Programming the
IRIS WorkSpace

IRIS-40 Series

%uﬁ SiliconGraphics
Computer Systems

Documen t number: 007-2006-010

Programming the
IRIS WorkSpace

Version 1.0

Document Number 007-2006-010

Technlcal Publications:

Robert Reimann
Claudia Lohnes

Engineering:
John Eisenman
Bruce Karsh
Eva Manolis
Rob Myers
Betsy Zeller

© Copyright 1989, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary information of Silicon Graphics,
Inc. The contents of this document may not be disclosed to third
parties, copied or duplicated in any form, in whole or in part, without
the prior written permission of Silicon Graphics, Inc.

Restricted Rights Legend

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 52.227-7013, and/or in similar or successor
clauses in the FAR, or the DOD or NASA FAR Supplement.
Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

Programming the IRIS WorkSpace
Version 1.0
Document Number 007-2006-010

Silicon Graphics, Inc.
Mountain View, California

IRIS, IRIX, IRIS Graphics Library, and WorkSpace are trademarks of Silicon
Graphics, Inc. PostScript is a registered trademark of Adobe Systems, Inc.

Contents

1. Introduction .
1.1 What Does WorkSpace Do’? .
1.2 What Is File Typing?

1.3 FTR Files .
1.4 WorkSpace Templatlng
1.5 Transfer Devices

2. Writing File Typing Rules .

2.1 The TYPE Declaration .

2.2 The MATCH Rule .
2.2.1 Valid Match- Expresswns .
2.2.2 Building Effective MATCH Rules
2.2.3 Tagging Executables
2.2.4 Using Scripts without Taggmg

2.3 The LEGEND Rule .

2.4 The SUPERTYPE Rule

2.5 The SPECIALFILE Rule

2.6 The Command (CMD) Rules
2.6.1 The CMD OPEN Rule .

2.6.2 The CMD ALTOPEN Rule
2.6.3 The CMD DROP Rule
2.6.4 The CMD PRINT Rule

2.7 The MENUCMD Rule

2.8 The BOUNDS Rule .

2.9 The ICON Rule .
2.9.1 Thelcon Descnptlon Language
2.9.2 Drawing icons

2.9.3 Style Conventions for Workspace lcons .

2.10 Compiling FTR Rules .
2.10.1 Order of Precedence of FTR Flles .
2.10.2 Placement of FTR Rules .

1-1

1-1
1-2

1-2

2-3
2-3

2-6

2-6

2-9

2-9
2-10
2-10
2-11
2-11
2-12
2-12
2-13
2-13
2-14
2-15
2-15
2-18
2-19
2-22
2-23
2-23

3. Writing Print Conversion Rules .
3.1 The Print Conversion Pipeline

3.2 The CONVERT Rule
3.3 The COST Rule .
3.4 The FILTER Rule
3.5 Printer Types .

3.6 The Current Printer .

4. Creating WorkSpace Templates .
4.1 Using WorkSpace in Template Mode .

4.2 Setting Up an Application Environment

5. Creating Transfer Devices

5.1 The Tranfer Device Interface
5.1.1 Transfer Device Typing

5.1.2 Transfer Device /O

o

.

°

°

5.1.3 Using WorkSpace Environment Variables .
5.1.4 Local Transfer Devices

5.2 Example: shellDevice

B: WorkSpace Man Pages .

: WorkSpace Environment Variables

3-1
3-1

3-2
3-3

3-5

4-1
4-1
4-3

5-1
5-1
5-2
5-3
5-3
5-3

B-1

List of Tables

Table 2-1.
Table 2-2.

Table 2-3.
Table 2-4.
Table 2-5.
Table B-1.

File TypingRules

Numerical Representations in Match-
Expressions

Match-Expression Functions
Tag Numbers for IRIX Executables
icon Description Functions

WorkSpace Man Page Summary

2-2

2-4
2-5
2-7

2-17
B-1

List of Figures

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.

Mapping Icons to Pixels Using BOUNDS

Splitting a Concave Polygon
3-D Icon Axes

GenericExecutable Icon .

.

°

2-14
2-21
2-21
2-22

1. Introduction

This manual describes how to program the appearance and functionality of
file icons in the IRIS™ WorkSpace™ environment. This manual should
enable you to customize existing icons, as well as add your own unique
icons to the IRIS WorkSpace.

1.1 What Does WorkSpace Do?

The IRIS WorkSpace presents a sophisticated icon-based interface to the
IRIX™ file system and operating system. Icons in the IRIS WorkSpace
represent files; the various ways that you can act upon these icons, such as
double-clicking on them with the mouse cursor, invoke IRIX command
lines as if they had been typed in a shell. Thus, the WorkSpace allows you
to perform sophisticated operations on IRIX files entirely through its
graphical interface.

1.2 What Is File Typing?

The IRIS WorkSpace manages the numerous varieties of IRIX files and the
actions that are associated with them using a process called file typing.
There a potentially unlimited number of possible file types that can exist
within the IRIX file system: plain text files, formatted documents,
directories, shell scripts, images, and binary executables, to name only a
few. Every type of file has an associated set of operations, often unique, that
a user would most often want to perform on the files. The file type
declarations and associated rules that give each type of file a unique
appearance and behavior under the WorkSpace are collectively called file

Version 1.0 Introduction 1-1

typing rules. The syntax of these rules is discussed in Chapter 2. An
additional set of rules define the preferred method of sending a file of a
particular type to a user-specified printer. These rules are called print
conversion rules, and are discussed in Chapter 3.

1.3 FTR Files

File typing rules determine how files behave within the IRIS WorkSpace.
Print conversion rules determine how file types defined by the typing rules
are converted to printed output. Both kinds of rules are read by WorkSpace
from compiled versions of special text files called FTR files. AnFTR source
file ends with the suffix .ftr, and must reside in one of four subdirectories
found in /usr/libl/filetype. Section 2.10, ‘‘Compiling FTR Rules’’, discusses
which of these subdirectories is appropriate for your FTR files, and how to
compile them into versions that can be understood by WorkSpace.

1.4 WorkSpace Templating (

WorkSpace templating allows you to create configurations of icons in the
WorkSpace window that will appear for all WorkSpace users on a system.
WorkSpace templates are maintained in /usr/lib/workspace; each template
installed in this directory has an additive effect on existing templates, so a
user of several software packages written for use with WorkSpace can have
the benefit of each package’s template. WorkSpace templating is described
in Chapter 4.

1.5 Transfer Devices

This manual also describes how to create transfer devices. Transfer devices ()
are special shell scripts that move data into and out of a directory, and are -
accessed as commands under the “*Transfer’’ submenu in the WorkSpace

and Directory View menus. End users can select transfer devices by

selecting the Transfer Manager from the System toolchest. Possible transfer

1-2 Programming the IRIS WorkSpace IRIS-4D Series

devices include scripts that archive selected files to and from tape, copy
selected files to and from remote machines, or mail selected files to other
users. Transfer devices can move data locally or over the network,
depending on how they are implemented. They are discussed in detail in
Chapter 5.

Version 1.0 Introduction 1-3

2. Writing File Typing Rules

File typing rules determine how a file of a particular type will appear within
the IRIS WorkSpace, and also define what functions you can perform on the
file by double-clicking on it or choosing menu items that manipulate it. The
IRIS WorkSpace uses the file typing rules to evaluate all files that are
presented within the WorkSpace or any Directory View window.

There are several reasons why you might want want to write file typing
rules. You might wish to customize the look of WorkSpace icons or modify
what happens to the files they represent when you manipulate them. Or, you
might want to create unique WorkSpace icons when you are developing an
application and its associated data files. In either case, you need to write file
typing rules to accomplish your goal.

File typing rules are similar in some ways to shell scripts. In fact, several of
the rules are simply sets of Bourne shell commands (see sk(1)). File typing
rules consist of a type declaration, which identifies a unique file type, and a
set of up to seven rules following the declaration. All rules, including the
type declaration, consist of a rule key followed by the rule itself. Rules can
be multi-line, but continuation lines cannot begin with any of the rule keys.
Table 2-1 below gives a brief summary of the rule keys and what each
associated rule is used for.

The remaining sections of this chapter describe each of the file typing rules
in detail, and offer suggestions for good file typing style and strategies.

Version 1.0 Writing File Typing Rules 2-1

Flle Typing Rule Key

Function

TYPE
MATCH

LEGEND
SUPERTYPE

SPECIALFILE

CMD OPEN

CMD ALTOPEN

CMD DROP

CMD PRINT

MENUCMD

BOUNDS
ICON

Declares a new type.

Lets WorkSpace determine if a file is of the declared
type.

Provides a text description of the file type.

Tells WorkSpace to treat the file as a subset of a
another type under certain circumstances.

Tells WorkSpace that the file typing rule is to be used
only on non-plain files.

Defines a series of actions that occur when the mouse
is double-clicked on an icon.

Defines a series of actions that occur when the mouse
is alt-double-clicked on an icon.

Defines a series of actions that occur when you
““‘drop’’ an icon on top of another.

Defines a series of actions that occur when you
choose “‘Print’’ from the WorkSpace or Directory
View menus.

Defines menu entries and actions that are inserted
into the WorkSpace or Directory View menus when
an icon is selected.

Defines the coordinate space for the file type’s icon.

Defines the appearance (geometry) of the file type’s
icon.

2-2 Programming the IRIS WorkSpace

Table 2-1. File Typing Rules

IRIS-4D Series

2.1 The TYPE Declaration

Syntax:

Description:

Example:

TYPE type-name

type-name is a one word ASCII string. Legal type names can
be any legal C language variable name. You should ideally
choose a name that is in some way descriptive of the file type
it represents. All rules that follow a TYPE declaration apply
to that type, until the next TYPE declaration is encountered
in the FTR file. Each TYPE declaration must have a unique
type name.

TYPE GenericExecutabla

2.2 The MATCH Rule

Syntax:

Description:

Example:

Version 1.0

MATCH match-expression;

match-expression is a logical expression that should evaluate
to true if and only if a file is of the type declared by TYPE.
The match-expression must consist only of valid MATCH
functions, as described Section 2.2.1. The match-expression
can use multiple lines, but must terminate with a semicolon
(;). Multiple match-expressions are not permitted for a given
type. The MATCH rule is employed each time a file is
encountered by the WorkSpace, to assign a type to that file.

MATCH glob("*.h") && ascii;

Writing File Typing Rules 2-3

2.2.1 Valid Match-Expressions

This section describes the syntax and function of valid match-expressions.

Operators, Constants, and Numerical Representation
The following C language operators can be used in a match-expression:
+=-*/&|"! % ()

The following C language conditional operators can be used in a match-
expression:

&& || == = < > <= >=
The ‘== operator works for string comparisons in addition to numerical
comparisons.

The following constants can be used in a match-expression:
true false

Numbers in match-expressions can be represented in decimal, octal, or
hexadecimal notation. Table 2-2 describes these representations.

Representation Syntax

decimal num
octal Onum
hexadecimal Oxnum

Table 2-2. Numerical Representations in Match-Expressions

Functions

Table 2-3 describes the set of valid match-expression functions.

2-4 Programming the IRIS WorkSpace IRIS-4D Series

(

Function Syntax

Definition

ascii
char (n)
dircontains ("string")

glob ("string")

linkcount
long(n)

mode
print (expr or “string")

Returns TRUE if the first 512 bytes of the file are all
printable ASCII characters.

Returns the nth byte in the file as a signed character;
range —128 to 127.

Returns TRUE if the file is a directory and contains
the file named by string.

Returns TRUE if the file’s name matches string;
allows use of the following expansions in string for
pattern matching: {} [] * ? and backslash (see
sh(1) file name expansion).

Returns the number of hard links to the file.

Returns the nth byte in the file as a signed long
integer; range 21231 -1,

Returns the mode bits of the file (see chmod(1)).
Prints the value of the expression expr or string to

stdout each time the rule is evaluated; used for
debugging. Always returns true.

short (n) Returns the nth byte of the file as a signed short
integer; range —32768 to 32767.

size Returns the size of the file in bytes.

string (n,m) Returns a string from the file that is m bytes
(characters) long, beginning at the nth byte of the file.

uchar (n) Returns the nth byte of the file as an unsigned
character; range 0 to 255.

tag Returns the specific WorkSpace application tag
injected into an executable file by the tag injection
tool (see tag(1) in Appendix B, ‘“WorkSpace Man
Pages’’). Returns —1 if the file is not a tagged file.

ushort (n) Returns the nth byte of the file as an unsigned short
integer; range 0 to 65535.

Table 2-3. Match-Expression Functions
Version 1.0 Writing File Typing Rules 2-5

2.2.2 Building Effective MATCH Rules

A match rule consists of a sequence of expressions, each of which checks a

file for positive distinguishing characteristics. The most effective way to

order these expressions in a single MATCH rule is to choose a set of .
expressions, each of which tests for a single characteristic, and conjoin them (/
all using “‘and’’ conditionals (&&).

The order in which the expressions in a MATCH rule are conjoined may
have an effect on the efficiency of the rule’s evaluation. You should always
try to order the expressions so that the maximum number of files are
““weeded out’’ by the first expressions. The reason for this is that, as in the
C language, && will stop evaluation as soon as one side of the conditional
is found to be false. Therefore, as a rule of thumb, the more likely an
expression is to be false, the further to the left of the MATCH rule you
should place it.

For example, one possible way to match a C source file is with the following
rule:

MATCH glob("*.c") && ascii;

Note that it is more efficient to place the glob ("*.c") expression first (
because there are many more files that do not end in .c than there are files
that are not ASCII text.

You should also make sure that your match rule is specific enough not to
““catch’’ any unwanted files. FTR files are scanned sequentially (see
Section 2.10, ‘‘Compiling FTR Rules’’), so if you define a type with the
following MATCH rule at the beginning of the FTR file,

TYPE foo
MATCH ascii;

every text file in your system will be defined as a file of type ‘‘foo’’.

2.2.3 Tagging Executables (

The preferred way to match a specific executable to a file typing rule is to
‘“‘tag’’ it with a unique 32-bit number. zag(1) allows you to inject a 32-bit
tag safely into a shell script or MIPS executable, where it can be read by a
MATCH rule using the tag match-expression function (see Table 2-2).

2-6 Programming the IRIS WorkSpace IRIS-4D Series

The upper 16 bits of the tag number are reserved for vendor ID, and are
administered by Silicon Graphics, Inc. The lower 16 bits are for general
use. Anyone planning to create file typing rules as part of a commercial
software release is strongly encouraged to obtain a vendor ID.

Number Semantics

0x00000000 windowed executable (no tty window needed)
0x00000100 generate a launch window for argument input
0x00000200 generate an output-only tty window
0x00000400 generate a tty window for input and output
0x00000000 no arguments

0200000001 one argument

0x00000002 two arguments

0x00000004 three arguments

0x00000008 zero or one argument

0x00000010 zero or more arguments

0x00000020 one or more arguments

Table 2-4. Tag Numbers for IRIX Executables

Silicon Graphics, Inc., has defined a tag numbering scheme and a set of
TYPE rules for standard IRIX executables that make use of these 32-bit
values. Table 2-4 lists the various tag numbers and what actions they

anticipate. These numbers are combined via bitwise-OR to create the tag

numbers used in the standard IRIX executable TYPEs listed below with
their associated MATCH rules.

TYPE GenericWindowedExecutable
MATCH tag == 0x00000000;

TYPE ttyOutl-NargExecutable
MATCH tag. == 0x00000620;

TYPE ttyLaunchExecutable
MATCH tag == 0x00000500;

TYPE ttyOutExecutable

MATCH (tag == 0x00000600) || (tag == 0x00000610);
TYPE ttyLaunchOutExecutable
MATCH (tag == 0x00000700) || (tag == 0x00000710);

TYPE ttyLaunchOutl-NargExecutable
MATCH tag == 0x00000720;

Version 1.0 Writing File Typing Rules

2-7

TYPE ttyExecutable

MATCH (tag == 0x00000400) || (tag == 0x00000410);

TYPE LaunchExecutable
MATCH tag == 0x00000100;

TYPE ttyLaunchl-NargExecutable
MATCH tag == 0x00000520;

TfPE ttyOut2argExecutable
MATCH tag == 0x00000602;

TYPE Genericl-NargExecutable
MATCH tag == 0x00000020;

TYPE ttyLaunchOutlargExecutable
MATCH tag == 0x00000701;

TYPE ttyl-NargExecutable
MATCH tag == 0x00000420;

TYPE GenericlargExecutable
MATCH tag == 0x00000001;

TYPE ttyOutlargExecutable
MATCH tag == 0x00000601;

TYPE ttyLaunchOut3argExecutable
MATCH tag == 0x00000703;

TYPE tty2argExecutable
MATCH tag == 0x00000402;

TYPE Generic2argExecutable
MATCH tag == 0x00000002;

TYPE ttyLaunchOut2argExecutable
MATCH tag == 0x00000702;

TYPE Generic3argExecutable
MATCH tag == 0x00000003;

TYPE ttyLaunchlargExecutable
MATCH tag == 0x00000501;

TYPE Launchl-NargExecutable
MATCH tag == 0x00000120;

TYPE Launch2argExecutable
MATCH tag == 0x00000102;

TYPE LaunchlargExecutable
MATCH tag == 0x00000101;

2-8 Programming the IRIS WorkSpace

IRIS-4D Series

Software developers are free to make use of these predefined TYPEs for
IRIX utilities that do not require a personalized look. For applications and
other executables for which a personalized icon is desired, you should create
your own tag numbers (taking care not to use any of those predefined by
Silicon Graphics, Inc.) and appropriate MATCH and ICON rules. Other
rules can be copied from appropriate TYPE:s in the list above.

See the tag(1) man page in Appendix B, ‘‘WorkSpace Man Pages’’, for
more information on tagging executables.

2.2.4 Using Scripts without Tagging

If you have a generic shell script that you would like to run in a tty window,
but don’t want to create a file typing rule for it, you can do so by making the
second line of the script look as follows:

f#winterm

You can also use any of the available flags to winterm (see winterm(1) in
Appendix B) on this line.

2.3 The LEGEND Rule

Syntax: LEGEND text-string

Description: text-string is a string that describes the file type in plain
language a user can understand. The legend is used to
describe the file in the Get File Info window. It is also used
when a Directory View window is set to display as a list.
Legends that are longer than 25 characters might be truncated
in some circumstances.

Example: LEGEND C program source filae

Version 1.0 Writing File Typing Rules 2-9

2.4 The SUPERTYPE Rule

Syntax:

Description:

Example:

SUPERTYPE type-name [type-name ...]

The SUPERTYPE rule is used to indicate that a particular
file type can be treated as a part of a more general file type
under certain conditions. A special case in WorkSpace is
directories; you might wish to create a directory with a
custom icon, yet still have the OPEN and ALTOPEN rules
work as a normal directory. (Note: WorkSpace automatically
handles the OPEN and ALTOPEN rules for directories; the
OPEN and ALTOPEN rules are place holders.). You could
create your own directory TYPE with its own ICON rule, but
if you use SUPERTYPE, it will work like a standard
directory (see example). SUPERTYPE is also very useful for
printing, where you might want to print a custom file type as,
say, an ASCII file. You can also make use of SUPERTYPEs
in your own OPEN, ALTOPEN, DROP, and PRINT rules by
using isSuper(1) as part of those rules. See the isSuper(1)
man page in Appendix B, ‘“WorkSpace Man Pages’’. A
given file typing rule may contain several different
SUPERTYPE rules, and thus be considered a subset of
several more general file types. The SUPERTYPE rule does
not reflect true object-oriented typing, and hence, does not
allow inheritance of rules; it is more a way of aliasing
TYPEs.

TYPE MyDiractory
SUPERTYPE Directory

2.5 The SPECIALFILE Rule

Syntax:

Description:

SPECIALFILE

SPECIALFILE is used to distinguish a file typing rule used
for matching non-plain files. Device files, and other non-
plain files can cause damage to physical devices if they are
matched using standard file typing rules. Special files are

2-10 Programming the IRIS WorkSpace IRIS-4D Series

Example:

matched using only rules containing SPECIALFILE, which
are written so as not to interfere with actual physical devices.
Similarly, plain files are not matched using rules containing a
SPECIALFILE rule.

SPECIALFILE

2.6 The Command (CMD) Rules

The CMD rules determine how an icon behaves when a user interacts with
it, whether it is by clicking, dragging, or through menu selections.

2.6.1 The CMD OPEN Rule

Syntax:

CMD OPEN sh-expression[; sh-expression, ... ; sh-
expression]

Description: The OPEN rule is invoked when any file of the appropriate

Example:

Version 1.0

type is double-clicked, or selected and opened from the
WorkSpace or Directory View menu via the ‘“‘Open’’ menu
item. The OPEN rule should reflect the most often used
function that would be applied to a file of the given type.
sh-expression can be any valid Bourne shell expression. Any
expression can use multiple lines. Any number of
expressions can be used, and must be separated by
semicolons (;). The final expression should not end with a
semicolon. Variables can be defined and used as in a Bourne
shell script, including environment variables. See Appendix
A, ‘“WorkSpace Environment Variables’’, for a list of special
environment variables set by the WorkSpace. These
environment variables can be used to refer to the currently
selected icons within the WorkSpace or Directory View.

' CMD OPEN SWINEDITOR S$FILES

Writing File Typing Rules 2-11

2.6.2 The CMD ALTOPEN Rule

Syntax:

Description:

Example:

CMD ALTOPEN sh-expression[; sh-expression; ... ; sh-
expression)

The ALTOPEN rule is invoked when any file of the
appropriate type is double-clicked while the ALT key is
pressed. The ALTOPEN rule provides added functionality
for power users. sh-expression can be any valid Bourne shell
expression. Any expression can use multiple lines. Any
number of expressions can be used, and must be separated by
semicolons (;). The final expression should not end with a
semicolon. Variables can be defined and used as in a Bourne
shell script, including environment variables. See Appendix
A, “WorkSpace Environment Variables’’ for a list of special
environment variables set by WorkSpace. These
environment variables can be used to refer to the currently
selected icons within the WorkSpace or Directory View.

CMD ALTOPEN make

2.6.3 The CMD DROP Rule

Syntax:

Description:

Example:

CMD DROP sh-expression[; sh-expression; ... ; sh-
expression)

The DROP rule is invoked whenever a selected (file) icon is
“‘dropped’’ onto another icon in the WorkSpace or Directory
View windows. When this happens, WorkSpace checks to
see if the file type that is being dropped upon has a DROP
rule to handle the files being dropped. In this way, you can
write rules that allow one icon to process the contents of
other icons simply by dragging selected icons that you want
processed on top of the target icon (i.e., the one with the
DROP rule).

CMD DROP $TARGET $SELECTED

2-12 Programming the IRIS WorkSpace IRIS-4D Series

2.6.4 The CMD PRINT Rule

Syntax:

Description:

Example:

CMD PRINT sh-expression[; sh-expression; ... ; sh-
expression]

The PRINT rule is invoked whenever a file of the appropriate
type is selected and printed using the ‘‘Print”’ menu item
from the WorkSpace or Directory View menu. sh-expression
can be any valid Bourne shell expression. Any expression
can use multiple lines. Any number of expressions can be
used, and must be separated by semicolons (;). The final
expression should not end with a semicolon. Variables can
be defined and used as in a Bourne shell script, including
environment variables. See Appendix A, ‘“WorkSpace
Environment Variables’’, for a list of special environment
variables set by WorkSpace. These environment variables
can be used to refer to the currently selected icons within the
WorkSpace or Directory View. The recommended method of
implementing the PRINT rule is to use the WorkSpace’s
print-job routing utility, routeprint. See the routeprint(1)
man page in Appendix B, ‘“WorkSpace Man Pages’’, for
details on its syntax.

CMD PRINT routeprint $LEADER $REST

2.7 The MENUCMD Rule

Syntax:

Description:

Example:

Version 1.0

MENUCMD "string" sh-expression|; sh-expression; ... ; sh-
expression]

MENUCMD inserts the menu entry string into the
WorkSpace or Directory View menu if a single file of the
appropriate type is selected, or a group all of the same
appropriate type is selected. If the menu entry is chosen, the
actions described by the sh-expressions are performed on
each of the selected files.

MENUCMD "Empty Dumpster" \rm —rf SLEADER/*

Writing File Typing Rules 2-13

2.8 The BOUNDS Rule

Syntax: BOUNDS x0, y0, x1, yl

Description: x0,y0, x1, yI define, respectively, the lower left and upper
right comers of the bounding rectangle of the coordinate
space in which the icon is displayed. The values are
separated by commas (,). When the WorkSpace paints the
icon, it scales the icon so that its bounds fit just within the
fixed layout area reserved for it. The aspect ratio of the
bounding rectangle is preserved. If no BOUNDS rule is
supplied for a file type’s icon, the bounding rectangle
defaultsto 0.0, 0.0, 100.0, 100.0.

Example: BOUNDS -20.0, -20.0, 50.0, 75.0

(50,75)

(55,55)

(-20,-20)
icon coordinates

Figure 2-1. Mapping Icons to Pixels Using BOUNDS

2-14 Programming the IRIS WorkSpace IRIS-4D Series

(

2.9 The ICON Rule

Syntax: ICON icon-description-routine

Description: icon-description-routine is a routine written using the icon
description language, detailed below. The routine can
continue for any number of lines. The ICON rule is invoked
any time a file of the specified type needs to be represented in
the WorkSpace or a Directory View. The rule is evaluated
each time the icon is painted by the application that needs it.

Example: ICON color(iconcolor);
bgnoutlinepolygon () ;
vartex (0, 0);
vertex (0, 60);
vertex (40, 60) ;
vertex (40,0);
endoutlinepolygon (outlinecolor);

2.9.1 The Icon Description Language

The icon description language is a restricted subset of the C programming
language, including line and polygon drawing routines from the IRIS
Graphics Library™. The description routine for a given icon is similar in
structure to a C subroutine, but lacks the subroutine and variable

declarations and the outermost enclosing brackets. The valid symbols and
functions in the icon description language are described below.

Operators

The following C language operators can be used in an icon description
routine:

+=*/ &% =0 {}

The following C language conditional operators can be used in an icon
description routine:

&& || == 1= < > <= >=

Version 1.0 Writing File Typing Rules 2-15

Constants

The following logical constants can be used in an icon description routine:
true false

The following icon color constants can be used in an icon description
routine:

iconcolor outlinecolor shadowcolor

Use of the icon color constants is described in Section 2.9.2, ‘‘Drawing
Icons’’.

Variables

The following icon status variables are set by WorkSpace, and can be used
in an icon description routine:

current disabled opened located selected

These variables have values of either true or false. They can be used in a
conditional statement to alter the appearance of an icon when it has been
manipulated in various ways from the WorkSpace (see Section 2.9.2,
‘‘Drawing Icons’’).

Other legal C variables can be used in an icon description routine without
need of a declaration; all variables are represented as type float. Any
variable name is acceptable, provided it does not collide with any of the
predefined constants, variables, or function names in the icon description
language.

Functions

The icon description functions comprise, for the most part, a very restricted
subset of the C language version of the IRIS Graphics Library, modified for
2-D drawing. Table 2-5 describes the set of valid icon description functions.

2-16 Programming the IRIS WorkSpace IRIS-4D Series

Function Syntax

Definition

arc(x,y,r, startang, endang)

arcf (x,y,r, startang, endang)
beclos (color)

bgnclosedline ()

bgnline ()

bgnoutlinepolygon

bgnpoint ()

bgnpolygon ()

coloxr(n)
draw (x,y)

endclosedline ()

Draw an arc starting at icon coordinates x, y,
radius 7, starting at angle startang, ending at
angle endang. Angle measures are in tenths
of degrees.

Like arc, but filled with the current pen
color.

Like pclos (see below) but uses color for
the border (outline) color of the polygon.

Begin drawing a closed, unfilled figure
drawn in the current pen color. Used in
conjunction with vertex and
endclosedline.

Like bgnclosedline, except the figure
is not closed. Used in conjunction with
vertexand endline.

Begin drawing a polygon filled with the
current pen color. The polygon is outlined
with a color specified by
endoutlinepolygon. Also used in
conjuction with vertex.

Begin drawing a series of unconnected
points defined using calls to vertex.
Used in conjunction with vertex and
endpoint.

Like bgnoutlinepolygon except the
polygon is not outlined. Used in
conjunction with vertex and
endpolygon.

Set current pen color to color index n.

Draw a line in the current color from the
current pen location to x, y.

Finish a closed, unfilled figure started with
bgnclosedline.

Table 2-5. Icon Description Functions

Version 1.0

Writing File Typing Rules 2-17

Functlon Syntax

Definition

endline ()

endoutlinepolygon (color)

endpoint ()
endpolygon ()

for

if (expr) expr [else expr]
move (X, y)

pclos ()

pdr (x,y)

pmv (X, y)

print (expr or “string™)

vertex (x,y)

Finish an open, unfilled figure started with
bgnline.

Finish a filled polygon started with
bgnoutlinepolygon and outline it with
color.

Finish a series of points started with
bgnpoint.

Finish a filled, unoutlined polygon started
with bgnpolygon.

Standard C for-loop.

Standard C language if-statement.

Move current pen location to x, y.

Draw a line in the current pen color that
closes the current polygon, and fill the
polygon with the current color.

Draw the side of a filled polygon in the
current pen color, from the current pen
location to x,y.

Begin a filled polygon at location x, y.
print the value of the expression expr or
string to stdout; used for debugging.
Specify a coordinate used for drawing
points, lines, and polygons by bgnpoint,
bgnline, bgnpolygon, etc.

Table 2-5. (continued) Icon Description Functions

2.9.2 Drawing lcons

This section describes several concepts that should help you design your

icons.

Any points, lines, or polygons you draw will ‘‘stack’’ in the order they are
drawn, with the most recently drawn polygon on top. You can use this
concept to easily achieve drop-shadow effects, by drawing the same polygon
twice, using different pen colors, and offset.

2-18 Programming the IRIS WorkSpace IRIS-4D Series

(

Three icon color constants are recommended for standard icon use:
iconcolor for drawing polygons that make up the ‘‘foreground’”’ of the icon,
outlinecolor for outlining and linework, and shadowcolor for contrasting
drop shadows. iconcolor is particularly useful, because it automatically
changes to the calling application’s preferred color conventions when a
given icon is located, disabled, or selected.

2.9.3 Style Conventions for Workspace Icons

The standard set of WorkSpace icons have been designed to establish a
clear, predictable visual language for end users. As you extend the
WorkSpace by adding your own application-specific icons, it is important to
make sure that your extensions fit the overall look of the WorkSpace and
operate in a manner consistent with the rest of the WorkSpace. The
following set of conventions should be followed by developers creating new
WorkSpace icons.

Using World Coordinate Space

All WorkSpace icons developed by Silicon Graphics, Inc., lie completely
within the default world coordinate BOUNDS, a square area 100 units on a
side. Icons you design can lie within any convenient coordinate space, but it
is crucial that all points in your icon lie completely within whatever
BOUNDS you specify. Failure to follow this convention can result in icon
clipping and other display anomalies.

In the default configuration of WorkSpace, any geometry defined for an icon
within the specified BOUNDS region is mapped into a square screen region
55 pixels on a side. You should be aware that in other contexts, your icon
might be mapped onto larger or smaller screen areas, the idea being to
maintain resolution-independence, which allows an icon to be arbitrarily
magnified or reduced. Keep in mind that in a 55x55 pixel area, fine details
are not visible.

Version 1.0 Writing File Typing Rules 2-19

Using Icon Colors and Animation

Use the iconcolor, outlinecolor, and shadowcolor as your icons’ typical
colors; that way, when the icons are selected or located, they will indicate
that state in a manner consistent with the rest of the WorkSpace. Be sparing
with the use of other accenting colors. This helps preserve the impact of
color when it is needed.

Some WorkSpace icons animate when they are double-clicked; directory
folders open, ASCII text files glow, and executables have the *‘flying
carpet’’ whisked out from under them. If you wish to animate your icon
when it is opened, you can easily do this by having a set of geometry for the
open state defined within a conditional:

ICON if (opened) f{
..drawing routines for opened icon...
} else {

..drawing routines for unopened icon...

}

Since a redraw of each icon’s bounding area is done only when it changes
between its closed and opened states, you should refrain from animating an
icon for anything other than the ‘‘opened’’ state.

Drawing Hints

When designing your icons, do not use concave polygons; they are not
currently supported by the icon description language, and using them will
yield unpredictable results. If your icon does not display as you planned,
check for concave polygons. You will need to break any such polygons into
two or more convex polygons (see Figure 2-2). In addition, no single
polygon can contain more than 255 vertices.

2-20 Programming the IRIS WorkSpace IRIS-4D Series

— split

Figure 2-2. Splitting a Concave Polygon

To help keep icon descriptions simple, you are encouraged to use
bclos (outlinecolor) when possible, in place of a pclos () filled area
outlined by further calls to move () and draw().

belos (outlinecolor) automatically draws outlined polygons, thus
shortening icon code and improving performance. Remember to comment
your icon code generously, in case you want to alter parts of it later.

Keeping the 3-D Look

Icons created by Silicon Graphics, Inc., were designed in an isometric space,
which provides an illusion of 3D, even though the polygons composing the
icons are 2-D. To generate this effect, draw *‘horizontal’’ lines so that they
move up 1 unit in the y-axis for every 2 units they extend along the true x-
axis (see Figure 2-3).

"z" axis

"y" axis "x" axis
. .

e pet rue horizontal
CTH S

true
vertical

Figure 2-3. 3-D Icon Axes

Version 1.0 Writing File Typing Rules 2-21

Designing Icons for Applications

If you are designing an icon for an application, use the ICON rule for
GenericExecutable as a base to extend from, adding iconography to the
basic ‘‘flying carpet’’ look. The icon used by jot is a good example of such
an extension. You can find the ICON rule for GenericExecutable in the file
lusrlliblfiletypeldefault/sgidefault fir. See Figure 2-4 for a representation of
the GenericExecutable icon. Similarly, your application’s data files should
be modeled using the ICON rule for AsciiTextFile as a base. This rule can
also be found in the file sgidefault ftr.

Figure 2-4. GenericExecutable Icon

2.10 Compiling FTR Rules

New FTR rules must be compiled from the FTR source files located in a set
of directories in /usr/lib/filetype. Any time you add or change FTR rules (or
print conversion rules) within these subdirectories, you must recompile the
complete set of fir files. This is done by performing the following
command line sequence:

su
cd /usr/lib/filetype
make

Note: When distributing and installing your application and its FTR files
on a new machine, be sure your installation process copies the FTR
files into /usr/lib/filetypelinstall and then remakes the FTR file set
using the procedure described above.

2-22 Programming the IRIS WorkSpace IRIS-4D Series

Be sure to quit any currently running version of WorkSpace, and restart it
afterwards to activate the new FTR rules.

2.10.1 Order of Precedence of FTR Files

FTR source files in the following four directories are compiled in the order
listed here:

[a—y
o

lusrlliblfiletypellocal

N

lusr/liblfiletypelinstall

w

lusr/liblfiletypel/system
. lusr/liblfiletypeldefault

N

Since compiled rules are scanned sequentially by WorkSpace, a TYPE
defined in local will override any subsequently defined TYPE with an
identical type-name. Care should be taken so as not to so override
important system or default TYPE declarations.

Within each directory, separate FTR source files are compiled
alphabetically.

2.10.2 Placement of FTR Rules

The default and system directories in /usr/lib/filetype are reserved for
systemwide standards and maintained by Silicon Graphics, Inc. Developers
and users should not place their fi files in these directories.

The install directory should be used by applications developers and site
maintainers for integrating their extensions. The standard naming
convention for application vendors’ file typing rules is:

vendor-namel . application-name] . ft r

The local directory may be used by power end-users for personal
customizations.

Version 1.0 Writing File Typing Rules 2-23

3. Writing Print Conversion Rules

Print conversion rules are similar in structure to file typing rules, and in fact
both can occupy the same FTR files. While file typing rules declare and
define valid types of files, print conversion rules provide a means of
generating command pipelines that process a file for printing. Using
routeprint(1) in a file type’s CMD PRINT rule (see Section 2.6.4, ‘“The
CMD PRINT Rule’’) causes WorkSpace to scan each existing FTR file in its
rule path for a set of one or more rules that, when strung together will result
in a printed copy of the file. If the rules are written properly, the end result
is a printed copy of the file.

3.1 The Print Conversion Pipeline

Sometimes, converting a file to printable form may take more than one step.
For example, an nroff file must first be converted to a PostScript® file
before it can be printed by a laser printer. You could write a single rule that
would print your nroff file directly, but since PostScript files can originate
from sources other than nroff, you would want instead to write two separate
rules—one that converts from nroff to PostScript format, and one that
converts from PostScript to the printed file. This idea of multi-step
conversion to printable form is called the print conversion pipeline. The
print conversion rules are designed to take advantage of this method of
processing printable files.

Note that when a file is processed along the print conversion pipeline, the
original file remains intact. The print conversion pipeline is really just a
series of IRIX commands that process a copy of the file’s data in modular
increments.

Version 1.0 Writing Print Conversion Rules 3-1

3.2 The CONVERT Rule

Syntax:

Description:

Example:

CONVERT source-type-name destination-type-name

source-type-name is the file type you are converting from.
destination-type-name is the file type you are converting to.
If the CONVERT rule is the last in the print conversion
pipeline (i.e., the rule that actually converts the file to printed
form), then destination-type-name should be one of the
printer types defined in the FTR rules (see Section 3.5,
““Printer Types’’). All print conversion rules following a
CONVERT rule apply to that conversion, until another
CONVERT rule is encountered.

CONVERT NroffFile PostScriptFile

3.3 The COST Rule

Syntax:

Description:

Example:

COST non-negative-integer

non-negative-integer represents the arc cost, or incremental
cost of the conversion. This is an abstract notion that can be
used to determine the preferred printer for a particular
document. This rule is primarily for use in a network in
which there are many different printers of various quality.
When routeprint selects a printer, it takes the arc costs into
account, choosing the print conversion pipeline (see Section
3.1 *“The Print Conversion Pipeline’’) with the least total
cost. The COST rule is optional; if it is omitted, the cost of
the conversion is assumed to be zero. :

COsT 1

3-2 Programming the IRIS WorkSpace IRIS-4D Series

3.4 The FILTER Rule

Syntax: FILTER filter-expression

Description: The FILTER rule represents part of an IRIX pipeline that
prepares a file for printing. filter-expression can be any
single IRTX command line, and generally takes the form of a
number of piped commands. In the general case, the first
command within a single FILTER rule receives input from
stdin; the last command in the rule send its output to stdout.
routeprint concatenates all the FILTER rules in the print
conversion pipeline to form one continuous command that
sends the selected file to its destination printer,

There are three special cases in creating FILTER rules:
e first case

* Jast case

 setvar case

In the first case, the FILTER rule is the very first rule in the
print conversion pipeline. In this case, routeprint passes the
list of selected files to the first command in the FILTER rule
as arguments. If a first case FILTER rule begins with a
command that does not accept the files in this fashion, you
should prepend the cat command to your rule:

FILTER cat | tbl - | psroff —-d$SCURRENTPRINTER

The files will then be piped to the next command’s stdin.

In the last case, the FILTER rule is the very last rule in the
print conversion pipeline. At the end of this rule will be a
command that sends output to a printer (such as lp).
routeprint sets the environment variable
SCURRENTPRINTER to the currently selected printer. Use
this variable in FILTER rules that require a print destination
(see example below). See Section 3.6, ‘‘The Current
Printer’” for more information on how SCURRENTPRINTER
is set.

Version 1.0 Writing Print Conversion Rules 3-3

Note that a one-step conversion pipeline is an example of
both a first case and a last case FILTER rule.

In the setvar case, the FILTER rule is used to set an
environment variable used later in the print conversion
pipeline. The first CONVERT rule in the example below sets
a variable that defines an nroff macro used in the second rule.
In all setvar cases, stdin is passed to stdout transparently.
Thus, you can include setvar as part of the pipeline in a
single FILTER rule.

Example: CONVERT mnNroffFile NroffFIle
cosT 1
FILTER setvar MACRO=mm

CONVERT NroffFile PostScriptPrinter
COoST 1
FILTER eqn | tbl | psroff —$MACRO
—d$CURRENTPRINTER

3.5 Printer Types

Three printer types are currently supported by the IRIS system. They are
specified in the FTIR file /usr/libl/filetype/sytem/sgisystem fir:

TYPE ColorPrinter
TYPE PostScriptPrinter
TYPE DumbPrinter

In most cases you will want to use either PostScriptPrinter (for text or
images) or ColorPrinter (for images only) in your CONVERT rules.
DumbPrinter supports standard line printer text-only output.

3-4 Programming the IRIS WorkSpace IRIS-4D Series

3.6 The Current Printer

The current printer is the system default printer set by the user with the Print
Manager, or, alternatively, with the —p option to routeprint. If no default is
set and —p is not used, an error message will be returned by routeprint to
either stdout or a notifer window (if the —g option to routeprint was set).

Version 1.0 Writing Print Conversion Rules 3-5

4. Creating WorkSpace Templates

WorkSpace templating provides a means of making sure that all the
applications and/or files a user will need appear in the WorkSpace window
whenever WorkSpace is started up. It also provides a way of limiting naive
users’ access to sensitive directories by ‘‘locking’’ those directories out of
the WorkSpace.

WorkSpace templates are set interactively by invoking a special flag to
workspace from the shell.

4.1 Using WorkSpace in Template Mode

To use the WorkSpace in template mode, you must first quit WorkSpace if
you are using it. Open a shell window, and type the following commands:

su
workspace -t

You may optionally specify a name after the —t option (see workspace(1)).
This name determines the name of the template file; by default it is set to
your login name ($USER). The name option is useful for developers who
might want to identify their WorkSpace templates by the name of their
product or company.

You should run WorkSpace in template mode when logged in as a typical
user in order to get a template that represents an environment in which a
typical user would work. You should not run WorkSpace in template mode
when logged in as ‘‘root’’, for example, because its home directory is in an
unusual location. Note that you must, however, invoke root privileges to
run WorkSpace in template mode, but in this case, the original login
environment is preserved by WorkSpace.

Version 1.0 Creating WorkSpace Templates 4-1

When WorkSpace comes up, it will look identical to your non-template
mode WorkSpace. The only difference is the addition of four items to the
WorkSpace menu:

® Save Template
* Get Root

e Set Lock On

e Set Lock Off

These functions are explained below.

Save Template

The Save Template menu item saves your WorkSpace template to a file with
the following format:

name.wsrc

name is either the name you specified when invoking WorkSpace from the
command line (described above), or SUSER by default. When you use the
Save Template command, WorkSpace will first attempt to write the
template file to the directory /usr/lib/workspace. If you do not have
permission to write to that directory, WorkSpace will offer you the option of
creating that file in your own WorkSpace directory. In this case, you will
need to install your new template file in /usr/lib/workspace before other
users can access it. If more than one WorkSpace template exists in this
directory, WorkSpace will use all of the templates, in an additive manner.
Developers should plan on installing their templates into this directory on a
user’s machine as part of their installation process.

Get Root

Under normal circumstances, the root (/) directory cannot be removed from
the WorkSpace. WorkSpace in template mode allows you to remove the
root directory and limit access from the WorkSpace to other directories (see
““Set Lock On/Off”’, below). The Get Root menu item lets you retrieve the
root directory and place it back in the WorkSpace window once it has been
put away.

4-2 Programming the IRIS WorkSpace IRIS-4D Series

Set Lock On/Off

The Set Lock On and Set Lock Off menu entries allow you to limit the
user’s access to the IRIX file system from the WorkSpace. When a
directory is locked using the Set Lock On menu item, a user cannot access
any file or directory that is in a parent directory, or is itself a parent directory
of the locked directory, unless it is already in the WorkSpace window. To
lock a directory, select it and choose the Set Lock On item from the
WorkSpace menu.

The Set Lock Off menu item unlocks a locked directory. Locked directories
cannot be put away from the WorkSpace using the Put Away menu item;
they must first be unlocked. The root (/) directory is, by default, locked; all
other directories are initially unlocked. If you unlock and put away root, you
should choose another directory to be the head of the subtree, and set a lock
onit. If you choose to lock a directory other than root (/), you must put
away any ancestors of that directory before you save the template, or they
will appear on the user’s WorkSpace.

4.2 Setting Up an Application Environment

By using the four menu items described in the last section along with the
standard workspace features, you can create a template for the WorkSpace
window that provides your users with all the necessary icons (files) to use
whatever application you are developing. You can place the application
directly in the WorkSpace window so that your users will not have to
rummage through directory views to find it. Likewise, you can place
utilities and directories customized with your company logo there. Using
the Set Lock... items and the Put Away item, you can limit naive-user access
to the root directory and other directories that might contain data to which
end users should not have direct access.

Version 1.0 Creating WorkSpace Templates 4-3

5. Creating Transfer Devices

Transfer devices are special executable shell scripts that allow users to
import and export data from a directory. Transfer devices selected using the
Transfer Manager tool install themselves in the WorkSpace and Directory
View menus as items in the Transfer submenu. Once installed using the
Tranfer Manager, a transfer device is accessible from the WorkSpace or any
Directory View menu.

5.1 The Tranfer Device Interface

Transfer Devices are shell scripts that communicate with the WorkSpace
and the Transfer Manager through a simple set of protocols. They are
installed by placing them in the directory /etc/transferDevice; any script in
that directory that follows the protocol described below will appear as an
icon in the Transfer Manager.

5.1.1 Transfer Device Typing

The second line of a transfer device script (the line after the shell
invocation) must have the following form:

#transferDevname

name can be any name addition to the ‘‘transferDev’’ prefix. The complete
name (transferDevname) should correspond to a TYPE declaration in an
FTR file. The Transfer Manager scans the set of file typing rules for this
TYPE, and uses the associated ICON rule to draw the transfer device’s icon
within the Transfer Manager window.

Version 1.0 Creating Transfer Devices 5-1

When creating new transfer devices, you should write your own FTR rules,
using the rules for standard shipped transfer devices as templates. If you do
not do so, a generic transfer device icon will be assigned to the transfer
device.

5.1.2 Transfer Device I/O

A transfer device must be able to handle the following strings as arguments.
* menu
¢ versionsOK

The meaning of these strings, and the output that is associated with them, is
explained in the following two sections.

menu

The transfer device is called with this argument by both the WorkSpace and
the Transfer Manager. The transfer device must respond by echoing one or
more character strings in the following format:

echo "tokenl menu-item-stringl"
echo "token2 menu-item-string2"

menu-item-string is the text of the menu item that you wish to appear in the
Transfer submenu of the WorkSpace and Directory View menus. These
items will only appear once the transfer device as been set by the user with
the Transfer Manager. A transfer device may insert any number of menu
items.

token is a one-word, unique token that WorkSpace will use as an argument
in calling the transfer device when its associated menu item is chosen from
the Transfer submenu. Thus, your transfer device must also accept each
token string as an argument, and respond with the appropriate action
described in its associated menu item.

5-2 Programming the IRIS WorkSpace IRIS-4D Series

versionsOK

‘When a user tries to set your transfer device using the Transfer Manager, the
device is called with “‘versionsOK’’ as an argument. Your device must
echo one of the following strings:

echo "local"
echo "remote"
echo "remote local"

If it echoes the first string, the Transfer Manager will allow only the local
version of the device to be set. If it echoes the second string, only remote
versions of the device can be set. If it echoes the last string, either version
can be set.

5.1.3 Using WorkSpace Environment Variables

Currently, only the WorkSpace environment variable $SELECTED is
supported for use within transfer devices. This variable contains the list of
selected icons from the WorkSpace. See Appendix A, ‘“WorkSpace
Environment Variables’’, for more information.

5.1.4 Local Transfer Devices

You can make a transfer device available to a particular user, but not all
users by placing the transfer device in the user’s

SHOME| .workspacellocalTransferLinks directory. It will appear in the
Transfer Manager window just like any other transfer device, but only when
the window system is started from that particular user’s login.

5.2 Example: shellDevice

The following is an example transfer device that allows you to open a shell
window on any selected directory. Note that this transfer device inserts only
one menu item in the Transfer submenu. Transfer devices can insert any
number of items into the Transfer submenu.

Version 1.0 Creating Transfer Devices 5-3

Make sure to set the device’s execute permissions.

#!/bin/sh
#transferDevShell

User Preference Variables:
true or false
openMultiple=false

case $1
in
nmenun)
echo "open Open a Shell Window”
X3
"versionsQOK")
echo "local®
"open")
if [-z "S$SELECTED"]; then
Workspace puts us in the correct directory.
title="‘pwd®
winterm -t $title
else
Check that the user has made a valid
number of selections.
set -- $SELECTED
if [SopenMultiple = false -a $# -gt 1]; then
inform "Too many selections; cannot open shell.”™
exit 1
fi
Go to the proper directory and open the window.
for selection in $SELECTED; do
if [-d $selection]; then
cd $selection
else
dir=‘dirname $selection®
cd $dir
fi
title="‘pwd®
winterm -t $title
done
fi
iy
esac
exit 0

5-4 Programming the IRIS WorkSpace IRIS-4D Series

Appendix A: WorkSpace

Environment Variables

The following is a list of environment variables used by WorkSpace. Any
of these variables can be used as part of the OPEN, ALTOPEN, or PRINT
file typing rules, or as part of the FILTER print conversion rule.

SLEADER

SREST

SLEADERTYPE

SRESTTYPE

SRESTTYPELIST

Version 1.0

If one or more icons are currently selected from
the WorkSpace, LEADER is set to the icon
whose text field is highlighted. If no icons are
selected, it is set to null.

If more than one icon is currently selected from
the WorkSpace, REST contains the list of names
of all selected icons except the highlighted icon
(see LEADER above). Otherwise, it is set to
null.

If one or more icons are currently selected from
the WorkSpace, LEADERTYPE is set to the
TYPE of the icon whose text field is highlighted.
If no icons are selected, it is set to null.

When more than one icon is currently selected
from the WorkSpace, RESTTYPE contains the
TYPE for all selected icons except the
highlighted icon, if the remainder of the selected
icons are all the same TYPE. If they are not the
same TYPE, or only one icon is selected,
RESTTYPE is set to null.

Contains the list of TYPESs corresponding to the
arguments in REST. If only one icon is selected,
RESTTYPELIST is set to null.

WorkSpace Environment Variables A-1

SARGC
STARGET

STARGETTYPE

SSELECTED

$SELECTEDTYPE

SSELECTEDTYPELIST

SWINEDITOR

SWINTERM

Contains the number of selected icons.

Set only for the CMD DROP rule, TARGET
contains the name of the icon being dropped
upon; otherwise it is set to null.

Set only for the CMD DROP rule,
TARGETTYPE contains the TYPE of the icon
being dropped upon; otherwise it is set to null.

Contains the names of the icons being dropped
on TARGET, or null, if none are being dropped.

If all the icons named in SELECTED are of the
same TYPE, SELECTEDTYPE contains that
TYPE; otherwise it is set to null.

Contains a list of TYPEs corresponding to the
TYPE:s of the selected icons named in
SELECTED. If only one icon is selected, it is set
to null.

Contains the name for the text editor invoked
from WorkSpace. The default editor is jot. To
use an editor that does not generate its own
window by default, you must set WINEDITOR to
the appropriate winterm command line sequence.
Thus, for vi, you would set WINEDITOR as
follows:

setenv WINEDITOR ‘winterm -c vi’

Contains the name of the window terminal
invoked from WorkSpace using winterm(1).
Currently supported window terminals are wsh,
psterm, and xterm. The default window terminal
is wsh.

A-2 Programming the IRIS WorkSpace IRIS-4D Series

Appendix B: WorkSpace Man Pages

The following table lists the IRIX man pages found in this manual.

Man Page Synopsis

confirm(1G) displays a message in a window with a
choice of responses

dirview(1G) graphical interface to a directory

inform(1G) displays a message in a window

isSuper(l) checks if a given TYPE is of a given
SUPERTYPE

Jot(1G) a simple mouse-based editor; the default

| editor accessible from WorkSpace

launch(1) puts up a window that prompts to complete
the command line of an executable

routeprint(1) routes files to printers using WorkSpace
print conversion rules

tag(1) tags a MIPS executable with a magic
number; for use in file typing

winterm(1) helps launch applications that require a
terminal emulator

workspace(1G) the WorkSpace visual interface

Table B-1. WorkSpace Man Page Summary

Version 1.0

WorkSpace Man Pages

B-1

CONFIRM(1G) Silicon Graphics CONFIRM(1G)

NAME

confirm — display a message in a window and request a response
SYNOPSIS

confirm [—b button-name ...] [—t "title-string" ...]
DESCRIPTION

confirm displays a window containing a line of test for each —t argument
specified, and a button for each —b argument specified. When one of the
buttons is pressed, the label of that button is written to confirm’s standard
output. This allows shell scripts to ask questions.

EXAMPLE
The following shell script will display a window, asking the user a yes or no
question.

#! /bin/sh
case ‘confirm -t "Really power down the computer?”™ -b No -b Yes?®
in

Yes) shutdown ;;

No) ;7

esac

BUGS
There can be at most threee lines of titles specified with —t and three but-
tons specified with —b.
The window which appears is fixed size, and the text is not wrapped, so a
lengthy message can be truncated.
The buttons are of fixed size, so lengthy button titles will not fit on the but-
tons.

SEE ALSO
inform(1G)

Programming the IRIS WorkSpace -1 - Version 1.0

(

DIRVIEW(1G) Silicon Graphics DIRVIEW(1G)

NAME
dirview — graphical interface to file system

SYNOPSIS
dirview pathnames
dirview —o0 sourcename targetname

DESCRIPTION
dirview is a tool which allows quick access to a directory view not currently
open on the WorkSpace. When invoked with a directory path name, it will
request an existing WorkSpace process to open a directory view of that
directory. If no WorkSpace process exists for that user, dirview will start
one.

dirview accepts the following options.

pathname [pathname...]
If dirview is run with one or more directory pathnames as argu-
ments, a view will be opened for each of those directories.

—0 sourcename targetname
If a view is open for sourcename, replace it with a view of target-
name. sourcename and targetname can be either full or relative
path names.

SEE ALSO
workspace(1G)

Programming the IRIS WorkSpace

Programming the IRIS WorkSpace -1- Version 1.0

INFORM(1G) Silicon Graphics INFORM(1G)

NAME
inform — display a message in a window
SYNOPSIS
inform [text]
DESCRIPTION (

inform opens up a window on the graphics console containing the fext and a
Continue button. If the mouse is clicked in the Continue button, the win-

dow will go away.

BUGS
The window which appears is fixed size, and the text is not wrapped, so a
lengthy message can be truncated.

SEE ALSO

confirm(1G)

Programming the IRIS WorkSpace -1- : Version 1.0

ISSUPER(1) Silicon Graphics ISSUPER(1)

NAME
isSuper — supertype checking utility for use with file type rules

SYNOPSIS
isSuper supertype testtype [file.ctr]

DESCRIPTION
isSuper is used to check if testtype has a supertype of type supertype
defined in the .ctr file file.ctr or a default of /usr/lib/filetype/workspace.ctr.

SEE ALSO
Programming the IRIS WorkSpace

Programming the IRIS WorkSpace -1 - Version 1.0

JOT(1G)

NAME

Silicon Graphics JOT(1G)

jot — a simple mouse-based text editor

SYNOPSIS

jot [—f fontname] [files...]

DESCRIPTION

Jjot is a simple editor that uses the mouse to cut, copy, and paste text, and to
position the cursor. jot also allows you to perform simple searches.

If you specify the —f option followed by a font specification, jot will use the
specified font to display the text. For example:

jot —-f Courierl4

opens a jot window with a 14-point Courier font.

If you specify a set of text files separated by spaces on the command line,
jot will open that file for editing; otherwise it will open a new file.

The jot menu provides the following facilities:

Cut

Copy

Paste

Search

Open

Remove selected text to the cut buffer. This text can be sent to a
wsh window or to another jot window, as well as the window it
was cut from. This function can also be accessed using the F2
function key on the keyboard.

Copy selected text to the cut buffer. This text can be sent to a wsh
window or to another jot window, as well as the window it was
copied from. This function can also be accessed using the F3
function key on the keyboard.

Transfer text from the cut buffer to the current text cursor loca-
tion (the current point). If text is selected when the paste is made,
the selected text is replaced with the text from the buffer. This
text could have been cut/copied from any jot or wsh window.
This function can also be accessed using the F4 function key on
the keyboard.

Search the document for the first instance of a string. Choosing
‘Search’ generates a notifier window that requests a string. jot
searches sequentially from the current point through the rest of
the file for that string, selecting the first instance it comes across.
To find the next instance, you must choose ‘Select’ again.

Open a text file. Choosing ‘Open’ generates a notifier window
that requests a file name. jot opens a new window with the new
file in it, keeping the old one open as well.

Programming the IRIS WorkSpace -1- Version 1.0

JOT(1G) Silicon Graphics JOT(1G)

SELECTING TEXT

Select text with the left mouse button by performing the following actions:

click Sets the new current point to wherever the
mouse (arrow) cursor is pointing in the
text.

click-hold-release This action selects all text between the the

point where the left mouse button is first
clicked down and the point where it is
released.

click-click Double-clicking the left mouse causes the
word over which the mouse cursor is
clicked to be selected. Double-clicking in
the margin, or past the end of a line selects
the whole line.

shift&click-hold-release If you have already selected a block of text,
you can extend your selection either for-
wards or backwards by holding down the
shift key while clicking the left mouse.

alt&click-hold-release Same as click-hold-release, except that an
implicit copy is performed when the left
mouse button is released. You can use
alt&shiftéclick as well.

SCROLL BARS

jot uses horizontal and vertical scroll bars with proportional thumbs.

Clicking on the arrows with the left mouse button causes the jot window to
scroll one character up, down, left, or right. Holding down the left button
over any arrow causes the scrolling to auto-repeat. Holding down the shift
key while clicking on any arrow causes the window to scroll one full page
of text.

The scroll bars’ thumbs can also be used to scroll through the jot window
by clicking and holding down the left mouse button while dragging the
thumb with the mouse cursor. The size of the thumbs are variable, and
indicate the percentage of total text that is visible in the window.

BUGS
The horizontal scrollbar can only handle lines a maximum of 200 characters
across.

SEE ALSO

wsh(1G)

Programming the IRIS WorkSpace -2- Version 1.0

LAUNCH(1) Silicon Graphics LAUNCH(1)

NAME

launch — graphical utility to enter arguments and invoke commands
SYNOPSIS

launch [-h header] [-m message] [t trailer] [-¢ command]
DESCRIPTION

launch is used to invoke commands through a window that contains a text
edit field to allow for command completion. The options to launch are as
follows:

—h header puts the header header on the command that is used to
invoke the command but is not displayed.

—t trailer puts the trailer trailer on the command that is used to invoke
the command but is not displayed.

—m message displays the message specified by message in the window.
—c command sets the command invoked to command.

When no arguments are specified, launch comes up with an empty text field
waiting for input.

If the launched program requires a tty, you must call launch with the —h
option, followed by an appropriate invocation of winterm. The following is
an example of launch as used with mail.

launch -h winterm -c mail

SEE ALSO
winterm(1)

Programming the IRIS WorkSpace

Programming the IRIS WorkSpace -1- Version 1.0

(

ROUTEPRINT(1) Silicon Graphics ROUTEPRINT(1)

NAME
routeprint — route file to printer

SYNOPSIS
routeprint [—g] [—p printer] [t type] files

DESCRIPTION

routeprint is a utility used by WorkSpace and accessible from the IRIX
command line to route files of various types to a set of desired printers.
routeprint uses file types specified on the command line to look up print
conversion rules for each file to be printed. The conversion rules are located
in compiled .ctr files in /usr/lib/filetype. The source fir files can be found in
the local, install, system, and default subdirectories is /usr/liblfiletype. If no
file types are specified on the command line, routeprint looks up the
appropriate type for each file. routeprint uses the print conversion rules to
process the files into a form printable by the target printer.

printer is the name of a printer to which the output may be sent.
type is a file-type name.
files is one or more file names, separated by spaces.

The —g option should be used when routprint is defined as part of a file typ-
ing rule. This option puts error messages in a notifier window (instead of
sending them to stdout) and supresses warnings.

The —p or —t options may appear multiple times on the command line, and
are used in the following way:

-p printer is added to the collection of printers on which the output
may appear. Each instance of the —p option on the command line
adds one printer to this collection. If more than one printer is
specified, routeprint uses the print conversion rules to determine
the best printer to use. If no printer names are given via the —p
flag, the destination printer is the system default printer. Using
the —p option overrules the system default printer.

—t type sets the file-type for the files that follow it on the command
line until another type is specified. If no type is given via the —t
flag, or files appear on the command line before the first —t, the
files are typed by routeprint. (routeprint does not currently sup-
port the use of multiple file-types.) routeprint examines all of the
specified files’ types. If they are identical, a single print job will
be initiated. If the types are varied, routeprint generates an error
message.

Programming the IRIS WorkSpace -1 - Version 1.0

ROUTEPRINT(1) Silicon Graphics ROUTEPRINT(1)

The system default printer is the printer or printer class on which a print job
appears if no printer is specified with the —p option. The system default
printer is normally specified using the Print Manager in the System tool-

chest.
USAGE
A typical call from WorkSpace would be from a fir file type rule entry such
as:
PRINT routeprint -t S$ARGTYPE SFIRSTFILE
SRESTFILES

A typical call from the command line might look like the following:

routeprint -p myprinter filel file2 file3

JOB ORDERING
The ordering of files handed to routeprint determines the ordering of files
within the resultant print job. The ordering of files handed to routeprint
from WorkSpace is constructed in the following manner:

* If an icon is selected individually, its name is appended to the
current pending selection list.

A If an area selection is made, each of the icons within that area
selection is added to the pending selection list in geographic
order, left-to-right, top-to-bottom.

PRINT CONVERSION RULES
The fir file used by routeprint contains both file type rules and print
conversion rules.

The following is a typical set of print conversion rules:

CONVERT troff text postscript
COST 1
FILTER psroff -t $file

CONVERT postscript mylaserprintertype

COST 1
FILTER lp -d $CURRENTPRINTER

The CONVERT item specifies the file type of the input file followed by the
file type of the converted file.

Programming the IRIS WorkSpace -2- - Version 1.0

ROUTEPRINT(1) Silicon Graphics ROUTEPRINT(1)

The COST item specifies an arbitrary number between O and 100
(inclusive) that represents the image degradation in printing. The higher the
COST value, the more routeprint will try to avoid printing by that specific
conversion method, if it is given a choice.

The FILTER item contains the shell command that performs the conver-
sion.

Given the conversion rules above, the command:
routeprint -p mylaserprinter -t troff text myfile.troff

would cause the file mytroff.t to be printed on the printer named ‘‘mylaser-
printer”’ via the psroff and Jp commands. Note that more than one conver-
sion rule may be used to actually get the files into a printable form.

FILES
fust/lib/filetype/local/* fir
fusr/lib/filetype/install/* ftr
fust/lib/filetype/system/* ftr
fust/lib/filetype/default/*.fir
$HOME/.workspace/print

SEE ALSO
Programming the IRIS WorkSpace

Programming the IRIS WorkSpace -3 - Version 1.0

TAG(1)

NAME

. Silicon Graphics TAG(1)

tag — tag a MIPS executable or shell script with an identifying number

SYNOPSIS

tag number filename[s]
tag —c filenamel[s]

tag filename

tag -q filenames

DESCRIPTION

tag is used to set, clear or query the tag number in a MIPS executable, or
shell script that follows the convention of #!/bin/sh or #!/bin/csh on the first
line. The tag number is used by the SGI WorkSpace to determine the type
of afile. ‘

tag number filename[s] sets the tag number of a MIPS executable or
script. (Many executables or scripts can be
specified to be tagged with the same number.)
The number must be non-negative and less than

4294967296.

tag —c filename[s] clears the tags on the specified file or files.

tag filename prints out the tag number of a MIPS executable
or script.

tag —q filenames prints out the tag numbers of a list of MIPS exe-

cutables or scripts.

Tag numbers are administered by the Silicon Graphics user interface group.
Contact them in order to get a block of tag numbers.

The tag number is stored as a longword in bytes 68 through 71 (numbering
from zero) of the MIPS executable. The most significant bit of byte 18 is
set when the file has been tag and will not be set otherwise. For shell
scripts, the line *#Tag <number>’ will be inserted as the second line of the
shell script.

BUGS
Only shell scripts whose first line is exactly "#!/bin/sh" or "!#/bin/csh", with
no trailing flags on the first line are recognized by the tag command.

SEE ALSO

Programming the IRIS WorkSpace

Programming the IRIS WorkSpace -1 - Version 1.0

WINTERM(1) Silicon Graphics WINTERM(1)

NAME

winterm — utility to launch applications that require a terminal emulator.

SYNOPSIS

winterm [-HI-f fontlt titlep x,yl—s cols,linesl—¢ command]

DESCRIPTION

NOTES

winterm is a shell script that presents an abstract command line syntax for
the user’s own terminal emulator. Terminal emulators supported include
wsh, psterm, and xterm. The user can preset their preferred termulator
(with preferred options) by setting the environment variable $WINTERM.
If WINTERM is unset, winterm provides wsh as a default.

-H holds the winterm open.

—f font sets the font used by the winterm to font.

—t title sets the title used by the winterm to title

—p Xy sets the position of lower left corner of the winterm to x,y.

—s cols,lines sets the size of the winterm to cols,lines.

—ccommand feeds the rest of the line as the command to execute. Must
be the last flag set when winterm is invoked.

The default WINTERM is: WINTERM='wsh -fScreenll
-C54,96,3,2,0,50".

The —H option is not supported by xterm.

The —f option is not supported by psterm.

SEE ALSO

Programming the IRIS WorkSpace

Programming the IRIS WorkSpace -1- Version 1.0

WORKSPACE(1G) Silicon Graphics WORKSPACE(1G)

NAME

WorkSpace — graphical interface to file system
SYNOPSIS

workspace [-w] [t [name]]
DESCRIPTION

WorkSpace provides a graphical, interactive interface to the IRIX file sys-
tem. This interface is provided via two kinds of views. When invoked with
no arguments, WorkSpace opens a window displaying a portion of the IRIX
file tree, which can be pruned and expanded on a per user basis. The second
type of view, instantiated by opening a directory icon, provides an con-
stantly up-to-date representation of that

IRIX directory.

WorkSpace accepts the following options.

-w Open only the WorkSpace view (Note that otherwise WorkSpace
will start up with whatever views were open the last time it was
used).

—t [name]

Allow the user to create a sample WorkSpace view, and install it
in /usr/lib/workspace. If a name is provided after this option, the
file will be installed in the form name.wsrc. Otherwise, the file
will be called $USER.wsrc. Each time a new template is added,
or one is altered, all users on the system will automatically load it
the next time they start their WorkSpace. Note that the template
file will have to be installed manually if this option is run by a
user without privelege to write into /usr/lib/workspace. '

Note that only one WorkSpace process can be run for each user.
If the process is invoked again while it is already running, the
WorkSpace window will be either opened or popped to the top.

SEE ALSO
dirview(1G)

Programming the IRIS WorkSpace

Programming the IRIS WorkSpace -1- Version 1.0

(

Index

A

ALTOPEN rule, 2-12
ALTOPEN, 2-2

application environment, 4-3
arc cost, 3-2

arc, 2-17

arcf, 2-17

ascii, 2-5

B

bclos, 2-17

bgnclosedline, 2-17

bgnline, 2-17
bgnoutlinepolygon, 2-17
bgnpoint, 2-17

bgnpolygon, 2-17

bounding rectangle, 2-14
bounding values, 2-14
bounding values, default, 2-14
BOUNDS rule, 2-14

C

char, 2-5

color, 2-17

compiling FTR files, 2-22
CONVERT rule, 3-2
COST rule, 3-2

current printer, 3-5
current, 2-16
CURRENTPRINTER, 3-5
CURRENTPRINTER, 3-3

Programming the IRIS WorkSpace

D

decimal representation, 2-4
dircontains, 2-5

disabled, 2-16

draw, 2-17

drawing icons, 2-18

DROP rule, 2-12

DROP, 2-2

E

endclosedline, 2-17

endline, 2-18

endoutlinepolygon, 2-18

endpoint, 2-18

endpolygon, 2-18

environment variables,
WorkSpace, 2-11, 2-12 2-13

F

file icons, 1-1

file typing rules, 1-1, 1-2

file typing rules, summary, 2-2
file typing, 1-1

FILTER rule, 3-3

for-loop, 2-18

FTR files, 1-2

G

Get Root, 4-2
glob, 2-5

Index—1

H

hexadecimal representation, 2-4

icon description conditionals, 2-15
icon description constants, 2-16
icon description functions, 2-16
icon description language, 2-15
icon description operators, 2-15
icon description variables, 2-16
ICON rule, 2-15

icon status variables, 2-16
ICON, 2-2

iconcolor, 2-16, 2-19
if-statement, 2-18

IRIX file system, 1-1
isSuper(1), 2-10

L

LEGEND rule, 2-9
LEGEND, 2-2
linkcount, 2-5
located, 2-16
long, 2-5

MATCH rule, 2-3

MATCH rules, effective, 2-6
MATCH, 2-2

match-expression conditionals, 2-4
match-expression constants, 2-4
match-expression functions, 2-4
match-expression numerical
representation, 2-4
match-expression operators, 2-4
MENUCMD rule , 2-13
MENUCMD, 2-2

Index-2

mode, 2-5
move, 2-18

0O

octal representation, 2-4

OPEN rule, 2-11

OPEN, 2-2

opened, 2-16

order of precedence, FTR rules, 2-23
outlinecolor, 2-16, 2-19

P

pclos, 2-18

pdr, 2-18

placement of FTR rules, 2-23
pmv, 2-18

print conversion pipeline, 3-1
print conversion rules, 1-2 3-1
PRINT rule, 2-13

print, 2-2 , 2-5, 2-18

printer types, 3-4

R

routeprint(1), 2-13 3-1, 3-3, 3-5
rule keys, 2-1

S

Save Template, 4-2

Set Lock Off, 4-3

Set Lock On, 4-3
shadowcolor, 2-16, 2-19
short, 2-5

size, 2-5

SPECIALFILE rule, 2-10
SPECIALFILE, 2-2

Version 1.0

string, 2-4

style conventions, 2-19
SUPERTYPE rule, 2-10
SUPERTYPE, 2-2

T

tag, 2-5

transfer device 1/0, 5-2
transfer devices, 1-2, 5-1
Transfer Manager, 1-2, 5-1
transfer scripts, 5-1
Transfer submenu, 5-1
TYPE declaration, 2-3
TYPE, 2-2

U

uchar, 2-5
ushort, 2-5

\')

valid match-expressions, 2-4
vertex, 2-18

w

WorkSpace Directory View, 1-2
WorkSpace templates, 1-2, 4-1

Programming the IRIS WorkSpace

Index-3

