
~8X8~

~ ~
f ~
I ~
~ ~ I . ~
11 . fi
~. ~
~ ~
X8XaX8X

USERS MANUAL

SIEBD! DI&IT!L SYSTEMS

USER MANUAL FOR THE
2650 X8 SERIES CROSS-ASSEMBLER ON THE PDP8-E.

DECEMBER, 197f..:.

SIERRA DIGITAL SYSTEMS
1440 WES1FIELD AVE.
RENO, NEVADA 89509
7 ():;~ - 3 2:'~J _.':!J!:) 4· :::!

ALTHOUGH THE INFORMATION IN THIS MANUAL HAS
BEEN CHECKED FOR ACCURACY, NO RESPONSIBILITY
IS ASSUMED FOR ERRORS. THIS DOCUMENTATION IS
SUBJECT TO CHANGE WITHOUT NOTICE.

PDP AND OS/8 ARE REGISTERED TRADEMARKS OF
DIGITAL EQUIPMENT CORPORATION, MAYNARD,
MASSACHUSETTS.

TABLE OF CONTENTS: SECTION #

INTRODUCTION .. 1. O. 0

OPERATION , , . , " 2. O. 0
LOADING THE CROSS-ASSEMBLER. .. 2. 1. 0
CALL I NG SEGlUENCE , , 2. 2. 0
INPUT/OUTPUT FILE EXTENSIONS. .. 2. 3. 0
RUN-TIME OPTIONS , 2 4. 0

ASSEMBLER CHARACTER SET. .. 3. O. 0

STATEMENT FORMAT , , 4. O. (>

CODING CONVENTIONS , 4. 1. 0
LABELS. .. 4. 2. (>

OPERATORS. .. 4. ~.3. 0
OPERANDS. .. 4. 4. 0
TERMS AND EXPRESSIONS , 4. 5. (>

NUMERIC CONSTANTS , , 5. O. (>

CONSTANTS WITH RADIX INDICATORS ,............. 5. 1. (>

CONSTANTS WITH ASCII INDICATORS 5.2.0

SYMBOLS , , , b. (>. 0
PERMANENT SYMBOLS., , b. 1. 0
USER DEFINED SYMBOLS. .. b. 2. 0
LOCAL SYMBOLS. .. b. 3. (>

CURRENT LOCATION COUNTER, .. 7. O. (>

ARITHMETIC OPERATO~ SET. .. 8. (>. 0
UNARY OPERATOR:::; , .. 8. 1. I)

BYTE ACCE::::S OPERATORS (""L. AND ·"M). 8. 1. 2
THE COMPLEMENT OPERATOR CAC).................... 8. 1.3
? OPERATOR. , 8. 1. 4

BINARY OPERATORS , .. 8. 2. 0

PSEUDO--OPERATORS. .. 'i'. O. I)

ASSIGNMENT PSEUDO-OPS , 9. 1. I)

· EG!U. .. 9. 1. 1.
· SET. .. 9. 1.2
· DINST. .. 9. 1. 3
· ORG. .. 9. 1.4

DEFAULT RADIX PSEUDO-OPS ,........ .. 9. 2. 0

TABLE OF CONTENTS: (CONT.) SECTION "*

DATA STORAGE PSEUDO-OPS. .. 9. 3. 0
· BYTE. .. 9. 3. 1
· DBYTE. 9.3.2
· ADDR. 9. 3. 3
· ZERO. .. 9. 3. 4

LISTING CONTROL DIRECTIVES. .. 9. 4. 0
· LIST. .. 9. 4. 1
· PAGE. .. 9. 4. 2
· TITLE. .. ~-ii'. 4. 3

CONDITIONAL ASSEMBLY PSEUDO-OPS. 9. 5. 0
IFZERO. .. 9. 5. 1
IFNZRCf. .. ~). 5. 2
IFDEF. .. 9. 5. ~3

IFNDEF. .. 9. 5. 4
· ENDC. .. 'i', 5. 5

. END PSEUDO-OP. .. 9. 6. 0

ERROR MESSAGES ;c • • • • 10. O. 0

MODIFICATION NOTES 11. O. 0

CROSS ASSEMBLER SPECIFICS 12. O. 0
CROSS-ASSEMBLER F r LE NAME:::;. 12. 1. 0
LISTING FORMAT 12.2.0
ADDITIONAL ERROR MESSAGES FOR THE 2650 12. 3. 0
BINARY OUTPUT FILE 12.4.0
MISCELLANEOUS NOTES. 12. 5. 0

2650 PAGE BOUNDRYS. 12. 5. 1
BXA/BSXA INDEX REGISTER 12. 5. 2
REGISTER SPECIFICATION SYNTAX 12. 5. 3
2650 ADDRESS SPACE 12. 5. 4
ADDRESS DATA 12. 5. 5

SAMPLE PROGRAM. 12. 6. 0

MICROPROCESSOR INSTRUCTION SET 13. O. 0

APPENDICES .. 14. O. 0
RUN-TIME OPTIONS APPENDIX A
INDICATOR SET APPENDIX B
PSUEDO-OPS APPENDIX C
ERROR MESSAGES APPENDIX D

#1. O. 0
1. O. 0 INTRODUCTION.

THIS MANUAL DESCRIBES ONE OF THE X8 (CROSS EIGHT) SERIES OF MICRO­
PROCESSOR CROSS-ASSEMBLERS SIERRA DIGITAL SYSTEMS HAS DEVELOPED FOR
PDP8 USERS. THE XS SERIES WILL HANDLE ALL OF THE POPULAR MICRO­
PROCESSORS WITHIN A UNIVERSAL ASSEMBLER FORMAT. THIS COMMON BASE
OF ASSEMBLER DIRECTIVES AND TECHNIQUES IS A SELECTED COMBINATION OF
DESIRABLE FEATURES OBSERVED IN A SURVEY OF MANY EXISTING MINI­
COMPUTER AND MICROPROCESSOR ASSEMBLERS. THE I NSTRUCT I ON I'1NEMON I CS
AND ASSOCIATED SYNTAX OF EACH PARTICULAR MICROPROCESSOR ARE
RETAINED UNCHANGEn

THIS MANUAL DESCRIBES THE USAGE OF ONE OF THE MICROPROCESSOR CROSS­
ASSEMBLERS FROM THE SIERRA DIGITAL X8 SERIES. IN ORDER TO SIMPLIFY
THE LEARNING PROCESS FOR INDIVIDUALS USING MORE THAN ONE CROSS­
ASSEMBLER FROM THE SERIES, THIS MANUAL HAS BEEN DIVIDED INTO TWO
MAJOR PARTS. SECTIONS 1 THROUGH 11 DOCUMENT THE UNIVERSAL ASSEMBLER
FORMAT AS IT APPLIES TO ALL CROSS-ASSEMBLERS IN THE SERIES. THESE
SECTIONS WILL BE IDENTICAL IN EVERY CROSS-ASSEMBLER MANUAL
SECTION 12 PRESENTS INFORMATION ON APPLICATION OF THE UNIVERSAL
ASSEMBLER FORMAT TO THE SPECIFIC MICROPROCESSOR CROSS-ASSEMBLER.
SECTION 13 PRESENTS A SUMMARY OF THE MNEMONIC INSTRUCTION CODES
ASSIGNED BY THE MICROPROCESSOR VENDOR A~D RECONIZED BY THE CROSS­
ASSEMBLER. NO ATTEMPT HAS BEEN MADE TO DESCRIBE THE OPERATION OF
THE MICROPROCESSOR ITSELF. SUCH INFORMATION MUST BE OBTAINED FROM
THE MICROPROCESSOR VENDOR OR OTHER SOURCES. SECTION 14, THE APPEN­
DICES, CONTAINS SUMMARY TABLES FOR QUICK REFERENCE ONCE THE USER
GAINS EXPERTISE IN USING THE CROSS-ASSEMBLER.

WE AT SIERRA DIGITAL LOOK FORWARD TO DEVELOPING MORE ASSEMBLERS IN
OUR X8 SERIES TO PROVIDE YOU, THE USER, WITH THE MEANS OF
PIONEERING THE NEW WORLD OF MICROPROCESSORS.

2. Q 0 OPERATIO~

SIERRA DIGITAL~S CROSS-ASSEMBLER IS AN 8K, TWO PASS ASSEMBLER WHICH
RUNS UNDER THE OS/8 OPERATING SYSTEM. THE CROSS-ASSEMBLER IS CODED
IN PDP/8 ASSEMBLY LANGUAGE (PAL8) TO GIVE FAST EXECUTION TIMES.
(LESS THAN 30 SECONDS FOR A NORMAL 4K BYTE PROGRAM IS TYPICAL>'

PASS 1 READS THE INPUT FILES AND SETS UP THE SYMBOL TABLES. PASS 2
THEN GENERATES THE OUTPUT FILE IN THE BINARY (OBJECT) FORMAT OF THE
PARTICULAR MICROPROCESSOR THE OUTPUT FILE CAN BE CHANGED TO BNPF
FORMAT THROUGH USE OF THE /B RUN-TIME OPTION.

A THIRD ASSEMBLY PASS IS DONE WHEN A LISTING OUTPUT FILE IS SPECI­
FIED. WHEN NO BINARY FILE IS SPECIFIED, THE ASSEMBLER GOES DIRECTLY
TO THE PASS 3 LISTING.

#2. O. 0

THE CROSS-ASSEMBLER IS NOT RESTARTABLE. IF AN ATTEMPT IS MADE TO
RESTART THE ASSEMBLER WITH A . ST COMMAND, THE KEYBOARD MONITOR
RETURNS A "NO!!" .

TYPING CTRL/C WILL HALT ASSEMBLY AND CAUSE AN IMMEDIATE EXIT TO THE
KEYBOARD MONITOR.

TYPING CTRL/O AT THE KEYBOARD DURING ASSEMBLY WILL SUPPRESS THE
LISTING OF ERROR MESSAGES TO THE CONSOLE DURING PASSES 1 AND 2. THE
OUTPUT FILE WILL STILL SHOW THE ERROR MESSAGES IMMEDIATELY BEFORE
THE LINE THAT IS IN ERROR.

2. 1. 0 LOADING AND SAVING THE CROSS-ASSEMBLER.

THE CROSS-ASSEMLER IS PROVIDED IN BINARY' FORMAT ON PAPER TAPE OR IN
BOTH BINARY AND IMAGE FORMATS ON FILE-STRUCTURED MEDIA.

TO LOAD THE ASSEMBLER FROM PAPER TAPE AND SAVE IT, PLACE THE TAPE
IN THE READER AND CALL THE ABSOLUTE LOADER:

· R ABSLDR
*PTR:$

· SAVE SYS: XNAME

FROM FILE STRUCTURED MEDIA, THE IMAGE FORMAT PROGRAM MAY BE COPIED
DIRECTLY TO THE SYSTEM DEVICE OR THE BINARY FORMAT FILE MAY BE
LOADED WITH THE ABSOLUTE LOADER. MODIFICATIONS TO THE IMAGE FILE,
SUCH AS INVERTING THE SENSE OF A RUN-TIME OPTION, MAY BE
IMPLEMENTED ACCORDING TO THE NOTES IN SECTION # 11. O. 0 .

2. 2. 0 CALLING SEQUENCE.

ONCE LOADED AND SAVED, THE CROSS-ASSEMBL~R IS CALLED FROM THE
SYSTEM DEVICE BY TYPING:

· R. XNAME

THE ASSEMBLER CALLS THE COMMAND DECODER WHICH RESPONDS WITH AN
ASTERISK IN THE LEFT HAND MARGIN. THE USER MAY THEN TYPE IN THE
INPUT AND OUTPUT FILE SPECIFICATIONS AND RUN-TIME OPTIONS:

*DEV:BIN, DEV: LIST<DEV: IN1, ... DEV: IN9/0PT

THE FIRST OUTPUT FILE IS THE MICROPROCESSOR BINARY OB~ECT FILE
WRITTEN IN THE FORMAT SPECIFIED BY THE VENDOR OF THE PARTICULAR
MICROPROCESSOR. (SEE SECTION 12. O. 0 FOR THE FORMAT SPECIFICATIONS),

----- -----------

2. 2. 0

THE SECOND OUTPUT FILE IS THE OPTIONAL LISTING. WHEN ONLY THE FIRST
OUTPUT FILE IS SPECIFIED, THE ASSEMBLER ASSUMES THAT IT WILL BE THE
BINARY OUTPUT FILE AND THE LISTING IS OMITTED.

THE FOLLOWING EXAMPLE SPECIFIES FILE "IN1" TO BE READ FROM DECTAPE
o AND THE BINARY (OBJECT) FILE TO BE OUTPUT TO THE PAPER TAPE PUNCH
WITH NO LISTING:

· R XNAME
*PTP:<DTAO: IN1

THIS EXAMPLE SPECIFIES 2 FILES AS THE SOURCE INPUT (FROM THE DSK:
DEVICE) WITH ONLY THE PASS 3 LISTING BEING OUTPUT TO THE LINE
PRINTER:

· R XNAME
*, LPT: <IN!. IN2

UP TO NINE INPUT FILES CAN BE SPECIFIED AS ONE PROGRAM WHERE THE
LAST FILE IS TERMINATED WITH AN . END STATEMENT.

2 3. 0 INPUT/OUTPUT FILE EXTENSIONS.

IF THE EXTENSION TO AN INPUT FILE NAME IS OMITTED, THE ASSEMBLER
ASSUMES THE . MS EXTENSION. IF THERE IS NO FILE WITH THAT NAME AND
AN . MS EXTENSION, THE ASSEMBLER ASSUMES THE NULL EXTENSION. UNLESS
EXTENSIONS ARE SPECIFIED, THE . MB AND . LS EXTENSIONS ARE ADDED TO
THE OUTPUT BINARY AND LISTING FILES.

· MB - MICROPROCESSOR BINARY OUTPUT FILE EXTENSIO~
· LS - OUTPUT LISTING FILE EXTENSIO~
· MS - MICROPROCESSOR SOURCE FILE EXTENSIO~

2. 4. 0 RUN-TIME OPTIONS.

TABLE #1 DESCRIBES THE OPTIONS WHICH MAY BE SPECIFED AT RUN-TIME
IN THE INPUT LINE TO THE COMMAND DECODER.

IF ONE OR MORE OF THESE OPTIONS IS CONTINUALLY CALLED, THE USER
SHOULD CONSIDER MODIFYING THE ASSEMBLER TO INVERT THE SENSE OF THE
OPTION. THE MODIFICATION NOTES IN SECTION #11. O. 0 EXPLAIN HOW THIS
MAY BE DONE. FOR EXAMPLE, A USER WHO PREFERS TO OUTPUT FILES IN
BNPF FORMAT RATHER THAN BINARY CAN INVERT THE SENSE OF THE /B
OPTION. THEN THE BINARY FILES ARE NORMALLY WRITTEN IN BNPF FORMAT.
USE OF THE /B OPTION THEN CAUSES THE OUTPUT FILE TO BE WRITTEN IN
THE STANDARD MICROPROCESSOR BINARY CODE. SPACE IS PROVIDED IN
TABLE #1 TO CHECK OFF WHICH OPTIONS HAVE BEEN INVERTED FOR YOUR
REFERENCE.

TABLE *1. RUN-TIME OPTIONS. #2. 4. 0

**
OPTION MEANING INVERT?
**
/B THE BINARY OUTPUT FILE IS WRITTEN IN BNPF FORMAT. ------­

INSTEAD OF IN THE MICROPROCESSOR VENDOR;S STANDARD
BINARY FORMAT.

FOR THE BNPF FORMAT, THE BINARY OUTPUT IS CONVERTED
TO ASCII TEXT WHERE

liB" INDICATES THE BEGINNNING OF A BYTE,
"F" INDICATES THE END OF A BYTE,
"P" INDICATES A 1 BIT AND'
"N" INDICATES A 0 BIT.

FOUR BYTES , SEPARATED BY SPACES, ARE WRITTEN PER
LINE. THE ADDRESS OF THE FIRST BYTE IS GIVEN IN
SIX DIGIT OCTAL AT THE BEINNING OF THE LINE.
LEADING ZEROES IN THE ADDRESS ARE CONVERTED TO
SPACES. EACH LINE IS PRECEDED BY 2 SPACES. LEADER
CONSISTS OF 100 NULL CHARACTERS WITH 20 RUBOUTS
IMMEDIATELY PRECEEDING AND FOLLOWING THE ASCII
TEXT.

EXAMPLE: THE FOLLOWING CODE IS SHOWN REWRITTEN IN
BNPF FORMAT.

. (IRG

. BYTE
100
27, C7, AF, D7,FF, 72,0, DO

100 BNNPNNPPPF BPPNNNPPPF BPNPNPPPPF BPPNPNPPPF
104 BPPPPPPPPF BNPPPNNPNF BNNNNNNNNF BPPNPNNNNF

/E INHIBIT ERROR MESSAGES TO THE CONSOLE. ------­
NORMALLY ERROR MESSAGES ARE OUTPUT TO THE CONSOLE
DURING ASSEMBLY PASSES 1 AND 2. SINCE ERROR MESS-
AGES ARE INCLUDED IN THE LISTING, uSERS WITH SLOW
CONSOLE DEVICES SUCH AS TTY;S CAN SPEED ASSEMBLY
TIME WITH THIS OPTION.

ALSO, IF THE BINARY FILE IS TO BE OUTPUT TO THE
CONSOLE DEVICE, THE ERROR MESSAGES AND BINARY
OUTPUT LINES WILL BE INTERMIXED. THE /E OPTION WILL
INHIBIT ALL BUT FATAL ERROR MESSAGES SO THAT ONLY
THE BINARY FILE IS OUTPUT.

**

TABLE #1. RUN-TIME OPTIONS. (CONT.) #2.4.0

**
OPTION MEANING INVERT?
**

/H INHIBIT HEADINGS AND PAGINATION. ------­
NORMALLY, THE ASSEMBLER AUTOMATICALLY PAGES THE
OUTPUT, ADDING A HEADER TO THE TOP OF THE PAG~ USE
OF THE /H OPTION WILL ELIMINATE THE HEADING AND THE
PAGINATION.

/J LIST UNASSEMBLED STATEMENTS AND CONDITIONAL ------­
ASSEMBLY PSEUDO-OPS.
STATEMENTS WHICH DO NOT GET ASSEMBLED DUE TO
CONDITIONAL ASSEMBLY PSEUDO-OPS ARE NORMALLY NOT
LISTED. NEITHER ARE THE CONDITIONAL PSEUDO-OPS
THEMSELVES. USE OF THE /J OPTION WILL ADD THESE
STATEMENTS TO THE LISTING.

/K EXPAND SYMBOL TABLE STORAGE INTO EXTRA CORE. ------­
NORMALLY MOST OF FIELD 1 IS USED FOR BOTH LOCAL AND
NORMAL USER SYMBOL STORAGE. USE OF THE /K OPTIONS
EXPANDS CORE USAGE TO 12K WHERE THE LOCAL SYMBOL
TABLE RESIDES IN FIELD 2 AND THE REGULAR SYMBOL
TABLE RESIDES IN FIELD 1.

/L OUTPUT LEADER IN BINARY FILE FOR . ORG STATEMENTS ------­
THIS OPTION MAY BE USED TO PHYSICALLY SEPARATE
DISCONTINUOUS SECTIONS OF THE BINARY OUTPUT ON A
PAPER TAPE.

/0 OUTPUT LISTING WITH BINARY CODE IN OCTAL FORMAT. ------­
THE GENERATED BINARY CODE IS NORMALLY PRINTED IN
HEXADECIMAL AT THE LEFT OF THE PROGRAM STATEMENTS
IN THE LISTING FILE. THE /0 OPTION WILL CAUSE THE
BINARY CODE TO BE LISTED IN OCTAL INSTEAD OF
HEXADECIMAL.

/N LIST ONLY THE SYMBOL TABLE. ------­
THE THIRD PASS LISTING NORMALLY CONSISTS OF THE
STATEMENT LISTING PLUS THE USER SYMBOL TABLE
LISTING. THE /N OPTION CAUSES ONLY THE SYMBOL TABLE
TO BE LISTED.

/P INCLUDE NORMALLY UNLISTED PSEUDO-OPS IN THE LISTING------­
SOME PSEUDO-OPS WILL NOT BE LISTED BY PASS 3 UNLESS
THE /P OPTION IS USED.

/S OMIT THE SYMBOL TABLE FROM LISTING. ------­
ONLY THE PROGRAM STATEMENTS ARE LISTED WITH THIS
OPTION.

**

TABLE #1. RUN-TIME OPTIONS. (CONT.) 1:2.4.0

**
OPTION MEANING INVERT?
**
/T REPLACE FORM/FEED WITH 3 CR/LF~S. ------­

WHEN LISTING TO A DEVICE SUCH AS A TTY WHICH DOES
NOT HAVE A FORM/FEED CONTROL, USE OF THE /T OPTION
WILL REPLACE THE FORM/FEED WITH 3 BLANK LINES .

/W I NH I BIT WARN I NG MESSAGES. ------­
WHEN WARNING MESSAGES CAN BE SAFELY IGNORED, THIS

/0
TO /9

OPTION WILL PREVENT THEM FROM BEING OUTPUT.

USER FLAGS, USED WITH THE ? OPERATOR, SEE SECTION
8.1.4 .

**

3. O. 0 ASSEMBLER CHARACTER SET.

THE FOLLOWING CHARACTERS ARE LEGAL SOURCE CODE CHARACTERS:

1) ALPHABETICS A-Z, UPPER CASE ASCII
2) NUMERICS 0-9
3) THE SPECIAL CHARACTERS LISTED BELOW.

*
/
&

+

C J
."

II OR ~

?

MULTIPLICATION
DIVISION
BOOLEAN AND
INCLUSIVE OR
ADDITION
SUBTRACTION
PRECEDENCE INDICATORS
UNIVERSAL UNARY OPERATOR (U?ARROW). USED WITH:

AC - COMPLEMENT (UPARROW C)
AB - BINARY RADIX INDICATOR (UPARROW B)
AD - DECIMAL RADIX INDICATOR (UPARROW D)
AH - HEXADECIMAL RADIX INDICATOR (UPARROW H)
AO - OCTAL RADIX INDICATOR (UPARROW 0)
AL - LEAST SIGNIFICANT BYTE ACCESS OPERATOR
AM - MOST SIGNIFICANT BYTE ACCESS OPERATOR

COMMENT INDICATOR
ASCII INDICATOR
USER FLAG OPERATOR
CURRENT LOCATION COUNTER (PERIOD)

3. O. 0

THE CARRIAGE RETURN CHARACTER IS RECOGNIZED AS THE TERMINATOR FOR
EACH SOURCE LINE. THE LINE-FEED, RUBOUT, FORM-FEED, AND NULL
CHARACTERS ARE IGNORED BY THE ASSEMBLER. FORM-FEED CHARACTERS
OCCURING IN THE SOURCE HAVE NO AFFECT ON THE LISTINQ ALL ASCII
CHARACTERS MAY BE USED IN THE COMMENT FIELD OF A STATEMENT.

4. O. 0 STATEMENT FORMAT.

STATEMENTS ARE WRITTEN IN THE GENERAL FORM:

LABEL OPERATOR OPERAND i COMMENT

LABELS MUST START IN COLUMN 1. THEY MAY BE DIRECTLY FOLLOWED WITH
AN OPTIONAL COMMA IF DESIRED. THE MODIFICATION NOTES EXPLAIN HOW TO
REPLACE THE COMMA WITH ANOTHER DELIMITER SUCH AS A COLON.

OPERATORS MUST BE SEPARATED FROM THE LABEL WITH AT LEAST ONE SPACE
OR TAB. WHEN NO LABEL IS PRESENT, THE OPERATOR MAY BEGIN IN ANY
COLUMN BEYOND COLUMN 1.

THE OPERAND (IF ANY) MUST BE SEPARATED FROM THE OPERATOR WITH AT
LEAST ONE SPACE OR TAR

THE COMMENT (IF ANY) MUST BE SEPARATED FROM THE OPERAND (OR
OPERATOR IF THERE IS NO OPERAND BY A SEMICOLON (;).

AN INPUT LINE MAY BE UP TO 127 CHARACTERS LONG (NOT INCLUDING THE
CARRIAGE RETURN). WHEN THE INPUT LINES ARE OUTPUT TO THE LISTING
FILE, ANY CHARACTERS AFTER THE 72D COLUMN ARE WRITTEN ON THE NEXT
LINE(S) BEGINNING AT THE 25TH COLUMN OF THE FIRST SOURCE LINE
(NORMAL COMMENT COLUMN). SEE THE MODIFICATION NOTES IN SECTION
#11. O. 0 TO ADJUST FOR NARROWER OR WIDER PAGE OUTPU~ THE CARRIAGE
RETURN IS A TERMINATOR FOR BOTH THE STATEMENT AND THE LIN~ ONLY
ONE STATEMENT IS ALLOWED PER 127 CHARACTER LINE.

4. 1. 0
4. 1. 0 CODING CONVENTIONS:

ALTHOUGH THE ASSEMBLER WILL ACCEPT PROGRAMS WRITTEN IN FREE FORMAT,
THE USE OF TABS MAKES FOR MORE READABLE CODE. TAB STOPS ARE SET
EVERY 8 CHARACTERS IN THE LINE SO THAT THE USE OF THE TAB KEY
SIMPLIFIES INPUT. GENERALLY:

LABELS
OPERATORS
OPERANDS
COMMENTS

OCCUpy THE FIRST TAB FIELD, COLUMNS 1 THROUGH 8
OCCUpy THE SECOND TAB FIELD, COLUMNS 9 THROUGH 16.
OCCUpy THE THIRD TAB FIELD, COLUMNS 17 THROUGH 24.
OCCUpy THE REMAINING FIELDS, COLUMNS 25 THROUGH 12~

4. 2. 0 LABELS.

A LABEL IS A SYMBOL WHICH PRECEDES THE OPERATOR AND MUST FOLLOW THE
SYMBOL NAMING CONVENTIONS DESCRIBED IN SECTION # 6. 2. O. IN ALL BUT
THE SYMBOL DEFINITION PSEUDO-OPS, <. EQU, . SET, . DINST) THE LABEL
IS A LOCATION TAG AND IS EQUAL TO THE VALUE OF THE CURRENT LOCATION
COUNTER.

EXAMPLE:

2 1
o 6

201 1
LABELl
LABEL2

.ORG

. EQU

. BYTE

201
6
1

i LABEL1=6
iLABEL2=LOCATION TAG=201

NOTE THAT A JUMP TO LABELl WILL TRANSFER TO ADDRESS 6 WHILE A ~UMP
TO LABEL2 GOES TO ADDRESS 201.

A LABEL LACKING BOTH AN OPERATOR AND OPERAND IS SET EQUAL TO THE
VALUE OF THE NEXT ADDRESS TO BE ASSEMBLED. IF USED AT THE
BEGINNING OF THE PROGRAM, IT IS SET EQUAL TO THE VALUE OF THE FIRST
ADDRESS. WHEN A SOLITARY LABEL IS FOLLOWED BY AN . ORG STATEMENT,
IT RETAINS THE ORIGINAL VALUE ASSIGNED BEFORE THE ORIGIN CHANGE.

4. 3. 0 OPERATORS.

AN OPERATOR IS A MNEMONIC WHICH INDICATES THE ACTION TO BE
PERFORMED AND IS EITHER A PSEUDO-OP OR ONE OF THE MICROPROCESSOR
INSTRUCTIONS. PSEUDO-OPS ARE DESCRIBED IN SECTION #9. O. O. THE
MICROPROCESSOR INSTRUCTION SET IS DESCRIBED IN SECTION #13. Q 0
THESE OPERATORS SHOULD. NOT BE CONFUSED WITH ARITHMETIC OPERATORS
USED IN OPERAND EXPRESSIONS.

4. 4. 0
4. 4. 0 OPERANDS.

AN OPERAND REPRESENTS THE PART OF THE INSTRUCTION WHICH IS TO BE
ACTED ON. IT CAN BE A TERM OR AN EXPRESSION.

THE . BYTE, . DBYTE, AND . ADDR PSEUDO-OPS CAN HAVE MULTIPLE OPERANDS.

REFER TO THE EXPLANATION OF EACH OPERATOR FOR THE PROPER OPERAND
FORMAT.

IT SHOULD BE NOTED THAT OPERAND EXPRESSIONS ARE EVALUATED TO A
SINGLE NUMERICAL VALUE BY THE ASSEMBLER. BINARY CODE IS NOT
GENERATED TO MAKE THE MICROPROCESSOR EVALUATE THE EXPRESSION.

4. 5. 0 TERMS AND EXPRESSIONS.

A TERM IS A SINGLE VALUE, A CONSTANT OR SYMBOL THE CURRENT
LOCATION COUNTER (REPRESENTED BY A PERIOD) IS CONSIDERED A TERM.

TERMS ARE COMBINED WITH OPERAND ARITHMETIC OPERATORS TO FORM
EXPRESSIONS.

EXAMPLE: IN THE INSTRUCTION BELOW THE OPERAND IS AN EXPRESSION
WHICH HAS TWO ARITHMETIC OPERATORS AND THREE TERMS.

SYMBOL . EQU 1+NEW * 15

16 BIT INTEGER ARITHMETIC IS USED TO EVALUATE EXPRESSIONS.

5. O. 0 NUMERIC CONSTANTS.

A CONSTANT IS A NUMERIC VALUE REPRESENTED BY A STRING OF DIGITS.
THE DEFAULT RADIX OR TEMPORARY RADIX INDICATORS IDENTIFY THE RADIX
OF THE CONSTANT. A CONSTANT WITHOUT ANY TEMPORARY RADIX INDICATOR
IS CONSIDERED TO BE IN THE DEFAULT RADIX, WHICH IS INITIALLY
HEXADECIMAL.

EXAMPLE: THE HEXADECIMAL NUMBER 16 (22 IN BASE 10) IS STORED IN
"VALUE" :

o 16 VALUE . EG!U 16

THE MAXIMUM VALUE FOR A CONSTANT IS 65535 (BASE 10 UNSIGNED>'

THE MINIMUM VALUE FOR A CONSTANT IS -32768 (BASE 10 SIGNED).

1= 5. 1. 0
1= 5. 1. 0 CONSTANTS WITH RADIX INDICATORS.

CONSTANTS IN A BASE DIFFERENT FROM THAT OF THE DEFAULT RADIX CAN BE
SPECIFIED THROUGH USE OF THE TEMPORARY RADIX INDICATORS. THESE
INDICATORS ARE VERY USEFUL FOR ENTERING INDIVIDUAL CONSTANTS.
HOWEVERI IF A LARGE GROUP OF VALUES IN ANOTHER RADIX MUST BE
ENTERED I IT IS MORE CONVENIENT TO CHANGE THE DEFAULT RADIX USING
THE PSUEDO-OPS DESCRIBED IN SECTION 1= 9. 2. 0

THE TEMPORARY RADIX INDICATORS ARE:

"'B BINARY
"'D DECIMAL
'''H HEXADECIMAL
'''0 OCTAL

THE IS THE UPARROW CHARACTER (UNIVERSAL UNARY OPERATOR),

A HEXADECIMAL CONSTANT WHICH DOES NOT BEGIN WITH A NUMBER SHOULD BE
WRITTEN WITH A LEADING ZERO TO DISTINGUISH IT FROM FROM A SYMBOL. A
RADIX INDICATOR PRECEDING A SYMBOL IS IGNORED.

EXAMPLE: THE FIRST STATEMENT IS VALIDI THE SECOND IS NOT.

VALUE . EQU
VALUE . EQU

'''HOA302
"'HA302

iVALUE=A302, BASE 16
,VALUE = SYMBOL A302

SINCE THE SYMBOL A302 MAY NOT EXIST, THE SECOND STATEMENT WILL
PROBABLY CAUSE AN UNDEFINED SYMBOL ERROR. TEMPORARY RADIX
INDICATORS AFFECT THE NEXT DIGIT STRING IN THE EXPRESSION UNLESS A
SYMBOL NAME OR BINARY OPERATOR OCCURS FIRST. IN THAT CASE, THE
TEMPORARY RADIX INDICATOR WOULD BE IGNORED. NO ERROR MESSAGE IS
GIVEN.

1= 5.2.0 CONSTANTS WITH ASCII INDICATORS.

THE .. AND .- I ND I CATORS ARE USED TO FORM THE 7 BIT ASC I I VALUE OF A
CHARACTER. THERE ARE FOUR ACCEPTABLE WAYS TO WRITE THE INDICATORS:

"A" OR "A OR "A" OR "A ALL EQUAL 41 (BASE 16).

NOTE THAT THE CLOSING QUOTE IS OPTIONAL, BUT IF USED IT MUST MATCH
THE OPENING QUOTE ONLY ONE CHARACTER CAN FOLLOW THE INDICATOR.

THE II IS SPECIALLY HANDLED IN THE . BYTE PSEUDO-OP WHERE IT IS USED
TO INPUT TEXT STRINGS. SEE SECTION # 9.3.1 .

6. O. 0

6. O. 0 SYMBOLS.

THE WORD "SYMBOL" IS USED HERE AS A GENERAL TERM FOR ANY MNEMONIC
WHICH IS TO HAVE A VALUE. THIS IS IN CONTRAST TO AN OPERATOR, WHICH
IS A MNEMONIC WHICH SPECIFIES A PROCESS.

A LABEL IS A SYMBOL THAT PRECEDES AN OPERATOR IN THE STATEMENT. IF
THE LABEL IS USED TO STORE THE VALUE OF THE CURRENT LOCATION
COUNTER, IT IS CALLED A LOCATION TAG.

6. 1. 0 PERMANENT SYMBOLS.

PERMANENT SYMBOLS ARE THE CROSS-ASSEMBLER PSEUDO-OPS AND
MICROPROCESSOR OPERATORS. IF NECESSARY, THE . DINST STATEMENT CAN BE
USED TO RENAME A MICROPROCESSOR OPERATOR. THE CROSS-ASSEMBLER
PSEUDO-OPS CANNOT BE USED IN A . DINST INSTRUCTION. THE TABLES IN
THE APPENDICES SUMMARIZE THE PERMANENT SYMBOL SET.

6. 2 0 USER DEFINED SYMBOLS.

THESE SYMBOLS CAN BE LOCATION TAGS OR REPRESENT A VALUE.

A SYMBOL IS A STRING OF FROM ONE TO SIX ALPHANUMERIC CHARACTERS
DELIMITED BY A NON-ALPHANUMERIC CHARACTER. USER-DEFINED SYMBOLS
MUST CONFORM TO THE FOLLOWING RULES:

1) THE CHARACTERS MUST BE LEGAL ALPHA-NUMERICa
(A-Z OR 0-9)

2) THE FIRST CHARACTER MUST BE ALPHABETIC (A-Z)'
3) ONLY THE FIRST SIX CHARACTERS ARE USED, ANY

OTHERS ARE IGNORED. SYMBOLS ARE STeRED IN THE
SYMBOL TABLE AND REFERENCED ONLY BY THE FIRST
S I X CHARACTERS.

4) A USER-DEFINED SYMBOL CANNOT HAVE THE SAME
NAME AS ANY OF THE PERMANENT SYMBOL NAMES.
AS THE PERIOD IS CONSIDERED AS PART OF THE
ASSEMBLER PSEUDO-OP NAME, A USER-DEFINED SYM­
BOL WHICH IS IDENTICAL EXCEPT FOR THE LEADING
PER I 00 I S LEGAL.

.. 6. 3. 0
.. 6. 3. 0 LOCAL SYMBOLS.

OFTEN, WHEN PROGRAMMING SHORT SECTIONS OF CODE WHICH INVOLVE
NUMEROUS ,JUMP OR BRANCHING INSTRUCTIONS, THE USER FINDS IT
DIFFICULT TO CREATE MEANINGFUL LABELS THAT WILL NOT CONFLICT WITH
OTHER SYMBOLS IN THE PROGRAM. IN CASES LIKE THIS, LOCAL SYMBOLS CAN
BE USED INSTEAD OF REGULAR SYMBOLS.

LOCAL SYMBOLS HAVE THE FORMAT "$N" WHERE "Nil IS A DECIMAL INTEGER
FROM 0-255 INCLUSIVE.

LOCAL SYMBOLS MUST
BLOCKS. LOCAL SYMBOL
ON A STATEMENT HAVING
END ON THE STATEMENT
SYMBOL LOCATION TAG.
. SET PSEUDO-OPS ARE
SYMBOL BLOCKS.

BE DEFINED AND REFERENCED WITHIN LOCAL SYMBOL
BLOCKS ARE SECTIONS OF THE PROGRAM THAT START
A REGULAR SYMBOL USED AS A LOCATION TAG AND
,JUST BEFORE THE OCCURANCE OF THE NEXT REGULAR
NOTE THAT LABELS FOR THE . EQU, . DINST AND

NOT LOCATION TAGS AND DO NOT DELIMIT LOCAL

THERE IS NO EFFECTIVE LIMIT TO THE SIZE OF A LOCAL SYMBOL BLOCK.

THE SAME LOCAL SYMBOL CAN BE DEFINED AND USED IN AN UNLIMITED
NUMBER OF LOCAL SYMBOL BLOCKS.

EXAMPLE:

TAG1 · BYTE "TEXT" i SYMBOL BLOCK BEGINS
$1 · EQU VALUE i DEFINE LOCAL $1
$2 · EQU -1 iDEFINE LOCAL $2
VALU1 · EQU $1-$2 lCALCULATE NEW VALUE
TAG2 · BYTE "TEXT" iNEW SYMBOL BLOCK
$1 · EG!U VALUl iDEFINE LOCAL $1
$2 · EQU -2 iDEFINE LOCAL $2
VALU2 · EQU $1*$2 i CALCULATE NEW VALUE.
TAG3 · BYTE "TEXT" iENDS SECOND BLOCK

.. 7. O. 0 CURRENT LOCATION COUNTER.

THE CURRENT LOCATION COUNTER IS INDICATED BY A PERIOD. IT
REPRESENTS THE ADDRESS OF THE NEXT BYTE TO BE ASSEMBLED.

THE CURRENT LOCATION COUNTER CANNOT BE USED IN THE LABEL FIELD.

.. 7. O. 0

AT THE BEGINNING OF THE SOURCE INPUT THE CURRENT LOCATION COUNTER
IS SET TO ZERO. IT CAN BE REASSIGNED THROUGH USE OF THE . ORG
PSEUDO-OP.

EXAMPLE:

o 60
o 0

60 22
1 00

100 10

VALUE
TAG

TAG1

.ORG 60
· EQU 0
· BYTE 22
.ORG 100
· BYTE 10

i INITIAL ADDRESS
; NO EFFECT ON .

= 60 (BASE 8)
; REASSIGN COUNTER
; = 100

LOCATION TAGS ARE ALWAYS SET EQUAL TO THE VALUE OF THE CURRENT
LOCATION COUNTER WHEN THEY ARE ASSEMBLED. IN THE EXAMPLE ABOVE, THE
LOCATION TAG "TAG" = 60.

THE CURRENT LOCATION COUNTER IS AUTOMATICALLY UPDATED IN THE
ASSEMBLER AS SOON AS THE CURRENT INSTRUCTION IS ASSEMBLEn NOTE
THAT IN THE MULTI-OPERAND DATA STORAGE PSEUDO-OPS, (. BYTE, . DBYTE,
AND . ADDR) THE LOCATION COUNTER IS CHANGING AS THE OPERANDS ARE
ASSEMBLED.

EXAMPLE: THE LOCATION COUNTER IS USED AS AN OPERAND 3 TIMES IN AN
. ADDR PSEUDO-OP.

0 20 .ORG 20
20 20 0 . ADDR • I • I •

22 22 0
24 24 0
20 20 0

THE CURRENT LOCATION COUNTER USES THE FULL ADDRESS RANGE OF THE
MICROPROCESSOR.

.. 8. O. 0 THE ARITHMETIC OPERATOR SET.

THERE ARE TWO TYPES OF ARITHMETIC OPERATORS: UNARY AND BINARY
OPERATORS.

UNARY OPERATORS ACT ON ONLY ONE ITEM, THE TERM OR EXPRESSION
FOLLOW I NG THEM.

BINARY OPERATORS ACT ON TWO ITEMS: THE TERM OR EXPRESSION
PRECEEDING THEM AND THE TERM OR EXPRESION FOLLOWING THEM.

.. 8. 1. 0
8. 1. 0 UNARY OPERATORS.

THE + (PLUS) AND - (MINUS) UNARY OPERATORS ASSIGN A POSITIVE OR
NEGATIVE SIGN TO THE EXPRESSION FOLLOWING THEM. AN EXPRESSION IS
ASSUMED TO BE POSITIVE IF NOT OTHERWISE SPECIFIED.

8. 1. 2 BYTE ACCESS OPERATORS.

THE AL AND AM (WHERE A IS THE UPARROW CHARACTER) ARE UNARY
OPERATORS WHICH PROVIDE ACCESS TO THE LEAST AND MOST SIGNIFICANT 8
BIT BYTES OF THE VALUE OF AN EXPRESSION OR TERM.

EXAMPLE: TO SET "VALUE" EQUAL TO THE MOST SIGNIFICANT BYTE OF
3B61 (BASE 16), THE STATEMENT BELOW IS USED .

VALUE . SET · M3B61 i VALUE == 003B

THIS NEXT STATEMENT TAKES THE LEAST SIGNIFICANT BYTE .

VALUE . SE::T AL3B61 iVALUE == 0061

BYTE ACCESS OPERATORS MAY BE COMBINED WITH THE OTHER UNARY
OPERATORS AND THE RADIX INDICATORS .

.. 8. 1. 3 THE COMPLEMENT OPERATOR.

THE AC (UPARROW C) IS A LOGICAL UNARY OPERATOR WHICH COMPLEMENTS
THE EXPRESSION FOLLOWING IT.

EXAMPLE:

VALUE . EQU AC7241 iVALUE == 8DBE

THE COMPLEMENT OPERATOR CAN BE COMBINED WITH THE OTHER UNARY
OPERATORS AND THE RADIX INDICATORS.

.. 8. 1. 4
.. 8. 1. 4. ? OPERATOR.

THIS IS THE USER FLAG OPERATOR. A UNARY OPERATOR USED IN CONJUNC­
TION WITH THE COMMAND DECODER USER FLAG OPTIONS (/0 TO /9). IT HAS
THE FORM ?EXPRESSION AND MAY BE USED IN OPERANDS LIKE ANY OTHER
TERM. THE RESULTING VALUE OF THE QUESTION MARK OPERATOR EQUALS 1 IF
THE VALUE OF ITS EXPRESSION MATCHES A USER FLAG THAT WAS SPECIFIED
TO THE COMMAND DECODER AT RUN-TIME. OTHERWISE IT EQUALS O. THIS
OPERATOR IS USEFUL FOR CONTROLLING CONDITIONAL ASSEMBLY AND LISTING
PARAMETERS WITHOUT HAVING TO MODIFY THE SOURCE FILE.

EXAMPLE: THE /2 OPTION WAS SPECIFIED TO THE COMMAND DECODER AT
RUN-TIME.

. R XNAME
*BIN,LOUT<SOURCE/2

THE SOURCE FILE CONTAINS THE FOLLOWING . LIST STATEMENTS:

. LIST ?2-1

. LIST 1

AT THE FIRST . LIST STATEMENT. THE ?2 TERM EQUALS 1 SINCE /2 WAS
SPECIFED AT RUN-TIME. THE OPERAND (?2-1) EQUALS ZERO. THEREFORE
LISTING IS INHIBITED UNTIL THE SECOND . LIST INSTRUCTION. AS THE
OPERAND VALUE OF THIS STATEMENT IS 1, LISTING IS ENABLED AGAIN.
NOTE THAT IF THE /2 OPTION WAS NOT SPECIFIED, THE INSTRUCTIONS
AFTER THE FIRST . LIST WOULD BE INCLUDED IN THE IILOUT" FILE LISTING .

.. 8. 2. 0 BINARY OPERATORS.

SIX SPECIAL CHARACTERS ARE USED TO PERFORM THE FOLLOWING BINARY
OPERAT IONS:

* MULTIPLICATION
/ DIVISION
& BOOLEAN AND

INCLUSIVE OR
+ ADDITION

SUBTRACTION

.. 8. 2. 0

THE UNARY OPERATORS TAKE PRECEDENCE OVER THE BINARY OPERATORS
DURING ASSEMBLY. THE * AND / OPERATORS ARE EXECUTED NEXT, THEN THE
OTHER BINARY OPERATORS FROM LEFT TO RIGHT. BRACKETS, [AND J, ARE
USED TO CHANGE THE ORDER OF PRECEDENCE WHEN NECESSARY. A [IS A
SHIFT/K ON TTY KEYBOARDS, AND A l IS A SHIFT/M.

EXAMPLE: IN THE STATEMENT BELOW THE OPERAND EXPRESSION IS EVALUATED
IN THIS ORDER: [A* [-B J J + [[2/D l * [AC [AB10l J J J

VALUE . EQU

ADDITION AND SUBRACTION ARE ACCOMPLISHED BY TWO~S COMPLEMENT 16 BIT
ARITHMETIC. NO CHECKS FOR OVERFLOW ARE MADE.

MULTIPLICATION IS ACCOMPLISHED BY REPEATED ADDITIO~ NO CHECKS FOR
SIGN OR OVERFLOW ARE MAD~

DIVISION IS ACCOMPLISHED BY REPEATED SUBRACTION. THE QUOTIENT IS
THE NUMBER OF SUBTRACTIONS PERFORMEn THE REMAINDER IS NOT SAVEn
NO CHECKS ARE MADE FOR SIGN. DIVISION BY ZERO RESULTS IN ZERO.

THE BOOLEAN AND FUNCTION <&) IS A BIT BY BIT LOGICAL AND OF TWO
NUMBERS:

THE BOOLEAN INCLUSIVE OR (!) IS A BIT BY BIT LOGICAL OR OF TWO
NUMBERS.

.. 9. O. 0
.. 9. O. 0 PSEUDO-OPERATORS.

PSEUDO-OPERATORS ·ARE INSTRUCTIONS TO THE ASSEMBLER WHICH ALLOW
GREATER FLEXIBILTIY IN PROGRAMMING.

A SUMMARY OF THE PSEUDO-OPS AND THEIR FUNCTIONS IS GIVEN IN THE
APPENDIX.

9. 1. 0 ASSIGNMENT PSEUDO-OPS.

ASSIGNMENT PSEUDO-OPS ARE USED TO DEFINE VALUES, INPUT ASCII TEXT
AND REASSIGN THE LOCATION COUNTER

9. 1. 1 . EQU PSEUDO-OP.

THE . EQU IS USED TO ASSIGN A VALUE TO A SYMBOL THIS SYMBOL VALUE
CANNOT BE CHANGED ONCE DEFINED. . EQU IS USEFUL FOR ASSIGNING NAMES
TO LOCATIONS WHICH ARE NOT LOADED BY THE OBJECT CODE.

EXAMPLE:

NAME1 · EQU

9. 1. 2 . SET PSEUDO-OP.

THE . SET IS USED EXACTLY LIKE THE . EQU EXCEPT THAT THE SYMBOL CAN
BE REDEFINED WITH ANOTHER . SET AT ANY POINT IN THE PROGRAM:

EXAMPLE: THE FOLLOWING IS PERFECTLY LEGAL FOR A . SET BUT NOT AN
. EQU.

NAME1
NAME1

· SET
· SET

NOTE THAT IT IS GOOD PRACTICE TO USE THE . EQU
RATHER THAN THE. SET EXCEPT (OF COURSE) WHERE THERE
NEED TO REDEFINE A VALUE THIS HELPS PREVENT
REDEFINITION OF A VALUE IN A PROGRAM.

~ 1. 3 . DINST PSEUDO-OP.

FOR ASSIGNMENTS
IS A SPECIFIC

THE ACCIDENTAL

THE . DINST IS USED TO GIVE A MICROPROCESSOR OPERATOR ANOTHER NAME.
THE ORIGINAL OPERATOR NAME WILL STILL BE VALID. NOTE THAT THE
ASSEMBLER PSEUDO-OPS CANNOT BE RENAMED.

#9. 1. 3

EXAMPLE: THE MICROPROCESSOR INSTRUCTION "OPR" IS DEFINED AS
"NEWOP". ANY FURTHER REFERENCES TO IINEWOP" IN THE PROGRAM WILL BE
TREATED ACCORDING TO THE DEFINITION OF "OPR" .

NEWOP . DINST OPR

"NEWOP" IS DEFINED TO BE THE EQUIVALENT TO THE MICROPROCESSOR
INSTRUCTION "OPR" AND IS ADDED TO THE OPERATOR SET FOR THE
REMAINDER OF THE ASSEMBLY.

REFERENCES TO USER DEFINED OPERATORS ARE NOT ALLOWED TO PRECEDE
THEIR . DINST STATEMENT.

ASSEMBLER PSEUDO-OPS CANNOT BE USED IN EITHER THE LABEL OR OPERAND
FIELDS OF ANY STATEMENT AND THEREFORE CANNOT BE DEFINED WITH THE
. DINST STATEMENT.

LOCAL SYMBOLS CANNOT BE USED IN THE OPERATOR FIELDS, THEREFORE THEY
SHOULD NOT BE USED WITH A . DINST STATEMENT.

9. 1. 4 . ORG PSEUDO-OP.

THE . ORG REASSIGNS THE LOCATION COUNTER.

THE LOCATION COUNTER WILL BE 0 AT THE START OF THE SOURCE INPUT.

THE . ORG OPERAND CANNOT BE FORWARD REFERENCED, (REFERRED TO A
LABEL DEFINED FURTHER ON IN THE PROGRAM) AND CANNOT HAVE A LABEL.

9. 2 0 DEFAULT RADIX PSEUDO-OPS.

INITIALLY, THE DEFAULT RADIX IS SET TO HEXADECIMAL SO THAT
CONSTANTS ARE READ IN AS BASE 16 VALUES. (SEE MODIFICATION NOTES IF
ANOTHER INITIAL DEFAULT RADIX IS DESIRED.)

AT ANY POINT IN THE PROGRAM, THE DEFAULT RADIX CAN BE REASSIGNED
THROUGH USE OF THESE PSEUDO-OPS:

· BIN
· DECM
· HEX
· OCT

i BINARY RADIX
i DECIMAL RADIX
iHEXADECIMAL RADIX
iOCTAL RADIX

THE DEFAULT RADIX PSEUDO-OPS CANNOT HAVE AN OPERAND OR A LABEL.

ADDITIONALLY, THE RADIX OF INDIVIDUAL CONSTANTS CAN BE SPECIFIED BY
THE USE OF THE AB. AD, AH AND AO INDICATOR& SEE SECTION # ~ 1. 0
THESE INDICATORS DO NOT CHANGE THE DEFAULT RADIX.

9. 3. 0
9. 3. 0 DATA STORAGE PSEUDo-opa

THREE PSEUDO-OPS CAN BE USED TO STORE DATA. THEIR FORMAT IS:

LABEL PSEUDO-OP OPERAND, OPERAND, i COMMENT

THE PSEUDO-OPS CAN HAVE AS MANY OPERANDS AS WILL FIT ON ONE 127
CHARACTER LINE.

EACH OPERAND CAN BE A SYMBOL, CONSTANT, OR EXPRESSION. COMMAS
SEPARATE THE OPERANDS.

THE DOUBLE QUOTE (") CHARACTER IS USED DIFFERENTLY IN THE . BYTE
COMMAND, BUT THE SINGLE QUOTE (.,) RETAINS ITS NORMAL FUNCTION.

9. 3. 1 . BYTE PSEUDO-OP.

THE . BYTE PSEUDO-OP STORES DATA IN SINGLE BYTES OF MEMORY.
NUMERICAL BYTE VALUES CAN RANGE FROM -128 TO +255 (DECIMAL>'
NORMALLY, DOUBLE QUOTES AND SINGLE QUOTES ARE TREATED IDENTICALLY
AND ARE USED TO FORM THE ASCII VALUE OF A SINGLE CHARACTER.
HOWEVER, IN THE . BYTE PSEUDO-OP , THE DOUBLE QUOTE IS USED TO INDI­
CATE TEXT STRINGS. DATA IS STORED SEQUENTIALLY AS IT IS PROCESSED,
LEFT TO RIGHT. A TEXT STRING MUST BE CLOSED WITH A DOUBLE QUOTE.

EXAMPLE: THE ASCII VALUES OF THE TEXT ABC IS STORED:

2 00 .ORG 200
200 41 . BYTE "ABC", 0, "B
201 42
202 43
203 0
204 42

THESE STATEMENTS WOULD BE INVALID:

. BYTE

. BYTE
"ABC"
"ABC

9.3.2 . DBYTE PSEUDO-OP.

iTHE" IS NOT FOR TEXT STRINGS
; TEXT MUST END WITH A "

THE . DBYTE IS SIMILAR TO THE . BYTE EXCEPT THAT IT STORES DOUBLE
BYTE QUANTITIES. IT DOES NOT ACCEPT TEXT STRINGa THE THE MOST
SIGNIFICANT BYTE IS STORED FIRST, THEN THE LEAST SIGNIFICANT BYTE.

.. 9. 3. 3
.. 9. 3. 3 . ADDR PSEUDO-OP.

THE . ADDR PSEUDO-OP IS THE SAME AS THE . DBYTE PSEUDO-OP EXCEPT THAT
THE LEAST SIGNIFICANT BYTE IS STORED FIRST. MANY MICROPROCESSORS
USE THIS REVERSED FORMAT FOR ADDRESSES. FOR EXAMPLE:

2 00
200 1 32
202 32 31

.ORG 200

. DBYTE AH3132 ; HEX CONSTANT

. ADDR AH3132 iREVERSED BYTES

.. 9. 3. 4 . ZERO PSEUDO-OP.

THE . ZERO PSEUDO-OP RESERVES THE NUMBER OF BYTES INDICATED BY THE
OPERAND AND SETS THEM TO ZERO.

EXAMPLE: 16 ADDRESSES, 1 TO 10 (BASE 16) ARE ZEROED.

o 1
1 0

11 10

.ORG

. ZERO

. BYTE

1
10
10

ONLY THE FIRST BYTE WILL BE PRINTED IN THE LISTING. THE LOCATION
COUNTER IS ADVANCED. THE OPERAND OF . ZERO CANNOT BE FORWARD REFER­
ENCED, (REFERED TO A LABEL DEFINED FURTHER ON IN THE PROGRAM>'

.. 9. 4. 0 LISTING CONTROL DIRECTIVES.

THROUGH USE OF THE . LIST, . PAGE AND . TITLE PSEUDO-OPS, PLUS SEVERAL
RUN-TIME OPTIONS, THE SOURCE PROGRAM CAN BE LISTED IN VARIOUS WAYS
AT ASSEMBLY TIME.

NORMALLY, THE ASSEMBLER AUTOMATICALLY PAGES THE OUTPUT, ADDING A
HEADER AT THE TOP OF THE PAGE. (NOTE THAT PAGE NUMBERS REPRESENT
THE LISTING PAGE NUMBERS, NOT INPUT FILE PAGES.)

NOT ALL PSEUDO-OPS ARE LISTED IN THE OUTPUT. THE CONDITIONAL
ASSEMBLY AND LISTING CONTROL PSEUDO-OPS ARE NOT LISTED UNLESS THE
IP OPTION IS SPECIFED. SEE RUN-TIME OPTIONS .. 2. 4. 0

NORMALLY THE STATEMENTS WHICH ARE NOT ASSEMBLED
ASSEMBLY ARE NOT LISTED. USE OF THE IJ COMMAND
ENABLE LISTING OF THESE STATEMENTS PLUS THE
CONDITONAL ASSEMBLY PSUEDO-OPS.

DUE TO CONDITIONAL
DECODER OPTION WILL

NORMALLY UNLISTED

THE PAGINATION AND HEADING CAN BE SUPPRESSED THROUGH USE OF THE IH
COMMAND DECODER OPTION.

:It 9. 4. 0

IF THE OUTPUT DEVICE IS ONE WHICH DOES NOT PAGE ON A FORM FEED (A
TTY), THE /T DECODER OPTION CAN BE USED TO CHANGE THE FORM FEED
(WHICH NORMALLY STARTS A NEW PAGE) TO 3 CARRIAGE RETURN/LINE FEEDS
SO THAT PAGES WILL BE SEPARATED BY 3 BLANK LINES IN THE LISTING.

WARNING MESSAGES ARE NORMALLY OUTPUT TO BOTH THE TERMINAL AND THE
SOURCE LISTING. TO INHIBIT THESE MESSAGES, THE /W DECODER OPTION IS
USED.

:It 9. 4. 1 . LIST PSEUDO-OP.

A LIST FLAG IS USED DURING ASSEMBLY TO INDICATE WHETHER OR NOT THE
STATEMENTS ARE TO BE LISTED. INITIALLY, THE FLAG IS ON AND STAYS ON
UNLESS A . LIST PSEUDO-OP IS ENCOUNTERED.

A . LIST PSEUDO-OP CAN BE USED WITH OR WITHOUT AN OPERANn A LABEL
CANNOT BE USED WITH THE . LIST PSEUDO-OP.

WHEN A. LIST PSEUDO-OP WITHOUT AN OPERAND IS ENCOUNTERED, THE LIST
FLAG I S INVERTED.

EXAMPLE:
i LIST FLAG INITIALLY ON

.ORG 200 i LISTED
VALUE · SET 1 i LISTED

· LIST i LIST FLAG OFF
VALU2 · SET 70 i NOT LISTED

· LIST iLIST FLAG BACK ON

NOTE THAT UNLESS THE /P OPTION IS USED, THE . LIST OPERATOR ITSELF
WILL NOT BE LISTED.

WHEN A . LIST PSEUDO-OP WITH AN OPERAND IS ENCOUNTERED, THEN LISTING
IS INHIBITED IF THE OPERAND IS EQUAL TO ZERO. (THE LIST FLAG IS
SET OFF). IF THE OPERAND IS NOT ZERO, LISTING IS ENABLED. (THE
LIST FLAG IS SET ON>'

:It 9. 4. 2 . PAGE PSEUDO-OP.

INSERTING A . PAGE PSEUDO-OP IN THE PROGRAM WILL NORMALLY START A
NEW PAGE BEG I NN I NG WITH THE NE X T LINE. (THE. PAGE STATEMENT ITSELF
IS NOT NORMALLY LISTED.) IF THE /P COMMAND DECODER OPTION IS USED,
THE . PAGE STATEMENT WILL BE THE FIRST LINE OF THE NEW PAGE.

.. 9. 4. 2

THE /H COMMAND DECODER OPTION INHIBITS THE . PAGE PSEUDO-OP.

THE . PAGE PSEUDO-OP CAN HAVE NO LABEL OR OPERAND .

.. 9. 4. 3 . TITLE PSEUDO-OP.

THE . TITLE IS USED TO REPLACE THE HEADING WITH UP TO 32 CHARACTERS
OF TEXT. ITS FORMAT IS:

· TITLE HEADING OF 32 CHARACTERS

THE FIRST CHARACTER AFTER THE. TITLE IS THE PSEUDO-OP DELIMITER
WHICH CANNOT BE AN ALPHA-NUMERIC CHARACTER THE DELIMITER IS
CONSIDERED THE FIRST CHARACTER OF THE 32 CHARACTER GROUP AND WILL
BE PRINTED OUT. ANY TEXT AFTER 32 CHARACTERS WILL BE IGNORED. TABS
CAN BE USED IN THE HEADING.

THE /H COMMAND DECODER OPTION INHIBITS THE . TITLE PSEUDO-OP.

THE /P COMMAND DECODER ENABLES THE LISTING OF THE . TITLE PSEUDO-OP.

A SEMICOLON DOES NOT DELIMIT THE HEADING TEXT.
MADE ONLY AFTER THE 32 CHARACTER HEADING GROUP.

COMMENTS CAN BE

WHEN PLACED AT THE BEGINNING OF THE PROGRAM, THE . TITLE PSEUDO-OP
WILL SET THE HEADING FOR THE FIRST PAGE. THE . TITLE MUST APPEAR
BEFORE THE FIRST LINE TO BE LISTED.

EXAMPLE: THE FOLLOWING STATEMENTS WILL CAUSE THE HEADING OF THE
FIRST PAGE TO BE "*MAIN PROGRAM".

· TITLE *MA I N PROGRAM
VALUE · EQU 1

· LIST VALUE

.. 9. ~ 0 CONDITIONAL ASSEMBLY PSUEDO-OPERATORS.

THE . IFZERO, . IFNZRO, . IFDEF AND . IFNDEF OPERATORS
PROVIDE FOR THE CONDITIONAL ASSEMBLY IN A PROGRAM,
OF STATEMENTS CAN BE ADDED (OR OMITTED) DURING
PROCESS. EACH IS DESCRIBED INDIVIDUALLY IN THE
FOLLOW. ALL HAVE THE GENERAL FORM:

PSEUDO-OP OPERAND j COMMENT

ARE USED TO
SO THAT GROUPS

THE ASSEMBLY
SECTIONS THAT

9. 5. 0

EACH OPERAND MUST MEET THE CONDITIONS OF ITS PSEUDO-OP IN ORDER FOR
THE STATEMENTS THAT FOLLOW IT TO BE ASSEMBLED. IF THE CONDITIONS
ARE NOT METI THESE STATEMENTS ARE OMITTED. THE. ENDC PSEUDO-OP
INDICATES THE END OF THE GROUP OF STATEMENTS WHICH ARE AFFECTED.
EACH CONDITIONAL PSEUDO-OP MUST HAVE ONE. ENDC STATEMENT.

CONDITIONAL PSEUDO-OPS CANNOT HAVE LABELS.

CONDITIONAL PSEUDO-OPS CAN BE NESTED UP TO 4095 LEVELS.

EXAMPLE:

VALUE1 · EQU 0 ; DEFINE VALUE1
· IFZERO VALUE1 ; VALUEl. = 0 ? - YES.
· BYTE "TEXT" I ASSEMBLED.
· IFDEF VALUE2 ;VALUE2 DEFINED? - NO.
· BYTE "TEXT" i OMITTED.
· ENDC i END OF INNER CONDITIONAL

DOC · EQU 17 I ASSEMBLED.
· ENDC iEND OF OUTER CONDITIONAL

THE CONDITIONAL PSEUDO-OPS ARE NOT INCLUDED IN THE ASSEMBLY LISTING
UNLESS THE /P OR /J COMMAND DECODER OPTION IS SPECIFIED.

ONE CONDITIONAL CAN INHIBIT ANOTHER.

EXAMPLE: THREE DIFFERENT RESULTS CAN OCCUR IN THE FOLLOWING TYPE OF
CONDITIONAL NESTING:

CONDITIONAL 1
i STATEMENT GROUP 1.

CONDITIONAL 2
iSTATEMENT GROUP 2.

. ENDC lEND CONDITIONAL 2.
iSTATEMENT GROUP 3.

. ENDC ; END CONDITIONAL 1.

IF BOTH CONDITIONALS ARE MET, ALL THE STATEMENTS, GROUPS 1 THROUGH
3, WILL BE ASSEMBLED.

IF CONDITIONAL 2 IS NOT MET, BUT CONDITONAL 1 IS MET, THEN GROUP 1
AND GROUP 3 WILL BE ASSEMBLED. GROUP 2 IS NOT ASSEMBLED.

IF CONDITIONAL 1 IS NOT MET, CONDITIONAL 2 IS IGNORED AND GROUPS 1
THROUGH 3 WILL NOT BE ASSEMBLED.

... 9.5.1
... 9. 5. 1 . IFZERO PSEUDO-OP.

IF THE OPERAND OF THE . IFZERO IS:

EQUAL TO ZERO - ASSEMBLY IS UNAFFECTED.
NOT EQUAL TO ZERO - STATEMENTS TO NEXT . ENDC ARE OMITTED.

THE OPERAND CANNOT BE FORWARD REFERENCED .

... 9. 5. 2 . IFNZRO PSEUD-OP.

IF THE OPERAND OF THE . IFNZRO IS:

EQUAL TO ZERO - STATEMENTS TO NEXT . ENDC ARE OMITTED.
NOT EQUAL TO ZERO - ASSEMBLY IS UNAFFECTEn

THE OPERAND CANNOT BE FORWARD REFERENCED .

... 9. 5. 3 . IFDEF PSEUDO-OP.

IF THE SYMBOL OPERAND OF THE . IFDEF IS:

DEFINED - ASSEMBLY IS UNAFFECTED.
NOT DEFINED - STATEMENTS TO NEXT . ENDC ARE OMITTEn

NOTE THAT. IFDEF WILL ACCEPT ONLY A
OPERAND.

SINGLE , SYMBOL NAME AS THE

A SYMBOL IS CONSIDERED TO BE DEFINED IF IT HAS BEEN USED IN THE
LABEL FIELD OFA STATEMENT PRECEEDING THE CONDITIONAL PSEUDO-OP .

... 9. ~ 4 . IFNDEF PSEUDO-OP.

IF THE SYMBOL OPERAND OF THE . IFNDEF IS:

DEFINED - STATEMENTS TO NEXT . ENDC ARE OMITTED.
NOT DEFINED - ASSEMBLY IS UNAFFECTED.

NOTE THAT ONLY A SINGLE SYMBOL NAME IS ALLOWED AS THE OPERAND.

A SYMBOL IS CONSIDERED TO BE DEFINED IF IT HAS BEEN USED IN THE
LABEL FIELD OF A STATEMENT PRECEEDING THE CONDITIONAL PSEUDO-OP.

9. 5. 5
9.5.5 . ENDC PSEUDO-OP.

THIS PSEUDO-OP INDICATES THE END OF A CONDITONAL ASSEMBLY GROUP.

EVERY CONDITIONAL PSUEDO-OP MUST BE PAIRED WITH A . ENDC.

9. 6. 0 . END PSEUDO-OP.

THIS INDICATES THE END OF THE SOURCE PROGRAM. IT CANNOT HAVE EITHER
A LABEL OR AN OPERAND. A WARNING MESSAGE WILL OCCUR IF THE . END
STATEMENT IS LEFT OFF.

#10. O. 0 ERROR MESSAGES AND WARNINGS.

BOTH PASS #1 AND PASS #2 CAN GENERATE ERROR MESSAGES. THESE ARE
PRINTED ON THE CONSOLE DEVICE AS THEY OCCUR. IF A LISTING IS
SPECIFIED, PASS 3 WILL LIST THE ERROR MESSAGE ABOVE THE LINE IN
WHICH THE ERROR OCCURS.

ERROR MESSAGES WHICH ARE SENT TO THE CONSOLE HAVE THE FORM:

E:XX AT LABEL+N

WHERE "N" IS A DECIMAL NUMBER OF
LINES BEYOND THE STATEMENT WHICH
CONTAINED THE GIVEN LABEL. IF NO
LABEL WAS GIVEN, "N" IS THE NUMBER OF
LINES FROM THE BEGINNING LINE OF THE
PROGRAM.

IF THE BINARY OUTPUT FILE IS SENT TO THE CONSOLE, AND ERROR
MESSAGES OCCUR, THE OUTPUT FILE LINES AND ERROR MESSAGES WILL BE
INTERMIXED. USE OF THE /E OPTION WILL INHIBIT THE ERROR MESSAGES
TO THE CONSOLE SO THAT ONLY THE BINARY FILE IS OUTPUT. THIS IS
USEFUL WHEN A USER WOULD LIKE TO TRY OUT CERTAIN PARTS OF A PROGRAM
AND IS NOT YET CONCERNED WITH OTHER PARTS KNOWN TO HAVE ERRORS.

#10. O. 0

INDIVIDUAL ERROR MESSAGES ARE EXPLAINED IN TABLE #2 WHICH DIVIDES
THE MESSAGES INTO THREE TYPES:

1) FATAL ERRORS- THESE ERRORS CAUSE THE IMMEDIATE
EXIT TO THE OS/8 MONITOR. THE CURRENT OUTPUT FILE
IS NOT CLOSED. /E WILL NOT INHIBIT FATAL ERROR
MESSAGES. FATAL ERROR MESSAGES ARE ALWAYS SENT TO
THE CONSOLE DEVICE.

2) WARNING MESSAGES INDICATE MINOR PROGRAM
PROBLEMS. ASSEMBLY IS NOT HALTED. GOOD PROGRAMMING
PRACTICES WILL ELIMINATE ALL WARNING MESSAGE&

3) NON-FATAL ERRORS - THE OCCURANCE OF A NON-FATAL
ERROR WILL NOT HALT ASSEMBLY. THE ASSEMBLER
ATTEMPTS TO DO AS MUCH OF THE LINE AS POSSIBLE. FOR
EXAMPLE, IF THE OPERAND CANNOT BE EVALUATED, IT
GIVES IT A VALUE OF ZERO, WRITES THE ERROR MESSAGE
AND CONTINUES.

TABLE #2. #10. O. 0

E:DF
FILE #N

E:LT

E:OE
FILE #N

E:PE

E:RE
FILE #N

E:ST

E:WE
FILE #N

W:EF

W:UC

**** FATAL ERRORS ****

DEVICE FULL:
THERE IS NOT ENOUGH ROOM LEFT ON THE OUTPUT DEVICE
FOR THE FILE. "N" INDICATES WHICH OF THE TWO OUT­
PUT FILES WAS IN ERROR.

LOCAL SYMBOL TABLE OVERFLOW:
THIS ERROR OCCURS ONLY IF THE IK OPTION IS IN USE.
CONVERSION OF SOME OF THE LOCAL SYMBOLS TO REGULAR
SYMBOL NAMES WILL USUALLY SOLVE THIS PROBLEM. SEE
THE NOTES ON THE /K RUN-TIME OPTIO~

OPEN ERROR IN OUTPUT FILE:
AN ATTEMPT WAS MADE TO OPEN AN OUTPUT FILE ON AN
INPUT-ONLY DEVIDE. (PTR:, CDR:, ETC.) "N" INDICATES
WHICH ONE OF THE TWO POSSIBLE OUTPUT FILES WAS IN
ERROR.

PHASE ERROR:
A LOCATION TAG HAS A DIFFERENT ADDRESS IN ONE PASS
THAN IT HAD IN THE PREVIOUS PASS.

READ ERROR:
AN ERROR HAS OCCURRED WHILE READING FROM AN INPUT
FILE DEVIC~ "N" INDICATES WHICH ONE OF THE NINE
POSSIBLE INPUT FILES HAD THE ERROR.

SYMBOL TABLE OVERFLOW:
THE PROGRAM IS TOO LARGE. WHERE CONVENIENT, DIVIDE
IT AND ASSEMBLE EACH PART SEPARATELY. ALSO REFER TO
THE NOTES ON THE IK RUN-TIME OPTION.

WR I TE ERROR:
AN ERROR HAS OCCURRED WHILE WRITING TO AN OUTPUT
FILE DEVICE. "N" INDICATES WHICH ONE OF THE TWO
OUTPUT FILES HAD THE ERROR.

**** WARNING MESSAGES ****

NO . END STATEMENT:
THE LAST INPUT FILE MUST HAVE AN . END STATEMENT.
THE ASSEMBLER PROCEEDS AS IF AN . END WERE PRESENT.

ASSEMBLY WAS CONDITIONALLY INHIBITED AT THE END OF
THE PROGRAM: EACH CONDITIONAL ASSEMBLY PSEUDO-OP
MUST BE PAIRED WITH AN . ENDC STATEMENT.

TABLE #2. (CONT.) #10. O. 0

E:BN

E:DR

E: IL

E: 10

E:LO

E:LS

E:ML

E:MO

E:OC

E:OM

**** NON-FATAL ERRORS ***W

BAD NESTING OF BRACKETS:
EACH OPEN BRACKET MUST BE PAIRED WITH A CLOSED
BRACKET.

DIGIT OUTSIDE OF RADIX:
THE CONSTANT CONTAINS A DIGIT NOT RECOGNIZED UNDER
THE SPECIFIED RADIX. FOR EXAMPLE, THE DIGIT 11211 IS
NOT RECOGNIZED IN BINARY RADIX. THE CONSTANT WILL
BE EVALUATED AS IF THAT DIGIT WERE ZERO.

ILLEGAL LABEL FIELD:
THE LABEL MAY NOT BE IN THE PROPER SYMBOL FORMAT,
SEE SECTION #6. 2. 0 ALSO, SOME PSEUDO-OPS CANNOT
HAVE LABELS.

ILLEGAL OPERAND VALUE:
REFER TO THE SECTION ON THE STATEMENT;S OPERATOR TO
DETERMINE THE ALLOWABLE OPERAND TERMa

LINE INPUT OVERFLOW:
ONLY 127 CHARACTERS, NOT INCLUDING THE CARRIAGE
RETURN AND LINE FEED, ARE ALLOWED IN AN INPUT LINE.

LOCAL SYMBOL SYNTAX ERROR:
THE CORRECT FORMAT FOR A LOCAL SYMBOL IS $N WHERE
"N" IS A DECIMAL NUMBER FROM 0 TO 255.

MULTIPLE LABEL DEFINITION:
THE SAME LABEL HAS A DIFFERENT VALUE AND IS USED
WITH AN OPERATOR OTHER THAN A . SET PSEUDO-OP.

MISSING OR ILLEGAL MNEMONIC IN OPERATOR FIELD:

OPERAND TOO COMPLEX:
TOO MANY TERMS AND OPERATORS EXIST IN THE OPERAND.
DIVIDE THE EXPRESSION USING THE . SET COMMAND.

EXAMPLE: THE FIRST EXPRESSION IS DIVIDED INTO THE
TWO STATEMENTS FOLLOWING IT.

WORD

TEMP
. WORD

OPERAND MISS I NG.

· EQU

· SET
· EQU

[EXPRI J + [EXPR2 J

[EXPRI J
TEMP + [EXPR2 J

TABLE #2. (CONT.) #10. O. 0

E:OS

E:PS

E:TL

E:US

OPERAND SYNTAX ERROR.

ILLEGAL PERMANENT SYMBOL USAGE IN OPERAND:
REFER TO THE APPENDICES TABLES TO SEE WHICH NAMES
ARE USED IN THE ASSEMBLER AND MICROPROCESSOR IN­
STRUCTION SETS AND RENAME YOUR SYMBOL SO THAT IT
WILL NOT CONFLICT.

LABEL DEFINED TOO LATE:
ONLY ONE LEVEL OF FORWARD, REFERENCING IS ALLOWED.

UNDEFINED SYMBOL:

NOTE: REFER TO SECTION #12. O. 0 FOR ADDITIONAL ERROR MESSAGES WHICH
ARE SPECIFIC TO THE TYPE OF MICROPROCESSOR BEING USED.

#11. O. 0 MODIFICATION NOTES.

VARIOUS MODIFICATIONS CAN BE MADE TO THE ASSEMBLER FOR GREATER
OPERATING CONVENIENCE. BEFORE MAKING ANY CHANGES, THE USER SHOULD
READ THE DESCRIPTION OF EACH OPTION CAREFULLY. NO CHECKS ON PATCH
VALIDITY ARE MADE. ALSO KEEP A RECORD OF ALL CHANGES SO THAT THE
STATUS OF THE CROSS-ASSEMBLER IS ALWAYS KNOWN.

MODIFICATIONS ARE MADE BY PATCHING LOCATIONS IN THE IMAGE LSV)
FILE USING ODT. REFER TO THE OS/8 MANUAL FOR A DETAILED EXPLAIN­
ATION OF ODT OPERATION.

THE EXAMPLE BELOW SHOWS AN ODT PATCH BEING MADE TO FILE "XNAME. SV~
WHERE THE CONTENT OF LOCATION 10107 IS CHANGED FROM 3 TO 2 .

. GET SYS: XNAME

.ODT
10107/0003 2
""'c
. SA SYS: XNAME

#11.1.0

#11. 1. 0 CHANGING THE DEFAULT INPUT FILE EXTENSION <. MS)'

PATCH LOCATION 10100 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11.2.0 CHANGING THE DEFAULT BINARY OUTPUT FILE EXTENSION <. MB)

PATCH LOCATION 10101 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11. a 0 CHANGING THE DEFAULT LISTING OUTPUT FILE EXTENSION (. LS).

PATCH LOCATION 10102 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11.4.0 CHANGING THE BASE YEAR DATE.

IN OS/8 ONLY 3 BITS ARE PROVIDED TO INDICATE THE CURRENT YEAR.
THIS ALLOWS ONLY NUMBERS FROM 0 TO 7 WHICH MUST BE ADDED TO A BASE
YEAR TO FORM THE ACTUAL YEAR NUMBER. IN 1978 AND AT ADDITIONAL 8
YEAR INTERVALS THE BASE YEAR MUST BE CHANGED TO PROVIDE THE PROPER
DATE PRINTOUT. TO DO THIS, PATCH LOCATION 10104 TO CONTAIN THE TWO
CHARACTER 6 BIT ASCII REPRESENTATION OF THE TWO LEAST SIGNIFICANT
DIGITS OF THE YEAR.

BASE YEAR:
1978
1986
1994
2002

PATCH TO LOCATION 10104 (IN OCTAL).
6770
7066
7164
6062

SHOULD THIS PROGRAM SURVIVE UNTIL THE YEAR 2000 THE TWO MOST
SIGNIFICANT DIGITS MAY· BE CHANGED BY PATCHING LOCATION 10103 TO
CONTAIN 6260.

#11. 5. 0

#11. 5. 0 CHANGING THE DEFAULT RADIX. (HEXADECIMAL)

INITIALLY THE DEFAULT RADIX IS SET TO HEXADECIMAL. THIS MAY BE
MODIFIED TO BINARY, OCTAL, OR DECIMAL BY PATCHING LOCATION 10105
FROM THE FOLLOWING TABLE.

RADIX:

OCTAL
HEXADECIMAL
DECIMAL
BINARY

PATCH LOCATION 10105 TO:

1
2
3
4

#11.6.0 GENERATING 8 BIT ASCII CHARACTERS WITHIN THE BINARY
PROGRAM.

THE ASCII CHARACTERS GENERATED AS OPERANDS WITH THE QUOTE
CHARACTERS ARE SEVEN BIT REPRESENTATIONS TYPICAL OF MOST
MICROPROCESSOR SYSTEMS. TO GENERATE EIGHT BIT ASCII WITH THE
EIGHTH BIT ALWAYS SET (AS IS DONE IN SOME PDP8 SOFTWARE), PATCH
LOCAT I ON 10106 TO CONTA I N 377. (OR I G I NAL CONTENT WAS 177 >.

#11.7.0 RUNNING UNDER OS8 VERSION 2.

THE CROSS-ASSEMBLER IS SET UP TO USE THE OS/8 VERSION 3 METHOD FOR
CORE SIZE DETERMINATION. IN OS/8 V3 THE CORE SIZE IS CONTAINED IN
A MONITOR LOCATION. IN PREVIOUS VERSIONS, THE CORE SIZE MUST BE
DETERMINED BY ACCESSING EACH FIELD OF MEMORY TO SEE IF IT EXISTS ON
THE SYSTE~ THEREFORE I TO RUN THE CROSS-ASS EMLER UNDER VERSION 2,
PATCH LOCATION 10107 TO CONTAIN 2 (ORIGINAL CONTENT WAS 3).

11. 8. 0 CHANG I NG THE NUMBER OF LINES PER PAGE. (6)

THE NORMAL NUMBER OF LINES· PER PAGE IS SET AT 66. 6 OF THE 66
LINES ARE USED BY THE ASSEMBLER FOR THE HEADING AND MARGIN. TO
ALTER THE NUMBER OF LINES ON A PAGE, PATCH LOCATION 10110 TO BE THE
TOTAL POSITIVE LINES PER PAGE INCLUDING HEADING AND MARGI~

#11.9.0

#11. 9. 0 CHANGING THE NUMBER OF CHARACTERS PER LINE. (72)

THE TOTAL NUMBER OF CHARACTERS PRINTED ON ONE LINE (EXCLUDING
CARRIAGE RETURN AND LINE FEED) IS SET AT 72 (BASE 10). TO MODIFY
THIS COUNT. PATCH LOCATION 10111 TO CONTAIN THE POSITIVE NUMBER OF
CHARACTERS TO BE PRINTED ON A LINE (EXCLUDING THE CR AND LF).

#11. 10.0 INITIAL FORM/FEED CONTROL.

SOME LINE PRINTER HANDLERS WHEN FIRST INITIALIZED WILL ISSUE AN
AUTOMATIC FORM FEED. TO AVOID EJECTING AN ADDITIONAL PAGE EACH TIME
THE ASSEMBLER IS CALLED. THE FIRST FORM FEED FROM THE HEADING HAS
BEEN SUPPRESSED. TO REENABLE THIS FIRST FORM FEED. PATCH LOCATION
10112 WITH 214 (BASE 8).

#11. 11. 0 CHANGING LABEL DELIMINATOR (. >.

TO PROVIDE COMPATIBILITY WITH OTHER ASSEMBLER FORMATS AN OPTIONAL
LABEL DELIMITER WILL BE ACCEPTED. NORMALLY. THIS DELIMITER IS A
COMMA. BUT IT CAN BE MODIFIED TO ANY OTHER NON-ALPHANUMERIC
CHARACTER (EXCEPT THE SEMICOLON OR CARRIAGE RETURN>' TO MODIFY THE
DELIMITING CHARACTER PATCH LOCATION 10113 WITH THE 8 BIT ASCII
VALUE FOR THE CHARACTER.

#11. 12.0 CHANGING FROM 8 BIT TO 7 BIT ASCII IN THE OUTPUT FILES.

ALL ASCII OUTPUT TO THE BINARY (OBJECT) AND LISTING FILES IS IN 8
BIT ASCII FORMAT. TO OUTPUT 7 BIT ASCII FORMAT PATCH LOCATION 10114
TO CONTAIN 177. (ORIGINAL CONTENT WAS 377).

#11. 13. 0
#11. 13.0 CHANGING THE SENSE OF THE RUN-TIME OPTIONS.

EACH SLASH OPTION (EXCEPT /0 TO /9) MAY HAVE ITS SENSE INVERTED BY
PATCHING THE LOCATIONS SHOWN IN THE FOLLOWING TABLE WITH THE
DESCR I BED VALUE.

OPTION: LOCATION: STANDARD: INVERTED:

/B 10116 7650 7640
/E 10117 7640 7650
/H 10120 7650 7640
/..J 10121 7650 7640
/K 10122 7650 7640
/L 10123 0 1
/N 10124 7650 7640
/0 10125 7650 7640
/P 10126 7640 7650
/8 10127 7650 7640
/T 10130 7650 7640
/W 10131 7650 7640

,.,.,.r

#12. O. 0

#12. O. 0 2650 CROSS-ASSEMBLER SPECIFICS.

THE FIRST ELEVEN SECTIONS OF THIS MANUAL HAVE PRESENTED SIERRA
DIGITAL'S UNIVERSAL ASSEMBLER FORMAT AS IT IS APPLIED TO ALL
CROSS-ASSEMBLERS IN THE X8 SERIES. THIS SECTION PRESENTS
ADDITIONAL INFORMATION ON THE APPLICATION OF THE UNIVERSAL
ASSEMBLER FORMAT TO A SPECIFIC CROSS-ASSEMBLER FOR THE 2650
MICROPROCESSOR. THE 2650 MICROPROCESSOR WAS DESIGNED BY SIGNETICS
CORPORATION, 811 EAST ARQUES AVENUE, SUNNYVALE, CALIFORNIA 94086.
THE 2650 IS PRODUCED BY SIGNETICS AND IS ALSO SECOND SOURCED BY
ADVANCED MEMORY SYSTEMS, 1276 HAMMERWOOD, SUNNYVALE, CALIFORNIA
94086. NO ATTEMPT WILL BE MADE IN THIS MANUAL TO EXPLAIN THE
OPERATION OF THE MICROPROCESSOR. EXCELLENT MANUALS COVERING THE
OPERATION AND PROGRAMMING OF THE MICROPROCESSORS ARE AVAILABLE FROM
THEIR MANUFACTURERS. SECTION #13 PRESENTS A SUMMARY OF THE
INSTRUCTION MNEMONIC CODES DEFINED BY SIGNETICS AND RECOGNIZED BY
OUR CROSS-ASSEMBLER.

#12. 1. 0 CROSS-ASSEI"IBlER FILE NAl'lES.

THE CROSS-ASSEMBLER IS PROVIDED ON FILE STRUCTURED MEDIA UNDER THE
Nf~NES:

X2650. SV - FOR THE OS/8 SAVE IMAGE FILE.
X2650. BN - FOR THE 05/8 BINARY FORNAT FILE.

IT IS SUGGESTED THAT THE SAME NANING CONVENTIONS BE USED WHEN
LOADING THE CROSS-ASSEMBLER FRON PAPER TAPE.

#12. 2. ()

#12. 2. 0 LISTING FORMAT.

THE LISTING FILE IS OUTPUT WITH THE OBdECT CODE PRINTED TO THE LEFT
OF THE SOURCE CODE LINES. AS EACH MICROPROCESSOR INSTRUCTION MAY
CODE INTO ONE, TWO, OR THREE BYTES, ROOM IS PROVIDED FOR THREE
COLUMNS OF GENERATED OBdECT CODE PLUS A COLUMN FOR THE ADDRESS.
THE ADDRESS AND OBdECT CODE ARE NORMALLY PRINTED IN HEXADECIMAL BUT
THIS MAY BE CHANGED TO OCTAL WITH THE /0 COMMAND DECODER OPTION.
SOURCE LINES WHICH EXCEED THE PRINTOUT LIMIT WILL BE CONTINUED AT
COLUMN 25 (STANDARD COMMENT TAB STOP) OF THE SOURCE PRINTOUT
PORTION. TABS OCCURING IN THE SOURCE PROGRAM ARE CONVERTED TO THE
PROPER NUMBER OF BLANK CHARACTERS BY THE ASSEMBLER. THIS IS DONE
BY THE ASSEMBLER RATHER THAN THE DEVICE HANDLER OR DEVICE BECAUSE
THE BEGINNING OF THE SOURCE PRINTOUT DOES NOT OCCUR ON A STANDARD
TAB STOP.

#12. a 0 ADDITIONAL ERROR MESSAGES FOR THE 2650.

STANDARD ERRORS:

E: I I ILLEGAL I ND I RECT ADDRESS I NG SPEC I F I ED.
A LEADING ASTRISK WAS USED IN AN OPERAND FOR
AN INSTRUCTION NOT ALLOWING INDIRECT
ADDRESS I NG.

E: I P ILLEGAL OFF PAGE REFERENCE.

E: RA

AN OFF PAGE ADDRESS WAS USED IN A NON-BRANCH
I NSTRUCT ION.

RELATIVE ADDRESS IS
THE OPERAND ADDRESS
THE REQUIRED -64 TO
THE FIRST LOCATION
I NSTRUCT ION.

OUT OF RANGE.
WAS OUT OF RANGE FROM
+63 (DECIMAL) BYTES FROM
FOLLOWING THE RELATIVE

E:RV BAD REGISTER VALUE FIELD.
THE VALUE ASSIGNED TO A REGISTER (OR
CONDITION CODE) SPECIFICATION FIELD DID NOT
FALL WITHIN THE ALLOWABLE VALUES FOR THE
I NSTRUCT ION.

#12. 4. 0
#12. 4. 0 BINARY OUTPUT FILE (PIPBUG COMPATABLE).

THE OBJECT (BINARY OUTPUT) FILE CONSISTS OF ASCII TEXT REPRESENTING
HEXADECIMAL NUMBERS IN THE FOLLOWING FORMAT:

LEADER STRINGS OF 100 NULL CHARACTERS PRECEED AND FOLLOW THE OBJECT
OUTPUT. EACH LINE BEGINS WITH A COLON AND IS FOLLOWED BY A FOUR
HEX DIGIT STARTING ADDRESS, A TWO HEX DIGIT BYTE COUNT, A TWO HEX
DIGIT BLOCK CONTROL BYTE, UP TO 16 BYTES OF DATA (EACH 2 HEX
DIGITS), AND A FINAL TWO HEX DIGIT BLOCK CONTROL BYTE.

EXAMPLE:

:AAAACCBBDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDBB

WHERE:

AAAA IS THE HEXADECIMAL ADDRESS FOR STORING THE
FIRST DATA BYTE. EACH ADDITIONAL DATA
BYTE IS TO BE STORED IN SEQUENTIAL
ADDRESSES.

CC ... '. .. IS THE TWO HEXADECIM'~L DIGIT COUNT FOR THE
NUMBER OF DATA BYTES (REPRESENTED BY PAIRS
OF D'S) IN THE LINE. A COUNT OF ZERO
INDICATES THE TERMINATION OF THE OBJECT
OUTPUT. (ON TERMINATION OF THE OBJECT
OUTPUT A STARTING ADDRESS OF 0000 IS
PROVIDED) .

BB IS A TWO HEXADECIMAL DIGIT BLOCK CONTROL
BYTE. TWO BLOCK CONTROL BYTES OCCUR IN
EACH RECORD, ONE FOR THE ADDRESS AND BYTE
COUNT AND ONE FOR THE DATA BYTES. THE
BLOCK CONTROL BYTE IS FORMED BY
EXCLUSIVE-ORING EACH BYTE TO BE CHECKED
WITH THE BLOCK CONTROL BYTE AND THEN
ROTATING THE RESULT ONE BIT LEFT TO FORM

(

THE NEW BLOCK CONTROL BYTE. BEFORE
STARTING TO CHECK EACH FIELD THE BLOCK
CONTROL BYTE IS SET TO ZERO.

DD , REPRESENTS TWO HEXADECIMAL DIGITS FOR A
BYTE OF OBJECT (BINARY) CODE. UP TO 16
BYTES MAY BE OUTPUT ON ONE LINE.

THE BINARY OUTPUT FILE CAN BE CHANGED TO BNPF FORMAT THROUGH THE
USE OF THE /B RUN-TIME OPTION. SECTION #2. 4. 0 DESCRIBES THE BNPF
OUTPUT.

#12. 5. 0
12. 5. 0 MISCELLANEOUS NOTES.

THE FOLLOWING SECTIONS CLARIFY SEVERAL TOPICS PERTAINING TO THE
IMPLEMENTATION OF THE X2650 CROSS-ASSEMBLER.

#12. 5. 1 2650 PAGE BOUNDARIES.

PROGRAM ASSEMBLY DOES
FOR THE 2650. NO ERROR
INSTEAD THE ASSEMBLER
BEGINNING OF THE CURRENT
PAGE AN .ORG STATEMENT
ONTO THE NEW PAGE.

NOT FLOW ACROSS THE 8K BYTE PAGE BOUNDRIES
IS GIVEN IF THE PAGE BOUNDRY IS EXCEEDED.

WRAPS THE PROGRAM COUNTER AROUND TO THE
PAGE. TO ASSEMBLE CODE ON ANOTHER 2650
MUST BE USED TO ORIGIN THE PROGRAM COUNTER

#12. 5. 2 BXA/BSXA INDEX REGISTER.

THE BSA AND BSXA INSTRUCTIONS REQUIRE THAT REGISTER 3 BE USED FOR
INDEXING. THE INDEX REGISTER DESIGNATION MAY BE LEFT OFF AS THE
INDEXING WITH REGISTER 3 IS IMPLIED BY THE INSTRUCTION DEFINITION.

BXA (*>ADR
BXA <*>ADR,3

; EITHER FORM IS LEGAL

IF AN INDEX REGISTER VALUE IS USED, IT MUST NOT BE FORWARD
REFERENCED OR AN E:RV ERROR WILL OCCUR ON PASS 1.

#12. 5. 3 REGISTER SPECIFICATION SYNTAX.

MOST INSTRUCTIONS REQUIRE A REGISTER OR CONDITION CODE VALUE TO
IMMEDIATELY FOLLOW THE INSTRUCTION MNEMONIC. FOR THESE
INSTRUCTIONS THE VALUE MUST IMMEDIATELY FOLLOW THE MNEMONIC, BEING
SEPARATED FROM IT ONLY BY A COMMA. THE VALUE MAY BE AN EXPRESSION
BUT IT MUST CONTAIN NO BLANKS OR TABS. THE VALUE MUST BE SEPARATED
FROM THE MAIN OPERAND BY AT LEAST ONE BLANK OR TAB. THE MAIN
OPERAND EXPRESSION MAY CONTAIN BLANKS AND/OR TABS.

ADDI, 1+2
ADD!' 1 + 2

1 + 2
1 + 2

iLEGAL SYNTAX
i ILLEGAL SYNTAX

#12. 5. 4 2650 ADDRESS SPACE.

THE BASIC ARITHMETIC PACKAGE OF THE
VALUES OUT TO 16 BITS. THE 2650
(32K) ADDRESS VALUES. ANY. ORG
REQUIRING AN ADDRESS VALUE WILL
ISSUING AN ERROR MESSAGE.

#12. 5. 5 ADDRESS DATA.

#12. 5. 4

X2650 CROSS-ASSEMBLER CARRYS
CAN HOWEVERJ HANDLE ONLY 15 BIT
OR MICROPROCESSOR INSTRUCTION

MASK OUT THE 16TH BIT WITHOUT

THE 2650 INDIRECT ADDRESSING MODE REQUIRES THAT TWO BYTE ADDRESSES
BE SET UP IN MEMORY. THE. DBYTE PSEUDO-OP IS CONVIENIENT FOR
DEFINING THESE DOUBLE BYTE ADDRESSES. THE. ADDR PSEUDO-OP SHOULD
NOT BE USED AS IT GENERATES A REVERSED BYTE FORMAT TYPICAL OF OTHER
MICROPROCESSOR TYPES.

.12. 6. 0 SAMPLE 2650 PROGRAM #12. 6. 0

R X2650
~TTY:,TTY:<SAMPLE/l/P/J

E:MO AT ATABLE+ 1
E:MO AT ATABLE+ 1

080010605600197C460F75085255011AOD3BIA04D4
081 0102080D40320D4039BAOIB66457F3B021 B6FD3
082010E03B126DE859CDE859173B0924FF4DE85956
083010AOCDE85917D2D2D2D246F08680CAIC770856
08401061208410C8140144070C6851515151450FFB
08500B171701020408102040800000B8
000000

SAMPLE 2650 ROUTINE DEC 17, 1976 X2650-VIA

· TITLE SAMPLE 2650 ROUTINE

PAGE

THIS ROUTINE READS IN STATUS INFORMATION AND
UPDATES 16 DIFFERENT 128 BIT FLAG TABLES.

o 0
o 1
I) 3
o 20
o 3
o 1
o 2

10 80
8 0

800 56 0
:::02 19 7C
804 46 F
806 75 8
808 52
:3C)f;> 55 1

I PORT 1 . EG!U
IPORT2: . EQU
OPORT 1 . EG!U

o
1

; I/O PORT ASSIGNMENTS

BKPI . EQU 20 ; BREAKPOINT VECTOR
U . EQU 3 ;UNCONDITIONAL INDICATOR
P . EQU 1 ;PLUS INDICATOR
M . EQU 2 ;MINUS INDICATOR
TABLES . EQU 1080 ; BASE OF FLAG TABLES

.ORG 800
LOOP REDE,2 IPORTI ; GET READY FLAG AND TABLE #

BCTR,P LOOP ;WAIT UNTIL DATA READY
ANDI. 2 OF
CPSL 8 iSELECT WITHOUT CARRY

REDE, 1 IPORT2: ; GET BIT POSITION NUMBER

1

80B lA D
80D 3B l.A
80F 4 80
811 D4 :3

BCTR,M $2
BSTR,U CLEAR
LODI,O 80
WRTE,(J OPORTI

; MOST SIG BIT MEANS SET BIT ON
; CLEAR BIT FROM TABLE

E:13 2(>
814 D4 3

816 '~"'B AO

81:::; J.B /:.16
81A 45 7F
81C :3B 2
81E IB 6F
820 3B 12

:3Z!:i
:328

6D E8 59
C[) E8 ~i9

17

$1

$2

SET

EORZ 0
WRTE,I) OPORTI

IFNZRO ?1
ZBRR *BKPl
· ENDC

IFZERO ?1
NOP
NOP
· ENDC

; STROBE ACKNOWLEDGE LINE

; CLEAR REGISTER 0

; USER FLAG 1 IS SELECTED FOR
; DEBUGGING. A BREAKPOINT CALL
; IS INSERTED FOR DEBUGGING
.iAND TWO NOP~S ARE INSERTED
iFOR NORMAL OPERATION

BCTR,U
ANDI. 1
BSTR,U
BCTR,1j
B!:HR, U
IORA,O
STRA, °
RE:TC, U

LOOP ; LOOP BACK FOR ANOTHER TRY
ABOlll1111 ; MASK OUT SIGN
SET ; SET BIT INTO TABLE
$1
POSITN iPOSITION THE POINTERS
*ATABLE, 1 lOR IN THE DECODED BITS
*ATABLE,l ; STORE RESULT BACK

SAMPLE 2650 ROUTINE X2650-V1A PAGE 2

PAGE
829 3B 9 CLEAR BSTR,U

EORL 0
ANDA, 0
STRA, 0
RETC,U

POSITN ; POSITION THE POINTERS
82B 24 FF
82D 4D E8 59
830 C;D E8 ::i9
:::;:3=3 17

A0377 ; COMPLEMENT
*ATABLE, 1. ; MASK OUT SELECTED BIT
*ATABLE, 1. ; STORE RESULT BACK

ROUTINE TO POSITION THE TABLE BYTE POINTER AND
DECODE THE BIT POSITION.

8:34 D2
D2

POSITN RRL, 2 ; MULTIPLY BY 16 FOR EACH TABLE
,-,-.e'
Ci ... ").J

8~:7 D2
83:::: 46 FO
83A 86 80
::::3C CA 1.C
:3:3E 77 8
::::40 20
::::41 :34 10
:::43 (;8 14
~.34~5 1
::'::46 44 7

84B 51
84(: 51.
84[1 51
::::4E 45 F

8~51. 1 $1

:=:54 8
:=:55 :I.e)
:::!:i!:., 2()

RRL, 2
RRL, 2
RRL, 2
ANDI,2 OFO
ADDI,2
STRR, 2
PPSL
EORZ
ADDI,O
STRR, 0
LODZ
ANDL 0

AL TABLES ; COMPUTE BASE ADDRESS
ATABLE+l OF 16 BYTE TABLE
8 ; ADD WITH CARRY
o ; CLEAR REG 0
""1'1 TABLES
ATABLE
1
7

LODA,O $1,0
RRR, 1

i GET BIT PATTERN
; FORM INDEX TO BIT TABLE

RRR, 1
RRR, 1
ANDI, 1. OF
RETC,U

BIN
BYTE I, 10, 100, 1000

BYTE 1.0000, 1.00000, 1.000000, 10000000

859 0 0 ATABLE DBYTE 0
. E: MO

SAMPLE 2650 ROUTINE

859 AT ABLE
1. IPORT2
1. P
:3 lJ

ERROR~::;: 1

,JUNK
END

20 BKP1.
800 LOOP
834 PO~=; I TN

; ~=;AMPLE ERROR

DEC 17, 1971:.,

82';:1 CLEAR
2 M

::r:z() !::;E: T

X2650-·V1A

o IPORTl.
3 OPORT1

1080 TABLES

PAGE

#13. O. 0

#13. O. 0 MICROPROCESSOR INSTRUCTIONS SET.

THIS SECTION IS A SUMMARY OF THE INSTRUCTION SET OF THE
MICROPROCESSOR AS DEFINED BY SIGNETICS. THE ASSEMBLY CODE
FOR EACH INSTRUCTION IS SHOWN WITH THE HEXADECIMAL OBJECT
EACH INSTRUCTION WILL BE CODED INTO THE DESIGNATED NUMBER OF

2650
FORMAT

CODE.
BYTES.

THE FOLLOWING ABBREVIATIONS ARE USED IN DESCRIBING THE ASSEMBLY
CODE FORMAT:

R
DATA ..
PORT ..
ADR
(*) ...

S
(, S) ..

V

REGISTER NUMBER (0 TO 3).
AN EIGHT BIT DATA QUANTITY.
AN EIGHT BIT PORT ADDRESS.
AN ADDRESS VALUE:.
AN OPTIONAL ASTRISK INDICATING INDIRECT
ADDRESS I NG.
AN INDEX REGISTER NUMBER (0 TO 3).
AN OPTIONAL COMMAND SIGN (PLUS OR MINUS)
INDICATING AUTO-INCREMENT OR
AUTO-DECREMENT.
A CONDITION CODE VALUE (0 TO 3).

LOAD/STORE INSTRUCTIONS:

INSTRUCTION MEANING

LODZ R LOAD REGISTER ZERO
LODI,R DATA LOAD IMMEDIATE DATA
LODR,R (*)ADR LOAD RELATIVE
LODA,R (*)ADR LOAD ABSOLUTE
LODA,O (*)ADR, XC,S) LOAD ABSOLUTE, INDEXED

STRZ R STORE REGISTER ZERO
STRR,R (*)ADR STORE RELATIVE
STRA,R (*)ADR STORE ABSOLUTE
STRA,O C*)ADR, XC,S) STORE ABSOLUTE, INDEXED

* LODZ
STRZ

o
o

CODES INTO 60.
IS AN ILLEGAL INSTRUCTION.

ARITHMETIC INSTRUCTIONS:

INSTRUCTION MEANING

ADDZ R ~D TO REGISTER ZERO
ADDI,R DATA ADD IMMEDIATE DATA
ADDR,R (*)ADR ADD RELATIVE
ADDA,R (*)ADR ADD ABSOLUTE
ADDA,O <*}ADR,X(,S) ADD ABSOLUTE, INDEXED

SUBZ R SUBTRACT FROM REGISTER
SUBI,R DATA SUBTRACT IMMEDIATE DATA
SUBR,R (*)ADR SUBTRACT RELATIVE
SUBA,R (*)ADR SUBTRACT ABSOLUTE

ZERO

SUBA,O (*)ADRX(,S) SUBTRACT ABSOLUTE, INDEXED

#13. O. 0

HEX CODE BYTES

OO+R 1*
04+R L
08+R 2
OC+R 3
OC+X ~

~

CO+R 1*
C8+R ~

4

CC+R 3
CC+X ~

~

HEX CODE BYTES

80+R 1
84+R 2
88+R 2
8C+R ~

~

8C+X 3

AO+R 1
A4+R 2
A8+R 2
AC+R 3
AC+X ~

~

LOGICAL INSTRUCTIONS:

INSTRUCTION MEANING

ANDZ R AND TO REGISTER ZERO
AND!. R DATA AND IMMEDIATE DATA
ANDR,R (*>ADR AND RELATIVE
ANDA,R <*)ADR AND ABSOLUTE
ANDA,O (*) ADR, X (, S) AND ABSOLUTE, INDEXED

IORZ R INCLUSIVE OR TO REGISTER ZERO
IORI,R DATA INCLUSIVE OR IMl"lEDIATE DATA.
IORR,R (*) AI:IR INCL.USIVE OR RELATIVE
IORA,R (*>ADR INCLUSIVE OR ABSOLUTE
IORA,O <*)ADR, X(,S> INCLlJSIVE OR ABSOLUTE, INDEXED

EORZ R EXCLUSIVE OR TO REGISTER ZERO
EORI,R DATA EXCLUSIVE OR I 1'1MED lATE DATA
EORR,R (*)ADR EXCLUSIVE OR RELATIVE
EORA,R <*>ADR EXCLUSIVE OR ABSOLUTE
EORA,O (*)ADR,X(,S) EXCLUSIVE OR ABSOLUTE, INDEXED

* ANDZ ° IS AN ILLEGAL. INSTRUCTION.

COMPARE INSTRUCTIONS:

INSTRUCTION

COl'1Z R
COMI, R DATA
COMR,R <*>ADR
COMA,R (*>ADR
COMA,O (* > ADR, X (, S)

ROTATE INSTRUCTIONS:

INSTRUCTION

RRR,R
RRL.R

MEANING

COMPARE TO REGISTER ZERO
COMPARE IMMEDIATE DATA
COMPARE RELATIVE
COMPARE ABSOLUTE
COMPARE ABSOLUTE, INDEXED

MEANING

ROTATE REGISTER RIGHT
ROTATE REGISTER LEFT

#13. 0. °
HEX CODE BYTES

40+R 1*
44+R :2
48+R :2
4C+R 3
4C+X 3

60+R 1
64+R :2
68+R Z
6C+R 3
6C+X 3

:20+R 1
:24+R Z
28+R 2
:2C+R :3
:2C+X ":.

'J

HEX CODE BYTES

EO+R 1
E4+R 2
E8+R :2
EC+R 3
EC+X 3

HEX CODE BYTES

50+R
DO+R

1
1

#1:3. O. 0
BRANCH INSTRUCTIONS:

INSTRUCTION MEANING HEX CODE BYTES

BCTR,V <*)ADR BR'~NCH ON CONDITION TRUE,REL HHV ~,

"'-

BCFR, V <*)ADR BRANCH ON CONDITION FALSE,REL 'i' 8+V 2*·
BCTA,V <*)ADR BRANCH ON CONDITION TRUE,ABS 1C+V :3
BCFA, V <*>ADR BRANCH ON CONDITION FAL.SE,ABS 9C+V :3*

BRNR,R (·Ii-) ADR BRANCH ON REG NON-ZERO,REL !::if:3+R 2
BRNA,R <*)ADR BRANCH ON REG NON--ZERO, ABS 5C+R 3

BIRR,R <*>ADR BRANCH ON INCREMENTING REC;, REL D8+R 2:
BIRA,R <*>ADR BRANCH ON INCREMENTING REG, ?\BS DC+R "J' .;.;-

BDRR,R <*>ADR BRANCH ON DECREMENTING REG,REL F8+R 2
BDRA,R <*>ADR BRANCH ON DECREI'1ENTING REG,ABS FC+R "? .;.;-

BXA <*)ADR,::;:: BRANCH INDEXED, AB~:;;oLUTE 9F :;:
ZBRR (*>ADR ZERCI BRANCH RELATIVE ':;'13 2

* BCFR AND BCFA CANNOT USE V=3.

:3UBROUT I NE BRANCH/RETURN I NSTRUC:T I ON~::;:

INSTRUCTION MEANING HEX CODE BYTE:::;

BSTR,V (*>ADR BRANCH TO SUBROUTINE ON :3~3+V 2
CONDITIfJN TRUE, RELATIVE.

B:;:;FR, V (*>ADR BRANCH TO :::;UBROUT I NE ON B8+V 2*
CONDITICJN FALSE,RELATIVE.

BSTA,V <*)ADR BRANCH TO SUBROUTINE ON ~3C+V ~.;. ._'
CONDITION TRUE, ABSOL.UTE.

B::;:;FA, V <*>ADR BRANCH TO SUBROUTINE ON BC+V =3*
CONDITION FAL!::;E, ABSOLUTE.

BSNR,R (.Il- > ADR BRANCH TO SUBROUTINE ON "7:::!+R '''"I
""-

NON-ZERO REGISTER,RELATIVE.
BSNA,R (*)ADR BRANCH TO SUBROUTINE ON 7C+R ~:

NON-ZERO REGISTER, AB!:;:;OLUTE.

BSXA <*>ADR,3 BRANCH TO !::;JJBRCIIJT I NE, INDEXED. BF "? ._'
RETC, V RETURN FROI'1 SUBROUT I NE, CONDo 14+V 1
RETE, V RETURN FROM SUBROUTINE AND 34+V 1

ENABLE INTERRUPT, CONDITIONAL.
ZBSR <*)AOR ZERO BRANCH TO SUBROUTINE, BB ~I

"'-

RELATIVE.

* BSFR AND BSFA CANNOT USE V=3.

PROGRAM STATUS INSTRUCTIONS:

INSTRUCTION

LPSU
LPSL
SPSU
SPSL
CPSU

CPSL

PPSU

DATA

DATA

DATA

MEANING

LOAD PROGRAM STATUS, UPPER.
LOAD PROGRAM STATUS, LOWER.
STORE PROGRAM STATUS, UPPER.
STORE PROGRAM STATUS, LOWER.
CLEAR PROG STATUS, UPPER,
SELECTIVE.
CLEAR PROGRAl'l STATUS, LOWER,
SELECTIVE.
PRESET PROGRAl"l STATUS,UPPER
SELECTIVE.

#13. o. 0

HEX CODE BYTES

92 1
93 1
12 1
13 1
74 :2:

75 2

76 2

PPSL DATA PRESET PROGRAM STATUS, LOWER, 77 2
SELECTIVE.

TPSU TEST PROGRAM STATUS, UPPER, B4 2
SELECTIVE.

TPSL DATA TEST PROGRAl"l !:nATUS, LOWER, B5 2
SELECTIVE.

INPUT/OUTPUT INSTRUCTIONS:

INSTRUCTION MEANING HEX CODE BYTES

WRTD,R WRITE DATA FO+R 1
REDD,R READ DATA 70+R 1
WRTC,R WRITE CfJNTROL BO+R 1
REDC,R READ CONTROL 30+R 1
WRTE,R PORT WRITE EXTENDED D4+R 2
REDE,R PORT READ EXTENDED 54+R 2

MISCELLANEOUS INSTRUCTIONS:

INSTRUCTION MEANING HEX CODE BYTES

HALT H'''LT, ENTER WAIT STATE 40 1
DAR,R DECIMAL AD.JUST REGISTER 94+R 1
TMI,R DATA TEST UNDER MASK IMMEDIATE F4+R 2
Nap NO OPER.'.!;TION CO 1

APPENDIX A - RUN-TIME OPTIONS. #14. O. I)

**
/B
/E
/H
/.J

/1<:

/L

/N
/0

/P

/T
./W
./0 TO ./9

- OUTPUT BINARY FILE IN BNPF FORMAT.
- INHIBIT ERROR MESSAGES TO CONSOLE.
- INHIBIT HEADINGS AND PAGINATION.
- LIST UNASSEMBLED STATEMENTS AND CONDITIONAL

ASSEMBLY PSEUDO-OPS.
- EXPAND SYMBOL TABLE STORAGE INTO ADDITIONAL

CORE.
- OUTPUT LEADER (NULLS) IN BINARY FILE FOR EACH

. ORG STATEMENT.
- LIST ONLY THE SYMBOL TABLE.
- OUTPUT LISTING IN OCTAL FORMAT INSTEAD OF IN

HEX ADEC I MAL.
- INCLUDE NORMALLY UNLISTED PSEUDO-OPS IN THE

L.ISTING.
- OMIT THE SYMBOL. TABLE FROM THE LISTING.
- REPLACE THE FORM/FEED WITH 3 CR/LF'S.
- INHIBIT WARNING MESSAGES.
- USER FLAGS. USED WITH THE ? OPERATOR .

**

APPENDIX B - INDICATOR SET.

**

*
./
&

+

" OR .'

-- 1'1UL TIPLICATION.
- DIVISION .
- BOOLEAN AND.
- INCLUSIVE OR.
- ADDITION.
-- SUBTRACT ION.
- COMPLEMENT INDICATOR, (UPARROW B).
- BINARY RADIX INDICATOR, (UPARROW B).
- DECIMAL RADIX INDICATOR, (UPARROW D).
- HEXADECIMAL RADIX INDICATOR, (UPARROW H).
- OCTAL RADIX INDICATCIR, (UPARRCIW 0).
- LEAST SIGNIFICANT BYTE ACCESS OPERATOR,

(UPARROW L).
- MOST SIGNIFICANT BYTE ACCESS OPERATOR,

(UPARROW M >.
- COMMENT INDICATOR.

ASC 11 CHARACTER I N[II C{fl"OR.
USER FLAG OPER~I TOR.

- CURRENT LOCATION COUNTER, (PERIOD).

**

APPENDIX D - ERROR MESSAGES. #14. O. 0

**

E:BN
E:DF
E:DR
E: I I
E: IL
E: IP
E: 10
E:LO
E:LS
E:LT
E:ML
E:MO
E:OC
E;OE
E:OM
E:OS
E:PE
E:PS
E:RA
E:RE
E:RV
E:ST
E:TL
E:US
E:WE

W:EF
W:UC

- BAD NESTING OF BRACI<ETS.
- OUTPUT DEVICE FULL. (FATAL)
- DIGIT OUTSIDE OF RADIX.
- ILLEGAL INDIRECT ADDRESSING SPECIFIED.
- ILLEGAL LABEL F.IELD.
- ILLEGAL OFF PAGE REFERENCE.
- ILLEGAL OPERAND VALUE.
- LINE INPUT OVERFLOW.
- LOCAL SYMBOL SYNTAX ERROR.
- LOCAL SYMBOL TABLE OVERFLOW. (FATAL)
- MULTIPLE LABEL DEFINITION.
- MISSING OR ILLEGAL MNEMONIC IN OPERATOR FIELD.
- OPERAND TOO COMPLEX.
- OPEN ERROR IN OUTPUT FILE. (FATAL)
- OPERAND MISSING.
- OPERAND SYNTAX ERROR.
- PHASE ERROR, ADDRESS CONFLICT. (FATAL)
- ILLEGAL PERMANENT SYMBOL USAGE IN OPERAND.
- RELAT I VE ADDRESS I S OUT OF RANGE.
- INPUT FILE READ ERROR. (FATAL)
- BAD REGISTER VALUE FIELD.
- SYMBOL TABLE OVERFLOW. (FATAL)
- LABEL DEFINED TOO LATE.
- UNDEFINED SYMBOL.
- OUTPUT FILE WRITE ERROR. (FATAL)

- NO . END STATEMENT IN LAST FILE.
- UNINHIBITED CONDITIONAL ASSEMBLY IN EFFECT

AT ASSEMBL Y END.

**

APPENDIX C - PSEUDO-OPS. #14. O. 0

**

· ADDR
· BIN
· BYTE
· DBYTE
· DECM
· DINST
· END
· ENDC
· EQU
· HEX

IFDEF
IFNDEF
IFNZRO
IFZERO

· LIST
· OCT
. ORG
· PAGE
· SET
· TITLE
· ZERO

- DOUBLE BYTE DATA STORAGE, REVERSED FORMAT.
.- CHANGES DEFAULT RADI X TO BINARY.
- SINGLE BYTE DATA STORAGE.
- DOUBLE BYTE DATA STORAGE.
- CHANGES DEFAULT RADIX TO DECIMAL.
- RENAMES A MICROPROCESOR INSTRUCTION.
- PROGRAM TERMINATOR.
- ENDS CONDITIONAL ASSEMBLY.
- ASSIGNS A PERMANENT VALUE TO A SYMBOL.
- CHANGES DEFAULT R{-iDI X TO HEXADECIMAL.
- INCLUDE CODE TO . ENDC IF SYMBOL IS DEFINED.
- INCLUDE CODE TO . ENDC IF SYMBOL IS NOT DEFINED.
- INCLUDE CODE TO . ENDC IF OPERAND DOES NOT EQUAL O.
- INCLUDE CODE TO . ENDC IF OPERAND EQUALS O.
- PROVIDES SELECTIVE LISTINGS.
- CHANGES DEFAULT RADIX TO OCTAL.
- REASSIGNS THE CURRENT LOCATION COUNTER .
- BEGINS NEW PAGE IN LISTING.
- ASSIGNS A TEMPORARY VALUE TO A SYMBOL.
- SPECIFIES HEADING.
- ZEROS A SPECIFED NUMBER OF BYTES.

**

