DOCUMENT NO. Y240A201M0301 REY A

FOCAP

ENGINEERING SKC-2000

- ASSEMBLER LANGUAGE

TECHNICAL REFERENCE MANUAL
REPORT

SINGER

AEROSPACE & MARINE SYSTEMS

DRR NO. 00807 (N/P)

THE SINGER COMPANY ¢ KEARFOTT DIVISION ¢ 1150 MCBRIDE AVENUE o LITTLE FALLS, N. J. 07424
F4200-4 2/72

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

FOCAP
SKC-2000
ASSEMBLER LANGUAGE

REFERENCE MANUAL

- Prepared by:

Engineering Programing and Computation

June 1974

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

FOCAP
SKC 2000
ASSEMBLER LANGUAGE
REFERENCE MANUAL

ABSTRACT

This document describes the syntax and function of the SKC 2000 (FOCUS) Assembly Language. An SKC 2000 computer program
written in this language is automatically converted to machine language by Version 3 of the SKC 2000 (FOCUS) Assembly Program,
FOCAP. The use of the 360/370 version of the FOCAP Assembler is described in the FOCAP Users” Manual (Y240A201M0302).
These documents, with the SKC 2000 Principles of Operation Manual (Y240A200M0201), provide sufficient information for a
programmer to prepare an SKC 2000 computer program.

This document was formerly published as Kearfott Engineering Technical Report, Document No. KD-71-60. The document number

has been changed to Y240A201MO0301 to be consistent with a new configuration control system. Similarly, the following KD
numbers for the SKC 2000 programming manuals referenced herein have been changed to the indicated Y number.

KD-72-18 becomes Y240A201M0302

KD-72-21 becomes Y240A200M0201
KD-71-50 becomes Y240A204M0101

Users are invited to suggest improvements in this manual by using the form provided at the end.

THE SINGER COMPANY

KEARFOTT DIVISION Y240A201M0301 REV __A
APPROVAL
REV PESCRIPTION AND DATE
— RELEASE MAY 1973
A Substantial revisions to sections 3.2.6, 5.4.2,3.1.2 and 3.3. JUNE 1974
Deleted sections 5.8.3 and 5.8.4 and Appendices C & D.
~ Less substantial changes to many othér sectioiis.
REV A A
PAGE | cover : : OTHER
REVISION SYMBOL OF REVISED PAGES PAGES

F4201 - 2/72

ii

THE SINGER COMPANY
KEARFOTT DIVISION

TABLE OF CONTENTS

1. INTRODUCTION

2. FOCAP LANGUAGE STRUCTURE

2.1

2.2

SOURCE LANGUAGE STATEMENT

2.1.1 Label Entry
2.1.2 Operation Entry
2.1.3 Operand Entry
2.1.4 Comment Entry
2.1.5 Character Set

-2.1.6 Statement Format

LANGUAGE ELEMENTS

2.2.1 Symbols
2.2.2 Expressions

- 3. ADDRESSING AND LOADING

3.1

3.2

3.3

INTRA-DECK ADDRESSING

3.1.1 Short/Long Decision
3.1.2. Location Counters

3.1.3 Base Register Addressing
3.1.4 Page Addressing

3.1.5 Skip Addressing

INTER-DECK ADDRESSING

3.2.1 Entry Points

3.2.2 External Symbols

3.2.3 Common Areas

3.24 TEMP (Stack) Areas

3.2.5 Subroutine Call

3.2.6 System Variables — COMPOOL

FOCAP LOADER PROGRAM
3.3:1 Memory Organization
3.3.2 Loading Procedure
3.3.3 Status

iii

Y240A201M0301 REV A

PAGE

2-1
2-2

22
22
22
22
22
22

24
26

3-1
32

32
32
33
34
34

3-6

3-6
3-6
3-6
37
37
3-8

3-9
39

3-9
3-13

THE SINGER COMPANY
KEARFOTT DIVISION

TABLE OF CONTENTS (Continued)

MACHINE LANGUAGE INSTRUCTIONS

4.1

4.2

4.3

4.4

4.5

4.6

4.7

ARITHMETIC INSTRUCTIONS

4.1.1 Operation Field
4.1.2 Operand Field
JUMP INSTRUCTIONS
4.2.1 Operation Field
4.2.2 Operand Field

INDEX REGISTER INSTRUCTIONS

4.3.1 Operation Field
432 Operand Field
SHIFT INSTRUCTIONS
4.4.1 Operation Field
4.4.2 Operand Field

NONMEMORY REFERENCE INSTRUCTIONS

4.5.1

4.5.2

Operation Field
Operand Field

INPUT-OUTPUT INSTRUCTIONS

4.6.1

4.6.2

Operation Field
Operand Field

BLOCK TRANSFER INSTRUCTIONS

4.7.1
4.7.2

Operation Field
Operand Field

FOCAP ASSEMBLER OPERATIONS

5.1

LOCATION COUNTER OPERATIONS

5.1
5.1.2
5.1.3
5.1.4
5.1.5

USE - Start Use of Location Counter

ORG — Specify An Absolute ORIGIN for the Program Segment
EVEN — Make Location Counter Even

COMMON -- Allocate COMMON Data Area

TEMP - Temporary Data Area

Y240A201M0301 REV A

PAGE

41

43

43
45

4-7
47

49

49
49

4-11

4-11
4-11

4-12

4-12
4-12

4-13

413
4-13

415

4-15
4-15

5-1

5-4
5-5
5-5
5-5
5-6

5.2

5.3

5.4

5.5

5.6

5.7

THE SINGER COMPANY
KEARFOTT DIVISION

TABLE OF CONTENTS (Continued)

MEMORY ALLOCATION OPERATIONS

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.2.12

DEC - Decimal Data Definition

DEC16 — Halfword Decimal Data Definition
DEC64 — Double Precision Data Definition
HEX — Hexadccimal Data Definition

HEX16 — Halfword Hexadecimal Data Definition

SCLB - Binary Scale Operation

SCLB16 — Halfword Binary Scale Operation
SCLW — Weighted Scale Operation
SCLW16 — Halfword Weighted Scale Operation
BSS — Block Started by Symbol :
BES — Block Ended by Symbol

PTR — Pointer to Address

SYMBOL DEFINITION OPERATIONS

5.3.1
5.3.2
5.3.3
5.3.4

EQU — Equate Symbol To Expression

SETD - Set Temporary Symbol to Decimal Number

SETX — Set Temporary Symbol To Hex Value
BIT — Assign a Symbol To a Bit

BASE REGISTER OPERATIONS

5.4.1 BASE — Base Register Designation -

54.2 UBASE - Unconditional Base Register Designation
543 DBASE — Drop a Base Register

SUBROUTINE OPERATIONS

5.5.1 ENTRY — Entry Point Designation

5.5.2 CALL - Call Subroutine

5.5.3 PROL - Subroutine Prologue

5.5.4 SPROL — Short Subroutine Prologue

5.5.5 RETURN - Return From Subroutine

MODE CONTROL OPERATIONS

5.6.1

5.6.2
5.6.3
5.6.4

HALF - Half Word Arithmetic Mode
FULL — Full Word Arithemtic Mode

RTMX -- Return to Memory Indexing
PAGE

BIT MANIPULATION OPERATIONS

5.7.1
5.7.2
5.7.3
5.7.4

PUT - Put I in Designated Bit Position
ZPUT - Set O in the Designated Bit Position
JMP - Jump If Bit is Set

ZJMP - Jump If Bit is Zero

Y240A201M0301 REV A

PAGE
5-8

5-8

5-10
5-10
5-11
5-12
5-12
5-13
5-14
5-15
5-16
5-17
5-17

5-18
5-19
5-19
5-20

5-22

5-23
5-24
5-26

5-28
5-28
5-29
5-30
5-31

5-32

5-32
5-32
5-32
5-33

5-34

5-34
5-35
5-36
5-37

THE SINGER COMPANY
KEARFOTT DIVISION

TABLE OF CONTENTS (Continued)

5.8 DOUBLE PRECISION FLOATING POINT MACROS

5.8.1. A LDAB — Double Precision Load Accumulator
5.8.2 STAB — Double Precision Store Accumulator

5.9 ARITHMETIC STATEMENT (CMPL)
5.10 PROGRAM CONTROL OPERATIONS

5.10.1 END
5.10.2° INT

5.11 _ LIST CONTROL OPERATIONS
5.11.1 LIST — Resume Listing
5.11.2 UNLIST - Suspend Listing
5.11.3 TTL — Define Page Title
5.11.4 EJECT — Start New Page .
5.11.5 SPACE — Skip Blank Lines
APPENDIX A — SKC 2000 (FOCUS) MACHINE INSTRUCTION SUMMARY

APPENDIX B — ASSEMBLER AND LOADER ERROR DIAGNOSTICS

vi

Y240A201M0301 REV A

5-41

5-41
5-41

5-42

5-42
5-42
5-42
5-42
5-43

B-1

THE SINGER COMPANY
KEARFOTT DIVISION

Y 240A201M0301 REV A

1. INTRODUCTION

The SKC 2000 (FOCUS) airborne computer architecture was chosen particularly to facilitate programming in high level languages
(c.g., PL/I, JOVIAL, CMS2) without loss of hardware efficiency. Toward that end, built-in floating point arithmetic is provided as
well as powerful set of short (16 bit) instructions. The FOCAP Assembler Language was also developed as the next natural step
toward programming in high level languages. FOCAP was designed to include many high level language features to both facilitate
assembler language programming and to serve as an ideal target language for a compiler. It includes a set of powerful system macros
fot teentratt subtouttne linkage, 25 location courters, atomatic selection between shott ot forig itistttctions, automatic sharing of
scratchpad memory, COMMON data areas, system variables (COMPOOL-like) capability, and both relocatable and absolute
addressing. The assembler program is complemented by a powerful loader program for allocating memory and linking external labels
for a mixture of relocatable and absolute program segments. The assember/loader generates a load module which includes symbolic
information. Hence, the simulator is designed to permit symbolic referencing of program information.

This manual describes the input language processed by the SKC 2000 (FOCUS) assembler program, FOCAP. It should be used in
conjunction with the following manuals in developing an SKC 2000 computer program:

e SKC 2000 Principles of Operation (Document No. Y240A200M0201)
e SKC 2000 Subroutine Library Reference Manual (Document No. Y240A204M0101)
e SKC 2000 FOCAP Assembler Users Manual (Document No. Y240A201M0302).

It is presumed here that the reader is familiar with the content of the Principles of Operation manual, especially the sections on
machine instruction format.

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A

THIS PAGE INTENTIONALLY LEFT BLANK

THE SINGER COMPANY

ION
KEARFQTT DIVISIO Y240A201M0301 REV A

2. F OCAi’ LANCUAGE STRUCTURE

An SKC 2000 (FOCUS) Computer Assembler Program (FOCAP) was developed to run on an IBM 360 or 370 computer. The
Assembler was written almost exclusively in Fortran. Hence, it can be converted to run on similar host computers using a similar
Fortran compiler. The source language processed by this Assembler is described in this document. Some basic language features are
described in this section.)

The FOCAP language provides a mnemonic (literally, memory aidiﬁg) machine instruction operation code for each machine
instruction in the SKC 2000 airborne computer. The assembler language also contains mnemonic codes for assembler directive
operations. These are used to provide the direction necessary for the assembler to perform its wide variety of auxiliary functions.

Assembler processing involves the translation of source statements into machine language, the assignment of memory words to
instructions and data, and the development of all information téquired by the loader program for final memory allocation. The
output of the assembler program is a relocatable or absolute object program module, a machine language translation of the input
source program module. The assembler generates a printed listing of the source statements, side by side with their machine language
translation, relocatable or absolute addresses, and additional information useful to the programmer in analyzing his program, such as
crror indications.

2-1

" THE SINGER COMPANY

: KEARFOTT DIV
Y240A201M0301 REV A OTT DIVISION

;21 SOURCE LANGUAGE STATEMENT

A FOCAP program consists of a sequence of source language statements or symbolic instructions. Each statement consists of one to
four entries, which are from left to right: a label entry; an operation entry, an operand entry, and a comments entry. These entries
must be separated by one or more blanks and must be written in the order stated. A brief description of each entry follows:

2.1.1 Label Entry

The label entry is a symbol created by the programmer to identify a statement. The label symbol is.used to reference the statement in
the operand entry of other statements. A label entry is usually optional. Like all symbols, the label entry may consist of up to sixteen
alphanumeric (or alphameric) characters, the first of which must be alphabetic.

2.1.2 Operation Entry

The operation entry is the mnemonic operation code specifying the SKC 2000 machine operation, assembler operation or macro
operation desired. An operation entry is mandatory (except for a full comment statement). Valid mnemonic operation codes for each
machine operation are listed in Appendix A. All basic and macro FOCAP mnemonic operation codes are listed in Section 5 (Table
5-1). One of these valid mnemonic operation codes must appear in each FOCAP statement.

2.1.3 Operand Entry

Operand entﬁes identify and describe data to be acted upon by the machine or assembler operation. The operand entry has a variety
of formats described in Sections 4 and 5. Depending on the requirements of the operation, one or more or no operands can be
specified. Multiple operand entries must be separated by commas, and they cannot include embedded blanks.

2.1.4 Comment Entry

Comments are descriptive items of information about the statement or the program that are included to clarify the program listing.
Any printable character may be included in a comment, including blanks. An entire statement field can be used for a comment if an
asterisk or period is punched in the first column.

2.1.5 Character Set

The standard Fortran character set forms the basis for the FOCAP character set (except that any printable character may be used for
comments). The character set for the label field is the alphabetic' A-Z and the numbers 0-9 (hereinafter referred to as the
alphanumeric or alphameric character set). The character set for the operation field is also the alphameric character set (A-Z, 0-9)
combined to form a legal assembler mnemonic operation code. The character set of the operand field is the alphameric characters and

the special characters shown below:
/*.,+— () blank

For comments, any printable character is acceptable. For the IBM 360/370 version of the assembler, the EBCDIC character set is

used.
2.1.6 Statement Format

The primary input medium to the FOCAP assembler is 80 column card images. Source statements are usually punched one per card

“in the following format.

22

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A
LABEL FIELD OPERATION FIELD OPERAND FIELD
® Must start in column 1; ® May not start in column 1. e Format depends on instruction used.
e May be up to 16 characters in length; | e =~ Must be a legal mnemonic e One or more blanks must separate the
' operation code. operation field and the operand field.

& Must be a sumbol (see Section 2.4). o One of more blanks must

separate the label field

and operation field.
o Usually optional.

Comments -may be placed on a card in one of two ways: after at least one blank following the operand field, or after an asterisk (*)
or period‘(.) in column 1. If column 1 is left blank, the next field is assumed to be the operation field.

The fields are free format, with-the exception that a label field or comment statement or operand must start in column 1; however,
standard card columns for starting FOCAP fields are recommended for the sake of legibility. Figure 2-1 shows the standard FOCAP
coding form, in which the operation field starts in column 8 and the operand field begins in column 15. In general, blanks delimit
fields and commas delimit subfields. The operand field varies with the type of the operation (see Sections 4 and 5).

THE SINGER COMPANY

KEARFOTT DIVISION
SINGER

KEARFOTT CODING FORM e RFOTT o vrsion
[NAME . PROGRAM
|

LABEL OPERATION OPERAND

1 10 20 30 40 50 60 70 80)
Ll T I PO T I G (VAT T 50V U0 T 0 O U U0 I O 10 I W 8 (VOO0 KRS G O G IS A O A B [ST S AU SR RO
Ll T PSRN SO NV U T YO U U I U0 1 D R U T T 0 U T K 10 I B 0 WV A D O I N A AR O B W
S| Lol P T TR 0 U R A Y I T U TN W T X 0 A U U T U T I P W U O (0 O O O WA 0 O B O
N | Lol ey pboa tb by ety bl e b e bardei e b b v v bbb e e bbb r i gl
Lt Lol PN ORI O T R (N I ST AN RN 68 N 5 LA T R W U 1O U 1 TN A W W W S S 0 WY 50 W0 0 0 Y SO 0 Y O AV SO US U T R
s i R | YRRV VTV Y U W T T T U0 U U P A N M U0 N N 0 N N O W 0 0 O W Y S U U U O 0 U U O O 0 O 0 O O B A S PO O |
L Ladag PR R O TR S TTG U U O O O ST SN O RS AR O S A A N A O SR C AR IR R W R S N G I A I SO
Laall Ll FNTRIT U O O AP T AN T 10 I UM 0 0 O O NV 0 O O O 0 A VU BT Y TV T A I A O O
Ll T PR TN O RO O O A ST W 00 1T B AON T U AT O S T N A U A A OO I A A T N A A B S A ST AT AN A I B S W A
NS IN| T B RN A W AT AR AU I W AT ST AT A S il AW T A R A S A AP ARl SIS I S G TS AN S S A 0 B Y AT AN
Ll Ll PR TN N N N R U U R U O WV U U W W W W U N N 0 TV W W 10 W Y I AR SO0 A A SO (T
PR T T TR N VNNV YRR (RN T U N I HN 0 N N U N0 00 W WY 0 IO I N G N U U 0 (W A A A Y YO Y T B
IR | Lo doas TSRO NI AN NN S SN 1 U N R U O 0 0 Y 0 A IR Y AR O 0 Y AU O R MO B0 Y Y 0 O O A GV S S O O MO
NN Laelag PO U U U T UT U H J I IWA CN 0 HI HS HWUTN OH O S 0 POY MU B VAT
I U PRTUT TN U BTSN BT SR NN O O S AR O ST U A Y O U A0 WU W U TS 0 W 8 WU U RO N A N T W O I 0 A O S AR A S TR AN
Ll Ll an o b et s g bt et bt bt e b b bl e
L] Ladan paa bty e v b v b bbb b v b e b b bt e bbb il
Sl Ll e e b it b b bbb L i g
N 11l 4 Lll¢ll]1|lllll|‘llllIIllIl)ill]LiLllJlJlLLllllll’llll]lxl]l]LlL
Lt ORI TN PS5 ATV KO U VT A N RN U U0 W T G A S A O A VO U OO GO U T N S0 ST A W 0 O ST
Ll T PP U U U U N U S0 W R (T U8 T U A WU B O A S A S BT S0 A0 I SO R A O RN O O WY A BB A O B I B A R AR R A
N La b PO T T 0 U U WS U I A 01 G U A 0 SO VRN 0 T I O A WO 0 A N Y A N AW O SO O O O
L ddl (! P AT T U N Y 0 U0 T B 6 W I 0 O AT O O S BT S S M B R R S N S T W |
Ll o e bbb g e b e bbb e b v bbb e i
T | I PR N ST RN TN 0 TS0 U AT VU T TN W 00 0 0 0V A W0 OV B S R0 S0 S A O A U U UN BN S
L] Ll i nllllltllllllnlllllll‘lll|||l|lllll||ll|llllIIIIIIILLllllxlllll
| Lt PO U O T R MU U T 1 W U N U1 WA O N U U N U 0 U U W Y U U O R 0 IR P T O Y O
Ll L I st byt ea b e b v ety v vty brvar et b b e
Ld Ll Lol iy PR S W U Y U U A U A A OO0 A S 0 A 0 A 0 Y B S R Y VIR O O A A A AP O 1 A S W A A S A W
i Lol iy AT AN W N RE N W U SAT WA T A W U0 U0 S Y U S N 0 S VA S Y N0 A O G O W G 0 1 10 S 00 0 1 0 A 0 0 0 18 T S W AR A R B A A |
T OB8E 4/70

FIGURE 2-1. KEARFOTT CODING FORM

THE SINGER COMPANY

KEARFO Vv
Y240A201M0301 REV A A TTDIVISION

2.2 LANGUAGE ELEMENTS

Before describing the various assembler operations in detail, let us discuss the basic language elements of FOCAP. Principal among
these are expressions, symbols*, and their attributes. Of course, the principal use of symbols and expressions is the mnemonic
representation of a memory address or other numeric value. These language elements have their prime utility as constituents of the
operand entry in FOCAP statements.

2.2.1 Symbols

A symbol is represented by a string of one to sixteen alphameric characters (A-Z, 0-9), the first of which must be alphabetic. A
FOCAP symbol is defined by its appearance as the label field of a statement. A symbol is usually defined only once in an assembly,
unless it is a set-symbol. That is, each symbol used as the label of a statement must be unique within that assembly. A numeric value
is associated with each symbol. Generally, a symbol in the label field of an instruction is assigned the value of the current location
counter. The only exceptions are the SETD, SETX, BIT, and EQU operations whose label symbol is assigned the value specified by
the operand field. When the assembler assigns values to symbols in the label field of statements defining instructions, constant data
words, or variable data words, it chooses the address of the designated'memory word. If the designated item occupies more than one
(16 bit) memory word, the address of the leftmost or most significant (16 bit) word is assigned to the symbol.

Although the value of a symbol is its principal attribute, several other attributes are worthy of mention. A symbol value may be
either absolute or relocatable based on the type of location counter it was allocated under. The symbol is then said to be either
absolute or relocatable, accordingly. The value of a relocatable symbol is its displacement, in 16-bit words, from the origin of the
location counter. A symbol value may be any integer from zero to 218 4 (i.e., 262,143). This is the maximum addressing range of
the SKC 2000 (FOCUS) computer. Since symbols are used to designate addresses, they may be used to form address fields for the
short (16 bit) instructions. For jump instructions, the feasibility of using a short instruction is automatically established by the
assembler based upon the difference between the current value of the location counter and the value of the symbol representing the
destination (or target) address. For the short arithmetic instructions, the feasibility of using a short instruction is based primarily
upon the difference between the current contents of each of the seven first level index (base) registers and the value of the symbol
representing the operand address. In addition, if the symbol is absolute and within a specific range, the contents of Status Register
Bits 2-5 can dictate a short instruction. With these definitions in mind, it is then sensible to talk about the short addressing attributes
of a symbol in the operand field of a statement.

Symbols can also be distinguished by the nature of the information contained in the address they are referericing. For example, a
symbol value may represent the address of an instruction, a constant data word, a variable data word, or an address pointer. In the
latter case, the symbol may be said to have indirect addressing capability.

2.2.1.1 Set-Symbols

Symbols normally assume a specific (absolute or relocatable) value which is retained throughout the assembly of the deck. However,
the operations SETD and SETX can be used to define temporary symbols or set-symbols whose value can be changed during the
assembly of a single deck. Once a symbol value has been specified by one of the SET operations, a subsequent definition of the same
symbol by a SET operation is considered an assembly-time redefinition of the symbol value. A set-symbol may be redefined any
number of times. However, regular permanent symbols (defined by any operation other than SETD or SETX) cannot be redefined via
the two SET operations. Similarly, a set-symbol cannot be subsequently given a permanent value by appearing in another statement.
By virtue of the variable nature of a set-symbol, it must be defined in a SET statement prior to any use of the symbol.

2.2.1.2 External Symbols

Symbols which are used in the operand field of an instruction in a program but do not appear in the label field of another statement
in the same program are assumed to be defined as entry points in another program, and, hence, are called external symbols. A table

*Two popular alternate designations for symbol are “‘tag” and “‘label”.

2-5

. THE SINGER COMPANY

KEARFOTT DIVISION Y240A201M0301 REV A

of external symbols is provided at the end of each assembly listing. When the loader encounters an external symbol, it expects to
find, in the same loading operation, another program containing an entry point with the same symbol enabling resolution of the
reference. . If no entry point is found for an external symbol, the loader will print an appropriate error message.

2.2.1.3 Asterisk Symbol

The asterisk charactet (*) is used to specify a special symbol, When wsed tn the operand field of an opetation, it tepresefits the
currettt value of the location counter (either absolute or reldcatable). ('forxseqﬁently, the asterisk (*) need not be defined (assigned a
value) like other symbols and, therefore, should never appear in-the label field of a FOCAP statement. By its nature, the asterisk
assumes a different value each time it is used. In this respect, it is similar to a temporary symbol or set-symbol, although it is not
explicitly defined or redefined via the SET operations.

2.2.1.4 Symbol Reference

o,

A symbol is said to be defined by its appearance in the label field of a statement. A symbol is said to be referenced by its appearance
in the operand field of a statement. There is, in general, no sequence restriction on the definition and reference of a permanent
symbol; both forward referencing (reference preceding definition) and backward referencing (definition preceding reference) is
permitted, except where otherwise noted. (e.g., EQU pperation). The following two examples illustrate the definition and use of
symbols:

o Forward Reference:
LDA SMBL1
0
o
SMBL1 DEC 1.235

o - Backward Reference:

SMBL2 LDA 0,4

N SMBL2
2.2.1.5 Relative Addressing

As described above, the FOCAP assembler permits one statement to be referenced in another’s operand field if the first statement
defines a symbol in its label field. However, it also permits more complex forms of symbolic referencing including relative addressing.
Once a statement has been named by the presence of a symbol in its label field, it is possible to refer to a second statement preceding

~or following the statement named by indicating the second statement’s position relative to the named statement. This procedure is
called relative addressing, and the operand entry would take the form:

s+n
where s represents the symbol in the label field of the named instruction and n represents a decimal integer (positive or negative)
which represents the difference between the current values of the location counter at each statement. A more specific example would

be

SYMBOL+6

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A

3. ADDRESSING AND LOADING
The SKC 2000 computer architecture provides a variety of techniques for addressing and intra-program communication. These

capabilitics arc augmented and expanded by the FOCAP assembler and loader programs. This section is intended to provide the
programmer with sufficient information about these techniques for him to use them effectively.

3-1

THE SINGER COMPANY

. KEARFOTT DIVISION
Y240A201M0301 REV A

3.1 INTRA-DECK ADDRESSING

A program deck is a sequence- of source program statements terminated by an END statement. As you will see later, a deck may
contain several subroutines. The techniques available to permit one statement to reference another (within a deck) are discussed here.

3.1.1 Short/Long Decision

The FOCAP assembler always attempts to construct short format instructions (16 bits long). The minimum criteria which must be
met for the short form are: :

a. The programmer has nhot forced the long format in his coding (by appending L at the end of his statement).
b. The instruction type does not dictate the long format (due to the amount of information it must contain).
c. The operand or target address can be reached by a short instruction.

d. The programmer has not speéified an immediate or indirect operand.

e. No conflict exists between the mnemonic and the arithmetic mode (fullword or halfword).

For jump operations, criterion ¢ is satisfied, if the target address is within plus or minus 127 address locations of the address of the
jump instruction. The assembler will perform this test only if both addresses are absolute or if both are relocatable under the same
location counter. Otherwise, it constructs a long instruction automatically.

For arithmetic operations criterion c is satisfied if any one of the following conditions obtains:

a. The operand address is absolute and a base register contains an absolute address less than 128 locations prior to the desired
operand address.

b. The operand address is relocatable and a base register contains a relocatable address under the same location counter which
is less than 128 locations prior to the desired operand address.

c. The operand address is absolute and within a specified range, and Status Register Bits 2-5 are set properly as described in
Section 3.1.4.

Otherwise, it assumes a long instruction is required. In cases a and b above, the assembler must be informed (via the BASE or UBASE
operation) that certain index registers have been designated as base registers and that they will be loaded with a specific address
(usually designated symbolically) during execution of the SKC 2000 program. It is important to realize that the assembler does not
react to executable statements (e.g., LDX, LXA) in keeping track of base register contents, since this would create ambiguities under
many conditions. The programmer, therefore, must use the BASE or UBASE operation to inform the assembler of changes in base
register contents.

3.1.2 Location Counters

A location counter is used to assign memory addresses to program statements within a deck. The use of several location counters
within a'deck permits the user programmer to make several different types of memory allocation in the same deck. Table 3-I lists the
several types which should be distinguished by the programmer, as a minimum. Each of these types should be allocated under a
different location counter in the source deck. The Linkage/Editor and Loader program is then free to allocate each type to a
different area of memory for systeth optimization reasons. Since there is provision in FOCAP for up to 25 location counters, the
programmer is free to further segregate the source code for his own purposes. The user activates a location counter via a USE, TEMP

3-2

THE SINGER COMPANY

. KEARFOTT DIVISION Y240A201M0301 REV A

or COMMON statement. Once activated, memory is allocated under- that location counter for all subsequent source statements until
another location counter is activated. The user may freely switch among location counters at any point in the program deck.

A program segment assembled under a location counter can be absolute or relocatable. Hence the location counter is said to be
correspondingly absolute or relocatable for that assembly. It is absolute if the first statement after the first USE or COMMON
statement for that location counter is an ORG statement. The first address under each relocatable location counter is constrained to
be even. Since all relocatable addresses are assembled relative to the first location under the location counter, the first location has a
relative address of zero with subsequent addresses assigned in ascending order. Since the initial address is constrained to be even, a
relocatable symbol with an even relocatable address is assured of being loaded at an even location in the SKC-2000. Each program has
at least one location counter. If none is specified, location counter O is assumed. All location counters are typed according to Table
3-I. The first instruction, data definition, or data reservation operation coded immediately following the first USE or COMMON
statement (paragraph 5.1) for a location counter defines the type for the block of all subsequent statements under that location
counter. ey

As each machine instruction or data word is assembled, the value of the location counter is first adjusted to an even boundary if
necessary. This adjustment is only necessary if the current location counter value is odd and the item being assembled consists of one
or more 32 bit words. Next the location counter value is incremented by the length of the assembled item. Thus, it always points to
the next available address. If the statement is named by a symbol in its label field, the symbol value is set equal to the current value
of the location counter. Similarly, if an asterisk symbol is used in the operand field of a statement, it is assigned the same value as the
location counter for that statement. An asterisk symbol in the operand field of a machine instruction statement is equivalent to
placing a symbol in the label field and using that symbol in the operand field. The assembler listing includes the location counter
value for each statement, whether labeled or unlabeled.

Only those statements which generate object code cause the location counter to be incremented. Since the number of 16 bit half
words needed for each statement coded can vary, the location counter may be incremented by various values. For instance, some
assembler operations such as USE, BASE or SETD, do not cause computer memory allocation and therefore, the location counter is
not incremented. Other operations such as short machine instructions or data half words occupy one location and therefore, the
location counter is increased by one. Long instructions and 32 bit data full words occupy two locations and increase the location
counter by two. Finally, some Assembler Operations such as PROL and BSS generate many locations and the location counter is
correspondingly increased. The FOCAP assembler has 25 location counters numbered O through 24 which can be established and
controlled by the user.

3.1.3 Base Register Addressing

When an index register is loaded with the address of the first word in a data block, for the purpose of serving as a pointer to the data
block for short instructions, the index register is said to be used as a Base Register. Any of the first level index registers may be used
as a Base Register.

TABLE 3-I. LOCATION COUNTER TYPE TABLE

WORD TYPE ALLOCATION CLASS
Variables Absolute & Relocatable
Constants Absolute & Relocatable
COMMON Variables Absolute & Relocatable
COMMON Constants Absolute & Relocatable
Temporary (Stack) Variables Relocatable Only
Instructions Absolute & Relocatable

33

THE SINGER COMPANY

) KEARFOTT DIVISION
Y240A201M0301 REV A (o

Short arithmetic instructions can only access a small portion of the SKC-2000 memory without the use of Base Registers. However,
by using all seven of the first level registers as Base Registers, seven different data areas can be accessed with short instructions. Each
of these data areas can be located anywhere in the full (131K word) memory of the SKC-2000 computer since the base register holds
a full 18 bit address. Thus, a short arithmetic instruction can address seven areas of 128 fullwords each (or 128 halfwords in halfword
mode) via base registers as well as the 128 words which are addressable without indexing. The total addressing capability is, therefore,
1024 data words.)

A
If givetr the propet infofmation, the FOCADP Assembler will automiaticatly chovse the appropriate Buse Register to permit 4 short
arithmetic instruction to be assembled. The user must first specify the contents of each active Base Register via the BASE operation.
Then if he writes a FOCAP arithmetic instruction with a simple symbol in the operand field, the assembler will determine whether
the specified symbol is within the range of one of the Base Registers. If so, a short instruction is generated and the appropriate Base
Register is automatically invoked.

For éxample, consider the program:

X DEC 321.2

Y DEC 0.0

Z ! DEC 4096.3
LDX 4.XM Load XR4 with ADDR of X
BASE 4,X
LDA Z

The LDA instruction will be assembled short. Base Register 4 will be invoked and the displacement between X and Z will be placed in
the address field, M7, since the assembler is aware that XR4 is pointing at X and that Z is within its range (128 words). In this case,
we say that the Base Register is invoked implicitly. :

The UBASE operation permits any of the 15 index registers XR1,----, XR15 to be designated as an unconditional base register.
Where the BASE operation causes invocation of a base register for short instructions, the UBASE operation causes the invocation of a
base register for both long and short instructions. This is particularly useful when addressing data in a stack or data whose address is
above 65535, the last data word which is directly addressable using the M 16 address field.

3.1.4 Page Addressing

Just as the BASE operation provides the assembler with the information needed to choose the appropriate Base Register when
forming a short instruction, the PAGE operation provides the information needed to decide that the operand can be reached by a
short instruction without indexing. Since Status Register bits 2 - 4 are used in the definition of the range of the short unindexed
instruction (see Principles of-Operation, Keérfott Document No. Y240A200MO0201, for details) the PAGE operation is used to
inform the assembler of the setting in SR2-SR4. Using this information, the assembler then automatically chooses a short unindexed
instruction wherever the operand is within the region defined by SR2-4.

3.1.5 Skip Addressing

Certain instructions cause the CPU to skip the next instruction in sequence and instead, execute the second instruction following the
skip instruction. These instructions are: SAM, ICL, ICN and IMN. Since the instructions in the SKC-2000 can be both long (32 bits)
and short (16 bits), and since long instructions must be located at an even address (i.e., they must occupy one memory word), some
care is required in using the skip instructions. ‘

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A

For a short format skip instruction, the program counter is incremented by 1 when the skip is not taken and by 3 when it is taken.
Incrementing the program counter by 3 causes the CPU to fetch the next instruction from the location whose address is 3 more than
that of the skip instruction. To insure that only one instruction is skipped, the programmer should assure himself that each short
format skip instruction is at an odd address. He should always construct a long instruction immediately following the skip
instruction. If the short format skip instruction appeared at an even address, the resultant skip address would land on an odd address.
This can create certain difficulties. For example, if a long instruction is to be skipped, it cannot be located in the two 16 bit words
skipped by the instruction (since they are located at an odd address). Also, if it is desired to skip to a long instruction, it cannot begin
at an odd address. These considerations are best illustrated by some examples.

If the short skip instruction is at an odd address (1001 in Example No. 1 in Figure 2-1), the next instruction will be at an even
location (1002). If the skip is taken, program counter is incremented by 3, causing the CPU to take the next instruction from address
1004. In this case, either a long or short instruction can be placed in either location (1002 or 1004). However, two short instructions
should not be placed in locations 1002 and 1003. Otherwise, they will both be skipped. The programmer, therefore, should force the
instruction following a skip to be long or, if it must be short, to be followed by a NOP.

If the short skip instruction is at an even address (1000 in Example No. 2 in Figure 3-1), the next instruction will be at an odd
location (1001). If the skip is taken, the program counter is incremented by 3, causing the CPU to take the next instruction from
address 1003. In this case, a long instruction cannot be used in either of these odd locations (1001 or 1003). To alleviate this
problem, the programmer should force the Skip instruction to be long if it is located at an even location, as in this example. The
coding then becomes equivalent to Example No. 3 in Figure 2-1.

If a long skip instruction is employed, it must be at an even location (1000 in Example No. 3 in Figure 2-1). The next instruction
will be at an even location (1002). If the skip is taken, the program counter is incremented by 4, causing the CPU to take the next
instruction from address 1004. In this case, as in Example No. 1, either a long or short instruction can be placed in either location
(1002 or 1004). Here, also, the programmer should force the instruction following a Skip to be long or, if it must be short, to be
followed by a NOP: This assures that only one instruction will be skipped.

Note that Versions 5 and later of the FOCAP Assembler include provision for forcing these relationships. It will automatically make
the appropriate long/short decisions on both the Skip Instruction and the following instruction (the one intended to be skipped).

ADDRESS EXAMPLE NO. 1 EXAMPLE NO. 2 EXAMPLE NO. 3
1000 Skip Instruction Long Skip Instruction
1001 Skip Instruction Next Instruction
1002 Next Instruction Next Instruction
1003 Skip Location
1004 Skip Location Skip Location
1005

FIGURE 3-1. SKIP INSTRUCTION EXAMPLES

35

THE SINGER COMPANY
: KEARFOTT DIVISION
Y240A201M0301 REV A :

3.2 INTER-DECK ADDRESSING

This section is devoted to a deécription of the several alternatives available for transmitting information between FOCAP program
decks. As before, a deck is defined as a sequence of source statements terminated by an END statement.

3.2.1 Entry Points

Symbols may be defined in one deck and referred to by another, thus providing symbolic linkages between independently assembled
programs. The linkages can be effected only if the assembler program is able to provide information about the symbol to the loader
program, which resolves these linkage references at load time. In the program where the linkage symbol is defined, it must also be
identified to the assembler by means of the ENTRY assembler operation. It is identified as a symbol that names an entry point,
which means that another program may reference that location by using the same symbol in a jump instruction or a data reference
instruction. The assembler places this information in the object deck for transmission to the loader.

3.2.2 External Symbols

If a symbol is used in a program deck (i.e., appears in an operand field) but is not defined in the same program deck, the assembler
assumes that it represents a symbol defined as an entry point in another program deck (see previous paragraph). It is identified then
as an external or virtual symbol. The assembler places this information in the object code for transmission to the loader, which
resolves these linkage references at load time. The assembler also prints a list of the external symbols at the end of each assembly for
the programmer’s reference.

If, at load time, no entry point can be found for an external symbol, an appropriate error message is printed.
3.2.3 Common Areas

The COMMON operation can be employed to define labeled COMMON data blocks in several program decks. This permits each deck
to reference the common data area in a manner precisely analogous to the use of labeled COMMON areas in FORTRAN.

Several COMMON areas can be defined which are distinguished by their labels. One unlabeled or blank COMMON can be used as well.
Each subprogram that refers to one of the COMMON areas must include a definition of the memory allocation for the referenced
COMMON in its source deck at assembly time. The loader program assigns a unique memory location to each labeled COMMON area
despite the fact that it is defined in several program decks. Consequently, at execution time, each program that refers to data in a
labeled COMMON will be referring to the same data. Furthermore, if a base register is loaded with the address of the fitst word in a
labeled COMMON, the first 256 data words in that COMMON area can be accessed via short (16 bit) instructions. As a result, the
careful use of COMMON blocks can be a significant factor in realizing a high density of short instructions in an SKC-2000 program.

The label of the COMMON area is the basis for inter-deck communication. The symbols associated with data words within a
COMMON block are only for local reference (within the deck) and are not used for inter-deck communication. Two programs are
referring to the same data word when it is the same distance from the beginning of each COMMON block definition. This same data
word may be called X in the first program and Y in the second program and the COMMON blocks might be defined as iollows:

FIRST PROGRAM DECK SECOND PROGRAM DECK
LABL COMMON 10 LABL COMMON 9
R1 BSS 10 R BSS 14
R2 BSS 4 Y BSS 2
X BSS 2

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

Notc that both X and Y are located 14 locations from the top of the LABL COMMON area and they, therefore, refer to the same
memory location.

The. loader program automatically chooses the largest labeled COMMON block of the same name in allocating memory of that
COMMON block.

Any COMMON block may be initialized to contain certain defined constants at absolute program load time (i.e., execution time).
However, two rules must be observed:

1) At least the first statement ﬁnder the COMMON declaration in question (labeled or unlabeled) must be a constant defining
operation (e.g., DEC, HEX).

2) * Two or more program decks referring to the same COMMON must not define conflicting constants for the same data
positions. :

Preferably, a particular COMMON which is to be initialized should have its constants declared by only one program deck (though any
number of other decks may refer to these data as variables, or as identical constants, using arbitrary local symbolic locations).

3.24 TEMP (Stack) Areas

The TEMP operation can be employed to define a variable data area (sték:k) to be shared between subroutines in separate decks. This
permits the data area to be efficiently allocated in a manner precisely analogous to the use of the AUTOMATIC data type in PL/I.
See the SKC-2000 Subroutine Library Reference Manual (Document No. Y240A204M0101) for a more detailed description of its
implementation.

Briefly, the TEMP operation is used to denote the location counter under which all local (temporary) variables are normally
allocated. For example, if a subroutine requires that four locations be used for intermediate computations, these should be allocated
to the TEMP area. The standard FOCAP subroutine calling sequence (using the CALL, PROL, and RETURN operations) will allocate
sufficient TEMP data area on entering a subroutine and will release this TEMP data area upon exiting. On release, of course, any data
stored in the TEMP area is usually lost.

This automatic allocation/deallocation of the TEMP area is precisely analogous to the operation of a pushdown stack. As a result, a
single memory cell may be used by several subroutines at different times. For many applications, this sharing of scratch data
locations can result in substantial memory savings (see Document No. Y240A204MO0101 for an example). In addition, in the
SKC-2000 computer, some execution speed improvement can also be realized. This results from the fact that the LSI scratch memory
in the SKC-2000 is faster than the main memory. If the TEMP area is assigned to the LSI fast scratch memory, these high speed cells
will be shared by several routines with a resulting increase in speed over the unshared allocation of memory.

To accomplish reentrancy for all subroutines using the standard calling sequence, a different TEMP data area must be assigned to
cach major interrupt routine as well as the main program. This is accomplished by the FOCAP assembler via the INT operation. Once
this is accomplished, there can be no interference when two interrupt programs call the same subroutine. Consequently, reentrancy
has been accomplished.

3.2.5 Subroutine Call
Information can also be transferred to a subroutine via the argument list in a CALL statement. This process is described in paragraph
5.5 and the SKC-2000 Subroutine Library Reference Manual. The arguments are transmitted in reentrant fashion via a stack of

pointer information in the shared temporary data stack (TEMP) if the PROL statement is used in the subroutine for the prologue
function.

3-7

THE SINGER COMPANY
KEARFOTT DIVISION ,
Y240A201M0301 REV A

3.2.6 - System Variables — COMPOOL

The short/long instruction decision is made at Assembly time as discussed in Section 3.1.1. The processing of ENTRY point
references is done later since they are processed by the Loader. Consequently, a reference to an external ENTRY point will always
result in a long instruction since the Assembler does not have the information necessary to decide that a short instruction is adequate.
The use of COMMON solves this problem but at the cost of requiring that the definition of each labeled COMMON be included in
any deck which references the labeled COMMON. This can create a substantial housekeeping problem for large or changeable
COMMON regions: The System Variable capability was designed into the SKC-2000 FOCAP Assembler to alleviate this dilemma. It
provides the Assembler with the ability to reference source code information derived from decks other than the deck being
assembled. Hence, it is similar to the basic COMPOOL feature of the JOVIAL language. The principal value of the feature lies in that
it permits short instructions to be generated without requiring the explicit inclusion of the source code for the referenced item.

More specifically, the system variable definition feature allows absolute symbols that are initially defined by the assembly of one or
more program decks to be referenced in other program decks which are subsequently assembled. This is accomplished by saving the
symbol tables from the initial assemblies and then, by means of a control card placed before a subsequently assembled program deck,
causing the Assembler to consult one or more of the saved symbol tables to obtain the definitions of symbols which are referenced
but undefined in the program deck being assembled. Optionally, the symbols whose definitions are to be sought from the saved
symbol tables may be restricted to a specific list of symbols given at the beginning of a program deck, and then any other undefined
symbols in the program will be treated as external references.

This list must be given if set symbol definitions are to be obtained from the saved symbol tables. When the definition of a one-bit
symbol is extracted from a saved symbol table; its bit position is also extracted; thus, the initially assembled programs may define
absolute BIT symbols for subsequent reference.

See the Assembler Users’ Manual for details on the control cards used for Systems Variables.

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

33 FOCAP LOADER PROGRAM

The SKC-2000 FOCAP Assembler Program converts a FOCAP source deck into an Object Module which contains object code (binary
machine language) for each SKC-2000 instruction or data word designated in the source deck. However, the relocatable code will not
yet be assigned a memory address and any instructions which directly reference relocatable or external operands will have an
unresolved operand address field. The Object Module also contains information on the number and type of location counter under
which each word was assembled. All the Object Modules comprising an SKC-2000 program are processed by the Loader Program
which assigns an absolute memory address to each data and instruction word and resolves all operand address references to
relocatable or external operands. The result is a Load Module which contains absolute machine code with its assigned memory
address. The Load Module can be directly loaded into the SKC-2000 Computer. An outline of this process is shown in Figure 3-2 ,

3.3.1 Memory Organization

The main. memory of the SKC-2000 computer is divided into two regions. One is available for variable data and may, therefore,
undergo a Write operation. The other region (called the protected memory region) cannot be written into witheut-the-aid-of-test*
equipment.- Hence during normal operation, inadvertent destruction of words in this area by a program is precluded by hardware.
Data constants and instructions should reside in protected memory. Variable data must be allocated to unprotected memory.

t

T}3e SKC-2000 main memory occupies contiguous addresses above 16384 and up to the main memory capacity of the machine. The
maximum address can be as high as 262144 (or 131,074 fullwords). Addresses O to 16383 (or 8,192 fullwords) are reserved for fast
LSI memory. If fast LSI ROM is supplied, it occupies contiguous addresses beginning at address O (the beginning of the LSI region).
Fast writeable LSI memory occupies contiguous addresses ending at 16383 (the end of the LSI region). ROM memory can also be
used as protected main memory which is accessed via the main bus. But then it will not result in increased execution speed.

For most SKC-2000 configurations, the unprotected (writeable) main memory is a contiguous region starting at address 16384 and
ending at an adjustable boundary. The protected (read only) ‘main memory is an essentially contiguous region starting at the
boundary address and running to the maximum main memory address. One exception to this is a narrow band of unprotected
locations for storing interrupt return addresses at the end of the first 8K main memory module (addresses just prior to 32768).

A minor hardware change (adding or deleting jumpers) will serve to change the boundary address between the protected and
unprotected main memory regions. Consequently, the boundary address will tend to be different SKC-2000 applications. This
boundary address plays a key role in the Loader’s memory allocation algorithm, discussed below. Hence, it must be known by the
Loader Program.

3.3.2 Loading Procedure

Object code generated by the Assembler is processed by the Loader Program to resolve memory references, establish linkages and
assign each instruction and dataword to the appropriate memory location. :

The Assembler generates object code in the same sequence on tape as the source code it regeives as input. The Loader also retains this

sequence in its output code (load module). However, this tape sequence does not reflect the sequence of the code in memory, the

allocation sequence. The memory allocation sequence is represented by the addressing information that accompanies the code in the

object module and in the load module. The loader processes the partial memory allocation information inserted in the object module

by the Assembler, and generates the final, complete memory allocation information which it includes in the load module. This
" section is devoted primarily to describing the procedure used by the Loader to determine the final memory allocation sequence.

First the Loader scans the object code for absolute segments whose memory location has been specified by the programmer using an
ORG statement. Memory for these absolute segments is allocated firét by the Loader. Any attempt to allocate a location twice will
result in an error message. The relocatable segments are then allocated into the unused portion of memory. Allocation conflicts
between absolute and relocatable segments are automatically avoided. To simplify subsequent discussion of allocation for rclocatable
segments we shall assume either that no absolute allocations have taken place or that their effect on the relocatable allocations is
transparent.

3-9

Y240A201M0301 REV A

THE SINGER COMPANY
KEARFOTT DIVISION

SOURCE
STATEMENT
FILE

FOCAP
SOURCE
STATEMENTS

FOCAP
ASSEMBLER
370 COMPUTER|

NEW OBJECT
MODULE (RELO-
CATABLE OR
ABSOLUTE)

OBJECT
MODULE
FILE

LOADER
370 COMPUTER

OPERATIONAL
PROGRAM
SKC2000 COMPUTER

SIMULATOR. INTERPRETIVE »
CONTROL SIMULATOR ENVIRONMENT
CARDS 370 COMPUTER SIMULATION
J ROUTINES
‘ (FORTRAN)
PRINTOUT
e TRACE
e MEMORY DUMP
e TIMING

FIGURE 3-2. SUPPORT SOFTWARE DATA FLOW

'THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

Relocatable data is assigned to the low main memory addresses while instructions are assigned the higher locations. This prevents
overflow of the direct operand addressing region (up to address 65536) except in the most unusual circumstances. The program
would have to include over 24,576 fullwords of constant or variable data in main memory for the boundary to be exceeded. If data is
allocated beyond this boundary, it cannot be directly addressed by the M16 field in a basic arithmetic instruction. An index register
would have to be employed to access it. k

The Loader distinguishes between eight types of relocatable memory allocation and allocates each separately. These eight types and
their order of allocation is given below: : :

Blank COMMON (Variables)
Labeled COMMON (Variable)
Temporary (Stack) Area
Local Variable Data

Local Constant Data

Blank COMMON (Constant)
Labeled COMMON (Constant)
Instructions

0.N O R W

Different location ‘counters are used to distinguish between the eight types. The first word allocated under a location counter
determines whether the segment contains variable data, constant data, or instructions. Variable data must be specified by either the
BSS or BES opérations. Constant data is specified by any one of the following operations: DEC, DEC16, DEC64, HEX, HEX16,
SCLB, SCLB16, SCLW, SCLW16 and PTR. Any machine instruction mnemonic will start an instruction segment. The operations
COMMON and TEMP are used to invoke a location counter while further specifying the segment’s allocation type.

All segments of the same type are allocated together és shown in Figure 3-3.In this figure, solid lines are used to designate physical
boundaries and dotted lines indicate the separation between memory regions allocated to different types. Arrows indicate the
direction of allocation for specific types.

More specifically, the Loader first scans all input decks to determine whether Blank COMMON has been used to allocate variable
data. If so, it determines its length and then reserves the necessary area starting at location 16384 (thé start of the relocatable
allocation region). Next, the Loader scans all input decks to determine whether labeled COMMON has been used to allocate variable
data. If so, it determines the length of each labeled COMMON and then reserves the necessary area just beyond the end of blank
(variable) COMMON if it exists. If several labeled COMMON’s are used, they are allocated in the order they are presented to the
Loader.

Next the Loader scans all input decks to determine whether one or more TEMP (or STACK) areas are specified. A stack can only be
used for variable data. If a stack is specified, the Loader analyzes the tree structure of the stack to determine its worst case memory
requirement as described in the Subroutine Library Reference Manual. It then reserves -the necessary area for each stack just beyond
the end of the labeled (variable) COMMON area.

All remaining variable data is conéidered local to the defining routine and is allocated in the Local Variable Data area. Each deck is
scanned for location counter segments used for this purpose. Their total memory requirement is determined and the necessary area
allocated just before the boundary of the protected and unprotected main memory regions as shown in Figure 3-3. If this allocation
is sufficiently large as to cause an overlap in allocation with the TEMP (Stack) Area, an error message indicating a memory allocation
conflict will be issued. This concludes the allocation of variable data to unprotected memory.

Next the Loader must allocate constants and instructions to the protected memory region. As shown in Figure 3-3, this region runs
from the boundary (address 24576 in the example shown) to the end of main memory, except for the narrow unprotected region for
interrupts. The interrupt region is treated by the Loader as an absolute allocation. Hence, it is automatically excluded from the
relocatable allocation region. The Loader scans all decks for segments which contain local constant data and allocates them to the
first locations in protected memory, where they are certain to be directly addressable. '

Y240A201M0301 REV A

THE SINGER COMPANY
KEARFOTT DIVISION

HALFWORD ADDRESSES

POSSIBLE UNUSED AREA

1

INSTRUCTIONS . o
. o
W\w_J =
— & .
W\———\NW =
Z
S
) o
& 65536
LIMIT OF DIRECT g
DATA ACCESS (M16) INSTRUCTIONS 2
N <3}
&
a
=
3 32768
S INTERRUPT
S 'RETURNS
a 32736 UNPROTECTED
— MEMORY :
_) 32704 .
INTERRUPTS
INTERRUPT
INSTRUCTIONS f\%n TRAPS

T

T LOCAL CONSTANT DATA

PROTECTED
™ MAIN MEMORY

)
&
h
J
=)

_D

ADJUSTABLE;
BOUNDARY

‘ LOCAL VARIABLE DATA

e — — — — — — o—— enems

POSSIBLE UNUSED AREA

T LABELLED COMMON VARIABLES

BLANK COMMON VARIABLES

V—‘N

(

m
=
=
=z
Q
sz
[~
16384 l
FAST LSI
MEMORY
0

FIGURE 3-3 TYPICAL MEMORY LOAD

THE SINGER COMPANY
KEARFOTT DIVISION Y240A201M0301 REV A

The Loader then allocates blank COMMON, if used for constant data, followed by labeled COMMON for constant data and finally
the instructions are assigned throughout the remainder of main memory if necessary. Usually, the instruction region is by far the
largest single allocation region. :

This completes the memory allocation procedure although.a final note on use of multiple location counters is in order. If several
location counters arc used for a single memory allocation type within a single deck, the lower numbered location counter segments
are allocated first. :

3.3.3 Status
Version 3 of the Loader Program performs precisely as described above. Singer-Kearfott has presently under development an
improved Linkage Editor and Loader Program (Version 5) which is host computer portable and which provides more user controls

over the memory allocation process. This new Loader is one component in a complete set of host machine portable support software
for the SKC-2000 Computer.

3-13

e THE SINGER COMPANY
R T 30 RFOTT DIVISION
Y240A201M0301 REV A KEARFOTT DIVISION. -

THIS PAGE INTENTIONALLY LEFT BLANK o

THE SINGER COMPANY

KEARFOTT DIVISION
: : Y240A201M0301 REV A

4. MACHINE LANGUAGE INSTRUCTIONS

This section describes the rules for preparing source language statements which, when processed by the assembler program, produce
SKC-2000 machine language instructions. The assembler uses the mnemonic in the operation field of a FOCAP statement to generate
the operation code of the corresponding machine instruction. The operand field of a FOCAP statement contains any designator for
other fields in the machine instruction.

In desetibing the syntax of the opetand field, i will be useful to employ some perteral notation, For example, lower case chatacters
are employed in a symbol which represents a family of possible source code items. For example, u represents any valid FOCAP
expression, such as: X, RANGE, Y2, X+Y, R-9, etc. In general, upper case characters are used to indicate source code in a literal
sense.

Where options are available for fields in the source statement, brackets are used to denote a choice of any one or none of the
enclosed language elements. For example,

X
X+3

u,x1

is used to indicate a choice of any one of the three expressions

. X
2. X+3
3. uxl

or none of these expressions. Braces are used similarly except that one of the enclosed items must be chosen. For example,

x1
1 x1,x2
is used to indicate a choice of any one of the expressions

x1
or x1,x2.

Several other standard notations are employed in describing the source code syntax and the more general of these are defined below:

Notation Definition
u Represents an absolute or relocatable expression (see Section 2.4) which is used to define the address field in an
instruction. i
X Represents a decimal integer from 0-15 or a set-symbol as defined in Section 5, which is used to designate one of the

index registers (XRO-XR15).

x1 Represents a decimal integer from 1-7 or a set symbol which designates one of the seven first-level index registers
(XR1-XR7). The x1 notation is commonly used to define the X1 field in a machine instruction.

x2 Represents a decimal integer from 1-15 or a set-symbol which designates one of the fifteen index registers
(XR1-XR15). The x2 notation is commonly used to define the X2 field in a machine instruction.

THE SINGER COMPANY

' KEARFOTT DIVISION
Y240A201M0301 REV A

Notation) Definition
|
| Designates the indirect addressing option which causes bit 13 in the long machine instruction to be set to onec.
M Designates the immediate operand option which causes bit 14 in the long machine instruction to be set at one.
L Designates the long option which caises the assembler to generate the fong form of an otherwise shott instructioft,
Bi Designates the ith index register XRi being used as a base register.

() Designates the contents of the register or instruction subfield which is specified within the parentheses.

Some further notation used for specific statement descriptions is defined in the appropriate sections. The descriptions for SKC-2000
instructions are grouped according to the source statement syntax and each group is discussed separately below.

42

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A.

4.1 ARITHMETIC INSTRUCTIONS

The majority of SKC-2000 machine instructions are -in the Arithmetic Group and share the same basic instruction format, as
described in the Principles of Operation Manual. Each of them has both a short (16 bit) format and a long (32 bit) format. The
assembler attempts to generate the short form of an arithmetic instruction whenever possible. If a base register has been specified by
a previous BASE or UBASE statement in the source program deck, and’if the operand (denoted by u) is within its range, the
assembler will generate a short instruction. The operand is within range of the base register if

u — (Bi) < 128 for halfword data
or

u — (Bi) < 256 for fullword data

When a short instruction is thus generated, the three bit X1 field is loaded with the value i which identifies (or specifies) the
controlling base register, Bi: The seven bit M7 address field is then loaded with the appropriate displacement

M7 = u — (Bi) for halfword data
or
M77 = (u — (Bi)) for fullword data

Note that the effect is to cause the SKC-2000 (at execution time) to form the effective address E equal to the value of u, the desired -
operand address. A more detailed explanation of the BASE and UBASE operations is given in Section 5.

If u is an absolute expression, and if an appropriate absolute valued base register is not available, the assembler will attempt to
construct a short instruction in conjunction with the contents of Status Register bits 2-5 as described in Section 3.1.4. Failing this,
the assembler will construct a long instruction.

4.1.1 Operation-Field

This section lists all the valid mnemonic code entries for the operation field of an arithmetic instruction.

MNEMONIC OPERATION SUMMARY
ADF ' Add floating point
ADL Add lower fix point
ADU Add upper fix point
AFD Add double precision floating point -
AND Logical AND
DVD Divide fix point
DVF Divide floating point
EXO Exclusive OR .
LAE Load A register with ef] fective address
LDA Load A register
LDB Load B register
LDI Load interrupt mask register
LDS Load status register
LOR ! Logical OR .
MLF Multiply floating point
MUL Multiply fix point

43

Y240A201M0301 REV A

MNEMONIC

RTA
SAM
SBF
SBL
SBU
SFD
STA
STB
STI
STS
ADFR
ADLH
ADLHR
ADLR
ADUH
ADUHR
ADUR
AFDR
ANDH
ANDHR
ANDR
DVDH
DVDHR
DVDR
DVFR
EXOH
EXOHR
EXOR
LDAH
LDBH
LORH
LORHR
LORR
MLFR
MULH
MULHR
MULR
MFM
MMF
SAMH
SBLH
SBLHR
SBLR
SBUH
SBUHR
SBUR
SBFR
SFDR
STAH
STBH
STH

THE SINGER COMPANY
KEARFOTT DIVISION

OPERATION SUMMARY

Return Address

Skip on A register masked

Subtract floating point

Subtract lower fix point

Subtract upper fix point

Subtract double precision floating point

Store A register

Store B register

Store interrupt mask register

Store status register

Add floating point, return to memory

Add lower fix point, half word

Add lower fix point, half word and return to memory

Add lower fix point, return to memory

Add upper fix point, half word

Add upper fix point, half word and return to memory

Add upper fix point, return to memory

Add double precision floating point, return to memory
. Logical AND, half word

Logical AND, half word and return to memory

Logical AND, return to memory

Divide fix point, half word

Divide fix point, half word and return to memory

Divide fix point, return to memory

Divide floating point, return to memory

Exclusive OR, half word

Exclusive OR, half word and return to memory

Exclusive OR, return to memory

Load A register, half word

Load B register, half word

Logical OR, half word

Logical OR, half word and return to memory

Logical OR, return to memory

Multiply floating point, return to memory

Multiply fix point, half word

Multiply fix point, half word and return to memory

Multiply fix point, return to memory

Move block from fast to main memory

Move block from main to fast memory

Skip on A register masked, half word

Subtract lower fix point, half word

Subtract lower fix point, half word and return to memory

Subtract lower fix point, return to memory

Subtract upper fix point, half word

Subtract upper fix point, half word and return to memory

Subtract upper fix point, return to memory

Subtract floating point, return to memory

Subtract double precision floating point, return to memory

Store A register, half word

Store B register, half word
‘ Store A register, half word

44

4.1.2 Operand Field

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A201M0301 REV A

The first operand subfield on an arithmetic instruction statement must be an expression, represented by u. The syntax of an
expression is described in Section 2.4.2. The u subfield is used to generate the address field (also called the displacement ficld)
designated M7 in a short machine instruction or M16 in a long machine instruction.

All additionat operand subfields are optional. They are used to specify one or two index registers for address modification as well as
the indirect, immediate, ahd long options. The general form of the operand field is

u [xq] [x5] M

More detail on the various subfields is presented in Table 4-1.

LABEL OPERATION OPERAND
1 10 20 30 40
ONE , , | ILDA, , JJALPHA |, , \ vl tiaal
TWO , JIADY I BBETA 3 il
Ty JJAND JIGAMMAHS L | gl pald
FOUR , LAE , , DELTA -1, NDEX L ||, 1014011
p oy | /UDB L PINHALPHA]
S, Xy 1) |SBF , 4 | [BTA-BETA 242 Lot
SEVIEN | ISTA [IZETA Ly gyl oot
p o1 oD L ILAMBDAL S Ly gy it
NINE ;| (SAM , , | IPHI ®3 JONDLL 9 0l i caaald
TEN 3] JLOR | CHI U |y gty vy ot byt vy vl
LEVEN| JADF , , | IDELTA M | il ial
v | |STE P IBETA-4 4]
Lgdl Eixlqln qulllo’IMlllllllllAllllllllll]
IFOQRTEN| MUY | , | JALPHA 3 IND2 oL |y gty
L1l TA , | IGAMMA, 12,8 M 0t a et il
oo LD 3,BASADR ,SETSYM .M | |, ;]
c ST L SSAYEL Y]
S| Lol g SN T B BN B AR S A A S B BN N S I A a |
L1l I bt bt e b v |
R B G JUVNT T W U N T VT I 0 0 O B A BB A |
FIGURE 4-1. TYPICAL ARITHMETIC INSTRUCTIONS

4-5

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A201M0301 REV A

TABLE 4-1. ARITHMETIC INSTRUCTIONS OPERAND FIELD

FORM OPERAND SUMMARY NOTES
u u forms an explicit displacement or an implicit 1. Assembled instruction may be short or long; decision is
displacement and base register explicit: made automatically (short if possible) at assembly time.
u —> M7 or M16 iinplicit;
u-Bi —->M7;i > XR1
In either case, u specifies the effective address
of the operand.
u,x1 u forms explicit displacement; x1 forms Note 1 (above) applies.
XR1 field.
u,L u forms explicit displacement; no index 2. Assembled instructions is always long.
field (XR1 or XR?2) is specified. 3. This form not valid for LDI, LDS, STI, STS.
u,x1,L u forms explicit displacement; x1 forms Notes 2 and 3 (above) apply.
XR1 field.
u,x1,x2 u forms explicit displacement; x1 forms Assembled instruction is always long.
XR1 field, x2 forms XR2 field.
u,l u forms explicit displacement; indirect bit Assembled instruction is always long.
is set.
uM u forms explicit displacement; immediate Assembled instruction is always long. This form not valid for:
bit is set. ADF, SBF, MLF, DVF, STA, STB, AFD, SFD, LAE, STI,
STS, and their derivants.
u,x2,1 u forms explicit displacement; x2 forms Assembled instruction is always long. -
XR?2 field, indirect bit is set. h
u, x2.M u forms explicit displacement, x2 forms Assembled instruction is always long. This form not valid for:
XR?2 field, immediate bit is set ADF, SBF, MLF, DVF, STA, STB, AFD, SFD, LAE, STI,
STS, and their derivants.
u,x1,x2,1 u forms explicit displacement; x1 forms Assembled instruction is always long.
XR1 field; x2 forms XR?2 field; indirect
bit is set.
u, x1,x2,M u forms explicit displacement; x1 forms Assembled instruction is always long.
XR1 field; x2 forms XR2 field;
immediate bit is set.

4-6

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A

4.2 JUMP INSTRUCTIONS

All jump instructions specify a destination address in the operand field of the FOCAP statement. For some of the jumps (JU, JN, JG, JL)
the expression subfield, u, may generate either an explicit (or global) address, or an implicit (or relative) address. The assembler
automatically chooses the relative address form where possible, as this may be implemented in the short (16 bit) object form of the
instruction.

A telative address is generated if the destination (u) is within 127 locations of the jump instruction itself. In this discussion, the
symbol “loc” will be used to refer to the location of the jump instruction itself. If the assembler finds that |u-loc| is less than 128, the
magnitude of the difference is placed in the M7 field of the short instruction. Bit 8 of the short jump is used to determine the jump
direction (forward or backward). If the difference is 128 or greater, the whole operand (u) explicitly generates the global absolute
address, M18.

This assembler choice of the long/short form may always be overridden by using the explicit “long forms” or “short forms” of the
jump operation mnemonics. The explicit long forms always generate a long (32) bit instruction with a global (18 bit) address field,

while the explicit short forms always generate a short (16) bit instruction with a (7 bit) address field. If the target address cannot be
reached by a short instruction, an error message is generated.

4.2.1 Operation Field

The primary mnemonic code entries for the operation field of a jump instruction are listed below:

MNEMONIC OPERATION SUMMARY
JU Jump unconditional
JL Jump if (A registeer) <0
- IG Jump if (A register) >0
JN Jump if (A register) # 0
JS Jump unconditionally to subroutine
JGS Jump on status
JGW . Jump on switch
JGF Jump on program flag

In addition to the primary mnemonic operation codes, the four jump instructions with short formats also have mnemonic operation
codes which force either the long or the short formats. These mnemonic operation codes are listed below:

PRIMARY FORM SHORT FORM LONG FORM
JU JRU JGU
JL JRL JAL
JG JRG JAG
IN JRN JAN

The explicit long or short forms are not recommended unless circumstances dictate their use.
4.2.2 Operand Field

The operand field for the standard jump instructions is rather simple, in that there are a maximum of two subfields. The first
contains an expression which defines the target location for the jump, and is therefore mandatory. The second field is absent for the

4.7

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

basic jump instructions (J U‘, JL, JG, IN). It is used to specify indexing for the subroutine jump (JS), and is used to designate one of
several jump condition bits for the other instructions (JGS, JGW, JGF). Consequently, the general form of the operand field is

x1
u Sf

SW
K

where the following special notation is employed: '

f Represents an integer (1-15) or a set-symbol which designates one or more of the program flags in the status register
sW Represents an integer (0-7) or a set-symbol which designates one of the eight switch inputs

s Represents an integer (0-15) or a set-symbol which designates a status register bit position

Table 4-11 contains further detail on the use of these designators:

LABEL OPERATION OPERAND
1 10 20 30 40
ONE , o JPU 1 JIALPHA v bt v s b
*
1111 J|G.UI1. lﬁ?fnll“l]l“anl||‘||.|1‘|L1|
THREE | IJGF| | IBETA, 3 1y vt gl ettty
ot | P, JISAMMANZ L6 b L
FAVEL 1 | UGSt JIDELTAL 4 0 3 by oy byl
SJIXIII J|s|I|| AlLlPHAllllllllllIlllllllIIIII
e NS I IBETALNDEXS)y Lt vt
FIGURE 4-2. TYPICAL JUMP INSTRUCTIONS.
TABLE 4-I1. JUMP INSTRUCTION OPERAND FIELD
FORM OPERAND SUMMARY NOTES
u u forms a global or signed relative address. This form is not valid for JGS, JGW, JGF, JS.
global (long);u —>M18
| relative (short): |u-loc| »M7;sign —> bit 8
u, f u forms global address (long); f forms program flg This form is valid for JGF only.
field.
u, sw u forms global address (long); sw forms panel This form is valid for JGW only.
switch field. :
u, s u forms global address (long); s forms status ‘This form is valid for JGS only.
register bit field. :
u, x1 u forms global address (long); x1 forms X1 field. This form is valid for JS only.
)

4-8

4.3 INDEX REGISTER INSTRUCTIONS

THE SINGER COMPANY

KEARFOTT DIVISION

Y240A201M0301 REV A

With the exception of the LXA instruction, all instructions which can modify or test the contents or an index register have the same

source statement syntax and are, therefore, discussed in this section. The format is very similar to the format of the arithmetic
instruction statement. The major exception is the specification of the affected index register as the first operand subfield, followed
by the u subfield.

4.3.1 Operation Field

This section lists all the valid mnemonic code entries for the operation field of an index register instruction.

OPERATION SUMMARY

Test contents of selected index-register and skip if not equal to operand

Test contents of selected index-register and skip if less than operand

Modify index-register by negative increment and skip if the result is less than zero

MNEMONIC
ICN
ICL
IMP Modify index-register by positive increment
IMN
LDX Load-index register
STX Store index register

4.3.2 Operand Field

The operand field of the index register instructions is similar to that of the arithmetic instructions. However, for these instructions

the x subfield is first, denoting the index register which is the target of the instruction. The u subfield is second, an expression

identifying the intended operand. Both of these subfields are mandatory. Subsequent subfields are all optional and are the same as the

subfields employed in the arithmetic instruction format, except that only one index register can be specified as an address modifier

and the L option is inoperative. The general form of the operand field thus becomes:

X,u

The specific instances are shown in Table 4-III.

LABEL OPERATION OPERAND

1 10 20 30 40
ONE , , ICR) | 6 ALPHAS il
Lg LGY o o I INDXi2i "t 3l by g bbbl
THREE IMP) BETA, N2 M v al i baia 1l
et PIOMN L IS0 A 2 e b b g
AT B Lo I B L R T N N
| STX L% SAYE L bl
I pal o1 RN R N T 0 0 O W O T O O Y 0 O
L1l T RNV U O VA 1 U N W I O R 000 W IO O
L1 Lol i PR T Y R T U 5 S A W Y Y A O
L1 vl PR O T T T S I 0 Y N Y W B WU

FIGURE 4-3. TYPICAL INDEX REGISTER INSTRUCTIONS

4.9

Y240A201M0301 REV A

THE SINGER COMPANY
KEARFOTT DIVISION

TABLE 4-111. INDEX REGISTER INSTRUCTIONS OPERAND FIELD

FORM OPERAND SUMMARY NOTES
X,u u forms explicit displacement; x field Assembled instruction is short if: x is level 1 register
depends on instruction length) (1 to 7); and u is an absolute expression whose value
Shott: x - XRi is fess than 128; except [CL or IMP are always long.
Long: x =>XR2 U
x,u,x1 u forms explicit displacement; Assembled instruction is always long.
x forms XR2 field; x1 forms XR1 field
x,u,l u forms explicit displacement; Assembled instruction is always long.
x forms XR2 field; indirect bit is set.
x,u.,M u forms explicit displacement; Assembled instruction is always long.
x forms XR2 field; immediate bit is set. This form is not valid for STX.
x,u,x1,I u forms explicit displacement; Assembled instruction is always long.
x forms XR2 field, x1 forms XR1 field;
indirect bit is set.
x,u,x1,M u forms explicit displacement; Assembled instruction is always long.
x forms XR2 field; x1 forms XR1 field; This form is not valid for STX.)
immediate bit is set.

4-10

4.4 SHIFT INSTRUCTIONS

THE SINGER COMPANY

KEARFOTT DIVISION

Y240A201M0301 REV A

All SKC 2000 shift instructions employ a short (16 bit) machine instruction format. There is, therefore, no long instruction option.

The shift count can be modified by the contents of any first level index register (XR1-XR7).

4.4.1 Operation Field

This section lists all the valid mnemonic code entries for the operation field of a shift instruction.

MNEMONIC

SRA
SLL
SRAD
SLLD
SRC
SRCD
SLCD
SRLD

4.4.2 Operand Field

OPERATION SUMMARY

Shift A right algebraically
Shift A left logically

Shift A, B right algebraically
Shift A, B left logically
Shift A right circularly

Shift A, B right circularly
Shift A, B left circularly
Shift A, B right logically

The first operand subfield of a shift instruction must be an integer or set-symbol which defines the basic shift count. The following

special notation is used to represent this subfield:

z Represents a decimal integer from 0-31 or a set symbol which is used to fill the shift count field, J, in the shift instruction.

The second operand subfield is optional and, when used, it designates that the effective shift count is the sum of the basic shift count

(z) and the contents of the designated index register. The general form of the operand field is thus:

The specific instances are shown below:

FORM OPERAND SUMMARY
z z forms the J field (unindexed shift count)
z, x1 z forms the J field (basic shift count)
x1 forms the X1 field which designates one of several index registers‘
where contents are used to modify the shift count.
LABEL OPERATION OPERAND
1 10 20 30 40
ONE , , | [SRA , ALPHA | vy
11 SLL 24, NDEX Y) it
L1t SRAD | {18,y iyt byt ei bl
L1 Lol o [T S U O N N K 0 U W O
Lol [RS O T U 0 5 A W 0 0 0 B TN SO0 O IO

FIGURE 4-4. TYPICAL SHIFT INSTRUCTIONS

4-11

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

4.5 NONMEMORY REFERENCE INSTRUCTIONS

All SKC 2000 nonmemory reference instructions employ a short (16 bit) machine instruction format. There is, therefore, no long
instruction format. They all also use the same primary operation code. Consequently, the operation mnemonics are used to generate
the appropriate unique secondary code.

4.5} Operation Field

This section lists all the valid mnemonic code entries for the operation field of a Nonmemory reference instruction.

MNEMONIC OPERATION SUMMARY
NOP No operation
HLT Halt
SET Set selected program flags
RST Reset selected program flags
EPI Enable program interrupts
DPI Disable program interrupts
DMI Disable memory interrupts
EMI Enable memory interrupts
CFX Convert floating point to fixed point
CXF Convert fixed point to floating point
EAB Exchange A and B registers
LXA Load Index Register from A Register
SHM Set Halfword Mode
- RHM Reset Halfword Mode

4.5.2 Operand Field
Most nonmemory reference instructions employ no operand field since they have no machine instruction subfields. There are,
however, three exceptions (LXA, SET, RST) which require a decimal integer in the operand field to define an instruction subfield.
This integer is represented by the letter f defined as follows:

f1 Represents a decimal integer (1-15) or a set-symbol which is used to define a four bit subfield.

f2 Represents a decimal integer (0-15) or a set-symbol which is used to define a four bit subfield for the LXA instruction.
For the SET (set program flags) instruction and RST (reset program flags) instruction, f1 specifies one or a co;nbination of the four

program flags in the status register (SR8 - SR11). For the LXA (load index from A register) instruction, f2 specifies one of the
sixteen index registers (XR0-XR15) to be loaded.

LABEL OPERATION OPERAND

1 10 20 30 40
ONE L ISET S v b bl
L) INOP A N N T O O O 0 O 6 B A B O
Ll I TR R T AT I T U AW O 0 0 S GO O O A |
Ll Ll T I T U N 0 1 O 0 G B O Y
T A Lol PR T T U U S VSO O B S ST ST o B A A

FIGURE 4-5. TYPICAL NON MEMORY REFERENCE INSTRUCTIONS

412

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A

4.6 INPUT-OUTPUT INSTRUCTIONS

The standard SKC-2000 CPU recognizes four separate input-output instructions. They are listed in Section 4.6.1 and their various
operand field formats are described in Section 4.6.2. However, it should be noted that most SKC-2000 input-output subsystems
e¢mploy the DOA and DIA instructions exclusively. It is up to the programmer to select useful 1/O instructions when he writes his
FOCAP coding. \

Many SKC-2000 input-output subsystems use DMA (direct memory access) td transfer data as well as I/O channel commands which
define the individual 1/O operations. Since the format of these commands is not standard, the basic FOCAP assembler does not
include provision for symbolic definition of the I/O commands. They can, of course, be set up as data cards in the SKC-2000
memory using the HEX operation.

4.6.1 Operation Field -

This section lists all the valid mnemonic code entries for the operation field of an input-output instruction.

MNEMONIC OPERATION SUMMARY
DIM Data input to memory
DIA Data input to A register
‘DOM Data output from memory
DOA Data output from A register

4.6.2 Operand Field

To describe the operand field for the input-output instructions, the following special rotation is introduced.
dc Represents an integer (1-63) or a set-symbol which designates the device code for the I/O operation
C Designates that the command bit in the instruction be set to one
K Designates that the acknowledge bit in the instruction be set to one

The general form of the operand field is then

dc

c | X I
u,dc

Note that the choice of the first subfield format depends upon whether the I/O data word comes from memory (use “u,dc” format)
or from the A register (use “dc” format). Of course, the I designator is only meaningful if the data transfer is from/to memory. These
options are shown in detail in Table 4-1V.

4-13

Y240A201M0301 REV A

THE SINGER COMPANY
KEARFOTT DIVISION

.

LABEL OPERATION OPERAND
1 i0 20 30 40
ONE ; | IDIA] ,, JJALPHA { ot liit vt g1l
v I POA S i v e

REE | IDIA [BETA K 1y bbbty
EQUR , | IDOA , , | JCAMMAC, K | i b1l
FIVE | IDiM | JALPHAHBETA, 34 411100 i il
oo L IDOM) FIGAMMALG) g by bl
SEVEN | PIM | PELTALETAL Gyl ail,
EIGHT, | [DOM; , | z.EJél*'lz]’Pﬁlllei'm'nI iR R S B R
taaa PIDIM o M3 ALPHAL G K o L L
TEN 1l oM VIALPHAL L 11 b g bl g il
v L IDIME L I HMYBIETA) L o b]
TWELVE| DOM |, | CHT . 6,Cudy gt il

gt DIMy | IDELTA 4, GAMMA, K10 og 11111
FORTEN| POM |\ | IPHO 2, 1C oy Kol p bt ly
Lhill NN A PR RN R R S S I 0 N 0 A I U0 WO W0 O O A B O Y

FIGURE 4-6. TYPICAL 1/O INSTRUCTIONS

TABLE 4-1V. INPUT/OUTPUT INSTRUCTION OPERAND FIELD

FORM OPERAND SUMMARY NOTES
ACCUMULATOR INPUT/OUTPUT (DIA, DOA FORMATS)
dc dc forms -DC field Assembled instruction is always short.
dc,C dc forms DC field; command bit is set. Assembled instruction is always short,
dc,K dc forms DC field; acknowledge bit is set. Assembled instruction is always short.
dc,CK dc forms DC field; command bit and acknowledge bits are set. Assembled instruction is always short.
MEMORY INPUT/OUTPUT (DIM, DOM FORMATS)
u,dc u forms M16; dc forms DC field. Assembled instruction is always long.
u,dc,I u forms M16; dc forms DC field; indirect bit is set. Assembled instruction is always long.
u,dc,C u forms M16; dc forms DC field; command bit is set. Assembled instruction is always long.
u,dc,K u forms M16; dc forms DC field; acknowledge bit is set. Assembled instruction is always long.
u,dc,C,K u forms M16; dc forms DC field; command and acknowledge bits Assembled instruction is always long.
are set. ;
u,dc,C,1 u forms M16; dc forms DC field; command and indirect bits are set. Assembled instruction is always long.
u,de,K,I u forms M16; dc forms DC field; acknowledge and indirect bits are Assembled instruction is always long.
) set.
u,dc,C,K,1 u forms M16; dc forms DC field; command, acknowledge, and Assembled instruction is always 101_1g.
indirect bits are set.

4-14

4.7

BLOCK TRANSFER INSTRUCTIONS

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A201M0301 REV A

The SKC 2000 has two short (16 bit) block transfer instructions which move data or instructions from the main memory to the fast
memory, or vice versa. The main memory is connected to the main bus and is usually magnetic core or plated wire. The fast memory
is internal to the CPU (not connected to the main bus) and is usually LSI read-only or scratchpad memory. The addresses for the

transfer must be preloaded in the A register and XRO.

471

Operation Field

This section lists all the valid mnemonic code entries for the operation field of a block transfer instruction.

4.7.2

Operand Field

MNEMONIC

MMF
MFM

OPERATION SUMMARY

Move Main to Fast
Move Fast to Main

All block transfer instructions are assembled short. In defining the form of this operation field of instructions, the following

convention is used.

i

X1

represents a decimal integer (0 - 127) or set symbol which designates the number of words to be transferred.

represents a decimal integer (1 - 7) or set symbol which designates a first level index register.

The general form of the operand is

i [x11
TABLE 4-V. BLOCK TRANSFER INSTRUCTIONS OPERAND FIELD
FORM OPERAND SUMMARY
j j forms the number of words to be transferred

il

The number of words to be transferred is formed by adding j to the contents of the first level index register designated

byxl

LABEL OPERATION OPERAND

1 10 20 30 40
TAG , , | IMMF , , |10, X¢:BB, | v iy bt taadal
vy o MEME 0 s b bbb
ot L MEM 1303 g bt b e b e bbbl
Ll MHB , , IINUM 2 g bbbt e bl g
Latld Lol PR R TN U I U 0 AN W U N O A O I N AU Y S O W OO

FIGURE 4-7. TYPICAL BLOCK TRANSFER INSTRUCTIONS

4-15

THE SINGER COMPANY

i KEARFOTT DIVISION
Y240A201M0301 REV A

THIS PAGE INTENTIONALLY LEFT BLANK

4-16

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A

5. FOCAP ASSEMBLER OPERATIONS

In the FO&eAR-Assecmbler some operations generate executable code, some allocate storage, and some initialize location counters or
base registers. All assembler directives which do not cause the Assembler to generate machine instructions are called Pseudo-Ops.

Assembler-Operations-whitlr e tX source coding are calle . Table 5-I

" lists and summarizes the FOGAP Assembler-Operations.

Table 5-1 presents a summary of the basic FBEAP operations. In that summary and in the subsequent more detailed descriptions, the
following notation is employed.

u represents an absolute or relocatable expression as defined in Section 2.4
v represents a single virtual (or external) symbol
OR operator - designates a choice of one of the two items separated by the vertical bar

n represents a decimal integer ranging from 0 to 24 if a location counter,er-from-0-ta_13 if a bit-pesitiens-orfrom 1 to

sub represents a label (usually external) designating subroutine starting address
[1 designates enclosed items as optional
d represents a decimal integer !
: i TS
w Feeal "Gl FormaT " ap DECIMAL INTEeR
f represents a floating decimal real number of~up—tt)'9‘dfgrts

h represents up to eight hexadecimal digits

aa..a represents a string of alphnumeric characters

op represents an operand address designation in the same format as the operand field of a basic arithmetic instruction
N represents a FOCAP symbol or label
st represents a FOCAP set symbol or temporary symbol

st represents-asymbol denoting.a FORTRAN variable

uf represents any FORTRAN métic expression

M"'/M
S represents a FOCAP one-bit symbol
ub represents a FOCAP one-bit expression

e
s,

ut represents an expr%sio@-ating the target address of a one-bit jump

As in the description of the machine language instruction formats, lower case characters are used to form symbols which represents a
family of possible source code items. In general, upper case characters are used to indicate source code in a literal sense.

5-1

Y240A201M0301 REV A

THE SINGER COMPANY
KEARFOTT DIVISION

TABLE 5-1. SUMMARY OF FOCAP OPERATIONS

LABEL |OPERATION i
FIELD FIELD OPERAND FIELD SUMMARY
USE n[PREVIOUS Subsequent instructions or data under nth (or previous) location counter
[s] ORG dist Set current Location Counter to d; (Note 1)
EVEN Forces value of Current Location Counter to next even number
[s] COMMON n Starts labeled (s) COMMON area under Location Counter n
TEMP n Starts shared scratch area allocation under Location Counter n
[s] DEC alf Convert d (or f) to a 32 bit fixed (or floating) binary word (Notes 1, 4)
[s] DEC16 d Convert d to a 16 bit binary word (Notes 1, 4)
[s] DEC64 f Convert f to a 64 bit floating binary word (Notes 1, 4)
[s] HEX h Convert h to a 32 bit binary word
[s] HEX16 h Convert h to a 16 bit binary word (Notes 1, 4)
[s] SCLB fldl, d2 Form 32 bit binary word by converting f1d1 to binary, shift d2 places (Notes
: 1,4)
[s] SCLBI16 fldl, d2 Form 16 bit binary word by converting f1d1 to binary, shift d2 places (Notes
1,4)
[s] SCLW f1, 2 Form 32 bit binary word by dividing f1 by 2 (the LSB value) Notes 1, 4
[s] SCLW16 fi, f2 Form 16 bit binary word by dividing f1 by 2 (the LSB value) Notes 1, 4
[s] BSS dlst Reserve next d locations for scratch data; (Note 2)
[s] BES dlst Reserve next d locations for scratch data; (Note 3)
[s] PTR op Insert pointer to operand address
S EQU ulv Assign the value of u (or v) to the symbol s
st SETD d Assign the value of d as the temporary value of s
st SETX h Assign h as the temporary value of s
sb BIT u, nlst Assign symbol (sb) to a bit n at location u
BASE n,s. Assign value of s to base register designated by n
DBASE n Deactivate base register designated by n
UBASE n,s Assign value of s to an uncoditional base register designated by n.
ENTRY sl,s2,... Each listed symbol (s1, . . .) is defined as an ENTRY point
[s] CALL sub(opl/op21...) Transfer to subroutine sub; transmit arguments op1, op2 (Note 1)
[s] PROL (s1,S2,...d) Subroutine prologue; transmit arguments, etc.
[s] SPROL (s1,52,.. .sn) Short form of subroutine prologue
[s] RETURN Return from subroutine after restoring XRS5 and XR6
HALF blank Halfword arithmetic mode
FULL blank Fullword arithmetic mode
PAGE olrl...7 Memory page
RTMX ol Return to memory indexing
[s] PUT ubf,xl] [,x2] Set bit to one
[s] ZPUT ub[,x1] [,x2] Set bit to zero
[s] JMP ut,ub[,x1][,x2] Jump if bit is set to one
[s] ZIMP ut,ub[,x11[,x2] Jump if bit is reset to zero
s BIT u, n Assign a symbol to a bit
[s] LDAB op ' Load AB register with 64 bit word at op location
[s] STAB op Store 64 bit contents of AB register at op location
NOTES:

W =

s

. Label s is set equal to current value of location counter.

. Label s is set equal to first location in group.

. Label s is set equal to the last location in group plus 1.

. Allocate resulting word at current location and increment location counter.

THE SINGER COMPANY

KEARFOTT DIVISION : o
Y240A201M0301 REV A

TABLE 5-1 (Continued)

LABEL OPERATION
FIELD FIELD OPERAND FIELD SUMMARY
CMPL uflsf uf Compile: Compute uf and store in A register (and at sf)
END s Terminate assembly, starting address at s
INT Designates a main interrupt routine
LIST Resume listing after UNLIST
UNLIST Suspend listing source statements during assembly
TTL aa...a Place a title aa . . . a on each page of assembly
EJECT Print next line of assembly at top of page
SPACE d Generate d blank lines in assembly listing

5-3

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

5.1 LOCATION COUNTER OPERATIONS

-This section describes the opcration&which can activate a location counter during an assembly (USE, FEME _and-COMMON) as well
as the operatior},(EVEN=md ORG which affect the value of an active location counter. The=-ROGAT Assembler provides 25 location
counters (numbered 0 to 24) which can be activated by the user. All the code generated under a single location counter will be
allocated to a contiguous area of memory. However, the source code under a single location counter need not be consecutive in the
sottree deck. The sequence of source code is typioally interrtpted by the activation of other location cotmtets and then subsequently

reactivated b ivation opetatiotrs: g cation counter, which was activatéa~‘6§mﬁ’TEMP or
COMMON-operation-and-subsegue: i be reactivated by a USE ngmﬁonwwiﬁl’ﬁ“CHéﬁ'g‘é"iﬁTmmefyallgg}idn
_type. 5 ;

¥

The principal purpose of location: counters is to segregate different memory allocation types for separate action by the Loader. For
details on this allocation process, see Section 3.3.2.

Bnder location~gounter value, the~EQE&AP source ﬁSti{l& prints the final ad, for each word allocat: er an absolute location
countern. For a relocatable location: cou a relative\adwrting at zero is print® the location counter e. The location
tion pro /

counter incre ﬂg@éscribed in Section 3.1.2. T~/ \

5.1.1 USE — Start Use of Location Counter

The USE Pseudo-Op specifies the location counter under which the following sequence of instructions or data is to be assembled. The
-format of this instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) USE n|PREVIOUS

hen the operand field contains a decimal integer, it designates which of the 25 location counters (numbered 0-24) should be
activated. The location counter in control up to the time USE is encountered (location counter O is used if none is previously
speciyﬁed) is suspended and temporarily preserved as the “previous” countery Location counter n is activated to control memory
allocation for the following instructions or data, until the next USE operation is encountered. If the USE PREVIOUS option is
selected, the previously suspended location counter is reactivated. Note that only one suspended location counter is preserved at one

time. Consequently, nesting of these suspended location counters is not permitted. The following sequence is provided as an

example:
USE 1 USE 1
o .
o .
USE 2 is equivalent to USE 2
o .
o °
USE PREVIOUS USE 1

The USE PREVIOUS capability is of great value in macro’s which include more than one type of memory allocation. The USE
PREVIOUS operation can be used to restore the original location counter at the end of the macro without knowing which one was
active when the macro was invoked.

The first instruction, data definition, or data reservation operation coded under a location counter defines the memory allocation

type for-the block of all subsequent statements under that location counter (see Section 3.3.2 for details). Similarly, if a USE
operation is followed by an ORG operation, the designated location counter is considered to be an absolute location counter.

5-4

THE SINGER COMPANY

KEARFOTT DIVISION Y240A201M0301 REV A

5.1.2 ORG - Specify an Absolute ORIGIN for the Program Segment

ORG Pseudo-Op redefines the value of the current location counter to be the absolute address specified. The format of this

instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) . ORG dlst

The current location counter will be reset to the even absolute address specified and the next instruction to be assembled under this
location counter will be assigned to that absolute address. Location counters are always relocatable unless modified via the ORG
Pseudo-Op. If there is a symbol in the label field it is defined as this new origin. All symbols defined while ORG is in effect will be
assigned absolute locations. Other location counters regnain n odd value for d or st is and results in an error, Singe
t an even location@ORG should be the first operation coded following the first USE or COMMON
statement for an absolute location counter.

5.1.3 EVEN _ Make rCounter Ever™

The EVEN Pseudo-Op is used to ensure an even load address for the subsequent instruction or data word. If forcing is necessary to
achieve evenness, a NOP instruction or 16 bit data word is generated by the assembler. The format of this Pseudo-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) EVEN (Blank)

It should be noted that if EVEN is not specified, the Assembler will automatically assign long instructions and data words to even
locations. Therefore, the EVEN operation is only required when it is desired to override the memory allocation resulting from the
automatic allocation. Specifically, it may be desired to force the allocation of some short (16 bit) instruction or data word to an even
location.

5.1.4 COMMON — Allocate COMMON Data Area

The COMMON Pseudo-Op is used to assign a location counter to control the allocation of a (labeled) COMMON block in memory. A
COMMON block is a data storage area that can be referred to by more than one program. The names of variables and arrays to be
placed in this area are defined by using FOCAP symbol definition statements under the designated location counter. In this fashion,
variables or arrays that appear in one program can be made to share the same storage locations with variables or arrays in other
programs. Thus, a COMMON area can be used to transfer arguments between a calling program and a subprogram. This data
allocation technique parallels the capability of the COMMON statement in FORTRAN. By specifying a symbol in the label field, a
name is assigned to that common area. The COMMON area becomes a “labeled COMMON’ and may thereafter be referred to by that
name. The format of this instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) COMMON n

where:
Symbol represents a standard FOCAP symbol restricted to 6 or fewer characters in length.

n represents an integer from 0 to 24 designating a location counter.

5-5

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

The designated location counter is also installed as the current location counter. Once a label has been assigned to a location counter,
no other label may be given to that location counter. A blank:in the label field assigns blank COMMON to the location counter
specified which may or may not be blank (Location Counter 0). The following examples demonstrate this:

Example 1 ALPHA COMMON 6
Assigns the tabel ALPHA to focation counter 6, and the data immediately following will be assettbled undet that location counter,

The first word allocated under a relocatable COMMON area (following the initial COMMON pseudo-op) determines whether all
subscquent words allocated render the same location counter are loaded into protected memory or into the variable (unprotected)
memory arca. It is loaded into unprotected memory if the operation mnemonic is BSS or BES; otherwise it is loaded into protected
memory.

Example 2 BETA COMMON
Assigns the label BETA to location counter 0, and the data immediately following will be assembled under that location counter.

Example 3 - COMMON 11

Assigns location counter 11 as blank COMMON and the data immediately following will be assembled under location counter 11.

Two programs may declare the same COMMON area to be absolute provided they both declare the same absolute value as the origin
of the COMMON area. If one program declares the common to be absolute and another declares it to be relocatable, the shared
common area will be allocated according to the absolute declaration.

The careful use of COMMON blocks can be a major factor in achieving a high density of short instructions in an SKC-2000 program.
If a base register is loaded with the address of the first word in a COMMON block, short instructions can be used to reference the
data words at the front of the COMMON block. In the fullword arithmetic mode, the first 256 locations (128 fullwords) can be
directly accessed with a short (16 bit) instruction. In the halfword arithmetic mode, the first 128 locations (128 halfwords) can be
directly addressed.

NOTE: The common label is not an ordinary FOCAP symbol since its length is restricted to 6 characters or less and since it does not
represent an address, hence it cannot be used in the operand field of instructions to represent an address. COMMON label can only be
used in the label field of COMMON statements.

5.1.5 TEMP — Temporary Data Area

The TEMP Pscudo-Op designates one of the location counters to control the automatically shared variable data area or stack. The
designated location counter is also installed as the current location counter. Consequently, data allocated immediately following the
TEMP operation is included in the shared data area. The format of this Pseudo-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) TEMP ' n

where:
n represents a decimal integer designating one of the location counters 0-24
The data arcas defined following the TEMP Pseudo-Op will be assembled as a shared storage area under control of the location

counter specified in the Operand field. All other data allocated under location counter n will also be included in the shared data arca.
Once a location counter has been specified within a TEMP operation, it can be used for no other purpose throughout the deck.

5-6

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A

The automatically shared variable data area (usually designated as the TEMP area) is allocated in the same manner as the
AUTOMATIC data type in PL/I. That is, it is allocated on entering a subroutine and released upon exiting. The allocation and releasce
operation is accomplished within the prologue operation (PROL) and the RETURN operation respectively. Registers XRS and XR6
are dedicated to this function and are, therefore, not available for other purposeé if the TEMP operation is employed. Similarly, XRI5
is reserved for storage of the return address pointer and will be destroyed (not saved) by the subroutine. Since this data area is
released when leaving a subroutine, it should not be used to store data for use in subsequent executions of the subroutine.

See the SKC 2000 Subroutine Library Reference Manual for a detailed description of the Loader’s algorithm for determining the
length of the pushdown stack area required to hold the total TEMP data allocation.

5-7

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A201M0301 REV A

52 MEMORY ALLOCATION OPERATIONS

Memory Allocation Pseudo-Ops are used to reserve datak storage areas for constant data (usually in protected memory) and variable
data words. The current location counter controlling the respective storage area is incremented by the number of words generated by
the Pseudo-Ops. BBS and BES allocate blocks of storage for variable data. Constant data is allocated by DEC, DECt+6-BEEC6+, HEX,

;u:ysem SCL'BE, SCLW, SCLWIB and PTR.) %

Because of the storage protection feature of the SKC%OO (E S) Computer and the resulting assembler/égl‘de s1g71, any one
location counter should control only constants or variables but not both. The first instruction or data allocation, following a USE
operation which designates a given location counter for the first time, determines whether the words allocated will be placed
in protected memory or not. Protected memory should contain only instructions and constant data. Unprotected memory can be
written into as well as read out of and, therefore, should contain only variables. If the user violates this separation rule, he may find

out, at execution time, that his “protected” variables cannot be stored into or his “unprotected” constants were inadvertently

destroyed during execution.

5.2.1 DEC — Decimal Data Definition

The DEC Pseudo-Op is used to enter a 32 bit binary data word into an SKC 2000 program. The data word is expressed in decimal in
the source coding. This instruction can be used to generate fixed or floating point constants. If an integer is specified, a fixed point
constant is generated. If a real number is specified, a floating point constant is generated. A real number may be written with or
without an exponent. If there is a symbol in the label field, it is assigned to the address of the most significant portion of the data
work generated.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) DEC dif

- where:

d: Decimal Integer: A decimal integer is a string of digits, from 0 through 9 which may optionally be preceded by a plus (+)
or >minus (-) sign. The maximum absolute value of a decimal integer is 2311, A decimal integer must not be terminated by
a decimal point. Integers are internally represented by a right justified binary equivalent. Negative numbers are represented
in their 2’s complement form. For example:

REPRESENTATION IN HEXADECIMAL

INTGRI1 DEC 52 o o o0 o 0 0o 3 4
INTGR2 DEC 52 F F F F F F C
INTGR3 DEC 19 0 0 0 0 0 0 1 3

f: Real Numbers: A real (floating) number has two components, a Principal part and an Expohent part.

a. The Principal part is a signed or unsigned decimal number of up to 9 digits. It normally contains a decimal point
which may appear at the beginning, at the end, or within the decimal number. If the exponent part of a real number is
present, the decimal point may be omitted, in which case it is assumed to be located at the right-hand end of the
decimal number. '

b. The Exponent part consists of the letter E followed by a signed or unSigned decimal integer. The exponent part may
be omitted if the principal part contains a decimal point. If used, it must immediately follow the principal part. The
exponent part, if present, specifies a power of ten by which the principal part will be multiplied during conversion.
The maximum size of a real number is limited to approximately 2127 by the size of the exponent field in an SKC
2000 floating point binary data word.

5-8

(

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

Real numbers are' internally represented in the form of a signed binary fraction (the mantissa) and a biased exponent (the
characteristic). The exponent is the power to which the base (2) must be raised so that when multipled by the fraction, the
result is a binary representation of the real value being expressed. A bias of 128 is added to the exponent to form the
characteristic which indicates either a positive or negative exponent; the greatest value of the exponent (+127) will be
expressed as 255 and the smallest value of the exponent (-127) will be expressed as 0. Negative numbers have their
fractional parts represented in 2’s complement form. A representation of the floating point format is given in Figure 5-1.

————MANTISSA (FRACTIONAL PART)‘*——L

/_'Aﬁ ~ N

SIGN
BIT CHARACTERISTIC

0 1 (8 BITS) 8 9 (23 BITS) 31

FIGURE 5-1. FLOATING POINT FORMAT

The exponent bias can be represented as hexadecimal 80 (binary 10000000), where the most significant (MSB) is bit 1. Note the
following examples: :

DESIRED POWER OF 2 CHARACTERISTIC IN BINARY BITS 1 — 8
23 10000011
22 10000010
21 10000001
20 k 10000000
7l ; 01111111
22 01111110
23 , : 01111101

For a complete illustration, four examples are given below including all combinations of signs. The decimal is given on the left and
the hexadecimal equivalent is given on the right.

Example I 0.75 x 23 : 41E00000
Example 2 -0.75x 23 C1A00000

NOTE: The mantissa is a 2°s complement form because the number is negative. The sign bit is 1 indicating that this is so.

"

Example 3 0.75 x 2273 3EE00000

NOTE: The mantissa is not in 2’s complement form since the number is positive. The characteristic is less than the bias value of 80
(hex), indicating a negative exponent.

5-9

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A201M0301 REV A

Example 4 -0.75 x 273 ' BEA00000

NOTE: Both the mantissa is in 2’s complement form and the characteristic is less than the bias value of 80 (hex), indicating a

ncgative number and a negative exponent.

5.2.2 DECI16 — Halfword Decimal Data Definition

The DEC 16 Pseudo-Op is used to enter a 16 bit fixed point binary constant intoa SKC-2000 program. The data word is expressed as
a decimal integer in the source listing. If there is a symbol in the label field, it is éssigned to the address of the half word generated.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) DECl6 d

where

d: Decimal Integer — A decimal integer is a string of digits from O through 9 which may optionally be preceded by a plus (+)
or minus (-) sign. The maximum absolute value of a halfword decimal constant is 215-1. Integers are internally represented
by a right justified binary equivalent. Negative numbers are represented in their 2’s complement form. For example,

HEXADECIMAL
REPRESENTATION
HALFINT1 DEC16 14 0 0 0 E
HALFINT?2 DEC16 -14 F F F 2
HALFINT3 DEC16 29 0 0 1

If a value of d greater than 32,767 (215-1) is used with the DEC16 operation, the least significant 16 bits of the number
are loaded in the designated halfwords.

5.2.3 DEC64 — Double Precision Data Definition

The DEC64 Pseudo-Op is used to enter a 64 bit floating point binary constant into an SKC-2000 program. The operand is expressed
as a decimal real number in the source listing. A real number may be written with or without an exponent. If there is a symbol in the
label field, it is assigned to the most significant portion of the first data word generated. The constant generated will occupy two
consecutive 32 bit SKC-2000 words.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) DEC64) f

where

f: Real Number: The DEC64 real number format is the same as that for the DEC operation, except that the principal part

may contain up to 18 decimal digits.

The 64 bit quantity is composed of two fullwords. One word has the format of a single precision floating point number, the other is
the extension of the mantissa. The two words are stored in the reverse of “natural” order, as shown in Figure 5-2.

THE SINGER COMPANY
KEARFOTT DIVISION Y240A201M0301 REV A

Double precision floating numbers are- internally represented in the form of a signed binary fraction (the mantissa) and a biased
exponent (the characteristic). The maxnmum size of a double precision real number is limited to approximately 2127 by the size of
the exponent field. A representation of the double precision floating point format is given below.

0 31
FIRST
MANT EAST SIGNIFICANT
WORD ISSA (LEAST § |)
LOCATION m
0 1 8 9 31
SECOND T
WORD : EXPONENT MANTISSA (MOST SIGNIFICANT)
: 1
4 L A
LOCATION
(m+2) 26
EXPONENT SIGN
MANTISSA SIGN

FIGURE 5-2. DOUBLE PRECISION FLOATING POINT DATA

5.2.4 HEX — Hexadecimal Data Definition

The HEX Pseudo-Op is used to enter a 32 bit binary data word intd an SKC-2000 program. The data word is expressed in
hexadecimal digits on the source coding, The digits are 0-9 and A-F, where 0-9 have the same meaning as decimal digits 0-9, and A-F
have the decimal values 10-15 respectively. If there is a symbol in the label field, it is assigned to the address of the data word
generated. The format of this Pseudo-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) HEX h

where:
h represents a hexadecimal character of from 1 to 8 characters.
Examples of the HEX Pseudo-Op:

CONTENTS IN HEXADECIMAL

ALPHA HEX ABC 00000ABC

GAMMA HEX 12AFB359E ; 2ABF359E
NOTE: The hexadecimal characters in the operand field are right justified with truncation on the left if more than 8 characters are

specified (as in'second example).

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A

5.2.5 HEXI16 — Halfword Hexadecimal Data Definition

The HEX16 Pseudo-Op is used to enter a 16 bit binary data quantity (halfword) into an SKC-2000 program. The data word is
expressed in hexadecimal digits in the source coding. The digits are 0-9 and A-F where 0-9 have the same meaning as decimal digits
0-9, and A-F have the decimal values 10-15 respectively. If there is a symbol in the label field, it is assigned to the address of the data
generated. The format of this Pseudo-Op is:

LABEL FIELD OPERAND FIELD ‘ OPERAND FIELD

Symbol (Optional) HEX16 h

where
h represents a hexadecimal string of from 1 to 4 characters,

Examples of the HEX16 Pseudo-Op:

HEXADECIMAL REPRESENTATION

ALPHA HEX16 12A 0 1 2 A
BETA o HEX16 ABCDE B C D E

NOTE: The hexadecimal characters in the operand field are right justified with truncation on the left if more than 4 characters are

specified (as in second example).

5.2.6 SCLB — Binary Scale Operation

The SCLB Pseudo-Op is the user’s convenience when generating scaled fixed point constants. The user specifies a decimal number aj
the scaling factor and the assembler performs the appropriate shift to create the scaled number and assigned storage for the dataj If

there.d 1eld, 1572 t i ata word generated. The format is
LABEL FIELD OPERATION FIELD | oreravoTEDD
Symbol SCLB {f Idl}, d2
where:

fordl: Number to be Generated: A signed or unsigned real number (f), ‘or a decimal integer d1:

Mt

d2: Scaling Factor: A decimal integer in the range -64 to +64. The scaling factor may be interpreted either of two ways. Itis
cither the number of non-sign bit positions to the left (or to the right, if scale factor is negative) of the specified binary
point, or it is the number of bits the generated word is right shifted (or left shifted, if negative) out of normal. See the

examples below, P

The number generated by the assembler will be in fixed-point format. If the first subfield is a negative number then the
number generated will be the 2’s complement of the corresponding positive number with the same scaling factor. That is,

SCLB -N.B =-(SCLB N, B)

5-12

THE SINGER COMPANY

KEARFOTT DIVISION Y240A201M0301 REV A

For further clarification of the use of the SCALEB (Binary Scale) operation, consider the following examples:
Example 1

SCLB 1.5,4
sooo0ol100000 0 0 000 0 0 00 O0OOOU O OOOU OO OUOUOTUDO

12 7 8 9 10 11 1213.1415]6]7]819202]2223242526272829303]

0i 3 4|5 6

Scaling factor of 4 causes number to be positioned 4 bit places to the right of its normalized position. Bit position 4 has value of 20

and bit position 5 is 2! The binary point is between bit positions 4 and 5.

. \'___M

Example 2

BETA SCLB 6.546875,26

NOTE: 6.546875=22+21 + 27142754 26

1 1.0 1 0 0 O 1

S000000O0O0OO0OO0O O O O O O O O O O 0 0 0O

0,1 234567891011]213141516171819202122232425232728293031
-

\ Scaling factor of 26 causes number to be positioned 26 bit places to the right of its normalized position. Binary point is between bit
position 26 an 27. Note that since 26 binary integer bit positions were specified (to the left of the binary point) only 5 bit positions
remain to the right of the binary point for the binary fraction. A sixth position, however, is required for the 26 value, and, since the
position is not available (it would have been bit 32), truncation occurs to the right resulting in loss of precision. The final value
represented is 6.53125.

/————\\

5.2.7 SCLB16 — Halfword Binary Scale Operation

The SCLB16 Pseudo-Op is for the user’s convenience when generating scaled, halfword fixed point constants. It is the halfword form
of SCLB, and all algebraic rules and relationships described for SCLB apply equally to SCLB16. The user specifies a decimal number
and. the scaling factor and the assembler generates the halfword constant and performs the appropriate shift to create the scaled
number. If there is a symbol in the label field, it is assigned to the location of the halfword generated.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) SCLB16 {f Idl} dy

where

fordy: Number to be Generated: A signed or unsigned real number (1), or a decimal integer (d -

d: Scaling Factor: A decimal integer in the range -64 to +64 integer. The scaling factor may be interpreted as either the
number of non-sign bit positions to the left (or to the right, if the scale factor is negative) of the specified binary point, or

THE SINGER COMPANY
o KEARFOTT DIVISION
Y240A201M0301 REV A

it is the number of bits the generated word is right shifted (or left shifted, if negative) out of normal. See the example
below.

The number generated by the assembler will be in fixed point format. If the first subfield is a negative number, then the
number generated will be the 2°s complement positive number with the same scaling factor.

Example:

SCLB16 4.25,3

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Scale factor of 3 causes number to be posmoned 3 bit places to the right of its normalized position. Bit position 2 has value of 22
and bit position 6 has value of 2" -2,

5.2.8 SCLW — Weighted Scale Operation

The SCLW Pseudo-Op is for the user’s convenience when generating fixed point constants. It is an alternate to SCLB. The user
specifies a decimal number, and the value, or weight of the least significant bit (LSB) (i.e., bit 31). If there is a symbol in the label
field, it is assigned to the location of the data word generated. The format is as follows:

LABEL FIELD OPERATION FIELD : OPERAND FIELD

Symbol (Optional) SCLW f1, f2

where:

fl * represents a signed or unsigned real (floating) number which designates the number to be generated.
f2 represents a signed or unsigned real (floating) number which designates the weighting factor. The weighting factor can be
interpreted as the value assumed by the least significant bit (LSB = bit 31). See the examples below.

The number generated by the assembler will be in fixed-point format. 1If the signs of two subfields of the operand differ, the
assembler will generate a negative number in 2’s complement form. The following relationships hold true.

SCLW-N,-W = SCLWN,W
SCLW-N,W = «SCLWN, W)
SCLWN,-W = «SCLWN,W)

In ail cases, the number generated is equal to the value of the first subfield, adjusted according to the weighting factor. The principal
part of f1 and f2 should tontain no more than 9 decimal digits.

THE SINGER COMPANY

VISION
KEARFOTT DIVI Y240A201M0301 REV A

Example 1

ALPHA SCLW 1.5,5

ofojojojofofojofof of oj oy o} of of 0o o) 0y O} Of O} Of O} Of O] Of O] o] O] 1] 1

1]2}3]4]5]6|7{8] o} 10 t1f12f 13] 14} 15} 16] 17) 18] 19] 20| 21} 22|23 24) 25| 26 | 27| 28| 29 30 | 31

bit value is .5 x 21 —

= 0.5

bit value is .5 x 2°

Example 2

BETA SCLW 1.5,.0625

ofojofojofojojojo|l o} o of oy of oy of of of o of of of of of of of 1 1y of 0} O

12345678910>111213141516171'819202122232425262728293031

bit value is .0625 x 24 =2 \ I
bit value is .0625 x 23 =, 0.5

bit value is 0625 x 22 2>

bit value is .0625 x 21 - 2>

bit value is .0625 x 20 — 0.0625

Example 3

GAMMA SCLW 24.0,1.2

1{2(3[4]5]|6]|7|8[9|10|11[12{13[{14[15{16]17|18]19]20]21]22}23}24|25|26]27|28]29]|30]31

=19.2
bit value is 1.2 x 24 - A

bit value is 1.2 x 22 =

bit value is 1.2 x 20 -

5.2.9 SCLWI16 — Halfword Weighted Scale Operation

The SCLW16 Pseudo-Op is for the user’s convenience when generating fixed point 16 bit constants. It is the halfword form of SCLW,
and all algebraic rules and relationships described for SCLW apply equally to SCLW16. The user specifies a decimal number, and the
value, or weight, of the LSB (i.e., bit 15). If there is a symbol in the label field, it is assigned to the location of the data word
generated.

5-15

THE SINGER COMPANY
: KEARFOTT DIVISION
Y240A201M0301 REV A

LABEL FIELD v ’ OPERATION FIELD _ OPERAND FIELD

Symbol (Optional) SCLWI6 fl,12

where
1 represents a signed or unsigned floating point numbér to be gerierated.

f2 represents a signed or unsigned floating number which designates the weighting factor. The weighting factor can be
interpreted as the value assumed by the least significant bit (bit 15).

Example:

SCLW16 6.3,.3

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bit value is .3 x 24

]
b
%

bit value is 3x 22 = 1.2

1]
=
“w

bit value is .3 x 20

5.2.10 BSS — Block Started by Symbol

The BSS Pseudo-Op (Block Started by Symbol) is used tov reserve an area of memory for use by the program as variable data storage
or work area. The start location of the block is determined by the value of the current location counter at the time the BSS
Pseudo-Op is encountered.

The format of this Pseudo-Op is:

LABEL FIELD ‘ OPERATION FIELD OPERAND FIELD

Symbol (Optional) BSS dlst

If there is a symbol in the label field, it is assigned to the first location of storage reserved by the BSS Pseudo-Op. BSS reserves a
block of consecutive storage locations, the length of which is determined by the value in the operand field. For example:

ALPHA BSS 20

A block of 20 storage locations (16 bit words) is reserved and the symbol ALPHA is assigned to the first of these. These storage
locations are not initially cleared (it may not be assumed that they contain zeros).

THE SINGER COMPANY

N
KEARFOTT DIVISIO Y240A201M0301 REV A

5.2.11 BES — Block Ended by Symbol

The BES Pseudo-Op (Block Ended by Symbol) is used to reserve an area of memory for use by the program as variable data storage
or work areas. The start location of the block is determined by the value of the current location counter at the time the BES
Pseudo-Op is assembled. The format of this Pseudo-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) BES d st

If there is a symbol in the label field, it is assigned to the next location following the last location of the block. The BES Pseudo-Op
reserves a block of consecutive storage locations the length of which is determined by the value in the operand field. For example:

ALPHA BES 20
A block of 20 storage locations (16 bit words) is reserved and the symbol ALPHA is assigned to the location after the last of the block,
in other words, the 21st location from the beginning. These storage locations are not initially cleared (it may not be assumed that

they contain zeros).

5.2.12 - PTR — Pointer to Address

The PTR Pscudo-Op pred a-32 hit_word with bits 0-4 set to zero. The remainder of the word is in the basic arithmetic long
instruction format. The word generated by the PTR is not executed buf is used as a pointer to another location. It is com
field of the original instruction/ More

ccessed via indirect addressing which?causes it to be interpreted as the operand add
are interpreted as the address field and bits-0=5-are-i

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) PTR op

Samples of appropriate source coding are shown below:

LABEL PTR 0,6
PTR ALPHA
PTR BETA,1,21
PTR GAMMA, 1,1

The pointer (PTR) pseudo-op is commonly used in the CALL macro to designate the arguments to be transmitted to the subroutine.
It is ideally suited to this purpose, since it permits a direct reference to any data word which can be accessed by one of the basic
arithmetic instructions. This reference is accomplished without the use of arithmetic instructions to generate the reference address.
Thus, the subroutine call process is substantially simplified.

NOTE: When the PTR operation is used in conjunction with the JS instruction to designate where to store the return address. the
operand field should only designate a single index/base register and the I and M bits must be zero.

5-17

THE SINGER COMPANY
: KEARFOTT DIVISION
Y240A201M0301 REV A

53 SYMBOL DEFINITION OPERATIONS

Most FOCAP operations may be used to define a symbol simply by placing the system to be defined in the label field of operation.
The symbol is defined to be the value of the location counter in control at the time the symbol is encountered during assembly.
However, the symbol definition Pseudo-Ops EQU, SETD, SETX, and BIT exist solely for the purpose of extending this symbol
definition capability. ‘

5.3.1 EQU — Equate Symbol to Expression

The EQU Pseudo-Op is used to assign a value to a symbol which is equal to the value of the expression in the operand field. The
format of the EQU instruction is: '

 LABEL FIELD OPERATION FIELD) OPERAND FIELD

Symbol EQU e ulv

Note that unlike most other FOCAP operations, EQU defines a symbol in the label field to have a value other than the current value
of the location counter. (The other three such exceptional operations are SETD, SETX, and BIT). It is also exceptional in that the
symbol(s) used in the expression in the operand field must have been defined in preceding source statements, i.e., forward symbol
reference is forbidden.

If a virtual symbol or a synonym for a virtual symbol is used in the operand field, then it must be the entire operand field; it may not
be combined with another expression element to form a two term expression. In this case, the symbol in the label field can not be
listed in an'ENTRY Pseudo-Op, and it is not available for reference in other decks; it is merely a synonym, within this deck only, for
the virtual symbol in the operand field.

The EQU defines an ordinary symbol, and ordinary symbols have (are associated with) location counters. If the expression u is
relocatable, the symbol defined by the EQU Pseudo-Op is assigned the location counter of the relocatable element of u. If u is
absolute, the symbol acts as if it had an absolute location counter.

Observe the following examples:

Example 1

ALPHA EQU BETA

The value of ALPHA is set equal to the value of BETA.
BETA may be a virtual (external) symbol; but if it is, ALPHA may not be listed in an ENTRY Pseudo-Op.

Example 2
LDA BETA
GAMMA EQU *
STA DELTA

If the instruction LDA BETA is assigned to location 0173, then GAMMA has the value 0174 and the instruction STA DELTA is
assigned to location 0174.

NOTE: If an asterisk (*) is used in the operand field, the value of the symbol is the present value of the current location

counter.

THE SINGER COMPANY

KEARFOTT DIVISION Y240A201M0301 REV A
Example 3
DELTA EQU ALPHA+BETA

DELTA is set equal to the value of the expression ALPHA+BETA as evaluated at assembly time. Either ALPHA or BETA or
both may be previously defined symbols or set symbols; however, only one can be relocatable. Neither ALPHA nor BETA may
be externally defined symbols since the operand field may contain only a single virtual symbol, if it is to contain a virtual

symbol at all.
Example 4
“DATA BSS 100
VEL EQU DATA+3
ACC EQU DATA+6

R1 EQU S DATA+50
VEL, ACC, and R1 are assigned to the specified locations within the DATA block.

5.3.2 SETD — Set Temporary Symbol to Decimal Number

The SETD Pseudo-Op is used to define or redefine a temporary symbol for use in instructions as an element in the operand field. The
format of the SETD Pseudo-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol SETD - | uld

The use of the SETD Pseudo-Op assigns the numeric value of the expression or decimal integer in the operand field to the symbol in
the label field regardless of any prior “temporary” value of the symbol.-The new value becomes the value maintained by the symbol
until it is redefined (by another SETD or SETX). In this manner, a set symbol or temporary symbol may assume several values during
assembly of the FOCAP program. If a symbol is thus defined to be a set symbol, it cannot be used elsewhere in the program as a
conventional symbol referring to an absolute or relocatable memory address. A set symbol must be defined prior to its use in the

program. . ; SR SR S T———

(virtual symbols) nor-conventional symbols may be used in the expression.
NOTE: The resulting value of the set symbol is limited to 32 bits, i.e., less than or equal to 23—

5.3.3 SETX — Set Temporary Symbol to Hex Value

SETX Pseudo-Op is used to define or redefine a temporary symbol for use in instructions as an element in the operand field. The
format of the SETX instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol SETX h

where:

h is an unsigned Hexadecimal character string of 4 or less digits in length.

THE SINGER COMPANY

. KEARFOTT DIVISION
Y240A201M0301 REV A

The use of the SETX Pseudo-Op assigns the 16-bit binary integer specified by h as the value of the symbol in the label field regardless
of any prior “temporary” value of the symbol. The new value becomes the value maintained by the symbol until it is redefined (by
another SETD or SETX). In this manner, a set symbol or temporary symbol may assume several values during assembly of the
FOCAP. program. If a symbol is thus defined to be a set symbol, it cannot be used elsewhere in the program as a conventional (or
permanent) symbol referring to an absolute or relocatable memory address. A set-symbol must be defined prior to its use in the
program.

Unlike the SETD Pseudo-Op, the SETX Pseudo-Op may not have expressions in its operand field.
NOTE: The value of the set symbol is limited to a 32 bit number, less than or equal to 231,

.

5.34 BIT — Assign a Symbol to a Bit

The BIT Pseudo-Op is used to assign a symbol to one-bit data so that it may be referred to in the bit manipulation macros (PUT,
ZPUT, JMP, ZIMP). A one-bit symbol may also be listed on an ENTRY Pseudo-Op and thereby made available for use in bit
manipulation-macros in other routines. The format of the BIT Pseudo-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (sb) BIT {u I‘} ,n

The symbol in the label field is assigned to bit n in the halfword at the location given by the value of the FOCAP expression u, or in
the halfword designated by the external (virtual) symbol v. The bit position, n, must be a decimal integer or set symbol with a value
in the range 0 to 15.

Symbols used in the expression u must have been defined in preceding source statements. If a virtual symbol is used to specify the
halfword location, it may not be combined with another expression element to form a two term expression. However, a one-bit
symbol may be combined with an integer or set symbol to form an expression in a bit manipulation macro.

" If a one-bit data symbol is used other than in the first operand subfield of a bit manipulation macro, it acts as a symbol whose value
is the location of the halfword containing the one-bit data, i.e., the value assigned by the first operand subfield of the BIT Pseudo-Op.
If the expression u is relocatable, the symbol defined by the BIT Pseudo-Op is given the location counter of the relocatable element
of u. If u is absolute, the symbol acts as if it had an absolute location counter.

Note that all the above rules concerning the first operand subfield are the same as the rules concerning the operand field of an EQU.
In fact, the BIT Pseudo-Op may be regarded as merely a generalization of EQU which permits a bit position attribute to be associated
with an ordinary symbol. This is consistent with the fact that the bit position of a symbol defined in any other way is taken to be
zero, when used in a bit manipulation macro. Further note that a one bit symbol has two values associated with it, the address value
(address of the designated data halfword) and the bit value (bit position within the halfword).

Example 1

ALPHA BIT BETA,0

The symbol ALPHA designates the sign bit of the halfword at location BETA. BETA may be a virtual symbol; but if it is,
ALPHA may not be listed on an ENTRY Pseudo-Op.

5-20

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A

The macro
PUT ALPHA

would set the sign bit of the halfword at BETA, and the macro
PUT ALPHA+I1

would set the sign bit of the halfword at BETA+1. This form is legal if BETA is or is not a virtual symbol.

Example 2
GAMMA BSS B 2
DELTA BIT GAMMA+1,15
MU BIT GAMMA+1,14
ENTRY DELTA

The symbols DELTA and MU designate the least significant and next to the least significant bits in the halfword following
GAMMA; and DELTA is available for reference in bit manipulation macros in other routines.

Example 3

SWITCH BIT TABLE+ROW,COL

The symbol SWITCH designates the bit given by the value of the set symbol COL within the halfword at the location given by
the value of the expression TABLE+ROW. Neither TABLE nor ROW may be virtual symbols or synonyms for virtual symbols.

5-21

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A ‘

5.4 - BASE REGISTER OPERATIONS

The base register Pseudo-Ops are used to facilitate the use of the index registers by the programmer. It is used to inform the
assembler of decisions made on register contents.

Base Register Pseudo-Ops find their greatest value in facilitating the use of short arithmetic instructions for accessing data. Long
arithmetic instructions can directly access 65K data addresses since the address field is 16 bits long. Short instructions, however, can
only directly access groups of 128 locations since the address field of the_short instruction is only 7 bits long.

By properly loading the seven first level base/index regisiers, short instructions can be used to access the seven most frequently used
groups of 128 data words. Thus, the effective address range of the short arithmetic instructions is 1024 data words, including the 128
words accessible without indexing.

Use of Base register Pseudo-Ops in conjunction with first level base/index registers aids the optimization process by providing pointer
references automatically. Using base information, the assembler automatically selects the short instruction form whenever possible by
computing the displacement from the appropriate base register and thus forming the short operand. The user invokes the above
sequence by coding a symbolic operand without register or flag modifier subfields (see paragraph 5.4.1).

The UBASE operation causes address modification unconditionally, that is for both long and short instruction formats. UBASE is
intended to be used to reference data whose absolute address is only known at execution time. The most obvious example of this
situation is a reference to a data word in the TEMP stack. In that case, all operand references, even in long instructions, must use the
stack pointer register (XR6). The UBASE operation also facilitates references to data whose address is greater than 65,535 and hence
is not directly reachable by the M16 field in a long arithmetic instruction. Such data must be referenced by base/index modification
in both the short and long arithmetic instructions.

Generally, the base register operations are dealing with data word addresses rather than instruction word addresses. In this section we
shall say that a data word address (Z) is within the short range of a base/index register if it can be reached by a short arithmetic
instruction which designates the base/index register. More precisely, if the base/index register contains a dataword address denoted
by Y, Z is within the short range of Y and hence within the short range of the base/index register if,

y <z <y +128 for halfword mode

or,

y <z <y + 256 for fullword mode

In addition, Z and Y must be either both absolute or both relocatable and defined under the same location counter for the Assembler
to be able to determine that Z is within the short range of Y. If all of the above criteria are satisfied but,

y+ 128 <z <y + 65,536 for halfword mode
or,

y+256 <z <y+ 65,536 for fullword mode

then Z is said to be within the long range of Y. Finally, if Z is either within the short range of Y or within the long range of Y, then it
is said to be simply within the range of Y. :

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A

5.4.1 BASE — Base Register Designation

The BASE operation should be used prior to any short arithmetic instructions, which will symbolically reference data. It indicates to
the assembler which index register has been designated as a base register and what absolute or relocatable address has been placed in
the register. The BASE Operation has the following format:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) BASE i > n,u

where:
n represents a decimal number or set symbol from 1 to 6, which designates an index register as a base register.
u represents an expression which defines the absolute or relocatable address in the designated register. :

Until another BASE, UBASE or DBASE operation is encountered, which designates the same index register, the assembler assumes
that XRn contains u. As a result, whenever an address Z within the range of u is subsequently designated as an operand address, the
assembler automatically generates a short instruction (if possible) by computing the displacement (M7) as Z-u and sets the index
designator to n. Symbols used in the expression u should be defined prior to their occurrence in the BASE statement. Note that the
BASE operation has no effect on long instructions.

If the programmer explicitly designates a basé/index register, the BASE operation is overridden and does not affect the generated
code. To illustrate this operation, consider the following example:

INSTRUCTION
GENERATED
(Shown :
SOURCE DOCUMENTS Symbolically) REMARKS
ALPHA DEC 27.3
BETA DEC 463.91
DELTA DEC 0.003
GAMMA - BSS 100
BASE 1,ALPHA
LDX 1,ALPHA M
BASE 2,BETA
LDX 2,BETAM
BASE 3,GAMMA
LDX 3,GAMMA M
LDA ALPHA LDA 0,1 displacement (M7) of 0 from (XR1)
ADU DELTA ADU 2,2 displacement (M7) of 2 from (XR2)

STA GAMMA+6 . STA 6,3 displacement (M7) of 6 from (XR3)

5-23

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

. In this example, the BASE Pseudo-Ops indicate that index registers 1,2, and 3 have been chosen as base registers, and that the
Assembler is to assume that register 1 contains the address value of ALPHA, Register 2 contains the address value of BETA, and
Register 3 contains the address value of GAMMA. The explicit displacement field (M7) of the LDA ALPHA instruction will be 0
since location ALPHA is displaced 0 words from the contents of the base register XR1. Since location DELTA is displaced by 1 word
from location BETA, whose address value is in XR2, the displacement field of the ADU DELTA instruction is 2. Similarly, location
GAMMA+6 is displaced from (XR3) by 6.

Caution: The BASE operation conveys information on base register contents to the assembler. The assembler program then presumes
the base register condition to exist, and composes other (short) instructions accordingly. However, the responsibility for insuring that
the condition exists in the base register at execution time, is up to the programmer, not the assembler. The designated BASE register
should be loaded with the desired address by executing an LDX or LXA instruction.

54.2 UBASE — Unconditional Base Register Designation

The UBASE operation designates an XR as an unconditional base register and assigns it a value. UBASE may be used prior to
memory reference instructions with a free (unspecified) index register field (X1 or X2) to cause the assembler to assemble such
instructions as either long or short based instructions. Generation of such based instructions is useful to:

1. Simplify address references to data in the TEMP (Stack) data area or in other stacks defined by the programmer.

2. Simplify address references to data stored in memory locations greater than or equal to 216 (i.e. addresses greater than
65535).

3. Permit XR7 to be used asa base register in long or short return-to-memory instructions when address modification by XR7
is not inhibited.

Specifying a UBASE operation indicates to the assembler that an index register has been designated as an unconditional base register
and specifies the absolute or relocatable address, which should be assumed to be in the register. The UBASE operation has the
following format:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) UBASE n,u

where:

n represents a decimal integer or a set symbol with a value from 1 to 15, which designates an index register (XRn) as an

unconditional base register.

u represents an expression which defines the base value, the absolute or relocatable address declared to be in the designated
register. Symbols used in u should be defined prior to their occurrence in the UBASE statement.

Until another BASE, UBASE or DBASE operation is encountered, which designates the same index register, the assembler assumes

that XRn contains u.

If n designates one of the first-level registers XR1,-=-- , XR6, then short instructions will be generated in the same way as if’ a BASE
had been used instead of a UBASE. That is, whenever an address (say Z) within the short range of u is subsequently designated as an
operand address, the assembler automatically generates a short instruction (if possible) having an address field (M7) of Z-u and a
first-level index of n designated in the X1 field. The address field Z-u represents the displacement of Z from u.

THE SINGER COMPANY

"KEARFOTT DIVISION
Y240A201M0301 REV A

i

When the instruction cannot be made short, the assembler will attempt to construct a long instruction based with XRn if u covers Z
and Z is rclocatable. The resulting long based instruction will contain Z-u in the M16 field. The base register designator, n, will be
placed in the X1 field if 1< n <6 and the X1 field is free (has not been specified by the programmer); otherwise n will be placed in
the X2 field if the X2 field is free. If neither the X1 nor the X2 field is free, an error message is generated and a based instruction will

not be generated.

The assembler also attempts to generate a long based instruction if Z is absolute and greater than or equal to 65536. However, if Z is

absolute and less than 65536, then the assembler generates a long non-based instruction with M16 equal to Z.

If a return-to-memory operation is assembled and the assembler has been informed (by default or by a prior RTMX 0) that status
register bit 6 (SR6) is set to zero and if XR7 has been declared a UBASE register, the assembler will assume that XR7 is to be used as
a base register. If Z is not within the range of u an error message will be generated. If Z is within the short range of u a short
instruction will be generated (if possible). Otherwise, a long based instruction will be generated with Z-u in the M16 address field.

When address modification by XR7 is inhibited, the assembler will attempt to generate a based instruction with the base register
designated by the X2 field, as described above.

Caution: The UBASE operation conveys information on base register contents to the assembler. The assembler program then
presumes the base register condition to exist, and composes other (short) instructions accordingly. However, the responsibility for
insuring that the condition exists in the base register at execution time, is up to the programmer, not the assembler. The designated
UBASE register should be loaded with the desired address by executing on LDX or LXA instruction. To illustrate this operation,

consider the following example:

INSTRUCTIONS
SOURCE STATEMENTS GENERATED REMARKS
USE 1
ORG 65536
ALPHA BSS 1000
BETA BSS 1000
USE 4
ORG 32768
NBLONG DEC 15.54
TEMP 24
GAMMA BSS 300
EPSIL BSS 200
USE 2
ORG 15872
LSIA BSS 256

5-25

THE SINGER COMPANY
. KEARFOTT DIVISION
Y240A201M0301 REV A

INSTRUCTIONS
SOURCE STATEMENTS GENERATED REMARKS
LSIB BSS 256
USE 3
UBASE 1, ALPHA
LDX 1, LALPHA ALPHA into XR1
JU MU
LALPHA JGU ALPHA Location of ALPHA
UBASE 11, GAMMA
MU LDX 11, GAMMA, M GAMMA into XR11
UBASE 7, LSIA
LDX 7, LSIA,M LSIA into XR7
LDA ALPHA LDA 0,1 Short, Displacement O from (XR1)
ADU GAMMA ADU 0,0,11 Long, Displacement 0 from (XR11)
STA BETA STA 1000,1 Long, Displacement 1000 from (XR1)
RTMX 0 XR7 not inhibited.
LDA LSIA LDA 15872
ADUR LSIA+4 ADU 4,7 Short, Displacement 4 from (XR7)
ADUR LSIB ADU 256,7 Long, Displacement 256 from (XR7)
LDA ALPHA+2,3 LDA 2,3,1 Long, Displacement 2 from (XR1)
STA EPSIL,3 STA 300,3,11 Long, Displacement 300 from (XR11)
LDA NBLONG LDA 32768 Non-based long instruction with M16 = 32768

5.4.3 DBASE — Drop a Base Register Designator

The DBASE operation should be used to cancel the effect of a prior BASE or UBASE operation. The DBASE operation has the
following format:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) DBASE n

where:

n - represents a decimal integer or set symbol from 1 to 15, which designates an index register, XRn.

THE SINGER COMPANY
KEARFOTT DIVISION

To illustrate this operation, consider the following example:

Y240A201M0301 REV A

INSTRUCTION
SOURCE STATEMENTS GENERATED REMARKS
(Shown Symbolically)
ORG 19000
ALPHA DEC 10.2
ORG 17000
BETA DEC 15.54
UBASE 4, BETA
BASE 3, ALPHA
LDX 4, BETA; M
LDX 3, ALPHA, M
LDA ALPHA LDA 0,3 Short Instruction M7 =0
LDA BETA LDA O Instruction M16 =0
DBASE 3
LDA ALPHA LDA 19000 Long Instruction M16 = 19000
DBASE
LDA BETA LDA 17000 Long Instruction M16 = 17000

5-27

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A201M0301 REV A

55 SUBROUTINE OPERATIONS

Subroutine directives and macros are used to provide communication between a calling program and its subroutines.

55.1 ENTRY — Entry Point Designation

The ENTRY Pseudo-Op identifies a symbol as having the ablllty to be referenced by a routine other than the one in which it has been
defined. The format of the ENTRY Pseudo-Op is: ;

LABEL FIELD OPERATION FIELD OPERAND FIELD
(Blank) ENTRY) sl,s2,.:..
where:
Tﬁese symbols can be any ordinary symbol defined in the program deck by having appeared in the label field of an inst iQn,

Pseudo-Op or macro. Data symbols as well as instruction labels may appear in ENTRY Pseudo-Ops to indicate that they will be

available to other subroutines as external symbols or references. However, it is more typically used to designate the starting location
for a subroutine. The data symbols may represent data fullwords, data halfwords, or single bits (one-bit symbols). Set-symbols are
not permitted.

5.5.2 CALL — Call Subroutine

The CALL operation is a system macro used to transfer control to a subroutine. The format of the CALL macro is:

LABEL FIELD ’ OPERATION FIELD) OPERAND FIELD

Symbol (Optional) CALL sub (op1/op2/...)

where:
sub - represents the name of the subroutine being called.

opl/op2... are arguments as needed; each argument may be as complex as permitted by arithmetic statement operand syntax
(e.g., indirect mode I may be specified). If no arguments are to be transmitted, the parentheses may be omitted.

An argument is a variable that must be transferred to (or from) a subroutine in order to perform some computation (or as the result
of one). Each argument representation (op) may be in the form of the operand subfield for arithmetic instructions. Hence, it may
contain up to four subfields separated by commas. The CALL macro expands to a subroutine jump instruction followed by a return
location and a string of pointer locations, one for each argument. See the SKC 2000 Subroutine Library Reference Manual
(Document No. Y240A204M0201) for further details.

Arguments may also be “transmitted” to subroutines as external variables or as COMMON variables. An external variable must be
designated in an ENTRY statement in the calling program and will be fixed by the Loader program. Consequently, it cannot be
changed for each subroutine call. A COMMON variable must be defined at the same relative location in a (labeled) COMMON blockk
in both the calling program and the called subroutine. Its location, therefore, is also fixed by the Loader. Note that if a sul)routlm is
to be reentrant, only constant data can be transmitted as external or COMMON variables.

THE SINGER COMPANY

KEARFOTT DIVISION Y240A201M0301 REV A

- Source Language Examples:

CALL . SUB(ARG,I/VAR1)
ALPHA CALL ATAN(BETA/GAMMA)
DELTA CALL SUB2(X,3,I)

CALL CPUTST

Sample Expansion of Macro:

ALPHA : CALL ATAN(A,3/B,])
Expands To
ALPHA JS ATAN

JU *4+6

PTR A3

PTR BI

5.5.3 = PROL — Subroutine Prologue

The PROL (prologue) operation is a system macro which should be used at the entry point of a subroutine to provide the input
housekeeping for argument transmission. It assumes that the calling program has employed a CALL macro to reference the
subroutine. The format of a PROL statement is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol PROL : (sl,s2,...,d)

where:

sl,s2;.., represents a sequence of symbols separated by commas. One symbol corresponds to each argument to be transmitted.

d - represents a decimal integer designating the number of locations to be allocated under TEMP for this subroutine.
The PROL expands into a sequence of FOCAP statements which set up the return address, reserve the necessary temporary storage
locations from the shared scratch area, and transmit the specified arguments into the subroutine. It defines each of the symbols
sl,s2... to refer to a pointer to the corresponding argument in the calling program. Consequently, within the subroutine, each
argument may be indirectly referenced by the corresponding symbol in the PROL’s operand field. For sample expansions and

argument references, see the SKC 2000 Subroutine Library Reference Manual (Document No. Y240A204MO0101).

The last entry in the PROL operand field is a decimal integer, d, which refers to the number of (16 bit) locations to be reserved in the
shared scratch area. This entry must be constructed by one of the following two approaches:

1. Computing the number of temporary data locations required via the formula:
d =4 + 2x (no. of arguments) + temp cells for body of subroutine

2. Extracting the length of the asssmbled TEMP area from an assembly listing of the same subroutine.

The symbol in the label field is used to refer to the entry point of the subroutine. This symbol is used as the name of the subroutine

when it is referenced by a subroutine jump (JS) instruction or by a CALL macro operation.

5-29

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

It is important to note that‘the prologue (PROL) operation was designed to implement reentrant subroutine communication by
appropriate use of the shared (stacked) tempotary data area. The allocation technique is identical to that used for AUTOMATIC type
data in PL/1. : i

5.5.4 SPROL — Short Subroutine Prologue

The SPROL operation is a system macto which can be tised instead of the PROL macto for subroutines which call no other
subroutines. Its principal advantages are decreased memory requirements and increased execution speed. It also assumes that the
calling program has employed a CALL macro to reference the subroutine. The format of a SPROL statement is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol SPROL (s1,52,...)

where:

s1,s2,... represent a sequence of symbols separated by commas. One symbol corresponds to each argument to be transmitted
The SPROL expands into a sequence of FOCAP statements which set up the return address, reserve the necessary temporary storage
locations from the shared scratch area, and transmit the specified arguments into the subroutine. It defines each of the symbols
s1,s2,... to refer to a pointer to the corresponding argument in the calling program. Consequently, within the subroutine, each

argument may be indirectly referenced by the corresponding symbol in the SPROL’s operand field.

The symbol in the label field is used to refer to the entry point of the subroutine. This symbol is used as the name of the subroutine
when it is referenced by a subroutine jump (JS) instruction or by a CALL macro operation.

As with the PROL operation, the SPROL macro also assures reentrant subroutine communication by appropriate use of the shared
(stacked) temporary data area. Again, the technique is equivalent to that used for AUTOMATIC type data in PL/1.

Although the SPROL operation also requires that XR5 and XR6 be reserved to serve as pointers to the shared temporary data area,
the RETURN macro must not be used for exiting when SPROL is used. Instead a single RTA instruction (referencing the subroutine
name) should be used. As with PROL, the SPROL operation destroys the contents of XR15.
For illustration, consider the following example:
ATAN SPROL X,Y)

where:

ATAN is the entry point (name) of the subroutine

X and Y are dummy symbols representing the two arguments to be transmitted.

As a result of the SPROL operation, the two arguments may be easily accessed within the body of the subroutine as fbllows:

| LDA X1
DVF Y1

Although this source coding is the same as that used in the body of a subroutine opened by a PROL operation, the object coding is
somewhat different. ‘

5-30

THE SINGER COMPANY

KEARFOTT DIVISION Y240A201M0301 REV A

In order to properly use the PROL operation, the index registers XR5 and XR6 must be reserved to serve as pointers to the shared
temporary data area and should be used for no other purpose. Whenever PROL is used, the RETURN macro should be used to assure
proper restoration of the XR5 and XR6 registers. The PROL macro also uses XR15 to temporarily hold the return address for
transmission of argument pointers. The initial contents of XR15 are destroyed during this operation. Qutside the PROL macro,
XR15 can be used for other functions only if care is taken to avoid a subroutine call, which always destroys the contents of XR15.

For illustration, consider the following example:
ATAN oL XY8)
where:
ATAN is the er;try point (name) of the subroutine
X and Y are dummy symbols representing the two argument; to be transmitted
The number 8 specifies the amount of temporary storage (eight‘ 16 bit words) required from the shared temporary data area.

As a result of the PROL operation, the two arguments may be easily accessed within the body of the subroutine as follows:

LDA ‘ X1
DVF : Y1

5.5.5 RETURN - Return From Subroutine

The RETURN operation is a system macro used to return control from a subroutine to the calling program. It is used in conjunction
with the prologue (PROL) macro operation. The RETURN macro restores the contents of XR5 and XR6 to the values they
contained when the Subroutine was entered. Then, control is transferred to the return address. The format for this operation is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) RETURN v Blank

Note that the RETURN operation should only be used in conjunction with the PROL macro and its reentrant indexing conventions.
It should not be used with SPROL or with other subroutine communication techniques. For further detail on subroutine calling
conventions, see the Subroutine Library Reference Manual (Document No. Y240A204M0101).

Sample Expansion of Macro:

EXIT RETURN
~ Expands to LDX 5,0,6, M
LDX6,2,5
RTAO,5

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

5.6 MODE CONTROL OPERATIONS

These pseudo-operations serve to inform the Assembler of the presumed setting of Status Register bits which affect addressing
decisions. These settings may be made within the deck being assembled but more typically are made in a calling routine dissembled
at a different time.

5.6.1 HALF — Half Word Arithmetic Mode

The Pseudo-Op HALF is used to facilitate the use of halfword arithmetic mode for short arithmetic and logical instructions. It tells
the assembler to assume that SR5 will be set at execution time (SRS = 1) until a FULL pseudo-op is encountered. As a result, the
assembler computes displacement values for short arithmetic instructions on halfword basis, thus giving them a range of 128
locations.

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) HALF (Blank)

Note that this pseudo-op does not directly affect SR5 at execution time since it creates no executable code. The SRS bit in the status
register must be set or reset by an executable instruction. The pseudo-op only instructs the assembler to assume that SR5 = 1. If no
FULL or HALF operation precedes a FOCAP statement in the program deck, the assembler assumes that the machine is in fullword
mode when assembling the statement.

5.6.2 FULL — Full Word Arithmetic Mode

The Pseudo-Op FULL is used to denote that the range of short arithmetic instructions can be extended since the machine is in full
word arithmetic mode. The assembler is to assume that at execution time SR5 will be reset (SRS = 0). As a result, the assembler
computes displacement values for short arithmetic instructions on a fullword basis, thus increasing their range to 256 locations.

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) FULL (Blank)

Note that this pseudo-op does not directly affect SRS at execution time since it creates no executable code. The SR5 bit in the status
register must be set or reset by an executable instruction. The pseudo-op only instructs the assembler to assume that SR5 = 0. If no
FULL or HALF operation precedes a FOCAP statement in the program deck, the assembler assumes that the machine is in fullword
mode when assembling the statement. i

5.6.3 RTMX — Return to Memory Indexing

The Return To Memory Indexing Pseudo-Op is used to facilitate the use of indexing with the return to memory feature of the SKC
2000. It is used to inform the assembler of decisions made on the setting of SR6. The RTMX Operation has the following format:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) RTMX 0l1

Until another RTMX operation is encountered, the assembler assumes that SR6 has been set to the value in the operand field.

5-32

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A201M0301 REV A

This pseudo-op informs the Assembler what to assume Status Register Bit 6 (SR6) will be at execution time. SR6 controls whether
the contents of index register are used for effective address computation during Return to Memory mode:

SR6

_—l—

0

Use XR7 for EA

RESULT

Don’tuse XR7 for EA

Note that the programmer is responsible for the actual condition of SR6 at execution time. This pseudo-op does not directly affect
SR6 at execution time since it generates no executable code. The SR6 bit in the status register must be set or reset by an executable

instruction. The pseudo-op only instructs the assembler to assume that SR6 has been set as indicated when it computes the address
field (M7 or M16) of an arithmetic instruction. If no RTMX operation precedes a FOCAP statement in the program deck, the
assembler assumes that XR7 should be used in computing the M7 and M 16 address fields.

564 PAGE

The Memory Page Pseudo-Op PAGE is used in conjunction with short instruction addressing using Status Register bits SR4, 3 and 2.
It is used to inform the assembler of decisions made on status register settings of bits SR4, SR3, and SR2 in that order. The PAGE

Operation has the following format:

LABEL FIELD

OPERATION FIELD

OPERAND FIELD

(Blank)

PAGE

Until another PAGE operation is encountered the assembler assumes that SR4, SR3, SR2 in that order contain n.

For example, for n =4, SR4 is assumed to be 1, and SR3 and 2 are assumed to be 0. For n= 3 SR4 is assumed to be 0, and both SR3

and 2 are assumed to be 1.

Note that, unlike instruction and data word formats, the rightmost bit position of the Status Register is taken as bit position 0 and

the leftmost Bit position 15.

5-33

Y240A201M0301 REV A : |

5.7

THE SINGER COMPANY
KEARFOTT DIVISION

BIT MANIPULATION OPERATIONS

The bit manipulation system macros are used to facilitate operations on single bits within SKC-2000 data words. They permit setting,
resetting, and testing single bits within halfword data.- The operations include: PUT, ZPUT, JMP, and ZJMP. They are used in
conjunction with the BIT pseudo-operation which is used to designate a halfword to be used for these logical bit operations and to

define the symbol used to designate a particular bit within the halfword (see paragraph 5.3.4).

in the operand field descriptions of these onie-bit opétations, the followittg special notations are employed:

sb

ub

vb

ut

represents a one-bit symbol, defined in a BIT declaration.
represents a one-bit expression of the form

sbxd or sb+st or sb, or
vb#d or vbt t or vb

represents a virtual one-bit symbol, an entry point in anothef $FAP deck, defined by a BIT operation in that other deck.

represents a regular FOCAP expression designating the target address of the one-bit jump operations.

The following standard notations are also employed:

u

d

st

represents a regular FOCAP expression
represents a decimal integer

represents a set-symbol

Note that a one-bit symbol or expression has two values associated with it. The first is the address of the data halfword involved in
the operation (a number from 0 to 262K). The second is the bit position within the data halfword (a number from O to 15).

Furthermore, when these system macros are expanded on the source listing, the following additional notations are employed:

5.7.1

An unmodified one-bit symbol in the operand field of a machine operation refers to the address value of the one-bit
symbol. A one-bit symbol can be used in this fashion outside a system macro as well.

A one bit symbol is also used in the operand field of a machine operation to cause the generation of a (16 bit) mask word
to be used as the operand via the immediate addressing option. In this case, the one-bit symbol must be modified by a two
character prefix) + or) -.

~When modified by) +, a mask of all zeroes is generated with the exception of a single binary one in the bit position
designated by the bit value of the one-bit symbol. When modified by) -, a mask of all one’s is generated with the exception
of a single binary zero in the bit position designated by the bit-value of the one-bit symbol. A one-bit symbol cannot be
used in this fashion outside a system macro.

A one-bit symbol is-used in the operand field of a shift instruction fo cause a shift by the bit position value associated with
the ‘one-bit symbol. In this case, the one-bit symbol must be modified by the two character prefix)). A one-bit symbol

‘cannot be used in this fashion outside a system macro.

PUT — Put 1 in Designated Bit Position

The PUT operation is a system macro which sets the bit designated by the operand field at execution time.

5-34

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A
LABEL FIELD OPERATION FIELD OPERAND FIELD
Label (Optional) PUT » {u lub}[,x1] [,x2]

The PUT macro sets the value of a designated bit position in a designated memory halfword to one.

The address of the data halfword is given by the address value of the one-bit expression ub or the address value of the expression u.
In each case, the address value may be modified by the contents of one or two index registers designated by x1 and x2. The resulting
address value designates the object halfword.

The particular bit position in the object halfword is designated by the bit position associated with the one-bit symbol used in the
one-bit expression ub. If a regular FOCAP expression, u, is used bit position zero is assumed. In this case, the sign bit of the object
halfword will be set to one by the PUT operation. :

Sample Expansion: SWPOS SETD 5
MEMLOC BSS 1
SWITCH BIT MEMLOC,SWPOS
PUT SWITCH,2
LDAH »+SWITCHM
LORH SWITCH,2 Expansion
STH SWITCH,2

In the above example, the one-bit symbol SWITCH has an address value equal to the address of the regular symbol
MEMLOC.SWITCH also has a bit position value of 5 based on the value of the set-symbol SWPOS. When SWITCH is used in the
operand field of the LORH and STH operations, it represents its address value, MEMLOC. Consequently, each operand field
“SWITCH,2 can be considered equivalent to “MEMLOC,2”” where, the digit 2 designates address modification by XR2. When
)J+SWITCH is used in the operand field of the LDAH operation, it causes the generation of a 16 bit mask 0400 (hex) in the address
field (M16) of the instruction. The mask has a single binary one in bit position 5 based on the bit value of SWITCH.

5.7.2 ~ ZPUT — Set 0 in the Designated Bit Position

The ZPUT operation is a system macro which resets or zeroes the bit designated by the operand field at execution time.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Label (Optional) ZPUT {u lub}[,x1] [,x2]

The ZPUT macro sets the value of a designated hit position in a designated memory halfword to zero.

The address of the data halfword is given by the address value of the one-bit expression ub or the address value of the expression u.
In each case, the address value may be modified by the contents of one or two index registers designated by x1 and x2. The resulting
address value designates the object halfword.

The particular bit position in the object halfword is designated by the bit position associated with the one-bit symbol used in the

one-bit expression ub. If a regular FOCAP expression, u, is used bit position zero is assumed. In this case, the sign bit of the object
halfword will be set to zero by the ZPUT operation.

5-35

THE SINGER COMPANY
- : KEARFOTT DIVISION
Y240A201M0301 REV A :

Sample Expansion: CELL BSS 1
FLAG BIT CELL,14

ZPUT FLAG

LDAH)-FLAGM

ANDH FLAG Expansion
STH FLAG

In the above example, the one-bit symbol FLAG has an address value equal to the address of the regular symbol CELL. FLAG also
has a bit position value of 14 as stipulated in the BIT operation. When FLAG is used in the operand field of the ANDH and STH
operations, it represents its address value, CELL. Consequently, each use of the symbol FLAG in the operand field can be considered
equivalent to the use of the symbol CELL. When)—FLAG is used in the operand field of the LDAH operation, it causes the
generation of a 16 bit mask FFFD (hex) in the address field (M16) of the instruction. The mask has a single binary zero in bit
position 14 based on the bit value of FLAG.

5.7.3 JMP — Jump if Bit is Set

The JMP operation is a system macro which causes the program to execute a jump if the bit designated by the operand field is set to
1.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Label (Optional) JMP ut, u lub [,xl_] [,x2]

The JMP operation will cause a jump to the instruction location designated by the value of the FOCAP address expression ut if and
only if the bit designated by the rest of the operand field has the value one.

The address of the data halfword to be tested is given by the address value of the one-bit expression ub or the address value of the
expression u. In each case, the address value may be modified by the contents of one or two index registers designated by x1 and x2.

The resulting address value designates the object halfword.

The particular bit position to be tested in the object halfword is designated by the bit position associated with the one-bit symbol
1 used in the one-bit expression ub. If a regular FOCAP expression u is used, bit position zero is tested.

Example: This example illustrates the use of one-bit symbols as entry points as well as giving a sample expansion of JMP.

SFAP PROG1
BIT2 SETD 2
MOM BSS 10
IND BIT MOM,BIT2
ENTRY IND
SFAP PROG2
JMP THERE,IND+1,3,13
LDAH IND+13,13
SLL NIND+1 Expansion
JL THERE

5-36

THE SINGER COMPANY

KEARFOTT. DIVISION Y240A201M0301 REV A

In the above example, the one-bit symbol IND has an address value cqual to the address of the regular symbol MOM. IND also has a
bit position value of 2 based on the value of the set-symbol BIT2. Since IND is listed in an ENTRY operation, these two associated
values are transmitted from $FAP deck PROG1 to $FAP deck PROG?2 via the FOCAP Loader Program. When IND is used in the
operand field of the LDAH operation, it represents its address value MOM. Consequently, the indicated operand field is equivalent to

MOM+1,3,13

as if MOM were an entry-point to the PROG1 deck. When))IND+1 is used in the operand field of the shift instruction, SLL, it
denotes a shift count equal to the bit value of the embedded one-bit symbol. In the example, IND denotes a shift of 2.

574 ZJMP— Jump if Bit is Zero

The ZJMP operation is a system macro which causes the program to execute a jump if the bit designated in the operand field is set to
zero.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Label (Optional) ZIJMP ‘ ut, {u lub}[,x1] [,x2]

The ZJMP operation will cause a jump to the instruction location designated by the value of the FOCAP address expression, ut, if
and only if the bit designated by the rest of the operand field has the value zero.

The address of the data halfword to be tested is given by the address value of the one-bit expression ub or the address value of the
expression u. In each case, the address value may be modified by the contents of one or two index registers designated by x1 and x2.
The resulting address value designates the object halfword.

The particular bit position to be tested in the object halfword is designated by the bit position associated with the one-bit symbol
used in the one-bit expression ub. If a regular FOCAP expression, u, is used, bit position zero is tested.

Sample Expansion: MOM BSS 1
SON BIT MOM,10
ZIMP THERE,SON
LDAH SON
SLL))SON Expansion
JG THERE

In the above example, the one-bit symbol SON has an address value equal to the address of the regular symbol MOM. SON also has a
bit_position value of 10 as stipulated in the BIT operation. When SON is used in the operand field of the LDAH operation, it
represents its address value MOM. When))SON is used in the operand field of the shift instruction, SLL, it denotes a shift count
equal to the bit value of the embedded one-bit symbol. In the example, SON denotes a shift of 10.

5-37

THE SINGER COMPANY
. KEARFOTT DIVISION
Y240A201M0301 REV A

5.8 DOUBLE PRECISION FLOATING POINT MACROS

Double precision floating point macros are provided as a convenience to the programmer who wishes to usc the identical symbolic
notation for both the single precision value (leading 32 bits) and the full value (all 64 bits) of a double precision- floating point data
word. The reversed-from-natural memory storage order of these data words is made transparent to the programmer by the use of
these macros; in addition, they obviate some of the housekeeping code necessary for loading and storing registers.

Note that the address Field of these mactos have the same syntax as the address field of the machine instructions AFD, $FD, except
that the indirect mode is excluded. :

5.8.1 LDAB — Double Precision Load Accumulator

The LDAB system macro is used to load the combined A-B registers with the 64 bit word at the operand location. The least
significant 32 bits, located at the operand effective address, are loaded in the B register; the most significant 32 bits, at that address
+2, are loaded in the A register.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) LDAB u [,x1] [,x2]

5.8.2 STAB — Double Precision Store Accumulator

The STAB system macro is used to store the combined A-B registers into the 64 bit word at the operand location. The B register is
stored in the 32 bits beginning at the operand effective address; the A register is stored at that address +2.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) STAB u [x1] [,x2]

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

59 ARITHMETIC STATEMENT (CMPL)

The arithmetic compile statement pseudo-op CMPL, which is processed in the first pass of an assembly, allows the user to implement
a series of arithmetic operations without writing the necessary assembly language instructions. The user may write a FORTRAN
arithmetic assignment statement or a FORTRAN expression in the operand field which is decoded into a series of FOCAP assembly
language instructions. The form of the CMPL Pseudo-op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) CMPL uf Isf=uf

where:
uf represents A FORTRAN arithmetic expression
sf represents a symbol denoting a FORTRAN variable.

If the operand field contains an assignment statement (sf = uf) the value of the expression is computed and stored into the A register
and also stored into the location of the receiving variable represented by the symbol on the left hand side of the assignment
statement. If the operand field contains only an expression its computed value is stored in the A register only. The B register may be
used during the evaluation of an expression and its original contents will usually be destroyed.

FORTRAN VARIABLES, hereinafter referred to as variables, are represented by a FOCAP symbol defined in the usual way. All
variables are treated as real (or floating point) data. No double precision or integer variable type is provided. Halfword data is also not
permitted. The standard FORTRAN convention for defining the integer variable type is not obeyed. A variable symbol whose initial
character is either I, J, K, L, M, or N is typed as real, as are all other symbols. A single fixed subscript may be associated with any
variable. The subscript must be an unsigned integer constant enclosed in parentheses and immediately following the symbol to be
subscripted. For example:

SYM(1) refers to the same location as SYM
SYM(6) refers to the sixth fullword in the vector whose first element is SYM.

More precisely, the SKC 2000 (FOCAP) address of a subscripted variable is computed as follows:

FORTRAN FOCAP
X(6) X+2(6-1)
VEC(20) VEC + 38
M(7) CM+12

Note that the above description of subscripting is limited when compared to full FORTRAN subscripting. Specifically, variable
subscripts are not permitted nor is it possible to employ more complex arrays than simple vectors.

FORTRAN ARITHMETIC EXPRESSIONS (hereinafter referred to as FORTRAN expressions), consist of real variables, integer or
real (floating point) constants, parentheses, (), and the operators:

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation by a real Integer Power

539

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

Integer constants may only be used as a subscript. Integers must be limited to values representable in a 16 bit dataword.
A minus sign (-) immediately preceding an expression or immediately following a left parentheses is a unary minus.
. Examples of expressions employing the unary minus are:
-A
A**-B
A*(-B)
Parentheses may be used to indicate the order of computation in expressions. There is no theoretical limit to the number of

parentheses that may be used but as a practical system limit five to ten are suggested. In the absence of parentheses to indicate the
order of computation in an expression, the following order prevails:

OPERATOR HIERARCHY
Unary Minus 4
*x 3
* | 2
+- 1

The computation indicated by the operator with the greatest hierarchy is performed first. If the operators are of equal weight
computations are performed from left to right.

Thus,

A-B*C is computed as A<(B*C)
-A**B is computed as (-A)**B
A/B*C is computed as (A/B)*C

Expressions need not necessarily contain computational operators. Both single variables and constants are valid expressions.
Expressions may not contain adjacent operators with the exception that a unary minus may immediately follow a *, / or **. Neither
expressions nor assignment statements may contain imbedded blanks. Expressions may not end with an operator nor will division by
zero be allowed, if this can be detected as assembly time.

Examples:

SYM1 CMPL Y = (A*B-C)*C/(A*B-D/E)
CMPL D(3) = B(2)**2.0-4.0*A(2)*C(2)
SYMS CMPL (A*B-C)*C/(A*B-D/E)
CMPL 1=X/2.0
CMPL N=X+]
CMPL Z=1+]
CMPL A =3.14158*R**2.0

Note that the CMPL operator will not allocate memory to variables. It assumes that the programmer has used FOCAP statements to
allocate memory for each variable. If a variable symbol has not been allocated within the deck, it is presumed to be an external or
virtual symbol, defined in another deck. The CMPL operation will allocate memory for literal constant data used in an expression as
well as for intermediate values.

5-40

5.10 PROGRAM CONTROL OPERATIONS

THE SINGER COMPANY
KEARFOTT DIVISION

Program Control Pseudo-Ops are used to control the assembler’s processing of the program.

5.10.1 END

Y240A201M0301 REV A

The END Pseudo-Op indicates to the Assembler that it should terminate the assembly of a program. The format of this instruction is:

LABEL FIELD

OPERATION FIELD

OPERAND FIELD

(Blank)

END

Symbol (Optional)

When the Assembler reaches an END card, it terminates the assembly and if there is a symbol in the operand field, it will be used by
the Loader as the pointer to the starting location of the program. Only one deck in any one computer load may have a symbol in the
operand field of the END Pseudo Op, that is the main program of the load. All other decks are considered to contain only
subroutines of the main program and must have blanks in the operand field. Each deck must have an END Pseudo-Op, and it must be

physically the last card of the deck.

Note that an END card with a blank operand field cannot have a comment field.

5102 INT

The INT Pseudo-Op specifies that the assembled code is an interrupt routine, and that storage assembly by the TEMP Pseudo-Op is to
be allocated separately from the main program temporary storage area. There may be up to sixteen interrupt routines designated. No

more than one interrupt routine may be specified in a single deck. The format for this instruction is:

LABEL FIELD

OPERATION FIELD

OPERAND FIELD

(Blank)

INT

(Blank)

5-41

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

5.11 LIST CONTROL OPERATIONS

The List Control Pseudo-Ops allow the user control over the format of the program listing output by the Assembler. They control
what is to be listed, spacing, page ejection and the printing of titles on the pages.

5.11.1 LIST — Resume Listing-

The LIST Pseudo-Op is used to resume the listing of the assembly o'utpht following an UNLIST Pseudo-Op. The format of the
instruction is:

LABEL FIELD OPERATION FIELD - OPERAND FIELD

(Blank) LIST (Blank)

The LIST instruction itself does not print out in the assembly listing but always generates one blank line.

~.

5.11.2 UNLIST - Suspend Listing

The UNLIST Pseudo-Op is used to suspend the listing of the assembly output. The format of this instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) UNLIST (Blank)

The UNLIST instruction itself is printed but no lines are listed thereafter until a LIST instruction is encountered. All instructions are
generated even if they are not printed when an UNLIST Pseudo-Op is in control, although only one page ejection will occur
regardless of the number of TTL or EJECT Pseudo-Ops encountered.

5.11.3 TTL — Define Page Title

The TTL Pseudo-Op is used to place a subheading or title on each page of the listing of the Assembler’s output. The format of this
instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) TTL A string of characters

The string of characters of the operand field may coritain any EBCDIC character, including embedded blanks. Each TTL Pseudo-Op
causes page ejection and generates a subheading on each succeeding page until another TTL instruction is encountered. To terminate
the printing of a subheading the user writes a second TTL Pseudo-Op with blanks in the operand field. The operand field may not
exceed column 72 and can have a maximum length of 67 characters.

5.11.4 EJECT — Start New Page

The EJECT Pseudo-Op is used to cause the next line in the assembly listing to be printed at ‘the top of a new page. The EJECT
Pseudo-Op-is not printed in the listing. The format of this instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) EJECT (Blank)

5-42

5.11.5 SPACE — Skip Blank Lines

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A201M0301 REV A

The SPACE Pseudo-Op is-used to generate any number of blank lines in the assembly listing, limited by the end of a page. That is,
regardless of the number of spaces requested, the maximum effect is a page change. The format of this instruction is:

LABEL FIELD

OPERATION FIELD

OPERAND FIELD

(Blank)

SPACE

The number n indicates how many blank lines are to appear in the assembly listing.

5-43

B e THESINGER COMPANY
Y240A201M0301 REV A 2 KEAREOTT DIVISICN

THIS PAGE INTENTIONALLY LEFT BLANK

544

THE SINGER COMPANY

KEARFOTT DIVISION Y240A201M0301 REV A

APPENDIX A
SKC2000 (FOCUS) MACHINE INSTRUCTION SUMMARY

The following pages list all the SKC2000 operations in mnemonic and machine language form, including a short summary of each
instruction’s effect. : :

The pages following the summary depicts all the different machine formats corresponding to the seven SKC2000 instruction groups.

A-1

THE SINGER COMPANY

KEARFOTT DIVISION
Y240A201M0301 REV A

THIS PAGE INTENTIONALLY LEFT BLANK

A-2

THE SINGER COMPANY

KEARFOTT DIVISION Y240A201M0301 REV A

PAGE MNEMONIC OPERATION DESCRIPTION
ADF Add-Floating Point
ADFR Add Floating Point and Return
ADL Add-Lower Fixed Point
ADLH Add-Lower Halfword Fixed Point
ADLHR Add-Lower Halfword Fixed Point and Return
ADLR Add-Lower Fixed Point and Return
ADU ' Add-Upper Fixed Point
ADUH Add-Upper Halfword Fixed Point
ADUHR Add-Upper Halfword Fixed Point and Return
ADUR Add-Upper Fixed Point and Return
AFD Add Floating Double Precision
AFDR Add Floating Double Precision and Return
AND Logical AND
ANDH Logical AND Halfword
ANDHR Logical AND Halfword and Return
ANDR Logical AND and Return
CFX Convert Floating to Fixed
CXF Convert Fixed to Floating
DIA i Data Input to A-Register
DIM Data Input to Memory
DMI Disable Memory Interrupts
DOA Data Output From A-Register
DOM Data Output From Memory
DPI Disable Program Interrupts
DVD Divide Fixed Point
DVDH Divide Fixed Point Halfword
DVDHR Divide Fixed Point Halfword and Return
DVDR Divide Fixed Point and Return
DVF Divide Floating Point
DVFR Divide Floating Point and Return
EAB Exchange A and B
EMI Enable Memory Interrupts
EPI Enable Program Interrupts
EXO Exclusive OR
EXOH Exclusive OR Halfword
EXOHR Exclusive OR Halfword and Return
EXOR Exclusive OR and Return
HLT Halt
ICL Test Index Register and Skip On Less Than
ICN Test Index Register and Skip On Not Equal
IMN Modify Index Register Negative and Skip On (XR) > (EA)
IMP Modify Index Register Positive :
JAN Long Jump If (A) # 0
JAG Long Jump If (A) >0
JAL Long Jump If (A) <0
JG Jump If (A) =0
JGF Jump On Program Flag
JGS Jump On Status Bit
JGU Long Jump Unconditional

JGW Jump On Switch

v

A-3

THE SINGER COMPANY
KEARFOTT DIVISION
Y240A201M0301 REV A

PAGE MNEMONIC OPERATION DESCRIPTION
L | Jump If (A) <0
IN Jump If (A) # 0
JRG Short Jump If (A) >0
JRL Short Jump If (A) <0
JRN Short Jump If (A) # 0
JRU Short Jump Unconditional
JS Jump to Subroutine
JU Jump Unconditional
LAE Load A With EA
LDA Load A-Register
LDAH Load A-Register Halfword
LDB Load B Register
LDBH Load B-Reg Halfword
LDI Load Interrupt Mask Register
LDS Load Status Register
LDX Load Index Register
LOR Logical OR
LORH Logical OR Halfword
LORHR Logical OR Halfword and Return
LORK Logical OR and Return
LXA Load Index Register From A Register
MFM Move Block From Fast To Main Memory
MLF Multiply Floating Point
MLFR Multiply Floating and Return
MMF Move Block From Main to Fast Memory
MUL Multiply Fixed Point
MULH Multiply Fixed Point Halfword
MULHR Multiply Fixed Point Halfword and Return
MULR Multiply Fixed Point and Return
NOP No-Operation
RHM Reset Halfword Mode
RST Reset Program Flags
RTA Return Address Jump
SAM Skip On A-Register Masked
SAMH Skip On A-Register Masked Halfword
SBF Subtract Floating Point
SBFR Subtract Floating Point and Return
SBL Subtract Lower Fixed Point
SBLH Subtract Lower Fixed Point Halfword
SBLHR Subtract Lower Fixed Point Halfword and Return
SBLR Subtract Lower Fixed Point and Return
SBU Subtract Upper Fixed Point
SBUH Subtract Upper Fixed Point Halfword
SBUHR Subtract Upper Fixed Point Halfword Return
SBUR Subtract-Upper Fixed Point Return
SET Set Program Flags
SFD Subtract Floating Double Precision
SFDR Subtract Floating Double Precision and Return
SHM S Set Halfword Mode
SLCD Shift AB Left Circularly

A-4

PAGE MNEMONIC

SLL
SLLD
SRA
SRAD
SRC
SRCD
SRLD
STA
STAH
STB
STBH
STH
STI
STS
STX

THE SINGER COMPANY

KEARFOTT DIVISION

OPERATION DESCRIPTION

Shift A Left Logically

Shift AB Left Logically
Shift A Right Algebraically
Shift AB Right Algebraically
Shift A Right Circularly
Shift AB Right Circularly
Shift AB Right Logically
Store A-Register

Store A Register Halfword
Store B Register

Store B Register Halfword
Store A Register Halfword
Store Interrupt Mask Register
Store Status Register

Store Index Register

A-5

Y240A201M0301 REV A

9-V

ARITHMETIC (SHORT)
ARITHMETIC (LONG)
IMMEDIATE ARITHMETIC
JUMP (SHORT)

JUMP (LONG)
SUBROUTINE JUMP
SHIFT

INPUT/OUTPUT (SHORT)
INPUT/OUTPUT (LONG)
BLOCK MOVE

LOAD INDEX

SET/RESET PROGRAM FLAGS
OTHER NONMEMORY REFERENCE

oftf2f3f4]sfe]7]8]o]iofi1f12]i3]i4f1s]16]17]18]19}20]21]22]23]24]25]26]27}28] 29]30]31
OPERATION |0 XI | OPERAND DISP.
OPERATION (1| X1 X2 |1|o|H| OPERAND ADDRESS M16
OPERATION | 1] X1 X2 |o|1|H| OPERAND
0o1100]o }+/-| INSTRUCTION DISP.
01100/1 INSTRUCTION ADDRESS M18
or100f1] X1 Joooo1 INSTRUCTION ADDRESS M18
00001 X1 | count
V/
01001fo DEVICE A |k
01001]1 DEVICE o[x| OPERAND ADDRESS M16
00101 X1 WORD COUNT
ooo0o00fr1o01] x2 fooo
00000fo01 1]
00000 %
of 1] 2]3]4]s]|e]7]8]9fiof11fizfi3]i4]1s]16]17]18]19]20]21}22]23]24] 25]26]27] 28] 29]30] 31
BLANK SECONDARY OPERATION CODE
X1 BASE/IST INDEX DESIGNATOR
X2 2ND INDEX DESIGNATOR
i INDIRECT ADDRESSING DESIGNATOR
H HALFWORD DATA DESIGNATOR

K ACKNOWLEDGE DESIGNATOR

V ATY [0EONI0TYOVTA

NOISIAIQ L104HV3IN
ANVdINOD H3ONIS IHL

THE SINGER COMPANY

KEARFOTT DIVISION Y240A201M0301 REV A

APPENDIX B

ASSEMBLER AND LOADER ERROR DIAGNOSTICS

B-1

THE SINGER COMPANY

: KEARF |
Y240A201M0301 REV A RFOTY DIVISION

THIS PAGE INTENTIONALLY LEFT BLANK

B-2

THE SINGER COMPANY

KEARFOTT DIVISION Y240A201M0301 REV A

APPENDIX B — ASSEMBLER AND LOADER ERROR DIAGNOSTICS

The following tabulations list the Assembler/Loader Error Diagnostics

NOTE: In most cases where an error occurs, the effect of the instruction is null or zero data is generated for the error.

ASSEMBLER ERROR DIAGNOSTICS

CHARACTER

ABBREVIATION NUMBER FULL DIAGNOSTIC
oP 1 Illegal Op-code mnemonic
M 2 Multiply defined symbol
OR 3 Operand in error
R 4 Illegal attempt to redefine location counter
I 5 This instruction must have an I flag, flag added.
D 6 Symbols in operand must be defined
LI 7 The range of this jump makes it a long instruction
L 8 Improper label
S 9 Illegal symbol, more than 16 characters
* 10 This instruction requires an *, * added.
ES 11 Entry symbol is also a Set Symbol
T 12 Truncation Error, too many digits
E 13 Illegal expression in operand
XS 14 Too many indexes specified
X1 15 Level 1 index error
A 16 Symbols have differing location counters
NM 17 This instruction may not have an M flag, deleted.
SS 18 Set Symbol in operand isn’t defined or isn’t absolute
X 19 Index required
X2 20 Level 2 index is outside legal range
NX 21 This instruction should not have a Level 2 Index
LC 22 Illegal location counter nunber
B 23 Base Register number is outside legal range
P 24 Decimal point missing, assumed at end
F 25 Flag value outside of range
NI 26 This instruction may not have an I flag, deleted.
FS 27 First flag should terminate operand field
CH 28 Illegal character begins symbol
N* 29 Short non-jump instruction may have an *
EP 30 Entry table symbol not defined
LO 31 Location Counter out of range
EO 32 Too many Entry points specified
Us 33 Too many undefined (external) symbols
PD 34 Operand symbol not previously defined, or EQU External
IS 35 A field must be (but isn’t) either Integer or a Set Symbol
BP 36 Bit position not in range 0 - 15, 0 assumed
AB 37 Expression must be (but isn’t) absolute
FM 38 An operand field is missing
RE 39 Relocation error in expression
TI 40 Too large an integer (or integer part)

B-3

THE SINGER COMPANY

"
,Y240A201M0301 REV A KEARFOTT ,Dl ISION

ASSEMBLER ERROR DIAGNOSTICS (Continued)

CHARACTER

ABBREVIATION NUMBER FULL DIAGNOSTIC
TF 41 Floating number (or exponent) out of range
wC 42 Word count outside legal range
sC 43 Shift count outside legal range
SW 44 Switch designation outside legal range
SB 45 Status bit outside legal range
DC 46 Device code outside legal range
TO) 47 Too many operand fields
NL 48 This instruction may not have an L flag, deleted.
KC 49 Duplicate KMC flag
AU 50 Address unreachable with short instruction
U1 51 UBASE covers address, but X1 specified
U2 52 UBASE covers address, but X2 specified
TA 53 Too large an address for M16 field
u7 54 UBASE for XR7 doesn’t cover address

LOADER ERROR DIAGNOSTICS

NUMBER FULL DIAGNOSTIC
1 Missing $DCK, subsequent cards ignored
2 Extra DCK ignored
3 Entry table overflow
4 Overlay in deck XXXXXX Location Counter XXXXXX and Location Counter XXXXX
5 Boundary error 1 (attempt to allocate variable storage has resulted in

overlay of the Common area)

6 Boundary error 2 (common area allocation has exceeded available storage)
7 Boundary error 3 (allocation has exceeded the highest location of memory)
8 No main deck given XXXXXX assumed i
9 Boundary error 6 (not enough scratch pad left to allocate temporary storage)
10 Sequence error XXXXYYYY (columns 72-80 printed here)
11 Checksum error in DECKXXXX Card NNNN
12 Boundary error 4 (allocation of constants has exceeded 65535 halfwords addressing)
13 Boundary error 5 (The Sum over all decks of the number of distinct Common
Names equals.100) :
14 Boundary error 8 (The Sum over all decks of the number of Location Counters
equals 800)
15 Absolute COMMON XXXXXX has multiple origins
16 Absolute COMMON XXXXXX overlays a previously reserved area

THE SINGER COMPANY

KEARFOTT DIVISION Y240A201M0301 REV A

COMMENTS AND EVALUATIONS
Your evaluation of this document is welcomed by The Singer Company.

Any errors, suggested additions or general comments may be made and continued on the reverse side. Please include page number and
reference paragraph and forward to:

The Singer Company
Aerospace and Marine Systems
Kearfott Division

150 Totowa Road

Wayne, New Jersey 07470
Attention: Department 5760

Name

Company Affiliation

Address

Comments:

B-5

	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05

