
baGlGl/baGl~
EIJ~T[]A·

V 1.1

USER'S MANUAL

SOFTWARE DYNAMICS
2111 W. Crescent. Suite G, IA Anaheim, CA 92801

SOFTWARE DYNAMICS © COPYRIGHT 1978

E D I T

USE R I S

MANUAL

EDIT Vl.l

5th Printing

COPYRIGHT (C) 1978 SOFTWARE DYNAMICS

NOTICE

This manual describes EDIT Version 1.1. Software Dynamics has
carefully checked the information given in this manual, and it is
believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies. Software Dynamics reserves the right to
change the specifications without notice.

EDIT Vl.l is an improved version of EDIT VI.0, and has been
optimized for use under SOOS. These optimizations prevent use of
EDIT ,VI.I in non-SOOS environments.

**
**
**
**
**
**
**

This manual describes software which is a proprietary product **
of Software Dynamics (SD). SD software is licensed for use on a **
single copy per computer basis, and is covered by u.s copyright **
laws. Unless a written exception is obtained from SO, the soft- **
ware must be used only on the single computer whose unique, SD- **
assigned serial number matches that for which the software was **

** purchased. Copying the software for any purpose other than
archival storage, or use of the software on other than the as- **

**
**
** signed serial numbered CPU is strictly prohibited. SD assumes **
**
**
**
**
**
**
**
**
**
**

no liability regarding ,the use of the software. **
Certain software programs and datafiles are delivered for use **
in an encrypted format. The content of such programs and data
are considered to be a trade secret of SO. Attempts or suc- **
cess at breaking the encryption, publication of the results of **
such attempts or successes, or copying, storage or use of such a
file in clear text form will be treated as theft of a trade sec- **

**

**

ret, and prosecuted as such. **
POSSESSION OR USE OF THIS MANUAL OR THE SOFTWARE IT OESCRIBES **
CONSTITUTES AGREEMENT BY THE USER TO THESE TERMS. **

**

This manual and the software it describes are the copyrighted
property of Software Dynamics.

~opyright (C) 1978 SO

EDIT USER'S MANUAL

T~BLE OF CONTENTS

EDITOR FEATURES • 1

INTRODUCTORY CONCEPTS • • 2

THE DISPLAY SCREEN VERSUS THE TEXT BUFFER • • • • • • 6

COMHONLY USED COMMANDS . •. •••• • 7

COMMONLY USED COMMAND SEQUENCES · 16

TWO SIMPLE EDITING SESSIONS · 17

DETAILED COMMAND DESCRIPTIONS • • • 21

COMMAND STRING PROCESSING . . • • • 34

ERROR HANDLING • • • • 34

VALUES RETURNED FROM COMMANDS

REPEATING COMMAND SEQUENCES•..•.

SHORT SOPHISTICATED EDITING EXAMPLES

ERROR SUMMARY . •

Copyright (C) 1978 SD

• 36

• • 37

• • • 38

• 39

EDIT USER'S MANUAL

EDITOR FEATURES

EDIT is a general purpose context editor, used to enter and
correct ASCII text files.

Significant features include:

Two input files, each re-selectable without leaving EDIT

One output file, re-selectable without leaving EDIT

Ability to merge or split files

Multiple commands allowed on command lines

Commands for both line-oriented and character-oriented editing

Easy-to-use search, change, and remove commands

Automatic typing of a line after a search, change, or remove

Value registers

Easy insertion and deletion of text

Display commands

Command input can be taken from a file, allowing canned
editing procedures (macros)

Iteration commands, including testing and branching

Arithmetic, logicals, and relationals (for iteration control)

Command success/fail testing (for iteration control)

Copyright (C) 1978 SD 1

,EDIT USER'S MANUAL

INTRODUCTORY CONCEPTS

EDIT is a general purpose context editor. "Context" is the part
of a word, sentence, or paragraph that occurs just before and/or
after a specified character, word, or phrase. "Editing" is the
preparation, arrangement, revision, or correction of a document.

The editor is used to change (or create) a text file (a file is
generally defined to be any collection of data, usually on a
disk: for our purposes, only files containing textual information
are important). With the exception of deleting ASCII nulls, EDIT
does not restrict the kind of text data that may be edited (local
operating system conventions may place additional restrictions,
however) •

Besides holding text, files may be used to hold frequently used
command sequences, or for moving and/or duplicating blocks of
text from the text buffer.

The editor treats the text to be processed as a stream of
characters, which can be read and edited in chunks. Once a chunk
is processed, it cannot be changed or examined without
re-processing the entire text file again.

EDIT uses the computer's memory as a "workspace" to perform the
required editing. The workspace is used for two purposes:
storing text while editing and as a place to put editing commands
typed by the user. The portion of the workspace used for holding
text while it is being edited is called the "text b,uffer" and the
portion used for holding commands being typed in is called the
"command buffer". Although the workspace has a fixed size
determined by the particular system configuration, the text
buffer and command buffer may dynamically grow and shrink during
the editing process.

The editor fills its text buffer on a page by page basis. A
"page" is that portion of a text file up to and including a form
character (A L). Therefore form characters are generally used to
make the amount of text transferred into the text buffer at any
one time more manageable. Forms should generally be placed to
make the number of characters in anyone page less than half the
size of the workspace. Multiple pages may be present in the text
buffer as long as enough memory is available to hold them.

Copyright (C) 1978 SD 2

EDIT USER'S MANUAL

The editing process operates as follows:

1.) The user invokes the editor.
2.) A file containing text is selected to be modified (Source

file) (ER or EB command).
30) A new file is created which will eventually contain the

modified version of the file selected in Step 2 (Destination
file) (EW command).

4.) The first page of text from the source file is copied into
the text buffer (IA command).

5.) The user interacts with the editor to modify the contents of
the text buffer until he is satisfied with the results
(Insert, Change, Type, Search commands).

6.) The modified page is written to the destination file (P
command) .

7.) The next source file page is read into the text buffer,
modified, etc.

8.) Having changed all parts of the text that needed changing,
the user exits the Editor (EXIT command).

The user tells the editor what to do next by typing commands.

Many EDIT operations are invoked by a single character command
mnemonic: "T" means Type one line; "I" means Insert, etc. Some
commands allow or require values before them to specify a count
of how many times the command should be done: liST" means Type
five lines; "2D" means Delete two characters, etc. If a value is
not supplied, it is generally assumed to be Itl". A It_" (minus)
sign preceding a command causes the value to be assumed to be -1.
Some commands require a string argument (arbitrary sequence of
characters) followed by a delimiter (end-of-string indicator):
"SHELLO\" means Search for the occurrence of "HELLO" (\ is the
delimiter); "CABC\XYZ\" means Change "ABC" to "XYZ", 3FHI\ means
Find the third occurrence of "HI".

Some of the editor commands are spelled with two characters.
There are two reasons for this:

1.) Many editor commands are very powerful and can destroy
portions of a' file if used carelessly or accidentally. In
addition to the two character format, "dangerous" commands also
require a value (usually a single digit) preceding them. This 3
character format helps ensure that the user really intended to
use the command.

2.) It is difficult to choose unique single character command
names that are mnemonic given only 26 alphabetical characters.

When the editor is ready to accept command input, it will signal
ready with the prompt character ,,*u Commands that are typed
into the editor are placed into the command buffer and "saved-up"
until the activation character (carriage-return) is received. If
the command requires more input, the editor will prompt for more
input before executing the command. At this point, the editor

Copyright (C) 1978 SD 3

EDIT USER'S MANUAL

will execute (perform) all the specified operations. When the
editor finishes the required operations, it will again signal
ready by displaying the prompt.

When typing in a command, uppercase or lowercase commands may be
used interchangeably. String arguments are used exactly as
typed. Consequently, IIShello\" is not equivalent to IISHELLO\II,
while "sHELLO\" is the same as II SHELLO\ 11.

Line input editing (correcting typing mistakes while entering a
command string) is subject to local system conventions. Usually,
a Delete (or Rubout) character can be typed to erase an erroneous
character. The SDOS virtual terminal driver will allow editing
within a typed-in line before EDIT sees the line; refer to the
SDOS manual for more details.

One or more EDIT commands may be typed followed by a
carriage-return. This series of commands is referred to as a
command string. The command string is not restricted to one line
of input as it may include carriage-returns in string arguments.
The last character in a command string is a carriage-return which
is not part of a string argument; this carriage return is called
the activation character. A carriage-return appearing in a
string argument is considered to be part of the string and is not
an activation character. The editor saves up the command string
in the command buffer until the activation character is typed.
The commands are then executed left to right until no more
commands remain.

When the editor discovers an error, such as incorrect command
syntax, or a command cannot be performed, it will print an error
code which can be found in the error summary.

Editor commands that manipulate and display text do their work on
text in the text buffer. Since there is usually a lot of text in
the buffer, some mechanism is needed to focus the editor's
attention on a particular part of the text buffer. This focusing
is done via a special pointer called the "CP" (character
pointer). CP always points to a particular character in the text
buffer, which is where the actual editing is performed. The CP
and the text buffer together are very like a pencil and some
paper with printing on it; before one can change the printing on
the paper, one must first place the pencil on the word to be
changed. Commands exist to allow the user to move the CP around
in the text buffer in several different ways. The location of CP
is generally termed "the context ll

; thus the name of the editor's
style.

Copyrig~t (C) 1978 SD 4

EDIT USER'S MANUAL

For the purpose of explanations involving the CP, the text buffer
could be considered a linear arrangement of·all of the characters
currently in the text buffer. For example, suppose the text
buffer contained the following text and the CP was posi tionp~:-1 on
the "F":

ABC
DEF
GHI
JKL

This could be represented linearly as follows:

Beginning of text buffer

A
B
C
<CR>
o
E (BACKWARD, OR PREVIOUS TO CP)
F . <-- CP
<CR>
G
H
I
<CR>
J
K
L
<CR>

End of text buffer

(FORWARD FROM CP)

In this case, "ABC" and "DE" are considered to be "before" the CP
while "GHI" and "JKL" are considered to be after the CP. We say
that the CP "points" to the "F" character. Also, CP is
considered to be II between II "DE" and "GHI". Note that the end of
a line has an explicit marker representing it in the buffer; this
marker is called a "carriage-return" <CR> character. The CP may
point to a <CR> character.

Copyright (C) 1978 SO 5

EDIT USER'S MANUAL

THE DISPLAY SCREEN VERSUS THE TEXT BUFFER

Many who are new to the idea of computers and editing may tend to
think in terms of the familiar typewriter concepts:

"I can't see it, therefore, it is not there."

"That line that just rolled off the screen disappeared
for good."

"The top line (or bottom line) of the screen is the most
interesting line; since I work there, the editor must
work there."

Often, what is displayed on the screen is confused with what is
in the text buffer. Actually, what is on the screen is only a
copy of the part of the text buffer that the editor was asked to
show the user, like a "window". The computer can be asked to
display (using the "Til command) as little as one line or as much
as the entire text buffer -- but only the last screen full of
displayed text is available to be viewed. This is like a small
window through which only a small portion of the text buffer can
be seen at anyone time. Even though lines will disappear off
the top of the screen while scrolling, the lines never disappear
from the text buffer until the computer is explicitly instructed
to make them do so.

Note that the editor's text buffer may grow to contain more text
than can fit on the computer's display device all at one time.
For example, imagine the text buffer currently contains 500 lines
of text. If

Bl00T

is typed into the computer, the
beginning of the buffer and type
which will scroll off the top of
last 23 (depending upon the size
view. Note that the CP is still
even though the line containing
of the screen, and all 500 lines
buffer.

Copyright (C) 1978 SO 6

editor will move the CP to the
the first 100 lines, most of
the screen, leaving only the
of the display) lines in full
at the beginning of the buffer
the CP was scrolled off the top
of text still remain in the text

EDIT USER'S MANUAL

COMMONLY USED COMHAHDS

Probably the most frequently used commands are:

A
B
C
D
EB
ER
EW
EXIT

I
K
L
M
P
R
S
T
U
Z
<CR>

Append from input file
Begin (move CP to beginning of buffer)
Change one string to another string
Delete character
Edit a file and make a backup copy of the old one
Edit Read (select input file)
Edit Write (select output file)
Copy current buffer and the remainder of the input file
(if any) to the output file and exit the editor.
Insert
Kill (delete) lines
Move CP in units of lines
Move CP in units of characters
Punch current buffer to output file
Remove a string
Search for a string
Type (display) line(s)
Delete Until (up to) a matched string
Move CP to the end of the buffer
Move ep to beginning of next line. Equivalent to ILIT

These commands will handle all of -the needs of the casual user
and will be described further in this section. A complete
reference for all the commands appears in the detailed command
description section.

Of these commands, B(egin), e{hange) and T(ype) are sufficient to
make virtually all changes to text in the buffer, and are worth
remembering for the novice user.

Copyright (e) 1978 SD 7

EDIT USER'S MANUAL

A Append

This command is used to bring a portion of the input file into
the editor's text buffer where editing may take place. The
editor will read text from the input file until a control-L (page
mark) is encountered, end of input file is encountered, or the
text buffer becomes full. For example:

A

will append the next page of the input file to the end of the
text buffer. An End of File message will be printed when the
last page of the input file is appended; this is not an error.

B Begin

This command is used to move the CP to the beginning of the text
buffer. The form is simply:

B

C Change

The C command is used to change the occurrence of one string to
another string. For example,

CHELLO\GOODBYE\

will search for and then change the next (starting from CP)
occurrence of "HELLO" to "GOODBYE" and leave the CP pointing to
the first character after the replacement string. Note that
strings (in general) may contain a carriage-return (CR)
character.

As with all of the editor commands, the editing operation is
performed relative to the CP. This means that if there were two
occurrences of "HELLO", and the CP was positioned before the
first "HELLO", the first "HELLO" would be changed. If the CP was
positioned after the first "HELLO", the second "HELLO" would be
changed.

To make the editor search backwards from the CP, simply type a
minus (-) before the change command. For example:

-CHELLO\GOODBYE\

In this case, if the CP were positioned after the first "HELLO",
the editor would search backwards from the CP for the match,
discovering the first "HELLO", and change it to "GOODBYE".

Copyright (C) 1978 SD 8

EDIT USER'S MANUAL

If the CP were at the beginning of the text buffer, we could tell
the editor to change the second occurrence of "HELLO" to
"GOODBYE" by typing:

2CHELLO\GOODBYE\

This will force the editor to change the second occurrence of
"HELLO" and leave the first occurrence alone.

If Change indicates that it cannot find the desired string then
perhaps that string is before CP and a backward ("_") change will
find it.

Automatic display of the current line (the one containing the CP)
will happen if a Change, Delete, Remove, or Search command is the
last command in the command string so the user can easily verify
that the changes actually made are the desired ones.

D Delete Character

This command is used to remove the character(s) pointed to by CP.
This command must have a value. The command:

5D

would delete five characters starting with the CP and leave the
CP pointing to the next character after the deleted sequence.

EB Edit with Backup

This command selects a file to be edited. It is intended for use
when one wishes to make changes to a file which already exists.
It tells the editor to keep a backup copy of the original file,
so if a disaster occurs, recovery of the original text is easy.
It acts similar to a combination of ER and EW.

EBMYFILE.TXT\

tells the editor to get input (ER) from MYFILE.TXT for editing,
and to output (EW) edited text to a temporary file. When an EXIT
is performed, MYFILE.TXT is made into a backup file by renaming
it to MYFILE.BAK, and the resulting temporary output file is then
renamed MYFILE.TXT. If EB is used, ER and EW should not be used.

Copyright (C) 1978 SD 9

EDIT USER'S MANUAL

ER Edit Read

This command is used to select an input file for 'the editor. It
should be used with EW when one wishes to make a similar oopy of
a file with some changes and leave the original file intaot (ER
and EW together).

ERPAYROLL.BAS\

would instruct the editor to open the file named "PAYROLL. BAS"
for editor input; this is required before commands to fetch text
from the input file can be issued. This command is not required
if the editor is being used solely to create a new file (see EW).
Since the file name given to EDIT is passed to SDOS, it is
subject to the rules and conventions of SDOS.

A null file name will cause the editor to close the input file.
At this point, another input file may be selected:

ER\ERINVENTORY.BAS\

EW Edit Write

This command is used to create an output file. It should be used
when one wants to create a file for the first time (EW by
itself), or when one wishes to make a similar copy of a file with
some changes and leave the original file intact (ER and EW
together). If an output file is already open, it will be closed
and the new file will be selected. The editor uses a "CREATE"
call to the operating system which may cause any file by the same
name to be deleted before the new file is created. An example of
the EW command is:

EWPROGI.DOC\

Use ER and EW as follows to make a modified version of
JOESCONTRACT for SAM:

ERJOESCONTRACT. TXT\EWSAMSCONTRACT. TXT\

EXIT

This command is used to terminate an editing session. When EXIT
is typed, the current text buffer is copied to the output file
an~ the remainder of the input file is also copied to the output
file. If there is an input file selected or there is text in the
text buffer, there must be an output file selected.

If no output is desired, use tlER\" to close the input file (only
if it is open) and use "EZ" to clear the text buffer (required
only if the text buffer is not empty):

ER\EZEXIT

Copyri~ht (C) 1978 SD 10

EDIT USER'S MANUAL

I Insert

This command is used to insert text immediately BEFORE the CP.
For example, let's say that the CP was positioned on the first
"E" of the example "THIS IS A EXAMPLE". The command

IGOOD \

would insert the characters "GOOD .. after "THIS IS A " and before
"EXAMPLE" producing "THIS IS A GOOD EXAMPLE".

To insert many lines of text, simply type "I" followed by the
desired text which is then followed by the delimiter "\":

ILine 1
Line 2
Line 3

Line n
\

K Kill Line

Kill is used to delete ("kill") lines of text near CP.

The argument specifies how many lines to tlkill", starting from
CP. If the argument is negative, lines are deleted before CP.
0K kills the part of the line to the left of CP. If CP is at the
beginning of the line,

0K

will do nothing.

lK

will remove one line, and

-2K

will remove the two previous lines.

Copyright (C) 1978 SO 11

EDIT USER'S MANUAL

L Lines (Move CP over lines)

This command is used to move the CP around in the text buffer in
units of lines. For example,

L

moves the CP forward to the beginning of the next line.

elL

moves the CP to the beginning of the current line.

5L

moves the CP forward five lines.

-SL

moves the CP back to the beginning of the fifth previous line.

M Move (CP over characters)

This command is used to move the CP forward or backward starting
from the CP in units of characters.

M

moves the CP forward 1 character.

-SM

moves the CP backward 5 characters.

P Punch (text buffer to output file)

This command is used to move the contents of the text buffer to
the output file (thus making room for the next page of text from
the input file). This command requires a value. If the value is
0, then the current text buffer is moved to the output file, and
the buffer is left empty. If the value (n) is greater than 0,
then n-1 pages (counting the current text buffer as 1 page) are
copied from the input to the output file, and the nth page is
read into the text buffer.

IP

moves the current text buffer to the output file, and fetches the
next text buffer from the input file.

Copyright (C) 1978 SD 12

EDIT USERIS MANUAL

R Remove a string

This command searches for the specified string and removes it
from the text buffer. This command is exactly equivalent to the
change command with a null replacement string. If the CP
preceded the phrase "THIS IS A GOOD EXAMPLE", then

RTHIS IS \

would leave itA GOOD EXAMPLE". The CP is left pointing to the
first character past the removed string.

S Search for a string

This command is used to search for the occurrence of a string in
the text buffer and set the CP pointing to the first character
after the matched occurrence. This command is very important in
a context editor, because it is valuable in placing CP in the
desired location for editing. By searching for a unique
occurrence of some phrase, sequence of characters, special marker
in the text, etc., the CP can be located very near the area of
text to be edited.

Assume that a particular word was misspelled in several places
and needed to be corrected. We can locate the misspelled word by
using the Search command. For example, if the CP were at the top
of the buffer, and we knew that AMOUNT was misspelled AMMOUNT
somewhere in the buffer, the following command would find the
mispelled version:

SAMMOUNT\

Assume that a paragraph needed to be inserted in a section of a
document labeled "Questions and Answers". The Search command
could be used to locate the section by searching for "Questions
and Answers II , and by applying the Search command a few more
times, the desired context can be located. If necessary,
subsequent application of the ilL" and "M" commands will pinpoint
the exact context. Note that the IIC" command includes a Search,
which is very convenient for finding and changing a string.

Copyright (C) 1978 SO 13

'EDIT 'USER'S MANUAL

T Type (display lines)

This command is used to make the editor print out lines of text
(in the buffer near CP) on the console. This is particularly
useful for examining changes just made to the text, displaying
the current context, or for finding out exactly where the CP is.
Note that this is a command that asks the editor to do some
typing instead of the user.

T

will type from the CP inclusive, up to and including the next
carriage-return.

-STST

will type out ten lines; the five lines before the CP and the
five lines after the CPo

0T

will type from the beginning of the line up to, but not
including, the CPo

U Until (delete up to matched string)

This command is useful for deleting text from the current
position of the CP up to, but not including, the matched string.
For example,

lU<tab>\

will delete every character from the CP inclusive, up to but not
including the first <tab> character. Warning: this can delete
large chunks of text if you give the wrong string as an argument;
use it carefully!

Copyright (C) 1978 SD 14

EDIT USER'S MANUAL

Z Move CP to the end of the text buffer

Z is useful for moving the CP to the end of the text buffer to
view the end of the text buffer,

Z-23T

or to insert text at the end of the text buffer:

ZILine 1
Line 2
Line 3

Line n
\

<CR> Moves CP forward 1 line and displays that line.

The <CR> command is exactly equivalent to IlLIT". It is handy
for stepping through the text buffer one line at a time.

Copyright (C) 1978 SD 15

EDIT USER'S MANUAL

COMMONLY USED COMMAND SEQUENCES

Some examples of common types of command sequences are given
below:

SEQUENCE

CNUTZ\NUTS\
0TT
0LT

BS<CR>
LABEL\-TT

23T
23L23T

-10T10T

2C.\,\

ILOTSA<CR>
WORDS\-2TT

EXPLANATION

Change "NUTZ" to "NUTS"
Type the current line
Position CP to the beginning of the Line
and Type it

Find the first occurence
"<Carriage-Return>Label" and type
previous line and the current line
Type a screen-full of context

of
the

Move CP forward 23 Lines then Type a
screen-full of context
Type the previous 10 lines and the next 10
lines
Change the second period to a comma (and
type the line if Auto-Type is on)

Insertion. Inserts the text
LOTSA<CR>WORDS at CP, and then types 3
lines around CPo Note that the entire
inserted string is inserted before the CPo

Probably the most useful sequence of editing commands is "0TT"
which means type from the beginning of the line up to the CP (0T
part) and then type the remainder of the line from the CP (T
part). The net effect is to type the current line, no matter
where the CP is within the line, and without moving the CPo
Since this command is so commonly used, EDIT provides for an
automatic 100TT" after every change, delete, search, remove or
move CP command. "0EA OI will disable the auto-type feature.
"lEA" will re-enable it.

Once the user is familiar with the commonly used commands, he
should investigate the empty string search (see "s" command in
Detailed Command descriptions section) and the X command, as they
prove to be very useful.

Copyright (C) 1978 SD 16

EDIT USER'S MANUAL

TWO SIMPLE EDITING EXAMPLES

In the first example, a new file is created in the Editor. Note
the "\" character appearing in the left margin. This is the
editor's signal that it is expecting more of a string argument.
Note also that a TAB character has been consistently used when
moving from the left margin to the first word in a line: this is
why the r10\ command below does not affect the spacing. Note the
"12V" command in Example Ii this is the most common method of
putting a "Form" character in the buffer. The "L is printed by
EDIT when it outputs a form.

Example 1:

.EDIT
EDIT V1.1s Copyright (C) 1979 Software Dynamics
*ewprimes.bas\
*110 **** PRIME NUMBER CHASER ****
\ REM PRINTS OUT FIRST 100 PRIME NUMBERS
\ DIM X, PRIMES (100), CANDIDATE/3/
\ DIM PRIMESELECTOR, NPRIMES/1/
\ PRINT "Prime Finder"
\ PRIMES (NPRIMES) = 2
\ X = PRIMES(PRIMESELECTOR)
\\
*-LT

x = PRIMES(PRIMESELECTOR)
*i100 FOR I = 1 TO NPRIMES
\\
*z-23t
10 **** PRIME NUMBER CHASER ****

REM PRINTS OUT FIRST 100 PRIME NUMBERS
DIM X, PRIMES (100), CANDIDATE/3/
DIM PRIMESELECTOR, NPRIMES/1/

100

PRINT "Prime Finder"
PRIMES (NPRIMES) = 2
FOR I = 1 TO NPRIMES
X = PRIMES(PRIMESELECTOR)

*br10\miREM\
REM**** PRIME NUMBER CHASER ****

*0t
REM*i \
REM **** -PRIME NUMBER CHASER ****

*zi IF INT(CANDIDATE/X) * X = CANDIDATE THEN 180
\ NEXT PRIMES ELECTOR
\ ! FOUND A NEW PRIME
\ NPRIMES = NPRIMES + 1
\ PRIMES (NPRIMES) = CANDIDATE
\ CANDIDATE = CANDIDATE + 2
\ IF NPRIMES <> 100 THEN 100
\ FOR PRIMESELECTOR = 1 TO 100
\ PRINT PRIMES(PRIMESELECTOR)
\ NEXT PRIMESELECTOR
\ PRINT • All Done I ,

Copyright (C) 1978 SD 17

EDIT USER'S MANUAL

\200 srrop
\ END
\\
*12V
.... L*-23T

REM **** PRIME NUMBER CHASER ****
REM PRINTS OUT FIRST 100 PRIME NUMBERS
DIM X, PRIMES (100), CANDIDATE/3/
DIM PRIMESELECTOR, NPRIMES/1/
PRINT "Prime Finder"
PRIMES (NPRIMES) = 2

100 FOR I = 1 TO NPRIMES
X = PRIMES(PRIMESELECTOR)
IF INT(CANDIDATE/X) * X = CANDIDATE THEN 180
NEXT PRIMESELECTOR
1 FOUND A NEW PRIME
NPRIMES = NPRIMES + 1
PRIMES (NPRIMES) = CANDIDATE
CANDIDATE = CANDIDATE + 2
IF NPRIMES <> 100 THEN 100
FOR PRIMES ELECTOR = 1 TO 100
PRINT PRIMES(PRIMESELECTOR)
NEXT PRIMES ELECTOR
PRINT' All Done!'

200 STOP
END

.... L*bsDATE + 2\0LT
CANDIDATE = CANDIDATE + 2

*i180\
180 CANDIDATE = CANDIDATE + 2
*exit

Copyrig~t (C) 1978 SD 18

EDIT USER'S MANUAL

In this example, an existing file (produced in Example 1) is
edited. Lines which contain only an "*" are prompts printed by
EDIT, with <CR> (which acts as lLlT) entered by operator. "-EA"
was done to show CP location.

Example 2:

.edit
EDIT Vl.ls Copyright (C) 1979 Software Dynamics
*ebprimes.bas\
*-ea
*1ab23t

REM **** PRIME NUMBER CHASER ****
REM PRINTS OUT FIRST 100 PRIME NUMBERS
DIM X, PRIMES (100), CANDIDATE/3/
DIM PRIMESELECTOR, NPRIMES/1/
PRINT "Prime Finder"
PRIMES (NPRIMES) = 2

100 FOR I = 1 TO NPRIMES
X = PRIMES(PRIMESELECTOR)
IF INT(CANDIDATE/X) * X = CANDIDATE THEN 180
NEXT PRIMES ELECTOR
1 FOUND A NEW PRIME
NPRIMES = NPRIMES + 1
PRIMES (NPRIMES) = CANDIDATE

180 CANDIDATE = CANDIDATE + 2
IF NPRIMES <> 100 THEN 100
FOR PRIMES ELECTOR = 1 TO 100
PRINT PRIMES(PRIMESELECTOR)
NEXT PRIMES ELECTOR
PRINT' All Done!'

200 STOP

*
*

*

*

*

END

REM PRINTS OUT FIRST 100 PRIME NUMBERS

DIM X, PRIMES (100), CANDIDATE/3/

DIM PRIMESELECTOR, NPRIMES/l/

PRINT "Prime Finder"

PRIMES (NPRIMES) = 2

100 FOR I = 1 TO NPRIMES
*cI\PRIMESELECTOR\
100 FOR PRIMESELECTOR = 1 TO NPRIMES

*

*
*' 1.

X = PRIMES(PRIMESELECTOR)

IF INT(CANDIDATE/X) * X = CANDIDATE THEN 180
Q = INT(CANDIDATE/X)

Copyright (C) 1978 SD 19

EDIT USER'S MANUAL

\ IF Q < X THEN 130
\\-2tt

Q = INT(CANDIDATE/X)
IF Q < X THEN 130
IF INT(CANDIDATE/X) * X = CANDIDATE THEN 180

*sIF \lu \
IF * X = CANDIDATE THEN 180

*0t
IF *iQ\
IF Q * X = CANDIDATE THEN 180

*
NEXT PRIMES ELECTOR

*
1 FOUND A NEW PRIME

*iI30\
130 ! FOUND A NEW PRIME

*z-23t
REM **** PRIME NUMBER CHASER ****
REM PRINTS OUT FIRST 100 PRIME NUMBERS
DIM X, PRIMES (100), CANDIDATE/3/
DIM PRIMESELECTOR, NPRIMES/1/
PRINT "Prime Finder"
PRIMES (NPRIMES) = 2

100 FOR PRIMESELECTOR = 1 TO NPRIMES
X = PRIMES(PRIMESELECTOR)
Q = INT(CANDIDATE/X)
IF Q < X THEN 130
IF Q * X = CANDIDATE THEN 180
NEXT PRIMES ELECTOR

130 1 FOUND A NEW PRIME
NPRIMES = NPRIMES + 1
PRIMES (NPRIMES) = CANDIDATE

180 CANDIDATE = CANDIDATE + 2
IF NPRIMES <> 100 THEN 100
FOR PRIMESELECTOR = 1 TO 100
PRINT PRIMES(PRIMESELECTOR)
NEXT PRIMES ELECTOR
PRINT' All Done!'

200 STOP
END

.... L*exit

End Of File hit
* (Back at SDOS Command Interpreter)

Copyright (C) 1978 SO 20

EDIT USER'S MANUAL

DETAILED COMMAND DESCRIPTIONS

'l'his section gives detailed information on all EDITor comm,."lnds.
Editor commands have the following syntax:

<VALUE> <COMMAND> <STRING> <DELIMITER> <STRING> <DELIMITER>

<VALUE> is an integer in the range of -32768 to +32767. The
value may be further restricted by the individual command that
uses it. The value may be supplied as a result of a previous
command. Some commands do not allow a value to be supplied.

<COMMAND> is the editing command indicating what operation is to
be performed. This is normally a single character; exceptions
are the relational commands and the extended commands (E-type).
Lower case commands are treated as the equivalent of upper case
commands.

<STRING> is an arbitrary sequence of characters, not including
the current delimiter or any characters which are given special
treatment by the operating system (these are system dependent -­
consult your operations manual). The string may include a
carriage-return <CR>. A "null" string is one that has zero
characters in it.

<DELIMITER> is a character chosen by the user to indicate
end-of-string. EDIT initially assumes "\11 (backslash) as the
delimiter, but this may be changed by the G command.

Each command has some variation of the above syntax, which is
indicated with the command description. If the command
description indicates a particular format, then the command must
be given to the editor exactly as specified, or a syntax error
will result (exception: <VALUE> is usually optional, with a
default, or the previous command may supply it).

There are ten value registers numbered 0 through 9. These
registers are useful for remembering the location of the CP.
They can also be used as counter registers or single character
registers (since a character can be represented as a value) in
the more sophisticated editing sequences.

A special "convenience" allows commands that search the text to
search for a previously entered string, if the specified search
string is null. See S command description.,

Copyright (C) 1978 SD 21

EDIT USER'S MANUAL

In the command descriptions, the following notation is used:

"n" refers to a user or previous command specified value. If the
user gives a value, it overrides the default; a value supplied by
a previous command may be overridden with the blank command; if n
is not indicated in the syntax, it must not be supplied.

"d" refers to a single digit (0-9).

\ (backslash) represents the current delimiter.

sl,s2 are strings, not including the current delimiter.

A line is a sequence of characters in the text buffer that is
bounded by carriage-return <CR> characters. It includes the CR
at the end, but not at the beginning. The current line is
defined to be a line containing a character pointed to by CP.

Workspace refers to the total space
all buffers, i.e., text buffer,
registers.

available to the editor for
command buffer, and text

"Yank" means to make the buffer empty, and then to fill the
buffer using the next page from the input file.

An iteration is a command sequence enclosed by a [] pair.

Copyrig~t (C) 1978 SD 22

EDIT USER'S ~~NUAL

nA

B

nCsl\s2\

nD

Append. If n > 04 the next n pages of the source file
are appended to the text buffer at the end of the
buffer. If n <= 0, an error is given; the default
value for n is 1. CP is positioned to the beginning of
the first appended page. The only recoverable error is
End of file hit.

Begin.
buffer.

Moves CP to the first character in the text
This command is the same as "lJ".

Change. Causes the nth occurrence of sl to be changed
to s2. If n = 0, an error is given. If n > 0, a
forward search is made. If n < 0, a backwards search
is made. The default value of n is 1. CP is left
pointing to the first character after s2 in the buffer.
See S command if sl is null. The only recoverable
error is "string not found". The change command is
equivalent to nSsl\Xs2\.

Delete. Deletes the next n characters relative to CP.
If n = 0, an error is given. If n > 0, deletion is in
the forward direction starting with and including CP.
If n < 0, deletion is in the reverse direction, but
does not include CP. There is no default value for n.
The only recoverable error is "Delete off the end of
the buffer."

Copyright (C) 1978 SD 23

EDIT USER'S MANUAL

nEA

EBsl\

Auto-type. The auto-type flag controls the automatic
typing of the current line. If n • 0, the auto-type
flag is reset. If n is 1 or -1, the flag is set.
There is no default value for n. EDIT starts with lEA.
If the auto-type flag is set, commands whioh move the
CP or make changes to the text buffer (see table
below), will automatically type (~TT) the current line
after successful execution if that command is the last
command in the command string,. For example:

BSHELLO\.EV1
will not auto-type, while

BSHELLO\
will. If n=-1 then auto-type is enabled and the CP
pos! tion \IIi 1 1 be indicated by a """ on an auto type
(exception: no caret will be displayed if CP is at 0L
of a line). For example, if the buffer in the example
above contained "SAY HELLO there.", then the session
would appear as

*BSHELLO\
SAY HELLO there.

*
This setting is recommended
concept of the CPo To find
current line use "0M",

Commands which auto-type:
A(ppend)
B(egin)
C(hange)
D{elete}
EY
F(ind)
I(nsert partial line)
J(ump)
K{ill)
L(ine)
M(ove)

for
the

persons new to the
CP position on the

N(ext)
P(unch)
Q(uerysearch)
R(emove)
S(earch)
D(ntil)
V(alueinsert)
W(rite)
X(change)
<tab> (insert partial line)

Edit Backup. Edit file sl creating a backup file. The
precise effect when executed is: ERsl\EWEDITOR.TMP\.
When an EF, EXIT, or EW is executed after an EB, the
original file sl is renamed with a .BAK extension; then
EDITOR.TMP is renamed to sl. NOTE: if sl has a device
designation in it, EDITOR.TMP will be created on that
device (if possible). The only recoverable error using
"?" is "No such file".

Copyright (C) 1978 SD 24

EDIT USER'S MANUAL

ECsl\

EF

EISl\

nEOs1\

Edit copy. Copy the entire contents of file sl into
the text buffer before CP. If there is not enough room
in the text buffer, then to make room, lines are output
from the beginning of the buffer up to CP, until the
file has been copied: the Editor will indicate this has
happened by printing out "Text preceding CP flushed".
The status of the input (ER) file is not affected. CP
is left pointing after the text copied into the buffer.
The only recoverable error ("?") is "No such file".

Edit finish. Copy the text buffer to the output file,
then copy the remaining portion of the input, if any,
to the output file. If no output file is currently
open, the input file is closed and the text buffer is
cleared. If ERsl\ was used to open an input file, a
close s1 is performed. If EWs2\ was used to open an
output file, a close s2 is performed. The buffer is
left empty. This is identical to EXIT except that
control is returned to the EDITor.

Edit input. Causes editor to suspend accepting
commands from the keyboard (specifically, channel 0 by
SDOS conventions) and to accept commands from the file
whose name is sl. When the file is exhausted, the
editor will automatically switch back to accepting
commands from the keyboard (channel 0). This command
is primarily used by DO files under SDOS which invoke
the editor so that keyboard input can be used while the
DO file is active, or to execute pre-canned sequences
of editor commands stored in a file. The only
recoverable error ("? ") is "No Such !i'ile II •

Edit output. ~ file named 51 is created and the next n
lines of the text buffer are output to the newly
created file; then the file is closed. If n<0, the
previous n lines are copied to the output file. If
n=0, the current line is written from its beginning up
to, but not including CPo If n>0, the next n lines are
output, starting from CPo There is no default value
for n. The output lines are NOT deleted from the text
buffer. The only recoverable error is "Write off end
of buffer." (i.e., n is larger than number of lines
left between CP and end of buffer} a

Copyright (C) 1978 SD 25

EDIT USER'S MANUAL

ERsl\
Edit read. Open file 81
currently open input file,
s1 is the empty string, the
new input file is opened.
("?") is "No such file".

for input. If there is a
close it, then open sl. If
input file is closed and no
The only recoverable error

ETtl,t2, ••• ,tk

EUd

nEVd

EWsl\

EXIT

nEY

EZ

Set tabs. The tab stops are set to tl,t2, •.. ,tk
(column numbers). Tab stops are used for displaying
tab characters. There are a maximum of 20 tab stops
allowed on a (displayed) line. If there are
unspecified tab stops, they are assigned values that
are increments of 8 after the last specified tab stop.
The default tab stops are 8, 16, 24, 32.. • This
command must be the last command on a command line.

Use value. The value of register d is returned as a
value for the next EDIT command. NOTE: EU0 returns the
negative of the size of last successful search target
string (negative if IISII, liN", IIQII; positive if IIFII) or
insert if CP has not been moved since; otherwise, it
returns 0. Note: d must be a digit 0-9.

Store value. The value n is stored into value register
d. This command is intended for use with EUd. There
is no default value for n. NOTE: d may only be 1-9.

Edit write. If an output file is currently open, close
it. If file s1 does not exist, it is created for usP
as the output file. EW\ closes the output file.

Exit. Perform an EF, then exit to SDOS command
interpreter.

Yank. Clear the buffer and read in n pages. If n <=
0, an error is given. If n > 0, the command is
identical to EZnA. There is no default value for n.
CP is left pointing to the first character in the
buffer. The only recoverable error is "End of file
hit."

Edit zap. An E-Z way to delete the entire contents of
the text buffer.

Copyright (C) 1978 SD 26

EDIT USER'S MANUAL

Gchar

H

nIsl\

nJ

nK

Find. Starting with CP, search the text buffer for the
nth occurrence of sl in the buffer. CP is left
pointing to the first character of sl in the buffer.
If n = 0, an error is given. If n < 0, a backward
search is made. If n > 0, a forward search is made.
The default value for n is 1. See S command if sl is
null. The only recoverable error is "String not
found ...

Get delimiter. Char is taken as the new delimiter.
Char must be a valid printing character, and must not
be a letter. The G command must be the last command on
a line, and must be followed by a <CR>. For example:

*G\

Returns the number of free bytes in the editor's
workspace as a value.

Insert. Place 81 into the text buffer just in
CP. CP remains pointing to the character
originally pointing to, i.e., after the
string. If n <= 0, an error is given. If n
insert is performed n times. n defaults to 1.

front of
it was

inserted
> 1, the

Jump. Moves the CP to the nth line in the buffer. If
n <= 0, an error is given. n = 1 does the same as a
IIB" command. n > 0, does the same as a "BnL" command
sequence. There is no default value for n. The only
recoverable error is "Jump off end of buffer."

Kill. Causes the next n lines, starting with CP to be
deleted. If n < 0, deletion is done backwards,
starting with the character before the CP. If n = 0,
the current line is deleted from its beginning up to,
but not including, the CP. If n > 0, the next n lines
are deleted starting from the CP. There is no default
value for n. The only recoverable error is "Kill off
end of buffer. II

Copyright (C) 1978 SD 27

EDIT USER'S MANUAL

nL

nM

nNsl\

nP

nQsl\

Line. Moves the CP forward across n CR characters. If
n < 0, the CP is moved backwards. If n = 0, the CP is
moved to the beginning of the current line. If n > 0,
the CP is moved forward. The default value for n is 1.
The only recoverable error is "Move CP off end of
buffer. II

Move. Moves the CP n characters. If n < 0, CP is
moved backwards. If n = 0, CP is not moved. If n > 0,
CP is moved forward. n defaults to 1. The only
recoverable error is "Move CP off end of buffer."

Search for next occurrence. Starting with the CP,
searches forward for sl in the buffer. If found, n is
decremented; if n goes to zero, the operation is
complete. Otherwise, the search is repeated starting
from the end of the last occurrence of the string. If
sl is not found in the buffer, then the current page is
punched (lP), and the operation continues. If n <= 0,
then an error is given. There is no default value for
n. Leaves CP following sl in the buffer. See S
command if sl is null. The only recoverable error is
"String not found." Note: the N command can generally
be used in place of S; this has the advantage of making
buffer boundaries mostly invisible.

Punch. The current contents of buffer is output, and
then the buffer is cleared. If n = 0, nothing else is
done: if n >= 1, then n-1 pagee are copied from the
input to the output file, and the next input page is
yanked. There is no default value for n. The only
recoverable error is "End of file hit."

Query. Like the N command, but does not output any
pages (does a lEY instead of a lP). See S command if
sl is null. The only recoverable error is "string not
found."

Copyright (C) 1978 SD 28

EDIT USER'S MANUAL

nRsl\

nSsl\

nT

nUsl\

nV

Remove. Deletes the nth occurrence of 51 and leaves CP
pointing to the first character following the deleted
occurrence of sl. If n = 0, an error is given. If n <
0, a backward search is made. If n > 0, a forward
search is made. The default value for n is 1. See S
for null Sl. The only recoverable error is "String not
found. n

Search. Searches the text buffer for the nth
occurrence of sl and leaves the CP pointing to the
first character following sl in the buffer. If n = 0,
an error is given. If n < 0, a backward search is
made. If n > 0, a forward search is made. The default
value for n is 1. A null search string (i.e., s\) will
default the search target to the previous search string
{size limited to 250 characters}. If the search for a
default string fails, the target string is displayed,
enclosed by the current delimiter. The only
recoverable error is "String not found. 1t

Type. Types the next n lines starting with the CPe If
n < 0, the previous n lines are typed. If n = 0, the
current line is typed from its beginning up to, but not
including the CP. If n > 0, then the next n lines are
typed. The default value for n is 1. IT types from CP
to the end of the line containing CP, and is useful for
determining where the editor left CP. 0TT will type
the entire line containing CP. The only recoverable
error is "Type off end of buffer. 1t

Until. Deletes all characters from CP to the nth
occurrence of sl, but not including any part of the nth
occurrence of sl. If n = 0, an error is given.
Backward deletion occurs (not including the character
under CP) if n < 0. Forward deletion occurs (including
CP) if n > ~. Leaves the CP pointing to the first
oharacter following the deleted characters. If 81 is
not found, nothing is deleted. There is no default
value for n. See S command if s1 is null. The only
recoverable error is "String not found."

Value insert. Convert n to its Ascii
equivalent and insert it in front of the CP.
or n > 127, an error is given. There is
value for n. For example, to insert a FOru4
at CP, use "12V".

character
If n < 0,

no default
character

Copyright (e) 1978 SD 29

EDIT USER'S MANUAL

Xsl\

nYsl\

Z

Write. Writes lines to the output file. If n < 0, the
previous n lines are copied to the output file. If n =
0, the current line is written from its beginning up
to, but not including CP. If n > 0, the next n lines
are output, starting from CP. There is no default
value for n. The output lines are deleted from the
text buffer. The only recoverable error is "Write off
end of buffer. II

Exchange. This command only works if the CP has not
been moved since the last I, C, S, N, Q, F, or X
command (these commands set EU0 to the size of the
string inserted or replaced). This command exchanges
sl for the last string inserted, changed, searched for
or exchanged. Register 0 is used to control the
exchange. If EU0 yields 0, X will not function. If
EU0 is non-zero the effect of the X instruction is:
EU0DIsl\.

Verify string. In n = 1, sl is compared to the string
pointed to by CP. If n = -1, sl is compared to the
string before CP. n <> 1 or n <> -1 is illegal. If sl
matches, the value 1 is returned, else returns 0. The
default value for n is 1. See S command if sl is null.

Zip to end of buffer. Moves the CP to the end of the
text buffer (beyond the last character).

Copyright (C) 1978 SD 30

ED~~ USER'S MANUAL

AIsl\

n[

nJ

?

n$

#d

n

Tab. Like I, but repetition cannot occur, and s1 is
placed in the buffer pr~ceded by a tab character. CP
is left pointing to the first character after the
inserted string.

Repeat. Do all commands inside [] n times. If n < 0,
an error is given. If n = 0, commands inside the []
are skipped over. If n is not given, the iteration is
repeated forever (exit is normally made via A or]).
The escape key can be used to abort the iteration.

Continue. If n = 0, command interpretation will exit
the [J pair. If n <> 0, decrement the iteration
counter and continue interpreting commands in the
iteration from the matching [if the counter> 0. If
the iteration count goes to zero, exit the [] pair and
continue execution with the command to the right of the
]. The default value for n is 1.

Status. This corarnand must immediately follow a
command. A value followed by a "? II is not allowed.
Yields 0 if the previous command failed, else yields 1.
This value can be used as a value in an expression for
the next command.

Abort. Command execution will exit the [J pair if n =
0. If n <> 0, A is a no-oPe There is no default value
for n.

Complement. If n = 0, the result is 1, otherwise 0.
This is used to complement the state of relationals,
status, etc. There is no default value for n.

Label. Used as a target of conditional branches. If d
= 0, an error is given.

Branch. If n < 0 or n > 9, an error is given. If n =
0, no action is taken. The editor will continue
command interpretation at label n if n > 0 and n <= 9
(i.e., start execution immediately following a #d
command). For example:

[CHELLO\GOODBYE\?A @=' .*1 0TTJ IMOM\ #1
There is no default value for n. Branching into an
iteration is not allowed, but branching out of one is
legal.

Copyright {C} 1978 SO 31

EDIT USER'S MANUAL

'char

ni

%

@

n=
n<
n<=
n>=
n>
n<>

n+
n-

n*
n/
n&
n!

Value. Yields the value of the character following the
single quote. Char must be a printing character.

Continue. If n = 0, no action is taken. If n <> 0,
the editor decrements the iteration counter, and
continues the iteration from the innermost enclosing [
if the counter > 0, else command interpretation exits
the innermost enclosing [] pair (similar to n]
command). There is no default value for n.

Iteration count value. Yields the number
iterations (i.e., on the first iteration,
on the second iteration, % yields 2, etc.

of executed
% yields 1,

At. Yields the numeric value of the Ascii character
that CP points to. Only if CP is at the end of the
buffer will @ yield 255. A null in the buffer (rare
easel) will cause @ to return zero.

Relationals. Each relational must be followed by a
value or a value generating command. Yields 0 if the
relation is false, 1 if the relation is true. There is
no default value for n.

Add and subtract. The default value for n is 0~

Multiply, divide, and, or.
operations. For example,
is no default value for n.

& and! are bitwise binary
5111 = 15, 5&11 = 1. There

Period. The value representing 'CP's position (counted
in characters) with respect to the beginning of the
text buffer. When "." has the value zero, the CP is at
the beginning (B) of the buffer. B23M gives the value
"23" to "." if there are more than 23 characters in the
buffer.

Copyright (C) 1978 SD 32

EDIT USER'S MANUAL

()

n<CR>

n<BLANK>

Colon. The value representing the current line number
with respect to the beginning of the text buffer. B15L
gives ":" the value "15" (if there are more than 15
lines in the buffer).

Precedence change. Editor expressions are normally
evaluated with operator precedence determining the
order of operations ("algebraically") unless ()
overrides this. Operator precedence is as follows:

* / & are evaluated first
+ - 1 are evaluated next.
Relationals are evaluated last.

Print value. If an explicit value precedes the CR,
then that value is printed. If n is not supplied,
nothing is typed. If a command line consists merely of
<CR>, it is treated as if lLlT had been typed.

Eat value. The value is consumed. This command is
useful for constructing command sequences that consist
of a command that explicitly cannot have a value
preceded by a command that yields a value; this can be
done by separating the two commands with the blank
command. If n is not supplied, the blank command is a
no-oPe This command can be used to increase
readability of macros.

Copyrigr~ (C) 1978 SO 33

EDIT USER'S MANUAL

COMMAND STRING PROCESSING

EDIT collects an entire command string before executing any
commands. A command string is a series of commands ended by a CR
character (a CR embedded in a string argument does not "end" the
command string). Once a command string has been entered, the
commands are executed from left to right until no more commands
remain. Note that looping may occur due to the or] commands.

Typed input to EDIT is subject to the operating system
conventions for line editing on console input.

Command interpretation may be stopped by using the ESCape key.
This key is checked upon encountering a ~,], yank, punch, type,
extension command (E-type), or during console input. A message
is given when the ESCape key is used.

Command interpretation is normally left-to-right, with changes in
order as directed by [], A, ~, and commands.

Any command exhausting workspace room
interpretation to terminate.

ERROR HANDLING

EDITor commands complete in one of 3 ways:

Successful termination
Recoverable error
Abortive error

will cause command

If an editor command can be performed exactly as requested by the
user, the command terminates successfully, and the editor then
proceeds to execute the next command.

If a command fails for an unusual reason, then the editor will
abort execution of the remainder of the command string, print
the line (containing the error) of the command string, a pointer,
and an error message describing the problem.

Example:

*ER%\
ER%\ ,..

Filename doesn't begin with A-Z or $

Copyright (C) 1978 SD 34

EDIT USERIS MANUAL

Some commands fail for common reasons, e.g., the search command
might not find the desired string. Automatic error recovery may
be built into macros for handling the most common reasons. The
success or (recoverable) failure of a command may be tested by
use of a trailing II? II (status) following the command; this?
Will produce a value of 1 for success or 0 for failure. This
value may be used by a following command to effect conditional
branching or looping.

Example:
sABC\? sDEF\#lxXYZ\

changes the fIrst occurence of ABC or DEF to XYZ.

Each command that can fail in a recoverable fashion has only one
recoverable condition. All other failure conditions are treated
as abortive, i.e., a Disk Read Error is a non-recoverable error
condition for an N command.

In the case of abortive command termination, the EDITor will
allow the user to save (insert) the entire command string
(delimiters, commands, text and all) in the buffer at the current
CP if the command string is more than 40 characters long. This
is a useful "do what I mean" error recovery in cases where the
user forgot to precede a large chunk of text by an I, and many
other circumstances.

Example:

.edit

EDIT Vl.lq Copyright (C) 1979 Software Dynamics
*ewdl:lamb\
*Once upon time, there was a little lamb
\who loved to go to school with his
\master. Everybody knew the lamb was
\gentle and kind.
\\

Once upon time, there was a little lamb

Illegal character
Did you really want to insert that whole command string? y
*exit

A response of anything not starting with the letter N saves the
offending command; any other response throws it away.

If an error (other than 216 [Can't Find String] or 226 [End of
File prior to IIA" or "EY U

]) occurs while the EDITor is running
under a DO file and is not operating in EI mode, then at EXIT
time, the EDITor will report the existence of that error to SDOS.

Copyright (C) 1978 SD 35

EDIT USER'S MANUAL

VALUES RETURNED FROM COMMANDS

The following commands return explicit values:

@ : * / & + - = < <= 1
>= > <> % $? EVd nYsl\ .

The following commands return implicit values (the implicit
value can be converted to an explicit value by use of a trailing
U?II command). These commands either succeed or they give errors
and stop- If they are followed by the U?" command, and no error
occurs during command execution, a 1 is returned; if a
recoverabl~ error occurs, a 0 is returned; and if a
non-recoverable error occurs, the command string is aborted.

A C D EB EC ER EY F N P Q R S U

The following commands also return implicit values; these
commands either succeed, or they fail in a recoverable way.
However, if they fail, they never give errors. If they are
followed by the "?,. command, a 1 or 0 is generated if the command
succeeded or failed respectively. These commands all share the
property that a recoverable failure has to do with an operation
that runs off the end of the buffer, and are friendly about it
for the user's convenience.

EO K J L M T W

All the remaining commands either succeed or abort and do not
generate success/fail values. However, if they are successful
and are followed by the "?" command, a 1 is generated.

All the commands that return explicit values
generate values for the following commands that
them. For example, ".EVll! would remember CP in
"BEUlM" would restore CPo

can be
use or
register

used to
require
1, and

Using the implicit value commands require that they be followed
by the "?" command to generate values. For example:

#1 SHELLO\?
is a loop that searches for "HELLO" until it is not found, but

#1 SHELLO\
is an error; the implicit value generated as a result of the
success or failure of the search must be made explicit by the "?"
command.

Copyright (C) 1978 SD 36

EDIT USER'S MANUAL

REPEATING COMMAND SEQUENCES

Command sequences may be repeated by enclosing the sequence in a
[] pair. Such loops are particularly useful for performing
repetitive editing functions on the text buffer. For example,
let's assume that we wanted to change the first 100 occurrences
of "LDAA" to "STAA". We could say:

l00[CLDAA\STAA\]

If we wanted to change all occurrences, we could say:

[CLDAA\STAA\?]

The "?" command used here allows the iteration to cease when
"LDAA" is not found. Note that [] by itself will keep the
editor very busy doing nothing (use the ESCape key to stop).

Any number of commands may be contained in a command string
within the [] pair which allows for very powerful commands.
Below is a example of a command sequence which will change all
lines containing a IIjmp" to a "bra ll and would type each line in
which a change took place.

[CJMP\BRA\?"'0TT]

A sequence of commands in a loop can be terminated by striking
the ESCape key at any time during execution.

Copyright (C) 1978 SD 37

EDIT USER'S MANUAL

SHORT SOPHIS1'ICATED EDITING EXAMPLES

1.) Edit file "TESTl", change "NUTZ" to "NUTS", and quit:

*ERTEST1\EWTEST1\lNNUTZ\XNUTS\EXIT

2.) Edit file "PROGRAMS", insert "95 INPUT 'ZIP: ' ZIP$" after
line 90, verify the insertion, and quit:

*ERPROGRAMS\EWPROGRAM6\lN90\
End Of File hit
90 WRITE #SCREEN, ZIPX, ZIPY
*
100 GOSUB 2900 \ 1 GO PUT THE ZIPCODE INTO THE FILE
*I95 INPUT 'ZIP: ' ZIPS
\\-2TT
90 WRITE #SCREEN, ZIPX, ZIPY
95 INPUT 'ZIP: ' ZIPS
100 GOSUB 2900 \ ! GO PUT THE ZIPCODE INTO THE FILE
*EXIT

3.) Edit file IIPROGMAN", and change all the mispelled versions of
II AMMOUNT II to "AMOUNT" and show each line: then quit. "PROGMAN"
is a large file so we will use the N command.

*ERPROGMAN\EWPROGMAN\[lNAMMOUNT\?AXAMOUNT\0TT]EXIT

4.) Create a new file
MANKIND", and quit. The
measures were used.

* 1::1T.T T T ... TT, \ .L:.!nu Ul.'U\. \

"JUNK II
,

typist

*IPERFRM A JUSTIXE\0T

insert "PERFORM AN INJUSTICE TO
made mistakes, so corrective

PERFRM A JUSTIXE*ITO MANKIND\0LT
PERF&~ A JUSTIXETO MANKIND*CRM\ORM\
PERFORM A JUSTIXETO MANKIND*ZI
\\-LSA\0T
PERFORM A*IN\M0T
PERFORM AN *IIN\CX\C\
PERFORM AN INJUSTICETO MANKIND
*CTO\ TO\
PERFORM AN INJUSTICE TO MANKIND
*EXIT

5.) Merge file "TEMPI" onto the end of "TESTII.

*ERTEST\EWTEST\[lA?AlP]ECTEMP1\EXIT

Copyright (C) 1978 SO 38

EDIT USER'S MANUAL

ERROR SUMMARY

200 - Syntax Error
201 - Can't find branch target
202 - Can't find "J"
203 - Incorrect Bracket Nesting
204 - *** EDITor error ***
205 - Illegal argument for command
206 - Zero is not a valid argument
207 - command requires argument
208 - Command doesn't want an argument
209 - No such "E" command
210 - Illegal character
211 - Can't use that as delimiter character
212 - Too many)s
213 - Too many (s
214 - Xchange not valid, must do search or insert first
215 - Command not allowed while doing edit with EB
216 - Can't find string
217 - Q register index must be 1 to 9
218 - Need to open input file first
219 - Text Buffer is full
220 - Command buffer is full
221 Don't have enough lines in buffer to J that far
222 - Illegal tab stop list
223 - Need to select output file first
224 - Unbalanced [J's
225 - Bracket Stack overflow or underflow
226 - End of File prior to "A" or "EY"
227 - Buffer approaching full, operation aborted
228 - Error encountered during EDIT for which no recovery was provided.
229 - Overflow occurred in operation
230 - Can't find matching [

opyright (C) 1978 SD 39

!

$
%
&
()
*
+

INDEX

.BAK Extension
/
0TT

<
<=
<>
<Blank>
<CR>
=
>
>=
?
?, Trailing
@

A
ASCII Null
Abort
Add
And
Append
At
Automatic Type
Automatic Type, Disable
Automatic Type, Engage
B
Backup Copy
Begin
Branch
Branch, Conditional
Buffer
Buffer Boundary
Buffer Size
Buffer, Beginning
Buffer, Clear
Buffer, Command
Buffer, Delete Text
Buffer, End
Buffer, Null
Buffer, Output

32
31
31
32
32
33

3,19,32
32
32
32
24
32
16
33

32,34
32
32
32
33

7,15,19,27,28,33
32
32
32

31,37
35,36

32
7,8,23

2
31

32
7,8,23

32
1,24

16
16

7,8,23,27
7,9

7,8,23
31

31,-35
5,22,23,28,35

28
2
7

10,26,28
2,3,4,22

26
23
32
28

Buffer, Text 2,3,4,5,6,8,9,10,12,13,22
23,25,27,29,30,37

Buffer, Text Beginning
Buffer, Text End
Bytes, Free

8,32,33
15
27

C
CP

7,8,13,23
4,5,6,8,11,12,14,22,23,27,29

CP Position
CP, Move Character
CP, Move Line
CP, Move to End
CP, Move to Next Line
CR Character

32
7
7
7
7

34
Carriage Return
Change

3,4,5,8,14,15,21,22
1,7,8,9,23,30

33 Change, Precedence
Character Pointer
Character, ASCII
Character, Activation
Character, Delete
Character, Remove
Character-Oriented Edit
Colon
Command
Command
Command
Command
Command
Command
Command
Command
Command
Command
Command
Command
Command,
Command,
Command,
Command,
Command,
Command,
Command,
Command,
Command,
Command,
Command,
Command,
Command,
Command,
Command,
Command,

Input
Interpretation
Line
Sequence
Sequence, Construct
Sequence, Repeat
String
String Process
Syntax Incorrect
Termination, Abortive
Value

A
Automatic Type
Blank
Change
Common
Dangerous
Delete
Description
Detailed Description
Display
EB
ER
EW
EXIT
Extended
Format

4,5
29,32

3,4
9
9
1

33
21

3
34

1,33
16
33
37

4
34

4
35

9
3

24
22,33

3
16

3
3

21
21

1
3
3
3
3

21
21

Command, Insert
Command, One Character
Command, P
Command, Relational
Command, Repeat
Command, Search
Command, Syntax

3
3
3

21
31

3

Command, Three Character
Command, Two Character
Command, Type

21
3
3
3

Complement
Computer Memory
Concept
Context
Continue
Copy
Copy, Similar
Create
Create Text File
D
Default
Delete
Delete Until
Delimiter
Delimiter, Change
Display
Display Screen
Display, Automatic
Divide
EA
EB
EC
EDITORoTMP
EF
EI
EO
ER
ET
EU
EV
EW
EY
EZ
Edit Backup
Edit Finish
Edit Input
Edit Output
Edit Process
Edit Read
Edit With Backup
Edit Write

31
2
2

2,4
31,32
25,30

10
10

2
7,9,23

27,28
4,7,9,23,27,29,30

7,14
3,11,21,22,35

27
7
6
9

32
24

7,9,24
25
24

25,26
25
25

7,9,10,25,26
26
26
26

7,9,10,26
26,28
10,26

24
25
25
25

3
7,10,26

7,9
7,10,26

Edit Zap 26
Edit, Terminate 10
Editor, Context 13
End of File 8
Error 4,23
Error Code 4,39
Error Handling 34
Error Recovery 35
Error Recovery, Automatic 35
Error Summary 39
Error, Abortive 34
Error, Delete Off End Of Buffer 23
Error, Disk Read 35
Error, End Of File'Hit 23,26,28
Error, End Of The Buffer 36
Error, Jump Off End Of Buffer 27
Error, Kill Off End Of Buffer 27
Error, Move CP Off End Of Buffer 28
Error, No Such File 24,25,26
Error, Non-Recoverable 36
Error, Recoverable 23,24,25,26,27,28,29

String Not Found
Syntax

Error,
Error,
Error,
Error,
Example
Example,
Exchange
Exit
Extension
F

30,34,36
23,27,28,29

21
29 Type Off End Of Buffer

Write Off End Of Buffer 25,30
17
38
30

Sophisticated

Failure, Reason
Feature
File
File Name, Null
File, ASCII Text
File, DO
File, Destination

7,9,10,25,26,35
34
27
35

1
2

10
1

25,35
3

19 File, Existing
File, Input
File, Merge
File, New

1,7,8,10,12,22,25,26
1

File, Original
File, Output
File, Source
File, Split
File, Temporary
File, Temporary Output
Find
Form

3,17,25
9,10

1,7,10,12,25,26,30
3
1
9
9

27
17

Form Character
G
H
I
Input
Input, Console
Insert
Iteration
Iteration Count Value
Iteration Counter
Iteration, Abort
J
Jump
K
Key, Escape
Keyboard, Suspend
Kill
Kill Line
L
Label
Line
Line Display
Line-Oriented Edit
Looping
Looping, Conditional
Lowercase
M
Macro
Macro Readibility
Minus
Mistake Correction
Modified Page
Move
Multiple Commands
Multiply
N
Negative Argument
Next Occurrence
Occurrence, Unique
Operating System
Operating System Convention
Operation, Binary
Or
P
Page
Period
Prompt
Prompt Character
Punch
Q

Query

2
21,27

27
7,11,27

34
34

7,11,27,30
22,31

32
31,32

31
27
27

7,11,27
31,34,37

25
7,27

11
7,12,13,28

31
12,22,28

14
1

34,37
35

4,21
7,12,13,28

1,35
33

8
4
3

12,28
1

32
28
11
28
13

10,21,34
2

32
32

7,12,28
2

32
17,19

3
7,12,28,34

28
28

R
Recovery
Register, Text
Relational
Remove
Rubout

7,13,29
9

22
31,32

1,7,9,13,29
4

S 7,13,16,23,27,28,29,30
SDOS
SDOS Command Interpreter
Scroll

4,10,25
26

6
Search
Search, Backwards
Search, Default
Search, Forwards
Specified Character
Specified Phrase
Specified Word
Status

1,7,9,13,26,28,29,30
8,29

29
29

2
2
2

String
String Argument
String, Empty
String, End
String, Null

31
21

4
26
21

21,29
String, Null Replacement
String, Target

13
26,29

30 String, Verify
Subtract
Successful Termination
T

32
34

7,14,29
31
26
26
35

Tab
Tab, Default
Tab, Set
Text
Text Block Duplicating
Text Deletion

2
1
4
1

Text Display
Text Insertion
Text Preceding CP Flushed
Top of Screen

25
6

7,14,29,34
16

Type
Type From Beginning
U 7,14,29

29
4,21

29
3,21,31

29
1,21,26

21,22,23,24,25,26,27,28
29
33

Until
Uppercase
V
Value
Value Insert
Value Register
Value" Default

Value, Eat

Value, Explicit
Value, Implicit
Value, Numeric
Value, Print
Value, Relational
Value, Store
Virtual Terminal Driver
W
WARNING
Window, Text
Workspace
Workspace, Free
Write
X
Y
Yank
Z
Zip
[]
]

"I
"L

36
36
32
33
32
26

4
30
14

6
2,22,34

27
30

16,30
30

22,26,28,34
7,15,30

30
22,31,32,34,37

34
31,34

31
2,17

31,34

