Tutorial-

Learning to
@ Debug with edge

C Edition

%% SiliconGraphics
Computer Systems

Document number: 007-0903-020

Learning to
Debug with edge

C Edition

Version 2.0

Document Number 007-0903-020

Technical Publications:

Amy B. W. Smith
Kevin B. Walsh
Beverly White
Diane Wilford

Engineering:
Greg Boyd
Jeff Doughty
Deb Ryan

Jim Terhorst

© Copyright 1988, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary and confidential information of
Silicon Graphics, Inc., and is protected by Federal copyright law. The
contents of this document may not be disclosed to third parties, copied
or duplicated in any form, in whole or in part, without the express
written permission of Silicon Graphics, Inc.

U.S. Government Limited Rights

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (b) (2) of the Rights in Technical Data and Computer

Software clause at 52.227-7013. Contractor/manufacturer is Silicon
Graphics Inc., 2011 Stierlin Road, Mountain View, CA 94039-7311.

Learning to Debug with edge

C Edition

Version 2.0

Document Number 007-0903-020

Sllicon Graphics, inc.
Mountain View, California

UNIX is a trademark of AT&T Bell Laboratories.

O

U

Contents

To the Reader

1. What is edge?
Preparing a Program for Use under edge
~ Using Makefile to Set Up the edge Tutorial
Bug #1 . e .
Bug #2 . . .
Summary of Basic Commands .

2. More Elusive Bugs

Understanding Some Advanced Commands

Using the Advanced Commands
Bug #3
Bug #4
Bug #5 .

Summary of Advanced Commands

3. OnYourOwn . .
Using edge to Debug Graphlcs Programs
The Debugging Process . .
Summary of edge Commands
Textual Commands . .
Choices on the Command Menu .
Choices on the Pop-up Menu .
vi Search Commands . .
Where to Find Additional Information .

To the Reader

(Y This tutorial is designed for C programmers with little or no experience

~ - using the Silicon Graphics, Inc. graphical debugger, edge. After only one or
two hours with this tutorial you will be able to use edge to debug your
programs more quickly and efficiently. You will leam:

e how to prepare a program for debugging under edge
e how to use the edge interface

e how to use both basic and advanced debugging commands to debug
sample programs

o general rules to help you debug your own programs
To use this tutorial you need a basic understanding of UNIX and the vi text

editor. Read Getting Started with the IRIS-4D Series Workstation if you
(N need to learn or review this information.

SN

P
\

1. What is edge?

edge is a window-based, graphical interface to dbx, a standard UNIX
debugger. You can use dbx to find bugs in your executable files, and if
those executable files are compiled using the -g compiler option, dbx can
relate the executable code to the source code. Specifically, dbx lets you:

e stop your program at specified points to check current values
e trace variables as they change throughout your program

e step through functions one line at a time

The edge interface to dbx consists of three independent windows: the
Command Window, the Source Window, and the User Window. You can
use the Command Window to issue dbx commands manually; you can use
the Source Window to view the source code as it executes; and you can use
the User Window to monitor the program input/output (standard in and
standard out) and error messages (standard error).

Bccause edge runs under the Silicon Graphics, Inc. window manager,
4Sight, it is not always necessary to type in dbx commands. The most
common dbx commands are mapped to menus in the Command Window
and the Source Window. The window manager also allows you to select
command input (e.g., program variables) via the mouse.

Another advantage of running edge under the 4Sight window manager is
that you can use edge to debug graphics programs that also run under the
4Sight window manager. See Chapter 3 for more information about using
edge with graphics programs.

Version 2.0 What is edge?

1

Preparing a Program for Use under edge

You do not need to make any changes to your source code to run the code
under edge. However, to take advantage of all the edge and dbx features,
you should compile the program using the -g compiler option. The -g
compiler option ensures that the final executable file contains an expanded
symbol table. Using this table, edge and dbx can relate lines of machine
code to lines of source code and display that source code as it executes in
the source window.

In addition, when preparing an executable for use under edge, you should
not optimize the code. Optimized code can be submitted to edge, however,
because optimization rearranges the machine code, following the execution
of such a program can be very difficult.

Source File Object File Executable File
@ symbol table
""debugging
information
Create your Compile using The compiler Your file is Your executable
source code as the debugging creates an ex- linked with file contains the
usual. flag (-g). panded symbol the debugging information that
table in your flag. the debugger
object file. needs.

2 Learning to Debug with edge, C Edition IRIS-4D Series

./ s A
! >X
! i)

-5

Using Makefile to Set Up the edge Tutorial

You will be working on a sample program called sort.c. During this session
you will use nine basic edge commands to eliminate two bugs. Your IRIS
should be booted and displaying the IRIS login: prompt. Log in as tutor,
and change directories so that your current working directory is
lusritutor/edgelC/src. Type: |

cd /usr/tutor/edge/C/src

To set up the edge tutorial environment, type:

make

When the system prompt appears again, list the contents of this directory.
Type:

1ls

You see six file names: Makefile, names.in, scrub, sort, sort.c, and sort.m.
The program sort.c reads the input file names.in, sorts it, and puts the results
into an output file. The code that you will debug in this section processes
command line arguments; the actual sorting is done by the C library routine,
gsort. To briefly look over sort.c, type:

more sort.c

Press <spacebar> to look at the next screenful; press <delete> to stop
viewing the program and return to the system prompt.

Note: If you find any bugs, do not try to fix them!

When you feel comfortable with the structure of sort.c, return to the system .
prompt.

Version 2.0 What is edge? 3

The Matkefile in this directory helps you do the tutorial at your own pace,
and lets you easily restore the directory so someone else can start fresh with
the tutorial.

If you need to stop before you complete the tutorial, you can save your work
and pick up where you left off later. To save your bug fixes, type: / ﬁs>\

make save

When you want to resume the tutorial, return to the /usr/tutor/edge/Clsrc
directory and type:

make restore

Finally, when you complete the tutorial, restore the directory so that
someone else can use the tutorial. Type:

make done

Now you are ready to tackle the first bug. /r)
{ | l]b»

4 Learning to Debug with edge, C Edition IRIS-4D Series

7N

Bug #1

1. Compile and link sort.c using the -g flag, and name your executable file

sort.

cc -g sort.c -o sort

Run your program using the input file names.in, and put the sorted
results into a new output file called names.out.

sort names.in -o names.out

You see this message:

sort: Segmentation violation -- Core dumped

This means sort has a bug that causes a program fault. The
‘“‘Segmentation violation’’ message usually means that there is a bad
pointer reference in your code. ‘‘Core dumped’’ means that UNIX took
the memory image of your program when it faulted, and put it into a file
named core.

Submit sort to edge. Type:

edge sort

The system displays the three edge windows shown on the next page.

Version 2.0 What is edge? 5

IE edge: Command Window

STATUS 2
Process 94957 (csh) dulproc
Process 3849 (news_server) =
Process 3855 h) suspend
Process 4050 activate
Process 3862 debug

dbx version 1,21 e
Copyright 1987 Silicon Graphics Inc.

Copyright 1987 MIPS Comnputer Sustens Inc.

Tupe 'help’' for help.

Reading synbolic information of 'sort' . . .

shouproc all

Core file produced fron file “sort” where
Process died at pc Dx40022c of signal : segnwentation violation Trnoe
[using weno inage in corel

(dbx) (dbx)r%

interrupt

quit

[edge: Source Window: soft.¢

sort -1 input -o output

would sort input onto output and ignore case du
the sort.

»/
I.ll’li le (\l<nr9cl

82 /% is it & sui
ggowwm % @.’ﬁ%‘*&ﬁ»‘l’é&'&%ﬁi’&wﬁmf]

/% yes., process the suitch »/
suitch (curargl1])

casa "i'!
/% ignoring case. %/
ignorecaset+}

/% bump the counter »/
it

The top window, the Command Window, contains a command menu, a
process list, and a dbx command processor. The top section of the
Command Window the process list, lists all the processes associated
with your login. The lower section of the Command Window, the dbx
command processor, receives typed command to edge, and runs all of
the standard dbx commands.

The middle window, the Source Window, lists the source code that you
are currently debugging. You can scroll through the source code by
placing your cursor over the ‘‘up’’ or ‘‘down’’ arrows of the scroll bars
and clicking the left mouse button.

You can also scroll text by placing the cursor on the elevator block of
the scroll bar, pressing and holding the left mouse button, and dragging
the cursor up or down.

6 Learning to Debug with edge, C Edition IRIS-4D Series

AT

The bottom window, the User Window, displays the results you get
when you run the program (standard in, standard out, and standard
error).

To use the commands on a command menu, position the cursor over the
menu item and press the left mouse button. If the command requires an
object, you must highlight that object before you select the command.
To highlight an object (e.g., a variable in the source code or a process
listed in the top of the command window), position the cursor over the
start of the object, press and hold the left mouse button, drag the cursor
to the end of the object, and release the left mouse button.

Move the edge window that
currently contains {he cursor.

Gets the dbx pop-up menu
== when the cursor is in any
edge window. Gets the
4Sight pop-menu when the
cursor is in any edge

title bar.

Select items from the
command menu, or
scroll text in the window
containing the cursor.

-—

If you look at the Source Window, you notice that line 83 is highlighted.
This is the line at which the program faulted.

Get more information about the fault. Position your cursor over the
word ‘where’ in the command menu, and press the left mouse button.

In the Command Window, edge displays the message:

> 0 main(argec=4, argv=0x7fffdba4) ["sort.c":83, 0x4001d8]

Whenever a line of code that causes a program fault contains a variable,
you should check its value.

Version 2.0 What is edge? 7

5. Check the value of curarg (current argument), use the print command.

To use print, first highlight the variable that you want to print, then

select ‘print’ from the command menu. Highlight curarg by positioning

your cursor between the asterisk (*) that precedes curarg, pressing and

holding the left mouse button, and dragging the cursor over the rest of =
the word. When the entire word is highlighted, release the left button. (} ‘
Now use the left button to select ‘print’ from the command menu.

Since the value of curarg is nil, you want to make sure that it was
initialized. As you see in the Source Window, this never happened.
curarg should have been initialized between lines 80 and 82.

6. Edit the source file to add initialization code for the program variable
curarg. To edit your source file, position your cursor in any edge
window, and press and hold the right mouse button. You see this menu:

select

Move down the menu so that ‘edit’ is highlighted, then carefully slide
your cursor to the right. You see a sub-menu that contains only one
choice — ‘sort.c’. Make sure it is highlighted (your cursor should be on
top of it), then release the mouse button.

attach

select
file§p file

8 Learning to Debug with edge, C Edition IRIS-4D Series

You see a red outline. Move the cursor down to the lower left-hand
comer of your screen, and press and release the right mouse button. You
have just created a new UNIX shell that is running the vi text editor on
your source file, sort.c. (When your program consists of several source
files, the ‘edit’ sub-menu contains all of them so you can access them
easily.)

7. Add temporary line numbers to your file so that you can edit it exactly
as this tutorial does. Tell vi to display line numbers, enter the command:

:set number

It is important to perform recommeded edits exactly. This tutorial makes
references to code by line number. If your edits change line count in
ways we have not anticipated, you will find it difficult to complete the
rest of the tutorial.

8. Edit the code so that lines 79-85 look like this:

79 while (i<argc)

80 {

81

82 /* get the current argument */
83 curarg = argvi];

84

85 /* is it a switch? */

9. Save your edits and exit from vi as usual. When you do this, the new
shell disappears.

TWg

10. Recompile sort.c using the -g option (there are still more bugs to find).
Move the cursor to the Command Window and enter the command:

sh cc —g sort.c -o sort

You have successfully eliminated the first bug.

Version 2.0 What is edge? 9

Bug #2

1. Run the program within the edge environment. Use the run command to
run sort in edge, using names.in and names.out.

run -o names.out names.in

It is not necessary to specify the name of the program. edge assumes you
want to run the program specified when you started. In addition, edge
rereads the object code. In the Command Window, edge displays the
message:

Process 6088 (sort) started.

Object hs been remade. Re-reading symbolic information ..
Process 6088 (sort) terminated

Process 6089 (sort) started

Process 6089 (sort) finished

In the User Window, edge displays the message:

sorting .
7 records sorted from input file names.in
onto output file -o

It seems that the file was sorted, but the output file was named -o rather
than names.out. It’s likely that there is a problem where the output file
is assigned. Look for this code in the Source Window by scrolling
through the text.

2. Scroll to line 105. To scroll through the text, move the cursor to the
scroll bar at the left of the Source Window. Using the left mouse button,
click on the arrows to scroll the text.

10 Learning to Debug with edge, C Edition IRIS-4D Series

. Set a breakpoint at the line in which the name of the output file is

assigned. A breakpoint at a line makes dbx stop executing the program
and display the line containing the breakpoint. To set a breakpoint, use
the ‘stop at” command. To use ‘stop at’, highlight the line of code (line
105) using the left mouse button, then select ‘stop at’ from the command
menu.

. Run sort again. If you have already run a program in edge, you can

easily run it again with the same arguments by using the rerun
command. Select ‘rerun’ from the command menu.

. Line 105 contains the variable argv[i]. Check its value by highlighting

it using the left mouse button, then selecting ‘print’ from the command
menu.

The value is -o0. This is the argument which appears on the command
line one position before the desired output file, names.out. This means
that the dummy counter i has not been incremented properly.

. To check that the next member of argv/] is actually names.out, at the

(dbx) prompt in the Command Window, type:

print argv[i+l]

The value is names.out, as it should be.

. Edit sort.c by placing the cursor in any edge window, pressing the right

mouse button, and selecting ‘sort.c’ from the rollover menu that is
beneath the ‘edit’ choice.

. Tell vi to display line numbers.

:set number

Version 2.0 What is edge? 11

9. Change your code so that lines 101-109 look like this:

101 /* the output file name follows */

102

103 /* increment past the switch. The

104 next argument is the name of the
105 output file. */

106

107 i++;

108

109 if (i<argc)

10. Save your changes and exit from vi.
B

11. Exit from edge by selecting ‘quit’ from the command menu.

12. Recompile sort.c, and run it outside of the edge environment. Move the
cursor to the console window and enter the commands:

cc -g sort.c -0 sort
sort -o names.out names.in

You have successfully debugged your program. Remember, if you want to
take a break at this point, you can save your work on the code by typing:

make save

12 Learning to Debug with edge, C Edition IRIS-4D Series

e

Summary of Basic Commands

To give commands to edge you can type them at the prompt in the
Command Window, select them from the command menu, or select them
from the edge pop-up menu.

You learned three commands that you type in the Command Window.
Square brackets ([]) surrounding an argument mean the argument is
optional; angle brackets (<>) surrounding an argument mean it is
mandatory.

e edge <executable filename>: Go into the edge environment.

e run [arguments]: Run the executable file with which you are currently
working.

e sh <command>: Start up a new UNIX shell to execute this command.

You leamned five commands that you select from the command menu.

rerun Rerun the last program using the same arguments.
cont
step
next
where Display details of the program fault.
interrupt

sh
quit Exit from edge.

print Display the value of the highlighted variable.
print *
pX
stop at Set breakpoint at highlighted line.
stop in
contto
edit
list

Version 2.0 What is edge?

13

: I

You learned one command that you select from the pop-up menu.

------- Start up a UNIX shell that is
running vi on this file.

select
file

You will use these commands extensively in the next chapter, along with
several advanced commands, to help you track down more complex bugs.

14 Learning to Debug with edge, C Edition IRIS-4D Series

TR T T T T T e e e e

2. More Elusive Bugs

As you saw in Chapter 1, the basic dbx and edge commands are very useful
and versatile. However, at times your programs will demand more
sophisticated debugging tools. This chapter describes the advanced
commands, and leads you through a more complex debugging situation.

Understanding Some Advanced Commands

You will learn to use 14 new commands in this chapter. As in Chapter 1,
most of the commands are explained during the debugging session when
you reach a point where you need to use them. However, some of the
commands require more detailed explanations, so you will learn what they
do now, and how to use them during the session.

The trace command lets you track the value of a variable as it changes.
When you use trace, you must remember three important rules:

¢ You can trace only active variables. At any point during the execution of
a program, the program has access to a certain set of variables; these
variables are active at this point. Global variables are always active.
Local variables are active only when their function either is being
executed, or is calling a function that also has active variables. Such a
series of functions calling other functions is called a path of activity.
When you set a breakpoint using edge, the program stops at a certain
point in its execution where there is a set path of activity. This path starts
at the function in which you have stopped, and extends back through the
intermediate functions to the line of the main program from which it all
originated. Any variable along this path is active, and therefore you can
trace it. (See the figure on the following page.)

Version 2.0 More Elusive Bugs 15

Path of activity

if you are stopped
in funct_2. Variables

Local variables in funct_3 are not

used by func- | Main Program 7acuve.

tions called in |

lines 1,34, 1 call funct_x funct_1 funct_2 funct_3

and 5 are not | 2 call funct_1 var_x, var_y var_z var_Q

active when | 3 call funct y | Rooy ynet 2 call funct_3 doit

line 2 or the 4 call funct_z

functions it 5 call funct Q Path of activity

calls are being if you are

executed. _st_opped
< in funct_3.

¢ The syntax you use to give the trace command depends on your location
within the path of activity. If you are stopped in the function funct_3 and
want to trace the variable var_x which is in funct_I, you must type trace
funct_1.var_x. If you are already in funct_I, just type trace var_x.

o Always set a trace in the first executable line of code after the line that
assigns the new value to the variable. This is necessary because edge
displays the value of the variable before it executes the line at which you
set the trace.

The step and next commands let you execute and view each line
individually, effectively letting you step through your whole program.

step lets you go through your program in its logical order, one line at a time.
When you get to a line that calls a function, the next line you will see is the
first line of that function. When the function ends, you return to the line of
code that called it.

next also lets you go through your program line by line, but it treats each
line, even a line that calls a function, as a single event. So, when you reach
a line that calls a function, the program executes it, but you don’t step
through the function code and watch it happen. Rather, you see the next line
of code in the current function and you can check the values that the other
function retumns.

Both step and next display the line of code before it is executed. To check
the value of a variable that is assigned on the current line, you must execute
step or next one more time, and then print the variable.

16 Learning to Debug with edge, C Edition IRIS-4D Series

‘)‘w
A

Using the Advanced Commands

If you used the make save command to take a break from the tutorial, you
can now pick up where you left off. You need to restore the files that you
edited earlier, and then recompile sort. Return to the /usr/tutor/edge/C/src
directory and type:

make restore
cc —-g sort.c -o sort

Bug #3

1. Up to this point you have been working in the src directory. Since sort is
working, make a copy of sort, place this copy in the C directory, and try
it out there. Copy sort into C, and change directories so that C is your
current directory.

cp sort
cd

2. Sort the file names.in, and put the result into the file names.out. This
time try using the -i flag so sort will ignore letter case.

sort -i names.in -0 names.out

3. You see this message:

sort: cant open input file (null)

It seems that using -i caused a problem, so go into the edge environment.

edge sort

Version 2.0 More Elusive Bugs 17

You notice that the Source Window didn’t appear. This is because edge
can’t find your source code. edge assumes that source code and libraries
for your program are in the current working directory unless you tell it
otherwise. sort.c is still in the directory src while you are now in C.
Tell edge which directories contain files that it needs to use.

use src Ai}}

Now that you can see your source code, search for the error message that
you saw when you ran sort. edge supports the vi string search
commands slash (/) and question mark (?). / searches forward through
your file; ? searches backwards. Search forward for the first occurrence
of cant open.

/cant open

. The error message prints the value of a variable called inputfile. Use /to

find the line of code in which inputfile is initialized. Press only / to find
the second and third occurrences of the string.

/inputfile AN
/ i)m
/ ~

You find that it is initialized in line 127. Set a breakpoint here by
highlighting line 127, then selecting ‘stop at’ from the command menu.

. Run sort in edge using the -i flag.

run -i names.in -o names.out

In the Command Window, you see this message:

Process 6155 (sort) started
Process 6155 (sort) finished

Because sort didn’t stop, we know it never executed line 127.

18 Learning to Debug with edge, C Edition IRIS-4D Series

//‘2\

10.

11.

12.

13.

Scroll through the code until you find the loop that processes the
command line arguments. You find that the variable curarg keeps track
of the value of the current argument.

Trace curarg as it changes values. Because trace displays the value of a
line before it executes the line, be sure you set the trace at the first
executable line after curarg is assigned a new value, line 86. Move the
cursor to the Command Window and type:

trace curarg at 86

Run the program again by selecting ‘rerun’ from the command menu.

The cursor changes shape so it now looks like the comer of a window.
edge displays the tracing information in a special Variable Display
Window that you create (sweep out).

Sweep out the Variable Display Window:

Position the cursor outside the edge windows. Press and hold the right
mouse button to set the comner of the new window. While holding the
right mouse button, drag the cursor diagonally to where you want the
opposite corner to appear, then release the button.

This is the Variable Display Window. You can scroll through this
window just as you can scroll through the Source Window. The
Variable Display Window displays the message:

[2] curarg changed before [main: line 86]:

new value = 0x7fffdbe5 = "-i";

[2] curarg changed before [main: line 86]:
old value = 0x7fffdbe5 = "-i";
new value = 0x7fffdbfl = "-o";

curarg received some values, but didn’t receive the value of the input
file name. You will want to check out the dummy counter i which
determines the value that curarg receives. But before you do this, find
out which edge commands you have already set by using the status
command.

Version 2.0 More Elusive Bugs 19

14. Move the cursor to the Command Window and type:

f status

The Command Window displays the list:

!

|

| [2] stop at "sort.c": 127

ﬂ\ [31] { ; trace curarg;} at "sort.c": 86
|

You should delete the curarg trace so it doesn’t clutter the i trace. When
you use the delete command, refer to the edge breakpoints and traces by
using their status numbers.

15. Delete the trace command listed as status item three. Type:

delete 3

16. Now trace the dummy counter i. At the dbx prompt, enter the
command:

)
trace i at 86 . &

17. Run the program by selecting ‘rerun’ from the command menu. In the
Variable Display Window, you see the message:

[3] i changed before [main: line 86]:
new value = 1;

[3] i changed before [main: line 86]:
old value = 1;
new value = 3;

Notice that i skipped from 1 to 3. It seems that i is not being
incremented properly. You can use edge to see what would happen if i)\P
received the value 2. J

20 Learning to Debug with edge, C Edition IRIS-4D Series

e

18. Set a breakpoint at the line in which the variable i receives its value, line

83. To set a breakpoint at line 83, highlight 83, then select ‘stop at’
from the command menu.

19. Rerun sort by selecting ‘rerun’ from the command menu.

20. Now you can tell edge that you want i’s value to be 2 by using the
assign command.

assign ‘i = 2
21. Continue running the program by selecting ‘cont’ from the command
menu.

22. When sort stops at line 127, check to see if i’s new value changed
curarg’s value. Highlight the word ‘‘curarg’’ in line 127, then select
‘print’ from the command menu.

The value is names.in, as it should be. This shows that your program
would work if i were incremented properly.

23. Continue running the program to make sure it works. Select ‘cont’

twice from the command menu. If you read the User Window, you see

that the output file was named names.out.

24. Since sort faulted when you tried to use the ignore case option, scroll

through the code that processes this option and check for places where i

is incremented.

You see that i is incremented twice in the case statement loop. It should

be incremented only once.

25. Edit sort.c by placing the cursor in any edge window, pressing the right

mouse button, and selecting ‘src/sort.c’ from the rollover menu that is

beneath the ‘edit’ choice.
26. Tell vi to add line numbers.

:set number

Version 2.0 More Elusive Bugs

21

! 28.

27. Delete only these three lines:

95 /* bump the counter*/
96 i++;
97

Your code should now look like this:

93 ignorecase+t++;
94
95 break;

Save your changes and exit from vi.

twq

29. Move the cursor over the Command Window and exit from edge by

22

selecting ‘quit’ from the command menu.

Learning to Debug with edge, C Edition IRIS-4D Series

Bug #4

1. Move the cursor to the console window.

2. Return to the src directory and recompile and run your program.

cd src
cc -g sort.c -o sort
sort —-i names.in -o names.out

3. Now make sure that it-works without the -i flag.

sort names.in -o names.out

4. The program seems to be working. Just to be positive, take a look at the
output file.

more names.out

5. As you can see, sort did not sort the list correctly. Go into edge to find
the problem.

edge sort

6. The C library routine gsort actually does the sorting, so look for the code
that calls it.

/gsort
/

gsort depends on you to write a function that will compare records.
(gsort is described in detail in the IRIS-4D Programmer’s Reference
Manual, section 3.)

Version 2.0 More Elusive Bugs 23

7.

10.

11

24

Find your compare_recs function.
/compare_recs

When you find the function, you see that compare_recs uses another C
library routine, strcmp, to perform the string comparison. (strcmp is also
described in the IRIS-4D Series Programmer’s Reference Manual,
section 3, under the string(3c) routine.) Since these library routines
should work, look at the input and output files to see if any type of
sorting occurred. This may give you a clue about a possible bug in the
implementation of these routines.

Compare names.in to names.out to see if any sorting occurred. To view
the contents of a file other than the one you are debugging, use the file
command. Type:

file names.in
file names.out

You see that the ordering did change, but rather randomly. Go back to
your source file, and look at the compare_recs function again. To use file
to view a source file in the Source Window, place the cursor in any edge
window, press the right mouse button, and select the source file from the
rollover menu that is beneath the ‘file’ choice. The ‘file’ choice lists all
of the source files that are part of your program. In this case, select
‘sort.c’.

List the function, compare_recs. Rather than search for the string
compare_recs, you can use the list command. When you use list with a
function name, edge takes you to the beginning of the function. At the
dbx prompt, type:

list compare recs

. Set a breakpoint at the end of this function so you can check the values

of the variables before they are returned. Highlight line 239 and select
‘stop at’ from the command menu.

Learning to Debug with edge, C Edition IRIS-4D Series

<

(»\

12. Run the program.

run names.in -0 names.out

The Command Window displays the message:

[2] Process 6194 (sort) stopped at [compare_recs:239, 0x400608]
return (strcmp (rec0, recl));

13. Check the values of the two variables rec0 and recl. First highlight recO
and select ‘print’, then highlight recl and select ‘print’.

You see memory addresses.

14. Use the whatis command to find out what kinds of variables rec0O and
recl are.

whatis recO

The system tells us unsigned char **recO and unsigned char
**recl. This indicates that rec0 is a pointer to a string. strcmp needs
strings, not pointers.

15. Find out to which string rec0 points.
print *recO
This is the first record in names.in. You need to change line 239 so that
strcmp receives a string rather than a pointer.

16. Edit sort.c by placing the cursor in any edge window, pressing the right
mouse button, and selecting ‘sort.c’ from the rollover menu that is
beneath the ‘edit’ choice.

17. Add line numbers.

:set number

Version 2.0 More Elusive Bugs 25

18. Change line 239 so that it looks like this:

239 return (strcmp (*recO, *recl));

19. Save your changes and exit from vi.
tWg

20. Move the cursor to the Command Window and exit from edge by
selecting ‘quit’ from the command menu.

N
)

S

26 Learning to Debug with edge, C Edition IRIS-4D Series

Bug #5

Move the cursor to the console window.

Compile and run your program without the -i flag, and look at the output
file.

cc -g sort.c -o sort
sort names.in -0 names.out
more names.out

It seems to be working. Now try it with the -i flag.

sort =-i names.in -o names.out
more names.out

The comparison doesn’t seem to work properly, so go into the edge
environment.

edge sort

Set a breakpoint in the compare_recs function. Use the stop in
command. When you use stop in with a function, it sets a breakpoint at
the first executable line of the function.

stop in compare_recs

Run the program in edge.

run -i names.in -0 names.out

Version 2.0 More Elusive Bugs 27

10.

11.

12.

13.

14.

28

Go through compare_recs one step at a time. Use step in this case.
Select ‘step’ from the command menu.

In the Source Window, edge highlights the line:

[)
233 lower (tempbufO, *rec0) ; ﬁB)\

Select *next’ from the Command Window menu to execute the next line
of code and see if lower is retuming the correct value: the first record of
the file names.in. Do not select ’step,’ or you will descend into the
function, lower().

Print the value of tempbufU (in line 233) by highlighting it and selecting
‘print’ from the command menu. The displayed value is the string

mt sn, which is not an element in the file to be sorted. This doesn’t ook
correct.

Check the first element of the array rec to see what the record should be.
Highlight *rec0 and select ‘print’.

The displayed value is smithson\n. If you compare this to the contents >\}
of tempbuf, it looks like lower is putting every other letter into the \
buffer.

Select ‘step’ to go into the function lower, and look at the code.

Studying the code, you see that the variable ¢ moves each letter of a
record from the buffer bufinput into the buffer result. The contents of
result are ultimately passed to the buffer tempbuy.

Check the above analysis of the code, trace ¢’s value at the end of the
loop. Move the cursor to the Command Window and type:

trace ¢ at 257

Now check the contents of the buffer bufinput to see which record is
about to be put into result. Highlight bufinput in line 251 and select ‘),
‘print’.

Tell edge to continue execution. Select ‘cont’.

Learning to Debug with edge, C Edition IRIS-4D Series

15. Use the right mouse button to sweep out the Variable Display Window.

For some reason c is moving only every other letter. There must be a
problem where c is assigned a value.

16. Look at lower to find where c is assigned a value.

list lower

17. It’s probable that iscap is responsible, so list it.

list iscap

18. If iscap is not defined, then it isn’t a function. Use the whatis command
to get some information about it.
whatis iscap

19. Once again, it is not defined. Make sure whatis works by using it on
lower.

whatis lower

20. As expected, whatis works fine on the function lower. whatis can give
you information about any variable, type, or function that is in your
program. The only kind of structure whatis can’t describe is a
preprocessor directive, such as a macro, so iscap may be a macro.

21. Search the code for a macro definition of iscap.

/iscap

/

You see that the macro iscap (defined on line 34) performs two
substitutions. This is what your line of code looks like after iscap has
been invoked.

if ((((c=*bufinput++)>=’A’)&& ((c=*bufinput++)<='2')))

Version 2.0 More Elusive Bugs 29

This expanded macro increments bufinput twice. You need to change
your code so that c¢ is assigned before iscap is invoked. This will
prevent bufinput from being incremented by iscap.

22. Edit sort.c by placing the cursor in any edge window, pressing the right
mouse button, and selecting ‘sort.c’ from the rollover menu that is
beneath the ‘edit’ choice.

23. Add line numbers.

:set number

24. Change lines 251 and 252 so they look like this:

251 while (c = *bufinput++) {
252 if (iscap(c))

25. Save your edits and exit from vi.

twq

26. Move the cursor over the Command Window and exit from edge by
selecting ‘quit’ from the command menu.

27. Move the cursor over the console window then recompile your program,
run it, and check the results.

cc -g sort.c -o sort
sort -i names.in -o names.out
more names.out

You have completely debugged your program, and you are through using
this directory. Before you go on to the last chapter, restore the
lusritutor/edge/C/src directory to its original form so that other people can
use it. To do this, type:

make done

30 Learning to Debug with edge, C Edition IRIS-4D Series

Summary of Advanced Commands

You leamned eight commands that you type in the Command Window.
Square brackets ([]) surrounding an argument mean the argument is
optional; angle brackets (<>) surrounding an argument mean it is
mandatory.

use <directory> [directory] Use these directories. They contain
source code or the libraries that the program uses.

file <filename>: Make this file the current file and display it in the Source
Window. Type this command in the Command Window when the file
you want to display is not a source file.

status: Show a list of all of the edge breakpoints and traces that are
currently set.

delete <status number> [status number]: Delete this command.

trace <variable> at <line number>: Print the value that this variable has
when it reaches this line number.

stop in <function>: Stop the program when it enters this function, and
print the first executable line.

assign <variable> = <value>: Assign a certain value to a variable.

whatis <object>: Display the definition of this object (function, type, or
variable).

You learned three additional commands from the command menu.

rerun
cont Continue execution of a stopped program.
step Execute next line of code. Step down into functions.

where
interrupt
sh
quit

Version 2.0 More Elusive Bugs 31

next Execute next line of code. Do not step down into functions.

You learned one command that you select from the pop-up menu.

attach

Display this file in the Source Window
and make it the current file. :

select

You also learned these vi search commands:
e /<string>. Search forward through the file for this string.
o 2<string>: Search backward through the file for this string.

This list and the list of basic commands on pages 13 and 14 cover most of
the edge commands you need to debug your programs. A complete list of
all edge commands that you learned in this tutorial appears in Chapter 3.

32 Learning to Debug with edge, C Edition IRIS-4D Series

3. On Your Own

At this point you know enough about edge to use it to debug your own non-
graphics programs. The first section of this chapter gives you some
information on debugging graphics programs using edge. The rest of the
chapter provides three useful references: a table that summarizes the
debugging process, a list of all edge commands that you learned in this
tutorial, and a list of sources that contain additional information about edge.

Using edge to Debug Graphics Programs

You can use all of the edge commands that you learned in this tutorial to
debug graphics programs. The one difference is that you must run graphics
programs in the foreground when you run them under edge. This section
describes two ways you can do this.

To use the first method you must call the foreground routine in your
source code. At the beginning of the main function, add this line:

foreground();

To use the second method you must add a conditional statement to your
code so that when you use the -D flag when you compile, the compiler adds
the foreground call to your code. This way the call happens only when you
need it. At the beginning of your main function, add this code:

ifdef DEBUG
foreground() ;
endif

If your program were called graphic.c and you wanted to debug it, you
would compile it by typing:

cc -g -DDEBUG graphic.c -o graphic -Zg

Version 2.0 On Your Own 33

The Debugging Process

This table illustrates a good, general purpose procedure for systematically
debugging your own programs. Commands that you type at a prompt are

printed here in typewriter font.

Procedure

edge Commands

1. Compile your program using the
debugging flag.

2. Run your newly compiled program in
the edge environment. Tell edge
which directories it must use.

3. If the program does not fault, go to
step #4. If it does fault, find where
the fault occurred.

4. Look over the code and set break-
points at various lines and functions
to check values.

5. Rerun your program with the same
arguments.

6. When the program stops at each
breakpoint, look at values,step
through the code if necessary, and
continue running the program.

7. If the value of a variable is not correct,
trace it at the line after it is assigned
its value. Remember to specify its
module and function if necessary.

8. Keep track of breakpoints and traces
and delete those that you no longer
need.

9. When you find the bug, edit your code.

10. Exit from edgeand go back to step #1.

cc -g

edge <filename>
use <dir> [dir]
run [arguments]

select "where"

highlight the code and select "stop"
stop in <function>

)

select "rerun”

highlight a variable and select "print"
select "stop"
select "next"
select "cont"

trace [mod].[funct].<var>
at <line number>

status
delete <status number>

select a file from the "edit" sub-menu

select "quit"

34 Learning to Debug with edge, C Edition

IRIS-4D Series

Summary of edge Commands

This section contains all of the edge commands that you can issue by typing
in the Command Window, selecting from the command menu, or selecting
from the pop-up menu.

Textual Commands

e assign <variable>=<value>: Assign a certain value to a variable.

e delete <status number> [status number]: Delete the commands that have
these status numbers.

o edge <executable filename>: Go into the edge environment.

o file <filename>: Make this file the current file.

o list [function): Display the code for this function.

e run [arguments]: Run the executable file with which you are working.

e status: Show a list of all the edge breakpoints and traces that are
currently set.

e stop in <function>: Stop the program when it enters this function, and
print the first executable line.

e trace <variable> at <line number>: Print the value that this variable has
when it reaches this line number.

e use <directory> [directory] ...: Use these directories. They contain
source code or libraries that the program uses.

o whatis <object>: Display the definition of this object (function, type, or
variable).

Version 2.0 On YourOwn 35

Choices on the Command Menu

addproc

delproc

suspend

activate

debug

rerun

cont

step

next

where

interrupt

sh

quit

print

print *

pX

stop at

stop in

cont to

edit

list

36

Add highlighted process to pool of processes controlled by edge.

Delete highlighted process from pool of edge-controlled processes.
Suspend execution of highlighted process. 7
Select process from pool of processes controlled by debugger. e ’.\\
Add selected process to process pool and stop process. ~

Rerun the last program using the same arguments.
Continue execution of a stopped program.

Execute next line of code. Step down into functions.
Execute next line of code. Do not step down into functions.
Display details of the program fault.

Stop edge from completing the current command.

Start a new UNIX shell.

Exit from edge.

Display the value of the highlighted variable.

Display the value pointed to by the highlighted variable.

Display the hexedecimal value of the highlighted variable. Y
Set breakpoint at highlighted line. “ >
Set break point at start of function containing highlight.

Continue execution of program until the highlighted line.

Edit source for highlighted function.

List source for highlighted function.

Learning to Debug with edge, C Edition IRIS-4D Series

Choices on the Pop-up Menu

attach Start up a UNIX shell that is

running vi on this file.

select

Display this file in the Source Window
and make it the current file.

attach
select

Version 2.0 On Your Own

37

vi Search Commands

e |/ <string>: Search forward through the file for this string.
e ? <string>: Search backward through the file for this string.

Where to Find Additional Information

The IRIS-4D Programmer’ s Reference Manual, section 1, contains two
relevant manual pages: edge(1) describes all of the edge commands and
command line options; dbx(1) describes all of the dbx commands and
command line options. The same manual pages are on-line. To view them,

type:
man edge
or

man dbx

38 Learning to Debug with edge, C Edition IRIS-4D Series

