6800/68@1/6203/6811 DEBUGGER
USER®* S MANUAL

Sth Printing

COPYRIGHT (C) 1977, 1982, 1988 SOFTWARE DYNAMICS, INC.

NOTICE

cosee arums sveee crace 000 w326

This manual describes IDB Version 1.2. Software Dynamics has
carefully checked the information given in this manual, and it is
believed to be entirely reliable. However, no respoonsibility is
assumed for inaccuracies. Software Dynamics reserves the right
to: change the specifications without notice.

****************************'*******************%*********************

8D software is sold on a single copy per computer basis, and is
*% covered by U.S5. copyright laws. Unless a written exception is
*% obtaived from 8D, the software must be used only on the single
#%* computer whose unique, 8SD-assigrned serial number matches that
#% for which the software was purchased. Copies for any purpose
** other than archival storage, or use on other than the assigrned
#% serial numbered CPU are strictly prohibited.

** USE OF THIS MANUAL OR THE SOFTWARE IT DESCRIBES CONSTITUTES
#% - AGREEMENT BY THE USER TO THESE TERMS.

*3
¥
*%
* %
¥*%
*3%
*%
*¥H
¥* 3%

%*%

IDB (INTERPRETIVE DEBUGGER) USER?S MANUAL

TABLE OF CONTENTS
INTRODUCTION & v o 2 v = « = « « = & & &
DPERATION v v v v v o« « & o = = # = « = &
COMMAND FORMAT &+ v & & v o & = « « = » =
VALUES ENTERED INTO THE DEBUGGER
SIGNIFICANCE v « = o & = 2 = = « « « & =
IDE COMMANDS v « + « « » o = « & « &« » =
SETTING THE DISPLAY MODE .+ « v & + « .+ &
EXAMINE AND MODIFY COMMANDS
HEX ARITHMETIC « o o v v e e v e e e e

SETTING REGISTERS .= & + &« v & = & o « = &

ZERO (FILL) AND SEARCH WITH MASK . . . i .

COMPUTE RELATIVE DISPLACEMENT COMMAND .’.
DUMP MEMORY COMMAND « & & « & o &
SWITCHING THE DUMP/SEQR&H OUTPUT CHANNEL
LbQD COMMAND . . & &« & & & & & « o &« & =
PUNCH COMMAND & & & & « o o o & o « = = =
BREAKPOINT COMMANDS & o +v ¢ & o & « & «
EXECUTION COMMANDS . . ¢ & & & ¢ « & = &
NON-MASKABLEE INTERRUPT . . « . « &« « « &
THE I/0 INTERFACE TRBLEA. .
RAM-BASED IDB FOR 8DOS . . « « « « + - &

COMMAND SUMMARY . . & & ¢ v o & o o & « =

Copyright (C) 1977, 1982, 1988

fa

na

o > W

Software Dynamics,

Inec.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

INTRODUCTION

IDB is a small memory, stand—-alone debugger for &880, €841, 6343
or 6811 microprocessor systems. It is ideal for debupgging
assembly language programs. IDB acts as a very sophisticated
replacement to the “MIKBUG" ROM available with most &82@
development systems (MIKBUG is a registered trademark of Motorola
Inc., and any reference herein is to their registered trademark).

CIDB . allows the programmer to load and dump programs in MIKBUG
formaty to display large blocks of memory; to examine memory
locations in several display formats; to modify memory locationsg
to single-step programs; to set breakpoints and execute a
program; and to search or fill memory for/with a particular
value.

This manual describes IDRER Version 1.2.
OPERATION

IDB is usually burned into a set of ROMs and resides permarently
in the development system. However, it can also be Kept on
external media and loaded when a debupg session is about to beging
this scheme is rnot as safe (since the debugger might get
clobbered).

IDB comes configured to communicate to the user through a serial
port, usually an ACIA or 6831. This port is called the "consocle!
device. Normally, the port is cornnected to a teletype or CRT
device. The console device can be changed by modifying a jump
table.

The programmer interacts with IDB via commands piven at the
keyboard. IDB gives no prompt; if no display action is
occurring, IDB is in command input mode. The programmer enters
commands, and if the command is valid, IDB executes the command
and then returns to command input mode. IDB checks the input
character by character. If an entry is syntactically or
semantically incorrect, it is diagnosed immediately by a
print-out of "??" followed by a carriage-return and IDB remains
in - the command input mode. If there is a command error, the
opened location is closed,

In the examples included in this manual, underlined characters
-are keyed irr by the operatord Comments +to the right do not
appear as output of the debugper; all other printed data is
typical debugger ocutput. Many of the examples use previous
examnples to set up a krnown situation.

All IDB commands and hexadecimal numbers can be entered in either
upper or lower casej; in this manual only uppercase commands are
showr, and a small letter immediately to the left of a command
represents a numeric value entered by the coperator immediately
before the command keystroke.

" Copyright (C) 1977, 1982, 1988 i ‘ Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER?S MANUAL

COMMAND FORMAT

All commmands to IDB fit one of the following forms:

c (No Parameter)
nC {Single Parameter)
n3C {(Single Parameter)
r, mC (Double Parameter)
sC {No Parameter)

where n is a value (hex rnumber up %to six digits dependinh‘upon
the command) or simple hex arithmetic expression and m is a2 hex
number. (CR}) is a carriage-return, (LF} is a line-feed and C is
a command character (letter, punctuation mark, <(CR}, or (LF}).
";+" is a semicolon and "," is a comma.

VALUES ENTERED INTO THE DEBUGGER
IDB accepts several formats for numbers:

Hex numbers, a string of hex letters or digits:
@R BCY9 22 BDIFAY9

Sinple characters representing special values:

. (Pericd), meaning the address of the last opened
memory location, whether it is open rnow
or not. This is referred to as the open
location marker.

* (asterisk), meaning the wvalue that would be
displayed as the P register contents on
a register dump (location of next
instruction to execute).

(pound sigr), meaning the number of
instructions single-stepped since last
"3 #" command.

‘e (single quote, followed by any character), meaning

"the ABCII value of the character c". A is
equivalent to typing in 41 (hex); likewise, *b =
hex 6Z. i

SIGNIFICANCE

Numbers entered into IDB have significarce (size in bytes) based
on the number of digits keyed in. This significance is used by
commands which store into memory or do hex arithmetic.

1 or 2 digits gives 1 byte significance
3 or 4 digits gives 2 byte significance
S or 6 digits gives 3 byte significance
Special values (., *, #) have 2 bytes of significance

'c has 1 byte of sipnificance

Copyright (C) 1977, 1982, 1388 2 Saftware Dynamics, Inc.

IDEB (INTERPRETIVE DEBUGGER) USER'S MANUAL

IDE COMMANDS

IDB commands fall into the following categories:

Set The Display Mode

Examine and Modify Memory

Hex Arithmetic

Set Repister

Zero (Fill) and Search With Mask
Compute a Relative Displacement
Dump Memory

Switch the Dump/Search Output Charrel
Load Memory

Purch Memory

Breakpoints

Execute and Single-5tep

‘Copyright (C) 1977, 1982, 1988 3 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER’S MANUAL

SETTING THE DISPLAY MODE

The display mode commands affect the way the register display and
memory examine commands display the currently open location.

COMMAND OPERATION

;A Set Display Mode to ASCII

sH Set Display Mode to Single Byte Hex
s X Set Display Mode to Double Byte Hex
30 Set Display Mode to Instruction

The 3R display mode allows values to be displayed as ASCII
characters. If a character is ron—-printable (hex @-1F, 7F-9F,
FF), then the byte is displayed in j;H mode.

The 3H display mode allows values to be displayed as single-byte
hex gquantities. This display mode is default upon IDB startup.

The ;X display mode allows values to be displayed as double-byte
hex quantities.

" The ;0 display mode allows values to be displayed as
instructions. If an illegal instruction begins in the location
being examined, then a "?" followed by a single-byte value is
displayed. Otherwise, the instruction display format depends on
whether the symbolic disassembly option has been enabled.

SYMBOLIC DISASSEMBLY: Instructions are displayed in a format
consistent with the SD assembler. Addresses,
immediate values and offsets are shown as hexadecimal
constants of the appropriate significance.

NO SYMBOLIC DISASSEMBLY: If a single-byte instruction begins
in the location being examined, then a single hex byte
is displayed. If a double~byte instruction begins in
the location being examined, then two hex bytes are
displayed. If a triple-hyte instruction begins in the
location being examined, then three hex bytes are
displayed.

Display modes are rnot affected by sinple-stepping or user program
execution. They may only be changed by explicitly typing in a
new display mode command. If a display mode command is entered
while a location is still open, the value in that location will
automatically be displayed in the new mode.

Copyright (C) 1977, 1582, 1988 4 Software Dynamics, Inc.

IDR (INTERPRETIVE DEBUGGER) USER'S MANUAL

EXAMINE AND MODIFY COMMANDS

The examine and modify commands are used to display and/or change
memory locations and registers.

COMMAND OPERATION

1/ Open Location 1| and Display in Current Mode
{(LF> Display Next

n{LF?} Deposit and Display Next

~ Display Previous

n" Depnosit and Display Previous

(CR> Close This Location

n{CR} Deposit and Close Location

1: Open Location 1

"text" Deposit ASCII Text String

?] Display Registers, Current Instruction, and

Last Opened Location

‘The 1/ command is used to open location 1 and display its
- gontents in the current mode. "Opening a location” means to make
it available for examination and/or modification.:

The (LF} (line—feed) command is used to advance the open location
marker and display the contents of the new location in the
current mode. If the current mode is 3;H or 3R, the open location
marker is bumped by one, and the next byte is displayed. If the
current mode is 33X, the open location marker is bumped by two,
and the next two bytes are displayed. If the current mode is 30,
then the open location marker is bumped by the length of the
instruction (1 if the instruction is illegal) and the next
instruction is displayed. {LF}» is only valid when a location is
CDev.

The n{LF) command is used to deposit from one to three bytes.
The open location marker is bumped by the significance of n,
regardless of display mode, and the contents of the rnew location
are displayed in the current mode. n{LF} is only wvalid when a
location is open.

The ~ (up arrow) command is used to decrement the open location
marker by one and display the contents of the new location in the
current mode. * is only valid when a location is open.

The n™ command is used to deposit from one to three bytes. The
open location marker is decremented by one, regardless of display
mode, and the contents of the new location are displayed in the
current mode. n™ is only valid when a location is open.

Copyright (C) 1977, 1982, 1988 5 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

The (CRY (carriage-return) command is used to close the currently
open location, The open location marker is not advanced. {CR>
is a no—op when a location is not open.

The n{CR> command is used to deposit from one to three bytes into
the open location. The open location marker is not advanced and
the location is closed. n{CR) is only valid when a location is
oper.

The 1: command is used to open location 1. No display occcurs.

The "text" command is used to enter ASCII text strings into
memcry. The opening " character signifies the start of this data
entry mode, but does not actually deposit any data. The ASCII
code for each character (keystroke) following the leading " is
deposited into memory, and the open location is advanced by 1.
Data entry is terminated by the second ", which does not cause
any further data to be deposited. IDBE then automatically
displays the contents of the new value of the open location, as
though (LF) had been typed.

The ? Command is used to display the registers, the next
instruction (in 30 mode), and the last opened location in the
current display mode. This display is referred to as a register
dump elsewhere in this manual. In a register dump, the contents
of the registers follow the letter naming that register; the rnext
instruction follows the #/ (% means "value of PC"), and the
contents of the last open location are shown as nrnn/dddd.....
Not shown in this marual, but displayed on the €811 version, is a
place for the Y register in each register dump.

Copyright (C) 1977, 1982, 1988 6 Software Dynamics, Inc.

IDE (INTERPRETIVE DEBUGGER) USER?S MANUAL

Examples:

1@2: 45 <CR} OPEN LOCATION 18@ AND DEPOSIT 45. THE
LOCATION IS CLOSED.

=/ 45 1A/ E {LF) EXAMINE LOCATION 1283 CHANGE TO ;A MODE,

SEE VALUE IN ASCII; EXAMINE NEXT.
P1@i/ F 3H/ 46 {CR) CHANGE TO :H MODE, SEE VALUE IN HEX;
CLOSE THE LOCATION.
./ 46 (LF) , DPEN THE LAST LOCATION; EXAMINE NEXT.
@102/ BD ;0/ BD7E2® BD7EQS(LF)

CHANGE TO 30 MODE, SEE VALUE AS INSTRUCTION;
CHANGE VALUE AND EXAMINE NEXT.

gies/ 39 8L~ DEPOSIT AND EXAMINE PREVIOUS

2id4/ @5 STILL IN ;0 MODE, @5 IS ILLEGARL OF CODE;
EXAMINE PREVIOUS

2ias/ 70501 - CONTENTS OF 123 LOOKS LIKE "JMP" INSTRUCTION;

EXAMINE PREVIOUS.
@102/ BD7E@S 3;X/ BD7E {CR)
CHANGE TO ;X MODE; CLOSE THIS LOCATION.

2@/ aa7z "ABCDL(CR)

P

(LF)DEF" DEPOSIT TEXT DATA

lv

2 SHOW REGISTERS

P=3205 A=@1 B=FE C=C2 X=3231 5=4073 */ 7E3268 0185/ 01
30 SWITCH TO OPCODE DISPLAY

*/ TE3628 I3(CR} FIX INSTRUCTION AT P COUNTER

F’

P=3005 A=@1 B=FE C=C0 X=3031 S=4273 %/ 39 IS/ 39

Copyright (C) 1977, 1982, 1988 7 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

HEX ARITHMETIC

Hex arithmetic is used to evaluate expressions.

COMMAND DPERATION
-n Find Negative of n
Yi—-m Find Difference
ri+m Find Sum

n= Print Value

The -n command is used to take the two's complement of a ore or
two byte value.

The n—-m command yields the two's complement difference.
The n+m command yields the two’s complement sum.

The n= command is used to print out the current value using the
appropriate significance.

Note that all arithmetic (negate, add, and subtract) only
operates on one or two byte operands, and if a three byte cperand
is given, the leftmost byte is igrnored and the significarce
becomes two rather than three. Also, sighnificance is maintained
in all arithmetic operations. For instance, adding one byte to
one byte yields an answer of one byte whether or not a carry-out
occurred. RAdding two bytes to ore byte will give two bytes of
significance. The significance of the result will always by ore
or two bytes. When in doubt as to the significance of a result,
use the print value operator (=). A result of an arithmetic
operation is treated as though the programmer had typed in that
value itself, and may be followed by commands requiring values.

Copyright (C) 1977, 1582, 1988 8 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER?S MANUAL

Examples:

—1=FF

a0 cam awwr

—@@1=FFFF

on oo 0000 eommo cames

om0 Cemre. ST aemme sasie Sum 43045 eSS SO

o 0000 e oy So0ap

s e s e esca>

- o s o oo Sotte wase

—.—.a——-

b

TP PR —4

P'&@ﬂs A=@1 B=FE C=C8 X=3031 S=4073 */ 39

. aan, eSioe ssw S sasss, e Satps

1@@/ EEBu 1H/ 22 ’Q—’@-ﬂ«@?(CR)

NEGATE 1 BYTE VALUE
NEGATE 2 BYTE VALUE
1 BYTE DIFFERENCE
2 BYTE DIFFERENCE

3 BYTES BECAME 2
1 BYTE SUM

PRINT S

PRINT FFo@
PRINT FF@@@@

ANSWER IS &

LOOK AT LOCATION A2

2 BYTES ONLY

PRINT ADDRESS OF LAST OPENED LOCATION
IGNORE VALUE (SPACE) AND GO TO NEW LINE ((CR>)

EXAMINE LOCATION .+35

*-2=3003/ FF 30/ FF@@Q39

Copyright (C)

1977,

198z,

1988

9

aiaas a7

Snftware Dvrnamica.

T

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

SETTING REGISTERS

The following commands are used to change the contents of a
specific register by name.

COMMAND OPERATION

n;A Set O Register to n
;B Set B Register to n
n3C Set € Register to n
n3D Set D Register to n
niX Set X Register to n
nyY Set Y Register to n
n3s Set S Register ton
H Set P Repgister to n

The n3R n3B n3C commands set registers A B C respectively to the
rightmost byte of n.

The n3X n3S n3P 3D 3Y commands set registers X § P D Y
respectively to the rightmost two bytes of n (the D register
consists of A and B treated as a 16 bit valuej; the Y register is
present only on the 6811). If a one byte value is given, a
leading zero byte is assumed.

When the stack pointer is set, IDB assumes that the value given,
minus & (minus 8 for the 6811), points to a (interrupt) context
block (i.e., n=7+1 (n—-9+1 for 6811) points to a condition code
byte). The contents of this context block are used as the values
of the registers. .

When IDB starts up, it invents a seven (nine for &811) byte stack
for the user’s context block using a value specified by the INITZ
routine. If this value is not appropriate, it is a pgood idea to
assign (via n;8) a convenient stack before doing any debugging.

Copyright (C) 1977, 1982, 13588 ia Software Dynamics, Inc.

IDE (INTERPRETIVE DEBUGGER) USER?S5 MANUAL

Examples:
138 SET THE A REGISTER TO @1
FEsB SET THE B REGISTER TO FE
- C@sC SET THE C REGISTER TOD C@&
2 SHOW REGISTERS
P=3005 A=@1 B=FE C=C0 X=3031 S=4@73 %/ 7E308 2105/ 11
12343D SET THE A REGISTER TO 34
12345638 SET THE B REGISTER TO 56
2 SHOW REGISTERS
P=3225 A=34 B=S6 C=C@ X=3031 S=4073 */ 7E3IQE8 0125/ B1
1:X SET X TO o0@l
2 SHOW REGISTERS
P=3205 A=34 B=56 C=C@ X=0001 S=4073 %/ 7E3068 2105/ @1
12343X SET X TO 1234

2 SHOW REGISTERS

P=3005 A=34 B=56 C=C@ X=1234 S=4@73 %/ 7E3068 8105/ B1
FEzP SET P REGISTER TO Q@FE

FE/ o2 LOOK AT LOCATION FE

7 'SHOW REGISTERS

=@OFE A=34 B=56 C=CO X=1234 S=4073 */ 700 QRFE/ 0
FE/ 2@ 22454{CR) MAKE IT AN INSTRUCTION

2 SHOW REGISTERS

=Q@FE A=34 B=56 C=C@ X=1234 S=4073 %/ 2245 OOFE/ 22
iX CHANGE DISPLAY MODE

2
P=Q@FE A=34 B=56 C=C@ X=1234 S5=4073 */ 2245 QOFE/ 2245
2 CHANGE DISPLAY MODE :

P=@@FE A=34 B=56 C=C0 X=1234 5=4073 */ 2245 Q2FE/ "

Caution: setting the stack pointer (5 register) causes the
remaining registers to take on arbitrary new values according to
their positions in the context block pointed to by the new value
of the S register!!

FE:S SET THE STACK POINTER TO Q@FE
2 SHOW REGISTERS
P=p@22 A=F4 B=45 C=CO® X=789F S=0@FE */@7 @QFE/ "

Copyright (C) 1977, 1982, 1988 11 Software Dyrnamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

ZERO (FILL) AND SEARCH WITH MASK

The fill commmand is used to fill memory with a one, two or three
byte value from a mask. This is effectively a zero command when
the mask is zero. The search command is used to search memory
for a one, two or three byte value using the mask.

COMMAND OPERATION

ni Set Mask

M Show Mask

nS Set Search Tarpet

S Show Search Target

1, mS Search Using Mask Between n and m

vy, mZ Zero (Copy Mask to Memory) Between n and m
iy, m? Checksum memory

The nM command is used to define a mask for the search and zero
(fill) commands. The mask may be one, two or three bytes long
with one bits specifying the bit positions to ignore (mask out)
while searching. The mask is defaulted to a single—-byte zerao
upon IDB startup. . ’

The M command is used to show the last value defined as the mask
as a one, two or three byte value.

The nS command is used to define a search target to be used with
the search command. The search target may be orne, two or three
bytes long specifying the exact sequence of bits to search for.
Selected bit positions of the search target may be overriden by
one bits in the mask.

The S command is used to show the last value defined as the
search target as a one, two or three byte value.

The n,mS command is used +to search wmemory between n and m
inclusive for the occurance of the search tarpet. The mask is
used while searching to specify bits in the search target and the
memory to ignore. The mask must be the same length as the search
target. The search command will print out the address and
contents of that address for each match found. Note that m-n+il
search attempts are made regardless of search target lerngth.

If the search target and the mask are three bytes long, - then
three bytes are printed out for each match. IDB will compare
apainst loc n, n+l, n+2 for a matchj then n+l, n+2, n+3, through
loc m, m+l and m+2. '

If the search target and the mask are two bytes long, then ftwo
bytes are printed out for each match. IDB will compare against
loc n, n+l, for a matchj; then n+l, n+2, through loc my, m+l.

If the search target and the mask are one byte long, then one
byte is printed cut for each match. IDB will compare against loc

Copyright (C) 1977, 1982, 1988 i2 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

n for a matchi then n+l through loc m.

Noete that a match may ocouwr if a search target begins within the
limits (inclusive), even though the remaining bytes may cross the
limit. The output of the search command is rnormally directed to
the console device. The output can be switched to the dump
charmel by using the T command. The search command may be
interrupted at any time by typing an escape character on the
conscole device.

The ny,mZ command (fill) is used to copy the mask to memory
between n and m inclusive. If the mask is one byte long then the
mask is copied m—-n+l times into locations my, m+l, m+2... n—-1, n.
If the mask is two or three bytes then the mask is copied
INT({m-r+1)/2) or INT{(m-n+1)/3) times respectively into memory
with any leftover bytes being filled with leading mask bytes.
For example, if the mask is three bytes and "12@, 107Z" is entered
on the console device, then the mask is copied to locations 122
through 182 and 183 through 1205, and locations 126 and 107 get
the left-most two bytes of the mask. The zero (fill) command
never modifies a location past the address given as the second
parameter.

The n,m? command is used to compute & simple checksum over the

- address range n thru m, inclusive. The value of the checksum is
printed. This is used mostly for fast determination of whether a
portion of RAM has changed or not.

Copyright (C) 1977, 1982, 1988 13 Software Dyrnamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

Examples:

M SET MASK TO ZERO (ONE BYTE)

M "2 SHOW MASK

l@QLLEEZ FILL 122 THRU 1FF WITH ZERDOES

FFM SET MASK TO FF (1 BYTE)

199, 1FFZ FILL 122 THRU 1FF WITH FF

BD3F3c8 SET SEARCH TARGET TO BD3F32 (3 BYTES)

rararnnlnlyl SET MASK TO 3 BYTES (IGNORE NO BITS)

caa, 30025 FIND SEARCH TARGET BETWEEN 2003 & 002 INCLUSIVE

el s

c@FE/ BD3F92
219A/ BD3F92
30013/ BD3F92

FOUND IT HERE
FOUND IT HERE
FOUND IT HERE

S BD3F92 SHOW SEARCH TARGET
DOVDEEM SET MASK TO IGNORE LAST BYTE OF SERRCH
2000, POFES FIND ALL JSR'S TO 3FXX

c@1@d/ BD3FGA -

2@FE/ BD3F92

FOUND IT HERE
FOUND IT HERE

7EQ10aM

- s eeee s et wost e
EEasE eileetado .

INSTALL "JMP 122" INSTRUCTIONS BETWEEN 4208 & S2@@

LOOK AT WHAT WE DID

4Q3/ 7E012@ (CR)
4FFE/ 7E@IFF ~ NOTE THAT LOC 50@1 WAS UNTOUCHED

Copyright (C) 1977, 198z, 1988 14 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER?S MANUAL

COMPUTE RELATIVE DISPLACEMENT COMMAND

This command is used to compute the relative displacement byte of
relative branch type instructions.

COMMAND OPERATION
nR Compute Relative Displacement

This command is used to find the difference in addresses as a orne
byte value between .+1 and n. If the address given (n) is
outside the range of a relative branch-type machine instruction,
an error will occur. The way this command is used is fto open a
location where a relative displacement byte is to be deposited,
and specify the target address (n) followed by "R".

Examples:

1o/ 2021 3H/ 28 (LF)> WE HAVE A "BRA $123"

11/ 21 125R=03{CR) TELL IDB TO MAKE A "BRA $1@5", DISPLAY THE
DISPLACEMENT, THEN DEPOSIT IT

L1/ 2@ 30/ 20@B3 NOW GO CHECK ENTIRE INSTRUCTION -

«£+1/ 283 BR?? TELL IDB TO MRKE A "BRA $@"j; HE SAID
THAT'*S TOO FAR!

o/ 203 9BRL{CRY TELL IDB TO MAKE A "BRA $9a"

-1/ 208E NOW CHECK ENTIRE INSTRUCTION

Copyright (C) 1977, 1982, 1988 15 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

DUMP MEMORY COMMAND

This command is used to display large areas of memory in hex and
ASCII on the dump device.

COMMAND OPERATION
l,n/ Dump Memory to Dump Device
The area dumped is specified by 1 and n. 1 is used as an

address; n may be a byte count (significance of one) or an
address {(significance of two). If a byte count is used as the
second parameter, dumping begins at 1 and continues for n bytes.
If an address is used as the secornd parameter, dumping begins at
1 and continues until address n is reached (inclusive). Beware
of specifying a second parameter address that is smaller than the
first parameter address; an awful lot of memory will be dumped!!
The output of the dump is rnormally directed to the conscole
device. The output can be switched to the dump channel by using
the T command. The dump device wmay be a console, printer, or a
disk file, depending uporn the configuration. See the section on
I/0 entry points to find out how to change the dump device. The
dump may be interrupted at any time by typing an escape character
on the conscle device. This causes the dump to stop and IDB to
return to the command input mode.

After dump is complete, location 1 is opened for changes or
re—display in a different display mode.

Copyright (C) 1977, 1982, 1988 16 Software Dynamics, Inc.

IDB (INTERPRETIVE DERUGGER) USER?'S MANUAL

Examples:

asove ove oo sesee oemes seese

e cam dhs wveve soa soee o

DUMP 16 BYTES
9D 8@ 9F 84 02 22 20 0@ 20 39 3@ 31 31

DUMP FROM ADDRESS @@55 TO @261

I}Ml..!.l.l gmi

@255/ OF B4 20 V0 20 @0 =22 39 30 31 31 verea. 9011
2060/ SA 9A Z.

102, IFE/ DUMP FROM 1@@ TO 1FF INCLUSIVE

2100/ 00 D1 D2 03 24 OS @6 7 @8 @9 DA VB @C @D @E @F .vevenceesansns
@110/ 1@ 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E IF wvreuncnncnecns
@i2@/ 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E &F ! "#$%RY () *+, -,
2139/ 3@ 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F @123456789:; (=)
@140/ 4@ 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMN
21S@/ 5@ 51 52 53 54 55 56 57 58 59 S5A 5B S5C 5D SE 5F PERSTUVWXYZIL\I~
D160/ 60 61 62 63 64 65 66 67 68 69 GA 6B 6C 6D 6E 6F ‘abedefghigklmn
@170/ 7@ 71 72 73 74 75 76 77 78 79 7R 7B 7C 7D 7E 7F parstuvwxyz{ |}
2180/ 80 B1 82 83 B4 BS 86 87 88 89 BA 8B AC 8D BE BF .uvvrecensanses
2190/ 90 91 92 93 94 95 96 97 98 99 9A 9B IC ID IE TIF wreeenenevnnnne
21A2/ AD Al A2 A3 A4 AS AE A7 A8 A9 AR AB AC AD AE AF ! "H#4%&' () ¥+, -,
P1B@/ B@ Bl BZ B3 B4 BS BE& B7 B8 B9 BA BR BC BD BE BF @123456789:; (=)
@1CB/ Ca C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF ®ABCDEFGHIJKLMN
@21D2/ D@ D1 D& D3 D4 DS D6 D7 D8 DI DA DE DC DD DE DF PORSTUVWXYZL\I~
P1E®/ E® El E& E3 E4 ES EE€ E7 EB E9 EA EB EC ED EE EF ‘abcdefghigklmn
@iF@/ F@ F1 F2 F3 F4 F5 FE& F7 F8 F9 FA FB FC FD FE FF parstuvwxyz{l»"

Copyright (C) 1977, 1982, 1988 17

The address on the left side of the page is the address of the
first byte printed. Addresses increase by one for each byte
displayed from left to right, so that the address of the $5F byte
is $13F. The characters to the right are in one-to-ore
correspondence from left to right with the displayed hex bytes,
and are the ASCII equivalents of the bytes dumped. Control
characters and $7F, $FF are printed as a pericd. The parity bit
is ignored.

Software Dynamics,

Inc.

IDE (INTERPRETIVE DEBUGGER) USER'S MANUAL

SWITCHING THE DUMP/SEARCH CHANNEL
COMMAND DPERATION
nT Switch Dump/Search Output Charnel

The nT command is used to switch the dump/search ocutput between
the console and the dump. chanrel. If n is zero, then the console
is selected for dump/search ocutput. Ifn is non—-zero, then the
dump charmel is selected for dump/search output. Console output
is defaulted upon IDRBR startup.

Examples:

2T SET DUMP/SERRCH QUTPUT TO CONSOLE
SET DUMP/SEARCH OUTPUT TO DUMP

i

Copyright (C) 1977, 1282, 1988 i8 Software Dyrnamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

LOAD COMMAND

This command is used to load programs in MIKBUG format from the
load device. Certain implmentations of IDR can load SDOS load
records instead of MIKBUG, and other implmentations may not have
a load command at all.

COMMAND OPERATION
N Load object records from Load Device

A successful load will print the address of the last byte loaded.
This can be heloful in situations where you don’t krnow how big a
program is, or if you do, you have an extra verification that all
is ok. If a checksum error occcurs while loading, or an illegal
character is encountered in a load record, the first address of
the block being loaded is printed out followed by "??" indicating
the error. The load may be interrupted by typing an escape
character on the conscle device at any time. The address of the
block being loaded will be printed out, showing how far the load
had progressed before being interrupted, and then IDB will return
to the command input mode. See the section on I1/0 entry points
to find out how to change the load device.

Examples:

3L 17E3 SUCCESSFUL. LOAD, LAST BYTE WENT INTO 17E3
3L 21B@?? CHECKSUM ERROR ON BLOCK 1R@ '
3L 1z29a ESCAPE WRAS TYPED AFTER THE LOAD BEGAN.

IDB SAYS THAT HE WAS ON BLOCK 1z0@
WHEN INTERRUPTED

Copyright (C) 1977, 1982, 1988 19 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

PUNCH COMMAND

This command is used to dump ("punch”, a term inherited from
paper tape days) memory out in to the punch device. The standard
obgject file format produced is MIKRUG, but certain
implementations of IDB may produce SDOS object records, or the
punch command may vnot be present at all.

COMMAND OPERATION
1,nP Punch object records to Punch Device

The area punched is specified by the addresses 1 and n. Punching
begins at 1 and continues until address n is reached (inclusive).
Beware of specifying a second parameter address that is smaller
than the first parameter address; an awful lot of memory will be
punched!! GSee the section on I1/0 entry points to find out how to
charge the punch device. Punching may be interrupted at any time
by typing an escape character on the console device. This causes
the punching to stop and IDEB returns to the command input mode.
Note that am end record ("53" in MIKBUG format) is not punched.
This allows the punching to the same file of different and not
necessarily contiguous areas of memory. When all punching is
complete, the end record can be punched by entering the command

nw, @py,
Examples:

12, 22@P PUNCH OUT 122 THRU 2@ ...
SF@a, 3FFFP FOLLOWED BY 3F22 THRU 3FFF
2,ap END FILE ON PUNCH

Copyright (C)y 1977, 1982, 1988 e Software Dyrnamics, Inc.

IDEB (INTERPRETIVE DEBUGGER) USER?'S MANUAL

BREAKPOINT COMMANDS

"Breakpoints” are used to stop a program at a certain place so
that the state of the machine can be examined. The programmer
places breakpoints in his program where he would like to be able
to interrogate the machine repgisters and whatever else may be
interesting;y then he tells IDB to run his program (see G
commands). When the pragram hits a breakpoint, control is passed
to IDB, which does a register dump. The programmer can then
examine or change memory, place rnew breakpoints, start his
orogram again or continue execution from where it left off. The
breakpoint commands are used to set up to four realtime
conditional or unconditional breakpoints, showing breakpoints,
and deleting breakpoints.

COMMAND OPERATION
1! Set Unconditional Breakpoint on Address 1
l,e! Set Conditional Breakpoint
! Show Breakpoints
FAN Remove Breakpoint from Address 1
K Mill All Breakpoints

An IDB breakpoint instruction (BKPT) may be either a SWI
instruction o a three byte extended JSR instruction, depending
o configuration. Associated with each BKPT is an iteration
counter and a conditional subroutine, The BHKPT instruction is
"nlanted” at the breakpoint location during realtime execution to
regain contral when encountered. The conditional subroutine is
used to return "true" or "false" depending upon some arbitrary
user—-specified conditions. The iteration count is used to count
down the "true” responses from a conditional subroutine until the
counter becomes zera, at which time the breakpoint is considered
to be "hit".

There areg two types of breakpoints: conditional and
unconditional. Conditional breakpoints are associated with a
user-defined conditional subroutine. Unconditional breakpoints
are really conditional breakpoints that are associated with an
IDB-defined conditional subroutine that always returns "true'.

IDB uses the BKPT instruction at each breakpoint $o regain
control after encountering a breakpoint during realtime
execution. [Since JSR BKPT takes three bytes, no JSR-styple
oreakpoint may be set within two bytes of ancther breakpoint (IDB
worn't allow it)l. Note that setting breakpoints in ROM doesn't
work, as they cannot be stored at execution time. This may not
be obvious since the breakpoints are invisible to the user (they
car’t be seen in the user’'s code) while IDR is in the command
input mode. The BMPT instructions are not "planted" in the user
code until realtime execution is requested (see G commands), so
that if a breakpoint were set at location 1823 (by entering
H1gat"y, examination of location 1280 will still show the original
user code rather than IDB?S BHKPT instruction.

Copyripght (C)y 1977, 1982, 1588 =1 Software Dynamics. Inc.

IDB (INTERPRETIVE DEBUGGER) USER’S MANUAL

When the user’s program is executing, and it encounters a BKPT,
the conditional subroutine is invoked and the iteration count for
that breakpoint is decremented by one if the subroutine returns
"true"., If the counter goes to zero, then the breakpoint is
"hit"; all BKPTs are removed, the oripinal user code is restored
and a register dump is displayed on the console device. IDB then
enters command input mode. Otherwise (the breakpoint was not
hit), the single—stepper will simulate instructiorns until the P
register is outside the region that the BKPT instruction occupies
(in case it is a JS5R), then realtime execution continues without
any notification to the user that a BKPT was encountered {(and not
Thit™).

A econditicnal breakpoint "hit" happens when the conditional
routine for that breakpoint signals condition true for n times,
where n is the iteration count for that breakpoint (initially set

to one at breakpoint setting). Note that the iteration count is
not decremented if the conditional routine returns "false®
condition.

An unconditional breakpoint "hit" happens when the breakpoint is
encountered n times, where n is the iteration count for that
breakpoint (initially set to ore at breakpoint setting). Note
that the iteration count is always decremented because the
conditional subroutine used by IDBE always returns "true"
condition. :

Whernt a breakpoint hits, the next instruction to execute is the
one at the breakpoint address (the instruction at the breakpoint
has not yet been executed). Entering the 6 command on the
console after hitting an unconditional breakpoint will result in
an immediate breakpoint "hit" without having executed any
instructions because - the P register still points to the
breakpoint location and breakpoints are re—-installed when
realtime execution is requested and, exhausted breakpoints have
their iteration counts reset to ore. The only way to continue
from a breakpoint is to use the single-step (N, X, nX or nlU) or
the proceed (P or nP) commands. Since the proceed commands and
unexhausted breakpoints (iteration count rnon—zero) single-step
until the P register is outside the region of the BKPT, it is
safe to breakpoint on the begirming of any legal instruction (the
single-stenper refuses to execute an illegal instruction)
provided that some other instruction does not branch into the
region occupied by the BKPT instruction.

Copyripght (C) 1977, 1882, 1988 22 Scoftware Dynamics, Inc.

IDB (INTERPRETIVE DERUGGER) USER'S MANUAL

Example:

BRA L1
Lo BEQ L3
L1 L.DAA #5

Breaking on L2 is hazardous during realtime execution if the "BRA
L1" is executed, and IDB is using JSR for BKPT instructiorns. The
reason for this is that the breakpoint JSR is planted at L@ and
it will take up the first byte of L1, so that during realtime
execution, L1 does not contain a "LDAA #5" instruction!! This
will not be a problem during single-stepping because the BKPT
instructions are not “"planted”.

Example:
BSR XYz

Breakpointing the BSR is fatal when the RTS in subroutine XYZ is
executed because the third byte of a breakpoint JSR covers the
first byte of the instruction following the BSR. When the called
subroutine returns, the instruction will most likely be invalid,
and at the very least will cause unpredictable results. For this
reason, IDB will not let you set a breakpoint on & BSR or a JSR
indexed. If you wish a breakpoint there anyway, change the
opecode to a NOP, set the breakpoint, and change the opcode back.
This will not be a problem during single-stepping because the
BKPT instructions are not "planted”. '

The set breakpoint command (1!) is used to set an unconditional
breakpoint orn a particular location with an iteration count of
. No more than four breakpoints (conditional or
unconditional) may be set at a time.

The set conditional breakpoint command (l,c!) is used to set a
conditional breakpoint on a particular location with an iteration

count of one. 1 specifies the break address and c specifies the
address of the conditional breakpoint subroutine. The
conditional subroutine must be coded using 6000 machine
instructions. Whern a conditional break is encountered during

realtime execution, IDR will JSR to the user—defined conditional
subroutine. At this point a context block exists on the user’s
stack representing the state of the user’s registers at the time
the break location was encountered. -IDB will pass to the
subroutine a pointer to the context block in the X register
exactly as the § register would point if seven bytes were pushed
on the user’s stack.

§

Copyright (C) 1977, 19282, 1988 &2 Saoftware Dvnamics. Inc.

()

IDBE (INTERPRETIVE DEBRUGGER) USER'S MANUAL

Example:

If X points to n, then the registers are found in the following
locations when the conditional breakpoint subroutine is entered:

n ! TRASH ! ({-—————- X
n+tl ! C !
n+2 ! B !
nt3 ! A !
n+s !X HIGH !
n+S ! X LOW !
n+e ! P HIGH !
n+7 ! P LOW

The user’s § register at the time of the break is equal to X+7.
{The above diagram is different in the obvious way for a 8811).

The conditional subroutine may test for ary condition or
combination of conditions (including keeping its own iteration
count) and signal to IDB the truth of the condition by returning
the Z bit on in the condition code byte if condition is true and
Z bit off for false. The conditional subroutine returns to IDB
by executing a "RTS" instruction. If the user wishes to set a-
conditional breakpoint at location 122 to break when register A
is equal to the contents of location S, he might decide to
install the conditional subroutine at location S20@, so he enters
"192,5208'" on the console device. The conditional subroutine
code could look like the following:

SQod 2685 LDAAR] GET LOCATION S
Seae Ria3 CMpA 3, X COMPARE TO REG A IN CONTEXT BLOCK
k17, rl 39 RTS Z BIT SET ON IF EQUAL, OFF IF

: NOT EQUAL

The user then installs this code at location 35202 before running
his program.

Copyright (C) 15977, 1882, 1988 24 Software Dynamics, Inc.

IDE (INTERPRETIVE DEBUGGER) USER?’S MANUAL

Let?’s say the user wishes to build a conditional subroutine to
return "condition true" if the S repgister (stack pointer) was not
equal to $3288 (hex constant). Since the 5 register at the time
of the breakpoint is equal to X+7 while inside the conditional
subroutine, installing the following subroutivne would do the

trick:

alrdnnd acsz279 CpX #$3280-7 COMPARING X TO n-7 IS EQUIVALEN
Sa3 a7 TRA I WANT Z ON IF NDT EQUAL

SQas 8804 EDRA #4 SO I MUST INVERT THE Z BIT

Sooe 26 TAP BEFORE I RETURN TO IDE

SaQ7 39 RTS Z IS SET ON IF NOT =, OFF IF =

Note that the conditional subroutine is using IDB'S stack which
is not infinitely deep, so don't push too far. Also, IDB is
rurnmning with interrupts disabled, so please don't turn them on.

Examples:

12a! SET BREAK AT LOCATION 12@&

1az122 CAN'T BREAK HERE, TOO CLOSE TO 1@@
M SHOW BREAKPOINTS

2122 .

48521 SET BREAK AT 4852

! SHOW BREAKPOINTS

4852 Q120

—n caie ammee avame s P2 22— 22

TEST FOR & () $3z28@

s eae asee move Seme P LA

— i o —— S w— o

SQ06/ DEDI DEALF)
5@@7/ OB 39(CR)

1@, Seaat?? BREAKPOINT ALREADY HERE

12@\ DELETE BREAKPOINT 1@2@

! SHOW BREAKPOINTS

4852
109, 5000 ! SET CONDITIONAL BREAKPOINT AT 102@

oi2a 4852

KILL ALL BREAKPOINTS
SHOW BREAKPOINTS
NONE LEFT

il PN

Copyright (C) 1977, 1982, 13588 29 Software Dvnamics. Inm.

IDE (INTERPRETIVE DEBUGGER) USER’S MANUAL

EXECUTION COMMANDS

The execution commands are used for single-stepping instructons,
realtime execution, proceeding from breakpolnts and setting the
iteration counter for breakpoints.

COMMAND OPERATION

c Start Realtime Execution (GO)

nG Set P Register and GO

P Continue Realtime Execution From Breakpoint (Proceed)
npP Proceed From Breakpoint and Set Iteration Counter
X Single-Step One Instruction

nX Single—-5tep Multiple Instructions / Until Address
il Single-Step Until Condition Occurs

N Sirngle—-step past current instruction

Value representing number of instructions stepped
HE Zeros number of single-stepped instructions

The 0§ command is used to start realtime execution from the
current context block (the context block consists of all the
registers displayed by the "?" command). All of the registers
are loaded up (including 8 register) arnd control is transferred

to the user program. Instruction execution begins with the
instruction pointed to by the P register, and execution continues
in real time. If a breakpoint JSR is encountered, IDB will

regain control and do one of two things:

1) If the breakpoint is conditional, then IDB calls the
user—defined conditional subroutine for this breakpoint.
If a "true condition” is returned, then the iteration
counter for this breakpoint is decremented by ore.

2) If the breakpoint is urconditional, then the iteration:
counter for this breakpoint is decremented by one.

Now IDB will give a register dump and enter command mode if the
iteration counter for this breakpoint is zero. Otherwise, it
will carefully single-step instructions until the P register is
coutside the area occupied by the breakpoint JSR instruction, then
continue realtime execution.

If no breakpoint is hit then, well, I hope your program is
debugged (see non-maskable interrupt). If the program runs away
and restart of IDB is necessary, and breakpoints were already
planted when the problem occcurred, then the locations with
oreakpoints will have to be manually repaired; that is, the
original user code at those locations must be restored by hand.
If you don’t do this and an old breakpoint is encountered that
IDR doesn't remember (IDB initializes his breakpoint table upon
startup), a breakpoint display will occcur. One carmot proceed,
go, or single-stepn past the forgotten breakpoint.

Copyright (C) 1977, 1582, 1588 26 Software Dynamics, Inc.

IDE (INTERPRETIVE DEBUGGER) USER’S MANUAL

If the user types an escape character on the console device and
IDB encounters any breakpoint, IDB will return to command input
mode and give a register dump. The user may immediately continue
by using P commands.

Also note that breakpoints change the characteristics of realtime
execution. That is, each instruction that the single-stepper
must execute as a result of erncountering a breakpoint consumes
about three milliseconds. For example, a breakpoint installed on
the seguence:

LDAA #2 or LDAA #e
CLRE LDAB #3

may have to single-step through two instructions (about 6
milliseconds), because a breakpoint JS5R covers a portion of the
second instruction.

The nG command sets the P register in the context block to n,
then does a 6 command. If the significance of n is one, a
leading zero byte is assumed. '

The P command is used to continue realtime execution from a
‘breakpoint. Instructions are single—stepped until the P register
is out of the range occupied by the breakpoint JSR instruction,
then execution continues in realtime execution as if a G command
was used. Note that the 6 command could not be used in place of
a P command immediately after a breakpoint was hit. Entering a B
commarid at this point would cause ancther immediate breakpoint.

The nP command sets the iteration counter for the last breakpoint
hit, and then does a P command. Which breakpoint was hit is
remembered by an IDB variable called the "breakpointer'". The P
commands will rot proceed if the breakpointer is invalid. Here
are Some nassible conditions that can invalidate the
breakpointer:

1) Restart IDB.

2) Encounter a conditiocrnal breakpoint whose conditional
subroutine returns "condition false'.

3) Killirg all breakpoints.

4) Deleting the breakpoint that was last hit.

A way to get the iteration counter for a breakpoint is to set the
breakpoint, go to the location, giving an immediate breakpoint,
then set the P register as desired, then use the nP command.
Also, a conditional subroutine could have its own iteration
count.

Copyright (C) 1977, 1982, 13988 27 Software Dynamics, Inc.

IDE (INTERPRETIVE DEBUGGER) USER?S MANUAL

The X command is used to single—-step one instruction at a time.
A register dump on the same command 1line occurs followed by a
carriage-return after single-stepping each instruction. The
single-stepper refuses to step past an illegal instruction or an
old and forgotten breakpoint (this is an unusual circumstance
because IDB only forpgets breakpoints when the user restarts him
-— gee the G command). If an unusual condition exists (including
breakpoint hit while stepping -- see below) an extra
carriage-return will be printed out before the register dump.
The purpose of this is to attract the user’s attention to an
unusual condition by a conspicuous change in the display format.

The single-stepper steps through an instruction first and then
checks to see if the next instruction has a breakpoint. If it
does, and the breakpoint is conditional, the conditional
subroutine is called to see if the condition is true. If the
condition is true or it?’s uncornditional, and the iteration count
goes to zero, a carriage-return is printed out before the
register dump to call the user?’s attention to the fact that a
breakpoint hit. Any proceed command may be used if desired after
a breakpoint is hit, even thouph the user was single-stepping.
Note that while single—stepping the breakponts are not physically
planted in the code, but they are still checked. This is nice if
the program lives in ROM.

IDB remembers the last breakpoint encountered even while
single~stepping. As long as the breakpointer (see P commands for
explanation) remains valid, P commands are valid. Let’s say that
an unconditional breakpoint was installed at 108, and a
conditional breakpoint "was installed at 185. If we single-step
through 182, the breakpointer remembers that 108 was the last
breakpoint hit so that if P commands are used, they can set the
iteration count for this breakpoint. Let’s step once, P register
shows 1225 P commands would be valid at this point. 8Step apgain,
P register shows 105, the conditional subroutine was already
called, it returns a false condition (no hit on this one), the
breakpointer is invalidated; P commands would be invalid at this
point because it is uriclear to IDB (and us) whether the iteration

count for 102 or 125 should be set. S the moral is: P commands
are not valid after stepping through conditional breakpoints that
don't hit!!

Copyright (C) 1977, 1582, 1388 28 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER’S MANUAL

The nX command is used to single-step n times if the significance
of n is one (note that 2221 has a significance of two). Entering
X" (execute zero instructions) does the obvious, so don't waste
your time with this one. 8Sinpgle-stepping quits when IDB has
executed n instructions or has encountered a breakpoint that
hits. If n has a significance of two, single-stepping quits when
the P register is equal to n or a breakpoint hits. Only one
register dump is given for each nX command entered. Typing an
escape character on the console device will stop the
‘single—-stepper, give a register dump, and return to IDB command
input mode. An interesting way to say "execute forever" is to
enter "yyyyX" where "yyyy" is some address that the program will
never execute. The nX command is a very powerful tool for
debugging, and it's easier to use than setting breakpoints.

The nU command is used to single step until some condition is

true. The value n is treated as the address of a conditional
braakpoint test subroutine. The single-stepper is . invoked
repeatedly, and after each invocation, the conditional test
subroutine is called (agssuming a breakpoint has rot been

encountered, or {(escape} has not beern hit by the programmer). If
the conditional test says "false", single-stepping continues,
otherwise, IDB stops single—-stepping and does a register dump.
This command is particularly useful when trying to find out who
is storing into a memory. location; one sets up a conditional
routine that checks to see if the desired location has changed,
and turns IDB loose with the U command.,. It will stop after the
instruction that changed the memory location. Single stepping
will stop if IDB encounters an illegal instruction. IDB will
stop immediately and do a register dump.

The N command is used to single step until the PC is equal to the
address of the current instruction plus its length. This is used
to quickly single~step through a subroutine called by a BSR or
J5R.

The sirpgle stepper increments a counter every time it is called.
The value of thie counter can be used as a value by using a #
symbol as an argument; it can be displayed by entering "#=" as a
command. The counter is zeroed (and displayed) by entering a
":¥" command. This is primarily useful when attempting to build
very tight real time code, and an accurate instruction count for
SOmMe prooess is needed.

Copyright (C) 1977, 1982, 1588 29 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

Examples: (this is worth examining carefully!)

192:P B SET P COUNTER TO 10@ AND GO

1226 SET P COUNTER TO 1292 AND GO

12a! 1226 SET BREAKPOINT AND GO, GIVING IMMEDIATE BREAKPOINT
P=R128 A=4E B=4C C=53 X=524E S=9F73 %/ 7EQ1i32 @aiqn/ 7E

P SINBLE-STEP LOCATION 122 AND START REALTIME EXECUTION
102! 120G '

P=3122 A=4E B=4C C=53 X=524E S=9F73 */ 7EQ132 Qiaas 7E

1ap SET ITERATION COUNTER TO 256 AND DO P COMMAND
10@;P SET P COUNTER TO LOC 1@@ AND SINGLE-STEP

X P=3132 A=00 B=0@ C=C2 X=0000 S=00FD */ BEQD3Z @l1@d/ T7E

X P=0135 A=00 B=0@ C=C2 X=0000 S=0032 */ 2003 aigas 7E

X P=013A A=00 B=00 C=C0 X=000@ S=0B32 */ B6FF Bgied/s 7

X P=@13C A=FF B=0@ C=C@ X=0$@ﬂ =032 */ B6 101/ 7

X P=013D A=FF B=08 C=FF X=000@ S=0232 */ 86@l aigas 7E

X P=013F A=@1 B=00 C=F1 X=0000 S=0032 */ 16 @ai1aa/s 7E

10@;p SET P COUNTER TO 10@ AND STEP 37 TIMES

235X P=0118 A=DB B=D@ C=D0® X=0148 S=00CE */ 33 paQa/ 3F

122:P SET P COUNTER TO 102 AND STEP UNTIL ADDRESS 915
915X P=0915 A=00 B=FF C=F@ X=003D S5=0032 */ 3E 22/ 3IF

Copyright (C) 1977, 198z, 1988 3a Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER?S MANUAL

129/ 7E 30/ 7EQ3QE 4A{LF) INSERT "INCA"

2121/ 703 @BILF) INSERT "INX"

2102/ OB 7CORRS(LFE) INSERT "INC 5"

2105/ 737600 2R{LE) INSERT "BRA $10@"

0106/ 760@7E 1BDR{CR)

S5Q0@/ 733280 IEDS(LFY INSTALL CONDITIONAL BREAKPOINT ROUTINE
So02/ 2053 ALB3(LEY FROM PREVIOUS EXAMPLE

S5@04/ @A 39{CR)

BE73:8

122:p 230 @3X 37 ?72 QLCR)

]

P=010@ A=@@ B=EE C=CD X=Q@QQ® S=EF73 */ 40 RRS/ 200

FHACRY

2

P=0102 A=0@ E=GE C=CD X=000@ S=6F73 %/ 4A Pe0S/ VR

X P=01@1 A=FF B=6E C=C9 X=00@@ S=6F73 */ 28 oRES/ 0D

X P=@1@2 A=FF B=GE C=C9 X=0@0Q1 S=EF73 %/ 7C0005 @205/ 0@

X P=21@5 A=FF B=GE C=C1 X=0@001 S=6F73 */ 20F9 0@0S/ 01

l@a! (CR}

X

P=010@ A=FF B=6E C=C1 X=0Q@1 S=6F73 %/ 40 . Q@OS/ 01

X P=@1@1 A=FE B=6E C=C9 X=00@1 S=6F73 */ 08 2005/ 01

X P=@122 A=FE B=6E C=C9 X=0Q02 S=6F73 */ 7C000S5 0@05/ 1

X P=0105 A=FE B=E6E C=C1 X=0Q02 S=6F73 %/ 20F3 QOOS/ B2

X

P=010@ A=FE B=6E C=C1 X=0QUE S=E6F73 %/ 4A 2Q0S/ B2

p

P=210@ A=FD B=EE C=C1 X=0023 S=67F3 */ 4A 005/ 03

3p

P=210@ A=FA B=6E C=C1 X=002E& S=67F3 */ 4A 2005/ 06

iga\ 19@,z00a! G

P=@10@ A=80 B=GE C=CB X=008@ S=67F3 */ 4A eR0S/ B

SeQ0/ 9685 (LF) INSTALL CONDITIONAL BREAKPDINT...
S@@2/ BLDE (LF) TO TEST FOR (5) = HEX 'E?

S@@4/ 33 (CR)

5/ 8@ ;H/ 82 S@@9u SINGLE STEP UNTIL (5) = HEX 'E?
P=P10S A=F2 B=21 C=C@ X=010E S=6F73 %/ SOF9 @005/ QF

109/ ED@Z2@@1 {CR) ENTER A SUBROUTINE CALL

2@@/ 4C0933(CRY SUBROUTINE IS INCA/DEX/RTS
10@3p GET SET TO SINGLE STEP THRU SUBROUTINE
1% D047 RESET STEPPED INSTRUCTION COUNT
N GINGLE STEP PAST SUBROUTINE
P=@103 A=F3 B=21 C=C@ X=010D S=6F73 %/ @1 QRDS/ OE

H=0004 SHOW NUMBER OF INSTRUCTIONS STEPPED

Copyright (C) 1977, 1982, 1588 31 Software Dynamics. Inc.

IDB (INTERPRETIVE DEBUGGER) USER?S MANUAL

NON-MASKABLE INTERRUPTS

IDBE traps non-maskable interrupts, gives a register dump, and
goes into command input mode. This is normally used to stop anm
undebugned program that is rvot hitting any breakpoints. Using
the non-maskable interrupt entry point will cause IDB to remove
any BKMPT instructions arnd restore the user’s code. The P
register will point to the next instructionm to execute. P
commands are not valid, but X, N and B commands are. See the
section on the I/0 interface table to see how to re-direct (in

- effect, override) the non—maskable entry point jump. A NMI can
be used to stop a dump or a search display, but this will destroy
the user program’s context block (see "?" command).

THE I/0 INTERFACE TABLE

This table contains Jumps to the IDB entry ooint and non—maskable
interrupt entry point, and jumps to the entry points of all the
I1/0 routines. The I/0 is charmel-oriented; that is, IDB does all
control I/0 on one channel, loading on a second, punching on a
third, and dumping on a fourth. By plugging in jumps to rnew I1/0
routines, IDB can be customized to perform in virtually any
environment. All routines must return with interrupts disabled.
If interrupts are enabled, switching to a stack with space for
the interrupts is required, and the stack must be restored when
the return is made. All registers except those specified can be
trashed. All entry point jumps are relative to the first address
of IDB, which is usually on a 4K boundary. Let’s say that n
represents the first address of IDB, then we have the following
descriptions: '

Sacred space (n+$2) through (n+$4) - don’t touch!! This 1is the
program runaway entry point.

DEBUG (n+$3) contains a gump to the first instruction of IDEB.
The restart vector should be aimed here. Sacred space, don’t
toucht!

DEBNMI (r+%$8) contains a Jump to the ror—maskable entry ooint.
If the nor—maskable vector is aimed at this point, thern IDB will
handle the interrupt. If this is the case, then this location
can be plugged with another jump to override this if desired. If
the non-maskable vector is aimed somewhere else, and it is
desired that IDB handle the interrupt, then someone must jJump to
this entry point.

Sometimes it is convenient to build a context bBlock in software

and transfer control to this point. If this is the case,
interrupts must be disabled before transferring to DEBNMI.

Copyripght (C) 1977, 1982, 1988

18]
n

Software Dynamics, Inc.

IDE (INTERPRETIVE DEBUGGER) USER'S MANUAL

DEBRESET (n+$B) contains a jump to an IDB internal RESET routine.
This is used by power—-up reset code to make sure that the
debugger has been initialized (i.e., is ready to take an NMI or a
runaway) without transferring control to the debugger. If control
is not passed to DEBUG at power up, this subroutine *must* be
called by the reset logic.

GETC (n+$E) contains a Jump to the I/0 routine responsible for
reading a character into register A from the control device
(normally a terminal). All input routines must igrnore nulls and
strip the parity bit off the resulting character.

ECHD (n+$i1) contains a Jump to the I/0 routine responsible for
cutputting a character from register A to the control device (use
a "RTS" here for MIKBUG or any half-duplex devicel). This routine
is used for echcing input characters, obviously.

PUTC (n+%14) contains a jJump to the I/0 routine responsible for
aoutputting a character from register A to the control device.

OPENL (n+$17) contains a jump to the I/0 routine responsible for
opening the load file (send XON for some devices, or whatever is
required).

READL (rn+#%1A) contains a jump to the I/0 routine responsible for
reading a character from the load file into register A.

CLOSEL (n+#$1D) contains a Jump to the I/0 routine responsible for
closing the load file (send XOFF for some devices, . or whatever is
required).

" CREATP (rn+$2@) contains a jump to the I/0 routine responsible for
creating an output file for the punch channel. In an operating
system envirornment, this may mean to open a file which is
reserved for punching, or whatever is appropriate.

WRITERP (n+$23) contains a Jump to the I/0 routine responsible for
outputting a character to the punch file from register A.

CLOSER (n+$26) contains a Jump to the I/0 routine responsible for
closing the punch file (whatever is appropriate).

CREATD (n+$29) contains a jump to the I/0 routine responsible for
creating an ocutput file for the dump charmnel.

WRITED (rn+$2C) contains a Jump to the I/0 routine responsible for
outputting & character to the dump file from register A.

CLOSED (n+$2F) contains a Jump to the I/0 routire responsible for
closing the dump file (whatever is appropriate).

Copyright (C) 1977, 1982, 1588 33 Software Dynamics, Inc.

IDE (INTERPRETIVE DEBUGGER) USER?S MANUAL

ESCAPE (n+$32) contains a Jump to the I/0 routine responsible for
checking for the occurrence of an escape character on the control
device. Does immediate return with Z bit set if yes, reset if
o, Does nrot echo the character. If you are replacing MIKBUG,
then this feature won’t work, so place a "LDAR #1", "RT8" here.

INITZ (n+$33) contains a Jump to the I/0 routine responsible for

all initialization functions, such as resetting ACIA's or
whatever is appropriate for your configuration. INITZ is called
anly once for each. transfer to DEBUG eritry ooint. Note that

DEBRESET also calls INITZ. On exit from - INITZ, the X register
must contain the default user program Stack pointer (the INITZ
routine can set up the context block so the registers contain
default values). IDB uses this value once at the DEBUG entry
time as though an n;S was typed in as the first command. (Some
systems set up an initial stack pointer in such a way that typing
"G" immediately after starting up IDB causes a transfer to a disk
boctstrap program). The first 7 (9 for &£811) bytes of the 128
bytes of RAM scratch storage allocated to IDB are set aside to be
used as this default stack.

INTDS (n+$38) contains a (Jump to a) subroutine which disables
all interrupts. For most 6820 systems, these three bytes can be
set to NOP,SEI, RTS.

INTRTI (n+$3B) contains a (Jump to a) routine that conditionally
enables interrupts and then does an RTI. The "I" bit in the
condition code register on top of the stack (I=0 means "enable™)
does an RTI. Most 6808 systems can simply place an "RTI" here.

FETCHBYTE (n+$3E) contains a (gump to a) routine that fetches a
byte to the A register from the location specified by the
contents of the X repgister, and advarnces the X register by ore.
This is used to allow IDB to access a user ROM that normally
lives where IDR is in the address space. Normally this contains
the code "LDAAR @, X\INX\RTS".

STOREBYTE (n+%$42) contains a (Jump to a) routine that stores the
content of the A register in the location specified by the X
register, and advances the X register by ore. This is used to
allow IDB to store into RAM that normally occupies the space used
by IDE during debugging. Normally contains the code
"STAA B, X\INX\RTS".

éopyright (C) 1977, 1982, 1388 34 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER?S MANUAL

BREAKPOINTINST (n+$46) contains the instruction to use for a
breakpoint. Changing the first byte to SWI causes IDB to store
only a SWI; otherwise, it stores 3 byte JSR for breakpoints.
Normally contains "JSR BREAKPOINTENTRY".

BREAKPOINTENTRY (n+$49) is the entry point into IDR where a
breakpoint must go after pushing a context block on the stack and
advancing the - PC past the breakpoint instruction. If
BREAKPOINTINST contains a SWI, the SWI vector must be configured
to (eventually) ftransfer control to this location.

PRESINGLESTERP (n+%$4C) contains (a Jjump to) code to enable the
user space and then do an RTI, which sets the registers to the
values of the user program. This 1is used by the single stepper
Just before it executes a user program instruction, so that the
stepped instruction sees user ROM/RAM where IDB is located,
rather than IDB. Normally contains "RTI/ZSWI/SWIY.

POSTSINGLESTEP (n+$4F) contains the address (FDB) of the re-entry
point into IDB after executing a single instruction. The
registers will be saved by IDB.

POSTSINGLESTEPDONE (n+$51) contains the entry point for re-entry
into IDB after single-stepping. A context block, storing the
machine state after the stepped instruction, must be pushed onto
the stack before transferring control to this point. Used only
if IDB is bank-switched.

Copyright (C) 1977, 13982, 1988 39 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER®'S MANUAL

RAM-based IDE for SDOS

A version of IDB that is 1loadable urnder single-—user SDOS 1.1 is
available. It operates identically to standard IDB with the
exception of the commands listed below. Fundamentally, IDB for
SDOS uses §SDOS system calls so that IDB can access any user
files. Thus, it is possible to load a file, make patches, and
save the final result.

To invoke IDR from. SDOS, type:

. 1DB
IDB will respond,

IDB V1.2
At this time, IDB will semi-permarently allocate about 4K bytes
at the top of the user space for its own use. This space will
not be available for use by programs being debugged. The top of
user space pointer ($FC, $FD) will be adjusted appropriately.
If B is typed immediately after loading, IDB will exit back to
the command interpreter, but is still available for debugging via
a D and the SDOS command DEBUG.
To load a file for debugging, type:

H®

In response to the load file request, the name of the file to be
loaded is entered and terminated by a return key. An example:

jLoad filename ({(CR} to exit IDB): DZ:MYNEWPROGRAM{(CR).

Responding with an empty line causes IDB to release its block of
allocated space, and to exit back to SDOS. IDB is then not
available via D or DEBUG.
To send a memory dump to a file, enter:

i1

The user must supply a file name in response to IDB's request for
a dump file name.

The user will have to supply a filename for each dump reguested.

Copyright (C) 1977, 1982, 1988 36 Software Dynamics, Inc.

IDE (INTERPRETIVE DEBUGGER) USER'S MANUAL

Example:
Eaﬁcﬁ75ump file name? LPT:

To send a MIKBUG punch file to a file, the user must type
iy, mpP

and give a filename in response to the request for a dump file.

Punch/Dump filename? = MYFILE.FIXED{CR)

Successive purches will go to the same file until a @,2P command
is used.

Warning: Don’t use a dump command before a @,0P is issued after a
sequence of punches as the dump and punch files are the same.

Note: IDB uses the highest available charnnel number for its file
operations; this may conflict with the program being debugged.

QEPyright (C)y 1977, 13282, 1988 37 Software Dynamics. Inc.

IDB (INTERPRETIVE DEBUGGER) USER’S MANUAL

COMMAND SUMMARY
sA 3H 3X ;0 Set Display Mode to ASCII/Hex/Index/0Opcode

1/ Open Location 1 and Display in Current Mode
{(LF? Display Next
n{LF> Deposit and Display Next
~ Display Previous
n" Deposit and Display Previous
(CR} Close This Location
r {CR» Deposit and Close Location
"text" Deposit Text Into Memory
: Open Location 1
? Display Registers, Instruction, and Last Opered Location
-1 Find Negative of n
n—=m n+m Find Sum/Difference
n= Print Value
n3A n3B n3C Set 8 bit register register ton
nsD n3X n3¥Y Set 16 bit register to n
n;P Set P Register to n
n3S Set 5 Register to n
nM Set Mask
M Show Mask
ns . Set Search Target
S Show Search Target
Ty S Search Using Mask Between n and m
n, mZ Zero (Copy Mask to Memory) Between n and m
ri,m? Compute checksum over rarnge and display
1,n/ Dump Memory to Dump Device
nT . Switch Dump/Search Output Charnel
H Load From Load Device
1,nP Punch to Punch Device
1! Set Unconditional Breakpoint on Location 1
l,ec! Set Conditional Breakpoint ¢ on Location 1
! Show Breakpoints
I\ Remove Breakpoint From Location 1
K Kill All Breakpoints
G S5tart Realtime Execution (GO)
nB Set P Register and GO
B Start Realtime Execution from Breakpoint (Proceed)
nP Proceed from Breakpoint and Set Iteration Counter
X Single-Step One Instruction
X Single-Step Multiple Instructions / Until Address
nu Single-Step Until Condition Occurs
N Single—step until Next instruction
K Reset and display single-step count
nR Compute Relative Displacement
. Value Egqual to Last Location Examined
* Value of P-Counter Displayed in Register Dump
Value of number of sinpgle-stepped instructions

Copyright (C) 1977, 1982, 1988 38 Software Dynamics, Irnc.

