
t8X8t
x . X
8 8
t t
l l
i I
t t
t I
X Xa 8 .
X8X

USERS MANUAL

SlEDD! DIGIfAL SYSfEMS

xaoao

USER MANUAL FOR THE
8080 X8 SERIES CROSS-ASSEMBLER ON THE POPS-E.

APRIL 1976

SIERRA DIGITAL SYSTEMS
1440 WESTF I ELD AVE.
RENO, NEVADA 89509
702-329-9548

ALTHOUGH THE INFORMATION IN THIS MANUAL HAS
BEEN CHECKED FOR ACCURACY, NO RESPONSIBILITY
IS ASSUMED FOR ERRORS. THIS DOCUMENTATION IS
SUBJECT TO CHANGE WITHOUT NOTICE.

PDP AND OS/8 ARE REGISTERED TRADEMARKS OF
DIGITAL EQUIPMENT CORPORATION, MAYNARD,
MASSACHUSETTS.

(

/

TABLE OF CONTENTS: SECTION #

INTRODUCTION. .. 1. O. 0

OPERATION. .. 2. O. 0
LOADING THE CROSS-ASSEMBLER. .. 2. 1. 0
CALL I NG SEQUENCE. .. 2. 2. 0
INPUT/OUTPUT FILE EXTENSIONS 2.3.0
RUN-TIME OPTIONS. .. 2. 4. 0

ASSEMBLER CHARACTER SET. .. 3. O. 0

STATEMENT FORMAT. .. 4. O. 0
CODING CONVENTIONS. .. 4. 1. 0
LABELS. .. 4. 2. 0
OPERATORS. .. 4.3.0
OPERANDS. .. 4. 4. 0
TERMS AND EXPRESSION& 4. 5. 0

NUMERIC CONSTANTS. .. 5. O. 0
CONSTANTS WITH RADIX INDICATORS.................... 5. 1. 0
CONSTANTS WITH ASCII INDICATORS 5.2.0

SYMBOLS. .. 6. O. 0
PERMANENT SYMBOLS. .. 6. 1. 0
USER DEF I NED SYMBOLS. .. 6. 2. 0
LOCAL SYMBOLS. .. 6. 3. 0

CURRENT LOCATION COUNTER. .. 7. O. 0

ARITHMETIC OPERATOR SET. .. 8. O. 0
UNARY OPERATORS. .. 8. 1. 0

BYTE ACCESS OPERATORS (""L AND · M). 8. 1. 2
THE COMPLEMENT OPERATOR ("-C >. 8. 1. 3
? OPERATOR. .. 8. 1. 4

BINARY OPERATORS. .. 8. 2. 0

PSEUDO-OPERATORS. .. 9. O. 0
ASSIGNMENT PSEUDO-OPS. .. 9. 1. 0

· EQU. .. 9. 1. 1
· SET. .. 9. 1.2
· DINST. .. 9. 1. 3
· ORG. .. 9. 1.4

DEFAULT RADIX PSEUDO-OPS 9.2.0

TABLE OF CONTENTS: (CONT.) SECTION ..

DATA STORAGE PSEUDO-OPS. .. 9. 3. 0
· BYTE. .. 9. 3. 1
· DBYTE .. " 9. 3. 2
· ADDR '.' 9. 3. 3
· ZERO. .. 9. 3. 4

LISTING CONTROL DIRECTIVES. .. 9. 4. 0
· LIST. .. 9. 4. 1
· PAGE. .. 9. 4. 2
· TITLE. .. 9. 4. 3

CONDITIONAL ASSEMBLY PSEUDO-OPS. 9. 5. 0
IFZERO. .. 9. 5. 1
IFNZRO. .. ';'1, 5. 2
IFDEF , .. t:;1. 5. 3
IFNDEF. .. 9. 5. 4

· ENDC. .. r;~. 5. 5
. END PSEUDO-OP. .. 9. 6. 0

ERROR MESSAGES .. 10. 0 0

MODIFICATION NOTES 11. O. 0

CROSS ASSEMBLER SPECIFICS 12. O. 0
12. 1. 0 CROSS-ASSEMBLER FILE NAMES.

PREASSIGNED SYMBOL VALUES. 12. 2. 0
LISTING FORMAT. 12. 3. 0
BINARY FILE OUTPUT 12. 4 0
ADDITIONAL ERROR MESSAGES
SAMPLE PROGRAM.

MICROPROCESSOR INSTRUCTION SET ..

APPENDICES
RUN-TIME OPTIONS
INDICATOR SET ...
PSUEDO-OPS ...
ERROR MESSAGES ...

12. 5. 0
12.6 0

13 0 0

14. 0.0
. APPENDIX H

. . APPEND I X B
. APPEND! X r

. .. APPEND! X D

#1. O. 0
1. O. 0 I NTRODUCT ION.

THIS MANUAL DESCRIBES ONE OF THE xe (CROSS EIGHT) SERIES OF MICRO­
PROCESSOR CROSS-ASSEMBLERS SIERRA DIGITAL SYSTEMS HAS DEVELOPED FOR
PDPS USERS. THE XS SERIES WILL HANDLE ALL OF THE POPULAR MICRO­
PROCESSORS WITHIN A UNIVERSAL ASSEMBLER FORMAT. THIS COMMON BASE
OF ASSEMBLER DIRECTIVES AND TECHNIQUES IS A SELECTED COMBINATION OF
DESIRABLE FEATURES OBSERVED IN A SURVEY OF MANY EXISTING MINI­
COMPUTER AND MICROPROCESSOR ASSEMBLERS. THE INSTRUCTION MNEMONICS
AND ASSOCIATED SYNTAX OF EACH PARTICULAR MICROPROCESSOR ARE
RETAINED UNCHANGED.

THIS MANUAL DESCRIBES THE USAGE OF ONE OF THE MICROPROCESSOR CROSS­
ASSEMBLERS FROM THE SIERRA DIGITAL X8 SERIES. IN ORDER TO SIMPLIFY
THE LEARNING PROCESS FOR INDIVIDUALS USING MORE THAN ONE CROSS­
ASSEMBLER FROM THE SERIES, THIS MANUAL HAS BEEN DIVIDED INTO TWO
MAJOR PARTS. SECTIONS 1 THROUGH 11 DOCUMENT THE UNIVERSAL ASSEMBLER
FORMAT AS IT APPLIES TO ALL CROSS-ASSEMBLERS IN THE SERIE~ THESE
SECTIONS WILL BE IDENTICAL IN EVERY CROSS-ASSEMBLER MANUAL.
SECTION 12 PRESENTS INFORMATION ON APPLICATION OF THE UNIVERSAL
ASSEMBLER FORMAT TO THE SPECIFIC MICROPROCESSOR CROSS-ASSEMBLER.
SECTION 13 PRESENTS A SUMMARY OF THE MNEMONIC INSTRUCTION CODES
ASSIGNED BY THE MICROPROCESSOR VENDOR AND RECONIZED BY THE CROSS­
ASSEMBLER. NO ATTEMPT HAS BEEN MADE TO DESCRIBE THE OPERATION OF
THE MICROPROCESSOR ITSELF. SUCH INFORMATION MUST BE OBTAINED FROM
THE MICROPROCESSOR VENDOR OR OTHER SOURCES. SECTION 14, THE APPEN­
DICES, CONTAINS SUMMARY TABLES FOR QUICK REFERENCE ONCE THE USER
GAINS EXPERTISE IN USING THE CROSS-ASSEMBLER.

WE AT SIERRA DIGITAL LOOK FORWARD TO DEVELOPING MORE ASSEMBLERS IN
OUR XS SERIES TO PROVIDE YOU, THE USER, WITH THE MEANS OF
PIONEERING THE NEW WORLD OF MICROPROCESSORS.

2. O. 0 OPERATION.

SIERRA DIGITAL~S CROSS-ASSEMBLER IS AN 8K, TWO PASS ASSEMBLER WHICH
RUNS UNDER THE 08/8 OPERATING SYSTEM. THE CROSS-ASSEMBLER IS CODED
IN PDP/S ASSEMBLY LANGUAGE (PALS) TO GIVE FAST EXECUTION TIMES.
(LESS THAN 30 SECONDS FOR A NORMAL 4K BYTE PROGRAM IS TYPICAL).

PASS 1 READS THE INPUT FILES AND SETS UP THE SYMBOL TABLES. PASS 2
THEN GENERATES THE OUTPUT FILE IN THE BINARY (OBJECT) FORMAT OF THE
PARTICULAR MICROPROCESSOR. THE OUTPUT FILE CAN BE CHANGED TO BNPF
FORMAT THROUGH USE OF THE /B RUN-TIME OPTION.

A THIRD ASSEMBLY PASS IS DONE WHEN A LISTING OUTPUT FILE IS SPECI­
FIED. WHEN NO BINARY FILE IS SPECIFIED, THE ASSEMBLER GOES DIRECTLY
TO THE PASS 3 LISTING.

#2. O. 0

THE CROSS-ASSEMBLER IS NOT RESTARTABLE., IF AN ATTEMPT IS MADE TO
RESTART THE ASSEMBLER WITH A . ST COMMAND, THE KEYBOARD MONITOR
RETURNS A II NO!! II •

. TYPING CTRL/C WILL HALT ASSEMBLY AND CAUSE AN IMMEDIATE EXIT TO THE
KEYBOARD MONITOR.

TYPING CTRL/O AT THE KEYBOARD DURING ASSEMBLY WILL SUPPRESS THE
LISTING OF ERROR MESSAGES TO THE CONSOLE DURING PASSES 1 AND 2. THE
OUTPUT FILE WILL STILL SHOW THE ERROR MESSAGES IMMEDIATELY BEFORE
THE LINE THAT IS IN ERROR.

2. 1. 0 LOADING AND SAVING THE CROSS-ASSEMBLER.

THE CROSS-ASSEMLER IS PROVIDED IN BINARY' FORMAT ON PAPER TAPE OR IN
BOTH BINARY AND IMAGE FORMATS ON FILE-STRUCTURED MEDIA.

TO LOAD THE ASSEMBLER FROM PAPER TAPE AND SAVE IT, PLACE THE TAPE
IN THE READER AND CALL THE ABSOLUTE LOADER:

· R ABSLDR
*PTR:$

· SAVE SYS: XNAME

FROM FILE STRUCTURED MEDIA, THE IMAGE FORMAT PROGRAM MAY BE COPIED
DIRECTLY TO THE SYSTEM DEVICE OR THE BINARY FORMAT FILE MAY BE
LOADED WITH THE ABSOLUTE LOADER. MODIFICATIONS TO THE IMAGE FILE,
SUCH AS INVERTING THE SENSE OF A RUN-TIME OPTION, MAY BE
IMPLEMENTED ACCORDING TO THE NOTES IN SECTION # 11. O. 0 .

2. 2 0 CALLING SEQUENC~

ONCE LOADED AND SAVED, THE CROSS-ASSEMBL~R IS CALLED FROM THE
SYSTEM DEVICE BY TYPING:

· R XNAME

THE ASSEMBLER CALLS THE COMMAND DECODER WHICH RESPONDS WITH AN
ASTERISK IN THE LEFT HAND MARGIN. THE USER MAY THEN TYPE IN·THE
INPUT AND OUTPUT FILE SPECIFICATIONS AND RUN-TIME OPTIONS:

*DEV:BIN,DEV:LIST<DEV: IN1, ... DEV: IN9/0PT

THE FIRST OUTPUT FILE IS THE MICROPROCESSOR BINARY OBJECT FILE
WRITTEN IN THE FORMAT SPECIFIED BY THE VENDOR OF THE PARTICULAR
MICROPROCESSOR. (SEE SECTION 12. O. 0 FOR THE FORMAT SPECIFICATIONS),

2. 2. 0

THE SECOND OUTPUT FILE IS THE OPTIONAL LISTING. WHEN ONLY THE FIRST
OUTPUT FILE IS SPECIFIED, THE ASSEMBLER ASSUMES THAT IT WILL BE THE
BINARY OUTPUT FILE AND THE LISTING IS OMITTED.

THE FOLLOWING EXAMPLE SPECIFIES FILE "IN!" TO BE READ FROM DECTAPE
o AND THE BINARY (OBJECT) FILE TO BE OUTPUT TO THE PAPER TAPE PUNCH
WITH NO LISTING:

· R XNAME
*PTP:<DTAO: IN1

THIS EXAMPLE SPECIFIES 2 FILES AS THE SOURCE INPUT (FROM THE DSK:
DEVICE) WITH ONLY THE PASS 3 LISTING BEING OUTPUT TO THE LINE
PRINTER:

· R XNAME
*, LPT: <INL IN2

UP TO NINE INPUT FILES CAN BE SPECIFIED AS ONE PROGRAM WHERE THE
LAST FILE IS TERMINATED WITH AN . END STA'TEMENT.

2 a 0 INPUT/OUTPUT FILE EXTENSIONS.

IF THE EXTENSION TO AN INPUT FILE NAME IS OMITTED, THE ASSEMBLER
ASSUMES THE . MS EXTENSION. IF THERE IS NO FILE WITH THAT NAME AND
AN . MS EXTENSION, THE ASSEMBLER ASSUMES THE NULL EXTENSION. UNLESS
EXTENSIONS ARE SPECIFIED, THE . MB AND . LS EXTENSIONS ARE ADDED TO
THE OUTPUT BINARY AND LISTING FILES.

· MB - MICROPROCESSOR BINARY OUTPUT FILE EXTENSIO~
· LS - OUTPUT LISTING FILE EXTENSIO~
· MS - MICROPROCESSOR SOURCE FILE EXTENSIO~

2. 4. 0 RUN-TIME OPTIONS.

TABLE #1 DESCRIBES THE OPTIONS WHICH MAY BE SPECIFED AT RUN-TIME
IN THE INPUT LINE TO THE COMMAND DECODER.

IF ONE OR MORE OF THESE OPTIONS IS CONTINUALLY CALLED, THE USER
SHOULD CONSIDER MODIFYING THE ASSEMBLER TO INVERT THE SENSE OF THE
OPTION. THE MODIFICATION NOTES IN SECTION #11. O. 0 EXPLAIN HOW THIS
MAY BE DONE. FOR EXAMPLE, A USER WHO PREFERS TO OUTPUT FILES IN
BNPF FORMAT RATHER THAN BINARY CAN INVERT THE SENSE OF THE /B
OPTION. THEN THE BINARY FILES ARE NORMALLY WRITTEN IN BNPF FORMAT.
USE OF THE /B OPTION THEN CAUSES THE OUTPUT FILE TO BE WRITTEN IN
THE STANDARD MICROPROCESSOR BINARY CODE. SPACE IS PROVIDED IN
TABLE #1 TO CHECK OFF WHICH OPTIONS HAVE BEEN INVERTED FOR YOUR
REFERENCE.

TABLE #1. RUN-TIME OPTIONS. #2. 4. 0

**
OPTION MEANING INVERT?
**
/B THE BINARY OUTPUT FILE IS WRITTEN IN BNPF FORMAT. ------­

INSTEAD OF IN THE MICROPROCESSOR VENDOR"S STANDARD
BINARY FORMAT.

FOR THE BNPF FORMAT, THE BINARY OUTPUT IS CONVERTED
TO ASCII TEXT WHERE

IIBII INDICATES THE BEGINNNING OF A BYTE,
IIF" INDICATES THE END OF A BYTE,
"P II INDICATES A 1 BIT AND'
"Nil INDICATES A 0 BIT.

FOUR BYTES , SEPARATED BY SPACES, ARE WRITTEN PER
LINE. THE ADDRESS OF THE FIRST BYTE IS GIVEN IN
SIX DIGIT OCTAL AT THE BEINNING OF THE LINE.
LEADING ZEROES IN THE ADDRESS ARE CONVERTED TO
SPACES. EACH LINE IS PRECEDED BY 2 SPACES. LEADER
CONSISTS OF 100 NULL CHARACTERS WITH 20 RUBOUTS
IMMEDIATELY PRECEEDING AND FOLLOWING THE ASCII
TEXT.

EXAMPLE: THE FOLLOWING CODE IS SHOWN REWRITTEN IN
BNPF FORMAT.

.ORG

. BYTE
100
27,C7, AF,D7,FF, 72,0, DO

100 BNNPNNPPPF BPPNNNPPPF BPNPNPPPPF BPPNPNPPPF
104 BPPPPPPPPF BNPPPNNPNF BNNNNNNNNF BPPNPNNNNF

/E INHIBIT ERROR MESSAGES TO THE CONSOLE. ------­
NORMALLY ERROR MESSAGES ARE OUTPUT TO THE CONSOLE
DURING ASSEMBLY PASSES 1 AND 2. SINCE ERROR MESS-
AGES ARE INCLUDED IN THE LISTING, USERS WITH SLOW
CONSOLE DEVICES SUCH AS TTY'S CAN SPEED ASSEMBLY
TIME WITH THIS OPTION.

ALSO, IF THE BINARY FILE IS TO BE OUTPUT TO THE
CONSOLE DEVICE, THE ERROR MESSAGES AND BINARY
OUTPUT LINES WILL BE INTERMIXEn THE /E OPTION WILL
INHIBIT ALL BUT FATAL ERROR MESSAGES SO THAT ONLY
THE BINARY FILE IS OUTPUT.

~*****

TABLE #1. RUN-TIME OPTIONS. (CONT.) #2.4.0

**
OPTION MEANING INVERT?
**

IH INHIBIT HEADINGS AND PAGINATION. ------­
NORMALLY, THE ASSEMBLER AUTOMATICALLY PAGES THE
OUTPUT, ADDING A HEADER TO THE TOP OF THE PAGE. USE
OF THE IH OPTION WILL ELIMINATE THE HEADING AND THE
PAGINATION.

IJ LIST UNASSEMBLED STATEMENTS AND CONDITIONAL ------­
ASSEMBLY PSEUDO-OPS.
STATEMENTS WHICH DO NOT GET ASSEMBLED DUE TO
CONDITIONAL ASSEMBLY PSEUDO-OPS ARE NORMALLY NOT
LISTED. NEITHER ARE THE CONDITIONAL PSEUDO-OPS
THEMSELVES. USE OF THE IJ OPTION WILL ADD THESE
STATEMENTS TO THE LISTING.

IK EXPAND SYMBOL TABLE STORAGE INTO EXTRA CORE. ------­
NORMALLY MOST OF FIELD 1 IS USED FOR BOTH LOCAL AND
NORMAL USER SYMBOL STORAGE. USE OF THE IK OPTIONS
EXPANDS CORE USAGE TO 12K WHERE THE LOCAL SYMBOL
TABLE RESIDES IN FIELD 2 AND THE REGULAR SYMBOL
TABLE RESIDES IN FIELD 1.

IL OUTPUT LEADER IN BINARY FILE FOR . ORG STATEMENTS ------­
THIS OPTION MAY BE USED TO PHYSICALLY SEPARATE
DISCONTINUOUS SECTIONS OF THE BINARY OUTPUT ON A
PAPER TAPE.

10 OUTPUT LISTING WITH BINARY CODE IN OCTAL FORMAT. ------­
THE GENERATED BINARY CODE IS NORMALLY PRINTED IN
HEXADECIMAL AT THE LEFT OF THE PROGRAM STATEMENTS
IN THE LISTING FILE. THE 10 OPTION WILL CAUSE THE
BINARY CODE TO BE LISTED IN OCTAL INSTEAD OF
HEXADECIMAL.

IN LIST ONLY THE SYMBOL TABLE. ------­
THE THIRD PASS LISTING NORMALLY CONSISTS OF THE
STATEMENT LISTING PLUS THE USER SYMBOL TABLE
LISTING. THE /N OPTION CAUSES ONLY THE SYMBOL TABLE
TO BE LISTED.

IP INCLUDE NORMALLY UNLISTED PSEUDO-OPS IN THE LISTING------­
SOME PSEUDO-OPS WILL NOT BE LISTED BY PASS 3 UNLESS
THE /P OPTION IS USED.

IS OMIT THE SYMBOL TABLE FROM LISTING. ------­
ONLY THE PROGRAM STATEMENTS ARE LISTED WITH THIS
OPTION.

**

TABLE #1. RUN-TIME OPTIONS. (CONT.) #2.4.0

**
OPTION MEANING INVERT?
**
/T REPLACE FORM/FEED WITH 3 CR/LF'S. ------­

WHEN LISTING TO A DEVICE SUCH AS A TTY WHICH DOES
NOT HAVE A FORM/FEED CONTROL, USE OF THE /T OPTION
WILL REPLACE THE FORM/FEED WITH 3 BLANK LINES .

/W INHIBIT WARNING MESSAGES. ------­
WHEN WARNING MESSAGES CAN BE SAFELY IGNORED, THIS

/0
TO /9

OPTION WILL PREVENT THEM FROM BEING OUTPUT.

USER FLAGS, USED WITH THE ? OPERATOR, SEE SECTION
.. 8.1.4 .

**

3. O. 0 ASSEMBLER CHARACTER SET.

THE FOLLOWING CHARACTERS ARE LEGAL SOURCE CODE CHARACTERS:

1) ALPHABETICS A-Z, UPPER CASE ASCII
2) NUMERICS 0-9
3) THE SPECIAL CHARACTERS LISTED BELOW.

* /
8<

+

C J
.".

" OR '
?

MULTIPLICATION
DIVISION
BOOLEAN AND
I NCUJS I VE OR
ADDITION
SUBTRACTION
PRECEDENCE INDICATORS
UNIVERSAL UNARY OPERATOR (U?ARROW). USED WITH:

AC - COMPLEMENT (UPARROW C)
AB - BINARY RADIX INDICATOR (UPARROW B)
AD - DECIMAL RADIX INDICATOR (UPARROW D)
AH - HEXADECIMAL RADIX INDICATOR (UPARROW H)
AO - OCTAL RADIX INDICATOR (UPARROW 0)
AL - LEAST SIGNIFICANT BYTE ACCESS OPERATOR
AM - MOST SIGNIFICANT BYTE ACCESS OPERATOR

COMMENT INDICATOR
ASCII INDICATOR
USER FLAG OPERATOR
CURRENT LOCATION COUNTER (PERIOD)

3. o. 0

THE CARRIAGE RETURN CHARACTER IS RECOGNIZED AS THE TERMINATOR FOR
EACH SOURCE LINE. THE LINE-FEED, RUBOUT, FORM-FEED, AND NULL
CHARACTERS ARE IGNORED BY THE ASSEMBLER. FORM-FEED CHARACTERS
OCCURING IN THE SOURCE HAVE NO AFFECT ON THE LISTING. ALL ASCII
CHARACTERS MAY BE USED IN THE COMMENT FIELD OF A STATEMENT.

4. O. 0 STATEMENT FORMAT.

STATEMENTS ARE WRITTEN IN THE GENERAL FORM:

LABEL OPERATOR OPERAND iCOMMENT

LABELS MUST START IN COLUMN 1. THEY MAY BE DIRECTLY FOLLOWED WITH
AN OPTIONAL COMMA IF DESIRED. THE MODIFICATION NOTES EXPLAIN HOW TO
REPLACE THE COMMA WITH ANOTHER DELIMITER SUCH AS A COLON.

OPERATORS MUST BE SEPARATED FROM THE LABEL WITH AT LEAST ONE SPACE
OR TAB. WHEN NO LABEL IS PRESENT, THE OPERATOR MAY BEGIN IN ANY
COLUMN BEYOND COLUMN 1.

THE OPERAND (IF ANY) MUST BE SEPARATED FROM THE OPERATOR WITH AT
LEAST ONE SPACE OR TAB.

THE COMMENT (IF ANY) MUST BE SEPARA1ED FROM THE OPERAND (OR
OPERATOR IF THERE IS NO OPERAND BY A SEMICOLON (;).

AN INPUT LINE MAY BE UP TO 127 CHARACTERS LONG (NOT INCLUDING THE
CARRIAGE RETURN). WHEN THE INPUT LINES ARE OUTPUT TO THE LISTING
FILE, ANY CHARACTERS AFTER THE 72D COLUMN ARE WRITTEN ON THE NEXT
LINECS) BEGINNING AT THE 25TH COLUMN OF THE FIRST SOURCE LINE
(NORMAL COMMENT COLUMN). SEE THE MODIFICATION NOTES IN SECTION
#11. O. 0 TO ADJUST FOR NARROWER OR WIDER PAGE OUTPUT. THE CARRIAGE
RETURN IS A TERMINATOR FOR BOTH THE STATEMENT AND THE LINE. ONLY
ONE STATEMENT IS ALLOWED PER 127 CHARACTER LIN~

4. 1.0
4. 1. 0 CODING CONVENTIONS:

ALTHOUGH THE ASSEMBLER WILL ACCEPT PROGRAMS WRITTEN IN FREE FORMAT,
THE USE OF TABS MAKES FOR MORE READABLE CODE. TAB STOPS ARE SET
EVERY 8 CHARACTERS IN THE LINE SO THAT THE USE OF THE TAB KEY
SIMPLIFIES INPUT. GENERALLY:

LABELS
OPERATORS
OPERANDS
COMMENTS

OCCUpy THE FIRST TAB FIELD, COLUMNS 1 THROUGH 8
OCCUpy THE SECOND TAB FIELD, COLUMNS 9 THROUGH 16.
OCCUpy THE THIRD TAB FIELD, COLUMNS 17 THROUGH 24.
OCCUpy THE REMAINING FIELDS, COLUMNS 25 THROUGH 127.

4. 2. 0 LABELS.

A LABEL IS A SYMBOL WHICH PRECEDES THE OPERATOR AND MUST FOLLOW THE
SYMBOL NAMING CONVENTIONS DESCRIBED IN SECTION # 6. 2. 0 . IN ALL BUT
THE SYMBOL DEFINITION PSEUDO-OPS, <. EQU, . SET, . DINST) THE LABEL
IS A LOCATION TAG AND IS EQUAL TO THE VALUE OF THE CURRENT LOCATION
COUNTER.

EXAMPLE:

2 1
o 6

201 1
LABELl
LABEL2

.ORG

. EQU

. BYTE

201
6
1

; LABEL1=6
iLABEL2=LOCATION TAG=201

NOTE THAT A JUMP TO LABELl WILL TRANSFER TO ADDRESS 6 WHILE A JUMP
TO LABEL2 GOES TO ADDRESS 201.

A LABEL LACKING BOTH AN OPERATOR AND OPERAND IS SET EQUAL TO THE
VALUE OF THE NEXT ADDRESS TO BE ASSEMBLED. IF USED AT THE
BEGINNING OF THE PROGRAM, IT IS SET EQUAL TO THE VALUE OF THE FIRST
ADDRESS. WHEN A SOLITARY LABEL IS FOLLOWED BY AN . ORG STATEMENT,
IT RETAINS THE ORIGINAL VALUE ASSIGNED BEFORE THE ORIGIN CHANGE.

4.3.0 OPERATORS.

AN OPERATOR IS A MNEMONIC WHICH INDICATES THE ACTION TO BE
PERFORMED AND IS EITHER A PSEUDO-OP OR ONE OF THE MICROPROCESSOR
INSTRUCTIONS. PSEUDO-OPS ARE DESCRIBED IN. SECTION #9. O. O. THE
MlCROPROCESSOR INSTRUCTION SET IS DESCRIBED IN SECTION #13. O. 0
THESE OPERATORS SHOULD. NOT BE CONFUSED WITH ARITHMETIC OPERATORS
USED IN OPERAND EXPRESSIONS.

4. 4. 0
4. 4. 0 OPERANDS.

AN OPERAND REPRESENTS THE PART OF THE INSTRUCTION WHICH IS TO BE
ACTED ON. IT CAN BE A TERM OR AN EXPRESSION.

THE . BYTE, . DBYTE, AND . ADDR PSEUDO-OPS CAN HAVE MULTIPLE OPERANDa

REFER TO THE EXPLANATION OF EACH OPERATOR FOR THE PROPER OPERAND
FORMAT.

IT SHOULD BE NOTED THAT OPERAND EXPRESSIONS ARE EVALUATED TO A
SINGLE NUMERICAL VALUE BY THE ASSEMBLER. BINARY CODE IS NOT
GENERATED TO MAKE THE MICROPROCESSOR EVALUATE THE EXPRESSION.

4. 5. 0 TERMS AND EXPRESSIONS.

A TERM IS A SINGLE VALUE, A CONSTANT OR SYMBOL. THE CURRENT
LOCATION COUNTER (REPRESENTED BY A PERIOD) IS CONSIDERED A TERM.

TERMS ARE COMBINED WITH OPERAND ARITHMETIC OPERATORS TO FORM
EXPRESSIONS.

EXAMPLE: IN THE INSTRUCTION BELOW THE OPERAND IS AN EXPRESSION
WHICH HAS TWO ARITHMETIC OPERATORS AND THREE TERMS.

SYMBOL . EQU I+NEW * 15

16 BIT INTEGER ARITHMETIC IS USED TO EVALUATE EXPRESSIONS.

5. O. 0 NUMERIC CONSTANTS.

A CONSTANT IS A NUMERIC VALUE REPRESENTED BY A STRING OF DIGITS.
THE DEFAULT RADIX OR TEMPORARY RADIX INDICATORS IDENTIFY THE RADIX
OF THE CONSTANT. A CONSTANT WITHOUT ANY TEMPORARY RADIX INDICATOR
IS CONSIDERED TO BE IN THE DEFAULT RADIX, WHICH IS INITIALLY
HEXADECIMAL.

EXAMPLE: THE HEXADECIMAL NUMBER 16 (22 IN BASE 10) IS STORED IN
"VALUE" :

o 16 VALUE . EQU 16

THE MAXIMUM VALUE FOR A CONSTANT IS 65535 (BASE 10 UNSIGNED).

THE MINIMUM VALUE FOR A CONSTANT IS -32769 (BASE 10 SIGNED).

.. 5. 1. 0
.. 5. 1. 0 CONSTANTS WITH RADIX INDICATORS.

CONSTANTS IN A BASE DIFFERENT FROM THAT OF THE DEFAULT RADIX CAN BE
SPECIFIED THROUGH USE OF THE TEMPORARY RADIX INDICATORS. THESE
INDICATORS ARE VERY USEFUL FOR ENTERING INDIVIDUAL CONSTANTS.
HOWEVER, IF A LARGE GROUP OF VALUES IN ANOTHER RADIX MUST BE
ENTERED, IT IS MORE CONVENIENT TO CHANGE THE DEFAULT RADIX USING
THE PSUEDO-OPS DESCRIBED IN SECTION .. 9. 2. 0

THE TEMPORARY RADIX INDICATORS ARE:

...... B BINARY

...... D DECIMAL

...... H HEXADECIMAL
· 0 OCTAL

THE '" IS THE UPARROW CHARACTER (UNIVERSAL UNARY OPERATOR),

A HEXADECIMAL CONSTANT WHICH DOES NOT BEGIN WITH A NUMBER SHOULD BE
WRITTEN WITH A LEADING ZERO TO DISTINGUISH IT FROM FROM A SYMBOL A
RADIX INDICATOR PRECEDING A SYMBOL IS IGNORED.

EXAMPLE: THE FIRST STATEMENT IS VALID, THE SECOND IS NOT.

VALUE . EQU
VALUE . EQU

"'HOA302
"'HA302

iVALUE=A302, BASE 16
iVALUE = SYMBOL A302

SINCE THE SYMBOL A302 MAY NOT EXIST, THE SECOND STATEMENT WILL
PROBABLY CAUSE AN UNDEFINED SYMBOL ERROR TEMPORARY RADIX
INDICATORS AFFECT THE NEXT DIGIT STRING IN THE EXPRESSION UNLESS A
SYMBOL NAME OR BINARY OPERATOR OCCURS FIRST. IN THAT CASE, THE
TEMPORARY RADIX INDICATOR WOULD BE IGNORED. NO ERRCIR MESSAGE IS
GIVEN .

.. 5.2.0 CONSTANTS WITH ASCII INDICATORS.

THE "AND' INDICATORS ARE USED TO FORM THE 7 BIT ASCII VALUE OF A
CHARACTER. THERE ARE FOUR ACCEPTABLE WAYS TO WRITE THE INDICATORS:

itA" OR "A OR 'A' OR 'A ALL EQUAL 41 (BASE 16).

NOTE THAT THE CLOSING QUOTE IS OPTIONAL, BUT IF USED IT MUST MATCH
THE OPENING QUOTE. ONLY ONE CHARACTER CAN FOLLOW THE INDICATOR.

THE "IS SPECIALLY HANDLED IN THE . BYTE PSEUDO-OP WHERE IT IS USED
TO INPUT TEXT STRING& SEE SECTION .. 9. a 1 . 4

6. O. 0

6. O. 0 SYMBOLS.

THE WORD "SYMBOL" IS LlSED HERE AS A GENERAL TERM FOR ANY MNEMONIC
WHICH IS TO HAVE A VALUE. THIS IS IN CONTRAST TO AN OPERATOR, WHIC~

IS A MNEMONIC WHICH SPECIFIES A PROCESS.

A LABEL IS A SYMBOL THAT PRECEDES AN OPERATOR IN THE STATEMENT. IF
THE LABEL IS USED TO STORE THE VALUE OF THE CURRENT LOCATIO~
COUNTER, IT IS CALLED A LOCATION TAG.

6. 1. 0 PERMANENT SYMBOLS.

PERMANENT SYMBOLS ARE THE CROSS-ASSEMBLER
MICROPROCESSOR OPERATORS. IF NECESSARY, THE . DINST
USED TO RENAME A MICROPROCESSOR OPERATOR THE
PSEUDO-OPS CANNOT BE USED IN A . DINST INSTRUCTION.
THE APPENDICES SUMMARIZE THE PERMANENT SYMBOL SET.

6. 2. 0 USER DEFINED SYMBOLS.

PSEUDO-OPS AN[
STATEMENT CAN BE

CROSS-ASSEMBLEF
THE TABLES H

THESE SYMBOLS CAN BE LOCATION TAGS OR REPRESENT A VALUE.

A SYMBOL IS A STRING OF FROM ONE TO SIX ALPHANUMERIC CHARACTER~
DELIMITED BY A NON-ALPHANUMERIC CHARACTER. USER-DEFINED SYMBOL~

MUST CONFORM TO THE FOLLOWING RULES:

1) THE CHARACTERS MUST BE LEGAL ALPHA-NUMERICS.
(A-Z OR 0-9)

2) THE FIRST CHARACTER MUST BE ALPHABETIC (A-Z)'
3) ONLY THE FIRST SIX CHARACTERS ARE USED, ANY

OTHERS ARE IGNORED. SYMBOLS ARE STeREO IN THE
SYMBOL TABLE AND REFERENCED ONLY BY THE FIRST
S I X CHARACTERS.

4) A USER-DEFINED SYMBOL CANNOT HAVE THE SAME
NAME AS ANY OF THE PERMANENT SYMBOL NAMES.
AS THE PERIOD IS CONSIDERED AS PART OF THE
ASSEMBLER PSEUDO-OP NAME, A USER-DEFINED SYM­
BOL WHICH IS IDENTICAL EXCEPT FOR THE LEADING
PERIOD IS LEGAL.

6. 3. 0
6. 3. 0 LOCAL SYMBOLS.

OFTEN, WHEN PROGRAMMING SHORT SECTIONS OF CODE WHICH INVOLVE
NUMEROUS JUMP OR BRANCHING INSTRUCTIONS, THE USER FINDS IT
DIFFICULT TO CREATE MEANINGFUL LABELS THAT WILL NOT CONFLICT WITH
OTHER SYMBOLS IN THE PROGRAM. IN CASES LIKE THIS, LOCAL SYMBOLS CAN
BE USED INSTEAD OF REGULAR SYMBOLS.

LOCAL SYMBOLS HAVE THE FORMAT "$N" WHERE "N" IS A DECIMAL INTEGER
FROM 0-255 I NCLUS I VE.

LOCAL SYMBOLS MUST
BLOCKS. LOCAL SYMBOL
ON A STATEMENT HAVING
END ON THE STATEMENT
SYMBOL LOCATION TAG.
. SET PSEUDO-OPS ARE
SYMBOL BLOCKS.

BE DEFINED AND REFERENCED WITHIN LOCAL SYMBOL
BLOCKS ARE SECTIONS OF THE PROGRAM THAT START
A REGULAR SYMBOL USED AS A LOCATION TAG AND
.JUST BEFORE THE OCCURANCE OF THE NEXT REGULAR
NOTE THAT LABELS FOR THE . EQU, . DINST AND

NOT LOCATION TAGS AND DO NOT DELIMIT LOCAL

THERE IS NO EFFECTIVE LIMIT TO THE SIZE OF A LOCAL SYMBOL BLOCK.

THE SAME LOCAL SYMBOL CAN BE DEFINED AND USED
NUMBER OF LOCAL SYMBOL BLOCKS.

EXAMPLE:

TAG1 · BYTE "TEXT" i SYMBOL BLOCK BEGINS
$1 · EQU VALUE i DEFINE LOCAL $1
$2 · EQU -1 i DEF I NE LOCAL $2
VALU1 · EG!U $1-$2 iCALCULATE NEW VALUE
TAG2 · BYTE "TEXT" iNEW SYMBOL BLOCK
$1 · EQU VALU1 iDEFINE LOCAL $1
$2 · EQU -2 iOEFINE LOCAL $2

IN AN UNLIMITED

VALU2 · EQU $1*$2 i CALCULATE NEW VALUE.
TAG3 · BYTE "TEXT" lENDS SECOND BLOCK

7. O. 0 CURRENT LOCATION COUNTER.

THE CURRENT LOCATION COUNTER IS INDICATED BY A PERIOD. IT
REPRESENTS THE ADDRESS OF THE NEXT BYTE TO BE ASSEMBLED.

THE CURRENT LOCATION COUNTER CANNOT BE USED IN THE LABEL FIELD.

(

7. O. 0

AT THE BEGINNING OF THE SOURCE INPUT THE CURRENT LOCATION COUNTER
IS SET TO ZERO. IT CAN BE REASSIGNED THROUGH USE OF THE . ORG
PSEUDO-OP.

EXAMPLE:

o
o

60 22
1

100 10

60
0

00

.ORG
VALUE · EQU
TAG · BYTE

.ORG
TAG1 · BYTE

60 ; INITIAL ADDRESS
0 ; NO EFFECT ON .

22 = 60 (BASE 8)
100 ; REASSIGN COUNTER

10 ; = 100

LOCATION TAGS ARE ALWAYS SET EQUAL TO THE VALUE OF THE CURRENT
LOCATION COUNTER WHEN THEY ARE ASSEMBLEn IN THE EXAMPLE ABOVE, THE
LOCATION TAG IITAG" = 60.

THE CURRENT LOCATION COUNTER IS AUTOMATICALLY UPDATED IN THE
ASSEMBLER AS SOON AS THE CURRENT INSTRUCTION IS ASSEMBLED. NOTE
THAT IN THE MULTI-OPERAND DATA STORAGE PSEUDO-OPS, (. BYTE, . DBYTE,
AND . AD DR) THE LOCATION COUNTER IS CHANGING AS THE OPERANDS ARE
ASSEMBLED.

EXAMPLE: THE LOCATION COUNTER IS USED AS AN OPERAND 3 TIMES IN AN
. ADDR PSEUDO-OP.

0 20 .ORG 20
20 20 0 . ADDR • I. , •

22 22 0
24 24 0
20 20 0

THE CURRENT LOCATION COUNTER USES THE FULL ADDRESS RANGE OF THE
MICROPROCESSOR.

8. O. 0 THE ARITHMETIC OPERATOR SET.

THERE ARE TWO TYPES OF ARITHMETIC OPERATORS: UNARY AND BINARY
OPERATORS.

UNARY OPERATORS ACT ON ONLY ONE ITEM. THE TERM OR EXPRESSION
FOLLOW I NG THEM.

BINARY OPERATORS ACT ON TWO ITEMS: THE TERM OR EXPRESSION
PRECEEDING THEM AND THE TERM OR EXPRESION FOLLOWING THEM.

.. 8. 1. 0
.. S. 1. 0 LINARY OPERATORS.

THE + (PLUS) AND - (MINUS) UNARY OPERATORS ASSIGN A POSITIVE OR
NEGATIVE SIGN TO THE EXPRESSION FOLLOWING THEM. AN EXPRESSION IS
ASSUMED TO BE POSITIVE IF NOT OTHERWISE SPECIFIED.

8. 1. 2 BYTE ACCESS OPERATORS.

THE AL AND AM (WHERE A IS THE UPARROW CHARACTER) ARE UNARY
OPERATORS WHICH PROVIDE ACCESS TO THE LEAST AND MOST SIGNIFICANT 8
BIT BYTES OF THE VALUE OF AN EXPRESSION OR TERM.

EXAMPLE: TO SET "VALUE" EQUAL TO THE MOST SIGNIFICANT BYTE OF
31361 (BASE 16), THE STATEMENT BELOW IS USED.

VALUE . SET '''M3B61 i VALUE = 00313

THIS NEXT STATEMENT TAKES THE LEAST SIGNIFICANT BYTE .

VALUE . SE:T AL3B61 iVALUE = 0061

BYTE ACCESS OPERATORS MAY BE COMBINED WITH THE OTHER UNARY
OPERATORS AND THE RADIX INDICATORS.

8. 1. 3 THE COMPLEMENT OPERATOR.

THE AC (UPARROW C) IS A LOGICAL UNARY OPERATOR WHICH COMPLEMENTS
THE EXPRESSION FOLLOWING IT.

EXAMPLE:

VALUE . EQU AC7241 iVALUE = 8DBE

THE COMPLEMENT OPERATOR CAN BE COMBINED WITH THE OTHER UNARY
OPERATORS AND THE RADIX INDICATORS.

8. 1.4
.. 8. 1. 4. ? OPERATOR.

THIS IS THE USER FLAG OPERATOR, A UNARY OPERATOR USED IN CONJUNC­
TION WITH THE COMMAND DECODER USER FLAG OPTIONS (/0 TO 19). IT HAS
THE FORM 7EXPRESSION AND MAY BE USED IN OPERANDS LIKE ANY OTHER
TERK THE RESULTING VALUE OF THE QUESTION MARK OPERATOR EQUALS 1 IF
THE VALUE OF ITS EXPRESSION MATCHES A USER FLAG THAT WAS SPECIFIED
TO THE COMMAND DECODER AT RUN-TIME. OTHERWISE IT EQUALS O. THIS
OPERATOR IS USEFUL FOR CONTROLLING CONDITIONAL ASSEMBLY AND LISTING
PARAMETERS WITHOUT HAVING TO MODIFY THE SOURCE FILE

EXAMPLE: THE /2 OPTION WAS SPECIFIED TO THE COMMAND DECODER AT
RUN-TIME.

. R XNAME
*BIN,LOUT<SOURCE/2

THE SOURCE FILE CONTAINS THE FOLLOWING . LIST STATEMENTS:

. LIST ?2-1

. LIST 1

AT THE FIRST . LIST STATEMENT, THE ?2 TERM EQUALS 1 SINCE /2 WAS
SPECIFED AT RUN-TIME. THE OPERAND (72-1) EQUALS ZERO. THEREFORE
LISTING IS INHIBITED UNTIL THE SECOND . LIST INSTRUCTIO~ AS THE
OPERAND VALUE OF THIS STATEMENT IS 1, LISTING IS ENABLED AGAIN.
NOTE THAT IF THE /2 OPTION WAS NOT SPECIFIED, THE INSTRUCTIONS
AFTER THE FIRST . LIST WOULD BE INCLUDED IN THE "LOUT" FILE LISTING.

8. 2. 0 BINARY OPERATORS.

SIX SPECIAL CHARACTERS ARE USED TO PERFORM THE FOLLOWING BINARY
OPERATIONS:

* MULTIPLICATION
/ DIVISION
& BOOLEAN AND

INCLUSIVE OR
+ ADDITION

SUBTRACTION

.. 8. 2. 0

THE UNARY OPERATORS TAKE PRECEDENCE OVER THE BINARY OPERATORS
DURING ASSEMBLY. THE * AND / OPERATORS ARE EXECUTED NEXT, THEN THE
OTHER BINARY OPERATORS FROM LEFT TO RIGHT. BRACKETS, [AND J, ARE
USED TO CHANGE THE ORDER OF PRECEDENCE WHEN NECESSARY. A [IS A
SHIFTIK ON TTY KEYBOARDS, AND A J IS A SHIFT/M.

EXAMPLE: IN THE STATEMENT BELOW THE OPERAND EXPRESSION IS EVALUATED
IN THIS ORDER: [A* [-B J J + [[2/0 J * [AC [AB101 J J J

VALUE . EQU

ADDITION AND SUBRACTION ARE ACCOMPLISHED BY TWO'S COMPLEMENT 16 BIT
ARITHMETIC. NO CHECKS FOR OVERFLOW ARE MADE.

MULTIPLICATION IS ACCOMPLISHED BY REPEATED ADDITIO~ NO CHECKS FOR
SIGN OR OVERFLOW ARE MADE.

DIVISION IS ACCOMPLISHED BY REPEATED SUBRACTION. THE QUOTIENT IS
THE NUMBER OF SUBTRACTIONS PERFORMED. THE REMAINDER IS NOT SAVED.
NO CHECKS ARE MADE FOR SIGN. DIVISION BY ZERO RESULTS IN ZERQ

THE BOOLEAN AND FUNCTION <&) IS A BIT BY BIT LOGICAL AND OF TWO
NIJMBERS:

THE BOOLEAN INCLUSIVE OR (!) IS A BIT BY BIT LOGICAL OR OF TWO
NUMBERS.

.. 9. O. 0
.. 9. 0.0 PSEUDO-OPERATORS.

PSEUDO-OPERATORS ·ARE INSTRUCTIONS TO THE ASSEMBLER WHICH ALLOW
GREATER FLEXIBILTIY IN PROGRAMMING.

A SUMMARY OF THE PSEUDO-OPS AND THEIR FUNCTIONS IS GIVEN IN THE
APPENDIX.

9. 1. 0 ASSIGNMENT PSEUDO-OPS.

ASSIGNMENT PSEUDO-OPS ARE USED TO DEFINE VALUES, INPUT ASCII TEXT
AND REASSIGN THE LOCATION COUNTER

9. 1. 1 . EQU PSEUDO-OP.

THE . EQU IS USED TO ASSIGN A VALUE TO A SYMBOL. THIS SYMBOL VALUE
CANNOT BE CHANGED ONCE DEFINED. . EQU IS USEFUL FOR ASSIGNING NAMES
TO LOCATIONS WHICH ARE NOT LOADED BY THE OBJECT CODE.

EXAMPLE:

NAME1 · EQU

9. 1. 2 . SET PSEUDO-OP.

THE . SET IS USED EXACTLY LIKE THE . EQU EXCEPT THAT THE SYMBOL CAN
BE REDEFINED WITH ANOTHER . SET AT ANY POINT IN THE PROGRAM:

EXAMPLE: THE FOLLOWING IS PERFECTLY LEGAL FOR A . SET BUT NOT AN
. EQIJ.

NAMEl
NAMEl

· SET
· SET 22

NOTE THAT IT IS GOOD PRACTICE TO USE THE . EQU
RATHER THAN THE. SET EXCEPT (OF COURSE) WHERE THERE
NEED TO REDEFINE A VALUE. THIS HELPS PREVENT
REDEFINITION OF A VALUE IN A PROGRAM.

9. 1. 3 . DINST PSEUDO-OP.

FOR ASSIGNMENTS
IS A SPECIFIC

THE ACCIDENTAL

THE . DINST IS USED TO GIVE A MICROPROCESSOR OPERATOR ANOTHER NAME.
THE ORIGINAL OPERATOR NAME WILL STILL BE VALID. NOTE THAT THE
ASSEMBLER PSEUDO-OPS CANNOT BE RENAMED.

*9. 1. 3

EXAMPLE: THE MICROPROCESSOR INSTRUCTION "OPR" IS DEFINED AS
"NEWOP". ANY FURTHER REFERENCES TO "NEWOP" IN THE PROGRAM WILL BE
TREATED ACCORDING TO THE DEFINITION OF "OPR" .

NEWOP . DINST OPR

"NEWOP" IS DEFINED TO BE THE EQUIVALENT TO THE MICROPROCESSOR
INSTRUCTION "OPR II AND IS ADDED TO THE OPERATOR SET FOR THE
REMAINDER OF THE ASSEMBLY.

REFERENCES TO USER DEFINED OPERATORS ARE NOT ALLOWED TO PRECEDE
THEIR . DINST STATEMENT.

ASSEMBLER PSEUDO-OPS CANNOT BE USED IN EITHER THE LABEL OR OPERAND
FIELDS OF ANY STATEMENT AND THEREFORE CANNOT BE DEFINED WITH THE
. DINST STATEMENT.

LOCAL SYMBOLS CANNOT BE USED IN THE OPERATOR FIELDS, THEREFORE THEY
SHOULD NOT BE USED WITH A . DINST STATEMENT.

* 9. 1. 4 . ORG PSEUDO-OP.

THE . ORG REASSIGNS THE LOCATION COUNTER.

THE LOCATION COUNTER WILL BE 0 AT THE START OF THE SOURCE INPUT.

THE . ORG OPERAND CANNOT BE FORWARD REFERENCED, (REFERRED TO A
LABEL DEFINED FURTHER ON IN THE PROGRAM) AND CANNOT HAVE A LABEL

* 9. 2 0 DEFAULT RADIX PSEUDO-OPS.

INITIALLY, THE DEFAULT RADIX IS SET TO HEXADECIMAL SO THAT
CONSTANTS ARE READ IN AS BASE 16 VALUES. (SEE MODIFICATION NOTES IF
ANOTHER INITIAL DEFAULT RADIX IS DESIRED.)

AT ANY POINT IN THE PROGRAM, THE DEFAULT RADIX CAN BE REASSIGNED
THROUGH USE OF THESE PSEUDO-OPS:

· BIN
· DECM
· HEX
· OCT

; BINARY RADI X
i DECIMAL RADIX
iHEXADECIMAL RADIX
; OCTAL RADIX

THE DEFAULT RADIX PSEUDO-OPS CANNOT HAVE AN OPERAND OR A LABEL.

ADDITIONALLY, THE RADIX OF INDIVIDUAL CONSTANTS CAN BE SPECIFIED BY
THE USE OF THE AB, AD, AH AND AO INDICATOR& SEE SECTION # ~ 1. 0
THESE INDICATORS DO NOT CHANGE THE DEFAULT RADIX.

:1+ 9. 3. 0
:1+ 9. 3. 0 DATA STORAGE PSEUDO-OPS.

THREE PSEUDO-OPS CAN BE USED TO STORE DAT~ THEIR FORMAT IS:

LABEL PSEUDO-OP OPERAND, OPERAND, j COMMENT

THE PSEUDO-OPS CAN HAVE AS MANY OPERANDS AS WILL FIT ON ONE 127
CHARACTER LINE.

EACH OPERAND CAN BE A SYMBOL, CONSTANT, OR EXPRESSION. COMMAS
SEPARATE THE OPERANDS.

THE DOUBLE QUOTE (") CHARACTER IS USED DIFFERENTLY IN THE . BYTE
COMMAND, BUT THE SINGLE QUOTE (') RETAINS ITS NORMAL FUNCTIO~

:1+ 9. 3. 1 . BYTE PSEUDO-OP.

THE . BYTE PSEUDO-OP STORES DATA IN SINGLE BYTES OF MEMORY.
NUMERICAL BYTE VALUES CAN RANGE FROM -128 TO +255 (DECIMAL).
NORMALLY, DOUBLE QUOTES AND SINGLE QUOTES ARE TREATED IDENTICALL~

AND ARE USED TO FORM THE ASCII VALUE OF A SINGLE CHARACTER
HOWEVER, IN THE . BYTE PSEUDO-OP , THE DOUBLE QUOTE IS USED TO INDI­
CATE TEXT STRINGa DATA IS STORED SEQUENTIALLY AS IT IS PROCESSED,
LEFT TO RIGHT. A TEXT STRING MUST BE CLOSED WITH A DOUBLE QUOTE.

EXAMPLE: THE ASCII VALUES OF THE TEXT ABC IS STORED:

2 00 .ORG 200
200 41 . BYTE "ABC", 0, "'B
201 42
202 43
203 0
204 42

THESE STATEMENTS WOULD BE INVALID:

. BYTE

. BYTE
"'ABC'
"ABC

:1+ 9. 3. 2 . DBYTE PSEUDO-OP.

;THE ' IS NOT FOR TEXT STRINGS
; TEXT MUST END WITH A "

THE . DBYTE IS SIMILAR TO THE . BYTE EXCEPT THAT IT STORES DOUBLE
BYTE QUANTITIES. IT DOES NOT ACCEPT TEXT STRINGS. THE THE MOSl
SIGNIFICANT BYTE IS STORED FIRST, THEN THE LEAST SIGNIFICANT BYTE.

9. 3. 3 * 9. 3. 3 . ADDR PSEUDO-OP.

THE . ADDR PSEUDO-OP IS THE SAME AS THE . DBYTE PSEUDO-OP EXCEPT THAT
THE LEAST SIGNIFICANT BYTE IS STORED FIRST. MANY MICROPROCESSORS
USE THIS REVERSED FORMAT FOR ADDRESSES. FOR EXAMPLE:

2 00
200 1 32
202 32 31

.ORG

. DBYTE

. AD DR

200
'''H3132
'''H3132

9. 3. 4 . ZERO PSEUDO-OP.

j HEX CONSTANT
i REVERSED BYTES

THE . ZERO PSEUDO-OP RESERVES THE NUMBER OF BYTES INDICATED BY THE
OPERAND AND SETS THEM TO ZERO.

EXAMPLE:

o 1
1 0

11 10

16 ADDRESSES, 1 TO 10 (BASE 16) ARE ZEROED .

. ORG

. ZERO

. BYTE

1
10
10

ONLY THE FIRST BYTE WILL BE PRINTED IN THE LISTING. THE LOCATION
COUNTER IS ADVANCED. THE OPERAND OF . ZERO CANNOT BE FORWARD REFER­
ENCED, (REFERED TO A LABEL DEFINED FURTHER ON IN THE PROGRAM>'

9. 4. 0 LISTING CONTROL DIRECTIVES.

THROUGH USE OF THE . LIST, . PAGE AND . TITLE PSEUDO-OPS, PLUS SEVERAL
RUN-TIME OPTIONS, THE SOURCE PROGRAM CAN BE LISTED IN VARIOUS WAYS
AT ASSEMBLY T I ME.

NORMALLY, THE ASSEMBLER AUTOMATICALLY PAGES THE OUTPUT, ADDING A
HEADER AT THE TOP OF THE PAGE. (NOTE THAT PAGE NUMBERS REPRESENT
THE LISTING PAGE NUMBERS, NOT INPUT FILE PAGES.)

NOT ALL PSEUDO-OPS ARE LISTED IN THE OUTPUT. THE CONDITIONAL
ASSEMBLY AND LISTING CONTROL PSEUDO-OPS ARE NOT LISTED UNLESS THE
/P OPTION IS SPECIFED. SEE RUN-TIME OPTIONS # 2. 4. 0

NORMALLY THE STATEMENTS WHICH ARE NOT ASSEMBLED DUE TO CONDITIONAL
ASSEMBLY ARE NOT LISTED. USE OF THE /w COMMAND DECODER OPTION WILL
ENABLE LISTING OF THESE STATEMENTS PLUS THE NORMALLY UNLISTED
CONDITONAL ASSEMBLY PSUEDO-OPS.

THE PAGINATION AND HEADING CAN BE SUPPRESSED THROUGH USE OF THE /H ~
COMMAND DECODER OPTION.

9. 4. 0

IF THE OUTPUT DEVICE IS ONE WHICH DOES NOT PAGE ON A FORM FEED (A
TTY), THE /T DECODER OPTION CAN BE USED TO CHANGE THE FORM FEED
(WHICH NORMALLY STARTS A NEW PAGE) TO 3 CARRIAGE RETURN/LINE FEEDS
SO THAT PAGES WILL BE SEPARATED BY 3 BLANK LINES IN THE LISTING.

WARNING MESSAGES ARE NORMALLY OUTPUT TO BOTH THE TERMINAL AND THE
SOURCE LISTING. TO INHIBIT THESE MESSAGES, THE /W DECODER OPTION IS
USED.

~ 4. 1 . LIST PSEUDO-OP.

A LIST FLAG IS USED DURING ASSEMBLY TO INDICATE WHETHER OR NOT THE
STATEMENTS ARE TO BE LISTED. INITIALLY, THE FLAG IS ON AND STAYS ON
UNLESS A . LIST PSEUDO-OP IS ENCOUNTERED.

A . LIST PSEUDO-OP CAN BE USED WITH OR WITHOUT AN OPERANn A LABEL
CANNOT BE USED WITH THE . LIST PSEUDO-OP.

WHEN A. LIST PSEUDO-OP WITHOUT AN OPERAND IS ENCOUNTERED, THE LIST
FLAG I S INVERTED.

EXAMPLE:
i LIST FLAG INITIALLY ON

.ORG 200 ; LISTED
VALUE · SET 1 i LISTED

· LIST i LIST FLAG OFF
VALU2 · SET 70 ; NOT LISTED

· LIST iLIST FLAG BACK ON

NOTE THAT UNLESS THE /P OPTION IS USED, THE . LIST OPERATOR ITSELF
WILL NOT BE LISTED.

WHEN A . LIST PSEUDO-OP WITH AN OPERAND IS ENCOUNTERED, THEN LISTING
IS INHIBITED IF THE OPERAND IS EQUAL TO ZERO. (THE LIST FLAG IS
SET OFF>' I F THE OPERAND I S NOT ZERO, LIST I NG I S ENABLED. (THE
LIST FLAG IS SET ON>'

9. 4. 2 . PAGE PSEUDO-OP.

INSERTING A . PAGE PSEUDO-OP IN THE PROGRAM WILL NORMALLY START A
NEW PAGE BEGINNING WITH THE NEXT LINE. (THE. PAGE STATEMENT ITSELF
IS NOT NORMALLY LISTED.) IF THE /P COMMAND DECODER OPTION IS USED,
THE . PAGE STATEMENT WILL BE THE FIRST LINE OF THE NEW PAGE.

9. 4. 2

THE /H COMMAND DECODER OPTION INHIBITS THE . PAGE PSEUDO-OP.

THE . PAGE PSEUDO-OP CAN HAVE NO LABEL OR OPERAND.

9. 4. 3 . TITLE PSEUDO-OP.

THE . TITLE IS USED TO REPLACE THE HEADING WITH UP TO 32 CHARACTERS
OF TEXT. ITS FORMAT IS:

· TITLE HEADING OF 32 CHARACTERS

THE FIRST CHARACTER AFTER THE. TITLE IS THE PSEUDO-OP DELIMITER
WHICH CANNOT BE AN ALPHA-NUMERIC CHARACTER THE DELIMITER IS
CONSIDERED THE FIRST CHARACTER OF THE 32 CHARACTER GROUP AND WILL
BE PRINTED OUT. ANY TEXT AFTER 32 CHARACTERS WILL BE IGNORED. TABS
CAN BE USED IN THE HEADING.

THE /H COMMAND DECODER OPTION INHIBITS THE . TITLE PSEUDO-OP.

THE /P COMMAND DECODER ENABLES THE LISTING OF THE . TITLE PSEUDO-OP.

A SEMICOLON DOES NOT DELIMIT THE HEADING TEXT.
MADE ONLY AFTER THE 32 CHARACTER HEADING GROUP.

COMMENTS CAN BE

WHEN PLACED AT THE BEGINNING OF THE PROGRAM, THE . TITLE PSEUDO-OP
WILL SET THE HEADING FOR THE FIRST PAGE. THE . TITLE MUST APPEAR
BEFORE THE FIRST LINE TO BE LISTED.

EXAMPLE: THE FOLLOWING STATEMENTS WILL CAUSE THE HEADING OF THE
FIRST PAGE TO BE II *MA I N PROGRAM".

· TITLE*MAIN PROGRAM
VALUE · EQU 1

· LIST VALUE

9. 5. 0 CONDITIONAL ASSEMBLY PSUEDO-OPERATORS.

THE . IFZERO, . IFNZRO, . IFDEF AND . IFNDEF OPERATORS
PROVIDE FOR THE CONDITIONAL ASSEMBLY IN A PROGRAM,
OF STATEMENTS CAN BE ADDED (OR OMITTED) DURING
PROCESS. EACH IS DESCRIBED INDIVIDUALLY IN THE
FOLLOW. ALL HAVE THE GENERAL FORM:

PSEUDO-OP OPERAND ; COMMENT

ARE USED TO
SO THAT GROUPS

THE ASSEMBLY
SECTIONS THAT

9. 5. 0

EACH OPERAND MUST MEET THE CONDITIONS OF ITS PSEUDO-OP IN ORDER FO~
THE STATEMENTS THAT FOLLOW IT TO BE ASSEMBLEn IF THE CONDITIONS
ARE NOT MET; THESE STATEMENTS ARE OMITTED. THE. ENDC PSEUDO-OF
INDICATES THE END OF THE GROUP OF STATEMENTS WHICH ARE AFFECTED.
EACH CONDITIONAL PSEUDO-OP MUST HAVE ONE . ENDC STATEMENT.

CONDITIONAL PSEUDO-OPS CANNOT HAVE LABELS.

CONDITIONAL PSEUDO-OPS CAN BE NESTED UP TO 4095 LEVELS.

EXAMPLE:

VALUE1 · EQU
· IFZERO
· BYTE
· IFDEF
· BYTE
· ENDC

DOC · EQU
· EN DC

o
VALUE1
"TEXT"
VALUE2
"TEXT"

17

iDEFINE VALUE1
i VALUEl = O? - YES.
; ASSEMBLED.
; VALUE2 DEF I NED? - NO.
i OMITTED.
iEND OF INNER CONDITIONAL
; ASSEMBLED.
; END OF OUTER CONDITIONAL

THE CONDITIONAL PSEUDO-OPS ARE NOT INCLUDED IN THE ASSEMBLY LISTINC
UNLESS THE /P OR /J COMMAND DECODER OPTION IS SPECIFIED.

ONE CONDITIONAL CAN INHIBIT ANOTHER.

EXAMPLE: THREE DIFFERENT RESULTS CAN OCCUR IN THE FOLLOWING TYPE OF
CONDITIONAL NESTING:

CONDITIONAL 1
; STATEMENT GROUP 1.

CONDITIONAL 2
; STATEMENT GROUP 2.

. ENDC ;END CONDITIONAL 2 .
iSTATEMENT GROUP 3.

. ENDC sEND CONDITIONAL 1.

IF BOTH CONDITIONALS ARE MET, ALL THE STATEMENTS, GROUPS 1 THROUG~
3, WILL BE ASSEMBLED.

IF CONDITIONAL 2 IS NOT MET, BUT CONDITONAL 1 IS MET, THEN GROUP
AND GROUP 3 WILL BE ASSEMBLED. GROUP 2 IS NOT ASSEMBLED.

IF CONDITIONAL 1 IS NOT MET, CONDITIONAL 2 IS IGNORED AND GROUPS
THROUGH 3 WILL NOT BE ASSEMBLED.

... 9.5. 1
9. 5. 1 . IFZERO PSEUDO-OP.

IF THE OPERAND OF THE . IFZERO IS:

EQUAL TO ZERO - ASSEMBLY IS UNAFFECTED.
NOT EQUAL TO ZERO - STATEMENTS TO NEXT . ENDC ARE OMITTED.

THE OPERAND CANNOT BE FORWARD REFERENCED .

... 9. 5. 2 . IFNZRO PSEUD-OP.

IF THE OPERAND OF THE . IFNZRO IS:

EQUAL TO ZERO - STATEMENTS TO NEXT . ENDC ARE OMITTED.
NOT EQUAL TO ZERO - ASSEMBLY IS UNAFFECTED.

THE OPERAND CANNOT BE FORWARD REFERENCED.

9. 5. 3 . IFDEF PSEUDO-OP.

IF THE SYMBOL OPERAND OF THE . IFDEF IS:

DEFINED - ASSEMBLY IS UNAFFECTEn
NOT DEFINED - STATEMENTS TO NEXT . ENDC ARE OMITTEn

NOTE THAT . IFDEF WILL ACCEPT ONLY
OPERAND.

A SINGLE SYMBOL
o

NAME AS THE

A SYMBOL IS CONSIDERED TO BE DEFINED IF IT HAS BEEN USED IN THE
LABEL FIELD OF A STATEMENT PRECEEDING THE CONDITIONAL PSEUDO-OP.

9. 5. 4 . IFNDEF PSEUDO-OP.

IF THE SYMBOL OPERAND OF THE . IFNDEF IS:

DEFINED - STATEMENTS TO NEXT . EN DC ARE OMITTED.
NOT DEF I NED - ASSEMBLY IS IJNAFFECTED.

NOTE THAT ONLY A SINGLE SYMBOL NAME IS ALLOWED AS THE OPERAND.

A SYMBOL IS CONSIDERED TO BE DEFINED IF IT HAS BEEN USED IN THE
LABEL FIELD OF A STATEMENT PRECEEDING THE CONDITIONAL PSEUDO-OP.

9. 5. 5
9. 5. 5 . ENDC PSEUDO-OP.

THIS PSEUDO-OP INDICATES THE END OF A CONDITONAL ASSEMBLY GROUP.

EVERY CONDITIONAL PSUEDO-OP MUST BE PAIRED WITH A . ENDC.

9. 6. 0 . END PSEUDO-O~

THIS INDICATES THE END OF THE SOURCE PROGRAM. IT CANNOT HAVE EITHER
A LABEL OR AN OPERAND. A WARNING MESSAGE WILL OCCUR IF THE . ENIJ
STATEMENT IS LEFT OFF.

#10. O. 0 ERROR MESSAGES AND WARNINGS.

BOTH PASS #1 AND PASS #2 CAN GENERATE ERROR MESSAGES. THESE ARE
PRINTED ON THE CONSOLE DEVICE AS THEY OCCUR. IF A LISTING IS
SPECIFIED, PASS 3 WILL LIST THE ERROR MESSAGE ABOVE THE LINE I~
WHICH THE ERROR OCCURS.

ERROR MESSAGES WHICH ARE SENT TO THE CONSOLE HAVE THE FORM:

E:XX AT LABEL+N

WHERE "N" IS A DECIMAL NUMBER OF
LINES BEYOND THE STATEMENT WHICH
CONTAINED THE GIVEN LABEL. IF NO
LABEL WAS GIVEN, "N" IS THE NUMBER OF
LINES FROM THE BEGINNING LINE OF THE
PROGRAM.

IF THE BINARY OUTPUT FILE IS SENT TO THE CONSOLE, AND ERROF
MESSAGES OCCUR, THE OUTPUT FILE LINES AND ERROR MESSAGES WILL BE
INTERMIXED. USE OF THE /E OPTION WILL INHIBIT THE ERROR MESSAGES
TO THE CONSOLE SO THAT ONLY THE BINARY FILE IS OUTPUT. THIS IS
USEFUL WHEN A USER WOULD LIKE TO TRY OUT CERTAIN PARTS OF A PROGRA~
AND IS NOT YET CONCERNED WITH OTHER PARTS KNOWN TO HAVE ERRORS.

#10. O. 0

INDIVIDUAL ERROR MESSAGES ARE EXPLAINED IN TABLE #2 WHICH DIVIDES
THE MESSAGES INTO THREE TYPES:

1) FATAL ERRORS- THESE ERRORS CAUSE THE IMMEDIATE
EXIT TO THE OS/8 MONITOR. THE CURRENT OUTPUT FILE
IS NOT CLOSED. /E WILL NOT INHIBIT FATAL ERROR
MESSAGES. FATAL ERROR MESSAGES ARE ALWAYS SENT TO
THE CONSOLE DEVICE.

2) WARNING MESSAGES INDICATE MINOR PROGRAM
PROBLEMS. ASSEMBLY IS NOT HALTED. GOOD PROGRAMMING
PRACTICES WILL ELIMINATE ALL WARNING MESSAGES.

3) NON-FATAL ERRORS - THE OCCURANCE OF A NON-FATAL
ERROR WILL NOT HALT ASSEMBLY. THE ASSEMBLER
ATTEMPTS TO DO AS MUCH OF THE LINE AS POSSIBLE. FOR
EXAMPLE, IF THE OPERAND CANNOT BE EVALUATED, IT
GIVES IT A VALUE OF ZERO, WRITES THE ERROR MESSAGE
AND CONTINUES.

TABLE #2. #10. O. 0

E:DF
FILE #N

E:LT

E:OE
FILE #N

E:PE

E:RE
FILE #N

E:ST

E:WE
FILE #N

W:EF

W:UC

**** FATAL ERRORS ****

DEV I CE FULL:
THERE IS NOT ENOUGH ROOM LEFT ON THE OUTPUT DEVICE
FOR THE FILE. "N" INDICATES WHICH OF THE TWO OUT­
PUT FILES WAS IN ERROR.

LOCAL SYMBOL TABLE OVERFLOW:
THIS ERROR OCCURS ONLY IF THE /K OPTION IS IN USE.
CONVERSION OF SOME OF THE LOCAL SYMBOLS TO REGULAR
SYMBOL NAMES WILL USUALLY SOLVE THIS PROBLEM. SEE
THE NOTES ON THE /K RUN-TIME OPTION.

OPEN ERROR IN OUTPUT FILE:
AN ATTEMPT WAS MADE TO OPEN AN OUTPUT FILE ON AN
INPUT-ONLY DEVIDE. (PTR:, CDR:, ETC.) "N" INDICATES
WHICH ONE OF THE TWO POSSIBLE OUTPUT FILES WAS IN
ERROR.

PHASE ERROR:
A LOCATION TAG HAS A DIFFERENT ADDRESS IN ONE PASS
THAN IT HAD IN THE PREVIOUS PASS.

READ ERROR:
AN ERROR HAS OCCURRED WHILE READING FROM AN INPUT
FILE DEVICE. "N" INDICATES WHICH ONE OF THE NINE
POSSIBLE INPUT FILES HAD THE ERROR.

SYMBOL TABLE OVERFLOW:
THE PROGRAM IS TOO LARGE. WHERE CONVENIENT, DIVIDE
IT AND ASSEMBLE EACH PART SEPARATELY. ALSO REFER TO
THE NOTES ON THE IK RUN-TIME OPTION.

WR I TE ERROR:
AN ERROR HAS OCCURRED WHILE WRITING TO AN OUTPUT
FILE DEVICE. "N" INDICATES WHICH ONE OF THE TWO
OUTPUT FILES HAD THE ERROR.

**** WARNING MESSAGES ****

NO . END STATEMENT:
THE LAST INPUT FILE MUST HAVE ~N . END STATEMENT.
THE ASSEMBLER PROCEEDS AS IF AN . END WERE PRESENT.

ASSEMBLY WAS CONDITIONALLY INHIBITED AT THE END OF
THE PROGRAM: EACH CONDITIONAL ASSEMBLY PSEUDO-OP
MUST BE PAIRED WITH AN . ENDC STATEMENT.

TABLE #2. (CONT.) #10. O. 0

E:BN

E:DR

E: IL

E: 10

E:LO

E:LS

E:ML

E:MO

E:OC

E:OM

**** NON-FATAL ERRORS ****'

BAD NESTING OF BRACKETS:
EACH OPEN BRACKET MUST BE PAIRED WITH A CLOSED
BRACKET.

DIGIT OUTSIDE OF RADIX:
THE CONSTANT CONTAINS A DIGIT NOT RECOGNIZED UNDER
THE SPECIFIED RADIX. FOR EXAMPLE, THE DIGIT "211 IS
NOT RECOGNIZED IN BINARY RADIX. THE CONSTANT WILL
BE EVALUATED AS IF THAT DIGIT WERE ZERO.

ILLEGAL LABEL FIELD:
THE LABEL MAY NOT BE IN THE PROPER SYMBOL FORMAT,
SEE SECTION #6. 2. O. ALSO, SOME PSEUDO-OPS CANNOT
HAVE LABELS.

ILLEGAL OPERAND VALUE:
REFER TO THE SECTION ON THE STATEMENT~S OPERATOR TO
DETERMINE THE ALLOWABLE OPERAND TERM&

LINE INPUT OVERFLOW:
ONLY 127 CHARACTERS, NOT INCLUDING THE CARRIAGE
RETURN AND LINE FEED, ARE ALLOWED IN AN INPUT LINE.

LOCAL SYMBOL SYNTAX ERROR:
THE CORRECT FORMAT FOR A LOCAL SYMBOL IS $N WHERE
"N" I S A DEC I MAL NUMBER FROM 0 TO 255.

MULTIPLE LABEL DEFINITION:
THE SAME LABEL HAS A DIFFERENT VALUE AND IS USED
WITH AN OPERATOR OTHER THAN A . SET PSEUDO-OP.

MISSING OR ILLEGAL MNEMONIC IN OPERATOR FIELD:

OPERAND TOO COMPLEX:
TOO MANY TERMS AND OPERATORS EXIST IN THE OPERAND.
DIVIDE THE EXPRESSION USING THE. SET COMMAND.

EXAMPLE: THE FIRST EXPRESSION IS DIVIDED INTO THE
TWO STATEMENTS FOLLOWING IT.

WORD

TEMP
WORD

OPERAND MISS I NG.

· EQU

· SET
· EQU

[EXPRl] + [EXPR2]

[EXPRl]
TEMP + [EXPR2]

TABLE #2. (CONT.) #10. O. 0

E:OS

E:PS

E:TL

E:US

OPERAND SYNTAX ERROR.

ILLEGAL PERMANENT SYMBOL USAGE IN OPERAND:
REFER TO THE APPENDICES TABLES TO SEE WHICH NAMES
ARE USED IN THE ASSEMBLER AND MICROPROCESSOR IN­
STRUCTION SETS AND RENAME YOUR SYMBOL SO THAT IT
WILL NOT CONFLICT.

LABEL DEFINED TOO LATE:
ONL V ONE LEVEL OF FORWARD . REFERENC I NG I S ALLOWED.

UNDEFINED SYMBOL:

NOTE: REFER TO SECTION #12. O. 0 FOR ADDITIONAL ERROR MESSAGES WHICH
ARE SPECIFIC TO THE TVPE OF MICROPROCESSOR BEING USED.

#11. O. 0 MODIFICATION NOTES.

VARIOUS MODIFICATIONS CAN BE MADE TO THE ASSEMBLER FOR GREATER
OPERATING CONVENIENCE. BEFORE MAKING ANV CHANGES I THE USER SHOULD
READ THE DESCRIPTION OF EACH OPTION CAREFUL LV. NO CHECKS ON PA~CH
VALIDITV ARE MADE. ALSO KEEP A RECORD OF ALL CHANGES SO THAT THE
STATUS OF THE CROSS-ASSEMBLER IS ALWAVS KNOWN.

MODIFICATIONS ARE MADE BV PATCHING LOCATIONS IN THE IMAGE <. SV)
FILE USING ODT. REFER TO THE OS/8 MANUAL FOR A DETAILED EXPLAIN­
ATION OF ODT OPERATION.

THE EXAMPLE BELOW SHOWS AN ODT PATCH BEING MADE TO FILE "XNAME. SV~
WHERE THE CONTENT OF LOCATION 10107 IS CHANGED FROM 3 TO 2 .

. GET SVS: XNAME

.ODT
10107/0003 2
· C
. SA SVS: XNAME

#11.1.0

#11. 1.0 CHANGING THE DEFAULT INPUT FILE EXTENSION <. MS)'

PATCH LOCATION 10100 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11.2.0 CHANGING THE DEFAULT BINARY OUTPUT FILE EXTENSION (. MB)

PATCH LOCATION 10101 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11. 3. 0 CHANGING THE DEFAULT LISTING OUTPUT FILE EXTENSION <. LS)'

PATCH LOCATION 10102 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11.4.0 CHANGING THE BASE YEAR DATE.

IN OS/8 ONLY 3 BITS ARE PROVIDED TO INDICATE THE CURRENT YEAR.
THIS ALLOWS ONLY NUMBERS FROM 0 TO 7 WHICH MUST BE ADDED TO A BASE
YEAR TO FORM THE ACTUAL YEAR NUMBER. IN 1978 AND AT ADDITIONAL 8
YEAR INTERVALS THE BASE YEAR MUST BE CHANGED TO PROVIDE THE PROPER
DATE PRINTOUT. TO DO THIS, PATCH LOCATION 10104 TO CONTAIN THE TWO
CHARACTER 6 BIT ASCII REPRESENTATION OF THE TWO LEAST SIGNIFICANT
DIGITS OF THE YEAR.

BASE YEAR:
1978
1986
1994
2002

PATCH TO LOCATION 10104 (IN OCTAL).
6770
7066
7164
6062

SHOULD THIS PROGRAM SURVIVE UNTIL THE YEAR 2000 THE TWO MOST
SIGNIFICANT DIGITS MAY BE CHANGED BY PATCHING LOCATION 10103 TO
CONTAIN 6260.

#11. 5. 0

#11. 5. 0 CHANGING THE DEFAULT RADIX. (HEXADECIMAL)

INITIALLY THE DEFAULT RADIX IS SET TO HEXADECIMAL. THIS MAY BE
MODIFIED TO BINARY, OCTAL, OR DECIMAL BY PATCHING LOCATION 10105
FROM THE FOLLOWING TABLE.

RADIX:

OCTAL
HEXADECIMAL
DECIMAL
BINARY

PATCH LOCATION 10105 TO:

1
2
3
4

#11.6.0 GENERATING 8 BIT ASCII CHARACTERS WITHIN THE BINARY
PROGRAM.

THE ASCII CHARACTERS GENERATED AS OPERANDS WITH THE
CHARACTERS ARE SEVEN BIT REPRESENTATIONS TYPICAL OF
MICROPROCESSOR SYSTEMS. TO GENERATE EIGHT BIT ASCII WITH
EIGHTH BIT ALWAYS SET (AS IS DONE IN SOME PDP8 SOFTWARE),
LOCATION 10106 TO CONTAIN 377. (ORIGINAL CONTENT WAS 177).

#11.7.0 RUNNING UNDER OS8 VERSION 2.

QUOTE
MOST

THE
PATCH

THE CROSS-ASSEMBLER IS SET UP TO USE THE OS/8 VERSION 3 METHOD FOR
CORE SIZE DETERMINATION. IN OS/8 V3 THE CORE SIZE IS CONTAINED IN
A MONITOR LOCATION. IN PREVIOUS VERSIONS, THE CORE SIZE MUST BE
DETERMINED BY ACCESSING EACH FIELD OF MEMORY TO SEE IF 1T EXISTS ON
THE SYSTE~ THEREFORE, TO RUN THE CROSS-ASSEMLER UNDER VERSION 2,
PATCH LOCATION 10107 TO CONTAIN 2. (ORIGINAL CONTENT WAS 3>'

11. 8. 0 CHANG I NG THE NUMBER OF LINES PER PAGE. (6)

THE NORMAL NUMBER OF LINES· PER PAGE IS SET AT 66. 6 OF THE 66
LINES ARE USED BY THE ASSEMBLER FOR THE HEADING AND MARGIN. TC
ALTER THE NUMBER OF LINES ON A PAGE, PATCH LOCATION 10110 TO BE THE
TOTAL POSITIVE LINES PER PAGE INCLUDING HEADING AND MARGIN.

#11.9.0

#11.9.0 CHANGING THE NUMBER OF CHARACTERS PER LINE. (72)

THE TOTAL NUMBER OF CHARACTERS PRINTED ON ONE LINE (EXCLUDING
CARRIAGE RETURN AND LINE FEED) IS SET AT 72 (BASE 10), TO MODIFY
THIS COUNT, PATCH LOCATION 10111 TO CONTAIN THE POSITIVE NUMBER OF
CHARACTERS TO BE PRINTED ON A LINE (EXCLUDING THE CR AND LF)'

#11.10.0 INITIAL FORM/FEED CONTROL.

SOME LINE PRINTER HANDLERS WHEN FIRST INITIALIZED WILL ISSUE AN
AUTOMATIC FORM FEED. TO AVOID EJECTING AN ADDITIONAL PAGE EACH TIME
THE ASSEMBLER IS CALLED, THE FIRST FORM FEED FROM THE HEADING HAS
BEEN SUPPRESSED. TO REENABLE THIS FIRST FORM FEED, PATCH LOCATION
10112 WITH 214 (BASE 8).

#11. 11. 0 CHANGING LABEL DELIMINATOR (, >.

TO PROVIDE COMPATIBILITY WITH OTHER ASSEMBLER FORMATS AN OPTIONAL
LABEL DELIMITER WILL BE ACCEPTED. NORMALLY, THIS DELIMITER IS A
COMMA, BUT IT CAN BE MODIFIED TO ANY OTHER NON-ALPHANUMERIC
CHARACTER (EXCEPT THE SEMICOLON OR CARRIAGE RETURN). TO MODIFY THE
DELIMITING CHARACTER PATCH LOCATION 10113 WITH THE 8 BIT ASCII
VALUE FOR THE CHARACTER.

#11. 12.0 CHANGING FROM 8 BIT TO 7 BIT ASCII IN THE OUTPUT FILES.

ALL ASCII OUTPUT TO THE BINARY (OBJECT) AND LISTING FILES IS IN 8
BIT ASCII FORMAT. TO OUTPUT 7 BIT ASCII FORMAT PATCH LOCATION 10114
TO CONTAIN 17~ (ORIGINAL CONTENT WAS 377).

#11. 13. 0
#11. 13.0 CHANGING THE SENSE OF THE RUN-TIME OPTIONS.

EACH SLASH OPTION (EXCEPT /0 TO /9) MAY HAVE ITS SENSE INVERTED BY
PATCHING THE LOCATIONS SHOWN IN THE FOLLOWING TABLE WITH THE
DESCR I BED VALUE.

OPTION: LOCATION: STANDARD: INVERTED:

/B 10116 7650 7640
/E 10117 7640 7650
/H 10120 7650 7640
/..J 10121 7650 7640
/K 10122 7650 7640
/L 10123 0 1
/N 10124 7650 7640
/0 10125 7650 7640
/P 10126 7640 7650
/S 10127 7650 7640
/T 10130 7650 7640
/W 10131 7650 7640

#12. O. 0
#12. O. 0 8080 CROSS-ASSEMBLER SPECIFICS.

THE FIRST ELEVEN SECTIONS OF THIS MANUAL HAVE PRESENTED SIERR~
DIGITAL~S UNIVERSAL ASSEMBLER FORMAT AS IT IS APPLIED TO ALL CROSS­
ASSEMBLERS IN THE X8 SERIES. THIS SECTION PRESENTS ADDITIONAL
INFORMATION ON THE APPLICATION OF THE UNIVERSAL ASSEMBLER FORMAT T(
A SPECIFIC CROSS-ASSEMBLER FOR THE 8080 MICROPROCESSOR. THE 808(
MICROPROCESSOR WAS DESIGNED BY INTEL CORPORATION, 3065 BOWER~
AVENUE, SANTA CLARA. CALIFORNIA 95051. VERSIONS OF THE 8080 USIN(
THE SAME INSTRUCTION SET ARE ALSO PRODUCED BY ADVANCED MICR(
DEVICES INC.. 901 THOMPSON PLACE. SUNNYVALE, CALIFORNIA 94086i
TEXAS INSTRUMENTS INC. , HOUSTON. TEXAS 77001i AND NEC
MICROCOMPUTERS INC, 5 MILITIA DRIVE, LEXINGTON MASS. 02173. N(
ATTEMPTS WILL BE MADE IN THIS MANUAL TO EXPLAIN THE OPERATION OF
THE MICROPROCESSOR. EXCELLENT MANUALS COVERING THE OPERATION ANI
PROGRAMMING OF THE MICROPROCESSORS ARE AVAILABLE FROM THEIF
MANUFACTURERS. SECTION #13 PRESENTS A SUMMARY OF THE INSTRUCTIDr
MNUEMONIC CODES DEFINED BY INTEL AND RECOGNIZED BY OUR CROSS­
ASSEMBLER.

#12 1. 0 CROSS-ASSEMBLER FILE NAMES.

THE CROSS-ASSEMBLER IS PROVIDED ON FILE STRUCTURED MEDIA UNDER THE
NAMES:

X8080. SV
X8080. BN

- FOR THE OS/8 SAVE IMAGE FILE.
- FOR THE OS/8 BINARY FORMAT FILE.

IT IS SUGGESTED THAT THE SAME NAMING CONVENTIONS BE USED WHE~

LOADING THE CROSS-ASSEMBLER FROM PAPER TAPE.

#12. 2. 0

#12. 2. 0 PREASSIGNED SYMBOL VALUES.

THE SYMBOLS REPRESENTING THE REGISTERS, MEMORY, STACK POINTER, AND
PROGRAM STATUS WORD HAVE BEEN GIVEN STANDARD VALUES AS SHOWN IN THE
FOLLOWING TABLE:

SYMBOL

A
B
C
D
E
H
L
M
SP
PSW

VALUE

7
0
1
2
3
4
5
6
16
26

REPRESENTS

REGISTER A
REGISTER B
REGISTER C
REGISTER D
REGISTER E
REGISTER H
REGISTER L
MEMORY REFERENCE
STACK POINTER
PROGRAM STATUS WORD

ALTHOUGH NOT SUGGESTED, THESE SYMBOLS MAY BE USED TO REPRESENT
THEIR CONSTANTS AT ANY POINT IN AN OPERAND IN ADDITION TO THEIR
NORMAL USAGE AS REGISTER INDICATORS. ALSO LEGAL BUT NOT SUGGESTED
IS THE USE OF THE APPROPRIATE CONSTANT IN PLACE OF THE REGISTER
INDICATOR IN A STATEMENT. THUS THE STATEMENT ·-MVI 2, A·- MEANS LOAD
REGISTER C WITH THE IMMEDIATE VALUE OF 7.

#12. 3. 0 LISTING FORMAT.

THE LISTING FILE IS OUTPUT WITH THE OB.JECT CODE PRINTED TO THE LEFT
OF THE SOURCE CODE LINES. AS EACH MICROPROCESSOR INSTRUCTION MAY
CODE INTO ONE, TWO, OR THREE BYTES, ROOM IS PROVIDED FOR THREE
COLUMNS OF GENERATED OB.JECT CODE PLUS A COLUMN FOR THE ADDRESS. THE
ADDRESS AND OB.JECT CODE ARE NORMALLY PRINTED IN HEXADECIMAL BUT
THIS MAY BE CHANGED TO OCTAL WITH THE /0 COMMAND DECODER OPTION.
SOURCE LINES WHICH EXCEED THE PRINTOUT LIMIT WILL CONTINUED AT
COLUMN 25 (STANDARD COMMENT TAB STOP) OF THE SOURCE PRINTOUT
POSITION. TABS OCCURING IN THE SOURCE PROGRAM ARE CONVERTED TO THE
PROPER NUMBER OF BLANK CHARACTERS BY THE ASSEMBLER. THIS IS DONE
BY THE ASSEMBLER RATHER THAN THE DEVICE HANDLER OR DEVICE BECAUSE
THE BEGINNING OF THE SOURCE PRINTOUT DOES NOT OCCUR ON A STANDARD
TAB STOP.

#12. 4. 0

#12. 4. 0 BINARY FILE OUTPUT:

THE OB.JECT (BINARY) OUTPUT FILE CONSISTS OF ASCII TEST REPRESENTINC
HEXADECIMAL NUMBERS IN THE FOLLOWING FORMAT:

LEADER STRINGS OF 100 NULL CHARACTERS PRECEED AND FOLLOW THE OB.JECl
OUTPUT. EACH LINE BEGINS WITH A COLON AND IS FOLLOWED BY A TWO HE~
DIGIT ADDRESS, A TWO HEX DIGIT RECORD TYPE (ALWAYS 0), UP TO 1~

BYTES OF DATA (EACH 2 HEX DIGITS), AND A TWO HEX DIGIT CHECKSUM.

EXAMPLE:

:CCAAAATTDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDSS

WHERE:

CC IS THE TWO HEXADECIMAL DIGIT COUNT FOR THE NUMBER
OF DATA BYTES (REPRESENTED BY PAIRS OF D~S) IN THE
LINE. A COUNT OF ZERO INDICATES THE TERMINATION OF

'THE OB.JECT OUTPUT. (:00)

AAAA IS THE HEXADECIMAL ADDRESS FOR STORING THE FIRST
DATA BYTE. EACH ADDITIONAL DATA BYTE IS TO BE
STORED IN SEQUENTIAL ADDRESSES. THE ADDRESS IS
PRESENTED WITH ITS MOST SIGNIFICANT BYTE FIRST.

TT IS THE TWO HEXADECIMAL RECORD TYPE. THIS INDICATOR
IS CURRENTLY UNUSED AND ASS I GNED A VALUE OF 00.

DD REPRESENTS TWO HEXADECIMAL DIGITS FOR A BYTE OF
OB.JECT (BINARY) CODE. UP TO 16 BYTES MAY BE OUTPUT
ON ONE LINE.

SS IS THE TWO HEXADECIMAL DIGIT CHECKSUM OF THE LINE.
ALL EIGHT BIT BYTES IN THE LINE AFTER THE RECORD
MARK (.-:.-) ARE SUMMED. THE LEAST SIGN I F I CANT BYTE
OF THE NEGAT I VE OF TH I S VALUE I S THE CHECKSUM.
THUS, IF ALL BYTES IN THE LINE ARE ADDED TOGETHER
WITH CARRYS IGNORED, AND THIS SUM IS ADDED TO THE
CHECKSUM, THE RESULT WILL BE ZERO.

THE BINARY OUTPUT FILE CAN BE CHANGED TO BNPF FORMAT THROUGH THE
USE OF THE /B RUN-TIME OPTION. SECTION #2. 4. 0 DESCRIBES THE BNPF
OUTPUT.

#12. 5. 0

#12. 5. 0 ADDITIONAL ERROR MESSAGE FOR THE 8080:

STANDARD ERROR:

E:RV BAD REGISTER VALUE FIELD.
THE VALUE ASSIGNED TO A REGISTER SPECIFICATION FIELD
DID NOT MATCH ONE OF THE ALLOWABLE VALUES FOR THE
INSTRUCTION. (NOTE THAT THE ERROR MAY ALSO OCCUR
FOR A .' RST" PARAMETER OUT OF THE RANGE 0 TO 7).

#12. 6. 0 SAMPLE PROGRAM #12. 6. 0

. R X8080
*TTY:,TTY:<SAMPLE/l/P/J

E:MO AT POSITN+ 21
E:MO AT POSITN+ 21

: 101000000BOOA7F20010E60FOF4FOBOIA7FAIEI05E
: 10101000C02CI03E800300AF0300FFC30010E67F70
: 10102000C02610C31310C03510B612C9C03510470B
: 101030007E2FA012C947E678810FOFOFC6805F3E52
: 1010400000CE305778E607C64E6F26101AC9010247
:061050000408102040809E
: 00

SAMPLE ROUTINE MAR 12, 1976

· TITLE SAMPLE ROUT I NE

X8080-VIA PAGE 1

THIS ROUTINE REAOS IN STATUS INFORMATION AND
UPOATES SIXTEEN OIFFERENT 128 BIT FLAG TABLES
IN RAM.

1000

o o
1 o

o o
30 80
10 0
OB o
A7 1002

1003 F2 o 10
F 1006

1008
1009
100A
100C
1000
1010
1013
1015
1017
1018

E6
F

4F
OB
A7
FA
CO
3E
03
AF
03

lOlA FF

1

IE 10
2C 10
80
o

o

101B C3 0 10
101E E6 7F
1020 CO 26 10
1023 C3 13 10

IPORTI
IPORT2
OPORTI
TABLES

LOOP

$1

$2

· EQU 0
· EQU 1
· EQU 0
· EQU 3080 iBASE OF FLAG TABLES
· ORG 1000
IN IPORTI ; GET REAOY FLAG AND TABLE #
ANA A
JP LOOP
ANI OF
RRC
MOV
IN
ANA
JM
CALL
MVI
OUT
XRA

C,A
IPORT2
A
$2
CLEAR
A,80
OPORTI
A

OUT OPORTI
· IFNZRO 71
RST 7
· ENOC
· IFZERO 71
NOP
· ENOC

iWAIT UNTIL OATA REAOY

iSAVE SHIFTEO TABLE NUMBER
iGET BIT POSITION NUMBER

iMOST SIG BIT MEANS SET BIT ON
iCLEAR BIT FROM TABLE
iSTROBE ACKNOWLEOGE LINE

I USER FLAG 1 IS SELECTED FOR
i OEBUGG I NG. A BREAI(PO I NT CALL
i (RST 7) IS INSERTEO FOR
iOEBUGGING ANO A ~NOP~ IS
i INSERTEO FOR NORMAL OPERATION

JMP
ANI
CALL

LOOP i LOOP BAC .. :' FOR ANOTHER TRY
AB 01111111 I MASK OUT SIGN
SET ISET BIT INTO TABLE

.JMP $1

SAMPLE ROUTINE

1026 CD 35 10 SET
1029 B6
102A 12
102B C9
102C CD 35 10 CLEAR
102F 47
1030 7E
1031 2F
1032 AO
1033 12
1034 C9

1035 47
1036 E6 78
1038 81
1039 F
103A F
103B F
103C C6 80
103E 5F
103F 3E 0
1041 CE 30
1043 57
1044 78
1045 E6 7
1047 C6 4E
1049 6F
104A 26 10
104C lA
1040 C9

POSITN

104E 1 $1
104F 2
1050 4
1051 8
1052 10
1053 20
1054 40
1055 80
****** E:MO

SAMPLE ROUTINE

#12. 6. 0

MAR 12, 1976 X8080-VIA PAGE

· PAGE
SUBROUTINES TO
CALL POSITN
ORA M
STAX 0
RET

POSITN

SET AND CLEAR BITS IN A
iPOSITION THE POINTERS
iOR IN THE DECODED BIT
iSTORE RESULT BACK

iPOSITION THE POINTERS

TABLE

2

CALL
MOV
MOV

iSAVE PREVIOUS BYTE TEMPORARILY
iGET DECODED BIT

CMA
ANA
STAX
RET

B
o

iMASK OUT SELECTED BIT
iSTORE BACK RESULT

ROUTINE TO POSITION THE TABLE BYTE POINTER AND
DECODE THE BIT POSITION.

MOV B,A iSAVE TEMPORARILY
ANI AO 170 iMASK FOR BYTE NUMBER IN TABLE
ADD C iCOMBINE WITH TABLE NUMBER
RRC AND FORM BYTE ADDRESS
RRC
RRC
ADI
MOV
MVI
ACI
MOV
MOV
ANI
ADI
MOV
MVI
LDAX
RET
· BIN
· BYTE

· BYTE

JUNK
· END

· L TABLES
E, A i SET UP ADDRESS IN 0, E
A,O
AM TABLES
D,A
A,B
7

; DECODE BIT NUMBER WITHIN BYTE

· L $1
L,A

iFORM LOOKUP TABLE ADDRESS
FOR DECODED BIT

H, · M $1
D iGET TABLE BYTE

; TABLE IS IN BINARY
1, 10, 100, 1000

10000, 100000, 1000000, 10000000

; SAMPLE ERROR

MAR 12, 1976 X8080-VIA PAGE 3

102C CLEAR
o OPORTl

o IPORTl
1035 POSITN

1 IPORT2
1026 SET

1000 LOOP
3080 TABLES

ERRORS: 1

#13. O. 0

#13. O. 0 MICROPROCESSOR INSTRUCTION SET.

THIS SECTION IS A SUMMARY OF THE INSTRUCTION SET OF THE 8080 MICRO­
PROCESSOR AS DEFINED BY THE VENDORS. THE ASSEMBLY CODE FORMAT FOR
EACH INSTRUCTION IS SHOWN WITH THE HEXADECIMAL OB.JECT CODE. EACH
INSTRUCTION WILL BE CODED INTO THE PROPER NUMBER OF BYTES.

DATA TRANSFER INSTRUCTIONS:

INSTRUCTION

LOA ADDR
LDAX B
LDAX 0

MOV B,B
MOV B,C
MOV B,D
MOV B,E
MOV B,H
MOV B,L
MOV B,M
MOV B,A

MOV C,B
MOV C,C
MOV C,D
MOV C,E
MOV C,H
MOV C,L
MOV C,M
MOV C,A

MOV D,B
MOV D,C
MOV 0,0
MOV D,E
MOV D,H
MOV D,L
MOV D,M
MOV D,A

MOV E,B
MOV E,C
MOV E,D
MOV E,E
MOV E,H
MOV E,L
MOV E,M
MOV E,A

MEANING

LOAD ACC DIRECTLY FROM ADDR
LOAD ACC INDIRECTLY FROM B,C
LOAD ACC INDIRECTLY FROM D,E

MOVE REG B TO REG B
MOVE REG C TO REG B
MOVE REG 0 TO REG B
MOVE REG E TO REG B
MOVE REG H TO REG B
MOVE REG L TO REG B
MOVE MEMORY TO REG B
MOVE ACC TO REG B

MOVE REG B TO REG C
MOVE REG C TO REG C
MOVE REG 0 TO REG C
MOVE REG E TO REG C
MOVE REG H TO REG C
MOVE REG L TO REG C
MOVE MEMORY TO REG C
MOVE ACC TO REG C

MOVE REG B TO REG 0
MOVE REG C TO REG 0
MOVE REG D TO REG D
MOVE REG E TO REG D
MOVE REG H TO REG D
MOVE REG L TO REG 0
MOVE MEMORY TO REG D
MOVE ACC TO REG 0

MOVE REG B TO REG E
MOVE REG C TO REG E
MOVE REG 0 TO REG E
MOVE REG E TO REG E
MOVE REG H TO REG E
MOVE REG L TO REG E
MOVE MEMORY TO REG E
MOVE ACC TO REG E

HEX CODE

3A
OA
1A

40
41

43
44
45
46
47

48
4';:1

4A
4B
4C
40
4E
4F

50
51
52
53
54
55
56
57

58
59
5A
5B
5C
50
5E
5F

BYTES

3
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1

tU3. o. 0
DATA TRANSFER INSTRUCTIONS (CONT.):
--
INSTRUCTIONS MEANING HEX CODE BYTES
--
MOV H/B MOVE REG B TO REG H 600 1
MOV H/C MOVE REG C TO REG H 61 1
MOV H,D MOVE REG D TO REG H 602 1
MOV H,E MOVE REG E TO REG H 63 1
MOV H/H MOVE REG H TO REG H 64 1
MOV H/L MOVE REG L TO REG H 65 1
MOV H,M MOVE MEMORY TO REG H 66 1
MOV H/A MOVE ACC TO REG H 67 1

MOV L,B MOVE REG B TO REG L 68 1
MOV L,C MOVE REG C TO REG L 69 1
MOV L,D MOVE REG D TO REG L 6A 1
MOV L,E MOVE REG E TO REG L 6B 1
MOV L,H MOVE REG H TO REG L bC 1
MOV L/L MOVE REG L TO REG L 60 1
MOV L,M MOVE MEMORY TO REG L 6E 1
MOV L/A MOVE ACC TO REG L 6F 1

MOV M/B MOVE REG B TO MEMORY 70 1
MOV M/C MOVE REG C TO MEMORY 71 1
MOV M,D MOVE REG 0 TO MEMORY 72 1
MOV M/E MOVE REG E TO MEMORY 73 1
MOV M/H MOVE REG H TO MEMORY 74 1
MOV M,L MOVE REG L TO MEMORY 75 1
MOV M,A MOVE MEMORY TO ACC 77 1

MOV A,B MOVE REG B TO ACC 78 1
MOV A/C MOVE REG C TO ACC 79 1
MOV A,D MOVE REG 0 TO ACC 7A 1
MOV A,E MOVE REG E TO ACC 7B 1
MOV A,H MOVE REG H TO ACC 7C 1
MOV A,L MOVE REG L TO ACC 70 1
MOV A,M MOVE MEMORY TO ACC 7E 1
MOV A,A MOVE ACC TO ACC 7F 1

MOVI B,DATA MOVE IMMEDIATE DATA TO REG B 06 2
MOVI C,DATA MOVE IMMEDIATE DATA TO REG C OE 2
MOVI D/DATA MOVE IMMEDIATE DATA TO REG 0 16 2
MOVI E/DATA MOVE IMMEDIATE DATA TO REG E 1E 2
MOVI H, DATA MOVE IMMEDIATE DATA TO REG H 26 2
MOVI L,DATA MOVE IMMEDIATE DATA TO REG L 2E 2
MOVI M,DATA MOVE IMMEDIATE DATA TO MEMORY 36 2
MOVI A, DATA MOVE IMMEDIATE DATA TO Ace 3E 2

STA ADDR STORE ACC DIRECT TO ADDR 32 3

STAX B STORE ACC INDIRECTLY TO B,C 02. 1
STAX D STORE ACC INDIRECTLY TO D,E 12 1

#13. o. 0
ARITHMETIC INSTRUCTIONS:
--
INSTRUCTIONS MEANING HEX CODE BYTES
--

ADC B ADD REG B TO ACC WITH CARRY 88 1
ADC C ADD REG C TO ACC WITH CARRY 89 1
ADC D ADD REG D TO ACC WITH CARRY 8A 1
ADC E ADD REG E TO ACC WITH CARRY 8B 1
ADC H ADD REG H TO ACC WITH CARRY 8C 1
ADC L ADD REG L TO ACC WITH CARRY 8D 1
ADC M ADD MEMORY TO ACC WITH CARRY 8E 1
ADC A ADD Ace TO Ace WITH CARRY 8F 1

ACI DATA ADD IMMEDIATE TO ACC WITH CARRY CE 2

ADD B ADD REG B TO ACC 80 1
ADD C ADD REG C TO ACC :=:1 1
ADD D ADD REG D TO ACC 82 1
ADD E ADD REG E TO ACC E:3 1
ADD H ADD REG H TO ACC 84 1
ADD L ADD REG L TO ACC 85 1
ADD M ADD MEMORY TO ACC 86 1
ADD A ADD ACC TO ACC 87 1

ADI DATA ADD IMMEDIATE TO ACC C6 2

ANA B AND REG B WITH ACC AO 1
ANA C AND REG C WITH ACC Ai 1
ANA D AND REG D WITH ACC A2 1
ANA E AND REG E WITH ACC A3 1
ANA H AND REG H WITH ACC A4 1
ANA L AND REG L WITH ACC A5 1
ANA M AND MEMORY WITH ACC A6 1
ANA A AND ACC WITH ACC A7 1

ANI DATA ADD IMMEDIATE WITH ACC E6 .~

""-

CMF' B COMF'ARE REG B WITH ACC B8 1
CMF' C COMF'ARE REG e WITH ACC B9 1
CMF' D COMF'ARE REG D WITH ACC BA 1
CMF' E COMF'ARE REG E WITH ACC BB 1
CMF' H COMF'ARE REG H WITH ACC BC 1
CMF' L COMF'ARE REG L WITH ACC BD 1
CMF' M COMF'ARE MEMORY WITH Ace BE 1
CMF' A COMF'ARE ACC WITH ACC BF 1

CF'I DATA COMF'ARE IMMEDIATE WITH ACC FE 2

#13. O. 0
ARITHMETIC INSTRUCTIONS (CONT.) :
--
INSTRUCTION MEANINO HEX CODE BYTES
--
OCR B DECREMENT REO B 05 1
OCR C DECREMENT REO C OD 1
DCR D DECREMENT REO 0 15 1
OCR E DECREMENT REO E 1D 1
OCR H DECREMENT REO H 25 1
OCR L DECREMENT REO L 2D 1
DCR M DECREMENT MEMORY 35 1
OCR A DECREMENT ACC 3D 1

INR B INCREMENT REO B 04 1
INR C INCREMENT REO C OC 1
INR 0 INCREMENT REO D 14 1
INR E INCREMENT REO E 1C 1
INR H INCREMENT REO H 24 1
INR L INCREMENT REG L 2C 1
INR M INCREMENT MEMORY 34 1
INR A INCREMENT ACC 3C 1

ORA B OR REO B WITH Ace 80 1
ORA C OR REO C WITH ACC B1 1
ORA D OR REO 0 WITH Ace B2 1
ORA E OR REO E WITH ACC B3 1
ORA H OR REO H WITH ACC B4 1
ORA L OR REO L WITH ACC B5 1
ORA M OR MEMORY WITH ACC Be. 1
ORA A OR ACC WITH ACC B7 1

ORI DATA OR IMMEDIATE WITH ACC Fe. 2

SBB B SUBTRACT REO B FROM ACC WITH BORROW 98 1
SBB C SUBTRACT REO C FROM ACC WITH BORROW 99 1
SBB D SUBTRACT REO D FROM ACC WITH BORROW 9A 1
SBB E SUBTRACT REO E FROM ACC WITH BORROW 9B 1
SBB H SUBTRACT REO H FROM ACC WITH BORROW 9C 1
SBB L SUBTRACT REO L FROM ACC WITH BORROW 9D 1
SBB M SUBTRACT MEMORY FROM ACC WITH BORROW O;:/E 1
SBB A SUBTRACT ACC FROM ACC WITH BORROW 9F 1

SBI DATA SUBTRACT IMMEDIATE FROM ACC WITH BORROW DE 2

#130 00 0
ARITHMETIC INSTRUCTIONS (CONTo):
--
INSTRUCTIONS MEANING HEX CODE BYTES
--
SUB B SUBTRACT REG B FROM ACC 90 1
SUB C SUBTRACT REG C FROM ACC 91 1
SUB 0 SUBTRACT REG 0 FROM ACC 92 1
SUB E SUBTRACT REG E FROM ACC 9":1 oJ 1
SUB H SUBTRACT REG H FROM ACC 94 1
SUB L SUBTRACT REG L FROM ACC 95 1
SUB M SUBTRACT MEMORY FROM ACC 96 1
SUB A SUBTRACT ACC FROM ACC 97 1

SUI DATA SUBTRACT IMMEDIATE FROM ACC 06 2

XRA B EXCLUSIVE OR REG B WITH ACC A8 1
XRA C EXCLUSIVE OR REG C WITH ACC A9 1
XRA 0 EXCLUSIVE OR REG 0 WITH ACC AA 1
XRA E EXCLUSIVE OR REG E WITH ACC AS 1
XRA H EXCLUSIVE OR REG H WITH ACC AC 1
XRA L EXCLUSIVE OR REG L WITH ACC AD 1
XRA M EXCLUSIVE OR MEMORY WITH ACC AE 1
XRA A EXCLUSIVE OR Ace WITH ACC AF 1

XRI DATA EXCLUSIVE OR IMMEDIATE WITH ACC EE 2

#13. O. 0
FLOW CONTROL INSTRUCTIONS:

INSTRUCTION MEANING HEX CODE BYTE
--
CALL ADDR CALL UNCONDITIONAL CD 3
CC ADDR CALL ON CARRY DC 3
CNC ADDR CALL ON NO CARRY D4 3
CZ ADDR CALL ON ZERO CC 3
CNZ ADDR CALL ON NON ZERO C4 3
CP ADDR CALL ON POSITIVE F4 3
CM ADDR CALL ON MINUS FC 3
CPE ADDR CALL ON EVEN PARITY EC 3
CPO ADDR CALL ON ODD PARITY E4 3

,JMP ADDR ,JUMP UNCONDITIONAL C3 3
,JC ADDR ,JUMP ON CARRY DA -:;.

';..0

.JNC ADDR ,JUMP ON NO CARRY 02 -:;.
.,;;,0

,JZ ADDR ,JUMP ON ZERO CA -:;.
',;;.0

,JNZ ADDR .JUMP ON NON ZERO C2 3
,JP . ADDR .JUMP ON POSITIVE F2 3
,JM ADDR ,JUMP ON MINUS FA 3
,JPE ADDR .JUMP ON EVEN PARITY EA 3
,JPO AD DR .JUMP ON ODD PARITY E2 3

RET RETURN C9 1
RC RETURN ON CARRY D8 1
RNC RETURN ON NO CARRY DO 1
RZ RETURN ON ZERO C8 1
RNZ RETURN ON NON ZERO CO 1
RP RETURN ON POSITVE FO 1
RM RETURN ON MINUS F8 1
RPE RETURN ON EVEN PARITY E8 1
RPO RETURN ON ODD PARIY EO 1

RST 0 RESTART AT ADDRESS 00 C7 1
RST 1 RESTART AT ADDRESS 10 CF 1
RST 2 RESTART AT ADDRESS 20 D7 1
RST 3 RESTART AT ADDRESS 30 DF 1
RST 4 RESTART AT ADDRESS 40 E7 1
RST 5 RESTART AT ADDRESS 50 EF 1
RST 6 RESTART AT ADDRESS 60 F7 1
RST 7 RESTART AT ADDRESS 70 FF 1

REGISTER PAIR INSTRUCTIONS:

INSTRUCTIONS MEANING

DAD B
DAD D
DAD H
DAD SP

DCX B
DCX H
DCX H
DCX SP

INX B
INX D
INX H
INX SP

LHLD ADDR

LXI B,DATA
LXI D,DATA

·LXI H,DATA
LXI SP,DATA

PCHL

POP B
POP D
POP H
POP PSW

PUSH B
PUSH D
PUSH H
PUSH PSW

SHLD ADDR

SPHL

XCHG
XTHL

ADD B8<C TO H&L
ADD D8<E TO H&L
ADD H8<L TO H&L
ADD STACK POINTER TO H&L

DECREMENT B&C REGISTERS
DECREMENT D&E REGISTERS
DECREMENT H&L REGISTERS
DECREMENT STACK POINTER

INCREMENT B&C REGISTERS
INCREMENT D&E REGISTERS
INCREMENT H&L REGISTERS
INCREMENT STACK POINTER

LOAD H8<L DIRECT

LOAD IMMEDIATE REG PAIR B&C
LOAD IMMEDIATE REG PAIR D&E
LOAD IMMEDIATE REG PAIR H&L
LOAD IMMEDIATE STACK POINTER

H&L TO PROGRAM COUNTER

POP REG PAIR B&C OFF STACK
POP REG PAIR D&E OFF STACK
POP REG PAIR H&L OFF STACK
POP ACC AND FLAGS OFF STACK

PUSH REG PAIR B&C ON STACK
PUSH REG PAIR D&E ON STACK
PUSH REG PAIR H&L ON STACK
PUSH ACC AND FLAGS ON STACK

STORE H&L DIRECT

H&L TO STACK POINTER

EXCHANGE D&E WITH H&L REGISTERS
EXCHANGE TOP OF STACK WITH H&L

#13. O. 0

HEX CODE BYTES

09
19
29
39

OB
1B
2B
3B

03
13
23
33

2A

01
11
21
31

E9

C1
D1
E1
F1

C5
D5
E5
F5

22

F9

EB
E3

1
1
1
1

1
1
1
1

1
1
1
1

3

3
3
3
3

1

1
1
1
1

1
1
1
1

3

1

1
1

ROTATE INSTRUCTIONS:

INSTRUCTIONS

RLC
RRC
RAL
RAR

MEANING

ROTATE ACC LEFT
ROTATE ACC RIGHT
ROTATE ACC LEFT THROUGH CARRY
ROTATE ACC RIGHT THROUGH CARRY

I/O INSTRUCTIONS:

INSTRUCTIONS

IN PORT
OUT PORT

MISCELLANEOUS:

INSTRUCTIONS

CMA
CMC
STC
DAA
EI
01
HLT
NOP

MEANING

INPUT FROM PORT
OUTPUT TO PORT

MEANING

COMPLEMENT ACC
COMPLEMENT CARRY
SET CARRY
DECIMAL ADJUST ACC
ENABLE INTERRUPTS
DISABLE INTERRUPTS
HALT
NO OPERATION

tH3. O. 0

HEX CODE

07
OF
17
1F

HEX CODE

DB
D3

HEX CODE

2F
3F
37
27
FB
F3
76
00

BYTES

1
1
1
1

BYTES

2
:2

BYTES

1
1
1
1
1
1
1
1

APPENDIX A - RUN-TIME OPTIONS. #14. O. 0

**
/B
/E
/H
/,J

/K

/L

/N
/0

/P

/S
/T
/W
/0 TO /9

- OUTPUT BINARY FILE IN BNPF FORMAT.
- INHIBIT ERROR MESSAGES TO CONSOLE.
- INHIBIT HEADINGS AND PAGINATION.
- LIST UNASSEMBLED STATEMENTS AND CONDITIONAL

ASSEMBLY PSEUDO-OPS.
- EXPAND SYMBOL TABLE STORAGE INTO ADDITIONAL

CORE.
- OUTPUT LEADER (NULLS) IN BINARY FILE FOR EACH

. ORG STATEMENT.
- LIST ONLY THE SYMBOL TABLE.
- OUTPUT LISTING IN OCTAL FORMAT INSTEAD OF IN

HEXADECIMAL.
- INCLUDE NORMALLY UNLISTED PSEUDO-OPS IN THE

LISTING.
- OMIT THE SYMBOL TABLE FROM THE LISTING.
- REPLACE THE FORM/FEED WITH 3 CR/LF/S.
- INHIBIT WARNING MESSAGES.
- USER FLAGS, USED WITH THE ? OPERATOR.

**

APPENDIX B - INDICATOR SET.

**

* /
8<

+

II OR ...
?

MUL TIPLICATION.
DIVISION.
BOOLEAN AND.
INCLUSIVE OR.
ADDITION.
SUBTRACT ION.
COMPLEMENT INDICATOR, (UPARROW B).
BINARY RADIX INDICATOR, (UPARROW B>'
DECIMAL RADIX INDICATOR, (UPARROW D).
HEXADECIMAL RADIX INDICATOR, (UPARROW H>'
OCTAL RADIX INDICATOR, (UPARROW 0).
LEAST SIGNIFICANT BYTE ACCESS OPERATOR,
(UPARROW L).
MOST SIGNIFICANT BYTE ACCESS OPERATOR,
(UPARROW M).
COMMENT INDICATOR.
ASCII CHARACTER INDICATOR.
USER FLAG OPERATOR.
CURRENT LOCATION COUNTER, (PERIOD>'

**

APPENDIX C - PSEUDO-OPS. #14. O. 0

**

· ADDR
· BIN
· BYTE
· DBYTE
· DECM
· DINST
· END
· ENDC
· EQU
· HEX
· IFDEF
· IFNDEF
· IFNZRO
· IFZERO
· LIST
· OCT
.ORG
· PAGE
· SET
· TITLE
· ZERO

DOUBLE BYTE DATA STORAGE, REVERSED FORMAT.
CHANGES DEFAULT RADIX TO BINARY.
SINGLE BYTE DATA STORAGE.
DOUBLE BYTE DATA STORAGE.
CHANGES DEFAULT RADIX TO DECIMAL.
RENAMES A MICROPROCESOR INSTRUCTION.
PROGRAM TERMINATOR.
ENDS CONDITIONAL ASSEMBLY.
ASSIGNS A PERMANENT VALUE TO A SYMBOL.
CHANGES DEFAULT RADIX TO HEXADECIMAL.
INCLUDE CODE TO . ENDC IF SYMBOL IS DEFINED.
INDLUDE CODE TO . ENDC IF SYMBOL IS NOT DEFINED.
INCLUDE CODE TO . ENDC IF OPERAND DOES NOT EQUAL O.
INCLUDE CODE TO . EN DC IF OPERAND EQUALS O.
PROVIDES SELECTIVE LISTINGS.
CHANGES DEFAULT RADIX TO OCTAL.
REASSIGNS THE CURRENT LOCATION COUNTER.
BEGINS NEW PAGE IN LISTING.
ASSIGNS A TEMPORARY VALUE TO A SYMBOL.
SPECIFIES HEADING.
ZEROS A SPECIFED NUMBER OF BYTES.

**

APPENDIX D - ERROR MESSAGES. #14. o. 0

**

E:BN
E:DF
E:DR
E: IL
E: 10
E:LO
E:LS
E:LT
E:ML
E:MO
E:OC
E:OE
E:OM
E:OS
E:PE
E:PS
E:RE
E:RV
E:ST
E:TL
E:US
E:WE

W:EF
W:UC

- BAD NEST I NG OF BRACKETS.
- OUTPUT FILE DEVICE FULL. (FATAL)
- DIGIT OUTSIDE OF RADIX.
- ILLEGAL LABEL FIELD.
- ILLEGAL OPERAND VALUE.
- LINE I NPUT OVERFLOW.
- LOCAL SYMBOL SYNTAX ERROR.
- LOCAL SYMBOL TABLE OVERFLOW. (FATAL)
- MULTIPLE LABEL DEFINITION.
- MISSING OR ILLEGAL MNEMONIC IN OPERATOR FIELD.
- OPERAND TOO COMPLEX.
- OPEN ERROR IN OUTPUT FILE. (FATAL)
- OPERAND MISSING.
- OPERAND SYNTAX ERROR.
- PHASE ERROR, ADDRESS CONFLICT. (FATAL)
- ILLEGAl. PERMANENT SYMBOL USAGE IN OPERAND.
- INPUT FILE READ ERROR. (FATAL)
- BAD REGISTER VALUE FIELD.
- SYMBOL TABLE OVERFLO~ (FATAL)
- LABEL DEFINED TOO LATE.
- UNDEFINED SYMBOL.
- OUTPUT FILE WRITE ERROR. (FATAl.)

- NO . END STATEMENT IN LAST FILE.
- UNINHIBITED CONDITIONAL ASSEMBLY IN EFFECT

AT ASSEMBL Y END.

**

(

