
8X8xaX8

8X8

USERS MANUAL

SIEII! DIGIT!L SYSTEMS c

X Z8oC')

USER MANUAL FOR THE
Z80 X8 SERIES CROSS-ASSEMBLER ON THE PDP8-E.

,JULY 1'~"''l7

SIERRA DIGITAL SYSTEMS
1440 WESTF I ELD AVE.
RENO, NEVADA 89509
702--329-9548

ALTHOUGH THE INFORMATION IN THIS MANUAL HAS
BEEN CHECKED FOR ACCURACY, NO RESPONSIBILITY
IS ASSUMED FOR ERRORS. THIS DOCUI"1ENTATION IS
SUBJECT TO CHANGE WITHOUT NOTICE.

PDP AND OS/8 ARE REGISTERED TRADEMARKS OF
DIGITAL EQUIPMENT CORPORATION, MAYNARD,
MASSACHUSETTS.

IABLE OF CONTENTS: SECTION #

INTRODUCTION .. 1. O. 0

OPERATION. .. 2. O. 0
LOADING THE CROSS-ASSEMBLER , 2. 1. 0
CALL I NG SEQUENCE. .. 2. 2. 0
INPUT/OUTPUT FILE EXTENSIONS. .. 2. 3. 0
RUN-TIME OPTIONS. .. 2. 4. 0

ASSEMBLER CHARACTER SET. .. 3. O. 0

STATEMENT FORMAT. .. 4. O. 0
CODING CONVENTIONS. .. 4. 1. 0
LABELS. .. 4. 2. 0
OPERATORS. .. 4. 3. 0
OPERANDS. .. 4. 4. 0
TERMS AND EXPRESSIONS. .. 4. 5. 0

NUMERIC CONSTANTa. .. ~ O. 0
CONSTANTS WITH RADIX INDICATORS.................... 5. 1. 0
CONSTANTS WITH ASCII INDICATORS 5.2.0

SYMBOLS ... " 6. O. 0
PERMANENT SYMBOLS. .. 6. 1. 0
USER DEFINED SYMBOLS. .. 6. 2. 0
LOCAL SYMBOLS. .. 6. 3. 0

CURRENT LOCATION COUNTER. .. 7. O. 0

ARITHMETIC OPERATOR SET. .. 8. O. 0
UNARY OPERATORS. .. 8. 1. 0

BYTE ACCESS OPERATORS (· L AND ·"M). 8. 1. 2
THE COMPLEMENT OPERATOR (AC).................... 8. 1.3
? OPERATOR. .. 8. 1. 4

B I NARY OPERA TORS. .. :3. 2. 0

PSEUDO-OPERATORS. " 9. O. 0
ASSIGNMENT PSEUDO-OPS. .. 9. 1.. 0

· EQU. .. 9. 1. 1
· SET. .. 9. 1.2
· DINST. .. 9. 1. 3
· ORG. .. 9. 1.4

DEFAULT RADIX PSEUDO-OPS " 9. 2. 0

TABLE OF CONTENTS: (CONT.) SECTION #

DATA STORAGE PSEUDO-OPS. .. 9. 3. 0
· BYTE. .. 9. 3. 1
· DBYTE. .. 9. 3. 2
· ADDR. .. 9.3.3
· ZERO. .. 9. 3. 4

LISTING CONTROL DIRECTIVES. .. 9. 4. 0
· LIST. .. 9. 4. 1
· PAGE. .. 9.4.2
· TI TLE' .. 'i'. 4. 3

CONDITIONAL ASSEMBLY PSEUDO-OPS. 9. 5. 0
IFZERO. .. 9. 5. 1
IFNZRO. .. ~/. 5. 2
IFDEF , 9. 5. 3
IFNDEF. .. 9. 5. 4

· ENDe. .. -;-/, 5. ~;

. END PSEUDO-OP " 9. 6. 0

ERROR MESSAGES .. 1,0. O. 0

MODIFICATION NOTES 1,1. O. 0

CROSS ASSEMBLER SPECIFICS 12 O. 0
CROSS-ASSEMBLER FILE NAMES 12. 1. 0
RESERVED SYMBOLS 12. 2. 0
RELATIVE ADDRESS CALCULATIONS 12 3. 0
LISTING FORMAT 12.4.0
B I NARY FILE OUTPUT. 12. ~i. 0
ADDITIONAL ERROR MESSAGE FOR THE XZ80 12. 6. 0
SAMPLE PROGRAM 12. 7. 0

MICROPROCESSOR INSTRUCTION SET 13. O. 0

APPEND ICES. 14. O. 0
RUN-TIME OPTIONS APPENDIX A
INDICATOR SET APPENDIX B
PSUEDO-OPS. APPEND I X C
ERROR MESSAGES APPENDIX D

41:1. O. 0
• 1. o. 0 INTRODUCTION.

THIS MANUAL DESCRIBES ONE OF THE XS (CROSS EIGHT) SERIES OF MICRO­
PROCESSOR CROSS-ASSEMBLERS SIERRA DIGITAL SYSTEMS HAS DEVELOPED FOR
POPS USERS. THE XS SERIES WILL HANDLE ALL OF THE POPULAR MICRO­
PROCESSORS WITHIN A UNIVERSAL ASSEMBLER FORMAT. THIS COMMON BASE
OF ASSEMBLER DIRECTIVES AND TECHNIQUES IS A SELECTED COMBINATION OF
DESIRABLE FEATURES OBSERVED IN A SURVEY OF MANY EXISTING MINI­
COMPUTER AND MICROPROCESSOR ASSEMBLERS. THE INSTRUCTION MNEMONICS
AND ASSOCIATED SYNTAX OF EACH PARTICULAR MICROPROCESSOR ARE
RETAINED UNCHANGED.

THIS MANUAL DESCRIBES THE USAGE OF ONE OF THE MICROPROCESSOR CROSS­
ASSEMBLERS FROM THE SIERRA DIGITAL XS SERIES. IN ORDER TO SIMPLIFY
THE LEARNING PROCESS FOR INDIVIDUALS USING MORE THAN ONE CROSS­
ASSEMBLER FROM THE SERIES, THIS MANUAL HAS BEEN DIVIDED INTO TWO
MAJOR PARTS. SECTIONS 1 THROUGH 11 DOCUMENT THE UNIVERSAL ASSEMBLER
FORMAT AS IT APPLIES TO ALL CROSS-ASSEMBLERS IN THE SERIES. THESE
SECTIONS WILL BE IDENTICAL IN EVERY CROSS-ASSEMBLER MANUAL.
SECTION 12 PRESENTS INFORMATION ON APPLICATION OF THE UNIVERSAL
ASSEMBLER FORMAT TO THE SPECIFIC MICROPROCESSOR CROSS-ASSEMBLER.
SECTION 13 PRESENTS A SUMMARY OF THE MNEMONIC INSTRUCTION CODES
ASSIGNED BY THE MICROPROCESSOR VENDOR AND RECONIZED BY THE CROSS­
ASSEMBLER. NO ATTEMPT HAS BEEN MADE TO DESCRIBE THE OPERATION OF
THE MICROPROCESSOR ITSELF. SUCH INFORMATION MUST BE OBTAINED FROM
THE MICROPROCESSOR VENDOR OR OTHER SOURCES. SECTION 14, THE APPEN­
DICES, CONTAINS SUMMARY TABLES FOR QUICK REFERENCE ONCE THE USER
GAINS EXPERTISE IN USING THE CROSS-ASSEMBLER.

WE AT SIERRA DIGITAL LOOK FORWARD TO DEVELOPING MORE ASSEMBLERS IN
OUR XS SERIES TO PROVIDE YOU, THE USER, WITH THE MEANS OF
PIONEERING THE NEW WORLD OF MICROPROCESSORS.

* 2. Q 0 OPERATIO~

SIERRA DIGITAL~S CROSS-ASSEMBLER IS AN SK, TWO PASS ASSEMBLER WHICH
RUNS UNDER THE OS/S OPERATING SYSTEM. THE CROSS-ASSEMBLER IS CODED
IN PDP/S ASSEMBLY LANGUAGE (PALS) TO GIVE FAST EXECUTION TIMES.
(LESS THAN 30 SECONDS FOR A NORMAL 4K BYTE PROGRAM IS TYPICAL).

PASS 1 READS THE INPUT FILES AND SETS UP THE SYMBOL TABLES. PASS 2
THEN GENERATES THE OUTPUT FILE IN THE BINARY (OBJECT) FORMAT OF THE
PARTICULAR MICROPROCESSOR. THE OUTPUT FILE CAN BE CHANGED TO BNPF
FORMAT THROUGH USE OF THE /B RUN-TIME OPTION.

A THIRD ASSEMBLY PASS IS DONE WHEN A LISTING OUTPUT FILE IS SPECI­
FIED. WHEN NO BINARY FILE IS SPECIFIED, THE ASSEMBLER GOES DIRECTLY
TO THE PASS 3 LISTING.

#2. O. 0

THE CROSS-ASSEMBLER IS NOT RESTARTABLE. IF AN ATTEMPT IS MADE TO
RESTART THE ASSEMBLER WITH A . ST COMMAND, THE KEYBOARD MONITOR
RETURNS A "NO!!" .

TYPING CTRL/C WILL HALT ASSEMBLY AND CAUSE AN IMMEDIATE EXIT TO THE
KEYBOARD MONITOR.

TYPING CTRL/O AT THE KEYBOARD DURING ASSEMBLY WILL SUPPRESS THE
LISTING OF ERROR MESSAGES TO THE CONSOLE DURING PASSES 1 AND 2. THE
OUTPUT FILE WILL STILL SHOW THE ERROR MESSAGES IMMEDIATELY BEFORE
THE LINE THAT IS IN ERROR.

2. 1. 0 LOADING AND SAVING THE CROSS-ASSEMBLER.

THE CROSS-ASSEMLER IS PROVIDED IN BINARY FORMAT ON PAPER TAPE OR IN
BOTH BINARY AND IMAGE FORMATS ON FILE-STRUCTURED MEDIA.

TO .LOAD THE ASSEMBLER FROM PAPER TAPE AND SAVE IT, PLACE THE TAPE
IN THE READER AND CALL THE ABSOLUTE LOADER:

· R ABSLDR
*PTR:$

· SAVE SYS: XNAME

FROM FILE STRUCTURED MEDIA, THE IMAGE FORMAT PROGRAM MAY BE COPIED
DIRECTLY TO THE SYSTEM DEVICE OR THE BINARY FORMAT FILE MAY BE
LOADED WITH THE ABSOLUTE LOADER. MODIFICATIONS TO THE IMAGE FILE,
SUCH AS INVERTING THE SENSE OF A RUN-TIME OPTION, MAY BE
IMPLEMENTED ACCORDING TO THE NOTES IN SECTION # 11. O. 0 .

2. 2. 0 CALLING SEQUENCE.

ONCE LOADED AND SAVED, THE CROSS-ASSEMBLER IS CALLED FROM THE
SYSTEM DEVICE BY TYPING:

· R XNAME

THE ASSEMBLER CALLS THE COMMAND DECODER WHICH RESPONDS WITH AN
ASTERISK IN THE LEFT HAND MARGIN. THE USER MAY THEN TYPE IN THE
INPUT AND OUTPUT FILE SPECIFICATIONS AND RUN-TIME OPTIONS:

*DEV:BIN,DEV:LIST<DEV: IN1, ... DEV: IN9/0PT

THE FIRST OUTPUT FILE IS THE MICROPROCESSOR BINARY OBJECT FILE
WRITTEN IN THE FORMAT SPECIFIED BY THE VENDOR OF THE PARTICULAR
MICROPROCESSOR. (SEE SECTION 12. O. 0 FOR THE FORMAT SPECIFICATIONS),

• 2. 2. 0

THE SECOND OUTPUT FILE IS THE OPTIONAL LISTING. WHEN ONLY THE FIRST
OUTPUT FILE IS SPECIFIED, THE ASSEMBLER ASSUMES THAT IT WILL BE THE
BINARY OUTPUT FILE AND THE LISTING IS OMITTED.

THE FOLLOWING EXAMPLE SPECIFIES FILE "IN1" TO BE READ FROM DEC TAPE
o AND THE BINARY (OBJECT) FILE TO BE OUTPUT TO THE PAPER TAPE PUNCH
WITH NO LISTING:

· R XNAME
*PTP:<DTAO: IN1

THIS EXAMPLE SPECIFIES 2 FILES AS THE SOURCE INPUT (FROM THE DSK:
DEVICE) WITH ONLY THE PASS 3 LISTING BEING OUTPUT TO THE LINE
PRINTER:

· R XNAME
*,LPT:<IN1,IN2

UP TO NINE INPUT FILES CAN BE SPECIFIED AS ONE PROGRAM WHERE THE
LAST FILE IS TERMINATED WITH AN . END STATEMENT.

* 2.3.0 INPUT/OUTPUT FILE EXTENSIONS.

IF THE EXTENSION TO AN INPUT FILE NAME IS OMITTED, THE ASSEMBLER
ASSUMES THE . MS EXTENSION. IF THERE IS NO FILE WITH THAT NAME AND
AN . MS EXTENSION, THE ASSEMBLER ASSUMES THE NULL EXTENSION. UNLESS
EXTENSIONS ARE SPECIFIED, THE . MB AND . LS EXTENSIONS ARE ADDED TO
THE OUTPUT BINARY AND LISTING FILES.

· MB - MICROPROCESSOR BINARY OUTPUT FILE EXTENSION.
· LS - OUTPUT LISTING FILE EXTENSION.
· MS - MICROPROCESSOR SOURCE FILE EXTENSION.

* 2. 4. 0 RUN-TIME OPTIONS.

TABLE *1 DESCRIBES THE OPTIONS WHICH MAY BE SPECIFED AT RUN-TIME
IN THE INPUT LINE TO THE COMMAND DECODER.

IF ONE OR MORE OF THESE OPTIONS IS CONTINUALLY CALLED, THE USER
SHOULD CONSIDER MODIFYING THE ASSEMBLER TO INVERT THE SENSE OF THE
OPTION. THE MODIFICATION NOTES IN SECTION *11. O. 0 EXPLAIN HOW THIS
MAY BE DONE. FOR EXAMPLE, A USER WHO PREFERS TO OUTPUT FILES IN
BNPF FORMAT RATHER THAN BINARY CAN INVERT THE SENSE OF THE /B
OPTION. THEN THE BINARY FILES ARE NORMALLY WRITTEN IN BNPF FORMAT.
USE OF THE /B OPTION THEN CAUSES THE OUTPUT FILE TO BE WRITTEN IN
THE STANDARD MICROPROCESSOR BINARY CODE. SPACE IS PROVIDED IN
TABLE *1 TO CHECK OFF WHICH OPTIONS HAVE BEEN INVERTED FOR YOUR
REFERENCE.·

TABLE #1. RUN-TIME OPTIONS. #2. 4. 0

**
OPTION MEANING INVERT?
**
/B THE BINARY OUTPUT FILE IS WRITTEN IN BNPF FORMAT. ------­

INSTEAD OF IN THE MICROPROCESSOR VENDOR~S STANDARD
BINARY FORMAT.

FOR THE BNPF FORMAT, THE BINARY OUTPUT IS CONVERTED
TO ASCII TEXT WHERE

"B" INDICATES THE BEGINNNING OF A BYTE,
"F" INDICATES THE END OF A BYTE,
liP" INDICATES A 1 BIT AND
liN" INDICATES A OBIT.

FOUR BYTES , SEPARATED BY SPACES, ARE WRITTEN PER
LINE. THE ADDRESS OF THE FIRST BYTE IS GIVEN IN
SIX DIGIT OCTAL AT THE BEINNING OF THE LINE.
LEADING ZEROES IN THE ADDRESS ARE CONVERTED TO
SPACES. EACH LINE IS PRECEDED BY 2 SPACES. LEADER
CONSISTS OF 100 NULL CHARACTERS WITH 20 RUBOUTS
IMMEDIATELY PRECEEDING AND FOLLOWING THE ASCII
TEXT.

EXAMPLE: THE FOLLOWING CODE IS SHOWN REWRITTEN IN
BNPF FORMAT.

.ORG

. BYTE
100
27, C7,AF, D7,FF, 72,0, DO

100 BNNPNNPPPF BPPNNNPPPF BPNPNPPPPF BPPNPNPPPF
104 BPPPPPPPPF BNPPPNNPNF BNNNNNNNNF BPPNPNNNNF

/E INHIBIT ERROR MESSAGES TO THE CONSOLE. ------­
NORMALLY ERROR MESSAGES ARE OUTPUT TO THE CONSOLE
DURING ASSEMBLY PASSES 1 AND 2. SINCE ERROR MESS-
AGES ARE INCLUDED IN THE LISTING, USERS WITH SLOW
CONSOLE DEV I CES SUCH AS TTY" S CAN SPEED ASSEMBL Y
TIME WITH THIS OPTION.

ALSO, IF THE BINARY FILE IS TO BE OUTPUT TO THE
CONSOLE DEVICE, THE ERROR MESSAGES AND BINARY
OUTPUT LINES WILL BE INTERMIXED. THE /E OPTION WILL
INHIBIT ALL BUT FATAL ERROR MESSAGES SO THAT ONLY
THE BINARY FILE IS OUTPUT.

**

TABLE *1. RUN-TIME OPTIONS. (CONT.) *2.4.0

**
OPTION MEANING INVERT?
**

/H INHIBIT HEADINGS AND PAGINATION. ------­
NORMALLY, THE ASSEMBLER AUTOMATICALLY PAGES THE
OUTPUT, ADDING A HEADER TO THE TOP OF THE PAGE. USE
OF THE /H OPTION WILL ELIMINATE THE HEADING AND THE
PAGINATION.

/J LIST UNASSEMBLED STATEMENTS AND CONDITIONAL ------­
ASSEMBLY PSEUDO-OPS.
STATEMENTS WHICH DO NOT GET ASSEMBLED DUE TO
CONDITIONAL ASSEMBLY PSEUDO-OPS ARE NORMALLY NOT
LISTED. NEITHER ARE THE CONDITIONAL PSEUDO-OPS
THEMSELVES. USE OF THE /J OPTION WILL ADD THESE
STATEMENTS TO THE LISTING.

/K EXPAND SYMBOL TABLE STORAGE INTO EXTRA CORE. ------­
NORMALLY MOST OF FIELD 1 IS USED FOR BOTH LOCAL AND
NORMAL USER SYMBOL STORAGE. USE OF THE /K OPTIONS
EXPANDS CORE USAGE TO 12K WHERE THE LOCAL SYMBOL
TABLE RESIDES IN FIELD 2 AND THE REGULAR SYMBOL
TABLE RESIDES IN FIELD 1.

/L OUTPUT LEADER IN BINARY FILE FOR . ORG STATEMENTS ------­
THIS OPTION MAY BE USED TO PHYSICALLY SEPARATE
DISCONTINUOUS SECTIONS OF THE BINARY OUTPUT ON A
PAPER TAPE.

/0 OUTPUT LISTING WITH BINARY CODE IN OCTAL FORMAT. ------­
THE GENERATED BINARY CODE IS NORMALLY PRINTED IN
HEXADECIMAL AT THE LEFT OF THE PROGRAM STATEMENTS
IN THE LISTING FILE. THE /0 OPTION WILL CAUSE THE
BINARY CODE TO BE LISTED IN OCTAL INSTEAD OF
HEXADECIMAL.

/N LIST ONLY THE SYMBOL TABLE. ------­
THE THIRD PASS LISTING NORMALLY CONSISTS OF THE
STATEMENT LISTING PLUS THE USER SYMBOL TABLE
LISTING. THE /N OPTION CAUSES ONLY THE SYMBOL TABLE
TO BE LISTED.

/P INCLUDE NORMALLY UNLISTED PSEUDO-OPS IN THE LISTING------­
SOME PSEUDO-OPS WILL NOT BE LISTED BY PASS 3 UNLESS
THE /P OPTION IS USED.

/S OMIT THE SYMBOL TABLE FROM LISTING. ------­
ONLY THE PROGRAM STATEMENTS ARE LISTED WITH THIS
OPTION.

**

TABLE #1. RUN-TIME OPTIONS. (CONT.) #2. 4. 0

**
OPTION MEANING INVERT?
**
/T REPLACE FORM/FEED WITH 3 CR/LF" S. ------­

WHEN LISTING TO A DEVICE SUCH AS A TTY WHICH DOES
NOT HAVE A FORM/FEED CONTROL, USE OF THE /T OPTION
WILL REPLACE THE FORM/FEED WITH 3 BLANK LINES .

/W INHIBIT WARNING MESSAGES. ------­
WHEN WARNING MESSAGES CAN BE SAFELY IGNORED, THIS

/0
TO /9

OPTION WILL PREVENT THEM FROM BEING OUTPUT.

USER FLAGS, USED WITH THE ? OPERATOR, SEE SECTION
8.1.4 .

**

3. O. 0 ASSEMBLER CHARACTER SET.

THE FOLLOWING CHARACTERS ARE LEGAL SOURCE CODE CHARACTERS:

1) ALPHABETICS A-Z, UPPER CASE ASCII
2) NUMERICS 0-9
3) THE SPECIAL CHARACTERS LISTED BELOW.

*
/
8c

+

[]

" OR .'
?

MULTIPLICATION
DIVISION
BOOLEAN AND
INCLUSIVE OR
ADDITION
SUBTRACTION
PRECEDENCE INDICATORS
UNIVERSAL UNARY OPERATOR (UPARROW). USED WITH:

AC - COMPLEMENT (UPARROW C)
· B - BINARY RADIX INDICATOR <UPARROW B)
· D - DECIMAL RADIX INDICATOR (UPARROW D)
· H - HEXADECIMAL RADIX INDICATOR (UPARROW H)
· 0 - OCTAL RADIX INDICATOR (UPARROW 0)
· L - LEAST SIGN I F I CANT BYTE ACCESS OPERATOR
· M - MOST SIGN I F I CANT BYTE ACCESS OPERATOR

COMMENT INDICATOR
ASCII INDICATOR
USER FLAG OPERATOR
CURRENT LOCATION COUNTER (PERIOD)

* 3. o. 0

THE CARRIAGE RETURN CHARACTER IS RECOGNIZED AS THE TERMINATOR FOR
EACH SOURCE LINE. THE LINE-FEED, RUBOUT, FORM-FEED, AND NULL
CHARACTERS ARE IGNORED BY THE ASSEMBLER. FORM-FEED CHARACTERS
OCCURING IN THE SOURCE HAVE NO AFFECT ON THE LISTING. ALL ASCII
CHARACTERS MAY BE USED IN THE COMMENT FIELD OF A STATEMENT.

* 4. o. 0 STATEMENT FORMAT.

STATEMENTS ARE WRITTEN IN THE GENERAL FORM:

LABEL OPERATOR OPERAND ; COMMENT

LABELS MUST START IN COLUMN 1. THEY MAY BE DIRECTLY FOLLOWED WITH
AN OPTIONAL COMMA IF DESIRED. THE MODIFICATION NOTES EXPLAIN HOW TO
REPLACE THE COMMA WITH ANOTHER DELIMITER SUCH AS A COLOK

OPERATORS MUST BE SEPARATED FROM THE LABEL WITH AT LEAST ONE SPACE
OR TAB. WHEN NO LABEL IS PRESENT, THE OPERATOR MAY BEGIN IN ANY
COLUMN BEYOND COLUMN 1.

THE OPERAND (IF ANY) MUST BE SEPARATED FROM THE OPERATOR WITH AT
LEAST ONE SPACE OR TAB.

THE COMMENT (IF ANY) MUST BE SEPARATED FROM THE OPERAND (OR
OPERATOR IF THERE IS NO OPERAND BY A SEMICOLON (;).

AN INPUT LINE MAY BE UP TO 127 CHARACTERS LONG (NOT INCLUDING THE
CARRIAGE RETURN>' WHEN THE INPUT LINES ARE OUTPUT TO THE LISTING
FILE, ANY CHARACTERS AFTER THE 72D COLUMN ARE WRITTEN ON THE NEXT
LINE(S) BEGINNING AT THE 25TH COLUMN OF THE FIRST SOURCE LINE
(NORMAL COMMENT COLUMN>. SEE THE MODIFICATION NOTES IN SECTION
*11. o. 0 TO ADJUST FOR NARROWER OR WIDER PAGE OUTPUT. THE CARRIAGE
RETURN IS A TERMINATOR FOR BOTH THE STATEMENT AND THE LINE. ONLY
ONE STATEMENT IS ALLOWED PER 127 CHARACTER LINE.

4. 1. 0
4. 1. 0 CODING CONVENTIONS:

ALTHOUGH THE ASSEMBLER WILL ACCEPT PROGRAMS WRITTEN IN FREE FORMAT,
THE USE OF TABS MAKES FOR MORE READABLE CODE. TAB STOPS ARE SET
EVERY 8 CHARACTERS IN THE LINE SO THAT THE USE OF THE TAB KEY
SIMPLIFIES INPUT. GENERALLY:

LABELS
OPERATORS
OPERANDS
COMMENTS

OCCUPY THE FIRST TAB FIELD, COLUMNS 1 THROUGH 8
OCCUpy THE SECOND TAB FIELD, COLUMNS 9 THROUGH 16.
OCCUpy THE THIRD TAB FIELD, COLUMNS 17 THROUGH 24.
OCCUpy THE REMAINING FIELDS, COLUMNS 25 THROUGH 127.

4. 2. 0 LABELS.

A LABEL IS A SYMBOL WHICH PRECEDES THE OPERATOR AND MUST FOLLOW THE
SYMBOL NAMING CONVENTIONS DESCRIBED IN SECTION # 6. 2. O. IN ALL BUT
THE SYMBOL DEFINITION PSEUDO-OPS, <. EQU, . SET, . DINST) THE LABEL
IS A LOCATION TAG AND IS EQUAL TO THE VALUE OF THE CURRENT LOCATION
COUNTER.

EXAMPLE:

2 1
o 6

201 1
LABELl
LABEL2

.ORG

. EQU

. BYTE

201
6
1

; LABEL1=6
. iLABEL2=LOCATION TAG=201

NOTE THAT A JUMP TO LABELl WILL TRANSFER TO ADDRESS 6 WHILE A JUMP
TO LABEL2 GOES TO ADDRESS 201.

A LABEL LACKING BOTH AN OPERATOR AND OPERAND IS SET EQUAL TO THE
VALUE OF THE NEXT ADDRESS TO BE ASSEMBLED. IF USED AT THE
BEGINNING OF THE PROGRAM, IT IS SET EQUAL TO THE VALUE OF THE FIRST
ADDRESS. WHEN A SOLITARY LABEL IS FOLLOWED BY AN .ORG STATEMENT,
IT RETAINS THE ORIGINAL VALUE ASSIGNED BEFORE THE ORIGIN CHANGE.

4.3.0 OPERATORS.

AN OPERATOR IS A MNEMONIC WHICH INDICATES
PERFORMED AND IS EITHER A PSEUDO-OP OR ONE OF
INSTRUCTIONS. PSEUDO-OPS ARE DESCRIBED IN
MICROPROCESSOR INSTRUCTION SET IS DESCRIBED IN
THESE OPERATORS SHOULD NOT BE CONFUSED WITH
USED IN OPERAND EXPRESSIONS.

THE ACTION TO BE
THE MICROPROCESSOR

SECTION #9. O. O. THE
SECTION #13. O. 0

ARITHMETIC OPERATORS

* 4. 4. 0 * 4. 4. 0 OPERANDS.

AN OPERAND REPRESENTS THE PART OF THE INSTRUCTION WHICH IS TO BE
ACTED ON. IT CAN BE A TERM OR AN EXPRESSION.

THE. BYTE, . DBYTE, AND. ADDR PSEUDO-OPS CAN HAVE MULTIPLE OPERANDS.

REFER TO THE EXPLANATION OF EACH OPERATOR FOR THE PROPER OPERAND
FORMAT.

IT SHOULD BE NOTED THAT OPERAND EXPRESSIONS ARE EVALUATED TO A
SINGLE NUMERICAL VALUE BY THE ASSEMBLER. BINARY CODE IS NOT
GENERATED TO MAKE THE MICROPROCESSOR EVALUATE THE EXPRESSION.

* 4. 5. 0 TERMS AND EXPRESSIONS.

A TERM IS A SINGLE VALUE, A CONSTANT OR SYMBOL. THE CURRENT
LOCATION COUNTER (REPRESENTED BY A PERIOD) IS CONSIDERED A TERM.

TERMS ARE COMBINED WITH OPERAND ARITHMETIC OPERATORS TO FORM
EXPRESSIONS.

EXAMPLE: IN THE INSTRUCTION BELOW THE OPERAND IS AN EXPRESSION
WHICH HAS TWO ARITHMETIC OPERATORS AND THREE TERMS.

SYMBOL . EQU l+NEW * 15

16 BIT INTEGER ARITHMETIC IS USED TO EVALUATE EXPRESSIONS.

* 5. O. 0 NUMERIC CONSTANTS.

A CONSTANT IS A NUMERIC VALUE REPRESENTED BY A STRING OF DIGITS.
THE DEFAULT RADIX OR TEMPORARY RADIX INDICATORS IDENTIFY THE RADIX
OF THE CONSTANT. A CONSTANT WITHOUT ANY TEMPORARY RADIX INDICATOR
IS CONSIDERED TO BE IN THE DEFAULT RADIX, WHICH IS INITIALLY
HEXADECIMAL.

EXAMPLE: THE HEXADECIMAL NUMBER 16 (22 IN BASE 10) IS STORED IN
"VALUE" :

o 16 VALUE . EQU 16

THE MAXIMUM VALUE FOR A CONSTANT IS 65535 (BASE 10 UNSIGNED>'

THE MINIMUM VALUE FOR A CONSTANT IS -32768 (BASE 10 SIGNED).

5. 1. 0
5. 1. 0 CONSTANTS WITH RADIX INDICATORS.

CONSTANTS IN A BASE DIFFERENT FROM THAT OF THE DEFAULT RADIX CAN BE
SPECIFIED THROUGH USE OF THE TEMPORARY RADIX INDICATORS. THESE
INDICATORS ARE VERY USEFUL FOR ENTERING INDIVIDUAL CONSTANTS.
HOWEVER. IF A LARGE GROUP OF VALUES IN ANOTHER RADIX MUST BE
ENTERED. IT IS MORE CONVENIENT TO CHANGE THE DEFAULT RADIX USING
THE PSUEDO-OPS DESCRIBED IN SECTION # 9. 2. 0 .

THE TEMPORARY RADIX INDICATORS ARE:

·"B BINARY
·"0 DECIMAL
..... H HEXADECIMAL
·"0 OCTAL

THE ." IS THE UPARROW CHARACTER (UNIVERSAL UNARY OPERATOR>'

A HEXADECIMAL CONSTANT WHICH DOES NOT BEGIN WITH A NUMBER SHOULD BE
WRITTEN WITH A LEADING ZERO TO DISTINGUISH IT FROM FROM A SYMBOL. A
RADIX INDICATOR PRECEDING A SYMBOL IS IGNORED.

EXAMPLE: THE FIRST STATEMENT IS VALID. THE SECOND IS NOT.

VALUE . EQU
VALUE . EQU

·"HOA302
·"HA302

iVALUE=A302. BASE 16
iVALUE = SYMBOL A302

SINCE THE SYMBOL A302 MAY NOT EXIST. THE SECOND STATEMENT WILL
PROBABLY CAUSE AN UNDEFINED SYMBOL ERROR. TEMPORARY RADIX
INDICATORS AFFECT THE NEXT DIGIT STRING IN THE EXPRESSION UNLESS A
SYMBOL NAME OR BINARY OPERATOR OCCURS FIRST. IN THAT CASE. THE
TEMPORARY RADIX INDICATOR WOULD BE IGNORED. NO ERROR MESSAGE IS
GIVEN.

5.2.0 CONSTANTS WITH ASCII INDICATORS.

THE .. AND .- I ND I CATORS ARE USED TO FORM THE 7 BIT ASC I I VALUE OF A
CHARACTER. THERE ARE FOUR ACCEPTABLE WAYS TO WRITE THE INDICATORS:

"A" OR "A OR ·-A·' OR ;A ALL EQUAL 41 (BASE 16),

NOTE THAT THE CLOSING QUOTE IS OPTIONAL. BUT IF USED IT MUST MATCH
THE OPENING QUOTE. ONLY ONE CHARACTER CAN FOLLOW THE INDICATOR.

THE "IS SPECIALLY HANDLED IN THE. BYTE PSEUDO-OP WHERE IT IS USED
TO INPUT TEXT STRINGS. SEE SECTION # 9. 3. 1 .

.. o. O. 0

.. o. O. 0 SYMBOLS.

THE WORD "SYMBOL" IS USED HERE AS A GENERAL TERM FOR ANY MNEMONIC
WHICH IS TO HAVE A VALUE. THIS IS IN CONTRAST TO AN OPERATOR, WHICH
IS A MNEMONIC WHICH SPECIFIES A PROCESS.

A LABEL IS A SYMBOL THAT PRECEDES AN OPERATOR IN THE STATEMENT. IF
THE LABEL IS USED TO STORE THE VALUE OF THE CURRENT LOCATION
COUNTER, IT IS CALLED A LOCATION TAG .

.. O. 1. 0 PERMANENT SYMBOLS.

PERMANENT SYMBOLS ARE THE CROSS-ASSEMBLER PSEUDO-OPS AND
MICROPROCESSOR OPERATORS. IF NECESSARY, THE . DINST STATEMENT CAN BE
USED TO RENAME A MICROPROCESSOR OPERATOR. THE CROSS-ASSEMBLER
PSEUDO-OPS CANNOT BE USED IN A . DINST INSTRUCTION. THE TABLES IN
THE APPENDICES SUMMARIZE THE PERMANENT SYMBOL SET .

.. O. 2. 0 USER DEFINED SYMBOLS.

THESE SYMBOLS CAN BE LOCATION TAGS OR REPRESENT A VALUE.

A SYMBOL IS A STRING OF FROM ONE TO SIX ALPHANUMERIC CHARACTERS
DELIMITED BY A NON-ALPHANUMERIC CHARACTER. USER-DEFINED SYMBOLS
MUST CONFORM TO THE FOLLOWING RULES:

1) THE CHARACTERS MUST BE LEGAL ALPHA-NUMER I CS.
(A-Z OR 0-9)

2) THE FIRST CHARACTER MUST BE ALPHABETIC (A-Z).
3) ONLY THE FIRST SIX CHARACTERS ARE USED, ANY

OTHERS ARE IGNORED. SYMBOLS ARE STORED IN THE
SYMBOL TABLE AND REFERENCED ONLY BY THE FIRST
S I X CHARACTERS.

4) A USER-DEFINED SYMBOL CANNOT HAVE THE SAME
NAME AS ANY OF THE PERMANENT SYMBOL NAMES.
AS THE PERIOD IS CONSIDERED AS PART OF THE
ASSEMBLER PSEUDO-OP NAME, A USER-DEFINED SYM­
BOL WHICH IS IDENTICAL EXCEPT FOR THE LEADING
PERIOD IS LEGAL.

.. 6. 3. 0
.. 6. 3. 0 LOCAL SYMBOLS.

OFTEN, WHEN PROGRAMMING SHORT SECTIONS OF CODE WHICH INVOLVE
NUMEROUS ~UMP OR BRANCHING INSTRUCTIONS, THE USER FINDS IT
DIFFICULT TO CREATE MEANINGFUL LABELS THAT WILL NOT CONFLICT WITH
OTHER SYMBOLS IN THE PROGRAM. IN CASES LIKE THIS, LOCAL SYMBOLS CAN
BE USED INSTEAD OF REGULAR SYMBOLS.

LOCAL SYMBOLS HAVE THE FORMAT "$N" WHERE "N" IS A DECIMAL INTEGER
FROM 0-255 INCLUSIVE.

LOCAL SYMBOLS MUST
BLOCKS. LOCAL SYMBOL
ON A STATEMENT HAVING
END ON THE STATEMENT
SYMBOL LOCATION TAG.
. SET PSEUDO-OPS ARE
SYMBOL BLOCKS.

BE DEFINED AND REFERENCED WITHIN LOCAL SYMBOL
BLOCKS ARE SECTIONS OF THE PROGRAM THAT START
A REGULAR SYMBOL USED AS A LOCATION TAG AND
.JUST BEFORE THE OCCURANCE OF THE NEXT REGULAR
NOTE THAT LABELS FOR THE . EQU, . DINST AND

NOT LOCATION TAGS AND DO NOT DELIMIT LOCAL

THERE IS NO EFFECTIVE LIMIT TO THE SIZE OF A LOCAL SYMBOL BLOCK.

THE SAME LOCAL SYMBOL CAN BE DEFINED AND USED IN AN UNLIMITED
NUMBER OF LOCAL SYMBOL BLOCKS.

EXAMPLE:

TAGl · BYTE "TEXT" iSYMBOL BLOCK BEGINS
$1 · EQU VALUE i DEFINE LOCAL $1
$2 · EQU -1 iDEFINE LOCAL $2
VALU1 · EQU $1-$2 iCALCULATE NEW VALUE
TAG2 · BYTE "TEXT" iNEW SYMBOL BLOCK
$1 · EQU VALUl i DEFINE LOCAL $1
$2 · EQU -2 iDEFINE LOCAL $2
VALU2 · EQU $1*$2 i CALCULATE NEW VALUE.
TAG3 · BYTE "TEXT" iENDS SECOND BLOCK

.. 7. O. 0 CURRENT LOCATION COUNTER.

THE CURRENT LOCATION COUNTER IS INDICATED BY A PERIOD. IT
REPRESENTS THE ADDRESS OF THE NEXT BYTE TO BE ASSEMBLED.

THE CURRENT LOCATION COUNTER CANNOT BE USED IN THE LABEL FIELD.

.. 7. O. 0

AT THE BEGINNING OF THE SOURCE INPUT THE CURRENT LOCATION COUNTER
IS SET TO ZERO. IT CAN BE REASSIGNED THROUGH USE OF THE . ORG
PSEUDO-OP.

EXAMPLE:

o 60
o 0

60 22
1 00

100 10

VALUE
TAG

TAGl

.ORG
· EQU
· BYTE
.ORG
· BYTE

60
o

22
100

10

i INITIAL ADDRESS
i NO EFFECT ON .

. = 60 (BASE 8)
i REASSIGN COUNTER
i . = 100

LOCATION TAGS ARE ALWAYS SET EQUAL TO THE VALUE OF THE CURRENT
LOCATION COUNTER WHEN THEY ARE ASSEMBLED. IN THE EXAMPLE ABOVE, THE
LOCATION TAG "TAG" = 60.

THE CURRENT LOCATION COUNTER IS AUTOMATICALLY UPDATED IN THE
ASSEMBLER AS SOON AS THE CURRENT INSTRUCTION IS ASSEMBLED. NOTE
THAT IN THE MULTI-OPERAND DATA STORAGE PSEUDO-OPS, <. BYTE, . DBYTE,
AND . ADDR) THE LOCATION COUNTER IS CHANGING AS THE OPERANDS ARE
ASSEMBLED.

EXAMPLE: THE LOCATION COUNTER IS USED AS AN OPERAND 3 TIMES IN AN
. AD DR PSEUDO-OP.

0 20 .ORG 20
20 20 0 . ADDR . , . , .
22 22 0
24 24 0
20 20 0

THE CURRENT LOCATION COUNTER USES THE FULL ADDRESS RANGE OF THE
MICROPROCESSOR.

* 8. O. 0 THE ARITHMETIC OPERATOR SET.

THERE ARE TWO TYPES OF ARITHMETIC OPERATORS: UNARY AND BINARY
OPERATORS.

UNARY OPERATORS ACT ON ONLY ONE ITEM, THE TERM OR EXPRESSION
FOLLOW I NG THEM.

BINARY OPERATORS ACT ON TWO ITEMS: THE TERM OR EXPRESSION
PRECEEDING THEM AND THE TERM OR EXPRESION FOLLOWING THEM.

• 8. 1. 0
• 8. 1. 0 UNARY OPERATORS.

THE + (PLUS) AND - (MINUS) UNARY OPERATORS ASSIGN A POSITIVE OR
NEGATIVE SIGN TO THE EXPRESSION FOLLOWING THEM. AN EXPRESSION IS
ASSUMED TO BE POSITIVE IF NOT OTHERWISE SPECIFIED.

8. 1. 2 BYTE ACCESS OPERATORS.

THE AL AND AM (WHERE A IS THE UPARROW CHARACTER) ARE UNARY
OPERATORS WHICH PROVIDE ACCESS TO THE LEAST AND MOST SIGNIFICANT 8
BIT BYTES OF THE VALUE OF AN EXPRESSION OR TERM.

EXAMPLE: TO SET "VALUE" EQUAL TO THE MOST SIGNIFICANT BYTE OF
31361 (BASE 16), THE STATEMENT BELOW IS USED.

VALUE . SET · M3B61 i VALUE = 00313

THIS NEXT STATEMENT TAKES THE LEAST SIGNIFICANT BYTE .

VALUE . SET L3B61 iVALUE = 0061

BYTE ACCESS OPERATORS MAY BE COMBINED WITH THE OTHER UNARY
OPERATORS AND THE RADIX INDICATORS.

8. 1. 3 THE COMPLEMENT OPERATOR.

THE C (UPARROW C) IS A LOGICAL UNARY OPERATOR WHICH COMPLEMENTS
THE EXPRESSION FOLLOWING IT.

EXAMPLE:

VALUE . EQU C7241 iVALUE = 8DBE

THE COMPLEMENT OPERATOR CAN BE COMBINED WITH THE OTHER UNARY
OPERATORS AND THE RADIX INDICATORS.

tt 8. 1. 4
tt 8. 1. 4. ? OPERATOR.

THIS IS THE USER FLAG OPERATOR, A UNARY OPERATOR USED IN CONJUNC­
TION WITH THE COMMAND DECODER USER FLAG OPTIONS (/0 TO /9). IT HAS
THE FORM ?EXPRESSION AND MAY BE USED IN OPERANDS LIKE ANY OTHER
TERM. THE RESULTING VALUE OF THE QUESTION MARK OPERATOR EQUALS 1 IF
THE VALUE OF ITS EXPRESSION MATCHES A USER FLAG THAT WAS SPECIFIED
TO THE COMMAND DECODER AT RUN-TIME. OTHERWISE IT EQUALS O. THIS
OPERATOR IS USEFUL FOR CONTROLLING CONDITIONAL ASSEMBLY AND LISTING
PARAMETERS WITHOUT HAVING TO MODIFY THE SOURCE FILE.

EXAMPLE: THE /2 OPTION WAS SPECIFIED TO THE COMMAND DECODER AT
RUN-TIME.

. R XNAME
*BIN,LOUT<SOURCE/2

THE SOURCE FILE CONTAINS THE FOLLOWING . LIST STATEMENTS:

. LIST ?2-1

. LIST 1

AT THE FIRST . LIST STATEMENT, THE ?2 TERM EQUALS 1 SINCE /2 WAS
SPECIFED AT RUN-TIME. THE OPERAND (?2-1) EQUALS ZERO. THEREFORE
LISTING IS INHIBITED UNTIL THE SECOND . LIST INSTRUCTION. AS THE
OPERAND VALUE OF THIS STATEMENT IS 1, LISTING IS ENABLED AGAIN.
NOTE THAT IF THE /2 OPTION WAS NOT SPECIFIED, THE INSTRUCTIONS
AFTER THE FIRST . LIST WOULD BE INCLUDED IN THE "LOUT" FILE LISTING .

.. 8. 2. 0 BINARY OPERATORS.

SIX SPECIAL CHARACTERS ARE USED TO PERFORM THE FOLLOWING BINARY
OPERATIONS:

* MULTIPLICATION
/ DIVISION
& BOOLEAN AND

INCLUSIVE OR
+ ADDITION

SUBTRACTION

.. 8. 2. 0

THE UNARY OPERATORS TAKE PRECEDENCE OVER THE BINARY OPERATORS
DURING ASSEMBLY. THE * AND / OPERATORS ARE EXECUTED NEXT, THEN THE
OTHER BINARY OPERATORS FROM LEFT TO RIGHT. BRACKETS, [AND], ARE
USED TO CHANGE THE ORDER OF PRECEDENCE WHEN NECESSARY. A [IS A
SHIFT/K ON TTY KEYBOARDS, AND A] IS A SHIFT/M.

EXAMPLE: IN THE STATEMENT BELOW THE OPERAND EXPRESSION IS EVALUATED
IN THIS ORDER: [A* [-B]] + [[2/D] * [AC [AB101]]]

VALUE . EQU

ADDITION AND SUBRACTION ARE ACCOMPLISHED BY TWO~S COMPLEMENT 16 BIT
ARITHMETIC. NO CHECKS FOR OVERFLOW ARE MADE.

MULTIPLICATION IS ACCOMPLISHED BY REPEATED ADDITION. NO CHECKS FOR
SIGN OR OVERFLOW ARE MADE.

DIVISION IS ACCOMPLISHED BY REPEATED SUBRACTION. THE QUOTIENT IS
THE NUMBER OF SUBTRACTIONS PERFORMED. THE REMAINDER IS NOT SAVED.
NO CHECKS ARE MADE FOR SIGN. DIVISION BY ZERO RESULTS IN ZERO.

THE BOOLEAN AND FUNCTION (~) IS A BIT BY BIT LOGICAL AND OF TWO
NUMBERS:

THE BOOLEAN INCLUSIVE OR (!) IS A BIT BY BIT LOGICAL OR OF TWO
NUMBERS.

.. 9. O. 0
.. 9. O. 0 PSEUDO-OPERATORS.

PSEUDO-OPERATORS ARE INSTRUCTIONS TO THE ASSEMBLER WHICH ALLOW
GREATER FLEXIBILTIY IN PROGRAMMING.

A SUMMARY OF THE PSEUDO-OPS AND THEIR FUNCTIONS IS GIVEN IN THE
APPENDIX .

.. 9. 1. 0 ASSIGNMENT PSEUDO-OPS.

ASSIGNMENT PSEUDO-OPS ARE USED TO DEFINE VALUES, INPUT ASCII TEXT
AND REASSIGN THE LOCATION COUNTER .

.. 9. 1. 1 . EQU PSEUDO-OP.

THE . EQU IS USED TO ASSIGN A VALUE TO A SYMBOL. THIS SYMBOL VALUE
CANNOT BE CHANGED ONCE DEFINED. . EQU IS USEFUL FOR ASSIGNING NAMES
TO LOCATIONS WHICH ARE NOT LOADED BY THE OBJECT CODE.

EXAMPLE:

NAME 1 · EQU

.. 9. 1. 2 . SET PSEUDO-OP.

THE . SET IS USED EXACTLY LIKE THE . EQU EXCEPT THAT THE SYMBOL CAN
BE REDEFINED WITH ANOTHER . SET AT ANY POINT IN THE PROGRAM:

EXAMPLE: THE FOLLOWING IS PERFECTLY LEGAL FOR A . SET BUT NOT AN
. EQU.

NAME 1
NAME1

· SET
· SET

NOTE THAT IT IS GOOD PRACTICE TO USE THE . EQU FOR ASSIGNMENTS
RATHER THAN THE . SET EXCEPT (OF COURSE) WHERE THERE IS A SPECIFIC
NEED TO REDEFINE A VALUE. THIS HELPS PREVENT THE ACCIDENTAL
REDEFINITION OF A VALUE IN A PROGRAM .

.. 9. 1. 3 . DINST PSEUDO-OP.

THE . DINST IS USED TO GIVE A MICROPROCESSOR OPERATOR ANOTHER NAME.
THE ORIGINAL OPERATOR NAME WILL STILL BE VALID. NOTE THAT THE
ASSEMBLER PSEUDO-OPS CANNOT BE RENAMED.

#9. 1. 3

EXAMPLE: THE MICROPROCESSOR INSTRUCTION "OPR" IS DEFINED AS
"NEWOP". ANY FURTHER REFERENCES TO "NEWOP" IN THE PROGRAM WILL BE
TREATED ACCORDING TO THE DEFINITION OF "OPR" .

NEWOP . DINST OPR

"NEWOP" IS DEFINED TO BE THE EQUIVALENT TO THE MICROPROCESSOR
INSTRUCTION "OPR" AND IS ADDED TO THE OPERATOR SET FOR THE
REMAINDER OF THE ASSEMBLY.

REFERENCES TO USER DEFINED OPERATORS ARE NOT ALLOWED TO PRECEDE
THEIR . DINST STATEMENT.

ASSEMBLER PSEUDO-OPS CANNOT BE USED IN EITHER THE LABEL OR OPERAND
FIELDS OF ANY STATEMENT AND THEREFORE CANNOT BE DEFINED WITH THE
. DINST STATEMENT.

LOCAL SYMBOLS CANNOT BE USED IN THE OPERATOR FIELDS, THEREFORE THEY
SHOULD NOT BE USED WITH A . DINST STATEMENT.

9. 1. 4 . ORG PSEUDO-OP.

THE . ORG REASSIGNS THE LOCATION COUNTER.

THE LOCATION COUNTER WILL BE 0 AT THE START OF THE SOURCE INPUT.

THE . ORG OPERAND CANNOT BE FORWARD REFERENCED, (REFERRED TO A
LABEL DEFINED FURTHER ON IN THE PROGRAM) AND CANNOT HAVE A LABEL.

.. 9.2.0 DEFAULT RADIX PSEUDO-OPS.

INITIALLY, THE DEFAULT RADIX IS SET TO HEXADECIMAL SO THAT
CONSTANTS ARE READ IN AS BASE 16 VALUES. (SEE MODIFICATION NOTES IF
ANOTHER I NIT I AL DEFAULT RAD I X I S DES I RED.)

AT ANY POINT IN THE PROGRAM, THE DEFAULT RADIX CAN BE REASSIGNED
THROUGH USE OF THESE PSEUDO-OPS:

· BIN
.DECM
· HEX
· OCT

j BINARY RADIX
i DECIMAL RADI X
iHEXADECIMAL RADIX
; OCTAL RADIX

THE DEFAULT RADIX PSEUDO-OPS CANNOT HAVE AN OPERAND OR A LABEL.

ADDITIONALLY; THE RADIX OF INDIVIDUAL CONSTANTS CAN BE SPECIFIED BY
THE USE OF THE ·"B,·"D, ·"H AND · 0 INDICATORS. SEE SECTION .. 5. 1. 0
THESE INDICATORS DO NOT CHANGE.THE DEFAULT RADIX.

.. 9. 3. 0
.. 9. 3. 0 DATA STORAGE PSEUDO-OPS.

THREE PSEUDO-OPS CAN BE USED TO STORE DATA. THEIR FORMAT IS:

LABEL PSEUDO-OP OPERAND, OPERAND, j COMMENT

THE PSEUDO-OPS CAN HAVE AS MANY OPERANDS AS WILL FIT ON ONE 127
CHARACTER LINE.

EACH OPERAND CAN BE A SYMBOL, CONSTANT, OR EXPRESSION. COMMAS
SEPARATE THE OPERANDS.

THE DOUBLE QUOTE (") CHARACTER IS USED DIFFERENTLY IN THE . BYTE
COMMAND, BUT THE SINGLE QUOTE (.') RETAINS ITS NORMAL FUNCTION.

.. 9. 3. 1 . BYTE PSEUDO-OP.

THE . BYTE PSEUDO-OP STORES DATA IN SINGLE BYTES OF MEMORY.
NUMERICAL BYTE VALUES CAN RANGE FROM -128 TO +255 (DECIMAL).
NORMALLY, DOUBLE QUOTES AND SINGLE QUOTES ARE TREATED IDENTICALLY
AND ARE USED TO FORM THE ASCII VALUE OF A SINGLE CHARACTER.
HOWEVER, IN THE . BYTE PSEUDO-OP , THE DOUBLE QUOTE IS USED TO INDI­
CATE TEXT STRINGS. DATA IS STORED SEQUENTIALLY AS IT IS PROCESSED,
LEFT TO RIGHT. A TEXT STRING MUST BE CLOSED WITH A DOUBLE QUOTE.

EXAMPLE: THE ASCII VALUES OF THE TEXT ABC IS STORED:

2 00 .ORG 200
200 41 . BYTE IIABC", 0, ·'B
201 42
202 43
203 0
204 42

THESE STATEMENTS WOULD BE INVALID:

. BYTE

. BYTE
·~ABC··

"ABC

.. 9.3.2 . DBYTE PSEUDO-OP.

; THE ' IS NOT FOR TEXT STRINGS
; TEXT MUST END WITH A "

THE . DBYTE IS SIMILAR TO THE . BYTE EXCEPT THAT IT STORES DOUBLE
BYTE QUANTITIES. IT DOES NOT ACCEPT TEXT STRINGS. THE THE MOST
SIGNIFICANT BYTE IS STORED FIRST, THEN THE LEAST SIGNIFICANT BYTE.

.. 9. 3. 3
.. 9.3.3 . ADDR PSEUDO-OP.

THE .ADDR PSEUDO-OP IS THE SAME AS THE. DBYTE PSEUDO-OP EXCEPT THAT
THE LEAST SIGNIFICANT BYTE IS STORED FIRST. MANY, MICROPROCESSORS
USE THIS REVERSED FORMAT FOR ADDRESSES. FOR EXAMPLE:

2 00
200 1 32
202 32 31

.ORG

. DBYTE

. ADDR

200
· H3132
· H3132

.. 9. 3. 4 . ZERO PSEUDO-OP.

; HEX CONSTANT
i REVERSED BYTES

THE . ZERO PSEUDO-OP RESERVES THE NUMBER OF BYTES INDICATED BY THE
OPERAND AND SETS THEM TO ZERO.

EXAMPLE:

o 1
1 0

11 10

16 ADDRESSES, 1 TO 10 (BASE 16) ARE ZEROED .

. ORG

. ZERO

. BYTE

1
10
10

ONLY THE FIRST BYTE WILL BE PRINTED IN THE LISTING. THE LOCATION
COUNTER IS ADVANCED. THE OPERAND OF . ZERO CANNOT BE FORWARD REFER­
ENCED, (REFERED TO A LABEL DEFINED FURTHER ON IN THE PROGRAM) .

.. 9. 4. 0 LISTING CONTROL DIRECTIVE&

THROUGH USE OF THE . LIST, . PAGE AND. TITLE PSEUDO-OPS, PLUS SEVERAL
RUN-TIME OPTIONS, THE SOURCE PROGRAM CAN BE LISTED IN VARIOUS WAYS
AT ASSEMBLY TIME.

NORMALLY, THE ASSEMBLER AUTOMATICALLY PAGES THE OUTPUT, ADDING A
HEADER AT THE TOP OF THE PAGE. (NOTE THAT PAGE NUMBERS REPRESENT
THE LISTING PAGE NUMBERS, NOT INPUT FILE PAGES.)

NOT ALL PSEUDO-OPS ARE LISTED IN THE OUTPUT. THE CONDITIONAL
ASSEMBLY AND LISTING CONTROL PSEUDO-OPS ARE NOT LISTED UNLESS THE
/P OPTION IS SPECIFED. SEE RUN-TIME OPTIONS .. 2. 4. 0

NORMALLY THE STATEMENTS WHICH ARE NOT ASSEMBLED DUE TO CONDITIONAL
ASSEMBLY ARE NOT LISTED. USE OF THE /J COMMAND DECODER OPTION WILL
ENABLE LISTING OF THESE STATEMENTS PLUS THE NORMALLY UNLISTED
CONDITONAL ASSEMBLY PSUEDO-OPS.

THE PAGINATION AND HEADING CAN ·BE SUPPRESSED THROUGH USE OF THE /H
COMMAND DECODER OPTION.

9. 4. 0

IF THE OUTPUT DEVICE IS ONE WHICH DOES NOT PAGE ON A FORM FEED (A
TTY), THE /T DECODER OPTION CAN BE USED TO CHANGE THE FORM FEED
(WHICH NORMALLY STARTS A NEW PAGE) TO 3 CARRIAGE RETURN/LINE FEEDS
SO THAT PAGES WILL BE SEPARATED BY 3 BLANK LINES IN THE LISTING.

WARNING MESSAGES ARE NORMALLY OUTPUT TO BOTH THE TERMINAL AND THE
SOURCE LISTING. TO INHIBIT THESE MESSAGES, THE /W DECODER OPTION IS
USED.

9. 4. 1 . LIST PSEUDO-OP.

A LIST FLAG IS USED DURING ASSEMBLY TO INDICATE WHETHER OR NOT THE
STATEMENTS ARE TO BE LISTED. INITIALLY, THE FLAG IS ON AND STAYS ON
UNLESS A . LIST PSEUDO-OP IS ENCOUNTERED.

A . LIST PSEUDO-OP CAN BE USED WITH OR WITHOUT AN OPERAND. A LABEL
CANNOT BE USED WITH THE . LIST PSEUDO-OP.

WHEN A. LIST PSEUDO-OP WITHOUT AN OPERAND IS ENCOUNTERED, THE LIST
FLAG I S INVERTED.

EXAMPLE:
i LIST FLAG INITIALLY ON

.ORG 200 i LISTED
VALUE · SET 1 i LISTED

· LIST i LIST FLAG OFF
VALU2 · SET 70 i NOT LISTED

· LIST iLIST FLAG BACK ON

NOTE THAT UNLESS THE /P OPTION IS USED, THE . LIST OPERATOR ITSELF
WILL NOT BE LISTED.

WHEN A . LIST PSEUDO-OP WITH AN OPERAND IS ENCOUNTERED, THEN LISTING
IS INHIBITED IF THE OPERAND IS EQUAL TO ZERO. (THE LIST FLAG IS
SET OFF>' IF THE OPERAND IS NOT ZERO, LISTING IS ENABLED. (THE
LIST FLAG IS SET ON).

9. 4. 2 . PAGE PSEUDO-OP.

INSERTING A . PAGE PSEUDO-OP IN THE PROGRAM WILL NORMALLY START A
NEW PAGE BEGINNING WITH THE NEXT LINE. (THE. PAGE STATEMENT ITSELF
IS NOT NORMALLY LISTED.) IF THE /P COMMAND DECODER OPTION IS USED,
THE . PAGE STATEMENT WILL BE THE FIRST LINE OF THE NEW PAGE.

.. 9.4.2

THE /H COMMAND DECODER OPTION INHIBITS THE . PAGE PSEUDO-OP.

THE . PAGE PSEUDO-OP CAN HAVE NO LABEL OR OPERAND .

.. 9.4.3 . TITLE PSEUDO-OP.

THE . TITLE IS USED TO REPLACE THE HEADING WITH UP TO 32 CHARACTERS
OF TEXT. ITS FORMAT IS:

· TITLE HEADING OF 32 CHARACTERS

THE FIRST CHARACTER AFTER THE. TITLE IS THE PSEUDO-OP DELIMITER
WHICH CANNOT BE AN ALPHA-NUMERIC CHARACTER THE DELIMITER IS
CONSIDERED THE FIRST CHARACTER OF THE 32 CHARACTER GROUP AND WILL
BE PRINTED OUT. ANY TEXT AFTER 32 CHARACTERS WILL BE IGNORED. TABS
CAN BE USED IN THE HEADING.

THE /H COMMAND DECODER OPTION INHIBITS THE . TITLE PSEUDO-OP.

THE /P COMMAND DECODER ENABLES THE LISTING OF THE . TITLE PSEUDO-OP.

A SEMICOLON DOES NOT DELIMIT THE HEADING TEXT.
MADE ONLY AFTER THE 32 CHARACTER HEADING GROUP.

COMMENTS CAN BE

WHEN PLACED AT THE BEGINNING OF THE PROGRAM, THE . TITLE PSEUDO-OP
WILL SET THE HEADING FOR THE FIRST PAGE. THE . TITLE MUST APPEAR
BEFORE THE FIRST LINE TO BE LISTED.

EXAMPLE: THE FOLLOWING STATEMENTS WILL CAUSE THE HEADING OF THE
FIRST PAGE TO BE "*MA I N PROGRAM".

· TITLE*MAIN PROGRAM
VALUE . EQU 1

· LIST VALUE

.. 9. 5. 0 CONDITIONAL ASSEMBLY PSUEDO-OPERATORS.

THE . IFZERO, . IFNZRO, . IFDEF AND . IFNDEF OPERATORS
PROVIDE FOR THE CONDITIONAL ASSEMBLY IN A PROGRAM,
OF STATEMENTS CAN BE ADDED (OR OMITTED> DURING
PROCESS. EACH IS DESCRIBED INDIVIDUALLY IN THE
FOLLOW. ALL HAVE THE GENERAL FORM:

PSEUDO-OP OPERAND ; COMMENT

ARE USED TO
SO THAT GROUPS

THE ASSEMBLY
SECTIONS THAT

.. 9. S. 0

EACH OPERAND MUST MEET THE CONDITIONS OF ITS PSEUDO-OP IN ORDER FOR
THE STATEMENTS THAT FOLLOW IT TO BE ASSEMBLED. IF THE CONDITIONS
ARE NOT MET; THESE STATEMENTS ARE OMITTED. THE. ENDC PSEUDO-OP
INDICATES THE END OF THE GROUP OF STATEMENTS WHICH ARE AFFECTED.
EACH CONDITIONAL PSEUDO-OP MUST HAVE ONE . ENDC STATEMENT.

CONDITIONAL PSEUDO-OPS CANNOT HAVE LABELS.

CONDITIONAL PSEUDO-OPS CAN BE NESTED UP TO 4095 LEVELS.

EXAMPLE:

VALUE 1 · EQU 0 i DEF I NE VALUE 1
· IFZERO VALUE 1 ; VALUE 1 = 0 ? - YES.
· BYTE "TEXT" i ASSEMBLED.
· IFDEF VALUE2 iVALUE2 DEFINED? - NO.
· BYTE "TEXTII ; OMITTED.
· ENDC ; END OF INNER CONDITIONAL

DOC · EQU 17 ; ASSEMBLED.
· ENDC i END OF OUTER CONDITIONAL

THE CONDITIONAL PSEUDO-OPS ARE NOT INCLUDED IN THE ASSEMBLY LISTING
UNLESS THE /P OR /J COMMAND DECODER OPTION IS SPECIFIED.

ONE CONDITIONAL CAN INHIBIT ANOTHER.

EXAMPLE: THREE DIFFERENT RESULTS CAN OCCUR IN THE FOLLOWING TYPE OF
CONDITIONAL NESTING:

CONDITIONAL 1

CONDITIONAL 2

. ENDC

. EN DC

; STATEMENT GROUP 1.

; STATEMENT GROUP 2 .

; END COND I T IONAL 2.
; STATEMENT GROUP 3.
; END COND I T IONAL 1.

IF BOTH CONDITIONALS ARE MET, ALL THE STATEMENTS, GROUPS 1 THROUGH
3, WILL BE ASSEMBLED.

IF CONDITIONAL 2 IS NOT MET, BUT CONDITONAL 1 IS MET, THEN GROUP 1
AND GROUP 3 WILL BE ASSEMBLED. GROUP 2 IS NOT ASSEMBLED.

IF CONDITIONAL 1 IS NOT MET, CONDITIONAL 2 IS IGNORED AND GROUPS 1
THROUGH 3 WILL NOT BE ASSEMBLED.

.. 9. 5. 1
.. 9. 5. 1 . IFZERO PSEUDO-OP.

IF THE OPERAND OF THE . IFZERO IS:

EQUAL TO ZERO - ASSEMBLY IS UNAFFECTED.
NOT EQUAL TO ZERO - STATEMENTS TO NEXT . EN DC ARE OMITTED.

THE OPERAND CANNOT BE FORWARD REFERENCED.

.. 9. 5. 2 . IFNZRO PSEUD-OP.

IF THE OPERAND OF THE . IFNZRO IS:

EQUAL TO ZERO - STATEMENTS TO NEXT . ENDC ARE OMITTED.
NOT EQUAL TO ZERO - ASSEMBLY IS UNAFFECTED.

THE OPERAND CANNOT BE FORWARD REFERENCED.

.. 9. 5. 3 . IFDEF PSEUDO-OP.

IF THE SYMBOL OPERAND OF THE . IFDEF IS:

DEFINED - ASSEMBLY IS UNAFFECTED.
NOT DEFINED - STATEMENTS TO NEXT. ENDC ARE OMITTED.

NOTE THAT . IFDEF WILL ACCEPT ONLY A SINGLE SYMBOL NAME AS THE
OPERAND.

A SYMBOL IS CONSIDERED TO BE DEFINED IF IT HAS BEEN USED IN THE
LABEL FIELD OF A STATEMENT PRECEEDING THE CONDITIONAL PSEUDO-OP .

.. 9. 5. 4 . IFNDEF PSEUDO-OP.

IF THE SYMBOL OPERAND OF THE . IFNDEF IS:

DEFINED - STATEMENTS TO NEXT . ENDC ARE OMITTED.
NOT DEFINED - ASSEMBLY IS UNAFFECTED.

NOTE THAT ONLY A SINGLE SYMBOL NAME IS ALLOWED AS THE OPERAND.

A SYMBOL IS CONSIDERED TO BE DEFINED IF IT HAS BEEN USED IN THE
LABEL FIELD OF A STATEMENT PRECEEDING THE CONDITIONAL PSEUDO-OP.

9. 5. 5
9.5.5 . ENDC PSEUDO-OP.

THIS PSEUDO-OP INDICATES THE END OF A CONDITONAL ASSEMBLY GROUP.

EVERY CONDITIONAL PSUEDO-OP MUST BE PAIRED WITH A . ENDC.

9. 6. 0 . END PSEUDO-OP.

THIS INDICATES THE END OF THE SOURCE PROGRAM. IT CANNOT HAVE EITHER
A LABEL OR AN OPERAND. A WARNING MESSAGE WILL OCCUR IF THE . END
STATEMENT IS LEFT OFF.

*10. O. 0 ERROR MESSAGES AND WARNINGS.

BOTH PASS #1 AND PASS #2 CAN GENERATE ERROR MESSAGES. THESE ARE
PRINTED ON THE CONSOLE DEVICE AS THEY OCCUR. IF A LISTING IS
SPECIFIED, PASS 3 WILL LIST THE ERROR MESSAGE ABOVE THE LINE IN
WHICH THE ERROR OCCURS.

ERROR MESSAGES WHICH ARE SENT TO THE CONSOLE HAVE THE FORM:

E:XX AT LABEL+N

WHERE "N" IS A DECIMAL NUMBER OF
LINES BEYOND THE STATEMENT WHICH
CONTAINED THE GIVEN LABEL. IF NO
LABEL WAS GIVEN, "N" IS THE NUMBER OF
LINES FROM THE BEGINNING LINE OF THE
PROGRAM.

IF THE BINARY OUTPUT FILE IS SENT TO THE CONSOLE, AND ERROR
MESSAGES OCCUR, THE OUTPUT FILE LINES AND ERROR MESSAGES WILL BE
INTERMIXED. USE OF THE /E OPTION WILL INHIBIT THE ERROR MESSAGES
TO THE CONSOLE SO THAT ONLY THE BINARY FILE IS OUTPUT. THIS IS
USEFUL WHEN A USER WOULD LIKE TO TRY OUT CERTAIN PARTS OF A PROGRAM
AND ·IS NOT YET CONCERNED WITH OTHER PARTS KNOWN TO HAVE ERRORS.

#10. O. 0

INDIVIDUAL ERROR MESSAGES ARE EXPLAINED IN TABLE #2 WHICH DIVIDES
THE MESSAGES INTO THREE TYPES:

1) FATAL ERRORS- THESE ERRORS CAUSE THE IMMEDIATE
EXIT TO THE OS/8 MONITOR. THE CURRENT OUTPUT FILE
IS NOT CLOSED. /E WILL NOT INHIBIT FATAL ERROR
MESSAGES. FATAL ERROR MESSAGES ARE ALWAYS SENT TO
THE CONSOLE DEVICE.

2) WARNING MESSAGES INDICATE MINOR PROGRAM
PROBLEMS. ASSEMBLY IS NOT HALTED. GOOD PROGRAMMING
PRACTICES WILL ELIMINATE ALL WARNING MESSAGES.

3) NON-FATAL ERRORS - THE OCCURANCE OF A NON-FATAL
ERROR WILL NOT HALT ASSEMBLY. THE ASSEMBLER
ATTEMPTS TO DO AS MUCH OF THE LINE AS POSSIBLE. FOR
EXAMPLE, IF THE OPERAND CANNOT BE EVALUATED, IT
GIVES IT A VALUE OF ZERO, WRITES THE ERROR MESSAGE
AND CONTINUES.

TABLE #2. tUO. O. 0

E:DF
FILE ttN

E:LT

E:OE
FILE #N

E:PE

E:RE
FILE #N

E:ST

E:WE
FILE #N

W:EF

W:UC

**** FATAL ERRORS ****

DEVICE FULL:
THERE IS NOT ENOUGH ROOM LEFT ON THE OUTPUT DEVICE
FOR THE FILE. "N" INDICATES WHICH OF THE TWO OUT­
PUT FILES WAS IN ERROR.

LOCAL SYMBOL TABLE OVERFLOW:
THIS ERROR OCCURS ONLY IF THE /K OPTION IS IN USE.
CONVERSION OF SOME OF THE LOCAL SYMBOLS TO REGULAR
SYMBOL NAMES WILL USUALLY SOLVE THIS PROBLEM. SEE

. THE NOTES ON THE /K RUN-TIME OPT 10K

OPEN ERROR IN OUTPUT FILE:
AN ATTEMPT WAS MADE TO OPEN AN OUTPUT FILE ON AN
INPUT-ONLY DEVIDE. (PTR:, CDR:, ETC.) "N" INDICATES
WHICH ONE OF THE TWO POSSIBLE OUTPUT FILES WAS IN
ERROR.

PHASE ERROR:
A LOCATION TAG HAS A DIFFERENT ADDRESS IN ONE PASS
THAN IT HAD IN THE PREVIOUS PASS.

READ ERROR:
AN ERROR HAS OCCURRED WHILE READING FROM AN INPUT
FILE DEVICE. "Nil INDICATES WHICH ONE OF THE NINE
POSSIBLE INPUT FILES HAD THE ERROR.

SYMBOL TABLE OVERFLOW:
THE PROGRAM IS TOO LARGE. WHERE CONVENIENT, DIVIDE
IT AND ASSEMBLE EACH PART SEPARATELY. ALSO REFER TO
THE NOTES ON THE /K RUN-TIME OPTION.

WRITE ERROR:
AN ERROR HAS OCCURRED WHILE WRITING TO AN OUTPUT
FILE DEVICE. "N" INDICATES WHICH ONE OF THE TWO
OUTPUT FILES HAD THE ERROR.

**** WARNING MESSAGES ****

NO . END STATEMENT:
THE LAST INPUT FILE MUST HAVE AN . END STATEMENT.
THE ASSEMBLER PROCEEDS AS IF AN . END WERE PRESENT.

ASSEMBLY WAS CONDITIONALLY INHIBITED AT THE END OF
THE PROGRAM: EACH CONDITIONAL ASSEMBLY PSEUDO-OP
MUST BE PAIRED WITH AN . ENDC STATEMENT.

TABLE .2. (CONT.) .10. O. 0

E:BN

E:DR

E: IL

E: 10

E:LO

E:LS

E:ML

E:MO

E:OC

E:OM

**** NON-FATAL ERRORS ****

BAD NEST ING OF BRACKETS:.
EACH OPEN BRACKET MUST BE PAIRED WITH A CLOSED
BRACKET.

DIGIT OUTSIDE OF RADIX:
THE CONSTANT CONTAINS A DIGIT NOT RECOGNIZED UNDER
THE SPECIFIED RADIX. FOR EXAMPLE, THE DIGIT "2" IS
NOT RECOGNIZED IN BINARY RADIX. THE CONSTANT WILL
BE EVALUATED AS IF THAT DIGIT WERE ZERO.

ILLEGAL LABEL FIELD:
THE LABEL MAY NOT BE IN THE PROPER SYMBOL FORMAT,
SEE SECTION .6. 2. O. ALSO, SOME PSEUDO-OPS CANNOT
HAVE LABELS.

ILLEGAL OPERAND VALUE:
REFER TO THE SECTION ON THE STATEMENT"S OPERATOR TO
DETERMINE THE ALLOWABLE OPERAND TERMS.

LINE INPUT OVERFLOW:
~ONLY 127 CHARACTERS, NOT INCLUDING THE CARRIAGE
RETURN AND LINE FEED, ARE ALLOWED IN AN INPUT LINE.

LOCAL SYMBOL SYNTAX ERROR:
THE CORRECT FORMAT FOR A LOCAL SYMBOL IS $N WHERE
,. N II I S A DEC I MAL NUMBER FROM 0 TO 255.

MULTIPLE LABEL DEFINITION:
THE SAME LABEL HAS A DIFFERENT VALUE AND IS US~D
WITH AN OPERATOR OTHER THAN A . SET PSEUDO-OP.

MISSING OR ILLEGAL MNEMONIC IN OPERATOR FIELD:

OPERAND TOO COMPLEX:
TOO MANY TERMS AND OPERATORS EXIST IN THE OPERAND.
DIVIDE THE EXPRESSION USING THE . SET COMMAND.

EXAMPLE: THE FIRST EXPRESSION IS DIVIDED INTO THE
TWO STATEMENTS FOLLOWING IT.

WORD

TEMP
WORD

OPERAND MISS I NG.

· EQU

· SET
· EQU

[EXPR1] + [EXPR2]

[EXPRl]
TEMP + [EXPR2 1

TABLE .2. (CONT.) .10. O. 0

E:OS

E:PS

E:TL

E:US

OPERAND SYNTAX ERROR.

ILLEGAL PERMANENT SYMBOL USAGE IN OPERAND:
REFER TO THE APPENDICES TABLES TO SEE WHICH NAMES
ARE USED IN THE ASSEMBLER AND MICROPROCESSOR IN­
STRUCTION SETS AND RENAME YOUR SYMBOL SO THAT IT
WILL NOT CONFLICT.

LABEL DEFINED TOO LATE:
ONLY ONE LEVEL OF FORWARD REFERENCING IS ALLOWED.

UNDEFINED SYMBOL:

NOTE: REFER TO SECTION .12. O. 0 FOR ADDITIONAL ERROR MESSAGES WHICH
ARE SPECIFIC TO THE TYPE OF MICROPROCESSOR BEING USED .

• 11. O. 0 MODIFICATION NOTES.

VARIOUS MODIFICATIONS CAN BE MADE TO THE ASSEMBLER FOR GREATER
OPERATING CONVENIENCE. BEFORE MAKING ANY CHANGES, THE USER SHOULD
READ THE DESCRIPTION OF EACH OPTION CAREFULLY. NO CHECKS ON PATCH
VALIDITY ARE MADE. ALSO KEEP A RECORD OF ALL CHANGES SO THAT THE
STATUS OF THE CROSS-ASSEMBLER IS ALWAYS KNOWN.

MODIFICATIONS ARE MADE BY PATCHING LOCATIONS IN THE IMAGE <. SV)
FILE USING ODT. REFER TO THE OS/8 MANUAL FOR A DETAILED EXPLAIN­
ATION OF ODT OPERATION.

THE EXAMPLE BELOW SHOWS AN ODT PATCH BEING MADE TO FILE "XNAME. SV"
WHERE THE CONTENT OF LOCATION 10107 IS CHANGED FROM 3 TO 2 .

. GET SYS: XNAME

.ODT
10107/0003 2
..... C
. SA SYS: XNAME

*11.1.0

*11. 1.0 CHANGING THE DEFAULT INPUT FILE EXTENSION (. MS)'

PATCH LOCATION 10100 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11.2.0 CHANGING THE DEFAULT BINARY OUTPUT FILE EXTENSION <. MB)

PATCH LOCATION 10101 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11. 3. 0 CHANGING THE DEFAULT LISTING OUTPUT FILE EXTENSION <. LS)'

PATCH LOCATION 10102 TO CONTAIN THE NEW 2 CHARACTER 6 BIT ASCII
EXTENSION.

#11.4.0 CHANGING THE BASE YEAR DATE.

IN OS/8 ONLY 3 BITS ARE PROVIDED TO INDICATE THE CURRENT YEAR.
THIS ALLOWS ONLY NUMBERS FROM 0 TO 7 WHICH MUST BE ADDED TO A BASE
YEAR TO FORM THE ACTUAL YEAR NUMBER. IN 1978 AND AT ADDITIONAL 8
YEAR INTERVALS THE BASE YEAR MUST BE CHANGED TO PROVIDE THE PROPER
DATE PRINTOUT. TO DO THISI PATCH LOCATION 10104 TO CONTAIN THE TWO
CHARACTER 6 BIT ASCII REPRESENTATION OF THE TWO LEAST SIGNIFICANT
DIGITS OF THE YEAR.

BASE YEAR:
1978
1986
1994
2002

PATCH TO LOCATION 10104 (IN OCTAL>'
6770
7066
7164
6062

SHOULD THIS PROGRAM SURVIVE UNTIL THE YEAR 2000 THE TWO MOST
SIGNIFICANT DIGITS MAY BE CHANGED BY PATCHING LOCATION 10103 TO
CONTAIN 6260.

#11. 5. 0

#11. 5. 0 CHANGING THE DEFAULT RADIX. (HEXADECIMAL)

INITIALLY THE DEFAULT RADIX IS SET TO HEXADECIMAL. THIS MAY BE
MODIFIED TO BINARY, OCTAL, OR DECIMAL BY PATCHING LOCATION 10105
FROM THE FOLLOWING TABLE.

RADIX:

OCTAL
HEXADECIMAL
DECIMAL
BINARY

PATCH LOCATION 10105 TO:

1
2
3
4

#11. 6. 0 GENERATING 8 BIT ASCII CHARACTERS WITHIN THE BINARY
PROGRAM.

THE ASCII CHARACTERS GENERATED AS OPERANDS WITH THE QUOTE
CHARACTERS ARE SEVEN BIT REPRESENTATIONS TYPICAL OF MOST
MICROPROCESSOR SYSTEMS. TO GENERATE EIGHT BIT ASCII WITH THE
EIGHTH BIT ALWAYS SET (AS IS DONE IN SOME PDP8 SOFTWARE), PATCH
LOCATION 10106 TO CONTAIN 377. (ORIGINAL CONTENT WAS 177).

#11.7.0 RUNNING UNDER OS8 VERSION 2.

THE CROSS-ASSEMBLER IS SET UP TO USE THE OS/8 VERSION 3 METHOD FOR
CORE SIZE DETERMINATION. IN OS/8 V3 THE CORE SIZE IS CONTAINED IN
A MONITOR LOCATION. IN PREVIOUS VERSIONS, THE CORE SIZE MUST BE
DETERMINED BY ACCESSING EACH FIELD OF MEMORY TO SEE IF IT EXISTS ON
THE SYSTEM. THEREFORE, TO RUN THE CROSS-ASSEMLER IJNDER VERSION 2,
PATCH LOCATION 10107 TO CONTAIN 2. (ORIGINAL CONTENT WAS 3).

11. 8. 0 CHANG I NG THE NUMBER OF LINES PER PAGE. (6)

THE NORMAL NUMBER OF LINES PER PAGE IS SET AT 66. 6 OF THE 66
LINES ARE USED BY THE ASSEMBLER FOR THE HEADING AND MARGIN. TO
ALTER THE NUMBER OF LINES ON A PAGE, PATCH LOCATION 10110 TO BE THE
TOTAL POSITIVE LINES PER PAGE INCLUDING HEADING AND MARGIN.

*11.9.0

*11.9.0 CHANGING THE NUMBER OF CHARACTERS PER LINE. (72)

THE TOTAL NUMBER OF CHARACTERS PRINTED ON ONE LINE (EXCLUDING
CARRIAGE RETURN AND LINE FEED) IS SET AT 72 (BASE 10), TO MODIFY
THIS COUNT, PATCH LOCATION 10111 TO CONTAIN THE POSITIVE NUMBER OF
CHARACTERS TO BE PRINTED ON A LINE (EXCLUDING THE CR AND LFL

*11.10.0 INITIAL FORM/FEED CONTROL.

SOME LINE PRINTER HANDLERS WHEN FIRST INITIALIZED WILL ISSUE AN
AUTOMATIC FORM FEED. TO AVOID EJECTING AN ADDITIONAL PAGE EACH TIME
THE ASSEMBLER IS CALLED, THE FIRST FORM FEED FROM THE HEADING HAS
BEEN SUPPRESSED. TO REENABLE THIS FIRST FORM FEED, PATCH LOCATION
10112 WITH 214 (BASE 8 >.

*11. 11. 0 CHANGING LABEL DELIMINATOR (, >.

TO PROVIDE COMPATIBILITY WITH OTHER ASSEMBLER FORMATS AN OPTIONAL
LABEL DELIMITER WILL BE ACCEPTED. NORMALLY, THIS DELIMITER IS A
COMMA, BUT IT CAN BE MODIFIED TO ANY OTHER NON-ALPHANUMERIC
CHARACTER (EXCEPT THE SEMICOLON OR CARRIAGE RETURN>' TO MODIFY THE
DELIMITING CHARACTER PATCH LOCATION 10113 WITH THE 8 BIT ASCII
VALUE FOR THE CHARACTER.

*11. 12.0 CHANGING FROM 8 BIT TO 7 BIT ASCII IN THE OUTPUT FILES.

ALL ASCII OUTPUT TO THE BINARY (OBJECT) AND LISTING FILES IS IN 8
BIT ASCII FORMAT. TO OUTPUT 7 BIT ASCII FORMAT PATCH LOCATION 10114
TO CONTAIN 177. (ORIGINAL CONTENT WAS 377).

#11. 13. 0
#11.13.0 CHANGING THE SENSE OF THE RUN-TIME OPTIONS.

EACH SLASH OPTION (EXCEPT /0 TO /9) MAY HAVE ITS SENSE INVERTED BY
PATCHING THE LOCATIONS SHOWN IN THE FOLLOWING TABLE WITH THE
DESCR I BED VALUE.

OPTION: LOCATION: STANDARD: INVERTED:

/B 10116 7650 7640
/E 10117 7640 7650
/H 10120 7650 7640
/,j 10121 7650 7640
/K 10122 7650 7640
/L 10123 0 1
/N 10124 7650 7640
/0 10125 7650 7640
/P 10126 7640 7650
/S 10127 7650 7640
/T 10130 7650 7640
/W 10131 7650 7640

#12. O. 0
#12. O. 0 8080 CROSS-ASSEMBLER SPECIFICS.

THE FIRST ELEVEN SECTIONS OF THIS MANUAL HAVE PRESENTED SIERRA
DIGITAL"S UNIVERSAL ASSEMBLER FORMAT AS IT IS APPLIED TO ALL CROSS­
ASSEMBLERS IN THE X8 SERIES. THIS SECTION PRESENTS ADDITIONAL
INFORMATION ON THE APPLICATION OF THE UNIVERSAL ASSEMBLER FORMAT TO
A SPECIFIC CROSS-ASSEMBLER FOR THE zao MICROPROCESSOR. THE Z80-
MICROPROCESSOR WAS DESIGNED BY ZILOG, INC., 10460 BUBB ROAD,
CUPERTINO, CALIFORNIA 95014 AND IS SECOND SOURCED BY MOSTEK, 1215
WEST CROSBY ROAD, CAROLLTON, TEXAS 75006. NO ATTEMPTS WILL BE MADE
IN THtS MANUAL TO EXPLAIN THE OPERATION OF THE MICROPROCESSOR.
EXCELLENT MANUALS COVERING THE OPERATION AND PROGRAMMING OF THE
MICROPROCESSORS ARE AVAILABLE FROM THEIR MANUFACTURERS. SECTION
#13 PRESENTS A SUMMARY OF THE INSTRUCTION MNUEMONIC CODES AND
OPERANDS DEFINED BY ZILOG AND RECOGNIZED BY OUR CROSS-ASSEMBLER.

#12. 1. 0 CROSS-ASSEMBLER FILE NAMES.

THE CROSS-ASSEMBLER IS PROVIDED ON FILE STRUCTURED MEDIA UNDER THE
NAMES:

XZ80. SV
XZ80. BN

- FOR THE OS/8 SAVE IMAGE FILE.
- FOR THE OS/8 BINARY FORMAT FILE.

IT IS SUGGESTED THAT THE SAME NAMING CONVENTIONS BE USED WHEN
LOADING THE CROSS-ASSEMBLER FROM PAPER TAPE.

#12. 2. 0

#12. 2. 0 RESERVED SYMBOLS

ARE RESERVED FOR USE TO DESIGNATE
THESE NAMES CANNOT BE USED AS USER

ONLY BE RECOGNIZED WHEN USED AS
SECTION 13.

THE FOLLOWING SPECIAL SYMBOLS
REGISTERS AND CONDITION CODES.
DEFINED SYMBOLS AND WILL
DEMONSTRATED IN THE LISTING OF

SYMBOL

A
AF
B
BC
C
D
DE
E
H
HL
I
IX
IY
L
M
NC
NZ
P
PE
PO
R
Z

MEANING

ACCUI"1ULATOR
ACCUMULATOR AND FLAGS
REGISTER B
REG I STER PA I R BAND C.
REGISTER C OR CARRY CONDITION.
REGISTER D
REGISTER PAIR D AND E
REGISTER E
REGISTER H
REGISTER PAIR HAND L
INTERRUPT VECTOR REGISTER
INDEX REGISTER X
INDEX REGISTER Y
REGISTER L
MINUS CONDITION
NO CARRY CONDITION
NOT ZERO CONDITION
PLUS CONDITION
PARITY EVEN CONDITION
PARITY ODD CONDITION
REFRESH REGISTER
ZERO CONDITION

NOTE: THERE IS NO CONFLICT BETWEEN THE '. SET' PSEUDO-OP AND THE
'SET' MICROPROCESSOR INSTRUCTION BECAUSE OF THE LEADING PERIOD ON
THE PSEUDO-OP.

#12. 3. 0

#12. 3. 0 RELATIVE ADDRESS CALCULATIONS:

THE RELATIVE ADDRESS INSTRUCTIONS ~JR~ AND /DJNZ' ALLOW A JUMP
WITHIN THE RANGE OF -126 TO +129 BYTES FROM THE ADDRESS OF THE
INSTRUCTION'S OP-CODE BYTE. THE CROSS-ASSEMBLER ALWAYS SUBTRACTS
THE ADDRES OF THE LOCATION FOLLOWING THE RELATIVE ADDRESSING
INSTRUCTION FROM THE OPERAND VALUE TO FORM THE VALUE STORED IN THE
I NSTRUCT ION.

#12. 4. 0 LISTING FORMAT.

THE LISTING FILE IS OUTPUT WITH THE OBJECT CODE PRINTED TO THE LEFT
OF THE SOURCE CODE LINES. AS EACH MICROPROCESSOR INSTRUCTION MAY
CODE INTO ONE, TWO, OR THREE BYTES, ROOM IS PROVIDED FOR THREE
COLUMNS OF GENERATED OBJECT CODE PLUS A COLUMN FOR THE ADDRESS. THE
ADDRESS AND OBJECT CODE ARE NORMALLY PRINTED IN HEXADECIMAL BUT
THIS MAY BE CHANGED TO OCTAL WITH THE /0 COMMAND DECODER OPTIO~

SOURCE LINES WHICH EXCEED THE PRINTOUT LIMIT WILL CONTINUED AT
COLUMN 25 (STANDARD COMMENT TAB STOP) OF THE SOURCE PRINTOUT
POSITION. TABS OCCURING IN THE SOURCE PROGRAl"l ARE CONVERTED TO THE
PROPER NUMBER OF BLANK CHARACTERS BY THE ASSEMBLER. THIS IS DONE
BY THE ASSEMBLER RATHER THAN THE DEVICE HANDLER OR DEVICE BECAUSE
THE BEGINNING OF THE SOURCE PRINTOUT DOES NOT OCC:UR ON A STANDARD
TAB STOP.

#12. 5. 0

#12 5. 0 BINARY FILE OUTPUT:

THE OB.JECT (BINARY) OUTPUT I~3 COMPATIBLE WITH THE INTEL HEXADECIMAL
OBJECT CODE FORMAT. THE OUTPUT FILE CONSISTS OF ASCII TEST
REPRESENTING HEXADECIMAL NUMBERS IN THE FOLLOWING FORMAT:

LEADER STRINGS OF 100 NULL CHARACTERS PRECEED AND FOLLOW THE OBJECT
OUTPUT. EACH LINE BEGINS WITH A COLON AND IS FOLLOWED BY A TWO HEX
DIGIT BYTE COUNT, A FOUR HEX DIGIT ADDRESS, A TWO HEX DIGIT RECORD
TYPE (ALWAYS 0), UP TO 16 BYTES OF DATA (EACH 2 HEX DIGITS), AND A
TWO HEX DIGIT CHECKSU~

EXAMPLE:

:CCAAAATTDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDSS

WHERE:

CC IS THE TWO HEXADECIMAL DIGIT COUNT FOR THE NUI'1BER
OF DATA BYTES (REPRESENTED BY PAIRS OF D~S) IN THE
LINE. A COUNT OF ZERO INDICATES THE TERMINATION OF
THE OBJECT OUTPUT. (:00)

AAAA IS THE HEXADECII'1AL ADDRESS FOR STORING THE FIRST
DATA BYTE. EACH ADDITIONAL DATA BYTE IS TO BE
STORED IN SEQUENTIAL ADDRESSES. THE ADDRESS IS
PRESENTED WITH ITS MOST SIGNIFICANT BYTE FIRST.

TT IS THE TWO HEXADECIMAL RECORD TYPE. THIS INDICATOR
IS CURRENTLY UNUSED AND ASSIGNED A VALUE OF 00.

DO REPRESENTS TWO HEXADECIMAL DIGITS FOR A BYTE OF
OBJECT (BINARY) CODE. UP TO 16 BYTES MAY BE OUTPUT
ON ONE LINE.

SS IS THE TWO HEXADECIMAL DIGIT CHECKSUM OF THE LINE.
ALL EIGHT BIT BYTES IN THE LINE AFTER THE RECORD
MARK (~: /) ARE SUMMED. THE LEAST SIGNIFICANT BYTE
OF THE NEGATIVE OF THIS VALUE IS THE CHECKSUM.
THUS, IF ALL BYTES IN THE LINE ARE ADDED TOGETHER
WITH CARRYS IGNORED, AND THIS SUM IS ADDED TO THE
CHECKSUM, THE RESULT WILL BE ZERO.

THE BINARY OUTPUT FILE CAN BE CHANGED TO BNPF FORMAT THROUGH THE
USE OF THE /B RUN-TIME OPTION. SECTION #2. 4. 0 DESCRIBES THE BNPF
OUTPUT.

#12. 6. 0

#12. 6. 0 ADDITIONAL ERROR MESSAGE FOR THE Z80:

STANDARD ERROR:

E:JR RELATIVE JUMP ADDRESS OUT OF RANGE.
THE OPERAND ADDRESS WAS OUT OF THE RANGE FROM THE
REQUIRED -126 TO +129 (DECIMAL) BYTES FROM THE FIRST
BYTE OF THE RELATIVE ADDRESSING INSTRUCTION.

#12. 7. 0

. R XZ80
*TTY:,TTY:<SAZ80/J/P/l

E:MO AT POSITN+ 21
E:MO AT POSITN+ ~1

: 10100000DBOOC87F28FAE60FOF4FDBOICB7F200DF3
: 10101000CD2AI03E80D300AFD300FF18E3E67FCD8A
: 10102000241018EFCD3310B612C9CD3310477E2FEO
: 10103000A012C947E678810FOFOFC6805F3EOOCE31
: 10104000305778E607C64C6F26101AC9010204080B
:0410500010204080AC
:000000

SAMPLE ROUTINE JUL L 197"7

· TITLE SAMPLE ROUTINE
THIS ROUTINE READS IN

XZ80--VIA PAGE 1

STATUS I NFORI"1AT I ON AND
UPDATES SIXTEEN DIFFERENT 128 BIT FLAG TABLES
IN RAM.

0 0 IPORTI · EQU 0
0 1 IPORT2 · EG!U 1
0 0 OPORTI · EQU 0

30 80 TABLES · EQU 3080 i BASE OF FLAG TABLES
10 0 .ORG 1000

1000 DB 0 LOOP IN A, (IPORT1) i GET READY FLAG AND TABLE #
1002 CB 7F BIT 7,A
1004 28 FA .JR Z,LOOP i WAIT UNTIL DATA READY
1006 E6 F AND OF
1008 F RRCA
1009 4F LD C,A ; SAVE SHIFTED TABLE NUMBER
100A DB 1 IN A, (IPORT2) i GET BIT POSITION NUMBER
100C CB 7F BIT 7,A
100E 20 0 JR NZ,$2 i MOST SIG BIT MEANS SET BIT ON
1010 CD 2A 10 CALL CLEARB
1013 3E 80 $1 LD A,80 ; STROBE ACKNOWLEDGE LINE
1015 03 0 OUT (OPORT1), A
1017 AF XOR A
1018 D~' .;:, 0 OUT (OPORTl), A

IFNZRO ?1 ; USER FLAG 1 IS SELECTED FOR
lOlA FF RST 38 ; DEBUGG I NG. A BREAKPOINT CALL

· ENDC i (RST :=:8) IS INSERTED FOR
IFZERCJ ?1 ; DEBUGGING AND A "NOP" IS

NOP i INSERTED FOR NORMAL OPERATION
· EN DC

1018 18 E'=' 'J .JR LOOP ; LOOP BACt< FOR ANOTHER TRY
1010 E6 7F $2 AND ""B 01111111 i MASt< OUT SIGN
101F CD 24 10 CALL SETB ; SET BIT INTO TABLE
1022 18 EF JR $1

#12. 7. 0

SAMPLE ROUTINE ,JUL 1 I 19"77 XZ80--VIA PAGE 2

· PAGE
SUBROUTINES TO SET AND CLEAR BITS IN A TABLE

1024 CD 33 10 SETB CALL POSITN ; POSITION THE POINTERS
1027 B6 OR (HL) lOR IN THE DECODED BIT
1028 12 LD (DE),A ; STORE RESULT BACK
102'? CQ RET
102A CD 33 10 CLEARB CALL POSITN ; POSITION THE POINTERS
102D 47 LD B, A i SAVE PREVIOUS BYTE TEMPORARILY
102E 7E
102F 2F
1030 AO
1031 12
1032 C9

1033 47
1034 E6
10:36 81
103'7 F
1038 F
1039 F
10~3A C6
l03C 5F
103[1 3E
103F CE
1.041 57
1042 78
1043 E6
1045 C6
1047 6F
1048 26
104A lA
104B C9

104C 1
104D 2
104E 4
104F 8
1050 10
1051 20
1052 40
1.053 80

LD A, (HL) iGET DECODED BIT
CPL
AND B ; MASI< OUT SELECTED B I 1
LD (DE),A iSTORE BACK RESULT
RET
ROUTINE TO POSITION THE TABLE BYTE POINTER

AND DECODE THE BIT POSITION.
POSITN LD B,A iSAVE TEMPORARILY

78 AND AO 170 ; MASK FOR BYTE NUMBER IN TABLE
ADD A,C iCOMBINE WITH TABLE NUMBER
RRCA iAND FORM BYTE ADDRESS
RRCA
RRCA

80 ADD A,AL TABLES
LD E, A i SET UP ADDRESS IN D, E

o LD A,O
30 ADC A,AM TABLES

LD D,A
LD A,B ; DECODE BIl NUMBER WITHIN BYTE

7 AND 7
4C ADD A,AL $1 iFORM LOOKUP TABLE ADDRESS

LD L,A ; FOR DECODED BIT
10 LD H,AM $1

$1

E: Mel

LD A. (DE) ;GET TABLE BYTE
RET
· BIN i TABLE IS IN BINARY
· BYTE

· BYTE

,JUNK
· END

1, 10, 100, 1000

10000. 100000, 1000000, 10000000

i SAMPLE ERROR

SAMPLE ROUTINE ,JUL 1. 1977 XZ80--VlA PAGE

102A CLEARB
o OPORT1

ERRORS: 1

o IPORT1
1033 POSI'TN

1 IPORT2
1024 SETB

1000 LOOP
:3080 TABLES

~,

.:;.

*13. O. 0 MICROPROCESSOR INSTRUCTION SET *13. O. 0

Z80 INSTRUCTIONS dUN 29, 1977 XZ80--VIA PAGE

o 8E
1 DO 8E
4 FD 8E
7 8F
8 88
9 89
A 8A
B 8B
C 8C
o 80
E CE FF

10 ED 4A
12 ED 5A
14 ED 6A
16 ED 7A

18 86
19 DD 86
1C FD 86
1F 87
20 80
21 81
22 82
23 83
24 84
25 85
26 C6 FF
28 9
2~1 1-:'1
2A 29
2B 39
2C DD 9
2E DD 19
30 DO 29
32 DD 3';"1
34 FD 9
:36 FD 19
38 FD 29
3A FD 39
3C A6

3D DO A6
40 FD A6
43 A7
44 AO
45 A1
46 A2
47 A:3
48 A4
49 A5
4A E6 FF

5
5

5
5

5
5

THIS SECTION IS AN ALPHABETICAL LISTING OF THE
Z80 INSTRUCTION SET WITH ALL POSSIBLE OPERAND
TYPE VAR I AT IONS.

ADD
-ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
AND

WITH CARRY INSTRUCTIONS
A, (HL)
A, (IX+INDEX)
A, (IY+INDEX)
A,A
A,B
A,C
A,D
A,E
A,H
A,L
A,BYT
HL. BC
HL. DE
HL,HL
HL. SP

WITHOUT CARRY INSTRUCTIONS
A, (HL)
A, (IX+INDEX)
A, (IY+INDEX)
A,A
A,B
A,C
A,D
A,E
A,H
A,L
A,BYT
HL,BC
HL,DE
HL,HL
HL,SP
IX,BC
IX,DE
I X, I X
IX,SP
IY,BC
IY,DE
IY,IY
IY,SP
(HL)

LOGICAL
AND

AND INSTRUCTIONS
(IX+INDEX)
(IY+INDEX) AND

AND A
AND B
AND C
AND o
AND E
AND H
AND L
AND BYT

1

#13. O. 0

Z80 INSTRUCTIONS JUN 2';"11 1977 XZ80--V1A PAGE 2

TEST BIT INSTRUCTIONS
4C CB 46 BIT 0, (HL)
4E DD CB BIT 0, (IX+INDEX)
50 5 46
52 FD CB BIT 0, (IY+INDEX)
54 5 46
56 CB 47 BIT O,A
58 CB 40 BIT O,B
5A CB 41 BIT O,C
5C CB 42 BIT O,D
5E CB 43 BIT O,E
60 CB 44 BIT O,H
62 CB 45 BIT O,L
64 CB 4E BIT 1, (HL)
66 DD CB BIT 1, (IX+INDEX)
68 5 4E
6A FD CB BIT 1, (IY+INOEX)
6C 5 4E
6E CB 4F BIT LA
70 CB 48 BIT 1.,13
72 CB 49 BIT l.C
74 CB 4A BIT 1,0
76 CB 413 BIT l.E
78 CB 4C BIT 1, H
7A CB 40 BIT l.L
7C CB 56 BIT 2, (HL)
7E DO CB BIT 2, (IX+INDEX)
80 5 56
82 FD CB BIT 2, (IY+INDEX)
84 5 56
86 CB 57 BIT 2,A
88 CB 50 BIT 2,13
8A CB 51 BIT 2,C
8C CB 52 BIT 2,D
8E CB c--;:.

.,.)..;;, BIT 2,E
90 CB 54 BIT 2,H
92 CB 55 BIT 2/L
94 CB SE BIT 3, (HL)
91:.. DD CB BIT 3, (IX+INDEX)
98 S 5E
9A FD CB BIT 3, (IY+INDEX)
9C 5 5E
9E CB 5F BIT 3,A
AO CB 58 BIT 3,B
A2 CB 5~1 BIT :3, C
A4 CB 5A BIT 3,D
A6 CB 5E: BIT ~3, E
A8 CB 5C BIT 3,H
AA CB 50 BIT :3, L
AC CB 66 BIT 4, (HL)
AE DO CB BIT 4, (IX+INDEX)
130 5 66
132 FD CB BIT 4, (IY+INDEX)
134 5 66
136 CB 67 BIT 4,A
138 CB 60 BIT 4,13
BA CB 61 BIT 4,C

#13. O. 0

180 INSTRUCTIONS .JUN 29, 1977 XI80--V1A PAGE 3

BC CB 62 BIT 4,0
BE CB 63 BIT 4,E
CO CB 64 BIT 4,H
C2 CB 65 BIT 4,L
C4 CB 6E BIT 5, (HL)
C6 00 CB BIT 5, (IX+INOEX)
C8 5 6E
CA FO CB BIT 5, (IY+INOEX)
CC 5 6E
CE CB 6F BIT 5,A
00 CB 68 BIT 5,B
02 CB 69 BIT 5,C
04 CB 6A BIT 5,0
06 CB 6B BIT 5,E
08 CB 6C BIT o,H
OA CB 60 BIT 5,·L
DC CB 76 BIT 6, (HL)
DE 00 CB BIT 6, (IX+INOEX)
EO 5 76
E2 FO CB BIT 6, (IY+INOEX)
E4 5 76
E6 CB 77 BIT 6,A
E8 CB 70 BIT 6,B
EA CB 71 BIT 6,C
EC CB 72 BIT 6,0
EE CB 73 BIT 6,E
FO CB 74 BIT 6,H
F2 CB 75 BIT 6,L
F4 CB 7E BIT 7, (HL)
F6 00 CB BIT 7, (IX+INOEX)
F8 5 7E
FA FO CB BIT 7, (IY+INOEX)
FC 5 7E
FE CB 7F BIT 7,A

100 CB 78 BIT 7,B
102 CB 79 BIT 7,C
104 CB 7A BIT 7,0
106 CB 7B BIT 7,E
108 CB 7C BIT 7,H
lOA CB 70 BIT 7,L

CALL SUBROUTINE INSTRUCTIONS
10C DC 34 12 CALL C,NN
10F FC 34 12 CALL M,NN
112 04 34 12 CALL NC,NN
115 CO 34 12 CALL NN
118 C4 34 12 CALL NI,NN
l1B F4 34 12 CALL P,NN
l1E EC 34 12 CALL PE,NN
121 E4 34 12 CALL PO,NN
124 CC 34 12 CALL liNN

127 3F CCF ; COMPLEMENT CARRY FLAG

COMPARE INSTRUCTIONS
128 BE CP (HL)
l?Q -- 00 BE 5 CP (IX+INOEX)
12C FD BE 5 CP (IY+INDEX)

Z80

12F BF
130 B8
131 B9
132 BA
133 BB
134 BC
135 BD
136 FE FF

138 ED A9
13A ED B9
13C ED A1
13E ED Bl
140 2F
141 27

142 3""-.'::1

143 DD 3"'" ·oJ

146 FD 35
14':;' 3D
14A c' .J

14B B
14C D
14D 15
14E 1B
14F ID
150 25
151 2B
152 DD 2B
154 FD 2B
156 2D
157 3B

15:3 F3
159 10 0

15B FB

15C E~' .;:,

15D DO E'=' .;;;0

15F FD E3
161 8
162 EB

16:3 D9
164 76

165 ED 46
167 ED 56
169 ED 5E

16B ED 78
16D DB 20
16F ED 40

INSTRUCTIONS

5
5

L.ABEL.l

CP
CP
CP
CP
CP
CP
CP
CP

CPD
CPDR
CPI
CPIR
CPL
DAA

#13. O. 0

...JUN 29, 1977 XZ80--VIA PAGE 4

A
B .-.
D
E
H
L
BYT

; COMPARE AND DECREMENT
; COMPARE, DECREMENT, AND REPEAT
; COMPARE AND INCREMENT
; COMPARE, INCREMENT AND REPEAT
; COMPLEMENT ACCUMULATOR
; DECIMAL AD...JUST ACCUMULATOR

DECREMENT INSTRUCTIONS
DEC (HL)
DEC (IX+INDEX)
DEC (IY+INDEX)
DEC A
DEC B
DEC BC
DEC C
DEC D
DEC DE
DEC E
DEC H
DEC HL.
DEC IX
DEC IY
DEC L
DEC SP

01 j DISABLE INTERRUPTS
D...JNZ L.ABEL1 i DECREMENT B, ,JUMP RELATIVE ON

NON 0
EI i ENABLE INTERRUPTS

EXCHANGE INSTRUCTIONS
EX (SP), HL
EX (SP), I X
EX (SP), IY
EX AF, AF'-
EX DE,HL

EXX ; EXCHANGE REGISTER BANKS
HALT i HALT THE PROCESSOR

SET INTERRUPT MODE INSTRUCTIONS
1M 0
1M 1
1M 2

INPUT INSTRUCTIONS
IN A, (C)
IN A, (N)
IN B, (C)

#13, 0, 0

Z80 INSTRUCTIONS ,jUN 29, 1977 XZ80--V1A PAGE 5

171 ED 48 IN C, (C)
17:3 ED 50 IN D, (C)
175 ED 58 IN E, (C)
177 ED 60 IN H, (C)
179 ED 68 IN L, (C)

INCREMENT INSTRUCTIONS
17B 34 INC (HL)
17C DO 34 5 INC (IX+INDEX)
17F FD 34 5 INC (IY+INDEX)
1 c,-,· c' 3C INC A
lE:~: 4 INC B
184 3 INC BC
185 C INC C
186 14 INC D
1:=:7 1:3 INC DE
1.~38 lC INC E
1!:::'? 24 INC H
18A 2:3 INC HL
18B DO 23 INC IX
18n FD 23 INC IY
18F 2C INC L
190 "",-. . ,:..,:; INC !SF'

1.91 ED AA IND i INPUT AND DECREMENT
l'''~-' :; .:;, ED BA INDR i INPUT, DECREMEN'l' , AND REPEAT
195 ED A2 INI i INPUT AND INCREMENT
1, ''i17 En B'-' ..:.. INIR i INPUT, INCREMENT, AND REPEAT

,JUMP ABSOLUTE INSTRUCTIONS
1,99 E9 ,jP (HL)
1.9A DD Eo;'! ,JP <IX)
1 ';:/C FD E9 ,jP (I Y)
1 ':?IE.: DA 34 12 ,jp C,NN
1.Al FA :34 12 ,jp M,NN
lA4 D2 34 12 .JP NC,NN
lA7 C3 34 12 .JP NN
lAA C2 :34 12 .JP NZ,NN
lAD F2 34 12 ,jp P/NN
lBO EA 34 12 ,jp PE,NN
l[::3 E2 34 12 ,jP PO/NN
1[:36 CA 34 1-' ..:.. .JP Z/NN

,JUMP RELATIVE INSTRUCTIONS
lB9 38 8 ,jR C,LABEL2
lBB 1.8 6 .JR LABEL2
lBD 30 4 .JR NC,LABEL2
lBF 20 2 .JR NZ,LABEL2
lel 28 0 .JR Z,LABEL2

LOAD INSTRUCTIONS
1C3 2 LABEL2 LD (BC), A
lC4 12 LD (DE) I A
1C5 77 LD (HL) I A
le6 70 LD (HL), B
1,C7 71 LD (HL), C
lC:3 72 LD (HL) I D
1,C9 7? .;;,0 LD (HL), E

#13. o. 0

Z80 INSTRUCTIONS dUN 29, 1977 XZ80--V1A PAGE 6

lCA 74 LO (HL), H
lCB 75 LD (HL), L
lCC 36 FF LO (HL),BYT
lCE DO 77 5 LD (IX+INDEX),A
101 DO 70 5 LD (IX+INOEX),B
104 DO 71 5 LO (IX+INOEX), C
107 DO 72 5 LD (IX+INDEX),D
lDA DD 7"='-.J 5 LD (IX+INDEX),E
lDD DO 74 5 LD (IX+INDEX),H
lEO DO 75 5 LD (I X + INDEX) , L
lE3 DD 36 LD (I X+INDEX), BYT
lE5 5 FF
lE7 FD 77 5 LD (IY+INDEX), A
lEA FD 70 5 LD (IY+INDEX), B
lED FD 71 5 LD (IY+INDEX), C
lFO FD 72 5 LD (IY+INDEX), D
lF3 FD 73 5 LD (IY+INDEX), E
lF6 FD 74 5 LD (IY+INDEX),H
lF9 FO 75 5 LD (IY+INDEX), L
lFC FD 36 LD (IY+INDEX),BYT
lFE 5 FF
200 32 34 12 LD (NN) I A
203 ED 43 LO (NN), BC
205 34 12
207 ED 53 LD (NN) I DE
209 34 12
20B ZZ 34 12 LD (NN),HL
20E 00 22 LD (NN) I I X
210 34 12
212 FD 22 L.D (NN), I Y
214 34 12
216 ED 73 L.D (NN), SP
218 34 12
21A A L.D A, (BC)
21B lA LD A, (DE)
21C 7E LD A, (HL)
210 DD 7E 5 LO A, (IX+INDEX)
220 FD 7E c:: •

. J LD A, (IY+INDEX)
223 3A 34 12 LD A, (NN)
226 7F L.D A,A
227 78 LD A,B
228 79 LD A,C
22'~ 7A LD A,D
22A 7B LD A,E
22B 7C LD A,H
22C ED 57 LD A, I
22E 7D LD A,L
22F 3E FF LD A,BYT
2:31 46 LD B, (HL)
232 DO 46 5 LD B, (IX+INOEX)
235 FD 46 5 LD B, (IY+INDEX)
23:3 47 LD B,A
2:39 40 LD B,B
23A 41 LD B,C
2:3B 42 LD B,D
23C 4·-' .J L.D B,E
23D 44 LD B/H
23E 45 LD B,L

.13. o. 0

zeo INSTRUCTIONS ,JUN 29, 1977 XZ90--V1A PAGE 7

23F 6 FF LD B,BYT
241 ED 48 LD BC, (NN)
243 34 12
245 1 34 12 LD BC,NN
249 4E LD C, (HL)
249 DD4E 5 LD C. (IX+INDEX)
24C FD 4E 5 LD C, (IY+INDEX)
24F 4F LD c.A
250 49 LD C,B
251 49 LD e,e
252 4A LD e,D
253 413 LD e.E
254 4e LD e,H
255 40 LD e,L
256 E FF LD e,8YT
258 56 LD 0, (HL)
259 DO 56 5 LD 0, (I X+INDEX)
25e FD 56 5 LD D. (IY+INDEX)
25F 57 LD D.A
260 50 LD 0,13
261 51 LD D.e
262 52 LD 0.0
263 53 LD D.E
264 54 LD D,H
265 55 LD D.L
266 16 FF LD D,BYT
268 ED 58 LD DE, (NN)
26A 34 12
26C 11 34 12 LD OE,NN
26F 5E LD E, (HL)
270 DO 5E 5 LD E, (I X + I NDE X)
273 FD 5E !5 LD E, (IY+INDEX)
276 5F LD E,A
2"77 58 LD E,B
278 59 LD E,e
2751 5A LD E,D
27A 513 LD E,E
2713 5C LD E,H
27C 50 LO E,L
27D 1E FF LD E,BYT
27F 66 LD H, (HL)
280 DO 66 5 LD H, (IX+INOEX)
2f:33 FD 66 !5 LD H, (IY+INDEX)
286 67 LD H,A
287 60 LD H,B
288 61 L.D H,C
289 62 LD H,D
28A 63 LD H,E
2813 64 LD H,H
28C 65 LD H,L
28D 26 FF LD H,BYT
28F 2A 34 12 LD HL, (NN)
2(~";J2 21 34 12 LO HL. NN
2f::~5 ED 47 LD LA
297 OD 2A LD I X I (NN)
2'-;)9 34 12
2'~>B DD 21 LD IX,NN
29D 34 12

#13. o. 0

Z80 INSTRUCTIONS ,JUN 29" 1977 XZ80--V1A PAGE 8

29F FD 2A LD IY, (NN)
2A1 34 12
2A3 FD 21 LD IY,NN
2A5 34 12
2A7 6E LD L, (HL)
2A8 DD 6E 5 LD L, (IX+INDEX)
2AB FD 6E 5 LD L, (IY+INDEX)
2AE 6F LD L,A
2AF 68 LD L,B
2BO 69 LD L,C
2B1 6A LD L,D
2B2 6B LD L,E
2B3 6C LD L,H
2B4 bD LD L,L
2B5 2E FF LD L,BYT
287 ED 7B LD SP, (NN)
2B9 34 12
2BB F9 LD SP,HL
2BC DD F9 LD SP, IX
2BE FD F9 LD SP, IY
2CO 31 34 12 LD SP,NN

2C3 ED A8 LDD i LOAD AND DECREMENT
2C5 ED B8 LDDR i LOAD, DECREMENT, AND REPEAT
2C7 ED AO LDI ; LOAD AND INCREMENT
2C9 ED BO LDIR i LOAD, INCREMENT, AND REPEAT
2CB ED 44 NEG ; NEGATE ACCUMULATOR
2CD 0 NOP ; NO OPERATION

LOGICAL OR INSTRUCTIONS
2CE B6 OR (HL)
2CF DD B6 5 OR (IX+INDEX)
202 FD B6 5 OR (IY+INDEX)
2D5 B7 OR A
2D6 80 OR B
2D7 B1 OR C
2D8 B2 OR D
2D9 B':! • .;;1 OR E
2DA B4 OR H
2DB B5 OR L
2DC F6 FF OR BYT

2DE ED BE: OTDR ; OUTPUT, DECREMENT, AND REPEAT
2EO ED B3 OTIR ; OUTPUT, INCREMENT, AND REPEAT

OUTPUT INSTRUCTIONS
2E2 ED 79 OUT (C), A
2E4 ED 41 OUT (C) I B
2Eb ED 49 OUT (C), C
2E8 ED 51 OUT (C) I D
2EA ED 59 OUT (C), E
2EC ED 61 OUT (C), H
2EE ED 69 OUT (C) I L
2FO D3 20 OUT (N) I A

2F2 ED AB OUTD ; OUTPUT AND DECREMENT
2F4 ED A':! • .;;1 OUTI i OUTPUT AND INCREMENT

*13. O. 0

. zeo INSTRUCTIONS JUN 29, 1977 xzeo--v1A PAGE 9

POP STACK INSTRUCTIONS
2F6 F1 POP AF
2F7 C1 POP BC
2FS 01 POP DE
2F9 E1 POP HL
2FA DO E1 POP IX
2FC FO E1 POP IV

PUSH STACK INSTRUCTIONS
2FE F5 PUSH AF
2FF C5 PUSH BC
300 05 PUSH DE
301 E5 PUSH HL
302 DO E5 PUSH IX
304 FO E5 PUSH IV

RESET BIT INSTRUCTIONS
306 CB 86 RES 0, (HL)
308 DO CB RES 0, (I X + I NDE X)
30A 5 86
30C FD CB RES 0, (IV+INDEX)
30E 5 86
310 CB 87 RES O,A
312 CB 80 RES O,B
314 CB 81 RES O,C
316 CB 82 RES O,D
318 CB 83 RES O,E
31A CB 84 RES O,H
31C CB 85 RES O,L
31E CB 8E RES 1. (HL)
320 DD CB RES 1. (I X + I NDE X)
322 5 8E
324 FD CB RES 1, (IV+INDEX)
326 5 8E
328 CB 8F RES 1, A
32A CB 88 RES 1, B
32C CB 89 RES 1, C
32E CB 8A RES l.D
330 CB 8B RES l,E
332 CB 8C RES 1, H
334 CB 8D RES 1, L
336 CB 96 RES 2, (HL)
338 DD CB RES 2, (IX+INDEX)
33A 5 96
33C FD CB RES 2, (IV+INDEX)
33E 5 96
340 CB 97 RES 2,A
342 CB 90 RES 2,B
344 CB 91 RES 2,C
346 CB 92 RES 2,D
348 CB 93 RES 2,E
34A CB 94 RES 2,H
34C CB 95 RES 2,L
34E CB 9E RES 3, (HL)
350 DD CB RES 3, (IX+INOEX)
352 5 9E
354 FD CB RES 3, (IV+INDEX)
356 5 9E

#13. O. 0

Z80 INSTRUCTIONS .JUN 29, 1977 XZ80--V1A PAGE· 10

358 CB 9F RES 3/A
35A GB 98 RES 3/B
35C CB 99 RES :3, C
35E CB 9A RES 3,D
360 CB 9B RES 3,E
362 CB 9C RES 3/H
364 CB 9D RES :3, L
366 CB A6 RES 4, (HL)
368 DD CB RES 4, (IX+INDEX)
36A 5 A6
36C FD CB RES 4, (IY+INDEX)
36E 5 A6
370 GB A7 RES 4/A
372 CB AO RES 4/B
3"14 CB Al RES 4,C
376 CB A2 RES 4/D
378 CB A-' .,:i RES 4/E
37A CB A4 RES 4/H
37C GB A5 RES 4/L
37E CB AE RES c:-

...)1 (HL)
380 DD CB RES 5, (IX+INDEX)
382 5 AE
384 FD CB RES 5J (IY+INDEX)
386 5 AE
388 CB AF RES 5/A
38A GB A8 RES 5/B
38C: CB A9 RES 5/C
38E CB AA RES 5/0
390 CB AB RES 5/E
392 CB AC RES 5/H
394 CB AD RES 5/L
396 GB B6 RES 6, (HL)
398 DD CB RES 6, (I X+INDEX)
39A 5 B6
39C FD CB RES 6, (IY+INDEX)
39E 5 B6
3AO CB B7 RES 6/A
3A2 CB BO RES 6/B
3A4 CB Bl RES 6/C
3A6 CB B2 RES 6/D
3A8 CB B3 RES 6/E
:3AA CB B4 RES 6/H
:3AC eB B5 RES 6/L
3AE eB BE RES 7, (HL)
3BO DD CB RES 7 I (I X + I NDE X)
3B2 5 BE
3B4 FD CB RES 7, (IY+INDEX)
3B6 5 BE
3B8 eB BF RES 7/A
3BA CB B8 RES 7/B
3BC CB B9 RES 7,C
3BE eB BA RES 7/0
3CO CB BB RES 7/E
3C2 eB BC RES 7,H
3C4 CB BD RES 7/L

RETURN FROM SUBROI...lT I NE INSTRUCTIONS
3C6 C9 RET

fH3. O. 0

zeo INSTRUCTIONS ,JUN 29, 1977 xZeO--V1A PAGE 11

3C7 De RET C
3ce Fe RET M
3C9 DO RET NC
3CA CO RET NZ
3CB FO RET P
3CC Ee RET PE
3CD EO RET PO
3CE ce RET z

3CF ED 4D RETI i RETURN FROM INTERUPT
301 ED 45 RETN ; RETURN FROM NON MASKABLE INTER

UPT

ROTATE LEFT THROUGH CARRY INSTRUCTIONS
303 CB 16 RL (HL)
305 DD CB RL (IX+INDEX)
3D7 5 16
3D9 FD CB RL (IY+INDEX)
3DB 5 16
30D CB 17 RL A
3DF CB 10 RL B
3El CB 11 RL C
3E3 CB 12 RL D
3E5 CB 13 RL E
3E7 CB 14 RL H
3E9 CB 15 RL L

3EB 17 RLA i ROTATE ACC LEFT THROUGH CARRY

ROTATE LEFT CIRCULAR INSTRUCTIONS
3EC CB 6 RLC (HL)
3EE DO CB RLC (IX+INOEX)
3FO 5 6
3F2 FD CB RLC (IY+INOEX)
3F4 5 6
3F6 CB 7 RLC A
3F8 CB 0 RLC 13
3FA CB 1 RLC C
3FC CB 2 RLC 0
3FE CB 3 RLC E
400 CB 4 RLC H
402 CB 5 RLC L

404 7 RLCA iROTATE ACC LEFT CIRCULAR
405 ED 6F RLO iROTATE 01GI1 LEFT

ROTATE RIGHT THROUGH CARRY INSTRUCTIONS
407 CB 1E RR (HL)
409 DO ca RR (IX+INDEX)
4013 5 IE
400 FO CB RR (IY+INDEX)
40F 5 IE
411 CB IF RR A
413 CB 18 RR 13
415 CB 19 RR C
417 CB 1A RR 0
419 CB 113 RR E
418 CB lC RR H

#13. O. 0

Z80 I NSTRIJCT IONS JUN ?Q " J 1977 XZ80--V1A PAGE 12

410 CB 10 RR L

41F 1F RRA i ROTATE ACC RIGHT THROUGH CARRY

ROTATE RIGHT CIRCULAR INSTRUCTIONS
420 CB E RRC (HL)
422 00 CB RRC (IX+INDEX)
424 5 E
426 FD CB RRC (IY+INDEX)
428 5 E
42A CB F RRC A
42C CB 8 RRC B
42E CB 9 RRC C
430 CB A RRC 0
432 CB B RRC E
434 CB C RRC H
436 CB 0 RRC L

438 F RRCA i ROTATE ACC RIGHT CIRCULAR
439 ED 67 RRD j ROTATE DIGIT RIGHT

RESTART INSTRUCTIONS
43B C7 RST 0
43C D7 RST 10
430 DF RST 18
43E E7 RST 20
43F EF RST 28
440 F7 RST 30
441 FF RST 38
442 CF RST 8

SUBTRACT WITH CARRY INSTRUCTIONS
443 9E SBC A. (HL)
444 DD 9E 5 SBC A, (IX+INDEX)
447 FD 9E 5 SBC A, (IY+INDEX)
44A 9F SBC A,A
44B 98 SBC A.B
44C 99 SBC A.C
44D 9A SBC A.D
44E 9B SBC A.E
44F S"/C sac A/H
450 9D SBC A.L
451 DE FF SBC A/BYT
453 ED 42 SBC HL. BC
455 ED 52 SBC HL. DE
457 ED 62 SBC HL. HL.
459 ED 72 SBC HL. SP

45B 37 SCF j SET CARRY FLAG

SET BIT INSTRUCTIONS
45C CB C6 SET 0, (HL)
45E DD CB SET O. (IX+INDEX)
460 5 C6
462 FD CB SET O. (IY+INDEX)
464 5 C6
466 CB C7 SET O.A
468 CB CO SET O/B

.13. o. 0

zao,INSTRUCT IONS ,JUN 29, 1977 XZ8Q-.-V1A PAGE 13

46A CB Cl SET O/C
46C CB C2 SET 0,0
46ECB C3 SET O,E
470 CB C4 SET O/H
472 CI C5 SET O,L
474 CB CE SET 1, (HL)
476 DD CB SET 1, (I X + I NDE X)
478 5 CE
47A FD CB SET 1, (IY+INDEX)
47C 5 CE
47E CB CF SET 1, A
480 CB C8 SET 1, B
482 CB C9 SET 1, C
484 CB CA SET 1/0
486 CB CB SET 1, E
488 CB CC SET 1, H
48A CB CD SET 1, L
48C CB 06 SET 2, (HL)
48E DO CB SET 2, (IX+INDEX)
490 5 D6
492 FD CB SET 2, (IY+INDEX)
494 5 06
496 CB 07 SET 2,A
498 CB DO SET 2,B
49A CB D1 SET 2/C
49C CB 02 SET 2,0
49E CB 03 SET 2,E
4AO CB 04 SET 2,H
4A2 CB 05 SET 2,L
4A4 CB DE SET 3, (HL)
4A6 .00 CB SET 3, (IX+INDEX)
4A8 5 DE
4AA FD CB SET 3, (IY+INOEX)
4AC 5 DE
4AE CB OF SET 3/A
4BO CB 08 SET 3/B
4B2 CB 09 SET 3,C
4B4 CB DA SET 3,0
4B6 CB DB SET 3/E
4B8 CB DC SET 3/H
4BA CB DO SET 3/L
4BC CB E6 SET 4, (HL)
4BE DO CB SET 4, (IX+INDEX)
4CO 5 E6
4C2 FD CB SET 4, (IY+INDEX)
4C4 5 E6
4C6 CB E7 SET 4/A
4C8 CB EO SET 4,B
4CA CB El SET 4,C
4CC CB E2 SET 4,0
4CE CB E3 SET 4,E
400 CB E4 SET 4/H
402 CB E5 SET 4,L
404 CB EE SET 5, (HL)
4D6 DD CB SET 5, (IX+INDEX)
4D9 5 EE
40A FD CB SET 5, (IY+INDEX)
4DC 5 EE

#13. O. 0

Z80 INSTRUCTIONS JUN 29, 1977 XZ80--V1A PAGE 14

4DE CB EF SET 5,A
4EO CB E8 SET 5,B
4E2 CB E9 SET· 5,C
4E4 CB EA SET 5,0
4E6 CB EB SET 5,E
4E8 CB EC SET 5,H
4EA CB ED SET 5,L
4EC CB F6 SET 6, (HL)
4EE DD CB SET 6, (IX+INDEX)
4FO 5 F6
4F2 FD CB SET 6, (IY+INDEX)
4F4 5 F6
4F6 CB F7 SET 6,A
4F8 CB FO SET 6,B
4FA CB Fl SET 6,C
4FC CB F2 SET 6,D
4FE CB F3 SET 6,E
500 CB F4 SET 6,H
502 CB F5 SET 6,L
504 CB FE SET 7, (HL)
506 DD CB SET 7, (IX+INDEX)
508 5 FE
50A FD CB SET 7, (IY+INDEX)
50C 5 FE
50E CB FF SET 7,A
510 CB F8 SET 7,B
512 CB F'::"/ .' SET 7,C
514 CB FA SET 7,D
516 CB FB SET 7,E
518 CB FC SET 7,H
51A CB FD SET 7,L

SHIFT LEFT ARITHMETIC INSTRUCTIONS
51C CB 26 SLA (HL)
51E DD CB SLA (IX+INDEX)
520 5 26
522 FD CB SLA (IY+INDEX)
524 5 2(-;.
526 CB 27 SLA A
528 CB 20 SLA B
52A CB 21 SLA C
52C CB 22 SLA D
52E CB 23 SLA E
530 CB 24 SLA H
5:32 CB 25 SLA L

SHIFT RIGHT ARITHMENTIC INSTRUCTIONS
534 CB 2E SRA (HL)
536 DO CB SRA (IX+INDEX)
5:38 5 2E
53A FO CB SRA (IY+INOEX)
53C 5 2E
53E CB 2F SRA A
540 CB 28 SRA B
542 CB 29 SRA C
544 CB 2A SRA 0
546 CB 2E: SRA E
548 CB 2C SRA H

4U3.0.0

zeo INSTRUCTIONS ..JUN 29, 1977 X2:S0--V1A PAGE 15

54A CB 20 SRA L

SHIFT RIGHT LOGICAL I NSTRI..,ICT IONS
54C CB 3E SRL (HL)
54E DO CB SRL (IX+INDEX)
550 5 3E
552FD CB SRL (IY+INDEX)
554 5 3E
556 CB 3F SRL A
55S CB 3e SRL B
55A CB 39 SRL C
55C CB 3A SRL 0
55E CB 3B SRL E
560 CB 3C SRL H
562 CB 3D SRL L

SUBTRACT WITHOUT CARRY INSTRUCTIONS
564 96 SUB (HL)
565 DO 96 5 SUB (IX+INDEX)
568 FD 96 5 SUB (IY+INDEX)
56B 97 SUB A
56C 90 SUB B
560 91 SUB C
56E 92 SUB D
56F 93 SUB E
570 94 SUB H
571 95 SUB L
572 D6 FF SUB BYT

EXCLUSIVE OR INSTRUCTIONS
574
575
578
57B
57C
57D
57E
57F
580
581
582

AE
DD AE
FD AE
AF
A8
A9
AA
AB
AC
AD
EE FF

12 34
o 5
o 20

FF FF

5
5

NN
INDEX
N
BYT

XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR
XOR

· EQU
· EQIJ
· EQU
· EQU
· END

(HL)
(IX+INDEX)
<IY+INDEX)
A
B
C
0
E
H
L
BYT

1234
5
20
-1

iADDRESS VALUE (16 BITS)
i INDEX VALUE (0 TO 255 Dec)
iEIGHT BIT VA~UE (0 TO 255)
iBYTE VALUE (-128 TO +255 DEC)

zao INSTRUCTIONS

FFFF BYT
20 N

ERRORS: 0

5 INDEX
1234 NN

dUN 29, 1977

15B LABELl

#13. O. 0

XZ80--V1A PAGE 16

lC3 LABEL2

APPENDIX A - RUN-TIME OPTION& *14. O. 0

**

/B
/E
/H
/.J

/K

/L

/N
/0

/P

/S
/T
/W
/0 TO /9

- OUTPUT BINARY FILE IN BNPF FORMAT.
- I NH I BIT ERROR MESSAGES TO CONSOLE.
- INHIBIT HEADINGS AND PAGINATION.
- LIST UNASSEMBLED STATEMENTS AND CONDITIONAL

ASSEMBL Y PSEUDO-OPS.
- EXPAND SYMBOL TABLE STORAGE INTO ADDITIONAL

CORE.
- OUTPUT LEADER (NULLS) IN BINARY FILE FOR EACH

. ORG STATEMENT.
- LIST ONLY THE SYMBOL TABLE.
- OUTPUT LISTING IN OCTAL FORMAT INSTEAD OF IN

HEXADECIMAL.
- INCLUDE NORMALLY UNLISTED PSEUDO-OPS IN THE

LISTING.
- OMIT THE SYMBOL TABLE FROM THE LISTING.
- REPLACE THE FORM/FEED WITH 3 CR/LF'S.
- INHIBIT WARNING MESSAGES.
- USER FLAGS, USED WITH THE ? OPERATOR

**

APPENDIX B - INDICATOR SET.

**

*
/
&

+

··· .. c:
"'B
"'D
""H
""0
""L

"'M

" OR . '
?

MULTIPLICATION.
DIVISION.
BOOLEAN AND.
INCLUSIVE OR
ADDITION.
SUBTRACT ION.
COMPLEMENT INDICATOR, (UPARROW B).
BINARY RADIX INDICATOR, (UPARROW B).
DECIMAL RADIX INDICATOR, (UPARROW D).
HEXADECIMAL RADIX INDICATOR, (UPARROW H).
OCTAL RADIX INDICATOR, (UPARROW 0).
LEAST SIGNIFICANT BYTE ACCESS OPERATOR,
(UPARROW L).
MOST SIGNIFICANT BYTE ACCESS OPERATOR,
(UPARROW M).
COMMENT INDICATOR.
ASCII CHARACTER INDICATOR .
USER FLAG OPERATOR
CURRENT LOCATION COUNTER, (PERIOD).

**

APPEND I X C - PSEUDO-OPS. #14. O. 0

**

· ADDR
· BIN
· BYTE
· DBYTE
· DECM
· DINST
· END
· ENDC
· EQU
· HEX

IFDEF
· IFNDEF
· IFNZRO
· IFZERO
· LIST
· OCT
.ORG
· PAGE
· SET
· TITLE
· ZERO

DOUBLE BYTE DATA STORAGE, REVERSED FORMAT.
CHANGES DEFAULT RADIX TO BINARY.
SINGLE BYTE DATA STORAGE.
DOUBLE BYTE DATA STORAGE.
CHANGES DEFAULT RADIX TO DECIMAL.
RENAMES A MICROPROCESOR INSTRUCTION.
PROGRAM TERMINATOR.
ENDS CONDITIONAL ASSEMBLY.
ASSIGNS A PERMANENT VALUE TO A SYMBOL.
CHANGES DEFAULT RADIX TO HEXADECIMAL.
INCLUDE CODE TO . ENDC IF SYMBOL IS DEFINED.
INDLUDE CODE TO . ENDC IF SYMBOL IS NOT DEFINED.
INCLUDE CODE TO . ENDC IF OPERAND DOES NOT EQUAL O.
INCLUDE CODE TO . ENDC IF OPERAND EQUALS O.
PROVIDES SELECTIVE LISTINGS.
CHANGES DEFAULT RADIX TO OCTAL.
REASSIGNS THE CURRENT LOCATION COUNTER.
BEGINS NEW PAGE IN LISTING.
ASSIGNS A TEMPORARY VALUE TO A SYMBOL.
SPECIFIES HEADING.
ZEROS A SPECIFED NUMBER OF BYTES.

**

APPENDIX D - ERROR MESSAGES. #14. O. 0

**
E:BN
E:DF
E: DR .
E: IL
E: 10
E:.JR
E:LO
E:LS
E:LT
E: 1"1L
E:MO
E:OC
E:OE
E:OM
E:OS
E:PE
E:PS
E:RE
E:RV
E:ST
E:TL
E:US
E:WE

W:EF
W:UC

- BAD NESTING OF BRACKETS.
. -. OUTPUT FILE DEVICE FUL.L (FATAL)
- DIGIT OUTSIDE OF RADIX.
- ILLEGAL. L.ABEL FIELD.
- ILLEGAL OPERAND VALUE .
.. - REU~ T I VE .JUMP ADDRESS OUT OF RANGE.
- LINE INPUT OVERFLOW.
- L.OCAL SYMBOL SYNTAX ERROR.
- LOCAL SYMBOL TABLE OVERFL.OW. (FATAL)
- MULTIPLE LABEL DEFINITION.
- MISSING OR ILLEGAL. MNEMONIC IN OPERATOR FIELD.
- OPERAND TOO COMPL.EX.
- OPE:N ERROR IN OUTPUT FILE. (FATAL.)
_. OPERAND MISSING.
- OPERAND SYNTAX ERROR.
- PHASE ERROR, ADDRESS CONFLICT. (FATAL)
- ILLEGAL PERMANENT SYMBOL USAGE IN OPERAND.
- INPUT FILE READ ERROR. (FATAL)
- BAD REGISTER VALUE FIELD.
- SYMBOL TABLE OVERFLOW. (FATAL)
- LABEL DEFINED TOO LATE.
_.. UNDEF I NED SYMBOL.
- OUTPUT FILE WR I TE ERROR. (FATAL)

- NO . END STATEMENT IN LAST FILE.
- UNINHIBITED CONDITIONAL ASSEMBLY IN EFFECT

AT ASSEMBLY END.

**

