
~8X8X8X8X8X8X8X8X8X8XSX8X8X8X8X8X8X8X8X8X8X8X8X8X8X8l

I I
~ I I l
I I
x j
I I
l ~
X8X8X~X8X8X8X8X8X8X8X8X8X8X8X8X8X8X8XaX8X8X8X8X8X8X8X

USERS· MANUAL

SIEla! DIGIT At SYSTEMS

XFS

USER MANUAL FOR THE
F8 CROSS-ASSEMBLER ON THE PDP8-E.

NOVEMBER, 1976

SIERRA DIGITAL SYSTEMS
1440 WESTF I ELO AVE.
RENO, NEVADA 89509
702-329-9548

ALTHOUGH THE INFORMATION IN THIS MANUAL HAS
BEEN CHECKgD FOR ACCURACY, NO RESPONSIBILITY
IS ASSUMED FOR ERRORS. THIS DOCUMENTATION IS
SUBJECT TO CHANGE WITHOUT NOTICE.

POP AND OS/9 ARE REGI$TER~D TRADEMARKS OF
OlGITA~ EQUIPMENT CORPORATION, MAYNARD,
MASSACHUSETTS,

TABLE OF CONTENTS: SECTION .,.

INTRODUCTION . , .. 1. O. 0

OPERAT ION. .. 2. O. 0
LOADING THE CROSS-ASSEMBLER. .. 2. 1. 0
CALLING SEQUENCE. .. 2. 2. 0
INPUT/OUTPUT FILE EXTENSIONS. .. 2.3.0
RUN-T I ME OPT IONS. .. 2. 4. 0

ASSEMBLER CHARACTER SET. .. 3. O. 0

STATEMENT FORMAT. .. 4. O. 0
CODING CONVENTIONS. .. 4. 1. 0
LABELS. .. 4. 2. 0
OPERATORS. .. 4.3.0
OPERANDS. .. 4.4.0
TERMS AND EXPRESSIONS. .. 4. 5. 0

NUMERIC CONSTANTS. .. 5. O. 0
CONSTANTS WITH RADIX INDICATORS.................... 5. 1. 0
CONSTANTS WITH ASCII INDICATORS 5.2.0

SYMBOLS , '. 6. O. 0
PERMANENT SYMBOLS :6. 1. 0
USER DEFINED SYMBOLS. .. 6. 2. 0
LOCAL SYMBOLS '. .. 6. 3. 0

CURRENT LOCATION COUNTER, 7. O. 0

ARITHMETIC OPERATOR SET ... ~ ~ 8. O. 0
UNARY OPERATORS. , , , ... , 8. 1.0

BYTE ACCESS OPERATORS CAL AND AM). 8. 1. 2
THE COMPLEME;:NT OPERATOR (· C >. 8. 1. ::;:
? OPERATOR. .. 8. 1. 4

BINARY OPERATORS. .. 8.2.0

PSEUDO-OPERATORS. .. 9.0. 0
ASSIGNMENT PSEUDO-OPS. .. 9. 1. 0

· EQU I •• 9. 1. 1
· SET. .. 9. 1.2
· DINST ',' 9. 1. ::;:
· ORG ... '. .. 9. 1.4

DEFAULT RADIX PSEUDO-QPS 9.2.0

TAIBI,...E OF CONTENTS: (CONT.) SECTION ..

DATA STORAGE PSEUDO-OPS. .. 9. 3. 0

· BYTE. .. 9. 3. 1
· DBYTE' .. 9. 3. 2
· ADDR , , 9. 3, 3
· :Z;~RO .. , .. 9. 3. 4

LISTING CONTROL DIRECTIVES , 9. 4. 0
· LIST , , . , , 9. 4. 1
· PAGE , .. , , 9. 4. 2
· TITLE. .. 9. 4. 3

CONDITIONAL ASSEMBLY PSEUDO-OPS " 9.5.0
· IFZERO , 9. 5. 1
· IFNZRO , .. , . , , .. , . , ,. 9. 5. 2
· IFOEF. , .. 9. 5. 3
· IFNDEF , ; 9. 5. 4
· ENDC , 9. 5. 5

. END PSEUDO-OP. .. 9. ~ 0

ERROR MESSAGES. . . , ... , , , . , , . , . 10. O. 0

MODIFICATION NOTf!S .. , , . , .. , .. , .. , , .. 11. O. 0

CROSS ASSEMBLER SPECIFICS , , .. , , , ... , . 12. O. 0
CROSS-ASSEMBLER FILE NAMES , . , 12. 1. 0
TIMER COUNT OPERATOR 12. ~ 0
PREASSIGNED SYMBOLS , ... , 12.3. 0
LISTING FORMAT, , , 12,4. 0
BINARY FIL~ OUTPUT. , , , , , 12. 5. 0

FORMULATOR FORMAT 12,5. 1
FAIRBUG FORMAT , 12. 5. 2

ADDITIONAL ERROR MESSAGES FOR Fa , 12. 6. 0
SAMPLE PROGRAM. , .. , , , , , , .. , 12. 7. 0

MICRQPROCESSOR INSTRUCTION SET , , 13. O. 0

APPEND~CES , , , . , 14. O. 0
RUN-TIME OPTIONS APPENDIX A
INDICATOR SET APPENDIX B
P$UEDO-OPS, ,APPENDIX C
ERROR MESSAGES , , . , . , , . , , , .. APPENDIX D

4U. O. 0 * 1. O. 0 INTRODUCTION.

THIS MANUAL DESCRIBES ONE OF THE XS (CROSS EIGHT) SERIES OF MICRO­
PROCESSOR CROSS-ASSEMBLERS SIERRA DIGITAL SYSTEMS HAS DEVELOPED FOR
POPS USERS. THE xa SERIES WILL HANDLE ALL OF THE POPULAR MICRO­
PROCESSORS WITHIN A UNIVERSAL ASSEMBLER FORMAT. THIS COMMON BASE
OF ASSEMBLER DIRECTIVES AND TECHNIQUES IS A SELECTED COMBINATION OF
DESIRABLE FEATURES OBSERVED IN A SURVEY OF MANY EXISTING MINI­
COMPUTER AND MICROPROCESSOR ASSEMBLERS. THE INSTRUCTION MNEMONICS
AND ASSOCIATED SYNTAX OF EACH PARTICULAR MICROPROCESSOR ARE
RETAINED UNCHANGED.

THIS MANUAL DESCRIBES THE USAGE OF ONE OF THE MICROPROCESSOR CROSS­
ASSEMBLERS FROM THE SIERRA DIGITAL X8 SERIES. IN ORDER TO SIMPLIFY
THE LEARNING PROCESS FOR INDIVIDUALS USING MORE THAN ONE CROSS­
ASSEMBLER FROM THE SERIES, THIS MANUAL HAS BEEN DIVIDED INTO TWO
MAJOR PARTS. SECT IONS 1 THROUGH 11 DOCIJMENT THE UN I VERSAL ASSEMBLER
FORMAT AS IT APPLIES TO ALL CROSS-ASSEMBLERS IN THE SERIES. THESE
SECTIONS WILL BE IDENTICAL IN EVERY CROSS-ASSEMBLER MANUAL.
SECTION 12 PRESENTS INFORMATION ON APPLICATION OF THE UNIVERSAL
ASSEMBLER FORMAT TO THE SPECIFIC MICROPROCESSOR CROSS-ASSEMBLER.
SECTION 13 PRESENTS A SUMMARY OF THE MNEMONIC INSTRUCTION CODES
ASSIGNED BY THE MICROPROCESSOR VENDOR AND RECONIZED BY THE CROSS­
ASSEMBLER. NO ATTEMPT HAS BEEN MADE TO DESCRIBE THE OPERATION OF
THE MICROPROCESSOR ITSELF. SUCH INFORMATION MUST BE OBTAINED FROM
THE MICROPROCESSOR VENDOR OR OTHER SOURCES. SECTION 14, THE APPEN­
DICES, CONTAINS SUMMARY TABLES FOR QUICK REFERENCE ONCE THE USER
GAINS EXPERTISE IN USING THE CROSS-ASSEMBLER.

WE AT SIERRA DIGITAL LOOK FORWARD TO DEVELOPING MORE ASSEMBLERS IN
OUR XS SERIES TO PROVIDE YOU, THE USER, WITH THE MEANS OF
PIONEERING THE NEW WORLD OF MICROPROCESSORS.

* 2. O. 0 OPERATION.

SIERRA DIGITAL~S CROSS-ASSEMBLER IS AN SK, TWO PASS ASSEMBLER WHICH
RUNS UNDER THE OS/S OPERATING SYSTEM. THE CROSS-ASSEMBLER IS CODED
IN PDP/S ASSEMBLY LANGUAGE (PALS) TO GIVE FAST EXECUTION TIMES.
(LESS THAN 30 SECONDS FOR A NORMAL 4K BYTE PROGRAM IS TYPICAL>'

PASS 1 READS THE INPUT FILES AND SETS UP THE SYMBOL TABLES. PASS 2
THEN GENERATES THE OUTPUT FILE IN THE BINARY (OBJECT) FORMAT OF THE
PARTICULAR MICROPROCESSOR. THE OUTPUT FILE CAN BE CHANGED TO BNPF
FORMAT THROUGH USE OF THE /B RUN-T I ME OPT ION.

A THIRD ASSEMBLY PASS IS DONE WHEN A LISTING OUTPUT FILE IS SPECI­
FIED. WHEN NO BINARY FILE IS SPECIFIED, THE ASSEMBLER GOES DIRECTLY
TO THE PASS 3 LISTING.

tt2.0.0

THE CROSS-ASSEMBLER IS NOT RESTARTABLE. IF AN ATTEMPT IS MADE TO
RESTART THE ASSEMBLER WITH A . ST COMMAND, THE KEYBOARD MONITOR
RETURNS A II NO ! ! It •

TYPING CTRL/C WILL HALT ASSEMBLY AND CAUSE AN IMMEDIATE EXIT TO THE
KEYBOARD MONITOR.

TYPING CTRL/O AT THE KEYBOARD DURING ASSEMBLY WILL SUPPRESS THE
LISTING OF ERROR MESSAGES TO THE CONSOLE DURING PASSES 1 AND 2. THE
OUTPUT FILE WILL STILL SHOW THE ERROR MESSAGES IMMEDIATELY BEFORE
THE LINE THAT IS IN ERROR .

.. 2. 1. 0 LOADING AND SAVING THE CROSS-ASSEMBLER.

THE CROSS-ASSEMLER IS PROVIDED IN BINARY FORMAT ON PAPER TAPE OR IN
BOTH BINARY AND IMAGE FORMATS ON FILE-STRUCTURED MEDIA.

TO LOAD THE ASSEMBLER FROM PAPER TAPE AND SAVE IT, PLACE THE TAPE
IN THE READER AND CALL THE ABSOLUTE LOADER:

· R ABSLDR
*PTR:$

· SAVE SYS: XNAME

FROM FILE STRUCTURED MEDIA, THE IMAGE FORMAT PROGRAM MAY BE COPIED
DIRECTLY TO THE SYSTEM DEVICE OR THE BINARY FORMAT FILE MAY BE
LOADED WITH THE ABSOLUTE LOADER. MODIFICATIONS TO THE IMAGE FILE,
SUCH AS INVERTING THE SENSE OF A RUN-TIME OPTION, MAY BE
IMPLEMENTED ACCORDING TO THE NOTES IN SECTION .. 11. O. 0 .

.. 2. 2. 0 CALLING SEQUENCE.

ONCE LOADED AND SAVED, THE CROSS-ASSEMBLER IS CALLED FROM THE
SYSTEM DEVICE BY TYPING:

· R XNAME

THE ASSEMBLER CALLS THE COMMAND DECODER WHICH RESPONDS WITH AN
ASTERISK IN THE LEFT HAND MARGIN. THE USER MAY THEN TYPE IN THE
INPUT AND OUTPUT FILE SPECIFICATIONS AND RUN-TIME OPTIONS:

*DEV:BIN,DEV:LIST,DEV: IN1, ... DEV: IN9/0PT

THE FIRST OUTPUT FILE IS THE MICROPROCESSOR BINARY OBJECT FILE
WRITTEN IN THE FORMAT SPECIFIED BY THE VENDOR OF THE PARTICULAR
MICROPROCESSOR. (SEE SECTION 12. O. 0 FOR THE FORMAT SPECIFICATIONS).

.. 2. 2. 0

THE SECOND OUTPUT FILE IS THE OPTIONAL LISTING. WHEN ONLY THE FIRST
OUTPUT FILE IS SPECIFIED, THE ASSEMBLER ASSUMES THAT IT WILL BE THE
BINARY OUTPUT FILE AND THE LISTING IS OMITTED.

THE FOLLOWING EXAMPLE SPECIFIES FILE IIIN11I TO BE READ FROM DECTAPE
o AND THE BINARY (OBJECT> FILE TO BE OUTPUT TO THE PAPER TAPE PUNCH
WITH NO LISTING:

· R XNAME
*PTP:<:DTAO: INl

THIS EXAMPLE SPECIFIES 2 FILES AS THE SOURCE INPUT (FROM THE DSK:
DEVICE> WITH ONLY THE PASS 3 LISTING BEING OUTPUT TO THE LINE
PRINTER:

· R XNAME
*,LPT:<:IN1,IN2

UP TO NINE INPUT FILES CAN BE SPECIFIED AS ONE PROGRAM WHERE THE
LAST FILE IS TERMINATED WITH AN . END STATEMENT.

* 2.3.0 INPUT/OUTPUT FILE EXTENSIONS.

IF THE EXTENSION TO AN INPUT FILE NAME IS OMITTED, THE ASSEMBLER
ASSUMES THE . MS EXTENSION. IF THERE IS NO FILE WITH THAT NAME AND
AN . MS EXTENSION, THE ASSEMBLER ASSUMES THE NULL EXTENSION. UNLESS
EXTENSIONS ARE SPECIFIED, THE . MB AND . LS EXTENSIONS ARE ADDED TO
THE OUTPUT BINARY AND LISTING FILES.

· MB - MICROPROCESSOR BINARY OUTPUT FILE EXTENSION.
· LS - OUTPUT LISTING FILE EXTENSION.
· MS - MICROPROCESSOR SOURCE FILE EXTENSION.

* 2. 4. 0 RUN-TIME OPTIONS.

TABLE *1 DESCRIBES THE OPTIONS WHICH MAY BE SPECIFED AT RUN-TIME
IN THE INPUT LINE TO THE COMMAND DECODER.

IF ONE OR MORE OF THESE OPTIONS IS CONTINUALLY CALLED, THE USER
SHOULD CONSIDER MODIFYING THE ASSEMBLER TO INVERT THE SENSE OF THE
OPTION. THE MODIFICATION NOTES IN SECTION *11. O. 0 EXPLAIN HOW THIS
MAY BE DONE. FOR EXAMPLE, A USER WHO PREFERS TO OUTPUT FILES IN
BNPF FORMAT RATHER THAN BINARY CAN INVERT THE SENSE OF THE /B
OPTION. THEN THE BINARY FILES ARE NORMALLY WRITTEN IN BNPF FORMAT.
USE OF THE /B OPTION THEN CAUSES THE OUTPUT FILE TO BE WRITTEN IN
THE STANDARD MICROPROCESSOR BINARY CODE. SPACE IS PROVIDED IN
TABLE *1 TO CHECK OFF WHICH OPTIONS HAVE BEEN INVERTED FOR YOUR
REFERENCE.

TABLE #1. RUN-TIME OPTIONS. #2. 4. 0

**
OPTION MEANING INVERT?
**
IB THE BINARY OUTPUT FILE IS WRITTEN IN BNPF FORMAT. ------­

INSTEAD OF IN THE MICROPROCESSOR VENDOR;S STANDARD
B I NARY FORMAT.

FOR THE BNPF FORMAT, THE BINARY OUTPUT IS CONVERTED
TO ASCII TEXT WHERE

"B" INDICATES THE BEGINNNING OF A BYTE,
"F" INDICATES THE END OF A BYTE,
"P" INDICATES A 1 BIT AND
"N" INDICATES A 0 BIT.

FOUR BYTES , SEPARATED BY SPACES, ARE WRITTEN PER
LINE. THE ADDRESS OF THE FIRST BYTE IS GIVEN IN
SIX DIGIT OCTAL AT THE BEINNING OF THE LINE.
LEADING ZEROES IN THE ADDRESS ARE CONVERTED TO
SPACES. EACH LINE IS PRECEDED BY 2 SPACES. LEADER
CONSISTS OF 100 NULL CHARACTERS WITH 20 RUBOUTS
IMMEDIATELY PRECEEDING AND FOLLOWING THE ASCII
TEXT.

EXAMPLE: THE FOLLOWING CODE IS SHOWN REWRITTEN IN
BNPF FORMAT.

.ORG

. BYTE
100
27,C7,AF,D7,FF,72,0,DO

100 BNNPNNPPPF BPPNNNPPPF BPNPNPPPPF BPPNPNPPPF
104 BPPPPPPPPF BNPPPNNPNF BNNNNNNNNF BPPNPNNNNF

IE INHIBIT ERROR MESSAGES TO THE CONSOLE. ------­
NORMALLY ERROR MESSAGES ARE OUTPUT TO THE CONSOLE
DURING ASSEMBLY PASSES 1 AND 2. SINCE ERROR MESS-
AGES ARE INCLUDED IN THE LISTING, USERS WITH SLOW
CONSOLE DEV I CES SUCH AS TTY" S CAN SPEED ASSEMBL Y
TIME WITH THIS OPTION.

ALSO, IF THE BINARY FILE IS TO BE OUTPUT TO THE
CONSOLE DEVICE, THE ERROR MESSAGES AND BINARY
OUTPUT LINES WILL BE INTERMIXED. THE IE OPTION WILL
INHIBIT ALL BUT FATAL ERROR MESSAGES SO THAT ONLY
THE BINARY FILE IS OUTPUT.

**

TABLE tH. RUN-TIME OPTIONS. (CONT.) *2. 4. 0

**
OPTION MEANING INVERT?
**
/H INHIBIT HEADINGS AND PAGINATION. ------­

NORMALLY, THE ASSEMBLER AUTOMATICALLY PAGES THE
OUTPUT, ADDING A HEADER TO THE TOP OF THE PAGE. USE
OF THE /H OPTION WILL ELIMINATE THE HEADING AND THE
PAGINATION.

/~ LIST UNASSEMBLED STATEMENTS AND CONDITIONAL ------­
ASSEMBLY PSEUDO-OPS.
STATEMENTS WHICH DO NOT GET ASSEMBLED DUE TO
CONDITIONAL ASSEMBLY PSEUDO-OPS ARE NORMALLY NOT
LISTED. NEITHER ARE THE CONDITIONAL PSEUDO-OPS
THEMSELVES. USE OF THE /~ OPTION WILL ADD THESE
STATEMENTS TO THE LISTING.

/K EXPAND SYMBOL TABLE STORAGE INTO EXTRA CORE. ------­
NORMALLY MOST OF FIELD 1 IS USED FOR BOTH LOCAL AND
NORMAL USER SYMBOL STORAGE. USE OF THE /K OPTIONS
EXPANDS CORE USAGE TO 12K WHERE THE LOCAL SYMBOL
TABLE RESIDES IN FIELD 2 AND THE REGULAR SYMBOL
TABLE RESIDES IN FIELD 1.

/L OUTPUT LEADER IN BINARY FILE FOR . ORG STATEMENTS ------­
THIS OPTION MAY BE USED TO PHYSICALLY SEPARATE
DISCONTINUOUS SECTIONS OF THE BINARY OUTPUT ON A
PAPER TAPE.

/0 OUTPUT LISTING WITH BINARY CODE IN OCTAL FORMAT. ------­
THE GENERATED BINARY CODE IS NORMALLY PRINTED IN
HEXADECIMAL AT THE LEFT OF THE PROGRAM STATEMENTS
IN THE LISTING FILE. THE /0 OPTION WILL CAUSE THE
BINARY CODE TO BE LISTED IN OCTAL INSTEAD OF
HEXADECIMAL.

/N LIST ONLY THE SYMBOL TABLE. ------­
THE THIRD PASS LISTING NORMALLY CONSISTS OF THE
STATEMENT LISTING PLUS THE USER SYMBOL TABLE
LISTING. THE /N OPTION CAUSES ONLY THE SYMBOL TABLE
TO BE LISTED.

/P INCLUDE NORMALLY UNLISTED PSEUDO-OPS IN THE LISTING------­
SOME PSEUDO-OPS WILL NOT BE LISTED BY PASS 3 UNLESS
THE /P OPT I ON I S USED.

/S OMIT THE SYMBOL TABLE FROM LISTING. ------­
ONLY THE PROGRAM STATEMENTS ARE LISTED WITH THIS
OPTION.

**

TABLE :tU. RUN-TIME OPTIONS. (CONT.) .2. 4. 0

**
OPTION MEANING INVERT?
**
/T REPLACE FORM/FEED WITH 3 CR/LF" S. ------­

WHEN LISTING TO A DEVICE SUCH AS A TTY WHICH DOES
NOT HAVE A FORM/FEED CONTROL, USE OF THE /T OPTION
WILL REPLACE THE FORM/FEED WITH 3 BLANK LINES .

/W INHIBIT WARNING MESSAGES. ------­
WHEN WARNING MESSAGES CAN BE SAFELY IGNORED, THIS

/0
TO /9

OPTION WILL PREVENT THEM FROM BEING OUTPUT.

USER FLAGS, USED WITH THE ? OPERATOR, SEE SECTION
• 8.1.4 .

**

• 3. O. 0 ASSEMBLER CHARACTER SET.

THE FOLLOWING CHARACTERS ARE LEGAL SOURCE CODE CHARACTERS:

1) ALPHABETICS A-Z, UPPER CASE ASCII
2) NUMERICS 0-9
3) THE SPECIAL CHARACTERS LISTED BELOW.

* /
8<

+

[]

" OR .'
?

MULTIPLICATION
DIVISION
BOOLEAN AND
INCLUSIVE OR
ADDITION
SUBTRACTION
PRECEDENCE INDICATORS
UNIVERSAL UNARY OPERATOR (UPARROW). USED WITH:

· C - COMPLEMENT (UPARROW C)
· B BINARY RADIX INDICATOR (UPARROW B)
· 0 - DECIMAL RADIX INDICATOR <UPARROW D)
· H - HEXADECIMAL RADIX INDICATOR (UPARROW H)
AO - OCTAL RADIX INDICATOR (UPARROW 0)
· L - LEAST SIGNIFICANT BYTE ACCESS OPERATOR
AM - MOST SIGNIFICANT BYTE ACCESS OPERATOR

COMMENT INDICATOR
ASCII INDICATOR
USER FLAG OPERATOR
CURRENT LOCATION COUNTER (PERIOD)

* 3. O. 0

THE CARRIAGE RETURN CHARACTER IS RECOGNIZED AS THE TERMINATOR FOR
EACH SOURCE LINE. THE LINE-FEED, RUBOUT, FORM-FEED, AND NULL
CHARACTERS ARE IGNORED BY THE ASSEMBLER. FORM-FEED CHARACTERS
OCCURING IN THE SOURCE HAVE NO AFFECT ON THE LISTING. ALL ASCII
CHARACTERS MAY BE USED IN THE COMMENT FIELD OF A STATEMENT.

* 4. O. 0 STATEMENT FORMAT.

STATEMENTS ARE WRITTEN IN THE GENERAL FORM:

LABEL OPERATOR OPERAND i COMMENT

LABELS MUST START IN COLUMN 1. THEY MAY BE DIRECTLY FOLLOWED WITH
AN OPTIONAL COMMA IF DESIRED. THE MODIFICATION NOTES EXPLAIN HOW TO
REPLACE THE COMMA WITH ANOTHER DELIMITER SUCH AS A COLON.

OPERATORS MUST BE SEPARATED FROM THE LABEL WITH AT LEAST ONE SPACE
OR TAB. WHEN NO LABEL IS PRESENT, THE OPERATOR MAY BEGIN IN ANY
COLUMN BEYOND COLUMN 1.

THE OPERAND (IF ANY) MUST BE SEPARATED FROM THE OPERATOR WITH AT
LEAST ONE SPACE OR TAB.

THE COMMENT (IF ANY) MUST BE SEPARATED FROM THE OPERAND (OR
OPERATOR IF THERE IS NO OPERAND BY A SEMICOLON (;).

AN INPUT LINE MAY BE UP TO 127 CHARACTERS LONG (NOT INCLUDING THE
CARRIAGE RETURN). WHEN THE INPUT LINES ARE OUTPUT TO THE LISTING
FILE, ANY CHARACTERS AFTER THE 720 COLUMN ARE WRITTEN ON THE NEXT
LINE(S) BEGINNING AT THE 25TH COLUMN OF THE FIRST SOURCE LINE
(NORMAL COMMENT COLUMN>' SEE THE MODIFICATION NOTES IN SECTION
*11. o. 0 TO AD.JUST FOR NARROWER OR WIDER PAGE OUTPUT. THE CARRIAGE
RETURN IS A TERMINATOR FOR BOTH THE STATEMENT AND THE LINE. ONLY
ONE STATEMENT IS ALLOWED PER 127 CHARACTER LINE.

4. 1. 0
4. 1. 0 CODING CONVENTIONS:

ALTHOUGH THE ASSEMBLER WILL ACCEPT PROGRAMS WRITTEN IN FREE FORMAT,
THE USE OF TABS MAKES FOR MORE READABLE CODE. TAB STOPS ARE SET
EVERY 8 CHARACTERS IN THE LINE SO THAT THE USE OF THE TAB KEY
SIMPLIFIES INPUT. GENERALLY:

LABELS
OPERATORS
OPERANDS
COMMENTS

OCCUPY THE FIRST TAB FIELD, COLUMNS 1 THROUGH 8
OCCUpy THE SECOND TAB FIELD, COLUMNS 9 THROUGH 16.
OCCUpy THE THIRD TAB FIELD, COLUMNS 17 THROUGH 24.
OCCUpy THE REMAINING FIELDS, COLUMNS 25 THROUGH 127.

4. 2. 0 LABELS.

A LABEL IS A SYMBOL WHICH PRECEDES THE OPERATOR AND MUST FOLLOW THE
SYMBOL NAMING CONVENTIONS DESCRIBED IN SECTION * 6. 2. O. IN ALL BUT
THE SYMBOL DEFINITION PSEUDO-OPS, <. EQU, . SET, . DINST) THE LABEL
IS A LOCATION TAG AND IS EQUAL TO THE VALUE OF THE CURRENT LOCATION
COUNTER.

EXAMPLE:

2 1
o 6

201 1
LABELl
LABEL2

.ORG

. EQU

. BYTE

201
6
1

iLABEL1=6
iLABEL2=LOCATION TAG=201

NOTE THAT A JUMP TO LABELl WILL TRANSFER TO ADDRESS 6 WHILE A JUMP
TO LABEL2 GOES TO ADDRESS 201.

A LABEL LACKING BOTH AN OPERATOR AND OPERAND IS SET EQUAL TO THE
VALUE OF THE NEXT ADDRESS TO BE ASSEMBLED. IF USED AT THE
BEGINNING OF THE PROGRAM, IT IS SET EQUAL TO THE VALUE OF THE FIRST
ADDRESS. WHEN A SOLITARY LABEL IS FOLLOWED BY AN .ORG STATEMENT,
IT RETAINS THE ORIGINAL VALUE ASSIGNED BEFORE THE ORIGIN CHANGE.

4.3.0 OPERATORS.

AN OPERATOR IS A MNEMONIC WHICH INDICATES
PERFORMED AND IS EITHER A PSEUDO-OP OR ONE OF
INSTRUCTIONS. PSEUDO-OPS ARE DESCRIBED IN
MICROPROCESSOR INSTRUCTION SET IS DESCRIBED IN
THESE OPERATORS SHOULD NOT BE CONFUSED WITH
USED IN OPERAND EXPRESSIONS.

THE ACTION TO BE
THE MICROPROCESSOR

SECTION #9. O. O. THE
SECTION #13. O. 0

ARITHMETIC OPERATORS

.. 4. 4. 0
.. 4.4.0 OPERANDS.

AN OPERAND REPRESENTS THE PART OF THE INSTRUCTION WHICH IS TO BE
ACTED ON. IT CAN BE A TERM OR AN EXPRESSION.

THE. BYTE, . DBYTE, AND. AD DR PSEUDO-OPS CAN HAVE MULTIPLE OPERANDS.

REFER TO THE EXPLANATION OF EACH OPERATOR FOR THE PROPER OPERAND
FORMAT.

IT SHOULD BE NOTED THAT OPERAND EXPRESSIONS ARE EVALUATED TO A
SINGLE NUMERICAL VALUE BY THE ASSEMBLER. BINARY CODE IS NOT
GENERATED TO MAKE THE MICROPROCESSOR EVALUATE THE EXPRESSION.

.. 4. 5. 0 TERMS AND EXPRESSIONS.

A TERM IS A SINGLE VALUE, A CONSTANT OR SYMBOL. THE CURRENT
LOCATION COUNTER (REPRESENTED BY A PERIOD) IS CONSIDERED A TERM.

TERMS ARE COMBINED WITH OPERAND ARITHMETIC OPERATORS TO FORM
EXPRESSIONS.

EXAMPLE: IN THE INSTRUCTION BELOW THE OPERAND IS AN EXPRESSION
WHICH HAS TWO ARITHMETIC OPERATORS AND THREE TERMS.

SYMBOL . EQU 1+NEW * 15

16 BIT INTEGER ARITHMETIC IS USED TO EVALUATE EXPRESSIONS.

* 5. O. 0 NUMERIC CONSTANTS.

A CONSTANT IS A NUMERIC VALUE REPRESENTED BY A STRING OF DIGITS.
THE DEFAULT RADIX OR TEMPORARY RADIX INDICATORS IDENTIFY THE RADIX
OF THE CONSTANT. A CONSTANT WITHOUT ANY TEMPORARY RADIX INDICATOR
IS CONSIDERED TO BE IN THE DEFAULT RADIX, WHICH IS INITIALLY
HEXADECIMAL.

EXAMPLE: THE HEXADECIMAL NUMBER 16 (22 IN BASE 10) IS STORED IN
"VALUE" :

o 16 VALUE . EQU 16

THE MAXIMUM VALUE FOR A CONSTANT IS 65535 (BASE 10 UNSIGNED).

THE MINIMUM VALUE FOR A CONSTANT IS -32768 (BASE 10 SIGNED>'

4+ 5.1.0
4+ 5. 1. 0 CONSTANTS WITH RADIX INDICATORS.

CONSTANTS IN A BASE DIFFERENT FROM THAT OF THE DEFAULT RADIX CAN BE
SPECIFIED THROUGH USE OF THE TEMPORARY RADIX INDICATORS. THESE
INDICATORS ARE VERY USEFUL FOR ENTERING INDIVIDUAL CONSTANTS.
HOWEVER, IF A LARGE GROUP OF VALUES IN ANOTHER RADIX MUST BE
ENTERED, IT IS MORE CONVENIENT TO CHANGE THE DEFAULT RADIX USING
THE PSUEDO-OPS DESCRIBED IN SECTION 4+ 9. 2. 0 .

THE TEMPORARY RADIX INDICATORS ARE:

· B BINARY
..... 0 DECIMAL
..... H HEXADECIMAL
· 0 OCTAL

THE IS THE UPARROW CHARACTER (UNIVERSAL UNARY OPERATOR),

A HEXADECIMAL CONSTANT WHICH DOES NOT BEGIN WITH A NUMBER SHOULD BE
WRITTEN WITH A LEADING ZERO TO DISTINGUISH IT FROM FROM A SYMBOL. A
RADIX INDICATOR PRECEDING A SYMBOL IS IGNORED.

EXAMPLE: THE FIRST STATEMENT IS VALID, THE SECOND IS NOT.

VALUE . EQU
VALUE .EQU

..... HOA302

..... HA302
;VALUE=A302, BASE 16
; VALUE = SYMBOL A302

SINCE THE SYMBOL A302 MAY NOT EXIST, THE SECOND STATEMENT WILL
PROBABLY CAUSE AN UNDEFINED SYMBOL ERROR. TEMPORARY RADIX
INDICATORS AFFECT THE NEXT DIGIT STRING IN THE EXPRESSION UNLESS A
SYMBOL NAME OR BINARY OPERATOR OCCURS FIRST. IN THAT CASE, THE
TEMPORARY RADIX INDICATOR WOULD BE IGNORED. NO ERROR MESSAGE IS
GIVEN.

4+ 5.2.0 CONSTANTS WITH ASCII INDICATORS.

THE "AND·- I NO I CATORS ARE USED TO FORM THE 7 BIT ASC I I VALUE OF A
CHARACTER. THERE ARE FOUR ACCEPTABLE WAYS TO WRITE THE INDICATORS:

"A" OR "A OR 'A' OR 'A ALL EQUAL 41 (BASE 16>'

NOTE THAT THE CLOSING QUOTE IS OPTIONAL, BUT IF USED IT MUST MATCH
THE OPENING QUOTE. ONLY ONE CHARACTER CAN FOLLOW THE INDICATOR.

THE "IS SPECIALLY HANDLED IN THE. BYTE PSEUDO-OP WHERE IT IS USED
TO INPUT TEXT STRINGS. SEE SECTION 4+ 9. 3. 1 .

.. 6. O. 0

.. 6. O. 0 SYMBOLS.

THE WORD "SYMBOL" IS USED HERE AS A GENERAL TERM FOR ANY MNEMONIC
WHICH IS TO HAVE A VALUE. THIS IS IN CONTRAST TO AN OPERATOR, WHICH
IS A MNEMONIC WHICH SPECIFIES A PROCESS.

A LABEL IS A SYMBOL THAT PRECEDES AN OPERATOR IN THE STATEMENT. IF
THE LABEL IS USED TO STORE THE VALUE OF THE CURRENT LOCATION
COUNTER, IT IS CALLED A LOCATION TAG.

... 6. 1. 0 PERMANENT SYMBOLS.

PERMANENT SYMBOLS ARE THE CROSS-ASSEMBLER PSEUDO-OPS AND
MICROPROCESSOR OPERATORS. IF NECESSARY. THE . DINST STATEMENT CAN BE
USED TO RENAME A MICROPROCESSOR OPERATOR. THE CROSS-ASSEMBLER
PSEUDO-OPS CANNOT BE USED IN A . DINST INSTRUCTION. THE TABLES IN
THE APPENDICES SUMMARIZE THE PERMANENT SYMBOL SET .

... 6. 2. 0 USER DEFINED SYMBOLS.

THESE SYMBOLS CAN BE LOCATION TAGS OR REPRESENT A VALUE.

A SYMBOL IS A STRING OF FROM ONE TO SIX ALPHANUMERIC CHARACTERS
DELIMITED BY A NON-ALPHANUMERIC CHARACTER. USER-DEFINED SYMBOLS
MUST CONFORM TO THE FOLLOWING RULES:

1) THE CHARACTERS MUST BE LEGAL ALPHA-NUMER I CS.
(A-Z OR 0-9)

2) THE FIRST CHARACTER MUST BE ALPHABETIC (A-Z)'
3) ONLY THE FIRST SIX CHARACTERS ARE USED, ANY

OTHERS ARE IGNORED. SYMBOLS ARE STORED IN THE
SYMBOL TABLE AND REFERENCED ONLY BY THE FIRST
S I X CHARACTERS.

4) A USER-DEFINED SYMBOL CANNOT HAVE THE SAME
NAME AS ANY OF THE PERMANENT SYMBOL NAMES.
AS THE PERIOD IS CONSIDERED AS PART OF THE
ASSEMBLER PSEUDO-OP NAME, A USER-DEFINED SYM­
BOL WHICH IS IDENTICAL EXCEPT FOR THE LEADING
PERIOD IS LEGAL.

• o. 3. 0
• o. 3. 0 LOCAL SYMBOLS.

OFTEN, WHEN PROGRAMMING SHORT SECTIONS OF CODE WHICH INVOLVE
NUMEROUS JUMP OR BRANCHING INSTRUCTIONS, THE USER FINDS IT
DIFFICULT TO CREATE MEANINGFUL LABELS THAT WILL NOT CONFLICT WITH
OTHER SYMBOLS IN THE PROGRAM. IN CASES LIKE THIS, LOCAL SYMBOLS CAN
BE USED INSTEAD OF REGULAR SYMBOLS.

LOCAL SYMBOLS HAVE THE FORMAT "$N" WHERE "N" IS A DECIMAL INTEGER
FROM 0-255 I NCLUS I VE.

LOCAL SYMBOLS MUST
BLOCKS. LOCAL SYMBOL
ON A STATEMENT HAVING
END ON THE STATEMENT
SYMBOL LOCATION TAG.
· SET PSEUDO-OPS ARE
SYMBOL BLOCKS.

BE DEFINED AND REFERENCED WITHIN LOCAL SYMBOL
BLOCKS ARE SECTIONS OF THE PROGRAM THAT START
A REGULAR SYMBOL USED AS A LOCATION TAG AND
JUST BEFORE THE OCCURANCE OF THE NEXT REGULAR
NOTE THAT LABELS FOR THE .EQU •. DINST AND

NOT LOCATION TAGS AND DO NOT DELIMIT LOCAL

THERE IS NO EFFECTIVE LIMIT TO THE SIZE OF A LOCAL SYMBOL BLOCK.

THE SAME LOCAL SYMBOL CAN BE DEFINED AND USED IN AN UNLIMITED
NUMBER OF LOCAL SYMBOL BLOCKS.

EXAMPLE:

TAG1 · BYTE "TEXT" iSYMBOL BLOCK BEGINS
$1 · EQU VALUE iDEFINE LOCAL $1
$2 · EQU -1 iDEFINE LOCAL $2
VALU1 · EQU $1-$2 iCALCULATE NEW VALUE
TAG2 · BYTE "TEXT" iNEW SYMBOL BLOCK
$1 · EQU VALU1 iDEFINE LOCAL $1
$2 · EQU -2 iDEFINE LOCAL $2
VALU2 · EQU $1*$2 i CALCULATE NEW VALUE.
TAG3 · BYTE "TEX1'1 iENDS SECOND BLOCK

• 7. O. 0 CURRENT LOCATION COUNTER.

THE CURRENT LOCATION COUNTER IS INDICATED BY A PERIOD. IT
REPRESENTS THE ADDRESS OF THE NEXT BYTE TO BE ASSEMBLED.

THE CURRENT LOCATION COUNTER CANNOT BE USED IN THE LABEL FIELD.

.. 7.0.0

AT THE BEGINNING OF THE SOURCE INPUT THE CURRENT LOCATION COUNTER
IS SET TO ZERO. IT CAN BE REASSIGNED THROUGH USE OF THE .ORG
PSEUDO-OP.

EXAMPLE:

o 60
o 0

60 22
1 00

100 10

.ORG
VALUE · EQU
TAG · BYTE

.ORG
TAG1 · BYTE

60 j INITIAL ADDRESS
0 j NO EFFECT ON .

22 = 60 (BASE S>
100 j REASSIGN COUNTER

10 j . = 100

LOCATION TAGS ARE ALWAYS SET EQUAL TO THE VALUE OF THE CURRENT
LOCATION COUNTER WHEN THEY ARE ASSEMBLED. IN THE EXAMPLE ABOVE, THE
LOCATION TAG "TAG" = 60.

THE CURRENT LOCATION COUNTER IS AUTOMATICALLY UPDATED IN THE
ASSEMBLER AS SOON AS THE CURRENT INSTRUCTION IS ASSEMBLED. NOTE
THAT IN THE MULTI-OPERAND DATA STORAGE PSEUDO-OPS, <. BYTE, . DBYTE,
AND . AD DR > THE LOCATION COUNTER IS CHANGING AS THE OPERANDS ARE
ASSEMBLED.

EXAMPLE: THE LOCATION COUNTER IS USED AS AN OPERAND 3 TIMES IN AN
. ADDR PSEUDO-OP.

0 20 .ORG 20
20 20 0 . ADDR • , • I •

22 22 0
24 24 0
20 20 0

THE CURRENT LOCATION COUNTER USES THE FULL ADDRESS RANGE OF THE
MICROPROCESSOR.

.. 8. O. 0 THE ARITHMETIC OPERATOR SET.

THERE ARE TWO TYPES OF ARITHMETIC OPERATORS: UNARY AND BINARY
OPERATORS.

UNARY OPERATORS ACT ON ONLY ONE ITEM, THE TERM OR EXPRESSION
FOLLOW I NG THEM.

BINARY OPERATORS ACT ON TWO ITEMS: THE TERM OR EXPRESSION
PRECEEDING THEM AND THE TERM OR EXPRESION FOLLOWING THEM.

• S. 1.0
• S. 1. 0 UNARY OPERATORS.

THE + (PLUS) AND - (MINUS) UNARY OPERATORS ASSIGN A POSITIVE OR
NEGATIVE SIGN TO THE EXPRESSION FOLLOWING THEM. AN EXPRESSION IS
ASSUMED TO BE POSITIVE IF NOT OTHERWISE SPECIFIED.

S. 1. 2 BYTE ACCESS OPERATORS.

THE L AND · M (WHERE I S THE UPARROW CHARACTER) ARE UNARY
OPERATORS WHICH PROVIDE ACCESS TO THE LEAST AND MOST SIGNIFICANT S
BIT BYTES OF THE VALUE OF AN EXPRESSION OR TERM.

EXAMPLE: TO SET "VALUE" EQUAL TO THE MOST SIGNIFICANT BYTE OF
3B61 (BASE 16), THE STATEMENT BELOW IS USED.

VALUE . SET · M3B61 iVALUE = 003B

THIS NEXT STATEMENT TAKES THE LEAST SIGNIFICANT BYTE .

VALUE . SET L3B61 iVALUE = 0061

BYTE ACCESS OPERATORS MAY BE COMBINED WITH THE OTHER UNARY
OPERATORS AND THE RADIX INDICATORS.

8. 1. 3 THE COMPLEMENT OPERATOR.

THE C (UPARROW C) IS A LOGICAL UNARY OPERATOR WHICH COMPLEMENTS
THE EXPRESSION FOLLOWING IT.

EXAMPLE:

VALUE . EQU C7241 iVALUE = SDBE

THE COMPLEMENT OPERATOR CAN BE COMBINED WITH THE OTHER UNARY
OPERATORS AND THE RADIX INDICATORS.

tt 8. 1. 4
tt 8. 1. 4. ? OPERATOR.

THIS IS THE USER FLAG OPERATOR, A UNARY OPERATOR USED IN CONJUNC­
TION WITH THE COMMAND DECODER USER FLAG OPTIONS (/0 TO /9>' IT HAS
THE FORM ?EXPRESSION AND MAY BE USED IN OPERANDS LIKE ANY OTHER
TERM. THE RESULTING VALUE OF THE QUESTION MARK OPERATOR EQUALS 1 IF
THE VALUE OF ITS EXPRESSION MATCHES A USER FLAG THAT WAS SPECIFIED
TO THE COMMAND DECODER AT RUN-TIME. OTHERWISE IT EQUALS O. THIS
OPERATOR IS USEFUL FOR CONTROLLING CONDITIONAL ASSEMBLY AND LISTING
PARAMETERS WITHOUT HAVING TO MODIFY THE SOURCE FILE.

EXAMPLE: THE /2 OPTION WAS SPECIFIED TO THE COMMAND DECODER AT
RUN-TIME.

. R XNAME
*BIN,LOUT(SOURCE/2

THE SOURCE FILE CONTAINS THE FOLLOWING . LIST STATEMENTS:

. LIST ?2-1

. LIST 1

AT THE FIRST . LIST STATEMENT, THE ?2 TERM EQUALS 1 SINCE /2 WAS
SPECIFED AT RUN-TIME. THE OPERAND (?2-1) EQUALS ZERO. THEREFORE
LISTING IS INHIBITED UNTIL THE SECOND . LIST INSTRUCTION. AS THE
OPERAND VALUE OF THIS STATEMENT IS 1, LISTING IS ENABLED AGAIN.
NOTE THAT IF THE /2 OPTION WAS NOT SPECIFIED, THE INSTRUCTIONS
AFTER THE FIRST . LIST WOULD BE INCLUDED IN THE "LOUT" FILE LISTING.

* 8. 2. 0 BINARY OPERATORS.

SIX SPECIAL CHARACTERS ARE USED TO PERFORM THE FOLLOWING BINARY
OPERATIONS:

* MULTIPLICATION
/ DIVISION
& BOOLEAN AND

INCLUSIVE OR
+ ADDITION

SUBTRACTION

.. 8. 2. 0

THE UNARY OPERATORS TAKE PRECEDENCE OVER THE BI~ARY OPERATORS
DURING ASSEMBLY. THE * AND / OPERATORS ARE EXECUTED NEXT, THEN THE
OTHER BINARY OPERATORS FROM LEFT TO RIGHT. BRACKETS, [AND], ARE
USED TO CHANGE THE ORDER OF PRECEDENCE WHEN NECESSARY. A [IS A
SHIFT/K ON TTY KEYBOARDS, AND A] IS A SHIFT/M.

EXAMPLE: IN THE STATEMENT BELOW THE OPERAND EXPRESSION IS EVALUATED
IN THIS ORDER: [A* [-B]] + [[2/D] * [AC [AB10l]]]

VALUE . EQU

ADDITION AND SUBRACTION ARE ACCOMPLISHED BY TWO~S COMPLEMENT 16 BIT
ARITHMETIC. NO CHECKS FOR OVERFLOW ARE MADE.

MULTIPLICATION IS ACCOMPLISHED BY REPEATED ADDITION. NO CHECKS FOR
SIGN OR OVERFLOW ARE MADE.

DIVISION IS ACCOMPLISHED BY REPEATED SUBRACTION. THE QUOTIENT IS
THE NUMBER OF SUBTRACTIONS PERFORMED. THE REMAINDER IS NOT SAVED.
NO CHECKS ARE MADE FOR SIGN. DIVISION BY ZERO RESULTS IN ZERO.

THE BOOLEAN AND FUNCTION (&) IS A BIT BY BIT LOGICAL AND OF TWO
NUMBERS:

THE BOOLEAN INCLUSIVE OR (!) IS A BIT BY BIT LOGICAL OR OF TWO
NUMBERS.

.. 9. O. 0
.. 9. O. 0 PSEUDO-OPERATORS.

PSEUDO-OPERATORS ARE INSTRUCTIONS TO THE ASSEMBLER WHICH ALLOW
GREATER FLEXIBILTIY IN PROGRAMMING.

A SUMMARY OF THE PSEUDO-OPS AND THEIR FUNCTIONS IS GIVEN IN THE
APPENDIX .

.. 9. 1. 0 ASSIGNMENT PSEUDO-OPS.

ASSIGNMENT PSEUDO-OPS ARE USED TO DEFINE VALUES, INPUT ASCII TEXT
AND REASSIGN THE LOCATION COUNTER.

9. 1. 1 . EQU PSEUDO-OP.

THE . EQU IS USED TO ASSIGN A VALUE TO A SYMBOL. THIS SYMBOL VALUE
CANNOT BE CHANGED ONCE DEFINED. . EQU IS USEFUL FOR ASSIGNING NAMES
TO LOCATIONS WHICH ARE NOT LOADED BY THE OBJECT CODE.

EXAMPLE:

NAME1 · EQU

9. 1. 2 . SET PSEUDO-OP.

THE . SET IS USED EXACTLY LIKE THE . EQU EXCEPT THAT THE SYMBOL CAN
BE REDEFINED WITH ANOTHER . SET AT ANY POINT IN THE PROGRAM:

EXAMPLE: THE FOLLOWING IS PERFECTLY LEGAL FOR A . SET BUT NOT AN
. EQU.

NAMEI
NAME1

· SET
· SET

NOTE THAT IT IS GOOD PRACTICE TO USE THE . EQU FOR ASSIGNMENTS
RATHER THAN THE . SET EXCEPT (OF COURSE) WHERE THERE IS A SPECIFIC
NEED TO REDEFINE A VALUE. THIS HELPS PREVENT THE ACCIDENTAL
REDEFINITION OF A VALUE IN A PROGRAM.

9. 1. 3 . DINST PSEUDO-OP.

THE . DINST IS USED TO GIVE A MICROPROCESSOR OPERATOR ANOTHER NAME.
THE ORIGINAL OPERATOR NAME WILL STILL BE VALID. NOTE THAT THE
ASSEMBLER PSEUDO-OPS CANNOT BE RENAMED.

#9. 1. 3

EXAMPLE: THE MICROPROCESSOR INSTRUCTION "OPR" IS DEFINED AS
"NEWOP". ANY FURTHER REFERENCES TO "NEWOP" IN THE PROGRAM WILL BE

. TREATED ACCORD I NG TO THE DEF I NIT I ON OF "OPR II •

NEWOP . 0 I NST OPR

"NEWOP" IS DEFINED TO BE THE EQUIVALENT TO THE MICROPROCESSOR
INSTRUCTION "OPR" AND IS ADDED TO THE OPERATOR SET FOR THE
REMAINDER OF THE ASSEMBLY.

REFERENCES TO USER DEFINED OPERATORS ARE NOT ALLOWED TO PRECEDE
THEIR . DINST STATEMENT.

ASSEMBLER PSEUDO-OPS CANNOT BE USED IN EITHER THE LABEL OR OPERAND
FIELDS OF ANY STATEMENT AND THEREFORE CANNOT BE DEFINED WITH THE
. DINST STATEMENT.

LOCAL SYMBOLS CANNOT BE USED IN THE OPERATOR FIELDS, THEREFORE THEY
SHOULD NOT BE USED WITH A . DINST STATEMENT.

9. 1. 4 . ORG PSEUDO-OP.

THE . ORG REASSIGNS THE LOCATION COUNTER.

THE LOCATION COUNTER WILL BE 0 AT THE START OF THE SOURCE INPUT.

THE . ORG OPERAND CANNOT BE FORWARD REFERENCED, (REFERRED TO A
LABEL DEFINED FURTHER ON IN THE PROGRAM) AND CANNOT HAVE A LABEL.

:I 9.2.0 DEFAuLT RADIX PSEUDO-OPS.

INITIALLY, THE DEFAULT RADIX IS SET TO HEXADECIMAL SO THAT
CONSTANTS ARE READ IN AS BASE 16 VALUES. (SEE MODIFICATION NOTES IF
ANOTHER I NIT I AL DEFAULT RAD I X I S DES I RED.)

AT ANY POINT IN THE PROGRAM, THE DEFAULT RADIX CAN BE REASSIGNED
THROUGH USE OF TH~SE PSEUDO-OPS:

· BIN
.DECM
· HEX
· OCT

i BINARY RADIX'
i DECIMAL RADIX
iHEXADECIMAL RADIX
; OCTAL RADIX

THE DEFAULT RADIX PSEUDO-OPS CANNOT HAVE AN OPERAND OR A LABEL.

ADDITIONALLY, THE RADI'X OF INDIVIDUAL CONSTANTS CAN BE SPECIFIED BY
THE USE OF THE B,·"D, H AND · 0 INDICATORS. SEE SECTION :I 5. 1. 0
THESE INDICATORS DO NOT CHANGE ,THE DEFAULT RADIX.

.. 9. 3. 0
.. 9. 3. 0 DATA STORAGE PSEUDO-OPS.

THREE PSEUDO-OPS CAN BE USED TO STORE DATA. THEIR FORMAT IS:

LABEL PSEUDO-OP OPERAND, OPERAND, ; COMMENT

THE PSEUDO-OPS CAN HAVE AS MANY OPERANDS AS WILL FIT ON ONE 127
CHARACTER LINE.

EACH OPERAND CAN BE A SYMBOL, CONSTANT, OR EXPRESSION. COMMAS
SEPARATE THE OPERANDS.

THE DOUBLE QUOTE (") CHARACTER IS USED DIFFERENTLY IN THE . BYTE
COMMAND, BUT THE SINGLE QUOTE (.') RETAINS ITS NORMAL FUNCTION.

.. 9. 3. 1 . BYTE PSEUDO-OP.

THE . BYTE PSEUDO-OP STORES DATA IN SINGLE BYTES OF MEMORY.
NUMERICAL BYTE VALUES CAN RANGE FROM -128 TO +255 (DECIMAL).
NORMALLY, DOUBLE QUOTES AND SINGLE QUOTES ARE TREATED IDENTICALLY
AND ARE USED TO FORM THE ASCII VALUE OF A SINGLE CHARACTER.
HOWEVER, IN THE . BYTE PSEUDO-OP , THE DOUBLE QUOTE IS USED TO INDI­
CATE TEXT STRINGS. DATA IS STORED SEQUENTIALLY AS IT IS PROCESSED,
LEFT TO RIGHT. A TEXT STRING MUST BE CLOSED WITH A DOUBLE QUOTE.

EXAMPLE: THE ASCII VALUES OF THE TEXT ABC IS STORED:

2 00 .ORG 200
200 41 . BYTE "ABC", 0, ·'B
201 42
202 43
203 0
204 42

THESE STATEMENTS WOULD BE INVALID:

. BYTE

. BYTE
·'ABC·'
"ABC

.. 9.3.2 . DBYTE PSEUDO-OP.

i THE .- IS NOT FOR TEXT STRINGS
; TEXT MUST END WITH A "

THE . DBYTE IS SIMILAR TO THE . BYTE EXCEPT THAT IT STORES DOUBLE
BYTE QUANTITIES. IT DOES NOT ACCEPT TEXT STRINGS. THE THE MOST
SIGNIFICANT BYTE IS STORED FIRST, THEN THE LEAST SIGNIFICANT BYTE.

.. 9. 3. 3
.. 9.3.3 . ADDR PSEUDO-OP.

THE .ADDR PSEUDO-OP IS THE SAME AS THE. DBYTE PSEUDO-OP EXCEPT THAT
THE LEAST SIGNIFICANT BYTE IS STORED FIRST. MANY MICROPROCESSORS
USE THIS REVERSED FORMAT FOR ADDRESSES. FOR EXAMPLE:

2 00
200 1 32
202 32 31

.ORG

.DBYTE

. ADDR

200
· H3132
· H3132

i HEX CONSTANT
iREVERSED BYTES

.. 9. 3. 4 . ZERO PSEUDO-OP.

THE . ZERO PSEUDO-OP RESERVES THE NUMBER OF BYTES INDICATED BY THE
OPERAND AND SETS THEM TO ZERO.

EXAMPLE:

o 1
1 0

11 10

16 ADDRESSES, 1 TO 10 (BASE 16) ARE ZEROED .

. ORG

. ZERO

. BYTE

1
10
10

ONLY THE FIRST, BYTE WILL BE PRINTED IN THE LISTING. THE LOCATION
COUNTER IS ADVANCED. THE OPERAND OF . ZERO CANNOT BE FORWARD REFER­
ENCED, (REFERED TO A LABEL DEFINED FURTHER ON IN THE PROGRAM) .

.. 9. 4. 0 LISTING CONTROL DIRECTIVES.

THROUGH USE OF THE . LIST, . PAGE AND . TITLE PSEUDO-OPS, PLUS SEVERAL
RUN-TIME OPTIONS, THE SOURCE PROGRAM CAN BE LISTED IN VARIOUS WAYS
AT ASSEMBLY TIME.

NORMALLY, THE ASSEMBLER AUTOMATICALLY PAGES THE OUTPUT, ADDING A
HEADER AT THE TOP OF THE PAGE. (NOTE THAT PAGE NUMBERS REPRESENT
THE LISTING PAGE NUMBERS, NOT INPUT FILE PAGES.)

NOT ALL PSEUDO-OPS ARE LISTED IN THE OUTPUT. THE CONDITIONAL
ASSEMBLY AND LISTING CONTROL PSEUDO-OPS ARE NOT LISTED UNLESS THE
/P OPTION IS SPECIFED. SEE RUN-TIME OPTIONS .. 2. 4. 0

NORMALLY THE STATEMENTS WHICH ARE NOT ASSEMBLED DUE TO CONDITIONAL
ASSEMBLY ARE NOT LISTED. USE OF THE /J COMMAND DECODER OPTION WILL
ENABLE LISTING OF THESE STATEMENTS PLUS THE NORMALLY UNLISTED
CONDITONAL ASSEMBLY PSUEDO-OPS.

THE PAGINATION AND HEADING' CAN BE SUPPRESSED THROUGH USE OF THE /H
COMMAND DECODER OPTION.

.. 9. 4. 0

IF THE OUTPUT DEVICE IS ONE WHICH DOES NOT PAGE ON A FORM FEED (A
TTY), THE /T DECODER OPTION CAN BE USED TO CHANGE THE FORM FEED
(WHICH NORMALLY STARTS A NEW PAGE) TO 3 CARRIAGE RETURN/LINE FEEDS
SO THAT PAGES WILL BE SEPARATED BY 3 BLANK LINES IN THE LISTING.

WARNING MESSAGES ARE NORMALLY OUTPUT TO BOTH THE TERMINAL AND THE
SOURCE LISTING. TO INHIBIT THESE MESSAGES, THE /W DECODER OPTION IS
USED.

9. 4. 1 . LIST PSEUDO-OP.

A LIST FLAG IS USED DURING ASSEMBLY TO INDICATE WHETHER OR NOT THE
STATEMENTS ARE TO BE LISTED. INITIALLY, THE FLAG IS ON AND STAYS ON
UNLESS A . LIST PSEUDO-OP IS ENCOUNTERED.

A . LIST PSEUDO-OP CAN BE USED WITH OR WITHOUT AN OPERAND. A LABEL
CANNOT BE USED WITH THE . LIST PSEUDO-OP.

WHEN A. LIST PSEUDO-OP WITHOUT AN OPERAND IS ENCOUNTERED, THE LIST
FLAG I S INVERTED.

EXAMPLE:
i LIST FLAG INITIALLY ON

.ORG 200 i LISTED
VALUE · SET 1 i LISTED

· LIST i LIST FLAG OFF
VALU2 · SET 70 i NOT LISTED

· LIST iLl ST FLAG BACK ON

NOTE THAT UNLESS THE /P OPTION IS USED, THE . LIST OPERATOR ITSELF
WILL NOT BE LISTED.

WHEN A . LIST PSEUDO-OP WITH AN OPERAND IS ENCOUNTERED, THEN LISTING
IS INHIBITED IF THE OPERAND IS EQUAL TO ZERO. (THE LIST FLAG IS
SET OFF>' IF THE OPERAND IS NOT ZERO, LISTING IS ENABLED. (THE
LIST FLAG IS SET ON).

.. 9. 4. 2 . PAGE PSEUDO-OP.

INSERTING A . PAGE PSEUDO-OP IN THE PROGRAM WILL NORMALLY START A
NEW PAGE BEGINNING WITH THE NEXT LINE. (THE. PAGE STATEMENT ITSELF
IS NOT NORMALLY LISTED.) IF THE /P COMMAND DECODER OPTION IS USED,
THE . PAGE STATEMENT WILL BE THE FIRST LINE OF THE NEW PAGE.

.. 9. 4. 2

.THE /H COMMAND DECODER OPTION INHIBITS THE . PAGE PSEUDO-OP.

THE . PAGE PSEUDO-OP CAN HAVE NO LABEL OR OPERAND .

.. 9.4.3 . TITLE PSEUDO-OP.

THE . TITLE IS USED TO REPLACE THE HEADING WITH UP TO 32 CHARACTERS
OF TEXT. ITS FORMAT IS:

· TITLE HEADING OF 32 CHARACTERS

THE FIRST CHARACTER AFTER THE. TITLE IS THE PSEUDO-OP DELIMITER
WHICH CANNOT BE AN ALPHA-NUMERIC CHARACTER THE DELIMITER IS
CONSIDERED THE FIRST CHARACTER OF THE 32 CHARACTER GROUP AND WILL
BE PRINTED OUT. ANY TEXT AFTER 32 CHARACTERS WILL BE IGNORED. TABS
CAN BE USED IN THE HEADING.

THE /H COMMAND DECODER OPTION INHIBITS THE . TITLE PSEUDO-OP.

THE /P COMMAND DECODER ENABLES THE LISTING OF THE . TITLE PSEUDO-OP.

A SEMICOLON DOES NOT DELIMIT THE HEADING TEXT.
MADE ONLY AFTER THE 32 CHARACTER HEADING GROUP.

COMMENTS CAN BE

WHEN PLACED AT THE BEGINNING OF THE PROGRAM, THE . TITLE PSEUDO-OP
WILL SET THE HEADING FOR THE FIRST PAGE. THE . TITLE MUST APPEAR
BEFORE THE FIRST LINE TO BE LISTED.

EXAMPLE: THE FOLLOWING STATEMENTS WILL CAUSE THE HEADING OF THE
FIRST PAGE TO BE If *MA I N PROGRAM If •

· TITLE*MAIN PROGRAM
VALUE . EQU 1

· LIST VALUE

.. 9. 5. 0 CONDITIONAL ASSEMBLY PSUEDO-OPERATORS.

THE . IFZERO, . IFNZRO, . IFDEF AND . IFNDEF OPERATORS
PROVIDE FOR THE CONDITIONAL ASSEMBLY IN A PROGRAM,
OF STATEMENTS CAN BE ADDED (OR OMITTED) DURING
PROCESS. EACH IS DESCRIBED INDIVIDUALLY IN THE
FOLLOW. ALL HAVE THE GENERAL FORM:

PSEUDO-OP OPERAND ; COMMENT

ARE USED TO
SO THAT GROUPS

THE ASSEMBLY
SECTIONS THAT

* 9. 5. 0

EACH OPERAND MUST MEET THE CONDITIONS OF ITS PSEUDO-OP IN ORDER FOR
THE STATEMENTS THAT FOLLOW IT TO BE ASSEMBLED. IF THE CONDITIONS
ARE NOT MET; THESE STATEMENTS ARE OMITTED. THE. ENDC PSEUDO-OP
INDICATES THE END OF THE GROUP OF STATEMENTS WHICH ARE AFFECTED.
EACH CONDITIONAL PSEUDO-OP MUST HAVE ONE . ENDC STATEMENT.

CONDITIONAL PSEUDO-OPS CANNOT HAVE LABELS.

CONDITIONAL PSEUDO-OPS CAN BE NESTED UP TO 4095 LEVELS.

EXAMPLE:

VALUE 1 · EQU 0 ; DEF I NE VALUE 1
· IFZERO VALUEl j VALUE 1 = 0 ? - YES.
· BYTE "TEXT" j ASSEMBLED.
· IFDEF VALUE2 iVALUE2 DEFINED? - NO.
· BYTE "TEXT" i OMITTED.
· ENDC i END OF INNER CONDITIONAL

DOC · EQU 17 i ASSEMBLED.
· ENDC iEND OF OUTER CONDITIONAL

THE CONDITIONAL PSEUDO-OPS ARE NOT INCLUDED IN THE ASSEMBLY LISTING
UNLESS THE /P OR /J COMMAND DECODER OPTION IS SPECIFIED.

ONE CONDITIONAL CAN INHIBIT ANOTHER.

EXAMPLE: THREE DIFFERENT RESULTS CAN OCCUR IN THE FOLLOWING TYPE OF
CONDITIONAL NESTING:

CONDITIONAL 1
i STATEMENT GROUP 1.

CONDITIONAL 2
i STATEMENT GROUP 2 .

. ENDC iEND CONDITIONAL 2.
iSTATEMENT GROUP 3 .

. ENDC iEND CONDITIONAL 1.

IF BOTH CONDITIONALS ARE MET, ALL THE STATEMENTS, GROUPS 1 THROUGH
3, WILL BE ASSEMBLED.

IF CONDITIONAL 2 IS NOT MET, BUT CONDITONAL 1 IS MET, THEN GROUP 1
AND GROUP 3 WILL BE ASSEMBLED. GROUP 2 IS NOT ASSEMBLED.

IF CONDITIONAL 1 IS NOT MET, CONDITIONAL 2 IS IGNORED AND GROUPS 1
THROUGH 3 WILL NOT BE ASSEMBLED.

9. 5. 1
9. 5. 1 . IFZERO PSEUDO-OP.

IF THE OPERAND OF THE . IFZERO IS:

EQUAL TO ZERO - ASSEMBLY I S UNAFFECTED.
NOT EQUAL TO ZERO - STATEMENTS TO NEXT . EN DC ARE OMITTED.

THE OPERAND CANNOT BE FORWARD REFERENCED.

9. 5. 2 . IFNZRO PSEUD-OP.

IF THE OPERAND OF THE . IFNZRO IS:

EQUAL TO ZERO - STATEMENTS TO NEXT . ENDC ARE OMITTED.
NOT EQUAL TO ZERO - ASSEMBLY IS UNAFFECTED.

THE OPERAND CANNOT BE FORWARD REFERENCED.

9. 5. 3 . IFDEF PSEUDO-OP.

IF THE SYMBOL OPERAND OF THE . IFDEF IS:

DEFINED - ASSEMBLY IS UNAFFECTED.
NOT DEFINED - STATEMENTS TO NEXT. ENDC ARE OMITTED.

NOTE THAT . IFDEF WILL ACCEPT ONLY A SINGLE SYMBOL NAME AS THE
OPERAND.

A SYMBOL IS CONSIDERED TO BE DEFINED IF IT HAS BEEN USED IN THE
LABEL FIELD OF A STATEMENT PRECEEDING THE CONDITIONAL PSEUDO-OP.

9. 5. 4 . IFNDEF PSEUDO-OP.

IF THE SYMBOL OPERAND OF THE . IFNDEF IS:

DEFINED - STATEMENTS TO NEXT. ENDC ARE OMITTED.
NOT DEFINED - ASSEMBLY IS UNAFFECTED.

NOTE THAT ONLY A SINGLE SYMBOL NAME IS ALLOWED AS THE OPERAND.

A SYMBOL IS CONSIDERED TO BE DEFINED IF IT HAS BEEN USED IN THE
LABEL FIELD OF A STATEMENT PRECEEDING THE CONDITIONAL PSEUDO-OP.

.. 9. 5. 5
.. 9.5.5 . ENDC PSEUDO-OP.

THIS PSEUDO-OP INDICATES THE END OF A CONDITONAL ASSEMBLY GROUP.

EVERY CONDITIONAL PSUEDO-OP MUST BE PAIRED WITH A . ENDC.

* 9.6.0 . END PSEUDO-OP.

THIS INDICATES THE END OF THE SOURCE PROGRAM. IT CANNOT HAVE EITHER
A LABEL OR AN OPERAND. A WARNING MESSAGE WILL OCCUR IF THE . END
STATEMENT IS LEFT OFF.

#10. O. 0 ERROR MESSAGES AND WARNINGS.

BOTH PASS #1 AND PASS *2 CAN GENERATE ERROR MESSAGES. THESE ARE
PRINTED ON THE CONSOLE DEVICE AS THEY OCCUR. IF A LISTING IS
SPECIFIED, PASS 3 WILL LIST THE ERROR MESSAGE ABOVE THE LINE IN
WHICH THE ERROR OCCURS.

ERROR MESSAGES WHICH ARE SENT TO THE CONSOLE HAVE THE FORM:

E:XX AT LABEL+N

WHERE "N" IS A DECIMAL NUMBER OF
LINES BEYOND THE STATEMENT WHICH
CONTAINED THE GIVEN LABEL. IF NO
LABEL WAS GIVEN, "N" IS THE NUMBER OF
LINES FROM THE BEGINNING LINE OF THE
PROGRAM.

IF THE BINARY OUTPUT FILE IS SENT TO THE CONSOLE, AND ERROR
MESSAGES OCCUR, THE OUTPUT FILE LINES AND ERROR MESSAGES WILL BE
INTERMIXED. USE OF THE /E OPTION WILL INHIBIT THE ERROR MESSAGES
TO THE CONSOLE SO THAT ONLY THE BINARY FILE IS OUTPUT. THIS IS
USEFUL WHEN A USER WOULD LIKE TO TRY OUT CERTAIN PARTS OF A PROGRAM
AND IS NOT YET CONCERNED WITH OTHER PARTS KNOWN TO HAVE ERRORS.

*10. O. 0

INDIVIDUAL ERROR MESSAGES ARE EXPLAINED IN TABLE *2 WHICH DIVIDES
THE MESSAGES INTO THREE TYPES:

1) FATAL ERRORS- THESE ERRORS CAUSE THE IMMEDIATE
EXIT TO THE OS/8 MONITOR. THE CURRENT OUTPUT FILE
IS NOT CLOSED. /E WILL NOT INHIBIT FATAL ERROR
MESSAGES. FATAL ERROR MESSAGES ARE ALWAYS SENT TO
THE CONSOLE DEVICE.

2) WARNING MESSAGES INDICATE MINOR PROGRAM
PROBLEMS. ASSEMBLY IS NOT HALTED. GOOD PROGRAMMING
PRACTICES WILL ELIMINATE ALL WARNING MESSAGES.

3) NON-FATAL ERRORS - THE OCCURANCE OF A NON-FATAL
ERROR WILL NOT HALT ASSEMBLY. THE ASSEMBLER
ATTEMPTS TO DO AS MUCH OF THE LINE AS POSSIBLE. FOR
EXAMPLE, IF THE OPERAND CANNOT BE EVALUATED, IT
GIVES IT A VALUE OF ZERO, WRITES THE ERROR MESSAGE
AND CONTINUES.

TABLE #2. #10. O. 0

E:DF
FILE #N

E:LT

E:OE
FILE #N

E:PE

E:RE
FILE #N

E:ST

E:WE
FILE #N

W:EF

W:UC

**** FATAL ERRORS ****

DEVICE FULL:
THERE IS NOT ENOUGH ROOM LEFT ON THE OUTPUT DEVICE
FOR THE FILE. "W' INDICATES WHICH OF THE TWO OUT­
PUT FILES WAS IN ERROR.

LOCAL SYMBOL TABLE OVERFLOW:
TH I S ERROR OCCURS ONL Y I F THE /1< OPT I ON I SIN USE.
CONVERSION OF SOME OF THE LOCAL SYMBOLS TO REGULAR
SYMBOL NAMES WILL USUALLY SOLVE THIS PROBLEM. SEE
THE NOTES ON THE /1< RUN-TIME OPTION.

OPEN ERROR IN OUTPUT FILE:
AN ATTEMPT WAS MADE TO OPEN AN OUTPUT FILE ON AN
INPUT-ONLY DEVIDE. (PTR:, CDR:, ETC.) "N" INDICATES
WHICH ONE OF THE TWO POSSIBLE OUTPUT FILES WAS IN
ERROR.

PHASE ERROR:
A LOCATION TAG HAS A DIFFERENT ADDRESS IN ONE PASS
THAN IT HAD IN THE PREVIOUS PASS.

READ ERROR:
AN ERROR HAS OCCURRED WHILE READING FROM AN INPUT
FILE DEVICE. "N" INDICATES WHICH ONE OF THE NINE
POSSIBLE INPUT FILES HAD THE ERROR.

SYMBOL TABLE OVERFLOW:
THE PROGRAM IS TOO LARGE. WHERE CONVENIENT, DIVIDE
IT AND ASSEMBLE EACH PART SEPARATELY. ALSO REFER TO
THE NOTES ON THE /K RUN-TIME OPTION.

WRITE ERROR:
AN ERROR HAS OCCURRED WHILE WRITING TO AN OUTPUT
FILE DEVICE. "N" INDICATES WHICH ONE OF THE TWO
OUTPUT FILES HAD THE ERROR.

**** WARNING MESSAGES ****

NO . END STATEMENT:
THE LAST INPUT FILE MUST HAVE AN . END STATEMENT.
THE ASSEMBLER PROCEEDS AS IF AN . END WERE PRESENT.

ASSEMBLY WAS CONDITIONALLY INHIBITED AT THE END OF
THE PROGRAM: EACH CONDITIONAL ASSEMBLY PSEUDO-OP
MUST BE PAIRED WITH AN . ENDC STATEMENT.

TABLE *2. (CONT.) *10. O. 0

E:BN

E:DR

E: IL

E: 10

E:LO

E:LS

E:ML

E:MO

E:OC

E:OM

**** NON-FATAL ERRORS ****

BAD NESTING OF BRACKETS:
EACH OPEN BRACKET MUST BE PAIRED WITH A CLOSED
BRACKET.

DIGIT OUTSIDE OF RADIX:
THE CONSTANT CONTAINS A DIGIT NOT RECOGNIZED UNDER
THE SPECIFIED RADIX. FOR EXAMPLE, THE DIGIT "2" IS
NOT RECOGNIZED IN BINARY RADIX. THE CONSTANT WILL
BE EVALUATED AS IF THAT DIGIT WERE ZERO.

ILLEGAL LABEL FIELD:
THE LABEL MAY NOT BE IN THE PROPER SYMBOL FORMAT,
SEE SECTION *6. 2. O. ALSO, SOME PSEUDO-OPS CANNOT
HAVE LABELS.

ILLEGAL OPERAND VALUE:
REFER TO THE SECTION ON THE STATEMENT~S OPERATOR TO
DETERMINE THE ALLOWABLE OPERAND TERMS.

LINE INPUT OVERFLOW:
~ONLY 127 CHARACTERS, NOT INCLUDING THE CARRIAGE
RETURN AND LINE FEED, ARE ALLOWED IN AN INPUT LINE.

LOCAL SYMBOL SYNTAX ERROR:
THE CORRECT FORMAT FOR A LOCAL SYMBOL IS $N WHERE
"N" I S A DEC I MAL NUMBER FROM 0 TO 255.

MULTIPLE LABEL DEFINITION:
THE SAME LABEL HAS A DIFFERENT VALUE AND IS USED
WITH AN OPERATOR OTHER THAN A . SET PSEUDO-OP.

MISSING OR ILLEGAL MNEMONIC IN OPERATOR FIELD:

OPERAND TOO COMPLEX:
TOO MANY TERMS AND OPERATORS EXIST IN THE OPERAND.
DIVIDE THE EXPRESSION USING THE . SET COMMAND.

EXAMPLE: THE FIRST EXPRESSION IS DIVIDED INTO THE
TWO STATEMENTS FOLLOWING IT.

WORD

TEMP
WORD

OPERAND MISS I NG.

· EQU

· SET
· EQU

[EXPR1 J + [EXPR2 J

[EXPRl J
TEMP + [EXPR2 J

TABLE *2. (CONT.) *10. O. 0

E:OS

E:PS

E:TL

E:US

OPERAND SYNTAX ERROR.

ILLEGAL PERMANENT SYMBOL USAGE IN OPERAND:
REFER TO THE APPENDICES TABLES TO SEE WHICH NAMES
ARE USED IN THE ASSEMBLER AND MICROPROCESSOR IN­
STRUCTION SETS AND RENAME YOUR SYMBOL SO THAT IT
WILL NOT CONFLICT.

LABEL DEFINED TOO LATE:
ONLY ONE LEVEL OF FORWARD REFERENCING IS ALLOWED.

UNDEFINED SYMBOL:

NOTE: REFER TO SECTION *12. O. 0 FOR ADDITIONAL ERROR MESSAGES WHICH
ARE SPECIFIC TO THE TYPE OF MICROPROCESSOR BEING USED.

*11. O. 0 MODIFICATION NOTES.

VARIOUS MODIFICATIONS CAN BE MADE TO THE ASSEMBLER FOR GREATER
OPERATING CONVENIENCE. BEFORE MAKING ANY CHANGES, THE USER SHOULD
READ THE DESCRIPTION OF EACH OPTION CAREFULLY. NO CHECKS ON PATCH
VALIDITY ARE MADE. ALSO KEEP A RECORD OF ALL CHANGES SO THAT THE
STATUS OF THE CROSS-ASSEMBLER IS ALWAYS KNOWN.

MODIFICATIONS ARE MADE BY PATCHING LOCATIONS IN THE IMAGE L SV)
FILE USING ODT. REFER TO TH~ OS/8 MANUAL FOR A DETAILED EXPLAIN­
ATION OF ODT OPERATION.

THE EXAMPLE BELOW SHOWS AN ODT PATCH BEING MADE TO FILE "XNAME. SV"
WHERE THE CONTENT OF LOCATION 10107 IS CHANGED FROM 3 TO 2 .

. GET SYS: XNAME

.ODT
10107/0003 2
· C
. SA SYS: XNAME

#11. 1. 0

tU1. 1. 0 CHANGING THE DEFAULT INPUT FILE EXTENSION (. MS).

PATCH LOCATION 10100 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11.2.0 CHANGING THE DEFAULT BINARY OUTPUT FILE EXTENSION <. MB)

PATCH LOCATION 10101 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11.3.0 CHANGING THE DEFAULT LISTING OUTPUT FILE EXTENSION (. LS).

PATCH LOCATION 10102 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11.4.0 CHANGING THE BASE YEAR DATE.

IN OS/8 ONLY 3 BITS ARE PROVIDED TO INDICATE THE CURRENT YEAR.
THIS ALLOWS ONLY NUMBERS FROM 0 TO 7 WHICH MUST BE ADDED TO A BASE
YEAR TO FORM THE ACTUAL YEAR NUMBER. IN 1978 AND AT ADDITIONAL 8
YEAR INTERVALS THE BASE YEAR MUST BE CHANGED TO PROVIDE THE PROPER
DATE PRINTOUT. TO DO THISJ PATCH LOCATION 10104 TO CONTAIN THE TWO
CHARACTER 6 BIT ASCII REPRESENTATION OF THE TWO LEAST SIGNIFICANT
DIGITS OF THE YEAR.

BASE YEAR:
1978
1986
1994
2002

PATCH TO LOCATION 10104 (IN OCTAL>'
6770
7066
7164
6062

SHOULD THIS PROGRAM SURVIVE UNTIL THE YEAR 2000 THE TWO MOST
SIGNIFICANT DIGITS MAY BE CHANGED BY PATCHING LOCATION 10103 TO
CONTAIN 6260.

#11.5.0

#11.5.0 CHANGING THE DEFAULT RADIX. (HEXADECIMAL)

INITIALLY THE DEFAULT RADIX IS SET TO HEXADECIMAL. THIS MAY BE
MODIFIED TO BINARY, OCTAL, OR DECIMAL BY PATCHING LOCATION 10105
FROM THE FOLLOWING TABLE.

RADIX:

OCTAL
HEXADECIMAL
DECIMAL
BINARY

PATCH LOCATION 10105 TO:

1
2
3
4

#11.6.0 GENERATING 8 BIT ASCII CHARACTERS WITHIN THE BINARY
PROGRAM.

THE ASCII CHARACTERS GENERATED AS OPERANDS WITH THE QUOTE
CHARACTERS ARE SEVEN BIT REPRESENTATIONS TYPICAL OF MOST
MICROPROCESSOR SYSTEMS. TO GENERATE EIGHT BIT ASCII WITH THE
EIGHTH BIT ALWAYS SET (AS IS DONE IN SOME PDP8 SOFTWARE), PATCH
LOCATION 10106 TO CONTAIN 377. (ORIGINAL CONTENT WAS 177>'

#11.7.0 RUNNING UNDER OS8 VERSION 2.

THE CROSS-ASSEMBLER IS SET UP TO USE THE OS/8 VERSION 3 METHOD FOR
CORE SIZE DETERMINATION. IN OS/8 V3 THE CORE SIZE IS CONTAINED IN
A MONITOR LOCATION. IN PREVIOUS VERSIONS, THE CORE SIZE MUST BE
DETERMINED BY ACCESSING EACH FIELD OF MEMORY TO SEE IF IT EXISTS ON
THE SYSTEM. THEREFORE, TO RUN THE CROSS-ASSEMLER UNDER VERSION 2,
PATCH LOCATION 10107 TO CONTAIN 2. (ORIGINAL CONTENT WAS 3>'

11. 8. 0 CHANG I NG THE NUMBER OF LINES PER PAGE. (6)

THE NORMAL NUMBER OF LINES PER PAGE IS SET AT 66. 6 OF THE 66
LINES ARE USED BY THE ASSEMBLER FOR THE HEADING AND MARGIN. TO
ALTER THE NUMBER OF LINES ON A PAGE, PATCH LOCATION 10110 TO BE THE
TOTAL POSITIVE LINES PER PAGE INCLUDING HEADING AND MARGIN.

#11.9.0

#11.9. 0 CHANGING THE NUMBER OF CHARACTERS PER LINE. (72)

THE TOTAL NUMBER OF CHARACTERS PRINTED ON ONE LINE (EXCLUDING
CARRIAGE RETURN AND LINE FEED) IS SET AT 72 (BASE 10). TO MODIFY
THIS COUNT, PATCH LOCATION 10111 TO CONTAIN THE POSITIVE NUMBER OF
CHARACTERS TO BE PRINTED ON A LINE (EXCLUDING THE CR AND LF).

#11. 10.0 INITIAL FORM/FEED CONTROL.

SOME LINE PRINTER HANDLERS WHEN FIRST INITIALIZED WILL ISSUE AN
AUTOMATIC FORM FEED. TO AVOID EJECTING AN ADDITIONAL PAGE EACH TIME
THE ASSEMBLER IS CALLED, THE FIRST FORM FEED FROM THE HEADING HAS
BEEN SUPPRESSED. TO REENABLE THIS FIRST FORM FEED, PATCH LOCATION
10112 WITH 214 (BASE 8 >.

#11. 11. 0 CHANGING LABEL DELIMINATOR (,).

TO PROVIDE COMPATIBILITY WITH OTHER ASSEMBLER FORMATS AN OPTIONAL
LABEL DELIMITER WILL BE ACCEPTED. NORMALLY, THIS DELIMITER IS A
COMMA, BUT IT CAN BE MODIFIED TO ANY OTHER NON-ALPHANUMERIC
CHARACTER (EXCEPT THE SEMICOLON OR CARRIAGE RETURN>' TO MODIFY THE
DELIMITING CHARACTER PATCH LOCATION 10113 WITH THE 8 BIT ASCII
VALUE FOR THE CHARACTER.

#11. 12. 0 CHANGING FROM 8 BIT TO 7 BIT ASCI I IN THE OUTPUT FILES.

ALL ASCII OUTPUT TO THE BINARY (OBJECT) AND LISTING FILES IS IN 8
BIT ASCII FORMAT. TO OUTPUT 7 BIT ASCII FORMAT PATCH LOCATION 10114
TO CONTAIN 177. (ORIGINAL CONTENT WAS 377>'

#11. 13. 0
#11. 13.0 CHANGING THE SENSE OF THE RUN-TIME OPTIONS.

EACH SLASH OPTION (EXCEPT /0 TO /9) MAY HAVE ITS SENSE INVERTED BY
PATCHING THE LOCATIONS SHOWN IN THE FOLLOWING TABLE WITH THE
DESCR I BED VALUE.

OPTION: LOCATION: STANDARD: INVERTED:

/B 10116 7650 7640
/E 10117 7640 7650
/H 10120 7650 7640
/.j 10121 7650 7640
/K 10122 7650 7640
/L 10123 0 1
/N 10124 7650 7640
/0 10125 7650 7640
/P 10126 7640 7650
/S 10127 7650 7640
/T 10130 7650 7640
/W 10131 7650 7640

#12.0.0
#12. O. 0 Fe CROSS-ASSEMBLER SPECIFICS:

THE FIRST ELEVEN SFCTIONS OF THIS MANUAL HAVE PRESENTED SIERRA
DIGITAL'S UNIVERSAL ASSEMBLER FORMAT AS IT IS APPLIED TO ALL
CROSS-ASSEMBLERS IN THE xa SERIES. THIS SECTION PRESENTS
ADDITIONAL INFORMATION ON THE APPLICATION OF THE UNIVERSAL
ASSEMBLER FORMAT TO A SPECIFIC CROSS-ASSEMBLER FOR THE Fa
MICROPROCESSOR. THE Fa MICROPROCESSOR WAS DESIGNED BY FAIRCHILD
MICRO SYSTEMS, 1725 TECHNOLOGY DRIVE, SAN JOSE, CALIFORNIA 95110.
THE Fe IS PRODUCED BY FAIRCHILD MICRO SYSTEMS AND ALSO SECOND
SOURCED BY MOSTEK CORPORATION, 1215 WEST CROSBY ROAD, CARROLLTON,
TEXAS 75006. NO ATTEMPT WILL BE MADE IN THIS MANUAL TO EXPLAIN THE
OPERATION OF THE MICROPROCESSOR. EXCELLENT MANUALS COVERING THE
OPERATION OF THE MICROPROCESSORS ARE AVAILABLE FROM THEIR
MANUFACTURERS. SECTION #13 PR~SENTS A SUMMARY OF THE INSTRUCTION
MNEMONIC CODES DEFINED BY FAIRCHILD AND RECOGNIZED BY OUR
CROSS ASSEMBLER.

#12. 1. 0 CROSS-ASSEMBLER FILE NAMES.
-------~~--------~-----~---~--------

THE CROSS-ASSEMBLER IS PROVIDED ON FILE STRUCTURED MEDIA UNDER THE
NAMES:

XF8. SV - FOR THE OS/8 ~AVE IMAGE FILE
XFe, BN FOR THE OS/8 BINARY FORMAT FJLE

I TIS SUOGESTEJ) THAT THE SAME NAM I NG CONVENT IONS BE USED WHEN
LOADING THE CROSS-ASSEMBLER FROM PAPER TAPE.

#12. 2. 0 TIMER COUNT OPERATOR.

AN ADDITIONAL UNARY OPERATOR HAS BEEN PROVIDED TO PERFORM TIMER
COUNT CONVERSIONS FOR THE PROGRAMMABLE I;LOCKS CONTAINED IN THE 3851
PSU CHIP AND THE 3853 SMI CHIP. THE CLOCKS CONTAIN POLYNOMIAL
SHIFT REGISTERS RATHER THAN BINARY COUNTERS AND THEREFORE THE
ACTUAL NUMBER LOAOED TO THE CLOCK TO PERFORM A COUNT IS DIFFERENT
FROM THE DESIRED COUNT. THE UNARY OPERATOR "'T (UPARROW T) WILL
CONVERT THE FOLLOWING OPERA~O TO A NUMBER REQUIRED BY THE CLOCK TO
GENERATE THE DESIRED NUMBER OF TIMER COUNTS.

EXAMPLE:

LI · T· D40 i LOAD TIMER CONSTANT FOR 20 COUNTS
OUTS 7 i OUTPUT TO TIMER

THE VALUE ACTUALLY SENT TO THE TIMER IS OF (HEX).

#12. 3. 0
#12. 3. 0 PREASSIGNED SYMBOLS.
--~~---~~~----~~------------

THE FOLLOWING THREE SYMBOLS HAVE BEEN ASSIGNED THE VALUES SHOWN AND
ARE TYPICALLY USED TO INDICATE INDIRECT ADDRESSING OF SCRATCHPAD
REGISTERS THROUGH THE ISAR.

SYMBOL VALUE USAGE

S
I

D

OC
OD

OE

INDIRECTLY ADDRESS SCRATCHPAD REGISTER.
INOIRECTLY ADDRESS SCRATCHPAD REGISTER
AND INCREMENT LOWER 3 BITS OF ISAR.

.INDIRECTl-Y APDRESS SCRATCHPAD REGISTER
AND PECREMENT LOWER 3 BITS OF ISAR.

THE FOLLOWING TABLE CONTAINS SYMBOLS WHICH HAVE A SPECIAL MEANING
WHEN USED WITH "LR" OPERATOR. ALTHOUGH THESE SYMBOLS HAVE NOT BEEN
RESERVEO I TIS SUGGESTED THAT THE I R USAGE BE RESTR I CTED TO THE .' LR"
I NSTRUCT ION.

SYMBOL MEANING
___ !""""_~ --'1'""1' ___ _

A ACCUMULATOR
DC DATA COUNTER
H REGISTERS 10 ANO 11
IS INDIRECT SCRATCHPADADORESS REGISTER
oJ REQ I STER 9"
K REGISTERS 12 AND 13
KL REGISTER 13
KU REGISTER 12
P STACK REGISTER
PO PROGRAM COUNTER
Q REGISTERS 14 ANO 15
QL REGISTER 15
QU REGISTER 14
W STATus REGISTER

#12. 4. 0
#12. 4. 0 LISTING FORMAT.

THE LISTING FILE IS OUTPUT WITH THE OBJECT CODE PRINTED TO THE LEFT
OF THE SOURCE CODE LINES. AS EACH MICROPROCESSOR INSTRUCTION MAY
CODE INTO ONE, TWO, OR THREE BYTES, ROOM IS PROVIDED FOR THREE
COLUMNS OF GENERATED OBJECT CODE PLUS A COLUMN FOR THE ADDRESS. THE
ADDRESS AND OBJECT CODE ARE NORMALLY PRINTED IN HEXADECIMAL BUT
THIS MAY BE CHANGED TO OCTAL WITH THE /0 COMMAND DECODER OPTION.
SOURCE LINES WHICH EXCE~D THE PRINTOUT LIMIT WILL BE CONTINUED AT
COLUMN 25 (STANJ)ARD COMMENT TAB STOP) OF THE SOURCE PRINTOUT
POSITION. TABS OCCURING IN THE SOURCE PROGRAM ARE CONVERTED TO THE
PROPER NUMBER OF BLANK CHARACTERS BY THE ASSEMBLER. THIS IS DONE
BY THE ASSEMBLER RATHER THAN THE DEVICE HANDLER OR DEVICE BECAUSE
THE BEGINNING OF THE SOURCE PRINTOUT DOES NOT OCCUR ON A STANDARD
TAB STOP.

#12. 5. 0 BINARY FILE OUTPUT.

---~------------------------

THE BINARY OR OBJECT OUTPUT MAY BE SELECTED FROM ONE OF THREE
FORMATS. WITH NO OPTION SPECIFI~D THE OUTPUT WILL DEFAULT TO
FAIRCHILD"S FORMULATOR FORMAT FOR USE WITH THEIR FORMULATOR
DEVELOPEMENT SYSTEM. THE FORMULATOR FORMAT IS DESCRIBED IN SECTION
#12.5. 1. AN ALTERNATE FORMAT SPECIFIED BY FAIRCHILD IS THEIR
FAIR-BUG OUTPUT WHICH IS USED BY THEIR SMALLER F8S EVALUATION
MODULE. THE FAIR..,BUG FORMAT IS DESCRIBED IN SECTION #12. 5. 2 AND
MAY BE SELECTED BY SPECIFING /F TO THE COMMAND DECODER AT ASSEMBLY
INITIATION TIME. THE THIRD TYPE OF BINARY OUTPUT IS BNPF WHICH MAY
BE SELECTED BY A /13 RUN-TME OPTION. SECTION #2. 4. 0 DESCRIBES THE
BNPF OUTPUT.

#12. 5. 1
#12. 5. 1 FORMULATOR FORMAT.
-----------~------~----~--

THE OBJECT (BINARY) OUTPUT FILE CONSISTS OF ASCII TEXT REPRESENTING
HEXADECIMAL NUMBERS IN THE FOLLOWING FORMAT:

LEADER STRINGS OF 100 NULL CHARACTERS PRECEED AND FOLLOW THE OBJECT
OUTPUT, EACH LINE BEGINS WITH A COLON AND IS FOLLOWED BY A TWO HEX
DIGIT BYTE COUNT, A FOUR HEX DIGIT ADDRESS, A TWO HEX DIGIT ' RECORD
TYPE (ALWAYS 0), UP TO 16 BYTES OF DATA (EACH 2 HEX DIGITS), AND A
TWO HEX DIGIT CHECKSUM. AT THE END OF EACH LINE IS A CARRIAGE
RETURN, LINE FEED, NULL, . AND READER OFF.

EXAMPLE:

:CCAAAATTDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDSS

WHERE:

LINE.

CC IS THE TWO HEXADECIMAL DIGIT COUNT FOR THE NUMBER OF
DATA BYTES (REPRESENTED BY PAIRS OF O"S) IN THE LINE.
A COUNT OF ZERO INDICATES THE TERMINATION OF THE OBJECT
OUTPUT. THE TERMINATING LINE WILL ALSO HAVE A ZERO
ADDRESS, TYPE ENTRY, AND CHECKSUM (:0000000000),

AAAA IS THE HEXADECIMAL ADDRESS FOR STORING THE FIRST DATA
BYTE. EACH ADDITIONAL DATA BYTE IS TO BE STORED IN
SEQUENTIAL ADDRESSES. THE ADDRESS IS PRESENTEO WITH ITS
MOST SIGNIFICANT BYTE FIRST.

TT IS THE 2 HEXADECIMAL DIGIT RECORD TYPE.·· THIS INDICATOR
IS CURRENTLY UNUSED AND ASSIGNED A VALUE OF O~

DO REPRESENTS TWO HEXADECIMAL DIGITS FOR A BYTE OF OBJECT
(BINARY) CODE UP TO 16 BYTES MAY BE OUTPUT ON ONE

SS IS THE TWO HEXADECIMAL DIGIT CHECKSUM OF THE LINE. ALL
EIGHT BIT BYTES IN THE LINE AFTER THE RECORD MARK (':')
ARE SUMMED. THE LEAST SIGNIFICANT BYTE OF THE NEGATIVE
OF THIS VALUE IS THE CHECKS UK THUS IF ALL BYTES IN
THE LINE ARE ADDED TOGETHER WITH CARRYS IGNORED, AND
THIS SUM IS ADDEO TO THE CHECKSUM, THE RESULT WILL BE
ZERO.

THE "'READER OFF" CHARACTER AT THE END OF EACH OBJECT CODE LINE MAY
BE UNDESIRABLE WHEN THE BINARY OUTPUT IS NOT PUNCHED ON PAPER TAPE.
THE "READER OFF" CHARACTER IS STORED AT LOCATION 10134 AND MAY BE
PATCHED TO NULL (0) .

#12. 5. 2
#12. 5. 2 FAIR~BUG FORMAT.

THE OB~ECT (BINARY) OUTPUT FILE CONSISTS OF ASCII TEXT REPRESENTING
HEXADECIMAL NUMBERS IN THE FOLLOWING FORMAT. LEADER STRINGS OF
ASTERISKS PRECEDE AND FOLLOW THE OB . .,JECT OUTPUT. THE STARTING
ADDRESS OF A SECTION OF OUTPUT IS INDICATED BY A LINE CONTAINING AN
·'S·' FOLLOWED BY A FOUR HEXADECIMAL DIGIT ADDRESS. THE DATA THEN
FOLLOWS ON LlNES CONTAINING AN ~X~, EIGHT 2 HEXADECIMAL DIGIT DATA
BYTES AND ONE HEXADECIMAL DIGIT CHECKSUM CHARACTER.

EXAMPLE:

SAAAA
XDDDDDDDDDDDDDDDDS

WHERE:

AAAA IS THE HEXADECIMAL ADDRESS FOR STORING THE FIRST
DATA BYTE. EACH ADDITIONAL DATA BYTE IS TO BE STORED
IN SEQUENTIAL ADDRESSES.

00 REPRESENTS TWO HEXADECIMAL DIGITS FOR A BYTE OF
OB~ECT (BINARY) CODE. EIGHT BYTES ARE ALWAYS OUTPUT
ON A LINE WITH UNSPECIFIED BYTES BEING ZERO.

S IS A SINGLE HEXADECIMAL DIGIT CHECKSUM. THE CHECKSUM
CONSISTS OF THE SWM OF EACH INDIVIDUAL HEXADECIMAL
DIGIT IN THE LINE OF DATA CHARACTERS TRUNCATED TO
THE LEA~T SIGNIFICANT FOUR BITS.

EXAMPLE:

S1000
X495E4C59700S4C178
XOA1F251094FS16502
X20E7SE08001701176
X71B4A4212094190EF
XA42106250220A484C
XOB768108A42102Z0E
XEA940250Z911D0291

THE SENSE OF THE IF OPTION MAY BE INVERTED BY PATCHING LOCATION
10133 TO CONTAIN 7640.

4U2. 6. 0
#12. 6. 0 ADDITIONAL ERROR MESSAGES FOR THE XF8.

STANDARD ERRORS:

E:RV BAD REGISTER VALUE FIELD.
THE VALUE ASSIGNED TO A REGISTER SPECIFICATION FIELD DID
NOT MATCH ONE OF THE ALLOWABLE VALUES FOR THE
INSTRUCTION.

E:BR BRANCH IS OUT OF RANGE.
THE OPRAND ADDRESSS WAS OUT OF RANGE FROM THE REQUIRED
-128 TO +127 (DECIMAL) BYTES FROM THE SECOND BYTE OF THE
BRANCH INSTRUCTION.

+12. 7. 0 SAMPLE PROGRAM #12. 7. 0

R XF8
~TTY: ,TTY:<SAMPLE/O/P/J

E:MO AT MSG + 5
E:MO AT MSG + 5

101 0000071 BOBSB920A4502AI050708884075128B4
10101000103490F7281020250084FF28103490F514
10102000A991FE7F181F94FEA8185171B9A981FEDD
1010300070B9411C7A5270B0402BBBBBBB240194E9
10104000FA32840C412101B0411224805190EAICF3
0810500053544152548D8AOOF3
0000000000

SAMPLE F8 ROUTINE

o
o
o

10
1000 71
1001 BO
1002 B8
1003 B9

o
1

o

20 A4
50

1004
1006
1007 2A
100A 70
100B 88
100C 84
100E 51

10 SO

7

100F 28 10 34
90 F7

BAUD
CHRS
BCNT

START

$1

1012
1014
1017
1019
101B
101E
1020

28 10
25 0

20 $2

84 FF
28 10 34
90 F5
A9

1021 91 FE
1023 7F
1024 18

$3

GCHAR

1025 1F $1
1026 94 FE
1028 A8
1029 18
102A !51
102B 71
102e B9
102D A9
102E 81 FE
1030 70
1031 B9
1032 41
1033 lC

$2

NOV 1, 1976 XF8-VIA PAGE

· TITLE SAMPLE F8 ROUTINE
SELECT /0 FOR 300 BAUl) 8c 10 BIT
THIS ROUTINE READS DATA FROM A HIGH SPEED
READER AND PR I NTS I T ON A TELETYPE.
· EG:!U 0 ; REGISTER FOR BAUD RATE COUNT
· EQU 1 iREGISTER FOR CHARACTER
· EQU 2 i REG I STER FOR BIT COUNT
.ORG 1000
LIS 1
OUTS 0 i INIT TTY-PORT TO MARK STATE

i INITIALIZE READER PORT OUTS 8
OUTS
L1
LR
DCI
CLR
AM
BZ
LR
PI
BR
PI
CI
BZ
PI
BR
INS
BM
LIS
COM
INC
BNZ
INS
COM
LR
LIS
OUTS
INS
BP
LIS
OUTS
LR
POP

9 i INITIALIZE READER CONTROL
6*[1-?OJ ! AD164*?0 iSELECT 110 OR 300
BAUD,A ; BAUD FOR TTY
MSG

$2
CHRS, A
TTY OUT
$1
GCHAR
o
$3
TTYOUT
$2
9
GCHAR
"'D15

$1
8

CHRS,A
1
9

iSET DATA COUNTER FOR MESSAGE

iGET MESSAGE CHARACTER
iTERMINATE ON ZERO CHARACTER

iOUTPUT CHARACTER
; TRY NEXT CHARACTER
; GET CHARACTER FROM READER

; HANG HERE WHEN DONE
; OUTPUT CHARACTER TO TTY
iTRY NEXT CHARACTER
iGET A READER CHARACTER
; LOOK FOR SPROCKET == HIGH
i 100US DELAY AFTER SPROCKET

; NOW GET THE DATA BYTE

iTEMP STORE NEW CHAR
iADVANCE THE READER

9 ; GET READER STATUS
$2 ; LOOK FOR MOVING OFF SPROCKET
o
9 ; REMOVE DR I VE PULSE
A,CHRS ;PICK UP NEW CHAR

1

*12. 7. 0

SAMPLE Fa ROUTINE NOV 1. 1976 XFa-V1A PAGE

1034 7A
1035 52
1036 70
1037 BO

1036 40
1039 2B
103A BB
103B BB
103C BB
1030 24 1
103F 94 FA
1041 32
1042 a4 C
1044 41
1045 21 1
1047 BO
1046 41
1049 12
104A 24 80
104C 51
1040 90 EA
104F lC

10!:)0 53
1051 54
1052 41
1053 52
1054 54
1055 80
1056 8A
1057 0

****** E:MO

· PAGE
; TTY OUTPUT ROUTINE
TTYOUT LIS o B 10 ;/0 OPTION CAUSES 10 BIT FORMAT

LR BCNT,A ; SET BIT COUNT FOR 10 OR 11
LIS 0
OUTS 0 i OUTPUT START BIT
DELAY ~. 3MS FOR 300 BAUD, 9.09MS FOR 110 BAUD

$1 LR A,BAUD iGET DELAY COUNT
NOP

$2 OUTS OB ;NOP FOR DELAY (36US PER LOOP)
OUTS OB
OUTS OB
AI 1 i INCR WITH A SUS INST
BNZ $2
DS BCNT i DECREMENT BIT COUNT
BZ $3 iDONE WITH ALL BITS
LR A,CHRS iGET CHARACTER
NI 1 iMASK OFF ALL BUT BIT 0
OUTS 0 i OUTPUT THE NEW DATA BIT
LR A,CHRS iSHIFT THE CHAR FOR NEXT BIT
SR 1
AI AB10000000 iFILL WITH l'S FOR STOP BITS
LR CHRS,A
BR $1 iDELAY AGAIN

$3 POP iALL FINISHED
· IFZERO 11 iSELECT THIS MESSAGE BY DEFAULT

MSG . BYTE "START", A0215, A0212, 0

· ENDC
· IFNZRO 11 iSELECTED BY /1 RWNTIME OPTION

MSG . gyTE "TURN ON READER", · 0215, "'0212, 0
· ENDC

JUNK
· END

i SAMPLE ERROR

SAMPLE Fa ROUTINE NOV 1, 1976 XFa-V1A PAGE 3

o BAUD
1050 MSG

ERRORS; 1

2 BCNT
1000 START

1 CHRS
1034 TTY OUT

1020 GCHAR

4+13. O. 0

#13. O. 0 MICROPROCESSER INSTRUCTION SET:
----~-----------------------~---------

THIS SECTION IS A SUMMARY OF THE INSTRUCTION SET OF THE F8
MICROPROCESSOR AS DEFINED BY THE VENDORS. THE ASSEMBLY CODE FORMAT
FOR EACH INSTRUCTION IS SHOWN WITH THE HEXADECIMAL OBJECT CODE.
EACH INSTRUCTION WILL BE CODED INTO THE DESIGNATED NUMBER OF BYTES.

ACCUMULATOR GROUP INSTRUCTIONS:
--~----~---------~-
INSTRUCTION MEANING HEX CODE BYTES
---------------------------------~~---~~--~----------------------

AI DATA8 ADO IMMEDIATE DATA 24 2
CI DATA8 COMPARE IMMEDIATE DATA 25 2
CLR CLEAR ACCUMULATOR 70 1
COM COMPLEMENT ACCUMULATOR 18 1
INC INCREMENT ACCUMULATOR lF 1
LI DATA8 LOAD IMMEDIATE DATA 20 2
LIS OATA4 LOAD IMMEDIATE SHORT 70+DATA 1
LNK LINK CARRY TO ACCUMULATOR 19 1
NI DATA8 AND IMMEDIATE DATA 21 2
01 DATA8 OR IMMEDIATE DATA 22 2
SL 1 SHIFT LEFT ONE 13 1
SL 4 SHIFT LE;:FT FOUR 15 1
SR 1 SHlFT RIGHT ONE 12 1
SR 4 SHIFT RIGHT FOUR 14 1
XI DATAS EXCLUSIVE OR IMMEDIATE DATA 23 2

----------~--~~-~-~-~-----~----------~----~--~------~------------

DATA€;! REPRESENTS AN €;! BIT DATA QUANTITY.
DATA4 REPRESENTS A 4 BIT DATA QUANTITY.

#13. O. 0
SCRATCHPAD REGISTER INSTRUCTIONS:

---~-----~------~-------------------------------------~----------
INSTRUCTION MEANING HEX CODE BYTES
----~-----------------------------------~------------------------
AS R BINARY ADDITION OF REGISTER CO+R 1
ASD R DECIMAL ADDITION OF REGISTER DO+R 1
OS R DECREMENT REGISTER 30+R 1

LR A,R LOAD ACC FROM REGISTER R 40+R 1
LR A,KU LOAD ACC FROM REGISTER 12 00 1
LR A,KL LOAD ACC FROM REGISTER 13 01 1
LR A,QU LOAD ACC FROM REGISTER 14 02 1
LR A"~L LOAD ACC FROM REGISTER 15 03 1

LR R,A LOAD REGISTER R FROM ACC 50+R 1
LR KU,A LOAD REGISTER 12 FROM ACC 04 1
LR KLA LOAD REGISTER 13 FROM ACC 05 1
LR QU,A LOAD REGISTER 14 FROM ACC 06 1
LR QL,A LOAD REGISTER 15 FROM ACC 07 1

NS R LOGICAL AND ACC WITH REG. R FO+R 1
XS R EXCLUSIVE OR ACC WITH REG. R EO+R 1

---~-~------~-------------~----------~---------------------------

R VALUES
o TO

12 OR
13 OR

HAVE THE FOLLOWING MEANING:
11 (DEC I MAL) -
S
I

DIRECT REGISTER ADDRESSING

14 OR 0

SCRATCHPAD ADDRESS SUPPLIED BY ISAR
SCRATCHPAD ADDRESS SUPPLIED· BY ISAR
ISAR IS INCREMENTED AFTER INSTRUCTION
SCRATCHPAD ADDRESS SUPPLIED BY ISAR
ISAR IS .. DECREMENTED AFTER INSTRUCTION

DATA COUNTER INSTRUCTIONS:

INSTRUCTION MEANING HEX CODE BYTES

ADC ADD ACCUMULATOR TO DATA COUNTER 8E 1
DCI DATA16 LOAD DATA COUNTER IMMEDIATE 2A 3

LR Q,DC LOAD LOCATIONS Q FROM DATA COUNTER OE 1
LR H,DC LOAD LOCATIONS H FROM DATA COUNTER 11 1
LR DC,Q LOAD DATA COUNTER FROM LOCATIONS Q OF 1
LR DC,H LOAD DATA COUNTER FROM LOCATIONS H 10 1

XDC EXCHANGE DATA COUNTERS 2C 1

-------.--
DATA16 REPRESENTS A 16 BIT DATA QUANTITY.

#13. O. 0

INDIRECT SCRATCHPAD ADDRESS REGISTER INSTRUCTIONS:
---~-------------
INSTRUCTION

LR
LR
LISU
LISL

A, IS
IS,A
DATA3
DATA3

MEANING

LOAD ACCUMULATOR FROM ISAR
LOAD ISAR FROM ACCUMULATOR
LOAD DATA TO ISAR UPPER DIGIT
LOAD DATA TO ISAR LOWER DIGIT

HEX CODE BYTES

OA 1
OB 1
60+DATA 1
68+DATA 1

DATA3 REPRESENTS A 3 BIT DATA QUANTITY.

MEMORY REFERENCE INSTRUCTIONS:
---~---
INSTRUCTIONS MEANING HEX CODE BYTES
----~-----------------------~-----------------~------------------

AM
AMD
CM
LM
NM
OM
ST
XM

ADD MEMORY TO ACCUMULATOR, BINARY
ADD MEMORY TO ACCUMULATOR, DECIMAL
COMPARE MEMORY TO ACCUMULATOR
LOAD ACCUMULATOR FROM MEMORY
LOGICAL AND MEMORY WITH ACCUMULATOR
LOGICAL OR MEMORY WITH ACCUMULATOR
STORE ACCUMULATOR IN MEMORY
EXCLUSIVE OR MEMORY WITH ACCUMULATOR

88 1
85"1 1

80
16 1
8A 1
8B 1
17 1
8C 1

MEMORY LOCATION IS DESIGNATED BY THE DATA COUNTER.

STATUS REGISTER INSTRUCTIONS:
-------------------------------------~---------------------------
INSTRUCTION MEANING HEX CODE BYTES
---------------------~------------------~--------~-------~-------

LR
LR

W,J
J,W

LOAD W FROM REGISTER 9
LOAD REGISTER 9 FROM W

lD
IE

1
1

-----~-----------------------------~-----------~-----------------

1

.1:13. O. 0
PROGRAM COUNTER INSTRUCTIONS:

INSTRUCTION MEANING HEX CODE BYTES

LR K,P LOAD K REGISTERS FROM THE STACK REG. 08 1
LR P,K LOAD THE STACK REG. FROM THE K REG. 09 1
LR PO,Q LOAD PROGRAM COUNTER FROM THE Q REG. OD 1

PI ADDR CALL TO SUBROUTINE IMMEDIATE 28 3
PK CALL TO SUBROUTINE DIRECT OC 1
POP RETURN FROM SUBROUTINE 1C 1

.JMP ADDR BRANCH IMMEDIATE 29 3

------~-----~-----------~--

AD DR REPRESENTS A 16 BIT ADDRESS QUANTITY.

BRANCH INSTRUCTIONS:
---~---------------------~---------------------------------------
INSTRUCTION MEANING HEX CODE BYTES

BR ADDR UNCONDITIONAL BRANCH 90 2

BT T,ADDR CONDITIONAL BRANCH TRUE 80+T 2
BP AD DR BRANCH IF POSITIVE 81 2
BC ADDR BRANCH ON CARRY 82 2
BZ ADDR BRANCH ON ZERO 84 2
BM ADDR BRANCH ON NEGATIVE 91 2
BNC ADDR BRANCH IF NO CARRY 92 2
BNZ ADDR BRANCH IF NOT ZERO 94 2
BR7 ADDR BRANCH IF LOWER ISAR=7 8F 2
BNO AD DR BRANCH IF NO OVERFLOW 98 2
BF T,ADDR CONDITIONAL BRANCH FALSE 90+T 2

----------------------------------~------------------------------

ADOR MUST BE AN ADDRESS WITHIN -128 AND +127 LOCATIONS
FROM THE SECOND BYTE OF THE BRANCH INSTRUCTION.

T REPRESENTS A COMBINATION OF TYPE BITS:
1-SIGN
2-CARRY
4-ZERO
8-0VERFLOW (FALSE CONDITION CHECK ONLY.)

INSTRUCTION

IN
INS
OUT
OUTS

PORTS
PORT4
PORTS
PORT4

INPUT/OUTPUT INSTRUCTIONS:

MEANING

INPUT LONG ADDRESS
INPUT SHORT ADRESS
OUTPUT LONG ADDRESS
OTPUT SHORT ADDRESS

#13. O. 0

HEX CODE BYTES

26 2
AO+PORT4 1
27 2
BO+PORT4 1

PORTS REPRESENTS A PORT ADDRESS FROM 4 TO OFF.
PORT4 REPRESENTS A PORT ADDRESS FROM 0 TO OF.

MISCELLANEOUS INSTRUCTIONS:
---~----~------~~--------
INSTRUCTION MEANING HEX CODE BYTES
-------~----------------~----------~~----~---~--~--------------~-

01
EI

NOP

OISABLE INTERRUPT
ENABLE INTERRUPT

NO OPERATION

lA
IB

2B

1
1

1

----~--~~--~------------~----~~------~----------~----------------

APPENDIX A - RUN-TIME OPTIONS. #14. O. 0

**
/B
/E
/F
/H
/J

/K

/L

/N
/0

/P

/S
/T
/W
/0 TO /9

- OUTPUT BINARY FILE IN BNPF FORMAT ..
- INHIBIT ERROR MESSAGES TO CONSOLE.
- OUTPUT BINARY FILE IN FAIR-BUG FORMAT.
- INHIBIT HEADINGS AND PAGINATION.
- LIST UNASSEMBLED STATEMENTS AND CONDITIONAL

ASSEMBLY PSEUDO~OPS.
- EXPAND SYMBOL TABLE STORAGE INTO ADDITIONAL

CORE.
- OUTPUT LEADER (NULLS) IN BINARY FILE FOR EACH

. ORG STATEMENT.
- LIST ONLY THE SYMBOL TABLE.
- OUTPUT LISTING IN OCTAL FORMAT INSTEAD OF IN

HEXADECIMAL.
- INCLUDE NORMALLY UNLISTED PSEUDO-OPS IN THE

LISTING.
- OMIT THE SYMBOL TABLE FROM THE LISTING.
- REPLACE THE FORM/FEED WITH 3 CR/LF~S.
- INHIBIT WARNING MESSAGES.
- USER FLAGS, USED WITH THE f OPERATOR.

**

APPENDIX B - INDICATOR SET.

**

* /
8<

+

..... C
· B
"'0
..... H
· 0
· ... ·L

"'M

· T

" OR . '
f

- MULTIPLICATION.
- DIVISION.
- BOOLEAN AND.
- INCLUSIVE OR.
- ADDITION.
- SUBTRACT ION .
- COMPLEMENT INDICATOR, (UPARROW B).
- BINARY RADIX INDICATOR, (UPARROW B).
- DECIMAL RADIX INDICATOR, (UPARROW DL
- HEXADECIMAL RADIX INDICATOR, (UPARROW H).
- OCTAL RADIX INDICATOR, (UPARROW 0).
- LEAST SIGNIFICANT BYTE ACCESS OPERATOR,

(UPARROW L).
- MOST SIGNIFICANT BYTE ACCESS OPERATOR,

(UPARROW M).
- TIMER COUNT OPERATOR, (UPARROW T).
- COMMENT INDICATOR.

ASCII CHARACTER INDICATOR .
- USER FLAG OPERATOR.
- CURRENT LOCATION COUNTER, (PERIOD).

**

APPENDIX C - PSEUDO-OPS. #14. O. 0

**

· ADDR - DOUBLE BYTE DATA STORAGE, REVERSED FORMAT.
· BIN - CHANGES DEFAULT RADIX TO BINARY.
· BYTE - SINGLE BYTE DATA STORAGE.
· DBYTE - DOUBLE BYTE DATA STORAGE.
· DECM - CHANGES DEFAULT RADIX TO DECIMAL.
· DINST - RENAMES A MICROPROCESOR INSTRUCTION.
· END - PROGRAM TERMINATOR.
· ENDC - ENDS CONDITIONAL ASSEMBLY.
· EQU - ASSIGNS A PERMANENT VALUE TO A SYMBOL.
· HEX - CHANGES DEFAULT RADIX TO HEXADECIMAL.
· lFDEF - INCLUDE CODE TO . ENDC IF SYMBOL IS DEFINED.
· IFNDEF - INCLUDE CODE TO . ENDC IF SYMBOL IS NOT DEFINED.
· IFNZRO - INCLUDE CODE TO . EN DC IF OPERAND DOES NOT EQUAL O.
· IFZERO - INCLUDE CODE TO . ENDC IF OPERAND EQUALS O.
· LIST - PROVIDES SELECTIVE LISTINGS.
· OCT - CHANGES DEFAULT RADIX TO OCTAL.
· ORO - REASSIGNS THE CURRENT LOCATION COUNTER.
· PAGE - BEGINS NEW PAGE IN LISTING.
· SET - ASSIGNS A TEMPORARY VALUE TO A SYMBOL.
· TITLE - SPEClFIES HEADING.
· ZERO - ZEROS A SPECIFED NUMBER OF BYTES.

**

APPENDIX D - ERROR MESSAGES. #14. O. 0

**
E:BN
E:BR
E:DF
E:DR
E: IL
E: 10
E:LO
E:LS
E:LT
E:ML
E:MO
E:OC
E:OE
E:OM
E:OS
E:PE
E:PS
E:RE
E:RV
E:ST
E:TL
E:US
E:WE

W:EF
W:UC

- BAD NESTING OF BRACKETS.
- BRANCH ADDRESS OUT OF RANGE.
- OUTPUT DEVICE FULL. (FATAL)
- DIGIT OUTSIDE OF RADIX.
- ILLEGAL LABEL FIELD,
- ILLEGAL OPERAND VALUE.
- LINE INPUT OVERFLOW.
- LOCAL SYMBOL SYNTAX ERROR.
- LOCAL SYMBOL TABLE OVERFLOW. (FATAL)
- MULTIPLE LABEL DEFINITION.
- MISSING OR ILLEGAL MNEMONIC IN OPERATOR FIELD.
- OPERAND TOO COMPLEX.
- OPEN ERROR IN OUTPUT FILE. (FATAL)
- OPERAND MISS I NO.
- OPERAND SYNTAX ERROR.
- PHASE ERROR, ADDRESS CONFLICT. (FATAL)
- ILLEGAL PERMANENT SYMBOL USAGE IN OPERAND.
- INPUT FILE READ ERROR. (FATAL)
- BAD REG I STER VAU.,IE FIELD.
- SYMBOL TABLE OVERFLOW. (FATAL)
- LABEL DEFINED TOO LATE.
- UNDEFINED SYMBOL.
- OUTPUT FILE WRITE ERROR (FATAL)

- NO . END STATEMENT IN LAST FILE.
- UNINHIBITED CONDITIONAL ASSEMBLY IN EFFECT

AT ASSEMBLY END.

**

