find and kill all processes that use automounted directories (or,
change to a non automounted directory in the case of a shell), kill
the current automount process and restart it again from the
command line. If this does not work, reboot.

4-36 3.3 NFS User’s Guide IRIS-4D Series

5. The YP Service

This chapter introduces YP-related terms, provides an overview of YP,
explains the installation and administration of the YP system, tells how to
debug YP when problems occur, and discusses file access policies and
special security issues raised by the YP environment.

5.1 The YP Service

The YP is NFS’s distributed network lookup service.

* YP is a distributed system. The database is fully replicated at several
sites, each of which runs a server process for the database. These sites are

" known as YP servers. At steady state, it does not matter which server
process answers a client request; the answer is the same throughout the
network. This allows multiple servers per network, and gives the YP
service a high degree of availability and reliability. Servers propagate
updated databases among themselves, ensuring consistency.

* YP is a lookup service. It maintains a set of databases that you can query.
A client can ask for the value associated with a particular key within a
database, and can enumerate every key-value pair within a database. A
key is the argument you use when you search a database.

* YP is a network service. It uses a standard set of access procedures to
hide the details of where and how data is stored.

Version 3.0 The YP Service 5-1

The basic function of YP is to synchronize the databases that many
machines in a network use. The YP service eases the burden of network
administration by allowing networkwide databases to be maintained and
updated in a central place. The YP service provides a convenient, automated
means of propagating network changes and information. YP scales to about
1000 workstations. Networks larger than 1000 workstations can use
named(1M) to extend network synchronization functionality.

It is not necessary to use YP with NFS. The YP service is turned on by the
person functioning as NFS site or system administrator and is transparent to
the user. Changes made to the /etc/hosts file in a NFS network that does not
use YP must be made to each workstation manually.

The procedure for turing on YP in NFS is described in Section 4.3.

If you choose not to use the YP, no specific action is required. You must
take specific action to enable the YP, as described in Section 4.3.

5.1.1 The YP Map

The YP system uses information stored in YP databases that are referred to
as maps. Each map contains a set of keys and associated values. For
example, in a map called hosts.byname, all the host names within a network
are the keys, and the Internet addresses of these host names are the values.
Each YP map has a mapname that programs use to access it. Programs must
know the format of the data in the map.

Many of the current maps are derived from ASCII files traditionally found
in /etc: hosts, group, passwd, and a few others. The format of the data
within the YP map is identical (in most cases) to the format within the
ASCII file. Maps are implemented by dbm(3B) files located in the
subdirectories of the directory /usr/etc/yp on YP server machines.

Maps sometimes have nicknames. Although the ypcar command is a
general YP database print program, it knows about the standard files in the
YP. Thus ypcat hosts is translated into ypcat hosts.byaddr since there is no
file called hosts in the YP. The command ypcat —x furnishes a list of
expanded nicknames.

5-2 3.3 NFS User's Guide IRIS-4D Series

5.1.2 The YP Domain

A YP domain is a named set of YP maps. Use the domainname(1) command
to determine and set your YP domain. Note that YP domains are different
from both Internet domains and sendmail domains. A YP domain is simply
a directory in /usr/etc/yp where a YP server holds all of the YP maps. The
name of the subdirectory is the name of the domain. For example, maps for
the literature domain would be in /usr/etc/vp/literature.

You must specify a domain name for retrieving data from a YP database.
Each machine on the network belongs to a default domain set at boot time in
fetc/init.d/nerwork with the domainname(1) command, using the contents of
the file /usr/etciyp/ypdomain as the domain name. A domain name must be
set on all machines, both servers and clients. Use only one domain name for
all machines on a network.

5.1.3 Servers and Clients

A YP client runs YP processes and requests data from databases on a YP
server. Servers provide resources, while clients consume them. The terms
server and client do not necessarily indicate machines. Consider both the
NFS (network file system), and the YP.

NFS

The NFS allows client machines to mount remote filesystems and access
files in place, provided a server machine has exported the filesystem.
However, a server that exports filesystems may also mount remote
filesystems exported by other machines, thus becoming a client. So a given
machine may be both server and client, or client only, or server only.

YP

The YP server, by contrast, is a process rather than a machine, A process
can request information out of the YP database, obviating the need to have
such information on every machine. All processes that make use of YP
services are YP clients. Sometimes clients are served by YP servers on the
same machine, but other times by YP servers running on another machine.
If a remote machine running a YP server process crashes, client processes
can obtain YP services from another machine. Thus, the network YP
service will remain available even if a single YP host machine goes down.

Version 3.0 The YP Service 5-3

5.1.4 Masters and Slaves

In the YP environment, only a few machines have a set of YP databases.
The YP service makes the database set available over the network. Two
kinds of machines have databases: a YP slave server and a YP master server.
The master server updates the databases of the slave servers. Make changes
to databases only on the YP master server. The changes propagate from the
master server to the slave servers. If you create or change YP databases on
slave server machines instead of master server machines, the YP’s update
algorithm will be broken. Always do all the database creation and
modification on the master server machine.

A server may be a master with regard to one map, and a slave with regard to
another. Random assignment of maps to server machines could cause a
great deal of confusion. Make a single server the master for all the maps
created by ypinit(1M) within a single domain. This document assumes that
one server is the master for all maps in the database.

5.2 YP Overview

The YP can serve any number of databases. Typically, these include some
files that used to be found in /erc. For example, before NFS included YP,
programs would read the /etc/hosts file to find an Internet address. When a
new machine was added to the network, a new entry had to be added to
every machine’s /etc/hosts file. With YP, programs that use the /etc/hosts
file now do a Remote Procedure Call (rpc) to a YP serverto get the
information. A client machine makes an RPC call to a YP server each time
it needs information from a YP database. The ypbind daemon remembers
the name of a server. When a client boots, ypbind broadcasts asking for the
name of the YP server. Similarly, ypbind broadcasts asking for the name of
anew YP server if the old server crashes. The ypwhich command gives the
name of the server that ypbind currently points at.

To become a server, a machine must contain the YP databases, and must
also be running the YP daecmon ypserv. The ypinit command invokes this
daemon automatically. It also takes a flag indicating the creation of a
master or a slave. When updating the master copy of a database, you can
force the change to be propagated to all the slaves with the yppush
command. This pushes the information out to all the slaves. Conversely,
from a slave, the ypxfr command gets the latest information from the master.

5-4 3.3 NFS User’s Guide IRIS-4D Series

The makefile in /etc/yp first executes makedbm to make a new database, and
then calls yppush to propagate the change throughout the network.

By default, IRIS workstations have a number of files in their YP:
letc/bootparams /etci/rpc /etcipasswd, letcigroup, letclhosts, letc/networks,
letciservices, |etcIprotocols, /etclethers, and /usr/lib/aliases. In addition,
there is the netgroup(5) file, which defines network wide groups, and is used
for permission checking when doing remote mounts, remote logins, and
remote shells.

Most of the information describing the structure of the YP system and the
commands available for that system is contained in manual pages and is not
repeated here. For quick reference, this section lists the manual pages and
an abstract of their contents. For more information, see the manual pages at
the end of this manual.

ypserv(1IM) describes the processes that comprise the YP system.
These processes are /usr/etc/ypserv, the YP database
server daemon, and /usr/etc/ypbind, the YP binder
daemon. ypserv must run on each YP server machine.
ypbind must run on all machines that use YP services,
both servers and clients.

ypfiles(1M) describes the database structure of the YP system.

ypinit(1M) constructs many maps from files located in /etc, such as
letclhosts, letc/passwd, and others. The database
initialization tool ypinit(1M) does all such construction
automatically. Also, it constructs initial versions of maps
required by the system but not built from files in /etc; an
example is the map ypservers. Use this tool to set up the
master YP server and the slave YP servers for the first
time. Use ypinit to construct initial versions of maps
rather than as an administrative tool for running systems.

Version 3.0 The YP Service 5-5

ypmake(1M)

makedbm(1M)

ypxfr(1M)

yppush(1M)

ypser(1M)

yppoll(1M)

ypcar(1)

ypmatch(1M)

describes the use of /usrretc/yp/Makefile, the file that
builds several commonly changed components of the
YP’s database. ypmake builds these maps from several
ASCII files normally found in /etc: bootparams, passwd,
hosts, group, netgroup, networks, protocols, rpc, and
services, as well as /usrilibl/aliases.

describes a low-level tool for building a dbm file that is a
valid YP map. You can use makedbm 10 build or rebuild
databases not built from /ezc/yp/Makefile. You can also
use makedbm 1o disassemble a map so that you can see
the key-value pairs that comprise it. You can also modify
the disassembled form with standard tools (such as
editors, awk, grep, and car). The disassembled form is in
the form required for input back into makedbm.

moves a YP map from one YP server to another, using
the YP itself as the transport medium. You can run it
interactively, or periodically from crontab. Also, ypserv
uses ypxfr as its transfer agent when it is asked to transfer
a map.

describes a tool to administer a running YP system. It

-runs on the master YP server. It requests each of the

Ypserv processes within a domain to transfer a particular
map, waits for a summary response from the transfer
agent, and prints out the results for each server.

tells a ypbind process (ihe local one, by default) to get YP
services for a domain from a named YP server. This is
not for casual use.

asks any ypserv for the information it holds internaily
about a single map.

lists the contents of a YP map. Use it when you do not
care which server’s map version you see. If you need to
see a particular server’s map, rlogin or rsh to that server
and use makedbm.

prints the value for one or more specified keys in a YP
map. Again, you have no control over which server’s
version of the map you are seeing.

5-6 3.3 NFS User's Guide IRIS-4D Series

ypwhich(1M) tells you which YP server a node is using at the moment
for YP services, or which YP server is master of some
named map.

5.3 YP Installation and Administration

Nine installation and administration topics are covered in this section.

Topic Section
Setting Up a Master YP Server 43.1
Altering a YP Client’s Database to Use YP Services 432
Setting Up a Slave YP Server 433
Setting Up a YP Client 434
Modifying Individual YP Maps after YP Installation 435
Propagating a YP Map 4.3.6
Making New YP Maps after YP Installation 437
Adding a New YP Server Not in the Original Set of YP Servers ~ 4.3.8
Changing the Master Server 439

Table 5-1. YP Installation Topics

5.3.1 Setting Up a Master YP Server

To create a new master server, follow these steps:

1. Become the superuser and change your current directory to /usr/etc/yp.
Type:

su
ed /usr/ete/yp

2. Check these files in /etc: passwd, hosts, ethers, group, networks,
protocols, services, and rpc. Make sure they are complete and reflect a
current picture of your system. Also check /usr/liblaliases.

3. If you know how /etc/netgroup is going to be set up, set it up before
running ypinit. If you do not know, ypinit can make an empty netgroup
map.

Version 3.0 The YP Service 5-7

4. Run ypinit(1M) with the ~m switch. Set up the default domain name and
the hostname. Define the domain name in /usrletc/yp/ypdomain and the
hostmame in /erc/sys_id. The usual case is that domainname and
hostname have been set up from /etc/init.d/network.

The system queries whether you want the procedure to terminate at the
first nonfatal error, in which case you can fix the problem and restart
ypinit. Do this if you have not done this procedure before. You can also
choose to continue despite nonfatal errors. In this second case, try to fix
all the problems by hand, or fix some, then restart Ypinit. ypinit prompts
for a list of other hosts that also are YP servers. Initially, this is the set
of YP slave servers for this domain. You need not add any other hosts at
this time, but if you know that you will be setting up some more YP
servers, add them now. This saves some work later, and there is no
performance penalty for doing it.

5. For security reasons, you can restrict access to the master YP machine to
a smaller set of users than that defined by the complete letc/passwd. To
do this, copy the complete file to a file name other than letcipasswd, for
example /etc/passwd.yp. Then edit out undesired users from the
remaining /etc/passwd. For a security-conscious system, this smaller file
should not include the YP escape entry discussed in the next section.

Next, edit the startup script, /etc/init.d/network, to change the pathname
/etcipasswd to the new pathname of the YP file (/etc/passwd.yp, if you
use the name given as an example above). This enables the slave
machines to obtain all the user IDs and passwords from the larger file,
/etc/passwd.yp.

You can restrict use of mail aliases in a similar manner. Just as you
copied your /etc/passwd file, copy /usrilib/aliases to another file, such as
lusriliblaliases.yp. Edit this file to reflect the security considerations
you used in editing the /etc/passwd.yp file.

Note that for some systems /etc/passwd and /usr/libialiases files might
be larger than their YP counterparts.

To make YP aware of the /usr/lib/aliases.yp and letc/passwd.yp files,
you must make note of them in a file read by YP. Create the file
letciconfiglypmaster.options. In this file, include the following lines:

PWFILE =/etc/passwd.yp
ALIASES = /usr/lib/aliases.yp

5-8 3.3 NFS User’s Guide IRIS-4D Series

If you did not use the file names /usr/lib/aliases.yp and /etc/passwd.yp,
substitute vour file names and paths in the /etc/config/ypmaster.options
file.

6. To start providing YP services, type:
/usr/etc/ypserv

To make sure that the YP server process is started automatically on
subsequent reboots, type the command:

/etc/chkconfig ypserv on

7. Starting the ypbind process automatically also allows processes running
on the master server to use YP services. Type:

/etc/chkconfig yp on

/usr/etc/ypbind

8. Start rpc.passwd only on the master server. To start rpc.passwd, type:

/etc/chkconfig ypmaster on

5.3.2 Altering a YP Client’s Files to Use YP Services

Once you have decided to serve a database with the YP, it is best if all nodes
in the network access the YP's version of the information, rather than the
potentially out-of-date information in their local files. ypbind implements
this policy by running a process on the client node. ypbind supplements or
effectively replaces the contents of the following files: /etc/rpc,
/etc/bootparams, /etcipasswd, letc/hosts, letc/ethers, letc/group,
letcinetworks, /etc/protocols, letc/services, /etc/netgroup, and
“lusrl/liblaliases. See ypserv(1M) for more information on ypbind.

/etclhosts.equiv is a local file not served by the YP. However, entries in
letclhosts.equiv can reference information in YP database, for example the
netgroup database. See netgroups(4).

Version 3.0 The YP Service 5-9

You can edit /etc/hosts.equiv to contain a single line, with only the plus
character (+) on it. This allows anyone who has a user identification (ID) on
any machine on the network to gain access to your machine.

Alternatively, you can exercise more control over logins by using lines of
the form:

+8can login_groupl
+8can login group2
-@can’t_login group

Each of the names to the right of the at (@) character must be a netgroup
name, defined in the global nezgroup database. YP uses the netgroup
database. The names to the right of the at (@) characters are called escape
entries because they refer the system to another database, in this case, the
netgroup database. If host.equiv does not use any of the escape entries, YP
is not used.

YP does not normally use /.rhosts. Its format is identical to that of
/etc/hosts.equiv. Because /.rhosts controls remote root access to the local
machine, you must list only those hosts that can log in as root, or use
netgroup names for the same purpose. See netgroup(4).

/etc/hosts must contain the Jocalhost name and its network number, 127.1.
Your machine uses this entry to test the network by first attempting to
communicate with itself. This entry is tested at boot time when the YP
service is not yet available. If the system is using only YP to resolve
addresses, after the system is running, and after the ypbind process has been
started, the /etc/hosts file is not accessed at all. See resolver(4). The
example below shows the hosts /etc/file for YP client zippy.

127.1 localhost # special loopback address
182.9.1.87 zippy ¢ John Q. Random

/etc/passwd should contain entries for root and the primary users of the
machine, and an escape entry to force the use of the YP service. Add an
entry for daemon, shown in the example below, to the file to allow file-
transfer utilities to work. A sample YP client’s /etc/passwd file looks like:

root :wAmOY41lEnf6:0:10:superuser:/: /bin/csh
jrandom:uHP1gQ2:1429:10:J Random:/usr2/jrandom: /bin/csh
daemon:*:1:1::/:

+::0:0:::

5-10 3.3 NFS User's Guide IRIS-4D Series

The last line informs the library routines 1o insert all entries from the YP
password database into /etc/passwd at that location. Entries that exist in
/erc/passwd mask analogous entries in the YP maps. Also, earlier entries in
the file mask later ones with the same user name, or the same user ID.

You can limit the users who can use your file systems by selectively
including individual YP entries by inserting password file entries with +user
in the login name field. For example, to include just the entries for users
fred and barney from YP, insert an entry like the one below into the client’s
passwd file.

+fred
+barney

You can also override fields of password records that are included from YP
with values that differ on the local system. For example, the name of a
user’s home directory may be different on the local system. If user fred is to
be included from YP, but given a different home directory, simply replace
the home directory field of the passwd file entry as follows:

+fred:::::/d/people/fred:

In the above entry, YP will not allow the group and user IDs to be
overridden with local values.

The local /etc/group file interacts with YP in the same way that the
/ercipasswd file does, i.e., you can have both local and YP entries. To
include the entire YP group database, put the following line in letcigroup:

+:00

You can include individual YP group records in the same fashion as
individual password file records. The following example contains both
locally defined groups and records from the YP group database:

sys:*:0:
daemon:*:1:
staff:%:10:
+bin:::
+demos: ::
+guest:::

Version 3.0 The YP Service 5-11

You can /etc/group to a single line:
+:

This entry forces all translation of group names and group IDs to be made
via the YP service. This is the recommended procedure.

5.3.3 Setting Up a Slave YP Server

The network must be working to set up a slave YP server; in particular, you
must be able to copy files using rcp from the master YP server to YP slaves.
If the master server is running NFS 3.0 or later release, /usr/etc/ypserv
should also be running.

To create a new slave server, follow these steps:

1. Change directories to /usr/etc/yp.

ed /usr/ete/yp

2. Become the superuser. (

E 24

3. Run ypinir(1M) with the —s switch, and name the master, a host already
setup as a YP server. Ideally, the named host really is the master server,
but it can be any host that has its YP database set up. You must be able
to reach the host. Type:

ypinit =-s master_server's_name

4. Set the default domain name on the machine you intend to be the YP
slave server. See domainname(1). You must set it to the same domain
name as the default domain name on the machine named as the master.
Also, you must have an entry for daemon in the /etc/passwd files of both
slave and master. That entry must precede any other entries that have (
the same user ID. Note the example shown in Section 4.3.2. You are not
prompted for a list of other servers, but you can choose whether or not
the procedure gives up at the first nonfatal error.

§-12 3.3 NFS User’s Guide IRIS-4D Series

. After running ypinit, make copies of /etc/passwd, /etc/hosts, /etc/group,
letc/networks, letc/protocols, /etc/netgroup, and /etc/services. For
example, on the slave machine, type:

cp /etc/passwd /etc/passwd-

Edit the original files in accordance with Section 4.3.2, to ensure that
processes on the slave YP server will actually make use of the YP
services, rather than the local ASCII files, i.e., make sure the YP slave
server is also a YP client. Make backup copies of the edited files, as
well. Type:

cp /etc/passwd /etc/passwd+

. After ypinit sets up the YP database, use /usr/etc/ypserv to begin
supplying YP services. Type:

/usr/etc/ypserv

. If you want the ypserv process to be started automatically on subsequent
reboots, type the command:

/ete/chkconfig ypserv on

. If you want the ypbind process to also start automatically on slave
servers, type:

/etc/chkconfig yp on

. Run /usr/etc/irpc.passwd only on the server that is the master server for
the password database.

5.3.4 Setting Up a YP Client

To set up a YP client, edit the local files described in Sections 4.3.2 and
4.1.2. If /usr/erc/ypbind is not running already, start it. Type:

/usr/etc/ypbind

Version 3.0 The YP Service 5-13

With the ASCII databases of /etc abbreviated and ypbind running, the
processes on the machine are served by YP. At this point, there must be a
YP server available. The programs that request YP services will hang if no
YP server is available while vpbind is running.

Note the possible alterations 1o the client’s /etc database as discussed above
in Section 4.3.2. Because some files may not be there, or some may be
specially altered, it is not always obvious how YP uses the ASCII databases.
The escape conventions used within those files to force inclusion and
exclusion of data from the YP databases are found in the following manual
pages: passwd(4), hosts(4), netgroup(4), hosts.equiv(4), group(4). In
particular, notice that changing passwords in /etc/passwd by editing the file,
or by running passwd(1), only affects the local client’s environment.
Change the YP password database by running yppasswd. See yppasswd(1).

In order for the ypbind process to start automatically on subsequent reboots,
type the following command on a YP client machine:

/ete/chkeconfig yp on

As mentioned above, do not do this until there is a YP server serving the
default domain of the client machines. See resolver(4) and the TCP!IP
User's Guide for information on specifyving the order of lookup services for
hostname resolution.

5.3.5 Modifying Existing YP Maps after YP Installation

You must change databases served by YP on the master server. Look at the
databases expected to change most frequently, like /etc/passwd. You can
change these files by first editing the ASCII file, and then running make(1)
in /usr/etc/yp/Makefile on the master server. Also see ypmake(1M) for more
information.

You can manually modify nonstandard databases, i.e., databases that are
specific to the applications of a particular vendor or site but are not part of
the NFS release, databases that are expected to change rarely, or databases
for which no ASCII form exists (for example, databases invented to use the
YP). The general procedure is to use makedbm(1M) with the —u switch to
disassemble them into a form that you can modify using standard tools
(such as awk, sed, or vi), then build a new version again using

5-14 3.3 NFS User's Guide IRIS-4D Series

makedbm(1M). There are two manual ways 1o modify nonstandard
databases.

1. Redirect the output of makedbm to a temporary file which you can
modify, then feed back into makedbm.

o

Operate on the output of makedbm within a pipeline that feeds into
makedbm again directly. This is appropriate if you can update the
disassembled map by modifying it with awk, sed, or a car append, for
instance.

Read the rest of this section only if you want to create nonstandard YP maps
or add new categories of informaton to the YP.

Suppose you want to create a non-standard YP map, called mymap. To
simplify this example, mymap will consist of key-value pairs in which the
keys are strings like al, bl, cl, etc., and the values are ar, br, cr. (Thel is
for left and the r is for right.) There are two possible procedures to follow
when creating new maps. In the first, you use an existing ASCII file as
input; in the second, you use standard input.

For example, suppose there is an existing ASCII file named
lusrietc/yp/mymap.asc, created with an editor or a shell script on your
machine. ‘In the example below, home_domain is the subdirectory where the
map is located. Create the YP map for this file by typing:

cd /usr/ete/yp
makedbm mymap.asc home_domain/mymap

But, at this point, you notice the map really should have included another
record with fields dl, dr. In all situations like this, remember to modify the
map by first modifying the ASCII file. Modifications that you make to the
map that are not also made in the ASCII file will be lost. Modify the file by

typing:

cd /usr/etc/yp
<make editorial change to mymap.asc>
" makedbm mymap.asc home_domain/mymap

Version 3.0 The YP Service 5-15

When there is no original ASCII file, you can create the YP map from the
keyboard. In this example, your machine is ypmaster and the default
domain is home_domain. At ypmaster, type:

cd /usr/ete/yp

makedbm - home domain/mymap
al ar

bl br

cl exr

<etrl-d>

When you need to modify that map, you can use makedbm(1M)
1o create a temporary intermediate ASCII file
that you can edit using standard tools. Here is an example:

cd /usr/etc/yp
makedbm -u home domain/mymap > mymap.temp

At this point, you can edit mymap.temp to contain the correct information.
Create a new version of the database by typing:

makedbm mymap.temp home domain/mymap
rm mymap.temp

The preceding paragraphs explain how to use some tools to modify existing
maps. You can use ypinit(1M) and /usr/etc/yp/Makefile (see ypmake(1M))
1o do almost everything necessary to modify a map, unless you add non-
standard maps to the database, or change the set of YP servers after the
system is already up and running.

Whether you use the Makefile in /usr/erc/yp or some other procedure, the
goal is the same: a new pair of well-formed dbm files must end up in the
domain directory on the master YP server.

5.3.6 Propagation of a YP Map

To propagate a map means to move it from place to place. In this context,
propagate means to move it from the master YP server to a slave YP server.
Initially, ypinit(1M) moves it as described in Section 4.3.3. After you have
initialized a slave YP server, ypxfr(1M) transfers updated maps from the
master server. ypxfr contacts the master server and transfers the map only if
the master’s copy is more recent than the local copy. You can run ypxfr
three different ways: periodically by cron(1M); by ypserv(1M); and

5-16 3.3 NFS User's Guide IRIS-4D Series

interactively by a user. Below is an example of each. Note that maps have
differing rates of change; for instance, protocols.byname may not change for
months at a time, but passwd.byname may change several times a dayina
large organization.

The first example of map propagation uses cron. The standard
lusrispool/cronicrontabsiroot has entries 1o periodically run ypxfr from shell
scripts at a suggested rate for the various mappings in your YP database.
You can find these shell scripts in lusrietclyp: ypxfr_Iphr, ypxfr_Ipd, and
¥pxfr_2pd. These groupings transfer once per hour, once per day, and twice
per day, respectively. These shell scripts are run at each YP server in the
domain. If the rates of change are inappropriate for your environment, you
can easily modify /usrispool/cronicrontabsiroot. Also, you should alter the
crontab to change the exact time of execution from one server to another to
prevent the transfers from slowing down the master. Modify the shell script
if the suggested groupings of the maps are inappropriate for your site. For
more information on how to use crontab, see crontab(1)

If you want to transfer the map from some particular server, not the master,
specify that (using ypxfr’s —h option) within the shell script. Also, you can
check and transfer maps having unique change characteristics by explicitly
invoking ypxfr within the root crontab.

Another example of map propagation uses ypxfr. Run yppush on the master
YP server. It enumerates the YP map ypserver to generate a list of YP
servers in your domain. yppush sends a transfer map request to each of the
named YP servers. ypserv forks off a copy of ypxfr, invoking it with the ~C
flag, and passing it the information it needs to identify the map and to call
back the initiating yppush process with a summary status.

The ypserv also invokes ypxfr when it attempts to emulate the behavior of
ypserv from an earlier release, for instance, when an NFS 2.0 master ypserv
communicates directly with the 4.0 ypserv.

In the cases mentioned above, you can capture ypxfr's transfer attempts and
the results in a log file. If /usrietc/yplypxfr.log exists, ypxfr appends results

to it. No attempt to limit the log file is made: you are in charge of that. To
turn off logging, remove the log file.

Version 3.0 The YP Service 5-17

In a third case of map propagation, you can run ypxfr as a command.
Typically, you run ypxfr only in exceptional situations. For example, ypxfr
is used when setting up a temporary YP server to create a test environment,
or when a YP server that has been out of service must be made consistent
with the other servers quickly.

5.3.7 Making New YP Maps after YP Installation

Adding a new YP map entails getting copies of the map’s dbm files into the
domain directory on each of the YP servers in the domain. The actual
mechanism has been described above in Section 4.3.6. This section
describes only the work required to get the proper mechanisms in place so
the propagation works correctly. You must set up files correctly on both the
master and the slaves.

After deciding which YP server is the master of the map, modify
lusrletctyp/Makefile on the master server so that you can conveniently
rebuild the map. Actual case-by-case modification is too varied to describe
here, but typically Makefile filters each readable ASCII file for which a map
is to be built, such as /etc/hosts, through awk, sed, and/or grep to make two
databases suitable for input to makedbm(1M). These databases are stored as
lusr/etc/yp/domainname/mapname.pag and
lusrietctyp/domainname/mapname.dir. Consult the existing Makefile as a
source for programming examples. Make use of the mechanisms already in
place in /usr/etc/yp/Makefile when deciding how to create dependencies that
make(1) recognizes; specifically, the use of .time files allows you to see
when the Makefile was last run for the map.

Support on the YP slave servers for propagation of the new maps consists of
appropriate entries in one of the ypxfr shell scripts mentioned in Section
4.3.6. To get an initial copy of the map, run ypxfr by hand on each of the
slave servers. The map must be globally available before clients begin to
access it. If the map is available from some but not all YP servers, client
programs behave unpredictably.

5-18 3.3 NFS User's Guide IRIS-4D Series

5.3.8 Adding a New YP Server Not in the Original Set

To add a new YP slave server, start by modifying some of the YP server
maps on the master YP server. If the new server is a host that has not been a
YP server before, you must add the host’s name to the map ypservers in the
default domain. To add a new YP server not in the original set, follow these
steps:

1. To add a server named ypsiave to domain home_domain, go to ypsiave
and type:

cd /usr/etc/yp

(makedbm -u home_domain/ypservers;\
echo ypslave ypslave) | makedbm - tmpmap
v tmpmap.dir home_ domain/ypservers.dir

mv tmpmap.pag home_domain/ypservers.pag
Yppush ypservers

Note that some commands are displayed on two lines. You can type
these as one long command (even if the line wraps on your screen), or
you can escape the return and go to a new line with a backslash (\), as
shown above. However, you cannot simply type in half the command,
press return, and type the second half.

2. The host’s address should be in hosts.byname, a map that contains all the
host names within a network and the Internet addresses of these host
names. Each YP map has a mapname that programs use. If it is not, edit
/etclhosts and run make. In this case, first edit /etc/hosts, then type:

cd /usr/ete/yp
make hosts

3. Setup the new slave YP server’s databases by copying the databases
from YP master server ypmaster. Remote log in to the new YP slave.

Use ypinir(1M) by typing:
cd /usr/ete/yp
ypinit -s ypmaster

4. Complete the steps described in Section 5.3.3.

Version 3.0 The YP Service 5-19

5.3.9 Changing the Master Server

To change a map’s master, first build the map at the new master. Because
‘the old YP master’s name occurs as a key-value pair in the existing map,
you cannot use an existing copy at the new master or send a copy there with
ypxfr. You must reassociate the key with the new master’s name. If the map
has an ASCII source file, it should be present in its current version at the
new master. To remake the YP map (called jokes.bypunchline in this
example) locally, follow these steps:

1. Go to the machine you want to use as the new master server and type:

ed /usr/ete/yp
make Jjokes.bypunchline

2. You must have set up /usr/etc/yp/Makefile correctly for this to work; if
it is not correctly set up, set it up now. See ypmake(1M). Also, this is a
good time 1o go back to the old master (if it will remain a YP server) and
edit /usr/etc/yp/Makefile so that jokes.bypunchline is no longer made
there, i.e., comment out the section of oldmaster:/usrietc/yp/Makefile
that made jokes.bypunchline.

3. If the map exists only as a dbm database, you can make it over on the
new master by disassembling an existing copy (one from any YP server
will do) and running the disassembled version back through makedbm.
For example:

‘ed /usr/ete/yp
ypcat -k Jjokes.bypunchline | makedbm\
- mydomain/jokes.bypunchline

4. After making the map on the new master, send a new copy of the map to
the other slave YP servers. However, do not use yppush directly at this
time. The other slaves will try to get new copies from the old master,
rather than the new one.

A typical method (you may find others) to send a new copy of the map
to the other slave YP servers is to become the superuser on the old
master server. Type:

su
/usr/ete/yp/ypx£fr -h newmaster jokes.bypunchline

5-20 3.3 NFS User's Guide IRIS-4D Series

5. Now you have a new copy on the old master, and can run yppush, which
forces the propagation of a changed YP map. Until you run yppush, the
remaining slave servers still believe that the old master is the current
master, and attempt to get the current version of the map from the old
master. When they do so, they will get the new map, which names the
new master as the current master.

6. If the method above fails, there is another option. Log in to each YP
server machine as the superuser and execute the command shown above.
This certainly works, but should be considered the worst case solution.

5.4 Debugging a YP Client

This debugging section is divided into two parts: problems seen on a YP
client and problems seen on a YP server.

Before trying to debug a YP client, read Sections 4.1 and 3.2 that discuss
how YP and NFS servers work.

5.4.1 On Client: Commands Hang

The most common problem at a YP client node is for a command to hang
and generate console messages such as:

Yp: saerver not responding for domain <domain_name>.
Still trying

Sometimes many commands begin to hang, even though the system as a
whole seems to be working and you can run new commands.

The message above indicates that ypbind on the local machine is unable to
communicate with ypserv in the domain domain_name. This often happens
when machines that run ypserv have crashed. It may also occur if the
network or the YP server machine is so overloaded that ypserv cannot get a
response back to your ypbind within the timeout period. Under these
circumstances, all the other YP client nodes on your network show the same
or similar problems. The condition is temporary in most cases, and the
messages usually go away when the YP server machine reboots and ypserv
is restarted, or when the load on the YP server nodes and/or the Ethemet

Version 3.0 The YP Service 5-21

decreases. The YP servers are set up to dynamically switch users to another
server if your initial server is either overloaded or hung.

However, in some circumstances, the situation will not improve without
intervention. The circumstances described below are coupled with their
solutions.

* The YP client has not set, or has incorrectly set, domainname on the
machine. Clients must use a domain name that the YP servers recognize.
Use domainname(1) to see the client domain name. Compare that with
the domain name set on the YP servers. The domain name should be set
in /usrietc/yp/ypdomain. If this file contains the wrong domain name,
follow these steps:

1. Become the superuser on the machine in question.

2. Edit /usr/etclyp/ypdomain to fix the domain name. This assures that
domain name is correct every time the machine boots.

3. Set domainname by hand so it is fixed immediately. Type:

domainname good_domain_name

¢ If your domain name is correct, make sure your local net has at least one
YP server machine. You can bind to a ypserv process only on your local
network, not on another accessible network. There must be at least one
YP server for your machine’s domain running on your local net. Two or
more YP servers improve availability and response characteristics for YP
services.

o If your local network has a YP server, make sure it is up and running.
Check other machines on your local network. If several client machines
have problems simultaneously, suspect a server problem. Follow these
steps:

1. Find a client machine that is behaving normally, and try the ypwhich
command. If ypwhich does not return a response, type an interrupt
character such as <ctzl-c>.

2. Goto aterminal on the YP server machine. Look for ypserv and
ypbind processes. Type:

ps -de | grep yp

5-22 3.3 NFS User’s Guide IRIS-4D Series

If the server’s ypbind daemon is not running, start it up by typing:
/usr/ete/ypbind

If there is a /usr/etc/ypserv process running, type ypwhich on the YP
server machine. If ypwhich retumns no answer, ypserv is probably not
working. You must restart ypserv. Log on as root. Follow these steps:

1. Kill the existing ypserv process. Type:

killall -v ypserv

2. If killall confirms that it killed ypserv, type:

/usr/etc/ypserv

5.4.2 On Client: YP Service Unavailable

When other machines on the network appear to be functioning normally, but
YP service is unavailable on your machine, your machine can display many
symptoms. These are some of the symptoms:

* Some commands appear to operate correctly while others terminate,
printing an error message about the unavailability of YP.

* Some commands work slowly in a backup-strategy mode particular to the
program involved.

* Some commands or daemons crash with obscure messages or no message
at all.

Here are two examples of commands and daemons crashing.

1. If you type this command:

Ypcat myfile

Version 3.0 The YP Service 5-23

The system displays this message:

ypcat: can‘t bind to YP server for domain domain_name.
Reason: can’'t communicate with ypbind.

2. If you type this command:
/usr/etc/yp/yppoll myfile
The system displays this message:

Sorry, I can’t make use of the Yellow Pages. I give up.

These symptoms usually indicate that your ypbind process is not running,
Follow these steps:

1. Type the following to check for a ypbind process.

ps ~da

2. If you do not find it, start the ypbind process. Type:
/usr/ete/ypbind

Typing /usr/etc/ypbind will make these YP problems disappear.

5.4.3 On Client: ypbind Crashes

If /usr/etc/ypbind crashes almost immediately each time it is started, look
for a problem in some other part of your machine. Check for the presence
of the portmap daemon by typing:

ps -de | grep portmap
If you do not find it running, reboot your machine.

If the portmap daemon itself will not stay up or behaves strangely, look for
more fundamental problems. Check the network software.

5-24 3.3 NFS User’s Guide IRIS-4D Series

You can start up the portmap daemon on your machine from a machine that
is operating normally. From such a machine, type:

rpeinfo -p your_machine_name
If your pormmap is functional, the output should look like:

program version proto port

100005 1 udp 1026 mountd
100001 1 udp 1028 «rstatd
100001 2 udp 1028 «rstatd
100003 2 udp 2049 nfs
100008 1 udp 1033 walld
100002 1 udp 1035 rusersd
100012 1 udp 1037 sprayd
100007 2 tep 1026 ypbind
100007 2 udp 1046 ypbind
100007 1 tep 1026 ypbind
100004 2 udp 1051 ypserv
100007 1 udp 1046 ypbind
100004 2 tep 1027 ypserv
100004 1 udp 1051 ypserv
100004 1 tep 1027 ypserv

The port numbers will be different on your machine. The four entries that
represent the ypbind process are:

100007

2 tep 1026 ypbind
100007 2 udp 1046 ypbind
100007 1 tcp 1026 ypbind
100007 1 udp 1046 ypbind

If these entries are not there, ypbind has been unable to register its services
with the portmap daemon. Reboot the machine. If they are there and they
change each time you try to restart /usr/etc/ypbind, reboot the system, even
if the portmap daemon is up. If the situation persists after reboot, call your
service organization.

5.4.4 On Client: ypwhich Inconsistent

When you use ypwhich several times at the same client node, the answer
you receive varies because the YP server has changed. This is normal. The
binding of YP client to YP server changes over time on a busy network and
when the YP servers are busy. Whenever possible, the system stabilizes at a
point where all clients get acceptable response time from the YP servers. As

Version 3.0 The YP Service 5-25

long as your client machine gets YP service, it does not matter where the
service comes from. Often a YP server machine gets its own YP services
from another YP server on the network.

5.5 Debugging a YP Server (

Before trying to debug a YP server, read Sections 5.4.1 and 5.4.2 in this
manual.

5.5.1 On Server: Different Versions of a YP Map

Since YP works by propagating maps among servers, you may find different
versions of a map at servers on the network. This version skew is normal if
it is transient, and abnormal otherwise.

The normal update of YP maps is prevented when some YP server or some
gateway machine between YP servers is down during a map transfer

attempt. This is the most frequent cause of different versions of a map on (
servers on a network. Normal update procedures are described in Section

4.3.6. When all the YP servers and all the gateways between them are up

and running, ypxfr should succeed.

If a particular slave server has problems updating, log in to that server and
run ypxfr interactively. If ypxfr fails, it tells you why it failed, and you can
fix the problem. If ypxfr appears to succeed, but you believe it fails
intermittently, follow these steps:

1. Log in to the slave server in question.

2. Create a log file to enable message logging. Type:

ed /usr/ete/yp
touch ypxfr.log

This saves all output from ypxfr. The output looks much like the output (
from ypxfr when run interactively, but each line in the log file is

timestamped. You may see unusual orderings in the timestamps. This

is normal; the timestamp tells you when ypxfr began its work. If copies

of ypxfr ran simultaneously, but their work took differing amounts of 4

5-26 3.3 NFS User’s Guide ' IRIS-4D Series

time, they may actually write their summary status line to the log files in
an order different from the order of invocation.

Any pattern of intermittent failure shows up in the log. Look at the
messages and try to determine what is needed to fix the failure. You
know that you have fixed it when you no longer receive failure
messages.

3. When you have fixed the problem, turn off message logging by '
removing the log file. Type:

m ypxfr.log
If you forget to remove the log file, the log file grows without limit.

4. Inspect /usr/spool/cronicrontabsiroot and the ypxfr shell scripts it
invokes. Typos in these files cause propagation problems, as do failures
to refer to a shell script within crontab, or failures to refer to a map
within any shell script. Also make sure the yp and ypserv configuration
flags are on.

5. Check that the YP slave server is in the map ypservers within the
domain. If the slave server is not in the map, it still works fine as a
server, but yppush will not tell ypserv when a new copy of a map exists.

6. If the problem is not obvious, you can work around it while you debug
by using the file copy command, rcp(1), to copy a recent version from
any healthy YP server. You may not be able to do this as root, but you
probably can to do it by using the guest account on the master server.
For instance, to transfer the map busted from the master server to the
slave server, type the following from the slave server machine, ypsiave.

ICp guest@ypmaster:/usr/etc/yp/mydomain/busted.* \
/usz/etc/yp/mydomain

Notice that the asterisk (*) has been escaped in the command line, so
that it will be expanded on ypmaster, instead of locally on ypsiave.

Version3.0 The YP Service 5-27

5.5.2 On Server: ypserv Crashes

When the ypserv process crashes almost immediately, and does not stay up
even with repeated activations, you must debug like you did in Section
4.4.3. Follow these steps:

1. Check for the portmap daemon:

ps -de | grep portmap

2. Reboot the server if you do not find the porrmap daemon. If it is there,

type:

/usr/ete/rpcinfo -p

Look for output to the screen similar to:

program version

100005
100001
100001
100003
100008
100002
100012
100007
100007
100007
100004
100007
100004
100004
100004

HEMOMHENMNHENNDHEHERERUON A

proto
udp
udp
udp
udp
udp
udp
udp
tep
udp
tep
udp
udp
tep
udp
tep

port
1026
1028
1028
2049
1033
1035
1037
1026
1046
1026
1051
1046
1027
1051
1027

mountd
rstatd
rstatd
nfs
walld
rusersd
sprayd
ypbind
ypbind
ypbind
ypserv
ypbind
ypserv
ypserv
ypserv

On your machine, the port numbers will be different. The four entries
that represent the ypserv process are:

100004
100004
100004
100004

3. If these four entries are not present, ypserv has been unable to register its

[l SIS

udp
top
udp
top

1051
1027
1051
1027

ypserv
ypserv
ypserv
ypserv

services with the portrmap daemon. Reboot the machine.

§5-28 3.3 NFS User's Guide

IRIS-4D Series

4. If these entries present, and they change each time you try to restart
lusrietc/ypserv, reboot the machine. If the situation persists after you
reboot, call the Geometry Hotline for help.

5.6 YP Policies

When the C library routines access the following files on a system running
the YP, they set some policies:

/etc/passwd

lusr/liblaliases

letcl/group

ietc/hosts.equiv

letclservices

/etciprotocols

/etc/networks

letc/netgroup

letcl/ethers

Version 3.0

Always consulted. If there are + or — entries, the C
library routines consult the YP password map.
Otherwise, YP is unused.

Always consulted. If there is a +:+ entry, the C library
routines consult the YP aliases map. Otherwise, YP is
unused.

Always consulted. If there are + or — entries, the C
library routines consult the YP group map. Otherwise YP
is unused. ‘

(and similarly for .rhosts) Always consulted, though
neither of these files is in the YP database. (See Section
4.7 for a more complete explanation of these two files.) If
there are + or — entries, whose arguments are netgroups,
the YP netgroup map is consulted; otherwise YP is
unused.

Never consulted. The data that was formerly read from
this file now comes from the YP services database.

Never consulted. The data that was formerly read from
this file now comes from the YP protocols database.

Never consulted. The data that was formerly read from
this file now comes from the YP networks database.

Never consulted. The data that was formerly read from
this file now comes from the YP netgroup database.

Never consulted. The data read from this file comes from
the YP nergroup database.

The YP Service 5-29

letclhosts Consulted only when booting (by the ifconfig command
in the /etc/init.d/tcp file). After that the YP is used
instead.

letc/rpc Never consulted. The data that was formerly read from
this file now comes from the YP rpc.bynumber database.

letc/bootparams Consulted only when the lookup in the YP bootparams
database fails.

More information on these configuration files is included in the /RIS<4D
Owner’s Guide and the TCP/IP User’'s Guide.

5.7 Changing Security with the YP

Read Section 4.6 on YP accessing policies to better understand YP security
issues. The sections below describe specific issues in network security
using the YP.

5.7.1 Global and Local YP Database Files

Of the YP databases, ten originate from /etc: /etc/passwad, /etc/group,
/etc/hosts, letc/networks, /etciservices, letc/protocols, letcirpe,
letcibootparams, letcinetgroup, and /etclethers. One more resides in
lusr/lib: lusriliblaliases. Note that a site may add database files of its own.
YP consists of local and global file types. Local files are those files that YP
first checks for on your own machine, then in the YP. Global files are those
files that programs using YP check for only in the YP database. /etc/passwd
and /etc/group are the local files in the YP database. The other five YP files
are global.

For example, a program that calls getpwent to access /etc/passwd (a local
file) first looks in the password file on your machine; the YP password file is
only consulted if your machine’s password file contains a plus sign (+)
entry. The /etc/passwd file is local, so that you can control the entries for
your own machine. The only other local file is /etc/group. To repeat, YP
consults local files first on your own machine, and only consults global files
if these files contain plus (+) entries referring to YP.

5-30 3.3 NFS User’s Guide IRIS-4D Series

The remaining YP files (hosts, networks, ethers, services, rpc, bootparams,
protocols, and netgroup) are global files. The information in these files is
network-wide data, and only YP accesses it. However, you must make sure
each machine has an entry in /etc/hosts for itself when booting. In summary,
if YP is running, YP only checks global files; YP does not consult a file on
your local machine.

5.7.2 Two Other Files YP Consuits

The files /etc/hosts.equiv and /.rhosts are not in the YP database. Each
machine has its own unique copy. However, you can put entries in your
letc/hosts.equiv file that refer to the YP. For example, the following line
includes all members of engineering as it is defined in the local file
/etc/netgroup or in the YP database.

+@angineering

A line consisting only of a plus sign (+) includes everyone in your
letc/hosts.equiv file.

5.7.3 Security Implications

To be able to log in to a machine without having a password, you need to be
in both the /etc/hosts.equiv file and the /etc/passwid file. A plus (+) entry in
letcthosts.equiv allows you to effectively bypass this check. Anyone in your
letcipasswd file is allowed to rlogin to your machine without restriction.

The /etc/passwad file and /etc/group file may also have plus (+) entries. The
following line in an /ezc/passwd file pulls in an entry for nb from the YP.

+nb::::Napoleon Bonaparte:/usr2/nb:/bin/csh

It gets the user ID, group ID, and password from the YP, and gets the user’s
name, home directory, and default shell from the plus entry (+) itself. On the
other hand, the following /ezc/passwd entry gets all information from the
YP.

+nb:

Version 3.0 The YP Service 5-31

Here are two types of entries in /etc/passwd.

+nb::1189:10:Napoleon Bonaparte:/usr2/nb:/bin/csh

nb::1189:10:Napoleon Bonaparte:/usr2/nb:/bin/csh

In the first entry, YP obtains the password field, which is stored by the plus
(+) entry. In the second entry, user nb has no password. Also, if there is no
entry for nb in YP, then the effect of the first example is as if no entry for nb
was present at all, i.e., the entry points to something that does not exist.

5.7.4 Special YP Password Change

When you change your password with the passwd(1) command, you change
the entry explicitly given in your own /erc/passwd file. If your password is
not given explicitly, but rather is pulled in from the YP with a plus (+)
entry, then the passwd command prints the error message:

Not in passwd file

To change your passwd in the YP, use the vppasswd(1) command. To
enable this service, the system administrator must start up the daemon
rpc.passwd(1M) server on the machine serving as the master for the YP
password file.

5.7.5 Netgroups: Networkwide Groups of Machmes
and Users

The /etc/netgroup file on the master YP server defines the netgroup(4). A
netgroup is a networkwide group of machines and users. Login, remote
mount, remote login, and remote shell use these groups for permission
checking.

The master YP server uses /etc/netgroup to generate three YP maps in the
lusrietclyp/domainname directory: netgroup, netgroup.byuser, and
netgroup.byhost. The YP map nergroup contains the basic information in
letc/netgroup. The two other YP maps contain a more specific form of the
information to speed the lookup of netgroups given the host or user.

The programs that consult the YP maps are login(1), mountd(1M), rlogin(1),
and rsh(1). login consults them for user classifications if it encounters

5.32 3.3 NFS User’s Guide IRIS-4D Series

netgroup names in/etc/passwd(4). mountd consults them for machine
classifications if it encounters nergroup names in /etc/exports(1M). rlogin
and rsh consult the netgroup map for both machine and user classifications
if they encounter nergroup names in /etc/hosts.equiv(4) or .rhosts(4).

Here is a sample /etc/netgroup file. See netgroup(4) for a description of file
format and definition of lines and fields.

Engineering: Everyone but eric has a machine;

be has no machinae.

The machine ’'testing’ is used by all of hardwarae.

 {

engineering hardware software

hardware (marcury,alan,sgi) (venus,beth,sgi) (testing, -, 8gi)
software (earth,chris, sgi) (mars,deborah, sgi) (-,eric, sgi)

$

Marketing: Time-sharing on jupiter

]

marketing (jupiter, fran, sgi) (Jupiter,greq,sgi) (jupitar,dan,sgi)
$

Others
]

allusers (-,,sgi)
allhosts (,-,sgi)

Based on the above, the users are classified into groups as follows:

Group Users

hardware alan, beth

software chris, deborah, eric

engineering alan, beth, chris, deborah, eric
marketing fran, greg, dan

allusers (every user in the YP map passwd)

allhosts (no users)

Table 5-2. Example User Groups

Version 3.0 The YP Service 5-33

Here is how the machines would be classified:

Group Hosts
hardware mercury, venus, testing
software earth, mars

engineering mercury, venus, earth, mars, testing
maxkeu'ng jupiter
allusers (no hosts)

allhosts (all hosts in the YP map hosts)

Table 5-3. Example Machine Groups

For more details, see the following manual pages: yppasswd(1),
hosts.equiv(4), expori(4), passwd(4),
group(4), nergroup(4), and rpc.passwd(1M).

5.8 Adding a New User to a Machine

To add a new user to a machine using YP, add an entry to the password file
ard create a home directory on the new user’s machine as described in the
steps below.

5.8.1 Edit the Master YP Server’s /etc/passwd File

Add a password file entry to every machine on the local network for a new
user. If all machines are YP clients, then all you need to do is add an entry
for the new server in the YP password maps. To add a new entry, follow
these steps:

1. Become the superuser.

su

5-34 3.3 NFS User's Guide IRIS-4D Series

2. Edit the master YP server’s /etc/passwd file. Add a new line to the
password file with the text editor of your choice. /etc/passwd is a
readable ASCII file with a one line entry for each valid user on the
system. Separate each entry into fields by colons (:). There are seven
fields on each line. You can leave some fields blank by placing two
colons (::) back to back. Avoid using the characters for single and
double quotes (* * "), backslashes (V), and parentheses () in the password
file. See passwd(4) for more information about the file format.

For example, suppose that your new user’s name is Mr. Chimp and his
account is going to be bonzo. Add a line similar to the one shown
below.

bonzo::1947:10:Mr. Chimp:/usr2/benzo: /bin/csh

Notice that the two colons cause the second field to read as blank in the
example. This field, when filled, contains an encrypted version of the
user’s password. However, when the field is blank, anyone can log in
simply by typing the user name — no password is required. You cannot
create a password by making an entry in the /ezc/passwd file. You must-
use passwd(1) while logged in as the user or as the superuser. Since
anyone can log in when a user has no password, provide a password for
the new user and let him know it so he can log in and change it to
whatever he prefers. When Mr. Chimp logs in for the first time, he can
use the passwd utility to change his password, or yppasswd(1) to change
it in the YP database.

After Mr. Chimp has a password, the entry for bonzo in the password file
will look something like:

bonzo:3ulnRdrJ4tEVs:1947:10:Mr. Chimp:/usr2/bonzo:/bin/csh

Fields in the password file have the following meanings:
Login name This is synonymous with the user name.

Encrypted password passwd(1) creates this entry. The system
administrator tells all new users how to add,
or change, their password with the passwd
command and the yppasswd command.

The system administrator can clear this field
when a user has forgotten his or her
password, thereby enabling login without a

Version 3.0 The YP Service 5-35

User ID

Group ID

Information about the user

User’s home directory

5-36 3.3 NFS User's Guide

password until the user creates a new one.
Note that an asterisk (*) in this field
matches no password. The user can log in
only if the machine name of the machine he
is logging in from is in the /etc/hosts.equiv
file on the local machine.

This entry is a number unique to this user.
In the example above, this number is 1947.
A system knows the user by ID number
associated with login name, therefore a
login name must have the same user ID
number on all password files of machines
that are networked in a local domain.

Failure to keep IDs unique prevents moving
files between directories on different
machines because the system will respond
as if the directories are owned by two
different users. Also, file ownership may
become confused when an NFS server
exports a directory to an NFS client whose
password file contains users with user’s IDs
that match those of different users on the
NFS server.

Use this entry to group together users who
are working on similar projects. In this
example, Mr. Chimp is in group 10, the
system staff group. If you are not sure into
which group you should put a new client,
see group(4) and look in the file /etc/group.

This entry is usually the real name, phone
number, etc. An ampersand (&) here is
shorthand for the user’s login name.

This entry is the directory into which the
user logs in.

IRIS-4D Series

Initial shell to use on login If this field is blank, the default /bin/sh is
used. It is recommended that you place
/bin/csh here, as in the example above. It
gives a C shell as the user’s initial shell.

After you update the password file and create a password for the new
user, update the YP database by running /usr/etc/yp/Makefile for
/etc/passwd. Type:

ced /usr/ete/yp
make passwd

Now the new entry you created for Mr. Chimp in /etc/passwd has been
added to the YP passwd maps.

5.8.2 Make a Home Directory

After adding a new entry to the password file, create a home directory for
the new user. This is the same as the directory given in the sixth field of the
password file entry. In the /usr2 directory in the example below, make a
directory for the new user, and change ownership using the chown command
to the user’s login name and change group to the user’s group. Type:

cd /usr2
mkdir bonzo
chown bonzo bonzo

chgrp 10 bonzo

Note that if the YP databases for the password file have not yet been
updated on the machine’s YP server, you get the following error message
when you attempt to use chown:

unknown user id: username

Version 3.0 The YP Service 5-37

In that case, you can use the following set of commands:

ed /usr2

mkdir bonzo

chown userid# bonzo
chgrp 10 bonzo

Use Mr. Chimp'’s user ID number (from the password file entry) instead of (
login name to change the ownership of his home directory. '

5.8.3 The New User’s Environment

Finally, you can define the new user’s environment on login in several ways.
For example, you can give the new user a copy of such files as .login and
.cshre if they use /bin/csh, or profile if they use bin/sh.

If the new user is a member of any groups at your site, add them to
/etcigroup as necessary. See group(4). Make the changes to the /etc/group
and /etc/netgroup files on the master YP server if you run the YP.

5-38 3.3 NFS User's Guide IRIS-4D Series

Index

A

administering networks, 2-4
advisory locks, 3-9
automount maps, 4-3
automount maps,

and environment variables, 4-21
and escapes with special
characters, 4-20

and use of &, 4-18

and use of *, 4-19

direct, 4-15 4-4 4-9

indirect, 4-4 4-7, 4-9

master, 4-3 4-5 4-7

modifying, 4-27

specifying subdirectories, 4-15

automount, 2-3 3-5 4-1
automount,

and symbolic links, 4-30
debugging, 4-29 4-31, 4-36
diskless client, 4-1

hosts, 4-5

mount table, 4-26

mount, 4-2

process ID, 4-26

starting, 4-23

symboilic links , 4-2
synopsis, 4-2, 4-30

boot, hangs, 3-20

C

client, 1-3 5-13 5-9
clients and servers, 5-3
commands, 1-4

3.3 NFS User's Guide

D

debugging,
automount, 4-29, 4-31, 4-36
IRIX, 1-6
NFS, 3-11
YP, 5-21
default files, 5-5
diskless client, automount, 4-1

E

extensible design, 2-4
External Data Representation, 2-2

F

File System, 1-1
fstab, 3-4

H

heterogeneity of machines, 2-4
hosts, 5-4
hosts.equiv, 5-31

L

Lock Manager,
crashing, 3-6
protocol , 3-8
state, 3-6

locking, 2-3

locks, advisory, 3-9

Index-1

M

master, 5-7
masters and slaves, 5-4
mount point,
home, 4-5
net, 4-5
mount table, 4-26
mount(2), system call, 4-30
mount, how to, 3-3
mtab, forcing re-reading of , 4-26
multiple mounts, 4-10
mutltiple mounts,
conflicts, 4-28
example, 4-12
hierarchical, 4-12
locations , 4-14
mount points, 4-12

N

network address, 4-30
network administration , 2-4
Network Lock Manager, 3-6

Network Status Monitor, 3-1Q 3-7

NFS administration, 2-4
NFS, 1-1
NFS,
debugging, 3-11
different machines, 2-4

different operating systems, 2-4

extensibility, 2-4

how it works, 3-2

major services, 2-2
performance, 2-5
protocol, 2-4

reliability, 2-4

service, 2-2

SGl enhancements, 2-5
stateless protocol, 2-4
transparency of, 2-4
transparent access, 2-3
what is, 3-1

Index-2

P
permissions, 1-3

ping, 4-15
portmapper, 2-2, 3-5

R

Relevant Documents, 1-6
remote mount, failed, 3-14
Remote Procedure Call, 2-2

rhosts, 5-31
RPC, 2-2 5-4
S

server, how to become, 3-2
servers and clients, 5-3
slave, 5-12

slaves and masters, 5-4
statd, 3-10

stateful services, 3-7
Status Monitor, 3-1Q 3-7
support, 1-7

symbolic link, 4-30

System Manager, 1-5, 1-5

T

terminology, 1-2

time, in user programs, 3-10
timed, 3-10

tmp_mnt, 4-2 4-26

U

UDP socket, 4-30
umount, 4-15

Version 3.0

w
WorkSpace, 1-5 1-5

Y

Yellow Pages, 2-3 5-5
YP service, 5-1
YP,

client debugging, 5-21, 5-23 5-24

5-25

debugging, 5-21

domain, 5-2

global and local database, 5-30

installation and administration, 5-7

map, 5-2

maps, 5-14, 5-16 5-18

master server, 5-19

netgroups, 5-32

new user, 5-34 5-38

overview, 5-4

password, 5-32

policies, 5-29

security, 5-3Q 5-31

server debugging, 5-26, 5-26 5-28

server, 5-19

3.3 NFS User’'s Guide index-3

