
" '

'
'

I •

' r ,
SE-1
CO!>YRI GHf rt• 1979 ,
SMOKE $1GMAL BROADGASflNG

COPYRIGHT NOTICE

This entire manual and accompanying software have been copyrighted by
Smoke Signal Broadcasting. The reproduction of this document or
accompanying software for any reason other than archival or backup
purposes for or on the computer for which the original copy was
aquired is strictly prohibited.

WARRANTEE INFORMATION

The SSB EDITOR is provided AS IS without warrantee. Reasonable care
has been taken to insure that the software operates as described in
this manual. If you find a situation in which the assembler does not
operate as described, please contact Smoke Signal Broadcasting. We
will attempt to correct any errors brought to our attention, but we
make no gaurantee to do so.

EDITOR VERSION SELECTION

The disk on which the SSB EDITOR is supplied contains 3 versions of
the software. Each version is configured for a corresponding DOS68
system base address. Select a version according to the base address
of DOS68 under which the editor will be running. The versions and
their corresponding system base addresses are as follows:

EDIT .$
EDITA.$
EDITC.$

DOS68 at $6000
DOS68 at $A000
DOS68 ~t $C000

TABLE OF CONTENTS

IN 1rRODUCTION •

INVOKING THE EDITOR •

• CREATING A FILE
UPDATING AN EXISTING
DEFERRED FILE INPUT

FILE • • • • • • • • • • • • • • • • • • •
•

EDITOR DIRECTIVES •
·r

DIRECTIVE OVE.RVIEW •

STRING ARGUMENTS ••••••••••••••••••••••••••
COLUMN SPECIFICATION ••••••••••••••••••••••
REPEATING COMMANDS ••••••••••••••••••••••••
MULTIPLE COMMANDS •••••••••••••••••••••••••
TABS •

ENVIRONMENT DIRECTIVES •

• HEADER
NUMBERS
RENUMBER

•
•

• SET
TAB
VERIFY

•
•

• x
ZONE •

SYSTEM DIRECTIVES •

• CLOSE
DOS
LOG

•
•
• NEW

READ
RETRY
srrOP

•
•

•
WRITE •

CURRENT LINE CONTROL . ·--
•

•
BOTTOM
FIND
NEXT
TOP

•
•

3

4

4
5
6

7

7

7
9
9
9
10

11

11
11
11
12
13
13
13
14

15

15
15
15
16
16
1/
17
17

18

18
18
18
19

TABLE OF CONTENTS (continued)

EDITING DIRECTIVES •

•
•

•

APPEND
CHANGE
COPY
DELETE
EXPAND
INSERT
LIST
MOVE
OVERLAY
PRINT
REPLACE

•
•
•

•
•

•
•

•
= •
(null) •

SYSTEM CHARAC'l'E RI STI CS •

MODIFIYING THE EDITOR •

PARTIAL SOURCE LISTING •

MINI-TUTORIAL •

-2-

20

20
20
21
21
22
22
23
23
24
25
25
26
26

27

28

29

30

INTRODUCTION

The SSB Text Editor for DOS68 is a powerful line and content oriented
editor which is simple to use, and easy to learn. The editor accepts
both upper and lower case ASCII characters for text data as well as
its command set, making it useful for generating text files. The
flexibility of the editor lends its use in applications ranging from
text preparation in business environments to commercial software
development. The editor has the capability of operating upon files as
large as the capacity of a disk.

Reading thr~ugh the manual, you will soon discover the power of the
editor. ,any of the time saving, advanced features may seem a little
confus~:-~ at first. The best way to learn the editor's features is to
reay~hrough the editing commands, and study the "Mini-Tutorial. Try
p~'fming the editor using the examples to learn the basics, then study
·the advanced commands to grasp the full power and capabilities of this
editor.

To aquaint the user with the file management conventions used by the
editor, the name of the file to be edited, unless otherwise specified,
defaults to a filename bearing a type 1 extension. Similarly, default
backup file names as well as editor temporaries are assigned type 5
and 8 extensions, respectively. DOS68 initially defines a type 1
extension as .TXT, a type 5 extension as .BAK, and a type 8 extension
as .TMP. These extension types and their literal equivalents will be
used interchangeably throughout the remainder of this manual. This
manual reflects information that is compatible with versions 5.0,
5.0A, and s.0c of the editor.

-3-

SSB TEXT EDITOR USER MANUAL

INVOKING THE EDITOR

The editor is invoked using the EDIT command, which uses the general
form of:

EDIT,<INPUT FILE SPEC>, [<OUTPUT FILE SPEC>]

The name of the file(s) specified as input or output default to names
bearing a type 1 extension. The default filename extension can be
overridden by simply defining the extension explicitly, For example,
if FILE.A is specified as part of an input or output f ilespec, then
FILE.A will be operated upon rather than FILE.TXT, which bears the
type 1 extension. Type 5 extensions are reserved for the default
backup file generated by the editor, and the type 8 extension is
reserved for editor temporaries used by the editor at run-time,
Therefore the use of type 5 and 8 extensions within input or output
filespecs is restricted. The drive on which the file(s) will be found
defaults to the work drive as assigned at editor run-time. Refer to
the SET command documentataion regarding work drive and extension type
assignments.

CREATING A FILE

Creating a new file with the editor is accomplished using a variation
of the general command form by ommitting the input file spec, For
example:

EDIT,,NUFILE

will initiate the creation of the file NUFILE.TXT on
the current work drive. The editor will display:·

NEW FILE:
1.00=

indicating its readiness to accept text input from the user, Again,
if no filename extension is specified, the editor will by default
assign a type 1 extension to the filename.

-4-

SSB TEXT EDITOR USER MANUAL

UPDATING AN EXISTING FILE

The simplest and most convenient command form for invoking the editor
to update an existing file is:

EDIT,TEST

Since a specific drive is not specified, the drive is assumed to be
the DOS68 work drive as defined by the user. The editor will load the
file TEST.TXT found on the work drive into the text buffer. After the
editing process ~/is completed, control is returned to DOS68. During
the DOS68 ret:;~n process, the editor is transparently performing
housekeepiP-:f on the work drive. In this example, if the file TEST.BAK
exists,----·it is deleted. Next, the input file TEST.TXT containing the
origin.A.I data ~s renamed TEST.BAK. Finally~ a t:rnporary fi~e nam:d
TEST.~~P reflecting all the changes made while in the editor is
re~ed TEST.TXT. The automatic maintainence of the new copy and old
c~~Y simplifies disk management for the user. Note that if additional

/'old versions of TEST.TXT are required, simply rename
TEST.BAK before each edit pass.

If you desire to edit a file, but want to give the output file ~
another name, use the command form:

EDIT,TEST,TEST2

The file TEST.TXT found on the work drive will be loaded into the text
buffer, and the new file TEST2.TXT will be created on the same drive.
This same general form is used to edit an input file found on one
drive, and create an output file on anotherdrive. For example:

EDIT,0:TEST2,l:TEST2.NEW

would allow an edit of TEST2.TXT on drive 0, with the output file
TEST2.NEW existing on drive 1 at the conclusion of the edit session,
Note that the .NEW extension will override the default type 1
extension.

If at some point it is necessary to edit a file bearing reserved
extensions such as a types 5 or 8, a qualified output file must be
specified. Therefore, if the file TEST.BAK must be edited, a command
like:

EDIT,TEST.BAK,TEST.OLD

should be used. If, however, the user does not specify a qualified
output filespec, then the editor display the message:

"YOUR INPUT FILE EXTENSION WITHOUT AN
OUTPU'r FILE SPECIFIED, IS NOT ALLOWED"

The editor will cransfer control back to DOS68 as type 5 and 8
extensions are reserved for the editor.

-5-

SSB TEXT EDITOR USER MANUAL

DEFERRED FILE INPUT

To invoke the editor using its deferred input mode, use the EDIT
command without file specs as shown below:

EDIT

The editor, once loaded and running, will prompt the user for file
specs. with:

FILENAME:

The editor is now ready to accept file specifications. Having the
capability of entering file specifications after the editor has been
loaded and started can be advantageous to single drive as well as
multi-drive disk system users. The user can for example, remove the
disk on which the editor resides, and mount a disk which contains or·
may yet contain the f{le(s) which will be operated upon by the editor.
The user has virtually "gained" an additional drive on his system!

-6-

SSB TEXT EDITOR USER MANUAL

EDITOR DIRECTIVES

DIRECTIVE OVERVIEW

There are four groups of editor directives: environment directives~
system directives, "current line" movers, and edit directives. A
complete description of all directives in each group is covered in
this section. In the following descriptions, quantities enclosed in
square brackets ([•••]) are optional, and may be omitted. Vertical
lines (I) are used to separate the options.

STRING ARGUMENTS

Several of the editor directives use character strings as arguments.
These arguments are either matched against strings in the text, or
replace a string in the text. A string argument begins after a
delimiter character and continues as a sequence of any legal
characters until the delimiter is again encountered. The delimiters
are not considered part of the string to be used in the matching or
replacement operations. Although the delimiters in the following
descriptions are frequently represented as slashes, "/", any legal
non-blank, non-alphanumeric character may be used as the delimiter
such as * / () $ = , • [] : ' etc. Note that the following
characters may not be used to enclose strings unless they are preceded
by either a plus (+) or mirius (-) sign: "A" (denotes first line of
the buffer),"!" (denotes the last line of the buffer), "-" (denotes
target is above current line), and the character denoted by LINO
(Normally a pound sign) which is used to flag line numbers. The
delimiter character is redefined in each hew request by its appearance
before a string. If two strings exist in one directive (as in the
Change directive), the same delimiter character must be used for each
string.

All of the editor directives use the <line> information preceeding the
directive to position the pointer prior to any directive action. 'rhe
<line> parameter may of course be null, meaning leave th~ pointer at
its current position. All of the following are valid <line>
designators:

1. Any number
~- ~

2. +n

3. -n

4. /<string>/

5. -/<string>/

6.

References a s~ecific line number.

Denoting the nth subsequent line.

Denoting the nth pre~ious line.

Referring to the next line in the
file containing the indicated
string of characters.

References a previous line containing
the indicated string.

denotes the first line of the file.
•

-7-

SSB TEXT EDITOR USER MANUAL-

7. denotes the last line of the file.

a. null stay at current line.

Many of the editor directives require <target> information. This
tells the editor to operate on the "current" line and all other lines
in the file up to the line referenced by the <target>. In cases where
a <target> is required, leaving it null will make the <target> default
to 1, meaning only the current line will be affected by the directive.
All of the following are valid <target> designators:

1. an integer n

2. #n

3. /<string>/

4. -/<string>/

s.

6.

7. +n

8. (null)

indicates that n lines should be
affected by the edit operation.

denotes the line number of the
last line to be affected.

denotes the next line in the file
containing the specified character
string.

references a previous line containing
the indicated string.

denotes all lines up to the top of
the file.

references all lines down to the
bottom or last line of the file.

indicates that n lines should be
affected and in which direction
from the current line.

defaults to 1 and only the current
line is affected.

As we have seen, the form <target> is used to specify a range of lines
to which the directive will apply. The directive will be applied to
each line, starting with the line specified by <line> and continuing
until the target is reached-

If a string <target> is specified, the directive will apply to
successive lines of text until a line containing the string is
reached. Processing proceeds downward in the file unless the target
is preceded by a "-" (minus sign), indlcating that processing is to
occur upward (toward the first line) in the file. Targets may also be
preceded by a plus sign (indicating downward movement). If a line
number target is specified, processing begins at <line> and proceeds
toward the target line number. Some examples of <target>s are:

2
+10
-3
/STRING/

-8-

SSB TEXT EDITOR USER MANUAL

+/STRING TARGET/
-/BACKWARD DISPLACEMENT TO A STRING/
+*ANY DELIMITER WILL WORK FOR STRING*
++EVEN PLUS SIGNS WILL WORK+

#23.000

COLUMN SPECIFICATION

Any "/<string>/" descriptor may be postfixed with a column number
immediately after the delimiter which indicates that the preceding
string must begin in the column specified to be found.

If the column specified is not in the rrange of the ZONE in effect,
the request will be ignored. Some examples are:

/IDENT/11
/PROGRAM/77
*LABEL*2
.COMMENT.30

REPEATING COMMANDS

The last editor directive can be repeated while in the
typing a control "D". This simplifies repetitive
eliminating the need to continually re-enter the
INSERT and OVERLAY directives should not be repeated.
which are useful to repeat are

P23

NEW

F/LABEL/

MULTIPLE COMMANDS

To print a screen full of lines
at a time.

To step through the input file
with the touch of a key.

To step through the text buffer
on each occurrence of the string
"LABEL"

command mode by
operations by

directive. The
Some directives

The editor supports a user definable EOL or End Of Line character to
allow multiple commands to exist on a single command line. Using the
muliple command capability of the editor, the user can compose and
execute unique, complex editing functions which would otherwise
require a seties of individual commands entered separately. The EOL
character can be d~f ined as well as changed by the user with the
editor's SET directive. The INSERT and OVERLAY directives can be used
as part of multiple commands, but they cannot be followed by another
command, With the EOL set to "$", the following example shows the
implementation of a multiple command:

T$F/END/$C/END/STOP/$-10P20$T

-9-

SSB TEXT EDITOR uSER MANUAL

This multiple command moves the line pointer to the top of the buffer,
finds the first occurrence of the string "END", changes "END" to
"STOP", backs the line pointer back 10 lines and prints the next 20
lines, then restores the pointer to the top of the buffer

TABS

The editor supports tabbing with up to 20 tab stops. The TAB
character and the tab FILL character are definable by the user with
the editor's SET directive. In using tabs, the tab character is
imbedded in the line where it will be expanded when the end of the
line is recieved. If the tab stops or the tab character have not been
defined, yet some tab character has been propagated thoughout the
file, the tabs can be expanded by first defining the tab character to
be the same as what exists in the file, and then invoking the EXPAND
directive. Note that if the tab character has been set, subsequent use
of the INSERT or REPLACE directives will cause automatic tab
expansion. ,If the tab character is added to the file using the APPEND,
CHANGE or OVERLAY directives, it will remain in the file until an
EXPAND directive expands the lines containing the tab character.

-10-

SSB TEXT EDITOR USER MANUAL

ENVIRONMENT DIRECTIVES

H[EADER] <columns>

MEANING:

A line of <columns> headings will be displayed. The heading is
of the form "123456789012 ••• " to indicate the column number.
Columns for which tab stops are set will contain a minus
character instead of the normal digit. If a column count is
given, it becomes the default count such that if just "H" is
typed afterwards, that number of columns will be printed.

?XAMPLES:

HEADER 72

H 30

NU [MBERS] [OFF I ON]

MEANING:

Display column number headings for
72 columns.

Display column numbers for 30
columns.

The line number flag is turned off or on. If the flag is off,
then line numbers will never be printed. If neither "OFF" nor
"ON" is specified, then the flag will be toggled from its
current state.

·EXAMPLES:

NUMBERS OFF

NU ON

NU

REN [UMBER]

MEANING:

Turn line number printing off.

Turn it back on.

Toggle from "ON" to "OFF" or from
"OFF II to "ON n.

The RENUMBER dir6ctive will renumber all of the lines in the
current edit file. Lines in the renumbered file will start
with line number "1.00" and will have an increment of "1.00".
The line which was "current" before the command will still

1

be
the current line after the command (although its number will
probably have been changed}.

EXAMPLES:

Renumber th€ lines in the current
working file.

-lJ-

SSB TEXT EDITOR USER MANUAL

REN Renumber the lines in the current
working file.

SET <name> = '<char>'

MEANING:

SET is used to define certain special characters or symbols.
The <name>s which may be set are:

TAB

FILL

EOL

LINO

the tab character,

the tab fill character,

the end of line character which may be used
to separate several commands on a single line.

The line number flag character which is used
to indicate that a target is a specific line
number.

Setting the TAB character and the FILL character the same will
defeat the TAB feature, therefore there is no logical reason to
do this.

Setting the EOL character will allow the user to use multiple
commands in a single command line. INSERT and OVERLAY cannot
be followed by other commands. An example of EOL use (with EOL
set to "$") is:

D2$Pl0$'l'

This sequence will delete the first 2 lines of the buffer, then
print the next 10 lines, and finally return the pointer to the
top of the buffer.

The default values are: TAB and EOL are "null".

FILL is- "space"

LINO is ""

EXAMPLES:

SET TAB = ' : ' Set the tab character to semicolon.

SET TAB = I I Disable tabbing by setting the tab
character to null.

SET FILL = ' I Set the tab fill character to a
blank.

SET EOL = I $ I Set the EOL character to $.

-12-

SSB TEXT EDITOR USER MANUAL

SET LINO= '@' Set the line number target escape.

TAB [<COLUMNS>]

MEANING:

Used to set the tab stops. All previous tab stops are cleared.
If no columns are specified then the only action is to clear
all tab settings. Any TAB characters occurring beyond the last
tab stop are left in the text. The maximum number of TAB stops
allowed is 20.

EXAMPLES:

TAB 11, 18, 30

TAB 7 72

TAB

Set tab stops are columns 11, 18
and 30.

Set tab stops for a FORTRAN program.

Clear all Lab stops.

V [ERIFY] [OFF I ON]

x

MEANING:

The verify flag is turned "ON" or "OFF". The verify flag is
used by the directives CHANGE, and NEXT (and several others) to
display their results. If neither "ON" nor "OFF" is specified,
then the flag will be toggled from its current state.

EXAMPLES:

VERIFY OFF Turn v.erification off.

V ON Turn it back on.

MEANING:

"X" is the cursor control command. Any time this command is
entered, the editor will issue the 6 special character string
previously set up. See "MODIFYING THE EDITOR" for details on
how to define the strifig

EXAMPLES:

x Output cursor control string.

-13-

SSB TEXT EDITOR USER MANUAL

Z[ONE] [Cl],[C2]

MEANING:

ZONE is used to restrict all sub-string searches (FIND, CHANGE,
<target>s, etc.) to columns Cl to C2 inclusive. Any substrings
beginning outside those columns will not be detected. If Cl
and C2 are not specified, then the zones will be reset to their
defaults (columns 1 and 136).

EXAMPLES:

ZONE 11, 29

ZONE

Restrict searches to columns 11
through 29.

Search columns 1 through 136.

-14-

SSB TEXT EDITOR USER MANUAL

SYSTEM DIRECTIVES

CLOSE

DOS

LOG

MEANING:

CLOSE performs the same text buffer and file transfers as LOG
without returning to DOS68. The editor will remain running to
allow continuous file editing. The editor will prompt the user
for file specifications with the message:

FILES:

EXAMPLE:

CLOSE

FILES:LETTER.OLD,l:LETTER.NEW

MEANING:

The DOS command causes the editor to terminate execution and
return control to DOS68. The input file is left un-chang€d,
the temporary work file· is deleted, and no output file is
generated.

EXAMPLE:

DOS

MEANING:

Conclude an edit session and exit the editor by writing the
contents of the text buf-fer-·c·o the output file, and transfer
the remainder of the input file to the output file. Control is
transfered to DOS68. If the input file is large, the message
"BUFFER FULL - COMPLETE FILE NOT READ" will appear, indicating
that the editor is utilizing the entire text buffer in the
process of transferrinq the contents of the input file to the
output file. ·

EXAMPLE:

LOG

-15-

SSB TEXT EDITOR USER MANUAL

NEW

READ

MEANING:

The NEW command transfers the contents of the text buffer from
the top down to but not including, the "current" line into the
output file. Next, as much unread data that can be placed into
the text buffer will be read from the input file. Note that if
the input file is large, the message "BUFFER FULL - COMPLETE
FILE NOT READ" may appear. This is an indication that there is
still unread data in the input file although the text buffer
was filled to usable capacity. Sufficient free space remains
in the buffer for additional text storage by the user.

The NEW command may be used in event that the "NOT ENOUGH ROOM"
message appears while editing a new or existing file. To
remedy the situation, issue a NEW command, and the contents of
the text buffer from the top line to the current line will be
transferred to the output file, with the current line now the
top line in the buffer.

NEW may also be used anytime during the edit session, but keep
in mind that once it has been used, all parts of the file which
were above the current line pointer will become inaccessable
for the remainder of the session. The editor can only operate
on text in the text buffer, therefore, global commands such as
CHANGE and FIND will be global only with respect to the text
currently in the buffer, and not the entire file, unless of
course, the entire file will fit in the buffer.

EXAMPLE:

NEW

MEANING:

The READ command gives the user the capability of
transferring the contents of a specified disk file into
to the end of the current text buffer, and the last line
read will become the new current line. The number of
lines that will be read are limited only by the amount of
free space currently in the text buffer. Upon receipt of a
READ command, the editor will re_spond with:

FILE NAME:

after which the name of the file to be read is
entered. Note that if the entire contents of the specified
file does not fit within the free space, the "BUFFER FULL -
COMPLETE FILE NOT READ" message will appear.

-16-

RETRY

STOP

SSB TEXT EDITOR USER MANUAL

EXAMPLE:

READ

FILE NAME:l:MODULE.TXT

MEANING:

In event of a fatal disk error during a NEW, LOG, or STOP
operation, RETRY will create a new output file and attempt
to continue the disk I/O operation where it left off. For
example, if a disk error 7 occurs, (disk full error), then
the message:

CORRECT PROBLEM AND TYPE "RETRY"
TO ABORT AND RETURN TO DOS - TYPE "DOS"

will appear. Typing RETRY will cause the output file to be
re-created, and the disk I/O operation to be continued. Note
that if DOS is typed, the editor will abort leaving the file
that was being edited unchanged.

MEANING:

Sarne as LOG.

EXAMPLES:

STOP

WRITE [<target>]

MEANING:

Write all lines ~rorn the current line through the target line
to a specified disk file. Upon receipt of WRITE, the editor
will prompt the user for the file specification of the file
with:

FILE NAME:

EXAMPLE:

WRITE *TARGET STRING* Write all lines from the current line
to the line containing "TARGET STRING"

FILE NAME: l:MYFILE.TXT into the file MYFILE.TXT on drive 1.

-17-

SSB TEXT EDITOR USER MANUAL

CURRENT LINE CONTROL

B[OTTOM]

MEANING:

Move to the last line in the file and make it the current line.

EXAMPLES:

BOTTOM

B

F[IND] <~arget> [<occurrence>]

MEANING:

Make the last line of the file the
current line.

Move the current line pointer to the line specified by <target>
and make it the current line. If the VERIFY flag (see VERIFY)
is on, the line will be printed. If <occurrence> is specified
(an unsigned integer or an asterlsk), the directive will be
repeated <occurrence> times. An asterisk means all occurrence
of the <target> will be found until the bottom or the top of
the file is reached. If the target is not reached, the current
line pointer will not be moved.

EXAMPLES:

FIND /STRING/

F /THREE LINES/ 3

F/PUSH/ *

F-/PROGRAM/7 *

Find the next line containing the
string "STRING".

Find the next three lines contain­
ing the string "THREE LINES".

Find all following occurrences of
the word PUSH.

Find all previous lines which
contain the characters "PROGRAM"
beginning in column seven.

N[EXT] <target> [<occurrence>]

MEANING:

The line specified by the target is made the current line. If
the VERIFY flag is on, the line will be printed. If
<occurrence> is specified, it must be an unsigned integer. Tt
indicates which next occurrence of a line containing the target
is to be made the current line. If the target is not reached,
the current line pointer will be positioned at the bottom of

-lA-

T[OP]

SSB TEXT EDITOR USER MANUAL

the file (top of the file for a negative <target>). If no
target is specified, the next line will be made the current
line.

EXAMPLES:

NEXT 5

N

N-10

N/STRING TARGET/

N/THIRD OCCURRENCE/ 3

MEANING:

Make the fifth following line the
current line.

Make the next line the current line.

Make the tenth previous line current.

Make the next line containing
"STRING TARGET" to be the current
line.

Make the third line containing the
indicated string the current line.

The first line of the file becomes the current line.

-19-

SSB TEXT EDITOR USER MANUAL

EDITING DIRECTIVES

A[PPEND] /<string>/ [<target>]

MEANING:

Append the specified <strings> just beyond the last character
of the 'current line (and to successive until the target is
reached). If the string is postfixed with a column number,
then append the string beginning at the specified column
·crather than at the end of the line). Any characters
previously in the line following the specified column will be
lost.

EXAMPLES:

APPEND/./

A *HELLO* 2

A/SEQUENCE/73 *END*7

Append a period to the end of the
current line.

Append the word "HELLO" to the end
of the current line and to the end
of the next line.

Append the word "SEQUENCE" starting
in column 73 of the current line and
successive lines until a line con­
taining the characters "END" begin­
ning in column seven is found.

C[HANGE] /<string> /<string> I [<target> [<occurr~nce>]]

MEANING:

Replace the string specified by <string> with the string
specified by <string> • If no <target> is specified, only the
current line is affected. The slashes represent any nonblank
delimiter character. <occurrence> is used to specify which
occurrence of <string> is to be replaced in each line. It is
either an unsigned integer or an-asterisk, "*" signifying that
all occurrence of the substring <string> are to be replaced
with <string> • By default, only the first occurrence will be
changed. Note that if <occurrence> is specified, and if
changes are to occur to the current line only, then the target
should be a 1 (one).

EXAMPLES:

CHANGE /THIS/THAT/

C /FIRST/LAST/10

Replace the first occurrence of
"THIS" in the current line with
"THAT".

Change the first occurrence of
"FIRST" to "LAST• in the current
line and also in the nine follow-

-20-

SSB TEXT EDITOR USER MANUAL

ing lines.

C /NEW/OLD/ /A TARGET/ Change the first occurrence of
"NEW" to "OLD" in each line down
through the line containing the
string "A TARGET".

C ,A,, -10 * Remove all "A"s in the current
line and in the nine preceding
lines.

C*HELLO* Delete the character string
"HELLO" from the current line.

CO[PY] <destination-target> [<range-target>]

MEANING:

The current line and successive lines until the <range- target>
is reached are copied so that they follow the line specified by
destination-target. The default destination-target is 1,
thereby causing a copy of the current line to be placed after
the next line. After the directive is executed, the current
line pointer will be positioned at the new position of the last
line copied. Some lines may be renumbered after a copy.

EXAMPLES:

co 18

COPY #3 4

Put a copy of the current line
after line 18.

Copy four lines beginning with the
current line and place them after
line 3.

CO /HELLO DOLLY/ +/END OF RANGE/

D[ELETE] [<target>]

MEANING:

After the next line which
contains the string "HELLO DOLLY"
place a copy of each line starting
with the current line through the
line containing "END OF RANGE"

The current line (and successive lines until the target is
reached) is deleted. After the directive is executed, the
current line will be the line following the last line deleted.

EXAMPLES:

DELETE 5 Delete five lines (the current

-·21-

SSB TEXT EDITOR USER MANUAL

D

D /STRING/

EXP [AND] [<target>]

MEANING:

line and the next four lines).

Delete the current line.

Delete lines from the current
line through the next line that
contains the string "STRING".

The current tab character is expanded within all lines,
beginning with the current line (and down to and including the
line specified by target). Since tabs are normally expanded as
lines are inserted into the file, this directive is primarily
of use when one has forgotten to define a tab character.

EXAMPLES:

EXPAND 100

EXP

I [NSERT]

MEANING:

Expand 100 lines starting with
the current line.

Expand the current line.

The editor will enter the buffered input mode, prompting with
line numbers (unless line numbers have been disabled, see the
"NUMBERS" directive) and insert the lines below the current
line. Buffered input continues until a lineibeginning with the
breakpoint character (pound sign) in column one is received.
The characters following the breakpoint character are treated
as an editor directive. The edi~or will try to choose an
insertion increment sufficient to insert at least 10 lines or,
if that is not possible, the smallest increment possible. The
current line pointer i-s positioned at the last line inserted.
It should be noted __ that the editor may renumber text 1 ines
following the inserted text if the inserted line numbers
overlap line numbers previously in the file. If renumbering
occurs, then the message "SOME LINES RENUMBEREDh will appear,
indicating that renumbering took_place.

Ef{AMPLES:
INSERT

I

Accept line input after the current
line.

-22-

SSB ·rEX'r EDITOR nsc~ HA1"~UAL

l[NSERT] <text>

MEANING:

The text (sequence of characters) which immediately fol 1 ow~_; tbc~
separator (or blank) after the directive narnE vii 11 be inst=~ r ted
as a separate line below the current line of the file. The
line inserted becomes the current line. It should be noted
that the editor may renumber text lines following the inserted
text if the inserted line numbers overlap line numbers
previously in the file.

EXAMPLES:

I THIS BELOW THE CURRENT LINE OF THE FILE

INSERT EVERYTHING AFTER THE FIRST BLANK.

L[IST] [<target>]

MEANING:

LIST lines on the system printer through DOS68. Beginning with
the current line, lines are printed on the system printer until
the line specified by target is reached. By default, only tile
current line will be listed.

EXAMPLES:

MO[VE]

L

LIST 5

L -HJ

LISrr *STRING*

L -/Sr£RING/

List the current line.

List five lines starting with the
current line.

List the current line and the
nine previous lines.

List a-11 lines down through the
next line containing "STRING".

List all lines up through the
next previous line containing
"STRING".

[<destination-target> [<range-target>]]

The current line (and successive lines until the <range­
target> is reached) is moved so that it follows the line
specified by <destination-target>. The default <destination­
target> is 1, thereby moving the current line after the next
line in the file. The default <range-target> is 1, thereby
moving only one line. After the directive is executed the
current line pointer will be positioned at the new position of

-23-

SSB TEXT EDITOR USER MANUAL

the last line moved.
MOVE.

EXAMPLES:

MOVE 3

MO 1 /TARGET STRING/

MO -/PROGRAM/ 5

MO 10 -5

0 [VERLAY] [<delimiter>]

MEANING:

Some lines may be renumbered after a

Move the current line down three
lines.

Insert the current line and all
lines down through the line con­
taining "TARGET STRING" after
line 1.

Move five lines (including the
current line) up within the
file so that they follow a line
containing the character "PROGRAM"/

Move the current line and the
four previous lines below line 10.

The current line is printed, then a line of input is accepted
from the terminal (the overlay line). The overlay line will be
positioned directly beneath the line printed out. Each
character of the overlay that is different from the <delimiter>
character (default is a blank) will replace the corresponding
character in the current line. The overlaid line will be
printed if verify is "ON".

EXAMPLES:

OVERLAY

25.00 = THIP IS THE CORRENT LUNE.

OVERLAY s u -- - I

25.00 = THIS IS THE CURRENT LINE.

O[VERLAY] <d><text>

MEANING:

This directive is similar to the previous forms of the OVERLAY
directive with these differeAces:: (1) The current line is not
printed. (2) The remainder, of the directive

EXAMPLES:

OVERLAY----AT--------(CURRENT)-----

-24-

SSB TEXT EDITOR USER MANUAL

25.00 = THAT IS THE (CURRENT) LINE

P [RINT] [<target>]

MEANING:

Beginning with the current line, lines are
line specified by target is reached.
current line will be printed.

printed until the
By default, only the

EXAMPLES:

p

PRINT 5

p -10

PRINT *STRING*

P -/STRING/

R[EPLACE] [<target>]

MEANING:

Print the current line.

Print five lines starting with the
current line.

Print the current line and the
nine previous lines.

Print all lines down through the
next line containing "STRING".

Print all lines up through the
next previous line containing
"STRING".

A DELETE from the current line through the <target> line is
performed. The editor then enters the buffered input mode,
putting the new lines into the area vacated. It is not
necessary to enter the same number of lines as were deleted.
The line numbers of the lines inserted will probably not be the
same as those deleted. The current line pointer will be
positioned at the last line -1nserted. By default, only the
current line will ~e deleted.

EXAMPLES:

R

REPLACE 10

R /TARGET STRING/

Repla~e the current line.

Replace ten lines starting with
the current line.

Replace all lines from the current
line through the line containing
"TARGET STRING".

-25-

SSB TEXT EDITOR USER MANUAL

=<text>

MEANING:

The "="
supplied.
following
moved.

directive replaces the current line with the text
The replacement text begins with the first character
the equals sign. The current line pointer is not

EXAMPLES:

= THIS IS THE REPLACEMENT TEXT.

(null)

MEANING:

The null directive (i.e., just a carriage return) prints the
current line.

-26-

SSB TEXT EDITOR USER MANUAL

SYSTEM CHARACTERIS'f!CS

MAXIMUM LINE NUMBER The maximum line number is 9999.99. If more
than 9,999 lines are entered, the line number counter will turn over
(go back to 0), therefore, the editor should not be used with files of
10,000 lines or longer. (this is not really a limitation since 10,000
null lines followed by a carriage return uses up to 40K of memory!

INPUT BUFFER SIZE - The input buffer will hold 136 characters. Ir
more than 136 characters are typed, they will be ignored and a "bell"
character will be output to the terminal. To terminate the line, it
is necessary to type the backspace character and then a carri~ge
return.

EDITOR SYSTEM INPUT/OUTPUT - All editor I/O, whether disk, terminal,
or printer, is processed with the drivers used by DOS68. Thi~; is to
point out that the terminal control parameters defined by the user
through SET.$ are in effect during the operation of the editor.
Please refer to the DOS68 documentation regarding the terminal co11trol
parameters and the definition of them with SET.$

-27-

SSB TEXT EDITOR USER MANUAL

MODIFYING THE EDITOR

A partial source listing is included with this manual to aid those who
would wish to modify the editor. Most modifications will not be
required by most users, therefore only a few parameters will be
elaborated upon here. Users who wish to modify the editor beyond the
scope of the parameters mentioned here are urged to order a complete
source listing of the editor.

To make changes in the editor, type GET,EDIT.$ followed by a carriage
return. This will load the editor and return control back to DOS.
After making the changes, use the SAVE command to save the editor back
on the disk as a command file. Save from $0100 to $1D00, with a
transfer address of $0100.

MEMORY END - The amount of memory used by the editor for its text
buffer is determined primarily by the DOS68 MEMAX parameter. If for
some reason MEMAX is undefined ($0000) then the editor parameter
MEMTOP will be used. It is extremely important to note that both
MEMAX and MEMTOP must not be lower than $2000, otherwise
unpredictable results may occur. Refer to the DOS68 documentation
regarding MEMAX and how to set this system parameter.

CURSOR CONTROL STRING The cursor control string printed upon the
receipt of the X command is located at location CNRSTR. It is
currently set to 6 nulls, but may redefined by the user as required.
The string must be terminated by $04.

-28-

SSB TEXT EDITOR USER MANUAL

PARTIAL SOURCE LISTING

0100 0095 ORG $100
0096
0097 * PROGRAM STARTS HERE
0098

0100 7E 163A 0099 START JMP DEDIT
0103 7E 0410 0100 RES'rRT JMP PED IT
0106 SE 00 0HH MEMTOP FOB MEMLIM MEMORY LIMIT

0HJ2
0103 * EXTERNAL I/O ROUTINES
0104

0108 BD 72C4 0105 INCH JSR ZGETCH CRT INPUT
010B 70 0048 0106 ou·rcH TST PRTFLG HARD-COPY ON?
010E 26 03 0107 BNE POUCH
0110 7E 72Cl 0108 JMP ZPUTCH CRT OUTPUT
0113 7E 7312 0109 POUCH JMP ZHCOUT PRINTER OUTPUT
0116 7E 730F 0110 PINIT JMP ZHCINT PRINTER INIT

0111 * USER DEFINABLE 'X' COMMAND CHARACTER STRING
0119 00 0112 CNRSTR FCB 0,0,0,0,0,0,4

0113

-29-

SSB TEXT EDITOR USER MANUAL

MINI-TUTORIAL

The purpose of this section is to briefly introduce the reader to the
use of the SSB Text Editing System. We will, therefore, illustrate
its use with a number of examples. In order to make it more obvious
what things are typed by the user and what things are displayed by the
editor, we will subscribe to the convention that things underlined are
user-typed and things not underlined are displayed by the editor.

When the editor is initially entered, the response is as shown above.
At this time we will create our file by simply typing all ltnes until
finished, terminating each line with a "carriage return".

NEW FILE:
1.00 =THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL
2.00 =SSB TEXT EDITING SYSTEM. A NUMBER OF
3.00 =EXAMPLES WILL BE SHOWN TO ALLOW EASY AND
4.00 =QUICK LEARNING OF ITS FEATURES.
5.00 =FOLLOWING ARE SOME NONSENSE LINES:
6.00 =ABCDEFGHIJKL
7.00 =AAAAAAAA
8.00 =TESTING 1234
9.00 =THIS EDITOR IS FUN TO USE!

10.00 =BBBBBBBB
11.00 =
12.00 =THIS IS THE END OF THIS FILE,
13.00 =AT LEAST FOR NOW.
14.00 =!
15.00 =AT LEAST FOR NOW.

Notice it was necessary to type a pound sign (#) in column one to
leave the buffered input mode. At this time, the editor printed the
last line and returned with its prompt (i). The editor is now ready
to accept commands.

Any time characters are being typed into the editor the following two
characters have special meaning:

1. "control" H - Deletes the last character typed (backspace).

2. "control" X - Deletes entire current line being typed.

These are useful, when detected typing errors occur, for immediate
correction.

Each line of text in the edit file is given or has a line number which
is used by the editor to uniquely identify the line. Each line number
is of the form "m.nn" where "m" is an integer and "n" represents any
of the digits 0 through 9. To specify a line number, one has to
specify only that portion of the line number to identify it uniquely.

-30-

SSB TEXT EDITOR USER MANUAL

For example, 73, 73., 73.0 and 73.00 may be used to refer to
73.00; 259.6 refers to ·1ine 259.60. The largest line number used
the editor is 9999.99. Let's denote a specification of a line of
by the symbol "<line>". We will be using this symbol throughout
document.

line
with
text
this

An editor command tells the editor what action is to be performed and
usually what line or block of lines are to be affected (if any). For
each editing facility supported by the editor, there is a directive
which is used in commands to indicate the desired action. For
example, the editor can delete lines of text from a file, insert lines
of text into the file, print lines contained in the file, and so on.
Corresponding to each capability there is a directive; hence, there
is a Delete directive, an Insert directive, a Print directive, and so
on. If we define the symbol <directive> to mean any editor directive,
the basic form of an edit command is:

<line><directive>

For example, the command to display (print) line 12.00 is

#12 p
---r2.00=THIS IS THE END OF THIS FILE,

where "12" is the <line> specification and "P" is the <directive> in
this command. As can be seen in the example, this causes line number
12 to be printed on the terminal.

Now, let's learn how to use the INSERT directive. In normal usage of
the word "insert" we say something like, "rnsert this card after this
other card." To use the insert directive, we specify the line after
which we want to insert new lines followed by an 1:

<line>l

After typing the directive followed by a carriage return, the editor
will select an appropriate line number and prompt for input by
displaying the line number followed by an equal sign. After each line
of text is entered and the carriage return is typed, the editor will
prompt for the next line•- To exit from the "Insert mode" one simply
types a pound sign followed by an edit directive in response to a new
line prompt.

Some examples of the use of Insert are

8.10=THIS IS AN INSERTED LINE.
8.20=SO IS THIS.
8.30=#

#llI -
--l l. l 0=ANOTHER INSERTED LINE.

ll.20=!

6.00=ABCDEFGHIJKL

-31-

SSB TEXT EDITOR USER MANUAL

It should be noted that the editor may renumber some lines following
the inserted text. This occurs when enough lines are inserted such
that the inserted line numbers overlap line numbers in the original
text.

Next, let's learn how
directive we can delete
directive. To delete
deleted followed by a D:

<line>D

to
one
only

use
line

one

the DELETE directive. With this
or a block of lines with one
line, we specify the <line> to be

When the carriage return is typed, the line is deleted.

To delete more than ~ne line we need to indicate not only the first
line to delete but also the last line to be deleted. Let's call the
last line the "target" line and denote its specification as
"<target">. Although the editor support fancier ways to specify
the<target>, we'll just consider the two simplest: (1) <target> may
be the number of lines to be deleted (counting both the first and last
line of the block), or (2) <target> may be a pound sign followed
immediately by the line number of the last line of · the block to be
deleted. Some example• <targets> are: 3 (delete three lines), 26
(delete 26 lines), and #26 (delete lines through line 26.00).

The syntax to Delete a block of lines is

<line>D <target>

where <l line> indicates the first line to delete and <target>
indicates the scope of the delete.

To illustrate the use of the DELETE directive, let's assume we have a
file containing 53 lines with integer line numbers (i.e., 1, 2, 3,
••• , 53). With the directives

#150
#240 #31
#520 2
BOTTOM OF FILE REACHED
t

we now have a file with lines 1 through 14, ~6 through 23, and 32
through 51. The first directive deleted line 15. The second
directive deleted lines 24 through 31. The third directive deleted
two lines starting withJine 52. Since it deleted the last line of
the file, the editor displayed the message "BOTTOM OF FILE REACHED".

Before we discuss any more directives, we need to expand the
definitions of <line> and <target>.

As editing operations are performed, the editor keeps track of the
"current line" which usually is the line most recently affected by a
successful edit directive. Upon entering the editor, the "current
line" is the first line of the file. If, for example, we have just

-32-

SSB TEXT EDITOR USER MANUAL

inserted three lines between lines 12.00 and 13.00, the current line
will be 12.30. One should note that after a line or a block of lines
have been Deleted, the line immediately following the last one deleted
is made the current line (if the last line of the file was deleted,
the new last line of the file will be the current line).

In our discussions above, we have implied that one has to explicitly
indicate a <line> for each directive by specifying the line number of
the line of interest. However, if <line> is not specified in a
directive, the "current line" is used. For example, if one enters the
directive

#D2
#-

the edito~ will delete two lines starting with the current line. In
our example, since we were at line 6.00, the "D2" operation deleted
lines 6.00 and 7.00. As you will learn to appreciate, the "current
line" default for line is extremely handy.

After performing all of the above operations, our file now looks like
this:

l.00=THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL
2.00=SSB TEXT EDITING SYSTEM, A NUMBER OF
3.00=EXAHPLES WILL BE SHOWN TO ALLOW EASY AND
4.00=QUICK LEARNING OF ITS FEATURES.
5.00=FOLLOWING ARE SOME NONSENSE LINES:
8.00=TESTING 1234
8.10=THIS IS AN INSERTED LINE.
8.20=SO IS THIS.
9.00=THIS EDITOR IS FUN TO USE!

10.00=BBBBBBBB
IL 00=
ll.10=ANOTHER INSERTED LINE.
12.00=THIS IS THE END OF THIS FILE.
13.00=AT LEAST FOR NOW.

We have seen that <line> may be specified by a line number or by
default to the current line. There are also several other ways to
specify <line>, or in other words, to move the pointer to a

-33-

SSB TEXT EDITOR USER MANUAL

desired line prior to the execution of an edit directive. One may
also specify <line> with a "+n" or "-n" (where n is an integer)
meaning the next nth line in the file or the nth previous line in the
file, respectively. Two other useful <line> designators are AAAA
(AAAA on some terminals) and BBBB (1 on some terminals). The up arrow

AAAA is used to designate the top or first line in the file. The down
arrow BBBB is used to move to the last line or bottom of file. These
various <line> specifiers are shown in the example below with the
PRINT directive.

l.00=THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL
#+3P .
~4.00=QUICK LEARNING OF ITS FEATURES.

#!P
~13.00=AT LEAST FOR NOW.

#-2P
~ll.10=ANOTHER INSERTED LINE.

There may be times while editing a
contents of a line of interest but don't
displacement from the current line.
"content-oriented" feature of the editor
specify <line> in this way is

/<string>/

file when we know part of the
know its line number nor its
In such a case we can use the
to find it. The syntax to

where "/" is a character to delimit (enclose) the <string> which is a
sequence of characters known to be in the line. When <line> is
specified as "/<string>/", the editor will search for the c~rrent line
through the file to find the next line containing the specified
<string>. Some examples will help to clarify this: (1) /PRINT/
denotes the next line containing theh character string "PRINT", and
(2) /GO TO 35/ refers to the next line containing "GO TO 35". If the
<string> is found in any subsequent line of the file, that line will
be made the current line and the requested edit operation will be
performed on it. If the <string> does not occur anywhere subsequent
in the file, the editor will issu2 the message "NO SUCH LINE" and will
not change the current line pointer. Note that the delimiter does not
need to be a slash; it may be some other character such as a quote
(') or a comma. For example, 'A/B' refers to the next line containing
"A/B".

It is also possible to pref ix the string designator with "-" (minus
sign) to indicate a previous line containing that string. A few
examples with our TEST FILE will show the use of "/<string./" as a
<line> designator.

#-/QUICK/P
4.00=QUICK LEARNING OF ITS FEATURES.

#;123; p
8.00=TESTING 1234

#+'END'P
12.00=THIS IS THE END OF THIS FILE.

-34-

SSB TEXT EDITOR USER MANUAL

To summarize, we have seen that <line> may be specified a number of
ways, namely: (1) by default to the current line, (2) by typing a line
number, (3) by "+n" denoting the nth subsequent 1 ine, (4) by "-n"
referring to the nth previous line, (5) by /<string>/ denoting the
next line in the file containing the indicated string of characters,
(6) "-/<string>/" to denote the nearest previous line containing the
specified character string, (7) AAAA (AAAA on some terminals) to
denote the first line of the file, and (8) BBBB (BBBB on some
terminals) to denote the last line of the file.

Now let's turn our attention to expanding the definition of <target~.
As you may recall, a <target> is used in some directives to indicate
the number of lines to be affected by the edit operation. We have
already seen that a <target> may be specified by (1) an integer "n"
indicating the number of lines to be affected, as P3, meaning print 3
lines, and (2) a line number preceded by a pound sign () indicating
the line number of the last line to be affected, as P 6, meaning print
all lines to and including line 6. The <target> is simply a
designator telling how many lines the edit directive should operate
on. In addition to the two mentioned forms of <target>, we also have,
(3) if no <target> is specified in a command whose syntax includes
one, a <target> of 1 is assumed, thereby affecting only one line. As
with <line>, one may specify <target> by (4) "/<string>/" which
indicates the next line in the file containing the specified character
string, (5) AAAA to denote the top line in the file, and (6) BBBB to
denote the bottom line in the file. A minus sign may be used to
indicate that processing is to proceed backward through the file in
the following two cases: (7) 11 -n" and (8) "-/<string>/".

With an understanding of <line> and <target> we can now discuss some
more directives. The Print directive is used to display a line or a
group of lines. Its syntax is

<line>P <target>

where "<line>~ and "<target>" may be specified in any of the ways
discussed above. To print just one line one needs to specify only
<line> followed by a carriage return; therefore, the following two
directives perform the same thing:

<line>P

and

<line>

Going back to our test file, we can illustrate the various forms o[
<target> as used with the Print directive.

#2P

#-1
2.00=SSB TEXT EDITING SYSTEM. A NUMBER OF

l.00=THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL
#P /EASY/

-35-

l.00=THIS IS AN EXAMPLE ·oF THE FANTASTICALLY USEFUL
2.00=SSB TEXT EDITING SYSTEM. A NUMBER OF
3.00=EXAMPLES WILL BE SHOWN TO ALLOW EASY AND

#! p -3
13.00=AT LEAST FOR NOW.
12.00=THIS IS THE END OF THIS FILE.
ll.10=ANOTHER INSERTED LINE.

#-/BBB/ P -/123/
10.00=BBBBBBBBB

9.00=THIS EDITOR IS FUN TO USE!
8.20=SO IS THIS.
8.10=THIS IS AN INSERTED LINE.
8.00=TESTING 1234

#12P!
---r2°.00=THIS IS THE END OF THIS FILE.

13.00=AT LEAST FOR NOW.

The first directive displayed line 2.00 and made that line the current
line. The second directive requested that the line immediately
preceding the current line be displayed. The third directive
displayed the block of lines from the current line down through the
line containing the character string "EASY". The fourth directive
printed 3 lines starting at the bottom of the file and ending at line
11.10, which became the current line. The fifth directive requested
the previous line containing the character string "BBB" be found, -and
then starting with that line, display all lines going backwards
through the file until a line containing the character string "123"
has been displayed. This shows the extreme usefulness and power of
the content-oriented characteristic of the editor. The last directive
requested that all lines from line 12.00 to the end or bottom of file
be displayed.

The next directive to discuss is Next which is used primarily to move
the current pointer. Although it may be used otherwise, usually it is
used only with the default <line>. Its syntax is

N <target>

This directive finds the line indicated by target, displays it and
makes it the current line. A few examples will illustrate its use.

l.00=THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL

2.00=SSB TEXT EDITING SYSTEM. A NUMBER OF
#N 6
-8.20=SO IS THIS.

#N -2
--8.00=TESTING 1234

The following directive performs single-line replacements or inserts.
Its syntax is

<line>=<text>

-36-

SSB TEXT EDITOR USER MANUAL

where "<line>" specifies the number of the line to be replaced or
inserted and may, of course, default to the current line. "<text>"
is the text to comprise the line. To illustrate this directive, let's
continue our example series.

#=REPLACE CURRENT LINE HERE
#5.25=THIS LINE CREATED WITH "EQUALS".

The first directive changed the contents of line 8.00, the current
line. The second example inserted a line with the line number 5.25.

The next directive to be discussed is the CHANGE directive. It is
used to change occurrences of one character string into another. Its
syntax is

<line>C /<string> /<string> I <target> <occurrence>

where "/" is a delimiter character to separate the two character
strings; "<string> " is the character string to be replaced;
"<string> " is the string of characters to replace them; "<target>"
specifies the range of the changes; and "<occurrence>" specifies
which occurrence(s) is 1 or is not specified, then only the first
occurrence of <string> in any line of the block will be changed -­
the second or subsequent occurrence of the string in such a line will
not be affected. If 2 is specified for <occurrence>, then only the
second occurrence of <string> in any line of the block will be
changed. To change all occurrences of the indicated string in the
block, use an asterisk (*) for <occurrence>. Let's illustrate the
Change directive by continuing our example.

#4C/QUICK/FAST/
4.00=FAST LEARNING OF ITS FEATURES.

#8.l c /THIS IS II
8.010=AN INSERTED LINE.

#-SC ;A;$; ;SOME;*
3.00=EX$MPLES WILL BE SHOWN TO $LLOW E$SY $ND
4.00=F$ST LE$RNING OF ITS FE$TURES.
5.00=FOLLOWING $RE SOME NONSENSE LINES:

#12C /E/?/ -2 3

12.00=THIS IS THE END OF THIS FIL?,
ll.10=ANOTHER INSERT?D LINE.

The first example replaced the string "QUICK" with the string "FASrr"
in line 4.00. The second example deleted the string "THIS IS" and a
blank from line a.10. The third example starts at the fifth previous
line (line 3.00) and changes every occurrence of "A" to "$" down
through all lines until the line containing the character string
"SOME" (line 5. 00) is reached. The last example changes the third
occurrence of "E" to "?" in line 12.00 and then in line 11.10.

The last directive to be discussed is used to exit from the editor.
This can be done several different ways: STOP, S, OR LOG. This will

-37-

SSB TEXT EDITOR USER MANUAL

return you to your system monitor.

Now let's go back to our test file and illustrate some of the features
and directives we have discussed.

l.00=THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL
2.00=SSB TEXT EDITING SYSTEM. A NUMBER OF
3.00=EX$MPLES WILL BE SHOWN TO $LLOW E$SY $ND
4.00=F$ST LE$RNING OF ITS FE$TURES.
5.00=FOLLOWING $RE SOME NONSENSE LINES:
5.25=THIS LINE CREATED WITH A"EQUALS".
8.00=REPLACE CURRENT LINE HERE
8.10=AN INSERTED LINE.
8.20=SO IS THIS.
9.00=THIS EDITOR IS FUN TO USE!

10. 0 0=BBBBBBBBBB ·
11.00= ~
ll.10=ANOTHER INSERT?D LINE.
12.00=THIS IS THE END OF THIS FIL?,
13.00=AT LEAST FOR NOW.

i2C/EDITING/EDITOR/
2.00=SSB 6800 TEXT EDITOR SYSTEM. A NUMBER OF

i/BBB/
10.00=BBBBBBBBBB

#-;THIS IS ; C 'E'XX' !
l.00=THIS IS AN XXXAMPLE OF THE FANTASTICALLY USEFUL
2.00=SSB 6800 TXXXT EDITING SYSTEM. A NUMBER OF
3.00=XXX$MPLES WILL BE SHOWN TO 70LOW E$SY $ND
4.00=F$ST LXX$RNING OF ITS FE$TURES.
5.00=FOLLOWING $RXX SOME NONSENSE LINES:
5.25=THIS LINXX CREATED WITH "EQUALS".
8.00=RXXPLACE CURRENT LINE HERE
8.10=AN INSXXRTED LINE.
9.00=THIS XXDITOR IS FUNE TO USE!

ll.10=ANOTHXXR INSERT?D LINE.
12.00=THIS IS THXX END OF THIS FIL?,
13.00=AT LXXAST FOR NOW.

#N-4
---10.00=BBBBBBBBB

#-11
---9.10=TEST-TEST-TEST

9.20=1234567890
9.30=iD!

BOTTOM OF FILE REACHED
#D!

BOTTOM OF FILE REACHED
ilP!
#LOG

The previous tutorial has been only a brief introduction to the SSB
Text Editing System. It is important to read and study the entire
manual in order to fully understand all the power and features of this
editor.

-38-

	000
	001
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

