3.3 FORTRAN 77
Release Notes

Document Version 1.0

Document Number 007-3359-010

Technical Publications:

Marcia Allen
Scott Fisher
Melissa Heinrich

Engineering:
Calvin Vu

© Copyright 1990, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary information of Silicon Graphics,
Inc. The contents of this document may not be disclosed to third
parties, copied or duplicated in any form, in whole or in part, without
the prior written permission of Silicon Graphics, Inc.

Restricted Rights Legend

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 52.227-7013, and/or in similar or successor
clauses in the FAR, or the DOD or NASA FAR Supplement.
Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

3.3 FORTRAN 77 Release Notes
Document Version 1.0
Document Number 007-3359-010

Silicon Graphics, Inc.
Mountain View, California

IRIS and IRIX are trademarks of Silicon Graphics, Inc. UNIX is a trademark
of AT&T, Inc. VAX and VMS are trademarks of Digital Equipment
Corporation. Cray is a trademark of Cray Research.

Contents

-

. Introduction e e e e e
1.1 Release Identification Information . .o
1.2 FORTRAN Option Subsystems and Disk Usage
1.3 Software Installation
1.4 On-Line Release Notes
1.5 Product Support

2. Configuration Information

3. Enhancements

E oY

. Changes

[$)]

. Bug Fixes

6. Known Problems and Workarounds .

5-1

6-1

1. Introduction

The FORTRAN compiler option provides an f77 compiler, a tutorial for
using the symbolic debugger edge, interfaces for the IRIS Graphics Library,
and many UNIX™ system and library calls for IRIS-4D Series workstations.
This release contains enhancements for VAX VMS™ compatibility and
many bug fixes.

Note: FORTRAN 77 is referred to as FORTRAN throughout these release
notes.

This document contains the following chapters:
1. Introduction
Configuration Information

Major Enhancements

2

3

4. Changes
5 BugFixqs
6

Known Problems and Workarounds

Note: Packaged with these release notes is a separate sheet that contains
the Software License Agreement. This software is provided to you
solely under the terms and conditions of the Software License
Agreement. Please take a few moments to review the Agreement.
Note in particular paragraphs 1 and 2 under the heading ‘“Terms
and Conditions of Software License.’’ This software may be used
only by you on one workstation, computer, or server at one time,
and may be copied only as necessary for backup or archival
purposes.

Version 1.0 Introduction 1-1

1.1 Release Identification Information

Following is the release identification information for 3.3 FORTRAN 77
software:

Software Option
Product FORTRAN Compiler Version 2.0

Version 3.3
Product Code S4-FTN-3.3

System Software
Requirements 4D1-3.3

Dependencies Development System S5-DV01-3.3
(Personal IRIS only)

1.2 FORTRAN Option Subsystems and Disk
Usage

This section lists the subsystems (and their sizes) on your product option
tape.

Those marked ‘‘default’’ are the default subsystems. If you are installing
this option for the first time, the default subsystems are installed when you
choose the ‘‘default’’ or ‘‘automatic’’ menu items during the installation
procedure.

If you are updating from an older version of software, and you select
“‘default’” or ‘‘automatic’’, the system installs only the default subsystems
that already are installed.

1-2 3.3 FORTRAN 77 Release Notes IRIS-4D Series

3

Subsystem IRIS-4D Series, IRIS POWER Personal IRIS

Series (512 byte blocks) (512 byte blocks)
Sftn.sw fin 3406 3406
(default)
ftn.sw.GOlibraries 2346 2346
fin.sw fedgetut 20 , 20
ftn.man ftn 1731 1731
(default)
ftn.man.relnotes 46 46
(default)

1.3 Software Installation

As of system software release 4D1-3.2, software product option tapes no
longer contain the software installation tools. Therefore, these release notes
do not document the installation procedure. The installation software, as
well as the installation instructions, can be found with the standard products
you received from Silicon Graphics, Inc.

The following table shows you where to look for the installation software
and documentation.

Version 1.0 Introduction 1-3

Software Document
Personal IRIS Execution-only 3.3 Standard System
Environment (1) Release and
Installation Notes
Personal IRIS Development 4D1-3.3 ~y
Environment Development '

All other IRIS-4D
Series workstations
and servers

Execution-only
Environment (1)

Release and
Installation Notes or
IRIS-4D System
Administrator’s
Guide

4D1-3.3
Development
Release and
Installation Notes or
IRIS-4D System
Administrator’s
Guide

1-4 3.3 FORTRAN 77 Release Notes

IRIS-4D Series

1.4 On-Line Release Notes
When you install the on-line documentation for a product, you can view the
release notes on your screen as you would an on-line manual page.

The command:
relnotes

displays a list of products that have on-line release notes. The relnotes
command accepts the following arguments:

-h describes how to use relnotes

<product> displays the table of contents for a product’s on-line release
notes, in this case sna3270

<product> <chapter>
displays a specific chapter of a product’s on-line release notes

-t <product> <chapter>
prints a specific chapter of a product’s on-line release notes

To page through the chapter, press <space> and to quit, press or
<ctrl-c>. See relnotes(1) for more information.

1.5 Product Support

Silicon Graphics, Inc., provides a comprehensive product support
maintenance program for IRIS-4D Series products. For further information,
please contact your service organization.

Version 1.0 Introduction 1-5

P \\g\\

2. Configuration Information

The FORTRAN option package takes about 3.8Mb of hard disk space and

consists of the binary FORTRAN compiler front end and libraries and the

on-line man pages. The binary package contains the following files:

® Jusr/lib/fcom

® Jusr/lib/crtl.o

® /usr/liblcrtn.o

® /usr/lib/libF77.a
® /usr/lib/libl77 .a

® /usr/lib/libU77 .a
® /usr/libllibisam.a
® Jusr/bin/ratfor

® /usr/bin/asa

® /usr/bin/extcentry

® Jusr/bin/f77
® /usr/bin/fsplit
® /usr/bin/mkf2c

® /usr/bin/uconv

® /usr/liblalign/libl77 .a

Version 1.0

FORTRAN compiler front end

Runtime startup

Runtime startup

FORTRAN intrinsic function library
FORTRAN I/O library

FORTRAN UNIX interface library
Indexed sequential access method library
Rational FORTRAN dialect preprocessor
FORTRAN carriage control interpreter

Extract FORTRAN-callable entries from C
sources

FORTRAN driver link
Split FORTRAN or RATFOR files
Generate FORTRAN-C interface routines

Convert FORTRAN unformatted files from
IRIS 3000 series

FORTRAN I/O library with no alignment
restrictions

Configuration Information

2-1

® /usr/liblfgldat.o Graphic library support routine

® /usr/lib/fixade.o Allow misaligned data

® /usr/lib/getargSGl.o Provide IRIS 3000-compatible getarg() and
iargc()

® /usr/lib/libfgl.a FORTRAN graphic library

® /usr/tutor/edgelfortran/* edge tutorial files

2-2 3.3 FORTRAN 77 Release Notes IRIS-4D Series

3. Enhancements

This chapter covers all the enhancements that have been made to the
compiler since the 4D1-3.2 release. Most of these enhancements were
implemented to improve the compatibility between the IRIS-4D Series
workstations and other major computer systems.

» Floating-point exception trapping.
In this release, a comprehensive floating-point exception handling
mechanism has been implemented. The user can set up his own
exception handler or use the standard handler to print out the stack
strace, count the exception trap, and/or coredump. The FORTRAN
floating point exception is documented in the man page for fsigfpe(2F).

¢ Endfile records (SCR 6524)
When compiled with the -vms_endfile option, the run-time I/O library
writes an endfile record instead of a physical end-of-file to the file every
time an ENDFILE statement is executed. This enables you to create
files that contain several endfile records as on the Cray™ and VMS™
systems.

¢ Multiple EOF from stdin (SCR 6150)
When compiled with the new option -vms_stdin, the run-time I/O
library allows rereading from stdin after entering an EOF character
(<ctrl-d>). This provides user interface compatibility with VMS™
and IRIS Series 3000 workstations.

Version 1.0 Enhancements 3-1

* Binary files (SCR 4998)
Besides formatted and unformatted files, two extensions have been
added to allow two more types of files:

The first type allows you to use formatted read/write to access a file
containing binary data. This happens when you use A-format descriptor
to read/write numeric data. This type of file is defined by opening the
file with FORM="BINARY".

For example:

open (unit=2, form='binary’, status="unknown’)
workl = 1.0
write(2,1000) workl
rewind (2)
read (2,1000) work2
1000 format (A4)
end

The second type allows the use of an ordinary system files i.e. a binary
files without any extraneous bytes added to mark the record boundaries.
In this type of file each byte is individually addressable. A READ or
WRITE request on these files consumes bytes until the I/O list is
satisfied, rather than restricting itself to a single record. They are
equivalent to files opened with FORM="BINARY" on the IRIS 3000
series.

These files are opened as direct unformatted files with a record length of
one byte. Note that in order to do this the program has to be compiled
with the -old_rl option, since without that option the specified record
length will be interpreted as the number of words and not the number of
bytes.

* POINTER type.
Variable type POINTER is now supported. Memory allocation and
deallocation are executed via calls to MALLOC and FREE functions.
Currently, POINTER is not supported by the dbx debugger.

3-2 3.3 FORTRAN 77 Release Notes IRIS-4D Series

e SYS$INPUT, SYS$OUTPUT, and SYS$SERROR.
VMS™ predefined system logical names SYSSINPUT, SYS$OUTPUT,
and SYS$SERROR are supported. This allows an OPEN statement to
associate a unit number to stdin, stdout, and stderr respectively. A I/O
unit opened in this manner can be redirected with the standard UNIX I/O
redirection on the command line without having to change every READ
and WRITE statement to use the predefined unit numbers 5, 6, and 0.
This will also help people porting code from the IRIS 3000 series where
unit 0 is connected to stdin and stdout and unit 1 is connected to stderr.

¢ Omitted arguments.
Arguments in a function or subroutine call can now be omitted by
specifying nothing between the argument delimiters, e.g. CALL
SUB(1,,3). The omitted argument will be translated into a % VAL(0)
and passed to the function or subroutine.

¢ Maximum number of continuation lines.
The default number of continuation lines has been increased to 99. The
user can increase this number by using the -NC option in the f77
command line.

e Variable number of arguments.
Variable number of arguments is allowed in the VMS™ system calls
that are prefixed with the letters LIB$, OTS$, or SMG$. This is done
by prepending the number of actual arguments to the argument list when
calling those functions. To remain backward compatible, this extra
argument is added only when the program is compiled with the
-vms_library option. This compilation option is required when
compiling programs that use the Accelr8™ runtime library package.

¢ Using REAL*8 as default type (SCR 7316)
When compiled with the -r8 option all REAL variables and constants
will have the default type of REAL*8. However, if the type declaration
statement explicitly states REAL*4 then the variable will remain as 32-
bit floating point.

Version 1.0 Enhancements 3-3

* Assigning integer values to LOGICAL*1 (SCR 4995)
In many programs written for older generation computers, LOGICAL*1
was used in store 8-bit integer values since variable types BYTE and
INTEGER*1 did not exist. To facilitate porting those programs to
Silicon Graphics 4D series LOGICAL*1 type is now treated in the same
way as INTEGER*1 and assigning an integer value to a LOGICAL*1
variable does not result in the conversion of the integer value into a
logical TRUE/FALSE value.

¢ Increased I/O performance (SCR 8434)
The runtime 1/O library has been revised to make it execute faster. In
some I/O extensive benchmarks, the speed has been increased as much
as four times.

 Changing constants passed as subroutine arguments (SCR 4775)
The old compiler allows a subroutine to change the value of its
argument even when a constant is used as the actual argument. This
causes the constant to change value and is very difficult to debug. In
the new compiler this user error will result in a coredump at runtime so
the user can figure out where his mistake is.

¢ Variable declaration and initialization.
Variables can be declared in a type declaration statement and be
assigned an initial value on the same line.

« Using functions as subroutines (SCR 6590)
A function returning numeric values can now be used as a subroutine in
the same program unit where it is also used as a function.

* Multiprocessing Enhancements

¢ Support for REDUCTION
Min, max, sum and product reductions can now be handled by the
compiler. The compiler does some simple tests to check the validity of
the reduction. It is the responsibility of the user to assure that the
reduction is legal. Note that reductions can cause roundoff errors to
accumulate in a different order, causing the final results to be slightly
different.

3-4 3.3 FORTRAN 77 Release Notes IRIS-4D Series

s

An example of reductions follows:

x(j) = 0.0
y =1.0
z = c(1)
C$docacross local (i), share(a,b,c), reduction (x(J),y2Z)
do i =1, n
x(3) = x(j) + a(i)!sum reduction, array reference
y =y * b(i)!product reduction
z = max (z, c(i))!max reduction
enddo

New Scheduling Options

The previous release of Multiprocessed Fortran provided a single
method of dividing loop iterations and assigning them to processes.
That method is currently the default, and it is called SIMPLE
scheduling. The current release provides 5 scheduling methods:

SIMPLE: The iterations of the loop are divided into contiguous blocks,
and each process is given one block. This method has the lowest
overhead. It can, however, cause load balancing problems.

INTERLEAVE: The interations are broken up into pieces of size
CHUNK. These pieces are then assigned to the processed in an
interleaved way.

DYNAMIC: The iterations are broken up into pieces of size CHUNK.
When a process finishes its current piece, it enters a "critical section” to
get the next piece.

GSS: "Guided Self Scheduling" is like DYNAMIC, but instead of using
fixed sized pieces, the piece size is varied. GSS provides big pieces to
start with, and small pieces towards the end.

RUNTIME: With RUNTIME scheduling, the user provides the
scheduling type at runtime through the environment variables
"MP_SCHEDTYPE" and "CHUNK". For example "setenv
MP_SCHEDTYPE GSS" directs any loop with the RUNTIME schedule
type to use GSS scheduling.

Version 1.0 Enhancements 3-5

Scheduling options can be designated in a variety of ways, with the most
local designation taking precedence. These scheduling designations are
listed in order of precedence:

(1) The clauses MP_SCHEDTYPE=name and/or CHUNK=num can be
added to the C$DOACROSS directive. This defines the schedule type
and/or chunk size for a single loop.

(2) The source directives C$MP_ SCHEDTYPE=name and/or
CSCHUNK=num can be added to the source code. This defines the
default schedule type and/or chunk size for all multiprocessed loops
ocurring afterwards. ,

(3) The compiler driver switches "-mp_schedtype=name" and/or "-
chunk=integer" can be added to the compile line. This defines the
default schedule type and/or chunk size for all multiprocessed loops that
have not otherwise been designated.

(4) The environment variables "MP_SCHEDTYPE" and "CHUNK"
define the schedule type for all multiprocessed loops with schedule types
of RUNTIME.

Defaults:

if MP_SCHED_TYPE is not set, and CHUNK is not set, the default is
SIMPLE.

if MP_SCHED_TYPE is not set, and CHUNK is set, the default is
DYNAMIC. .

if MP_SCHED_TYPE is set, and CHUNK is not set, the default is
CHUNK=1.

Conditional Parallelism

The C$DOACROSS statement may contain an IF clause that is
evaluated at runtime, just before the loop is executed. If the clause is
TRUE, then the loop executes in parallel. If the clause is FALSE, then
the loop executes serially. This allows the user to check if there is
enough work in the loop to offset the parallel loop overhead. To break
even you currently need about 400 clocks of work, which normally
works out to about 100 floating point operations. These IF clauses are
automatically produced by PFA. For example:

CS$DOACROSS IF(n-k .gt. 50), share(a,b,c), local(i)
do i = n,k
a(i) = a(i) + b(i)*c(i)
enddo

3-6 3.3 FORTRAN 77 Release Notes IRIS-4D Series

¢ New Locking and Barrier Functions _
The zero argument functions mp_setlock(), mp_unsetlock() and
mp_barrier() provide convenient access to the locking and barrier
functions. These barrier functions automatically initialize a single lock
and barrier through usconfig, usinit and usnewlock. For a great many
programs a single lock and barrier is enough. If you need more, you
should use the ussetlock family of routines directly.

¢ Arrays may now be LASTLOCAL

* New Environment Variables
The following new environment variables have been provide the user
with runtime control of the program.

MP_SET_NUMTHREADS specifies the number of threads to use in the
job, regardless of the number of cpus on the machine. For compatibility
with the previous release, NUM_THREADS is supported as a synonym
for MP_SET_NUMTHREADS.

MP_BLOCKTIME is set to an integer. It is equivalent to calling
mp_blocktime(3F) during program startup.

MP_SCHEDTYPE and CHUNK are examined to determine the
scheduling type for the C$DOACROSS loop if the scheduling type is set
to RUNTIME. MP_SCHEDTYPE may be set to SIMPLE,
INTERLEAVE, DYNAMIC, or GSS, and CHUNK may be set to a
positive integer.

MP_PROFILE may be set to get better profiling information on the
synchronization routines. Normally, the synchronization routines do
their job as quickly as possible, without regard for profiling information.
Setting this variable will cause the synchronization routines to use a
slightly slower synchronization method where each step is done by a
separate routine with a long descriptive name. This can occasionally be
useful if you suspect that the syncronization routines are the bottleneck.
Note that MP_PROFILE does not have to be set in order to get profiling
information. MP_PROFILE simply provides a more detailed profiling
of the syncronization routines at the cost of slower execution.

Version 1.0 Enhancements 3-7

* Local COMMON Blocks
Named COMMON blocks may now be declared local to each task. Local
COMMON blocks provide each process in the parallel job with its own
private copy of the COMMON block.
To define a COMMON block as local, use the link time compiler switch
-Xlocaldata <list>, where <list> is alist of the external
name of the COMMON block(s). The external name known to the loader
is in lower case, with a trailing underscore, and no surrounding slashes.
Thus:

SROOT /usr/bin/f77 -mp a.o -L -LSROOT/usr/lib -Xlocaldata foo_,bar

will make the common blocks /FO0/ and /BAR/ local.

The local COMMON blocks may not be initialized with DATA
statements. Blank COMMON may not be made local.

Data is not automatically transferred between the master thread’s
version of the COMMON block, and the slave thread’s version. However,
it is possible to copy values from the master’s version into the slave’s
version via the special source directive C$COPYIN <list>. Here,
the <list>, must be items from local COMMON blocks. The item(s)
may be scalars, arrays, individual array elements, or entirc COMMON
block names, including the slashes. For example:

real x, y(100)
C$COPYIN x, y, /foo/, a(i)

will propagate the values of x, the array y, the entire contents of
COMMON block /£foo/, and the "ith" element of array a. All of these
items must be members of local COMMON blocks or whole COMMON
blocks.

Note that this directive gets translated into executable code; all
subscripts appearing on array elements will be evaluated at runtime.

3-8 3.3 FORTRAN 77 Release Notes IRIS-4D Series

¢ Gang Scheduling
In prior releases, the processes in the parallel job were scheduled as
ordinary processes. This could cause extremely poor runtime
performance when other jobs were running at the same time. In this
release, the processes are scheduled as a "gang" as default; either all of
the processes run, or none of them do. Gang scheduling allows a
parallel job to run in a multi-user environment in a timely fashion. For
example: two parallel jobs can run simultaneously, and it will only take
twice as long as one job, rather than ten or twenty times as long.

Gang scheduling has the disadvantage that if a job wants all the cpus, it
will get kicked out whenever someone else wants to do anything, even
though several of the cpus may be idle. To run a parallel job an a
shared machine in a timely fashion, use one less process than the
available cpus. This allows the job to run most of the time, leaving one
cpu free for other users. The scheduler will still kick out the job when
several other jobs run at the same time.

To turn off the default gang scheduling, see the man page schedctl(2).

e Unrolling in the optimizer, and PFA
The standard optimizer (uopt) is now capable of doing a limited form of
unrolling; PFA is a little bit smarter about unrolling than uopt. As a
result, most programs will see no difference whether they use PFA’s
unrolling or not, since the optimizer will wind up doing it if PFA didn’t.

Version 1.0 Enhancements 3-9

4. Changes

This chapter describes the differences between this release and the previous
releases that may result in improvements, incompatibilities, or simply a
change in the compiling/linking/debugging process.

¢ Trigonometric functions.
The single-precision trigonometric functions have been modified to give
faster execution and generally better results. Most of the time, the
result would be identical to the old version but there may be some very
small differences due to rounding in a few cases (about 20% of the
time). When there is a difference, the new result is generally more
accurate then the old one.

¢ LOGICAL¥*1 variables.
To facilitate the porting of programs written for older generation
computers where there was no INTEGER*1 type, LOGICAL*1 is now
treated in the same way as INTEGER*1 and assigning an integer value
to a LOGICAL*1 variable does not result in the conversion of the
integer value into a logical TRUE/FALSE value. This change will not
effect the execution of existing programs unless the program depends on
specific bit patterns of the TRUE/FALSE values to work correctly.

¢ Changing constants passed as subroutine arguments.
The old compiler allows a subroutine to change the value of its
argument even when a constant is used as the actual argument. This
causes the constant to have a wrong value and the problem is very
difficult to debug. In the new compiler, this user error will result in a
coredump at runtime. If you experience a coredump after compiling
with the new compiler, it is a good idea to check for this user error first
before calling the Hot Line.

Version 1.0 Changes 4-1

¢ Intrinsic subroutine time() vs. library function time()
Since the 1.31 version of the compiler, a VMS-compatible intrinsic
subroutine time() has been added. This causes the calls to the old time()
library function to result in an error message regarding bad number of
arguments. Any programs that want to use the time() library function
must now add:

EXTERNAL TIME

in the program units where time() is used.

Gang Scheduling

In prior releases, the processes in the parallel job were scheduled as
ordinary processes. This could cause extremely poor runtime
performance when other jobs were running at the same time. In this
release, the processes are scheduled as a "gang" by default. Either all of
the processes run or none of them do. Gang scheduling allows a parallel
job to run in a multi-user environment in a timely fashion. For example,
two parallel jobs can run simultaneously, and it will take only twice as
long as one job, rather than ten or twenty times as long.

The disadvantage of gang scheduling is that if a job wants all the cpus, it
will get kicked out whenever someone else wants to do anything, even
though several of the cpus may be idle. To run a parallel job on a shared
machine in a timely fashion, use one less process than the number of
available cpus. This allows the job to run most of the time, leaving one
cpu free for other users. The scheduler will still kick out the job when
several other jobs run at the same time.

To run off the default Gang Scheduling, see the schedctl(2) man page.

4-2 3.3 FORTRAN 77 Release Notes IRIS-4D Series

5. Bug Fixes

This chapter briefly describes the bugs that have been fixed in the 4D1-3.3
f77 version. Some of the descriptions are followed by a Silicon Graphics,
Inc., bug report number in the form (SCR xxxx).

» The compiler will now give a warning for multiple unnamed blockdata
since it is against ANSI usage (SCR 3156).

» Some instances where the compiler dumps core after giving an error
message have been fixed to provide better error recovery (SCR 4082,
4893, 5590).

« Initiliazing character variables with very long character strings can cause
an error in ugen. This bug has been fixed (SCR 4539).

* Fixed a compiler bug to allow typeless constants to be compared with
numeric variables in a conditional expression.

* Several minor bugs regarding PARAMETER statements have been fixed
(SCR 4639, 5124, 6259).

e Fortran I/O statements which return the status of the file (e.g. INQUIRE)
have been enhanced to take variables of size other than 4 bytes long
(SCR 5212).

« All outstanding optimizer bugs have been fixed (SCR 6245, 6433, 7287,
A16391).

¢ A bug in ugen which causes incorrect runtime result when a function
entry is used inside a complex floating-point expression has been fixed
(SCR 6590, 7303).

¢ Structure element can now be used as argument to call an intrinsic
routine (SCR 6806).

e An array element ofa structure can now be used as an argument in a
function call without having to specify an array index (SCR 6809).

Version 1.0 Bug Fixes 5-1

* Initializing a character variable with a character constant of length 0 no
longer results in a ugen error (SCR 6906).

» Fixed a bug to allow inline code generation for the len() function when it
is used in an I/O list (SCR 7078).

* Fixed a bug which caused the decimal digit not to be printed when the
output format for the floating-point number specifies only one decimal
digit (SCR 7149).

¢ A namelist record following a slash-terminated record is not recognized
and result in a runtime I/O error. This has been fixed (SCR 7169).

* A bugin ISAM file operation where using a character variable as the
record key may result in error 134, ’bad key description’. This bug has
been fixed (SCR 7185).

» The compiler now gives a compile-time error message when the user
tries to use an integer key of sizes other than 4 bytes instead of allowing
the program to compile and produce a mysterious runtime error later
(SCR 7211).

» The ibits() function has been fixed so it will give the correct value
without sign-extending it (SCR 8561).

* Opening an ISAM file after closing another file can cause an I/O error.
This has been fixed (SCR 7277).

» Using END="label’ while reading a namelist record does not work. This
bug has been fixed (SCR 8463). '

* Several bugs where using untyped constants (either hollerith constants
or character constants used in a numeric context) results in a compiler
error have been fixed (SCR 8603, 8604). '

e If a program unit contains DATA statements and the first executable
statement in it has certain character sequences, e.g. two consecutive
backslashes or aspostrophes, the compiler may give an invalid error.
This has been fixed (SCR 8610).

» [f the first executable statement(s) in a program unit starts with the word
DATA, e.g. DATAM = 0.0, no debugging line number information will
be generated for it and you cannot use the debugger to stop at that line.
This error has been fixed (SCR 8741).

5-2 3.3 FORTRAN 77 Release Notes IRIS-4D Series

» Reading a namelist which contains an array of character data results in
inrecognizable input. This has been fixed (SCR 9066).

* The FORTRAN frontend allows arbitrary functions and variables to be
used to define a constant in a PARAMETER statement. This has been
fixed.

» Clash between common block name and routine name no longer causes
fcom to coredump.

e Hexadecimal constants in the form 'nnn’X can now have blanks.

* FORTRAN now allows concatenated expression involving the intrinsic
function char().

¢ The compiler now generates an error message when an IMPLICIT
character is redefined to have a different type.

e The compiler will no longer coredump when an ENDIF is missing inside
a DO loop.

* A bug regarding formatted direct-access I/O has been fixed.

» FIxed a bug which gave wrong result when raising a complex variable to
an integer variable power.

» Namelist read fails to read partial logical arrays, This has been fixed.
» Fixed a bug in namelist read of real constants in the form .nnnn.

» A function returning result of type complex must be asigned the result
value just before the return statement otherwise it may give the wrong
answer. This bug has been fixed.

Version 1.0 Bug Fixes 5-3

The following bug fixes apply to Multiprocessed Fortran:

e Improved Process Termination
Multiprocessed Fortran creates many processes to do the work contained
in a single Fortran program. In the prior release, if one of these processes
died, the rest of the processes in the group would often wait forever for
the dead process to complete. Now when a process dies, all of the
members of its process group are sent a signal, allowing the members in
the process group to exit.

* Delayed Creation of Processes (SCR 6970)
Programs that call ’fork’, in particular, background graphics programs,
now work with Multiprocessed Fortran. To fix this, the creation of the
new processes was taken out of Fortran initialization. The runtime
routines create the processes at the first C$DOACROSS loop.

If a benchmark times only a portion of a run, the user may not want to
include the thread creation as part of the benchmark time. Thread
creation can be forced via mp_create(num), or mp_setup().

» Support for up to 16 processes
The multiprocessed runtime libraries now support up to 16 processes.

5-4 3.3 FORTRAN 77 Release Notes IRIS-4D Series

6. Known Problems and
Workarounds

This chapter describes the known problems with the current release of the
FORTRAN product. It also lists workarounds.

» Compiling old FORTRAN code (SCR 3526)
FORTRAN, by default, allocates local variables on the stack for faster
execution speed. These local automatic variables are uninitialized, as
opposed to being initialized to zero, which occurs using the static
allocation of older FORTRAN systems. Also, the value of an automatic
variable is not retained between successive calls to a subroutine as for a
static variable. Therefore, if you have an old program, especially one
ported from the VAX, that behaves strangely, recompile it with -static
and check the results. If using -static works correctly, the problem is
due to automatic allocation of undeclared static variables. If execution
speed is not an issue, the program can be compiled with -static without
having to be modified. Otherwise, you need to track down all variables
that expect an initial value (either a zero value when starting a program
or the value from the previous subroutine invocation in a subroutine
call) and declare those variables as static using the STATIC statement.

Version 1.0 Known Problems and Workarounds 6-1

¢ Conditional GO TO offset limit (SCR 3917)
There is a restriction on the length of a conditional GO TO branch. The
branch target must be less than 32K bytes of machine code from the
conditional GO TO statement. In FORTRAN, a conditional GO TO
statement has the form: "

IF (condition) GO TO label
IF (condition) THEN

or a DO loop construction.

However, an unconditional GO TO statement uses 3 bytes for its offset
and allows jumps to addresses as far as 8 megabytes away. Therefore,
the restriction on a conditional GO TO can be circumvented by using an
unconditional GO TO. For example, instead of using:

IF (condition) GO TO labell
where labell is more than 32K from the IF statement, change it to:

IF (.NOT. condition) GO TO label2
IDUMMY = 0 ! dummy statement to trick the optimizer
GO TO labell

label2 CONTINUE

¢ Intrinsic subroutine time() vs. library function time()
In the 1.31 version of the compiler, a VMS-compatible intrinsic
subroutine time() has been added. This causes the old time() library
function to result in an error message regarding bad number of
arguments. Any programs that used time() in previous releases of the
compiler must now add:

EXTERNAL TIME

in the program units where the library function time() is used.

6-2 3.3 FORTRAN 77 Release Notes IRIS-4D Series

* Nested DO loops sharing a termination label statement (SCR 4972)
When there are two or more DO loops sharing the same termination
statement, a GO TO statement in an outside LOOP that jumps to the
terminal label does not generate an error as it should. Instead, it may
silently result in the execution of the inside loops and give the
unpredictable result. This problem can be avoided by using separate
loop control labels for nested DO loops that contain a GO TO statement
that jumps to the end of an inner loop.

* DATA statements at end of program units (SCR 5245)
If you have DATA statements at the end of the program unit, they may
cause the compiler to loop forever. The solution is to move those
DATA statements before the first executable statement.

* NAMELIST group names are not automatically recognized in I/O
statement (SCR 4214).
When using NAMELIST in an I/O statement, the namelist group name
must be preceded by the keyword 'NML=".

¢ Using the FLOAT instrinsic in a PARAMETER statement produces
the wrong result (SCR 6763)
Defining a parameter by using an expression involving the intrinsic
function FLOAT might give the wrong result. Avoid using the FLOAT
instrinsic function to define parameters.

 Using include files may confuse dbx (SCR 6796)
There are three ways to include a header file into a Fortran program: by
using #include, by using $include, and by using the INCLUDE
statement. The files included by using #include are preprocessed by cpp
and can have C-style comments in them, the others are not. Sometimes
the wrong line and file numbers are generated when include files are
preceded by comments or blank lines. This makes dbx display the
wrong line/file. Many line number bugs associated with $include have
been fixed and right now there are no outstanding bugs for it. However,
the most reliable way to include header files seems to be #include.

e Header file contents
There is a limitation that header file can only contain declaration
statemetns. When executable statements of the same program units,
especially the first ones and the last ones, are split across several files the
compiler may issue some internal error.

Version 1.0 Known Problems and Workarounds 6-3

6-4

LOGICAL#*1 output. (6822)
Printing out a LOGICAL*1 variable results in 0/1 being printed out
instead of the logical .TRUE./.FALSE. values

READ statement requires an input list (SCR 7121)
If a READ statement does not have anything in the input list nothing
will be read and the current record is not skipped.

-03 and multiprocessed Fortran

Multiprocessed Fortran code optimized -O3 may run slower than
multiprocessed Fortran code that has been optimized at level -O2. One
important optimization, "no parameter aliasing" has been turned off for
-03 optimization of Multiprocessed Fortran code. "No parameter
aliasing” combined with -O3 optimization has the potential to generate
bad code for programs containing source from different languages. If a
program contains only Fortran code, or if the non-Fortran code does not
do any parameter aliasing, it is beneficial and legal to use both -O3 and
"no parameter aliasing". Safe non-Fortran code also includes routines
with less than 2 arguments, and interfaces to system calls. To turm on
"no parameter Aliasing" during -O3 optimization, use the compiler
switch -Wo, -noPalias.."No parameter Aliasing” is safe with all
lower levels of optimization, and is turned on automatically in those
cases.

Multi-processed I/O restrictions (SCR 8218)

The Fortran I/O library is not re-entrant. As a result, multiprocessed
Fortran I/O is not supported. For example, Fortran does not allow two
different processes to write to seperate files.

The user can, however, write Fortran callable *C’ routines that use safe
routines to do multiprocessed 1/O. Safe routines include the system calls
read, write, open, close, and the routines listed in the usconfig(3P) man
page under the CONF_STHREADIOOFF command. For all routines
listed in the man page, the user must first call
usconfig(CONF_STHREADIOON), and must call them from 'C’. Some
of the routines have Fortran callable twins that use the Fortran I/O
library: these will fail when multiprocessed.

3.3 FORTRAN 77 Release Notes IRIS-4D Series

