
SiCortex® System
Programming Guide

For Software Version 3.0

Trademarks

Cray is the a registered trademark of Cray, Inc.

Intel is the registered trademark of Intel Corporation.

Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. The
registered trademark Linux is used pursuant to a sublicense from the Linux Mark
Institute, the exclusive licensee of Linus Torvalds, owner of the mark in the U.S. and
other countries.

Lustre is the registered trademark of Cluster File Systems, Inc.

MIPS and MIPS64 are registered trademarks of MIPS Technologies, Inc.

NIST is a registered trademark of the National Institute of Standards and Technology,
U.S. Department of Commerce.

OpenMP is a trademark of Silicon Graphics, Inc.

PCI, PCI Express, and PCIe are registered trademarks, and EXPRESSMODULE is a
trademark of PCI-SIG.

Perl is the registered trademark of The Perl Foundation.

SiCortex is a registered trademark, and the SiCortex logo, SC5832, SC648, and PathScale
are trademarks of SiCortex, Incorporated.

TAU Performance System is a trademark of the joint developers: University of Oregon
Performance Research Lab; Los Alamos National Laboratory Advanced Computing
Laboratory; and The Research Centre Jülich, ZAM, Germany.

TotalView is a registered trademark of TotalView Technologies, LLC.

Vampir is a registered trademark of Wolfgang E. Nagel.

All other brand and product names are trademarks or service marks of their respective
owners.

Copyrights

Copyright© 2007-2008 SiCortex Incorporated. All rights reserved.

Disclaimer

The content of this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a com-
mitment by SiCortex, Inc.

Document Number 2906-03 Rev. 02
Published September 23, 2008
(PN 2906-03 Rev. 02) i

Contacting SiCortex and Getting Support

SiCortex is on-line at http://www.sicortex.com. Our Web pages provide
information on the company and products, including access to technical
information and documentation, product overviews, and product
announcements.

You can search the SiCortex Knowledge Base or participate in forum dis-
cussions online at http://www.sicortex.com/support after you register.

You can reach SiCortex Technical Support by e-mailing questions to
support@sicortex.com or by calling:

• 978.897.0214 main number

• +1 877 SICORTE x289 (+1 877.742.6783 x289) toll free number

What’s this Book About and Who’s it for?

This manual targets C, C++, and Fortran application developers, who
have experience coding programs that run on Linux systems. With few
exceptions, the Linux environment on SiCortex systems mirrors that on
any other Linux system. This manual describes the exceptions and how to
work with them. Perl and Python programmers will notice no difference
in the SiCortex Linux environment.

Conventions of Notation

Bold Denotes a selection to make in a GUI program.

For example, File>Process>Startup directs the user to
select File located on the application’s toolbar, then Process,
and then Startup.

monospaced
font

Denotes code examples wherever they occur and command
sequences and their arguments, which are entered at the sys-
tem prompt.

Italics Denotes a term or a cross reference in general text.

m Denotes a caution or warning, such as a dependency that
must be satisfied before continuing a process.

. Denotes a tip, hint, or reminder.
ii (PN 2906-03 Rev. 02)

http://www.sicortex.com/
http://www.sicortex.com/support

Table of Contents
Chapter 1 Introducing the SiCortex System ..7
Overview of the SiCortex System Architecture 7
The Application Development Environment 11

Chapter 2 Running Applications...15
Logging on to the System 16
Running and Managing Multinode Applications 17
Running and Managing Single-Node Applications 22
Running n32 Applications 22
Using a FabriCache File System 23
Troubleshooting SLURM Jobs 24

Chapter 3 Compiling and Linking Applications..25
Installing the Cross-Development Toolkit 25
Choosing a Compiler 25
Using Compiler Options 26
Summary of Simple Build Methods 30
Porting or Building an Application Natively on the System 32
Building an Application on the Cross-Development Workstation 34
Troubleshooting Autotools-Based Cross-Compile Errors 35
Compiling Reference Information 37

Chapter 4 Debugging Applications... 39
Compiling Tips for Debugging 39
Debugging with gdb 39
Debugging with TotalView 43
Memory Debugging with DUMA 45
Memory Debugging with Mudflap 47

Chapter 5 Optimizing Application Performance .. 51
General Procedure for Optimizing an Application 52
SCTICK Fast Timers 56
Application Performance Tools 57
Invoking the Tools 60
Displaying Available Hardware Performance Counter Events 63
Using Papiex 64
Using Mpipex 71
Using HPCex 74
Using TAU 79
Using Tauex 81
Using Vampirtrace 82
Using GPTL 87
Using Gptlex 90
Using Ioex 93
Using Pfmon 94
Using Oprofile 94
Hardware Performance Counter Events 95
Performance Tool Program Examples 99

Chapter 6 Using the Optimized Math and Science Libraries 103
Libscm Tuned Math Library 104
Libscs Tuned Scientific Library 107
Libscstr and Libscfstr Tuned String Libraries 110
Math and Science Libraries 112
Linking the Optimized Atlas Library for Fast BLAS 114
Linking the PETSc Library 114
Linking Interdependent Libraries 115

Chapter 7 Developing MPI Applications ... 117
SiCortex MPI Implementation 117
MPI Feature Support 118
Compiling and Linking MPI Applications 118
MPI Debugging Hook 120
MPI Performance Tips 120
Thread Support 122
MPI Reference Information 123
iv (PN 2906-03 Rev.02)

Chapter 8 Writing Threaded Applications...125
Multithreaded Programming Considerations 125
OpenMP and Hybrid OpenMP/MPI Applications 127

Chapter 9 Processor and Memory System Functional Features131
Node Details 131
Memory System Operation 132

Chapter 10 Understanding the Application Binary Interfaces135
What is an ABI? 135
Data Formats 136
Register Usage 138
Alignment Rules 139
Overriding the Default ABI 139
Interlanguage Programming Considerations 140

Appendix A SLURM I/O Buffering ..147
SLURM I/O Paths 147
Buffering Basics 148
Complications of Buffering 149
Controlling Buffering 149
Recommended Strategy 150

Index.. i
(PN 2906-03 Rev.02) v

vi (PN 2906-03 Rev.02)

Overview of the SiCortex System Architecture
Chapter 1 Introducing the SiCortex System

In this section:

• Overview of the SiCortex System Architecture

• Node Components

• The Interconnect Fabric

• System I/O

• The Application Development Environment

• Software Development Suites

• Compiler Suites

• GNU Tools and Utilities

• Libraries

• Debugging Tools

• Performance Tools

Built to support the dominant High Performance Technical Computing
(HPTC) software model, the SiCortex System with its MPI/Linux soft-
ware suite empowers users to quickly develop applications that can tackle
the most complex and computationally intensive problems that face the
scientific, engineering, and financial communities today.

Overview of the SiCortex System Architecture

A SiCortex System (hereafter, in this document, called System) consists of
a number of six-way, symmetric multiprocessing (SMP) compute nodes
connected by an Interconnect Fabric. An SC5832 has 972 nodes, and an
SC648 has 108.

Node Components Each node consists of one SiCortex node chip (Figure 1 on page 8) and
two industry-standard DDR2 memory modules. A node chip contains six
64-bit processors, their L1 and L2 caches, two memory controllers (one
for each memory module), the Interconnect Fabric interface components
(the Fabric Links, the Fabric Switch, and the DMA engine), and a PCI
Express® (PCIe®) interface. The PCIe controller provides control for
external I/O devices only, not for the Interconnect Fabric.
Chapter 1 Introducing the SiCortex System (PN 2906-03 Rev. 02) 7

Overview of the SiCortex System Architecture
. For architectural details and programming considerations related to
the node components, see Chapter 9, Processor and Memory System
Functional Features on page 131 .

On the node chip, the DMA engine, Fabric Switch, and Fabric Links pro-
vide the interface to the Interconnect Fabric. The DMA engine connects
the memory system to the Fabric Switch, which forwards traffic between
incoming and outgoing links, and to and from the DMA engine.

Figure 1. Overview of SiCortex node

All nodes in a System are connected through a degree-3 directed Kautz
network. Twenty-seven nodes populate a module, and all modules plug
into the System’s backplane. Of the twenty-seven nodes on a module,
three have their PCIe busses connected to EXPRESSMODULE™ slots,
and a fourth is attached to an on-module PCIe dual gigabit-Ethernet con-
troller. The PCIe interface on all other nodes is disabled.

The Interconnect
Fabric

The nodes communicate with one another through DMA over the Inter-
connect Fabric, a fast network used for internode IP networking and
direct user-mode communications. The network, based on a degree 3
Kautz graph (Figure 2 on page 9), enables internode messages to arrive at

Coherent L2 Cache

External I/O

PCI
Express

Controller

Fabric Switch

DMA Engine

Six 64-bit MIPS CPUs

CPU

L1 Cache

CPU

L1 Cache

CPU

L1 Cache

CPU

L1 Cache

CPU

L1 Cache

CPU

L1 Cache

DDR-2
Controller

DDR-2 DIMM

DDR-2
Controller

DDR-2 DIMM

To other
nodes

From other
nodes

Fabric Links

Node
Chip
8 (PN 2906-03 Rev. 02) Chapter 1 Introducing the SiCortex System

Overview of the SiCortex System Architecture
their destination within a maximum number of hops. For 108 node Sys-
tems, the maximum is four, and for 972 node Systems, the maximum is
six.

Figure 2. 3-degree directed Kautz network for an SC648 System

Each node transmits to three other nodes and receives from a different
three nodes. Not only does this design reduce message latency and net-
work congestion, it also ensures that the failure of one node increases the
hop count of a message by no more than one, and that all other nodes
remain reachable.(For detailed information on the Kautz graph, see the
white paper A New Generation of Cluster Interconnect posted on the SiCortex
web site at http://www.sicortex.com.)

100 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

545556575859606162636465666768697071727374757677787980

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107
Chapter 1 Introducing the SiCortex System (PN 2906-03 Rev. 02) 9

http://www.sicortex.com/

Overview of the SiCortex System Architecture
System I/O The SC5832 System has 108 PCIe I/O ports and seventy-two gigabit
Ethernet I/O ports. The SC648 System has 12 PCIe I/O ports and eight
gigabit Ethernet I/O ports. These ports provide direct I/O and Net-
work-Attached Storage (NAS) connection to both NFS and Lustre exter-
nal file systems. Internally, Network Block Device or NFS (depending on
the System model) provides the root file system on each node. The inter-
face between the internal and external file systems is transparent, so users
need not know low-level details to perform I/O operations. Figure 3
shows some possible connection schemes for peripherals.

Figure 3. Typical I/O connections for a SiCortex System

With FabriCache™ enabled, a reserved portion of main memory func-
tions as a parallel file system. Managed by Lustre logic, an integral part of
each node’s kernel, FabriCache provides memory-speed I/O for I/O
intensive applications. The FabriCache is configurable, so all of main
10 (PN 2906-03 Rev. 02) Chapter 1 Introducing the SiCortex System

The Application Development Environment
memory on a subset of nodes can be configured to function as a parallel
file system, accessible by all processors in the System. Lustre logic ensures
data coherency and integrity, and the Interconnect Fabric ensures reliabil-
ity of data transmission. Like disk file systems, the mechanics of accessing
files in the FabriCache is transparent to users and requires no special pro-
gramming. Unlike disk file systems, FabriCache is not persistent, so files
are not preserved when the System is powered off or rebooted.

. Ask your System Administrator whether Fabricache is enabled. For
details on accessing and using it, see Using a FabriCache File System
on page 23.

For more information on the FabriCache, see The SiCortex FabriCache™:
Measure Its Abilities in Genomes/sec newsletter. For details on the SiCortex
implementation of the Lustre files system, see The Luster High Performance
File System white paper. Both documents are available on the SiCortex
web site at http://www.sicortex.com.

The Application Development Environment

SiCortex provides users a rich set of tools for quickly developing and run-
ning the complex, computationally intense applications that are required
to solve today’s problems in science, engineering and finance. These tools
include compilers, libraries, debuggers, and performance tools that are
optimized for SiCortex systems.

Software
Development Suites

To enable users to develop applications on the System or on any x86_64
Linux workstation, SiCortex provides two software development suites:
the native software suite and the cross-development software suite.

In this guide, the term native refers to the nodes’ MIPS64 processors, so
the native software suite runs on and produces object code that runs on
the System’s nodes.

Also in this guide, the term cross-development refers to any x86_64 Linux
workstation that has the SiCortex cross-development toolkit installed on
it. Though it runs on an x86_64 Linux system, the cross-development
software suite produces object code that runs on the System’s MIPS64
processors.

Both development software suites are provisioned with the same standard
GNU tools and utilities*, the same software performance tools, and the
same libraries (MPI, data formatting, math, and science). Both software
suites include precompiled library binaries for both n32 and n64 ABIs.
Chapter 1 Introducing the SiCortex System (PN 2906-03 Rev. 02) 11

http://www.sicortex.com/

The Application Development Environment
The terms n32 and n64 refer to the two Application Binary Interfaces
(ABI) that the System supports. These ABIs enable applications to run in
either n32 or n64 mode. With its 64-bit pointer representation, n64 mode
provides virtual memory sizes for processes that are larger than 2 GB.
With its smaller pointers, n32 mode provides more efficient use of cache
and memory. Both ABI modes have equal access to all processor features,
including the 64-bit data registers, so that in n32 mode, when code
declares 64-bit integers, the processor performs 64-bit integer operations.
(See Chapter 10, Understanding the Application Binary Interfaces for more
details.)

Compiler Suites SiCortex software provides the same suite of compilers for both develop-
ment environments:

• PathScale compiler suite for Fortran 77/90/95, C, and C++.

. Only the PathScale compilers support OpenMP.

• GNU compilers for C and C++ (gcc v.4.1).

• Both compiler suites can produce either n32 or n64 ABI object
code.

• Binaries produced by the GNU and PathScale compilers are
interoperable (as long as they are generated using the same ABI), so
users can link together applications and libraries that are compiled
separately, using any of the supplied compilers.

GNU Tools and
Utilities

The standard GNU compilation tools and utilities included are:

* Except ldd (list dynamic dependencies), which is not included in the cross-development soft-
ware suite.

Native GNU Cross-Development GNU*

gcc/g++ scgcc/scg++
ld, ldd scld
as
addr2line scaddr2line
ar scar
gprof
gdb scgdb
nlmconv
nm scnm
12 (PN 2906-03 Rev. 02) Chapter 1 Introducing the SiCortex System

The Application Development Environment
. The scman command is provided in the cross-development toolkit.
On the cross-development workstation, it enables you to access the
man pages for the mips64 version of the tools and utilities that are
installed on the System’s nodes, without logging onto a node.

When you use the man command on the cross-development work-
station, you access the man pages for the x86_64 tools and utilities
that are installed on the workstation.

When you use the man or scman command on the nodes, you access
the man pages for the mips64 tools and utilities that are installed on
the nodes.

Libraries For a full description of the math and science libraries, see Chapter 6, Using
the Optimized Math and Science Libraries.

. All libraries are supplied in static and dynamic versions for both the
n32 and n64 ABIs.

Both development software suites include the same libraries.

objcopy scobjcopy
objdump scobjdump
ranlib scranlib
readelf screadelf
size
strings
strip scstrip

* On the cross-development system, you use the sc prefix to call the compilers
and utilities.

Native GNU Cross-Development GNU*

Math & Science Libraries:

AtlasBLAS LAPACK libscstr SPRNG
GotoBLAS libscm PETSc
FFTW libscs ScaLAPACK

Data Formatting & Communications Libraries:

HDF5 (Hierachical Data Format) libscmpi (SiCortex MPI library)
NetCDF (Network Common Data
Format)
Chapter 1 Introducing the SiCortex System (PN 2906-03 Rev. 02) 13

The Application Development Environment
Debugging Tools Both development software suites include the GNU debugger, gdb. To
use gdb to debug from the cross-development environment, you need to
use gdbserver or other remote debugging utility.

For debugging details, see Chapter 7, Developing MPI Applications.

Performance Tools The SiCortex System provides performance-monitoring hardware and
software tools that enable users to develop applications optimized for
high performance.

• Performance-monitoring hardware

The nodes include hardware performance counters that provide
data to performance-analysis tools. On the System, perfmon2 pro-
vides the standard software interface to the nodes’ performance-
monitoring hardware.

• Software Tools

The development software suites include a wide range of perfor-
mance tools:

For details, see Chapter 5, Optimizing Application Performance.

Aggregate
Performance Statistical Sampling

Trace Analysis &
Visualization

Papiex/PAPI HPCToolkit
 hpcex
 hpcstruct
 hpcproftt
 hpcprof-flat
hpcviewer

TAU/tauex
mpipex/mpiP Vampir*

* Optimized for the SiCortex System, but users must purchase from ParaTools

ioex GPTL/gptlex

gprof
14 (PN 2906-03 Rev. 02) Chapter 1 Introducing the SiCortex System

Chapter 2 Running Applications

In this section:

• Logging on to the System

• Connecting to a Head Node

• Specifying a Partition

• Running and Managing Multinode Applications

• Starting a Multinode Job

• Managing Multinode Jobs

• Running and Managing Single-Node Applications

• Running n32 Applications

• Using a FabriCache File System

• Getting data in and out of FabriCache

• Running a FabriCache job

• Controlling FabriCache jobs

• Troubleshooting SLURM Jobs

• Node or link failures

• Disabled nodes and links

Application executables typically reside either locally on a user’s worksta-
tion or on an externally mounted, shared Lustre* or other file system that
is connected to the System, either directly to System I/O nodes or
remotely over a network connection (see Figure 3, on page 10).

. If your application’s executable files and data are on your local
workstation, copy them to a shared file system that is mounted and
visible on the System.

* For a brief description, see page 8.
Chapter 2 Running Applications (PN 2906-03 Rev. 02) 15

Logging on to the System
Logging on to the System

Before you can run an application on the System, you have to connect to
a head node and get a shell.

. Each System ships with internal node names defined for it. Internal
node names consist of the System id (scx for the SC5832, sci for
the SC1458, sc1 for the SC648, and sca for the SC072) with the
module id (m#) and node id (n#) appended to it: sc#-m#n#. (The
terms node name and host name are often used synonymously.) A
module has twenty-seven nodes. On module 0, internal node
names range from sc#-m0n0 to sc#-m0n26*; on module 1, they
range from sc#-m1n0 to sc#-m1n26, and so on. The SC5832 has
thirty-six modules, the SC1458 has nine, the SC648 has four, and
the SC072 has one.

Most likely, your System Administrator has configured a head node† to
function as the point-of-entry to different partitions, and assigned it a
unique site name. Using the assigned site name, log on to the head node.

In all cases, when you log on to the head node, the shell prompt displays
the node’s internal name; for example, sc1-m0n6. Hereafter in this chap-
ter, sc1-m0n6 identifies the head node in all code examples.

Connecting to a Head
Node

From your workstation ssh to a head node, for example:

gs113:~$ ssh <my_system_headnode>
Last login: Tue May 1 10:12:55 2007 from gs113.companyb
sc1-m0n6:~$

Specifying a Partition To run an application you must specify the partition to run it on, using
srun’s -p partition option.

SiCortex systems ship with some preconfigured sample partitions:

• System id (scx or sci or sc1 or sca)
Includes all nodes on the System.

• scx-comp Includes all nodes on the SC5832, except the
built-in dual GigE nodes m[0,2,4,6,32,34]n6.

* The SC072 has only one module with twelve nodes, so node names range from sca-m0n0 to
sca-m0n11.

† The SC072 has a preconfigured head node, head (internal name: sca-m0n8).
16 (PN 2906-03 Rev. 02) Chapter 2 Running Applications

Running and Managing Multinode Applications
• sci-comp Includes all nodes on the SC1458, except two
built-in dual GigE nodes, m[0,1]n6, and m8n6.

• sc1-comp Includes all nodes on the SC648, except m0n6, a
built-in dual GigE node, and m3n6.

• [sc1]-comp1 Includes all nodes on the SC648, except the I/O
nodes m*n1 and node m0n6.

• [sc1]-comp3 Includes all nodes on the SC648, except the I/O
nodes m*n3 and node m0n6.

• sca-comp Includes all nodes on the SC072, but avoids
using m0n8 (head) unless a job requires it.

. These sample partitions are intended to serve as examples only.
Ask the System Administrator which partition to use since he or
she may have configured other partitions for specific user groups
or applications.

Hereafter in this chapter, -p sc1-comp1 is used in all example srun com-
mands that demonstrate how to run multinode applications.

Running and Managing Multinode Applications

SLURM (Simple Linux Utility for Resource Management) implements
resource management and job scheduling on the System for applications,
such as MPI programs, that typically run multiple processes (in SLURM
terminology, tasks) on multiple nodes. Before you can run a job, you need
the appropriate permissions and sufficient resources available to run your
application. To start and manage multinode jobs, you use SLURM com-
mands.

For more information, see the SLURM man pages: slurm(1), srun(1),
salloc(1), scancel(1), sinfo(1), squeue(1), and scontrol(1).

m Before you can run your job, your application directories must be
on a mounted, shared Lustre or other network file system that is
visible on the node to which you are connected.

Starting a Multinode
Job

To start a multinode job, use srun.

$ srun -p <partition> [args] <appname|jobscript> [args]
Chapter 2 Running Applications (PN 2906-03 Rev. 02) 17

Running and Managing Multinode Applications
The srun command submits the job to the local SLURM job controller,
initiates all processes on an appropriate set of nodes, and, if necessary,
blocks until the needed resources are free to run the job.

The srun command runs a program just like a shell does, but unlike a
shell, it can start multiple tasks on multiple nodes. Each of the tasks is a
separate process that executes the same program. By default, SLURM
allocates one processor per task, but starts tasks on multiple processors as
necessary. The argument -n specifies the number of tasks, and the argu-
ment -N specifies the number of nodes.

$ srun -p sc1-comp1 -n 2 myprogram
 # runs 2 tasks, each on a different processor

$ srun -p sc1-comp1 -n 7 -N 4 myprogram
 # runs 7 tasks distributed across 4 nodes

$ srun -p sc1-comp1 -N 9 myprogram
 # runs 9 tasks on 9 different nodes

$ srun -p sc1-comp1 -n 3 -c 2 myprogram
 # starts 3 tasks, and allocates 2 processors per
 # task

$ srun -p development -N 6 myprogram
 # runs 6 tasks on six nodes in the partition
 # named development

If you specify more tasks than the number of requested nodes can handle,
SLURM automatically allocates additional nodes and distributes the tasks
across them. However, if you specify more nodes than tasks, SLURM
issues a warning, reallocates resources, then proceeds to process the job:

sc1-m0n6:~$ srun -p sc1-comp1 -n 2 -N 4 hostname
srun: Warning: can’t run 2 processes on 4 nodes, setting
nnodes to 2
sc1-m0n0
sc1-m0n2
sc1-m0n0:~$

By default, SLURM broadcasts stdin from the attached terminal to all of
the processes and returns each process’ stdout and stderr to the termi-
nal.

m However, SLURM buffers stdout. This behavior can cause unex-
pected results. For example, if a job crashes before completing,
there is no indication of it because SLURM continues to hold off
output while it waits for the job to finish. In this scenario, you
would cancel the job using scancel (see Canceling a Job: scancel and
^C on page 20).
18 (PN 2906-03 Rev. 02) Chapter 2 Running Applications

Running and Managing Multinode Applications
. You can control the buffering of stdout. For details, see Appendix
A, SLURM I/O Buffering on page 147.

Batch Jobs

You run a batch job by submitting a job script to SLURM to run. The
script contains all of the commands and arguments to run the job, typi-
cally other programs, such as MPI applications or simple srun commands.
Upon submitting a batch job for execution, srun exits immediately, and
the job runs when SLURM determines that adequate resources are avail-
able.

To submit scripts for SLURM to run when needed resources become
available on the System and no higher priority jobs are pending, use the
sbatch command:

$ sbatch -p sc1-comp1 /home/work/myscript.sh

SLURM runs the script on the first node allocated to the job, with STDIN
redirected from /dev/null and STDOUT and STDERR redirected to the file
jobname.out in the current working directory, unless you specify another
file name.

When you run an MPI program from a job script, be sure to include the
-K flag to srun (for example, srun -K ./my_mpi_app), which instructs
SLURM to kill all processes if one or more of them die. Otherwise, the
death of one process can cause the job to hang indefinitely. You can also
include the -u flag to limit I/O buffering to stdout and stderr (for
details, see SLURM I/O Buffering on page 147).

Allocating Resources

SLURM schedules jobs subject to resource availability. You can use the
salloc command to acquire and hold resources for your use:

sc1-m0n6:~$ salloc -p sc1-comp1 -N 4
sc1-m0n6:~$

This option blocks until the requested resources are available, then
spawns a subshell. From this subshell, you can run interactively on the
allocated resources multiple parallel jobs or a job script. Once space on a
partition is allocated, you do not have to specify the -p <partition> on
subsequent invocations of srun:

sc1-m0n6:~$ srun -N 4 hostname
sc1-m0n0
sc1-m0n4
sc1-m0n3
sc1-m0n2
Chapter 2 Running Applications (PN 2906-03 Rev. 02) 19

Running and Managing Multinode Applications
Because the subshell has already acquired the requested resources, jobs
started within the subshell run immediately.

m After you are done, you must exit the subshell to release the
resources.

Managing Multinode
Jobs

Once a job is running, you can use SLURM commands to track its
progress and to stop/restart it. To do so, you need to know its job id.

Monitoring a Running Job: squeue and scontrol

The squeue command displays the job id and job name, with the status
and resource information for every job currently managed by the SLURM
control daemon. With no options specified, the report displays this infor-
mation: job id, partition, job name, user name, job status, time used thus
far (hours:minutes:seconds), total nodes, and node list.

sc1-m0n6:~$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST
21 myprog bhill R 0:25 1 sc1-m0n0

The scontrol command provides more detailed information about indi-
vidual jobs, even if the job in question has already finished.

sc1-m0n6:~$ scontrol show job 9
 JobId=9 UserId=bhill (1198) GroupId=users (110)
 Name=myprog
 Priorit=42948796 Partition=test BatchFlag=0
 AllocNode:Sid=sc1-m0n0:8 TimeLimit=UNLIMITED Exit
 Code=0:0
 JobState=COMPLETED StartTime=01/05-16:05:32 EndTime=
 NodeList=sc1-mon[0,2-4] NodeListIndices=
 AllocCPUs=6*4
 ReqProcs=24 ReqNodes=4 ReqS:C:T=0
 Shared=0Contiguous=0 CPUS/task=0
 MinProcs=0 MinSockets=0 MinCores=0 MinThreads=0
 MinMemory=0 MinTmpDisk=0 Features=(null)
 Depenency=0 Account=(null) Reason=None Network=(null)
 ReqNodeList=(null) ReqNodeListIndices=
 ExcNodeList=(null) ExcNodeListIndices=
 SubmitTime=05/01-16:05:35 SuspendTime=None PreSusTime=0

Canceling a Job: scancel and ^C

The scancel command cancels a running or pending job using the job’s id
(only job owners and administrators can cancel jobs).

sc1-m0n6:~$ srun -p sc1-comp1 -b /home/work/myscript.sh
srun: jobid 21 submitted

sc1-m0n6:~$ scancel 21
sc1-m0n6:~$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST
$

20 (PN 2906-03 Rev. 02) Chapter 2 Running Applications

Running and Managing Multinode Applications
Alternatively, you can issue ^C (SIGINIT) signals to cancel a running job.
After srun starts a job, it blocks until all of the job’s tasks terminate. Sig-
nals sent to srun during this time are broadcast to all of the tasks. SLURM
handles ^C signals a special way:

• One ^C signal generates a status report for all of the associated
tasks:

sc1-m0n6:~$ srun -p sc1-comp1 -N 2 sleep 10
srun: interrupt (one more within 1 sec to abort)
srun: task[0-1]: running

• Two ^C signals within one second typically terminates all of the
associated tasks:

sc1-m0n6:~$ srun -p sc1-comp1 -N 2 sleep 10
srun: interrupt (one more within 1 sec to abort)
srun: task[0-1]: initializing
srun: sending Ctrl-C to job
srun: canceling job

• Three ^C signals within one second immediately terminates the job
and its remote tasks.

m Do not kill/skill srun to cancel a SLURM job! Doing so only
terminates srun. The tasks continue to run, but not under SLURM
management. If you mistakenly kill/skill an srun job, you can
use squeue to get the job id and then either:

• scancel the job, or

• sattach -p sc1-comp1 <jobid> -j, to reattach srun to the job,
and then use the ^C sequence to cancel it.

. If you cannot clear your job using any of these methods, report it to
your System Administrator. He or she can.clear it using scontrol.

Monitoring Node or Partition Status: sinfo

The sinfo command reports the current status information on partitions
and individual nodes. With no options specified, the report displays, for
all nodes and partitions on the System, this information: partition, avail-
ability, time limit, node count, node state, node list. For example:

sc1-m0n6:~$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
test up infinite 4 idle sc1-m0n[0-3]
Chapter 2 Running Applications (PN 2906-03 Rev. 02) 21

Running and Managing Single-Node Applications
Running and Managing Single-Node Applications

We encourage users to run all applications under SLURM control using
the srun command. For single-node applications, include -N 1 on the
command line to instruct SLURM to run the application on only one
node. For a single process, include -n 1 on the command line.

However, if you elect to bypass SLURM and instead launch the program
executable from the shell command line, you can eliminate conflicts over
resource allocations by making the job visible to SLURM, the utility that
manages resources for multinode jobs (see Running and Managing Multinode
Applications on page 17). Otherwise, your applications may interfere with
SLURM jobs that run on the same nodes as your applications.

To make a non-SLURM job visible to SLURM:

• Use the SLURM salloc command to allocate resources to a shell
from which you will run your single-node application, for example:

sc1-m0n6$ salloc -p sc1-comp1 -w sc1-m0n2 bash
salloc: granted job allocation 56980
sc1-m0n6$

• At this point the node, specified by -w sc1-m0n2, is associated with
your bash shell. You can run applications on the node from the
shell as long as the shell persists; the allocation ends only when you
terminate the shell. Because SLURM knows that this node is allo-
cated to your shell, it will not attempt to run other jobs on the node
until you release it.

For details, see the SLURM man page salloc(1).

To monitor and control running applications and processes launched
bypassing SLURM, use any of the common Linux shell commands and
utilities: ps, kill, nice, renice, jobs, bg, fg, and so on.

Running n32 Applications

You run n32 applications just like you run n64 applications:

$ srun -p <partition> [args] <myapp> [args]

You do have to build them differently. For details, see Overriding the Default
ABI on page 139.
22 (PN 2906-03 Rev. 02) Chapter 2 Running Applications

Using a FabriCache File System
Using a FabriCache File System

For a brief description of the FabriCache feature, see page 10. For a full
description, see The SiCortex FabriCache®: Measure its Abilities in
Genomes/sec. newsletter at www.sicortex.com/5832_newsletter.

Because FabriCache is RAM-based, it is non persistent, but accessing data
stored in it is very fast. This makes FabriCache ideal for storing interme-
diate data while an application is using it.

Your System Administrator may have set up a FabriCache file system on
the nodes in a special SLURM partition named <partition>_clients.
This partition includes only those nodes that are configured to use the
FabriCache file system. Applications can access the FabriCache file
system on all nodes in <partition>_clients at
/tmp/fabclient/<partition>.

. Use the sinfo command without any arguments to list all of the
partitions available on the System and the nodes included in each.
Look for a <partition>_clients entry and note the nodes
included in it.

Getting data in and
out of FabriCache

You can use the scp command or the rsync command to copy your data
in and out of the FabriCache file system.

Copy your data (and application executable) to any one of the nodes
included in the <partition>_clients partition. Because FabriCache is a
shared file system, all nodes included in <partition>_clients can access
the data.

Your application reads and writes data to the FabriCache file system as it
would any other shared file system.

Running a
FabriCache job

To submit a job that uses the FabriCache file system:

1. Make the /tmp/fabclient/<partition> your working SLURM
directory. On the head node:

sc1-m0n6:~$ export \
 SLURM_WORKING_DIR=/tmp/fabclient/<partition>

2. Submit your job to SLURM the usual way, using the FabriCache
partition. For example:

sc1-m0n6:~$ srun -p <partition>_clients -N 20 \
 ./simulation/my_sim
Chapter 2 Running Applications (PN 2906-03 Rev. 02) 23

http://www.sicortex.com/5832_newsletter

Troubleshooting SLURM Jobs
. Make sure you don’t request more resources than
<partition>_clients has.

Controlling
FabriCache jobs

You monitor and control FabriCache jobs just like you do any SLURM
job. For details, see Running and Managing Multinode Applications on page 17.

Troubleshooting SLURM Jobs

If you encounter problems while running a job that you submitted
through SLURM, you can usually determine the cause then work around
it to successfully run the job.

Node or link failures Typically, when a node or link fails, the affected node seems to disappear
such that you cannot ssh to it. Both the squeue and the sinfo commands
report a node is not responding by appending an asterisk to the reported
state of the node:

sc1-m0n6:~$ sinfo -p test
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
test up infinite 1 idle sc1-m0n0
test up infinite 1 alloc sc1-m0n2
test up infinite 2 down* sc1-m0n[1,3]

When this occurs, scancel the job, then rerun it using the same job
parameters you used previously. By default, SLURM does not allocate
downed nodes.

Alternatively, you can rerun your job using srun’s -x <node_list> (for
example, -x sc1-m0n[1,3]) option to explicitly exclude the downed
nodes.

Be sure to inform your System Administrator when you encounter
downed nodes.

Disabled nodes and
links

For various reasons, your System Administrator may have designated par-
ticular nodes or links as disabled in a system configuration file, which the
boot software uses to configure routing throughout the System. Both
squeue and sinfo will report disabled nodes as STATE/Drain.

When jobs request nodes that are in the Drain state, SLURM will queue
those requests and wait for resources to become available. Such jobs
queued to run on disabled nodes will remain queued until the nodes are
rebooted or otherwise returned to service. This may take some time.

If your job gets stuck in the job queue, scancel it. Rerun your job avoid-
ing nodes that are in the Drain state.
24 (PN 2906-03 Rev. 02) Chapter 2 Running Applications

Installing the Cross-Development Toolkit
Chapter 3 Compiling and Linking
Applications

In this section:

• Installing the Cross-Development Toolkit

• Choosing a Compiler

• Using Compiler Options

• PathScale Compiler Options

• GNU Compiler Options

• Summary of Simple Build Methods

• Porting or Building an Application Natively on the System

• Building an Application on the Cross-Development Workstation

• Troubleshooting Autotools-Based Cross-Compile Errors

• Compiling Reference Information

SiCortex software development suites support two development environ-
ments—native and cross-development—and provide two compiler
suites—GNU and PathScale—that work in both development environ-
ments.

Installing the Cross-Development Toolkit

The Cross-Development Toolkit is included on the SiCortex software
installation DVD, and the instructions for installing the toolkit are
included in The SiCortex® System Administration Guide. See your System
Administrator if you want to install the cross-development toolkit on
your workstation.

Choosing a Compiler

Of the two compiler suites, SiCortex maintains the GNU compilers as
robust and compatible tools for the System, but is continuously improv-
ing the PathScale compilers, so they generate the most efficient code for
applications in which processor performance is critical.
Chapter 3 Compiling and Linking Applications (PN 2906-03 Rev. 02) 25

Using Compiler Options
Both compiler suites support C and C++, but only the PathScale com-
piler suite supports Fortran. (Neither the gfortran nor the g77 compiler
is supported.) And only the PathScale compiler suite supports OpenMP.

Otherwise, you can use any of the compilers, and because all of them gen-
erate object files that are interoperable (if all use the same ABI), you can
compile your application using different compilers for different program
components.

If you are compiling a large application composed of both Fortran and C
or C++ code, and the main entry point into the application is C or C++
code, you can use the GNU or PathScale C/C++ compilers to compile
and link the application. If you do so, then you must explicitly add the
Fortran runtime libraries to the linker command line. For example, your
command line might look like this:

$ gcc -o my_big_app file1.o file2.o -lpathfortran

If you use the PathScale C/C++ compiler and your code calls libm and
libscm functions (for a description, see Libscm Tuned Math Library on
page 104), you must add -lscm and -lm to the link line, as the second pass
of feedback compilation may require an explicit -lscm -lm.

With some exceptions, the PathScale C/C++ compiler supports the same
C/C++ language extensions as the GNU compiler. The PathScale com-
piler does not support these C/C++ extensions:

• C extensions

SSE3 intrinsics, many of the __builtin_ functions, a goto outside
of the block (i.e. locally declared labels, labels as values), nested
functions, complex integers (__Complex int), structures generated
on the fly, and thread-local storage (__thread)

• C++ extensions

Java exceptions, java_interface and init_priority attributes

Using Compiler Options

The compilers default to the n64 ABI and generate n64 executables. You
can change this default behavior and generate n32 executables (see Over-
riding the Default ABI on page 139). (For details on the supported ABIs,
see Chapter 10, Understanding the Application Binary Interfaces on page 135.)
26 (PN 2906-03 Rev. 02) Chapter 3 Compiling and Linking Applications

Using Compiler Options
Table 1 shows the defaults for the compilers’ debug options and how
they affect compiler optimization. For details on the debug levels, see the
compiler’s man pages or www.pathscale.com.

With debugging disabled, the GNU compilers default to -O0 optimiza-
tion, but the PathScale compilers default to -O2. Build Optimizations on
page 53 describes the levels of optimization as defined by the GNU and
PathScale compilers.

. If you intend to use the performance tools, use the compiler’s -g
debug option.

PathScale Compiler
Options

. The pathf95 compiler follows the name-mangling rules described
in Compiler Name Mangling on page 140. Because the libraries sup-
plied with the SiCortex software comply with these rules, we
strongly recommend that you avoid using compiler flags that alter
the compiler’s default method of applying underscores to symbol
names. If you encounter link problems that you cannot resolve any
other way, try the compiler’s -fno-second-underscore option.

m The PathScale compiler defaults to mips5kf (but also accepts 5kf)
for the -march, -mtune, and -mcpu flags. If you use any of these
flags, make sure you set them to mips5kf or 5kf, otherwise the
compiler will demand a license, then abort the compile.

. For Fortran applications that pass array sections, compile using
pathf95’s -LANG:copyinout=OFF option (the default is ON). Other-
wise, the compiler generates code that expensively copies in and
out of the routines that receive these arguments. In general, it’s
always a good idea to set this flag to OFF. For example, the POP
model runs six times faster on a few hundred processors when this
flag is set to OFF.

. When linking against Fortran libraries, missing symbols are often a
result of passing the -fno-second-underscore flag to the compiler.
If this happens, recompile your application without the flag. For
more information, see Compiler Name Mangling on page 140.

Table 1. Debug defaults

-g [1/2/3] GNU default PathScale default

-g w/no specified level -g2 -g2
-g# w/no specified -O -O0 -O0
-g1 – passes --export-dynamic

to the linker
Chapter 3 Compiling and Linking Applications (PN 2906-03 Rev. 02) 27

http://www.pathscale.com/

Using Compiler Options
We suggest that you follow this general procedure for finding the optimal
compile setup for your application:

• Progressively compile and compare results starting with -O2
(default with debugging disabled), -O3, -O3 -ipa, -O3 -OPT:Ofast,
and -Ofast.

. Ofast incorporates -ffast-math, which automatically links the
tuned math library, libscm. For C/C++ applications that spec-
ify -lm on the link line, -ffast-math causes the compiler to
also autolink -lmpath and -lm. To disable linking libscm when
using -Ofast, add -fno-fast-math to the command line. For
more details, see Accessing the libscm Library on page 106.

The pathopt2 tool automates this process and, by default, uses this
sequence. It compiles and runs applications as specified in a target
file, and generates a sorted list of execution times for each run. You
can create target files that direct pathopt2 to test other compile
options. You can also use pathopt2 to troubleshoot problems that
occur at specific optimization levels (for details, see the PathScale
documentation).

For -O3 -OPT:Ofast and -Ofast, check to see if the results are
accurate. These options target maximizing performance, but
because they rearrange computations, they can adversely affect
floating-point accuracy. If you do encounter numerical problems,
try -O3 -Opt:Ofast:ro=1 or -O3 -Opt:Ofast:div_split=OFF.

• Try -OPT:alias=disjoint to avoid aliasing issues;
-LNO:prefetch=0 to avoid doing prefetches that don’t work;
-OPT:unroll_times=0 to prevent loop unrolling; the -ipa (inter-
procedural analysis) option, which operates on the whole applica-
tion and is most beneficial at -O3 (-ipa is automatically enabled by
-Ofast).

• By default, the PathScale C/C++ compilers use the libm sqrt()
function rather than the MIPS sqrt.d instruction. This behavior
can adversely affect the performance of some applications. You can
use the -fno-math-errno compiler flag to force the PathScale
compiler to generate sqrt.d, but doing so causes the compiler to
ignore the ERRNO setting in math functions. (-Ofast enables
-fno-math-errno.)

• Feedback Directed Compilation (FDO)

FDO requires compiling a program twice—once to generate the
program’s profile information, which the compiler then uses to
tune the program during the second compilation.
28 (PN 2906-03 Rev. 02) Chapter 3 Compiling and Linking Applications

Using Compiler Options
• Options for diagnosing coding errors that usually surface only at
higher optimization levels:

• -OPT:alias=no_parm instructs the pathf95 Fortran compiler to
assume that program parameters do alias other parameters.

• -LANG:rw_const=ON instructs the compiler to allocate constant
values in read/write memory, enabling a callee to modify a con-
stant argument.

This option reduces the compiler’s ability to propagate constant
values, which may impact performance of the generated code.

• The following options enable you to find and deal with uninitial-
ized variables in program code. They affect local scalar and array
variables and memory returned by alloc(); they do not affect
globals, memory allocated by malloc(), or Fortran common
data.

-trapuv Initializes variables to floating-point NaNs and
enables the processor to detect floating-point
calculations (not assignments) involving NaNs.
Instead of generating incorrect results, uninitialized
variables in the program cause the program to
abort.

-zerouv At program run time, initializes variables to 0. This
option covers for applications that assume incor-
rectly that memory is always initialized to 0, and
impacts performance only slightly.

For details on compiler options and usage, see the appropriate compiler
man pages and user documentation.

GNU Compiler
Options

We suggest that you follow this general procedure for finding the optimal
gcc/scgcc setup for your application:

• Progressively compile and compare results starting with the default
flags:

-O2 -mips64 -march=5kf -mtune=5kf

In most cases, the default flags improve performance, but you can
always experiment with additional flags to coax even better results.

• Next try adding one or more of these flags:

-fno-schedule-insns -fno-schedule-insns2 -fno-peephole
-fno-peephole2
Chapter 3 Compiling and Linking Applications (PN 2906-03 Rev. 02) 29

Summary of Simple Build Methods
(By default, -fschedule-insns, -fschedule-insns2, -fpeephole,
and -fpeephole2 are enabled at -O2, -O3, and -Os.)

The -fno-schedule-insns flag is particularly useful because it pre-
vents the compiler from moving all loads to the start of the code
block in an attempt to have the data available when it is needed
later in the code. Without this check, the compiler’s behavior can
cause stalls because of the System’s hits under misses policy (for
details, see page 133).

The -fno-schedule-* and -fno-peephole* flags may best be
suited for the low-level, assembly-like code. But because instruction
scheduling by the compiler can also decrease performance of low-
level code, before you use these options for other purposes, read
their man pages.

• Consider using the -ffast-math optimization flag, but do not
invoke it with the -O option because doing so can result in incorrect
output for applications that require strict adherence to IEEE or
ISO specifications for math functions. -ffast-math sets many
other math optimization flags and causes the preprocessor macro
__FAST_MATH__ to be defined.

Also consider trying the -mno-check-zero-division flag to pre-
vent trapping on integer division by zero.

m The -ffast-math and -mno-check-zero-division flags may
not be suitable for all programs because each makes assump-
tions about the program code.

• If you intend to profile your application, use the -g option.

Summary of Simple Build Methods

For a single-file, n64 application, Table 2 on page 31 shows what to type
on the command line to build it natively on the System, and Table 3
shows what to type on the command line to build it on the cross-develop-
ment workstation.

. For instructions on building n32 applications, see Overriding the
Default ABI on page 139.
30 (PN 2906-03 Rev. 02) Chapter 3 Compiling and Linking Applications

Summary of Simple Build Methods

The sc* wrapper scripts (Table 3) call the corresponding underlying com-
piler and linker. On the cross-development workstation, the wrapper
scripts tell the compiler and linker where to find the correct directories
for the cross-compile headers and libraries. Using the sc* wrapper scripts
natively on the nodes works the same as calling the corresponding tool
directly, except that the overhead of the extra step slows the process.

Table 2. Command line syntax for building single-file applications natively

Environment Single File Makefile Autotools/Configure

Native compile
(on the System)

pathcc file.c make ./configure
make

pathCC file.cpp make ./configure
make

pathf95 file.f|f90|F|F90 make ./configure
make

*mpif77 file.f|F
 mpif90 file.f90|F90
 mpicc file.c
 mpicxx file.cpp

make ./configure
make

gcc file.c make ./configure
make

* The mpi** wrapper scripts automatically link using the appropriate PathScale compiler with the optimized MPI library. To use
the debug version of the MPI library, add --mpilib=-lscmpi_debug to the link line. When not using the wrapper scripts for
MPI applications, you must add -lscmpi (or -lscmpi_debug) to the link line.

Table 3. Command line syntax for building single-file applications on the cross-development

Environment Single File Makefile Autotools/Configure

Cross-compile
(on the cross
development
workstation)

scpathcc file.c CC="scpathcc" make CC="scpathcc" ./configure --host=mips64el-gentoo-linux-gnu
 --build=x86_64-pc-linux-gnu
CC="scpathcc" make

scpathCC file.cpp CXX="scpathCC" make CXX="scpathCC" ./configure --host=mips64el-gentoo-linux-gnu
 --build=x86_64-pc-linux-gnu
CXX="scpathCC" make

scpathf95 file.f|f90|F|F90 F77="scpathf95" make
F90="scpathf95" make
FC="scpathf95" make

F77="scpathf95" ./configure --host=mips64el-gentoo-linux-gnu
 --build=x86_64-pc-linux-gnu
F90="scpathf95" ./configure --host=mips64el-gentoo-linux-gnu
 --build=x86_64-pc-linux-gnu
FC="scpathf95" ./configure --host=mips64el-gentoo-linux-gnu
 --build=x86_64-pc-linux-gnu
F77|F90|FC="scpathf95" make
Chapter 3 Compiling and Linking Applications (PN 2906-03 Rev. 02) 31

Porting or Building an Application Natively on the System
Porting or Building an Application Natively on the System

Whether you are porting an existing application or building a new appli-
cation, there are only a few things you need to do before you can run it on
the System:

1. Install the source files and any libraries not supplied with the
SiCortex software suite on a shared file system that is visible on
the System’s nodes.

2. Log on to the System. (For details, see Logging on to the System on
page 16.)

3. Allocate another node in the partition using srun’s -A option.

 $ srun -p sc1-comp1 -A -N1

For more information on using srun’s -A option, see Allocating
Resources on page 19.

4. Find the node that SLURM allocated.

 $ squeue | grep <username>

5. Connect to the allocated node.

 $ ssh <allocated_node_returned_by_squeue>

6. Set compiler and linker options.

scmpif77 file.f|F
scmpif90 file.f90|F90
scmpicc file.c
scmpicxx file.cpp

F77="scmpif77" make
F90="scmpif90" make
CC="scmpicc" make
CXX="scmpicxx" make

F77="scmpif77" ./configure --host=mips64el-gentoo-linux-gnu
 --build=x86_64-pc-linux-gnu
F90="scmpif905" ./configure --host=mips64el-gentoo-linux-gnu
 --build=x86_64-pc-linux-gnu
CC="scmpicc" ./configure --host=mips64el-gentoo-linux-gnu
 --build=x86_64-pc-linux-gnu
CXX="scmpicxx" ./configure --host=mips64el-gentoo-linux-gnu
 --build=x86_64-pc-linux-gnu
[F77|F90]="scmpif[77|90]" make
[CC|CXX]="scmpi[cc|cxx]" make

scgcc file.c CC="scgcc" make CC="scgcc" ./configure --host=mips64el-gentoo-linux-gnu
 --build=x86_64-pc-linux-gnu
CC="scgcc" make

Table 3. Command line syntax for building single-file applications on the cross-development (Cont’d)

Environment Single File Makefile Autotools/Configure
32 (PN 2906-03 Rev. 02) Chapter 3 Compiling and Linking Applications

Porting or Building an Application Natively on the System
m If you use autotools and you need to change the application’s
build system or add other parameters to the configure
command, edit the application's configure.in or
configure.ac and Makefile.am files, not the configure or
makefile files generated by autotools. Then use automake and
autoconf to regenerate the makefiles.

• By default, the compiler builds n64 ABI executables (for
details, see Chapter 10, Understanding the Application Binary Inter-
faces on page 135). So, if yours is an n32 application, you need to
specify that to the compiler. For example, using pathcc:

 $ pathcc -isysroot=/.root0/opt/sicortex/rootfs/build.n32 \
 -mabi=n32 <myapp>

. Make sure your System Administrator has mounted the n32
buildroot on the nodes where you intend to build your n32
application.

• If your application uses user-supplied libraries or header files,
you need to specify their location to the compiler:

For user-supplied libraries, supply the -L <pathname> flag to
the compiler command line, or add LDFLAGS="-L <pathname>"
to your Makefile or to the ./configure command line if you
are using autotools.

. Determine any interlibrary dependencies and list the libraries
accordingly. (Libraries that use functions or symbols contained
in other libraries must appear on the link line before the librar-
ies whose functions or symbols they use.) This rule also
applies to object files.

For user-supplied header files, supply the -I <pathname>
flag to the compiler command line, or add
CFLAGS|FFLAGS="-I <pathname>" to your Makefile or to the
./configure command line if you are using autotools.

• If you want to compile for debugging, use the compiler’s -g
option. If you want to include information for the gprof pro-
filer, use the compiler’s -gp option.

7. Select a compiler. See Summary of Simple Build Methods on page 30.
Chapter 3 Compiling and Linking Applications (PN 2906-03 Rev. 02) 33

Building an Application on the Cross-Development Workstation
. We recommend using -lscmpi_debug until you have finished
debugging your MPI application, and then switch over to
-lscmpi.

For more details, see MPI Library on page 118.

8. Launch the compiler/linker at the command line, or type make to
compile and link.

To run your application, see Chapter 2, Running Applications on
page 15. To debug your application, see Chapter 4, Debugging Appli-
cations on page 39. To optimize your application, see Chapter 5,
Optimizing Application Performance on page 51.

Building an Application on the Cross-Development
Workstation

On the cross-development workstation, you call the compilers and associ-
ated utilities by adding the sc prefix to the name of the tool. For example,
the gcc cross-compiler is scgcc and the linker is scld. The sc prefix
instructs the cross-compiler and linker to look in the correct directories
for the cross-compiled headers and libraries supplied with the SiCortex
cross-development software suite.

Except for the sc prefix, the basic procedure for compiling and linking
applications on the cross-development workstation mirrors that for com-
piling and linking on the System, unless you use autotools.

On the workstation that has the SiCortex Cross-Development Toolkit
installed:

1. Create or edit your makefiles and header files as needed.

m If you use autotools and you need to change the application’s
build system or add other parameters to the configure com-
mand, edit the application's configure.in or configure.ac
and Makefile.am files, not the configure or Makefile files gen-
erated by autotools. Then use automake and autoconf to
regenerate the makefiles.

2. Review the options for setting the behavior of the compiler and
linker starting at Step 6 on page 32, and then consider these addi-
tional options:
34 (PN 2906-03 Rev. 02) Chapter 3 Compiling and Linking Applications

Troubleshooting Autotools-Based Cross-Compile Errors
• If building an n32 application, specify that to the compiler. For
example, using scpathcc:

 $ scpathcc --sysroot=/opt/sicortex/rootfs/build.n32 \
 -mabi=n32 <myapp>

• If using autotools, you need to specify the host and build archi-
tectures (the environment on which the executable will run and
the environment on which the executable is generated, respec-
tively) when you run configure, so configure can set up cor-
rectly for cross compiling. To do so, on the ./configure
command line, type:

 --host=mips64el-gentoo-linux-gnu \
 --build=x86_64-pc-linux-gnu

3. Specify a compiler. See Summary of Simple Build Methods on page 30.

4. Launch the compiler/linker at the command line, or type make to
compile and link.

. If you compiled your application on nonshared storage in the
cross-development workstation, first copy your executable file
and its data to a shared file system that is mounted and visible
on the System.

To run your application, see Chapter 2, Running Applications on
page 15. To debug your application, see Chapter 4, Debugging Appli-
cations on page 39. To optimize your application, see Chapter 5,
Optimizing Application Performance on page 51.

Troubleshooting Autotools-Based Cross-Compile Errors

If you use Autotools to build your application, you may encounter some
of the problems listed here.

Build system
incorrectly detects the

target type

Only the compiler/linker knows how to detect the target system’ s type.
Some Makefiles use other methods to detect its type, such as calls to
uname, that are incompatible for cross-compiling. Replace any such
incompatible code in the Makefile with code that uses the toolchain
program environment variables (CC, LD, AR, RANLIB). Then set the variables
to their correct values when you invoke the Makefile; for example,
CC=scgcc make.
Chapter 3 Compiling and Linking Applications (PN 2906-03 Rev. 02) 35

Troubleshooting Autotools-Based Cross-Compile Errors
./configure uses
incorrect default

values

error: too few arguments to function 'gettimeofday'
error: incompatible types in assignment
error: conflicting types for 'malloc'
memcmp.c:11 error: conflicting types for 'memcmp'

Remedy: Determine what configuration variable is causing the problem
(compare native and cross-compile runs of ./configure) and reassign it
the correct value as part of running ./configure.

Example: ac_cv_type_signal=void ./configure…

./configure ignores the
AR environment

variable

Most likely, the Makefile contains hard-coded calls to the ar or ranlib
programs. Modify the Makefile to use the environment variables AR and
RANLIB, but defaulted to ar and ranlib. This scheme enables users to
modify the ar and ranlib programs to use the correct cross-compile ver-
sions.

Build system uses
wrong version of AR

or RANLIB

Error: In function '__start'
: undefined reference to 'main' collect2
: ld returned 1 exit status

Remedy:AR=scar RANLIB=scranlib ./configure \
--host=mips64el-gentoo-linux-gnu --build=x86_64-pc-linux-gnu
make
make DESTDIR=/cross-root install

If configure ignores the AR variable, edit the configure.in file and add
AC_CHECK_PROG(AR,ar) directly following the AC_PROG_RANLIB line. Run
autoconf, and then rerun configure.

Link error: archive
with no index

Build scripts target different architectures for the compile and the link
processes.

...ld: SOMEFILE.o: Relocations in generic ELF (EM: 62)
SOMEFILE.o: could not read symbols: File in wrong format
collect2: ld returned 1 exit status

Remedy: Check to see if the wrong compiler is hardcoded in the make-
file, and if so, change the code to the correct compiler. Else, the makefile
may use a CC environment variable that the configure script has failed to
override. You can manually override the makefile CC (CXX, FC, etc) variable
by setting CC to the correct value before running make.

Including/linking
against previously

compiled header or
library files

Header file or Libraries not found.

Remedy: CFLAGS=-I/dir/include LDFLAGS=-L/dir/lib \
./configure --host=mips64el-gentoo-linux-gnu \

--build=x86_64-pc-linux-gnu
make
36 (PN 2906-03 Rev. 02) Chapter 3 Compiling and Linking Applications

Compiling Reference Information
 Configure tries to
run an executable

during the build
process

This often occurs when a build system tries to compile and execute a
build tool that it uses in the build process. It typically generates an error
such as: ./foo: cannot execute binary file

Remedy: If the build tool is meant to run where the application does,
and the only purpose is to generate output for the build system to use
(e.g. to test for system characteristics), try running the tool on the System.
Record the results, then modify the build system to use those results,
instead of running the tool.

Application uses a
configure script to

build

Set the environment variables:

CC=scgcc, LD=scld, AR=scar, RANLIB=scranlib (maybe compilers too,
e.g. F77=scpathf95) and --host=mips64el-gentoo-linux-gnu \
--build=x86_64-pc-linux-gnu

Compiling Reference Information

• Reference to online man pages:

• http://pathscale.com PathScale User Documents

• http://www.gnu.org/manual/manual.html GNU Manuals
Online

• http://www.linux.org/docs/ Linux Online Documentation

• References to books:

• Stallman, Richard M., et. al. GNU Make: A Program for Directing
Recompilation. The GNU Press, 2004.

• Stallman, Richard M., et. al. Using GCC: The GNU Compiler Collec-
tion Reference Manual. The GNU Press., 2000.

• Stallman, Richard M., et. al. Volume 2: GNU Reference: Using and
Porting the GNU Compiler Collection (GCC). Iuniverse, Inc, 2003.

• Vaughan, Gary V., et al. GNU AUTOCONF, AUTOMAKE, and
LIBTOOL. New Riders Publishing, 2000.
Chapter 3 Compiling and Linking Applications (PN 2906-03 Rev. 02) 37

http://pathscale.com/
http://www.gnu.org/manual/manual.html
http://www.linux.org/docs/

Compiling Reference Information
38 (PN 2906-03 Rev. 02) Chapter 3 Compiling and Linking Applications

Compiling Tips for Debugging
Chapter 4 Debugging Applications

In this section:

• Compiling Tips for Debugging

• Debugging with gdb

• Debugging Natively with gdb

• Debugging Remotely with gdb

• Debugging with TotalView

• Environment Setup

• Starting a Job

• Memory Debugging with DUMA

• Memory Debugging with Mudflap

Compiling Tips for Debugging

• Compile your program using the compiler’s -g debugging option.

All of the supplied compilers use the -g option to enable user-
friendly debugging. For details, see Chapter 3, Compiling and Linking
Applications on page 25.

You can debug your executables without compiling with the -g
option, but doing so, you can view only the assembler code in the
debuggers.

• Use optimization flags judiciously. Increased optimization can pre-
vent the debugger from setting breakpoints and expanding vari-
ables.

Debugging with gdb

The SiCortex software toolkit includes the GNU debugger, gdb, which
you can run natively on the System or remotely from the cross-
development workstation to debug an application running on the System.
Regardless of where you run it from, gdb works with the standard tools
exactly as it does on any other platform.
Chapter 4 Debugging Applications (PN 2906-03 Rev. 02) 39

Debugging with gdb
m The gdb debugger does not work with Fortran derived data types.

Debugging Natively
with gdb

Run gdb on the System just as you would run it on any other platform:

1. Log on to the System. For details, see Chapter 2, Running
Applications on page 15.

2. Compile the application using the -g option. For details, see Port-
ing or Building an Application Natively on the System on page 32.

3. Start up gdb on the System, specifying the name of the application
to debug, and then run the program using gdb commands.

Handling Core Dumps

m The System does not automatically generate core dump files. To
enable this feature, you must issue ulimit -c unlimited (bash) or
limit coredumpsize unlimited (tcsh) before you run your appli-
cation.

You can examine the core file generated when an application crashes. To
do so, use any of the following commands within gdb.

• To start up gdb specifying the program you want to debug, use
either command sequence:

$ gdb <program> or
$ gdb -e program

• To start up gdb specifying the program and core file you want to
debug, use either command sequence:

$ gdb <program> <core file> or
$ gdb -e program -c corefile

You can create a core file of a program that is running in gdb to save a
snapshot of its state at any given time. To do so, while the program is run-
ning in gdb:

(gdb) gcore [filename]

Use this command to generate a core dump of the inferior process
(the process that gdb spawns to run your program). The optional
filename specifies the name of the file to which the output is writ-
ten. If no file name is specified, gdb writes the output to the file
core.pid, where pid is the id of the inferior process.
40 (PN 2906-03 Rev. 02) Chapter 4 Debugging Applications

Debugging with gdb
Using Stack Traces

You can examine information about your program’s call stack routines
and the local variables, registers, and function parameters your program’s
routines use. To do so, use these commands from within gdb:

• Use the frame command to move from one stack frame to another
and print the stack frame you specify:
(gdb) frame [stackframe]

To specify a stack frame, supply its address or the stack frame num-
ber that gdb assigned to it. If you do not specify a stack frame, this
command prints the information for the current stack frame (frame
number 0).

• Use select-frame command to move from one stack frame to
another, without printing the frame information:
(gdb) select-frame

• Use the backtrace command to print a summary of existing stack
frames to trace the antecedents of the current stack frame:

$ (gdb) backtrace [args] or $ (gdb) bt [args]
n /* Print only the innermost n frames
-n /* Print only the outermost n frames
full[n, -n] /* Print the local variables too

The output displays one line per frame, starting at stack frame
number 0 followed by its caller, stack frame number 1, and so on.

If you do not supply an argument, this command prints a backtrace
of the entire stack frame. To stop the backtrace, enter the system
interrupt character, typically Ctrl-c.

. By default, gdb displays the backtrace only for the current
thread in a multithreaded program. To display the backtrace of
all threads, use the thread apply command this way:
(gdb) thread apply all backtrace

See the gdb man page for more details.

Debugging Remotely
with gdb

You can use the gdbserver program, included in the gdb software, to
debug an application remotely from the cross-development workstation:

1. Log on to the System. For details, see Chapter 2, Running
Applications on page 15.
Chapter 4 Debugging Applications (PN 2906-03 Rev. 02) 41

Debugging with gdb
2. Cross-compile the application on the cross-development worksta-
tion.(For details on cross-compiling, see Building an Application on
the Cross-Development Workstation on page 34.)

For example: xdev $ scgcc -g prog.c -o prog

3. Start up gdbserver on the System. Specify the link over which gdb
and gdbserver will communicate and the name of the program to
debug (in this case ./prog).

For example: HOST $ gdbserver :7654 ./prog

This example specifies the TCP port :7654.

4. Start up scgdb on the cross-development workstation and again
specify the program to debug.

In this example: xdev $ scgdb ./prog

5. When scgdb returns the (gdb) prompt, first tell gdb where to find
the shared libraries, then establish the connection to the System—
in this case, using the same TCP port, :7654, specified in Step 3.

xdev $ (gdb) set sysroot <PATH_TO_ROOTFS>*

xdev $ (gdb) target remote HOST:7654

scgdb then connects over the network to the gdbserver program
running on the System.

6. Run the debugger as you would normally. You can use all of the
usual commands to examine and change data and to step through
or continue the remote program.

See the gdbserver man page for more details.

* The System ships with the rootfs in /opt/sicortex/rootfs/default.
42 (PN 2906-03 Rev. 02) Chapter 4 Debugging Applications

Debugging with TotalView
Debugging with TotalView

With TotalView, you debug single- and multinode applications remotely
from the cross-development workstation.

• Ask your System Administrator whether TotalView is installed on
the System and on the cross-development workstation. One license
for each instance (process) is required.

• TotalView works with code generated from all of the supplied com-
pilers. Make sure you compile code you want to debug using the
compiler’s -g option.

m Compiling with optimization enabled can interfere with the
values examined within the debugger. Generally, reliability of
these values decreases with increasing optimization. At level
-O3, these values are unreliable.

• SiCortex TotalView does not include these features: memory
debugging, support for SHMEM or PVM, o32 executables, watch-
points, or compiled EVAL points.

For complete documentation on the TotalView debugger, visit
www.totalviewtech.com.

Environment Setup The TotalView front end provides both graphical and command line
interfaces for debugging parallel applications. It launches applications on
the System via the network.

The TotalView front end runs only on an x86_64 workstation that has the
SiCortex cross-development toolkit installed, and it must have access to
the MPI libraries.

Before you start up the TotalView debugger:

• The TotalView software resides in
<install_path>/toolworks/totalview.<version>/ on the cross-
development workstation. It’s easier to put this in your path than to
type it each time you invoke the debugger.

• By default, TotalView uses ssh -X to create a remote shell. It’s
much easier if you set up ssh -X to execute a command without
requiring a password.

• Make sure your application executables are in a directory that is vis-
ible through the same path from both the cross-development
workstation and the head node where srun launches the job.
Chapter 4 Debugging Applications (PN 2906-03 Rev. 02) 43

http://www.totalviewtech.com/index.htm

Debugging with TotalView
• Because TotalView is an X application, if you access the cross-
development workstation from your user workstation, you need to
supply the -X option to ssh to open an X display.

Starting a Job You can start a job either from the command line or from within the
TotalView GUI. To invoke TotalView on SiCortex systems, you must use
the sc prefix: sctotalview and sctv8 are equivalent and access the GUI
interface; sctotalviewcli and sctv8cli are equivalent and access the
command line interface.

Command synopsis:

To debug an application in the CLI version
$ sctv8cli -r <nodename> <pathtoexecutable> -a <args>

To debug an application in the GUI version
$ sctv8 -r <nodename> srun -a <args> pathtoexecutable>

As an example, to launch the TotalView GUI and debug the MPI pro-
gram, a.out, located in ~/helloworld/mpi:

1. On the cross-development workstation, start up TotalView and
submit the job to SLURM:

$ sctv8 -r <head_node> srun -a -p sc1 -n2
 ~/helloworld/mpi/a.out

Where:

-r <head_node> Specifies the head node on which to launch the
srun command.

-a Pass all following arguments to srun.

-n 2 Specifies two processes.

~/helloworld/mpi/a.out

Is the executable to debug.

TotalView opens with the Process and Root windows displaying a
clean slate.

m To quit TotalView, use the File>Exit method from the menu bar,
not the icon in the upper-right corner of the GUI. Clicking the
X icon leaves an srun.mips.<processID> file for every process
your program started in the working directory, which you must
remove manually. The File>Exit method removes all such
srun.mips.<processID> files automatically.
44 (PN 2906-03 Rev. 02) Chapter 4 Debugging Applications

Memory Debugging with DUMA
m Because TotalView runs your job using srun, when you quit Total-
View, unless you ran the program to completion, you must also
scancel the job. For details, see Canceling a Job: scancel and ^C on
page 20.

For detailed instructions on using the TotalView Debugger, see the user
documentation at www.totalviewtech.com.

Memory Debugging with DUMA

Detect Unintentional Memory Access (DUMA) uses the virtual memory
hardware to place protected pages around dynamic allocations and to
track memory accesses. It works with C and C++ applications.

You can link the DUMA library (libduma) with the application, or you
can preload the library using the duma script.

To debug your C/C++ application using DUMA, you need only:

• Compile your application using the compiler’s -g option, with or
without linking with the DUMA library;

• Run the executable (with the duma script if you did not link with the
DUMA library);

• Run gdb on any resulting core dump.

By default DUMA detects memory overruns. So, for example, to debug
memory overruns for the simple foo.c application:

test@sc1-m0n6: ~$ cat foo.c
main()
{
 char *a = malloc(10);
 a[10] = 0;
}

Compile the foo.c application:

test@sc1-m0n6: ~$ gcc -g foo.c
foo.c: In function 'main':
foo.c:3: warning: incompatible implicit declaration of
built-in function 'malloc'

Run the duma script on the resulting executable:

test@sc1-m0n6: ~$ duma ./a.out
DUMA 2.5.12 (shared library, NO_LEAKDETECTION)
Copyright (C) 2006 Michael Eddington <meddington@gmail.com>
Chapter 4 Debugging Applications (PN 2906-03 Rev. 02) 45

http://www.totalviewtech.com/index.htm
http://www.totalviewtech.com/

Memory Debugging with DUMA
Copyright (C) 2002-2008 Hayati Ayguen <h_ayguen@web.de>, Procitec GmbH
Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

/home/test/SVN/build/tools/usr/bin/duma: line 17: 4895 Segmentation fault (core dumped)
(export LD_PRELOAD=libduma.so.0.0.0; export DYLD_INSERT_LIBRARIES=libduma.dylib; export
DYLD_FORCE_FLAT_NAMESPACE=1; exec $*)

Then run gdb on the resulting core dump:

test@sc1-m0n6: ~$ gdb ./a.out core.sc1-m0n6.scsystem.4895
GNU gdb 6.7.1
Copyright (C) 2007 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "mips64el-gentoo-linux-gnu"...
Using host libthread_db library "/lib64/libthread_db.so.1".
Reading symbols from /net/home/test/SVN/perf/usr/lib/libduma.so.0.0.0...done.
Loaded symbols for /home/test/SVN/build/tools/usr/lib/libduma.so.0.0.0
Reading symbols from /lib64/libc.so.6...done.
Loaded symbols for /lib64/libc.so.6
Reading symbols from /lib64/libpthread.so.0...done.
Loaded symbols for /lib64/libpthread.so.0
Reading symbols from /usr/lib64/libstdc++.so.6...done.
Loaded symbols for /usr/lib64/libstdc++.so.6
Reading symbols from /lib64/libm.so.6...done.
Loaded symbols for /lib64/libm.so.6
Reading symbols from /usr/lib64/libgcc_s.so.1...done.
Loaded symbols for /usr/lib64/libgcc_s.so.1
Reading symbols from /lib64/ld.so.1...done.
Loaded symbols for /lib64/ld.so.1
Core was generated by `./a.out'.
Program terminated with signal 11, Segmentation fault.
#0 0x000000012000097c in main () at foo.c:4
4 a[11] = 0;

To detect memory underruns, use the DUMA_PROTECT_BELOW=<int> envi-
ronment variable:

test@sc1-m0n6: ~$ DUMA_PROTECT_BELOW=1 duma ./a.out
DUMA 2.5.12 (shared library, NO_LEAKDETECTION)
Copyright (C) 2006 Michael Eddington <meddington@gmail.com>
Copyright (C) 2002-2008 Hayati Ayguen <h_ayguen@web.de>, Procitec GmbH
Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

To see a list of all memory allocations your application uses, use the
DUMA_SHOW_ALLOC environment variable:

test@sc1-m0n6: ~/SLURM$ DUMA_SHOW_ALLOC=1 srun -p sf2 -n1 duma ./pi | head -30
DUMA 2.5.12 (shared library, NO_LEAKDETECTION)
Copyright (C) 2006 Michael Eddington <meddington@gmail.com>
Copyright (C) 2002-2008 Hayati Ayguen <h_ayguen@web.de>, Procitec GmbH
46 (PN 2906-03 Rev. 02) Chapter 4 Debugging Applications

Memory Debugging with Mudflap
Copyright (C) 1987-1999 Bruce Perens <bruce@perens.com>

DUMA: Allocating 123 bytes.
DUMA: Freeing 123 bytes.
DUMA: Allocating 8 bytes.
.
.
.

Memory Debugging with Mudflap

GCC’s powerful built-in memory debugging tool, mudflap, combines
source code instrumentation with additional runtime support.

Use Mudflap this way:

test@sc1-m0n6: ~/tests$ gcc -fmudflap unwind.c -lmudflap

-fmudflap Instructs the compiler to instrument all risky
pointer/array dereferencing operations, some
standard library string/heap functions, and some
other associated constructs having range/validity
tests.

For multithreaded applications, use -fmudflapth
instead.

-lmudflap The libmudflap runtime library. To link with the
libmudflap library, you must supply both -fmudflap
and -lmudflap on the link line.

For multithreaded applications, use -lmudflapth
instead.

You can control the runtime behavior of your instrumented code by
using the MUDFLAP_OPTIONS environment variable to set various mudflap
parameters. For details, see
http://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging.

Here is a simple application, hello_world, that writes past the end of an
array:

#include <memory.h>
#include <stdio.h>
#include <stdlib.h>

int main() {
 char *a =(char *)malloc(1000*sizeof(char));
 memset(a,0,1004);
 printf("Hello world\n");
Chapter 4 Debugging Applications (PN 2906-03 Rev. 02) 47

http://gcc.gnu.org/wiki/Mudflap_Pointer_Debugging

Memory Debugging with Mudflap
 fclose(stdout);
 exit(0);
}

Compile it using mudflap:

test@sc1-m0n6: ~$ gcc -g -Wall -fmudflap hello_world.c
-lmudflap

Run the executable:

test@sc1-m0n6: ~$./a.out

mudflap violation 1 (check/write): time=1179835120.249191 ptr=0x120113750 size=1004
pc=0x55556892b4 location=`(memset dest)'
 /usr/lib64/libmudflap.so.0(__mf_backtrace+0x1cc) [0x555568695c]
Nearby object 1: checked region begins 0B into and ends 4B after
mudflap object 0x120113b90: name=`malloc region'
bounds=[0x120113750,0x120113b37] size=1000 area=heap check=0r/3w liveness=3
alloc time=1179835120.248191 pc=0x5555688c94
 /usr/lib64/libmudflap.so.0(__mf_backtrace+0x7c) [0x555568680c]
 [0x120208c50]
number of nearby objects: 1
Hello world
test@sc1-m0n6: ~$

Since MIPS doesn't have a frame-pointer, which prevents us from getting
true backtraces, how can we find the offending code? We can promote
the violation either to start gdb or to generate an SEGV.

test@sc1-m0n6: ~$ export MUDFLAP_OPTIONS="-check-initialization -viol-gdb"
test@sc1-m0n6: ~$./a.out

mudflap violation 1 (check/write): time=1179835511.161191 ptr=0x1201138d0 size=1004
pc=0x55556892b4 location=`(memset dest)'
 /usr/lib64/libmudflap.so.0(__mf_backtrace+0x1cc) [0x555568695c]
Nearby object 1: checked region begins 0B into and ends 4B after
mudflap object 0x120113d10: name=`malloc region'
bounds=[0x1201138d0,0x120113cb7] size=1000 area=heap check=0r/3w liveness=3
alloc time=1179835511.161191 pc=0x5555688c94
 /usr/lib64/libmudflap.so.0(__mf_backtrace+0x7c) [0x555568680c]
 [0x120221e70]
number of nearby objects: 1
GNU gdb 6.6
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "mips64el-gentoo-linux-gnu".
Attaching to process 1689
Reading symbols from /net/home/test/a.out...done.
Using host libthread_db library "/lib64/libthread_db.so.1".
48 (PN 2906-03 Rev. 02) Chapter 4 Debugging Applications

Memory Debugging with Mudflap
Reading symbols from /usr/lib64/libmudflap.so.0...done.
Loaded symbols for /usr/lib64/libmudflap.so.0
Reading symbols from /lib64/libc.so.6...done.
Loaded symbols for /lib64/libc.so.6
Reading symbols from /lib64/libdl.so.2...done.
Loaded symbols for /lib64/libdl.so.2
Reading symbols from /lib64/ld.so.1...done.
Loaded symbols for /lib64/ld.so.1
0x00000055559eb45c in waitpid () from /lib64/libc.so.6
(gdb) where
#0 0x00000055559eb45c in waitpid () from /lib64/libc.so.6
#1 0x00000055559884bc in do_system () from /lib64/libc.so.6
#2 0x0000005555686d1c in __mf_violation () from /usr/lib64/libmudflap.so.0
#3 0x000000555568811c in __mfu_check () from /usr/lib64/libmudflap.so.0
#4 0x00000055556892b4 in __mf_check () from /usr/lib64/libmudflap.so.0
#5 0x000000555569868c in __mfwrap_memset () from /usr/lib64/libmudflap.so.0
#6 0x0000000120000cfc in main () at hello_world.c:7
(gdb) up 6
#6 0x0000000120000cfc in main () at hello_world.c:7
7 memset(a,0,1004);
(gdb)

If you want to just SEGV, use -viol-segv.
Chapter 4 Debugging Applications (PN 2906-03 Rev. 02) 49

Memory Debugging with Mudflap
50 (PN 2906-03 Rev. 02) Chapter 4 Debugging Applications

Chapter 5 Optimizing Application
Performance

In this section:

• General Procedure for Optimizing an Application

• Build Optimizations

• General Optimization Tips

• Memory Access Optimizations

• SCTICK Fast Timers

• Application Performance Tools

• Invoking the Tools

• Displaying Available Hardware Performance Counter Events

• Using Papiex

• Using Mpipex

• Using HPCex

• Using TAU

• Using Tauex

• Using Vampirtrace

• Using GPTL

• Using Gptlex

• Using Ioex

• Using Pfmon

• Using Oprofile

• Hardware Performance Counter Events

• Performance Tool Program Examples

Performance tuning is an iterative process used to optimize the efficiency
of a program. Typically, it involves finding the programs’s hot spots (code
that uses a disproportionate amount of processor time) and then elimi-
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 51

General Procedure for Optimizing an Application
nating the bottlenecks (code that uses processor resources inefficiently,
causing unnecessary delays) in them.

General Procedure for Optimizing an Application

In general, the steps for tuning applications for optimal performance are:

1. Compile the application using the appropriate optimization
options. Include the -g option to help with profiling and
correlating data with the source code.

. Using -g with -O# does not degrade optimization; it merely
increases the number of symbols the compiler must keep.

2. Characterize the application.

Run papiex using the -a option to establish baseline performance
data.

If the data suggests the application contains hot spots, profile the
application using the tool appropriate for the area of concern (for
example, run mpipex on an application that appears to spend an
inordinate amount of time in MPI tasks).

3. Profile the application.

Profilers measure a program’s runtime characteristics and resource
utilization. Use these tools to determine which areas of code
present the greatest potential for increasing performance before
you actually begin tuning code.

• Run mpipex on an application to detect MPI bottlenecks.

• Run hpcex on an application to detect computational bottle-
necks.

• Run ioex on an application to detect I/O bottlenecks.

4. Take advantage of compiler and preprocessor optimizations
whenever possible and appropriate. (See Using Compiler Options on
page 26 and Build Optimizations on page 53.)

5. To get to the root of persistent bottlenecks, instrument and run
the application with a tool (TAU/tauex, and Vampir/vampirtrace)
that provides detailed profile and trace data that can identify spe-
cific bottlenecks.
52 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

General Procedure for Optimizing an Application
For small kernels of code, consider using papiex, enclosing the
code of interest within software calipers.

6. Tune application code blocks that dominate execution time.

Consider optimizing your underlying algorithm. For example,
even a finely tuned O(N*N) sorting algorithm may perform signifi-
cantly worse than an untuned O(N log N) algorithm.

For data dependent computations, base benchmarks on a variety
of realistic (both size and values) input data sets. Maintain consis-
tent input data during the fine-tuning process.

7. Know when to stop.

Successive optimizations carry diminishing returns.

Build Optimizations You can do some simple things up front to optimize your application’s
performance.

• Compiler optimization flags

The compilers default to -O0 optimization when debugging is
enabled. With debugging disabled, the GNU compilers default to
-O0, but the PathScale compilers default to -O2. (For more details,
see Using Compiler Options on page 26.)

The PathScale compiler

At level -O2, the PathScale compiler performs optimizations on
inner loops, instruction scheduling, global register allocation, and
function scopes. Table 4 shows option settings for each optimiza-
tion level as defined for the PathScale compilers. This list is not all
inclusive. For details on these options, see the PathScale compiler’s
documentation and man pages.

Table 4. Effects of PathScale compilers’ optimization flags

Option Name -O0 -O1 -O2 -O3 Notes

-OPT:div_split off off off off on if IEEE_arithmatic = 3
-OPT:fast_complex off off off off on if roundoff = 3
-OPT:fast_exp off off off on on if roundoff ≥ 1

-OPT:fast_nint off off off off on if roundoff = 3
-OPT:fast_sqrt off off off off
-OPT:fast_trunc off off off on on if roundoff ≥ 1

-OPT:fold_reassociate off off off off on if roundoff ≥ 2
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 53

General Procedure for Optimizing an Application
At level -O3, the PathScale compiler performs additional optimiza-
tions that usually increase the performance of applications, but
occasionally, these additional optimizations slow some applications
down. If this occurs, try using the PathScale compiler’s
-LNO:prefetch=0 flag, which turns off prefetching and helps
mainly codes that fit in cache.

m At level -O3, the PathScale compiler performs certain math
optimizations that, on rare occasions, cause incorrect results.

. The pathopt2 tool (see page 28) can facilitate the process of
progressively compiling and comparing results.

For more details, see PathScale Compiler Options on page 27, and the
PathScale documentation and man pages.

The gcc compiler

At level -O1, the gcc compiler attempts to reduce code size and exe-
cution time of the resulting executable, without increasing compila-
tion time.

At level -O2, the gcc compiler applies optimizations that do not
involve a trade-off between space and speed, so it does no loop
unrolling or function inlining. It performs all -O1 level optimiza-
tions plus many additional optimizations, including alignment of
functions, jumps, loops, and labels; global and common subexpres-

-OPT:fold_unsafe_relops on on on on
-OPT:fold_insigned_relops off off off off
-OPT:IEEE_arithmatic 1 1 1 2
-OPT:IEEE_NaN_inf on on on on
-OPT:recip off off off off on if roundoff ≥ 2

-OPT:roundoff 0 0 0 1
-OPT:fast_math off off off off on if roundoff ≥ 2

-OPT:rsqrt 0 0 0 0 1 if roundoff ≥ 2

-OPT:OLimit 6000 6000 6000 9000
-OPT:align_unsafe off off off on
-OPT:goto off on on on
-OPT:reorg_common off off off on on when all files referencing the com-

mon block are compiled at -O3; else off
-LNO:opt 0 – – 1

Table 4. Effects of PathScale compilers’ optimization flags (Cont’d)

Option Name -O0 -O1 -O2 -O3 Notes
54 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

General Procedure for Optimizing an Application
sion elimination; and function, block, and instruction reordering
and rescheduling optimizations. While these optimizations increase
compilation time, they also increase the performance of the result-
ing executable.

. If your application uses computed gotos, you may get better
runtime performance by disabling (-fno-gcse) global com-
mon subexpression elimination.

At level -O3, the gcc compiler performs all -O1 and -O2 optimiza-
tions plus performs loop unrolling, function inlining, and cleanup
of redundant spilling.

At level -Os, the gcc compiler optimizes for code size. It performs
all -O1 and -O2 optimizations that do not typically increase code
size, plus it disables the align- and reorder- optimizations
enabled at -O2, the default prefetch-loop-arrays, and the tree-
vect-loop-version optimization.

For more details, see GNU Compiler Options on page 29, and gcc
documentation and man pages.

General Optimization
Tips

These are some general things you can do to optimize your application’s
performance:

• Understand how the hardware is implementing your code and what
code/algorithms are causing delays. It’s easy to hyperfocus on one
or two bottlenecks, continuing to optimize them long after the crit-
ical path has moved elsewhere.

• Balance the load by distributing the work, which includes data
transfers. For example, don’t set up one node to simultaneously
receive data from many nodes.

• Plan how to use each level of the memory hierarchy, getting as
much reuse out of the data at each level as possible, including regis-
ters, L1 and L2 caches, and main memory.

. For background information on how the memory caches work, see
Memory System Operation on page 132.

Memory Access
Optimizations

These are some specific things you can do to make sure your code opti-
mally accesses memory:

• Loop optimization

Unroll critical loops to keep independent operations flowing
through the processor. Generally, you can issue a dual floating-
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 55

SCTICK Fast Timers
point operation instruction together with a floating-point load or
store operation or with an integer instruction. The processor will
issue one instruction (sometimes two) every cycle, but floating-
point instructions usually take four cycles to compute their result.
You can issue other instructions in the mean time, as long as those
instructions do not depend on the result of the first.(For more
details, see Memory System Operation on page 132.)

• Array optimizations

• Unit stride (stride1) memory accesses make the most efficient
use of caches.

• For larger arrays, increase their row dimension to a prime so that
rows, columns and diagonals don’t cause frequent cache colli-
sions. Depending on the ratio of column stride to cache way size
(L1 data cache is 4-way; L2 cache is 2-way), walking down an
array column could displace a row. (For more details, see L1 Data
Cache Stalls on page 133.)

• Integer operations, specifically array indexing, cost as much as
floating point operations or cache hits. Therefore it’s advanta-
geous to keep address computations very simple. In the extreme,
it may be more efficient to use separately named variables (A0,
A1, A2,…) instead of an array (A[0,…,2]) for values you want to
keep in registers.But doing so can impact code readability.

SCTICK Fast Timers

The fast timers are architecture-specific and therefore not portable. They
use a fast access path to minimize the overhead of context switching into
the kernel. Use them to compare and fine tune optimizations you make to
your code, or to measure small intervals, as specific regions of code, by
calling the timer before and after the target block of code.

• sc_tick() measures time in clock ticks

• sc_tick_nsec() measures time in nanoseconds

Both timers measure time from an arbitrary point of reference in the past.

To use them, you must include sctick.h in your C/C++ program.

. Fortran is not supported, but you can use the PAPI fast timers,
PAPI_get_real_cyc() and PAPI_get_us(). For details, see the
appropriate PAPI man pages.
56 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Application Performance Tools
Function prototypes:

long long sc_tick(void)

double sc_tick_nsec(void)

For example, use_sctick.c:

$ cat use_sctick.c
#include <linux/sicortex/sctick.h>
#include <stdio.h>

int main(void) {
 int i;
 float a = 1.0;

 // get starting time
 long long t1 = sc_tick();

 // do some work
 for (i=0; i<100; i++)
 a = a* 1.000001;

 // get ending time
 long long t2= sc_tick();

 printf("a=%f\n", a);
 printf("100 FP adds took %d ticks\n", t2-t1);
 return 0;
}

Compile use_sctick.c and run the executable:

$ pathcc -g -O3 use_sctick.c -o use_sctick
$./use_sctick
a=1.000095
100 FP adds took 790 ticks

Application Performance Tools

The SiCortx software provides a rich set of tools for optimizing applica-
tion performance and for finding and resolving performance issues in
application code, such as:

• How well is my code running?

• Which function(s) are using the most processor cycles?

• Which compiler flags might provide better optimization? For
details, see Build Optimizations on page 53, and Using Compiler Options
on page 26).
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 57

Application Performance Tools
• Where are the bottlenecks—MPI, I/O, or memory stalls?

• Where are memory stalls occurring (L1 or L2 caches, faulty loops)?

All of the performance tools run on the System’s nodes. All are open
source, re-engineered for the SiCortex architecture, but you can
download the original source code from the internet.

Table 5. Tool Descriptions

Tool Description

papiex Based on PAPI, papiex provides an overall view of the application’s performance. It measures
the aggregate totals and related metrics from the processor performance counters. Metrics
include statistics across all tasks, memory usage, and time spent in I/O and MPI operations.
Papiex does not require users to instrument or recompile applications. It works on executables
linked with shared libraries only.
For quickstart usage, see page 61. For details, see Using Papiex on page 64.

mpipex Based on MpiP, mpipex measures the application’s MPI performance. It measures the time an
MPI application spends communicating, then aggregates statistics on the number and duration
of MPI calls, average message size, and so on. It works only with dynamically-linked MPI pro-
gram executables. Using mpipex on dynamically-linked MPI applications, you can avoid the link
step that using mpiP requires.
For quickstart usage, see page 61. For details, see Using Mpipex on page 71.

hpcex The hpcex tool is a front-end to the HPCToolkit. It performs event-based sampling and statisti-
cal profiling of serial and parallel applications and outputs the data with source code, similarly to
gprof. It can correlate event statistics with the source code. Besides hpcex, the toolkit also
includes hpcstruct, hpcproftt, hpcprof-flat, and hpcviewer.
For quickstart usage, see page 61. For details, see Using HPCex on page 74.

tauex The TAU toolkit is an instrumentation profiling and tracing system for parallel and serial applica-
tions. It supports both tracing and profiling models for C, C++, Fortran, MPI, OpenMP, and
pthread applications. Using PAPI, it reports exact function-, block-, and statement-level hard-
ware counts. For profiling, it summarizes aggregate statistics for routines and statements and
generates callpath profiles for routines. For tracing, it logs all MPI interprocess communications
and events.
Use tauex at runtime to add or change TAU profiling and tracing options and to specify which
hardware events to count during execution of an instrumented executable.
Vampir can analyze trace data (.OTF files) output by TAU.
For quickstart usage, see page 62. For details, see Using TAU on page 79.
58 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Application Performance Tools
The "ex" tools (e.g. papiex) do not require you to manually instrument
your source code. They provide high-level aggregate and statistical per-
formance measurements of an application. All work the same way. Using
similar arguments and shared libraries, they are dynamically loaded, and
because they do not require instrumented code, you need not recompile
your application to use them. Use these tools to get an overall picture of
an application and to identify problem code. An exception, hpcex can also
provide low-level information.

The library tools (e.g.TAU) require you to manually instrument your
source code and link with the tool’s library. They provide detailed profile
and trace data, which can identify specific bottlenecks in parallel applica-
tions, including OpenMP and MPI point-to-point and collective opera-

Vampir Vampirtrace provides a convenient measurement infrastructure for program performance trac-
ing. It records the data that Vampir analyzes and graphically displays. Vampirtrace provides
instrumentation and tracing facilities tailored for parallel and HPC applications. It covers user
code, MPI, and OpenMP instructions.
Vampir, available from ParaTools, provides a visualization tool that graphically depicts time-
based traces of hardware performance data (for example, correlation of application behavior
with the flow of MPI messages and data).
For quickstart usage, see page 62. For details, see Using Vampirtrace on page 82.

gptlex Based on the General Purpose Timing Library (GPTL), the gptlex tool provides control over
GPTL functionality at run time, through command line arguments.
The General Purpose Timing Library is a simple instrumentation package that provides easy
access to wall clock timers, processor timers, and PAPI counters.
For quickstart usage, see page 62. For details, see Using TAU on page 79.

ioex Ioex uses the papiex driver to provide simple I/O statistics for dynamically linked executables
(not static executables). It measures the performance of the application’s I/O operations by
intercepting calls to System I/O, C library functions, and MPI I/O, and then collecting the call
statistics. It works with threaded and MPI applications.
For quickstart usage, see page 62. For details, see Using Ioex on page 93.

pfmon A simple monitoring tool that collects simple event counts or samples from unmodified binaries
or for an entire system. It uses software breakpoints and produces repeatable counts for events,
such as instruction counts, and so on.
For quickstart usage, see page 63. For details, see Using Pfmon on page 94.

oprofile Oprofile runs on a single node. It is a node-wide statistical profiler that samples performance
counter interrupt events. Once started, it profiles all code (hardware and software interrupt han-
dlers, kernel modules, shared libraries, applications, etc.) running on the processors until it is
explicitly stopped.
For details, see Using Oprofile on page 94.

Table 5. Tool Descriptions (Cont’d)

Tool Description
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 59

Invoking the Tools

6

tions, and they can correlate application behavior with the flow of MPI
messages and data. Because the library tools require instrumented code,
you must recompile your application to use them. Use these tools to
examine problem code at the function-, block-, and statement-level.

. Use the compiler’s -g option to generate symbols that enable the
performance tools to provide more information than just function
names.

. Memory corruption errors can be diagnosed using memory debug-
ging tools. See Memory Debugging with DUMA on page 45 and Mem-
ory Debugging with Mudflap on page 47.

Invoking the Tools

First you need to connect to the head node. For details, see Connecting to a
Head Node on page 16.

Using srun, run all applications under the tools on multiple nodes this
way:

 $ srun -p <partition> -n <ntasks> toolname [args] <executable> [args]

or run all applications under the tools on a single node this way:

 $ srun -p <partition> -N 1 toolname [args] <executable> [args]

Table 6 on page 61 provides typical usage examples for running the tools
on multiple processors.

. In Table 6, assume that $ srun -p <partition> -n <ntasks>
immediately precedes tool commands that run an application
executable. These example commands begin with the tool name.
0 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Invoking the Tools

Table 6. Tool Usage Examples

Tool Commands

papiex • List all hardware events available on the System:
$ papiex -l

• Measure the overall performance of an application, using all useful events:
papiex -a <executable> [args]

• Measure the overall performance of an application, using specific events:
papiex -e CPU_DCMISS -e CPU_MSTALL <executable> [args]

• Measure how much memory an application uses:
papiex -x <executable> [args]

mpipex Profile an MPI application:
mpiex <executable> [args]

hpcex • Gather profile data at the default sampling rate: every 999,999 cycles
hpcex <executable> [args]

• Gather profile data simultaneously on two events, using a different sampling interval for each
event:
hpcex -e CPU_DCMISS:654321 -e CPU_MSTALL:456789 <executable> [args]

• Generate loop-level data for hpcproftt:
hpcstruct <executable> > <executable>.psxml

• Display profiles, broken down into files, functions, and lines:
hpcproftt -e <executable>.hpcex.*

• Display profiles and instrumented source code:
hpcproftt --src=all -e <executable>.hpcex.*

• Display summary profiles:
hpcproftt -M sum-only -e <executable>.hpcex.*

• (optional) Intermingle source and assembly code:
hpcproftt --obj=s -S <executable>.psxml <executable>.hpcex.*

• Display summary profiles, broken down into files, functions, loops, and lines:
hpcproftt -S <executable>.psxml -M sum-only -e <executable>.hpcex.*

• Create a database viewable in hpcviewer (Java GUI) or in paraprof (from TAU):
hpcprof-flat -S <executable>.psxml <executable>.hpcex.*

$ ls experiment-db

experiment-db:

config.xml experiment.xml

To run hpcviewer on an x86 workstation running X and the Java Runtime and view the results:
$ hpcviewer experiment-db/experiemnt.xml
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 61

Invoking the Tools
tauex • Instrument the source code:
$ make CC=taucc F77=tauf90 FC=tauf90 CXX=taucxx …

• Generate the callpath profiles, include events CPU_DCMISS (L1 data cache misses) and
CPU_MSTALL (dependency stalls):
tauex -T CALLPATH -e CPU_DMISS -e CPU_MSTALL <executable> [args]

• OpenMP and C++ sources must be compiled using the -tau: options that correspond to
those used by tauex.
For example, first compile a mixed Fortran + MPI + OpenMP application:
$ make F77="tauf90 -tau:MPI,OPENMP"

Then generate the flat profiles, include events CPU_DCMISS (L1 data cache misses) and
CPU_MSTALL (dependency stalls):
tauex -T OPENMP -e CPU_DMISS -e CPU_MSTALL <executable> [args]

• Display the profiles and call paths on the x86_64 workstation:
$ cd <executable>.tau.<slurm_job_id>

$ paraprof *

Vampir • Generate Vampir traces, including CPU_DCMISS (L1 data cache misses) and CPU_MSTALL (depen-
dency stalls) events
$ make CC=taucc F77=tauf90 FC=tauf90 CXX=taucxx …

$ export VT_METRICS=CPU_DCMISS:CPU_MSTALL

$ srun -p <partition> -n <ntasks> <executable> [args]

• Display Vampir .oft traces on nodes:
$ srun -p <partition> -n <ntasks> vngd

• Display Vampir .oft traces on the x86_64 workstation:
$ vngd

then connect the GUI to the address returned from the vngd command.
gptlex Generate a text call tree and count floating-point arithmetic.

• First, auto-instrument your source code using the compiler’s -finstrument-functions option:
pathcc -g -O3 -finstrument-functions [compiler_opts] -o <executable> -c \
 <executable>.c

• Generate the tree and count floating-point arithmetic:
gptlex -G -e CPU_FPARITH <executable> [args]

ioex Profile I/O:
ioex <executable> [args]

Table 6. Tool Usage Examples (Cont’d)

Tool Commands
62 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Displaying Available Hardware Performance Counter Events
Displaying Available Hardware Performance Counter Events

For each of the performance tools, you can display a list of the hardware
performance counter events it can count by using, for example:

papiex -l

and you can display the full description of individual hardware perfor-
mance counter events using, for example:

papiex -L <event_name>

To list the PAPI events, use the papi_avail command.

The System provides two types of hardware performance counters:

• Processor counters—Each processor is equipped with two internal
performance counters that measure processor cycles, instructions
issued, L1 cache operations, L2 cache operations, Translation
Lookaside Buffer (TLB) misses, and so on.

The CPU_* prefix identifies processor counter events. For a list of
these events, see Table 15 on page 97. For a list of the PAPI preset
events that map to the processor counter events, see Table 16 on
page 98.

pfmon • Measure L1 data cache misses and dependency stalls for a particular function or address range
in an application:
pfmon -e CPU_DCMISS, CPU_MSTALL --trigger-code-start-address=<fn/addr> --trigger-
code-stop-address=<fn/addr> --trigger-code-repeat <executable> [args]

• Profile L1 data cache misses for a particular function or address range in an application:
pfmon -e CPU_DCMISS --trigger-code-start-address=<fn/addr> --trigger-code-stop-
address=<fn/addr> --trigger-code-repeat --smpl-periods-random=Oxff:5 --long-smpl-
period=100000 --resolve-addr <executable> [args]

• Count cycles in interrupt and kernel modes:
pfmon -K -I <executable> [args]

• Profile system-wide in user and kernel modes, ignoring all context switches, for the duration
of process <myapp>:
pfmon --system-wide -U -K --smpl-module=inst-hist -e CPU_CYCLES --smpl-periods-
random=Oxff:5 --long-smpl-period=100000 --resolve-addr <myapp> [args]

Table 6. Tool Usage Examples (Cont’d)

Tool Commands
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 63

Using Papiex
• Node counters—Each node is equipped with a block of 256 exter-
nal counters (42 counters per processor) that are sampled in hard-
ware, two at a time, for a period for 4096 cycles.

The SCB_* prefix identifies node counter events. For a description
of these events, see Node Counter Events on page 95

Using Papiex

First, measure all events in your application:

$ srun -p <partition> -n <ntasks> papiex -a <executable>

The -a option enables multiplexing, which instructs papiex to select and
simultaneously sample all useful events available on the System. The sam-
ples are scaled for the entire run to provide an approximate value for each
event.

Specify -a only on reasonably long runs of several seconds or more. On
short runs, it may yield misleading data since it does statistical multiplex-
ing on multiple events using the two available counters.

Command synopsis papiex [args] <executable> [args]

Default mode:

papiex -U -e PAPI_TOT_CYC -e PAPI_FP_INS

Output Unless instructed otherwise, papiex writes the output to
 <executable>.papiex.<size>.<host>.<proc-id>.<instance>.txt.

See the papiex(1) man page for complete details.

Example For example, compile the su3imp test program (part of the SpecHPC
benchmark suite) and run it under papiex:

$ srun -p sc1-comp -n 128 papiex -a su3imp.pathscale-O3

$ ls su3imp.pathscale-O3.papiex.128.sc1-m0n7.9826.1
job_summary.txt task_108.txt task_119.txt task_15.txt
task_26.txt task_37.txt task_48.txt ... task_127.txt

You can see this is a 128-processor run. Job summary statistics are in the
su3imp.pathscale-O3.papiex.128.sc1-m0n7.9826.1/job_summary.txt
file.
64 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using Papiex
Derived Metrics

Looking at some of the metrics from the Derived Metrics section of the
job_summary.txt file (lines are numbered for ease of discussion):

1. MFLOPS Aggregate (wallclock) 12992.20
2. MFLOPS 105.07
3. IPC .. 0.34
4. Running Time % 99.87
5. Running Time in Domain % 98.30

• Line 1 represents the total number of megaflops per second, com-
puted with wallclock (real) time, of the application.

All remaining lines in the summary represent averages across all
tasks in the run.

• Line 2 represents the average number of megaflops as computed
with the hardware cycle counter.

• Line 3 represents instructions per cycle; the peak for the processors
is 2, for limited combinations of instructions.

• Line 4 is the percentage of time that the application actually ran
without being blocked by I/O or preempted by another process.

• Line 5 is the percentage of time that the application ran in the
requested domain without being blocked by I/O or preempted by
another process.

Characterizing Mixed Instructions

6. Memory Instructions % 47.85
7. Est.Int.Arith.Instructions % 10.23
8. Non-FP Instructions % 30.54
9. FP Instructions % 69.46
10. FP Arith. Instructions % 26.39
11. FMA Instructions % 20.13
12. Branch Instructions % 3.80
13. Load/Store Ratio 3.42

• Line 6 represents the percentage of instructions of any type doing
loads and stores.

Regarding lines 7 through 10: on the MIPs architecture, floating-point
loads, stores, and conditionals are counted as floating-point instructions,
so precise characterization of mixed instructions is somewhat difficult.

• Line 7 represents an estimate of integer arithmetic instructions.
The estimate also includes moves to floating-point registers and
synchronizing instructions, but these contribute minimally to it.
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 65

Using Papiex
• Line 8 represents the percentage of everything that is not a float-
ing-point instruction, which includes integer loads, stores, condi-
tionals, moves, synchronizations, and all forms of integer
arithmetic.

• Line 9 represents the percentage of floating-point instructions,
which includes any instruction that involves the floating-point unit.

• Line 10 represents the percentage of instructions that actually com-
pute a result (get you closer to your answer)

• Line 11 represents the percentage of all instructions that are vari-
ants of the highly efficient, fused multiply/add (madd) instruction.

A madd instruction counts as one instruction, but two flops.

• Line 13 represents the balance of loads to stores.

This data alerts us to the overabundance of floating-point loads/stores in
relation to the number arithmetic instructions. It also shows that most
arithmetic instructions are multiply-adds (madd).

Compute Density Metrics

14. Flops per Load/Store 0.97
15. Flops per L1 D-cache Miss 15.87

• Line 14 represents the number of floating-point operations (not
instructions) for every load/store in the application.

This number is also known as the Computational Intensity.

• Line 15 represents the number of floating-point operations (not
instructions) for every miss of the L1 data cache.

The denominators of both metrics include integer instructions, so be sure
to view both numbers in conjunction with the number of non floating-
point instructions. For both metrics, higher values are better than lower
ones.

Cache Metrics

The caches are one of the most important resources for achieving good
performance.

16. L1 D-cache Misses Per Thousand Ins........... 29.32
17. L1 D-cache Hit % 93.87
18. L1 I-cache Hit % 100.00
19. Private L2 Cache Hit % 40.82
20. Other L2 Cache Hit % 1.64
21. L2 Miss % 58.21
66 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using Papiex
22. L2 Bandwidth 221.94
23. Memory Bandwidth 258.37

• Line 19 and 20 represent the percentage of L2 data cache hits.

Each of six processors in a node has a private L2 cache segment to
which it can read and write. However, misses in one processor's pri-
vate L2 cache segment, can be satisfied in any of the other five pro-
cessor's L2 cache segment.

For nonthreaded code, we expect this number to be near zero;
however, the OS is free to share read-only pages of data, even
among statically linked processes.

• Line 21 represents the total L2 miss rate of all the L2 data cache
segments.

• Line 22 and 23 represent the bandwidth demands placed on the L2
cache and main memory, respectively.

From this data, we see that due to the high L2 miss rate of this code the
demand on main memory is rather high.

TLB Statistics

The Table Lookaside Buffer (TLB) is an address cache for reference data
and instructions. Missing in this cache is quite expensive, so you want the
hit rates as high as possible.

24. L1 D-TLB Hit % 96.99
25. L1 I-TLB Hit % 99.98
26. L2 TLB Hit % 99.67
27. Branch Misprediction % 26.72
28. Dual Issue % 49.07

• Line 27 represents the percentage of mispredicted branches.

• Line 28 represents the percentage of instructions that were issued
(not retired) at the same time.

Line 27 shows a high percentage of mispredictions, but as we’ll see later,
mispredicted branches carry very little penalty. The rest of the results
(lines 24-26, 28) are unremarkable.

Estimated Loss in Application Performance

Papiex estimates the amount of performance lost in you application code,
based on a cost model shown at the end of the job_summary.txt file.

29. Est. L2 Private Hit Stall % 6.51
30. Est. L2 Other Hit Stall % 0.57
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 67

Using Papiex
31. Est. L2 Miss (private,other) Stall % 28.99
32. Total Est. Memory Stall % 36.07
33. Est. D-TLB Miss Stall % 0.98
34. Est. I-TLB Miss Stall % 0.01
35. Est. TLB Trap Stall % 0.06
36. Total Est. TLB Stall % 1.05
37. Est. Mispred. Branch Stall % 0.35
38. Dependency (M-stage) Stall % 4.18
39. Total Measured Stall % 5.58
40. Total Underestimated Stall % 37.47
41. Total Overestimated Stall % 41.65

• Line 32 represents the percentage of time the application stalled on
various levels of the cache hierarchy and main memory.

• Line 37 represents the percentage contributed by the CPU_MSTALL
event, which counts cycles that the processor stalls on certain types
of dependencies, including some, but not all, cache misses.

. Note that back-to-back misses count in this metric, but a miss
followed by a dependent instruction may not.

• Line 39 represents the total amount of time spent in stalls for
which papiex could actually count (not estimate), including TLB
misses, branch mispredictions, and dependency stalls.

• Line 40 represents the total time lost due to estimated stalls on
memory, TLB, and branch mispredictions. It does not include the
dependency stall metric included in Line 38.

This value is the lower bound due to the overlap of the dependency
stall metric (CPU_MSTALL) and papiex’s estimate for memory stalls.

• Line 41 represents the total time lost due to estimated memory
stalls and on dependency stalls.

This value is an overestimate because it includes both the memory
stall time and the dependency stall metric.

From Line 32, we see the application lost 36% of cycles to various mem-
ory and cache stalls. Furthermore, the difference between dependency
stalls and memory stalls indicates that most misses were not back-to-back,
which always count as dependency stalls. It’s likely that the processor
more often stalled waiting on the cache to return a data item.

Estimated Ideal Time

Papiex can estimate how fast the application should run if all stalls, identi-
fied from the previous results, are removed.
68 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using Papiex
Here are two estimates, each based on a different model of the instruction
mix.

42. Actual/Ideal Cyc (max. dual) 3.80
43. Ideal IPC (max. dual) 1.29
44. Ideal MFLOPS (max. dual) 399.02
45. Actual/Ideal Cyc (cur. dual) 3.90
46. Ideal IPC (cur. dual) 1.33
47. Ideal MFLOPS (cur. dual) 409.33

• Lines 42 through 44 are based on a reordering of the instruction
mix.

• Lines 45 through 47 are based on the current ordering of the
instruction mix.

The difference between the estimates of the two models is typically very
small. Inhouse testing has shown that these estimates are highly reliable
when tuning small regions of code. For these results, we see that if this
application ran free of all stalls, it would run about 400 Mflops (4× times)
faster.

MPI, I/O, and Threaded Functions

Papiex knows about some MPI, I/O, and threaded functions and can
account for time lost there. Not all functions are instrumented, but most
of the common cases are covered:

48. MPI cycles % 1.64
49. MPI Sync cycles % 0.00
50. I/O cycles % 0.00
51. Thr Sync cycles % 0.00

From this data, we see that despite being a 128-processor run, the appli-
cation lost only 1.64 percent of time due to MPI.

Line 49 shows that the application spent no time waiting on MPI comple-
tions, or otherwise in a barrier, and no time doing I/O or thread synchro-
nization.

. All metrics examined up to this point are contained in both the
job_summary.txt file, the task_*.txt files, and the thread_*.txt files.

Task Memory Usage

This data is gathered when you specify -a to papiex. It is included in only
the task_*.txt and thread_*.txt output files.

Mem virtual peak KB........................... 143296
Mem resident peak KB.......................... 125824
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 69

Using Papiex
Mem text KB................................... 192
Mem library KB................................ 7680
Mem heap KB................................... 117312
Mem stack KB.................................. 1344
Mem shared KB................................. 5
Mem locked KB................................. 0

MEM resident peak KB is the only important measurement in this run. It
represents the total physical memory touched by the task.

You can download versions of the su3_imp test case at
http://www.nersc.gov/projects/SDSA/software/?bench-
mark=MILC&action=general.

Using Calipers to
Measure Specific

Code Regions

You can also monitor performance counts and derived metrics on spe-
cific regions of your code by enclosing the regions within the papiex cali-
pers, papiex_start() and papiex_stop(), then compiling and linking
your program with the papiex library.

In the output file, papiex indents the resulting counts and derived metrics
for each instrumented region under the label you pass to the
papiex_start() function at the start of the region.

For example, instrument the caliper.c program:

#include <stdio.h>
#include <papiex.h>
void flops(int count)
{
 int retval;
 double a = 1.001;
 int i;
 papiex_start(1, "Flops-loop");
 for (i=0; i< count;i++) {
 a = a * 1.10;
 if (a > 10000.0) {
 a = 1.001;
 }
 }
 papiex_stop(1);
 printf("a=%f\n", a);
}
int main(int argc, char **argv)
{
 int c = 200000000;
 flops(c);
 return 0;
}

Run the executable under papiex and measure two events:

$ papiex -e CPU_FPARITH -e CPU_CYCLES caliper
Derived Metrics:
70 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

http://www.nersc.gov/projects/SDSA/software/?benchmark=MILC&action=general
http://www.nersc.gov/projects/SDSA/software/?benchmark=MILC&action=general

Using Mpipex
CPU Utilization 1.00
MFLIPS 136.43
% I/O Cycles 0.00
Cycles 2.20654e+09
FP Instructions 6.02062e+08
 Flops-loop
 Derived Metrics:
 CPU Utilization 1.00
 MFLIPS 136.44
 Cycles 2.20637e+09 [100.0%]
 FP Instructions 6.02062e+08 [100.0%]
Real usecs 4.43e+06
Real cycles 2.215e+09
Proc usecs 4.44e+06
Proc cycles 2.215e+09
I/O cycles 0
PAPI_TOT_CYC 2.20654e+09
PAPI_FP_INS 6.02062e+08
 Flops-loop
 Executions 1
 Real cycles 2.2145e+09
 PAPI_TOT_CYC 2.20637e+09 [100.0%]
 PAPI_FP_INS 6.02062e+08 [100.0%]
Event descriptions:
PAPI_TOT_CYC : Total cycles
PAPI_FP_INS : Floating point instructions
Derived event descriptions:
CPU Utilization : Virtual cycles / Real cycles

. You can use the -a option to sample numerous metrics within
instrumented regions.

Using Mpipex

To measure the time your MPI applications spends communicating, run
mpipex in default mode this way:

$ srun -p <partition> -n <ntasks> mpipex <executable>

Command synopsis mpipex [options] <executable> [args]

Output Unless instructed otherwise, mpipex writes the output to
<executable>.mpipex.<size>.<host>.<proc-id>.<instance>.

The output provides these types of information:

• Environment

• MPI time per task
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 71

Using Mpipex
• Callsite listing per MPI call

• Aggregate times of top twenty callsites

• Callsite statistics per function

See the mpipex man page for complete details.

Working with Static
Executables

If you’re working with static executables, you can relink using -lmpiP to
generate the same output that mpipex does. For example,

$ pathcc myapp.c -lmpiP -lbfd -lscmpi

Then, simply run the executable without mpipex:

$ srun -p sc1 -n 4 <myapp>

The output is written to the default location:
myapp.mpipex.<size>.<host>.<proc-id>.<instance>.txt.

Example For example, compile the su3imp test program (part of the SpecHPC
benchmark suite) and run it under mpiex:

$ srun -p sc1-comp -n 128 mpipex su3imp

...
mpiP:
mpiP: Storing mpiP output in [./su3imp.mpipex.128.sc1-m0n0.scsystem.7213.1.txt].
mpiP:

$ less su3imp.mpipex.128.sc1-m0n0.7213.1.txt

MPI Time

@--- MPI Time (seconds) ---

Task AppTime MPITime MPI%
 0 527 19.7 3.75
 1 527 19.8 3.75
 2 527 19.8 3.76
 3 527 18.3 3.46
 4 527 19.6 3.71
 5 527 20 3.79
 6 527 19.6 3.72
 7 527 19.7 3.74

This data shows how much time each task spent in MPI and in the appli-
cation code. Load balances of either compute or communicate are easily
visible here.
72 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using Mpipex
Callsites Identification

@--- Callsites: 25 --

 ID Lev File/Address Line Parent_Funct MPI_Call
 1 0 com_mpi.c 2709 cleanup_general_gather Wait
 2 0 com_mpi.c 1594 do_gather Isend
 3 0 setup.c 211 readin Bcast
 4 0 com_mpi.c 480 g_complexsum Allreduce

This data shows how mpipex uses identifiers to map the output to the
callsite, the location of the MPI call in the source code.

In this output example, the function do_gather on line 1594 in file
com_mpi.c called MPI_Isend().

Aggregate Time of MPI Calls

@--- Aggregate Time (top twenty, descending, milliseconds) ----------------

Call Site Time App% MPI% COV
Barrier 18 1.64e+06 2.46 60.11 0.09
Wait 21 6.51e+05 0.98 23.93 0.66
Wait 3 2.5e+05 0.38 9.20 0.41
Allreduce 10 5.15e+04 0.08 1.89 0.31

This data shows the most expensive MPI calls and their variance across
the nodes the job used.

From this data, the most expensive MPI call is a barrier operation, which
consumed 60% of the application’s MPI time. It’s location is callsite 18,
which is included in the Callsites Identification table, but not shown in
the example.

COV stands for coefficient of variance, and numbers near zero indicate
very good balance.

Aggregate Size of Sent Messages

@--- Aggregate Sent Message Size (top twenty, descending, bytes) ----------

Call Site Count Total Avrg Sent%
Isend 12 1992060 1.91e+11 9.59e+04 94.00
Isend 2 16632 1.22e+10 7.33e+05 6.00
Allreduce 10 62496 5e+05 8 0.00

This data shows the amount of data exchanged with each MPI call, sorted
by total number of bytes exchanged.
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 73

Using HPCex
As with all MPI implementations, longer messages are more efficient than
shorter ones.

Callsite Time Statistics

@--- Callsite Time statistics (all, milliseconds): 3030 -------------------

Name Site Rank Count Max Mean Min App% MPI%
Allreduce 4 0 8 34.8 4.85 0.174 0.01 0.20
Allreduce 4 1 8 19.4 3.57 0.115 0.01 0.14
Allreduce 4 2 8 19.4 2.94 0.11 0.00 0.12

This data shows for each callsite, the time statistics of each MPI call
sorted by rank. This section can grow quite large, but it is useful for local-
izing poor synchronization.

Callsite Message Sent Statistics

@--- Callsite Message Sent statistics (all, sent bytes) -------------------

Name Site Rank Count Max Mean Min Sum
Allreduce 4 0 8 4 4 4 32
Allreduce 4 1 8 4 4 4 32
Allreduce 4 2 8 4 4 4 32
Allreduce 4 3 8 4 4 4 32
Allreduce 4 4 8 4 4 4 32

This data shows the amount of data exchanged at each callsite.

Using HPCex

To profile your application, run hpcex this way:

$ srun -p <partition> -n <ntasks> hpcex -e <event> \
 <executable> [args]

Command synopsis • hpcex -e <event> <executable> [args]

• hpcstruct <executable> > <executable>.psxml

• hpcproftt -S <executable>.psxml <executable>.hpcex.*

• hpcviewer <experiment-db/experiment.xml>

Output Unless instructed otherwise, hpcex writes the output to
<executable>.hpcex.<size>.<host>.<proc-id>.<instance>.
74 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using HPCex
Typical Workflow 1. Run hpcex to create a statistical profile (binary) of a PAPI or
native event (for listings see page 63). (For usage details, see
page 61.)

2. Optionally, run hpcstruct to recover static program structure.
(For usage details, see page 61.)

The toolkit uses structure information to identify loops and inlin-
ing and to correlate at the instruction level. Without it, correlation
is naive and line-level only.

3. Interpret and visualize the data.

a. Run hpcproftt to visualize flat textual data. For example:

 $ hpcproftt --src-all --metric=sum-only -l <srcpath>\
 -S <executable>.psxml <executable>.hpcex>*

b. Alternatively, run hpcprof-flat to visualize flat or callpath
data, which you can view using hpcviewer. For example:

 $ hpcprof-flat -l <srcpath> -S <executable>.psxml
 <executable>.hpcex.*

4. Run hpcviewer, a Java-based GUI, to display the output data from
hpcprof-flat. (For usage details, see page 61.)

. Hpcviewer requires an x86 workstation running X and the Java
runtime.

Serial Run Example To run natively on the System, prepend to the commands:

 $ srun -p <partition> -N 1

1. Compile the simple float.c program (see hpcex float example on
page 99 for the complete listing) with these optimizations:

 $ pathcc -g -O2 float.c -o float

. Compile using the -g flag to generate symbol information that
enables the hpc* tools to provide file names, line numbers and
function names.

2. Profile CPU_CYCLES, with a lower sampling interval to get more
samples in short runs.

 $ hpcex -e CPU_CYCLES:9999 ./float
 [snipped]
 $ ls float*
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 75

Using HPCex
 float float.c float.hpcex.1.sc1-m3n6.13419.0x0.dat

. By default, hpcex runs in user mode (-U). If you want to cap-
ture floating-point exceptions, add -K (kernel mode) and -I
(interrupt mode) to the hpcex command line.

3. Generate the program structure to get better source correlation.

 $ hpcstruct float > float.psxml
 $ ls float*
 float float.c float.hpcex.1.sc1-m3n6.13419.0x0.dat \
 float.psxml

4. Generate flat textual data to get all summaries and annotated
source code.

 $ hpcproftt --src=all -S float.psxml \
 float.hpcex.1.sc1-m3n6.13419.0x0.dat

5. Examine the output in detail.

The following output snippet states that one sample contains 9999
events and that there were 1462386 samples in the run:

 Metric definitions. column: name (nice-name) [units]
 {details}:
 1: CPU_CYCLES [events] {CPU Cycles:9999 ev/smpl}
 Program summary (row 1: sample count for raw metrics):
 1462386

If the sample count is too low, the results will be statistically
ambiguous, and may significantly increase profiling overhead. To
increase the sample count, increase the sampling interval (in this
case CPU_CYCLES to something like CPU_CYCLES:999999).

The next output snippet confirms that only one software module,
float, took all of the cycles:

 Load module summary:
 100.00% /net/home/user/test/float/float
 2.1e-04% /lib64/libc-2.5.so

So, in the simple float.c example program, a single function—
float—and a single loop within it, took all of the cycles.

Procedure summary:
 100.00% [/net/home/user/test/float/float]</net/home/user/test/src/float.c>flops
1.4e-04% [/lib64/libc-2.5.so]<~~~<unknown-file>~~~>__printf_fp
[snipped]
Loop summary (dependent on structure information):
 100.00% [/net/home/user/test/float/float]</net/home/user/test/src/ float.c>7-9
76 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using HPCex
We can see that the floating-point comparison was expensive,
most likely because it depended on the multiply operation:

Annotated file (statement/line level):
[/net/home/user/test/float/float]/net/home/user/test/src/float.c
 6 int i;
 7 0.12% for (i=0; i< count;i++) {
 8 a = a * 1.10;
 9 99.88% if (a > 10000.0)
 10 a = 1.1;

6. Use hpcprof-flat, instead of hpcproftt (Step 4), to create a flat
database.

$ hpcprof-flat -S float.psxml float.hpcex.1.sc1-m3n6.13419.0x0.dat
[snipped]
$ ls exper*
experiment-db:
config.xml experiment.xml

7. View the results in hpcviewer on a workstation running X and the
Java Runtime.

$ hpcviewer experiment-db/experiment.xml

You can also get assembly code listings for the program. Here’s how:

8. Repeat steps 2 and 3 to profile the program, and generate the pro-
gram structure for better source correlations.

9. Then run the .dat output file from hpcstruct under hpcproftt
like this:

$ hpcproftt --obj=s -S float.psxml float.hpcex.1.sc1-m3n6.13419.0x0.dat
[snipped]
Procedure: flops (flops)
Metric summary for procedure (percents relative to load module):
 1462380
 100.00%
/net/home/user/test/src/float.c:9
0x120000a84: movf.d $f0,$f9,$fcc2
0x120000a88: sra v1,a0,0x2
0x120000a8c: beqz v1,0x120000ad8
0x120000a90: 11.36% mul.d $f13,$f0,$f2
0x120000a94: 0.63% c.lt.d $fcc6,$f6,$f13
[snipped]

MPI Run Example To run applications natively on the System, prepend to the commands:

 $ srun -p <partition> -n <ntasks>
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 77

Using HPCex
1. Compile the pi.c program (see hpcex pi example on page 100 for
the complete listing) with these optimizations:

 $ mpicc -g -O2 pi.c -o pi

. Compile using the -g flag to generate symbol information that
enables the hpc* tools to provide file names, line numbers and
function names.

2. Create the profiles.

 $ srun -p sc1-comp -n 4 hpcex -e CPU_CYCLES ./pi
 [snipped]
 $ ls pi.hpcex.*
 pi.hpcex.4.sc1-m0n5.5009.0x0.dat pi.hpcex.4. \
 sc1-m0n5.5011.0x0.dat
 pi.hpcex.4.sc1-m0n5.5010.0x0.dat pi.hpcex.4. \
 sc1-m0n5.5012.0x0.dat

3. Generate the program structure to get better source correlation.

 $ hpcstruct pi > pi.psxml

4. Generate flat output data; pass all profile files as arguments to
hpcproftt.

 $ hpcproftt --src=all -S pi.psxml pi.hpcex.*

5. Examine the output.

Because the number of output columns increases with the number
of tasks, instead of showing one entry per task, show aggregate
metrics using hpcproftt’s -M sum-only argument:

 $ hpcproftt --src=all -S pi.psxml -M sum-only pi.hpcex.*
 [snipped]
 999999 122.47% 0 2999997
 [/usr/lib64/libscmpi_optimized.so]~~~<unknown-file>~~~
 749999 57.74% 0 999999 [/net/home/usr/test/
 examples/pi/pi]/net/home/usr/test/src/pi.c
[snipped]

The columns are, in order, mean, rdev, min, and max. rdev is the
relative standard deviation (stddev/mean).

See the hpcex, hpcstruct, hpcproftt, hpcprof-flat, and hpcviewer man
pages for complete details.
78 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using TAU
Using TAU

Using a TAU compiler script, compile your source code to instrument it,
then run the executable under tauex to generate profile and trace data.

$ srun -p <partition> -n <ntasks> taucc <myapp>.c -o <myapp>
$ srun -p <partition> -n <ntasks> taucxx <myapp>.C -o <myapp>
$ srun -p <partition> -n <ntasks> tauf90 <myapp>.F -o <myapp>

Compiling and
Instrumenting Source

Code

The TAU compiler scripts—taucc, taucxx, or tauf90— default to using
the corresponding PathScale compiler. (The TAU cross-compilers are
sctaucc, sctaucxx, and sctauf90.) The TAU compiler scripts specify the
libraries and TAU options to use for compiling and instrumenting the
source code. The default instrumentation configuration is profile, MPI,
and pthread.

. Only C++ and OpenMP codes require special instrumentation.
For those codes, you must supply -tau: flags on the command line
to specify what kind of code the compiler is compiling. This means
that C++ and OpenMP codes cannot be retargeted at runtime
using tauex, whereas all other configurations can.

Table 7. Example TAU auto-instrumentation scenarios

To autoinstrument Do this

Everything in a single-file test program
for profiling

$ taucc mpi_test.c -o mpi_test

$ taucxx mpi_test.C -o mpi_test

$ tauf90 mpi_test.F -o mpi_test

Everything in a single-file hybrid
MPI/OpenMP test program for profiling

$ taucc -tau:openmp, mpi mpi-omp-test.c -o mpi-omp-test

$ taucxx -tau:openmp, mpi mpi-omp-test.C -o mpi-omp-test

$ taucf90 -tau:openmp, mpi mpi-omp-test.F -o mpi-omp-test

Everything in a single-file of a multiple
source-file C program

$ pathcc -c mpi-test.c

$ taucc -c mpi-test-two.c

$ taucc mpi-test.o mpi-test-two.o -o mpi-test

Generate Vampir .OFT traces in a single-
file combined C++/OpenMP program

$ taucxx -tau:openmp, vampirtrace omp.cpp -o omp

Table 8. Some useful TAU options

To Use this option1

Display TAU options -tau:help

Show me what the command
does, but don’t do it

-tau:showme

Enable verbose mode -tau:verbose

Specify code type and instru-
mentation

-tau:<option>

[openmp, pthread, mpi, profile, vampirtrace, epilog, trace,
callpath, disable]
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 79

Using TAU
TAU Facts to
Consider

The TAU compilers use automatic compiler instrumentation and func-
tion call interposition to measure applications. Some things to note:

• Running your executable under tauex, without recompiling it with
a TAU script, produces profiles of MPI activity vs application activ-
ity. The results can provide you useful information.

• Unless you explicitly exclude functions or throttle instrumentation,
the Tau compiler instruments every function in a source file (see
Table 8).

• You need not compile every source file in your application with the
TAU compiler.

• If you use the TAU compiler on every source file in your applica-
tion, you can expect a mild dilation at runtime.

Throttle instrumentation • Enable and use the default throttle threshold—disable profiling when
function has executed > 100000 times with an inclusive time per call < 10
µsecs:
export TAU_THROTTLE <any_int>

• Also set these environment variables to change the default threshold:
export TAU_THROTTLE_NUMCALLS <value>

export TAU_THROTTLE_PERCALL <value>

Selectively instrument source
code

-tau:options="-optPreProcess -optTauSelectFile=<file>"

The -optPreProcess option directs the compiler to preprocess the source
code before parsing it.
The Select File contains a list of files, functions, loops, etc. to include or
exclude in the instrumentation:
BEGIN_FILE_INCLUDE_LIST

<file1>

<file2>

<file3>

END_FILE_INCLUDE_LIST

BEGIN_INCLUDE_LIST # can _EXCLUDE_ functions too

<func_name1>

<func_name2>

END_INCLUDE_LIST

Compile a 32-bit application Add to the compiler command line:
-tau_makefile=/usr/share/TAU/32/Makefile.tau-multiplecounters-
pathcc-mpi-papi-pdt

1 See the TAU man pages for a complete list of the options.

Table 8. Some useful TAU options (Cont’d)

To Use this option1
80 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using Tauex
• If you run an instrumented executable without tauex, the Tau
library automatically uses the default options: -U -T MPI,
PTHREAD, PROFILE, -e P_WALL_CLOCK_TIME*.

Using Tauex

To generate profile and trace data, run tauex on TAU instrumented exe-
cutables this way:

 $ srun -p <partition> -n <ntasks> tauex [options] <executable> [args]

Command synopsis tauex [options] <executable> [args]

Input Table 9 lists the tauex command line options.

* Implemented using the fast PAPI timer, a 250 Mhz, 64-bit cycle timer.

Table 9. Tauex command options

To Use this option1

Enable debugging output, use repeatedly
for more output

-d

Display help -h

Display host information -i

Dump the shell environment variables
and exit

-s

User mode counts -U

Kernel mode counts -K

Supervisor mode counts -S

Interrupt mode counts -I

List events -l

Describe the event -L <event>

Specify PAPI preset or native event -e <event>

Specify TAU options -T <option1, option2, …>2

[MPI, OPENMP, PTHREAD, SERIAL, PROFILE, CALLPATH,
TRACE, VAMPIRTRACE, EPILOG, DIASABLE]

Enable debug/verbose mode -v

Specify TAU library directly -XrunTAU-<options>

1 See the tauex man pages for a complete list of options and descriptions.
2 Some options are mutually exclusive.
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 81

Using Vampirtrace
Output By default, tauex outputs the Tau trace data to the
./<executable>.tau.<slurm_job_id> directory. Output filenames are:
a.0.def.z a.1.events.z a.2.events.z … a.#.events.z a.otf.

Profile data is output to one or more directories named: ./<execut-

able>.tau.<slurm_job_id>/MULTI__<metric_name>.

Viewing Results • TAU profile data

Use either the pprof text-based viewer or the paraprof Java GUI
viewer. (To use paraprof, you must download, install, and run it on
a workstation that has Java installed.) For details, see the pprof and
paraprof man pages.

• Vampir trace data

To import Tau trace files into Vampir to analyze and display the
results, first compile the application with the appropriate Tau com-
piler script, then run tauex on the instrumented executable using
the -T VAMPIRTRACE option to output .OTF trace files.

See the tau and tauex man pages for complete details.

Using Vampirtrace

. To run the Analysis Server (vngd) and the Visualization Client
(vng), you need to have purchased and installed licenses. Contact
your System Administrator to find out whether you already have or
need to purchase licenses.

Using a Vampirtrace compiler script, compile your MPI source code to
instrument and link it with the Vampirtrace library. Run the resulting exe-
cutable, then view the resulting traces using the Vampir GUI viewer, vng.

$ make CC=vtcc F77=vtf90 FC=vtf90 CXX=vtcxx …
$ srun -p <partition> -n <ntasks> <vt_executable> [args]

Start the vngd analysis server on the nodes, then display the .oft
traces in the Vampir vng GUI on the workstation (see Visualizing
Results on page 86).

Output By default, Vampirtrace writes trace output to the current working
directory. The output files are named:

<executable>.0.def.z <executable>.1.events.z

executable>.2.events.z … <executable>.nth.events.z
<executble>.otf
82 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using Vampirtrace
Compiling and
Instrumenting Source

Code

The Vampirtrace compiler scripts—vtcc, vtcxx, and vtf90—instruct the
underlying PathScale compiler where to find all required Vampirtrace
libraries (static) and configuration files and to use the compiler’s
-finstrument-functions option to instrument the source code.
Vampirtrace then records all entries and exits from functions, all calls
made to the MPI library, and all point-to-point and collective
communication operations.

Table 10 shows examples of how to use the Vampirtrace compiler scripts
to autoinstrument source code.

Table 11 shows some useful vampirtrace options:

. To compile n32 applications, change the underlying compiler to use
the n32 wrapper; for example:

Table 10. Example Vampirtrace autoinstrumentation scenarios1

To autoinstrument Do this

All functions and MPI calls in a single-file program vtcc mpi_test.c -o mpi_test

All functions in a single-file sequential program vtcc -vt:seq seq_test.c -o seq_test

All functions in a single-file OpenMP program vtcc -vt:omp omp_test.c -o omp_test

All functions in a single-file hybrid OpenMP/MPI
program

vtcc -vt:hyb mpi_omp_test.c -o mpi_omp_test

Only MPI calls to contrast MPI vs application time pathcc -c mpi_test.c

vtcc mpi_test.o -o mpi_test

One source in a multisource application pathcc -c mpi_test.c

vtcc -c mpi_test_two.c

vtcc mpi_test.o mpi_test_two.o -o mpi_test

1 For C++ and Fortran codes, substitute the appropriate compiler script.

Table 11. Sampling of vampirtrace -vt: options

To Use this option

Display a list of the vampirtrace options -vt:help

Show me what this command does, but don’t execute it -vt:showme

Enable debug/verbose mode -vt:verbose

Specify code type and instrumentation -vt:<option>

[seq, omp, mpi, hyb]

Change the underlying compiler -vt:<cc|cxx> <gcc|g++>

Disable auto-instrumentation to manually instrument source code -vt:inst manual
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 83

Using Vampirtrace
vtf90 -vt:f90 pathf9032 (native compiling)

scvtf90 -vt:f90 scpathf9032 (cross-development compiling)

For more details on compiling n32 applications, see Overriding the
Default ABI on page 139.

Vampirtrace Facts to
Consider

The Vampirtrace compilers use automatic instrumentation and function
call interposition to measure your application. Some things to note:

• You must compile and instrument your source code natively on the
System.

• You need not compile every source file in your application using
the Vampirtrace compiler scripts.

• Every function in a source file compiled with a Vampirtrace com-
piler is instrumented to generate a trace record.

• If you link but don’t compile your application using a Vampirtrace
compiler script, Vampirtrace produces traces of MPI activity only.

• If you compile every source file in your application using a Vampir-
trace compiler, you can expect a significant dilation in your applica-
tion’s runtime, depending on your I/O configuration.

Output Data
Buffering

By default, Vampirtrace generates and temporarily buffers the total
number of trace records needed before flushing them all to disk. This
behavior can result in huge trace files. You can change the default
behavior by setting one or both environment variables (Table 12) before
running your application:

For example:

$ export VT_MAX_FLUSHES=1
$ export VT_BUFFER_SIZE=1
$ srun -p sc1-comp -n 2 ./pi
[1]VampirTrace: Maximum number of buffer flushed reached
 (VT_MAX_FLUSHES=1)
[1]VampirTrace: tracing turned off permanently
[0]VampirTrace: Maximum number of buffer flushed reached
 (VT_MAX_FLUSHES=1)
[0]VampirTrace: tracing turned off permanently
pi is approximately 3.1415926535896905, error is
0.0000000000001026

Table 12. Buffer control environment variables

To Set this environment variable

Limit or increase the number of times to flush the trace buffer VT_MAX_FLUSHES=<value>

Set the size of the trace buffer VT_BUFFER_SIZE=<value>
84 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using Vampirtrace
Manually
Instrumenting Source

Code

To collect more detailed information about an application, such as user-
defined events or recording the location of subroutine calls in the source
code, you must include the appropriate header file in your program and
manually instrument the source code with calls to the Vampirtrace API.
For example:

• For C or C++ applications

#include "vt_user.h"
VT_USER_START("name");
...
VT_USER_END("name");

• For Fortran applications

#include "vt_user.inc"
VT_USER_START(’name’)
...
VT_USER_END(’name’)

• For OpenMP profiling directives (Pathscale compilers only)

!POMP$ INST INIT # must be first executable statement of
 # the main program

Use INST BEGIN and INST END to mark any user-defined
sequences; if the block has multiple exit points, use
INST ALTEND on all but the last one.

!POMP$ INST BEGIN(name)
...

[!POMP$ INST ALTEND(name)]
...
!POMP$ INST END(name)

Preprocess Fortran source files, and then for any code, include -vt:inst
manual on the Vampirtrace compiler’s command line to prevent the Vam-
pir compilers from autoinstrumenting the source code; for example:

$ vtcc -vt:inst manual myapp.c -o myapp

To turn off traces from these calls (and decrease profiling overhead), you
need only relink your application’s object file with the dummy library
-lVTnull; for example, on the System:

sc1-mono:~$ vtcc myapp.o -lVTnull -lscm -lm -o myapp

Using the Hardware
Performance

Counters

. By default, Vampirtrace collects timing information using
P_WALLCLOCK_TIME, implemented using the fast PAPI timer, a
250 Mhz, 64-bit cycle timer.
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 85

Using Vampirtrace
Vampirtrace can also use the System’s hardware performance counters
using PAPI. To do so, set the environment variable VT_METRICS to the
counters you want sampled:

$ export VT_METRICS="CPU_MSTALL:CPU_FPMADD"

. For a list of the hardware performance counters, run papiex -l.

See the Vampirtrace man pages and user documentation for complete
details.

Visualizing Results Vampir enables you to visualize and debug MPI issues that arise during
program execution. The two major components of Vampir run on differ-
ent machines.

• The Analysis Server (vngd), which analyzes the trace data, runs on
the System.

• The Visualization Client (vng), which displays the results, runs on
the cross-development workstation.

1. On the System, start a vngd parallel server job. For example:

 sc1-mono:~$ srun -p sc1-comp1 -n 180 vngd

. For big traces, we recommend that you use a Lustre file system
and an appropriate number of processors.

The vngd Analysis Server returns the address and port of the node
on which it is running. For example:

 Server listens on: sc1-m0n0.scsystem:3000

Where sc1-m0n0.scsystem is the address of the node.

2. On the cross-development workstation, start the Visualization
Client by typing vng on the command line.

3. Connect to the Analysis Server.

On the toolbar, click File>Server. In the Server field, enter the
address of the node returned by the Analysis Server in Step1, then
click OK.

(In the example, the address returned was sc1-m0n0.scsytem.)
86 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using GPTL
4. When connected to the server, on the toolbar, click File>Open
Tracefile, then select from the list the.otf trace file you want to
view.

You can select how you want the trace data displayed. In profile
summary mode, you can group flat profile charts much like gprof
does. You select whether to profile the entire program run or a
specified time interval. In event time line mode, you can delve
deeper into the inner working of the application, visualizing the
behavior of individual processes over time.

5. When you are done, be sure to kill the vngd trace daemon using
scancel or ^C to free up the resources.

See the Vampir man pages and user documentation for complete details.

Using GPTL

The General Purpose Timer Library provides an API to simplify the
gathering of timing statistics for C and Fortran codes. The API also pro-
vides an optional interface to PAPI counters. The gptlex tool (see
page 90) can provides function-level profiling without modifying the
source code.

The Fortran GPTL entry point names are identical to their C counter-
parts and take identical arguments, except that, in Fortran, names are
case-insensitive.

The GPTL library allows you to instrument codes with an unlimited
number of user-named timers. A call to GPTLstart() starts a given timer,
and a call to GPTLstop() stops it. Within the same code, you can start and
stop a timer an arbitrary number of times.

General Calling
Sequence

The general sequence for calling the GPTL library is:

• Include the appropriate gptl.* header file.

• Call GPTLsetoption() as often as needed to set GPTL options,
such as specifying the output format and enabling PAPI counters.

• Call GPTLinitialize() to initialize the GPTL library.

• Enclose regions of source code that you want to time within calls
to GPTLstart(region_name) and GPTLstop(region_name).

The argument region_name is a user-defined string.
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 87

Using GPTL
• Call GPTLpr(int) to specify the extension for the output file,
timing.int, where int is an arbitrary integer. For MPI codes, it is
convenient to use the MPI rank.

Thread Safety The library is thread-safe, which means that calls to GPTLstart() and
GPTLstop() can safely occur within threaded regions. In that case, the
results for each thread are printed separately.

Default Timer Output With a single call to GPTLpr (see code example on page 89), you can
dump the current state of all timers to an output file. The default output
for each timer includes:

• Number of calls

• Wall-clock time

• Maximum time

• Minimum time

• Estimated overhead incurred by the underlying timing routine
(UTR) that the library employed

The default UTR is papi_get_real_usec, but you can change this
setting at run time.

The library also supports an arbitrary number of nesting levels. In this case,
the names of timers that are nested inside of other timers are indented in
the output file. This formatting makes it easy to see which timers are sub-
sumed by other timers.

Accessing PAPI
Counters

The library has optional access to the PAPI performance counter library.
If one or more PAPI counters are enabled during the run, when GPTLpr()
is called, the PAPI counter values are printed for each timer, with the other
timing statistics.

Example The ugex program, an instrumented code example, is a threaded Fortran
program with OpenMP enabled (using the PathScale compiler’s -mp flag).
The program was run on two threads. The default estimated overhead
statistic has been disabled by a simple call to the gptl library:

ret = gptlsetoption (gptloverhead, 0)

Example GPTL instrumented code:

 program ugex
 implicit none

#include "gptl.inc"
#include "f90papi.h"
88 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using GPTL
 integer, parameter :: nompiter = 128 ! iteration count for threaded loop
 integer, parameter :: ny = 9 ! iteration count for middle loop
 integer, parameter :: nx = 1000000 ! iteration count for inner loop

 integer :: i, j, iter ! loop indices
 integer :: ret ! return code
 integer*8 :: papicounters(3) ! PAPI counter values

 real*8 :: sums(nompiter) ! summation array

 if (gptlsetoption (gptlverbose, 0) < 0) call exit (1) ! turn off verbosity
 if (gptlsetoption (gptlabort_on_error, 1) < 0) call exit(2) ! abort on error

 ret = gptlsetoption (PAPI_FP_INS, 1) ! count FP instructions
 ret = gptlsetoption (PAPI_TOT_INS, 1) ! count total instructions
 ret = gptlsetoption (gptloverhead, 0) ! don't print overhead stats
 ret = gptlsetoption (gptlnarrowprint, 1) ! print fewer sig figs

 ret = gptlinitialize () ! initialize GPTL
 ret = gptlstart ('total') ! start a timer for the entire program

 ret = gptlstart ('init') ! start a timer
 do i=1,nompiter
 sums(i) = 0.
 end do
 ret = gptlstop ('init') ! stop a timer
! Invoke a threaded loop, and gather timing info

!$OMP PARALLEL DO PRIVATE (i, j, iter, ret)

 do iter=1,nompiter
 ret = gptlstart ('Jloop')
 do j=1,ny
 ret = gptlstart ('Iloop1')
 do i=1,nx
 sums(iter) = sums(iter) + 0.0001*i
 end do
 ret = gptlstop ('Iloop1')

 ret = gptlstart ('Iloop2')
 do i=1,nx
 sums(iter) = sums(iter) + i
 end do
 ret = gptlstop ('Iloop2')
 end do
 ret = gptlstop ('Jloop') ! stop timer
 end do

 ret = gptlstop ('total') ! stop the timer for the entire program

 ! Retrieve the PAPI counters for timer 'total' and print them

 ret = gptlquerycounters ('total', -1, papicounters)
 write(6,*)'total PAPI_FP_INS= ', papicounters(1)
 write(6,*)'total PAPI_TOT_CYC= ', papicounters(2)

 ret = gptlpr (0) ! print the timing results to timing.0
 ret = gptlfinalize () ! clean up
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 89

Using Gptlex
 stop 0
 end program ugex

 Example GPTL output from the call to gptlpr:

PAPI event multiplexing was OFF
PAPI events enabled:
 Floating point instructions executed
 Total instructions executed

Underlying timing routine was PAPI_get_real_usec.
Per-call utr overhead est: 1.47e-06 sec.

If overhead stats are printed, roughly half the estimated number is
embedded in the wallclock (and/or PAPI counter) stats for each timer

An asterisk in column 1 below means that timer had multiple indentation
levels. Only the first is printed, though printed timing info is complete.

Stats for thread 0:
 Called Recurse Wallclock max min % of total FP_INS e6 / sec TOT_INS e6 / sec
 total 1 - 20.690 20.690 20.690 100.00 4.90e+09 236.64 6.34e+09 306.35
 init 1 - 0.000 0.000 0.000 0.00 136 12.36 3294 299.45
 Jloop 64 - 20.689 0.325 0.319 100.00 4.90e+09 236.65 6.34e+09 306.36
 Iloop1 576 - 11.549 0.021 0.019 55.82 3.02e+09 261.85 3.74e+09 324.24
 Iloop2 576 - 9.120 0.016 0.015 44.08 1.87e+09 205.26 2.59e+09 284.26
.
.
Stats for thread 1:
 Called Recurse Wallclock max min % of total FP_INS e6 / sec TOT_INS e6 / sec
 Jloop 64 - 19.705 0.308 0.307 95.24 4.90e+09 248.47 6.34e+09 321.66
 Iloop1 576 - 11.002 0.020 0.019 53.18 3.02e+09 274.86 3.74e+09 340.35
 Iloop2 576 - 8.684 0.016 0.015 41.97 1.87e+09 215.57 2.59e+09 298.54
.
.
Same stats sorted by timer for threaded regions:
Thd Called Recurse Wallclock max min FP_INS e6 / sec TOT_INS e6 / sec
000 Jloop 64 - 20.689 0.325 0.319 100.00 4.90e+09 236.65 6.34e+09 306.36
.
000 Iloop1 576 - 11.549 0.021 0.019 55.82 3.02e+09 261.85 3.74e+09 324.24
.
000 Iloop2 576 - 9.120 0.016 0.015 44.08 1.87e+09 205.26 2.59e+09 284.26
.

See the GPTL(3) man page for complete details.

Using Gptlex

To control the functionality of the GPTL library at runtime, run gptlex
in default mode this way:

$ srun -p <partition> -n <ntasks> gptlex -G <executable> [args]

By default, gptlex provides wall clock timings for an application. It also
automatically produces a dynamic call tree that preserves parent-child
calling relationships, but only if the application was manually instru-
90 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using Gptlex
mented with GPTL library calls, or it was compiled using the compiler’s
auto-instrumentation flag.

Command synopsis gptlex [options] <executable> [args]

gptlex <command>

Output Output files are written to the current working directory in the file
<executable>.gptlex.<node_name>.<MPI_RANK>.

If the executable is not an MPI program, MPI_RANK is 0.

Measuring Hardware
Performance Events

The gptlex tool can also count hardware performance events using
PAPI—both PAPI preset events and native events. It supports multiple
threads of execution and works seamlessly with MPI programs.

To measure hardware performance events, you must supply the
-e <papi-event> option (for a listing, see page 95) to specify which
events to measure. You can specify more than one event per run. If you
specify more events than the number of physical registers (listed using the
-i option), you must also supply the -m (multiplexing) option.

Autoinstrumenting
Source code

To auto-instrument source code, you must use the compilers’ auto-
instrument flag -finstrument-functions at compile time and enable
gptlex to use the compiler’s output by passing it -G. This enables gptlex
to detect the instrumentation points inserted at function entry and exit
points in the executable by the compiler and to count the number of
times each instrumented function is executed.

. If your source code is already instrumented with calls to the GPTL
library, don’t pass the -G option to the compiler. This informs
gptlex that your program is writing the timing output files. Run-
ning gptlex this way enables you to add a PAPI counter without
recompiling.

. If you run gptlex on a noninstrumented executable, without using
the compilers’ auto-instrument flag with gptlex’s auto-instrument
option, gptlex measures the time of the entire executable.

Example Compile the count.c program:

int main ()
{
 void A(int);
 void B(void);

 int i;

 for (i = 0; i < 99; ++i) {
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 91

Using Gptlex
 A(100000);
 }

 for (i = 0; i < 8 ; ++i) {
 B();
 }
}

void A (int n)
{
 int i;
 double x = 0;

 for (i = 1; i <= n; ++i) {
 x += 1. / i;
 }
}

void B ()
{
 void C(void);

 C();
}

void C ()
{
}

using: pathcc -finstrument-functions -o count count.c

then run this gptlex command on the executable:

gptlex -G -e PAPI_TOT_INS ./count

to get this output:

PAPI event multiplexing was OFF
PAPI events enabled:
 Total instructions executed

Underlying timing routine was PAPI_get_real_usec.
Per-call utr overhead est: 0 sec.

If overhead stats are printed, roughly half the estimated number is
embedded in the wallclock (and/or PAPI counter) stats for each timer

An asterisk in column 1 below means that timer had multiple indentation
levels. Only the first is printed, though printed timing info is complete.

If a '% of' field is present, it is w.r.t. the first timer for thread 0.
If a 'e6 per sec' field is present, it is in millions of PAPI counts per sec.

Stats for thread 0:
 Called Recurse Wallclock max min % of gptlex UTR Overhead TOT_INS e6 / sec
 gptlex 1 - 1.257 1.257 1.257 100.00 0.000 1.59e+08 126.38
 main 1 - 1.256 1.256 1.256 99.92 0.000 1.59e+08 126.47
 A 99 - 1.253 0.013 0.012 99.68 0.000 1.59e+08 126.56
 B 8 - 0.000 0.000 0.000 0.00 0.000 45253 0.00
 C 8 - 0.000 0.000 0.000 0.00 0.000 14168 0.00
Overhead sum = 0.000 wallclock seconds
Total calls = 117
Total recursive calls = 0

See the gptlex(1) man page for complete details.
92 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Using Ioex
Using Ioex

To measure I/O statistics on an application, run ioex this way:

srun -p <partition> -n <ntasks> ioex <executable> [args]

Command synopsis ioex [options] <inputfile> [args]

Output The statistics are stored in the output file
<executable>.ioex.<size>.<host>.<proc_id>.<instance>, located in
the current working directory.

For threaded and MPI applications, ioex creates separate files for each
thread or task, but it does not aggregate the data across threads or tasks.
It reports these data:

• Generates statistics (such as block sizes, time/call, etc.) for read,
write, and seek operations.

• Prints flags passed to the various ‘open’ operations.

• Detects strided/sequential and random access patterns.

• Captures and generates statistics for MPI I/O calls.

Example Compile and run the seek_strided.c application:

$ pathcc -g -0 seek_strided seek_strided.c

$ srun -p sc1 ioex ./seek_strided 10 2

(For a listing of the seek_strided source code, see ioex seek_strided example
on page 102.)

to generate the following statistics:

ioex output is in seek_strided.ioex.1.scx14n0.29322
ioex version: 0.99rc9
Executable: /net/home/tester/test/bin/ioex_seek_strided
Arguments: 10 2
Processor: ICE9A
Clockrate: 500.000000
Hostname: scx14n0
Options: IOEX,NO_SUMMARY_STATS,NO_DERIVED_STATS,NO_MPI_PROF,NO_IO_PROF
Domain: User
Parent process id: 29321
Process id: 29322
Start: Thu Apr 26 13:24:13 2007
Finish: Thu Apr 26 13:24:15 2007
I/O stats:
File: zero
 fopen
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 93

Using Pfmon
 calls : 1
 args : w+
 lseek
 calls : 4
 rewinds : 0
 abs seek/call : 2097152
 bytes accessed between seeks : 1048576
 access type : STRIDED
 stride : 2097152
 fread
 calls : 4
 usecs : 49000
 usecs/call : 12250
 bytes : 4194304
 bytes/call : 1048576
 MB/s : 85
 fwrite
 calls : 10
 usecs : 60000
 usecs/call : 6000
 bytes : 10485760
 bytes/call : 1048576
 MB/s : 174

See the ioex man page for complete details.

Using Pfmon

Originally designed as a test harness for Perfmon2, pfmon is a low-level
tool that has full access to all of the System’s performance monitoring
features. It provides highly accurate measurements through the use of
software breakpoints, ptrace, and counting domains.

Though papiex and hpcex provide most of the functions that pfmon does,
pfmon is the tool of choice for monitoring the performance of applica-
tions that use statically-linked binaries and for very accurately measuring
very small sequences of instructions, in any of the many supported
modes.

You can find thorough documentation for pfmon at
http://perfmon2.sourceforge.net/.

Using Oprofile

Oprofile runs on a single node. It is a system-wide statistical profiler that
samples performance counter interrupt events. Once started, oprofile
continues, until explicitly stopped, to profile all code running on the
node’s processors.
94 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

http://perfmon2.sourceforge.net/

Hardware Performance Counter Events
m Before other tools can use the node’s performance counters, the
oprofile daemon must be shutdown.

m Initializing and controlling the oprofile daemon requires root privi-
leges. Once running, regular users can retrieve and display the pro-
file data.

. Oprofile is typically used to profile the interactions of many inde-
pendent processes and kernel tasks. As such, it is particularly useful
on systems that run multiple independent oprofile daemon pro-
cesses. (For parallel profiling (in user mode), use hpcex.)

Oprofile’s opcontrol utility enables root users to set up and control the
oprofile daemon. The opcontrol utility controls data collection with a
control script. Root users edit the control script directly, or pass it argu-
ments specified with the command line option, --setup.

The oreport utility enables regular users to retrieve and display profile
data in image summaries, which lists the number of samples for individual
binary samples (e.g. libraries or applications), and symbol summaries,
which provide per-symbol profile data.You can create reports that con-
tain both data types.

. Oprofile does not provide callgraph profiling on MIPS systems.

The ophelp utility lists and describes the events that are available for pro-
filing on the System.

See the oprofile man pages for complete details.

Hardware Performance Counter Events

Hardware performance counter events include node and processor
counter events (and the PAPI preset events the map to them).

Node Counter Events The node counters can measure events across the entire node. These
events include DMA traffic, fabric switch packets, and additional proces-
sor events.
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 95

Hardware Performance Counter Events
Like the processor counters, you call the node counters by name (prefixed
by SCB_). Table 13 lists some of the SCB counters. For a complete list, run
papiex -l.

The node counters are sampled in pairs for a period of 4096 cycles. They
are slower than the processor counters, so their values cannot be com-
pared to processor counter values without appropriate scaling (multiply
by a factor of 128).

Because the node counters are sampled in pairs (determined by the order
in which they appear on the command line) and can take qualifiers, you
can use them to do conditional counting (see Table 14). A qualifier
appended to the first counter event refers to the second counter event.

You can combine qualifiers, but certain combinations are SCB_ event-
dependent. For a list of qualifiers available for a particular event, run
papiex -L <SCB_name>.

. SCB_* events default to IFOTHER_NONE:HIST_NONE, if you do not
specify a qualifier. This sets each counter to independently count
the number of cycles its event is active.

Table 13. Sampling of node counter events

Event Maps to processor counter event
SCB_CPU1_CYCLES SCB CPU1 cpu cycles

SCB_CPU1_DATAWT SCB CPU1 cycles of data fetch wait

SCB_CPU1_DATAWT24 SCB CPU1 A data fetch wait ≥ 24 cycles
SCB_CPU1_DATAWT32 SCB CPU1 A data fetch wait ≥ 32 cycles
SCB_CPU1_DATAWT48 SCB CPU1 A data fetch wait ≥ 48 cycles
SCB_CPU1_DATAWT64 SCB CPU1 A data fetch wait ≥ 64 cycles
SCB_CPU1_DATAWT8 SCB CPU1 A data fetch wait ≥ 8 cycles
SCB_CPU1_DATAWT96 SCB CPU1 A data fetch wait ≥ 96 cycles
SCB_CPU1_DCHIT SCB CPU1 L1 data cache hits

SCB_CPU1_DCMISS SCB CPU1 L1 data cache misses

SCB_CPU1_DTLBHIT SCB CPU1 data TLB hits

SCB_CPU1_DTLBMISS SCB CPU1 data TLB misses
96 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Hardware Performance Counter Events
To do conditional counting, use the SCB_ event qualifiers this way:

For example:

• To count the number of CPU cycles in which there are data cache
misses:

$ srun -p <partition> -n <ntasks> papiex
 -e SCB_CPU0_CYCLES:IFOTHER_AND
 -e SCB_CPU0_DCMISS <executable> [args]

• To count the number of CPU cycles in which there are no data
cache misses:

$ srun -p <partition> -n <ntasks> papiex
 -e SCB_CPU0_CYCLES:IFOTHER_ANDNOT
 -e SCB_CPU0_DCMISS <executable> [args]

• To count the number of level 1 data cache misses in which no level
1 data TLB misses occur:

$ srun -p <partition> -n <ntasks> papiex
 -e SCB_CPU0_DCMISS:IFOTHER_ANDNOT:HIST_EDGE
 -e SCB_CPU_DTLBMISS:HIST_EDGE <executable> [args]

Processor Counter
Events and PAPI

Preset Events

Table 15 and Table 16 list the processor counter events and the PAPI pre-
set events that map to them, respectively.

Table 14. SCB_ event qualifier usage

Qualifier Description
IFOTHER_NONE Both counters count their events independently of each

other
IFOTHER_AND Count cycles/events only when both counter events occur

at the same time
IFOTHER_ANDNOT Count cycles/events only when the 2nd counter event

does not occur
HIST_NONE Count number of cycles
HIST_EDGE Count number of events

Table 15. Processor counter events

Event Description
CPU_BRANCH CPU Branches executed
CPU_COP2 CPU COP2 and COP2X instructions executed
CPU_CYCLES CPU Cycles
CPU_DCEVICT CPU Data cache line evicted
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 97

Hardware Performance Counter Events

CPU_DCMISS CPU Data cache misses
CPU_DTLBMISS CPU DTLB misses
CPU_FLOAT CPU Floating point instructions executed (includes loads/stores)
CPU_FPARITH CPU Floating point arithmetic instructions
CPU_FPMADD CPU Floating point multiply-add instructions
CPU_ICMISS CPU I-Cache misses
CPU_INSDUAL CPU Dual issued instructions
CPU_INSEXEC CPU Instructions executed
CPU_INSFETCH CPU Instructions fetched
CPU_INSSCHED CPU Instructions scheduled
CPU_ITLBMISS CPU ITLB misses
CPU_L2MISS CPU Cachable L2 Cache requests that miss in local L2
CPU_L2MISSALL CPU Cachable L2 Cache requests that miss in all caches and fill from memory
CPU_L2REQ CPU Cachable L2 Cache requests
CPU_LOAD CPU Load/pref/sync/cache ops
CPU_MISPRED CPU Branches mispredicted
CPU_MSTALL CPU Scheduling conflict M-stage stalls
CPU_SC CPU Conditional stores
CPU_SCFAIL CPU Conditional stores that fail
CPU_STORE CPU Stores
CPU_TLBTRAP CPU TLB miss exception traps

Table 15. Processor counter events (Cont’d)

Event Description

Table 16. PAPI preset events

Event Maps to processor counter event
PAPI_L1_ICA CPU_INSFETCH

PAPI_LD_INS CPU_LOAD

PAPI_SR_INS CPU_STORE

PAPI_CSR_FAL CPU_SCFAIL

PAPI_CSR_TOT CPU_SC

PAPI_FP_INS CPU_FPARITH

PAPI_BR_INS CPU_BRANCH

PAPI_TLB_IM CPU_ITLBMISS

PAPI_TLB_TL CPU_TLBTRAP

PAPI_TLB_DM CPU_DTLBMISS

PAPI_BR_MSP CPU_MISPRED
98 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Performance Tool Program Examples
Performance Tool Program Examples

hpcex float example #define TYPE double
#include <stdio.h>

void flops(int count)
{
int retval;
 TYPE a = 1.001;
 int i;
 TYPE old_a;
 for (i =0; i < count; i++){
 a = a * 1.10;
 if (a > 10000.0){
 a = 1.001;
 }
 }
 print("a=%f\n", a);

}

int main(int argc, char **argv)
{
 int c = 200000000;
 unsigned long mask = 0x1;
 //if (sched_setaffinity(getpid(),1,&mask)==-1)
 // perror("");
 flops(c);
 return 0;
}

to examine this ASCII output:

[snipped]
===
Procedure summary:

 100.00% [/net/home/work/float]</net/home/work/test/src/float.c>flops
===
Loop summary (dependent on structure information):

 100.00% [/net/home/work/float]</net/home/work/test/src/float.c>11-13
===
Statement summary:

 66.50% [/net/home/work/float]</net/home/work/test/src/float.c>13
 33.09% [/net/home/work/float]</net/home/work/test/src/float.c>11

PAPI_L1_ICM CPU_ICMISS

PAPI_L1_DCM CPU_DCMISS

PAPI_MEM_SCY CPU_MSTALL

PAPI_FUL_ICY CPU_INSDUAL

PAPI_L2_TCM CPU_L2MISSALL

PAPI_L2_TCA CPU_L2REQ

Table 16. PAPI preset events (Cont’d)

Event Maps to processor counter event
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 99

Performance Tool Program Examples
 0.41% [/net/home/work/float]</net/home/work/test/src/float.c>12
===
Annotated file (statement/line level):
[/net/home/work/float]/net/home/work/test/src/float.c

 1 #define TYPE double
 2 #include <stdio.h>
 3
 4
 5 void flops(int count)
 6 {
 7 int retval;
 8 TYPE a = 1.001;
 9 int i;
 10 TYPE old_a;
 11 33.09% for (i=0; i< count;i++) {
 12 0.41% a = a * 1.10;
 13 66.50% if (a > 10000.0) {
 14 a = 1.001;
 15 }
 16 }
 17 printf("a=%f\n", a);
 18
 19 }
[snipped]

hpcex pi example

#ifdef PAPI
#include "fpapi.h"
#endif
 program main

 include 'mpif.h'

 double precision PI25DT
 parameter (PI25DT = 3.141592653589793238462643d0)

 integer INTSIZ , DBLSIZ, ALLNODES, ANYNODE
 parameter(INTSIZ=4,DBLSIZ=8,ALLNODES=-1,ANYNODE=-1)

 double precision pi, h, sum, x, f, a, temp
 integer n, myid, numnodes, i, rc
 integer sumtype, sizetype, masternode
 integer status(MPI_STATUS_SIZE)
#ifdef PAPI
 integer retval, es
#endif
c function to integrate
 f(a) = 4.d0 / (1.d0 + a*a)

#ifdef PAPI
 retval = PAPI_VER_CURRENT
 es = PAPI_NULL
 call PAPIf_library_init(retval)
 if (retval.NE.PAPI_VER_CURRENT) then
 print *, "papi failed"
 endif
 call PAPIf_create_eventset(es, retval)
 if (retval.NE.PAPI_OK) then
 print *, "papi eventset failed"
100 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Performance Tool Program Examples
 end if
 call PAPIf_add_event(es, PAPI_TOT_CYC, retval)
 if (retval .NE. PAPI_OK) then
 print *, "papi event failed"
 endif
#endif
 call MPI_INIT(ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, numnodes, ierr)
c print *, "Process ", myid, " of ", numnodes, " is alive"

 sizetype = 10
 sumtype = 17
 masternode = 0

 10 if (myid .eq. 0) then

n = 8000

 do i=1,numnodes-1
 call MPI_SEND(n,1,MPI_INTEGER,i,sizetype,MPI_COMM_WORLD,rc)
 enddo

 else

 call MPI_RECV(n,1,MPI_INTEGER,masternode,sizetype,
 + MPI_COMM_WORLD,status,rc)

 endif

c check for quit signal
 if (n .le. 0) goto 30

c calculate the interval size
 h = 1.0d0/n

 sum = 0.0d0
 do 20 i = myid+1, n, numnodes
 x = h * (dble(i) - 0.5d0)
 sum = sum + f(x)
 20 continue
 pi = h * sum

 if (myid .ne. 0) then

 call MPI_SEND(pi,1,MPI_DOUBLE_PRECISION,masternode,sumtype,
 + MPI_COMM_WORLD,rc)

 else

 do i=1,numnodes-1
 call MPI_RECV(temp,1,MPI_DOUBLE_PRECISION,i,sumtype,
 + MPI_COMM_WORLD,status,rc)
 pi = pi + temp
 enddo
 endif

c node 0 prints the answer.
 if (myid .eq. 0) then
 write(6, 97) pi, abs(pi - PI25DT)
 97 format(' pi is approximately: ', F18.16,
Chapter 5 Optimizing Application Performance (PN 2906-03 Rev. 02) 101

Performance Tool Program Examples
 + ' Error is: ', F18.16)
 endif

 30 call MPI_FINALIZE(rc)
 end

ioex seek_strided
example

#include <unistd.h>
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>

char zero_buf[1024*1024];
int main(int argc, char **argv){
 int i;
 unlink("zero");
 FILE* myfile = fopen("zero", "w+");
 if (argc < 3){
 fprintf(stderr, "usage: ./writer <write><stride>\n"
 "where <write> is number of MB to write, and
 <stride> is seek between reads\n");
 return(1);
 }
 int num = atoi(argv[1]);
 int stride = atoi(argv[2]);
 for (i = 0; i < num; i++){
 fwrite(zero_buf, 1024*1024, 1, myfile);
 }
 fflush(myfile);
 rewind(myfile);
 int fd = fileno(myfile);
 for (i = 0; i < num; i+=stride+1){
 fread(zero_buf, 1024*1024, 1, myfile);
 lseek(fd, stride * 1024 * 1024, SEEK_CUR);
 }
 fclose(myfile);
 exit(0);
}

102 (PN 2906-03 Rev. 02) Chapter 5 Optimizing Application Performance

Chapter 6 Using the Optimized Math and
Science Libraries

In this section:

• Libscm Tuned Math Library

• Accuracy of libscm Functions

• Accessing the libscm Library

• Libscs Tuned Scientific Library

• Libscstr and Libscfstr Tuned String Libraries

• Math and Science Libraries

• Linking the Optimized Atlas Library for Fast BLAS

• Linking the PETSc Library

• Building Natively on the Nodes

• Building on the Cross-Development Workstation

• Linking Interdependent Libraries

The SiCortex software suite includes the standard GNU math library,
libm; a tuned version of libm, libscm; a tuned scientific library, libscs;
two versions of a tuned string library, libscstr; and an array of math and
science libraries.

All optimized libraries are provided in static and dynamic versions for
both n32 and n64 ABIs.

The compilers default to searching for and linking the dynamic version of
the libraries. To use the static version, you must supply the -static
option to the linker.

. The pathf95 compiler follows the name-mangling rules described
in Compiler Name Mangling on page 140. Because the libraries sup-
plied with the SiCortex software comply with these rules, we
strongly recommend that you avoid using compiler flags that alter
the compiler’s default method of applying underscores to symbol
names.
Chapter 6 Using the Optimized Math and Science Libraries (PN 2906-03 Rev. 02) 103

Libscm Tuned Math Library
Libscm Tuned Math Library

The libscm library contains tuned versions of many of the libm math
functions: atan, ceil, ceilf, expf, exp2f, exp10f, floor, floorf, fmax,
fmaxf, fmin, fminf, rint, rintf, round, roundf, trunc, truncf, hypot,
hypotf, sin, sinf, cos, cosf, sinecos, sincosf, log, log10, log2, logf,
log10f, and log2f.

Libscm functions typically provide a speedup in performance that is, at
least, several times over their libm (glibc) counterparts and at equal or
near equal accuracy.

The libscm library supports applications built with either the n32 or n64
ABI. The linker automatically selects the correct version of the libscm
library.

To preserve cached data, libscm avoids using memory as much as possi-
ble.

. For best, predictable results, make sure your program calls IEEE
compliant data and uses round-to-nearest mode. Remember that
libscm functions do not always report exceptions.

The functions do not handle inexact or overflow/underflow exceptions.

Accuracy of libscm
Functions

Except as described in Table 17, most of the functions are usually accu-
rate to 1 unit of least precision (ulp), but accuracy decreases when the
functions are called in other than round-to-nearest floating point rounding
mode. None of the functions sets errno.

Table 17. Accuracy specifications

Function Description

hypot
hypotf

Hypotenuse. Computes the value of the square root of x2 + y2 without undue overflow or
underflow. Fully IEEE compliant for NANs and infinities.

sin
cos

Sine and cosine of x in radians.
Domain ≈ closed interval (-2^49, 2^49); domain base 10 (more accurate)
-3.968253968253968254e14 to 3.968253968253968254e14. The base 10 domain is consid-
ered the correct one, although error bounds have not been rigorously determined. No bounds
checking is done, so the caller must provide values in the appropriate domain. These functions
occasionally (rarely) return answers that differ by 2 ulps from the correctly rounded one.

<func_name>f = single precision version
104 (PN 2906-03 Rev. 02) Chapter 6 Using the Optimized Math and Science Libraries

Libscm Tuned Math Library
sinf
cosf

Domain accuracy (-2^25, 2^25)
Domain accuracy (-2^24, 2^24)
Maximum error has not been rigorously proven, but has been tested for many millions of val-
ues, with no error exceeding 1 ulp found. No bounds checking is done, so the caller must pro-
vide values in the appropriate domain. These functions return accuracy in all floating-point
rounding modes.

sincos Simultaneous sine and cosine of x in radians.
Domain ≈ closed interval (-2^49, 2^49); domain base 10 (more accurate)
-3.968253968253968254e14 to 3.968253968253968254e14. The base 10 domain is consid-
ered the correct one, although error bounds have not been rigorously determined. No bounds
checking is done, so the caller must provide values in the appropriate domain. This function
occasionally (rarely) returns answers that differ by 2 ulps from the correctly rounded one.

sincosf Domain accuracy (-2^25, 2^25)
Maximum error has not been rigorously proven, but has been tested for many millions of val-
ues, with no error exceeding 1 ulp found. No bounds checking is done, so the caller must pro-
vide values in the appropriate domain. This function returns accuracy in all floating-point
rounding modes.

log

log10
log2

Natural logarithm. Accuracy 1 ulp across the entire domain, except it does not return infinity
for log (0).
Base 10/Base 2. Guaranteed accurate only for 2 or 3 ulps, although most values fall within
1 ulp of correctly rounded results. These functions are not IEEE-compliant. Use round-to-near-
est mode.

logf
log10f
log2f

Same description as the double-precision counterpart.
Usually accurate to 1 ulp, with no cases found where error exceeded 1 ulp. Otherwise, same
description as double-precision counterparts.

expf
exp2f
exp10f

Exponential function. Returns the value of e (the base of the natural logarithms) raised to the
power of x, two to the power of x, and ten to the power of x, respectively.
Although error bounds have not been rigorously determined, no cases were found in which
bounds exceeded 1 ulp.
These functions do not return the same range of subnormals in the limit g(x)⇒ 0; instead they
flush to zero.
The libm expf function incorrectly promotes values at the top of the representable domain to
infinity. Because the libscm version does not emulate this behavior, it may sometimes give dif-
ferent answers for the highest values in the range. For example, at the input point
88.72202301025390625, the libm expf function returns infinity, whereas the libscm expf func-
tion correctly returns 3.4000478186e+38.
Although the highest range limit for infinity differs between exp10f and exp2f, since these
functions are provided through accurate base translation, they use the same limit as expf.

Table 17. Accuracy specifications (Cont’d)

Function Description

<func_name>f = single precision version
Chapter 6 Using the Optimized Math and Science Libraries (PN 2906-03 Rev. 02) 105

Libscm Tuned Math Library
Accessing the libscm
Library

The libscm library is available from Fortran, C, and C++ applications.
Access to libscm from Fortran is available only through the PathScale
compilers’ -ffast-math flag.

Fortran access to libscm

The -ffast-math flag causes the linker to link automatically with libscm.
It should be used for compiling as well as linking to get the best in appli-
cation performance.

pathf95 -ffast-math -o myapp myappa.f90 myappb.f90

or

pathf95 -Ofast -o myapp myappa.f77 myappb.f77

. The Ofast option incorporates -ffast-math. To use -Ofast with-
out linking with libscm, include -fno-fast-math on the link line.

C/C++ access to libscm

Because the functions in libscm are aliased with and replace those in libm,
users need only include <math.h> in their source files.

The libscm function names supersede those in libm, so to use both
libraries with compilers, insert -lscm before -lm on the compiler/linker
command line, for example:

gcc -o myapp myappa.o myappb.o -lscm -lm

pathcc -o myapp myappa.c myappb.c -lscm -lm

You can also use the PathScale compilers’ -ffast-math flag to autolink
libscm with C and C++ applications. If you specify both -ffast-math
and -lm, the compilers link, in order, -lscm -lmpath -lm. Libmpath con-
tains Open64 implementations of some libm functions and some math
functions (such as acos) not yet implemented in libscm.

pathcc -ffast-math -o myapp myappa.c myappb.c -lm

or

pathcc -Ofast -o myapp myappa.c myappb.c -lm
106 (PN 2906-03 Rev. 02) Chapter 6 Using the Optimized Math and Science Libraries

Libscs Tuned Scientific Library
Libscs Tuned Scientific Library

The libscs library provides some miscellaneous functions not included
in other science libraries. It contains tuned anisotropic
correlation/convolution routines: conv2d_dp, conv2d_sp (2-dimensional,
double- and single-precision, respectively) and conv3d_dp, conv3d_sp
(3-dimensional, double- and single-precision, respectively).

The libscs library supports applications built with either the n32 or n64
ABI. The linker automatically selects the correct version of the libscs
library.

Applications written in C/C++ must include <scslib.h> in their source
files. Those written in Fortran must include scslib.inc.

To call libscs routines from Fortran applications, simply use the routines
as if all variables are passed by reference. For example:

CALL CONV2D_SP(A, NRA, NCA, K, NRK, NCK, C)

The libscs routines expect row major order. However, for Fortran appli-
cations, no special precautions are needed as long as the order of kernels
and matrices match.

The libscs library is independent of other libraries, so you can include it
anywhere on the link line by specifying -lscs.

The anisotropic convolution routines actually implement correlation. The
only difference between convolution and correlation is the order in which
the filter kernel is traversed to yield the sum for each input datum. For
convolution, the filter kernel is traversed backwards, from end to
beginning; for correlation, from beginning to end. This means the order
in which the application loads the filter coefficients determines whether
the function performs convolution or correlation. Typically, such stencil
functions are referred to generically as convolutions, a convention used
hereafter in this manual. Table 18 on page 108 describes the convolution
routines.
Chapter 6 Using the Optimized Math and Science Libraries (PN 2906-03 Rev. 02) 107

Libscs Tuned Scientific Library

Table 18. libscs tuning details

Function Description

conv2d_sp Single-precision anisotropic 2-dimensional convolution. Calling prototype:
void conv2d_sp(
 float *a, // pointer to input matrix a
 int nra, // number of rows in a _and_ c
 int nca, // number of cols in a _and_ c
 float *k, // pointer to stencil kernel k
 int nrk, // number of taps per row in the kernel
 int nck, // number of taps per column in the kernel
 float *c; // pointer to output matrix c
)

Aside from the difference in the declared type of the pointer arguments, the description of this
routine is the same as its double-precision counterpart, conv2d_dp.

conv3d_sp Single-precision anisotropic 3-dimensional convolution. Calling prototype:
void conv3d_sp(
 float *a, // input volume a
 int nsa, // number of slices a _and_ c
 int nra, // number of rows per slice a _and_ c
 int nca, // number of cols per slice a _and_ c
 float *k, // stencil volume k
 int nsk, // number of slices k
 int nrk, // number of rows per slice
 int nck, // number of columns per slice
 float *c // output volume c
)

Aside from the difference in the declared type of the pointer arguments, the description of this
routine is the same as its double-precision counterpart, conv3d_dp.
108 (PN 2906-03 Rev. 02) Chapter 6 Using the Optimized Math and Science Libraries

Libscs Tuned Scientific Library
conv2d_dp Double-precision anisotropic 2-dimensional convolution. Calling prototype:
void conv2d_dp(
 double *a, // pointer to input matrix a
 int nra, // number of rows in a _and_ c
 int nca, // number of cols in a _and_ c
 double *k, // pointer to stencil kernel k
 int nrk, // number of taps per row in the kernel
 int nck, // number of taps per column in the kernel
 double *c; // pointer to output matrix c
)

Arguments a, c, and k require only natural alignment. However, performance may vary if, for
example, all memory is page aligned, which may increase TLB or cache activity, depending on
the dimensions.
Input a and output c must have the same dimensions. However, the number of real outputs in
c is less than the inputs in a because of the nature of convolution. The actual number of out-
puts is given by (nra − nrk + 1) * (nca − nck + 1) with the remaining points constituting a
guard band around the edge of c. The actual output runs from [c + nck/2, c − nck/2] in each
row, and from [c + nrk/2, c − nrk/2] in each column.
If the number of output columns (nca − nck + 1) is evenly divisible by 4, no erroneous data is
written into the guard band. Otherwise, the guard band is not guaranteed to be uncorrupted.
Likewise, keeping the number of output columns to an even multiple of four produces the best
performance.
The minimum dimensions nra and nca are determined to ensure a positive nonzero number of
output rows and columns.
The algorithm requires that the kernel dimensions nrk and nck be multiples of 3. This enforces
kernels of 9x9, 15x15, 21x21, 33x33, and so on. The kernel data has no symmetry requirements
and is fully anisotropic with regards to the implementation. Also, there is no nrk = nck require-
ment.
If you need a non multiple-of-three kernel (for example, 11x11), zero-pad the kernel in a sym-
metrical guard band around the edges. For this 11x11 example, the first and last rows and the
first and last columns of a 12x12-defined kernel would be zero. In such scenarios, the loss in
performance is proportional to the percentage of the kernel that is zero-padded.

Table 18. libscs tuning details (Cont’d)

Function Description
Chapter 6 Using the Optimized Math and Science Libraries (PN 2906-03 Rev. 02) 109

Libscstr and Libscfstr Tuned String Libraries
Libscstr and Libscfstr Tuned String Libraries

The libscstr and libscfstr libraries provide tuned versions of the libc
functions strcpy, memset, and memcpy. In general, the tuned functions
provide a significant increase in performance over their libc counter-
parts. Use of the two tuned libraries differs only in the calling convention.
Table 19 on page 111 describes each of the tuned functions.

conv3d_dp Double-precision anisotropic 3-dimensional convolution. Calling prototype:
void conv3d_dp(
 double *a, // input volume a
 int nsa, // number of slices a _and_ c
 int nra, // number of rows per slice a _and_ c
 int nca, // number of cols per slice a _and_ c
 double *k, // stencil volume k
 int nsk, // number of slices k
 int nrk, // number of rows per slice
 int nck, // number of columns per slice
 double *c // output volume c
)

Arguments a, c, and k require only natural alignment.
Input a and output c must have the same dimensions. The actual number of outputs is given by
(nsa − nsk + 1) * (nra − nrk + 1) * (nca − nck + 1) with the remaining points constituting
a guard band around the edge of volume c. The actual output runs from slices [c + nsk/2,
c − nsk/2], from [c + nck/2, c − nck/2] in each row, and from [c + nrk/2, c − nrk/2] in
each column.
If the number of output columns (nca − nck + 1) is evenly divisible by 4, no erroneous data is
written into the guard band. Otherwise, the guard band is not guaranteed to be uncorrupted.
Since the number of points written into the guard band may become large enough to adversely
affect performance, it behooves you to select output sizes in which the number of output col-
umns (nca − nck + 1) is evenly divisible by 4.
The minimum dimensions nsa, nra, and nca are determined to ensure a positive nonzero num-
ber of output slices, rows and columns. The minimum dimensions depend on nsk, nrk, and
nck.
The memory layout of volumes a, c, and k is traditional C row major—columns, rows, and
slices—so column p of row q of slice 1 can be accessed this way: 1*nra*nca + q*nca + p.
The number of slices in the kernel k can begin at 1 and grow to any size. When nsk = 1, 3D
convolution devolves to a series of 2D convolutions, making it more efficient to use conv2d_dp
for this case.
The number of rows and columns, nrk and nck, in k must be multiples of 3. There is no
nrk = nck requirement, though nonsymmetric dimensions have not been tested.

Table 18. libscs tuning details (Cont’d)

Function Description
110 (PN 2906-03 Rev. 02) Chapter 6 Using the Optimized Math and Science Libraries

Libscstr and Libscfstr Tuned String Libraries
The libscstr and libscfstr libraries work only with C/C++ applica-
tions.

• Libscstr

To use the libscstr library, you must modify your source code to
call the functions by their libscstr names: sc_strcpy, sc_memset,
and sc_memcpy. The PathScale compilers automatically link in the
libscstr library, but the gcc compiler does not, so you need to add
-lscstr to the compile/link line when using gcc.

For any functions called by their standard libc names, the linker
links in those functions from libc. This feature enables you to
retain calls to libc functions for small copy operations, which is
slightly faster for string lengths less than eight bytes, while replacing
larger copy operations with calls to the tuned sc_* functions.

• Libscfstr

To use the libscfstr (f stands for fast) library, you call the func-
tions by their standard libc names in your source code, and include
-lscfstr on the link line. The standard libc functions are replaced
by the fast functions in libscfstr.

• Furthermore, you can speed up existing executables by setting
LD_PRELOAD={/usr/lib64 or /usr/lib32}/libscfstr.so. This
results in all executables, whether or not built with libscfstr,
using the fast functions in libscfstr.

To use the static versions of the tuned string libraries, you must supply
the full path to the library on the link line, for example:

-l /usr/lib32/libscstr.a

Table 19. libscstr/libscfstr tuning details

Function Description

sc_strcpy Replaces strcpy. Functionality is identical to strcpy. Faster than strcpy for string lengths
greater than eight bytes, comparable to strcpy for string lengths less than eight bytes.
You need not pad to the next largest multiple of 64 to obtain optimal performance.

sc_memcpy Replaces memcpy. Functionality is identical to memcpy, with the exception that it sometimes
fails to return the pointer to the original destination. Therefore, when using sc_memcpy, do
not count on the pointer to the original destination being returned.
Much faster than memcpy at small sizes. Provides nearly monotonic performance increases,
and you need not pad to the next largest multiple of 64 to obtain optimal performance.
Uses a hit-under-miss algorithm to maximize bus bandwidth to and from the L2 cache and
main memory.
Chapter 6 Using the Optimized Math and Science Libraries (PN 2906-03 Rev. 02) 111

Math and Science Libraries
Math and Science Libraries

Table 20 lists and describes the supplied math and science libraries.

sc_memset Replaces memset. Functionality is identical to memset. Much faster than memset for all lengths
and alignments, and it has a much smoother–nearly monotonic–performance profile.
Uses a hit-under-miss algorithm to maximize the bus bandwidth to and from the L2 cache
and main memory for larger lengths.

Table 19. libscstr/libscfstr tuning details (Cont’d)

Function Description

Table 20. Descriptions of the math and science libraries

Library Description

AtlasBLAS Automatically Tuned Linear Algebra Software/Basic Linear Algebra Subroutines. (Serial)
Atlas provides portably optimal linear algebra software based on BLAS, which provides
standard building blocks for performing basic vector and matrix operations.
• Level 1 routines perform scalar, vector and vector-vector operations.
• Level 2 routines perform matrix-vector operations.
• Level 3 routines perform matrix-matrix operations.

Linking: see Linking the Optimized Atlas Library for Fast BLAS on page 114.
GotoBLAS GotoBLAS provides portably optimal linear algebra software based on BLAS, but focuses

on minimizing TLB misses, rather than on optimizing cache utilization.
Linking for Fortran, C, C++: -lgotoblas

BLACS Basic Linear Algebra Communications Subprograms.
A linear algebra-oriented, message-passing interface that makes linear algebra applications
easier to program and port. Needed by ScaLAPACK.

FFTW Fast Fourier Transform. (Serial and parallel)
FFTW2 for MPI applications
FFTW3 for serial and multithreaded applications

LAPACK Linear Algebra Package. (Serial)
Designed for solving systems of simultaneous linear equations, least squares solutions of lin-
ear systems, eigenvalue problems, singular value problems.
Provides the associated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized
Schur), reordering of Schur factorizations, and estimating condition numbers.
Handles dense and banded matrices, but not sparse matrices.
Provides similar functionality for real and complex matrices, in single and double precision.
Linking for C, C++, Fortran: -llapack <-lgotoblas|-lcblas -latlas|-lf77blas -latlas>
112 (PN 2906-03 Rev. 02) Chapter 6 Using the Optimized Math and Science Libraries

Math and Science Libraries
PETSc Portable, Extensible Toolkit for Scientific computation. (Serial and parallel)
Provides tools for both serial and parallel numerical solutions of PDEs that require solving
large-scale, sparse nonlinear systems of equations.Includes:
• Nonlinear solvers–Newton-based methods: Line Search, Trust Region, other
• Time steppers–Euler, Backward Euler, Pseudo Time Stepping, other
• Krylov Subspace Methods–GM RES, CG, Bi-CG-STAB, TFQMR, Richardson, Cheby-

chev, other
• Preconditioners–Additive Schwartz, Block Jacobi, Jacobi, ILU, ICC, LU (sequential only),

other
• Matrices–Compressed Sparse Row (AIJ), Blocked COmpressed Sparse Row (BAIJ), Block

Diagonal (BDIAG), Dense, other
• Vectors
• Index sets–Indices, Block Indices, Stride, other

Linking: see Linking the PETSc Library on page 114.
ScaLAPACK Scalable LAPACK. (Parallel)

Designed for distributed memory, MIMD parallel computers.
Routines for solving linear systems of equations, symmetric positive definite branded linear
systems of equations; condition estimation and iterative refinement, for LU and Cholesky
factorization, matrix inversion, full-rank least squares problems, orthogonal and generalized
orthogonal factorization, orthogonal transformation routines, reductions to upper Hessen-
berg, bidiagonal and tridiagonal form, reduction of symmetric-definite generalized eigen-
problem to standard form, the symmetric, generalized symmetric and the nonsymmetric
eigenproblem.
Linking for C, C++, Fortran:
-lscalapack -lblacs -llapack <-lgotoblas|-lcblas -latlas|-lf77blas -latlas>

SPRNG Scalable Parallel Pseudo Random Number Generator. (Serial and parallel)
Supports ASC Monte Carlo computations.
Linking for Fortran, C, C++: -lsprng -lstdc++

Table 20. Descriptions of the math and science libraries (Cont’d)

Library Description
Chapter 6 Using the Optimized Math and Science Libraries (PN 2906-03 Rev. 02) 113

Linking the Optimized Atlas Library for Fast BLAS
Linking the Optimized Atlas Library for Fast BLAS

To use the optimized version of the Atlas library for fast BLAS, you must
link with the BLAS and Atlas libraries.

Linking is the same on the nodes and the cross-development workstation.
For example, using the n64 version of the library:

• Fortran -lf77blas -latlas

• C -lcblas -latlas

• Combined Fortran/C
-lf77blas -lcblas -latlas

The path to the include files differs between the native and cross-devel-
opment environments. For applications that make explicit use of Atlas,
the location of the include files are:

• Nodes /usr/include/atlas.

• Cross-development workstation
/opt/sicortex/rootfs/default/usr/include/atlas.

. The pathf95 compiler follows the name-mangling rules described
in Compiler Name Mangling on page 140. Since neither pathcc nor
gcc have compiler mechanisms to append these underscores, C
applications using the BLAS interface directly need to follow the
Fortran underscoring convention, either explicitly or through pre-
processing, to produce the correct symbol form.

Linking the PETSc Library

The way you link the PETSc library differs between the native and cross-
development environments and varies according to whether you are
building an n64 or n32 application.

Building Natively on
the Nodes

• n64 applications

There are no variables to set, so you can build your application nor-
mally, using PETSc makefiles.

• n32 applications

. Make sure the System Administrator has mounted the n32 build-
root on the nodes where you intend to build your n32 application.
114 (PN 2906-03 Rev. 02) Chapter 6 Using the Optimized Math and Science Libraries

Linking Interdependent Libraries
export PETSC_DIR=/PathToRootfs*/build.n32/usr/share/petsc
export PETSC_ARCH=linux-mips-n32

Then edit your makefile to add to CFLAGS, FFLAGS, and all linker
flags:

-isysroot/PathToRootfs*/build.n32 -mabi=n32

Building on the
Cross-Development

Workstation

• n64 applications

export PETSC_DIR=/PathToRootfs†/build/usr/share/petsc
export PETSC_ARCH=linux-mips-n64

Then build your application normally, using PETSc makefiles.

• n32 applications

export PETSC_DIR=/PathToRootfs†/build.n32/usr/share/petsc
export PETSC_ARCH=linux-mips-n32

Then modify your makefile to add to CFLAGS, FFLAGS, and all linker
flags:

--sysroot=/PathToRootfs†/build.n32 -mabi=n32

Then build your application normally, using PETSc makefiles.

• SC072 workstation

export PETSC_DIR=/PathToRootfs†/usr/share/petsc
export PETSC_ARCH=linux-mips-<n32|n64>

If building an n64 application, build it normally, using PETSc
makefiles.

If building an n32 application, modify your makefile to add to
CFLAGS, FFLAGS, and all linker flags:

--sysroot=/PathToRootfs†/build.n32 -mabi=n32

Linking Interdependent Libraries

Many of the math and science libraries use routines contained in other
libraries. When you use such interdependent libraries, make sure you link
them in the correct order. A library containing routines used by another
must be linked after the library that uses it. So, for example, where liba

* Typically, /.root0/opt/sicortex/rootfs

† Typically, /opt/sicortex/rootfs
Chapter 6 Using the Optimized Math and Science Libraries (PN 2906-03 Rev. 02) 115

Linking Interdependent Libraries
depends on routines in libb, and both depend on the MPI library, the
linker command line might look like this:

 gcc -o myapp ab.o ac.o -la -lb -lscmpi_debug*

Alternatively, you can use GNU’s libtool to order the libraries correctly
for linking. For details, see the libtool documentation.

* To use the MPI optimized library instead, replace -lscmpi_debug with -lscmpi.
116 (PN 2906-03 Rev. 02) Chapter 6 Using the Optimized Math and Science Libraries

SiCortex MPI Implementation
Chapter 7 Developing MPI Applications

In this section:

• SiCortex MPI Implementation

• MPI Feature Support

• Compiling and Linking MPI Applications

• MPI Library

• MPI Header Files

• MPI Library Linking Order

• MPI Compiler Scripts

• MPI Debugging Hook

• MPI Performance Tips

• Thread Support

• MPI Reference Information

For details on submitting and running MPI applications on the System,
see Chapter 2, Running Applications on page 15.

The SiCortex MPI library implements the Message Passing Interface
(MPI) for SiCortex systems. SiCortex MPI uses the nodes’ DMA engine
and the System’s Interconnect Fabric to implement high-bandwidth, low-
latency node-to-node communication. This scheme provides a direct
user-mode communication path, enabling MPI processes to pass data
between one another without making system calls.

SiCortex MPI Implementation

The SiCortex MPI implementation is based on the MPICH2 software
from Argonne National Laboratory:
http://www.mcs.anl.gov/research/projects/mpich2/

Because the SiCortex MPI library uses the DMA engine directly, MPI
applications can take immediate advantage of the System’s communica-
tion architecture, without writing machine-specific code.
Chapter 7 Developing MPI Applications (PN 2906-03 Rev. 02) 117

http://www.mcs.anl.gov/research/projects/mpich2/

MPI Feature Support
MPI Feature Support

SiCortex MPI provides the standard MPI language bindings for C, C++,
Fortran 77, and Fortran 90 applications. It supports all MPI-1 features
and these selected MPI-2 features:

• MPI I/O

Supports parallel I/O, in which a parallel MPI application does all
I/O operations, and collective I/O, in which many processes con-
currently access the same file.

• Intercommunicator collective operations

Enables collective operations between processes that belong to dif-
ferent communicator groups.

• One-sided communication

Enables one process to specify all communication parameters for
both the sending and receiving sides.

• External interfaces

Supports generalized requests, named objects, error classes, and so
forth.

Compiling and Linking MPI Applications

The SiCortex MPI library, libscmpi, implements the Message Passing
Interface (MPI) for SiCortex systems. It provides interfaces for C, C++,
and Fortran programs.

For more information on compiling, see Chapter 3, Compiling and Linking
Applications on page 25 and General Procedure for Optimizing an Application on
page 52.

MPI Library There are two versions of the MPI library: scmpi andscmpi_debug. We
recommend that you use scmpi_debug until you have finished debugging
your application, and then switch to the optimized version, scmpi.

The scmpi_debug version performs internal and external safety checking
on MPI library usage. Though it runs more slowly, it can detect errors in
code that calls the MPI library and errors internal to the MPI library.

The MPI library supports applications built with either the n32 or n64
ABI. The linker automatically selects the correct version of the MPI
118 (PN 2906-03 Rev. 02) Chapter 7 Developing MPI Applications

Compiling and Linking MPI Applications
library and links with other libraries that it needs to interface with the
DMA engine and with the SLURM process management.

MPI Header Files MPI programs written in C and C++ must include <mpi.h> in their
source files. Those written in Fortran must include mpif.h.

. Because of a name conflict between stdio.h and the MPI C++
binding that involves SEEK_SET, SEEK_CUR, and SEEK_END, you must
either include mpi.h before stdio.h and iostream.h in MPI pro-
grams written in C++, or add -DMPICH_IGNORE_CXX_SEEK to the
compiler command line to force it to skip the MPI versions of the
SEEK_* routines.

MPI Library Linking
Order

Though no special switches are required for compiling, you must link
your program with the MPI library, either -lscmpi or -lscmpi_debug.
When using other libraries that depend on it, add the MPI library to the
end of the linker’s command line.

For example, the linker command line might look like this, while you are
debugging your application:

pathcc -o mympiapp -lscaLAPACK -lscmpi_debug

then, after your application is running smoothly and you want to do some
performance runs, like this:

pathcc -o mympiapp -lscaLAPACK -lscmpi

MPI Compiler Scripts SiCortex MPI software provides two sets of compiler scripts (Table 21)
that automatically invoke the appropriate PathScale compiler and link
with the optimized version of the MPI library. In general, the mpi* com-
piler scripts run in the native environment, and the scmpi* compiler
scripts run in the cross-development environment (see page 31).

Table 21. MPI compiler scripts*

* If you are building n32 applications, see page 139 for compiling instructions. If you
are building your n32 application on the nodes, make sure your System Administrator
has mounted the n32 buildroot on the nodes where you intend to build your applica-
tion.

Native Environment Cross-Development Environment

mpicc scmpicc
mpicxx scmpicxx
mpif77 scmpif77
mpif90 scmpif90
Chapter 7 Developing MPI Applications (PN 2906-03 Rev. 02) 119

MPI Debugging Hook
Because the compiler scripts automatically link in the MPI library, you
needn’t add it to the link line. However, if you want to use the debug ver-
sion of the library instead, you must add --mpilib=-lscmpi_debug to the
end of the link line.

MPI Debugging Hook

Before you run your MPI application, you can set the SCMPI_DEBUG_WAIT
environment variable to help debug it. Setting SCMPI_DEBUG_WAIT to any
value causes the MPI code to pause in an infinite loop during MPI_INIT()
operations. This behavior enables the user to attach a debugger to pro-
cesses spawned in the program. Then, for each paused process, the user
calls MPIDI_Debug_start() from the debugger to continue the process.

MPI Performance Tips

• Globally synchronized time

MPI_Wtime() reports time values that are globally synchronized. So,
if two processes of an MPI program call MPI_Wtime() at the same
time, MPI_Wtime() will report the same value. The accuracy of syn-
chronization is better than one microsecond.

The MPI_WTIME_IS_GLOBAL attribute of MPI_COMM_WORLD indicates
that MPI_Wtime() reports a global value.

• Early send and posted receive queue sizes

Like other MPI implementations, SiCortex MPI implements soft-
ware message queues that track:

• Send operations yet to be matched to a receive call (early send
queue)

• Receive operations yet to be matched to a sender (posted receive
queue)

Very long queues increase the time the MPI library must spend tra-
versing them to find matches, and thus can impact the performance
of ordinary send and receive operations. This issue is of consider-
able importance for applications that scale to thousands of pro-
cesses.

Mitigating this issue can be tricky, but sometimes using barrier
operations to keep processes in phase can actually increase perfor-
mance by keeping the queues short.
120 (PN 2906-03 Rev. 02) Chapter 7 Developing MPI Applications

MPI Performance Tips
• Using MPI_Sendrecv()

Calling MPI_Sendrecv() can be more efficient than posting individ-
ual send and receive operations, for both short and long messages.

• Short message latency

The blocking forms of send and receive operations, MPI_Send()
and MPI_Recv(), have the shortest latency, and therefore the best
performance for short messages, particularly those less than 1KB.

• Long message bandwidth

In MPI, longer messages achieve better bandwidth by amortizing
fixed communication overheads and by allowing the library to use
multiple paths through the Interconnect Fabric.

In practice, point-to-point message sizes in the range of 100KB to
1MB can achieve peak bandwidth.

• Overlapping communication with computation

SiCortex MPI allows applications some opportunity to overlap
communication and computation, particularly for very large mes-
sages (≥100KB). Because the MPI library does not maintain a
thread independent of the application, it makes no software
progress when no MPI function calls are made. Opportunities for
an application to overlap computations occur only when the MPI
library can return to the application while hardware RDMA opera-
tions are progressing.

Once the MPI library software establishes a match at the receiver
end, it commands the DMA engine to initiate up to six RDMA
operations. It can return to the application from a nonblocking call
until these communication operations end. A carefully coded appli-
cation could take this opportunity to perform computation opera-
tions while the communication operations proceed.

. In some cases, particularly with very large messages, the appli-
cation must invoke the MPI library to schedule additional
RDMA operations before the entire operation finishes. Calling
MPI_Iprobe() at both the send and receive ends can enable the
library to schedule more RDMA operations.

• Data alignment

The alignment of data can affect communication performance. For
short messages (<1KB), aligning the source and destination buffers
on 8-byte boundaries improves performance slightly.
Chapter 7 Developing MPI Applications (PN 2906-03 Rev. 02) 121

Thread Support
For long messages (>1KB), communication is most efficient when
the source and destination buffers are relatively* aligned to 64
bytes, and least efficient (incurring a temporary buffer copy), when
they are not relatively aligned to 4 bytes.

The effect of alignment on long messages is most apparent for very
large messages (>100KB), where performance can be limited by
the DMA engine’s access to memory.

Applications written in C can control the alignment of variables by
using the gcc aligned attribute, and control the alignment of
dynamically allocated buffers by using posix_memalign() instead
of malloc().

• Noncontiguous, derived data types

Calling MPI routines using derived data types that specify noncon-
tiguous data impacts performance. For these cases, SiCortex MPI
copies data in and out of temporary buffers, incurring the costs of
data copying and of interpreting the data types. In general, it’s bet-
ter for an application to move data in and out of its own contiguous
temporary data buffers because that allows the compiler to gener-
ate efficient code for moving the data.

Thread Support

SiCortex supports MPI_THREAD_FUNNELED semantics, which allows multi-
threaded processes, but only the main thread in a process can access the
MPI library. All other threads in the process funnel their MPI calls to the
main thread. Only the main thread initializes and finalizes MPI.

This means that codes built for hybrid OpenMP/MPI operation can
safely use the SiCortex MPI library if all MPI operations are done outside
threaded regions.

(For details on MPI thread-compliance, see MPI documentation. For a
list of resources, see MPI Reference Information .)

* Buffers are relatively aligned when the difference between the source and destination addresses
is divisible by the alignment. This is guaranteed when both buffers have the required absolute
alignment.
122 (PN 2906-03 Rev. 02) Chapter 7 Developing MPI Applications

MPI Reference Information
MPI Reference Information

• Reference to the online man pages:

• http://www-unix.mcs.anl.gov/mpi/index.htm MPI home

• http://www.mcs.anl.gov/research/projects/mpich2/ MPICH2
home

• References to MPI and MPICH2 tutorials and standards
information:

• http://www-unix.mcs.anl.gov/mpi/tutorial/

• http://ci-tutor.ncsa.uiuc.edu/login.php

• http://www.mpi-forum.org/

• References to books:

• Sweetman, Dominic (2006). See MIPS Run; Second Edition. San
Francisco. Morgan Kaufmann Publishers.

• Pacheco, Peter S. (1997). Parallel Programming with MPI. San Fran-
cisco. Morgan Kaufmann Publishers.

• Snir, Marc, et al. MPI-The Complete reference; Volume I, The MPI
Core. The MIT Press, 1998.

• Gropp, William, et al. MPI-The Complete reference; Volume II, The
MPI-2 Extensions. The MIT Press, 1998.

• Gropp, William, et al. Using MPI, Portable Parallel Programming with
the Message-Passing Interface. The MIT Press, 1999.

• Gropp, William, et al. Using MPI-2, Advanced Features of the Message-
Passing Interface. The MIT Press, 1999.
Chapter 7 Developing MPI Applications (PN 2906-03 Rev. 02) 123

http://www-unix.mcs.anl.gov/mpi/index.htm
http://www.mcs.anl.gov/research/projects/mpich2/
http://www-unix.mcs.anl.gov/mpi/tutorial/
http://ci-tutor.ncsa.uiuc.edu/login.php
http://www.mpi-forum.org/

MPI Reference Information
124 (PN 2906-03 Rev. 02) Chapter 7 Developing MPI Applications

Multithreaded Programming Considerations
Chapter 8 Writing Threaded Applications

In this section:

• Multithreaded Programming Considerations

• Optimizing Code Parallelization

• Ordering Rules: Memory and I/O Operations

• OpenMP and Hybrid OpenMP/MPI Applications

• Compiler Support

• Launching a hybrid OpenMP/MPI job using srun

Though the SiCortex software uses MPI to implement the interface
between user applications and the System’s communication architecture,
MPI is not necessary for writing parallel applications for the System.

Some parallel applications may have little or no need for communication
between processes, so wouldn’t need to use MPI. Yet users might still find
MPI a convenient tool for communication or coordination tasks (for
details, see Chapter 7, Developing MPI Applications on page 117).

Some parallel applications use TCP/IP methods, such as sockets, to com-
municate between processes. The System’s nodes support this model.
Indeed, the operating system transmits IP traffic between nodes directly
over the Interconnect Fabric (see page 8). This method can provide sub-
stantial bandwidth for large messages, but generally, MPI provides better
communication bandwidth for long messages and much shorter latency
for short messages.

Some parallel applications use multithreading. SiCortex supports the
POSIX Pthreads interface (explicit threads programming) and the
OpenMP threads model (but only for PathScale compilers).

Multithreaded Programming Considerations

Software developers who write multithreaded applications without using
OpenMP or POSIX Pthreads, need to understand how to use memory
barriers and sync operations to guarantee the correct ordering of events
any time one processor must communicate data in a specific order to
Chapter 8 Writing Threaded Applications (PN 2906-03 Rev. 02) 125

Multithreaded Programming Considerations
another processor. For details on these synchronization tools, see the
Linux Kernel Memory Barriers document at:

 http://kerneltrap.org/node/6431

Optimizing Code
Parallelization

These are some ways you can optimize parallelization of your code:

• Data dependencies

Different tasks in an application that use the same data storage
locations are one of the primary inhibitors to programming paral-
lelism.

• Load balancing

The goal of load balancing is to distribute work among all proces-
sors such that they remain busy all of the time.

• Partition the work equally among all processors

For array/matrix operations in which each processor performs
similar computations, distribute the data evenly among the pro-
cessors. (See Memory System Operation on page 132.)

For loop iterations during which similar operations are per-
formed, distribute the iterations across all processors.

• Assign work dynamically

Certain classes of applications tend toward load imbalance
regardless of whether data is evenly distributed across all proces-
sors:

sparse arrays – some processors work while others idle.

adaptive grid methods – some processors need to refine their
mesh while others don’t.

N-body simulations – some particles migrate between their origi-
nal processor domain and another processor’s domain, or the
particles owned by some processors require more work than
those owned by others.

When you know that the amount of work each processor per-
forms will vary or is unpredictable, use a scheduler-task pool
approach. As each processor finishes its work, have it queue to
get more work.

You may need to design an algorithm that detects and handles
load imbalances as they occur dynamically within the code.
126 (PN 2906-03 Rev. 02) Chapter 8 Writing Threaded Applications

http://kerneltrap.org/node/6431

OpenMP and Hybrid OpenMP/MPI Applications
 Ordering Rules:
Memory and I/O

Operations

The System’s ordering rules for memory and I/O operations are:

• To guarantee that memory operation A is visible to other proces-
sors or to an I/O device before memory operation B, a sync opera-
tion must intervene between A and B. Otherwise, if A and B are
not in the same 32-byte L1 data cache block, B may be executed
before A.

• All I/O writes complete in the correct order. Although the instruc-
tion sequence read_io(x); write_io(y) may reorder inversely, the
instruction sequence write_io(y); read_io(x) never reorders.
This ensures that I/O read operations are deferred until all I/O
and memory write operations have completed and are visible to all
of the node’s processors.

• I/O writes and reads to the L2 cache’s control registers (interrupt
and cache ECC properties) may reorder with respect to each other
and to I/O writes to other targets. So, to guarantee correct ordering
of I/O operations on the local control registers, a sync operation
must intervene between such I/O instructions. Memory writes are
always ordered with respect to I/O writes to any of the local con-
trol registers.

• The processors implement a hits under misses policy, which allows
memory reads to reorder with respect to each other in the absence
or a sync operation or other ordering event (e.g. the second read
operation depends on the result of the first).

OpenMP and Hybrid OpenMP/MPI Applications

The PathScale compilers support OpenMP, but the SiCortex GNU com-
pilers do not. If your code contains OpenMP directives or library calls,
compile with the compilers’ -mp option.

Hybrid OpenMP/MPI applications run on Sicortex systems as long as
only the main thread makes MPI calls. MPI_THREAD_FUNNELED is the tech-
nical term that describes the model to which the SiCortex MPI library
adheres. The bottom line is that if your code contains no MPI calls within
threaded loops, your application should run successfully.

Compiler Support The PathScale compiler suite implements OpenMP with supplied parallel
directives, runtime libraries, and environment variables.
Chapter 8 Writing Threaded Applications (PN 2906-03 Rev. 02) 127

OpenMP and Hybrid OpenMP/MPI Applications
Compiling and linking

Use the PathScale compiler’s -mp flag on both the compile and link lines.
Otherwise, the compilers will not honor OpenMP directives embedded in
the program or process the source code delimited by the OpenMP condi-
tional compilation sentinels ([!|C|c|*]$OMP or # pragma).

You can experiment with the compiler’s -OPT:early_mp option, which
forces the compiler to perform loop nest optimization (LNO) after it
transforms the code to run under multiple threads, so that the optimiza-
tion operates on the multithreaded forms of the loops.

When you compile and link with the mpi* compiler scripts (see page 119),
you needn’t specify the MPI library, unless you want to use the debug ver-
sion. However, when you compile and link with the PathScale compilers
directly, you must specify the MPI library, -lscmpi, on the link line. For
more information, see Compiling and Linking MPI Applications on page 118.

Setting the stack size limit for threads

If your threaded Fortran application fails with a segfault or similar sig-
nal, it may have exceeded the default stack size.

The Fortran compiler allocates function-local data on the stack by
default. OpenMP programs have a stack for the main thread of execution
and separate stacks for each additional thread. The Fortran runtime envi-
ronment automatically resizes these stacks as necessary, but the memory
reserves may be inadequate. You can set separate stack size limits for the
main thread, using the PSC_STACK_LIMIT environment variable, and for
the additional threads, using the PSC_OMP_STACK_SIZE environment vari-
able. These environment variables control the amount of memory the
Fortran runtime environment can use to resize the stacks.

. PSC_STACK_LIMIT applies to Fortran programs only. For C/C++
programs, the stack size for the main thread is typically set using
the ulimit command. PSC_OMP_STACK_SIZE applies to both Fortran
and C/C++ programs.

To print out the details on how the runtime environment is computing
the stack size to use, set the PSC_STACK_VERBOSE environment variable
before you run your application. It works for both PSC_STACK_LIMIT and
PSC_OMP_STACK_SIZE.

For complete details on using these environment variables, see the Path-
Scale Compiler Suite User Guide at www.pathscale.com/docs.html.
128 (PN 2906-03 Rev. 02) Chapter 8 Writing Threaded Applications

http://www.pathscale.com/docs.html

OpenMP and Hybrid OpenMP/MPI Applications
Setting the number of threads

The OMP_NUM_THREADS environment variable specifies the number of
threads to spawn per process. If you don’t specify OMP_NUM_THREADS at
runtime, the effective value is 6—the number of processors per node.

OMP_NUM_THREADS values greater than six indicate oversubscription, and
increasing values beyond six will probably degrade performance. How-
ever, setting OMP_NUM_THREADS=N, where 1 ≤ N ≤ 6, enables you to experi-
ment with scaling. To do so, set the OMP_NUM_THREADS environment
variable before you run your application.

$ export OMP_NUM_THREADS=4 # bash shell

$ setenv OMP_NUM_THREADS 4 # csh shell

Launching a hybrid
OpenMP/MPI job

using srun

You launch hybrid OpenMP/MPI jobs the same as you do MPI jobs
using srun. First you need to determine how many -n tasks to specify for
the job, which is obtained by:

 total number of nodes × 6 ⁄ OMP_NUM_THREADS

For example, to run a hybrid OpenMP/MPI application that runs thirty-
two MPI processes, one per node, with three threads per process:

$ export OMP_NUM_THREADS=3
$ srun -p sc1-mon6 -N 32 -n 64 ./myomp_mpi_app

To run a hybrid OpenMP/MPI application that runs thirty-two MPI pro-
cesses, one per node, with six threads per process:

$ export OMP_NUM_THREADS=6
$ srun -p sc1-mon6 -N 32 -n 32 ./myomp_mpi_app

SLURM’s resource manager imports whatever environment you export
before running the job, then starts the MPI processes on the nodes.
OpenMP takes care of the threads.
Chapter 8 Writing Threaded Applications (PN 2906-03 Rev. 02) 129

OpenMP and Hybrid OpenMP/MPI Applications
130 (PN 2906-03 Rev. 02) Chapter 8 Writing Threaded Applications

Node Details
Chapter 9 Processor and Memory System
Functional Features

In this section:

• Node Details

• Memory System Operation

• L1 Data Cache Stalls

• L2 Cache Memory Mapping Process

This chapter describes the functional features of node’s components and
how they impact application performance.

Node Details
The SiCortex node (Figure 4) is the heart of every SiCortex System. Each
node contains six MIPS64® processors. These processors support both
n32 and n64 ABI modes (for details, see page 135), and they provide data
compatibility with x86_64 Linux systems: little-endian data (see
page 136), IEEE 754 floating point data, and x86_64 C integer sizes.

Figure 4. Architecture of the SiCortex node
Chapter 9 Processor and Memory System Functional Features (PN 2906-03 Rev. 02) 131

Memory System Operation
• Each 64-bit MIPS processor runs at 500MHz. Every cycle, each
processor can issue two instructions

• One integer computation and one floating point computation

• One floating point computation and one floating point
load/store instruction

One of the dual instructions can be a double precision floating
point multiply/add computation.

• Each L1 instruction and data cache is 4-way set associative. Instruc-
tions and data each use 32KB of the aggregate 64KB cache.

• The shared L2 cache is 2-way set associative and implements cache
coherency between the processors. Each processor has 256KB of
the aggregate 1.5MB cache.

• Depending on the memory option selected, each node may have 2,
4, or 8 GB of main memory.

• The Fabric Links transfer aligned 64-bit data, via the DMA engine
and the Interconnect Fabric (not shown), to and from each node.
Data is transferred in packets, each of which can contain up to 128
bytes of data.

Memory System Operation

Cache operation significantly impacts application performance, so it’s
important to understand how the memory system works.

The memory system enforces a policy of data exclusivity that prevents
multiple processors from simultaneously accessing an application’s data
structures. To enable simultaneous access of an application’s read-only,
common data, that data needs to be loaded separately into each proces-
sor’s L2 cache.

Because each processor’s L1 data cache is a subset of its L2 cache:

• Reads of main memory always fill both the L2 cache and the L1
data cache.

• Any data that is in the L1 data cache is also in the L2 cache.

• Data removed from the L2 cache is also removed from the L1 data
cache, if it is there.
132 (PN 2906-03 Rev. 02) Chapter 9 Processor and Memory System Functional Features

Memory System Operation
 L1 Data Cache Stalls The processor’s L1 data cache operates under a hits under misses policy.
This means that successful accesses (hits) to the L1 data cache can con-
tinue while a single access remains pending (miss). A second access that
misses in the L1 data cache causes a stall that lasts until that access fin-
ishes successfully. The wait time depends on whether the processor must
access the L2 cache (≈12 cycles/24 ns) or main memory (≈45 cycles/90
ns). This policy can impact compiler behavior (for details, see page 29).

Because the L2 cache works with 64-byte data and the L1 data cache
works with 32-byte data (that is doubleword aligned), looping to fill arrays
has an associated hit/miss pattern. For example, a simple loop that reads
each byte to fill an array has this repeating hit/miss pattern:

L2/L1 missB0, L1 hitB1-31, L1 miss/L2 hitB32, L1 hitB33-63

Data returning to the L1 data cache blocks the cache, stalling other cache
accesses for three cycles, until the read/write operation completes and the
data is available in the cache. So it’s much more efficient to keep the pro-
cessor busy by issuing compute operations* between read/write opera-
tions than to issue consecutive read/write operations guaranteed to stall
and cause the processor to idle.

L2 Cache Memory
Mapping Process

The L2 cache uses a hash function to calculate the L2 cache index. To do
so, the hash function uses physical address bits 16:7 XOR 26:17 concate-
nated with bit 6, which identifies which of the two main memory modules
is the source/target.

Among other things, hashing reduces array collisions. For example, imag-
ine computing a=b+c across two 64KB arrays and storing the results in a
third. Without hashing, both of the original arrays map to the same index,
but with hashing, each maps to a different index.

Knowing how the L2 cache hash function operates, you can use the pro-
cessors’ performance counters to identify access patterns in your code
responsible for excessive L2 misses and fix them.

* The compute operations must not depend on the result of the preceding memory operation.
Chapter 9 Processor and Memory System Functional Features (PN 2906-03 Rev. 02) 133

Memory System Operation
134 (PN 2906-03 Rev. 02) Chapter 9 Processor and Memory System Functional Features

What is an ABI?
Chapter 10 Understanding the Application
Binary Interfaces

In this section:

• What is an ABI?

• Data Formats

• Register Usage

• Alignment Rules

• Overriding the Default ABI

• Interlanguage Programming Considerations

• Compiler Name Mangling

• Named Common Blocks in Fortran

• Mismatching Data Types

• Passing Arguments

• Returning Values

• Array and Structure Considerations

• Interlanguage Coding Examples

What is an ABI?

An Application Binary Interface (ABI) is a set of runtime conventions
that all tools which deal with a program’s binary representations follow.
These conventions include the way programs use processor registers, rep-
resent data types and memory addresses, and pass arguments when call-
ing functions.

An ABI is specific to its processor’s instruction set. A well-defined ABI
ensures that compiled programs work properly with the operating system
and that object code created by different compilers can interoperate.

The tools that must conform to the ABI include compilers, assemblers,
linkers, and language runtime support. Different sets of tools are interop-
erable if they implement the same ABI and generate files that can be used
in the same program.
Chapter 10 Understanding the Application Binary Interfaces (PN 2906-03 Rev. 02) 135

Data Formats
A compiler conforms to an ABI if it generates code that follows all of the
specifications defined by the ABI. A library conforms to an ABI if its
calling interfaces follow all of the specifications defined by the ABI. An
application conforms to an ABI if it was built using tools that conform to
the ABI, and it does not contain source code that specifically changes the
behavior specified by the ABI.

The System supports two ABIs: n32 and n64 (default). The main differ-
ence between them is the number of bits each uses to represent addresses.
The n64 ABI uses 64 bits (the pointer size is 8 bytes), and the n32 ABI
uses 32 bits. So n64-built applications can use a larger virtual address
space. Both ABIs use the 64-bit registers available in the MIPS64 archi-
tecture, and the n32 ABI imposes no limitations on the use of 64-bit data
types.

The SiCortex compiler suites can generate code conforming to either
ABI, selected at compile time. By default, the compilers use the n64 ABI.
When linking, all of the objects must have been compiled using the same
ABI. The System includes both n64 and n32 versions of the libraries.

Programmers who have used other MIPS systems may be familiar with
the o32 MIPS ABI. This is a 32-bit ABI and predates the availability of
64-bit registers in the MIPS architecture family. The System does not sup-
port the o32 ABI.

. For an in-depth treatise on the MIPS software standards imple-
mented by the ABIs see, Sweetman, Dominic (2006), See MIPS®
Run; Second Edition. San Francisco. Morgan Kaufmann Publishers.

Data Formats

The System’s processors operate on little-endian formatted data, which
stores the least significant bits of the data in the lowest byte address.
Floating-point data uses the IEEE 754 representation.

The System’s representation of binary data is identical to that used by the
x86_64 ABI.

. The pathf95 compiler’s -byteswapio option enables an application
to transparently read and write big-endian data.
136 (PN 2906-03 Rev. 02) Chapter 10 Understanding the Application Binary Interfaces

Data Formats
Table 22 shows the differences between the n32 and n64 ABIs.

Table 23 shows the differences in size between n32 and n64 ABIs for C
and C++ data types.

Table 24 shows the differences in size between n32 and n64 ABIs for
Fortran data types:

Table 22. Feature comparisons between ABIs

Feature n32 n64a

a the n64 ABI is the default for the supplied tools.

Compiler gcc/PathScaleb

b Includes scgcc and scpathscale compiler variants.

gcc/PathScaleb

FP registers 32 32
Argument registers 8 8
Debug format dwarf dwarf
ISAs supported MIPS 64 MIPS 64
32/64 mode 64b regs/32b addrs 64b

Table 23. C and C++ data type size differences in bytes

Data Type n32 n64

char 1 1
short int 2 2
int 4 4
long int 4 8

long long int 8 8
pointer 4 8

float 4 4
double 8 8
long double 16 16
enum 4 4

Table 24. Fortran data type size differences in bytes

Data Type n32 n64

LOGICALa 4 4

BYTE 1 1

INTEGERa 4 4

REALa 4 4
Chapter 10 Understanding the Application Binary Interfaces (PN 2906-03 Rev. 02) 137

Register Usage
Table 25 shows data type correspondence between Fortran, C, and C++
languages.

Register Usage

The n64 and n32 ABIs implement these rules of register usage:

• Up to eight arguments can be passed in registers.

• Argument slots and registers are 64 bits. Shorter arguments are
promoted to 64 bits exactly as if they were loaded into a register.

• For arguments passed in registers, the caller allocates no stack
space.

• Any floating point value occupying by itself one of the first eight
argument slots is passed in a floating point register. This rule
includes aligned double fields in arrays and structures, as long as

COMPLEXa 4 real +4 imaginary 4 real +4 imaginary

POINTER 4 8

a For data types LOGICAL, INTEGER, REAL, and COMPLEX, you can specify variable size (in
bytes 1|2|4|8) by appending *<bytes> to the end of the data type name; for example
REAL*8.

Table 25. Data type compatibility

Fortran C/C++

LOGICAL, LOGICAL*4a

a For data types LOGICAL, INTEGER, REAL, and COMPLEX, you can specify variable size (in
bytes 1|2|4|8) by appending *<bytes> to the end of the data type name; for example
REAL*8.

int/int, bool

BYTE char

INTEGER, INTEGER*4a int

REAL, REAL*4a float

COMPLEX, COMPLEX*4a struct {float r, i;}

CHARACTER char
CHARACTER*n see the code example for Fortran

Calling C in Interlanguage Coding
Examples on page 144

TYPE typedef struct

Table 24. Fortran data type size differences in bytes (Cont’d)

Data Type n32 n64
138 (PN 2906-03 Rev. 02) Chapter 10 Understanding the Application Binary Interfaces

Alignment Rules
the fields are neither members of a union nor variable arguments to
printf() or similar variable-argument functions.

Function prototypes are required to satisfy the rule that caller and
callee code must be compiled knowing the exact number of argu-
ments and data types they pass to each other.

Alignment Rules

The n64 and n32 ABIs implement these alignment rules:

• All stack areas are quadword (16-byte) aligned.

Since both n32 and n64 ABIs recognize 16-byte basic objects (such
as long double floating point), and these objects are 16-byte
aligned, the stack must be realigned to a multiple of 16 bytes for
each function's frame.

• All parameter registers are doubleword (8-byte) aligned.

• All basic data types are aligned in memory on boundaries that
match their byte-size.

Quad-precision floating-point parameters (long double and
REAL*16) are quadword (16-byte) aligned.

Overriding the Default ABI

The compilers and linkers generate n64 objects by default. To create n32
objects instead, specify that to the compiler.

• Building natively on the nodes

$ pathcc -isysroot=/.root0/opt/sicortex/rootfs/build.n32 \
 -mabi=n32 <myapp>

. The System Administrator must first have mounted the n32 build-
root on the nodes where you intend to build your n32 application.

• Building on the cross-development workstation

$ scpathcc --sysroot=/opt/sicortex/rootfs/build.n32 \
 -mabi=n32 <myapp>

The System provides sets of libraries built for both the n64 and n32 ABIs.
On the nodes the n64 libraries are in /lib64 and /usr/lib64, and the n32
libraries are visible in /lib32 and /usr/lib32, if the System Administra-
Chapter 10 Understanding the Application Binary Interfaces (PN 2906-03 Rev. 02) 139

Interlanguage Programming Considerations
tor has mounted the n32 buildroot on the nodes. Both /lib and /usr/lib
are symbolic links to the n64 directories.

See Running n32 Applications on page 22 for instructions on how to run
n32 applications.

Interlanguage Programming Considerations

Though all of the compilers provided with the SiCortex Development
Software Suites generate object files that are interoperable, users need to
be aware of some compiler behaviors that can impact mixed language
applications.

Compiler Name
Mangling

When generating linker symbols, both the Fortran and C++ compilers
mangle or decorate identifiers by adding underscore characters to them. The
Fortran compiler does this so that a Fortran function with a name like
open doesn’t collide with the C library function open during linking.

• Linking C++ and Fortran code

Use the "extern C" declaration, as described here, to make the
C++ compiler behave like C with respect to that declaration, and
then proceed as if linking C and Fortran.

The C++ compiler mangles symbol names to implement overload-
ing, and it adds to data structures information (such as virtual table
pointers) that other languages cannot understand. Using the
extern “C” declaration within C++ source code to generate a C-
compatible interface is the easiest way to interface with C and For-
tran.

To call a C function from a C++ program, declare the C function
with the extern “C” keyword. Likewise, to call a C++ function
from a C program, use the same extern “C” keyword to declare
the C++ function. To call a Fortran procedure, declare the proce-
dure with the extern “C” keyword, then follow the Fortran naming
conventions for appending underscores to global names (see C++
code example on page 142).

• Linking C and Fortran code

Use one of three options:

• Add underscores to the name within the C source code to match
the Fortran-generated name that the linker will see. By default,
Fortran appends one underscore to a name that contains no
underscore and two underscores to a name that already contains
140 (PN 2906-03 Rev. 02) Chapter 10 Understanding the Application Binary Interfaces

Interlanguage Programming Considerations
an underscore. For example, x becomes x_, x_y becomes x_y__,
and x_ becomes x___.

. Because the libraries supplied with the SiCortex software com-
ply with these name-mangling rules, we strongly recommend
that you avoid using compiler flags that alter the compiler’s
default method of applying underscores to symbol names. If
you encounter link problems that you cannot resolve any other
way, try the compiler’s -fno-second-underscore option.

• Compile with the Fortran -fdecorate option and provide a file
that instructs the compiler how to map specific Fortran identifi-
ers onto linker symbols. For example, an -fdecorate file con-
taining the lines:
x x

cprovided_y y

causes a Fortran identifier x to generate a linker name x, and a
Fortran identifier cprovided_y to generate a linker name y.

• Disable decoration by compiling with the Fortran
-fno-underscoring option. While a simple solution because it
forces identical Fortran-generated and C-generated linker names,
it is also risky because it makes it possible for a Fortran identifier
to collide with a name in the C library or in the Fortran runtime
libraries.

In general, all Fortran-generated code in an application must use
the same underscoring strategy, so this option is not feasible
unless certain Fortran-generated libraries cannot be recompiled
using the -fno-underscoring option.

Named Common
Blocks in Fortran

• Fortran named common blocks are represented in C/C++ by a
struct whose members correspond to those in the common block.

• The name of the C/C++ struct must match the Fortran-generated
common block name (using one of the three Linking C and Fortran
code options described on page 140). By default, Fortran generates
_BLNK__ for blank common.

Fortran Common Block:

INTEGER I
COMPLEX C
DOUBLE COMPLEX CD
DOUBLE PRECISION D
COMMON /COM/ i, c, cd, d
Chapter 10 Understanding the Application Binary Interfaces (PN 2906-03 Rev. 02) 141

Interlanguage Programming Considerations
Represented in C:

extern struct{
int i;
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

}com_;

Represented in C++:

extern "C" struct{
int i;
struct {float real, imag;} c;
struct {double real, imag;} cd;
double d;

}com_;

Mismatching Data
Types

• Make sure to match your argument data types. See Table 25 on
page 138.

• Neither Fortran nor C programs can call C++ functions that con-
tain objects with constructors/destructors, unless the initialization
in the main program is performed from a C++ program in which
constructors/destructors are properly initialized.

• To use the same header file in a mixed C and C++ application,
enclose the contents of the header file in an extern "C" {} declara-
tion, and then test for the __cplusplus macro:

#ifndef STDIO_H
#define STDIO_H

#ifdef __cplusplus
extern "C"{
#endif /*__cplusplus */
.
./* Functions and data types defined */
.
#ifdef __cplusplus
}
#endef /* __cplusplus */

endif

Passing Arguments • Fortran passes arguments by reference. C/C++ passes variables by
value, except for C++ variables that are explicitly declared as refer-
ences.

When calling from C/C++ to Fortran, use the & operator to pass
variables by address. When calling from Fortran to C/C++, declare
the C/C++ parameters with the * operator to specify that an
address was passed.
142 (PN 2906-03 Rev. 02) Chapter 10 Understanding the Application Binary Interfaces

Interlanguage Programming Considerations
Alternatively, you can use the Fortran %VAL function to pass Fortran
arguments explicitly by value to C/C++ functions. To do so, in the
Fortran program you enclose the parameter(s) to pass within
%VAL():

INTEGER*! I
LOGICAL*1 BVAR

 CALL CVALUE (%VAL (I), %VAL (BVAR))

• For strings declared as CHARACTER in Fortran, both a pointer to the
first character in the string and an integer argument representing
the length of the string are passed to the calling function. (The For-
tran CHARACTER type is represented as an array of the C char type,
but it is not guaranteed to be \0 terminated.)

The compiler places the length argument at the end of the parame-
ter list, following all other formal arguments. The length argument
is passed by value, not by reference.

• Fortran Cray pointers, declared with the pointer statement, corre-
spond to C pointers, but Fortran 90 pointers, declared with the
pointer attribute, are unique to Fortran. (Cray pointers are data type
extensions used to specify dynamic objects.) You declare these
pointer types this way:

Cray: POINTER (<POINTER>, <POINTEE>)

Fortran 90: POINTER :: [OBJECT_NAME]

Returning Values • Fortran, C, and C++ define functions and subroutines differently.
Fortran distinguishes between functions and subroutines according
to whether or not a value is returned. A Fortran subroutine is
equivalent to a C void function, and a Fortran function is equiva-
lent to a C function that returns a value.

To call a C or C++ function from a Fortran program, call the
C/C++ function as a function if it returns a value, but as a subrou-
tine if it doesn't.

To call a Fortran function from a C/C++ program, make sure the
called function returns the same data type. (See Table 25, Data type
compatibility, on page 138)
Chapter 10 Understanding the Application Binary Interfaces (PN 2906-03 Rev. 02) 143

Interlanguage Programming Considerations
• Use these C/C++ constructs for working with the Fortran COMPLEX
data type:

Array and Structure
Considerations

• The default initial index value for arrays differs between Fortran
and C/C++. Fortran array indexes start at 1, and C/C++ array
indexes start at 0. You can declare your Fortran 90 array indexes to
start at 0 to comply with the C/C++ convention.

• Wherever possible, use Fortran 77 type arrays because Fortran 90
arrays contain information that C cannot understand. For example,
Fortran arguments a(5,6), a(n), or a(1:*) pass a simple pointer
that corresponds well to a C array, but neither a(:,:) nor an allo-
catable array nor a Fortran 90 pointer array corresponds to any-
thing in C.

• Use the Fortran sequence keyword to increase the likelihood that
the layout of a Fortran 90 structure will match that of a C structure.

Interlanguage Coding
Examples

• Fortran Calling C

In the C function, csub_, called by the Fortran main program,
fcallsc, each argument is defined as a pointer, and the C function
name, csub_, is in lower case and has a trailing underscore
character.

PROGRAM FCALLSC
INTEGER :: IVAR = 7
INTEGER :: RET
REAL :: RVAR = 7.1
CHARACTER (LEN=8) :: CVAR= 'A STRING'

INTEGER, EXTERNAL :: CSUB

WRITE(6,*) 'IN FCALLSC: IVAR, RVAR, CVAR=', IVAR
& RVAR, CVAR

RET = CSUB (IVAR,%VAL(IVAR), RVAR, CVAR)
WRITE(6,*) 'IN FCALLSC: GOT RETURN CODE=', RET

STOP
END PROGRAM FCALLSC

/* csub_ */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

Fortran C/C++

COMPLEX – COMPLEX*8a

a See Table 25 on page 138 for details.

struct {float r, i;} x;

COMPLEX*16 struct {double d, di;} x;
144 (PN 2906-03 Rev. 02) Chapter 10 Understanding the Application Binary Interfaces

Interlanguage Programming Considerations
int csub_(int *ivar, int ivarval, float *rval,
char *cvar, int lencvar)

{
char *ccvar;

printf("In csub input length of char=%d\n",
 lencvar);

if (!(ccvar = malloc(lenccvar+1))){
printf("csub: malloc failure\n");
exit -1;

}
strncpy(ccvar, cvar, lencvar);
ccvar[lencvar] = '\0';
printf("In csub: ivar, ivarval, rvar, ccvar=%d %d %f

 %s\n", *ivar, ivarval, *rvar, ccvar);
free(ccvar);
return 0;
}

• C Calling Fortran

In the C main program, ccallsf, the call uses the & operator to ref-
erence the variables, and the Fortran subroutine name, fsub, is in
lower case and has a trailing underscore character:

/* ccallsf */
#include <stdio.h>
#include <string.h>

int main()
{
int ivar = 7;
float rvar = 7.1;
char *cvar = "A string";
int lencvar = strlen(cvar);

extern void fsub_(int *, float *, char *, int);

printf("In ccallsf: ivar, rvar, cvar=%d %f
 %s\n", ivar, rvar, cvar);

fsub_(&ivar, &rvar, cvar, lencvar);
return 0;

}

SUBROUTINE FSUB(IVAR, RVAR, CVAR)
INTEGER, INTENT(IN) :: IVAR
REAL, INTENT(IN) :: RVAR
CHARACTER(LEN=*), INTENT(IN) :: CVAR

WRITE(6,*) 'IN FUB, LENGTH OF CVAR =', LEN(CVAR)
WRITE(6,*) 'IN FUB: IVAR, RVAR, CVAR=', IVAR,

& RVAR, CVAR

RETURN
END SUBROUTINE FSUB
Chapter 10 Understanding the Application Binary Interfaces (PN 2906-03 Rev. 02) 145

Interlanguage Programming Considerations
146 (PN 2906-03 Rev. 02) Chapter 10 Understanding the Application Binary Interfaces

SLURM I/O Paths
Appendix A SLURM I/O Buffering

In this Appendix:

• SLURM I/O Paths

• Buffering Basics

• Buffering stdout in the task

• Buffering stdout in slurmstepd

• stderr

• Complications of Buffering

• Controlling Buffering

• Recommended Strategy

SLURM I/O Paths

When you start a job with srun, SLURM reads stdin from your terminal
and broadcasts it to each task. SLURM also collects stdout and stderr
from each task and returns it to your terminal. (A task is a user program
that runs on one or more compute nodes. In this context, task is synony-
mous with process.)

Figure 5. SLURM default I/O paths

Figure 5 shows the SLURM I/O paths for stdin, stdout, and stderr.
srun, the program that starts SLURM jobs, runs on the head node, and

Compute NodeHead Node

stdin

stdout

stderr

srun slurmstepd task

bufferbuffer

buffer
Appendix A SLURM I/O Buffering (PN 2906-03 Rev. 02) 147

Buffering Basics
slurmstepd, a daemon program that runs on each compute node, man-
ages the tasks that run on the node.

As shown in Figure 5 on page 147, stdin, stdout, and stderr do not
pass directly between srun and the task. Instead, each passes through
slurmstepd on the compute node. And, if data is written to stdout, by
default, it is buffered by both the task and slurmstepd.

Buffering Basics

Buffering is a strategy for managing I/O. When an I/O stream (like std-
out) is buffered, delivery of data written to the stream is delayed because
the data is stored in a buffer in memory and delivered later, when it is
more efficient or convenient to complete the I/O operation.

By default, stdin is not buffered, but stdout is.

Buffering stdout in
the task

By default, all Linux programs buffer stdout. This is true regardless of
whether the program is running under SLURM. There are two kinds of
buffering:

• Line buffering

When an I/O stream is line buffered, the Linux I/O libraries col-
lect bytes written to the stream in a buffer until a complete line has
been written (indicated by a newline (\n) character). Then the entire
line is delivered to its destination.

• Block buffering

When an I/O stream is block buffered, the I/O libraries collect
data written to the stream in a buffer until some fixed amount (for
example, 4096 bytes) has been collected. Then the entire block of
data is delivered to its destination.

By default, stdout is line buffered when it is connected to a terminal and
block buffered when it is connected to something else, such as a file or
another program.

Because stdout from the task is not directly connected to the user's ter-
minal, but instead to slurmstepd, it is, by default, block buffered in the
task.

Buffering stdout in
slurmstepd

When slurmstepd on the compute node receives data from the task's
stdout, it does not immediately send it on to srun. Instead, slurmstepd
148 (PN 2906-03 Rev. 02) Appendix A SLURM I/O Buffering

Complications of Buffering
buffers the data internally until it has a complete line, then sends the
entire line to srun.

stderr By default, the task does not buffer stderr. Characters written to stderr
are immediately sent to slurmstepd. However, slurmstepd line buffers
stderr from the task, just as it does stdout.

Complications of Buffering

• Lost output

If a task crashes, any output buffered in the task, but not yet deliv-
ered to slurmstepd, is lost.

• Delayed output

In the default case, stdout from the task is block buffered. The size
of the buffer is likely to be quite a bit larger than a line of output
from a task. So a program could write many lines to stdout before
a block of data is delivered and displayed on the screen. This
behavior can cause confusion.

Some users have concluded that SLURM does not deliver any out-
put to the screen until it has obtained all its input from stdin. This
is not the case, but appears so if the task generates less than one
block of output before all input has been received.

Controlling Buffering

There are several things you can do to control buffering.

• Flush the task buffers

You can call fflush(stdout) at any point in the program to deliver
immediately to slurmstepd the data currently buffered in the task.

• Disable task buffering

You can call setvbuf (stdout, 0, _IONBF, 0) at the beginning of
a C/C++ program to disable any buffering of stdout in the task.
With buffering disabled, each byte written to stdout is delivered
immediately to slurmstepd.

For Fortran programs, call a C routine to invoke setvbuf (stdout,
0, _IONBF, 0) at program start. Make sure you add an underscore
character to the function’s name in your C routine, for example,
extern void setbuf_ (), to accommodate the Fortran compiler’s
Appendix A SLURM I/O Buffering (PN 2906-03 Rev. 02) 149

Recommended Strategy
name mangling rules (for details, see Compiler Name Mangling on
page 140).

• Disable line buffering in slurmstepd

You can pass the -u (or --unbuffered) switch to srun:

srun -p sc1 -N 108 -u my_program

to suppress line buffering in slurmstepd. With line buffering dis-
abled, slurmstepd immediately passes all data it receives from the
task on stdout or stderr to srun.

Recommended Strategy

• Program/task crashes

If your program crashes, you need unbuffered output. Either write
to stderr or disable buffering in the task. Either method prevents
loss of output when a program crashes.

When a task crashes, slurmstepd still delivers all output that it
receives, so you don't need to use the --unbuffered switch.

When a task hangs, but does not crash, you may need to scancel it
on the compute node to flush slurmstepd's line buffers (for details,
see Canceling a Job: scancel and ^C on page 20).

• Program monitoring

For new program development, the best way to generate monitor-
ing output is to write it to stderr.

For existing programs that write monitoring output to stdout, dis-
able buffering in the task as previously described.

• Non line-oriented output

Output that is not line-oriented, such as spinners and curses
escapes, must be completely unbuffered. A program that generates
such output should either:

• Write to stderr

or

• Disable buffering in the task and then invoke srun using the
 --unbuffered switch to suppress line buffering in slurmstepd.
150 (PN 2906-03 Rev. 02) Appendix A SLURM I/O Buffering

Index

Symbols
./configure

incorrect default values 36
./foo cannot execute binary file error 37
^C command, use with SLURM 21

A
ABI

alignment rules 139
and compilers 12, 136
changing the default 33, 35, 139
comparison of data sizes between supported

interfaces 137
data type compatibility between supported

interfaces 138
default 26, 136
defined 12, 135
differences between supported interfaces 136
features comparison between supported

interfaces 137
interlanguage programming

considerations 140
library locations 139
n32 ABI 11, 131, 136
n64 ABI 11, 131, 136
o32 ABI 136
object file compatibility 12, 136
register usage 138
supported interfaces 136
understanding the interfaces 135

Alignment rules 139
Application Binary Interface. See ABI
Application development environment

communications libraries 13
cross-development software suite 11
data formatting libraries 13
native software suite 11
performance tools 14
software suites 11

Application performance tools
See also, Performance tools
described 57

hardware performance counters 63
software tools 59

Applications
see also Running applications
see also Threaded applications
building on the cross-development

workstation 34
compiling and linking 25
executables, location of 15, 17, 35
launching multinode jobs 17
mixed language programs 26, 140
MPI, developing 117
n32, building 139
n32, running 22
porting 32
register usage 138
running 15
troubleshooting SLURM jobs 24
writing threaded applications 125

ar variable cross-compile error 36
Archive/no index cross-compile error 36
Array optimizations

avoiding cache collisions 56
indexing 56
unit stride 56

Autotools
changing applications built with 33, 34
cross-compiling errors 35
makefiles 33, 34
specifying a cross-compiler 35
specifying the host and build

environments 35

B
Build environment, specifying 35
Build optimizations

gcc compiler 54
PathScale compiler 53

Building applications
cross-compiling, see Building applications on

the cross-development workstation
n32 33, 35, 139
Index (PN 2906-03 Rev. 02) i

natively, see Building Applications natively
reference information 37
simple methods, summary of 31

Building applications natively
changing the default ABI 139
compiler/linker options 32
linking user-supplied header files 33
linking user-supplied Iibraries 33
specifying a compiler 33
with autotools 33

Building applications on the cross-development
workstation

changing the default ABI 35, 139
specifying a compiler 35
specifying the host and build

environments 35
troubleshooting 35
using the sc prefix 34
with autotools 34

C
C/C++ language extensions, not supported by

PathScale 26
Cache coherency 132
Communication libraries 13
Compilers

ABI and 12, 136
C/C++ language extensions 26
choosing a compiler 25
compiler options 26
debugging options 27
default optimization 27, 53
described 12
embedding gprof information 33
enabling debugging 33
GNU tools 12, 26
mismatched data types 142
mixed language programs 26, 140
mpi compiler scripts 31
name mangling 140
named common blocks in Fortran 141
object file compatibility 12, 26
OpenMP 26
pathf95 fortran 26
PathScale C/C++ and libm/libscm 26
PathScale compiler suite 12

Compiling and linking
applications 25
building natively with autotools 33
changing the default ABI 35, 139
compile/link options 32
cross-compiling with autotools 34
debugging with optimization options 39
linking user-supplied header files 33
linking user-supplied Iibraries 33
linking with the MPI library 119
MPI applications 118
MPI compiler scripts 119
reference information 37
specifying a cross-compiler 35
specifying a native compiler 33
summary of simple build methods 31

Configure script
autotools, using 34
configure.in and configure.ac files 33, 34
specifying a cross-compiler 31

Cross-compiling
./configure default values error 36
./foo cannot execute binary file error 37
ar variable error 36
archive/no index link error 36
autotools, using 34
autotools-based errors 35
changing the default ABI 139
compile/link options 32
compiler, specifying a 35
configure script, building with a 37
header files or libraries not found error 36
host and build environments, specifying 35
linking user-supplied header files 33
linking user-supplied Iibraries 33
mpi compiler scripts, using 31
reference information 37
sc prefix 34
simple build methods, summary of 31
trouble shooting autotools-based

problems 35
uname autodetect error 35

Cross-development
debugging via gdbserver 14
debugging via TotalView 43
defined 11
ii (PN 2906-03 Rev. 02) Index

scman command 13
software suite 11
toolkit, installing 25

D
Data exclusivity, memory system policy 132
Data formatting libraries 13
Debugging

compiler options 27
default behavior 27
DUMA (Detect Unintentional Memory

Access) 45
enabling 33
gdb 14, 39, 40
gdbserver 14, 41
memory 45, 47
memory corruption errors 60
mudflap, memory debugging tool 47
optimization levels and 39
remotely with gdb 41
tips 39
TotalView 43

DUMA (Detect Unintentional Memory Access)
default behavior 45
described 45
linking with the libduma library 45
listing all memory allocations, example of 46
memory underruns, detecting 46
preloading the duma library, example of 45
running gdb on core dump, example of 46

E
Ethernet I/O ports 10
External file systems

example I/O connections 10
executables, location of 15, 17

F
Fabric links, described 132
FabriCache

<partition>_clients, finding 23
controlling jobs 24
data, accessing 23
described 10, 23
file system location 23

running a job 23
working directory, specifying 23

Fast timers
described 56
sctick.h 56

File systems
example I/O connections 10
external 10, 35
FabriCache 23
internal 10
Lustre 10
node rootfs 10

Fortran compiler
missing symbols and the -fno-second-
underscore flag 27

passing array sections 27
supported 26

G
gcc compilers

fno-peephole* flags 29
fno-schedule-* flags 29
optimization levels 54
recommended flags 29

gdb debugger
fortran derived data types, and 40
handling core dumps 40
native debugging 40
remote debugging with gdbserver 41
using stack traces 41

GNU tools
compilers 12
gdb 14, 39
libraries 12
libtool 116
list of 12
utilities 12

GPTL
automating instrumentation 90
calling sequence, general 87
described 87
Fortran entry point names 87
OpenMP, example of 88
output, example of 90
PAPI counters, accessing 88
thread safety 88
Index (PN 2906-03 Rev. 02) iii

timer output, default 88
usage details 87
user-named timers 87

gptlex
auto-instrumenting source code 91
command synopsis 91
count program, application example 92
default mode 90
described 59, 90
hardware performance events, measuring 91
modifying a manually instrumented

executable 91
output filename, default 91
output, example of 92
run command, example of 90
usage details 90
usage example 62

H
Hardware performance counter events

described 95
displaying 63
node counter events 95
performance counter and PAPI preset

events 97
types of 63

Hardware performance counters
node counters 64
perfmon2 14
processor counters 63

Head node, described 16
Header files or libraries not found error 36
Hits under misses, memory system policy 133
Host environment, specifying 35
Host name, see Internal node name
Hpcex

command synopsis 74
default mode 76
described 58
example results 99
floating-point exceptions, capturing 76
MPI run, example of 77
output filename, default 74
serial run, example of 75
usage details 74

usage example 61
workflow, example of 75

HPCToolkit
hpcex 58, 74
hpcproftt, command synopsis 74
hpcstruct, command synopsis 74
hpcviewer, command synopsis 74
workflow 75

Hybrid OpenMP/MPI applications
compiler optimization 128
compiler support for 127
launching with srun 129
MPI library, using 128
OMP_NUM_THREADS environment variable 129
OpenMP compiler flag 128
setting stack size limit for threads 128

I
I/O buffering

controlling 149
default, complications of 149
SLURM default I/O paths, diagram of 147
stdout issues 147

Interconnect fabric
described 8
FabriCache and 10
node interface components 7, 8

Interlanguage programming considerations
array and structure issues 144
coding examples 144
compiler name mangling 140
mismatched data types 142
named common blocks in Fortran 141
passing arguments 142
returning values 143

Interlibrary dependencies, linking
considerations 33, 115

Internal file systems
FabriCache 10
node rootfs 10

Internal node name, defined 16
Ioex

command synopsis 93
described 59
MPI/threaded application statistics 93
output filename, default 93
iv (PN 2906-03 Rev. 02) Index

output, example of 93
run command, example of 93
seek_strided, application example 93
usage details 93
usage example 62

K
Kautz graph 8, 9
kill/skill commands, and SLURM 21

L
L1 data cache

access stalls 133
coherency 132
described 132
hits under misses policy 133
repeating hit/miss pattern 133
return data stalls 133

L1 instruction cache, described 132
L2 cache

attributes 132
coherency 132
described 132
hash function 133
memory mapping process 133

Libraries
communications 13
data formatting 13
fast blas/atlas, linking 114
GNU 12
libm and libscm, using 26, 103
libscfstr (fast tuned string library) 111
libscs (tuned science library) 107
libscstr (tuned string library) 110
linking interdependencies 33, 115
location of 139
lscmpi (optimized MPI) 13, 103, 116, 118
lscmpi_debug (debug MPI) 13, 103, 116, 118
math and science 13, 112
static versions, linking with 103

Libscm (tuned math library)
autolinking with PathScale compilers 28, 106
Fortran access to 106
header file 106
libm, using with 106
location of 139

round-to-nearest mode 104
tuned functions, list of 104

Libscmpi (MPI library)
C++ considerations 119
debug version 118
including in source code 119
linking 119
location of 139
optimized version 118

Libscs (tuned science library)
C/C++ header file 107
conv2d_dp 109
conv2d_sp 108
conv3d_dp 110
conv3d_sp 108
described 107
Fortran header file 107
Fortran, calling from 107
library dependencies 107
linking 107
location of 139
tuning details 108

Libscstr (tuned string library)
described 110
fast version 111
LD_PRELOAD environment variable, causing

existing executables to use the tuned string
functions 111

linking 111
sc_memcpy 111
sc_memset 112
sc_strcpy 111
source code modification 111
static version, linking 111
tuned functions, list of 111

Linking
fast blas/atlas libraries 114
GotoBLAS 112
interlibrary dependencies and 115
LAPACK 112
libm and libscm 26, 106
libscfstr 111
libscstr 111
MPI libraries 116, 119
object file compatibility 136
PETSc 114
Index (PN 2906-03 Rev. 02) v

ScaLAPACK 113
SPRNG 113

Logging on to the System
accessing the head node 16
system id 16

Lustre file system
FabriCache 10
shared, external 15, 17

M
Main memory

described 132
FabriCache file system and 10
simultaneous access of 132

Man pages, scman vs. man command 13
Managing jobs

multinode 20
single-node 22

Math and science libraries
described 112
fast blas/atlas, linking 114
libscm (tuned libm) 104
libscs (tuned science library) 107
location of 139
PETSc, linking 114

Memory barriers in parallel programming 126
Memory debugging

DUMA (Detect Unintentional Memory
Access) 45

mudflap 47
Memory system

cache coherency 132
data exclusivity policy 132
hits under misses policy 127, 133
L1 and L2 cache interactions 133
L1 data cache stalls 133
L2 cache hash function 133
L2 cache memory mapping process 133
operation 132
ordering rules for memory and I/O

operations 127
simultaneous access of main memory 132

Mixed language applications
and Fortran runtime libraries 26
compilers and 26
programming considerations 140

Module id, described 16
MPI applications

compiler scripts 119
compiling and linking 116, 118
data alignment 121
debugging hook 120
-DMPICH_IGNORE_CXX_SEEK 119
early send and posted receive queues 120
globally synchronized time 120
header files 119
including the MPI library in source files 119
libraries 13, 103, 116, 118
linking with the MPI library 119
long message bandwidth 121
MPI C++ namespace issues 119
mpi compiler scripts, using 31
MPI library 118
MPI library and C++ considerations 119
noncontiguous, derived data types 122
OpenMP hybrids 127
overlapping communication and

computations 121
performance tips, see MPI performance tips
reference information 123
selecting a compiler 31
selecting a cross-compiler 31
short message latency 121
SiCortex MPI features 118
SiCortex MPI implementation 117
thread support 122
using MPI_Sendrecv() 121

MPI debugging hook, SCMPI_DEBUG_WAIT 120
MPI performance tips

data alignment 121
early send and posted receive queue sizes 120
globally synchronized time 120
long message bandwidth 121
noncontiguous, derived data types 122
overlapping communication and

computations 121
short message latency 121
using MPI_Sendrecv() 121

Mpipex
aggregate size of sent messages, example

of 73
aggregate time of MPI calls, example of 73
vi (PN 2906-03 Rev. 02) Index

callsite message sent statistics, example of 74
callsite time statistics, example of 74
callsites identification, example of 73
command synopsis 71
default output filename 71
described 58
information reported 72
MPI time, example of 72
output example 72
output filename, default 71
static executables, working with 72
usage details 71
usage example 61

Mudflap (memory debugging tool)
application example 47
command synopsis 47
pointer/array errors, finding 48
runtime behavior, controlling 47

Multinode applications
allocating resources 19
batch jobs, running 19
canceling a job 20
described 17
kill/skill commands, and 21
managing jobs 17, 20
monitoring a job 20
monitoring node and partition status 21
running 17
specifying a partition 16
srun command 18

Multithreading
hybrid OpenMP/MPI applications 127
OpenMP 125
programming considerations 125
Pthreads 125
setting stack size limit for threads 128

N
n32 ABI 11, 131, 136, 138, 139
n64 ABI 11, 131, 136, 138, 139
Native application development environment

native, defined 11
software suite 11

Node counter events
default mode 96
described 64

event qualifiers 97
naming convention 96
partial listing of 96
usage 95

Node counters
conditional sampling 96
conditional sampling, examples of 97
described 64
operation 96

Node id, described 16
Node rootfs 10
Nodes, see SiCortex node

O
Object file compatibility 12, 26, 136
OpenMP

compiler flag 88, 128
compiler optimization 128
compiler support for 12, 127
launching with srun 129
MPI hybrids 127
multithreading 125
OMP_NUM_THREADS environment variable 129
setting stack size limit for threads 128

Oprofile
callgraph profiling 95
described 59, 94
ohelp 95
opcontrol 95
oreport 95
usage details 94

Optimizing application performance
application performance tools 57
array optimizations 56
build optimizations 53
compiler defaults 27
described 51
effects on debugging 39
fast timers, using 56
general procedure 52
L2 hash function 133
libscm (tuned libm) 104
libscs (tuned science library) 107
libscstr (tuned string library) 110
loop optimization 55
memory access optimizations 55
Index (PN 2906-03 Rev. 02) vii

memory corruption errors, uncovering 60
tips, general 55

P
PAPI preset events, list of 98
Papiex

-a option 71
cache metrics, example of 66
characterizing mixed instructions, example

of 65
characterizing MPI, I/O, and threaded

functions, example of 69
command synopsis 64
compute density metrics, example of 66
default mode 64
derived metrics, example of 65
described 58
estimated ideal time, example of 68
estimated loss in application performance,

example of 67
measuring specific regions of code 70
output example 64
output filename, default 64
task memory usage, example of 69
TLB statistics, example of 67
usage details 64
usage example 61

Partitions
preconfigured samples 16
specifying 16

pathopt2, PathScale compiler tool 28
PathScale compilers

coding errors, detecting 29
feedback directed compilation 28
libscm, autolinking 28, 106
licensing trigger 27
missing symbols and the -fno-second-
underscore flag 27

named common blocks in Fortran 141
OpenMP 12, 26, 88
optimization flag, effects of 53
optimization levels 53
options 28
pathf95 25
pathf95 -LANG:copyinout= option and

passing array sections 27

pathopt2 utility 28
recommended compiling scheme 28
sqrt.d, using 28
uninitialized variables, detecting and

handling 29
unsupported C/C++ language extensions 26

PCIe I/O ports 10
perfmon2 14
Performance tools

description summaries 58
gptl 87
GPTL library 59, 87
gptlex 59, 90
hardware 14
hardware performance counter events,

displaying 63
hpcex 58, 74
invoking 60
ioex 59, 93
memory corruption errors in code, symptoms

of 60
mpipex 58, 71
node counter events 64, 95
oprofile 59, 94
papiex 58, 64
pfmon 59, 94
software 14, 58
summary 14
TAU library 79
tauex 58, 81
usage examples 61
Vampir 59, 82

Performance tuning
array optimizations 56, 133
build optimizations 53
described 51
fast timers, using 56
general tips 55
L2 hash function 133
libscm (tuned libm) 104
libscs (tuned science library) 107
libscstr (tuned string library) 110
loop optimization 55, 133
memory access optimizations 55
memory system operation, and 132
viii (PN 2906-03 Rev. 02) Index

Pfmon
described 59, 94
documentation for 94
usage details 94
usage example 63

Porting applications 32
POSIX Pthreads 125
Processor counter events, list of 97
Processor counters, described 63
Processors, described 132
Profilers, description 52

R
Reference information

compiling and linking 37
MIPS 136
MPI 123

Remote debugging
gdbserver 14, 41
TotalView 43

Root file system, nodes 10
Running applications

accessing executables 15
from an external file system 15
log on command, example of 16
logging on to the System 16
multinode jobs 17
n32 22
porting existing programs 32
single-node jobs 22
SLURM job manager 17
specifying a partition 16
srun command 17
troubleshooting SLURM jobs 24

S
sc prefix

cross-compiling 34
described 13, 34
mpi compiler scripts, using 31
scman 13

scancel command 20
SCB counter events

see also, node counter events
described 95

SCMPI_DEBUG_WAIT 120

scontrol command 20
sctick fast timers 56
sctick.h 56
SiCortex MPI

debugging hook 120
described 117
MPI-2 features, supported 118
thread support 122

SiCortex node
accessing 16
architectural diagram 131
components 7
described 131
fabric links 132
head node, described 16
interconnect fabric 8
L1 cache 132
L2 cache 132
main memory 132
module id 16
naming convention 16
node id 16
overview diagram 8
processors 132
rootfs 10
system id 16

sinfo command 21
Single-node applications

launching without SLURM 22
monitoring and controlling without

SLURM 22
salloc command 22

SLURM (Simple Linux Utility for Resource Man-
agement)

allocating resources 19
and the ^C command 20, 21
batch jobs, running 19
canceling a job 20
controlling I/O buffering 149
default I/O paths, diagram of 147
described 17
I/O buffering, complications of 149
kill/skill commands, and 21
managing job 20
monitoring a job 20
monitoring node and partition status 21
Index (PN 2906-03 Rev. 02) ix

running applications 17
salloc command 22
sattach command 21
sbatch command 19
scancel command 20
scontrol command 20
sinfo command 21
single-node applications and 22
specifying a partition 16
squeue command 20
srun command 18
stdout buffering 148
STDOUT/STDERR, unexpected behavior 18
troubleshooting SLURM jobs 24
working directory, specifying 23

Software performance tools
library-based tools 59
not requiring manually instrumented code 59
profilers, described 52
requiring manually instrumented code 59
types 14

Software suites
compilers 12
cross-development 11
libraries 11
native 11
performance tools 14
sc prefix 13

squeue command 20
srun command 18
Stack traces, using gdb 41
System architecture

example I/O connections 10
fabric link attributes 132
interconnect fabric 7, 8
internode data transfers 132
L1 cache attributes 132
L2 cache attributes 132
main memory configurations 132
modules 8
nodes 131
processor capabilities 132

System I/O
Ethernet ports 10
external, shared file systems 15
FabriCache 10

Lustre 10
PCIe ports 10
peripheral connections 10

System id, described 16

T
TAU

auto-instrumenting code, examples of 79
automating instrumentation 79
compiling and instrumenting source code 79
default options 81
instrumenting C++ and OpenMP codes 79
instrumenting source code 79
noninstrumented executables, limited

performance data and 80
tau compiler scripts 79
tau options, partial list of 79
toolkit, described 58
usage considerations 80
usage details 79

Tauex
command line options 81
command synopsis 81
described 58
generating profile and trace data 81
output filename, default 82
output files, location of 82
trace data, viewing 82
usage details 81
usage example 62
viewing results 82

TCP/IP methods for parallelizing
applications 125

Threaded applications
communication between processes 125
data dependencies 126
hybrid OpenMP/MPI 127
load balancing 126
memory barriers 126
multithreading and 125
ordering rules for memory and I/O

operations 127
programming considerations 125
setting stack size limit for threads 128
SiCortex MPI, and 122
x (PN 2906-03 Rev. 02) Index

TCP/IP and 125
writing 125

TotalView debugger
application executables, location of 43
command synopsis 44
compiler options 43
described 43
feature exclusions 43
front-end requirements 43
remote shell, creating 43
setting up the environment 43
starting a job 44
stopping a job 45
workstation, install location 43
X display, opening 44

Troublehooting autotools-based cross-compiled
applications

./foo cannot execute binary file error 37
ar variable error 36
archive/no index link error 36
build system incorrectly detects the target

type 35
header files or libraries not found error 36
incorrect default configure values error 36
using a configure script to build 37

Troubleshooting SLURM jobs
disabled nodes and links 24
node or link failures 24

U
uname cross-compile error 35
Using a configure script to build a cross-compiled

executable 37

V
Vampir/vampirtrace

autoinstrumentation, examples of 83
auto-instrumenting source code 83
C/C++ code, manually instrumenting 85
compiling with the vampirtrace compilers 84
default underlying compiler, changing 83
described 59
disabling manually instrumented code 85
Fortran code, manually instrumenting 85
hardware performance counters, using 86

instrumenting and linking applications to the
vampirtrace library 83

licensing 82
location of subroutine calls in source code,

instrumenting 85
MPI activity, traces 84
n32 applications, compiling 83
OpenMP code, manually instrumenting 85
output buffer control variables 84
output buffering, controlling 84
output data buffering 84
output filename, default 82
output trace files, location of 82
PAPI events, using 86
source code, manually instrumenting 85
usage considerations 84
usage details 82
usage example 62
user-defined events, instrumenting 85
vampirtrace compiler wrapper scripts,

described 83
vampirtrace compilers, linking only with 84
viewing results 86
vng visualization client 86
vngd analysis server 86
-vt: options, examples of 83
workflow 82
Index (PN 2906-03 Rev. 02) xi

xii (PN 2906-03 Rev. 02) Index

	SiCortex® System Programming Guide
	Trademarks
	Copyrights
	Disclaimer
	Contacting SiCortex and Getting Support
	What’s this Book About and Who’s it for?
	Conventions of Notation

	Table of Contents
	Chapter 1 Introducing the SiCortex System
	Overview of the SiCortex System Architecture
	Node Components
	The Interconnect Fabric
	System I/O

	The Application Development Environment
	Software Development Suites
	Compiler Suites
	GNU Tools and Utilities
	Libraries
	Debugging Tools
	Performance Tools

	Chapter 2 Running Applications
	Logging on to the System
	Connecting to a Head Node
	Specifying a Partition

	Running and Managing Multinode Applications
	Starting a Multinode Job
	Batch Jobs
	Allocating Resources

	Managing Multinode Jobs
	Monitoring a Running Job: squeue and scontrol
	Canceling a Job: scancel and ^C
	Monitoring Node or Partition Status: sinfo

	Running and Managing Single-Node Applications
	Running n32 Applications
	Using a FabriCache File System
	Getting data in and out of FabriCache
	Running a FabriCache job
	Controlling FabriCache jobs

	Troubleshooting SLURM Jobs
	Node or link failures
	Disabled nodes and links

	Chapter 3 Compiling and Linking Applications
	Installing the Cross-Development Toolkit
	Choosing a Compiler
	Using Compiler Options
	PathScale Compiler Options
	GNU Compiler Options

	Summary of Simple Build Methods
	Porting or Building an Application Natively on the System
	Building an Application on the Cross-Development Workstation
	Troubleshooting Autotools-Based Cross-Compile Errors
	Build system incorrectly detects the target type
	./configure uses incorrect default values
	./configure ignores the AR environment variable
	Build system uses wrong version of AR or RANLIB
	Link error: archive with no index
	Including/linking against previously compiled header or library files
	Configure tries to run an executable during the build process
	Application uses a configure script to build

	Compiling Reference Information

	Chapter 4 Debugging Applications
	Compiling Tips for Debugging
	Debugging with gdb
	Debugging Natively with gdb
	Handling Core Dumps
	Using Stack Traces

	Debugging Remotely with gdb

	Debugging with TotalView
	Environment Setup
	Starting a Job

	Memory Debugging with DUMA
	Memory Debugging with Mudflap

	Chapter 5 Optimizing Application Performance
	General Procedure for Optimizing an Application
	Build Optimizations
	General Optimization Tips
	Memory Access Optimizations

	SCTICK Fast Timers
	Application Performance Tools
	Invoking the Tools
	Displaying Available Hardware Performance Counter Events
	Using Papiex
	Command synopsis
	Output
	Example
	Derived Metrics
	Characterizing Mixed Instructions
	Compute Density Metrics
	Cache Metrics
	TLB Statistics
	Estimated Loss in Application Performance
	Estimated Ideal Time
	MPI, I/O, and Threaded Functions
	Task Memory Usage

	Using Calipers to Measure Specific Code Regions

	Using Mpipex
	Command synopsis
	Output
	Working with Static Executables
	Example
	MPI Time
	Callsites Identification
	Aggregate Time of MPI Calls
	Aggregate Size of Sent Messages
	Callsite Time Statistics
	Callsite Message Sent Statistics

	Using HPCex
	Command synopsis
	Output
	Typical Workflow
	Serial Run Example
	MPI Run Example

	Using TAU
	Compiling and Instrumenting Source Code
	TAU Facts to Consider

	Using Tauex
	Command synopsis
	Input
	Output
	Viewing Results

	Using Vampirtrace
	Output
	Compiling and Instrumenting Source Code
	Vampirtrace Facts to Consider
	Output Data Buffering
	Manually Instrumenting Source Code
	Using the Hardware Performance Counters
	Visualizing Results

	Using GPTL
	General Calling Sequence
	Thread Safety
	Default Timer Output
	Accessing PAPI Counters
	Example

	Using Gptlex
	Command synopsis
	Output
	Measuring Hardware Performance Events
	Autoinstrumenting Source code
	Example

	Using Ioex
	Command synopsis
	Output
	Example

	Using Pfmon
	Using Oprofile
	Hardware Performance Counter Events
	Node Counter Events
	Processor Counter Events and PAPI Preset Events

	Performance Tool Program Examples
	hpcex float example
	hpcex pi example
	ioex seek_strided example

	Chapter 6 Using the Optimized Math and Science Libraries
	Libscm Tuned Math Library
	Accuracy of libscm Functions
	Accessing the libscm Library
	Fortran access to libscm
	C/C++ access to libscm

	Libscs Tuned Scientific Library
	Libscstr and Libscfstr Tuned String Libraries
	Math and Science Libraries
	Linking the Optimized Atlas Library for Fast BLAS
	Linking the PETSc Library
	Building Natively on the Nodes
	Building on the Cross-Development Workstation

	Linking Interdependent Libraries

	Chapter 7 Developing MPI Applications
	SiCortex MPI Implementation
	MPI Feature Support
	Compiling and Linking MPI Applications
	MPI Library
	MPI Header Files
	MPI Library Linking Order
	MPI Compiler Scripts

	MPI Debugging Hook
	MPI Performance Tips
	Thread Support
	MPI Reference Information

	Chapter 8 Writing Threaded Applications
	Multithreaded Programming Considerations
	Optimizing Code Parallelization
	Ordering Rules: Memory and I/O Operations

	OpenMP and Hybrid OpenMP/MPI Applications
	Compiler Support
	Compiling and linking
	Setting the stack size limit for threads
	Setting the number of threads

	Launching a hybrid OpenMP/MPI job using srun

	Chapter 9 Processor and Memory System Functional Features
	Node Details
	Memory System Operation
	L1 Data Cache Stalls
	L2 Cache Memory Mapping Process

	Chapter 10 Understanding the Application Binary Interfaces
	What is an ABI?
	Data Formats
	Register Usage
	Alignment Rules
	Overriding the Default ABI
	Interlanguage Programming Considerations
	Compiler Name Mangling
	Named Common Blocks in Fortran
	Mismatching Data Types
	Passing Arguments
	Returning Values
	Array and Structure Considerations
	Interlanguage Coding Examples

	Appendix A SLURM I/O Buffering
	SLURM I/O Paths
	Buffering Basics
	Buffering stdout in the task
	Buffering stdout in slurmstepd
	stderr

	Complications of Buffering
	Controlling Buffering
	Recommended Strategy

	Index

