
DIGITAL SIGNAL
PROCESSING LIBRARY

USER MANUAL

Sonitech International Inc
83 Fullerbrook Road
Wellesley, MA 02181 , USA

Version 1.0

Copyright (C) 1988, Sonitech International Inc.

This publication, or parts thereof, may not be reproduced in any
form, by any method, for any purpose, without written permission
of Sonitech International Inc.

IBM, IBM PC/AT, IBM PS/2 are trademarks of International Business Machine Corp.

Microsoft C is a trademark of Microsoft Corporation

Digital Signal Processing Library

TABLE OF CONTENTS

1.0 OVERVIEW

1.1 Introduction .. 1
1.2 System Requirements .. 1
1.3 Registration and Warranty ... 1
1.4 System Installation ... 2
1.5 Test Programs .. 2
1.6 Finding the Source ... 2

2.0 DSPL DESCRIPTION

2.1 Module Classification ... 3
2.2 Compiling and Linking Applications Programs" ... 7
2.3 Error Messages .. 7

3.0 TEST PROGRAMS

3.1 Test Program Overview ... 8
3.2 Test Program and Library Cross Reference 9
3.3 Test Program Listing .. 9

LIBRARY FUNCTIONS

acorr.c (R) ... LD-3
acs.c (R) .. LD-4
burg.c (R) .. LD-6
ccep.c (R) ... LD-7
cencd.c (R) ... LD-9
chlsky.c (R) ... LD-10
cosft.c (R) ... LD-11
cov.c (R) ... LD-13
durbin.c (R) ... LD-14
encd.c (R) .. LD-15
elcf.c (R) .. LD-16
erlc.c(R) ... LD-17
expdev.c (S) ... LD-18
ffadd.c (R) .. LD-19
ffmul.c (R) .. LD-20
fft.c (R) ... LD-21
gasdev.c (S) .. LD-23
gentwd.c (I) .. LD-24
genwin.c (!) .. LD-25
genzec.c (I) ... LD-28
gshf .c (I) .. LD-29
lcosft.c (R) ... LD-30

Digital Signal Processing Library

lrfft.c (A)•..........•...•......•........•.........••.......................•...•.... LD-32
ltwofft.c (A) .. L0-34
laguer.c (U) .. LD-36
mmult.c (A) .. LD-38
orddit.c (R) .. LD-40
ran1.c ($) ... LD-41
rbit.c (S) ... LD-42
rfft.c (A) .. LD-43
sinft.c .. L0-45.
synd.c (A)•....•........•..•.•.••..•..•...•••.•.•••..••.••........•..•....... LD-47
twoddct.c (A) ... LD-48
twodfft.c (A) ... LD-50
twofft.c (A) ... LD-52
vitbl.c (A) ... LD-54

APPENDIX

Test Program Listings

xbch.c .. TP-2
xburg.c .. TP-5
xccep.c .. TP-6
xchlsky.c .. TP-8
xconv.c ~ .. TP-10
xcosft.c .. TP-13
xdurbln.c .. TP-15
xexpdev.c .. TP-17
xfft.c ... TP-18
xgasdev.c .. TP-21
xlaguer.c .. TP-22
xmmult.c .. TP-24
xorddit.c .. TP-27
xran1 .c ... TP-29
xrbit.c ... TP-31
xrfft.c .. TP-32
xsinft.c ... TP-34
X2fft.c ... TP-36

Error Messages

Registration and Warranty

Digital Signal Processing Library

DIGITAL SIGNAL PROCESSING LIBRARY

1.0 OVERVIEW

1.1 Introduction

The Digital Signal Processing Ubrary (DSPL) provides a comprehensive
set of digital signal processing (DSP) and utility functions in order to
provide high-level language support tools for real-time applications
development. It is written in the 'C' programming language, which is
widely accepted as the high-level language of choice for real-time digital
signal processing applications development. 'C' compilers are available
for many leading floating-point digital signal processors. DSPL is portable
to most of the leading commercially available compilers for signal
processors and computer systems.

DSPL is compiled under Microsoft C 5.0.

1.2 System Requirements

DSPL conforms to the requirements of Microsoft 'C'. It is assumed that
you are familiar with Microsoft 'C' compiler and the 'C' language. Test
program source code is provided; these programs can guide you to use
these functions in your applications.

DSPL (Library)

The minimum requirements for using the DSPL ~ibrary) on the IBM PC or
PS/2 are:

- a Microsoft or compatible C compiler
- 256 K memory
- 2 double sided disk drives
- DOS 3.0 or later

DSPL (Source Code)

DSPL source code may be compiled on any standard (Kernighan &
Ritchie) 'C' compiler.

1.3 Registration and Warranty

The registration form and warranty information is given in the back of this
manual. We encourage you to return the completed registration card.

DSPL Overview - 1

Digital Signal Processing Library

1.4 System Installation

Make a backup of all the disks in this package and store the original disk
In a safe place. Disk copy can be done using the DOS command
DISKCOPY (refer to your DOS manual for more information on this
command).

The 'README.DOC' file on Disk 1 contains Installation Information.

DSPL is provided for all the four Microsoft C 5.0 models: (LIBRARY
diskette)

spl - small model
spic - compact model
splm - medium model
spll - large model

1.5 Test Programs

Test programs are provided for each library routine and in some cases
several library programs are called from a single test program. Listings of
these test programs are provided in the Appendix.. Source for the test
programs is provided on diskettes included with this package (TEST
PROGRAM_ A and TEST PROGRAM_ B diskettes).

1.6 Finding the Source

If you ordered DSPL with the source code option, the source code is
provided on a separate diskette (SOURCE diskette). All C source files
end in the file extension '.c'.

DSPL Overview - 2

Digital Signal Processing Library

2.0 DSPL DESCRIPTION

2.1 Module Classification

DSPL modules description Is provided In the LIBRARY DESCRIPTION
section of this manual.

DSPL has four major classes of modules:

lnitilization Modules (I):

1) Modules that are generally called during the Initialization portion
of a real-time application. An example is the generation of a table of
"twiddle factors" used later on by a Fast Fourier Transform algorithm.

Real Time Modules (R):

2) Modules that are called at regular Intervals during the execution
of a real-time application, and therefore are time-critical. An example
is a Fast Fourier Transform algorithm.

Simulation Modules (S):

3) Modules that are called at regular intervals, but are not time
critical. Such functions are generally used to test out a real-time
application, but do not form part of it. An example is the generation
of additive noise to verify the performance characteristics of a
modem.

Utility Modules (U):

4) Modules that are used to build and analyze signal processing
algorithms. An example is a routine that plots the poles and zeros of
a rational transfer function.

Each module in this library is classified using the above categories.
The category Is shown parenthetically Immediately after the module
name;

(R) stands for real-time module,
(I) for initialization module,
(S) for simulation module
(U) for utility module.

Applications written with the above classification in mind generally run
more efficiently even though such a classification may not be essential for
non-real time applications. Thus, DSPL reduces the gulf that separates
real-time applications development and non-real time design and
simulation to develop and evaluate signal processing algorithms. It should
be noted that the above classification is not rigid; thus a routine such as a

DSPL Overview - 3

Digital Signal Processing Library

random number generator, denoted as (S), may In fact be used for
dithering In a PCM application. In this case, the appropriate classification
is (R). However, modules denoted as (S) In DSPL are generally not
optimized to minimize execution time.

The modules denoted by (R) represent a wide cross-section of Instruction
types used by real-time signal processing algorithms and applications.
They Include FFT algorithms (where Indexing and floating-point arithmetic
are the main operations), system identification algorithms (where
numerical Ill-conditioning sometimes occurs; thus testing the dynamic
range of the processor), Viterbi decoding (a dynamic programming
algorithm, where comparisons, conditional branches, and Indexing
operations predominate), and the decoding of error correcting codes
(where Integer arithmetic, bit-wise operations, indexing operations, and
conditional branches are extensively used). Thus, the processing time for
these functions will serve as benchmarks against which the performance
of different signal processors and their associated 'C' compliers may be
compared.

For each function, the DSPL library reference has the following
format:

Module name:
Inputs:
Outputs:
Processing:
Examples:
Related Modules:

The following Is a list of functions with a brief description of each:

DSPL Overview - 4

Digital Signal Processing Library

acorr.c (R) - Routine to obtain the autocorrelation sequence of a data
record.

acs.c (R) - Routine to Implement the add-compare-select logic of the
Viterbi Decoder.

burg.c (R) - Routine to obtain the predictor coefficients of a data
record directly using the maximum Entropy Method
(MEM).

ccep.c (R) - Routine to calculate the complex cepstrum of a data
record.

cencd.c (R) - Routine to generate the encoded symbol stream using
a convolutlonal encoder.

chlsky.c (R) - Routine to solve the autocorrelation normal equations
using Cholesky decomposition.

cosft.c (R) - Routine to calculate the Discrete Cosine Transform
(OCT) of. a real-valued data sequence.

cov.c (R) - Routine to obtain the covariance matrix of a data record.
durbln.c (R) - Routine to solve the autocorrelation normal equations

using Durbin recursion.
encd.c (R) - Routine to encode an Information vector to obtain the

code vector.
elcf.c (R) - Routine to find the coefficients of the error locator

polynomial.
erfc.c (R) - Routine to find the roots of the error locator polynomial.
expdev.c (S) - Routine to generate an exponentially distributed

random variable.
ffadd.c (R) - Routine to add two elements of a finite field.
ffmul.c (R) - Routine to multiply two elements of a finite field.
fft.c (R) - Routine to calculate the Discrete Fourier Transform (OFT) of

a complex-valued data record.
gasdev.c (S) - Routine to generate a Gaussian distributed random

variable.
gentwd.c (I) - Routine to generate a cosine table that Is used by most

"transform" routines.
genwin.c (I) - Routine to generate commonly used "windows" for

spectral analysis.
genzec.c (I) - Routine to generate the Zech's logarithms of a finite

field.
gshf.c (I) - Routine to generate a table of shifted versions of a

generator polynomial.
icosft.c (R) - Routine computes the Inverse Discrete Cosine

Transform (IDcn of a real-valued data record.
lrfft.c (R) - Routine computes the real valued Inverse Discrete Fourier

Transform (IDFT) of length N given Its first N/2 + 1
complex-valued Fourier components.

ltwofft.c (R) - Routine computes the real-valued Inverse Discrete
Fourier Transform (IDFn of length N given Its first N/2 +
1 complex-valued Fourier components.

laguer.c (U) - Given the degree m and the degree m+ 1 complex
coefficients of a polynomial, this routine improves the
root of the mth degree polynomial using Laguerre's
method.

DSPL Overview - 5

Digital Signal Processing Library

mmult.c (R) - Routine multiplies N matrices after finding the best
order in which to do the multiplications.

orddit.c (R) - Routine to obtain half-tone Images from gray-level
images using ordered dither.

ran1 .c {S) - Routine to generate a uniformly distributed random
variable.

rblt.c (S) - Routine to generate a random bit sequence using a
maximum length shift register.

rfft.c (R) - Routine to compute the first N/2 + 1 complex components
of the Discrete Fourier Transform {OFT) of a real-valued
data sequence of length N.

slnft.c - Routine to compute the Discrete Sine Transform {DST) of a
real-valued data record.

synd.c {R) - Routine to compute the syndrome from the received
vector.

twoddct.c (R) - Routine to compute the two-dimension Discrete
Cosine Transform {2-D OCT) of a real-valued two
dimensional array.

twodfft.c (R) - Routine to compute the two-dimensional Discrete
Fourier Transform {2-D FFT) of a complex-valued two
dimensional array.

twofft.c (R) - Routine to calculate the first N/2 + 1 components of the
Discrete Fourier Transforms (DFT's) of two real-valued
data sequences of length N simultaneously.

vitbi.c (R) - Routine to implement a Viterbi decoder.

DSPL Overview - 6

Digital Signal Processing Library

2.2 Compiling and Unking Applications Programs

Application programs can be complied and linked as shown below. Be
sure that your the model matches with the library model.
The following example uses the •sma11• model of the Microsoft 'C' 5.0
compiler.

Note: Assume that:

C:\bln has the complier
C:\lib has the libraries
C:\dspl has the your test source file 'xfft.c'

To compile your source program:

c:\dspl\cl /c /AS xfft.c

To link the 'xfft.obj' object module with the small model library, spl.lib, to
produce the executable module, 'xfft.exe':

c:\dspl\link xfft,,,spl

You may wish to refer to the Microsoft C manual for more Information
about compiling and linking files in Microsoft C.

2.3 Error Messages

Errors should not generally be encountered during the use of OSPL.
However, some errors due to numerical Ill-conditioning may occur as all
DSPL routines use single precision floating point numbers (24 bits
mantissa and 8 bits exponent). DSPL flags these errors by printing error
messages and returning to the system. This feature may be changed to
just return to the calling program by changing routine 'splerror' In file
'splutil.c' whose source code is provided with the library, and whose
listing appears at the end of this manual. The procedure for making this
change is to compile the modified 'splutil.c' and to rebuild the library
'spl.lib' using the microsoft library manager. The following commands
accomplish this task:

- cl /c splutll.c
- lib
- microsoft screen message should appear ...
- Library name 'spl'
- Operations '-splutil + splutll'
- Library cross reference 'spl xrf'
- Output library 'spl'

This procedure saves the old version of the library in 'spl.bak', while the
new version will be in 'spl.lib'.

The error message list is given In the Appendix.

DSPL Overview - 7

Digital Signal Processing Library

3.0 TEST PROGRAMS

3. 1 Test Program Overview

Each routine In DSPL (except 'twodfft' and 'twoddct') has been tested
using the following test programs. As far as possible, test programs
attempt to address the use of DSPL In applications that are likely to arise
In practice. Thus, you may, In many instances, be able to use a
considerable portion of the software of a test program In your application,
or use the software as a guide to program your application.

The input parameters to the test programs are accepted from the
keyboard and the output printed on the screen. All screen 1/0 is
alphanumeric except for the output of xorcldit.c which writes graphics
data. This program would need to be modified slightly to select different
video 1/0 drivers for CGA, EGA, VGA, etc. graphics cards.

DSPL Overview - 8

Digital Signal Processing Library

3.2 Test Program and Ubrary Cross Reference

The following Is a list of test programs provide and the library routines
they test:

xbch.c - elcf.c, encd.c, er1c.c, ffadd.c, ffmul.c, genzec.c, gshf .c,
synd.c

xburg.c - burg.c

xccep.c - ccep.c, gentwd.c, twofft.c

xchlsky.c - chlsky.c, cov.c

xconv.c - acs.c, cencd.c, vitbi.c

xcosft.c - cosft.c, gentwd.c, lcosft.c

xdurbin.c - acorr.c, durbin.c, genwin.c

xexpdev.c - expdev.c, ran1 .c

xfft.c - fft.c, gentwd.c

xgasdev.c - gasdev.c, ran1 .c

xlaguer.c - laguer.c

xmmult.c - mmult.c

xorddit.c - orddit.c

xran1.c - ran1.c

xrbit.c - rbit.c

xrfft.c - gentwd.c, lrfft.c, rfft.c

xslnft.c - sinft.c

x2fft.c - gentwd.c, ltwofft.c, twofft.c

3.3 Test Program Listing

The test program source code is provided in Test Program_ A and Test
Program_ B diskettes and program listing Is given in the Appendix.

DSPL Overview - 9

Digital Signal Processing Library

LIBRARY DESCRIPTION

The following is a list of the library modules:

acorr.c {R) - Routine to obtain the autocorrelation sequence of a data
record.

acs.c {R) - Routine to implement the add-compare-select logic of the
Viterbi Decoder.

burg.c {R) - Routine to obtain the predictor coefficients of a data
record directly using the maximum Entropy Method
(MEM).

ccep.c (R) - Routine to calculate the complex cepstrum of a data
record.

cencd.c (R) - Routine to generate the encoded symbol stream using
a convolutional encoder.

chlsky.c {R) - Routine to solve the autocorrelation normal equations
using Cholesky decomposition.

cosft.c (R) - Routine to calculate the Discrete Cosine Transform
{OCT) of a real-valued data sequence.

cov.c (R) - Routine to obtain the covariance matrix of a data record.
durbin.c {R) - Routine to solve the autocorrelation normal equations

using Durbin recursion.
encd.c (R) - Routine to encode an information vector to obtain the

code vector.
elcf.c (R) - Routine to find the coefficients of the error locator

polynomial.
eric.c (R) - Routine to find the roots of the error locator polynomial.
expdev.c {S) - Routine to generate an exponentially distributed

random variable.
ffadd.c {R) - Routine to add two elements of a finite field.
ffmul.c {R) - Routine to multiply two elements of a finite field.
fft.c {R) - Routine to calculate the Discrete Fourier Transform (OFT) of

a complex-valued data record.
gasdev.c (S) - Routine to generate a Gaussian distributed random

variable.
gentwd.c {I) - Routine to generate a cosine table that is used by most

"transform• routines.
genwin.c {I) - Routine to generate commonly used "windows• for

spectral analysis.
genzec.c (I) - Routine to generate the Zech's logarithms of a finite

field.
gshf.c (I) - Routine to generate a table of shifted versions of a

generator polynomial.
icosft.c (R) - Routine computes the Inverse Discrete Cosine

Transform (IDCT) of a real-valued data record.

Library Description: LD - 1

Digital Signal Processing Library

irfft.c (R) - Routine computes the real valued Inverse Discrete Fourier
Transform (IDFT) of length N given Its first N/2 + 1
complex-valued Fourier components.

ltwofft.c (R) - Routine computes the real-valued Inverse Discrete
Fourier Transfonn (IDFT) of length N given its first N/2 +
1 complex-valued Fourier components.

laguer.c (U) - Given the degree m and the degree m + 1 complex
coefficients of a polynomial, this routine Improves the
root of the mth degree polynomial using Laguerre's
method.

mmult.c (R) - Routine multiplies N matrices after finding the best
order in which to do the multiplications.

orddit.c (R) - Routine to obtain half-tone Images from gray-level
Images using ordered dither.

ran1.c ($) - Routine to generate a unifonnly distributed random
variable.

rbit.c (S) - Routine to generate a random bit sequence using a
maximum length shift register.

rfft.c (R) - Routine to compute the first N/2 + 1 complex components
of the Discrete Fourier Transform (OFT) of a real-valued
data sequence of length N.

sinft.c - Routine to compute the Discrete Sine Transform (DST) of a
real-valued data record.

synd.c (R) - Routine to compute the syndrome from the received
vector.

twoddct.c (R) - Routine to compute the two-dimension Discrete
Cosine Transform (2-D OCT) of a real-valued two
dimenslonal array.

twodfft.c (R) - Routine to compute the two-dimensional Discrete
Fourier Transform (2-D FFT) of a complex-valued two
dimensional array.

twofft.c (R) - Routine to calculate the first N/2 + 1 components of the
Discrete Fourier Transforms (DFT's) of two real-valued
data sequences of length N simultaneously.

vitbi.c (R) - Routine to implement a Viterbi decoder.

Library Description: LD - 2

Digital Signal Processing Library

Module name

&Corr .C {R) • Routine to obtain the autocorrelation sequence of a
data record

void acorr{ float *wsamp, float *ac, int nsamp, int order);

Inputs

wsamp array of single-precision floating-point numbers
representing the windowed input samples.

nsamp number of samples In the window.

order number of autocorrelation coefficients to be computed in
addition to the energy term, ac[O).

Outputs

ac

Processing

array of single precision autocorrelation
coefficients, ac[k}, k = 0, 1, ... ,order.

,

This routine is used to generate the kth order autocorrelations,
k=0,1, ... ,order. It uses 'nsamp' products to compute ac[O], 'nsamp'-
1 products to compute ac[1], and in general, 'nsamp'-k products to
compute ac[k]. In most applications, it Is important that the samples
have been previously multiplied by a carefully chosen window.

Examples

1) acorr{wsamp,ac,256,4);
This example calculates the autocorrelations ac[O], ac[1], ac[2],
ac[3], and ac[4), using a data record that Is 256 samples long.
Test program: xdurbin.c

Related modules

genwin.c, durbin.c

Library Description: LD - 3

Digital Signal Processing Library

Module name

8CS.C (R) - Routine to Implement the add-compare-select logic of
the Viterbi Decoder

void acs(float a, float b, float c, float d, float *stamet, long *phist,
float *bsm, Int *ptr, Int skip, Int nstates, Int *obit);

Inputs

a top-most branch metric of 'butterfly' o.e., first state
transition when Input bit Is O).

b second branch metric of 'butterfly' o.e., second state
transition when Input bit Is O).

c third branch metric of 'butterfly' (i.e., first state transition
when Input bit Is 1).

d fourth branch metric of 'butterfly' (I.e., second state.
transition when Input bit is 1).

stamet floating-point vector of length 'nstates' containing the
state metrics of the Viterbi decoder.

phist long integer vector containing the (B*sizeofOong))
previous bits (the path history) corresponding to each
state.

bsm best (minimum) state metric found so far.
ptr ptr to first state (in both the 'stamet' and 'phist' arrays).
skip defines the difference (modulo nstates) between the two

points on a 'butterfly'. .
nstates defines the number of states c2<constramt length-1)) of

Outputs

stamet

phi st

bsm

obit

Processing

the convolutional decoder.

floating-point vector of length 'nstates' containing the
updated state metrics after current pass through 'acs'.
long integer vector containing the updated
(B*slzeof(long)) previous bits (the path history)
corresponding to each of the two states of the butterfly.
best (minimum) state metric after the current pass
through the add-compare-select routine.
the tentative decoded bit for the current pass (this bit
corresponds to the symbol ~eceived 32 + (constraint
length-1) bauds before the current baud).

The add-compare-select routine implements one of the (nstates/2)
'butterflies' in the viterbi decoder. It uses the input branch metrics to
update the state metrics and the path history of each 'butterfly' of the
Viterbi decoder. It also obtains tentative values for the best state
metric and the decoded bit. Last, It updates 'ptr' so that it
corresponds to the first state of the next butterfly.

Library Description: LD - 4

Digital Signal Processing Library

Examples
1) for (1=0; l<nstates; I+ =2)

acs(mf[perm[i] [O]J,mf[perm[I + 1] [O]) ,mf[perm[i] [1]],mf[p
erm[i+1)[1]), stamet, phlst, bsm, &ptr, *skip, nstates,
obit);

This example updates the state metrics in 'stamet' using the branch
metrics whose Indexes are determined by the array 'perm' (this array
is determined by the taps of the convolutional code used). It also
updates the path history table 'phist'. The smallest state metric is
returned in 'bsm', while the output bit is returned in 'obit'.
Test program: xconv.c

Related modules

cencd.c, vitbi.c

Library Description: LD - 5

Digital Signal Processing Library

Module name

burg.c (R) - Routine to obtain the predictor coefficients of a data
record directly using the maximum Entropy Method
(MEM) .

void burg(float *data, float *pc, float *var, Int npts, Int order);

Inputs

data vector of single-precision numbers data[i],
l=0, 1, ... ,npts-1.

npts number of samples of input data.

order order of predictor.

Outputs

pc vector of single-precision numbers pc[i], i=O, 1, ... ,order,
representing the prediction coefficients. It is as
assumed that pc[O] = 1.0.

var estimate of the variance of the driving noise of the AR
process.

Processing

This routines uses the data samples directly to estimate the predictor
coefficients using the Maximum Entropy Method (MEM).

Examples

1) burg(samp,pc,var,260,4);
This example calculates the optimum fourth order predictor over the
given 260 samples In the array •samp• using the Burg Iteration
technique. The driving noise variance estimate Is returned in V2lf',

while the estimated predictor coefficients are stored in the array pc in
locations whose indexes are 1, 2, 3, and 4.
Test program: xburg.c

Related modules

durbin.c, chlsky.c

Library Description: LD - 6

Digital Signal Processing Library

Module name

CCep.C (A) - Routine to calculate the complex cepstrum of a data
record

void ccep(float *datar, float *twiddle, float *logmag, float *conpha,
float thd1, float thd2, Int N);

Inputs

datar array of single-precision floating-point numbers
constituting the real valued input data sequence.

twiddle array of length SN/4 of single-precision floating-point
numbers containing the quantities cos(21Tk/N), k =
0, 1, ... ,(SN/4)-1.

thd1 value of the threshold used to check the consistency of
the phase with reference to the value of estimated linear
phase increment.

thd2 value of threshold used to check the consistency of the
phase with reference to the estimated phase value.

N length of the number of points in the input sequence,
where N is a power of 2.

Outputs

logmag array of length N/2 + 1 containing the first N/2 + 1 log
magnitude samples of the real valued input data
sequence.

conpha array of length N/2 + 1 containing the first N/2 + 1
continuous phase samples of the real valued input data
sequence.

Library Description: LD - 7

Digital Signal Processing Library

Processing

This routine computes the complex cepstrum samples of a real
valued data record of length N, where N Is a power of 2. The first part
of the routine computes the OFT of the Input sequence x[n] and
nx[n] using the library function "twofft". The need to compute the
OFT of nx(n) stems from the fact that the derivative d/dw[XOw)) = -
j*DFT of nx(n) Is needed to compute the continous phase. Next, the
log of the magnitude, principal phase value, and the phase derivative
at each wk = 21Tk/N, where k = 0, 1 ... ,N/2 Is computed. At each wk,
a phase estimate Is Initially formed by one-step trapezoidal
Integration, starting at wk_1. If the resultant estimate Is not consistent,
the adaptive Integration scheme Is applied within the Interval [wk-
1,wl<). The step size of the adaptation Is carefully designed to
minimize the number of extra OFT's required. The search for
consistency is done by consecutively splitting the step Interval in half.
Recursive programming Is employed to make the parameters
available at each Intermediate frequency for computation of the OFT,
the principal phase, and the phase derivative. Finally, the linear
phase component is removed from the unwrapped phase. The
vectors logmag and the conpha contain the log magnitude and the
continuous phase values of first N/2 + 1 samples of real valued data
record of length N.

Examples

1) gentwd (twiddle, 32);
ccep(datar,twiddle,logmag, conpha, 0.81T ,0.51T ,32);

This computes the 17 cepstrum samples for the real valued record of
length 32. The thresholds 0.81T and 0.51T are application dependent
(reference: Jose M. Tribolet, vol. ASSP-25, No.2, April 1977. "A New
Phase Unwrapping Algorithm"). It is recommended that N should be
more than the actual data length (typically 4 times) to minimize the
number of extra OFT computations required in the adaptive
Integration scheme.
Test program: xccep.c

Related modules

gentwd.c, twofft.c.

Library Description: LD - 8

Digital Signal Processing Library

Module name

Cencd.C (R) - Routine to generate the encoded symbol stream
using a convolutional encoder

unsigned Int cencd Qnt bit, unsigned Int *state, int rate, unsigned int
*taps)

Inputs

bit Input bit to the convolutlonal encoder.

state the state of the convolutlonal encoder (only the k-1 right
most bits are relevant for a constraint length k code).

rate the inverse of the rate of the code.

taps vector containing 'rate' tap masks that define the
convolutional code.

Outputs

state the updated state of the convolutional encoder
(consisting of the old state shifted up by one bit, with the
input bit occupying the LSB).

cencd the symbol output by the convolutional encoder.

Processing

The convolutional encoder first shifts up 'state' by one bit and inserts
the Input bit Into the LSB of 'state'. It then obtains the parity of 'state'
masked by the different taps. Finally, It packs the 'rate' different
parities obtained into 'cencd' to represent the output symbol.

Examples

1) symb = cencd(bit,&state,2,taps);
This example updates the state of a rate 1 /2 convolutional encoder,
defined by the vector 'taps', as a function of the Input 'bit' and the old
'state'. The output In this case Is a 4-ary symbol.
Test program: xconv.c

Related modules

acs.c, vitbi.c

Library Description: LD - 9

Digital Signal Processing Library

Module name

chlsky .C {A) - Routine to solve the autocorrelation normal
equations using Cholesky decomposition.

void chlsky(float **cc, Int order, float *pc);

Inputs

cc matrix of single-precision numbers cc[i] UJ, I,
j=0,1, ... ,order.

order dimension of N x N covariance matrix N =order+ 1.

Outputs

pc vector of single-precision numbers pc[i]. i=O, 1, ... ,order-1,
representing the prediction coefficients.

Processing

This routine uses the (order+ 1) x (order+ 1) covariance matrix
computed by cov.c to obtain the prediction coefficients. Note that
cc[O] [O] is not used by the routine. The method used is Cholesky
decomposition where the positive definite symmetric submatrix
v[iJ m. i,j =O, 1, .. ,order-1 =cc[iJ UJ. i,J= 1,2, ... ,order, is decomposed into
the product of a lower triangular matrix, a diagonal matrix, and a
upper triangular matrix (which is the transpose of the lower triangular
matrix). The system of linear equations is v[i] Li]*pc[i] =cc[i+ 1][0],
i,j=0,1, ... ,order-1. The predictor coefficients, pc[i], i=0,1, ... ,order-1,
are then computed by back-substitution.

Examples

1) cov(samp,cc,260,4);
chlsky(cc,4,pc);

This example calculates the covariance matrix cc[i] UJ, i,j = 0, 1,2,3,4
using a data record that is 260 samples long. The set of four linear
equations implied by the covariance matrix are then solved by
Cholesky decomposition to yield the predictor coefficients.
Test program: xchlsky.c

Related modules

cov.c

Library Description: LD - 10

Digital Signal Processing Library

Module name

COSft.C (R) - Routine to calculate the Discrete Cosine Transform
(OCT) of a real-valued data sequence.

void cosft(float *twiddle, float *data, int N);

Inputs

twiddle array of length SN/2 of single-precision floating-point
numbers containing the quantities cos(27rk/(2N)),
k=O, 1, ... ,(SN/2)-1.

data array of single-precision floating-point numbers
constituting the real-valued input data sequence.

N length of the number of points in the input sequence,
where N is a power of 2.

Outputs

data array of length N constituting the components of the
cosine transform of the real-valued input data.

Processing

This routine computes the cosine transform of a real input sequence,
x[n). The first part of the routine forms the sequence,

y[n] = (x[n] + x[N-n]) /2-(x[n]-x[N-n])sin(7rn/N), n = 1,2,. .. ,N-1,

y[OJ =X[O],

and computes the OFT, Y[k], k=0,1, ... ,(N/2)-1, using a routine

identical to 'rfft' except for the indexing into the twiddle factor array.

The second part of the routine computes the cosine transform of

x[n], C(m), m=1, ... ,N-1, from Y[k], k=0,1, ... ,(N/2)-1 as follows:

C[2k+ 1) =C[2k-1]-lm{Y[k]}, k= 1,2,. .. ,(N/2)-1, where the starting

point of the recursion is

C[1)= :Em x(m]cos(m7r /N), m=0,1, ... ,N-1, and

C[2k] =Re{Y[k]}, k=O, 1,2, ... ,(N/2)-1.

Examples

1) gentwd (twiddle,64);
cosft (twiddle,data,32);

This computes the cosine transform of a 32-point real-valued
sequence. The output is computed in place.
Test program: xcosft.c

Library Description: LD - 11

Digital Signal Processing Library

Related modules

gentwd.c, fft.c, rfft.c, sinft.c, icosft.c

Note

Unfortunately, no one standard definition applies to the ·eosine
Transform·. This Implementation supplies C[k} = l:n
x[n]cos(7rnk/N). This Is the desired form when transform methods
are used to solve differential equations where the derivatives of the
solutions are zero at the boundaries.
The differences between the definitions arise from different samplings
of the kernel in the original and In the transform domain. The form
that Is most suited to image processing applications defines C[k] as
Ln /(2/n)x[n]cos((n+ 1 /2)k7T /N) fork= 1,2, ... ,N-1, and for the
zeroth component j (1 /N) times the value given by 'cosft' for the
zeroth component. Note that this can be obtained (except for a scale
factor) by first calling 'cosft' and then multiplying each component i
of the transform by cos((7ri)/(2N)). This form is implemented in the 2-
0 cosine transform routine of DSPL.

Library Description: LD - 12

Digital Signal Processing Library

Module name

COV .c (R) - Routine to obtain the covariance matrix of a data
record.

void cov(float *samp, float **cc, int buflen, int order);

Inputs

samp

buflen

order

Outputs

array of single-precision floating-point numbers
representing the input samples.

number of samples In the buffer must be equal to the
number of samples used in the averaging plus a number
of samples equal to 'order'.

dimension of N x N covariance matrix N =order+ 1.

cc matrix of single-precision numbers cc[i]UJ,
i,j =0, 1, ... ,order.

Processing

This routine is used to generate the (order+ 1) x (order+ 1)
covariance matrix using buflen-order products to compute each
element of the matrix. The matrix is symmetric, but not Toeplitz.

Examples

1) cov(samp,cc,260,4);
This example calculates the covariance matrix cc[i] rn I i,j = 0, 1,2,3,4
using a data record that is 260 samples long. The sum of 256
products is used to compute each element of the matrix.
Test program: xchlsky.c

Related modules

chlsky.c

Library Description: LD - 13

Digital Signal Processing Library

Module name

durbin.c (R) - Routine to solve the autocorrelation normal
equations using Durbin recursion.

void durbin(float *ac, Int order, float *a, float *k, float *e);

Inputs

ac vector of single-precision numbers ac[i] l=0, 1, ... ,order,
representing the autocorrelation sequence.

order order of the the predictor.

Outputs

a vector of single-precision numbers a[i], i=0, 1, ... ,order,
representing the prediction coefficients.

k vector of single-precision numbers k[i], I= 1, ... ,order-1,
representing the reflection coefficients.

e vector of single-precision numbers e[i], l=0, 1, ... ,order-1,
representing the ratio of the power of the residual signal
to the power In the input signal {ac[O]).

Processing

This routine uses the (order+ 1) long autocorrelation sequence
computed by acorr.c to obtain the prediction coefficients, the
reflection coefficients, and the error sequence. The method used is
Durbin recursion, where each successively higher model is built
recursively from the previous model. The reflection coefficients and
the (normalized) variance sequence are by-products of this
procedure.

Examples

1) acorr{samp,ac,260,4);
durbin{ac,4,pc,rc,e);

This example calculates the autocorrelation sequence ac[i],
1=0,1,2,3,4 using a data record that is 260 samples long. The set of
four linear equations Implied by the autocorrelation sequence are
then solved by Durbin's recursion to yield the prediction coefficients,
pc, the reflection coefficients, re, and the error variance sequence, e.
Test program: xdurbin.c

Related modules

acorr.c

Library Description: LD - 14

Digital Signal Processing Library

Module name

encd.c (R) - Routine to encode an information vector to obtain the
code vector.

void encd(int *inf, int *shfg, int blkl, int genl, Int ilen);

Inputs

inf vector containing the left-justified packed information
polynomial (S*sizeofOnt) bits to a word).

shfg vector containing all possible shifted versions of the
generator polynomial.

blkl length of the codeword in bits.

genl length of the generator polynomial in words.

ilen length of the information polynomial in bits.

Outputs

Inf vector containing the check bits appended to the original
information polynomial, packed (B*sizeof(int)) bits to the
word and left-justified.

Processing

This routine uses all possible shifted ver~ions of the generator
polynomial in the array 'shfg' to divide x *inf(x) by the generator
polynomial and thereby obtain the check polynomial. The check
polynomial is then appended to the original information polynomial
to yield the (systematic) codeword.

Examples

1) encd(inf,shfg, 127,3,99);
This example uses the ~hifted 8*sizeof(int) versions of the generator
polynomial to divide x2 *inf(x) by the generator polynomial for the
(127,99) BCH code. It then appends the 28 check bits thus obtained
to the original information polynomial inf(x).
Test program: xbch.c

Related modules

gshf.c

Library Description: LD - 15

Digital Signal Processing Library

Module name

elcf .C (R) - Routine to find the coefficients of the error locator
polynomial.

void elcf(int *synv, Int *zech, Int *cdv, Int blen, Int cerc, Int *nerr);

Inputs

synv vector of integers, 2*cerc long, containing the syndrome
of the received codeword.

zech array of integers Indexed by I= O, 1, ... ,2<m-1), ~.optaining
the Zech'.s logarithm values defined by azec l1J =
XOR{1,a1).

blen number of bits in the block.

cerc number of errors correctable by the code.

Outputs

cdv vector of length nerr+ 1 containing the exponents of the
coefficients of the error locator polynomial.

nerr number of errors estimated by 'elcf'.

Processing

The coefficients of the error locator polynomial are calculated from
the syndrome using the Massey-Ber1ekamp algorithm.

Examples

1) elcf(synv,zech,cdv,127,4,&nerr);

This example calculates the error locator polynomial from the
syndrome of rcv[x) in the vector 'cdv' Oength=S) for the 4-error
correcting (127,99) BCH code.
Test program: xbch.c

Related modules

ffmul.c, ffadd.c, synd.c, er1c.c

Library Description: LD - 16

Digital Signal Processing Library

Module name

erlc.c (R) - Routine to find the roots of the error locator polynomial

void er1c(int, *cdv, Int *zech, Int *loc, Int blen, Int nerr);

Inputs

cdv vector of length nerr+ 1 containing the exponents of the
coefficients of the error locator polynomial.

zech array of. integers Indexed by I= o, 1, ... ,2<m-1), fffiftalning
the Zechjs logarithm values defined by azec 1 =
XOR(1,a).

blen number of bits in the block.

nerr number of errors.estimated by 'elcf.

Outputs

loc vector of length 'nerr' containing the error locations (if the
decode was successful).

erfc er1c's value is 1 for a successful decode and o otherwise.

Processing

The roots of the error locator polynomial are determined by
eyalu~tlng
x~nerr)+c[1)x(nerr-1)+ ... +c[nerr] atx=a1, 1=0,1, ... ,blen-1. lfthe
number of roots thus found Is equal to the number of errors
estimated by 'elcf', 'erfc' returns a value of 1 (to Indicate a successful
decode) and O otherwise.

Examples

1) succ=erfc(cdv,zech,loc, 127,nerr);
This example calculates the roots of the error locator polynomial for
the 4-error correcting (127,99) BCH code and returns a value of 1 in
'succ' if the decode was successful
Test program: xbch.c

Related modules

ffmul.c, ffadd.c, elcf .c

Ubrary Description: LD - 17

Digital Signal Processing Library

Module name

expdev .C ($) - Routine to generate an exponentially distributed
random variable.

float expdev(int *idum);

Inputs

ldum lnltlallzlng variable relayed to ran1 routine. If this variable
Is negative, the routine 'ran1' re-initializes Itself. Upon
Initialization, the routine 'ran1' returns a value of of id um
= + 1. Thus, on subsequent calls, the user need not
specifically set this Input.

Outputs

expdev exponentially distributed positive floating-point number
with mean= 1.

Processing

This routine is used to generate exponentially distributed random
numbers. If the argument 'idum' is negative, the random number
generator is reinitialized; otherwise, a new random number is
generated. The routine first calls 'ran1' to obtain a uniformly
distributed random number, x, between O and 1. It then uses the
transformation y=-ln(x) to obtain an exponentially distributed
random number with mean 1.0.

Examples

1) idum=-1;
expdev(&ldum);

This example Initializes the random number generator and returns
the first random number.

2) expdev(&idum);
This example Is used on subsequent calls to expdev.
Test program: xexpdev.c

Related modules

ran1.c

Library Description: LD - 18

Digital Signal Processing Library

Module name

ffadd.c (R) - Routine to add two elements of a finite field.

int ffadd(int *zech, int a, int b, int flen);

Inputs

zech array of integers Indexed by i=0,1, ... ,2<m-1>, containing

the Zech's logarithm values defined by azech[i] =
i XOR(1,a).

a exponent of first finite field element, where 0$a < flen, or
a=.oo (represented by-1).

b exponent of second finite field element, where O$b<flen,
or b=.oo (represented by-1).

flen number of elements in the finite field.

Outputs

ffadd result of addition represented by affadd = aa+ ab.

Processing

This routine adds two finite field elements by returing the larger of the
two exponents if the smaller of the two exponents is less than zero,
or by returning the result of routine 'ffmul' with input exponents equal
to the smaller of the two exponents and zech[larger exponent
smaller exponent].

Examples

1) ffadd(zech,28,37, 127);
This example calculates affmul = a28 + a37 in a finite field of 127
elements.
Test program: xbch.c

Related modules

ffmul.c

Library Description: LD- 19

Digital Signal Processing Library

Module name

ffmul.c (R) - Routine to multiply two elements of a finite field.

Int ffmul(int a, Int b, Int flen);

Inputs

a exponent of first finite field element, where OS a< flen, or
a=..ao (represented by-1).

b exponent of second finite field element, where OSb<flen,
or b=..co (represented by-1).

flen number of elements In the finite field.

Outputs

ffmul result of multiply represented by
affmul=aa*ab=a(a+b)mod flen, when neither a nor bis

Processing

..ao (represented by -1). When either a or b is -1, then the

result Is -1.

This routine multiplies two finite field elements by adding their
exponents modulo the finite field length, when neither a nor b is ..co.
When either a or b is ..co, then the result is ..co.

Examples

1) ffmul(28,37, 127); ·
This example calculates affmul = a 28 * a37 in a finite field of 127
elements.
Test program: xbch.c

Related modules

ffadd.c

Library Description: LD - 20

Digital Signal Processing Library

Module name

fft.c (R) - Routine to calculate the Discrete Fourier Transform (OFT)
of a complex-valued data record.

void fft(float *twiddle, float *datar, float *datal, int N);

Inputs

twiddle array of length SN/4 of single-precision floating-point
numbers containing the quantities cos(27rk/N),
k=0,1, ... ,(SN/4)-1.

datar array of single-precision floating-point numbers
constituting the real part of input data.

datai array of single-precision floating-point numbers
constituting the imaginary part of input data.

N length of the OFT (i.e., number of complex
inputs/outputs), where N is a power 2.

Outputs

datar array of single-precision floating-point numbers
constituting the real part of the OFT.

datai array of single-precision floating-point numbers
constituting the imaginary part of the OFT.

Processing

This routine does an in-place OFT of a complex input sequence, i.e.,
the result for each stage is stored in the same array as the previous
stage.The first part of the routine re-arranges the input in bit
reversed order. The remainder of routine consists of three nested
loops: The first loop does lg(N) (logarithm to the base 2 of N)
iterations corresponding to the number of stages in the FFT
algorithm. The second loop changes the index into the twiddle factor
array as required. The innermost loop does the butterfly
computations for which the twiddle factor indices remain constant.

Library Description: LD - 21

Digital Signal Processing Library

Examples

1) gentwd (twiddle,32);
fft (twiddle,datar,datai,32);

This computes a 32-point OFT and stores the result in datar and
datal. 'twiddle' is the array of twiddle factors which are calculated
using routine 'gentwd'.

2) fft(twiddle,datai,datar,N);

The inverse OFT of a complex sequence can be computed (to within
a scale factor) by calling the fft routine with the real and imaginary
data reversed in order. If the exact inverse is desired, then each of
the components of datai and datar should be multiplied by 1 /N.
Test program: xfft.c

Related modules

gentwd.c, rfft.c, irfft.c, twofft.c, itwofft.c, ccep.c, cosft.c, sinft.c

Library Description: LD - 22

Digital Signal Processing Library

Module name

gasdev .c (S) - Routine to generate a Gaussian distributed
random variable.

float gasdev(int *iclum);

Inputs

iclum initializing variable relayed to ran1 routine. If this variable
is negative, the routine 'ran1' re-Initializes itself. Upon
initialization, the routine 'ran1' returns a value of of iclum
= + 1. Thus, on subsequent calls, the user need not
specifically set this input.

Outputs

gasdev Gaussian distributed floating-point number with mean= o
and variance= 1.

Processing

This routine is used to generate Gaussian distributed random
numbers. If the argument 'iclum' is negative, the random number
generator is reinitialized; otherwise, a new random number is
generated. On every alternate call, the routine makes two calls 'ran1'
to obtain two uniformly distributed random numbers, v1 and v2,
between O and 1. It then uses the Box-Muller transformation to obtain
two Gaussian distributed random numbers with zero mean and unit
variance. It outputs one of these and saves the other for the next call
to 'gasdev'.

Examples

1) idum=-1;
gasdev(&idum);

This example initializes the random number generator and returns
the first random number.

2) gasdev(&idum);
This example is used on subsequent calls to gasdev.
Test program: xgasdev.c

Related modules

ran1.c

Library Description: LD - 23

Digital Signal Processing Library

Module name

gentwd.c (I) - Routine to generate a cosine table that Is used by
most "transform" routines.

void gentwd(float *twiddle, int N);

Inputs

N number of points to be sampled on the unit circle, N
being a power of 2.

Outputs

twiddle array of single-precision floating-point numbers of length
SN/4 containing the quantities cos(27rk/N), k =

Processing

0, 1, .. .,(SN/4)-1. Thus, the cosine table begins at location
twiddle[O], while the sine table index begins at
twiddle[N/4].

This routine iteratively calculates the quantities cos(2nk/N),
k=O, 1, ... ,(SN/4)-1.

Examples

1) gentwd (twiddle,32);
This example generates twiddle factors for a 32 point OFT and stores
them In the array 'twiddle' of length (5*32)/4.
Test program: xfft.c (and 'transform' routines)

Related modules

fft.c, rfft.c, irfft.c, twofft.c, itwofft.c, cosft.c, sinft.c, ccep.c

Library Description: LD - 24

Digital Signal Processing Library

Module name

genwin.c (I) - Routine to generate commonly used "windows• for
spectral analysis.

void genwin(float *win, float scale, float parm, int wtyp, int n);

Inputs

scale scale factor to be incorporated Into the window function

type integer that specifies the type of the window. The different
options available are:
O - triangular or Bartlet window
1 - cosinex window (parameter required)
2 - Hamming window
3 - Blackman window
4 - Blackman-Harris window
5 - Tukey window (parameter required)
6 - Poisson window (parameter required)
7 - Hanning-Poisson window
(parameter required)
8 - Cauchy window (parameter required)
9 - Gaussian window (parameter required)
10 - Dolph-Chebyshev window
(parameter required)
11 - Kaiser-Bessel window (parameter required)

The names TRIANGLE, COSPOWER, HAMMING,
BLACKMAN, BLACKMAN HARRIS, TUKEY, POISSON,
HANN POISSON, CAUCHY, GAUSSIAN,
DOLPH CHEBYSHEV, and KAISER BESSEL may be
used in Place of the numbers 0, 1,. . ., 11 if the file
"genwin.h" is included in the driver routine

parm parameter for the window (if required). If a parameter Is
not required, the routine ignores this argument.

N number of points in the window

Outputs

win array of single-precision floating-point numbers of length
N containing the samples of the window.

Library Description: LD - 25

Digital Signal Processing Library

Processing

This routine calculates the samples of the window specified by the
"type" input. The window functions Implemented are given below
(omitting the scale factor):

For a triangular window:
{ 2n/N, n=0,1,. .. ,N/2

win[n] = {
{ win[N-n], n=N/2, ... ,N-1

For a cosinex window:
win[n] = (sin(mr /N))x, n=0, 1, ... ,N-1 (x=2 is the well-known Hanning
window)

For a Hamming window:
win[n] = 0.54 - 0.46 cos(27rn/N), n =0, 1, ... ,N-1

For a Blackman window:
win[n] = 0.42-0.5cos(2'11'n/N)+0.08cos(47rn/N), n=0,1, ... ,N-1

For a Blackman-Harris window:
win[n] = 0.35875-0.48829cos(2'11'n/N) +0.14128cos(4'11'n/N)-
0.01168cos(6'11'n/N), n=O, 1, ... ,N-1

For a Tukey window:
{1.0, OS I n-N/21 Sparm*N/2,
{ n=0,1, ... ,N-1

win[n] = {
{0.5*{1 +COS('11'(n(1 +parm)*N/2)/
{ ((1-parm)*N))}, n=0,1, ... ,N-1

For a Poisson window:
win[n] = exp(-2*parm*ln-N/21/N), n=0,1,. .. ,N-1

For a Hanning-Poisson window:
win[n] = the product of the Hanning and Poisson windows.

For a Cauchy window:
win[n] = 1/{1 +(2.0*parm*(n-N/2)/N)2}, n=0,1, ... ,N-1

For a Gaussian window:
win[n] = exp{-0.5(2.0*parm*(n-N/2)/N)2}, n=0,1, ... ,N-1

For a Dolph-Chebyshev window:
win[n] = DFTlWIN[k]}, n,k=0,1, ... ,N-1, where
WIN[k] = (-1) cos(N*arccos(b*cos('11'k/N)))/
cosh(N*arccosh(b)), k=0,1, ... ,N-1, where
b=cosh(arccosh(10parm)/N), and
arccos(x) is defined for all real x as follows:

Library Description: LD - 26

arccos(x)=

Digital Signal Processing Library

{7r/2-tan"1(x/J(1-x2)), !xi <1.0
{
{arccosh(x), Ix! ~1.0

For a Kaiser-Bessel window:
win[n] = 10(,,-*parm* J(4n/N(1-n/N))/1n(7r*parm), n=0, 1, .. .,N-1,
where 10 1s the modified zeroth order Bessel function of the first kind.

Examples

1) genwin(win, 1.0,parm,HAMMING,32);
This example generates the samples of a 32 point Hamming window
and stores them in the array "win·. The window is scaled by unity.
Test program: xdurbin.c

Related modules

acorr.c

Library Description: LD - 27

Digital Signal Processing Library

Module name

genzec.c (I) - Routine to generate the Zech's logarithms of a
finite field

void genzec(int m, int p, int *zech);

Inputs

m exponent of the binary Galois field GF(2m). The
maximum and minimum values of m permitted are
(S*sizeof(int)-1) and 2 respectively.

p bit pattern defining the primitive element, a, of GF(2m). If

p is represented as

Outputs

zech

Processing

p(m-1)*2m-1 + p(m-2)*2m-2 + ... + p(1)*2+p(O),

then the primitive element, a, is defined by am = p(m-

1)* am-1 +p(m-2)*am-2 + ... +p(O).

array of integers indexed by i=O, 1, ... ,2m-11.yontaining ti;le
Zech's logarithm values defined by o:zech 1 =ffadd(1,a1).

This routine first calculates the finite field exponent values in the table
'zech'. Next it inserts the index of j in location i when
XOR (zech [i], 1) = zech UJ, and vice versa. This routine is used by the
finite field addition routine.

Examples

1) genzec(7,9,zech);

This example generates the Zech's logarithms for GF(27) where the

primitive element, a, is defined by a: 7=a3+1.
Test program: xbch.c

Related modules

ffadd.c

Library Description: LD - 28

Digital Signal Processing Library

Module name

gshf .c (I) - Routine to generate a table of shifted versions of a
generator polynomial.

void gshf(int *shfg, Int *genp, Int genl);

Inputs

genp generator polynomial of the binary code. This polynomial
Is packed Into 2 + (k-1) / (8*sizeof~nt)) words, where k Is
the number of check bits In the code. The most
significant bit of genp[O] represents the coefficient of xk
(which Is always 1).

genl length of the generator polynomial in words. This length
Is given by 2+ (k-1)/(S*sizeof(int)).

Outputs

shfg array of right shifted versions of the generator polynomial
for shift values =0, 1, ... ,S*slzeof(int)-1.

Processing

This routine stores all possible shifted versions of the generator
polynomial in the array 'shfg'. This expedites the long division
process used to encode the information polynomial.

Examples

1) unsigned int genp[3] = {Oxe4e1 ,Ox35c8,0XOOOO};
unsigned int *shfg;
shfg = uvector(O, (24 *sizeof(int)-1);
gshf(shfg,genp,3);

This example generates the shifted versions of the generator
polynomial for the (127,99) BCH code.
Test program: xbch.c

Related modules

encd.c

Library Description: LD - 29

Digital Signal Processing Library

Module name

icosft.c (R) - Routine computes the Inverse Discrete Cosine
Transform (IDCT) of a real-valued data record.

void lcosft(float *twiddle, float *data, Int N);

Inputs

twiddle array of length SN/2 of single-precision floating-point
numbers containing the quantities cos(211'k/(2N)),
k=O, 1, ... ,(SN/2)-1.

data array of single-precision floating-point numbers
constituting the real-valued input data sequence, where N
is a power of 2.

N number of single-precision floating-point number in the
Input sequence, where N is a power of 2.

Outputs

data

Processing

array of length N constituting the components of the
Inverse cosine transform of the real-valued input data.

i

This routine computes the Inverse cosine transform of a real input
sequence, x[n]. The first part of the routine takes the cosine
transform of the Input sequence to obtain C[n]. The second part of
the routine computes the desired inverse cosine transform (except
for a scale factor) of x[n], C'[n], from C[n] in place as follows:

A = Leven terms C[n], 8 = Ladd terms C[n],
sumo = L~d terms of C'[n] = C[0]-2(A-B),

sume = Leve; terms of C'[n] = (28)/N-sumo,

C'[O) = A-BC'[.2k+1) = C[2k+1)-sume, k=0,1, ... ,(N/2)-1,

C'[2k] = C[2k]-sumo, k=1,2, ... ,(N/2)-1.
If the exact inverse cosine transform Is desired, the output array
should be multiplied by 2/N.

Library Description: LD - 30

Digital Signal Processing Library

Examples

1) gentwd (twlddle,64);
lcosft (twlddle,data,32);

This computes the inverse cosine transform of a 32-polnt real-valued
sequence. The output Is computed In place. If the exact Inverse Is
desired, the output array should be scaled by 1 /16.
Test program: xcosft.c

Related modules

gentwd.c, fft.c, rfft.c, sinft.c, cosft.c

Library Description: LD- 31

Digital Signal Processing Library

Module name

lrfft.c (R) - Routine computes the real valued Inverse Discrete
Fourier Transform (IDFT) of length N given Its first N/2+1
complex-valued Fourier components.

void lrfft(float *twiddle, float *data, Int N);

Inputs

twiddle array of length 5N/4 of single-precision floating-point
numbers containing the quantities cos(27rk/N). k =
0, 1, ... ,(SN/4)-1.

data array oflength N (2 real and (N-1) /2 complex single
precision floating-point numbers) constituting the first
(N/2) + 1 components of the OFT of the real-valued
output data. The components should be stored in the
array 'data' in the following order:
data[O] = Re{X[O]} (note that lm{X[O]} =O)
data[1] =Re{X[N/2]} (note that lm{X[N/2]} =0)
data[2m] =Re{X[m]}, m=1,2, ... ,(N/2)-1
data[2m+ 1) =lm{X[m]}, m= 1,2, ... ,(N/2)-1.

N number of single-precision floating-point numbers in the
Input sequence, where N is a power of 2.

Outputs

data array of single-precision floating-point numbers
constituting the real-valued input data sequence.

Processing

This routine computes the inverse OFT (to within a scale factor of
N/2) of an even conjugate symmetric sequence. The first part of the
routine unscrambles the input obtain a N/2 point complex sequence,
Z[k], k=O, 1, ... ,(N/2)-1, whose OFT Is the sequence x[2m]-
j*x[2m+ 1], m=O, 1, ... ,(N/2)-1, where x[n], n=O, 1, ... ,N-1, is the
desired output. Thus, the remaining part of the routine takes the OFT
of Z[k] and negates every Imaginary component of the OFT to obtain
x[n].

Library Description: LD - 32

Digital Signal Processing Library

Examples

1) gentwd (twiddle,32);
lrfft (twlddle,data,32);

This computes the inverse OFT of an even symmetric sequence to
obtain a 32-point real-valued sequence. Although the Input data array
contains only 17 Fourier components, 2 of them real and 15 of them
complex, the remaining 15 complex components are Implied by:
X[32-k] = conj{X(k]}, k= 1,2, ... , 15, i.e., Re{X[32-k]} = data[2k),
k=1,2, ... ,15, and lm{X[32-k]} = data[2k+1], k=1,2, ... ,15. If the
exact inverse OFT is desired, then each of the components of 'data'
should be multiplied by 2/N.
Test program: xrfft.c

Related modules

gentwd.c, fft.c, rfft.c, twofft.c, ltwofft.c

Library Description: LD - 33

Digital Signal Processing Library

Module name

itwofft.c (R) - Routine computes the real-valued Inverse Discrete
Fourier Transform (IDFT) of length N given its first N /2 + 1
complex-valued Fourier components.

void ltwofft(float *twiddle, float *data1, float *data2, N);

Inputs

twiddle array of length SN/4 of single-precision floating-point
numbers containing the quantities cos(27rk/N), k =
0, 1, ... ,(SN/4)-1.

data1 array of length N (2 real and (N-1)/2 complex single
precision floating-point numbers) constituting the first
(N/2) + 1 components of the OFT of the first real-valued
Input data. The symmetry property X[k] = conjugate of
X[N-k] is assumed for the remaining (N/2)-1 Fourier
components. The components should be stored in the
array 'data1' in the following order:
data1 [O] =Re{X[O]} (note that lm{X[O]} =0)
data1 [N/2] = Re{X[N/2]} (note that lm{X[N/2]} =0)
data1 [m] =Re{X[m]}, m= 1,2, ... ,(N/2)-1
data1 (N-m] =lm{X[m]}, m= 1,2, .. .,(N/2)-1.

data2 array of length N (2 real and (N-1)/2 complex single
precision floating-point numbers) constituting the first
(N/2) + 1 components of the OFT of the second real
valued input data. The symmetry property Y[k] =
conjugate of Y(N-k] is assumed for the remaining (N/2)-1
Fourier components. The components should be stored
in the array 'data2' in the following order:
data2[0] = Re{Y(O]} (note that lm{Y[O]} = O)
data2[N/2J = Re{Y[N/2]} (note that lm{Y[N/2]} =O),
data2[m] = Re{Y[m]}, m = 1,2, ... ,(N/2)-1,
data2[N-m] =lm{Y[m]}, m= 1,2, ... ,(N/2}-1.

N length of the number of points in the input sequences,
where N is a power of 2.

Outputs

data1 array of single-precision floating-point numbers
constituting the first real-valued output data sequence.

data2 array of single-precision floating-point numbers
constituting the second real-valued output data
sequence.

Library Description: LD - 34

Digital Signal Processing Library

Processing

Thi~ routine computes the inverse OFT's of two complex input
sequences simultaneously. The first part of the routine computes
Z[k], k=0,1, ... ,N/2, from X[k) and Y[k), k=O, 1, ... ,N-1. Since the de
(Oth) and the N/2th frequency components of the OFT's of the real
valued sequences are real, and the remaining (N/2)-1 components
complex, N locations are adequate to store the Input OFT sequences
of x[n] and y[n] in an Invertible form. The second part of the routine
computes the complex sequence, z[n] =x[n) +jy(n], n=0,1, ... ,N-1, by
computing an in-place OFT of Z[k), k=0,1, ... ,N-1.

Examples

1) gentwd (twiddle,32);
itwofft (twiddle.data 1,data2,32);

This computes the inverse OFT of two sequences simultaneously.
Each input sequence contains only 17 Fourier components, 2 of
them real and 15 of them complex. The remaining 15 complex
components are assumed as follows:
X[32-k] = conj{X[k]}, k= 1,2, ... , 15,
I.e., Re{X[32-k]} = data1 [k), k= 1,2, ... , 15, and
lm{X[32-k]} = -data1[32-k], k=1,2, ... ,15, and
Y[32-k] = conj{Y[k]}, k= 1,2, ... , 15,
i.e., Re{Y[32-k]} = data2[k), k= 1,2, ... , 15, and
lm{Y[32-k]} = -data2[32-k], k=1,2, ... ,15.
The two sequences x[n] and y[n] are stored in data1 and data2
respectively
Test program: x2fft.c

Related modules

gentwd.c, fft.c, rfft.c, irfft.c, twofft.c

Library Description: LD - 35

Digital Signal Processing Library

Module name

laguer .C (U) - Given the degree m and the degree m+ 1 complex
coefficients of a polynomial, this routine Improves the
root of the mth degree polynomial using Laguerre's
method.

void laguer(fcomplex *data, Int M, fcomplex *x, float eps, Int polish);

Inputs

data array of (degree+ 1) structures of type complex
constituting the complex coefficients of the polynomial,
where the real and Imaginary parts are single precision
floating-point numbers. The structure data[O]
corresponds to the constant term and the structure
data[degree] corresponds to the coefficient of the
highest power of x.

M Integer value specifying the degree of the polynomial.

x pointer to the complex number constituting trial value.

eps single precision floating-point number specifying the
desired fractional accuracy. This parameter is relevant
only when 'polish' Is input as zero.

polish an input integer value; when it is non-zero, the routine
ignore eps and instead attempts to Improve x (assumed
to be a good initial guess) to the achievable roundoff
limit.

Outputs

x pointer to the structure constituting one of the roots of
the given polynomial.

Processing

This routine evaluates the root of the polynomial whose coefficients
can be complex, using Laguerre's method. The vector data contains
the degree+ 1 structs of type complex corresponding to the
coefficients of the polynomial. The struct data[O] contains the value
of the constant term where as data[degree] contains the complex
coefficient of the highest power of x. The function proceeds on the
basis of a trial root, and attempts to converge to a true root. The root
to which it converges depends on the trial value. The method
operates iteratively as follows: for a trial value x, an intermediate
variable 'a' which signifies the distance between the trial value x and
the actual root, is estimated. Then x-a becomes the next trial value.

Library Description: LD - 36

Digital Signal Processing Library

This process continues until 'a' Is sufficiently small or until the
roundoff llmlt Is encountered

Examples

1} laguer(data,20,*x, 1.0tHS,O};
This example finds a root of a polynomial of degree 20 whose
complex coefficients are stored In the vector 'data'. The trial value x
Is Improved using Laguerre's method untl the desired fractional
accuracy (1.0tHS In this case} Is achieved.

2} laguer(data,20, *x, 1.0tHS, 1 };
This example finds a root of a polynomial of degree 20 whose
complex coefficients are stored In the vector 'data'. The trial value x
Is Improved using Laguerre's method untH the roundoff limit is
reached. The desired fractional accuracy Is ignored in this case.
Test program: xlaguer.c

Related modules
none.

Library Description: LD - 37

Digital Signal Processing Library

Module name

mmult.C (R) - Routine multiplies N matrices after finding the best
order in which to do the multiplications.

mptr mmult(mtx *data, Int N);

Inputs

data array of structures corresponding to the number of
matrices to be multiplied. Each structure contains a
pointer to the matrix, dimension of the matrix, an Integer
flag value which must be Initialized to 1 before invoking
the function.

N integer value specifying the number of matrices to be
multiplied.

Outputs

mmult

Processing

pointer to a structure which contains a pointer and
dimension of the the resultant matrix.

This routine optimizes the order of evaluation of the product of N
matrices by using dynamic programming. Let m(i,j) be the minimum
cost of computing M[i]*M[i+1]* ... *MUJ for 1Si:Sj:SN.
m(i,j) = 0, If I = j;

=MIN (m(i,k)+m(k+1,j)+r(i-1)*r(k)*rG) If j>I and i:Sk<j,
where r[i-1] and r[i] correspond to the dimension of M[i]. This
method calculates m(i,j)'s in order of increasing difference In the
subscripts. We begin by calculating m(i,I) for all 'i', then m(i,I + 1) for
all 'I' and so on. In this way, the terms m(i,k) and m(k + 1,j) in
calculating m(i,j) are made available. An order in which the
multiplication may be done can be determined by recording, for each
table entry of m(i,j), a value of 'k' which gives rise to the minimum
m(i,j). Given the vector containing the structures corresponding to
each matrix, of each matrix the pointer to each matrix, the dimension
of each matrix and the number of matrices, this function evaluates
the product of matrices using the order of evaluation of the product
determined by dynamic programming approach. It returns a pointer
to the structure which contains the pointer and the dimension of the
resultant matrix.

Library Description: LD - 38

Digital Signal Processing Library

Examples

1) Let M = M1 * M2 * M3, where dimensions of M1 = (10x20], M2 =
[20x50], M3 = [50x15]. We then form a array of structures of type
struct xx {float **x; int r,c,flag;}, where 'x' corresponds to the pointer
to the matrix and 'r', 'c' fields corresponds to the dimension of 'x'.
The field 'flag' must be initialised to '1' before Invoking this routine.
For the above case, three structures store the information about
M1,M2 and M3 which are loaded in to a vector of dimension equal to
the number of matrices to be multiplied.
mmult(data,3);
This program line evaluates the product of 3 matrices, whose
structures are given In vector 'data', and returns a pointer to a similar
structure as above, which contains the pointer to and the dimension
of the resultant matrix 'M'.
Test program: xrnmult.c

Related modules

None

Library Description: LD- 39

Digital Signal Processing Library

Module name

orddit.C (R) - Routine to obtain half-tone images from gray-level
Images using ordered dither.

void orddit(int **image, Int nrow, int ncol, Int lngl);

Inputs

Image

nrow

ncol

lngl

Outputs

image

Processing

two-dimensional array of integers, each integer
representing the gray level corresponding to the row and
column Indices

number of rows In the image

number of columns in the image

logarithm to the base 2 of the number of gray levels in the
image

binary-valued two-dimensional matrix representing the
desired half-tone image

This routine does an in-place screening operation on the input gray
level image to produce its half-tone counterpart. The half-toning is
done by a process called ordered dispersed-dot dithering. In this
process each k x k block of the image is compared against a k x k
threshold array containing the numbers 0, 1, .. ,number of gray levels-
1. If the comparision shows that the Image value is less than the
threshold value, then the image value is set to O; otherwise the image
value is set to 1.

Examples

1) orddit (image,16,640,7);
This example obtains the half-tone counterpart of a 128 gray-level 16
x 640 image. The result is stored in-place.
Test program: xorddit.c

Related modules

None

Library Description: LD - 40

Digital Signal Processing Library

Module name

ran1 .C (S) - Routine to generate a uniformly distributed random
variable.

float ran1 (int *idum);

Inputs

idum initializing variable to ran1 routine. If this variable is
negative, the routine re-initializes itself. Upon initialization,
the routine returns a value of of idum = + 1. Thus, on
subsequent calls, the user need not specifically set this
input.

Outputs

ran1 floating-point number uniformly distributed between o
and 1.

Processing

This routine is used to generate uniformly distributed random
numbers. If the argument 'idum' is negative, the random number
generator Is reinitialized; otherwise. a new random number is
generated. The routine combines three linear congruential
generators to produce the output. The first two generators are used
to provide the upper and lower bits of a number. The third generator
is used to index a 97 word-long array which yields the random
number to be output. The combined outputs of the first two
generators are inserted into the array to replace the number
extracted.

Examples

1) idum=-1;
ran1 (&ldum);

This example initializes the random number generator and returns
the first random number.

2) ran1 (&idum);
This example is used on subsequent calls to ran1.
Test program: xran1.c

Related modules

expdev.c, gasdev.c

Library Description: LD - 41

Digital Signal Processing Library

Module name

rbit.c (S) - Routine to generate a random bit sequence using a
maximum length shift register. ·

Int rblt(long Int *shfg);

Inputs

shfg Initial value of shift register used by ran1 routine. On
subsequent calls, the user need not specifically set this
Input.

Outputs:

rblt Integer that is either O or 1.

Processing

This routine is used to generate a pseudo-random sequence of bits
using a maximum length shift register.

Examples

1) shfg=1;
rblt(&shfg);

This example Initializes the.irandom bit generator's shift register to 1
and returns the first random bit.

2) rbit(&shfg);
This example is used on subsequent calls to rbit.
Test program: xrbit.c

Related modules

none

Library Description: LD - 42

Digital Signal Processing Library

Module name

rfft.c (R) - Routine to compute the first N/2 + 1 complex
components of the Discrete Fourier Transform (OFT) of a
real-valued data sequence of length N.

void rfft{ float *twiddle, float *data, Int N):

Inputs

twiddle array of length 5N/4 of single-precision floating-point
numbers containing the quantities cos(27rk/N), k =
0,1, ... ,(SN/4)-1.

data array of single-precision floating-point numbers
constituting the real-valued input data sequence.

N length of the number of points in the input sequence,
where N is a power of 2.

Outputs

data array of length N (2 real and (N-1) /2 complex single
precision floating-point numbers) constituting the first
(N/2) + 1 components of the OFT of the real-valued input
data. The symmetry property X[k] = conjugate of X[N-k]
may be used to obtain the remaining (N/2)-1 Fourier
components. The components are stored in the array
'data' in the following order:

Processing

data[O) = Re{X[O]} (note that lm{X[O]} =0),
data[1] = Re{X[N/2]} (note that lm{X[N/2] =O),
data[2m] =Re{X[m]}, m= 1,2, ... ,(N/2)-1,
data[2m+ 1] =lm{X[m]},m= 1,2, ... ,(N/2)-1.

This routine computes the OFT of a real input sequence, x[m],
m = 0, 1, ... , N-1. The first part of the routine considers the input to be a
complex sequence,
y[n]=x[2n]+jx[2n+1], n=0,1, ... ,(N/2)-1, and computes an in-place
OFT, Y[k], k=0,1, ... ,(N/2)-1.
The second part of the routine computes X(k), k=0, 1, ... ,N/2, from
Y[k], k=0,1, ... ,(N/2)-1.
Since the de (Oth) and the N/2th frequency components of the OFT
of the real valued sequence are real, the imaginary part of X[O] is
loaded with X[N/2] which makes the computation of the inverse
possible.

Library Description: LD - 43

Digital Signal Processing Library

Examples

1) gentwd (twlddle,32);
rfft (twiddle,data,32);

This computes the OFT of 32-point real-valued sequence, and
although the data array contains only 17 Fourier components, 2 of
them real and 15 of them complex, the remaining 15 complex
components can be computed using:
X[32-k] = conj{X[k]}, k= 1,2, ... , 15,
I.e., Re{X[32-k]} = data[2k], k= 1,2, ... , 15, and
lm{X[32-k]} = ~ata[2k+1], k=1,2, ... ,15.
Test program: xrfft.c

Related modules

gentwd.c, fft.c, irfft.c, twofft.c, itwofft.c

Library Description: LD - 44

Digital Signal Processing Library

Module name

sinft.c (R) -Routine to compute the Discrete Sine Transform
(DST) of a real-valued data record.

void sinft(float *twiddle, float *data, int N);

Inputs

twiddle array of length 5N/2 of single-precision floating-point
numbers containing the quantities cos(27rk/(2N)),
k=0, 1, ... ,(SN/2)-1.

data array of single-precision floating-point numbers
constituting the real-valued input data sequence.

N length of the number of points in the input sequence,
where N is a power of 2. Note that for the sine transform
the first point is not included, and is taken to be zero.

Outputs:

data array of length N, the first point always being zero, and
the remaining N-1 points constituting the components of
the sine transform of the real-valued input data.

Processing

This routine computes the sine transform of a real input sequence,
x[n]. The first part of the routine forms the sequence,
y[n] = (x[n] +x[N-n])(sin(mr /N) + (x[n]-x[N-n])/2, n= 1,2, ... ,N-1,
y[O)=O,
and computes the DFr, Y[k], k=0, 1, ... ,(N/2)-1, using a routine
identical to 'rfft' except for the indexing into the twiddle factor array.
The second part of the routine computes the sine transform of x[n],
S(m), m= 1, ... ,N-1, from Y[k], k=0, 1, ... ,(N/2)-1 as follows:
S[2k+ 1] =S[2k-1] +Re{Y[k]}, k= 1,2,. .. ,(N/2)-1,
where the starting point of the recursion is
S[1] = Re{Y[O]} /2,
and S[2k)=-lm{Y[k]}, k=1,2, ... ,(N/2)-1,
and where by convention S[O] =0.

Library Description: LD - 45

Digital Signal Processing Library

Examples

1) gentwd (twiddle,64);
slnft (twiddle,data,32);

This computes the sine transform of a 31-point real-valued sequence,
stored in locations Indexed from 1 to 31, with the location
corresponding to the zeroth Index being set to o. The output has the
location corresponding to the zeroth Index also set to zero, while the
remaining 31 locations of the array 'data' contain the sine transform
of the data.

2) slnft (twiddle,data,32);
This computes the inverse sine transform of the sequence that is
output in example 1, except for a scale factor. If the exact inverse
sine transform Is desired, then the result sequence should be
multiplied by 1/16 (=2/32).
Test program: xsinft.c

Related modules

gentwd.c, fft.c, rfft.c, cosft.c

Library Description: LD - 46

Digital Signal Processing Library

Module name

synd.c (A) - Routine to compute the syndrome from the received
vector.

void synd (int *rev, Int *zech, Int *synv, Int blen, Int cerc);

Inputs

rev vector containing the received polynomial, left-justified
and packed 8*sizeof(int) bits to the word.

zech array of Integers indexed by I= o, 1, ... ,2<m-1), containing

the Zech's logarithm values defined by azech[i] =
I XOA(1,a).

blen number of bits in the block.

cerc number of errors correctable by the code.

Outputs

synv vector of integers, 2*cerc long, containing the syndrome
of the received codeword.

Processing

The odd syndromes of the received codeword by substituting

x=a2k-1, k=1,2, ... ,t, into rcv(x). The even syndromes, S[2k] may be

calculated using S[2k] =S[k]2, k= 1,2, ... ,t for binary codes.

Examples

1) synd(rcv,zech,synv, 127,4);

This example calculates the syndrome of rcv[x] in the vector 'synv'
(length= 8) for the 4-error correcting (127,99) SCH code.
Test program: xbch.c

Related modules

ffmul.c, ffadd.c, elcf.c

Library Description: LD- 47

Digital Signal Processing Library

Module name

twoddct.c (R) - Routine to compute the two-Oimenslon Discrete
Cosine Transform (2-D OCT) of a real-valued two
dimenslonal array.

void twoddct (float *twiddle, float **M, int N);

Inputs

twiddle array of length 5N/2 of single- precision floating-point
numbers containing the quantities cos(7rk)/N,
k=0, 1, ... ,(5N/2)-1.

M N x N matrix of single-precision floating- point numbers
constituting the real Input data.

N length of each row (equal to the number of columns),
where N is a power 2.

Outputs

M N x N matrix of single-precision floating- point numbers
constituting the transpose of the two-dimensional OCT.

Processing

This routine does an in-place 2-D OCT of a real input matrix, I.e., the
result for each stage Is stored in the same array as the previous
stage.
The first part of the routine takes the N row- wise DCT's of the N x N
matrix by calling the routine 'cosft' N times. After each transform,
each row element is multipled by cos((7rj)/(2N)), where j is the
column index.
The next part of routine transposes the N x N matrix so that the N
column-wise DFT's may be taken using 'cosft'.

The final part of the routine takes the N column-wise DCT's. After
each OCT, the row elements are multiplied in the same fashion as in
step 1. Note that the result is the transpose of the desired OCT. The
user will have to transpose the result If he wants the OCT in the
proper order, but this will not be necessary for most applications of
this routine.

Library Description: LD - 48

Digital Signal Processing Library

Examples

1) gentwd (twiddle,64);
twoddct (twiddle,M,32);

This computes the transpose of the OCT of a 32 x 32 point matrix, M,
and stores the result in M. 'twiddle' Is the array of twiddle factors
which are calculated using routine 'gentwd'.
Test program: (see source code)

Related modules

gentwd.c, cosft.c

Library Description: LD - 49

Digital Signal Processing Library

Module name

twodfft.c (R) • Routine to compute the twCH:limenslonal Discrete
Fourier Transform (2-D FFT) of a complex-valued two
dimensional array.

void twcx:lfft(float *twiddle, float **M1, float **M2, Int N);

Inputs

twiddle array of length SN/4 of single-precision floating-point
numbers containing the quantities cos(27rk)/N,
k=0, 1, ... ,(SN/4)-1.

M 1 N x N matrix of single-precision floating-point numbers
constituting the real part of input data.

M2 N x N matrix of single-precision floating-point numbers
constituting the imaginary part of input data.

N length of each row (equal to the number of columns),
where N is a power 2.

Outputs

M1 N x N matrix of single-precision floating-point numbers
constituting the transpose of the real part of the OFT.

M2 N x N matrix of single-precision floating-point numbers
constituting the transpose of the imaginary part of the
OFT.

Processing

This routine does an in-place 2-D OFT of a complex input matrix, i.e.,
the result for each stage is stored in the same array as the previous
stage.
The first part of the routine takes the N row- wise DFT's of the N x N
matrix by calling the routine 'fft' N times.
The next part of routine transposes the N x N matrix so that the N
column-wise DFT's may be taken using 'fft'.The final part of the
routine takes the N column-wise DFT's. Note that the result is the
transpose of the desired OFT. You will have to transpose the result if
you want the OFT in the proper order, but this will not be necessary
for most applications of this routine.

Library Description: LD - 50

Digital Signal Processing Library

Examples

1) gentwd (twlddle,32);
twodfft (twiddle,MR,Ml,32);

This computes the transpose of the OFT of a 32 x 32 point complex
matrix contained In MR and Ml and stores the result in MR and Ml.
'twiddle' Is the array of twiddle factors which are calculated using
routine 'gentwd'.

2) twodfft (twlddle,Ml,MR,N);
The inverse OFT of a complex sequence can be computed (to within
a scale factor) by calling the fft routine with the real and imaginary
data reversed in order. Note that Ml and MR should be the matrix of
transposed spatial frequency components, i.e., the pair of program
lines,
twodfft (twlddle,MR,Ml,N);
twodfft (twiddle,Ml,MR,N);
produce the original input sequence scaled by a factor of N2. Also
note that If the exact Inverse is desired, then ~ch of the components
of datal and datar should be multiplied by 1 /N .
Test program: (see source code)

Related modules t

gentwd.c, fft.c

Library Description: LD- 51

Digital Signal Processing Library

Module name

twofft.c (R) - Routine to calculate the first N/2 + 1 components of
the Discrete Fourier Transforms (DFT's) of two real
valued data sequences of length N simultaneously.

void twofft(float *twiddle, float *data1, float *data2, Int N);

Inputs

twiddle array of length SN/4 of single-precision floating-point
numbers containing the quantities cos(27rk/N), k =
0,1, ... ,(SN/4)-1. .

data1 array of single-precision floating-point numbers
constituting the first real-valued input data sequence.

data2 array of single-precision floating-point numbers
constituting the second real-valued input data sequence.

N length of the number of points In the input sequences,
where N Is a power of 2.

Outputs

data 1 array of length N (2 real and (N-1) /2 complex single
precision floating-point numbers) constituting the first
(N/2) + 1 components of the OFT of the first real-valued
Input data. The symmetry property X[k] = conjugate of
X[N/2-k] may be used to obtain the remaining (N/2)-1
Fourier components. The components are stored In the
array 'data1' in the following order:
data1 [O] =Re{X[O]} (note that lm{X[O]} =0),
data1 [N/2] = Re{X[N/2]} (note that lm{X[N/2] =O),
data1 [m] = Re{X[m]}, m= 1,2, ... ,(N/2)-1,
data1 [N-m] =lm{X[m]}, m= 1,2, ... ,(N/2)-1.

data2 array of length N (2 real and (N-1) /2 complex single
precision floating-point numbers) constituting the first
(N/2) + 1 components of the 'OFT of the second real
valued input data. The symmetry property Y[k] =
conjugate of Y[N/2-k] may be used to obtain the
remaining (N/2)-1 Fourier components. The components
are stored in the array 'data2' in the following order:
data2[0] =Re{Y[O]} (note that lm{Y[O]}=O),
data2[N/2] =Re{Y[N/2]} (note that lm{Y[N/2] =0),
data2[m] = Re{Y[m]}, m= 1,2, ... ,(N/2)-1,
data2(N-m]=lm{Y[m]}, m=1,2, ... ,(N/2)-1.

Library Description: LD - 52

Digital Signal Processing Library

Processing

This routine computes the OFT of two real input sequences
simultaneously. The first part of the routine considers the Input to be
a complex sequence, z[n]=x[n]+Jy[n], n=0,1,. .. ,N-1, and computes
an In-place OFT, Z[k], k=0,1, ... ,N-1. The second part of the routine
computes X[k] and Y[k], k=0,1,: .. ,N/2, from Z[k], k=0,1, ... ,N-1.
Since the de (0th) and the N/2th frequency components of the DFT's
of the real valued ~uences are real, and the remaining (N/2)-1
components compiex, N locations are adequate to store the OFT
sequences of x[n] and y[n] In an Invertible form.

Examples

1) gentwd (twlddle,32);
twofft (twiddle,data1 ,data2,32);

This computes the OFT of tWo 32-point real-valued sequences
simultaneously, and although the data array contains only 17 Fourier
components, 2 of them real and 15 of them complex, the remaining
15 complex components can be computed using:
X[32-k) = conj{X[k]}, k= 1,2, .. ,, 15,
I.e., Re{X[32-k]} = data1 [k], k= 1,2, ... , 15,
and lm{X[32-k]} = -data1 [32-k], k= 1,2, ... , 15,
and Y[32-k] = conj{Y[k]}, k= 1,2, ... , 15,
I.e., Re{Y[32-k]} = data2[k], k=1,2, ... ,15,
and lm{Y[32-k]} = -data2[32-k], k= 1,2, ... , 15.
Test program: X2fft.c

Related modules

gentwd.c, fft.c, rfft.c, irfft.c, itwofft.c

Library Description: LD - 53

Digital Signal Processing Library

Module name

Vitbi.C (R) - Routine to Implement a Viterbi decoder

Int vltbl(float *mf, unsigned Int **perm, float *stamet, long *phist,
float *bsm, Int *skip, Int nstates);

Inputs

mf array of length= 1 /(rate of code) Inverted and normalized
metrics.

perm Integer matrix of dimension nstates x 2 containing the
symbol corresponding to each 'butterfly' of the Viterbi
decoder.

stamet floating-point vector of length= nstates containing the
state metrics of the Viterbi decoder.

phist long Integer vector containing the (8*sizeofQnt)) previous
bits (the path history) corresponding to each state.

bsm best (minimum) state metric (should be Initialized to
MAXMET on entry to 'vltbi').

skip defines the difference (modulo nstates) between the two
points on a 'butterfly'.

nstates defines the number of states (2(constraint length-1)) of

the convolutional decoder.

Outputs

stamet

phist

bsm

skip

vltbi

floating-point vector of length=nstates containing the
updated state metrics of the Viterbi decoder.

long integer vector containing the updated (8*sizeof(int))
previous bits (the path history) corresponding to each
state.

best (minimum) state metric after the current pass
through the Viterbi decoder. It Is used to "normalize" the
inverted metrics of the next pass.

defines the difference (modulo nstates) between the two
points on a 'butterfly' for the next pass.

the decoded bit for the current pass (this bit corresponds
to the symbol received 32 +(constraint length-1) bauds
before the current baud).

Library Descrlotlon: LD - 54

Digital Signal Processing Library

Processing

The convolutional decoder calls the add-compare-select routine for
each of the (nstates/2) 'butterflies' In the viterbl decoder. It then
updates the value 'skip' for the next pass's 'butterflies'. The best state
metric (bsm) is output in order that the next pass's branch metrics
may be 'normalized' (by subtracting bsm from them). Finally, it
outputs the oldest bit In the path history corresponding to the state
whose state metric is 'bsm'.

Examples

1) for (i = O; I< (1 < <RATE); I+ +) mf[i] = MAXMET-mf [i]-bsm;
bsm = MAXMET;
obit=vitbi(mf,perm,stamet,phist,&bsm,&skip,nstates);

This example updates the state metrics in 'stamet' using the branch
metrics in 'bsm'. It also updates the path history table 'phist'. The
smallest state metric is returned in 'bsm', while the outpqut bit is
returned in 'vitbi'.
Test program: xconv.c

Related modules

cncod.c, acs.c

Library Description: LD- 55

PRODUCT REGISTRATION

Please retain this copy for your records and return

the next page to us with complete information

The Product you have Purchased Is: ______ _
Product serial number Is: __________ _

Technical Support:

You will receive free product updates and free technical support for next 3
months. For technical support contact:

Sonitech International, Inc.
83 Fullerbrook Road
Wellesley, MA 02181, USA
Telephone: (617)235-6824, Fax: (617)235-2531

Replacement Policy:

We will replace your software diskettes free of charge within 45 days of
purchase if they prove defective. You must call or write to us first
indicating the problem and we will respond to you by telephone or writing
within 3 days after hearing from you.

Registration:

For us to support and to provide you with timely updates of the software,
please completely fill the form on the next page and mail to:

Sonitech International Inc.
83 Fullerbrook Road
Wellesley, MA 02181, USA

*** This page blank ***

REGISTRATION CARD

We have read the Sonitech International Inc. 's program license
agreement and agree to abide by the terms and conditions contained
therein.

Signature Name of Customer

Name. ________________ _
Title _______________ _
Organization. ______________ _
Address _______________ _
Address. _______________ _

City~~~~~~~~~~~~~~~
State _______ Code _______ _
Country _______________ _
Telephone or Telex,___ __________ _

Purchase Information:

Product Name: _____________ _
Product Serial Number: __ /_,()&..~-~------

Software Purchased From:

Sonitech International Inc.
Distributor
Name:. ______________ _
Country: ______________ _
Address: _____________ _

Other

How did you first hear about our Products:
From Distributor
Mail

- Advertising
- Editorial = University

Please comment (on back of this page) about this package. Thank you.

WARRANTY FORM

This product ts warranted against defects In materials and workmanship
for 45 days. The Warranty Is effective from date of purchase. Sonltech
International Inc. (Sonttech) will repair or replace, at Its option, any
product found to be defective during the Warranty period.

EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, NO
OTHER WARRANTIES, WHETHER EXPRESSED OR IMPLIED,
INCLUDING WARRANTIES OF MERCHANTABILITY AN FITNESS FOR A
PARTICULAR PURPOSE, SHALL APPLY TO THIS PRODUCT; UNDER NO
CIRCUMSTANCES SHALL SONITECH BE LIABLE FOR
CONSEQUENTIAL DAMAGES SUSTAINED IN CONNECTION WITH SAID
PRODUCT AND NEITHER ASSUMES NOR AUTHORIZES ANY
REPRESENTATIVE OR OTHER PERSON TO ASSUME FOR IT ANY
OBLIGATION OR LIABILITY OTHER THAN SUCH AS IS EXPRESSLY SET
FORTH HEREIN.

Before returning this product, you must receive a Return Material
Authorization (RAM). Returned product will not be accepted without this
authorization.

SOFTWARE LICENSE AGREEMENT

The program(s) delivered with this Agreement are sold only on the
condition that the purchaser agrees to the terms and conditions of this
Agreement. READ THIS AGREEMENT CAREFULLY. If you do not agree,
return the packaged program UNOPENED to your distributor or dealer
and your purchase price will be refunded. If you agree, fill out and sign
the Registration Form and RETURN to us by mail.

Sonltech International Inc. (hereinafter called "Sonltech") agrees to grant
and the Customer agrees to accept, subject to the following terms and
conditions, a personal, nonexclusive and nontransferable license to use
the propriety program(s) (hereinafter called the "Program") of Sonltech
International Inc. delivered with this agreement.

The program includes executable software, object files, and application
programs. The program does not include data files, sample executables,
and demo programs.

License

The license granted hereunder authorizes the Customer to use the
Program in machine readable form on any single computer system
(hereinafter called the "System"). A separate license is required for each
System on which the Program will be use.

Copy

The program may only be copied, in whole or in part, in printed or
machine readable form, for the use by the Customer on the System, to
understand the contents of the Program, for back-up purposes, or for
archive purposes; provided, however, that no more than two (2) copies
shall be in existence with respect to any Program at any one time without
prior written consent of Sonitech International Inc.

Term

This Agreement shall become effective as of the date of shipment of the
Program from Sonitech International to the Customer, and shall continue
In force until terminated by either party hereto pursuant to terms below:

The customer may terminate this Agreement by returning the Program
unopened within 15 days, the Customer of delivery.

Miscellaneous

The rights and benefits of the Customer hereunder shall not be assigned
or transferred in any manner whatsoever.

The validity and construction of this Agreement shall be governed by the
laws of the State of Massachusetts. The parties shall attempt to settle
disputes, controversies or differences which may arise out of or In relation
to or in connection with this Agreement.

IMPORTANT NOTICE

Sonitech International Inc. (Sonitech) reserves the right to make changes
In the devices or the device specifications Identified In this User's Gulde
and price without notice. Sonltech advises Its customers to obtain the
latest version of device specification to verify, before placlng orders, that
the Information being relied upon by the customer Is current.

In the absence of written agreement to the contrary, Sonitech assumes
no liability for Sonitech's applications assistance, customer's product
design, or infringement of patents or copyrights of third parties by or
arising from use of semiconductor devices described herein. Nor does
Sonitech warrant or represent that any license, either express or Implied,
Is granted under any patent right, copyright, or other Intellectual property
right of Sonitech covering or relating to any combination, machine,
process in which such semiconductor device might be or are used.

EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, UNDER
NO CIRCUMSTANCES SHALL SONITECH BE LIABLE FOR
CONSEQUENTIAL DAMAGES SUSTAINED IN CONNECTION WITH SAID
PRODUCT AND NEITHER ASSUMES NOR AUTHORIZES ANY
REPRESENTATIVE OR OTHER PERSON TO ASSUME FOR IT ANY
OBLIGATION OR LIABILITY OTHER THAT SUCH AS IS EXPRESSLY SET
FORTH HEREIN.

