
V1.4

USER'S MANUAl

SOFTWARE DYNAMICS
2111 W. Crescent. SUiteG,. Anaheim, CA 92801

SOFYWARE DYNAMICS © COPYRIGHT 1977

SOFTWARE DYNAMICS

6800/6809 BASIC COMPILER V1.4

10TH PRINTING

COPYRIGHT (C) 1977 SOFTWARE DYNAMICS

ALL RIGHTS RESERVED

NOTICE

This manual describes version 1.4 of the Software Dynamics BASIC
compiler system for 6800/6809 microprocessors. The information
given in this manual has been carefully checked and is believed
to be entirely reliable. However, no responsibility is assumed
for inaccuracies.

Software Dynamics reserves the right to change specifications
without notice.

** SD software is sold on a single copy per computer basis, and is **
** covered by u.s. copyright laws. Unless a written exception is **
** obtained from SD, the software must be used only on the single **
** computer whose unique, SD-assigned serial number matches that **
** for which the software was purchased. Copies for any purpose **
** other than archival storage, or use on other thap the assigned **
** serial numbered CPU are strictly prohibited. **
** USE OF THIS MANUAL OR THE SOFTWARE IT DESCRIBES CONSTITUTES **
** AGREEMENT BY THE USER TO THESE TERMS. **

SDOS is a registered trademark of Software Dynamics.

This manual was produced by TYPE,
written in SD BASIC.

Copyright (C) 1977 SD

a document-producing program

BASIC 1.4 MANUAL 04/83

TABLE OF CONTENTS

INTRODUCTION AND BASIC CONCEPTS
SD BASIC, A COMPILER VERSION OF BASIC
INTRODUCTION
NOTATION
PROGRAM ORGANIZATION
VALUES
CONSTANTS
VARIABLES
SUBSCRIPTING
EXPRESSIONS
CONDITIONAL EXPRESSIONS

STATEMENTS
PRINT
PRINT USING
FORMAT
LET
INPUT
GOTO

BLOCK BODIES
IF (ELSEIF AND FI)
WHILE
UNTIL
REPEAT
FOR AND NEXT
CYCLE
EXIT
GOSUB
RETURN (SUBROUTINE AND <EXPRESSION»
GOSUB POP
STOP
ON
REM

ERROR HANDLING
ERROR

SUBROUTINES AND FUNCTIONS
DEF
USER-DEFINED SUBROUTINES
CALL
UNIFORM REFERENCE

FILE I/O
OPEN
CREATE
CLOSE
DELETE
RENAME
PRINT #
INPUT #

Copyright (C) 1977 SD

1
1
2
2
3
5
6
7
8
10
13

16
16
20
23
24
27
29

30
31
36
36
37
38
42
43
45
46
47
47
48
49

50
53

54
54
60
62
64

66
67
67
68
69
69
70
71

BASIC 1.4 MANUAL 04/83

WRITE:# • • • • • . • •• •••
READ :# • . • • • • • .• ••••
POSITION :# OR RESTORE:# . • • • • •
IMPLIED POSITIONING . . . • . • • •
CHAIN • • . •

• 73
• 75

· 77
. 78

• •. . 79
SYSCALL • • . • • • •
KEYED FILE PACKAGE . •

• • • • • • • • 8127
· •• • 82

MISCELLANEOUS STATEMENTS • • • • • • . • 85
DIM • • • • • • • • • • • • • • • • • · 85

. • . . • 87 COMMON . • • • • • • •
PROGRAM ORIGIN • • • •
DATA ORIGIN . • • • •
CONCATENATION BUFFER SIZE
INCLUDE . • . . • .
END • . • . . • • • •

ASSEMBLY LANGUAGE INTERFACE •
ASSEMBLY LANGUAGE SUBROUTINES • • •
ASSEMBLY LANGUAGE FUNCTIONS
DEBUG • • • . • •• ••••
POKE . • • . • • • •

• 88
• 89

• • • 90
. • . . 91

• 92

• 93
· 93

• • 95
• • • • • • • 97
• • • . • . . 97

BUILT-IN FUNCTIONS . • • . • • • . 98
SQR(ARG) . . • •. .•.••.• • .. 98
ATN(ARG) . . • • • • • • • • •• . •. 98
SIN(ARG) . . • • . . • • • . . 98
COS (ARG) . • •• ••• • •. • 98
TAN(ARG) . . • . • •. •• 98
LOG (ARG) . • • . • . • . • • . • • • 99
EXP(ARG) • . . • . 99
RND • • • • • •• •••.••• . 99
ROWS (ARRAYNAME) • . . . • • 100
COLUMNS (ARRAYNAME) .• 100
LEN(STRINGNAME$) • . • . • • . •. 100
LEN(VECTORNAME) • • • • •• •••.• 100
LEN(STRINGARRAYNAME$} • • • . • •. • 100
MAXLEN (STRINGNAME$) • • • • • • • •. .• 100
MAXLEN(STRINGARRAYNAME$} • • . . • • . •• .. 100
MID$(STRINGNAME$,ARG2,ARG3) ••••••..•.• 101
LEFT$(STRINGNAME$,ARG2} ••••.•••••••. 101
RIGHT$(STRINGNAME$,ARG2). .•• • •• 101
UPPERCASE$(STRINGARGUMENT} ••...••..•.• 101
LOWERCASE $ (STRINGARGUMENT) ~ • • . • . • .• • 101
EOF(ARG). ..••• • 102
COL (ARG) • • • . • •• •••• 102
PEEK(ARG) • •• ••• • • • • 102
COM(ARG) • • • . • • • • • •• .102
NOT (ARG). •••••• •• • • •• .• 102
INT (ARG) • • •. •••••••.•••• 103
AB S (ARG). ..•.•• .•. • 103
S GN (ARG). •.•.•• ••• • 103
ERR . . • • • • • • • • . . . 103
ELN • • • • . . • • • • • • • • • 103

Copyright (C) 1977 SD

BASIC 1.4 MANUAL 04/83

TABLE OF CONTENTS

INTRODUCTION AND BASIC CONCEPTS
SD BASIC, A COMPILER VERSION OF BASIC
INTRODUCTION
NOTATION
PROGRAM ORGANIZATION
VALUES
CONSTANTS
VARIABLES
SUBSCRIPTING
EXPRESSIONS
CONDITIONAL EXPRESSIONS

STATEMENTS
PRINT
PRINT USING
FORMAT
LET
INPUT
GOTO

BLOCK BODIES
IF (ELSEIF AND FI)
WHILE
UNTIL
REPEAT
FOR AND NEXT
CYCLE
EXIT
GOSUB
RETURN (SUBROUTINE AND <EXPRESSION»
GOSUB POP
STOP
ON
REM

ERROR HANDLING
ERROR

SUBROUTINES AND FUNCTIONS
DEF

FILE

Copyright

USER-DEFINED SUBROUTINES
CALL
UNIFORM REFERENCE

I/O
OPEN
CREATE
CLOSE
DELETE
RENAME
PRINT =/I:

INPUT =/I:

(C) 1977 SD

1
1
2
2
3
5
6
7
8
10
13

16
16
20
23
24
27
29

30
31
36
36
37
38
42
43
45
46
47
47
48
49

50
53

54
54
60
62
64

66
67
67
68
69
69
70
71

BASIC 1.4 MANUAL 04/83

WRITE:#= . • • • • • . • . • • • • • • . • • 73
READ #= • • • • • • • • • • • • • • • • • •
POSITION :#= OR RESTORE:#= .• • • • • • • • •

• • 75
• 77
· 78
• 79

IMPLIED POSITIONING . •• .••. •..
CHAIN . • . • • • • . • • •
SYSCALL • • • • • • • • •
KEYED FILE PACKAGE . • • • • • . • •

• • 80
• 82

MISCELLANEOUS STATEMENTS
DIM • • • • • •
COMMON . . • • • • • .
PROGRAM ORIGIN • • . •
DATA ORIGIN • • • • •
CONCATENATION BUFFER SIZE
INCLUDE . • . • • . • • •
END . • • . • • • • • • •

ASSEMBLY LANGUAGE INTERFACE • • • •
ASSEMBLY LANGUAGE SUBROUTINES
ASSEMBLY LANGUAGE FUNCTIONS
DEBUG • • . • • • •
POKE . • • . • •

• • • • 85
• • • • 85

· . 87
· 88

• • . • 89
· • 90

· 91
• • • • 92

· 93 • 93
• 95
• 97
• 97

BUILT-IN FUNCTIONS • . • •. ••• ••. . 98
S QR (ARG) . . • • • • • • • • • . . 98
ATN(ARG) . . • • • . • •• . ••... 98
SIN (ARG). •.•..•.• ••••••.• 98
COS (ARG) . • • • • • • • • • • . • . • 98
TAN (AR G). ••••••. •..•• • • • • 98
LOG (ARG). .•..••..••.•••. • 99
EXP (ARG) . • • • . •• .•••••• . 99
RND • • • • • • • • • • • • • • • •. . 99
ROWS (ARRAYNAME) . ••.••. . 100
COLUMNS (ARRAYNAME) • .• . ••.•••.••• 100
LEN(STRINGNAME$). • •.••••••••••• 100
LEN (VECTORNAME) • • • • • . • • •• • 100
LEN (STRINGARRAYNAME$) •••• ••••.••• 100
MAXLEN(STRINGNAME$) •••.••• • • 100
MAXLEN(STRINGARRAYNAME$) • . 100
MID$(STRINGNAME$,ARG2,ARG3) ••• • 101
LEFT$(STRINGNAME$,ARG2) •.••.•••••••. 101
RIGHT$ (STRINGNAME$, ARG2) • • •• .••• • 101
UPPERCASE$(STRINGARGUMENT) .••• 101
LOWERCASE$(STRINGARGUMENT) • . •. ••• . 101
EOF (ARG) . . • . • • • • • • . • • • • 102
COL (ARG) . • • • • •• ••••..•• 102
PEEK(ARG) .••.••• ••. • • • • 102
COM(ARG) •••.•••.••••••••••.•• 102
NOT(ARG). . .••••••••••••.•.• 102
INT (ARG). •.•• .••••••• 103
ABS (ARG) . ••••.•.. • •. • 103
SGN(ARG). ••• • • • • • • • 103
ERR . . •. ••••••••••. . 103
ELN • • • • • • • •• ••• • • • • . 103

Copyright (C) 1977 SD

SOFTWARE DYNAMICS

6800/6809 BASIC COMPILER V1.4

10TH PRINTING

COPYRIGHT (C) 1977 SOFTWARE DYNAMICS

ALL RIGHTS RESERVED

NOTICE

This manual describes version 1.4 of the Software Dynamics BASIC
compiler system for 6800/6809 microprocessors. The information
given in this manual has been carefully checked and is believed
to be entirely reliable. However, no responsibility is assumed
for inaccuracies.

Software Dynamics reserves the right to change specifications
without notice.

** SD software is sold on a single copy per computer basis, and is **
** covered by u.s. copyright laws. Unless a written exception is **
** obtained from SD, the software must be used only on the single **
** computer whose unique, SD-assigned serial number matches that **
** for which the software was purchased. Copies for any purpose **
** other than archival storage, or use on other than the assigned **
** serial numbered CPU are strictly prohibited. **
** USE OF THIS MANUAL OR THE SOFTWARE IT DESCRIBES CONSTITUTES **
** AGREEMENT BY THE USER TO THESE TERMS. **

SDOS is a registered trademark of Software Dynamics.

This manual was produced by TYPE, a document-producing program
written in SD BASIC.

Copyright (C) 1977 SD

BASIC 1.4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

PROGRAM ORGANIZATION

BASIC is a procedure-oriented language: the user expresses the
activity he desires the computer to perform, in a set of explicit
commands to perform computations and make decisions.

Each of the commands is called a statement. BASIC has some 40
different kinds of statements and 40 different functions; the
form and function of each is individually discussed, below.

A statement list is a set of executable statements separated by
the backslash (11\11) character. An optional <CR> character is
allowed after each backslash separating statements, so a
statement list may span several physical text lines. Note that a
REM statement, if included in a statement list, is always the
last statement in that statement list. A single statement (if
not trailed by a 11\11) is a statement list.

A IIline ll is a statement list, followed by a <CR> character (the
traditional BASIC definition of a line is a statement followed by
a <CR». Note that with this definition a II line" can span
several physical text lines.

A IIblock ll is a statement that has an embedded set of lines. A
block is introduced by certain statement formats, and terminated
by a keyword that depends on the introducing statement. The set
of lines embedded in the statement is called the block body (an
example of a block in traditional BASIC is FOR-NEXT). Execution
of the block body is controlled by the introductory statement.
Note that a block can be part of a line. Wherever "blockbodyll is
shown in this manual, it may be replaced by a statement list (see
BLOCK BODIES).

A BASIC program consists of a set of lines. Traditionally, each
line is numbered to indicate the normal sequence in which the
lines are executed. These line numbers appear at the left end of
the line and may be any value from 1 to 65535. Good programming
practice dictates that line numbers be separated by some numeric
distance, say 10, so that if programming errors are found, or
changes made to the program, new lines with numbers in between
those which already exist can be created. With SD BASIC, line
labels may also be used, as well as line numbers. A line label
is any sequence of up to 32 letters or digits, starting with a
letter, (i.e., LABEL is a valid label). A label name may not be
identical to a reserved keyword (see VARIABLES). ~Vhen a line
label is used to "number ll a line, a label must be followed by a
11:11 character. A line label may be on a line by itself, whereas
a line number may not. Heavy use of labels makes programs more
readable, and thus more maintainable. Throughout the rest of
this document, the term line number or line label are used
interchangeably. Line numbers are only needed if the line is
referenced by another part of the BASIC program.

Copyright (C) 1977 SD 3

BASIC 1.4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

Example:

10 REM **** PRIME NUMBER CHASER ****
20 REM PRINTS OUT FIRST 100 PRIME NUMBERS
30 DIM PRIMES[100],CANDIDATE/3/,NPRIMES/1/
35 PRINT "Prime Finder"
40 LET PRIMES[NPRIMES]=2
LOOKFORANOTHERPRIME:

FOR PRIMESELECTOR=l TO NPRIMES
X=PRIMES(PRIMESELECTOR)
LET Q=INT(CANDIDATE/X)
IF Q<X THEN FOUNDNEWPRIME

110 IF Q*X=CANDIDATE THEN 120
105 NEXT PRIMESELECTOR
FOUNDNEWPRIME: LET NPRIMES=NPRIMES+l\PRIMES[NPRIMES]=CANDIDATE
120 LET CANDIDATE=CANDIDATE+2

IF NPRIMES <> 100 THEN GOTO LOOKFORANOTHERPRIME
FOR PRIMESELECTOR = 1 TO 100
PRINT PRIMES(PRIMESELECTOR)
NEXT PRIMESELECTOR
PRINT 'All Done!'

200 STOP
END

The above program is numbered in a conventional way for BASIC
programs, with the exception of some lines without numbers, two
lines with a label, and one line with a line number out of order
(see below). Note that when several statements are "grouped" in
the same line (line FOUNDNEWPRIME), they must be separated by a
"\" (backslash) character. A FOR-NEXT block appears in the
program. The lines between FOR and NEXT comprise the body of the
FOR-NEXT block.

When a BASIC program is executed, execution starts with the first
statement in the first line (the statement at the top of the page
of a listing of the program). The statements within a line are
executed from left to right if there are more than one., When a
line is completely executed, control flows to the next line down
the page (of the program listing), and its component statements
are executed from left to right. Certain statements change the
flow of control explicitly (i.e., GOTO, GOSUB, NEXT, ON, IF,
etc.). If control flow is redirected, SD BASIC executes lines
sequentially from the new target point until control flow is
changed again. Note that control flow is NOT directed in sorted
line-number order as in conventional BASIC programs, but rather
in top-to-bottom of page order. This is, however, compatible
with standard BASIC programs listed in line-number order.

Copyright (C) 1977 SD 4

BASIC 1.4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

VALUES

BASIC programs can operate on two kinds of data: real numbers and
character strings. A specific real number or string is called a
value.

Number values used by BASIC are decimal (floating point) 9 digit
precision numbers (decimal is used to facilitate business
applications). Numbers used for dollar amounts between plus or
minus 100 million dollars are kept to 10 digit accuracy (exact to
the penny).

Numeric values are limited to the range of plus or minus
.9999999999 times 10 to the plus or minus 126.

Strings are groups of 8 bit data items (bytes), which normally
contain ASCII codes for letters, digits, punctuation, etc. A
string value may be from zero to 65534 (not 65535) characters in
length.

Copyright (C) 1977 SO 5

BASIC 1.4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

CONSTANTS

Constants are the means by which the programmer introduces a
particular value into the program, permanently. Note that line
numbers are not really constants, since they only serve to label
a line, not to introduce a value into the program.

Number constants consist of digit strings with an optional
exponent specification, and represent real values in the program.
At least one digit must be given. A decimal point can be placed
anywhere in the digit string. The exponent is specified by
writing liE" (or "e") followed by "+" or "_" or nothing, followed
by one to three digits for the exponent value itself.

Examples of numeric constants:

5
.007

2.7
6E-2

0000300-
.140le+76

. 9999999999El26
l2El2

BASIC also accepts positive integer hexadecimal constants in the
range 0 to 65535. The form of a hexadecimal constant is a colon
followed by one to four hexadecimal digits (0-9, A-F or a-f). A
hexadecimal constant may be used anywhere a numeric constant may
be used.

Examples of hexadecimal constants:

:0 :ABC4 :2F :4f3

Two special constants, named TRUE and FALSE, represent the values
1 and 0~ respectively.

String constants consist of a quoted sequence of characters which
do not contain the quote. The quote character may be either" or
" but it must be the same at both ends of the string constant.
The string value represented is the sequence of ASCII-coded
characters which comprise the string body (everything but the
quotes). Upper and lower case characters are preserved exactly
as written in the body of the string. A single quote may appear
in a string constant which is delimited by double quotes, and
vice-versa. An end of line character <CR> may not appear in a
string constant. The null or empty string is written as " or
"" A string constant may not exceed 127 characters in length
including the quotes.

Examples:

"ABC" 'BE"FG' 1.1401E+76" , , "can't"

Copyright (C) 1977 SD 6

BASIC 1.4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

VARIABLES

BASIC allows the programmer to name quantities which can change.
These named quantities are called variables. The name itself is
the variable name.

BASIC supports two kinds of variables: numeric and string.
Numeric variables are used to represent quantities and can hold
any value specified in the section on constant numbers. String
variables are used to deal with varying length groups of
characters (or bytes), and can hold any value as specified in the
section on string constants. String variables are limited to
65534 bytes in length.

Variable names are composed of letters and digits; the first
character of a name must be a letter. Lower case letters are
treated as being identical to upper case letters in variable
names.

Examples of legal numeric variable names:

X, B7, INTEREST, Rate, A7773X.

The length of a variable name is limited to 32 characters by the
assembler. The name of a variable must not be the same as any
keyword (statement, function name, etc.), or a syntax error will
result (i.e., THEN is not a valid variable name). A list of
keywords may be found in the section on KEYWORDS (note that
keywords may also be written using lower case).

String variable names require that a "$11 character be the last
character of the variable name. The numeric variable whose name
is the same as a string variable name (except for the "$") is a
completely different object from the string variable. String
variables have two associated lengths: the current LENgth, which
is the number of characters currently held by the string, and
MAXLEN, which is the maximum (DIMensioned) length of the string.
This difference is subtle but very important; failure to
understand the difference will cause many mysterious string
subscript errors.

Examples of legal string variable names:

CUSTOMERNAME$, IN27F$, BUF2$, TEXT$

Copyright (C) 1977 SD 7

BASIC 1.4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

SUBSCRIPTING

A vector is a variable which represents a list of numeric values.
If a vector is named V, the first value in the vector is named
(denoted) V[lJ, the second value is denoted V[2J, etc. The value
inside the [Js is called the subscript. A subscript value may
be specified by an expression to allow computation of the desired
element of the vector. SD BASIC allows 0 as a subscript on
numeric vectors. BASIC accepts () interchangeably with square
brackets.

An array is a variable which represents a rectangular matrix of
values. The upper left hand corner is named A[0,0Ji this element
is in the zeroeth row, zeroeth column. The 2nd element of the
1st row is A[1,2J, etc. The value in the Nth row, Mth column is
named A[N,M]. Nand M may be expressions which compute the
selected row and column. N or M may be zero.

While SD BASIC does not directly support 3 or higher dimensional
arrays, they may be transparently simulated using the Uniform
Reference facility, as outlined in that section.

Strings can be selected in their entirety, or in portions. The
notation stringname$[expl,exp2] means select the substring of the
named string starting in the expl position of the string for exp2
characters. If B$ has the value "HELLO" at the moment, B$[3,2J
is the string value tiLL". The substring selected must not
overlap the end of the current string value (i.e., expl<l or
expl+exp2>current length of the string), or a subscript error
will occur. If exp2 is zero, no subscript error can occur.

The notation stringname$[expJ or stringarrayname$(expl)[expJ is
called a byte subscript, and means the "exp"th slot of the
string; this form can appear only in numeric expressions and
represents the numeric value of the expth byte of the string (as
opposed to a single character string). Exp can be from 1 to the
DIMensioned size of the stringi the current length of the string
has no effect on byte subscripts. Zero may not be used as a byte
subscript.

A string array is a variable which represents a vector of strings
(a better name would have been string vectors, but historical
reasons prevent changing it). Each slot of a string array holds
a variable length string. The number of strings in a string
array is specified in a DIH statement. The notation
stringarrayname$[exp] selects the "exp"th string of the arraYi
exp must round to a value greater than or equal to 1.

A substring selector or a byte subscript may be appended to the
string selector to select a portion of that string, as desired.

Copyright (C) 1977 SD 8

BASIC 1.4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

A typical string array might contain one sentence in each slot,
with the array representing a limerick. Then the string array
would have 5 slots; typical filler material might be:

LIMERICK$[l] has "There is a nice compiler BASIC"
LIMERICK$[2] has "with features that make it like magic"
LIMERICK$[3] has "Programs are easy to read"
LIMERICK$[4] has "and run with great speed"
LIMERICK$[5] has "making other BASICs seem tragic."

Then LIMERICK$[3](14,4) selects the substring "easy" and
LIMERICK$[3](l) contains the value :50.

Any variable which can be subscripted must have the maximum
bounds specified in a DIM(ension) or COMMON statement.

If any subscript value used is not an
it to the closest integer (i.e.,
instead of the value).

integer, BASIC will round
it will use INT(value+.5)

SD BASIC allows the result of a string function (see DEF and
BUILT-IN FUNCTIONS) to be subscripted. Example:

NUM$(35)[3,l]

gives the string "5" since NUM$(35) gives" 35".

Copyright (C) 1977 SD 9

BASIC 1.,4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

EXPRESSIONS

Key to the operation of BASIC programs is the ability to compute
new values based on old values. Specification of such a
computation is done by writing an expression, which looks like an
algebraic formula.

An expression is a sequence of constants, variable names and
operators (such as add or multiply). BASIC allows two kinds of
expressions: those which compute numeric values, and those which
compute string values.

Numeric expression$ may contain only references to functions that
return numeric results, numeric variables (or entries in vectors,
arrays, and strings), real constants, or hex constants. The
allowed operators are listed below with their function:

OPERATOR USE OPERATION

+ A+B Computes the sum of A plus B
A-B Computes the difference of A

minus B
* A*B Computes the product of A

times B
I AlB Computes the quotient of A

divided by B
& A&B Computes the logical bit

product of A and B
AlB Computes the logical bit II or II

of A and B
XOR A XOR B Computes the logical exclusive

or of A and B
** A**B Computes the value of A

shifted left [B>0] or right
[B<0] bits

A"'B Computes the value of A raised
to the power Bv

-A Computes the negative of the
value of A

F(F(A) Computes the value of the
function F applied to A

For manipulating dollar amounts, arithmetic (+,-,*,/) is accurate
to 10 digits if the operands and the result have magnitudes in
the range .01 to 99999999.99.

Copyright (C) 1977 SD 10

BASIC 1.4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

Logical operators (& 1 XOR **) allow only integer operands in
the range 0 to +65535 (exception: the right operand of ** may be
a negative integer); the result of an operation such as & is the
bitwise II AND II of the binary equivalent of the numbers.

Examples:

0&17 = 0
211 = 3
7**-2 = 1
32768**-1 =

1&:11 = 1
317 = 7
7**-3 = 0

16384

2&17 = 0
:7 XOR 5 = 2
12**2 = 48

:IF&16 = 16
1**10 = 1024
100**25 = 0

BASIC has a set of built in functions (explained in the section
on FUNCTIONS). The programmer may also define his own functions
(see DEF).

One can cause a function to be applied to a value by simply
writing the function name, a left parenthesis, then an expression
representing the value, and a right parenthesis, i.e. COS(PI+2).
Functions that accept multiple arguments are invoked by writing
the function name, a left parenthesis, a list of expressions (one
for each argument) separated by commas, and a right parenthesis.
Functions that require only a single argument do not require the
parenthesis (i.e., SIN X is legal).

Evaluation of an expression is based on operator precedence, with
operations performed in the following order:

1ST:
2ND:
3RD:
4TH:

- -(negate) and functions
A (exponentiation)
& * / **
XOR ! + - (subtract)

so that 3*4+2 gives the value 14, not 18.
used to override precedence to obtain any
evaluation, (i.e., 3*(4+2) gives 18, not 14).

Examples of expressions:

2
WHALE+PORPOISE
COS(PI/ATN(BETA[3]}}*19
: 46-ADDRESS*2
VALUE&:7+"0"
INLINE$(I) - ASC IAI + OFFSET

Copyright (e) 1977 SD 11

Parentheses may be
desired order of

BASIC 1.4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

String expressions may contain any sequence of constant strings,
string variables, and substring references separated by the
operator "CAT", which concatenates strings together.
Concatenated strings may not exceed the size of the concatenation
buffer (256 by default). Parentheses may not be used in string
expressions to change the order of concatenation (but they may be
used in subscript computations). If more than one string
temporary is present within a statement, "CAT II may be used in
only one of those computations which generate temporaries:

A$=A$ CAT B$ CAT C$

is legal, but, beware:

RENAME A$ CAT' .EXT', B$ CAT' .EXT'

is illegal.

"ABC" CAT 'DEFI produces the value IIABCDEF".
" ABCDEF", then

A$[1,3] CAT 1*' CAT A$[4,3]

gives "ABC*DEF" as its value.

Copyright (C) 1977 SO 12

If A$ contains

BASIC 1.4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

CONDITIONAL EXPRESSIONS

A conditional expression is used to determine the truth or
falsity of a relation between two or more values. Conditional
expressions are usually found in statements which perform
operations conditionally, such as IF and WHILE statements.

Conditional expressions are
combinations of relations.
is a relation. Relations
Possible relations are:

composed of relations, and logical
The simplest conditional expression

allow two values to be compared.

Numeric Values:
EXPl = EXP2
EXPl <= EXP2
EXPl >= EXP2
EXPl < EXP2
EXPl > EXP2
EXPl <> EXP2

EXP

String Values:
EXPl = EXP2

EXPl <= EXP2

EXPl >= EXP2

EXPl < EXP2

EXPI > EXP2

EXPl <> EXP2

(EXPI and EXP2 are numeric expressions)
True if the value of EXPI equals EXP2
True if EXPl is less or equal to EXP2
True if EXPl is greater or equal to EXP2
True if EXPl is strictly less than EXP2
True if EXPI is strictly greater than EXP2
True if EXPl is not equal to EXP2
(Interpreted as a relation) means "EXP<>0"

(EXPl and EXP2 are string expressions)
True if string value of EXPl exactly
equals the value of EXP2, both in
content and length
True if EXPl alphabetically precedes
EXP2 (according to ASCII character
coding) or EXPl = EXP2 exactly.
Note that strings being compared are
not blank extended to the right,
and that "ABC" < "ABD" and "ABC" < "ABC II
True if EXP2 alphabetically precedes
EXP1, or EXPl = EXP2 exactly.
True if EXPI alphabetically precedes
EXP2.
True if EXP2 alphabetically precedes
EXP1.
True if EXPl is not the same as EXP2,
in either length or content.

One cannot compare a string expression with a numeric expression.
Also, if "CAT" is used as an operator in EXP1, it cannot be used
in EXP2 and vice-versa (see caveat on "CATII under IIEXPRESSIONS").

Copyright (C) 1977 SD 13

BASIC 1.4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

A condition can
operators "AND",
parentheses.

be any combination of
"OR", the logical

relations,
function

using
"NOT"

the
and

A conditional expression of the form A AND B is true if condition
A is true, and condition B is true. A conditional expression of
the form A OR B is true if condition A is true, or condition B--is
true. A conditional expression of the form NOT A is true only
when the condition A is false. AND has precedence over OR so
that

A<B AND B<C OR S=0

is true if S=0 or both A<B and B<C. Parentheses may be used to
change the order of evaluation:

A<B AND (B<C OR S=0)

is true if both A<B and either B<C or S=0. The "NOT" operator
can be applied to invert any condition: NOT A<B is the same as
A>=B. NOT has higher precedence than AND or OR, so parentheses
are needed to invert a complicated condition.

NOT(A<B AND B>2)

is the same as:'

A>=B OR B<=2

Conditions are evaluated from left to right until their truth is
determined. Once the truth value of a condition is determined,
the rest of the condition expression is not evaluated, so that:

8=0 OR B/S=2

can never give a division by zero error
also useful when checking for an illegal
speeds up program execution.

Copyright (C) 1977 SD 14

(this kind of test is
subscript) and also

BASIC 1.4 MANUAL 04/83
SECTION I: INTRODUCTION AND BASIC CONCEPTS

The result of a condition can be used wherever a condition is
allowed, or as an element of an expression. When used in an
expression, a true condition gives the value 1 (TRUE), and a
false condition gives the value 0 (FALSE). So

12*(3)4)

gives the value 0 since 3>4 gives the value 0, while

-6*(2<3)

gives -6 since 2<3 gives 1.

When used as part of a conditional expression, a simple
expression is interpreted as lexpression<>0".

Example:

X"'2 AND NOT Y

is interpreted as

X"'2<>0 AND NOT Y<>0

Copyright (C) 1977 SD 15

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

STATEMENTS

This section describes the format and function of statements in
the Software Dynamics version of BASIC. All statements start
with a keyword (with the exceptions of optional LET or CALL
keywords) and end with the <CR> or a backslash (\).

The statements are listed in order of probable utility.

PRINT

The simple PRINT statement is used to cause printing of values or
character strings on the terminal.

The general form is:

PRINT list-of-print-fields

The print fields can be numeric or string expressions. The print
field entries are separated from one another by"," or "ill, which
affect how spacing is to be performed between the printed values
(see below).

Examples:

10 PRINT A

20 PRINT "SUM ISll i A+B, IIPRODUCT IS .. . A*B I

30 PRINT "LEFT SUBSTRING: .. . A$[1,25] I

40 PRINT "JUST THIS STRING II

50 PRINT

~~e PRINT statement causes the values in the print fields to be
converted to a readable form and printed on the terminal. The
values are printed out on the terminal from left to right in the
same order as they appear in the PRINT statement itself.

String values are printed exactly as the ASCII equivalent of the
string contents, i.e., IIABC" is printed as ABC. No insertions or
deletions are made by BASICi if the string contains control
characters, they are copied directly to the I/O interface
routines. However, the operating system under which BASIC is
running may have some conventions regarding such control
characters.

Copyright (C) 1977 SD 16

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

Numeric values are printed in a form designed for user
convenience, according to the following rules:

If the value is an integer and is less than lE10:

sign dddddddddd

Where "sign" is either a single blank or a "_" sign, ,and "dddd"
are digits. Leading zeros are suppressed. The value -10*22 is
printed as -220; the value 17 is printed as space 17. Zero is
printed as space 0.

If the value is not an integer and is greater than or equal to 1
in magnitude, and is less than lE10:

sign ddddddddd.dddddddd

Leading zeroes (when to the left of the decimal point) and
trailing zeroes (when to the right of the decimal point) are
suppressed. At most 10 significant digits are printed. II II is a
decimal point.

If the magnitude of the number is less than 1 and greater than or
equal to lE-6:

sign .ddddddddddddddd

Trailing zeros are not printed.

If none of the above conditions describe the number value, II E"
notation is used:

sign.ddddddddddE esign xxx

The first digit to the right of the decimal point is nonzero.
Trailing zeros are suppressed. The "E" after the digit string
represents a literal "E", and "esign" represents "+11 or "_".
"xxx" represents a three digit, leading zero supressed, exponent.
The printed form corresponds to a value of
sign.dddddddddd*10 A (esign xxx).

Copyright (C) 1977 SD 17

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

Field separators may be either "," or ";" The comma causes
tabbing between fields printed; it forces the terminal to space
(at least once) to the column such that the column number modulo
18 is one (i.e., there are column boundaries at 19, 37, 55, 73,
etc.). The semicolon causes a space to be printed if the value
to its left is numeric; if the value to its left is a string, the
semicolon prints nothing.

The statement:

60 PRINT A,B,C,D

produces a tabular output with the value of A in the first
column, B in the second column, C in the third, etc.

70 PRINT A;B;C;D

produces tightly spaced output with each number being separated
from its neighbor by a single space (two spaces if all the values
printed are positive).

80 PRINT A;B,D;E

produces values of A and B tightly packed, then a tab to the
values of D and E tightly packed.

90 PRINT "ABC": 5

produces ABC space 5.

100 PRINT "ABC":S$

produces ABCDEF if S$ has the value "DEF".

A print field may contain TAB(exp) instead of a string or a
numeric expression. This causes the terminal to space until the
column specified by the expression is reached. TAB(l) refers to
the" leftmost print column on a line. If the expression specifies
a column less than the current position of the print head, no
spaces are produced. TAB() must always be followed by a ";"
separator. The TAB function may only be used in a PRINT
statement.

110 PRINT AiTAB(10)iB;TAB(20);C:TAB(30);D

produces a columnar output with l0-space wide columns.

Copyright (C) 1977 SD 18

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

The PRINT statement normally causes a set of values to be
printed, followed by a carriage return (i.e., further output is
on a new line). The carriage return may be suppressed by ending
the print statement with a IIi II or II," (which have the same
meaning as above). Further printing by other print statements
will then resume from where the continuing PRINT left off.

120 PRINT A,B
130 PRINT C,D

will produce two lines of two column output, while

140 PRINT A,B,\REM NOTE TRAILING COMMA AFTER B
150 PRINT C,D

will produce output identical to that of

160 PRINT A,B,C,D

A print statement with no
carriage-return character to
sequence:

print fields simply causes a
be sent to the terminal. The

170 PRINT IIRESULT ISlIi\REM NOTE SEMICOLON AFTER STRING
180 PRINT SQR(X)i
190 PRINT

does the same as:

200 PRINT "RESULT IS"iSQR(X)

Copyright (C) 1977 SD 19

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

PRINT USING

The PRINT USING statement is used to perform formatted output of
numeric values. The format is specified as a character string;
the PRINT USING statement specifies the list of values to be
printed according to the format. The form of a PRINT USING
statement is:

PRINT USING format-string, list-of-values ;

The format-string can be a string constant, a string variable
(with optional subscripts), or the line number of a FORMAT
statement (which contains the format string).

The list-of-values is a set of string or numeric expressions
separated by commas. The last item of the list may not be
followed by a comma, but may be followed by a semicolon. The
print list may be empty, which simply causes output of the
contents of the format string.

A format string is a string of ASCII characters containing number
formats. The number formats cause numeric values to be printed
in a controlled way. The following characters are the only
characters that may be used in a number format:

Character Usage
$ Causes floating dollar sign to be printed

Causes sign of number to be printed
Causes a digit to be printed

Forces printed number to be aligned with decimal point
Specifies exponential notation be used

Number formats are character sequences composed of an optional
dollar sign, optional minus sign, optional decimal point, hash
marks (#), and an optional group of 3 to 5 carets (A). The hash
marks indicate digit positions; the decimal point indicates a
forced alignment for the decimal point, and the carets force "E"
(exponential) notation, and specify the number of printed
exponent digits. The "_" sign is used if the number needs a
place for a sign ("_" or blank). The dollar sign indicates the
need for a floating 1$1 character to be output immediately
preceding the sign of the number. "####" means "4 digit integer II
(only positive numbers allowed!). "-##.##" means "signed 4 digit
number, two digits to the left and two to the right of the
decimal point". "###.##-" means a "5 digit signed number, sign
following the last digit". "#.##AA"A"" means "3 significant
digits (conventional scientific notation) with 3 digit exponent".
"$####.##-11 is a typical format used to output dollars and cents
up to $9999.99. If the number format begins with a "$11, the
exponential form ("AAAAAII) may not be used. If a trailing "_" is
used, then the number format may not have IIAAAAAII and vice-versa.
There must be at least one 11#" in a number format; a maximum of
10 is allowed. No other character string is a number format
(i.e., "_$" and "$." are not number formats).

Copyright (C) 1977 SD 20

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

The PRINT USING statement operates by alternately outputing parts
of the format string and outputing values (from left to right)
from the list-of-values. For each value in the print fields,
PRINT USING does the following:

If the value is a string, the string is output as is. The format
string is unaffected and plays no part in string output.

If the value is a number, then characters from the format string
are output until the format string is exhausted or until a number
format is encountered in the format string. If the format string
is exhausted, then the value is printed according to the rules
under PRINT (note: no spacing will occur in this case, except for
a blank sign if the number is positive). Once a number format is
encountered, the value is printed as specified by the format.
For each character in the number format, SD BASIC prints exactly
one character. A "_" sign in the number format is printed as "_"
if the value is negative, otherwise as a blank. If the format
contains no carets and there are leading zeros, a leading "_"
sign is moved right until, it is just to the left of the first
significant digit. If no sign is specified in the number format,
the output value must be positive or an error will result (since
no space is allocated in which to print a minus sign). A "$"
causes a "$" character to be printed immediately to the left of
the sign character if the sign is leading and the value is
negative: otherwise, it is printed where a sign character would
have been printed in a normal printout. The "." is always
printed as a ".", but it causes the number to have its decimal
point printed in the designated place. Each "#" is printed as a
digit (leading zeros to the left of the first digit to the left
of the "." are replaced by blanks if not exponential form). A
group of carets causes an exponent of the form liE-XXX" to be
printed, where "_" is printed as "+" or "_" and xxx are exponent
digits. The number of exponent digits printed is equal to the
number of carets minus 2 (leaving room for the "E" and the
exponent sign). They also cause the number to be printed with
its most significant digit placed at the position of the leftmost
hash mark in the format. If the value cannot be output using the
number format, SO BASIC prints an asterisk for each character in
the number format.

If the end of the PRINT USING statement is reached, and the
format string has not been exhausted, then the rest of the format
string is output as is, including any number formats.

Finally, a <CR> is output unless the optional trailing semicolon
is present, in which case no other characters are output. This
allows multiple PRINT USINGs to generate a single output line.

TAB may not be used in a PRINT USING statement.

Copyright (C) 1977 SD 21

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

Examples:

10 PRINT USING "PI =-#.####",3.141593

prints out:

PI = 3.1415

20 LET S$=" #.##""""""" IS TEN PI IN E NOTATION"
30 PRINT USING S$, PI*10

prints out:

3.14E+01 IS TEN PI IN E NOTATION

35 LET S$= "IS NEGATIVE PI"\PRINT USING 50,-PI,S$,PI+2
50 FORMAT "»>####.##- 11 ####.##-18 PI+2"

prints out:

»> 3.14-IS NEGATIVE PILI 5.14 IS PI+2

60 PRINT USING "#.## IS 75",75

prints out:

**** IS 75

70 PRINT USING 80, 5.93, 5.93, -5.93, -5.93
80 FORMAT "$##.## : $-##.## : $-##.## : $##.##-"

prints out:

$5.93 $5.93 $-5.93: $5.93-

90 PRINT USING 120,2.92i\PRINT USING 130i\PRINT USING 120,9.1i
120 FORMAT "##.##"
13-0 FORMAT II IS NOT THE SAME AS II

140 PRINT USING " •.. QEDl"i\PRINT\REM'UNUSUAL USE OF PRINT USIN

prints out:

2.92 IS NOT THE SAME AS 9.10 ... QED!

prints:

150 PRINT USING 160
160 FORMAT "THIS COULD BE A VERY LONG STRING"
170 PRINT USING LEGALBUTDUMBFORMAT,26
LEGALBUTDUMBFORMAT: FORMAT "%%"

THIS COULD BE A VERY LONG STRING
%% 26

Copyright (C) 1977 SD 22

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

FORMAT

The FORMAT statement is used to introduce a long or commonly used
format string for PRINT USING statements. It consists simply of
the word "FORMAT II and a quoted character string constant. A
FORMAT statement must have a line number (or label), and must be
the only statement on that line. A FORMAT statement acts like a
REM statement in that executing it does absolutely nothing. The
form is:

linenumber FORMAT string

Examples:

27 FORMAT IIREMAINDER UNPAID: ####.##11

50 FORMAT 'ACCOUNT BALANCE: $####.##- WITHDRAWALS: $####.##'

ACCTTOTALS: FORMAT II PAYROLL $####.## PROFIT $######.##11

Note: A FORMAT statement may not precede the first executable
statement in a program.

:opyright (C) 1977 SD 23

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

LET

The LET statement is used to cause a variable to take on a new
value. The form is:

LET variable = expression

If the variable is numeric, then the expression must produce a
numeric value~ If the variable is a string or a substring, then
the expression must be a string expression. A substring
specification as the variable must not exceed the current length
of the string. Subscripted variables are also allowed on the
left side of the equal sign. The word LET is optional.

10 LET A=5

causes A to take on the value 5 until a new value is assigned.

20 ZAP[2,3]=COS(ZAP[2,3])/2

computes a value and stores it in the second row, third column of
the array ZAP.

30 LET Q[9]=B$[22]

sets the 9th entry in the numeric vector Q to the value of the
22nd byte of the string B$.

40 LET B$="ABC" CAT "0"

sets the string B$ to "ABCD". The former contents of B$ are
completely lost.

45 LET A$="ABC"\ LET B$="ZX"\ LET A$=B$ CAT A$

sets A$ to "ZXABC".

50 LET B$[11,3]="ABC"

sets 3 characters of B$, starting in the 11th byte, to "ABC". B$
must have previously had a value whose length was 13 or more or a
subscript error will result. The length of B$, and other bytes
except B$[ll], B$[12], and B$[13] are not affected in any way.

60 LET B$[l,2]="DEFGHI"

changes the first two 2 characters of B$ to "DE". The "FGHI"
part is not stored.

65 LET B$[12,0]="ABC"

does not change B$ at all because the target substring length is
zero.

Copyright (C) 1977 SD 24

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

70 LET B$[1,27]=IIABCO"

stores II A" , "B", IIC" ANO "0" into B$[l], B$[2], B$[3], B$[4J
respectively. B$[4,23J is set to blanks. The rest of B$ is not
affected.

With string assignments, only as many bytes as are specified by
the minimum of the target and source string lengths are copied.
Excess bytes in the source string are ignored; excess bytes in
the target are blank-filled. If the target string is a string
variable and not a substring, its current length is changed to
the number of bytes copied. Storing into a substring does not
affect the current length of the string containing the substring.

80 LET B$[3J=13

sets the third byte of B$ to an ASCII carriage-return. Note:
B$[3J=IABC" is not legal since B$ in this example is a string
variable; the left hand side is a numeric value, not a substring.

The current length of a string can be set to any value (less than
or equal to the dimensioned string length) by writing

90 LET LEN(stringname$) = expression

This will truncate the string if the expression value is less
than the current length of the string; if greater, the string is
extended with garbage bytes. Extending the string in this
fashion is also necessary before attempting assignment to a
substring of it if the string has never previously been assigned
a value.

SO BASIC is sensitive to substring overlap problems and
automatically adjusts the direction of copying (first-to-last or
last-to-first) in a string assignment to assure the intended
result. For instance, given the statements

100 LET S$[2,3J=8$[3,3J
110 LET S$[3,3J=8$[2,3J

If 8$ was "ABCDEF" before 100, it will be "ACDEEF" afterwards; if
it was "ABCOEF" before 110, it will be "ABBCOF" afterwards.

Copyright (C) 1977 80 25

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

Conditional expressions may be used anywhere an expression is
allowed, including LET statements:

120 LET X= A>B OR NOT(C=D}

X will be set to TRUE if the condition A>B OR NOT(C=D) is true,
otherwise X will be set to FALSE.

130 LIMERICK$[l] = "The wonderful Software Dynamics BASIC"

changes the first string in the LIMERICK$ string array to the
given string (this is not legal if LIMERICK$ is not defined as a
string array as this notation would then imply a numeric
assignment to the first byte in the string LIMERICK$).

140 LET LIMERICK$[1](5,6} = "beauti"

changes "wonderful" (assigned by statement 130) to "beautiful".

Copyright (C) 1977 SD 26

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

INPUT

The INPUT statement is used to allow user entry
the console into the program at execution time.

of values from
The form is:

INPUT variable-name, variable-name, variable-name ...

"variable-name"s can be subscripted so that input into a vector,
array, or substring is possible. Only one string (or substring)
reference is allowed per INPUT statement, and that must be the
last variable name in the statement. Note again, if B$ is a
string variable, B$[3] is a numeric variable, not a string or
substring reference!

The INPUT statement causes a prompt ("?_ ") to be printed on the
console, and BASIC then waits for a line to be entered on the
same line as the prompt. The user must type a line of characters
ended with a <CR> key. Editing facilities for error recovery on
type-in are those provided by SDOS. BASIC interprets the typed
in line as a list of numbers (in the form of numeric constants),
and assigns the values found, from left to right, to the
variables listed in the INPUT statement, from left to right.
Values may be numeric or hex constants. Each value must be
separated from its neighbor by a comma, or space{s) or tab
characters. Tabs or spaces may optionally be used after the
comma or before the first value. If the last variable in the
input statement is a string reference, the rest of the input
line, including leading spaces, is stored into the string as
though a LET statement had been executed. Extra values or
garbage in an input line beyond what the INPUT statement requires
is ignored. If not enough values are enter~d, BASIC will
re-prompt and ask for all the values again. Conversion errors on
numbers cause an error print-out, and' BASIC will re-prompt with
It? II The user must re-enter all the values required by the
INPUT statement. The <CR> ending the line is not included a~
part of the line. The INPUT statement' accepts a line of ASCII
characters into the CATBUF; the size of the CATBUF determines the
maximum legal input line size. An input line larger than the
size of CATBUF will cause an Input Buffer Overflow error.

Examples:

The statement:

10 INPUT A

causes BASIC to print It? "on the terminal. If the user types
1I-17.2<CR>II, then A is set to -17.2.

Copyright (C) 1977 SD 27

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

The statement:

20 INPUT S,B[SJ

on entry of "3, :A2<CR>u will cause S to be set to 3, and B[3J to
be set to 162.

The statement:

30 INPUT A$ \'lhen given "NUTS<CR>", does the same as:

30 LET A$=uNUTS"

The statement:

40 INPUT A$

with a type-in of an empty line (just <CR», sets A$="11 (the
empty string).

The statement:

50 INPUT B,A$[l,BJ

with a typein of "12, HELLO<CR>u, does the same as:

50 LET B=12\ LET A$[1,12]=" HELLO II

The statement:

60 INPUT B,A$

with a typein of "12, <CR> II sets B to 12 and sets A$ to the empty
string.

If the programmer does not like the prompt that BASIC uses, he
can force a new one for a particular INPUT statement by writing
it as a string constant in the INPUT statement immediately after
the keyword INPUT, which will cause BASIC to print the supplied
string constant instead of the default prompt "1 u:

70 INPUT "SOMETHING FOR X: " X

Since a prompt string may be empty, a variable string prompt can
be forced by PRINTing the desired prompt, and then using an INPUT
statement with an empty prompt string ("" or I I), as demonstrated
by the following sequence:

80 PRINT PROMPT$;\ INPUT I I QWERTY

Copyright (C) 1977 SD 28

BASIC 1.4 MANUAL 04/83
SECTION II: STATEMENTS

GOTO

GOTO causes BASIC to change the program flow by transferring
control to the line labeled by the line number specified in the
GOTO statement. The form is:

GOTO linen umber

Examples:

GOTO 100
GOTO TOPOFLOOP

The target line number must be defined. Attempting to GOTO into
a blockbody (see BLOCK BODIES) from outside the blockbody is
illegal. GOTO a label outside a blockbody from within the
blockbody is legal.

A special form of the GOTO allows BASIC programmers to return
from an error recovery routine in a simple way:

GOTO ELN

This statement specifies that control is to transfer to the last
line number encountered before the last error occurred (see Error
Handling). It cannot legally be executed unless an error has
occurred; furthermore, an error trap routine must have been set
up or the error would have aborted the program (see ON
statement).

Note that GOTO ELN is purely a syntactic form, and does not imply
that GOTO <exp> is legal, which it is not. Two legal variations
of GOTO ELN are ... THEN ELN and ... ELSE ELN.

Example:

5 REM USE SECONDARYNAME IF ENTERED FILE NAME DOESN'T EXIST
10 ON ERROR GOTO 100
20 INPUT "FILENAME: II FILENAME$
30 OPEN #1, FILENAME$

100 FILENAME$="SECONDARYNAME"\ GOTO ELN

Copyright (C) 1977 SD 29

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

BLOCK BODIES

Many SD BASIC statements conditionally execute a statement list,
or a block of statements. A statementlist (single line) form, or
a multi-line form of such statements is used depending on which
is desired.

A block body is a set of statement lines delimited by the
keywords of a conditional BASIC statement. A block body may be
used wherever a statement list may be used. BASIC always assumes
that a statement list follows a conditional execution keyword,
unless that keyword is followed by a <CR> alone, which signals
BASIC that a block body follows. Block bodies are generally
terminated by the keyword END, but ELSE, FI, UNLESS, WHEN and
NEXT terminate block bodies of certain statements (see below).

The following is a list of statements and the keywords that
introduce a block body, and the keyword that marks the end of the
blockbody:

IF ..• THEN blockbody FI
IF ..• THEN blockbody ELSE •..
IF ..• ELSE blockbody FI
REPEAT blockbody END
REPEAT blockbody UNLESS condition END
REPEAT blockbody WHEN condition END
FOR ..• blockbody NEXT variable
FOR ..• WHILE ... DO blockbody END
FOR .•. UNTIL ... DO blockbody END
FOR .•. DO blockbody END
WHILE ... DO blockbody END
UNTIL ... DO blockbody END
FOR ... blockbody END
FOR .•. blockbody NEXT ...
DEF parameterdefinitions blockbody END
SUBROUTINE parameterdefinitions blockbody END
IF ERROR WHEN blockbody THEN •.•
ON ERROR DO blockbody END

Note that a blockbody includes a <CR> as its last character, so
the delimiting keyword must always be on the line following the
blockbody. For specific examples, see the section on the
appropriate statement.

A single-line form of these statements may be formed by replacing
blockbody by a staternentlist. The keyword END can be optionally
dropped in the single line form if it would be followed by a
<CR>.

Copyright (C) 1977 SD 30

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

IF (also THEN, ELSE, ELSEIF and FI)

The IF statement is used to conditionally transfer control or
conditionally execute a statementlist. The form is:

IF condition THEN blockbody ELSE blockbody FI

The condition is some logical combination of relations between
values (see CONDITIONAL EXPRESSIONS). The blockbody may be a
linenumber or a statementlist in either the THEN or the ELSE
clause; furthermore, the ELSE blockbody may be eliminated. The
keyword FI is used only when it is unclear how IF statements are
nested or to signal the end of a blockbody; see below.

The form:

IF condition THEN linenumber ELSE linenumber

is the same as

IF condition THEN GOTO linenumber ELSE GOTO linenumber

Control is transferred to the line specified by the THEN part if
the condition is met; otherwise, control is passed to the line
specified by the ELSE part. The ELSE part is optional; if not
supplied, control is passed to the next statement when the IF
condition is not met.

Example:

5 IF 1<0 THEN 400\ PRINT I

causes control to transfer to line 400 if 1<0; otherwise, the
value of I will be printed and control will be passed to the next
line (after line 5). Note that the IF statement in the example
has no ELSE clause and that the PRINT statement is not part of
the THEN statement list.

~opyright (C) 1977 SD 31

BASIC 1.4 MANUAL 04/83,
SECTION III: BLOCK BODIES

The form:

IF condition THEN thenstatements ELSE elsestatements

acts as though the following had been written instead:

IF condition THEN GQTO dummyll
elsestatements
GOTO dummy12 dummyll thenstatements dummy12 REM

with dummyll and dummy12 being invisible line numbers (but line
numbers are not used). If the condition is true, only the
statements in the THEN part are executed; otherwise, the
statements in the ELSE part are executed (optional). This allows
the previous example to also be written as:

10 IF 1>=0 THEN PRINT I ELSE GOTO 400

The THEN part may start on the physical line following the
conditional part of the IF statement:

15 IF SALES > QUOTA
THEN COMMISSION = COMMISSION * 1.1

Likewise, the ELSE part may be on the line following the last
statement of the THEN statementlist:

20 IF A<2 THEN GOSUB 100\ PRINT A
ELSE PRINT A...,3

The statements in statementlist in the THEN and ELSE clauses are
separated from each other by a "\" and an optional <CR>. If only
a single statement occurs in a THEN or ELSE clause, no U\" is
needed.

Example:

30 IF S>=0 THEN PRINT SQR(S),\
PRINT S,\

ELSE

PRINT S 2,\
PRINT S 3\
GOTO 700
PRINT" CAN'T DO SQR(";S;U)" \
GOTO 950

The physical lines containing statements which are part of the
THEN or ELSE statementlists must not have line numbers.

Copyright (C) ~977 SO 32

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

A blockbody in a THEN or ELSE clause allows one 'to write long
sequences of statements without having to place \<CR> between
them. Such a blockbody is introduced when the keyword THEN or
ELSE is followed by a <CR> instead of a statementlist. The
blockbody for a THEN clause is delimited by the keywords ELSE or
FI on the line following the last line of the THEN blockbody; the
blockbody for an ELSE clause is likewise delimited only by the
word Fl. The above example can thus be written as:

35 IF S>=0 THEN

ELSE

FI

PRINT SQR(S)
PRINT S,S 2,S 3,
GOTO 700

PRINT IICAN'T DO SQR(II;S;")"
GOTO 950

Unlike the statementlist case, line numbers are allowed in
blockbodies (although it is illegal to branch to a line number in
a blockbody from outside that blockbody). Any statement,
including IF statements, may be placed in the blockbody.

When an IF statement has a blockbody in a THEN clause, but no
ELSE clause, the word FI must be used to signal the end of the
THEN blockbody (normally, ELSE does this). When used this way,
FI must be on the line following the last line of the blockbody;
no line number is allowed (on FI, THEN or ELSE). Example:

37 IF USERWANTSPRINTOUT
THEN

PRINT "RECORD FOR "; EMPLOYEE$
PRINT "SALARy=II;SALARYiIlDATE OF HIRE: II;HIREDATE$

FI

~opyright (C) 1977 SD 33

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

When IF statements are in a THEN or
blockbody), it sometimes leads to a
statements of the form:

IF conditionl THEN ••• \

ELSE statementlist
problem when one

IF condition2 THEN •••
ELSE ..•

(or
has

Which IF does the ELSE belong to? The Software
allows the word "FI" to close off Q,n IF to
problem:

Dynamics BASIC
prevent such a

IF conditionl THEN ... \
IF condition2 THEN ... FI

ELSE .••

In this case, the ELSE belongs to the first IF: in the previous
case, by convention, the ELSE belongs to the most recent unclosed
IF (i.e., the second IF). IF and FI nest like left and right
parentheses. When FI is used after a statementlist, it must be
on the same physical text line as the last physical text line of
statement list. An optional FI may be supplied after an ELSE
statement list; after a blockbody, FI is required.

E,xamples:

40 IF B=2 THEN 49

50 IF B>2 OR NOT(C$=BAT$(1,4)) THEN GOSUB 96
ELSE PRINT B

60 SIGNX=1\IF X>=0 THEN IF X=0 THEN SIGNX=0 FI ELSE SIGNX=-1

70 IF A$="***"
THEN

A$='???'
ELSE

A$= I ! 11 I

FI

A special form of the IF statement may be used as a term in an
expression (see IF function).

Another special form (IF ERROR WHEN ..•) can be used to handle
errors (see Error Handling).

Copyright (C) 1977 SO 34

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

The ELSEIF keyword is especially convenient in a set of
sequential IFs. It may be used anywhere that ELSE would be
legal. The form

•.• ELSEIF condition THEN blockbody ELSE ..•

acts as though

..• ELSE IF condition THEN blockbody ELSE ... FI

had been written, thus avoiding the writing of many FIs.

Example:

ASKCOMMAND:
IF COMMAND$ = "QUIT II THEN EXIT
ELSEIF COMMAND$ = "UPDATE" THEN UPDATE
ELSEIF COMMAND$ = "DELETE" THEN DELETEDATA
ELSEIF COMMAND$ = "EXAMINE" THEN EXAMINERECORD
ELSE PRINT "WHAT?"\GOTO ASKCOMMANO

~opyright (C) 1977 SO 35

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

WHILE

The WHILE statement is used to perform a set of statements an
indefinite number of times, WHILE a condition is true. The form
is:

WHILE condition DO blockbody END

The condition is any valid conditional expression. The WHILE
statement acts as if

dummyl IF condition THEN statements\GOTO dummyl

had been written, where statements correspond to the statements
in blockbody, but the line number is unnecessary. The "END" is
not the end of the program, but simply terminates the WHILE loop.

Examples:

10 WHILE J<l0 DO LET J=J+l END

20 WHILE A[I]<>0 DO
PRINT A[I]
1=1-1

END

30 X=P-1\WHILE INT{P/X)<>p/X DO X=X-l\l FIND MAX DIVISOR OF P

UNTIL

The UNTIL statement is identical to WHILE except that the
condition is inverted (tested for false instead of true).

Examples:

10 UNTIL A$[I]=" II DO 1=1+1 END

20 UNTIL ABSERROR < lE-10 DO
REM DO NEWTON-RAPHSON ITERATION TO COMPUTE SQUARE ROOT
X={VALUE/X + X)/2
ABSERROR = ABS{VALUE - XA 2)

END

30 UNTIL MONEYLEFT=0
DO MONEYLEFT=MONEYLEFT/2+AMOUNTWONONBET{MONEYLEFT/2)

Copyright (C) 1977 SO 36

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

REPEAT

The REPEAT statement allows unconditional looping to occur. The
only way out of a REPEAT loop is via a GOTO or RETURN statement.
The form is: .

REPEAT blockbody END

which is equivalent to

WHILE TRUE DO blockbody END

Examples:

10 REPEAT 1=1+1\ IF B[I,J]A2<350 THEN 200\ J=J-2 END

20 REPEAT I=I+l\IF 1>0 THEN 1000

30 REPEAT
SLOTSELECTOR=SLOTSELECTOR+l
IF A(SLOTSELECTOR)=0 THEN FREESLOTFOUND
NSLOTS=NSLOTS-l
IF NSLOTS=0 THEN NOFREESLOTS

END

40 REPEAT
INPUT "GIMME THE ANSWER" ANSWER$

WHEN NOTLEGALANSWER(ANSWER$) END

Two other forms of the REPEAT statement
executed one or more times (as opposed to
zero or more times). These forms are:

REPEAT blockbody WHEN condition END

and

REPEAT blockbody UNLESS condition END

allow a loop
WHILE, which

The keyword END is optional for these forms of REPEAT.

REPEAT ... WHEN is logically equivalent to:

invisiblelabel: blockbody
IF condition THEN GOTO invisiblelabel

REPEAT ... UNLESS is logically equivalent to:

invisiblelabel: blockbody

to be
allows

IF NOT(condition) THEN GOTO invisiblelabel

Copyright (C) 1977 SD 37

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

FOR and NEXT

The FOR statement, in conjunction with NEXT, is used to control
iterative loops in BASIC. This is useful for scanning arrays,
computing a function on some set of values separated by a fixed
increment, etc.

The FOR statement provides for the specification of a loop index
variable, an initial value, a limit value, and STEP value. It
also marks the beginning of the loop. The form is:

FOR variable = expl TO exp2 STEP exp3

where expl is an initial value expression, exp2 is a limit value
expression, and exp3 is a step value expression. The variable
cannot be a string, array or vector, nor may it be subscripted.
The STEP part of the statement is optional; if not specified, a
default step of +1 is assumed.

NEXT is required to mark the end of a loop. The form is:

NEXT variable

where the variable specified following NEXT must match that
specified in the FOR statement. To be consistent with other
block body forms, the word "END" may be used in place Of "NEXT
variable" .

The set of lines:

10 FOR I=INITIALV TO LIMITV STEP STEPV
20
30
40 NEXT I

acts as though the following had been written:

10 LET I=INITIALV
invisiblelabell: IF STEPV>=0 AND I>LIMITV ••.
& OR STEPV<0 AND I<LIMITV THEN GOTO invisiblelabe12
20
30
40 LET I=I+STEPV\GOTO invisiblelabell
invisiblelabe12: REM

except that execution of the NEXT part is much quicker than the
corresponding BASIC statements. The values of LIMITV and STEPV
are evaluated once at loop entry and do not change during
execution of the loop. The body of the loop is executed
(LIMITV-INITIALV)/STEPV+l times so that

FOR I=1 to 10
causes 10 iterations. Note that the loop body will be executed
zero times if the INITIALV is "beyond" LIMITV on entry to the
loop.

Copyright (C) 1977 SO 38

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

A FOR statement causes the body of the loop (all statements
between the FOR and the NEXT) to be executed iteratively, with
each iteration of the loop assigning a new value for the loop
index variable (mentioned in the FOR statement). After execution
of the last iteration, control will pass to the statement
following the NEXT. The loop variable will be incremented past
the limit value.

Example:

10 FOR 1=0 TO LEN(A)\ LET A[I]=0\ NEXT I

This zeros the vector named A.

15 FOR COUNT=l TO COUNT
LET SUM=SUM+A[COUNT]

END

Note use of the index variable in limit expression.

Loops may be nested indefinitely
multi-dimensioned searches, etc.:

20 FOR I

FOR J

FOR K

NEXT K

NEXT J

NEXT I

for dealing with

It is illegal to allow loop bodies to cross in the following
manner:

FOR I
FOR J

NEXT I

NEXT J

Copyright (c) 1977 SD 39

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

An UNTIL/WHILE option allows coding of iterative loops with a
conditional exit:

FOR var=expl TO exp2 STEP exp3 WHILE condition
or

FOR var=expl TO exp2 STEP e~p3 UNTIL condition

The WHILE version is identical to

FOR var = expl TO exp2 STEP exp3
IF NOT(condition) then GOTO invisiblelabel

NEXT var
invisiblelabel: REM ..•

The UNTIL version is identical to

FOR var = expl TO exp2 STEP exp3
IF condition then GOTO invisiblelabel

NEXT var
invisiblelabel: REM .•.

where invisiblelabel is an invisible label.

The UNTIL or WHILE clause may not be on the line following the
FOR statement, as they would then be treated as a conventional

, UNTIL or WHILE statement.

Copyright (C) 1977 SD 40

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

If a FOR statement ends with the optional word DO, then the block
of statements executed is terminated with an END instead of NEXT
var.

Example:

FOR I=expl TO exp2 DO blockbody END

A single line
statement list
optional):

FOR statement can be constructed by writing a
immediately following the DO (the word END is

FOR var=expl to exp2 DO statementlist

This is equivaLent to:

FOR var=expl to exp2
statementlist

NEXT var

Examples:

50 FOR I=l TO ROWS(A) UNTIL A[I,l]=0
NEXT I

60 FOR I=0 TO 10 DO VECTOR(I)=0

70 FOR X= .62 TO 91 STEP .02 UNTIL F(X».2 DO
LET SUM=SUM+F(X)

END

80 FOR INFLATION = .01 TO .20 STEP .05

END

IF GNP*(INFLATION+l»lE12 THEN FINANCIALDISASTER
LET TAX = TAX*(1+2*INFLATION)
PRINT TAX

Copyright (C) 1977 SD 41

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

CYCLE

The CYCLE statement is used to start the next iteration of a
FOR-NEXT loop. It must be nested properly within the loop which
is to be cycled. The loop index variable must be specified in
the statement.

Example:

CYCLE variable

The sequence:

FOR I= .•.

CYCLE I

NEXT I

is logically identical to:

FOR I= ...

GOTO invisiblelabel

invisiblelabel: NEXT I

Examples:

10 FOR J=0 TO LEN(V) DO IF V(J)=0 THEN CYCLE J\V(J)=V(J)+l

20 FOR AROUNDCIRCLE=0 TO 2*PI STEP .01

END

IF SIN(AROUNDCIRCLE».5 THEN CYCLE AROUNDCIRCLE
LET AREA=AREA+RADIUS*CHORD

Copyright (C) 1977 SO 42

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

EXIT

The EXIT statement has several purposes:

1) to EXIT a BASIC program completely
2) to EXIT a FOR-NEXT loop without doing a GOTO
3) to EXIT a block without doing a GOTO
4) to EXIT (return from) a SUBROUTINE

To exit a BASIC program, the following statement is used:

EXIT

No messages of any kind are printed.
executed, and control passes to SDOS.

An EXIT syscall is

To EXIT a FOR-NEXT loop with index variable "indexvariable", the
following statement suffices:

EXIT indexvariable

the body
is passed

corresponding
value of the

This form of an EXIT statement must be inside
FOR-NEXT block being executed. Control
statement immediately following the
indexvariable (or END) statement. The
variable is preserved.

To exit a labeled block, the form

EXIT labelname

of the
to the

NEXT
index

is used. This is identical in function to a GOTO to the
statement immediately following the end of the labeled block.
This form must be textually inside the labeled block being
EXITed. "Labelname:" must be on the same source line that begins
the block (see line continuation in the section USING SOFTWARE
DYNAMICS BASIC to get around this).

To return from a subroutine, the following is written:

EXIT SUBROUTINE

This also causes the error trap routine selected and active
GOSUBs initiated since entry of the subroutine to be discarded.

Copyright (C) 1977 SO 43

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

Examples:

10 IF UPPERCASE$(COMMAND$)="QUIT" THEN EXIT

REM THE FOLLOWING LOOP HUNTS FOR AN ARRAY LOCATION
REM THAT CONTAINS ZERO OR A VALUE GREATER THAN 3
REM SUCH THAT NO ARRAY LOCATION TO THE LEFT
REM IN THE SAME ROW IS NEGATIVE.
FINDARRAYSLOT: FOR 1=1 TO 10

FOR J= 1 TO 10
IF A(I,J)<0 THEN EXIT J
IF A{I,J)=0 THEN EXIT FINDARRAYSLOT
IF A(I,J»3 THEN EXIT I
REM A{I,J) SATISFIES THE CONDITIONS

END
REM "EXIT J" PASSES CONTROL TO HERE

END
REM "EXIT I" OR "EXIT FINDARRAYSLOT" PASSES CONTROL TO HERE

REM MULTIPLE LOOP EXITS
ABC: REPEAT

IF ••. THEN EXIT ABC

IF •.. THEN EXIT ABC

END
REr.-l CONTROL PASSES HERE WHEN "EXIT ABC" IS EXECUTED

SUBROUTINE QED {

EXIT SUBROUTINE
END

Copyright (C) 1977 SD 44

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

GOSUB

The GOSUB and RETURN statements are used to implement simple
subroutines. GOSUB transfers control to a subroutine, and RETURN
causes control to transfer back. Th~ form of a GOSUB statement
is:

GOSUB linenumber

Control is passed to the line specified. BASIC remembers the
location of the statement following the GOSUB (even if it is in
the middle of a statementlist or blockbody).

Copyright (C) 1977 SD 45

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

RETURN

The form of a RETURN statement is simply:

RETURN

Control is passed back to the statement following the most recent
not-yet-RETURNed-to GOSUB.

GOSUB calls may be nested to an arbitrary depth. An actual limit
is determined by the free space available in the user area once
the RTP and compiled BASIC program are loaded; it is also
affected by the data space used by the BASIC program. Under
normal circumstances, the GOSUB stack is deeper than any program
can realistically use. It is wise to return from every
subroutine called: otherwise, the GOSUB stack eventually builds
up a residue and steps on something critical.

Example:

10 LET A=2\GOSUB 100\LET A=3\GOSUB 100
20 PRINT "DONE"

100 PRINT "ARGUMENT = ":A: "SQUARE = "; AA,2\ RETURN

The special form,

RETURN SUBROUTINE

is identical in function to

EXIT SUBROUTINE

and is used to return control from a SUBROUTINE to the CALLer.

Another form,

RETURN expression

is used to return from a DEFined function (see DEF).

Copyright (C) 1977 SO 46

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

GOSUB POP

The GOSUB POP statement allows the BASIC programmer to pop the
return address stack without transferring control. The form is:

GOSUB POP exp

The return stack is popped "exp" times; if exp is 3, 3 return
addresses are removed from the top of the return stack. Control
is passed to the statement following the GOSUB POP statement. If
exp is zero, the entire return stack is popped and left empty.
This is useful in error recovery routines.

If the stack is popped too many times, an error occurs and BASIC
leaves the return stack empty.

Example:

STOP

100 ON ERROR GOTO 200

200 GOSUB POP 0\ GOTO 300

500 GOSUB 1000

1000 LET B=C/0\ REM CAUSES ERROR

The STOP statement is used to abnormally terminate
execution. STOP causes the last line number encountered
execution to be printed. The form is:

STOP

A good example of use is:

TAX = .•.
REM CHECK FOR IMPOSSIBLE CONDITION

14 IF TAX<0 THEN STOP

program
during

The EXIT statement should be used (instead of STOP) when a
printed line number is undesirable. A suggestion is to use STOP
only when the line number printout is important for program
debugging.

Copyright (C) 1977 SO 47

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

ON

The ON statement is used for mUlti-way branching. The form is:

ON exp GOTO linenumber1, 1inenumber2, linenumber3 •••

The expression must be numeric. The value is rounded to an
integer. If the integer is 1, control is transferred to the
first linenumber (linenumber1) in the list; if 2, to the second
linenumber, 3 to the third, etc. If the integer is less than 1
or greater than the length of the list of line numbers in the ON
statement, control is passed to the next statement. ELN may not
be used as a linenumber in an ON statement.

Example:

10 ON A+2 GOTO 10,20,30,40

If A=l, control will be passed to line 30.

The form:

ON exp GOSUB 11, 12, 13 ...

does a GOSUB to the line number specified by the expression in
the same manner as ON-GOTO. RETURN causes control to pass to the
statement following the ON-GOSUB statement.

Example:

20 INPUT X\ ON X GOSUB 100, 200,USERREQUEST3,400\ GOTO 20

Copyright (C) 1977 SO 48

BASIC 1.4 MANUAL 04/83
SECTION III: BLOCK BODIES

REM

The REM statement is used to annotate the program and has no
effect on its execution. However, a line number attached to a
REM can serve as a branch target (of GOTO, GOSUB, etc.), provided
it is not in the block of REM and DIM statements at the front of
a program. The form is:

REM any string of characters <CR>

The remark includes all text after the word REM to the <CR>.

Examples:

10 REM NOW ADD 1 \ A=A+l

20 REMARK$="HELLO"

These are both entirely comments and have no effect on program
execution.

The word REM can be replaced by an exclamation point, for
example:

30 LET A=A+l\ 1 BUMP A

is a valid line.

Copyright (C) 1977 SO 49

BASIC 1.4 MANUAL 04/83
SECTION IV: ERROR HANDLING

ERROR HANDLING

Building a bullet-proof program is impossible without error
handling. SD BASIC provides a very general and efficient error
detection, propagation, and user error handling facility.

A form of the ON statement can be used to specify an error trap
routine. The form:

ON ERROR GOTO linen umber

sets up a dynamically associated error handling routine.
Execution of this statement causes BASIC to remember the
linenumber. If an error occurs later (in program execution),
instead of issuing an error message, BASIC simply does a GOTO to
the remembered line. It is expected that the line specified is
the beginning of a routine to effect an error recovery. Once
control has passed to an error recovery routine, the ERR function
will produce a number corresponding to the error for testing, and
the ELN function will produce the number of the last line
executed (or in execution) when the error occurred. Error
recovery, once the error type has been determined, is simple:
either any corrective or diagnostic action is taken by the error
routine, or an "ERROR" statement is executed, which causes BASIC
to print out the error message just as if the error recovery
routine had not been involved. Error recovery can be disabled by
executing the statement:

ON ERROR GOTO 0

Example:

100 ON ERROR GOTO 10000

200 IF B/I=4 THEN 600

10000 REM ERROR RECOVERY FOR DIVIDE BY ZERO
10010 IF ERR=14 AND ELN=200 THEN LET I=l\GOTO 200
10020 ERROR

This program recovers from a Division by Zero error by making the
divisor in the IF statement nonzero, and transferring control
back to the IF statement that failed.

The GOTO 200 statement could also have been replaced by a GOTO
ELN statement.

Copyright (C) 1977 SD 50

BASIC 1.4 MANUAL 04/83
SECTION IV: ERROR HANDLING

Two statement forms make coding of error trap routines more
convenient. One form is:

ON ERROR DO statementlist END

Execution of this statement sets up an error trap to execute the
specified statement list. Any error trap routine already
established is superseded. The statement list is NOT executed at
this time; control is simply passed to the next statement. When
an error trap occurs after execution of an ON ERROR DO, then
error trapping is disabled and the statement list is then
executed. The statement list should GOTO somewhere when
complete; if the END of the DO block is reached, an implied ERROR
statement is executed.

Example:

50 INPUT IIFILE" FILENAME$
60 ON ERROR DO IF ERR=l01l THEN PRINT "NO SUCH FILE"\GOTO 50
70 OPEN #1, FILENAME$
80 ON ERROR GOTO 0\1 DISABLE ERROR TRAP

Another statement form allows the programmer an easy way of
specifying the range of statements over which the error trap
routine should be effective.

IF ERROR WHEN blockbody THEN ... ELSE ...

Execution of this statement causes any previous error trap to be
superseded, and the statement list to be executed. If an error
occurs while executing blockbody, error trapping is disabled and
control passes to the THEN clause. If the statementlist executes
with no errors, then error trapping is disabled, and control
passes to the (optional) ELSE clause. The structure of the THEN
and ELSE clauses are described in the section on the IF
statement.

When control reaches the next statement (via the THEN or ELSE
clauses), error trapping is disabled.

Because of this interacting effect on the error trap routine, the
programmer should decide either to use the ON ERROR GOTO or the
ON ERROR Dol IF ERROR WHEN style when designing a program that
requires error handling. Trying to"mix styles is very difficult.

Copyright (C) 1977 SD 51

BASIC 1.4 MANUAL 04/81
SECTION IV: ERROR HANDLING

Example of error handling:

ASKFORFILENAME: IF ERROR WHEN

Another example:

INPUT "FILE .. FILENAME$
OPEN #2, FILENAME$

THEN

FI

IF ERR=l THEN OPERATORREQUESTEDATTENTION
ELSEIF ERR=1011 THEN ASKFORFILENAME
ELSE ERROR

10 REM THIS PROGRAM CANNOT BE STOPPED BY AN ESCAPE IN LINES 100-190
20 DIM

70 ON ERROR GOTO 1000
11313
110

190
200 ON ERROR GOTO 0

1000 IF ERR=l AND 100<=ELN AND ELN<=190 THEN GOTO ELN 1010 ERROR
END

Note that whenever a function or SUBROUTINE is invoked, the error
trap environment of the caller is saved and a new error trap
environment is set up, initially with error traps disabled (see
DEF, SUBROUTINE).

Error trapping must be re-enabled within the function or
subroutine if needed. On exit, the caller's erro~ trap
environment is restored. An error in a function or subroutine
when no error trap is set, or execution of an ERROR statement,
will cause the execution of the function/subroutine to be
aborted, and control is passed to the caller's error trap routine
if it is enabled. Thus, an error is propagated up until some
level of the program handles it, or until the main program is
reached and no error trap is set, which causes the program to be
aborted, and the line number and error is then printed.

An error trap occurring in an error recovery routine or Error 27
(wrong number of arguments) is treated as fatal and cannot be
trapped.

Copyright (C) 1977 SD 52

BASIC 1.4 MANUAL 04/83
SECTION IV: ERROR HANDLING

ERROR

The ERROR statement is meant for use in an error recovery
routine, and nowhere else. Its form is:

ERROR

At the main program level, if no error has occurred when this
statement is executed, it acts like a STOP statement; otherwise,
ERROR causes the message corresponding to the last error to be
printed, and program execution ceases. In a subroutine or
function, execution of this statement will cause processing of
that subroutine (function) to cease, and the error it would have
reported is caused in the calling program. In this fashion, a
subroutine or function can pass an error up,to its caller. See
the example in the section on the "ON" statement.

Example:

IF ERR<>l THEN ERROR

A special form of the ERROR statement may be used to cause a
specific error to occur. This is useful when constructing
subroutines that check parameter validity; the subroutine can
generate an arbitrarily defined error if the parameters are
wrong. The form is:

ERROR expression

The expression is evaluated, and an error trap occurs with an
error code corresponding to the value of the expression.

Example:

DEF DIVIDE(DIVIDEND,DIVISOR)
IF DIVISOR=0 THEN ERROR 14
RETURN DIVIDEND/DIVISOR

END

Copyright (C) 1977 SD 53

BASIC 1.4 MANUAL 04/83
SECTION V: SUBROUTINES AND FUNCTIONS

SUBROUTINES AND FUNCTIONS

DEF

The DEF statement is used to define a user function. A user
function is convenient whenever a fixed sequence of steps is
required to compute a value, and the value needs to be computed
in several different places in the program. The form is:

DEF fnname(paramvarl,paramvar2, •.• paramvarn) = expression
or

DEF fnname(paramvarl,paramvar2, •.• paramvarn)
DIM statements
statementlist

END
or

DEF fnname(paramvarl,paramvar2, ... paramvarn) EXTERNAL

"fnname" is the name of the function. Standard BASIC limits this
to FNA, FNB, FNZ: SD BASIC allows any name not defined
elsewhere in the program to be used here. If the fnname ends in
a "$", then the function must compute a string result, otherwise
the function must compute a numeric result.

The "paramvar"s give the names of the formal parameter variables
of the function. When the function is invoked, the parameter
variables are given values specified by the function invocation;
the body of the function may refer to these parameter variables
in the course of its execution. These parameter variable names
must be unique over the entire BASIC program, i.e., once u~ed as
a parameter variable name, it may not be used again in a
subsequent parameter variable declaration. The type of each
parameter determines the type of the expression that must be used
as a corresponding argument when the function is invoked. A
parameter name ending in "$" indicates the corresponding argument
must be a string; otherwise, the argument must be a numeric type.
A parameter may also be followed by [*] or [*,*], meaning "vector
of" or "array of" respectively. When the bracket notation is
used, the parameter variable is interpreted as an array name, and
may be so used in the function body. The parameter list may be
empty, in which case the ()s must be dropped from the DEF
statement.

Copyright (C) 1977 SD 54

BASIC 1.4 MANUAL 04/83
SECTION V: SUBROUTINES AND FUNCTIONS

The function body is a list of BASIC statements to be executed to
obtain the value of the function. A function signals completion
of the computation by executing a

RETURN expression

statement. The value of the expression is used as the result of
the function. The form

DEF fnname(..•)=expression

is identical to

DEF fnname (••.)
RETURN expression

END

DIM statements in the function (before the executable statements)
allow the function to have its own "local" variables (although
DIM'd variables must have names unique over the entire BASIC
program). References to local DIMs from code not in the body of
the function are illegal.

The word END at the end of a multiline function terminates the
definition of the function, not the end of the BASIC program.
END is compiled as a STOP statement, so control should not be
allowed to pass to the END statement.

The EXTERNAL form notifies the compiler that the function is
defined externally from this compilation module. This is
discussed further under SEPARATE COMPILATION. No function body
or END need be given.

It is illegal to GOTO or GOSUB outside the definition of a
function (but other functions or subroutines may be called). It
is also illegal to GOTO or GOSUB to a point within the definition
of a function or subroutine from outside the definition.

The DEF statement defining a function must appear before any use
of the function. It must be the only statement on a particular
line, and it cannot be part of a THEN or ELSE clause in an IF
statement. A line number is not required.

Copyright (C) 1977 SD 55

BASIC 1.4 MANUAL 04/83,
SECTION V: SUBROUTINES AND FUNCTIONS

A user defined function, can be used wherever an expression or
sUbexpression is allowed, by writing:

.•• fnname(argexpl,argexp2, •.. argexpn) .•.
or

... fname argexp •.•

(Note that single argument functions do not need parentheses
around the argument.)

Execution of this invocation occurs roughly as follows:

1) The values of each Itargexp(i)" are assigned to the
corresponding "paramvar(i)". WARNING: BASIC does NOT verify that
the type of an argument matches that of the parameter variable;
the programmer MUST guarantee this or unpredictable results will
occur.

2) Control passes to the first executable line of the function.

3) Statements in the function body are executed until a RETURN
expression statement is encountered.

4) The expression in the RETURN statement is evaluated, and its
value is used in the invoking expression in place of the function
call.

Examples:

10 DEF ROUND(VALUE)=INT(VALUE+.5)
PRINT ROUND(0), ROUND (.5), ROUND (271.98)

20 DEF MAX(A,B)

END

IF A>B THEN RETURN A
RETURN B

DEF HEXBYTE$(X) = HEX$(X)[4,2]

DEF E= 2.71828182

DEF RND0T010=10*RND

Execution of a RETURN SUBROUTINE statement while in a function is
illegal and will give unpredictable results.

Copyright (C) 1977 SD 56

BASIC 1.4 MANUAL 04/83
SECTION V: SUBROUTINES AND FUNCTIONS

During execution of a function body, a new environment for GOSUBs
and error trapping is established. A new GOSUB stack is set UPi
the GOSUB stack of the caller is hidden until a (function) RETURN
is performed. In particular, GOSUB POP 0 will clear only the
function's GOSUB stack, ,not the caller's. A new error trap
environment is also set, with error trapping initially disabled.
Execution of an ERROR statement, or the occurrence of an error
with no error trap set will cause the function invocation to be
aborted, and the error will be triggered in the calling
environment. Also, a new PRINTUSING environment is set. Note
that there is only one Concatenation Buffer; it is NOT saved on
function entry.

Example:

DEF LOG10(X)
ON ERROR GOTO HANDLEERR
RETURN LOG(X)/LOG(l0)

HANDLEERR:
IF X=0 THEN RETURN -lE-l26
ERROR

END

Parameters are passed by "reference", not by value. This means
that a parameter variable, if modified, will cause the value of
the original argument to change (expression arguments are placed
in temporary locations). A parameter may be passed as an
argument to another subroutine or functioni the call-by-reference
will nest any number of levels.

Example:

DEF NEXTVALUE(VALUE)
VALUE=VALUE+l
RETURN VALUE

END

LET X=0
PRINT NEXTVALUE(X) , NEXTVALUE(X) , NEXTVALUE(X)

This program prints
1 2 3.

Copyright (C) 1977 SD 57

BASIC 1.4 MANUAL 04/83
SECTION V: SUBROUTINES AND FUNCTIONS

Both numeric and string array parameters may also be passed. A
parameter defined with the [] notation must be used as an array
name throughout the body of the function. (Note that an array
may be passed as an argument by writing its name, and excluding
subscript notation). The BASIC functions LEN, ROWS and COLUMNS
are useful for dealing with array parameters.

Example:

DIM A(10,10)

DEF DETERMINANT(Q[*,*])
FOR I=l TO ROWS(Q)

FOR J=l TO COLUMNS(Q)
..• Q[I,J] .•.
NEXT J

NEXT I
RETURN TbeResult

END

LET DET=DETERMINANT(A)

Variables referenced in a function or subroutine may be
parameters defined by the function/subroutine, local DIMs, or
variables whose value is DIM'd, COMMON'd, or declared as a
parameter variable (in a SUBROUTINE or DEF statement) by text
enclosing the function/subroutine definition. Externally defined
functions or subroutines cannot reference values in another main
program, function or subroutine unless that value is COMMONed or
passed as a parameter.

If control reaches a DEF statement in a program, it passes to the
first statement beyond the end of the function definition.

Functions are NOT recursive; the following program will NOT work:

DEF FACTORIAL(X)
IF X=0 THEN RETURN 1
ELSE RETURN FACTORIAL(X-l)*X

END

Copyright (C) 1977 SD 58

BASIC 1.4 MANUAL 04/83
SECTION V: SUBROUTINES AND FUNCTIONS

Locally DIM'ed variables have a static existence; their values
are preserved from call to call, however, initialization of a
locally DIM'ed variable will re-occur each time the
subroutine/function is called. Locally DIM'd variable names must
be unique over the entire program.

Example:
DEF SUBTOTAL (X)

DIM SUBTOTALAMOUNT
IF X<0 THEN SUBTOTALAMOUNT=0

ELSE SUBTOTALAMOUNT=SUBTOTALAMOUNT+X
RETURN SUBTOTALAMOUNT

LET TRASH=SUBTOTAL(-l}
PRINT SUBTOTAL(5},SUBTOTAL(2.2},SUBTOTAL(9.6}

This program prints

5 7.2 16.8

Use of string function results can occasionally cause difficulty,
due to a subtlety of the Runtime Package implementation. To
enhance the performance of the system, string function results
are passed by reference and not by value (numeric function
results are passed by value, and so this problem cannot occur).
This can lead to a problem (especially in Uniform Reference
routines) if the string function computes its result by
performing an assignment to a temporary string, and then returns
the value of the temporary string as the result. When the
results of such a string function, applied,to two different
argument lists, are used "simultaneously", the trval ue " is a
pointer to the same place, and so the results of the first
invocation of the string function are lost.

Example:

REM AN EXAMPLE OF A SUBTLE ERROR
DEF FIRSTDIGIT$(X}

END

DIM DIGIT$(l}
DIGIT$=NUMF$("#",X)
RETURN DIGIT$

I=1\J=2\IF FIRSTDIGIT$(I}=FIRSTDIGIT$(J} THEN PRINT "OOPS"

Since the value of FIRSTDIGIT$(I) is the content of DIGIT$, when
it is compared to FIRSTDIGIT$(J}, which was also placed in
DIGIT$, DIGIT$ is effectively being compared to itself, and so
the equality always holds and OOPS is always printed. If this
problem occurs, assignment of the result to another temporary
will be required. The following example shows corr~ct use:

I=1\J=2\T$=FIRSTDIGIT$(I)
IF T$=FIRSTDIGIT$(J} THEN PRINT "OOPS"

Copyright (C) 1977 SD 59

BASIC 1.4 MANUAL 04/83
SECTION V: SUBROUTINES AND FUNCTIONS

USER-DEFINED SUBROUTINES

Subroutines are used to collect a set of statements for
performing a commonly used sequence of operations into a package
which is easily invoked. Subroutines may be defined anywhere,
even following use. The definition is as follows:

SUBROUTINE subrname(paramvar1, ..• paramvarn)
statementlist

END
or

SUBROUTINE subrname(paramvarl, ... paramvarn) EXTERNAL

The SUBROUTINE definition must occupy a line by itself. The END
statement terminates the definition of the subroutine, and is
compiled as a STOP. If control reaches a SUBROUTINE definition,
it is passed to the first statement beyond the END of subroutine.
IISubrname ll is any name not used elsewhere in the program. It may
have a trailing 11$11; if so, invocation of the subroutine also
requires the $. A subroutine name may not be used as a variable.

The EXTERNAL form notifies the compiler that the subroutine is
defined externally from this compilation module (further
discussion may be found under SEPARATE COMPILATION). No
subroutine body or END need be given.

The parameter variables operate identically to parameters for
functions.

The statement list contains statements to be executed to obtain
the desired effect. Subroutine execution is terminated when an
EXIT SUBROUTINE or RETURN SUBROUTINE statement is encountered
(RETURN by itself is used to RETURN from a GOSUB). Execution of
a RETURN <expression> statement in a subroutine is illegal and
will cause unpredictable results.

Like functions, a subroutine may have local DIMs, and a new
context is defined for the GOSUB stack, error handling, and PRINT
USING formats (see DEF).

Subroutines are invoked by the CALL statement.

Copyright (C) 1977 SD 60

BASIC 1.4 MANUAL 04/83
SECTION V: SUBROUTINES AND FUNCTIONS

Example:

DIM XeS,S)

SUBROUTINE TRANSPOSE(A[*,*])

END

IF ROWS(A)<>COLUMNS(A) THEN CALL PRINTERR(9)
FOR 1=1 TO ROWS(A)

FOR J=1 TO COLUMNS(A)
LET T=A(I,J)\LET A(I,J)=A(J,I)\LET A(J,I)=T

NEXT J
NEXT I
RETURN SUBROUTINE

SUBROUTINE PRINTERR(ERRORNUMBER)
REM PRINTS SDOS ERROR MESSAGE CORRESPONDING TO ERRORNUMBER
OPEN #3, ItERRORMSGS.SYS"
READ #3@ERRORNUMBER*3, THREEBYTES$
READ #3@(THREEBYTES$[1]**8+THREEBYTES$[2])*2S6 •.•

& +THREEBYTES$[3],ERRORMESSAGE$
PRINT ERRORMESSAGE$
EXIT SUBROUTINE

END

CALL TRANSPOSE (X)

~opyright (C) 1977 SD 61

BASIC 1.4 MANUAL 04/83
SECTION V: SUBROUTINES AND FUNCTIONS

CALL

The CALL statement is used to invoke a subroutine written in
BASIC or assembly code (for details on how to write an assembly
subroutine, see ASSEMBLY LANGUAGE INTERFACE). The form is:

CALL name
or

CALL name (argl,arg2, ••. argn)

Where name is the name of the subroutine to be called, and the
args are values to be used for the parameters specified, in
"left-to-right order, in the SUBROUTINE definition statement.

The compiler does not check for matching number of arguments or
argument types. However, a BASIC SUBROUTINE will complain at
execution time if the argument count is wrong; a fatal "Wrong
number of Arguments" error is issued. This error cannot be
trapped. Passing the wrong type of argument causes unpredictable
results.

Since arguments of SUBROUTINEs (and functions) are passed by
reference, the called routine could possibly modify them. For
numeric scalar variables, this can be prevented by enclosing the
variable in parentheses, which causes the compiler to treat it
like an expression. The routine called cannot detect that
argument is "protected". Array and string arguments cannot be
protected against modification.

Example:

ABC=l
CALL MODIFY(ABC)
REM ABC=2 HERE
CALL MODIFY«ABC»
REM ABC STILL HAS THE VALUE 2 HERE
CALL MODIFY(46)

SUBROUTINE MODIFY(X)
X=X+l\PRINT X,\RETURN SUBROUTINE

END

The example prints

2 3 47

Copyright (C) 1977 SD 62

BASIC 1.4 MANUAL 04/83
SECTION V: SUBROUTINES AND FUNCTIONS

An implied CALL statement is assumed when a subroutine name is
found where a statement keyword is expected. The subroutine must
have been defined (or mentioned in a CALL statement) prior to the
implied CALL.

Examples:

SUBROUTINE FIRETORPEDO(TORPEDONUMBER)

END
PRINT "Fire I"
FIRETORPEDO(l)
PRINT "Fire 2"
FIRETORPEDO(2)

SUBROUTINE MANIPULATESTOCKMARKET(DAY) EXTERNAL

MANIPULATESTOCKMARKET(TOMORROW)

Copyright (C) 1977 SD 63

BASIC 1.4 MANUAL 04/83
SECTION V: SUBROUTINES AND FUNCTIONS

UNIFORM REFERENCE

An extremely useful, but little known concept is that of uniform
reference. The idea is fundamentally that the notation used to
reference a data object should be identical wherever a reference
to the data object occurs in a program.

The standard BASIC data objects such as strings, arrays, and
simple scalar variables obey this rule; this is partly why BASIC
is easy to use.

However, there are many circumstances in which BASIC does not
provide an appropriate data type. Take the case of a very large
array (say 100 by 150 elements). Logically, it makes sense to
build a BASIC program that uses such a large array, but memory
constraints prevent us from building such a program on a
microcomputer, because the array itself would occupy more than
90,000 bytes of storage!

A special feature of SD BASIC makes implementation of such data
types easy to perform. To define a special data object, an
Access Function and an Assignment Subroutine are written. The
function name will be the name of the data object, and will be
used by the programmer whenever the VALUE of the data object is
desired. Arguments to the function are used by the function to
select some sub-part of the data object, similar to array
indices.

The Assignment Subroutine is used by the programmer to set the
value of the data object; the arguments are likewise used to
select which part of the data object is modified. The Assignment
Subroutine has several constraints placed on it: the subroutine
name must be SETXXX where XXX is the name of the Access Function;
the number of arguments to the subroutine must be one greater
than the number of arguments to the function, and the order and
type of all the subroutine arguments (except the last) must be
identical to the order and type of the function arguments. The
last subroutine argument is the value to be assigned to the
subpart of the data object selected. Definition of the
subroutine must textually follow the function definition.
Invocation of the subroutine must follow its definition, or the
compiler will complain.

\~en the compiler encounters a reference to the function in an
expression, it is compiled as usual (see DEF). Occurrence of the
function name to the left of an "=" sign of a LET statement (or
as a target of a READ or INPUT) causes the compiler to call the
subroutine with the name SETXXX, with the last argument being the
value of the expression to the right of the = sign (the value
READ or INPUT).

Copyright (C) 1977 SD 64

BASIC 1.4 MANUAL 04/83
SECTION V: SUBROUTINES AND FUNCTIONS

If we have the following definitions:

DEF F (...) ...
SUBROUTINE SETF(...)

then
F(args)=exp

is translated as:

CALL SETF(args,exp)

Example:

REM VIRTUAL ARRAY DEMO
DIM ROWSIZE/100/,COLUMNSIZE/150/

DEF VIRTUALARRAY(ROWINDEX,COLUMNINDEX)
READ #1@(ROWINDEX*COLUMNSIZE+COLUMNINDEX)*6,X
RETURN X

END

SUBROUTINE SETVIRTUALARRAY(ROWINDEX1,COLUMNINDEX1,VALUE)
WRITE #1@(ROWINDEX1*COLUMNSIZE+COLUMNINDEX1)*6,VALUE
EXIT SUBROUTINE

END

OPEN #1, "VIRTUALARRAY"
REM FILL THE ARRAY

FOR 1=1 TO ROWSIZE
FOR J=l TO COLUMNSIZE

LET VIRTUALARRAY(I,J)=RND
NEXT J

NEXT I
LOOP:

INPUT "PICK A PLACE ... "I,J
PRINT "IT CONTAINS"iVIRTUALARRAY(I,J)
INPUT "CHANGE TO:" VIRTUALARRAY(I,J)
GOTO LOOP

END

Another Example:

REM 16 bit integer array with 1000 slots
DIM SIXTEENBITINTEGERVECTOR$(2000)

DEF SIXTEENBITS(Xl)=SIXTEENBITINTEGERVECTOR$(2*X1)**S ...
& +SIXTEENBITINTEGERVECTOR$(2*X1+1)

SUBROUTINE SETSIXTEENBITS(X2,V)

END

LET SIXTEENBITINTEGERVECTOR$[2*X2]=V**-8
LET SIXTEENBITINTEGERVECTOR$[2*X2+1]=V&:FF
EXIT SUBROUTINE

Copyright (C) 1977 SD 65

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

FILE I/O

The Software Dynamics BASIC supports powerful I/O facilities for
dealing with random and sequential files. Statements are
provided for opening and closing files, creating, renaming,
deleting, reading and writing in both ASCII and binary modes to
such files, file positioning, and program chaining.

Software Dynamics BASIC uses channel-directed I/O. File names
are associated dynamically with a specific (I/O) channel number,
and then I/O to the desired file is performed using the
associated channel number instead of the file name (note that a
file name must include any decimal device specification). SD
BASIC supports up to 256 I/O channels, although the operating
system may limit this to a smaller value (usually 8). All
channels are assumed by BASIC to be both read and write.

The special channel number 0 always refers to the user's console.
All simple PRINT and INPUT statements automatically direct their
I/O to channel number 0, as do all error messages. SO BASIC
assumes that both read and write operations to the same file are
valid; it is the responsibility of the SOOS I/O package to
discover any discrepancies between this philosophy and the way a
physical device operates.

SO BASIC I/O inherits many properties of the SOOS I/O philosophy;
in particular, SO BASIC's view of files is that each file is a
very large string of bytes. A file position indicates where in
the string the next read or write will occur; performing a read
or write will advance the pointer past the data read or written.
Operations exist to change the current file position, so that
random file access can be obtained. SO BASIC's file capabilities
are limited to those provided by SOOS; it is suggested that the
reader refer to the section on Device Independent I/O in the SOOS
manual for finer detail. Note that any possible SOOS error may
occur as a response to a BASIC 1/0 operation. Well-constructed
application programs will be prepared to handle the most common
of these errors (refer to the section on ERROR HANDLING).

Copyright (C) 1977 SO 66

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

OPEN

The OPEN statement is used to associate a channel number and an
already existing file. The form is:

OPEN #exp, stringexpression

The exp must be numeric, and must round to an integer in the
range 0 to 255. The string expression results in a file name in
the form of a character string. The OPEN statement causes the
operating system to open the file named and associate the channel
number with all further I/O operations directed at the file. A
file must be opened before I/O can occur to the file (by
definition, channel 0, the user's console, is always open). If
the file cannot be opened, an error occurs.

Examples:

10 OPEN #2, "MYFILE"

20 INPUT FILE$\ OPEN #PAYROLLFILE,FILE$ CAT' .EXT'

30 IF ERROR WHEN OPEN #1, "DATAFILE"
THEN IF ERR=101l THEN PRINT "CAN'T OPEN 'DATAFILE'\EXIT

ELSE ERROR

CREATE

The CREATE statement is used to create a new file and associate a
channel number with that newly created file. The form is:

CREATE #exp, stringexpression

The only difference between CREATE and OPEN is that CREATE
requests the operating system to create a new file (to write
into). This newly created file is then opened.

One must typically CREATE (not
sequential-only output device such as
tape punch.

Example:

10 CREATE #47, "OUTPUT"

OPEN) a
a line

new file on a
printer or paper

Under SDOS, CREATE will cause an already-existing disk file of
the name to be implicitly deleted; the newly-created file takes
its place. No error occurs.

Copyright (C) 1977 SD 67

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

CLOSE

CLOSE breaks the association between a file and a channel number.
Once a channel has been closed, it may be re-opened for use with
another file (by another OPEN or CREATE statement). The form is:

CLOSE #exp, #exp, #exp ••.

Each #exp specifies a channel number to be closed. All buffers
for the associated file are logically written to the file if
modifiedi other buffers are freed.

Example:

10 CLOSE #10, #PAYROLLFILE

BASIC automatically closes all files upon program termination of
any kind.

Copyright (C) 1977 SD 68

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

DELETE

The DELETE statement is used to delete a file. The form is:

DELETE stringexpression

The file whose name is the value of stringexpession is deleted.
It is legal, but not generally a good idea to delete a file which
is still open on some channel.

Example:

RENAME

10 INPUT "GET RID OF: " NAME$
20 DELETE NAME$

The RENAME statement is used to rename a file. The form is:

RENAME stringexpl, stringexp2

The file whose name is the value of stringexpl is renamed so that
its new name is the value of stringexp2.

Examples:

10 RENAME "D2:TEMP","D2:QUALITYDATA"

20 RENAME "JUNK2",Q$[2*J+l,6]

RENAME requires an I/O channel be available when executed. The
I/O channel used is closed after RENAMEing is completed.

Copyright (C) 1977 SD 69

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

PRINT #

The PRINT to a channel statement is used to print data in an
ASCII string form to a file. The form is:

PRINT #exp, printlist

For PRINT USING to a file, the form is:

PRINT #exp, -USING formatstring, printlist

The formatstring can be the same as in a simple PRINT USING
statement, including a line number. The #exp specifies the
channel on which the output is to be printed. The PRINT #
(USING) statement operates on the print list exactly the same way
as a regular PRINT (USING) statement, except that all output is
directed to the file previously opened on the specified channel
(for tabbing purposes, each channel maintains its own column
count). If the print list is null (an empty print), the comma
following the channel number expression must be omitted.

Examples:

10 PRINT #3, "X: " ; X, "XA2: " ;X*X

20 PRINT #MYFILE, A$[1,19J;'**'; TAB(102);\ GOTO 700

30 PRINT #OUTPUT

40 PRINT #6, USING 11##.#>211, PI

50 PRINT #MYFILE, USING 20, SALARY, PERSON$

80 PRINT #OUTPUT, USING U$###.##", WEEKLYPAY;\GOTO 79

Copyright (C) 1977 SD 70

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

INPUT #

The INPUT from a
data from a file.

channel statement is used to input ASCII line
The form is:

INPUT #exp, variablelist

#exp specifies the channel from which an input line is to be
taken. No prompt is issued (in contrast with the case of a
simple INPUT statement where the prompt is printed on channel 0).
A line is read from the specified channel (a line is all
characters up to and including a <CR> code, hexadecimal $0D).
The values on the input line are converted and placed into the
variables in the variable list exactly as in a simple INPUT
statement (including the operation of string inputi the <CR>
character is discarded). All values required by an INPUT #
statement must occur within the single line read from the file,
or a conversion error occurs. All values within the line not
required to satisfy the INPUT request are discarded.

Examples:

10 INPUT #2, A, B[A]

20 INPUT #SOURCE, LINENO, LINE$

If a conversion error occurs while INPUTing a value, and error
trapping is enabled, then the error will be trapped. If error
trapping is not enabled, and input is being performed on channel
zero (i.e., to the console device), then BASIC will print 'Input
Error!' and ask for al~ values again. Otherwise, the program
will be aborted by a conversion error. The input line is read
into the CATBUFi if the input line is too long, an Input Buffer
Overflow error occurs and the partial line read is lost.

The fact that PRINT usually places a <CR> at the end of its
output, and INPUT stops reading on a <CR>, can be used to input
and output variable length records. The input record size must
be larger than the longest output record. One may need to trap
input conversion errors when variable length lists of numbers are
input in this manner.

Copyright (C) 1977 SD 71

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

An end-of-file condition occurs in an INPUT statement when there
is not enough data remaining in the file to fill the variables in
the variable list.

If End of File is encountered by an INPUT statement, the
statement is aborted; the values of variables in the INPUT list
is undefined. If the channel number is less than 32, control
passes to the statement following the INPUT statement: no error
is reported, but the End of File flag for that I/O channel is
set. The programmer must check for EOF (see EOF).

Example:

INPUT #3,X,Y,Z
IF EOF(3) THEN NOMOREDATA

If the channel number is >=32 and End of File is encountered,
then an End of File error trap occurs.

Copyright (C) 1977 SD 72

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

WRITE #

The WRITE to a channel statement is used to move binary data to a
file. This is advantageous from a speed and space point of view
if another program must later read the data back, or if specially
formatted files must be built. The format is:

WRITE #exp, expl, exp2, exp3 ...

The #exp specifies the channel on which data is to be written.
WRITE causes each expression in the list to be evaluated, and the
binary pattern corresponding to the value is copied to the file
as a sequential byte stream.

If an expression is numeric, 6 bytes are copied (since B$[X] is
considered a numeric expression when B$ is a string variable,
"WRITE #2, B$[X] II also causes 6 bytes to be wriotten). The format
and content of the bytes are shown in the section on data
structures. The READ command allows these numbers to be read
back without knowing their format, so the format really isn't
important unless something other than a BASIC program is going to
process the resulting file.

If the expression is a string, the string value is copied, byte
for byte, for the (current, not dimensioned) length of the
string, to the channel for writing. Bytes are copied from the
string to the file from left to right (i.e., from smaller
subscripts to larger subscripts).

The WRITE statement does not insert blanks, <CR> marks, or any
data other than the binary image of the expressions evaluated,
into the byte stream written. Note that PRINT and WRITE commands
can be used on the same channel without ill effects (except
perhaps, what happens to the column count for that channel).
WRITEing to a channel causes the COLumn count for that channel to
become invalid; it can be reset to one by executing an empty
PRINT on that channel.

WRITEing to a CRT device will cause that device driver to lose
track of the cursor. We recommend against performing WRITEs to
the screen because this ties the application program to the type
of CRT being used. Use of the SDOS Virtual Terminal driver can
help make applications CRT-independent.

Copyright (C) 1977 SD 73

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

Examples:

10 WRITE #2, A[I,J], S*3, B$[2]

20 WRITE #MYFILE, LLINK, RLINK, NAME$\ WRITE #2, X

30 WRITE #EMPLOYEE,COUNTY$[1,10],SALARY,PHONE,ADDRESS$

40 WRITE #FILE,LEN(X$}, X$\lWRITE VARIABLE LENGTH STRING

50 WRITE #FILE,A$\PRINT #FILE,NUMF$("##.##"},X

60 WRITE #FILE,B$\PRINT #FILE,TAB(25), .•. \lUNDEFINED TAB ACTIO~

70 ONEBYTE$(l}=:C\LEN(ONEBYTE$}=l\WRITE #FILE,ONEBYTE$\
lWRITE A SINGLE BYTE CONTAINING :C

Copyright (C) 1977 SD 74

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

READ #

The READ from a channel statement is used to read binary data
from a channel (usually from a file written by a BASIC program
that used WRITE statements). Trying to use an INPUT statement on
binary data is a sure-fire way to cause a conversion error. The
form is:

READ #exp, variable, variable, variable ...

The'#exp specifies the channel from which binary data is to be
read.

Each variable can be
of an equals sign in
element, etc.).

anything which can appear on the left side
a LET statement (i.e., substring, vector

READ causes the specified variables to be filled QY reading an
appropriate number of bytes in binary mode, and storing into the
variables. The variables are filled from left to right in the
READ statement.

If the variable is numeric (a simple variable, vector entry or
array entry), 6 bytes are read and stored into the variable, in
such a way that whatever a WRITE statement wrote, the READ
statement reads back correctly (see formats under the section on
Assembly Language Interface). Reading into B$[XJ, where B$ is
the name of a string variable, reads 6 bytes and stores the value
into B$ [XJ.

If the variable is a substring reference, then the number of
bytes specified by the substring length are read and copied into
the sUbstring. The current string length must not be exceeded or
a subscript error will occur. If the variable is a string
reference (no subscripts), the READ will read "the dimensioned
length of the string" number of bytes and set the current length
of the string to the dimensioned length. For instance, if S$ was
dimensioned with a max length of 5, and had a current length of
3, "READ # S$" would fill S$ with 5 bytes from the channel
specified, and set the length of S$ to 5. "READ # S$[1,3J"
would only read 3 bytes into S$, without affecting its length.

Copyright (C) 1977 SD 75

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

If a READ statement encounters End of File, and the channel
number is less than 32, no error is given, and control is passed
to the next statement (for channel numbers 32 or greater, an "End
of File" error trap will occur). If EOF occurs while filling a
string variable, the length of the string variable is set to the
actual number of bytes read. The programmer must check for EOF.

If EOF occurs while reading on a channel number greater or equal
to 32, then the READ statement is aborted (the values of the
variables are left undefined), and an End of File error trap
occurs.

Examples:

10 READ # DATA , A[I,J],S

20 READ #3, LLINK, RLINK, NAME$

30 READ #EMPLOYEE,COUNTY$[1,10],SALARY,PHONE,ADDRESS$

40 READ #FILE, LEN(X$), X$[l,LEN(X$)]\lREAD VARIABLE LENGTH STR:

Copyright (C) 1977 SO 76

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

POSITION # or RESTORE #

The POSITION on channel command is used to position a file for
the next I/O operation (RESTORE is allowed as an alternate
keyword to retain compatibility with older versions of SD BASIC,
and is not recommended). The format is:

POSITION #expl,exp2

The #expl specifies the
performed. Exp2 specifies
usually a record or byte
system interface).

Example:

channel on which positioning is to be
a file-dependent positioning number,

number within the file (see operating

10 POSITION #2,O\ REM THIS IS NORMALLY A "REWIND"

20 POSITION #DATA,RECORD\ REAO #OATA,RECORO$

A convenient trick for positioning to records in a file is to
define a user function (see "OEF") to compute the actual position
in a file of a record. Assume that records in a file are 100
bytes long, and that the first 34 bytes of a file are to be
avoided for some reason and that the first record has a logical
record number of zero. The following is a program to print
"HELLO" in record number 22:

10 OEF RECORO(X)= X*100+34

100 PosrrION #FILE, RECORO(22) \ PRINT #FILE, "HELLO"

Positioning the cursor on the console CRT may be accomplished by
a POSITION #0, OESIREOROW*256+DESIREOCOLUMN statement where the
top most screen line is row number zero, and the leftmost screen
column is column zero (note that the COL function returns 1 for
the leftmost screen position). Proper cursor positioning
requires that the SOOS I/O package be properly configured for the
particular CRT being usedi SOOS systems with the Virtual Terminal
driver allow most terminals to be properly configured via the
SOOS SET command. Note that WRITEing to a screen causes the
system to lose track of the cursor location (because it cannot
determine how the written bytes affect the CRT). This can be
fixed by issuing a POSITION after each WRITE to the screeni after
the POSITION, the system knows where the cursor is again.

Copyright (C) 1977 SO 77

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

IMPLIED POSITIONING

SD BASIC allows a file (or screen) position to be designated in
an I/O statement directly via the u@u (at sign) notation:

keyword #expl@exp2, ..•
or

keyword #expl@(exp2,exp3), .•.

The first notation specifies a file position via exp2, and is
equivalent to the following:

POSITION #expl,exp2\keyword #expl, ...

The second notation is generally used for cursor positioning on a
CRT, and is ~quivalent to

POSITION #expl,(exp2}*256+exp3\keyword #exp1, ...

where exp2 is the screen row number and exp3 is the screen column
number, origin 0.

The @ notation may be used with channel-less PRINT or INPUT
statements in a straight forward way. Note that

INPUT "prompt"@(expl,exp2),varlist

is a convenient way to perform screen-oriented data entry.

Examples:

30 READ #2@RECORD(I),EMPLOYEE$,SALARY,SOCSECURITYNUMBER

40 PRINT #2@(10,5},USING "##.##", COSTOFLUNCH

50 INPUT "CUSTOMER NAME:" @(5,10},CUSTOMERNAME$

60 WRITE #5@KEY(5,1,EMPLOYEE$),NEWSALARY,NEWTITLE$

70 POSITION #0@(12,15)

Copyright (C) 1977 SD 78

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

CHAIN

The CHAIN statement is used to build segmented or overlay BASIC
programs. The form is:

CHAIN stringexpression

The stringexpression is evaluated to produce a file name. That
file is assumed to be a program and is loaded into memory.
Program control passes to the first instruction in the new
program. The program does not need to be a BASIC program. CHAIN
(under SDOS) automatically closes all files.

Example:

1000 CHAIN "PASSII"

Variables may be passed from one BASIC program to another via
CHAIN by use of COMMON statements (see DIM, COMMON).

Copyright (C) 1977 SO 79

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

SYSCALL

The SYSCALL statement is used to perform SOOS system calls. The
form is:

SYSCALL argumentlist
or

SYSCALL #exp,argumentlist
or

CALL SYSCALL(argumentlist)

where argumentlist consists of one to four arguments. The reader
is referred to the SDOS manual for a comprehensive discussion of
SOOS syscalls.

The first argument is a string expression and contains the bytes
to be used for the body of a syscall block, including the syscall
extension, if needed. BASIC will construct a syscall block if
the specified syscall block does not have enough room for all the
required syscall parameters.

The second argument, if present, is a string expression and is
used as a write buffer. The address of the string is placed in
WRBUF and the two byte (current) length is placed in WRLEN. For
syscalls not requiring a write buffer, an empty string should be
specified.

The third argument, if present, must be a string variable or a
substring of a string variable, and is considered to be a read
buffer. The address of the string is placed in RDBUF and the two
byte length (of substring: maxlength if string) is placed in
ROLEN as a ceiling upon the number of bytes to read. Upon
return, RPLEN contains the number of bytes actually read, and if
the argument was a string, the string's LEN is set to this value.

After all the parameters are loaded into the syscall block, the
address of the block is loaded into the X register and a "JSR
$FB" is executed. A "BCS IOERROR" is the next instruction after
the "JSR" so that any error conditions can be signaled by a
"SEC/RTS" and a success return is signaled by a "CLC/RTS". The
error condition must be passed back in the X register and is made
available to the BASIC program through the special function ERR.

The fourth argument, if supplied, is used as the desired length
of the ROBUF instead of the value implicit in RDBUF. A subscript
error will result if the desired length is larger than the RDBUF
string allows.

If a channel number expression is used and has a non-zero value,
then it is used as the channel number in the executed syscall
instead of the channel number byte given in the syscall block.

Copyright (C) 1977 SD 80

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

Examples:

10 DIM DISMOUNT$/:E,4,0, :11/,STRING$(1000),READBON1$/:B,:E,1,0/

100 SYSCALL #1,DISMOUNT$

120 DEF FILESIZE(CHANNEL)

END

REM RETURNS SIZE OF FILE OPEN ON "CHANNEL"
DIM T$(4), GETFILESIZE$/:F,14,0, :3/
SYSCALL #CHANNEL,GETFILESIZE$,"",T$
RETURN T$[1]*256 A 3+T$[2]*256 A 2+T[3]*256+T$[4]

140 SYSCALL READBON1$,"",STRING$,256\1 READ ONLY 256 BYTES

Copyright (C) 1977 SD 81

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

KEYED FILE PACKAGE

The set of subroutines and functions described in this section
comprise a keyed-file package. This package is not a standard
part of SD BASIC but can be obtained as an option. This allows
access to records by use of a "key" (or record name); a typical
use would be to allow the location 0'£ a record containing data
about an emproyee by use of his name. Location of a record in a
large file using a hard disk typically occurs in under 1 second.
Sequential access (KEYNEXT) is under one-half second.

A "key" structure (a B-tree) is built by the key package to help
it locate records. The records and key structures are completely
independent; they may both be in the same file, or in separate
files.

Use of the package is very easy. The function KEY, given a
character string, returns a file position where the record
associated with that $tring is located. The statement

READ #DATACHANNEL@KEY(KEYCHANNEL,KEYNUMBER,DESIREDKEY$),var,var, ...

thus reads the contents of the record (from the file selected by
DATACHANNEL) whose name is DESIREDKEY$ using the key structure in
the file selected by KEYCHANNEL (note: DATACHANNEL can be equal
to KEYCHANNEL).

The rest of the subroutines and functions in the package exist to
initialize a keyed file, and to perform other necessary support
functions. The routines and their descriptions are listed below.
The term "keyed file" is used to describe the file containing the
key index data. This package allows multiple key indexes to be
stored in one file, i.e., a customer invoice file might be keyed
by both customer name and by invoice number.

KEYCHANNEL numbers select the channel number of the file that
contains the key structure. The KEYNUMBER selects which key
category is to be used. A customer name could be used as the
first key category, and invoice number as the second key
category. Note: all keys in a catagory must be unique.
DESIREDKEY$,is a string containing the key desired for use in the
operation. The keyed file package internally pads the specified
key with ASCII nulls to fill it out to the desired size, or
truncates, as needed; padding is performed on the right. Note
also that the KEY package is case-sensitive: upper-case
characters in key are not equivalent to lower case characters.

Each key category used in a file requires that bytes
KEYCATEGORY*KEYCATEGORYHEADERSIZE through
KEYCATEGORY*KEYCATEGORTIiEADERSIZE+KEYCATEGORYHEADERSIZE-1 of the
file be set aside exclusively for use by the keyed file package.
Other space is taken from End of File as needed.

Copyright (C) 1977 SD 82

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

KEYINIT(keychannel#,keynumber,keysizeinbytes,branchingfactor)
is a subroutine that initializes a file for operation with
the keyed file package. If KEYINIT is called on a file
containing keyed data, then the old key structure is
destroyed, and the space in the file used for the old key
structure will be lost. This routine must be CALLed before
any other keyed operation is performed. KEYINIT must be
called once for each key category to be used. The branching
factor specified must be larger than 4, or a "Key branch
factor not large enough" error trap will occur. The
branching factor controls the amount of time required to
look up a key; the lookup time is roughly equal to the time
for k seeks + r reads, where branchingfactorAk>=numberofkeys
currently in the key category, and r is approximately
(keysizeinbytes*branchingfactor)/sectorsize.

KEYINSERT(keychannel#,keynumber,desiredkey$,recordlocation)
is a subroutine that accepts a string argument containing a
key and a record position, and adds information to the key
structures, so the record at record location may be retrieved
via the KEY function when applied to the identical
desiredkey$. A "Duplicate key" error trap occurs if that
key already has an associated record.

KEY(keychannel#,keynumber,desiredkey$)
is a function that returns the position in the data file of
the record selected by that key. If no such record, a "No
Such Key" error trap occurs.

KEYDELETE(keychannel#,keynumber,desiredkey$)
is a subroutine that deletes a record from a keyed file. A
"No Such Key" error occurs if the key does not exist. If a
record is keyed on more than one category, KEYDELETE must be
called once for each category with the proper key value for
that category.

KEYNEXT(keychannel#,keynumber,desiredkey$)
is a function that returns the file position of the record
whose key is the smallest key greater than "desiredkey$".
Desiredkey$ is modified to contain the key of the record so
found. An EOF error trap indicates the list of records in
the file has been completely processed. To fetch the first
record of a file, the null key (all zeros) should be used as
the value for desiredkey$. Repeated use of KEYNEXT thus
scans the records alphabetically.

KEYREPLACE(keychannel#,keynumber"desiredkey,newrecordlocation)
is a function that replaces the old record location of a key
with a new value; its result is the value of the record
location being replaced. Its effect is identical to
inVOking KEY, then KEYDELETE, followed by KEYINSERT except
it is considerably faster. The specified key must exist or
a "No Such Key" error will occur.

Copyright (C) 1977 SD 83

BASIC 1.4 MANUAL 04/83
SECTION VI: FILE I/O

GETSPACE(channel#,numberofbytes)
is a function that extends the filesize by "numberofbytes"
and returns the file size before it was extended. This is
useful for quickly finding space for a new record.

Sample program:

DIM RECORDKEY$(10),RECORDDATA$(80),ANS$(1)
INCLUDE "KEY.BAS"
CREATE #1, "DATABASE"
CALL KEYINIT(l, I, 10, 32)
DATAENTRYLOOP:

INPUT "KEY: " RECORDKEY$
IF RECORDKEY$="" THEN UPDATEMODE
INPUT "DATA TO STORE: " RECORDDATA$
RECORDLOCATION = GETSPACE(l,LEN(RECORDDATA$)+l)
REM .•. +1 in previous statement accounts for
REM <CR> introduced by following PRINT
PRINT #l@RECORDLOCATION,RECORDDATA$
CALL KEYINSERT(l,l,RECORDKEY$,RECORDLOCATION)
GOTO DATAENTRYLOOP

UPDATEMODE:
INPUT "LOOKUP: " RECORDKEY$
IF RECORDKEY$="" THEN PRINTSEQUENTIAL
IF ERROR WHEN

INPUT #l@KEY(l,l,RECORDKEY$), RECORDDATA$
THEN

FI

PRINT "NO RECORD FOUND"
GOTO UPDATEMODE

PRINT "DATA = "; RECORDDATA$
INPUT "CHANGE? " ANS$
IF ANS $= 1111 THEN UPDATEMODE
INPUT "NEW DATA: " RECORDDATA$
PRINT #l@KEY(l,l,KEY$), RECORDDATA$
GOTO UPDATEMODE

PRINTSEQUENTIAL: LET RECORDKEY$=""
PRINTSEQLOOP:

END

Copyright (C) 1977 SD

IF ERROR WHEN
INPUT #l@KEYNEXT(l,l,RECORDKEY$),RECORDDATA$

THEN EXIT
PRINT RECORDKEY$; RECORDDATA$
GOTO PRINTSEQLOOP

84

BASIC 1.4 MANUAL 04/83
SECTION VII: MISCELLANEOUS STATEMENTS

MISCELLANEOUS STATEMENTS

DIM

The DIM statement is used to allocate space for variables used by
the BASIC program, including scalars (simple numeric variables).
DIM statements have no effect at run-time. The form is:

DIM declaration,declaration,declaration ...

DIM statements do not allow multiple statements per line. Each
declaration is either a simple numeric variable name, the name of
a vector or array with its dimensions, the name of a string and
its maximum dimensions or the name of a string array followed by
the number of strings in the array, and the maximum dimension of
any of the strings in the array.

SD BASIC always sets aside space for a "zeroth ll index slot, row
or column in a vector, array or string array. Strings always
have a lower index of 1.

The form of each declaration is as follows:

Scalar:
Vector:
Array:
String:
String Array:

name
name[numberofslots]
name[numberofrows,numberofcolumns]
name$[maxlenincharacters]
name$[numberofstrings][maxlenincharacters]

All strings of a string array are allocated the same
maxlenincharacters maximum size.

Although scalar variables need not be dimensioned, there are two
reasons for doing so. First, the first 64 scalar variables
mentioned in a BASIC program are assigned very small compile time
code references; thus scalars used frequently in a program should
be DIMed to save space. Secondly, a DIMed scalar variable may be
allocated with any initial value (a compile time assignment) by
writing

DIM name/value/

The value may be a hex or numeric constant. Similarly, a numeric
vector can be given a set of initial values by writing

DIM name/valuel,value2, ... /

The dimension is implicit in the number of values given, with the
first value being assigned to subscript 0 of the vector.

Copyright (C) 1977 SD 85

BASIC 1.4 MANUAL 04/83
SECTION VII: MISCELLANEOUS STATEMENTS

String variables may also be initialized similarly; if no
dimension is specified then the dimension is implicit in the
length of the initializing constant. A string initializing value
may be a list of constant strings and/or hex values; the string
is filled from left to right with the list contents. Each hex
value specified occupies a single byte of storage.

Each time the program is run (or executed via CHAIN), the
initialized variables are reset to the values specified in the
DIM statement(s). Simple numeric variables without initial
values contain garbage when the program is started, as do
uninitialized strings. The current length of an uninitialized
string is zeroed. This will usually cause subscripting errors if
the string is used before it is set to a valid value. Arrays,
vectors and string arrays cannot be initialized.

Examples:

10 DIM A,B,I,J,DUMMY,EMPNO

20 DIM VECTOR[9],ALPHA,OUCH[2,7],B$[47]

30 DIM S3/7.2/, B9/-3/,QSTR$/:3,"ABC",:D,"DEF"/

40 DIM FILENAME$[10]/"SALES.TAX"/

50 DIM ADGNLB$/II PMR PMI" , ...
& .. PMS"/

REM LINE 50 SETS ADGNLB$ = " PMR PMI PMS"

60 DIM SCREEN$(24)[80]

70 DIM PRIMESUNDER32/2,3,5,7,9,ll,13,17,19,23,29,31/

Except for scalars, the compiler will complain if a variable is
not mentioned in a DIM statement (or COMMONed, or declared as a
parameter variable in a SUBROUTINE or function definition).
Furthermore, DIM statements must be collected at the front (top)
of the main program or at the beginning of a multiline function
or SUBROUTINE, before any other executable statements. REM and
DIM statements may be mixed in any order at the front of the
program.

Local DIMs, i.e., those in SUBROUTINEs or functions, must appear
immediately following the SUBROUTINE or function header line. If
a DIM is in a SUBROUTINE (or function) definition, the
initialization of its variables is done each time the SUBROUTINE
(or function) is called. Reference to a variable mentioned in a
local DIM statement is illegal outside the body of the rountine
containing the local DIM.

Copyright (C) 1977 SD 86

BASIC 1.4 MANUAL 04/83
SECTION VII: MISCELLANEOUS STATEMENTS

COMMON

The COMMON statement allows
CHAINed program segments.
storage space for variables
between program segments).
a COMMON statement to be
initialization of variables
not allowed in SUBROUTINE or

the program to pass variables between
Like DIM, it is used to allocate

(but DIM'd variables cannot be passed
Scalar variables must be specified in
passed between CHAINed segments. No
is allowed. COMMON statements are
function definitions.

Variables must be COMMONed in the same order, and with the same
dimensions in all the program segments for this to work.
Further, a DATA ORIGIN statement must be used to place data at a
fixed place; the origin point must be the same in all chained
program segments. Since BASIC is a compiler, no check is made
when CHAIN is invoked to ensure that the order of the declared
variables match, or that the types match. Failure to declare
COMMON correctly can lead to unpredictable results at execution
time.

10 COMMON A,B$[46]

20 COMMON 82, Hello, Passed Vector[l00], FILEEXISTSFLAG

See DATA ORIGIN for example of COMMON in CHAINed program
segments.

Both COMMON and DIM statements may be used in a program. The DIM
statement must follow any COMMON statements used.

Copyright (C) 1977 SD 87

BASIC 1.4 MANUAL 04/83
SECTION VII: MISCELLANEOUS STATEMENTS

PROGRAM ORIGIN

The PROGRAM ORIGIN statement is
compiler will place the program
form is:

PROGRAM ORIGIN hexnumber

used to change the location the
in the computer's memory. The

A PROGRAM ORIGIN statement may not have a line number.

Normally, the compiler begins placing statements directly above
the space allocated for the runtime package. The PROGRAM ORIGIN
statement may be used to override this, and place the program
code anywhere. If the DATA ORIGIN statement is used to control
the placement of data storage, it is a good idea to use the
PROGRAM ORIGIN statement to ensure that the program code does not
overlap the data area. The PROGRAM ORIGIN statement must occur
before a DATA ORIGIN, DIM or any executable statements and cannot
be used in a function or SUBROUTINE defined in a main program.
Only one PROGRAM ORIGIN statement is allowed in a program.

Example:

10 REM ANOTHER BASIC PROGRAM
PROGRAM ORIGIN :3000

20 1 HERE COME THE DIM STATEMENTS
30 DIM Q7[47],B,J,X
40 DIM ...

100 REM NOW FOR THE PROGRAM ITSELF
110 PRINT "HELLO ... "

Copyright (C) 1977 SD 88

BASIC 1.4 MANUAL 04/83
SECTION VII: MISCELLANEOUS STATEMENTS

DATA ORIGIN

The DATA ORIGIN statement is used to change where the compiler
will place the variable storage for a program. The form is:

DATA ORIGIN hexnumber

A DATA ORIGIN statement may not have a line number.

Normally, the compiler starts allocating space for variables at
the end of the program. The DATA ORIGIN statement can be used to
override this default, and set the allocation base to a specified
hexadecimal address. The variable space is allocated as one
single block, so wherever you place the DATA ORIGIN, there must
be enough RAM for your variables (including machine stack and
Concatenation Bufferj see DEBUGGING A COMPILED PROGRAM). This
statement is normally used in a set of program segments to ensure
that COMMON variables are aligned properly. The DATA ORIGIN
statement must be placed in the program before any DIM statements
and after a PROGRAM ORIGIN statement if used. A program may not
have more than one DATA ORIGIN statement.

Example:

10 REM THIS IS "FIRST PART"
20 REM

DATA ORIGIN :4800

100 COMMON Q$(46),B[12,95], ...

CHAIN "SECONDPART"
END

10 REM THIS IS "SECOND PART"

DATA ORIGIN :4800
COMMON EMPLOYEE$(46), MONTHVSACCOUNT(12,95)
REM EMPLOYEE$ GETS VALUE OF Q$ SET IN FIRST PART
REM MONTHVSACCOUNT GETS VALUES FROM 8 SET IN FIRST PART

Copyright (C) 1977 SD 89

BASIC 1.4 MANUAL 04/83
SECTION VII: MISCELLANEOUS STATEMENTS

CONCATENATION BUFFER SIZE

The Concatenation Buffer Size statement is used to select the
size of the concatenation buffer. The form is:

CONCATENATION BUFFER SIZE = decimalconstant

The concatenation buffer is used for two purposes: to hold a
temporary result while concatenating a st"t"ing, and as an input
buffer for the INPUT statement. Program statements that invoke
use of the concatenation buffer while it is already being used
will get unexpected results. Si~ce there is only one
concatenation buffer, such progr~Bs are illegal. An example
illegal program (statement) is:

RENAME A$ CAT "txt", rt~ CAT "DOC"

If no Concatenation Buffer Size is used, the compiler defaults
the concatenation buffer size to 256 bytes, large enough for
virtually all normal use. The Concatenation Buffer Size
statement, if used, must come after any PROGRAM ORIGIN and before
any DATA ORIGIN statements, and before any COMMON or DIM
statements. This statement may only be used in a main program.

Example:

REM PROGRAM THAT INPUTS LINES OF NOT MORE THAN 300 BYTES
CONCATENATION BUFFER SIZE = 301

DIM LINE$(301)

INPUT #1, LINE$

Copyright (C) 1977 SD 90

BASIC 1.4 MANUAL 04/83
SECTION VII: MISCELLANEOUS STATEMENTS

INCLUDE

INCLUDE is a compiler directive that is used to select a new
input file. The form is:

INCLUDE stringconstant

INCLUDE causes the current compiler source input file to be
suspended. Input is then taken from the file specified by the
string constant. When end of the included file is reached, the
file is closed and compiler source input resumes from the
previous file. INCLUDEs may be used to include COMMON or DIM
statements, blocks of executable code, or subroutine packages.

INCLUDE statements may be nested, and the deepest nesting is
determined by the number of I/O channels available minus 3
(console, output file, and original input file); generally it is
limited to 4 levels. INCLUDE statements may be placed anywhere,
but may not have line numbers or labels, nor may they be part of
a multi-statement line.

Example:

REM PASS 2 OF MULTIPASS PROGRAM

INCLUDE "COMMONDIMS"
DIM A$(50)

INCLUDE "KEY.BAS"

END

If the first significant line of a source file is an INCLUDE
statement which references a file containing a set of DEF
functions and/or SUBROUTINEs, BASIC will assume Separate
Compilation of the first routine is what was desired. Placement
of a DIM statement before the INCLUDE will convince BASIC that
this is really a main program, and that the included file should
be compiled in its entirety.

Copyright (C) 1977 SD 91

BASIC 1.4 MANUAL 04/83
SECTION VII: MISCELLANEOUS STATEMENTS

END

The END statement is used to mark the end of a BASIC program. It
must be the last line of the program. A line number is allowed,
but cannot be the target of a GOTO, GOSUB, or ON statement. The
form is:

END

Example:

10 REM ADDITION PROGRAM
20 DIM A,B
30 INPUT "A,B" A,B
40 PRINT A+B
50 GOTO 30
60 END

The END statement is also used to terminate blocks (see BLOCK
BODIES) .

Copyright (C) 1977 SD 92

BASIC 1.4 MANUAL 04/83
SECTION VIII: ASSEMBLY LANGUAGE INTERFACE

ASSEMBLY LANGUAGE INTERFACE

The Software Dynamics BASIC also interfaces to assembly language
routines. This section describes statements for doing so, and
data formats for the information passed.

ASSEMBLY LANGUAGE SUBROUTINES

When CALLing assembly code, the subroutine name should appear in
a SUBROUTINE NAME (...) EXTERNAL statement before it,is used, to
insure compatibility with future versions of SO BASIC.

The compiler assumes a subroutine with the speGified name will be
supplied to pass II. The arguments given in the CALL statement
are expressions; the addresses of these expressions are pushed
onto the "machine" stack to create an argument list.

The subroutine is passed a pointer to the last argument in the
argument list in the X register (if the argument list was at
:49A4, X would contain :49A4), and an argument count is passed in
the A register. Since entry to the subroutine is made by a JSR,
an exit via a RTS (with the carry reset) is expected. No other
action is required by the subroutine (the argument list is
automatically removed from the machine stack by BASIC). To pass
an error back to the BASIC program, the error code needs to be
loaded into the X register, the carry bit must be set, and an RTS
performed (this is consistent with SDOS error handling). See the
section on Data Structures, below, for more detail.

Each stack entry is 6 bytes in length, and can hold any of the
following kinds of data:

1) Address of a floating point number
2) Address of a 16 bit positive integer
3) Numeric variable addresses
4) String descriptors
5) Address of vector or array

TIle compiler makes no guarantee that all CALLs will push the same
number and/or type of arguments onto the value stack. The called
assembly subroutine must either assume a debugged BASIC program
or check the argument count and parameter types itself.

Copyright (C) 1977 SO 93

BASIC 1.4 MANUAL 04/83
SECTION VIII: ASSEMBLY LA~GUAGE INTERFACE

If an argument is a numeric expression, then a temporary location
is allocated to hold the expression result, and the address of
the temporary location is pushed onto the stack.

If the argument is a numeric variable name or a vector or array
entry, the address of the 6 byte region of memory, to which that
variable has been assigned, is pushed.

If the argument is a string variable or a string expression, a
string descriptor is pushed onto the stack.

The user subroutine can pass data back to the program by storing
a value into a numeric variable, or into a character string as
specified by a string descriptor. Page zero locations 0 through
7 are available for use by the subroutine.

Assembly Subroutine Example:

SUBROUTINE INITIALIZEPIA(PlAADDRESS,CRACRB) EXTERNAL

CALL INITIALIZEPIA(:F2B4,:3D04)

END

* This is the assembly code for INITIALIZEPIA
* Combining this with the compiled BASIC program
* is described in the section HOW TO USE SD BASIC
*
INITIALIZEPIA ; ASSUME ARGS ARE BOTH ~NTEGERS

CMPA #2
ENE INITWRONGARGCOUNT
STX $0 SAVE ARG LIST POINTER
LDX 4,X GET ADDRESS OF INITIALIZING CONSTANTS
LDD 4,X FETCH CRA,CRB VALUES
LDX $0 GET ARG LIST POINTER BACK
LDX 10,X FETCH ADDRESS OF PIA ADDRESS
LDX 4,X FETCij PIA ADDRESS
STA 0,X INITIALIZE CRA OF PIA
STB 2,X INITIALIZE CRB OF PIA
CLC SIGNAL SUCCESS
RTS

IN I TWRONGARGCOUNT
LOX #27 "WRONG ARG COUNT" ERROR
SEC SIGNAL F~ILURE
RTS

Copyright (C) 1977 SO 94

BASIC 1.4 MANUAL 04/83
SECTION VIII: ASSEMBLY LANGUAGE INTERFACE

ASSEMBLY LANGUAGE FUNCTIONS

User-defined assembly language functions can also be used with SD
BASIC. Any result returnable by a conventional function may be
returned by an assembly function. The function name must be
declared using a DEF name (...) EXTERNAL statement textually
preceding any attempt to invoke the function. Invocation syntax
is identical to that for invoking a conventional BASIC function.

Parameters are passed to the assembly function in exactly the
format specified under Assembly Language Subroutines. Assembly
functions can modify passed arguments. Page zero locations 0-7
are available for use by the function.

Function results are returned on top of the machine stack, and
must be either integer, floating point, or string descriptor
values (See DATA STRUCTURES). This means the return address must
be removedi the result pushed, and then control passed to the
return address with the carry reset.

The runtime package handles removing the argument
stack after the function returns. Errors are
described under Assembly Language Subroutines.

Copyright (C) 1977 SD 95

'list from the
signaled as

BASIC 1.4 MANUAL 04/83
SECTION VIII: ASSEMBLY LANGUAGE INTERFACE

Assembly Function Example:

DIM POINTER$(4)
DEF CVT32BITSTOFLOAT(FOURBYTES$) EX~ERNAL

READ #6, POINTER$
POINTER= CVT32BITSTOFLOAT(POINTER$)

END

*This is the assembly code for CVT32BITSTOFLOAT
*This function accepts a string descriptor
*The string contains 4 bytes, and represents a 32 bit binary integer
*The function returns a floating number equal in value to the integer
CVT32BITSTOFLOAT EQU *

CMPA #1 CHECK ARGUMENT COUNT
BNE CVT32BITBADARGCNT
PULD REMOVE RETURN FROM STACK .•.
STD CVT32BITSRETURN
LDX 2,X =ADDRESS OF STRING,-4

* We assume a 4 byte (or more) string is passed,
* so we don't check the count. Caveat Emptor.

LDD 4+2,X FETCH LEAST SIGNIFICANT 16 BITS
PSHS D CONSTRUCT 32 BIT INTEGER ON STACK
LDD 4+0,X FETCH MOST SIGNIFICANT 16 BITS
PSHS D
JSR FLOAT GO FLOAT 32 BIT NUMBER
LDX CVT32BITSRETURN
CLC SIGNAL SUCCESS
JMP 0,X

CVT32BITBADARGCNT
LDX #27 "WRONG ARG COUNT" ERROR
SEC
RTS

CVT32BITSRETURN
RMB 2 PLACE TO STORE RETURN ADDRESS

Copyright (C) 1977 SD 96

BASIC 1.4 MANUAL 04/83
SECTION VIII: ASSEMBLY LANGUAGE INTERFACE

DEBUG

The DEBUG statement is used to call the userls assembly (or
whatever) language debugger via SYSCALL:DEijUG. The form is:

DEBUG

This statement can be used anywhere in the BASIC program. The
debugger itself can be used for anything, but must exit as
described in the SDOS manual if the BASIC program is to continue.
This statement is most useful when used to help debug assembly
language functions or SUBROUTINEs.

POKE

The POKE statement is used to allow the BASIC program to do
direct memory stores (usually to an I/O device). The form is:

POKE expl,exp2

The value of exp2 is stored in the byte at the address specified
by the value of expl. The runtime PQckage will not poke itself.

Examples:

10 POKE 64302,26

20 POKE RAM+7,B$[2]

30 POKE :4067,:3

40 POKE IOPORT1, :41

50 RUSSIANROULETTE: REPEAT POKE RND*65535,0

Copyright (C) 1977 SD 97

BASIC 1.4 MANUAL 04/83
SECTION IX: BUILT-IN FUNCTIONS

BUILT-IN FUNCTIONS

A built-in function is ,a pre-defined routine to compute a value
to be used in an expression. BASIC supports many built-in
functions. Each function invocation is written as:

· •. name ...
Or

· .• name arg 1 ••.
Or

· .• name (arg 1) .•.
Or

•.. name(argl,arg2,arg3 ..•) ..•

Where "name" is the name of the function, and argl, arg2, •.. are
the values needed by the function. Each of the values can be an
arbitrary expression except as noted for the particular function.
Like user defined functions, if there are no parentheses
surrounding the argument list, then the argument list is assumed
to have one element, i.e., 3*ATN X+2 is the same as 3*ATN(X)+2.

The transcendental functions are generally accurate to 7 places.
The arguments for the trigonometric functions are required to be
in radians except for the arc tangent, which yields a result in
radians.

SQR(arg)

ATN(arg)

SIN{arg)

COS(arg)

TAN(arg)

produces the square root of the argument.

produces the arc tangent (in radians) of the argument.
Other inverse trigonometric functions may be obtained by
using the following user defined functions:

DEF ARCSIN(X) = ATN(X/SQR(l-X*X»
DEF ARCCOS(X) = PI/2 - ARCSIN~X)

produces the trigonometric sin of the argument.

produces SQR(1-SIN(arg)A2) [this is not how
tmplemented] .

it is

produces the trigonometric tangent of the argument value.

Copyright (C) 1977 SD 98

BASIC 1.4 MANUAL 04/83
SECTION IX: BUILT-IN FUNCTIONS

LOG(arg)

EXP(arg)

~D

produces the natural logarithm of the argument.

produces 2.7l828l8 .•. A arg (exponential).

produces a random number >= 0 and < 1. Note: no argument
is needed. The random number generator can be made to
repeat its sequence by setting ~D to a fixed value
before using ~D to generate a set of random values. The
form is

LET RND = expression

Example:

150 LET RND=5

will cause the same sequence of values to be generated
for each execution of the program. To make a truly
non-repetitive sequence, setting ~D to some value based
on the current time of day is appropriate.

Copyright (C) 1977 SD 99

BASIC 1.4 MANUAL 04/83
SECTION IX: BUILT-IN FUNCTIONS

ROWS (arrayname)

returns the number of rows specified by the DIM or COMMON
statement of the array (this is especially useful when
arrayname is a parameter variable; see DEF).

COLUMNS (arrayname)

returns the number of columns
COMMON statement of the array.

LEN(stringname$)

specified by the DIM or
(See ROWS function).

produces the current length of the string value stored in
the specified string variable. (stringname$ may be a
singly subscr~pted string~array).

LEN(vectorname)

returns the DIM'ed (or COMMONed) size of the specified
vector name.

LEN(stringarrayname$)

returns the number of strings DIM'ed or COMMONed for this
array.

MAXLEN(stringname$)

produces the maximum (i.e., DIMensioned) length of the
string variable specified.

MAXLEN(stringarrayname$)

returns the maximum (i.e., DIM'ed) length of any string
in the specified string array.

Copyright (C) .1977 SD 100

BASIC 1.4 MANUAL 04/83
SECTION IX: BUILT-IN FUNCTIONS

MID$(stringname$,arg2,arg3)

is exactly the same as:
stringname$[arg2,arg3]

It may appear on the left side of an equals sign in a LET
statement (or as a target of a READ or INPUT statement).
Since MID$ is a subscripting operation, it may not itself
be subscripted.

LEFT$(stringname$,arg2)

is exactly the same as:
stringname$(1,arg2)

It may appear on the left side of the equals
LET statement (etc.) Since LEFT$ is a
operation, it may not itself be subscripted.

RIGHT$(stringname$,arg2)

is exactly the same as:

sign in a
subscripting

stringname$(arg2,LEN(stringname$)-arg2+1)
It is considerably faster, however. It may appear on the
left side of an equals sign in a ~ET statement (etc.).
Since RIGHT$ is a subscripting operation, it may not
itself be subscripted.

UPPERCASE$(stringexpression)

is a string function which produces a temporary string
(in the concatenation buffer) that is an exact copy of
the string argument except that all ASCII lowercase
alphabetic characters are converted to uppercase. The
string argument may only be a string name, substring, or
string function. Since this function uses the
concatenation buffer, the string argument may not use a
concatenated expression, and the function may not be used
in a concatenated expression.

Example:
INPUT RESPONSE$
IF FIND ("YES", UPPERCASE$(RESPONSE$»=l
THE~ DoWhatHeWanted ELSE AskForAnotherCommand

LOWERCASE $ (stringexpression)

is a string fun~tion which produces a temporary string
(in the catenation buffer) that is an exact copy of the
string argument except that all ASCII uppercase
alphabetic charac ters' are converted to lowercase. The
string argument may only be a string name, substring, or
string function. Since this function uses the catenation
buffer, the string argument may not use a concatenated
expression, and the function may not be used in a
concatenated expression.

Copyright (C) 1977 SO 101

BASIC 1.4 MANUAL 04/83
SECTION IX: BUILT~IN FUNCTIONS

EOF(arg)

COL(arg)

The argument is evaluated and ,used as a channel number.
The function produces true if the last READ or INPUr
attempted to read past the end of the file on the
specified channel. Otherwise, produces false. Since
READs and INPUTs cause an "End of File" error trap upon
reading across the end of file for channel numbers larger
than 32, an arg >=32 for EOF is unnecessary and a
"Channel number is too large" error will occur.

'produces the current column number on the channel
.specified by "arg". The column number is the column in
which a logical print head would be positioned at the
instant of the call. The leftmost column is column
number 1. If an input line is only partially read, then
the COL function applied to the INPUT channel will return
a value greater than the column number of the first input
character.

PEEK(arg)

COM(arg)

NOT(arg)

returns value equal to that of the memory byte whose
address is specified by the value of the argument
expression. Normally, the argument is a hex constant.

returns an integer whose binary equivalent is the bitwise
complement of the binary equivalent of the argument. If
the argument is not an integer in the range 0 to 65535,
an error occurs. Examples: COM(0)=65535, COM{l7)=65518,
COM(32767)=32768

returns the logical complement of the argument (true
produces false and false produces true). The argument of
this function must be a relational expression (such as
A=B etc.) or a compound logical expression as described
in the section on Conditional Expressions. Example: NOT
(B>6 OR DIVISOR=0)

Copyright (C) 1977 SD 102

BASIC 1.4 MANUAL 04/83
SECTION IX: BUILT-IN FUNCTIONS

INT(arg)

ABS(arg)

SGN(arg)

ERR

ELN

produces
argument.

the largest integer not greater than
Example: INT(3.2)=3i but INT(-3.2)=-4.

produces the absolute value of the argument.

the

returns the sign of the argument. If the argument is <
0, the function returns -1. If the argument is = 0, the
function returns 0. If the argument is > 0, the function
returns +1.

produces a value corresponding to the most recent error
encountered at runtime at this level of the program
(errors trapped and handled in called subroutines or
functions cannot be seen). See section on error
messages.

produces a value corresponding to the last line number
executed, or in execution, when the last error occurred.

PI produces the value 3.14159265

ASC(stringexpression)

This function returns the numeric value of the ASCII code
of the first byte of the stringexpression specified.
Examples: ASC("A") gives decimal 65, ASC(lIa ll

) gives
decimal 97.

CHR$(arg)

returns a single byte string containing the ASCII
character corresponding to the value given by arg.
Examples: CHR$(:41) gives "A", CHR$(7) gives <BELL>.

Copyright (C) 1977 SD 103

BASIC 1.4 MANUAL 04/83
SECTION IX: BUILT-IN FUNCTIONS

FIND(argl$,arg2$)

DATE $

TIME$

searches for an occurrence of arg2$ in argl$. Argl$ and
arg2$ may be string functions, string constant, string
names, or substrings., Returns 0 if not found: otherwise
returns the smallest I such that argl$[I,LEN(arg2)]=arg2.

returns a string corresponding to the current date
(string content is defined by the operating system).
Note that BASIC OPENs the CLOCK: device (on the first
available I/O channel) to get the date, so an I/O channel
must be available when this function is invoked; the 1/0
channel is CLOSEd immediately after use.

returns a string corresponding to the current time of day
(string content is defined by the operating system).
Like DATE$, an I/O channel must be available when TIME$
is invoked.

VAL(stringexpression)

returns a numeric value equal to string expression
contents interpreted as a floating point or a hex
constant. Leading blanks or tabs are ignored. Any
illegal characters delimit the value to be converted.
The number in the string must be valid or a conversion
error results.

HEX$(arg)

returns a string containing a 4 digit hexadecimal
constant equivalent to the value. The first character of
the string is a ":" so that the length of the result is 5
characters. An argument which is not an integer in the
range 0 to 65535 will cause an error.

Copyright (C) 1977 SD 104

BASIC 1.4 MANUAL 04/83
SECTION IX: BUILT-IN FUNCTIONS

NUM$(arg)

returns a string whose contents are exactly what a
PRINT ARG;

statement would have printed for the argument expres$ion,
except no trailing "space" is produced.

NUMF$(stringexpression,arg2)

returns a string whose contents is what a
PRINT USING stringexpression,arg2;

statement would have printed. The stringexpression must
contain only a valid unumber format" (not a general
format string) as defined by the section on PRINT USING;
otherwise, an error results.

TRUE returns the value 1.

FALSE returns the value 0.

IF condition THEN argl ELSE arg2 FI

This is known as the "IF" function. Returns the value of
argl if the conditional expression is true, else it
returns the value arg2. Argl is NOT evaluated if
condition is false; arg2 is NOT evaluated if condition is
true. For readability, a <CR> is optionally allowed
after the condition or argl, so the IF function
invocation may span several physical text lines. A <CR>
is NOT allowed after arg2. The final FI is required.

Examples:

10 LET A=2+IF B<>0 THEN COS(X)/B ELSE COS (X) FI
REM NO DIV BY 0 ERROR POSSIBLE

20 REM MOVE CURSOR RIGHT
LET CURSORCOL= IF CURSORCOL=SCREEffiiIDTH

THEN SCREENWIDTH
ELSE CURSORCOL+l FI

The type of argl must match the type of arg2, and the
types must be compatible with the expression in which the
IF function is embedded.

Copyright (C) 1977 SD 105

BASIC 1.4 MANUAL 04/83
SECTION X: DATA STRUCTURES

DATA STRUCTURES

This section describes how data is stored in BASIC from an
assembly language interface point of view.

Simple numeric variables use 6
contain either a floating point
instant). All scalar variables
COMMONed are stored sequentially
Space.

bytes of storage. They may
number or an integer (at any

that are not parameters or
in an area known as the Scalar

Vectors occupy 6*(1+1)+2 bytes, where I is the dimension size
(the +1 allows room for the zero subscript). The first two bytes
contain the DIMensioned length of the vector, and are used to
perform subscript checking. The zeroth element of the vector
follows immediately. Each vector element occupies 6 bytes, and
may contain either a floating point number or an integer.

Arrays occupy 6*(I+l)*(J+l)+4 bytes, where I and J are the
dimension size (the +1 allows for a zero row or column
subscript). The first pair of bytes contain the DIMensioned
number of rows of the array, and are used for subscript bound
checking. The second pair of bytes contain the DIMensioned
number of columns, also used in subscript checking and array
entry address computation. Each array entry uses 6 bytes, and is
located by adding (I*2nd dimension+J)*6+4 to the array address,
where I and J are the row and column subscripts, respectively.
Each array element occupies 6 bytes and may contain an integer or
a floating point number.

String variables occupy the dimension +4 number of bytes.
first two bytes are the MAXLEN (dimension) of the string.
next two bytes are the current length of the string, and
always less than or equal to the max length. The rest of
bytes hold the string, left justified.

The
The
are
the

String arrays occupy (LENgth dimension)*(MAXLEN dimension+4)+2
bytes. The first two bytes hold the number of strings in the
string array. Each string in the string array has the same
structure as a simple string variable.

String constants are stored with the first byte as the length:
the remaining bytes are the body of the string constant.

Copyright (C) 1977 SD 106

BASIC 1.4 MANUAL 04/83
SECTION X: DATA STRUCTURES

SIMPLE NUMERIC VARIABLE

VECTOR

ARRAY

1----------------1
1 VALUE 1
1----------------1

1----------------1
LENGTH

1----------------1
1 1
1 VECTOR 1
1 ELEMENTS 1
1
! 1
1 1
1----------------1

1----------------1
1 :11= ROWS
1----------------1

:11= COLUMNS 1

1----------------1

ARRAY
ELEMENTS

1
1

1----------------1

6 BYTES

2 BYTES

6*
(1+VECTOR
DIMENSION)

2 BYTES

2 BYTES

6*
(:11= ROWS+1) *

(:11= COLUMNS+1)

The number of rows and the number
from the DIM statement for the
ARRAY[rows,columns]).

Copyright (C) 1977 SD 107

of columns are taken
array (i.e., DIM

BASIC 1.4 MANUAL 04/83
SECTION X: DATA STRUCTURES

STRING ARRAY

1-------------------------1
1 LENGTH 2 BYTES
1-------------------------1

STRINGVARIABLE(l) MAXLEN+4 BYTES
1-------------------------1 1 STRINGVARIABLE(2) MAXLEN+4 BYTES
1-------------------------1
1 !
1 1 1
1-------------------------1
1 STRINGVARIABLE(LENGTH) MAXLEN+4 BYTES
1-------------------------1

STRING VARIABLE

IB IB 18 IB 18 IB IB IB
1-----1-----1-----1-----1-----1-----1-----1 1-------1
1 MAX 1 CUR ! 1ST 1 2ND 1 3RD 1 1 MAXTH 1
1-----1-----1-----1-----1-----1-----1-----1 1-------1

<65535 <=MAX

STRING DESCRIPTOR

1-----1-----1-----1-----1-----1-----1
II! X 1 ADDRESS 1 COUNT 1
1-----1-----1-----1-----1-----1-----1

String descriptors are used to temporarily represent a
string or a substring in expressions: they are found in
argument lists to assembly language routines.

COUNT has the range 0<= COUNT <= 65535. If COUNT = 0
(empty string), the ADDRESS is meaningless.

If COUNT <> 65535 (substring), then ADDRESS+4 points to
the first selected byte. COUNT specifies how many bytes
are selected.

If COUNT = 65535 (lithe entire string"), then ADDRESS
points to the left byte of the max length of some string
variable. The number of bytes selected is equal· to MAX or
CUR, depending on the operation.

Copyright (C) 1977 SD 108

BASIC 1.4 MANUAL 04/83
SECTION X: DATA STRUCTURES

DECIMAL FLOATING POINT VALUES

1-----1-----1-----1-----1-----1-----1
1 EXP 1 DIG 1 DIG 1 DIG 1 DIG ! DIG 1
1-----1-----1-----1-----1-----1-----1

DIG are base 100 (not BCD) digits, i.e., values in the
range 0- to 99 decimal. The leftmost DIG is non-zero. The
most significant bit of the EXP is the number sign. The
other 7 bits are the base 100 exponent, biased by +64.
Floating zero is defined as EXP = 0, all DIG bytes = 0.
Otherwise, an EXP of 0 is illegal. See FLOATING POINT
PACKAGE.

INTEGER VALUES

1-----1-----1-----1-----1-----1-----1
1 0 X X 1 X 1 INTEGER
1-----1-----1-----1-----1-----1-----1

o <= INTEGER <= +65535

ADDRESS OF NUMERIC VALUE

1-----1-----1-----1-----1-----1-----1
o 1 X X X ADDRESS

1-----1-----1-----1-----1-----1-----1

The ADDRESS points to the EXP byte.

ARGUMENT LIST FORMAT (ON "CALL" TO ASSEMBLY SUBROUTINE)

1----------------1
1 LAST ARGUMENT <----INDEX REGISTER (X)
1----------------1

1----------------1
1 FIRST ARGUMENT 1 HIGHER ADDRESS THAN (X)
1---------------~1

On entry to the assembly language subroutine or function,
register A indicates how many arguments were passed. Each
argument occupies 6 bytes, with the last argument being at
the lowest memory address. Register X points to the
lowest address byte of the last argument. Each entry in
the argument list is a string descriptor, or an address in
the format described in this section.

Copyright (C) 1977 SD 109

BASIC 1.4 MANUAL 04/83
SECTION X: DATA STRUCTURES

SYSCALL PARAMETER LIST FORMAT:

OPCODE ! <----INDEX REGISTER (X)
1-------------1
1 WRBUF
1,------------- !
1 WRLEN
1-------------1
1 RPLEN 1
1-------------1

RDBUF 1
1-------------1
1 ROLEN
1-------------1
1 EXTENSION
1 -------
After JSR $FB, (X) points to the SYSCALL parameter list.
For meaning of various opcodes, see SDOS manual.

Copyright (C) 1977 SD 110

BASIC 1.4 MANUAL 04/83
SECTION XI: FLOATING POINT PACKAGE

FLOATING POINT PACKAGE

The SD floating point package for BASIC Vl.4 is a fast, high
precision (decimal arithmetic) software floating point package
for 6800/6809 CPUs. It provides a stack-oriented environment to
allow convenient evaluation of complicated expressions (in Polish
notation). The package provides ADD, SUB, MUL, DIV, stack load
and store, negate, floating point comparison, integer truncation,
fix and float, and conversion routines to and from ASCII and
floating point. Trancendentals are not included.

The floating point number format
significant bit of the first byte
exponent (least significant 7 bits).
S=l means negative sign. The exponent
40. The range of the exponent is:

requires 6 bytes. The most
contains a sign S and the

S=0 means positive sign;
is base 100, biased by hex

$40+$3F
100 to

$40-$3F
100

which is

or

63
100

126
10

to

to

-63
100

-126
10

An exponent of zero is defined to represent a floating zero.
Negative zero is not allowed. Clean floating zero is represented
by 6 zero bytes.

The remaining five bytes are mantissa digits, in base 100, i.e.,
digits have values of 0-99. The byte contents are stored as the
binary equivalent of the digit. A normalized floating point
number is defined to be one in which the leading mantissa byte is
non-zero. This means that up to 10 BCD digits can be stored.
However, due to normalization conditions, the left-most base 100
digit may be as small as 1 which means only 9 decimal digits of
precision can be guaranteed. If you are working with money
amounts, note that up to $100 million can be represented
accurately, to the penny.

Copyright (C) 1977 SD III

BASIC 1.4 MANUAL e4/83
SECTION XI: FLOATING POINT PACKAGE

Floating Point .Number Format:

1 S ! 7-BIT EXP 1 BASE lee 1 BASE lee 1 BASElee 1 BASE100 1 BASE100 1

Examples:

0 00 00 00
1 41 01 00
PI 41 03 0E
. 5 40 32 00
1.5 41 01 32
1.5E-l 40 0F 00
1.5E-2 40 01 32
1.5E-3 3F 0F 00

The following
package:

FLOAD
FSTORE
FCMP
FNEG
FADD
FSUB
FMUL
FDIV
FIX16
FLOAT
FINT
FIX
FCONVO
FCONVI

00 00 00
00 00 00
0F 5C 41
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00

routines are

Floating load
Floating store

-1
-PI
-.5
-1.5
-1.5E-l
-1.5E-2
-1.5E-3

contained

Cl 01 00 00
Cl 03 0E 0F
C0 32 00 00
Cl 01 32 00
C0 0F 00 00
C0 01 32 00
BF 0F 00 00

in the floating

Algebraic compare two floating point numbers
Negate floating point number
Add two floating point numbers
Subtract two floating point numbers
Multiply two floating point numbers
Divide two floating point numbers

00 00
5C 41
00 00
00 00
00 00
00 00
00 00

point

Convert floating to 32 bit binary integer in range 0 •. 65~
Convert binary integer to floating
Truncate fractional part
Convert floating to 32 bit binary integer
Output conversion from floating point format
Input conversion to floating point format

These routines are stack oriented; that is, they operate on
numbers already in the stack, put numbers onto the stack, or take
numbers off the stack.

Throughout this description, the term 'TOS' and 'TOS-I' shall
mean 'the floating point value on the top of the stack' and 'the
floating point value underneath the floating point value on the
top of the stack', respectively.

FPTRAP is a 2 byte page zero location containing a 'floating
point trap address'. Should overflow occur in the floating add,
subtract, multiply or divide routines, control will be
transferred to the location specified by FPTRAP. Since these
routines are commonly used, setting up the error address once
saves bytes, and makes the user code more readable.

A description of each routine follows.
all routines. Locations 0-7 are used
scratch storage.

~opyright (C) 1977 SD 112

A JSR is used to enter
by these routines as

BASIC 1.4 MANUAL 04/83
SECTION XI: FLOATING POINT PACKAGE

FLOAD

On entry, the X register contains a pointer to a
floating point number (specifically, X points to the
byte of the number). This routine loads the 6 bytes
stack and then returns to the JSR+3.

FSTORE

six-byte
exponent

onto the

On entry, the X register contains a pointer to a location to
store the six-byte floating point number from the TOS. The
routine pops the number off the stack and stores it into the
location specified, then returns to the JSR+3.

FIX

FIX attempts to fix the floating point number on the TOS into a
32-bit (4 bytes) signed binary integer on the TOS. The number is
considered unfixable and left intact on the TOS if it is less
than -2 A 3l or greater than (2 A 3l)-1. Returns to JSR+3 if
fixable, JSR+5 if not.

FIX16

Operates identically to FIX, except the
of 0 .. 65535. Returns to JSR+3 if fixed
not.

result must be in range
properly, to JSR+5 if

FLOAT

FLOAT will convert a 32-bit signed integer (4 bytes) on the TOS
into a 6-byte floating point number on the TOS. Returns to
JSR+3.

FINT

FINT will truncate fraction bits, if any, in the floating
number on the TOS and return the largest integer not larger
the value on the TOS. For example: ,

INT(1.0) = 1.0
INT(1.2) = 1.0
INT(-2.0) = -2.0
INT(-1.2) = -2.0

Returns to JSR+3.

Copyright (C) 1977 SD 113

point
than

BASIC 1.4 MANUAL 04/83
SECTION XI: FLOATING POINT PACKAGE

FCONVO

On entry, the TOS contains the floating point number to convert,
and the X register points to the output buffer. The output
buffer must be large enough to contain 17 bytes. The routine
converts the number into an ASCII string in IE-type I format:

(SIGN)(' .')(10 DIGITS)('E')(ESIGN)(3 DIGITS)

On exit, the A register contains a number representing the number
of places the decimal point in the resulting string would have to
be shifted right to make the exponent zero. Example:

A =
A ==
A =

0
-2

2

-->
-->
-->

, • DDDDDDDDDD '
1.00DDDDDDDDDD'
'DD.DDDDDDDD'

The B register contains
rightmost zero digits).

the number of significant digits (10 -
Returns to JSR+3.

FCONVI

Converts an ASCII numeric string to the internal floating point
format. On entry, register X points to the string to convert and
register D (A,B) contains the string length. The result of the
conversion is pushed on TOS, and (X) is returned pointing to the
data byte that terminated the conversion. Leading blanks and
nonsignificant zeros are automatically skipped.

Digits beyond those retainable by the conversion are skipped and
ignored. The E part of the exponent may be upper or lower case,
and is accepted only if followed by a valid exponent value (i.e.,
only 123 is accepted from a string like l23E%).

Returns to JSR+3 if conversion succeeded. Returns to JSR+5 if
overflow occurs; TOS contains a properly signed version of
infinity. Returns to JSR+7 if syntax error; no value is pushed
onto TOS.

Copyright (C) 1977 SO 114

BASIC 1.4 MANUAL 04/83
SECTION XI: FLOATING POINT PACKAGE

FNEG

FNEG negates the floating point number on the TOS. Returns to
JSR+3.

FCMP

FCMP compares the floating point number on the TOS-l to the
number on the TOS. The condition codes are set according to the
result of the algebraic difference of TOS-l - TOS (S, N condition
code bits are set to show the result of the compare, V is set to
0). Both numbers are popped off the stack. This routine should
be used instead of FSUB for comparisons because it pops both
numbers off the stack and FSUB doesn't; FCMP sets the condition
codes and FSUB doesn't, and FCMP is much faster than FSUB.
Returns to JSR+3.

FADD

On entry, FPTRAP contains the error exit address. The TOS
contains the addend, and the TOS-l contains the augend. The two
numbers are popped off the stack, added, and the sum is pushed
onto the stack. If underflow is detected, a floating zero is
returned. If overflow is detected, negative infinity (FF 63 63
63 63 63) is returned if the result sign is negative, and
positive infinity (7F 63 63 63 63 63) if the sign is positive.
Returns to JSR+3 if underflow or no error. Returns to the
address specified in FPTRAP if overflow occurred.

FSUB

On entry, FPTRAP contains the error exit address. The TOS
contains the subtrahend, and the TOS-l contains the minuend. The
two numbers are' popped off the stack, subtracted, and the
difference is pushed onto the stack. Overflow/underflow and exit
conditions are the same as FADD.

FMUL

On entry, FPTRAP contains the error exit address. The TOS
contains the multiplier, and the TOS-l contains the multiplicand.
The two numbers are popped off the stack, multiplied, and the
product is pushed onto the stack. Overflow/underflow and exit
conditions are the same as FADD.

FDIV

On entry, FPTRAP contains the error exit address. The TOS
contains the divisor, and the TOS-l contains the dividend. The
two numbers are popped off the stack, divided, and the quotient
is pushed onto the stack. Overflow/underflow and exit conditions
are the same as FADD.

Copyright (C) 1977 SD 115

BASIC 1.4 MANUAL 04/83
SECTION XI: FLOATING POINT PACKAGE

In Version 1.4 of the
floating point routines
vector:

SD BASIC Runtime Package (RTP), the
can be easily accessed via a transfer

FPTRAP EQU $0028

FLOAD EQU $0109
FSTORE EQU $0l0C
FCMP EQU $0l0F
FNEG EQU $0112
FADD EQU $0115
FSUB EQU $0118
FMUL EQU $0llB
FDIV EQU $0llE
FCONVO EQU $0121
FCONVI EQU $0124
FINT EQU $0127
FIX EQU $012A
FIX16 EQU $012D
FLOAT EQU $0130

Note that the floating point routines use page zero heavily;
other than the scratchpad locations (see SDOS manual), we
recommend not using page zero in the application program.

If special hardware is considered, we recommend replacing FMUL,
FDIV, FIX, and FLOAT. FADD, FSUB, FLOAD, FCMP, FSTORE, and FNEG
are fast enough that replacing them with hardware won't really
save any time.

EXAMPLE OF USE

Assume the following sequence needed to be coded:

LET RESULT = (INPUTVALUE * 1.5 + .101) / PI
IF RESULT >= 55.7 THEN GOTO LABELl

Assume RESULT is a floating point variable, and INPUTVALUE is an
8-bit unsigned integer. Then the following code could be used:

Copyright (C) 1977 SD 116

BASIC 1.4 MANUAL 04/83
SECTION XI: FLOATING POINT PACKAGE

*F1oating Point Assembly Example

START LDS
LDX
STX

*
LDAA
PSHA
CLRA
PSHA
PSHA
PSHA
JSR
LDX
JSR
JSR
LDX
JSR
JSR
LDX
JSR
JSR
TSX
JSR
LDX
JSR
LDX
JSR
JSR
BGE

LABELl

#STACK
#TRAP
FPTRAP

INPUTVALUE CREATE A 4-BYTE INTEGER ON
THE STACK

FLOAT
#F1.5
FLOAD
FMUL
#F.101
FLOAD
FADD
#PI
FLOAD
FDIV

FLOAD
#RESULT
FSTORE
#F55.7
FLOAD
FCMP
LABELl

NOW FLOAT IT
GET A 1.5

NOW DO THE MULTIPLY
GET THE .101

NOW DO THE ADD
GET PI

NOW DO THE DIVIDE
DUPLICATE THE TOS FOR THE COMPARE

SAVE A COpy IN RESULT

GET 55.7

DO THE COMPARE

TRAP ;GET HERE IF OVERFLOW ERROR IN FADD, FSUB, FMUL, FDIV

F1.5 FCB
F.101 FCB
PI FCB
F55.7 FCB
INPUTVALUE
RESULT

STACK

RMB
RMB
EQU
END

Copyright (C) 1977 SD

$41,01,50,00,00,00
$40,10,10,00,00,00
$41,03,14,15,92,65
$41,55,70,00,00,00

6
50
*-1

RMB 1

117

BASIC 1.4 MANUAL 04/83
SECTION XI: FLOATING POINT PACKAGE

The following subroutine will convert a string containing BASIC
Vl.3 floating point numbers to BASIC V1.4 floating point numbers:

SUBROUTINE CONVERT13TOl4(NUMBER$)
IF NUMBER$[I]=0 THEN RETURN SUBROUTINE
FOR 1=2 TO 6
LET NUMBER$[I]=«NUMBER$[I]**-4)*10)+(NUMBER$[I]&:0F)
NEXT I
RETURN SUBROUTINE

END

To use the subroutine, a record containing BASIC Vl.3 numbers
should be READ using strings instead of scalars as targets of the
numeric READs for numbers. Each number read into a string should
be converted by invoking the CONVERT13TOl4 subroutine, then the
record should be written back.

Example:

DIM EMPLOYEENAME$(..•), SALARY$/0,0,0,0,0,0/

REM This record is usually read as
REM READ #FILE@RECORDLOCATION, EMPLOYEENAME$, SALARY
READ #FILE@RECORDLOCATION, EMPLOYEENAME$, S ALARY $
CONVERT13T014(SALARY$)
WRITE #FILE@RECORDLOCATION, EMPLOYEENAME$, SALARY $

Copyright (C) 1977 SD 118

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

USING SOFTWARE DYNAMICS BASIC

Since the Software Dynamics BASIC is a compiler, the procedures
for using it are different from a conventional interpreter. This
section includes directions on how to use the compiler to prepare
a BASIC program for execution, and how to load and execute a
BASIC program.

The SO BASIC system consists of three parts:

1) The compiler
2) The runtime package
3) The utility programs FIX, COMPILE, and FINDLABEL

The compiler accepts a BASIC source program and converts it to a
form compatible with the assembler. This intermediate form is
assembled (along with any user assembly language subroutines) to
produce a binary program. Finally, the binary program is loaded
with the runtime package for execution.

The first step is to create the desired BASIC program. This is
done with the aid of a text editor program. The program is
prepared as described in the section on program organization.
Line numbers/labels are used to mark targets of GOTOs, and handy
reference points within the program. SO BASIC does not require
line numbers on all lines; this fact can be used to clarify the
program (by removing some of the clutter of conventional BASIC
programs) and allow compilation of larger programs (line numbers
use up space at compile and execution time). It is a good idea
to number each line until the program is nearly debugged, to aid
in error diagnosis at runtime. Note that SO BASIC does not care
about the order of line numbers; the text order is what counts
for sequential execution. Using line number order is convenient
and aids program compatibility with other BASICs.

The source form of the BASIC program consists of lines terminated
with a <CR> (hexadecimal $0D) character. Multiple spaces are
treated as a single space (except in quoted character strings).
Spaces may not occur in the middle of keywords, variable names,
subroutine names, or in the middle of 2 character operators such
as "**11 or ">=". Otherwise, spaces may be used freely to improve
readability. Extraneous spaces in the source program do not
affect execution times.

The compiler ignores nulls; tabs are treated as spaces except in
character strings. Control L and line feed are legal only after
a <CR> mark. The last line of the program must be an END
statement.

Upper or lower case may be used freely by the programmer; all
lower case text not in a quoted string is treated as if it were
upper case.

Copyright (C) 1977 SO 119

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

If a statement is too long for a source line, the statement may
be continued on the next source line by writing ••• <CR>& wherever
blanks would be allowed, followed by the rest of the statement
(note: This line continuation facility does not work in character
strings or REM statements!).

Example:

10 IF ARRAY(BUFFER(J) ,10) >= ••.
& SUM THEN GOTO 75 ELSE PRINT "OOPS!II\STOP

If you must continue a line following a number, separate the
continuation periods from the number by at least one space, or
BASIC will think the first period is a decimal point and complain
about the following ' .. '.

PASS I

Once the program is created, the next step is compilation. The
compiler is very easy to use. Merely load the compiler by typing
BASIC when at the SDOS command interpreter prompt. It will
identify itself, and then ask for the source and output file
names.

Example:

.BASIC
Software Dynamics BASIC Compiler Vl.4h (C) 1980
INPUT FILE = MYPROG.BAS
OUTPUT FILE = JUNK.TMP

The compiler opens the source file, and creates the output file.
The size of the output file that will be produced is typically
three times that of the source file.

Error diagnostics are written to the console (SDOS channel #0).
They consist of a message describing the kind of error, a
printout of the line in which the error occurs, and a pointer
(caret) to the problem. Each error diagnostic occupies three
printed lines, and is separated from the next by a blank line to
make the grouping obvious. Typical error examples are:

Syntax Error
10 DIM S$(12),B,7

Variable not DIMed as vector or array
20 LET Q(I,J)=2

The compiler will always print IICompilation Complete" when done.
This does NOT mean no errors were found.

Copyright (C) 1977 SO 120

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

COMPILE TIME ERROR MESSAGES

Already defined as a variable
This name already has a definition, and so cannot be used
as a label.

Assignment to a label is not allowed
The target of a LET, READ or INPUT is the name of a
label.

Can't use a parameter as a FOR loop index
Only scalar variables that are not parameters are allowed
as FOR loop indexes.

Can't use variable name for label
A GOTO target contains the name of an object which is not
a label.

Compiler Bugl XXXX
The memory of the computer is unreliable, SDOS is
unreliable, or the BASIC Compiler has an error. Please,
REPORT THE ERROR TO SOFTWARE DYNAMICS, along with the
source of the program, and exactly what was displayed.

Doubly-defined line number
This line number has already been used.

Doubly-defined string variable
There is already a definition for a string of this name.

Double subscript required
This variable is defined as an array, and must have a
double subscript in this context.

End of File hit
The compiler expects more BASIC program, but there isn't
any more. Suspect a missing NEXT, END, or FI;
unfortunately the place that is missing the keyword might
be almost anywhere in your program.

Function not a~lowed here
This name is defined as a function name, and cannot be
used in this context.

HOW MUCH STRING SHOULD I READ?
A syntactically legal READ into a
been encountered, but there is no
for it.

Memory Full: xxxx

string function has
well defined meaning

The program being compiled requires too much space to
compile in this configur~tion. (xxxx indicates which
compiler routine detected the error).

Copyright (C) 1977 SD 121

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

Missing Block END
There is a block body (REPEAT, WHILE, DO, FOR, etc.) that
is incomplete and an END statement is required to
complete it. (Very likely an END statement was left out
several lines prior to this point.)

Missing FI
A THEN or ELSE block is incomplete and requires a FI to
"seal" it. (It is-fairly likely that a FI or ELSEIF is
missing several lines prior to this point).

Must be loop label
An EXIT label statement specifies a label
the label of a block-type statement (FOR,
etc.) •

No enclosing FOR with same variable

which is not
REPEAT, DO,

This NEXT statement specifies an index variable that is
not matched by any textually preceding FOR statement.

No subscripted variables allowed here
A scalar variable name must be used here (a vector
variable may not be used as a FOR-NEXT index variable).

No such file
An INCLUDE file does not exist.

Not implemented
What you are requesting appears to be legal, but the
compiler cannot generate code for it.

Parameter variable not allowed here
A variable declared in a parameter list of a SUBROUTINE
or DEF statement is used in an illegal context.

Single subscript required
This variable is defined as a vector, and must have only
a single subscript in this context.

Source line is too long
More than 256 characters have been scanned without
encountering a carriage return character. The source
line will have to be split up.

String array requires subscript here
A string array requires a subscript to select the
particular string desired.

Copyright (C) 1977 SO 122

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

String length exceeds 127 characters
A name, number or string constant has more than 127 total
characters in it. Names or numbers with excessively many
digits must be shortened. A string which is too long
will have to be split into two or smaller strings; the
line continuation technique (" ..• <CR>&") or multiple
statements may be needed to help solve the problem.

Syntax error
The line printed is not syntactically correct. Note:
since NEXT, END, THEN, ELSE and ELSEIF are not legal
BASIC statements (i.e., they can only occur as part of
another statement), a syntax error on these "statements"
indicates that the preceding part of the statement is
missing or incorrect. Example: a NEXT will yield a
syntax error if there is no corresponding FOR statement.

Undefined string variable
This string variable is not defined in a DIM· or COMMON
statement, or in a parameter list.

Use of name incompatible with previous use
A textually preceding context defined this name in a way
that is not compatible with use in this context.

Variable not DIM'ed as vector or array
The variable specified cannot be subscripted because it
is a scalar.

Wrong type of value
A string result appears where a numeric expression is
required, or vice versa, or an array or vector object is
found where a scalar is appropriate, or vice versa.

Copyright (C) 1977 SO 123

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

HINTS ON HOW TO HANDLE COMPILE-TIME ERRORS

The compiler processes the entire program (unless it runs into
too many ENDs), even if an error occurs. If any error message is
printed, .the compiler output is turned off and consequently is
u.seless. If errors are diagnosed by the compiler, you must go
back and edit the program to rid it of those errors, and
recompile. Note that an error may cause other (spurious) errors;
for instance, terminating a FOR block with a FI will cause the
compiler to lose track of blocks that contain the FOR, and
consequently complain about NEXTs and Fls.

If the compiler complains about a statement that appears legal,
check the declarations of all variables referenced in that
statement to make sure they have the proper type.

If an error produced by the compiler seems particularly
incomprehensible, and the compiler reported another error at an
earlier point in the same file, try fixing the earlier error and
recompiling; many times, this will remove the source of an "error
cascade", and thus the "incomprehensible" error.

Too many ENDs are not detected by
compiling when it sees an END which
block.

the compiler; it simply stops
does not match any unclosed

The compiler gives error 100 to 8DOS
diagnosed. This may be used in DO file to
the editor.

Copyright (C) 1977 SO 124

if any
automate

errors were
fetching of

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

PASS II

When an error free compilation occurs, then you are ready for
pass II. This consists of assembling the compiler output using
the Software Dynamics Assembler.

If the compiler issues any messages
Complete), performing an assembly is
resulting are meaningless.

(other
useless

than Compilation
and any errors

The output of the compiler contains END and ORG statements.
These statements are in textual form in the output and are
assembler directives. They are related to, but not the same as,
the BASIC statements END, DATA ORIGIN, and PROGRAM ORIGIN. In
this section, the words "END" and "ORG" refer only to the
assembler directive statements END and ORG. If there are some
assembly language subroutines, they should be included just prior
to the END statement in the compiler's output. This can be done
with an Editor, or by use of an INCLUDE command to the SD
Assembler.

The ORG statement produced by the compiler defaults the BASIC
program to location $2E00 for 6800, and $2A00 for the 6809. This
can be changed (via PROGRAM ORIGIN or DATA ORIGIN statements) to
anywhere desired in the computer provided you leave room at the
bottom of memory for the runtime package (11K). The first
instruction in a BASIC program is a "JSR $100"; if the program is
assembled somewhere other than the standard location, it must be
started by transferring control to this JSR.

Assembly time errors can occur in the form of "Undefined Symbol".
The form of the undefined symbol is the key to the problem.

A symbol of the form :dddd where d's are
(GOSUB, ON, etc.) target line number is
program.

digits means a GOTO
not defined in the

A symbol of the form E:xxxx means an EXIT label
been used, but label xxxx is not the label of
statement.

statement has
a block-type

A symbol of the form xxxx (alphanumeric) means a GOTO (label)
xxxx is used, but label xxxx is not defined in the program, or
that a scalar variable xxxx is referenced, but has never had its
value set (via READ, INPUT, or LET).

Copyright (C) 1977 SD 125

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

An error of the form ?Data space overlaps ~rogram Space? Or
?Program Space Overlaps Data Space? Indicates that DATA or
PROGRAM origin statements have been used, but not enough space
for the data area was taken into account.

An error of the form ?Too Many Scalar Variables? Indicates that
a BASIC program has used over 320 scalar variables. The number
of scalars will have to be reduced, or the program will have to
be broken into several parts with separately compiled functions
or subroutines.

Other assembly time errors occur only if the compiler output file
is damaged, the computer hardware is failing, or an included
assembly subroutine has errors.

PROGRAM EXECUTION

A successful assembly means you are ready to run the program.
Simply load both the runtime package object and the program
object (from the assembler) and start it at the PROGRAM ORIGIN
(if you had no PROGRAM ORIGIN statement, start it at the assembly
default location).

On most SDOS systems, the runtime package and the SDOS command
interpreter are placed in DEFAULTPROGRAMi in this case, all that
is necessary to load and execute the compiled program is to type
its name (the assembler will have set the start address to the
proper value already). Otherwise, execution of a BASIC program
under SDOS is accomplished by typing

RUN PROGRAMNAME

where RUN is the name of the runtime package. If your program is
too big, SOOS will complain when it is loaded.

Runtime errors are printed out as

Line xxxxx
Text of error message

where xxxxx is the last line (number) encountered before the
executing the line in which the error occurred. If line 50
invokes a user defined function which errors, the error displayed
will show line 50 errored because of error propagation. A table
of error codes detected by BASIC is given in the section on
Runtime Error messages. Errors detected by SOOS can be found in
the SOOS manual.

Copyright (C) 1977 SD 126

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

Line numbers are printed as

Line ddddd

if a numeric line number was used. If a line label was used, the
line II number II is printed as

Line :xxxx

where' xxxx is the address of the line label in the computer's
memory. The label name can be determined by examining the symbol
table dump produced by the assembler. A program to automate
inspecting the symbol table is easily written (See FINDLABEL
below) .

The program can be stopped by the operator by simply pressing the
IIESC" key; the message IIOperator Requested Attention ll will occur
the next time the program executes a line number, label, or
subroutine call. Note: if error trapping is enabled, an ESC will
only activate the error handling part of the BASIC program.

When the program asks for input, remember to separate all
typed-in numbers by commas, spaces, or tabs, and to push the <CR>
key when done with the input line.

Copyright (C) 1977 SD 127

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

FIX, COMPILE and FINDLABEL

COMPILE is a SDOS utility program that automates the compilation
and assembly steps, by crea·ting an SDOS DO file and liDO" ing it.
To use COMPILE, type COMPILE <filename> <CR> or COMPILE
<fi1ename.bas><CR>. COMPILE will do the rest.

FIX is a utility program that lets one edit a BASIC program, and
then automatically invokes COMPILE. Typing FIX <filename><CR> or
FIX <filename.bas><CR> start FIX. FIX will invoke SEDIT if SEDIT
is present on the default device, otherwise it will invoke EDIT.
After exiting the editor, COMPILE will be started automatically.

If COMPILE detects an error (either in the compilation or
assembly step), it will automatically invoke FIX, so that the
operator may re-edit and try the compilation again (it is
convenient to type A p to SDOS after typing COMPILE to ensure that
any displayed errors do not roll off a CRT screen before they are
noted by the programmer).

COMPILE will also help when constructing a BASIC program that
calls an assembly language module. COMPILE <filename> WITH
<filename2><CR> will cause "filename" to be compiled: filename2
(which should contain the source of the assembly language
routines) is appended to the compiler output (before the END
statement) before the assembler is called. FIX <filename> WITH
<fi1ename2> allows filename to be edited before COMPILE ... WITH

is invoked.

FINDLABEL is a utility program to hunt through a symbol table
file (generated by the assembler from a BASIC compilation) for
the name of a label printed by the runtime package as :xxxx. The
program is invoked by typing FINDLABEL xxxx<CR>. It will look
through ASMLOG.TMP if present; otherwise, it will ask for the
name of the symbol table file. All labels with the value xxxx
are shown. If no labels are shown, suspect that xxxx was
mistyped, or the symbol table file used did not match the program
in error.

Copyright (C) 1977 SD 128

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

PROGRAM DEBUGGING AIDS

SD BASIC provides some program debugging aids. The programmer
can activate line number trace, single line step, or set a line
number breakpoint (currently, no facility exists to examine
variable contents, other than PRINT statements coded into the
BASIC program itself). The SDOS I/O package defines the
mechanism used to request these operations; normally, AT (control
T) is used to toggle trace mode, AV to cause single step, AB to
request a breakpoint, and AG to continue at full speed.

Typing AB (at any time) on the operator's console, causes the
runtime package to print:

Break on Line?

The operator enters a line number ddddd and pushes <CR>. An
illegal type-in causes re-prompt. To set a breakpoint on a
label, the operator must enter the address of the label as :xxxx.
This address can be obtained from the symbol table dump generated
by the Assembler. A type-in of zero removes a previously set
breakpoint; any other value replaces the previous breakpoint line
number. The runtime package automatically continues execution at
full speed, until the specified line number is reached, and then
prints:

Line ddddd (or Line :xxxx)

where ddddd (or :xxxx) is the specified line number. The runtime
package now waits for the operator to request a new breakpoint,
single step, trace, or go. Breakpointing can also be performed
on subroutine and function entry points. Only one breakpoint is
allowed at any time.

Typing AV (at any time) causes the runtime package
single step mode. It executes the current line, and
the next line's number in the form:

Line ddddd (or Line :xxxx)

to enter
prints out

and waits for the operator to request a breakpoint, another
single step, trace, or go.

Copyright (C) 1977 SD 129

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

Typing AT (at any time) will cause the runtime package to enter
line number trace mode, if not already in trace mode; otherwise,
AT causes the runtime package to exit trace mode. In trace mode,
the runtime package prints out the line number of each line just
before executing that line; then it will continue automatically.
Calls to functions and subroutines are traced. Note that lines
without linenumbers or labels cannot be traced.

Typing AG is only valid in response to
breakpoint display. This causes the runtime
execution at full speed; any breakpoint which
still active.

Copyright (C) 1977 SD 130

a single step or
package to continue
has been set is

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

DEBUGGING A COMPILED BASIC PROGRAM

This section contains several tips on how to debug a compiled
program.

Tracing and breakpointing are really very useful features: they
should be used. Extra line numbers/labels should be placed in a
program, especially at critical or complex calculations, so that
the line number traced to or reported before an error more
specifically pinpoints the problem.

Installing extra print statements in a program is also useful. A
convenient way to do this is to write

IF DEBUGGING THEN PRINT debugginginformation

and to have a command, that when given to the program, sets
DEBUGGING=TRUE. The debugging statements can be REM'ed out for a
production compile if space is critical.

If a floating point number is printed out which contains any of
the following characters:

• I < = > ?
where one would expect digits, the program probably printed the
value of a variable which was never assigned a value.

Many string subscripting errors are caused by confusion over the
current LENgth of a string, and the MAXLENgth of a string. Any
time a substring is specified, the string being subscripted must
have a current LENgth large enough to accommodate the string
bounds. MAXLEN only places a ceiling on the largest value of
current LENgth: it has nothing to do with subscript checking. A
string's current LENgth is set only by assignment (LET, READ or
INPUT) into the name of the string, or by a LET LEN(stringname$)=
statement. Assignment to a substring does NOT change the current
LENgth of the string. The compiler initially zeros the current
LENgth of DIM'd strings in order to make failure to set the
string length more apparent.

An lIerror" of the form

Line xxxxx

With no error message is really only a STOP statement terminating
the program's execution. If xxxxx is a hexadecimal number, it is
possible that control has reached the END of a SUBROUTINE or
function without executing a RETURN SUBROUTINE or RETURN
<expression> statement.

Copyright (C) 1977 SD 131

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

It is very unusual
computer to "crash".

for a compiled BASIC program to cause the
One of the possibilities is Stack Overflow.

It is possible for a BASIC program to overflow the computer's
pushdown~stack by performing too many GOSUBs, subroutine or
function calls, or by having a statement of enormous complexity.
Since this problem is extremely rare, and stack limit checks are
extremely expensive (in terms of overhead), no stack limit checks
are performed. A program with this problem will generally just
"crash" the computer, or act absolutely insane. The only cure is
to add more memory to the CPU or to move the BASIC program lower
in memory.

Another obscure possibility is that the program performs an
assignment to a parameter variable, outside of the subroutine or
function body that declared that variable. This reference is
absolutely illegal! (but the compiler cannot detect it).
Because parameters are call-by-reference, such an assignment
causes BASIC to store the assigned value at wherever the
parameter variable currently happens to point, which might be
garbage. Messages such as "SDOS self-test checksum error" or
"RTP self-test checksum error" are also indications of this
problem.

A third possibility is execution
function or RETURN <expression> in a

of RETURN
SUBROUTINE.

SUBROUTINE in a

Passing a string as a argument to a subroutine or function which
expects a numeric argument (in general, passing the wrong type of
argument) can also cause some ve~y strange effects.

Copyright (C) 1977 SD 132

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

SEPARATE COMPILATION

This revision of SD BASIC allows a program to be textually broken
into several parts. The pieces may be separately compiled, and
combined later. This facility is limited in its capability.

A program can be divided into 3 kinds of components: the main
program (the traditional BASIC program), external subroutines and
external functions.

Program. components may refer to external subroutines or functions
by declaring the target to be EXTERNAL (see DEF and SUBROUTINE
statements).

A main program is distinguished by the absence of a DEF
(function) or a SUBROUTINE declaration as its first line
(ignoring REMarks, INCLUDE, PROGRAM or DATA ORIGIN). Typically,
a main program has a DIM statement before any function or
SUBROUTINE declarations (a program that has no DIMs and starts
with a DEF or SUBROUTINE declaration will be interpreted as a
separately compiled module). A CONCATENATION BUFFER SIZE
statement marks a program component as a main program.

A separately compiled function must have a function declaration
as its first source li~e (not counting REM, INCLUDE, PROGRAM or
DATA ORIGIN). The END statement that matches the function
definition signifies the end of the program text (multiple
separately compiled functions may not be placed in a single text
file).

Likewise, a separately compiled SUBROUTINE must have its
declaration as the first source line.

Each component (except the main program) must have a PROGRAM
ORIGIN statement to ensure that none of the compiled component
objects overlap (note: the data space at the end of the program
component must be taken into account!). Typically, the main
program does not need a PROGRAM ORIGIN statement.

Since the data space for each component is allocated
contiguous block (whether marked as COMMON or DIM), COMMON
must have enough room for the maximum data space required
components containing a COMMON statement.

Copyright (C) 1977 SD 133

in one
space

by all

BASIC 1.4 MANUAL 04/83
SECTION XII: USING SOFTWARE DYNAMICS BASIC

The compilation of each component is performed using the compiler
as described in PASS I. When in PASS II, a set of directives
must be given to the assembler, with one EQU for each separately
compiled function or SUBROUTINE. Each EQU gives the name of the
external subroutine or function, and the address specified in the
corresponding PROGRAM ORIGIN statement. This provides a
primitive linking facility.

After all modules are compiled
the object modules are combined
details, see the SDOS manual).
specified.

Example:

REM MAIN PROGRAM

(and assembled) error-free, then
using SDOSSYSGEN (for operation

The correct start address must be

DEF ARF(X) EXTERNAL
INPUT "VALUE to ARF?" Q
PRINT ARF{Q)
EXIT

END

The following is in a separate file:

PROGRAM ORIGIN :4000
DEF ARF(Z)

RETURN SQR(Z)
END

An equate needs to be supplied when the main program is being
assembled:

. ASM ...
Source File = ...
Listing File = •••
Object File = ...
>ARF EQU $4000 AS PER PROGRAM ORIGIN
>

Since ARF invokes no EXTERNAL modules, it may be compiled without
giving special attention to the assembly step.

Copyright (C) 1977 SD 134

BASIC 1.4 MANUAL 04/83
SECTION XIII: MOVING BASIC 1.4 TO SYSTEMS OTHER THAN SOOS

MOVING BASIC 1.4 TO SYSTEMS OTHER THAN SDOS

Oue to the relatively simple structure of SOOS I/O calls, it is
possible to move BASIC 1.4 to operating systems other than snos.
Conceptually, the procedure is very simple: an snos simulator for
that system needs to be constructed. Details on how the
individual system calls operate can be found in the SOOS manual.
Syscalls needing implementation are SYSCALL:OPEN, :CLOSE,
:CREATE, :OELETE, : RENAME, :READA, :READB, :WRITEA, :WRITEB,
: CHAIN, :EXIT, :OEBUG, :ERROREXIT, and SYSCALL:STATUS for
SC:GETCOL. Since the syscall structure is regular and simple,
most of the work will be invested in using the target as
facilities to simulate byte-addressable files.

To use the runtime package in a stand-alone environment, only as
much of the snos simulator as will be used, need be coded; a
simple simulator that supports only CRT I/O should occupy only a
few hundred bytes.

The runtime package and the compiler are pure code and can run in
an environment with interrupts enabled, providing the simulator
package supplies enough room in the machine stack for interrupts.
Neither the compiler nor runtime package touch the "1" bit in the
processor's status byte.

Copyright (C) 1977 SD 135

BASIC 1.4 MANUAL 04/83
SECTION XIV: CONVERTING ANOTHER BASIC PROGRAM TO SO BASIC

CONVERTING ANOTHER BASIC PROGRAM TO SO B~SIC

Programs can usually be converted from other BASIC systems
without too much trouble. An 8 page CHESS program for an 8080
BASIC was converted to SO BASIC in about 6 hours, of which 2 were
spent typing in the program.

DIFFERENCES BETWEEN PROPOSED MINIMAL ANSII STANDARD AND SD BASIC

1) Multicharacter variable names.

2) No OPTION statement. All arrays and vectors have a lower
bound of zero (strings have a lower bound of one).

3) Control flow is not necessarily·in line number order.

4) No READ/ RESTORE/ DATA capability.
facility is provided instead.

A data initialization

Program transportablilty from SO BASIC to ANSI BASIC is only
impaired if long names, string operations, block structure or
file I/O statements are used significantly.

Copyright (C) 1977 SD 136

BASIC 1.4 MANUAL 04/83
SECTION XV: PERFORMANCE CHARACTERISTICS

.PERFORMANCE CHARACTERISTICS

This section details space and speed estimates for SD BASIC. The
values given are only approximate and can vary from program to
program.

SIZE OF VARIABLES

Each numeric variable occupies 6 bytes. Vectors and arrays
occupy about 6 times their dimensioned size (in bytes). String
variables use about as many .bytes as their maximum dimension.
Variable space can be reduced by clever use of Uniform Reference
procedures.

PROGRAM SIZE

The compiled program uses approximately 30% as many bytes as the
source text for the program. The length of variable names has no
effect on the resulting program size, so feel free to use
readable names. We estimate about 15 bytes of code for each line
of a long, complex BASIC program is normal.

RUNTIME PACKAGE SIZE

The runtime package occupies about 11K bytes, from location zero
up. Note: this does not include the operating system package!
Do not place any BASIC programs below $2E00.

COMPILER SIZE

The BASIC compiler needs 20K to perform a compilation. It will
use more memory as needed, if available. In 20K, one can compile
about a 4 page BASIC program.

MAXIMUM BASIC PROGRAM SIZE

With llKb runtime package
SDOS), you should be able
(about 20 pages of source).

COMPILE TIME

and
to

32Kb user space (not counting
build a 1400 line BASIC program

The BASIC Compiler, including Pass I and II, processed about
twenty (20) source lines/second. The Benchmark Program included
here took 78 seconds to compile 146 lines (using the COMPILE
command) on a 2mHz 6800 with hard disk.

Copyright (C) 1977 SD 137

BASIC 1.4 MANUAL 04/83
SECTION XV: PERFORMANCE CHARACTERISTICS

EXECUTION TIME

SD BASIC automatically uses 16 bit positive binary integers
(internally) whenever possible instead of floating point numbers.
This effects a significant savings at execution time when doing
FOR-NEXT loops and subscripting, which comprise the bulk of BASIC
programs.

A comparison with conventional BASICs indicates that a program
dealing primarily with integers (array subscripts, FOR/NEXT loop
indices, etc.) can run some 2-10 times faster on SD BASIC.
Compute bound programs doing really ugly arithmetic should be
some 3 to 5 times faster. I/O bound programs can actually run
faster on SO BASIC since there is no interpretive overhead (all
the time is spent computing or doing 1/01).

The following is a benchmark performance program and the results
of that benchmark. Note the care taken to separate the times for
the operation under test from the overhead of the test itself.
Also note that disk I/O times will vary considerably depending on
the technology of the disk drive and its controller.

The 6800 test was run under SOOS 1.lg with a cartridge disk and a
30Hz clock interrupt on a 2MHz 6800.

The 6809 test was run under SDOS l.lg with a Winchester disk and
a 60Hz clock interrupt on a 2mHz 6809. The 6809 is about 25%
faster than the 6800 for compute-bound activities.

Copyright (C) 1977 SO 138

BASIC 1.4 MANUAL 04/83
SECTION XV: PERFORMANCE CHARACTERISTICS

Basic 1.4 Benchmark 04/11/83
File to be used for test: junk.tmp
CPU chip and Clock rate: 2MHz 6800, RTP14k on SDOS11g/SU with Cartridge disk
Time for Integer NEXT is 92 Microseconds
Time for Short Integer FOR-NEXT is 193 Microseconds
Time for Floating NEXT is 587 Microseconds
Time for Load and store Scalar variable is 113 Microseconds
Time for Assign Floating to Scalar variable is 165 Microseconds
Time for Assignment to Vector slot is 260 Microseconds
Time for Assignment to Array slot is 434 Microseconds
Time for Gosub/Return is 142 Microseconds
Time for Call/Return Subroutine with 1 argument is 830 Microseconds
Time for Integer Fetch and Add/Subtract/Logicalop is 116 Microseconds
Time for Integer Multiply is 232 Microseconds
Time for Floating Add Variable is 359 Microseconds
Time for Floating Subtract Variable is 390 Microseconds
Time for Floating Multiply by Variable is 2035 Microseconds
Time for Floating Divide by Variable is 4695 Microseconds
Time for Cosine is 34649 Microseconds
Time for Small string Copy (5 bytes) is 439 Microseconds
Time for Big string Copy (100 bytes) is 1603 Microseconds
Time for Extend file and write of 100 Byte Record is 37572 Microseconds
Time for Write 100 Byte Record is 44605 Microseconds
Time for Sequential Read of 100 Byte Record is 21505 Microseconds
Time for Random Read of 100 Byte Record is 96539 Microseconds
End of Benchmark Test

pyright (C) 1977 SD 139

BASIC 1.4 MANUAL 04/83
SECTION XV: PERFORMANCE CHARACTERISTICS

Basic 1.4 Benchmark 04/12/83
File to be used for test: junk.tmp
CPU chip and Clock rate: 2MHz 6809, RTP14i with SDOSllg/SU and 5" Winches
Time for Integer NEXT is 75 Microseconds
Time for Short Integer FOR-NEXT is 155 Microseconds
Time for Floating NEXT is 502 Microseconds
Time for Load and store Scalar variable is 102 Microseconds
Time for Assign Floating to Scalar variable is 142 Microseconds
Time for Assignment to Vector slot is 204 Microseconds
Time for Assignment to Array slot is 317 Microseconds
Time for Gosub/Return is 108 Microseconds
Time for Call/Return Subroutine with 1 argument is 706 Microseconds
Time for Integer Fetch and Add/Subtract/Logicalop is 74 Microseconds
Time for Integer Multiply is 131 Microseconds
Time for Floating Add Variable is 323 Microseconds
Time for Floating Subtract Variable is 364 Microseconds
Time for Floating Multiply by Variable is 1554 Microseconds
Time for Floating Divide by Variable is 3264 Microseconds
Time for Cosine is 25073 Microseconds
Time for Small string Copy (5 bytes) is 278 Microseconds
Time for Big string Copy (100 bytes) is 705 Microseconds
Time for Extend file and Write of 100 Byte Record is 16629 Microseconds
Time for write 100 Byte Record is 16112 Microseconds
Time for Sequential Read of 100 Byte Record is 9896 Microseconds
Time for Random Read of 100 Byte Record is 96262 Microseconds
End of Benchmark Test

)pyright (C) 1977 SD 140

BASIC 1.4 MANUAL 04/83
SECTION XV: PERFORMANCE CHARACTERISTICS

REM BENCHMARK TEST FOR BASIC 1.4

D~m File/l/,File$(50),Clock/2/
Dim Vector[100],Array[2,50]
Dim BigSource$[100],BigTarget$[100]

Def CurrentTime

End

Rem Return current time in seconds since midnite
Dim SixBytes$(6)
Read #Clock,SixBytes$
Return ({SixBytes$[1]**8+Sixbytes$[2])*256+SixBytes$[3])/60

Subroutine DisplayTime(TestName$,IterationCount,OverheadTimeperlteration)
Timeperlteration=(CurrentTime-StartTime)/IterationCount- ...

& OverheadTimeperlteration
Print "Time for ";TestName$;" is"; •.•

& Int(Timeperlteration*le6+.5);IMicroseconds"

End
Return Subroutine

Print "Basic 1.4 Benchmark ";Date$
Open #Clock,"Clock:"
Input "File to be used for test: " File$
Create #File,File$
Input "CPU chip and Clock rate: II File$

StartTime=CurrentTime
For K=l to 50000\Next K
DisplayTime("Integer NEXT",50000,0)
IntegerLoopoverhead=TimeperIteration

StartTime=CurrentTime
For K=l to l0000\For J=l to 5\Next J\Next K
DisplayTime("Short Integer FOR-NEXT",50000,0)

StartTime=CurrentTime
For K=l.l to l0000.1\Next K
DisplayTime("Floating NEXT",10000,0)
FloatingLoopOverhead=Timeperlteration

StartTime=CurrentTime
For K=l to 50000\Scalar=K\Next K
DisplayTime("Load and store Scalar variable", •••

& 50000, IntegerLoopOverhead)
ScalarLoadStoreOverhead=TimeperIteration

StartTime=CurrentTime
FloatingVariable=PI
For K=l to 50000\Scalar=FloatingVariable\Next K
DisplayTime("Assign Floating to Scalar variable", ••.

& 50000, IntegerLoopOverhead)
FloatingLoadStoreOverhead=Timeperlteration

!opyright (C) 1977 SD 141

BASIC 1.4 MANUAL 04/83
SECTION XV: PERFORMANCE CHARACTERISTICS

StartTime=CurrentTime
For K=l to 500\For J=l to 100\Vector(J)=K\Next J\Next K
Dif?playTime("Assignrnent to Vector slot",50000,IntegerLoopOverhead

StartTime=CurrentTime
For K=l to i000\For J=1 to 50\Array(2,J)=K\Next J\Next K
Disp1ayTime("Assignment to Array slot",50000,IntegerLoopOverhead)

StartTime=CurrentTime
For K=l to 50000\Gosub ToPlaceThatReturns\Next K
DisplayTime("Gosub/Return",50000,IntegerLoopOverhead)

StartTime=CurrentTime
For K=l to 50000\Call OneArgumentSubroutine(K)\Next K
DisplayTime("Call/Return Subroutine with 1 argument", 50000, •••

& IntegerLoopOverhead)

StartTime=CurrentTime
For K=l to 50000\Scalar=K+752\Next K
DisplayTime("Integer Fetch and Add/Subtract/Logicalop",50000, .••

& ScalarLoadStoreOverhead+IntegerLoopOverhead)

StartTime=CurrentTime
For K=1 to 516\For J=l to 127\Scalar=K*J\Next J\Next K
Disp1ayTime("Integer Multiply",516*127, .••

& ScalarLoadStoreOverhead+IntegerLoopOverhead)

StartTime=CurrentTime
For K=1.0 to 10000.0\Scalar=K+FloatingVariable\Next K
DisplayTime("F1oating Add Variable",10000, •••

& F1oatingLoadStoreOverhead+FloatingLoopOverhead)

StartTime=eurrentTime
Let Midpoint=10000/2+PI
For K=1.0 to 10000.0\Scalar=K-Midpoint\Next K
DisplayTime("Floating Subtract Variable",10000, •..

& FloatingLoadStoreOverhead+FlOatingLoopOverhead)1

StartTime=Curre~tTime
For K=1.0 to 10000.0\Scalar=K*FloatingVariable\Next K
DisplayTime("Floating Multiply by Variable",10000, ••.

& FloatingLoadStoreOverhead+FloatingLoopOverhead)

StartTime=CurrentTime
For K=1.0 to 10000.0\Scalar=K/FloatingVariable\Next K
DisplayTime(flFloating Divide by Variable",10000, •••

& FloatingLoadStoreOverhead+FloatingLoopOverhead)

StartTime=CurrentTime
For K=1.0 to 1000.0\Scalar=eOS(K)\Next K
DisplayTime(flCosine",1000, •.•

& FloatingLoadStoreoverhead+FloatingLoopOverhead)

Copyright (el 1977 SO 142

BASIC 1.4 MANUAL 04/83
SECTION XV: PERFORMANCE CHARACTERISTICS

StartTime=CurrentTime
Let Len(BigSource$)=5
For K=1 to 50000\BigTarget$=BigSource$\Next K
Disp1ayTime("Sma11 string Copy (5 bytes) ", 50000, IntegerLoopOverhead)

StartTime=CurrentTime
Let Len(BigSource$)=100
For K=1 to 50000\BigTarget$=BigSource$\Next K
Disp1ayTime("Big string Copy (100 bytes) ", 50000, IntegerLoopOverhead)

StartTime=CurrentTime
For K=1 to 1000\Write #File,BigSource$\Next K
DisplayTime("Extend file and Write of 100 Byte Record", .••

& 1000, IntegerLoopOverhead)

Position #File,&
StartTime=CurrentTime
For K=1 to 1000\Write #File,BigSource$\Next K
DisplayTime ("Wri-te 100 Byte Record", •••

& 1000, IntegerLoopOverhead)

Position #File,0
StartTime=CurrentTime
For K=1 to 1000\Read #File,BigSource$\Next K
DisplayTime("Sequential Read of 100 Byte Record", •••

& 1000, IntegerLoopOverhead)

StartTime=CurrentTime
For K=1 to 1000\Read #File@100*INT(RND*1000),BigSource$\Next K
DisplayTime("Random Read of 100 Byte Record", •••

& 1000, IntegerLoopOverhead)

Print "End of Benchmark Test"
Exit

ToP1aceThatReturns: Return \ ! For Gosub test
Subroutine OneArgumentSubroutine(TheOnlyArgment)

Return Subroutine
END

Copyright (C) 1977 SD 143

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

SAMPLE PROGRAMS

THE GAME OF LIFE

This program was originally designed as a bacterial growth
simulation, but its properties as a digital kaleidoscope made it
extremely popular among computer buffs. The program displays a
"world" (think of a square Petri dish) of periods and asterisks
on a screen (this program is not recommended for hardcopy
terminals). When asked "WHAT NEXT?", the operator may add new
life units (asterisks) by entering a row, column specification:
he may run the simulation for several cycles by typing only a
single number, or he may stop the program by typing "STOP".
Typing "0" will cause the current world to be displayed. Simply
pressing <CR> will cause a display of the next generation.
Typing OUT filename will cause the output to be directed to
another file: hardcopy can be obtained on a line printer.

This program uses many features of SO BASIC.

Copyright (C) 1977 SO 144

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

REM ***** LIFE *****
REM SIMULATES "LIFE" AS DEFINED BY THE MATHEMATICIAN JOHN CONWAY
REM COMMANDS:
REM STOP MEANS WHAT IT SAYS
REM. D MEANS "DISPLAY THE WORLD"
REM OUT file SAYS PRINT GENERATIONS ON THE SPECIFIED FILE
REM <RETURN> COMPUTE NEXT GENERATION AND DISPLAY
REM number MEAN~ COMPUTE NEXT GENERATION number TIMES AND DISPLAY
REM row,col INVERTS WHETHER THERE IS LIFE IN WORLD(row,co1)

DIM WORLD(2l,2l),WORLDCOPY(2l,2l)
DIM DEATH/0/,LIFE/l/
REM EDGES OF THE WORLD ALWAYS CONTAIN "DEATH"
REM I.E., ROW 0, CO~UMN 0, LAST ROW AND LAST COLUMN
DIM GENERATIONNUMBER/0/
DIM OUT/0/,DISPLAY$/".*"/
DIM LINE$(80)

LETTHEREBELIGHT:
REM INITIALLY, MAKE EVERYTHING DEAD
FOR 1=0 TO ROWS(WORLD)

FOR J=0 TO COLUMNS(WORLD)
LET WORLD(I,J)=DEATH
LET WORLDCOPY(I,J)=DEATH \ 1 THIS MARKS EDGES AS "DEAD"

NEXT J
NEXT I

ASKFORWORK:
INPUT "WHAT NEXT? " LINE$
IF LINE$=1I11
THEN GOSUB DOGENERATION\GOSUB DISPLAYGENERATION\GOTO ASKFORWORK,
IF UPPERCASE$(LINE$)="STOP" THEN EXIT
IF UPPERCASE$ (LINE$)="D u THEN GOSUB DISPLAYGENERA'rrON\GOTO ASKFOR~vORK

IF FIND(UPPERCASE$(LINE$),"OUT II)
THEN

FI

LET LINE$=RIGHT$(LINE$,5)
IF ERROR WHEN CLOSE #1 THEN REM WHO CARES?
LET OUT=l
CREATE #l,LINE$
GOTO ASKFORvvORK

IF FIND(LINE$,",II)
THEN

FI

IF ERROR WHEN
LET I=VAL(LINE$)
LET J=VAL(RIGHT$(LINE$,FIND(LINE$,",")+l»
LET WORLD{I,J)=NOT WORLD(I,J)

THEN PRINT IIIllegal coordinates"
GENERATIONNUMBER=0
GOTO ASKFORWORK

pyright (C) 1977 SD 145

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

IF ERROR WHEN
COUNT=VAL(LINE$)

THEN PRINT "Bad generation count"\GOTO ASKFORWORK
FOR COUNT=1 TO COUNT DO GOSUB DOGENERATION
GOSUB DISPLAYGENERATION
GO TO ASKFORWORK

DOGENERATION: REM DO SIMULATION TO COMPUTE NEXT GENERATION
10010 REM FIRST, COpy THE WORLD

FOR I=1 TO ROWS(WORLD)-1

END

FOR J=1 TO COLUMNS(WORLD)-l
WORLDCOPY(I,J)=WORLD(I,J)

END

10020 REM NOW PERFORM GUTS OF SIMULATION
FOR I=l TO ROWS(WORLD)-1

FOR J=1 TO COLUMNS(WORLD)-1
REM COMPUTE NUMBER OF NEIGHBORS THAT WORLD(I,J) HAS
REM 0,1 NEIGHBORS --> WORLD(I,J) DIES OF LONELINESS
REM 2 NEIGHBORS --> THIS WORLD(I,J) SURVIVES UNCHANGED
REM 3 NEIGHBORS --> WORLD(I,J) GROWS A LIFE UNIT
REM> 4 NEIGHBORS --> WORLD(I,J) DIES OF OVERCROWDING
ON WORLDCOPY(I-1,J-1)+WORLDCOPY(I-1,J)+WORLDCOPY(I-1,J+1) ..

& +WORLDCOPY(I,J-1)+WORLDCOPY(I,J+1) ...
& +WORLDCOPY(I+1,J-1)+WORLDCOPY(I+1,J)+WORLDCOPY(I+1,J+1).,
& GOTO DIE,SURVIVE,GROW
DIE: WORLD(I,J)=DEATH

CYCLE J

GROW: WORLD(I,J)=LIFE
SURVIVE: REM WORLD(I,J) DOESN'T CHANGE

NEXT J
NEXT I
GENERATIONNUMBER=GENERATIONNUMBER+1
RETURN

DISPLAYGENERATION: REM PRINT OUT,WORLD

END

PRINT #OUT, USING "GENERATION NUMBER: #####", GENERATIONNUMBER
PRINT #OUT,II IIi
FOR J=1 TO COLUMNS(WORLD)-l DO PRINT #OUT, USING II ##",Ji
PRINT #OUT
PRINT #OUT
FOR I=l TO ROWS(WORLD)-l

PRINT #OUT, USING "## ",Ii
FOR J=l TO COLUMNS(WORLD)-1

PRINT #OUT,DISPLAY$[WORLD(I,J)+1,1]i" ";
NEXT J
PRINT #OUT

NEXT I
RETURN

Copyright (C) 1977 SD 146

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRM1S

PHONEBOOK EXAMPLE PROGRAM

The following program uses many of the enhancements in SO BASIC
to implement a "digital" telephone directory. It manages a
database containing records that hold a person's name, title,
company association, address and phone number. The program
allows the operator to locate a phone number (or address) by
looking up the name of the desired person, or the name of the
desired company. Partial name specifications may be used if the
operator does not know the complete name. Information about a
person may be deleted or changed if necessary.

Commands are given to the program by typing a keyword (like FIND)
followed by the desired name. The type of name required is
displayed in < >s by the HELP command (i.e., filenames, person
names or company names might be specified, depending on the
command). Operation of the program should be self-explanatory.

The program stores only one kind of record, which has several
fields (see REM PERSONRECORD below). The information fields of
the record are stored as zero-padded strings so that each record
is fixed size. Two special fields in each record allow that
record to point to 1) another record containing an identical
PERSONNAME$ field or 2) another record containing an identical
PERSONCOMPANY$ field. Subroutines to read and write the entire
record are used to make the rest of the program clear.

The program uses the keyed file package to allow associative
storage and/or retrieval of a record by person's name or company
name. The records and the key indexes are both stored in the
same file. Since the key package does not allow duplicate keys,
the program chains records containing identical keys together
using a pointer. Each reco~d is indexed on 2 fields: the
PERSONNAME$ field and the PERSONCOMPANY$ field. The function
FINDANDDISPLAYPERSON shows 110W an associative lookup is performed
using the key package and the "SAMELINK"s. The subroutines
ADDRECORD and DELETERECORD add a new record/delete an existing
record from both indexes, and adjust the SAMELINKs accordingly.
The function KEYREPLACE is used when adding a new record to the
head of a chain of SAMELINKs.

The subroutines PAD, MODIFY and TRUNCATE all take advantage of
the Call-by-reference parameter passing scheme to modify
arguments. They are worth examining carefully.

The most straightforward top-level routine is DELETEl (the word
DELETE was the desired one, but it is a BASIC keyword and so
could not be used). The other routines should be easy to
understand once DELETEI is understood.

The LOAD and DUMP routines are useful in any application of this
sort, to provide for a backup facility, and to allow one to dump
the database, so that changes in the database can be made by
modifying the program and reLOADing it.

Copyright (C) 1977 SD 147

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

REM "PHONEBOOK" PROGRAM
REM KEEPS TRACK OF PEOPLE, THEIR ADDRESS AND PHONE NUMBER, •••
REM AND THE COMPANY FOR WHICH THEY WORK.
REM USES KEY PACKAGE TO INDEX ON PEOPLE AND COMPANY NAMES.

DIM CLEARSCREEN$/:C/,BACKSPACE$/:8/
DIM COMMAND$(80),PERSONKEY$(80)/""/
REM PERSONRECORD
DIM PERSONNAMESAMELINK/0/,PERSONCOMPANYSAMELINK/0/
DIM PERSONNAME$(25),PERSONTITLE$(20)
DIM PERSONCOMPANY$(20),PERSONSTREET$(25)
DIM PERSONCITY$(20),PERSONSTATECOUNTRY$(20),PERSONZIP$(9)
DIM PERSONPHONE$(15)

INCLUDE "KEY.BAS"

SUBROUTINE READPERSONRECORD
READ #l@PERSONRECORD,PERSONNAMESAMELINK,PERSONCOMPANYSAMELINK, ...

& PERSONNAME$,PERSONTITLE$, ...
& PERSONCOMPANY$,PERSONSTREET$, ...
& PERSONCITY$,PERSONSTATECOUNTRY$,PERSONZIP$, ..
& PERSONPHONE$

RETURN SUBROUTINE
END

SUBROUTINE PAD(PAD$)

END

FOR PADINDEX=LEN(PAD$)+l TO MAXLEN(PAD$) DO PAD$[PADINDEX]=0
LET LEN(PAD$)=MAXLEN(PAD$)
RETURN SUBROUTINE

SUBROUTINE WRITEPERSONRECORD
PAD(PERSONNAME$)
PAD(PERSONTITLE$)

•

&
&
&
&

END

PAD(PERSONCOMPANY$)
PAD(PERSONSTREET$)
PAD(PERSONCITY$)
PAD(PERSONSTATECOUNTRY$)
PAD(PERSONZIP$)
PAD(PERSONPHONE$)
WRITE #l@PERSONRECORD,PERSONNAMESAMELINK,PERSONCOMPANYSAMELINK, ...

RETURN SUBROUTINE

PERSONNAME$,PERSONTITLE$, .•.
PERSONCOMPANY$,PERSONSTREET$, ••.
PERSONCITY$,PERSONSTATECOUNTRY$,PERSONZIP$, ..
PERSONPHONE$

Copyright (C) 1977 SD 148

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

SUBROUTINE PRINTPERSONRECORD(WHERE)
,PRINT #WHERE, PERSONNAME$

END

PRINT #WHERE,PERSONTITLE$
PRINT #WHERE,PERSONCOMPANY$
PRINT #WHERE,PERSONSTREET$
PRINT #WHERE,PERSONCITY$
PRINT #WHERE,PERSONSTATECOUNTRY$
PRINT #WHERE,PERSONZIP$
PRINT #WHERE,PERSONPHONE$
PRINT #WHERE
RETURN SUBROUTINE

DEF FINDANDDISPLAYPERSON
REM THIS FUNCTION RETURNS FALSE IF "PERSONKEY$" CANNOT BE FOUND
REM ELSE RETURNS TRUE AFTER DISPLAYING RECORD ABOUT PERSON
IF ERROR WHEN

PERSONRECORD=KEY(l,l,PERSONKEY$)
THEN IF ERR=1075 THEN NOSUCHPERSON ELSE ERROR
PRINT CLEARSCREEN$
READPERSONRECORD
PRINTPERSONRECORD(0)
RETURN TRUE

NOSUCHPERSON: REM CAN'T FIND THE PERSON DESIRED, TRY KE\~EXT
PERSONNAMESAMELINK=0

NEXTPERSON: REM TRY FOR NEXT PERSON
IF PERSONNAMESAMELINK<>0
THEN

FI

REM MORE THAN ONE GUY WITH THE SAME NM1E
PERSONRECORD=PERSONNAMESAMELINK
GO TO DISPLAYNEXTPERSON

IF ERROR \iHEN
PERSONRECORD=KEYNEXT(1,1,PERSONKEY$)

THEN IF ERR=1001
THEN

PRINT "CAN'T FIND PERSON SELECTED."
PERSONRECORD=0\COMMAND$=""\RETURN FALSE

ELSE ERROR

Copyright (C) 1977 SD 149

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

DISPLAYNEXTPERSON:

END

PRINT CLEARSCREEN$; II PERHAPS YOU MEANT': II
PRINT
READPERSONRECORD
PRINTPERSONRECORD(0)
INPUT 'ENTER IIYES" OR "NO", <CR> MEANS II NEXT II I COMMAND$
IF COMMAND$="II THEN NEXTPERSON
ELSEIF UPPERCASE$(COMMAND$)=IIYES" THEN COMMAND$=IIII\RETURN TRUE
ELSEIF UPPERCASE$(COMMAND$)=IINO"

THEN
COMMAND $= II II
PERSONRECORD=0
RETURN FALSE

ELSE PERSONRECORD=0\RETURN FALSE

SUBROUTINE ADDRECORD
REM THIS SUBROUTINE ADDS A PERSON RECORD TO THE DATABASE
REM BY INSERTING BOTH PERSONNAME$ AND PERSONCOMPANY$ AS KEYS
REM IN KEY INDEXES 1 AND 2, RESPECTIVELY.
REM IF A KEY ALREADY EXISTS, THE RECORD IS SIMPLY ADDED TO A CHAIt
REM OF RECORDS THAT HAVE IDENTICAL KEYS. THIS WAY
REM ALL PEOPLE IN THE SAME COMPANY ARE EASILY FOUND, AS
REM ARE ALL PEOPLE WITH THE SAME NAME.
PERSONNAMESAMELINK=0 \ REM ASSUME NO OTHER IDENTICAL NAMES
PERSONCOMPANYSAMELINK=0 \ REM ASSUME NO OTHER IDENTICAL COMPANIES
LET PERSONRECORD=GETSPACE(1,221)
REM ADD PERSON TO NAME INDEX
IF ERROR WHEN

THEN
KEYINSERT(l,l,PERSONNAME$,PERSONRECORD)

REM THAT NAME ALREADY EXISTS, PLACE PERSON RECORD ON CHAIN
IF ERR=1076
THEN PERSONNAMESAMELINK= ••.

& KEYREPLACE(l,l,PERSONNAME$,PERSONRECORD)
ELSE ERROR

FI
REM ADD PERSON TO COMPANY INDEX
IF ERROR WHEN

KEYINSERT(1,2,PERSONCOMPANY$,PERSONRECORD)
THEN

REM THAT COMPANY ALREADY EXISTS, PLACE PERSON RECORD ON CHAIN
IF ERR=1076
THEN PERSONCOMPANYSAMELINK= .••

& KEYREPLACE(1,2,PERSONCOMPANY$,PERSONRECORD)

END

ELSE ERROR
PI
WRITEPERSONRECORD
RETURN SUBROUTINE

Copyright (C) 1977 SD 150

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

SUBROUTINE DELETERECORD
REM DELETE THE FOUND RECORD
REM THIS UNDOES WHAT ADDRECORD DOES.
REM THIS MAY REQUIRE SIMPLE REMOVAL FROM A CHAIN
REM IF THE CHAIN GETS EMPTY, THE KEY MUST BE DELETED!
REM DELETE FROM NAME KEY CHAIN FIRST
PERSONPREVIOUS=KEY(l,l,PE~SONNAME$)\l ERROR CANNOT OCCUR HERE
IF PERSONPREVIOUS=PERSONRECORD
THEN

REM THIS RECORD IS THE FIRST RECORD ON A NAME CHAIN
IF PERSONNAMESAMELINK=0
THEN

ELSE

REM THIS RECORD IS ONLY RECORD WITH THIS PERSON NAME
KEYDELETE(l,l,PERSONNAME$) \1 POOF GOES THE NAME KEY

REM THERE ARE OTHER RECORDS WITH THE SAME NAME
REM REPLACE CHAIN HEAD WITH POINTER TO REST OF CHAIN
PERSONRECORD= ...

& KEYREPLACE(l,l,PERSONNAME$,PERSONNAMESAMELINK)

ELSE
FI

REM THIS RECORD IS SOMEWHERE ON A CHAIN ...
REM OF RECORDS WITH SAME NAME

FINDPREVIOUSPERSON: REPEAT

FI

END

READ #l@PERSONPREVIOUS,PERSONNEXT
IF PERSONNEXT=PERSONRECORD
THEN EXIT FINDPREVIOUSPERSON
PERSONPREVIOUS=PERSONNEXT

REM FOUND RECORD IN CHAIN WHOSE "NEXT" POINTER ...
REM SELECTS RECORD TO BE DELETED
REM REMOVE THIS RECORD FROM THE CHAIN
WRITE #l@PERSONPREVIOUS,PERSONNAMESAMELINK

REM NOW DELETE FROM COMPANY KEY CHAIN
COMPANYPREVIOUS=KEY(l,2,PERSONCOMPANY$)\1 NO ERROR POSSIBLE
IF COMPANYPREVIOUS=PERSONRECORD
THEN

REM THIS RECORD IS THE FIRST RECORD ON A COMPANY CHAIN
IF PERSONCOMPANYSAMELINK=0
THEN

ELSE

REM THIS RECORD IS THE ONLY RECORD WITH THIS COMPANY NAME
KEYDELETE(l,2,PERSONCOMPANY$) \! POOF GOES THE NAME KEY

REM THERE ARE OTHER RECORDS WITH THE SAME COMPANY NAME
REM REPLACE CHAIN HEAD WITH POINTER TO REST OF CHAIN
PERSONRECORD= ...

& KEYREPLACE{l,2, PERSONCOMPANY$,PERSONCOMPANYSAMELINK)

ELSE
FI

REM THIS RECORD IS SOMEWHERE ON A CHAIN ...
REM OF RECORDS OF SAME COMPANY

Copyright (C) 1977 SD 151

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

FINDPREVIOUSCOMPANY: REPEAT

END

FI

END

READ #1@COMPANYPREVIOUS,PERSONNEXT,COMPANYNEXT
IF COMPANYNEXT=PERSONRECORD
THEN EXIT FINDPREVIOUSCOMPANY
COMPANYPREVIOUS=COMPANYNEXT

REM FOUND RECORD IN CHAIN WHOSE "NEXT" POINTER •••
REM SELECTS RECORD TO BE DELETED
REM REMOVE THIS RECORD FROM THE CHAIN
WRITE #1@COMPANYPREVIOU~,PERSONNEXT,PERSONCOMPANYSAMELINK

RETURN SUBROUTINE

SUBROUTINE MODIFY(MODIFYTITLE$,MODIFYTARGET$)
PRINT MODIFYTITLE$iMODIFYTARGET$:
FOR MODIFYCOUNT=1 TO LEN(MODIFYTARGET$) •••

& UNTIL MODIFYTARGET$[MODIFYCOUNT]=0 DO PRINT BACKSPACE$:

END

INPUT II COMMAND$
IF COMMAND$="" THEN RETURN SUBROUTINE
MODIFYTARGET$=UPPERCASE$(COMMAND$)
RETURN SUBROUTINE

SUBROUTINE TRUNCATEBLANKS(STRINGTOBETRUNCATED$)
FOR STRINGTOBETRUNCATEDINDEX=LEN(STRINGTOBETRUNCATED$) TO 1 STEP -1

& UNTIL STRINGTOBETRUNCATED$(STRINGTOBETRUNCATEDINDEX)<>:20

END

NEXT STRINGTOBETRUNCATEDINDEX
LET LEN(STRINGTOBETRUNCATED$)=STRINGTOBETRUNCATEDINDEX
RETURN SUBROUTINE

Copyright (C) 1977 SD 152

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

1**
1 BEGIN MAIN PROGRAM
1**

BEGIN: PRINT "PHONEBOOK V1.0 (C) 1981 SOFTWARE DYNAMICS"
LET COMMAND$=IIPHONEBOOK.DATA"

OPENFILE:
IF ERROR WHEN

OPEN #l,COMMAND$
THEN

FI

IF ERR=1011
THEN

PRINT "CAN'T FIND ";COMMAND$
PRINT "ENTER NAME OF PHONEBOOK FILE,"
PRINT 'ENTER THE WORD "CREATEII TO CREATE ';COMMAND$
INPUT "OR ENTER <CR> TO EXIT: " PERSONNAME$
IF PERSONNAME$=IIII THEN EXIT
ELSEIF UPPERCASE$ (PERSONNAME$) ='~CREATE"
THEN

CREATE #l,COMMAND$
KEYINIT(1,1,25,9) \ REM INITIALIZE "PERSON" INDEX
KEYINIT(1,2,20,9) \ REM INITIALIZE "COMPANY II INDEX

ELSE COMMAND$=PERSONNAME$\GOTO OPENFILE
ELSE ERROR

PRINTMENU:
PRINT CLEARSCREEN$;IICOMMANDS: "
PRINT DUMP <FILE> -- DUMPS ENTIRE DATA BASE TO <FILE>II
PRINT LOAD <FILE> -- LOADS (OR ADDS) TO DATA BASE FROM <FILE>II
PRINT FIND <PERSON> -- FIND A PARTICULAR PERSON II

PRINT NEXT FIND NEXT PERSON"
PRINT COMPANY <COMPANYNAME> -- LOCATE A COMPANY"
PRINT NPIC -- FIND NEXT PERSON IN SAME COMPANY"
PRINT FIX <PERSON> -- CHANGE INFORMATION ABOUT A PERSON II

PRINT ADD <PERSON> -- ADD A PERSON TO THE PHONEBOOK"
PRINT "DELETE <PERSON> -- DELETE A PERSON FROM THE PHONEBOOK II

PRINT "EXIT -- LEAVE THIS PROGRAM"
PRINT "HELP -- PRINTS THIS MENU"
PRINT "<OTHER> -- IMPLIED FIND ON <OTHER>II

ASKCOMMAND:
INPUT "OK> " COMMAND$

INSPECTCOMMAND:
IF LEN(COMMAND$)=0 THEN ASKCOMMAND
LET COMMAND$=UPPERCASE$(COMMAND$)
IF FIND(COMMAND$,"DUMP ")=1 THEN DUMP
IF FIND(COMMAND$,"LOAD ")=1 THEN LOAD
IF FIND(COMMAND$,"FIND 11)=1
THEN PERSONKEY$=RIGHT$(COMMAND$,6)\GOTO FIND1
IF COMMAND$=IINEXT II THEN FINDNEXTPERSON
IF FIND(COMMAND$,IICOMPANY ")=1 THEN COMPANY
IF COMMAND$=IINPIC" THEN NPIC
IF FIND(COMMAND$,"FIX ")=1 THEN FIX
IF FIND(COMMAND$,"ADD ")=1 THEN ADD
IF FIND(COMMAND$,"DELETE ")=1 THEN DELETE1

Copyright (C) 1977 SD 153

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

IF COMMAND$="EXIT" THEN EXIT
IF COMMAND$="HELP" THEN PRINTMENU

OTHER: REM TRY TO FIND THE PERSON
LET PERSONKEY$=COMMAND$

FIND1:
IF FINDANDDISPLAYPERSON THEN ASKCOMMAND ELSE INSPECTCOMMAND

DELETE1:
LET PERSONKEY$=RIGHT$(COMMAND$,8}
IF NOT FINDANDDISPLAYPERSON THEN INSPECTCOMMAND
DELETE RECORD
GOTO ASKCOMMAND

ADD: REM ADD A NEW PERSON
LET PERSONNAME$=RIGHT$(COMMAND$,S}
IF ERROR WHEN

PERSONRECORD=KEY(l,l,PERSONNAME$}
THEN

REM THAT NAME ALREADY EXISTS!
IF ERR=1076
THEN

READPERSONRECORD
PRINT "THAT NAME IS A DUPLICATE OF: II

PRINTPERSONRECORD(0}
INPUT 'ENTER COMMAND «CR> MEANS "ADD ANYWAY")' COMMAND$
IF COMMAND$<>"II THEN INSPECTCOMMAND

FI
FI
INPUT TITLE: PERSONTITLE$
INPUT COMPANY: PERSONCOMPANY$
INPUT STREET/SUITE: PERSONSTREET$
INPUT CITY: PERSONCITY$
INPUT STATE/COUNTRY: PERSONSTATECOUNTRY$
INPUT ZIP: PERSONZIP$
INPUT PHONE NUMBER: PERSONPHONE$
LET PERSONCOMPANY$=UPPERCASE$(PERSONCOMPANY$}
ADDRECORD
GOTO ASKCOMMAND

FIX: LET PERSONKEY$=RIGHT$(COMMAND$,5}
IF NOT FINDANDDISPLAYPERSON THEN INSPECTCOMMAND
PRINT CLEARSCREEN$i
DELETE RECORD
PRINT "TYPE <CR> TO
MODIFY("NAME:
MODIFY("TITLE:
MODIFY("COMPANY:

LEAVE OLD Vl\LUE ALONE II
",PERSONNAME$}
",PERSONTITLE$}
",PERSONCOMPANY$}
",PERSONSTREET$)
",PERSONCITY$)

MODIFY("STREET/SUITE:
MODIFY(tlCITY:
MODIFY("STATE/COUNTRY:
MODIFY(II ZIP:
MODIFY("PHONE NUMBER:
ADDRECORD
GOTO ASKCOMMAND

Copyright (C) 1977 SO

l' , PERSONSTATECOUNTRY$)
",PERSONZIP$}
II , PERSONPHONE $)

154

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

FINDNEXTPERSON:
IF PERSONRECORD=0
THEN PRINT IINOBODY SELECTED, CANt-TII\GOTO ASKCOMMAND
IF PERSONNAMESAMELINK<>0
THEN

ELSE

FI

REM MORE THAN ONE GUY WITH SAME NAME
PERSONRECORD=PERSONNAMESAMELINK

IF ERROR WHEN
PERSONRECORD=KEYNEXT(l,l,PERSONKEY$)

THEN IF ERR=1001
THEN PERSONRECORD=0\PRINT IICAN'T"\GOTO ASKCOMMAND
ELSE ERROR

PRINT CLEARSCREEN$i"PERHAPS YOU MEANT: II
PRINT
READPERSONRECORD
PRINTPERSONRECORD(0)
INPUT 'ENTER "YES", "NO", <CR> FOR "NEXT II OR COMMAND: ' COMMAND$
IF LEN(COMMAND$)=0 THEN FINDNEXTPERSON
ELSEIF UPPERCASE$(COMMAND$)=IIYES" THEN ASKCOMMAND
ELSEIF UPPERCASE$(COMMAND$)=IINO" THEN ASKCOMMAND
ELSE INSPECTCOMMAND

NPIC:
REM FIND NEXT PERSON WITHIN COMPANY
IF PERSONRECORD=0
THEN PRINT "NO COMPANY SELECTED"\GOTO ASKCOMMAND
IF PERSONCOMPANYSAMELINK<>0
THEN

REM MORE THAN ONE GUY AT SAME COMPANY
PERSONRECORD=PERSONCOMPANYSAMELINK
GOTO COMPANYDISPLAY

ELSE PRINT "NO MORE PEOPLE THERE ..• "\GOTO ASKCOMMAND

COMPANY:
LET PERSONKEY$=RIGHT$(COMMAND$,9)
IF ERROR WHEN

PERSONRECORD=KEY(1,2,PERSONKEY$)
THEN IF ERR=1075 THEN NOSUCHCOMPANY ELSE ERROR

COMPANYDISPLAY: PRINT CLEARSCREEN$; "PERHAPS YOU MEANT: "
PRINT
PERSONKEY$=PERSONNAME$ \ REM IN CASE "NEXT II IS INVOKED
READPERSONRECORD
PRINTPERSONRECORD(0)
INPUT 'ENTER "YES", "NO",<CR> FOR "NPIC" OR COMMAND: ' COMMAND$
IF LEN(COMMAND$)=0 THEN NPIC
ELSEIF UPPERCASE$(COMMAND$)="YES" THEN ASKCOMMAND
ELSEIF UPPERCASE$(COMMAND$)="NO" THEN ASKCOMMAND
ELSE INSPECTCOMMAND

Copyright (C) 1977 SD 155

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

NOSUCHCOMPANY: REM CAN'T FIND THE COMPANY DESIRED, TRY KEYNEXT
PRINT CLEARSCREEN$i"CAN'T FIND COMPANY: "iPERSONKEY$

NEXTCOMPANY: REM TRY FOR NEXT COMPANY
IF ERROR WHEN

PERSONRECORD=KEYNEXT(1,2,PERSONKEY$)
THEN IF ERR=1001

THEN
PRINT "CAN'T FIND SELECTED COMPANY."
PERSONRECORD=0\GOTO ASKCOMMAND

ELSE ERROR
READPERSONRECORD
PRINT "PERHAPS YOU MEANT: "iPERSONCOMPANY$
INPUT 'ENTER "YES" OR "NO"i<CR> MEANS "NEXT" I COMMAND$
IF LEN(COMMAND$)=0 THEN NEXTCOMPANY
ELSEIF UPPERCASE$(COMMAND$)="YES" THEN COMPANYDISPLAY
ELSEIF UPPERCASE$(COMMAND$)="NO"

THEN
PERSONRECORD=0
GO TO ASKCOMMAND

ELSE PERSONRECORD=0\GOTO INSPECTCOMMAND

LOAD: REM LOAD CONTENTS OF SEQUENTIAL FILE INTO PHONEBOOK
LET COMMAND$=RIGHT$(COMMAND$,6)
OPEN #2,COMMAND$
PRINT "LOADING "iCOMMAND$

LOADLOOP:
INPUT #2,PERSONNAME$
IF EOF(2) THEN CLOSE #2\GOTO ASKCOMMAND
IF PERSONNAME$="" THEN LOADLOOP
TRUNCATEBLANKS(PERSONNAME$)
INPUT #2,PERSONTITLE$
TRUNCATEBLANKS(PERSONTITLE$)
INPUT #2,PERSONCOMPANY$
TRUNCATEBLANKS(PERSONCOMPANY$)
INPUT #2,PERSONSTREET$
TRUNCATEBLANKS(PERSONSTREET$)
INPUT #2,PERSONCITY$
TRUNCATEBLANKS(PERSONCITY$)
INPUT #2,PERSONSTATECOUNTRY$
TRUNCATEBLANKS(PERSONSTATECOUNTRY$)
INPUT #2,PERSONZIP$
TRUNCATEBLANKS(PERSONZIP$)
INPUT #2,PERSONPHONE$
TRUNCATEBLANKS(PERSONPHONE$)
PRINT PERSONNAME$
ADDRECORD
GO TO LOADLOOP

Copyright (C) 1977 SD 156

BASIC 1.4 MANUAL 04/83
SECTION XVI: SAMPLE PROGRAMS

DUMP: REM DUMP PHONE NUMBER FILE ALPHABETICALLY BY PERSON
LET COMMAND$~RIGHT$(COMMAND$,6)
CREATE #2,COMMAND$
PRINT "DUMPING DATABASE ... "
LET PERSONKEY$="II
PERSONNAMESAMELINK=0

DUMPNEXTPERSONLOOP:

END

IF PERSONNAMESAMELINK<>0
THEN

ELSE

FI

REM MORE THAN ONE GUY WITH THE SAME NAME
PERSONRECORD=PERSONNAMESAMELINK

IF ERROR WHEN
PERSONRECORD=KEYNEXT(1,1,PERSONKEY$)

THEN IF ERR=1001
THEN CLOSE #2\GOTO ASKCOMMAND
ELSE ERROR

READPERSONRECORD
PRINTPERSONRECORD(2)
GOTO DUMPNEXTPERSONLOOP

Copyright (C) 1977 SO 157

BASIC 1.4 MANUAL 04/83
XVII: RUNTIME ERROR MESSAGES

RUNTIME ERROR MESSAGES

o - Program completed normally
1 - Operator requested Attention
2 - Not used
3 - Not used
4 - Not used
5 - Not used
6 - RETURN without GOSUB
7 - Conversion Error
8 - Input Buffer Overflow
9 - Array or Vector Subscript out of range
10 - Runtime package self-checksum failed --> Suspect damaged RTP
11 - String Subscript out of range
12 - String subscript too large
13 - Undefined Line Number encountered
14 - Arithmetic Overflow
15 - Non-Integer operand to Logical operator (& 1 XOR COM **)
16 - Concatenated String exceeds CATMAX
17 - Tab count> 255
18 - Invalid FORMAT string
19 - I can't store that value into a byte
20 - Illegal Argument to SIN/COS/TAN/ATN
21 - Logarithm of 0 or negative number
22 - Square root attempted on negative number
23 - PEEK or POKE address < 0 or > 65535, or not an integer
24 - POKE value < 0 or > 255, or not an integer
25 - Attempt to POKE runtime package
26 - Version number doesn't match BASIC Runtime Package
27 - Wrong number of arguments to function/subroutine
28 - Data space for BASIC program overlaps SDOS
29 - Basic Program overlaps Runtime Package
50 - Channel number > 255
52 - File name is too long
60 - File position < 0 or >= 2 A 31

KEYED FILE PACKAGE ERRORS

1001 - End of File encountered
1075 - No such key
1076 - Duplicate key
1077 - Key branch Factor not large enough

COMMONLY ENCOUNTERED SDOS ERRORS

1011 - No such file
1023 - Filename doesn't start with A through Z or $
1031 - Channel is already open
1032 - Channel is closed

Other error codes can be found in the SDOS Manual.

Copyright (C) 1977 SO 158

BASIC 1.4 MANUAL 04/83
SECTION XVIII: KEYWORDS

KEYWORDS

The following words are reserved keywords in BASIC 1.4, and may
not be used for variable, subroutine, function or parameter
names, or be used as labels. Keywords are recognized regardless
of whether the constituent characters are lower or upper case.

DIM COMMON REM PROGRAM DATA CONCATENATION
INCLUDE
ON ERROR GOTO ELN
GOSUB POP RETURN
FOR TO STEP CYCLE NEXT
LET
PRINT USING FORMAT TAB INPUT READ WRITE
STOP EXIT
WHILE UNTIL DO END
REPEAT UNLESS WHEN
IF THEN ELSE FI ELSEIF
POSITION RESTORE OPEN CREATE CLOSE DELETE RENAME
CHAIN
CALL POKE DEBUG SYSCALL
SUBROUTINE DEF EXTERNAL
LEN MAXLEN LEFT$ MID$ RIGHT$ ASC CHR$
COM ATN SIN COS TAN LOG EXP saR INT ABS SGN COL VAL PEEK FIND
RND ERR PI AND OR NOT EOF ROWS COLUMNS
TRUE FALSE XOR
CAT DATE$ TIME$ COPYRIGHT$ NUM$ NUMF$ HEX$ UPPERCASE$
LOWERCASE $

Copyright (C) 1977 SD 159

BASIC 1.4 MANUAL 04/83
SECTION XIX: STATEMENT SUMMARY

LANGUAGE SUMMARY

STATEMENTS

PRINT
PRINT USING
FORMAT
LET
INPUT
GO TO
IF-THEN-ELSE-ELSEIF
FOR-NEXT/CYCLE
GOSUB/RETURN
GOSUB POP
ON GOTO/GOSUB
ON ERROR WHEN/DO/GOTO
IF ERROR WHEN
ERROR
REM (or "1")
DEF
END
OPEN
CREATE
CLOSE
DELETE
RENAME
PRINT #
PRINT # USING
INPUT #
READ # (binary)
\-lRITE # (binary)
POSITION #
CHAIN
CALL
SUBROUTINE
CALL (assembly routine)
SYSCALL (SDOS interface)
DEBUG
DIM/cOMMON
POKE
PROGRAM ORIGIN
DATA ORIGIN
INCLUDE
WHILE/uNTIL DO END
REPEAT UNLESs/wHEN END
GOTO ELN (used in error
EXIT/sTOP

FUNCTIONS

PI
SIN
COS
TAN
ATN
LOG
EXP
SQR
INT
ABS
SGN
ERR (error number)
ELN (error line number)
LEN
VAL (of string)
COM (logical complement)
PEEK
EOF (end file test)
NOT (IF cond invert)
FIND (string in string)
MID$
LEFT$
RIGHT$
DATE $
TIME$
NUM$ (unformatted conversion)
NUMF$ (formatted conversion)
HEX$ (hex conversion)
ASC
COL (returns column position)
CHR$
UPPERCASE$
LOWERCASE $
IF-THEN-ELSE-FI function
MAXLEN
ROWS
COLUMNS

RND
TRUE
FALSE

recovery)

EXIT subroutine/labelname/indexvariable

Copyright (C) 1977 SD 160

BASIC 1.4 MANUAL 04/83
SECTION XIX: STATEMENT SUMMARY

DATA TYPES 'OPERATORS

9 digit decimal floating point
16 bit positive integers
Hex numbers
Characters strings to 65534 characters
String arrays
Numeric vectors
Numeric arrays CAT
Byte vectors

+ - * / "­
& (and)

1 (or)
XOR

** (shift)
- (negate)

(string concatenation)
[J (substrings)

FORMATTED OUTPUT

Money format - floating dollar / trailing minus
Exponential format
Formatted numbers available as strings (NUMF$)

I/O

Channel oriented
ASCII (print/input) variable length records
Binary (read/write) reads any file accessible by byte
Random positioning
Multi-key file access procedures

MISCELLANEOUS

Multiple statements per line
Multiple statements in THEN/ELSE clauses
Line numbers needed only as targets of GOTO/GOSUB/ON ERROR
High speed execution
Error reporting line # at runtime
Explicit pointer to compile time errors
Compiled program is ROM-able
Line number tracing, single step, and breakpoint facility
Screen/File position control integrated into I/O statements
Structured programming constructs
Error trapping
Parameterized subroutines and functions
Excellent documentation

Copyright (C) 1977 SD 161

