
6800/6801/6303/6811 DEBUGGER

USER'S MANUAL

5th Printing

COPYRIGHT (C) 1977, 1982, 1988 SOFTWARE DYNAMICS, INC.

NOTICE

This manual describes lOB Version 1.2. Software Dynamics has
carefully checked the information given in this manual, and it is
believed to be entirely reliable. However, no responsibility is
assumed fo~ inaccuracies. Software Dynamics reserves the right
to=ch4nge the specifications without notice.

*** ** SO software is sold on a'single copy per computer basis, and is **
** covered by U.S. copyright laws.. Unless a written exception is **
**.obtained from SD, the software must be used only on the single **
** compute~ whose unique, SD-assigned serial number matches that **
** for Which the software "was purchased. Copies for any purpose **
** other than archival storage, or use on other than the assigned **
** serial numbered CPU are strictly prohibited. **
** USE OF THIS MANUAL OR THE SOFTWARE IT DESCRIBES CONSTITUTES **
**~~G~EEMENT BY THE USER TO THESE TERMS. **

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

TABLE OF CONTENTS

INTRODUCTION · 1

OPERATION • • • • • · • • • 1

COMMAND FORMAT · . . 2

VALUES ENTERED INTO THE DEBUGGER 2

SIGNIFICANCE · 2

IDB COMMANDS · 3

SETTING THE DISPLAY MODE · .
EXAMINE AND MODIFY COMMANDS

· 4

• 5

HEX ARITHMETIC

SETTING REGISTERS
• • • 8

• • • 10

ZERO (FILL) AND SEARCH WITH MASK - - • • • 12

COMPUTE RELATIVE DISPLACEMENT COMMAND •

DUMP MEMORY COMMAND • • •

SWITCHING THE DUMP/SEARCH OUTPUT CHANNEL

LOAD COMMAND

PUNCH COMMAND •

BREAKPOINT COMMANDS ·

.' . .
1 ,..;- ~

• • • • L 15 .-

• • • '16'

• • • • 18

·
• 20 -1<

. . • 21' f

EXECUTION COMMANDS • 26

NON-MASKABLE INTERRUPT

THE I/O INTERFACE TABLE

RAM-BASED IDB FOR SDOS

. .
. . .

. .
• '-32

• • 32

· • 36

COMMAND SUMMARY • · • •• 38

Copyright (C) 1977, 1982, 1988 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

INTRODUCTION

IDB is a small memory, stand-alone debugger for 6800, 6801, 6303
or 6811 microprocessor systems. It is ideal for debugging
assembly language programs. lOB acts as a very sophisticated
replacement to the "MIKBUG'r ROM available with most 6800
development systems (MIKBUG is a registered trademark of Motorola
Inc., and any reference herein is to their registered trademark) •

. IDB . allows the programmer to load and dump programs in MIKBUG
f6rmat; to display large blocks of memory; to examine memory
locations in several display formats; to modify memory locations;
to single-step programs; to set breakpoints and execute a
'program; and to search or fill memory for/with a particular
value.

This manual describes IDS Version 1.2.

OPERATION

IDB is usually burned into a set of ROMs and resides permanently
in the development system. However, it can also be kept on
external media and loaded when a debug session i~ about to begin;
this scheme is not as safe (since the debugger might get
clobbered).

IDS comes configured to communicate to the user through a serial
port, usually an ACIA or 6551. This port is called the "console"
device. Normally, the port is' connected to a teletype or CRT
device. The console device can be changed by modifying a Jump
table.

The programmer interacts with lOB via commands given at the
keyboard. lOB gives no prompt; if no display action is
occurring, lOB is in command input mode. The programmer enters
commands, and if the command is valid, IDS executes the command
and then returns to command input mode. lOB checks the input
character by character. If an entry is syntactically or
semantically incorrect, it is diagnosed immediately by a
print-out of "1?" followed by a carriage-return and lOB remains
in . the command input mode. If there is a command error, the
opened location is closed.

In ~he examples included in this manual, underlined characters
·are keyed irr by the operator~ Comments to the right do not
appear as Q~tput of the debugger; all other printed data is
typical debugger output. Man~ of the examples use previous
examples to set up a known situation.

All IDB commands and hexadecimal numbers can be entered in either
upper or lower case; in this manual only uppercase commands are
shown, and a small letter immediately to the left of a command
represents a numeric value entered by the operator immediately
before the command keystroke.

"Copyright (C) 1977, 1982, 1988 1 Software Dynamics, Inc.

lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL

COMMAND FORMAT

All commmands to lOB fit one of the following forms:

C
Yle

n;C
n,mC
;e

(No Parameter)
(Single Parameter)
(Single Parameter)
(Double Parameter)
(No Parameter)

where n is a value (hex number up to six digits dependin~~ upon
the command) or simple hex arithmetic expression and m is'~ hex
number. (eR) is a carriage-return, (LF) is a line-feed ay,d· C is
a command chal'''acter (letter, punctuat ioY, mark, (CR), ':'1''' ·(LF)).
";" is a semicolon and ",II is a comma.

VALUES ENTERED INTO THE DEBUGGER

lOB accepts several formats for numbers:

Hex numbers, a string of hex letters or digits:
0A BC9 22 BD3FA9

Single characters representing special values:
• (Period), meaning the address of the last opened

memory location, whether it is open now
or not. This is referred to as the open
locat iOYI marker.

* (asterisk), meaning the value that would be
displayed as the P register contents on
a register dump (location of next
instruction to execute).

(pound sign), meaning the number of
instructions single-stepped since' last
II ; # II cc.mma Yld •

'c (single quote, followed by any character), meaning
lithe ASCI I val ue of the character c n • '-A is
equivalent to typing in 41 (hex); likewise, 'b =
hex 62.

SIGNIFICANCE

Numbers entered into lOB have significance (size in bytes) based
on the number of digits keyed in. This significance is used by
commands which store into memo~y or do hex arithmetic.

1 or 2 digits gives 1 byte significance
3 or 4 digits gives 2 byte significance
5 or 6 digits gives 3 byte significance
Special values (., *, #) have 2 bytes of significance
'c has 1 byte of significance

Copyright (e) 1977, 1982, 1988 2 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

IDB COMMANDS

IDS commands fall into the following categories:

Set The Display Mode
Examine.and Modify Memory
Hex Arithmetic
Set Reg i st er
Zero (Fill) and Search With Mask
Compute a Relative Displacement
Dump Memory
Switch the Dump/Search Output Channel
Load Memory
P urich Memory
BY'eakpoints
Execute and Single-Step

'Copyright (C) 1977, 1982, 1988 3 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

SETTING THE DISPLAY MODE

The display mode commands affect the way the register display and
memory examine commands display the currently open location.

COMMAND OPERATION

;A Set Display Mode tel ASCII
;H Set Display Mode to Single Byte Hex
;X Set-Display Mode to Double Byte Hex
;0 Set Display Mode to I Ylstt"uct iCln

The ;A display mode allows values to be displayed as
characters. If a character is non-printable (hex 0-1F,
FF), then the byte is displayed in ;~ mode.

ASCII
7F-9F,

The ;H display mode allows values to be displayed as single-byte
hex quantities. This display mode is default upon IDB startup.

The ;X display mode allows values to be displayed as double-byte
hex quantities.

- The ;0 display mode allows values to be displayed as
instructions •. If an illegal instruction begins in the location
being examined, then a "?.. followed by a single-byte value is
displayed. Otherwise, the instruction display format depends on
wh~ther the symbolic disassembly option has been enabled.

SYMBOLIC DISASSEMBLY: Instructions are displayed in a format
consistent with the SD assembler. Addresses,
immediate values and offsets are shown as hexadecimal
constants of the appropriate significance.

NO SYMBOLIC DISASSEMBLY: If a single-byte instruction begins
in the location being examined, then a single hex byte
is displayed. If a double-byte instruction begins in
the location being examined, then two hex bytes are
displayed. If a triple-byte instruction begins in the
location being examined, then three hex bytes are
displayed.

Display modes are not affected by single-stepping or user program
execution. They may only be changed by explicitly typing in a
new display mode command. If a display mode command is entered
while a location is still open, the value in that location will
automatically be displayed in ~he new mode.

Copyright (C) 1977, 1982, 1988 4 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

EXAMINE AND MODIFY COMMANDS

The examine and modify commands are used to display and/or change
memory locations and registersm

COMMAND

1/
(LF)
n(LF)

(CR)
n(CR)
I :
tltext II
?

OPERATION

Open Location 1 and Display in Current Mode
Display Next
Deposit and Display Next
Display Previous
Deposit and Display Previous
Close This Location
Deposit and Close Location
Open Location 1
Deposit ASCII Text String
Display Registers, Current Instruction, and
Last Opened Location

"The 1/ command is used to open location 1 and display its
c.:.nteY'tts irl the current mode. tlOpeY'fiY'lg a lc.caticlrl" mearls tCI make
it available for examination and/or modification.-

The (LF) (line-feed) command is used to advance the open location
marker and display the contents of the new location in the
current mode. If the current mode is ;H or ;R, the open location
marker is bumped by one, and the next byte is displayed. If the
current mode is ;X, the open location marker is bumped by two,
and the next two bytes are displayed. If the current mode is ;0;
then the open location marker is bumped by the length of the
instruction (1 if the instruction is illegal) and the next
iY'lstructil:.n is displayed. (LF) is only valid when a locatioY'1 is
apeY't.

The n(LF) command is used to deposit from one to three bytes.
The open location marker is bumped by the significance of n,
regardless of display mode, and the contents of the new location
are displayed in the current mode. n{LF) is only valid when a
location is open.

The A (up arrow) command is used to decrement the open location
marker by one and display the contents of the new location in the
current mode. A is only valid when a location is openm

The n A command is used to deposit from one to three bytes. The
open location marker is decremented by one, regardless of display
mode, and the contents of the ~ew location are displayed in the
current mode. nA is only valid when a location is open.

Copyright (e) 1977, 1982, 1988 5 Software Dynamics, Inc.

lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL

The (CR) (carriage-return) command is used to close the currently
open location. The open location marker is not advanced. (CR)
is a no-op when a location is not open.

The n(CR) command is used to deposit from one to three bytes into
the open location. The open location marker is not advanced and
the location is closed. n{CR) is only valid when a location is
.::spey ••

The 1: command is used to open location 1. No display occurs.

The "text II commaYld is used to enter ASCI I text stt"'i ngs i Ylto
memory. The opening .. character signifies the start of this data
entry mode, but does not actually deposit any data. The ASCII
code for each character (keystroke) following the leading II is
deposited into memory, and the open location is advanced by 1.
Data entry is terminated by the second ", which does not cause
any further data to be deposited. lOB then automatically
displays the contents of the new value of the open location, as
though {LF~ had been typed.

The? Command is used to display the registers, the next
instruction (in ;0 mode), and the last opened location in the
current display mode. This display is referred to as a register
dump elsewhere in this manual. In a register dump, ~he contents
of the registers follow the letter naming that register; the next
instruction follows the *1 (* means "value of PC"), and the
contents of the last open location are shown as nnnn/dddd •••••
Not shown in this manual, but displayed on the 6811 version, is a
place for the Y register in each registe~ dump.

Copyright (C) 1977, 1982, 1988 6 Software Dynamics, I~c.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

Examples:

!~~~ ~§l~RL OPEN LOCATION 100 AND DEPOSIT 45. THE
LOCATION IS CLOSED.

~L 45 18/ E lbEL EXAMINE LOCATION 100; CHANGE TO ;A MODE,
SEE VALUE IN ASCII; EXAMINE NEXT.

0101/ F ~~I 46 i~BL CHANGE TO ;H MODE, SEE VALUE IN HEX;
CLOSE THE LOCATION.

~L 46 ibEL OPEN THE LAST LOCATION; EXAMINE NEXT.
0102/ BD ;0/ BD7E00 ~QZs~~ibEL

CHANGE TO ;0 MODE, SEE VALUE AS INSTRUCTION;
CHANGE VALUE AND EXAMINE NEXT.

0105/ 39 ~!~ DEPOSIT AND EXAMINE PREVIOUS
0104/ 105 ~ STILL IN ;0 MODE, 05 IS ILLEGAL OP CODE;

EXAMINE PREVIOUS
0103/ 7E0501 A CONTENTS OF 103 LOOKS LIKE "JMP" INSTRUCTION;

EXAMINE PREVIOUS.
0102/ BD7E05 ~A/ BD7E i~BL

CHANGE TO ;X MODE; CLOSE THIS LOCATION.

200/ 0072 ~e~~Qi~Bt
ibELQ~E~ DEP08IT TEXT DATA
209/ 992A 6~~L 4142 leI A ibEL
2011 B ibEt
202/ C ibEt
2031 D ibEt
204/ 0D ibEL
205/ 0A ibEL
206/ 0 ibEt
2071 E ibEt >

208/ F ibEt
209/ 99 i~BL
1 SHOW REGISTERS
P=3005 A=01 B=FE C=C0 X=3031 8=4073 */ 7E3068 01051 01
lQ SWITCH TO OPCODE DISPLAY
!L 7E3608 ~~iQBt FIX INSTRUCTION AT P COUNTER
1
P=3005 A=01 B=FE C=C0 X=3~31 8=4073 *1 39 3005/ 39

COPY~ight (C) 1977, 1982, 1988 7 Software Dynamics, Inc.

lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL

HEX ARITHMETIC

Hex arithmetic is used to evaluate expressions.

COMMAND OPERATION

-n Find Negative of n
n-m Find Difference
n+m Find Sum
n= Print Value

The -n command is used to take the two's complement of a one or
two byte value.

The n-m command yields the two's complement difference.

The n+m command yields the two's complement SUM.

The n= command is used to print out the current value using the
appropriate significance.

Note that all arithmetic (negate, add, and subtract) only
operates on one or two byte operands, and if a three byte operand
is given, the leftmost byte is ignored and the significance
becomes two rather than three. Also, significance is maintained
in all arithmetic operations. For instance, adding one byte to
one byte yields an answer of one byte whether or not a carry-out
occurred. Adding two bytes to. one byte wi~l give two bytes of
significance. The significance of the result will always by one
or two bytes. When in doubt as to the significance of a result,
use the print ~alue operator (=). A result of an arithmetic
operation is treated as though the programmer had typed in that
value itself, and may be followed by commands requiring values.

Copyright (C) 1977, 1982, 1988 8 Software Oynamic~, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

Examples:

NEGATE 1 BYTE VALUE
NEGATE 2 BYTE VALUE
1 ByrE DIFFERENCE
2 BYTE DIFFERENCE

3 BYTES BECAME 2
1 BYTE SUM

PRINT 5
PRINT FF00
PRINT FF0000
ANSWER IS 2 BYTES ONLY

LOOK AT LOCATION A0
PRINT ADDRESS OF LAST OPENED LOCATION
IGNORE VALUE (SPACE) AND GO TO NEW LINE C(CR»

§±L=00A5L 37 i~BL EXAMINE LOCATION .+5
'A-1=40+'Z=9A(RUBOUT)?? USE RUBOUT TO SET RID OF VALUE
1007-220S-;H/-22-'A:'0-A=07 (CR) . ---- ~- -------- ----1
P=3005 A=01 B=FE C=C0 X=3031 S=4073 *1 39 01001 07
!=6=3003L FF ~g/ FF0039

COPY~ight (C) 1977, 1982, 1988 9

lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL

SETTING RESISTERS

The following commands are used to change the contents of a
specific register by name.

COMMAND OPERATION

n;A Set A Register to n
n;B Set B Register to n
n;C Set_~ Register to n
n;D Set D Register to n
n;X Set X Register to n
n;Y Set Y Register to n
n;S Set S Register to n
n;P Set P Register to n

The n;A n;B n;C commands set registers ABC respectively to the
rightmost byte of n.

The n;X n;S n;P ;0 ;Y commands set registers X S P D V
respectively to the rightmost two bytes of n (the 0 register
consists of A and B treated as a 16 bit value; the V register is
present only on the 6811). If a one byte value is given, a
leading zero byte is assumed.

When the stack pointer is set, lOB assumes that the value given,
minus 6 (minus 8 for the 6811), points to a (interrupt) context
block (i.e., n-7+1 (n-9+1 for 6811) points to a condition code
byte). The conten~s of this context block are used as the values
of the registers.

When lOB starts up, it invents a seven (nine for 6811) byte stack
for the user's context block using a value specified by the INITZ
routine. If this value is not appropriate, it is a good idea to
assign (via n;S) a convenient stack ~efore doing any debugging.

Copyr~ght (C) 1977, 1982, 1988 10 Software Dynamics, Inc.

lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL

Examples:

1£9 SET THE A REGISTER TO 01
E~~~ SET THE B REGISTER TO FE
~~~~ SET THE C REGISTER TO C0 
1 SHOW REGISTERS 
P=3005 A=01 B=FE C=C0 X=3031 S=4073 *1 7E3068 01051 01 
l~~~i~ SET THE A REGISTER TO 34 
19~~§§~~ SET THE B REGISTER TO 56 
1 SHOW REGISTERS 
P=3005 A=34 B=56 C=C0 X=3031 S=4073 *1 7E3068 01051 01 
11~ SET X TO 0001 
1 SHOW REGISTERS 
P=3005 A=34 B=56 C=C0 X=0001 S=4073 *1 7E3068 01051 01 
1~~~1~ SET X TO 1234 
? SHOW REGISTERS 
P=3005 A=34 B=56 C=C0 X=1234 S=4073 *1 7E306S 01051 01 
Egl2 SET P REGISTER TO 00FE 
E~L 00 LOOK AT LOCATION FE 
1 'SHOW REGISTERS 
P=00FE A=34 B=56 C=C0 X=1234 S=4073 *1 ?00 00FEI 00 
EEL 00 2245(CR) MAKE IT AN INSTRUCTION 
1 --------SHOW REGISTERS 
P=00FE A=34 B=56 C=C0 X=1234 S=4073 *1 2245 00FEI 22 
i~ CHANGE DISPLAY MODE 
1 
P=00FE A=34 B=56 C=C0 X=1234 S=4073 *1 2245 00FEI 2245 
~a CHANGE DISPLAY MODE 
1 
P=00FE A=34 B=56 C=C0 X=1234 S=4073 *1 2245 00FE/" 

Caution: setting the stack pointer (8 register) causes the 
remaining registers to take on arbitrary new values according to 
their positions in the context block pointed to by the new value 
of the S register! ! 

E~l~ SET THE STACK POINTER TO 00FE 
1 SHOW REGISTERS 
P=0022 A=F4 B=45 C=C0 X=789F S=00FE */07 00FEI n 

Copyright (C) 1977, 1982, 1988 11 Software Dynamics, Inc. 



lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

ZERO (FILL) AND SEARCH WITH MASK 

The fill commmand is used to fill memory with a one, two or three 
byte value from a mask. This is effectively a zero command when 
the mask is zero. The search command is used to search memory 
for a one, two or three byte value using the mask. 

COMMAND 

nM 
M 
nS 

OPERATION 

Set -Mask 
Sh.jw Mask 
Set Search Target 
Show Search Target S 

n,mS 
n,mZ 
n,m? 

Search Using Mask Between nand m 
Zero (Copy Mask. to Memcfl''''Y) Bet ween 1"1 a1"ld rll 

Checksum memory 

The nM command is used to define a mask for the search and zero 
(fill) commands. The mask may be one, two or three bytes long 
with one bits specifying the bit positions to ignore (mask out) 
while searching. The mask is defaulted to a single-byte zero 
upon lOB startup. 

The M command is used to show the last value defined as the mask 
as a one, two or three byte value. 

The nS command is used 
the search command. 
bytes long specifying 
Selected bit positions 
one bits in the mask. 

to define a search target to be used with 
The search target may be one, two or three 
the exact sequence of bits to search for. 
of the search target may be overriden by 

The S command is used to show the last value defined as the 
search target as a one, two or three byte value. 

The n,mS command is used to search memory between nand m 
inclusive for the occurance of the search target. The mask is 
used while searching to specify bits in the search target and the 
memory to ignore. The mask must be the same length as the search 
target. The search command will print out the address and 
contents of that address for each match found. Note that m-n+l 
search attempts are made regardless of search target length. 

If the search target and the mask are three 
three bytes are printed out for each match. 
against loc n, n+1, n+2 for a match; then n+1, 
loc m, m+1 and m+2. 

bytes 101",,;;r,' then 
lOB will compare 

n+2, n+3, through 

If the search ta~get and the mask are two bytes long, then two 
bytes are printed out for each match. lOB will compare against 
loc n, n+1, for a match; then n+1, n+2, through loc M, m+1. 

If the search target and the mask are one byte long, then one 
byte is printed out for each match. IDB will compare against Icc 

Copyright (C) 1977, 1982, 1988 12 Software Dynamics, Inc. 



IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

n for a match; then n+1 through loc m. 

Note that a match may occur if a search target begins within the 
limits (inclusive), even though the remaining bytes may cross the 
limit. The output of the search command is normally directed to 
the console device. The output can be switched to the dump 
channel by using the T command. The search command may be 
interrupted at any time by typing an escape character on the 
console device. 

The n,mZ command (fill) is used to copy the mask to memory 
between nand m inclusive. If the mask is one byte long then the 
mask is copied m-n+l times into locations m, m+1, m+2... n-1, n. 
If the mask is two or three bytes then the mask is copied 
INT«m-n+1)/2) or INT«m-n+1)/3) times respectively into memory 
with any leftover bytes being filled with leading mask bytes. 
For example, if the mask is three bytes and 11100,107Z" is entered 
on the console device, then the mask is copied to locations 100 
through 102 and 103 through 105, and locations 106 and 107 get 
the left-most two bytes of the mask. The zero (fill) command 
never modifies a location past the address given as the second 
parameter. 

The n,m? command is used to compute a simple checksum over the 
address range n thru m, inclusive. The value of the checksum is 
printed. This is used mostly for fast determination of whether a 
portion of RAM has changed or not. 

Copyright (C) 1977, 1982, 1988 13 Software Dynamics, Inc. 



IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

Examples: 

~t'1 
M 00 
l~~s..lEE~ 
EEl!! 
!!?!~L1EE~ 
~Q~E~g§ 
~~~~~~t1 
g~~~s..~~~~§
20FE/ BD3F92
219A/ BD3F92
3000/ BD3F92
§ BD3F92
~~~~EEt1 
g~~~s..g~EE§ 
2010/ BD3F5A-
20FE/ BD3F92 
Z5~1~~t1 

SET MASK TO ZERO (ONE BYTE) 
SHOW MASK 
FILL 100 THRU 1FF WITH ZEROES 
SET MASK TO FF (1 BYTE) 
FILL 100 THRU iFF WITH FF 
SET SEARCH TARGET TO BD3F92 (3 BYTES) 
SET MASK TO 3 BYTES (IGNORE NO BITS) 
FIND SEARCH TARGET BETWEEN 2000 & 3000 
FOUND IT HERE 
FOUND IT HERE 
FOUND IT HERE 
SHOW SEARCH TARGET 
SET MASK TO IGNORE LAST BYTE OF SEARCH 
FIND ALL JSR'S TO 3FXX 
FOUND IT HERE 
FOUND IT HERE 

INCLUSIVE 

~~~!.!. EEEE.i~BL 
!!~~~s..~~~~~ INSTALL IIJMP $100 11 INSTRUCTIONS BETWEEN 4000 & 5000
.i.Q
!!~~~L 7E0100 .i~EL
4003/ 7E0100 .i~BL

LOOK AT WHAT WE DID

!!EEEL 7E01FF NOTE THAT LOC 5001 WAS UNTOUCHED
!~~~LE~~~1 57 CHECKSU~ LOCATIONS 1000 THRU 2000

Copyright (C) 1977, 1982, 1988 14 Software Dynamics, Inc.

IDS (INTERPRETIVE DEBUGGER) USER'S MANUAL

COMPUTE RELATIVE DISPLACEMENT COMMAND

This command is used to compute the relative displacement byte of
relative branch type instructions.

COMMAND OPERATION

nR Compute Relative Displacement

This command is us~d to find the difference in addresses as a one
byte valua between .+1 and n. If the address given (n) is
outside the range of a relative branch-type machine instruction,
an error will occur. The way this command is used is to open a
location where a relative displacement byte is to be deposited,
and specify the target address (n) followed by "R".

Examples:

l~~L 2021 l~L 20 lbEL
1011 21 !~~B=031~BL

L=!L 20 .lQI 2003

L:t!L ?03 ~B??

WE HAVE A liBRA $123"
TELL lOB TO MAKE A "BRA $105", DISPLAY THE
DISPLACEMENT, THEN DEPOSIT IT
NOW GO CHECK ENTIRE INSTRUCTION

TELL lOB TO MAKE A "BRA $0"; HE SAID
THAT'S TOO FAR!
TELL IDS TO MAKE A liBRA $90"
NOW CHECK ENTIRE INSTRUCTION

Copyright (C) 1977, 1982, 1988 15 Software Dynamics, Inc.

lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL

DUMP MEMORY COMMAND

This command is used to display large areas of memory in hex and
ASCII on the dump device.

COMMAND OPERATION

l,nl Dump Memory to Dump Device

The area dumped is specified by 1 and n. 1 is used as an
address; n may be a byte count (significance of one) or an
address (significance of two). If a byte count is used as the
second parameter, dumping begins at 1 and continues for n bytes.
If an address is used as the second parameter, dumping begins at
1 and continues until address n is reached (inclusive). Beware
of specifying a second parameter address that is smaller than the
first parameter address; an awful lot of memory will be dumped!!
The output of the dump is normally directed to the console
device. The output can be switched to the dump channel by using
the T command. The dump device may be a console, printer, or a
disk file, depending upon the configuration. See the section on
lID entry points to find out how to change the dump device. The
dump may be interrupted at any time by typing an escape character,
on the console device. This causes the dump to stop and lOB to
return to the command input mode.

After dump is complete, location 1 is opened for changes or
re-display in a different disp~ay mode.

Copyright (C) 1977, 1982, 1988 16 Software Dynamics, Inc.

IDB((INTERPRETIVE DEBUGGER) USER'S MANUAL

Examples:

~~~l~L DUMP 16 BYTES 
0050/ 00 7D CD 9D 80 9F 84 00 00 00 00 20 39 30 3131 .}M ••• e ••• e 901 

~~L~§!L DUMP FROM ADDRESS 0055 TO 0061 
0055/ 9F 84 00 00 00 00 20 39 30 31 31 9011 
121060/ 5A 9A 

l!?!~L!EEL 
0100/-00 01 
01101 10 11 
0120/ 20 21 
0130/ 30 31 
0140/ 40 41 
01501 50 51 
01601 60 61 
01701 70 71 
01801 80 81 
01901 90 91 
01A0/ A0 Ai 
01B01 B0 B1 
01C01 C0 Cl 
01D0/ D0 D1 
01E0/ E0 El 
01F01 F0 Fl 

Ze 

DUMP FROM 100 TO 1FF INCLUSIVE 
02 03 04 05 06 07 08 09 0A 08 0C 0D 0E 0F ••••••••••••••• 
12 13 14 15 16 17 18 19 lA 1B lC 10 lE 1F ••••••••••••••• 
22 23 24 25 26 27 28 29 2A 28 2C 2D 2E 2F 
32 33 34 35 36 37 38 39 3A 3B 3C 30 3E 3F 
42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 
52 53 54 55 56 57 58 59 SA 5B 5C 50 5E 5F 
62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 
72 73 74 75 76 77 78 79 7A 7B 7C 70 7E 7F 

! If#$~&' () *+, _. 
0123456789:;(=} 
@ABCDEFGHIJKLMN 
PQRSTUVWXYZ (\J ..... 
'abcdefghiJklmn 
pqrstuvwxyz{I}'V 

82 83 84 85 86 87 a8 89 8A 8B 8C 8D BE 8F ••••••••••••••• 
92 93 94 95 96 97 98 99 9A 9B 9C 90 9E 9F ••••••••••••••• 
A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF 
B2 B3 B4 BS B6 B7 B8·B9 BA BB BC BO BE BF 
C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF 
D2 D3 D4 D5 D6 D7 DB D9 DA DB DC DO DE DF 
E2 E3 E4 E5 ~E6 E7 E8 E9-EA EB EC ED EE EF 
F2 F3 F4 F5 F,6 F7 Fa F9 FA FB FC FO FE FF 

'",-

! "#$~&' () *+, - .. 
0123456789: ; (=) 

@ABCDEFGHIJKLMN 
PQRSTUVWXYZ (\J ..... 
'abcdefghiJklmn 
pqrstltvwxyz{I}~ 

The address on the left side of the page is the address of the 
first byte printed. Addresses increase by one for each byte 
displayed from left to right, so that the address of the $5F byte 
is $15F. The characters to the right> are iYI one-to-one 
correspondence from left to right with the displayed hex bytes, 
and are the ASCII equivalents of the bytes dumped. Control 
characters and $7F, $FF are printed as a period. The parity bit 
is i gnc,red. 

Copyright (C) 1977, 1982, 1988 17 Software Dynamics, Inc. 



lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

SWITCHING THE DUMP/SEARCH CHANNEL 

COMMAND OPERATION 

nT Switch Dump/Search Output Channel 

The nT command is used to switch the dump/search output between 
the console and the dump. channel. If n is zero, then the console 
is selected for dump/search output. If n is non-zero, then the 
dump channel is selected for dump/se~rch output. Console output 
is defaulted upon lOB startup. 

Examples: 

~I SET DUMP/SEARCH OUTPUT TO CONSOLE 
II SET DUMP/SEARCH OUTPUT TO DUMP 

Copyright (C) 1977, 1982, 1988 is Software Dynamics, Inc. 



IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

LOAD COMMAND 

This command is used to load programs in MIKBUG format from the 
load device. Certain implmentations of IDB can load SDOS load 
records instead of MIKBUG, and other implmentations may not have 
a load command at all. 

COMMAND OPERATION 

;L Load obJect records from Load Device 

A successful load will print the address of the last byte loaded. 
This can be helpful in situations where you don't know how big a 
program is, or if you do, you have an extra verification that all 
is ok. If a checksum error occurs while loading, or an illegal 
character is encountered in a load record, the first address of 
the bll::ack belYI!;! l.::aaded is printed out followed by "??" indicating 
the error. The load may be interrupted by typing an escape 
character on the console device at, any time. The address of the 
block. beiYlg ICladed will be priYlt'e'd out, showing h,::aw far the load 
had progressed before being interrupted, and then IDB will return 
to the command input mode. See the section on 1/0 entry points 
to find out how to change the load device. 

Examples: 

l.b 17E3 
.1b 01B077 
.1b 1200 

SUCCESSFUL LOAD, LAST BYTE WENT INTO 17E3 
CHECKSUM ERROR ON BLOCK 1B0 
ESCAPE WAS TYPED AFTER THE LOAD BEGAN • 
IDB SAYS THAT HE"WAS ON BLOCK 1200 
WHEN INTERRUPTED 

Copyright (C) 1977, 1982, 1988 19 Software Dynamics, Inc. 



lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

PUNCH COMMAND 

This command is used to dump (lipunchll, a term inherited from 
paper tape days) memory out in to the punch device. The standard 
obJect file format produced is MIKBUG, but certain 
implementations of IDB may produce SODS obJect records, or the 
punch command may not be present at all. 

, 

COMMAND OPERATION 

1,nP Punch obJect records to Punch Device 

The area punched is specified by the addresses I and n. Punching 
begins at 1 and continues until address n is reached (inclusive). 
Beware of specifying a second parameter address that is smaller 
than the first parameter address; an awful lot of memory will be 
punched!! See the section on I/O entry points to find out how to 
change the punch device. Punching may be interrupted at any time 
by typing an escape character on the console device. This causes 
the punching to stop and lOB returns to the command input mode. 
Note that arl erld l'''ecclrd ("S9 11 in MIKBUG format) is not pUl"lched. 
This allows the punching to the same file of different and ~9t 
necessarily contiguous areas of memory. When all pu~ching is 
complete, the end record can be punched by entering the command 
u0,0plI. 

Examples: 

PUNCH OUT 100 THRU 200 ••• 
FOLLOWED BY 3F00 THRU 3FFF 
END FILE ON PUNCH 

Copyright (C) 1977, 1982, 1988 20 Software Dynamics, Inc. 



lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

BREAKPOINT COMMANDS 

II Bt"eakpoiYfts" at"'e used to stop a prcigram at a certain place SCI 
that the state of the machine cay. be examined. The prl:.grammet" 
places breakpoints in his program where he would like to be able 
to interrogate the machine registers and whatever else may be 
interesting; then he tells lOB to run his program (see G 
commands). When the program hits a breakpoint, control is passed 
to lOB, which does a register dump. The programmer can then 
examine or change memory, place new breakpoints, start his 
program again or continue execution from where it left off. The 
breakpoint commands are used to set up to four realtime 
conditional or unconditional breakpoints, showing breakpoints, 
and deleting breakpoints. 

COMMAND 

1 ! 
1, c! 
J 

1\ 
K 

OPERATION 

Set Unconditional Breakpoint on Address 1 
Set Conditional Breakpoint 
Show Breakpoints 
Remove Breakpoint from Address 1 
Kill All'Breakpoints 

An lOB breakpoint instruction (BKPT) may be either a SWI 
instruction or a three byte extended JSR instruction, depending 
on configuration. Associated with each BKPT is an iteration 
counter and a conditional subroutine. The BKPT instruction is 
"planted" at the breakpoint IClcatioYI dltring realtime executioYI to 
regain control when encountered. The conditional subroutine is 
used to ret urn Utt"ue fl or II fal sell depeYld i ng upon some arbi trary 
user-specified conditions. The ite~ation count is used to count 
d.:lwy, the Utt"'ue ll reSpCIYISeS ft"'clm a cClndi t iOYlal subrclut iYle unt i 1 the 
counter becomes zero, at which time the breakpoint is considered 
t CI be II hit" • 

There are two types of breakpoints: conditional and 
unconditional. Conditional breakpoints are associated with a 
user-defined conditional subroutine. Unconditional breakpoints 
are really conditional breakpoints that are associated with an 
IDB-defiYled cc'nditiclYlal subrclutiYle that always t"eturns "true". 

lOB uses the BKPT instruction at each breakpoint to regain 
control after encountering a breakpoint during realtime 
execution. [Since JSR BKPT takes three bytes, no JSR-styple 
breakpoint may be set within two bytes of another breakpoint (IDE 
won't allow it)]. Note that setting breakpoints in ROM doesn't 
wl;)t"'k, as they CaYlnclt- be stclred at execut ion time. This may YJI:at 
be obvious since the breakpoints are invisible to the user (they 
can't be seen in the user's code) while lOB is in the command 
iYlput ml:.de. The BKPT instruct iljns are Ylot "planted" in the uset" 
code until realtime execution is requested (see G commands), so 
that if a breakpoint were set at location 100 (by entering 
If 100! "), examiYJat il:1YI clf 1.:lcat iCIYI 100 will st iII show the original 
user code rather than lOB'S BKPT instruction. 

Copyright (C) 1977, 1982, 1988 21 Software Dvnamics. Inc. 



IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

When the user's program is executing, and it encounters a BKPT, 
the conditional subroutine is invoked and the iteration count for 
that breakpoint is decremented by one if the subroutine returns 
"trl.le u • I f the cl:tunter goes to zero, then the bl'~eakpoi nt is 
IIhitll; all BKPTs a1'~e removed, the original use ... ~ code is restclred 
and a register dump is displayed on the console device. IDB then 
enters command input mode. Otherwise (the breakpoint was not 
hit), the single-stepper will simulate instructions until the P 
register is outside the region that the BKPT instruction occupies 
(in case it is a JSR), then realtime execution continues without 
any-notification to the user that a BKPT was encountered (and not 
IIhitll). 

A ct:tnd it iCIYlal b ... ~eakpoi y,t Ifh it II happens when the c,:tnd it iCIYlal 
routine for that breakpoint signals condition true for n times, 
where n is the iteration count for that breakpoint (initially set 
to one at breakpoint setting). Note that the iteration count is 
YII::at d eCl'''ement ed i f the cClnd i tiona It"',:) uti Yle ret u rYIS II fa I se II 
cl:'Yld it ion. 

An '.lncctnditional bl'~eakpoiYlt "hit" happens when the breakpoint is 
encountered n times, where n is the iteration count for that 
breakpoint (initially set to one at breakpoint setting). Note 
that the ,iteration count is always decremented because the 
cOYlditioYlal subroutiYle used by IDB always returns IItrt.le" 
cond it iOYI. 

When a breakpoint hits, the next instruction to execute is the 
one at the breakpoint address (the instruction at the breakpoint 
has not yet been executed). Entering the G command on the 
console after hitting an unconditional breakpoint will result in 
an immediate breakpoint "hit" without having executed any 
instructions because' the P register still points to the 
breakpoint location and breakpoints are re-installed when 
realtime execution is requested and, exhausted breakpoints have 
their iteration counts reset to one. The only way to continue 
from a breakpoint is to use the single-step (N, X, nX or nU) or 
the proceed (P or nP) commands. Since the proceed commands and 
unexhausted breakpoints (iteration count non-zero) single-step 
until the P register is outside the region of the BKPT, it is 
safe to breakpoint on the beginning of any legal instruction (the 
single-stepper refuses to execute an illegal instruction) 
provided that some other instruction does not branch into the 
region occupied by the BKPT instruction. 

Copyright (C) 1977, 1982, 1988 22 Software Dynamics, Inc. 



lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

Example: 

BRA Ll 

L0 
Li 

BEQ 
LDAA 

L3 
#5 

Breaking on L0 is hazardous during realtime execution if the liBRA 
Li l

• is executed, and IDB is using JSR for BKPT instructions. The 
reason for this is that the breakpoint JSR is planted at L0 and 
it will take up the first byte of Ll, so that during realtime 
execution, Ll does not contain a "LDAA #5" instruction!! This 
will not be a problem during single-stepping because the BKPT 
ir.structions are not "planted". 

Example: 

BSR XYZ 

Breakpolnting the BSR is fatal when the RTS in subroutine XVZ is 
executed because. the third byte of a breakpoint JSR covers the 
first byte of the instruction following the BSR. When the called 
subroutine returns, the instruction will most likely be invalid, 
and at the very least will cause unpredictable results. For this 
reason, lOB will not let you set a breakpoint on a BSR or a JSR 
indexed. If you wish a breakpoint there anyway, change the 
opcode tti a NOP, set the breakpoint, and change the opcode back. 
This will not be a problem during single-stepping because the 
BKPT instl'''uctit::ans are not IIplanted". 

The set breakpoint command (I!) is used to set an unconditional 
breakpoint on a particular location with an iteration count of 
one. No more than four breakpoints (conditional or 
unconditional) may be set at a time. 

The set conditional breakpoint command (l~c!) is used to set a 
conditional breakpoint on a particular location with an iteration 
count of one. 1 specifies the break address and c specifies the 
address of the conditional breakpoint subroutine. The 
conditional subroutine must be coded using 6800 machine 
instructions. When a conditional break is encountered during 
t"ealtime execut-ic1n, lOB will JSR to the usel'''-defirted cCtnditional 
subroutine. At this point a context block exists on the user's 
stack representing the state Of the user's registers at the time 
the break location was encountered. ·IDB will pass to the 
subroutine a pointer to the context block in the X register 
exactly as the S register would point if seven bytes were pushed 
on the user's stack. 

Copyright (e) 1977, 1982, 1988 23 Software Dvnamics. In~_ 



lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

Example: 

If X points to n, then the registers are found in the following 
locations when the conditional breakpoint subroutine is entered: 

----------
n 1 TRASH {------- X 

----------
n+l I C 

----------
n+2 I B 

----------
n+3 1 A 

.... ---------
n+4 I X HIGH I 

----------
n+5 I X LOW 

----------
n+6 I P HIGH I 

------------
n+7 I P LOW '1 

----------
The user~s S register at the time of the break is equal to X+7. 
(The above diagram is different in the obvious way for a 6811). 

The conditional subroutine may test for any condition or 
combination of conditions (including keeping its own iteration 
count) and "signal to lOB the truth of the condition by returning 
the Z bit on in the condition code byte if condition is true and 
Z bit off for false. The conditional subroutine returns to lOB 
by executing a "RTS" instruction. If the user wishes "to set a 
conditional breakpoint at location 100 to brea~ when register A 
is equal to the contents of location 5, he might decide to 
install the conditional subroutine at location 5000, so he enters 
u100,5000!1t ':'1'". the console device. The c01'".diti.:.nal subroutine 
code could look like the following: 

5000 
5002 
5004 

9605 
A103 
39 

LDAA 
CMPA 
RTS 

5 
3,X 

GET LOCATION 5 
COMPARE TO REG A IN CONTEXT BLOCK 
Z BIT SET ON IF EQUAL, OFF IF 
NOT EQUAL 

The user then installs this code at location 5000 before running 
his pr1:.gl""am. 

Copyright (C) 1977, 1982, 1988 24 Software Dynamics, Inc. 



IDB (INTERPRETIVE DEBUGG~R) USER'S MANUAL 

Let's say the user wishes to build a conditional subroutine to 
l'''eturl''1 "cc'Ylditi,:tn true" if the S l'''egistel''' (stack pctinte,.,.) was nt;:.t 
equal to $3280 (hex constant). Since the S register at the time 
of the breakpoint is equal to X+7 while inside the conditional 
subroutine, installing the following subroutine would do the 
tl'''ick: 

5000 
5003 
5004 
5006 
5007 

8C3279 
07 
8804 
06 
39 

CPX 
TPA 
EORA 
TAP 
RTS 

#$3280-7 COMPARING X TO n-7 IS EQUIVALEN 
I WANT Z ON IF NOT EQUAL 

#4 SO I MUST INVERT THE Z BIT 
BEFORE I RETURN TO IDB 
Z IS SET ON IF NOT =, OFF IF = 

Note that the conditional subroutine is using lOB'S stack which 
is not infinitely deep, so don't push too far. -Also, lOB is 
running with interrupts disabled, so please don't turn them on. 

Examples: 

!~6l?? 

0100 
~§§gl 

4852 0100 

SET BREAK AT LOCATION 100 
CAN'T BREAK HERE, TOO CLOSE TO 100 
SHOW BREAKPOINTS 

SET BREAK AT 4852 
SHOW BREAKPOINTS 

~~~~L 7E lQ/ 7E1276 §~~gZ21bEL INSTALL CONDITIONAL SUBROUTINE TO 
TEST FOR S (> $3280

~~~~L 100 ~Z1bEt 
5004/ 9601 §§~~ibEL 
5006/ DE03 ~§ibEL 
5007/ 0B ~~lJ;;;BL 
1!f!~,-§!f!~~1?? 
1~~~ 

4852 
100 5000! ___ .5.. ____ _ 

I 

0100 4852 

BREAKPOINT ALREADY HERE 
DELETE BREAKPOINT 100 
SHOW BREAKPOINTS 

SET CONDITIONAL BREAKPOINT AT 100 

KILL ALL BREAKPOINTS 
SHOW BREAKPOINTS 
NONE LEFT 

Copyright (C) 1977, 1982. 1988 25 



lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

EXECUTION COMMANDS 

The execution commands are used for single-stepping instructons, 
realtime execution, proceeding from breakpoints and setting the 
iteration counter for breakpoints. 

COMMAND OPERATION 

G Start Realtim~ Execution (GO) 
nG Set- P Register and GO 
p Continue Realtime Execution From Breakpoint (Proceed) 
nP Proceed From Breakpoint and Set Iteration Counter 
X Single-Step One Instruction 
nX Single-Step Multiple Instructions / Until Address 
nU Single-Step Until Condition Occurs 
N Single-step past current instruction 
# Value representing number of instructions stepped 
;# Zeros· number of single-stepped instructions 

The G command is used to start realtime execution from the 
current context block (the context block ~onsists of all the 
registers displayed by the II?" command). All of the registers 
are loaded up (including S register) and contrcil is transferred 
to the user program. Instruction e~ecution begins with the 
instruction pointed to by the P register, and execution continues 
in real time. If a breakpoint JSR is encountered, lOB will 
regain control and do one of two things: 

1) If the breakpoint is conditional, then lOB calls the 
user-defined conditional subroutine for this breakpoint. 
If a "true conditionll is returned, then the iteration 
COl..lnter for this breakpoint is decremented by OYre. 

2) If the breakpoint is unconditional, then the iteration" 
counter for this breakpoint is decremented by one. 

Now lOB will give a register dump and enter command mode if the 
iteration counter for this breakpoint is zero. Otherwise, it 
will carefully single-step instructions until the P register is 
outside the area occupied by the breakpoint JSR instruction, then 
continue realtime execution. 

If no breakpoint is hit then, well, I hope your program is 
debugged (see non-maskable interrupt). If the program runs away 
and restart of lOB is necessary, and breakpoints were already 
planted when the problem occurred, then the locations with 
breakpoints will have to be manually repaired; that is, the 
original user code at those lo~ations must be restored by hand. 
If you don't do this and an old breakpoint is encountered that 
lOB doesn't remember (lOB initializes his breakpoint table upon 
startup), a breakpoiYlt display will C1CCUl'.... OYle CaYlnclt pl'''c,ceed, 
go, or single-step past the forgotten breakpoint. 

Copyright (C) 1977, 1982, 1988 26 Software Dynamics, Inc. 



IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

If the user types an escape character on the console device and 
IDB encounters any breakpoint, lOB will return to command input 
mode and give a register dump. The user may immediately continue 
by using P commands. 

Also note that breakpoints change the characteristics of realtime 
execution. That is, each instruction that the single-stepper 
must execute as a result of encountering a breakpoint consumes 
about three milliseconds. For example, a breakpoint installed on 
the sequence: 

LDAA 
CLRB 

or LDAA 
LDAB 

#2 
#3 

may have to single-step through two instructions (about 6 
milliseconds), because a breakpoint JSR covers a portion of the 
second instruction. 

The n8 command sets the P register in the context block to n, 
then does a G command. If the significance of n is one, a 
leading zero byte is assumed. 

The P command is used to continue realtime execution·froM a 
·breakpoint. Instructions are single-stepped until the P register 
is out of the range occupied by the breakpoint JSR instruction, 
then execution continues in realtime execution as if a G command 
was used. Note that the G command could not be used in place of 
a P command immediately after a breakpoint was hit. Entering a G 
command at this point would cau~e another immediate breakpoint. 

The nP command sets the iteration counter for the last breakpoint 
hit, and then does a P command. Which breakpoint was hit is 
l'~emembered by aYI lOB variable called the "bl'~eakpf:.inter"" The P 
commands will not proceed if the breakpointer is invalid. Here 
are some possible conditions that can invalidate the 
b'r~eakpoiYlter: 

1) Rest art IDB. 
2) Encounter a conditional breakpoint whose conditional 

subrout lY,e returns "cclndit ieln false"" 
3) Killing all breakpOints. 
4) Deleting the breakpoint that was last hit. 

A way to set the iteration counter for a breakpoint is to set the 
breakpoint, go to the location, giving an immediate breakpoint, 
then set the P register as desired, then use the nP command. 
Also, a conditional subroutihe could have its own iteration 
count. 

Copyright (C) 1977, 1982, 1988 27 Software Dynamics, Inc. 



lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

The X command is used to single-step one instruction at a time. 
A register dump on the same command line occurs followed by a 
carriage-return after single-stepping each instruction. The 
single-stepper refuses to step past an illegal instruction or an 
old and forgotten breakpoint (this is an unusual circuMstance 
because lOB only forgets breakpoints when the user restarts him 
-- see the G command). If an unusual condition exists (including 
breakpoint hit while stepping see below) an extra 
carriage-return will be printed out before the register dump. 
The purpose of this is to attract the user's attention to' an 
unusual condition by a conspicuous change in the display format. 

The single-stepper steps through an instruction first and then 
checks to see if the next instruction has a breakpoint. If it 
does, and the breakpoint is conditional, the conditional 
subroutine is called to see if the condition is true. If the 
condition is true or it's unconditional, and the iteration count 
goes to zero, a carriage-return is printed out before the 
register dump to call the user's attention to the fact that a 
breakpoint hit. Any proceed command may be used if desired afte~ 
a breakpoint is hit, even though the user was single-stepping. 
Note that while single-stepping the breakpont~ are not physically 
planted in the C9de, but they are still checked. This is nice if 
the program lives in ROM. 

IDS remembers the last breakpoint encountered even while 
Single-stepping. As long as the breakpointer (see P commands for 
explanation) remains valid, P commands are valid. Let's say that 
an unconditional breakpoint was installed at 100, and a 
conditional breakpoint 'was installed at 105. If we single-step 
through 100, the breakpointer remembers that 100 was the last 
breakpoint hit so that if P commands are used, they can set the 
iteration count for this breakpoint. Let's step once, P register 
shows 102; P commands would be valid at this point. Step again, 
P register shows 105, the conditional subroutine was already 
called, it returns a false condition (no hit on this one), the 
breakpointer is invalidated; P commands would be invalid at this 
point because it is unclear to lOB (and us) whether the iteration 
count for 100 or 105 should be set. So the moral is: P commands 
are not valid after stepping through conditional breakpoints that 
don't hit!! 

Copyright (C) 1977, 1982, 1988 28 Software Dynamics, Inc. 



IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

The nX command is used to single-step n times if the significance 
of n is one (note that 0001 has a significance of two). Entering 
110X" (execute zero instl'''uct i.::.ns) does the .::.bvious, so don't waste 
your time with this one. Single-stepping quits when lOB has 
executed n instructions or has encountered a breakpoint that 
hits. If n has a significance of two, single-stepping quits when 
the P register is equal to n or a breakpoint hits. Only one 
register dump is given for each nX command entered. Typing an 
escape character on the console device will stop the 
·single-stepper, give a register dump, and return to lOB command 
irlput mode. An interest irlg way to say "execute f.::.rever" is tel 
enter UyyyyX" where "yyyyll is some address that the program will 
never execute. The nX command is a very powerful tool for 
debugging, and it's easier to use than setting breakpoints. 

The nU command is used to single step until some condition is 
true. The value n is treated as the address of a conditional 
breakpoint test subroutine. The single-stepper is. invoked 
repeatedly, and after each invocation, the conditional test 
subroutine is called (assuming a breakpoint has not been 
encountered, or (escape) has not been hit by the programmer). If 
the conditional test says "false", single-stepping continues, 
otherwise, lOB stops single-stepping and does a register dump. 
This command is particularly useful.when trying to find out who 
is storing into a memory. location; one sets up a conditional 
routine that checks to see if the desired location has changed, 
and turns lOB loose with the U command. It will stop after the 
instruction that ~hanged the memory location. Single stepping 
will stop if lOB encounters an illegal instruction. lOB 'will 
stop immediately and do a register dump. 

The N command is used to single step until the PC is equal to the 
address of the current instruction plus its length. This is used 
to quickly single-step through a subroutine called by a BSR or 
JSR. 

The single stepper increments a counter every time it is called. 
The value of thi£ counter can be used as a value by using a # 
symbol as an argument; it can be displayed by entering "#=11 as a 
command. The counter is zeroed (and displayed) by entering a 
11;#" c.:.mmand. This is primarily useful when attempting to build 
very tight real time code, and an accurate instruction count for 
some process is needed. 

Copyright (C) 1977, 1982, 1988 29 Software Dynamics, Inc. 



IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

Examples: (this is worth examining carefully!) 

SET P COUNTER TO 100 AND GO 

SET P COUNTER TO 100 AND GO 

1~~1 1~~§ SET BREAKPOINT AND GO, GIVING IMMEDIATE BREAKPOINT 
P=0100 A=4E B=4C C=53 X=524E S=9F73 *1 7E0132 01001 7E 
E SINGLE-STEP LOCATION 100 AND START REALTIME EXECUTION 

!~~1. .!~~§ 
P=0100 A=4E B=4C C=53 X=524E S=9F73 *1 7E0132 01001 7E 
1~~2 SET ITERATION COUNTER TO 256 AND DO P COMMAND 

1@~~2 SET P COUNTER TO LOC 100 AND SINGLE-STEP 
~ P=0132 A=00 B=00 C=C0 X=0000 S=00FD *1 8E0032 
X P=0135 A=00 B=00 C=C0 X=0000 S=0032 *1 2003 
~ P=013A A=00 B=00 C=C0 X=0000 S=0032 *1 8SFF 
X P=013C A=FF B=00 C=C0 X=0000 S=0032 */ 06 
~ P=013D A=FF B=00 C=FF'X=0000 S=0032 */ 8601 
X P=013F A=01 B=00 C=Fl X=0000 S=0032 */ 16 

01001 7E 
01001 7E 
0100i 7E 
0100/ 7E 
0100/ 7E 
01001 7E 

1~~i2 SET P COUNTER TO 100 AND STEP 37 TIMES 
g§~ P=0118 A=D0 B.=D0 C=D0 X=0148 S=002E */ 33 0000/ 3F 

1~~~2 SET P COUNTER TO 100 AND STEP UNTIL ADDRESS 915 
~l§X P=0915 A=00 B=FF C=F0 X=003D S=0032 *1 3E 00001 3F 

• 

Copyright (C) 1977, 1982, 1988 30 Software Dynamics, Inc. 



lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL 

l~~L 7E lQ/ 7E030B ~8~bEL 
0101/ 103 ~§ibEL 
0102/ 0B Z~@@@~ibEL 
0105/ 737600 6~~bEL 
0106/ 76007E l@@B~~BL 
~~~@L 733220 ~§@~~bEL 
5002/ 2053 al@~ibEL
5004/ 0A ~2i~BL
§EZ~.i.§
!~~~E ~~8 ~~X ~L 772 ~J~BL
1

INSERT IIINCA"
INSERT IIINX"
INSERT !lINC 5"
INSERT liBRA $100"

INSTALL CONDITIONAL BREAKPOINT ROUTINE
FROM PREVIOUS EXAMPLE

P=0100 A=00 B=6E C=CD X=0000 S=6F73 */ 4A 0005/ ?00
It:!i~BL
1.
P=0100 A=00 B=6E C=CD X=0000 S=6F73 */ 4A 0005/ 00
K P=0101 A=FF B=6E C=C9 X=0000 S=6F73 */ 08 0005/ 00
K P=0102 A=FF B=6E C=C9 X=0001 S=6F73 */ 7C0005 0005/ 00
K P=0105 A=FF B=6E C=C1 X=0001 S=6F73 */ 20F9 0005/ 01
!~@l ~~BL
K
P=0100 A=FF B=6E C=C1 X=0001 S=6F73 */ ~A, 0005/ 01
K P=0101 A=FE B=6E C=C9 X=0001 S=6F73 */ 08 0005/ 01
K P=0102 A=FE B=6E C=C9 X=0002 S=6F73 */ '7C0005 0005/ 01
K P=0105 A=FE B=6E C=C1 X=0002 S=6F73 */ 20F9 0005/ 02
K
P=0100 A=FE B=6E C=C1 X=0002 S=6F73 */ 4A 0005/ 02
e
P=0100 A=FD B=6E C=Cl
~e

•
P=0100 A=FA B=6E C=Cl
l~@~ !@~L§~@~l §

P=0100 A=80 B=6E C=CB

X=0003

X=0006

X=0080

S=67F3 */ 4A 0005/ 03

S=67F3 */ 4A 0005/ 06

S=67F3 */ 4A 0005/ 80

INSTALL CONDITIONAL BREAKPOINT •••
TO TEST FOR (5) = HEX 'E'

SINGLE STEP UNTIL (5) = HEX 'E'
X=010E S=6F73 */ 20F9 0005/ 0E

ENTER A SUBROUTINE CALL
SUBROUTINE IS INCA/DEX/RTS
GET SET TO SINGLE STEP THRU SUBROUTINE
RESET STEPPED INSTRUCTION COUNT

. SINGLE STEP PAST SUBROUTINE

P=0103 A~F3 B=21 C=C0 X=010D S=6F73 */ 01 0005/ 0E
~=0004 SHOW NUMBER OF INSTRUCTIONS STEPPED

Copyright (C) 1977, 1982, 1988 31 Software Dynamics. Inc.

lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL

NON-MASKABLE INTERRUPTS

IDB traps non-maskable interrupts, gives a register dump, and
goes into command input mode. This is normally used to stop an
undebugged program that is not hitting any breakpoints. Using
the non-maskable interrupt entry point will cause IDB to remove
any BKPT instructions and restore the user's code. The P
register will point to the next instruction to execute. P
commands are not valid, but X, Nand G commands are. See the
section on the I/O- interface table to see how to re-direct (in
effect, override) the non-maskable entry point Jump. A NMI can
be used to stop a dump or a search display, but this will destroy
the user prt:sgram's cOYrtext block (see U?1f commaYld).

THE I/O INTERFACE TABLE

This table contains Jumps to the lOB entry point and non-maskable
interrupt entry point, and Jumps to the entry points of all the
I/O routines. The I/O is channel-oriented; that is, lOB does all
control I/O on one channel, loading on a second, punching on a
third, and dumping on a fourth. By plugging in Jumps to new I/O
routines, lOB can be customized to perform in virtually any
environment. All routines must return with interrupts disabled.
If interrupts are enabled, switching to a stack with space for
the interrupts is required, and the stack must be restored when
the return is made. All registers except those specified can be
trashed. All entry point Jumps are relative to the first address
of lOB, which is usually on a 4K boundary. Let's say that n
represents the first address of lOB, then we have the following
descriptior:s :

Sacred space (n+$0) through (n+$4) - don't touch!!
program runaway entry point.

This is the

DEBUG (n+$5)
The restart
touch! !

contains a Jump to the first instruction of lOB.
vector should be aimed here. Sacred space, don't

DEBNMI (n+$8) contains a Jump to the non-maskable entry point.
If the non-maskable vector is aimed at this point, then lOB will
handle the interrupt. If this is the case, then this location
can be plugged with another Jump to override this if desired. If
the non-maskable vector is aimed somewhere else, and it is
desired that IDB handle the interrupt, then someone must Jump to
this entry point.

Sometimes it is convenient to build a context block in software
and transfer control to this point. If this is the case,
interrupts must be disabled before transferring to DEBNMI.

Copyright (C) 1977, 1982, 1988 32 Software Dynamics, Inc.

lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL

DEBRESET (n+$B) contains a Jump to an lOB internal RESET routine.
This is used by power-up reset code to make sure that the
debugger has been initialized (i.e., is ready to take an NMI or a
runaway) without transferring control to the debugger. If control
is not passed to DEBUG at power up, this subroutine *must* be
called by the reset logic.

GETC (n+$E) contains a Jump to the lID routine responsible for
reading a character into register A from the control device
(normally a terminal). All input routines must ignore nulls and
strip the parity bit off the resulting character.

ECHO (n+$11) contains a Jump to the lID routine responsible for
outputting a character from register A to the control device (use
a "RTS" hel'''e for MIKBUG or" ay,y hal f-duplex device). This l''''out i1"le
is used for echoing input characters, obviously.

PUTC (n+$14) contains a Jump to the lID routine responsible for
outputting a character from register A to the control device.

oPENL (n+$17) contains a Jump to the lID routine responsible for
opening the load file (send XON for some devices, or whatever, is
requir"'ed) •

READL (n+$lA) contains a Jump to the lID routine responsible for
reading a character from the lo.d file into register A.

CLOSEL (n+$1D) contains a Jump to the lID routine responsible for
closing the 'load file (send XOFF for some devices, .or whatever is
required) •

CREATP (n+$20) contains a Jump to the lID routine responsible f6r
creating an output file for the punch channel. In an operating
system environment, this may mean to open a file which is
reserved for punching, or whatever is appropriate.

WRITEP (n+$23) contains a Jump to the lID routine responsible for
outputting a character to the punch file from register A.

CLOSEP (n+$26) contains a Jump to the lID routine responsible for
closing the punch file (whatever is appropriate).

CRERTD (n+$29) contains a Jump to the lID routine responsible for
creating an output file for the dump channel.

WRITED (n+$2C) contains a Jump to the lID routine responsible for
outputting a character to the dump file from register A.

CLOSED (n+$2F) contains a Jump to the lID routine responsible for
closing the dump file (whatever is appropriate).

Copyright (C) 1977, 1982, 1988 33 Software Dynamics, Inc.

lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL

ESCAPE (n+$32) contains a Jump to the lID routine responsible for
checking for the occurrence of an escape character on the control
device. Does immediate return with Z bit set if yes, reset if
no. Does not echo the character. If you are replacing MIKBUG,
then this featllre w.:sn't work, s.:s place a IfLDAA #1 ", If~TS" l1e1""e.

INITZ (n+$35) contains a Jump to the lID routine responsible for
all initialization functions, such as resetting ACIA's or
whatever is appropriate for your configuration. INITZ is called
only once for each-transfer to DEBUG e~try point. Note that
DEB RESET also calls INITZ. On exit from ·INITZ, the X register
must contain the default user program Stack pointer (the INITZ
routine can set up the context block so the registers contain
default values). lOB uses this value once at the DEBUG entry
time as though an n;S was typed in as the first command. (Some
systems set up an initial stack pointer in such a way that typing
"G" immediately after starting up IDB causes a transfer to a disk
bootstrap program). The first 7 (9 for 6811) bytes of the 128
bytes of RAM scratch storage allocated to lOB are set aside to be
used as this default stack.

INTDS (n+$38) 'contains .a (Jump to a) subroutine which disables
all interrupts. For most 6800 systems, these three bytes can be
set to NOP,SEI,RTS.

INTRTI (n+$3B) contains a (Jump to a) routine that conditionally
enables interrupts and then does an RTI. The "I" bit in the
corldition cc.de register c.n top of the stack (I=0 means flerlabl.e lf

)

does an RTI. Most 6800 systems can simply place arl IIRTI" here.

FETCHBVTE (n+$3E) contains a (Jump to a) routine that fetches a
byte to the A register from the location specified by the
contents of the X register, and advances the X register by one.
This is used to allow IDS to access a user ROM that normally
lives where IDB is in the address space. Normally this contains
the code "LDAA 0,X\INX\RTSIf.

STOREBVTE (n+$42) contains a (Jump to a) routine that stores the
content of the A register in the location specified by the X
register, and advances the X register by one. This is used to
allow IDB to store into RAM that normally occupies the space used
by lOB during debugging. Normally contains the code
"STAA 0,X\INX\RTS".

Copyright (C) 1977, 1982, 1988 34 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

BREAKPOINTINST (n+$46) contains the instruction to use for a
breakpoint. Changing the first byte to SWI causes IDB to store
only a SWI; otherwise, it stores 3 byte JSR for breakpoints.
Normally cc.ntaiY'ls "JSR BREAKPOINTENTRYu.

BREAKPOINTENTRY (n+$49) is the entry point into IDS where a
breakpoint must go after pushing a context block on the stack and
advancing the· PC past ~he breakpoint instruction. If
BREAKPOINTINST contains a SWI, the SWI vector must be configured
to (eventually) transfer control to this 19cation.

PRESINGLESTEP (n+$4C) contains (a Jump to) code to enable the
user space and then do an RTI, which sets the registers to the
values of the user program. This is used by the single stepper
Just before it executes a user program instruction, so that the
stepped instruction sees user ROM/RAM where lOB is located,
rather than IDS. Normally cI::sntaiY'ls "RTI/SWI/SWlu ..

POSTSINGLESTEP (n+$4F) contains the address (FOB) of the re-entry
point into lOB after executing a single instruction. The
registers will be saved by lOB.

POSTSINGLESTEPDONE (n+$51) contains the entry point for re-entry
into IDB after single-stepping. A context block~ storing the
machine state after the stepped instruction, must be pushed onto
the stack before transferring control to this point. Used only
if IDB is bank-switched.

Copyright (C) 1977, 1982, 1988 35 Software Dynamics, Inc.

lOB (INTERPRETIVE DEBUGGER) USER'S MANUAL

RAM-based lOB for SDOS

A version of lOB that ~s loadable under single-user SDOS 1.1 is
available. It operates identically to standard lOB with the
exception of the commands listed below. Fundamentally, lOB for
SDOS uses SDOS system calls so that lOB can access any user
files. Thus, it is possible to load a file, make patches, and
save the final result.

To invoke lOB froM.SDOS, type:

IDB will respond,

IDB V1.2

At this time, lOB will semi-permanently allocate about 4K bytes
at the top of the user space for its own use. This space will
not be available for use by programs being debugged. The top of
user space pointer ($FC, $FD) will be adJusted appropriately.

If G is typed immediately after loading, lOB will exit back to
the command interpreter, but is still available for debugging via
a AD and the SDOS command DEBUG.

To load a file for debugging, type:

·L
~-

In respbnse to the load file request, the name of the file to be
loaded is entered and terminated by a return key. An example:

iboad filename «CR) to exit lOB): Q6iMy~g~EBg§Ba~J~BL.

Responding with an empty line causes lOB to release its block of
allocated space, and to exit back to SDDS. lOB is then not
available via AD or DEBUG.

To send a memory dump to a file, enter:

II

The user must supply a file name in response to lOB's request for
a dump file name.

The user will have to supply a" filename for each dump requested.

Copyright (C) 1977, 1982, 1988 36 Software Dynamics, Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

Example:

II
l~~~§~L
Punch/Dump file name? bEll

To send a MIKBUG punch file to a file, the user must type

n,mP

and give a filename in response to the request for a dump file.

Punch/Dump filename? = ~YElb~~EIX~Qi~BL
Successive punches will go to the same file until a 0,0P command
is used.

Warning: Don't use a dump command before a 0,0P is issued after a
sequence of punches as the dump and punch files are the same.

Note: IDB uses the highest available channel number for its file
operations; this may conflict wit~ the program being debugged.

Copyright (C) 1977, 1982, 1988 37 Softwa~e Dynamics. Inc.

IDB (INTERPRETIVE DEBUGGER) USER'S MANUAL

COMMAND SUMMARY

;A ;H ;X ;0
II
(LF)
n(LF}

(CR)
n (CR)
"text ..
1 :
?
-n
n-m
n=
n;A
n;D
niP
n;S
nM
M
nS
S
n,mS
n,mZ
1"'1, m?
1, nl
1"'IT

;L
1, nP
1 !
1, c!
I

1\
K
8

1"'18

P
nP
X
1"'1 X
nU
N
;#
nR

* #

n+rn

n;B
n;X

n;C
n;Y

Set Display Mode to ASCII/Hex/Index/Opcode
Open Location I and Display in Current Mode
Display Next
Deposit and Display Next
Display Previc.us
Deposit and Display Previous
Close This Location
Deposit and Close Location
Deposit Text Into Memory
Open Location 1
Display Registers, Instruction, and Last Opened Location
Find Negative of n
Find Sum/Difference
Print Value
Set 8 bit register register to n
Set 16 bit register to n
Set P Register to n
Set S Register to n
Set Mask
Show Mask
Set Search Target
Show Search Target
Search Using Mask Between nand m
Zero (Copy Mask to Memory) Between nand m
Compute checkSUM over range and display
Dump Memory to Dump Device
Switch Dump/Search Output Channel
Load From Load Device
Punch to Punch Device
Set Unconditional Breakpoint on Location I
Set Conditional Breakpoint c on Location I
Show Breakpoints
Remove Breakpoint From Location 1
Kill All Breakpoint,
Start Realtime Execution (GO)
Set P Register and GO
Start Realtime Execution from Breakpoint (Proceed)
Proceed from Breakpoint and Set Iteration Counter
Single-Step One Instruction
Single-Step Multiple Instructions / Until Address
Single-Step Until Condition Occurs
Single-step until Next instruction
Reset and display single-step count
Compute Relative pisplacement
Value Equal to Last Location Examined
Value of P-Counter Displayed in Register Dump
Value of number of single-stepped instructions

Copyright (C) 1977, 1982, 1988 38 Software Dynamics, Inc.

