
The Computing Past

The continuous improvements in computing technol-
ogy cause the rapid obsolescence of computer systems,
architectures, media, and devices. Since old comput-
ing systems are rarely perceived to have any value, the
danger of losing portions of the computing record is
significant. When a computing architecture becomes
extinct, its software, data, and written and oral records
often disappear with it. 

Older computer systems embody major investments
in software, the value of which may persist long after the
systems have lost their technical relevancy. For example,
the PDP-11 computer has not been a leading-edge
architecture since the introduction of 32-bit systems 
in the late 1970s and has not received a new hardware
implementation since 1984. Nonetheless, PDP-11 sys-
tems continue to be used worldwide, particularly in
real-time and control applications. The unavailability 
of suitable replacements of worn-out original parts is 
a serious issue for PDP-11 systems still in use. 

Another area of potential loss is data. In recent
years, archival storage media have undergone rapid
technologic evolution, and the industry standards of
computing’s first 30 years, such as 0.5-inch magnetic
tape, are now antiques. Salvaging data from original
media is an industry-wide problem and has generated
a small cottage industry of specialists in data recovery.
This problem will only proliferate, as transitions in
media types accelerate. Ten years from now, the large-
diameter optical disks used for today’s archives will
look as quaint as DECtape and magnetic tape storage
systems do to current computer users. 

Finally, the disappearance of older equipment typi-
cally entails loss of information: not only design
sketches, blueprints, and documentation but also the
folklore about these systems. The absence of system-
atic archiving, as well as the absence of a perceived
value of the archived data, causes continual informa-
tion decay about design and operational details. 

This paper describes two techniques for preserving
computing systems of historical interest. The first
section of the paper discusses the restoration of old
computers to working order. It also includes a descrip-
tion of the Australian Museum collection and the
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Restoration and simulation are two techniques
for preserving computing systems of historical
interest. In computer restoration, historical sys-
tems are returned to working condition through
repair of broken electrical and mechanical sub-
systems, if necessary substituting current parts
for the original ones. In computer simulation,
historical systems are re-created as software
programs on current computer systems. In each
case, the operating environment of the original
system is presented to a modern user for inspec-
tion or analysis. This differs with computer con-
servation, which preserves historical systems
in their current state, usually one of disrepair.
The authors argue that an understanding of
computing’s past is vital to understanding its
future, and thus that restoration, rather than
just conservation, of historic systems is an
important activity for computer technologists. 



process of restoring a particular PDP-11 minicom-
puter. The second section discusses the simulation 
of old computers on modern systems. It describes a
simulation framework called SIM, which has been
used to implement simulators for the PDP-8, PDP-11,
PDP-4/7/9/15, and Nova minicomputers. 

Restoring Old Computers

Since the computer became a mass-produced item in
the late 1960s, its typical life cycle has consisted of initial
installation, rental or depreciation for about five years,
retention and use for a few more years (just in case), and
then retirement and a trip to the refuse dump. There is
only a brief window of opportunity to collect old com-
puters at the end of their working life. Once that win-
dow is closed, the computers are gone forever. 

The Australian Museum Collection 
In Sydney, Australia, this window of opportunity 
first became apparent in 1971, when the early PDP
systems reached the ends of their life cycles. Digital’s
Australian subsidiary began collecting systems by a
creative program of trade-ins for new equipment.1 It
was especially urgent to obtain examples of the 12-bit,
18-bit, and 36-bit PDP series, as they were relatively
few in number. Table 1 lists the percentage of available
units that have been collected. The status of each is
given as 

■ Static—can never be made to work for various
reasons 

■ Restorable—could be made to work with enough
care, patience, time, and effort 

■ Working—running its operating system the last
time it was turned on 

Once a representative sample of the early PDP
systems had been collected, the urgency abated.
Hundreds of PDP-11 and VAX systems were then
brought to Australia; the window of opportunity for
collecting them is still open. 

The collection has grown significantly during the
last 25 years. At the present time, we have in Sydney 
a comprehensive collection of most early Digital
machines, including hardware, manuals, software, and
spares (see Table 2). The collection is catalogued in 
a 6,000-line database that resides, appropriately, on a
MicroVAX I computer, running the first version of 
the MicroVMS operating system. Figure 1 shows an
example from the collection, a PDP-8/E computer
system with peripheral equipment. 

The goals of the collection are varied and are sum-
marized in Table 3. Apart from the academic challenge
of keeping all old data media running, there is the
responsibility to ensure that they can be kept alive and
available. The extensive variety of media types offered
by Digital alone in only 30 years is summarized in
Table 4. The evolving status of the collection has been
reported at several Australian DECUS Symposia.2,3

The restoration of the Australian collection will prob-
ably ensure a retirement job for the curator for the
next 30 years! 

General Issues in Restoration 
Restoration is a painstaking and time-consuming
process. The goal of restoration is to return a system to
a state where it will reliably run a major operating sys-
tem and offer as many media conversion facilities of
the vintage as possible. Fortunately, computers do not
deteriorate greatly in storage, provided the storage
area is dry. (One item that does decay dramatically is
the black foam used to line side panels and to separate
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Table 1 
Early Digital CPUs in Australia 

Model Number Brought Number in 
Name to Australia Museum Collection Condition 

PDP-5 1 1 Restorable 
PDP-6 1 1 Some items 
PDP-7 1 1 Static 
PDP-8 28 3 Working 
PDP-8/S 20 2 Static 
LINC-8 2 2 Restorable 
PDP-9 7 1 Restorable 
PDP-10 8 1 Some items 
PDP-12 2 2 Restorable 
PDP-8/I 24 2 Restorable 
PDP-8/L 21 2 Restorable 
PDP-15 10 1 Static 
PDP-8/E 90 4 Working 
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Table 2 
The Digital Australian Collection (chronological order) 

Year Item Description Status 

1958 138 A/D converter Static 
1960 ASR-33 Teletype reader/punch, 110 baud Working 
1962 KSR-35 Heavy-duty Teletype Working 
1963 PDP-6 Modules of first Digital computer in Australia Parts 
1963 PDP-5 First minicomputer in Australia Working 
1967 PDP-7 Third Digital computer in Australia Static 
1965 PDP-8 Classic, table-top model Working 
1965 PDP-8 Cabinet model Restorable 
1965 PDP-8 Typesetting system Static 
1965 PDP-8 Cabinet model, first in New Zealand Restorable 
1965 COPE-45 Remote batch (OEM PDP-8) Restorable 
1966 PDP-9 18-bit computer Static 
1966 KA10 Console of PDP-10 mainframe Static 
1966 Linc-8 Early medical computer Working 
1967 PDP-8/S Serial, under $10,000, CPU Static 
1967 PDP-8/S Serial computer Static 
1967 DF32 Digital’s first disk, 1/16 Mb Static 
1967 PDP-9/L Last transistor logic, 18-bit Static 
1968 PDP-8/I Digital’s first IC minicomputer Working 
1968 PDP-8/L OEM version of PDP-8/I Static 
1969 PDP-12 Laboratory computer Working 
1969 PDP-12 Laboratory computer Static 
1969 PDP-15 Last of 18-bit family Static 
1969 KI10 Console of DECsystem-10 Static 
1970 PDP-8/E Pinnacle of PDP-8 development Working 
1970 PDP-8/E Full LAB 8 configuration Working 
1970 PDP-11/20 The first PDP-11 Working 
1970 CR11 Card reader, 285 cpm Working 
1971 PDP-8/F Small PDP-8/E Working 
1971 VT05 Digital’s first video terminal Working 
1971 LA30P Digital’s first hard-copy terminal Working 
1971 PDP-11/45 Last PDP-11 Static 
1972 GT40 Graphics workstation Broken 
1972 PDP-11/10 Small PDP-11 Static 
1973 PDP-11E10 First packaged system Working 
1973 PDP-11/35 Mid-range PDP-11 Static 
1973 PDP-8/A Last non-chip PDP-8 Working 
1974 PDP-11/40 Mid-range, end-user PDP-11 Restorable 
1975 VT50 Video terminal Working 
1975 LA36 DECwriter II printer Working 
1975 DS310 Desk-based commercial system Working 
1975 PDP-11/70 Largest PDP-11 Restorable 
1976 PDP-11/34 Mid-range PDP-11 Working 
1977 PRS01 Portable paper tape reader Working 
1977 LS120 DECwriter printer Working 
1977 WS78 Word processor, 8-inch floppy disks Working 
1978 LA120 DECwriter III printer, 180 cps Working 
1978 VAX-11/780 Original unit of 1 VAX-11/780 Restorable 
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ribbon cables. After 20 years, it turns into a sticky,
gooey mess. It should be removed as soon as possible;
otherwise, it falls into the modules and backplane.
Replacing it with a modern equivalent can be done but
is not essential.) 

The first step in restoration is to collect hardware,
software, and documentation. 

■ Collect the hardware, if possible two or ideally
three items of each example. This provides a system
to work on and a spare, as well as the ability to make
comparisons between units. 

■ Collect diagnostic and operating software on origi-
nal bootstrap media. Sources are very useful, partic-
ularly for diagnostics. 

■ Collect hardware manuals and schematics. 

There is a network of enthusiasts around the world
who can help at this stage. 

Once the “ingredients” have been collected, the
steps needed to restore a 1960s or 1970s vintage
machine are as follows: 

■ Inspect the hardware for physical safety, particularly
the heavy drawers and slide mechanisms. 

■ Physically assemble the hardware, checking module
allocations, cabling, etc. 

■ Carefully inspect the power system, high-voltage
sources can kill. Although most of the power wiring
material appears to stand the test of time, the early
machines often had rather thin coverings on termi-
nals. Safety-first is a principal criterion in restora-
tion, since someday nontechnical people may open
the back door. 

■ Assemble a minimal system of CPU, memory, and
console switch register for initial tests. 

■ Power up the computer, checking supply voltages,
fans, and front console for signs of life. 

■ Use simple routines at the switch register to check
for elementary operation. 

■ Fit a serial line unit so that a VT or a Teletype con-
sole can be used. 

■ Get the keyboard echoing to the screen or printer
with simple routines. 

■ If they are available, run the internal tests of the
read-only memory (ROM). 
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Table 2 (continued)

Year Item Description Status 

1979 VT100 Famous video terminal Working 
1980 MINC LSI-11 lab unit with RT-11 Working 
1980 VAX-11/750 Mid-range VAX system Restorable 
1980 PDT-150 Table-top LSI-11 with RX01 drives Working 
1981 GIGI Low-cost terminal for schools Working 
1982 VT125 Video terminal with graphics Working 
1982 WS278 DECmate I word processor Restorable 
1982 VAX-11/730 Low-performance VAX system Working 
1982 LA12 Portable hard-copy terminal Static 
1982 LQP03 Letter-quality printer Working 
1982 DECmate II Word processor on mobile stand Working 
1982 DECmate II Word processor Working 
1982 Rainbow Personal computer Working 
1982 PRO350 Professional PC Working 
1983 VT241 Graphics color terminal Working 
1983 MicroVAX I Smallest VAX .3 VUP Working 
1983 VAX-11/725 Lowest cabinet VAX .3 VUP Working 
1984 LN03 Laser printer Working 
1985 MicroVAX II Famous MicroVAX II Working 
1986 VAXmate 286-based PC with RX33 drive Working 
1986 DECmate III Small word processor Working 
1987 MicroVAX III 3-VUP MicroVAX II system Working 
1987 VAX 8250 Dual VAX CPU, BI-based Restorable 
1989 VAX 9000 Chip set Static 
1990 DS3100 Mips UNIX workstation Restorable 



Conventional wisdom would now advise that all the
diagnostic routines be run. However, diagnostics were
(philosophically) always used to find bugs in a previ-
ously good machine; they are too complex when huge
chunks of the machine might still be missing. The
most practical next step is to get mass storage on-line.
Depending on the manufacturer, the target device
may be a floppy disk drive, a cartridge hard disk drive,
or some form of magnetic tape. With a working mass
storage device and a bootstrap routine, it becomes
possible to boot a simple operating system (like OS/8
or RT-11 for Digital’s systems). This quickly shows
whether the machine is working or not. 

If a mass storage device is not available, the next best
thing is paper tape. This can be either the system’s
rack-mounted reader and punch or the paper tape
reader on an ASR33 or ASR35 console. The relia-

bility is questionable, however, and the procedure is
tedious. Many diagnostics were on paper tape, but
usually the quickest test is to load a complete paper
system (such as FOCAL for Digital’s systems). If the
diagnostics run, the system is probably functional. 

Once the CPU, console, and memory are verified,
additional peripherals can be added, one at a time. It
pays to take the time and effort to research bus
addresses, interrupt vectors, power supply loading,
and module placement, and to keep a log book with
configuration diagrams and results. In general, if the
configuration rules are followed, the items will work.
There are few electronic failures, even in 20- or 30-
year-old modules. When a problem arises, it is usually
address vector strapping, physical damage, or missing
cables. Corrosion of board contacts can be a problem;
they should be cleaned with a clean cloth or cardboard
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RX01
DUAL 8-INCH FLOPPY DISKETTES

TD8E TU56
ACCUMULATOR TRANSFER
DUAL DECTAPE SYSTEM

PC8E 300 CPS READER,
50 CPS PUNCH PAPER TAPE

RK05 REMOVABLE 2.4-MB
CARTRIDGE DISK

STORAGE RACK FOR 10
DECTAPE SYSTEMS

H861 POWER DISTRIBUTION

PDP-8/E CPU WITH EXTENDED ARITHMETIC
ELEMENT, 16K WORDS MEMORY,
KL8E 2400-BAUD CONSOLE,
KL8E 2400-BAUD COMMUNICATION PORT,
DECTAPE BOOTSTRAP, RK05 DISK BOOTSTRAP,
REAL-TIME CLOCK

Figure 1 
PDP-8/E Computer System



(for example, a business card), not with a pencil eraser,
which leaves residues. Silicon components appear to
be very stable and a tribute to the conservative design
principles of early computer engineers. 

The main components that seem to age are power
supply capacitors, fans, and lights. The filter capaci-
tors across the high-voltage sources can short, and
reference electrolytic capacitors in power supply regu-
lators can dry out. Although the large capacitors in
power supply RC filters have proven to be reliable,
some restorers replace them as a matter of course for
safety reasons. Small rotary fans may seize if they have
logged many hours. Incandescent panel lamps are
always failing and can be replaced by modern light-
emitting diodes (LEDs) if required. The irony is that
the panel lamps are needed only during initial check-
out; once the operating system is running, they are
rarely used. 

Once restored, are old units reliable? Experience
proves that they are. A classic PDP-8 system restored
in 1988 still turns on happily (untouched) eight years
later. A fully configured PDP-8/E system is still work-
ing four years after restoration. 

Restoring a Minicomputer: A Case Study 
An ongoing project is the restoration of a large,
UNIBUS-based PDP-11 system with many UNIBUS
peripherals attached to it. The project was started
using the original PDP-11/20 CPU. Since many 
PDP-11 peripherals were designed long after the 
PDP-11/20 CPU, it could not cope with single-board
direct memory access (DMA) devices, metal-oxide

semiconductor (MOS) memory, and other later inven-
tions. The project refocused on the mid-range 
PDP-11/34, which in retrospect has proved wise. The
PDP-11/34 supports MOS memory, has an LED and
push-button console, and represents a mature imple-
mentation of the PDP-11 instruction set. It has an
optional cache, battery backup, floating-point opera-
tion, and the extended instruction set (EIS). 

The current configuration occupies three large cab-
inets in what used to be the dining room of Max
Burnet’s house. The virtues of the UNIBUS are many;
in particular, it allows modular connection of I/O
devices and other components. However, I/O devices
of the era often weigh 100 pounds and are mounted in
10-inch drawers; their sheer physical size and weight
are disincentives to reconfiguration. 

The project currently uses the RT-11 operating
system because of its simplicity and extensive device
drivers. Eventually, it may be possible to run the 
RSX-11M and the RSTS/E systems, but there is little
to gain from a media conversion point of view, because
RT-11 includes utilities for dealing with foreign file
formats. 

The main difficulties encountered have been associ-
ated with the power supply: the DC low signal threads
its way through every peripheral. The absence of
UNIBUS grant continuity cards can create havoc.
Since this PDP-11 system is very large, it is straining
the design rules concerning floating vectors, current
loading, and bus loads. 
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Table 3 
Goals of the Australian Digital Museum 

To preserve one of each model of Digital’s computers 
To keep each major Digital operating system working 
To have a working unit of each Digital terminal, con-
sole, and PC 
To provide conversion and archival facilities for old
media 
To preserve significant Digital literature and manuals 
To preserve a VAX-11/780 computer as the original
unit of 1 VUP 
To disseminate instructive and educational material 
To educate and amuse our staff, our customers, and
the public 
To support the DECUS NOP (nostalgic obsolete prod-
uct) Special Interest Group 
To preserve spares, tools, test gear, and documenta-
tion to keep the collection working 
To preserve and protect these treasures for future
generations 

Table 4 
Digital Data Media from 1960 to 1996 

Paper tape 
80-column punched and mark sense cards 
7-track, half-inch magnetic tape 
9-track, half-inch magnetic tape 
DECtape and LINCtape systems 
Audiocassette 
DECtape II cartridge (TU58) 
CompacTape (TK50, etc.) 
Quarter-inch cartridge tape 
Digital audio tape 
8-inch floppy disk 
5.25-inch floppy disk 
3.5-inch floppy disk 
RK05 removable disk 
RK06, RK07 removable disk 
RL01, RL02 removable disk 
RP01…RP06 removable disk 
RM03, RM05 removable disk 
RC25 removable disk 



The CPU and memory are relatively easy to check
out. Due to the versatility of the UNIBUS, however,
checking out the I/O system is very laborious.
Starting with programmed I/O tests works best, fol-
lowed by interrupt tests, and finally DMA or non-
processor reference (NPR) tests. Experience shows
that tests need to be rerun whenever a new peripheral
is added. 

The system currently runs the RT-11 version 5.04
operating system on a configuration comprising 

■ RT-11/34 CPU with real-time clock and bootstraps 
■ 256 kilobits of MOS memory 
■ RX01 and RX02 floppy disks 
■ Dual RL02 disks 
■ TU56 dual DECtape storage system 
■ TU58 DECtape II storage system 
■ Serial line units for console and serial printer 
■ CM11 mark sense and CR11 punched card reader 
■ TU60 cassette 
■ PC11 paper tape reader and punch 

Although the following peripherals are available,
they await installation time and effort: 

■ LPS-40 analog-to-digital (A/D) converter 
■ TU10 magnetic tape 
■ TSV03 magnetic tape 
■ Cache and commercial instruction set 
■ Battery backup kit 

The eventual goal is to keep “the last great
(UNIBUS) PDP-11” running with almost every
UNIBUS peripheral ever made.4 Time will tell. 

Simulating Old Computers

A simulator is a computer program operating on one
computer system (known as the host system) which
mimics the behavior of another computer system
(known as the target system). The simulator’s data is
the state of the target computer system—registers,
memory, timed events, and so on. The simulator oper-
ates on presented state and transforms it, usually by
sequential evaluation, in the same manner as would
the target computer system. 

Simulators typically consist of an execution engine,
which performs the state transformations; a simple
timed-event mechanism, which supports deferred and
asynchronous events such as I/O completions; and a
control panel, which provides user access to simulated
state. The execution engine is responsible for decoding
instructions in simulated memory and performing the
specified alterations of simulated machine state. The
execution engine keeps track of simulated time in arbi-
trary units, which may be precise representations of the

execution time of the target system, or simple represen-
tations of advancing time, such as the number of
instructions executed. The event mechanism provides a
way to schedule events, such as I/O completion, for
later evaluation. It can also implement other time-
based mechanisms such as keyboard polling. Finally,
the control panel provides access to simulated state as
well as basic control commands such as start and stop.
It may also provide more elaborate facilities to support
performance instrumentation or debugging. 

Historically, simulators have been used for many
purposes, including the following: 

■ Design of new systems. The simulator mimics the
behavior of a future chip or computer system and is
used to understand and debug the behavior of the
proposed design. For example, prior to fabrication,
all modern microprocessors are extensively simu-
lated, first as abstract performance models and then
at increasing levels of detail. 5–9

■ Debugging for embedded systems. If the simula-
tor contains facilities for program debugging, it
becomes a useful tool for debugging programs that
run in highly constrained environments such as
embedded systems. Simulators can capture more
state and provide a wider range of facilities than in
situ debuggers. For example, simulators can imple-
ment program counter (PC) change queues, data
access breakpoints, or precise traps on errors. 

■ Replicable event tracing. Most simulators are fully
deterministic. Asynchronous events are scheduled
based on simple, nonrandom algorithms, such as
fixed time-out or calculated seek time. As a result,
simulators allow for straightforward replication or
playback of complicated sequences, removing the
randomness factor that often plagues the debug-
ging of asynchronous software on real systems. 

■ Preservation of past software. Simulators can pro-
vide migration assistance in the transition from older
to newer architectures. Many transitional computer
systems have provided simulators for older archi-
tectures, typically at the microcode level, to assist
customers and developers in preserving their invest-
ments in the previous architecture. Examples
include the early IBM System/360 series, which had
models that simulated the 1401, 1410, 7070, and
7090 families, and the early Digital VAX systems,
which included a PDP-11 compatibility mode.10,11

Simulation Levels 
Simulators can be written at various levels of detail and
thus various levels of fidelity to the target system.
Three common levels of simulation are register trans-
fer level (RTL), instruction, and software specific. 

An RTL simulator attempts to mimic the major
hardware blocks of the target system and to imple-
ment its actual logic equations. The goal is absolute
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fidelity, the test of which is that no piece of software
running on the simulator should behave differently
than it would on the target hardware. In practice, such
perfect mimicry is difficult to achieve, as it requires a
painstaking re-creation of timing detail (for example,
the actual acceleration curve of a DECtape storage
system) and access to implementation documentation
that has often vanished. Nonetheless, some simulators
have achieved results very close to this goal: MIMIC, 
a DECsystem-10 simulator written at Applied Data
Research, was able to run CPU- and device-specific
diagnostics. (As testimony to the vulnerability of
computing’s past, all machine-readable copies of the
MIMIC sources appear to have been lost.) 

An instruction simulator steps back from the RTL
level and tries to simulate at the functional or the
behavioral level. System elements are treated as func-
tions that transform state according to the abstract
definitions of the system architecture, rather than 
as logic blocks that transform state based on imple-
mentation equations. Instruction simulators sacrifice
absolute fidelity to the idiosyncrasies of a particular
implementation and focus on the intentions of the
architecture specification. As a result, instruction sim-
ulators can usually run systems software and applica-
tions but can rarely fool diagnostics. 

Finally, a software-specific simulation further
abstracts the functions of the target system to only those
needed by a particular piece of target system software.
For example, the OS/8 operating system on the PDP-8
computer does not use program interrupts; a simulator
aimed at running only the OS/8 operating system
would not need to implement interrupts or even
queued events. A recent PDP-11 simulator designed to
run the 2.9 BSD UNIX operating system abstracted
parts of the PDP-11 system’s interrupt model and could
not run other PDP-11 operating systems.12

Simulating Minicomputers: A Case Study 
SIM is a portable instruction-level minicomputer sim-
ulator implemented in C. Its objectives are to facilitate
the study and use of historic computer architectures by
making simulated implementations and historic soft-
ware available to anyone who has a 32-bit computer. It
supports the following target architectures 

■ PDP-8 
■ PDP-11 
■ Nova 
■ 18-bit PDP series (PDP-4, PDP-7, PDP-9, PDP-15) 

and has been successfully ported to the VAX VMS, the
Alpha OpenVMS, the Digital UNIX, and the Linux
architectures. Ports to the Windows NT and the
Windows 95 architectures and to an IBM 1401 simu-
lator are under way. 

General Design Considerations The design of an
instruction-level simulator is not technically compli-
cated; indeed, simulating a PDP-8 system is a common
problem in undergraduate computer science courses.
SIM follows the processor-memory-switch (PMS)
structure proposed by Bell and Newell and imple-
mented in MIMIC and countless other simulators
since.10,13 The simulated system is a collection of
devices, one of which has special properties (the
CPU). Each device has state (registers) and one or
more units. Each unit has state and fixed- or variable-
sized storage. In the CPU device, the storage is main
memory. In an I/O device, the storage is the device
media. The CPU is distinguished from other devices
by having the master routine for instruction execu-
tion. This routine is responsible for the sequential eval-
uation of instructions and for the state transformations
that represent simulated execution. The CPU also pro-
vides a few systemwide routines, such as symbolic dis-
assembly and input and a binary loader. 

The devices interface to a control panel that pro-
vides access to simulated state and control over execu-
tion. The available commands in SIM are listed in
Table 5. 

The control panel also includes routines that are
needed by most simulators, such as event queue main-
tenance and character-by-character terminal I/O.
Different simulators need not use the same time base,
but all the SIM-based implementations to date use the
number of instructions executed as the time base. 

Note that the control panel provides for starting sim-
ulation, but termination is determined entirely by the
simulated CPU. By convention, the CPU returns con-
trol to the control panel under the following conditions: 

1. If a HALT instruction is executed 
2. If a fatal exception is detected 
3. If a fatal I/O error is detected 
4. If a special character is typed at the controlling

terminal 

Likewise, the control panel does not implement any
debugging facilities beyond state examination and
modification and instruction stepping. To facilitate
debugging with operating systems, CPUs provide 
a simple instruction breakpoint capability and a one-
level PC trace facility. 

Implementation The implementation of a particular
simulator begins with collecting reference manuals,
maintenance manuals, design documents, folklore,
and prior simulator implementations for the target
system. This is nontrivial. In the early days of comput-
ing, companies did not systematically collect and
archive design documentation. In addition, collected
material is subject to information decay, as noted
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earlier. Lastly, the material is likely to be contradictory,
embodying differing revisions or versions of the archi-
tecture, as well as errors that have crept in during the
documentation process. 

For Digital’s 12-bit and 16-bit minicomputers, the
typical hierarchy of documentation was the following: 

■ Processor Handbook. Providing an all-inclusive
summary of the instruction set architecture, periph-
erals, bus interface, and software, these paperback-
size books are the most common form of system
documentation but also the least accurate. 

■ Subsystem Reference Manual. As the programmer’s
reference manual for a particular subsystem, such as
the CPU or the disk drive, these manuals describe
the registers and functions accurately but omit
maintenance-level features and other fine points. 

■ Subsystem Maintenance Manual. As the mainte-
nance engineer’s manual for a particular subsystem,
these manuals describe the registers and functions
at the hardware implementation level, often includ-
ing substantial abstracts from the print set. Because
of the level of detail, the maintenance manuals have
proven to be the most useful references for simula-
tor implementation. 

■ Design documents. For systems that do not have
very large-scale integration (VLSI), the only extant
design documents are the logic prints and the binary
microcode ROM listings. The prints are essential for
RTL simulation: they provide the only documenta-
tion of implementation quirks. For VLSI systems,
there are chip-level design specifications as well as
human-readable microprogram listings. 

■ Folklore. During the useful lifetime of a system, its
users exchange information and create an informal
record, both written and verbal, of shared expe-
riences (folklore) regarding the fine points of
operations, hardware/software interfaces, system
“personality,” and other factors. Folklore is subject
to rapid information decay, particularly once the
target system becomes obsolete. 

■ Prior implementations. Prior simulator implementa-
tions can provide useful information, but it must be
used cautiously. Unless the prior implementation is
an RTL model, it embodies simplifications and
abstractions that are not explicitly documented. The
MIMIC sources (which are fragmentary and avail-
able only on paper) proved trustworthy, but others
did not: for example, the 1970s PDP-11 simulator
in the DECUS archives is highly misleading about
interrupts, condition codes, and other details. 
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Table 5 
Commands Available in SIM 

Command Definition 

attach <unit> <file> Associate file with unit’s media. 
detach <unit> | ALL Disassociate unit’s (all units) media from any file. 
reset <device> | ALL Reset device (all devices). 
load <file> Load binary program from file. 
boot <unit> Reset all devices and bootstrap from unit. 
run {<new PC>} Reset all devices and resume execution at the current PC {or new PC}. 
go {<new PC>} Resume execution at the current PC {or new PC}. 
cont Resume execution at the current PC. 
step {<number>} Execute one instruction {or number instructions}. 
examine <list> Display contents of list of memory locations or registers. 
iexamine <list> Display contents of list of memory locations or registers and allow interactive

modification. 
deposit <list> <value> Store value in list of memory locations or registers. 
ideposit <list> Interactively modify list of memory locations or registers. 
save <file> Save simulator state in file. 
restore <file> Restore simulator state from file. 
show queue Display the simulator’s event queue. 
show configuration Display the simulator’s configuration. 
show time Display the simulated time counter. 
show <device> Show device’s configuration options. 
set <device> <option> Set a device configuration option. 
help Display a terse help message. 
exit | quit | bye Leave the simulator. 



An important consideration is that much of the
documentation, all the folklore, and most working
systems are in the hands of individual collectors. 
The Internet plays a vital role in locating material held
by enthusiasts, through news conferences such as
alt.folklore.computers, alt.sys.pdp8, alt.sys.pdp11,
and comp.emulators.misc, and more recently, through
World Wide Web sites devoted to historic systems.14–16

The sources for each simulator in SIM are listed in
Table 6. 

The last step in implementation is collecting soft-
ware to run on the simulator. Software collection
immediately raises the problem of media translation.
Software for historic systems resides on paper tapes,
DECtape storage systems, 200/556/800 bits-per-
inch magnetic tapes, disk cartridges, 8-inch floppy
disks, and so on. Few if any modern systems have these
peripherals; and few if any historic systems have mod-
ern network interconnects. Thus, media translation
usually entails linking a working version of the target
system to a modern system by means of a serial line.
KERMIT or some other simple protocol allows for a
byte-by-byte network copy from the original media to
a file on a modern system. 

Once the software has been located and moved 
to a file, the next issue is sources. Without sources,
diagnostics and other test programs are useless;
detected errors cannot be traced back to causes with-
out manual decode of the binary program. The
absence of sources was a principal reason for including
symbolic disassembly and input in SIM. 

The final issue in software is licensing. Even though
the target systems are obsolete and often no longer
manufactured, the operating system software may be
protected by copyrights and licenses. Most PDP-8
software is in the public domain; however, the PDP-11
and Nova operating systems are still licensed, as are 
all versions of UNIX. Corporate licensing policies
rarely accommodate hobbyists; this limits operating
system distribution to legitimate (that is, business)
users. Table 7 lists the software found for each simula-
tor in SIM. 

Debug The debug path for a simulator depends 
on the available software. Ideally, the simulator would
be debugged with the same software tests used 
to debug the target hardware, but this software is
rarely archived. Diagnostics can provide low-level
checking, but diagnostics typically check for broken
parts in a correct implementation, rather than an
incorrect implementation. Even when diagnostics 
do check architecture rather than implementation (as
in the basic instruction diagnostics on the PDP-11
system), the absence of sources limits their utility.
Consequently, the simulators were debugged mostly
with simple hand tests and then with the operating
systems. 

Operating systems are both exacting and imprecise
tests of implementation correctness. Unless an 
operating system takes a deliberately restrictive view
of hardware (for example, OS/8 does not use the
PDP-8 interrupt system, and RT-11 does not use any
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Table 6 
Sources for Simulators in SIM 

Architecture Documents Location 

PDP-8 Minicomputer Handbook Private collection 
Reference manuals Digital archive 
Maintenance manuals Digital Australia collection 
Print sets Digital Australia collection 
Prior implementations Public archive17

Public archive18

MIMIC, private collection 
PDP-11 Minicomputer Handbook Private collection 

Reference manuals Digital archive 
Maintenance manuals Digital Australia collection 
Chip specifications Private collection 
Microcode listings Private collection 
Prior implementations Public archive19

MIMIC, private collection 
Nova System Reference Manual Private collection 

Reference manuals Data General archive 
Maintenance manuals Private collection 
Prior implementations MIMIC, private collection 

18-bit PDP Reference manuals Digital archive 
Maintenance manuals Digital archive 
Print sets Digital archive 



optional PDP-11 instructions), the operating sys-
tem will be sensitive to every error in implementation.
For example, Digital’s second-generation PDP-11
systems—the PDP-11/05, 11/40, and 11/45—
were debugged with DOS-11 and RSTS after diag-
nostics failed to detect certain subtle implementation
errors. Unfortunately, in an operating system, the
distance in time and space between the error and the
symptom may be enormous, and the traceable path
may be lengthy and complicated. Artifacts in the
software can also complicate debug: the OS/8 disk
image on the Internet contains a copy of BASIC that
is broken. 

Results SIM implements four minicomputer architec-
tures: PDP-8, PDP-11, Nova, and 18-bit PDP. Each
simulator includes a particular CPU; basic peripherals
such as terminal, paper tape, clock, and printer; and 
a selection of mass storage peripherals (see Table 8). 

The PDP-8 simulator has run the FOCAL69 and
the OS/8 operating systems. The PDP-11 simulator
has run the following operating systems: RT-11 V4
and V5; RSX-11M V4; RSTS/E V8; UNIX V5, 
V6, and V7; and BSD V2.9 and V2.11. The Nova
simulator has run the RDOS V7.5 operating system.
No system software for the 18-bit PDP systems 
has been found. The simulators were exercised on an
AlphaStation 3000/600 workstation (approximately
120 SPECint92); the performance is given in Table 9. 

Figures 2, 3, and 4 show screen shots from the various
simulators running their principal operating systems. 

In Defense of Computing’s History

As professional engineers who have been lucky
enough to witness the computer revolution, the
authors believe that the industry has a duty to keep
early machines alive. There are practical reasons, such

as preservation of software and data; beyond that,
there is an obligation to future generations. In 100
years, the systems from computing’s early history will
appear to be absolute dinosaurs of the past. Yet their
educational and sociological value will be consider-
able. A computer is a machine with a soul, and it must
be kept alive with its operating environment to show
its abilities and the contemporary state of the art. 
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Table 9 
Simulator Performance 

Simulator Simulated Real Ratio 
Instructions Instructions 
per Second per Second 

PDP-8 1,800,000 400,000 4.5:1 
PDP-11 440,000 500,000 .88:1 
Nova 1,700,000 750,000 2.26:1 

Figure 2
PDP-8 Simulator Running OS/8

ucoder> pdp8

PDP-8 simulator V2.2b
sim> att rk0 os8.dsk
sim> boot rk0

.DA 08-APR-96

.DIR

08-Apr-96

COPYIT.SV   2 09-Mar-93   PASS2 .SV  20 11-Oct-92   FORT3 .LD   3 06-Jul-93
DIRECT.SV   7 11-Oct-92   PASS2O.SV   5 11-Oct-92   CLOSE .SV   2 10-Jul-93
CCLX  .SV  24 25-Feb-93   PASS3 .SV   8 11-Oct-92   FORT4 .FT   1 11-Jul-93
PIP   .SV  11 11-Oct-92   RALF  .SV  19 11-Oct-92   FORT4 .LD   2 04-Aug-93
FOTP  .SV   8 11-Oct-92   RESORC.SV  10 11-Oct-92   FORT6 .LD   2 09-Aug-93
ABSLDR.SV   5 11-Oct-92   RUNOFF.SV  24 11-Oct-92   FORT5 .FT   1 09-Aug-93
BASIC .SV  11 11-Oct-92   SABR  .SV  24 11-Oct-92   FORT5 .LD   2 09-Aug-93
BATCH .SV  10 11-Oct-92   SCROLL.SV  17 11-Oct-92   FORT6 .FT   1 09-Aug-93
BCOMP .SV  26 11-Oct-92   SET   .SV  20 11-Oct-92   METSC .SV  10 11-Aug-93
BITMAP.SV   5 11-Oct-92   SRCCOM.SV   5 11-Oct-92   METSC2.SV  10 11-Aug-93
BLOAD .SV  10 11-Oct-92   TECO  .SV  32 11-Oct-92   EMAT  .SV   9 11-Aug-93
BOOT  .SV   5 11-Oct-92   VERSN3.SV  10 11-Oct-92   EMDCT .SV  14 11-Aug-93
BRTS  .SV  24 11-Oct-92   BUILD .SV  33 11-Oct-92   EMTST .SV  10 11-Aug-93
CHEKMO.SV  15 11-Oct-92   BASIC .OV  16 11-Oct-92   SINST1.SV  14 11-Aug-93
COMPAF.SV   5 11-Oct-92   BUILD6.SV  33 11-Oct-92   ADDER .SV  13 11-Aug-93
CREF  .SV  13 11-Oct-92   BUILT .SV  33 12-Oct-92   FORT7 .FT   1 30-Aug-93
EDIT  .SV  10 11-Oct-92   HELP  .HE   1 18-Oct-92   CLEAR .LS   2 13-Jan-94
EDITS .SV   6 11-Oct-92   HELP  .HL  72 18-Oct-92   CLEAR .CF   2 13-Jan-94
EPIC  .SV  14 11-Oct-92   HELP  .OC   4 18-Oct-92   CLEAR .SV   2 13-Jan-94
F4    .SV  20 11-Oct-92   FORT7 .LD   2 07-Sep-93   CLEAR .PA   1 13-Jan-94
FRTS  .SV  26 11-Oct-92   JMPTST.SV   3 18-Oct-92   CLEAR .BN   2 13-Jan-94
FUTIL .SV  26 11-Oct-92   JMPJMS.SV   3 18-Oct-92   DEMO  .    28 21-Mar-95
HELP  .SV   5 11-Oct-92   RK8ENS.BN   1 30-Oct-92   DOS   .PA   4 25-Jan-94
LIBRA .SV  11 11-Oct-92   INST1 .SV  14 01-Dec-92   DOS   .BN   1 25-Jan-94
LIBSET.SV   5 11-Oct-92   INST2 .SV  11 01-Dec-92   DOS   .LS  10 25-Jan-94
LOAD  .SV  16 11-Oct-92   FORT  .FT   1 17-Jun-93   SHELL .PA   1 25-Jan-94
LOADER.SV  12 11-Oct-92   FORT  .LD   2 09-Jul-93   SHELL .BN   1 25-Jan-94
MATST .SV   9 11-Aug-93   FORT2 .LD   2 09-Jul-93   SHELL .LS   2 25-Jan-94
MDTST .SV  14 11-Aug-93   FORT2 .FT   1 22-Jun-93   BASIC .WS   1 10-Mar-94
OCOMP .SV   8 11-Oct-92   DOS   .SV   2 25-Jan-94   FOO   .PA   1 31-Mar-94
OPTF4 .SV  13 11-Oct-92   SHELL .SV   2 25-Jan-94   FOO   .BN   1 31-Mar-94
PAL8  .SV  19 11-Oct-92   FORT3 .FT   1 26-Jun-93

95 Files In  980 Blocks - 2212 Free Blocks

.
Simulation stopped, PC: 01207 (KSF)
sim>
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Figure 3
Nova Simulator Running RDOS

ucoder> nova

NOVA simulator V2.2b
sim> att dp0 rdos.dsk
sim> set tti dasher
sim> boot dp0

Filename?

NOVA RDOS Rev 7.50
Date (m/d/y) ? 4 8 96
Time (h:m:s) ? 16 26 0

R
list/e sys-.-
SYS5.LB           17216  D       05/24/77 13:18  05/31/85  [001017]     0
SYS.SV            56320  SD      12/14/95 16:21  12/14/95  [005057]     0
SYS.LB            20240  D       04/30/85 14:49  05/31/85  [000746]     0
SYS.OL            30720  C       12/14/95 16:21  12/14/95  [005272]     0
SYSGEN.SV         23040  SD      05/02/85 22:20  05/31/85  [001401]     0
R
disk
LEFT: 2158   USED: 2706   MAX. CONTIGUOUS: 2054
R

Simulation stopped, PC: 41740 (LDA 1,4,3)
sim>
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Figure 4
PDP-11 Simulator Running RT-11

ucoder> pdp11

PDP-11 simulator V2.2b
sim> att rk0 rtrk.dsk
sim> boot rk0

RT-11SJ (S) V05.04

.

.da 8-apr-96

.dir
08-Apr-96

NL    .SYS     2  18-Sep-89      RT11FB.SYS    94  18-Sep-89
RT11SJ.SYS    80  18-Sep-89      SPOOL .REL    11  14-Apr-87
PTESTX.MAC    23  27-Jan-94      GVI   .SAV     5  18-Apr-90
BINCOM.SAV    24  27-Sep-88      DUP   .SAV    49  27-Sep-88
DIR   .SAV    19  27-Sep-88      IND   .SAV    58  27-Sep-88
LIBR  .SAV    24  27-Sep-88      MACRO .SAV    61  27-Sep-88
LINK  .SAV    49  27-Sep-88      RESORC.SAV    25  27-Sep-88
FORMAT.SAV    24  27-Sep-88      ODT   .SAV     8  05-Oct-89
PBCOPY.SAV     2  16-Feb-89      SYSLIB.OBJ    55P 05-Oct-89
ODT   .OBJ     8  05-Oct-89      SYSMAC.SML    61  16-Mar-89
SIPP  .SAV    21  27-Sep-88      DATE  .SAV     3  02-Feb-89
IOP   .SAV    11  24-Apr-89      SWAP  .SYS    27  27-Sep-88
TT    .SYS     2  18-Sep-89      DL    .SYS     4  18-Sep-89
DM    .SYS     5  18-Sep-89      DP    .SYS     3  18-Sep-89
DX    .SYS     4  18-Sep-89      RK    .SYS     3  18-Sep-89
LS    .SYS     5  05-Oct-89      MT    .SYS     9  18-Sep-89
LP    .SYS     2  18-Sep-89      SP    .SYS     6  18-Sep-89
PIP   .SAV    30  27-Sep-88      HANDLE.SAV     7  16-Feb-89
LD    .SYS     8  26-Dec-90      MAC   .SAV    61  27-Sep-88
LC    .SYS     2  01-Jan-80      UCL   .SAV    13  22-Dec-89
UCL   .CCL     4  07-Oct-90      STARTS.COM     1  19-Jan-94
MTPIP .SAV    28  27-Feb-87      MTROL .SAV    17  27-Feb-87
MLIB  .SYS   300  20-Dec-90      HELP  .SAV   132  20-Dec-90
XPC   .SAV    16  25-Jun-91      DESS  .SAV    18  09-Mar-88
PTESTX.OBJ     8
49 Files, 1432 Blocks
3330 Free blocks

.sho dev

Device    Status          CSR     Vector(s)
------    ------          ---     ---------
NL      Installed      000000   000
TT      Installed      000000   000
DL      Installed      174400   160
DM      Not installed  177440   210
DP      Not installed  176710   254
DX      Installed      177170   264
RK      Resident       177400   220
LS     -Not installed  176500   470 474 300 304
MT      Installed      172520   224
LP      Installed      177514   200
SP      Installed      000000   110
LD      Installed      000000   000
LC      Installed      177514   200

.
Simulation stopped, PC: 146506 (ASR R5)
sim>
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