Spiras Systems, Inc.
Affiliate of
USM Corporation

3.00

SPIRAS®-65
REFERENCE MANUAL

October 1969

© Copyright 1969

All rights reserved. Contents
of this publication may not be
reproduced in any form with-

out permission of the copyright
owner.

Published by the Technical Communications
Department, Spiras Systems, Inc.

Spiras . Systems, Inc.
Affiliate of

USM Corporation

332 Second Avenue ‘
Wailtham, Massachusetts 02154

(617) 891-7300 e TWX 710-324-6699 ® REGD. T.M.

Section

1

-t O w5 A

SP-18-9

TABLE OF CONTENTS

Title

SPIRAS-65 ORGANIZATION

1.1
1.2
1.3
1.4
1.5

Description
Control Unit
Arithmetic Unit
Core Memory
Input/Output

CONSOLE OPERATION

2.1
2.2
2.3
2.4
2.5

Power-On and Bootstrap Sequence
Register Display

Displaying Memory (Halt Mode)
Display and Write Memory (Halt Mode)
Single Step Debugging

INSTRUCTION FORMATS AND ADDRESSING MODES

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Long Instruction Format

Short Instruction Format

Input/Output Format

Indirect Address Format

Single Precision Fixed Point Format
Double Precision Fixed Point Format
Single Precision Floating Point Format

Double Precision Floating Point Format

LOAD/STORE INSTRUCTIONS

ARITHMETIC INSTRUCTIONS

REGISTER COPY INSTRUCTIONS

LOGICAL/CONTROL INSTRUCTIONS

JMP/CALL INSTRUCTIONS -

9.1
9.2
9.3

" SKIP INSTRUCTIONS

Skip On Condition Instructions
Compare and Skip Instructions
Modify and Skip Instruction

1-1
1-1
1-1
1-4

2-1

2-1
2-2
2-2
2-3
2-3

3-1

3-1
3-2
3-2
3-3
3-3
3-3
3-3

4-1

5-1

6-1
7-1
8-1
9-1

9-1
9-3
9-4

iii

TABLE OF CONTENTS (Cont.)

Section Title
10 SHIFT INSTRUCTIONS
10.1 Direct Shift Instruction Format
10.2 Indexed Shift Instruction Fprmat
10.3 Symbolic Shift Instructions
11 INPUT/OUTPUT INSTRUCTIONS
12 INPUT/OUTPUT PROCEDURES
12.1 General Procedures
12.2 Reserved Locations in Core
13 I/O STATUS AND CONTROL WORD FORMATS
13.1 Console Input/Output
13.2 Teletype Input/Output
13.3 Card Reader Input
13.4 High Speed Paper Tape Input/Output
14 SPIRAS-65 ASSEMBLER PROGRAM
14,1 Program Types
14.2 Assembly Format
14,3 Symbolic Labels
14.4 Commands
14.5 Arguments
14.6 Address Modifiers
14.7 Literals
14.8 Pseudo-Ops
14.9 Listing Contrql
14.10 Error Messages
APPENDIX A INSTRUCTION SUMMARY
APPENDIX B TABLES AND CONSTANTS
APPENDIX C SPIRAS-65 CODES
APPENDIX D PROGRAM EXAMPLES
APPENDIX E

SP-18-9

CONSOLE CONTROLS

10-1

10-1
10-1
10-1

11-1
12-1
12-1
12-3
13-1
13-1
13-2
13-4
13-5
14-1

14-1
14-1
14-2
14-2
14-2
14-4
14-6
14-7
14-12
14-12

A-1
B-1 -
C-1
D-1

E-1

iv

SECTION 1

SPIRAS-65 ORGANIZATION

1.1 DESCRIPTION

The description of the SPIRAS-65 which follows does not reflect the actual hardware

implementation but describes the computer from the programmers viewpoint.

A simplified block diagram of the SPIRAS-65 is shown in Figure 1-2. The computer
consists of a control unit, arithmetic unit, core memory unit and the console which is attached to

the I/0 buss of the computer.

1.2 CONTROL UNIT

The control unit causes an instruction word to be fetched from core memory and deposited
in the instruction register. The instruction is then decoded and executed unless the computer is

in one of the following conditions:
e HALT mode
e single-step mode
e variable speed mode
e an interrupt has been requested
e a direct memory control data transfer has been requested

The basic control cycle is shown in Figure 1-1,

1.3 ARITHMETIC UNIT

The arithmetic unit consists of the A register (upper accumulator), the B register'(lower
accumulator) which is used in the multiplication and division operations, the X register (an index
register), the P register (indicatin@gi the address of the next instruction) and the adder unit which can
perform the operations of ADD, AND, OR, EXCLUSIVE OR, Left Shift, and Right Shift.

. -

1.4 CORE MEMORY

The core memory unit is used for the storage of programs and data. It is modular in
4096 word increments to a maximum of 65,536 words. If a non-implemented memory location is

addressed, no operation results and an all zero word will be read.

SP-18-9 | | H SO | 1-1

Sp-18-9

DiC

SERVICE
ROUTINE

v

A

v

FETCH INSTRUCTION

INTERRUPT

INTERRUPT
SERVICE
ROUTINE

y

CONSOLE
SERVICE
ROUTINE

FETCH
INSTRUCTION

YES

P+ 1—P

o

FIND EFFECTIVE
‘ ADDRESS

| (See NOTFzJ

l

EXECUTE
INSTRUCTION

|1

ANY = DMC + INTERRUPT + HALT

NOTE: Effective address computation
not required for generic
instructions.

-~ Figure 1-1. Basic Control Cycle

1-2

6-81-dS

€1

ADDER UNIT

C BUSS
A B X
))
S BUSS
ARITHMETIC
UNIT

‘ FRONT
> PANEL)
f—> TELETYPE |———
: STAER X 1/0 BUSS
—® 1/0 3
DEVICES
M BUSS
CORE
™ MEMORY
B]
INSTRUCTION
, REGISTER
CONTROL
LOGIC
| CONTROL UNIT _J
L M BUSS
L 1/0 BUSS

Figure 1-2, SPIRAS-65 Organization

1.5 INPUT/OUTPUT

Input/output devices attached to the SPIRAS-65 share a party-line I/0 buss. Only one
An attempt to sense or input data

device can communicate with the computer at any given instant.
from a non-existent device will cause an all zero word to be transferred. An attempt to output

data, or a control word to a non-existent device results in no-operation.

SP-18-9 1-4

SECTION 2
CONSOLE OPERATION

The console controfs and thein functions are Listed
in Appendix E. The neader should familianize him-
self with these beforne proceeding.

2.1 POWER-ON AND BOOTSTRAP SEQUENCE

1)
2)
3)
4)
5)
6)
7
8)
9)
10)
11)

12)
13)

Sp-18-9

Depress POWER
Turn key switch to NORMAL
Depress INITIALIZE
Set MODE SPEED. fully clockwise
Select P on REGISTER FUNCTION
Depress CLEAR -
Key in location where loading is to begin
Depress ENTER
Select X
Depress CLEAR
Key in bootstrap device number

2 = ASR

3 = Card Reader

4 = High Speed Paper Tape Reader

11 = Magnetic Tape Unit #1
12 = Magnetic Tape Unit #2
13 = Magnetic Tape Unit #3 .

14 = Magnetic Tape Unit #4
Depress ENTER

Select B (If relocatable program)

2-1

14) Key in BIAS

15) Depress ENTER

16) Select BOOTSTRAP
" 17) Depress INIT

18) Select NORMAL

The bootstrap micro-program will start the medium (except ASR), ignore leading zero
bytes, assemble two bytes per word starting at the location determined by P until an all zero
sixteen-bit word is loaded. Control is now transferred to the location determined by P. The
micro-program computes a check-sum which is the arithmetic sum of all sixteen bit words
loaded (overflow is ignored). The secondary bootstrap program (program which was loaded)
should examine this check-sum. '

2.2 REGISTER DISPLAY

The contents of the A, B,X, P registers may be displayed in the HALT, SINGLE STEP,
or VARIABLE SPEED modes by selecting the desired register on the REGISTER FUNCTION
-switch.. The contents of the selected register may be modified by depressing CLEAR, keying
in new data, and depressing ENTER. The REGISTER FUNCTION switch is not functional when
the processor is in the RUN mode.

The key switch must be in NORMAL
position.

2.3 DISPLAYING MEMORY (HALT MODE)

To display the contents of memory starting at location XXX,
1) Select NORMAL

2) Depress HALT, INIT

3) Select MEMORY ADDRESS

4) Depress CLEAR

5) Key in XXX

6) Dépress ENTER

7) Select MEMORY DATA
- (The contents of location m 1s now dlsplayed)

Sp-18-9 T e L 2-2

8) Depress ENTER

The contents of location XXX + 1 is now displayed. One can
select MEMORY ADDRESS which will now show XXX + 1.

2.4 DISPLAY AND WRITE MEMORY (HALT MODE)

To display the contents of Location XXX and then write YYY into location XXX:
1) Select NORMAL
2) Depress HALT, INIT
3) Select MEMORY ADDRESS
4) - Depress CLEAR
5) Key in XXX
6) Depress ENTER
7) Select MEMORY DATA
8) Depress CLEAR
9) Key in YYY
10) Depress ENTER
The contents of XXX is now YYY and the contents of XXX + 1
is displayed. Ifitisdesired to modify location XXX + 1 repeat

the process or examine XXX + 2 by depressing ENTER. The
DISPLAY and DISPLAY/WRITE operations may be intermixed.

2.5 SINGLE STEP DEBUGGING

To single step'through a program after it has been loaded:
1) Select NORMAL

2) Depress HALT, INIT

3) Select SINGLE STEP |

4) Select P

5) Depress CLEAR

6) Key in location for start of single step operation

7) Depress ENTER .

8) Select INSTRUCTION 1

SP-18-9

The instruction which will be executed upon depressing RUN
is displayed. This instruction may be modified by depressing
CLEAR, keying in a new instruction, and depressing ENTER.

9) Select INSTRUCTION 2

If the instruction to be executed is a two word instruction, the
second word is displayed here, otherwise the next sequential
instruction is displayed. The contents can be modified.

10) Select and set up A, B, X as necessary
11) Depress RUN

Examine register contents with the aid of the REGISTER FUNCTION
switch to see the results of each step of program execution.

NOTE

1§ the Octal keyset and/on NIXIE display ane
used as programmed output devices, they will
not openate properly 4in the SINGLE STEP and
VARIABLE speed modes because these devices
ane used by the console sernvice routdine.

The instructions CALL/CALS, ARM/ARMF and DRM/DRMF always execute the next
sequential instruction before control passes toDMC, interrupt or console service routines:
therefore, if a LDAS instruction is located at location ﬁzﬂlv, and the P counter is set to §16@, and
location #1ff contains a CALS @200 instruction, the P counter will show 262 after RUN is depressed
in the SINGLE STEP mode.

SP-18-9 : R : 2-4

SECTION 3

INSTRUCTION FORMATS AND ADDRESSING MODES

The instructions in the SPIRAS-65 may be sixteen or thirty-two bits in length. Thirty-
two bit instructions are stored in two consecutive memory locations with the first sixteen bits

stored in the lower memory location.

A portion of the instruction set is implemented in both short (16 bit) and normal (32 bit)

forms. This feature saves core locations when the referenced data is within addressing range

and stores the full address or data with the instruction when extended addressing is required.

3.1 LONG INSTRUCTION FORMAT

Z is the operation code

m is the mode

a is the address or operand

00 [2,]m

YR TR S T T UG N U WO N 200 T I B |

m MODE Effective Address/Operand
0 Immediate The operand is a.
1 Direct The address is a. (e =a)
2 Indirect The address is stored at a. (e = (a))
3 Indirect pre-indexed The address is stored at a plus contents
with X of register X. (e = (a + X))
4 Index with A The address is a, plus contents of
register A. (e = a+A)
5 Indirect post- The address is stored at a, plus contents '
Indexed with X of register X. (e = (a) + X)
6 Index with X The address is a, plus contents of
register X, (e=a+X)
7 Index with P The address is a, plus contents of
program counter P. (e =a+ P)
Multilevel indirect addressing is pexmitted.

SP-18-9

NOTE

The P register always points to the next instruction in sequence.

state of the P register must be taken into account when computing

effective addresses.

The

3-1

3.2 SHORT INSTRUCTION FORMAT

z is the operation code

m is the addressing mode

Iy

a is the address

N
I W U A N S O T T 000 O 2t I N 4

m

Octal | Addressing Mode

Effective Address

00

01

10

11

0,1

2,3

4,5

s

6,7

Direct

Indexed with X

Indirect

Relative to P

The address is a. Range of a is 0 to 102310. (e = a)

The address is a, plus contents of register X,
Range of a is 0 to 102310. (e =a+X)

The address is stored at a. Range of a is 0 to 102310.
(e = ().

The address is a, plus contents of program

counter P. Range of a is 151110' (e = P+a)

The m bits are combined with the most significant address bit in octal presentation.

3.3 INPUT/OUTPUT FORMAT

Jojzfr] d |

2z is the operation code
r is the register mode
d is the device address
a is the memory address

T N NS B Y

or ,10'|er d
EE)

{000 T U T OO O O T W Y A 1

Input/Output instructions are one word if there is no memory reference. Memory

reference instructions require two words, the second of which is a sixteen-bit address.

k Indirect

.

Indirect post-
indexed with X

r Mode Effective Address
0 IMMEDIATE The address is the address of the instruction plus one.
1 Register A Register A
2 Register B Register B
3 Register X Register X
4 Direct The address is a. (e = a) ;
5 Indexed with X The address is a plus the contents of regiéter X.

(e=a+X)
The address is stored at a. (e = (a))

The address which is stored at a is addeci to
register X. (e = (a) + X)

SP-18-9

3-2

3.4 INDIRECT ADDRESS FORMAT

El!LIILIalllllLl,L_I

All forms of instructions requiring indirect address pointers use the indirect address

format shown. A one in the sign bit position is used to indicate that another level of indirect

addressing is to be involved.

3.5 SINGLE PRECISION FIXED POINT FORMAT

§[,, NUMBER
| S T T T T O I O

Single precisicn numbers consist of 15 bits plus the sign bit S. Negative numbers are

represented in two's complement form.

3.6 DOUBLE PRECISION FIXED POINT FORMAT

[e] S|HIGH ORDER BITS |
[e+1] 0| LOW, ORDER BITS ,

Double precision numbers consist of 30 bits plus the sign bit, S. The sign bit of the

~-second word is always zero. -Negative data is represented in two's complement form,

3.7 SINGLE PRECISION FLOATING POINT FORMAT

S = sign of mantissa e] St ML
M1 = high order part of mantissa [e+1] of, M2 | E
M2 = low order part of mantissa .

E =

biased exponent (+2008)

The mantissa consists of 22 bits plus the sign bit, S. The exponent consists of 8 bits
with bit 7 serving as the sign. The sign bit of the second word is always zero. Negative data
is represented in two's complement form. Adding 200g to the exponent results in an offset-by—28
notation, making the sign bit of the exponent "1™ if the exponent is positive, and 0" if it is
negative.

3.8 DOUBLE PRECISION FLOATING POINT FORMAT

: e] S| MANTISSA 1. ., .
- [e+1] 0| MANTISSA 2 |, ,

[e+2] 0| MANTISSA S , , |

[e+3] S} EXPONENT, , ., ..

The mantissa consists of 45 bits plus the sign bit S. The exponent consists of 15 bits
plus the sign bit S1. The sign bit of words 2 and 3 is always zero. Negative-data is represented
in two's complement form. :

'SP-18-9 ' , ‘ 3-3

SECTION 4

LOAD/STORE INSTRUCTIONS

LDA Load A register o000 | 11 1m

Timing: 3 cycles

LDAS Load A register short form [_I R]

-~ Timing: 2 cycles

The contents of the effective memory location (operand) are placed in the A register.

LDB Load B register 109 ?\ a 1112,) I; ;
llllllllal.Lll(

Timingﬁ 3 cycles

LDBS Load B register short form [1 - ‘m} a TI

|

Timing: 2 cycles

The contents of the effective memory location (operand) are placed in the B register.

LDX Load X register 000 [13 |m

§ IS U T B R W Y

lllllllja'[J:lllJI

Timing: 3 cycles

LDXS Load X register short form R [m[a j

1L 14 ¢ 31 1 b

Timing: 2 cycles

The contents of the effective memory location (operand) are placed in the X register.

LS

STA Store register A ‘ 000 02 . |m

lllllLllllIll

l[lllllllllllLJ

Timing: 3 cycles

STAS Store register A short form ‘) [1 o Im{ o e L]

Timing: 2 cycles

The -contents of register A replace the contents of the effective memory location

(operand).

SP-18-9

4-1

000 [03 Im

STB Store register B :
—_— I N I T ! B O
L1t 1 11 lg[I

Timing: 3 cycles

Store register B short form [03 [m] a

Timing: 2 cycles

STBS

The contents of register B replace the contents of the effective memory location

(operand).
STX Store register X UQQOL J ,40161 m
E— a
§ I N O S W O N A O B |
Timing: 3 cycles
STXS Store register X short form ‘ M

Timing: 2 cycles
The contents of register X replace the contents of the effective memory location

(operand).

lnalolljun?

DLD = Double Precision Load 000
-_ =

008 B S IO T oo O O O

Timing: 4 cycles

_ The double precision or floating point number contained in the two successive memory
locations beginning with the effective memory location is placed in registers A and B with the
most significant half in register A. The immediate addressing mode should not be used.

000 [31 |m

DST Double Precision Store YT PN
Lllllltal'lllllll

Timing: 5 cycles

The double precision or floating point number in registers A and B is placed in the two

successive memory locations beginning with the effective memory location. The immediate

addressing mode should not be used.

SP-18-9

LEA Load Effective Address

000 [40 [m

et gl ko T I N B S X N

a
gL g bt eetpr iy

Timing: 4 cycles*

The effective address is resolved taking into account indexing and all levels of indirect,

and this address replaces the contents of the X register.

Typical use would be to fetch the argument address for a subroutine such as in the

following example:

CALS SUBR
PTR A
PTR* B

.

SUBR DATA

Another use of the LEA instruction is when it is necessary to set the index register to an

address within a program that is to be "self-relative." A LDXI TABLE instruction would set the

register cori‘ectly but would not be a self-relative instruction. A LEA TABLE(P) instruction

would also set the register as desired but would also be seli-relative.

* Includes the first indirect cycle.

SP-18-9

SECTION 5
ARITHMETIC INSTRUCTIONS

ADD Add to register A 000 04 |m

T W W YU U B Lt

a
Lt g it

Timing: 3 cycles

ADDS Add to register A short form I 04 lmr a I

Timing: 2 cycles

The contents of the effective memory location (operand) are added to the contents of the
A register. The sum, mod 215 g placed in the A register. If the sum is 2 215 op <--215 the
overflow flag is set. Otherwise it is reset.

I) U OO I B

ADB Add to register B 000 | 23 |m

lrlllll% O

Timing: 3 cycles

The contents of the effective memory location (operand) are added to the contents of

register B. The sum, mod 215, is placed in register B, The overflow flag is not affected.

ADX Add to register X ‘ 000 [24 |m

1 b q N

a

| S T T T O O O

Timing: 3 cycles

The contents of the effective memory location (operand) are added to the contents of

register X. The sum, mod 215, is placed in register B. The overflow flag is not affected.

'SUB Subtract from register A [, 000 | 05 |m
111yt)al 1 1) 11 or
3 cycles

SUBS Subtract from register A short form 05 |m a
‘ Timing: 2 cycles

The contents of the effective memory location (operand) are subtracted from the contents

of the A register. The difference, mod 2,15, is placed in the A register. If the difference is

2 215 or <-21,5~ the overflow flagis set. Otherwise it is reset.

'8P_18_9 . S . | ’ Gas : . L ey

MUL Multiply 000 l 011 |m

YO SO TS U S B S T N O A

11||l|la'nlilll

Timing: 11 cycles

MULS Multiply Short Form - [011Tm["2

1t Lt g1

Timing: 10 cycles

The contents of the effective memory location (operand) are multiplied by the contents
of register B. The result is placed in registers A and B in double precision format, i.e., most
significant half in register A, least signiﬁcant half in register B and the sign bit of register B
set to '"0". The overflow flag is not affected. (NOTE: Muliiplying -215 by -215 produces zero.)

/

m
41

DIV Divide 000 | 27

IO T T VO T IO 00 T O)

a
00N O T T T O O A

Timing: 15 cycles

The contents of registers A and B (double precision format) are divided by the contents
of the effective memory location (operand). The quotient is placed in register B and the remain-
der is placed in register A with the sign of the dividend. The overflow flag is setif A _ ope-
rand. An attempt to execute an improper divide will cause the overflow flag to be set and regis-
ters A and B to be unaltered.

For single precision fractional divide, the fractional dividend should be in the A register
and the B register should be set to zero. For single precision integer divide, the integer divi-
dend should be placed in the B register and the A register should be set to zero if the integer is
positive and to all ones if the integer is negative. Integer division may be set up by loading the

1A register with the integer and performing an ASRD 15 instruction.

SP-18-9 S : B | 5-2

DADD Double Precision Add (000 | 32 Im

lllll'llaiLlll!!

Timing: 5 cycles

The double precision number contained in the two successive memory locations starting
with the effective memory location is added to the double precision number in registers A and B.
The sum, mod 230
is set if the sum is greater than full scale or less than minus full scale. The immediate addres-

is placed in registers A and B in double precision format. The overflow flag

sing mode should not be used.

DSUB Double Precision Subtract 000 ' 33 |m

llllllaflllll[(

Timing: 6 cycles

The double precision number contained in the two successive memory locations starting
with the effective memory location is subtracted from the double precision number in registers
A and B. The difference, mod 230, is placed in registers A and B in double precision format.

The overflow flag is set if the difference is _>_—230. The immediate addressing mode should

not be used. -

FADD Floating Point Add 000 34 [m

INEENNEE NN

t ey b LB tor a1yl

Timing: 11-28 cycles and
normalize time
The floating point number in the two successive memory locations starting with the
effective address is added to the floating point number in registers A and B. The sum is placed
in registers A and B in normalized form. If the sum is greater than full scale or less than minus
full scale the overflow flag is set. A floating point number may be normalized by adding it to

zero. The immediate addressing mode should not be used.

FSUB Floating Point Subtract , 000 I 35 lm

N S0 T T N T O S |

Lllllllal'lllllll

Timing: 11-28 cycles and

normalize time

The floating point number in the two successive memory locations beginning with the
 effective address is subtracted from the floating point number in registers A and B. The difference
is placed in registers A and B in normalized form. 1If the difference is greater than full scale or
less than minus full scale the overflow flag is set. The immediate addressing mode should not be

used,

 SP-18-9 . : R 5-3

FMUL Floating Point Multiply

000 36 {m

IR NS O W N . O S OO N

lllllllal'l!lllll

Timing: 60-70 cycles

The floating point number in the two successive memory locations starting with the
effective address is multiplied by the floating point number in registers A and B. The product is
placed in registers A and B. If the product is greater than plus full scale or less than minus full
scale the overflow flag is set. The immediate addressing mode should not be used.

FDIV Floating Point Divide 000 37 Im

BTN O T O A O O O

a
Loyt i ey sty

Timing: 60-70 cycles

The floating point number in the two successive memory locations starting with the
effective address divides the floating point number in registers A and B. The quotient is placed
in registers A and B. If the quotient is greater than full scale or less than minus full scale the
overflow flag is set. An attempt to divide by zero will cause registers A and B to be set to plus
or minus full scale and the overflow flag to be set. The immediate addressing mode should not be

used.

- Floating Point Normalize: See Floating Point Add

INR Increment and replace 1000 26 |m

PO U S T I S O BN i

llllllla'lLLLl|ll

Timing: 4 cycles

The contents of the effective memory location (operand) are incremented by one and
replaced. - The overflow is not affected.

DCR Decrement and replace 000 25 |m

S T SN0 SO 0 T O A A S

a
NN NS

Timing: 4 cycles

The contents of the effective memory location (operand) are decremented by one and
replaced. The overflow is not affected.

2.]

.

SP-18-9 , ~ : = 5-4

SECTION 6

REGISTER COPY INSTRUCTIONS

. The format of the register copy instruction is as follows:

002 s | op d
| S O N | | [} 1
Source Register & Condition Destination Register
0 Value Zero Conditional 0 = No Destination (NOP)
1 Value Zero -
chs 1 = (A)
2 A Conditional 2 = (B)
3 A _
4 B Conditional Z - &; and (B)
5 x Conditional 5 = (a)and (X)
7 X ondaitiona 6 = (B) and (X)
7 = (A), (B)and (X)
Conditional operations are NOPs
if OVERFLOW is not set. Operation
0 = Add1
1 = Subtractl
2 = No Change
3 = Two's complement (Negate)
4 = One's complement
5 = Copy (A) to (B) and
(s) to (d)
6 = Copy (A) to (X) and
(s) to (d)
7 = Copy (X) to (B) and
(s) to (d)

Thus, the instruction 002235 specifies that the contents of the source, register A, are
negated and placed in registers A and X if the overflow flag is set.

SP-18-9 L 61

There are 445 Register Change Instructions.
Change Instructions follow.

Copy operation depends on the value nnn.

Mnemonics for the more useful Register

» RGC nnn
Cp s,d Copy
CPF s,d Copy if overflow is on
CPI s,d Copy and increment
CPIF s,d Copy and increment if overflow is on
CPD s,d Copy and decrement
CPDF s,d Copy and decrement if overflow is on
CpPC s,d Copy and (one's) complement
CPCF s,d Copy and (one's) complement if overflow is on
CPN s,d Copy and negate (two's complement)
CPNF s,d Copy and negate if overflow is on
CAB s,d Simultaneously copy (A) to (B) and (s) to (d)
CABF s,d Same as CAB if overflow is on
CAX s,d Simultaneously copy (A) to (X) and (s) to (d)
CAXF s,d Same as CAX if overflow is on.
. CXB s,d Simultaneously copy (X) to (B) and (s) to (d)
CXBF s,d Same as CXB if overflow is on
NOTE
Conditional operations are NOP if the overflow flag
is off.
g g
A A
s B d= B
X X
A,B ; (Add 0. 2 cycles to time)
A‘,X (Add 0. 2 cycles to time)
‘ B,X (Add 0. 2 cycles to time)
~ . | A,B,X” (Add 0.4 cycles to time)

Timing: 1.4 cycles if unconditional

1.6 cycles if conditioned on overflow

SP-18-9

6-2

SECTION 7
LOGICAL/CONTROL INSTRUCTIONS

XOR Exclusive OR with A 000 [14 |m

B T W B Y 1 T O |

lllllllailllllll

Timing: 3 cycles

XORS Exclusive OR with A short form 14 llfli R []

Timing: 2 cycles

A bit by bit exclusive OR is performed on the contents of register A and the contents of
the effective memory location (operand). The result is placed in register A.

(A) f_)_i A, XOR (e)i

0 0 0

0 1 1

1 0 1

1 1 0
AND Logical AND with A 000 | 15 Im
!lllia'llllllll
Timing: 3 cycles
ANDS Logical AND with A short form 35 jmp a

Timing: 2 cycles

A bit by bit logical AND is performed on the contents of register A and the contents of
the effective memory location (operand). The result is placed in register A.

W, @ e
0 0 0
0 1 0
1 0 0
1 1 1

SP-18-9 | ‘ | ~ 7-1

ORA Logical OR with A _,boo .L 16 |m

LLJIlI)!IIIIllL

Timing: 3 cycles

ORAS OR with A short form 16 fmf 2]

Timing: 2 cycles

A bit by bit logical OR is performed on the contents of register A and the contents of the

effective memory location (operand). The result is placed in register A.

(i)_i ‘ [—eﬂ1~ (A), OR [e],
0 0 0
0 1 1
1 0 1
1 1 1
" 000000
HLT Halt NENERRNRENEEN

Computation is halted. When the RUN button is pressed after execution of a Halt

instruction computation starts with the next instruction is sequence.

002000

ppr ettt

NOP No Operation

Timing: 1.6 cycles

Execution of the No Operation instruction affects only the program counter P.

00174 n

Lo rpr el

OVF Set Overflow -

Timing: 1.2 cycles

0; Set overflow OFF
1; Set overflow ON

=}
[

[

TRAPPED INSTRUCTIONS: Instructions 00041n thru 00077n will be trapped if executed.
These instructions may be used for simulation purposes under software control. Trap instructions
will cause the instruction in location 0003 to be executed. This instruction is usually a CALS

; instruction. Indirect address chains of greater than 31 indirects or system protect violations

(whenomemory and mstructlon protect feature is implemented) will generate a trap causmg the

instruction in locatmn 0002 to be executed

© §P-18-9 IR o | | 7-2

SECTION 8

JMP/CALL INSTRUCTIONS

JMP JUMP Unconditionally 000 | 17 Im

§ G Y S N Y N O U B T ST

a

B TR TN N T N O e OO TN O Y 08 W N

Timing: 3 cycles

JMPS JUMP - Short form |17 jml a2 |

Al T

Timing: 2 cycles

The next instruction executed is at the effective memory location.

CALL CALL Unconditionally 000 | 07 |m
llllliail\lllll

Timing: 3 cycles

CALS CALL - Short form 07 |m a

L1l] g1ttt

Timing: 2 cycles

The contents of the program counter P are incremented by one for the short form call
and placed in the effective memory location. The contents of the program counter P are incre-
mented by two for the long form call and placed in the effective memory location. The next

instruction executed is at the effective memory location plus one.

(If an interrupt occurs during a CALL or CALS instruction, one additional instruction
will be executed before the interrupt occurs. In the single step or variable speed modes the
-instruction following will be executed before halting again.)

~ SP-18-9 | L ‘ T e e 8-1

‘SECTION 9

SKIP INSTRUCTIONS

9.1 SKIP ON CONDITION INSTRUCTIONS

The Skip instructions have the form: A 00 | =z ccce

z is the operation code
CCC is the condition code

z Operation
4 Skip on any tested condition true
5 Skip on all tested conditions false
CCC Condition Tested
000 Unconditional
001 Sense Switch 1
002 Sense Switch 2
004 Sense Switch 3
010 Sense Switch 4
020 Overflow Flag
040 Register A Positive
100 Register A Zero
200 Register B Zero
400 Register X Zero
NOTE
The skip instruction should always be followed by
a single word instruction.
SKT Skip on any conditions true ' 00| 4 cce

Timing: 1 cycle

If any of the tested conditions is true skip one word, otherwise execute next sequential

instruction.

he -

SKF Skip on all conditions false 005 ccc |

06 | T T T O

Timing: 1 cycle

If all of the tested conditions are false, skip one word, otherwise execute next sequential

instruction.

SP-18-9 | | | ERET | 3 9-1

The most common combinations of the CCC Field have been given mnemonic names as

shown by the next 21 instructions.

Ss1 Skip if Sense Switch 1 set [.0.0. [.4; l o1
Timing: 1 cy.rcle
SNS1 Skip if Sense Switch 1 not set 00 |5 001
Timing: 1 cycle
ss2 Skip if Sense Switch 2 set 0o J 41 o002 ‘]
Timing: 1 cycle
SNS2 Skip if Sense Switch 2 not set 00 |5 002
Timing: 1 cycle
sS3 Skip if Sense Switch 3 set 00 l 41, 004 J
Tinﬁng : 1 cycle
SNS3 Skip if Sense Switch 3 not set 00 15| 004
Timing: 1 cycle
SS4 Skip if Sense Switch 4 set 0014 010
Timing: 1 cycle
SNS4 Skip if Sense Switch 4 not set [o0[5] o010 |
Timing: 1 cycle
SOF .Skip if overflow flag set m
, Timing: 1 cycle
SNOF Skip if overflow flag not set [00 l 5 | 020 l
Timing: 1 cycle
SAZ Skip if (A) = 0 00 | 4 . 100
Timing: 1 cycle
SANZ Skipif (A) £ 0 00 [5 100

Timing: 1 cycle

Sp-18-9

9-2

SAP Skip if (A) > 0 00 |4 040
Timing: 1 cycle
SANP Skip if (4) < 0 oolsl..oe,.
‘ Timing: 1 cycle
SAN Skip if (A) < 0 00| 5 140
Timing: 1 cycle
SANN Skip if (4) > 0 MR
Timing: 1 cycle
SBZ Spif () = 0 AL 2]
Timing: 1 cycle
SBNZ Skipif (B) # 0 005 200
Timing: 1 cycle
X7 Skip if (X) = 0 00 4 400
Timing: 1 cycle
SXNZ Skipif (X) # 0 . 00[5 400
Timing: 1 cycle
SKIP Skip unconditionally 005 000

Timing: 1 cycle

9.2 COMPARE AND SKIP INSTRUCTIONS

CAS

Compare with A register and skip 000 120 fm]
L1 13l l?’lllllLll
If (A) < [e] execute next (short form) instruction
Timing: 3 cycles
If (A) = [e] skip next (short form) instruction |
' ‘ Timing: 3 cycles
If (A) > [e]. skip next two (short form) instructions

Timing: 3 cycles

SP-18-9

9-3

lololol Il I J._L2L1LL [!Iln

CBS Compare with B register and skip

a
Ly bbb or ittty

If B) < [e] Execute next (short form) instruction

Timing: 3 cycles

If (B)

1}

[e] skip next (short form) instruction
Timing: 3 cycles

If (B) > [e] skip next two (short form) instruction

Timing: 3 cycles

CXs Compare with X and skip 000 | 22 |m

N T N O O T S T O I D

a
FEE I N A |

If (X) < [e] execute next (short form) instruction

Timing: 3 cycles

If (X) = [e] skip next (short form) instruction

Timing: 3 cycles

If (X) > [e] skip next two (short form) instructions
Timing: 3 cycles

9.3 MODIFY AND SKIP INSTRUCTION

XS Increment X and Skip if Zero 006 n
Timing: 1.4 cycles

The contents of register X are incremented by n (0008 to 771 8) and replaced. If the
result is not zero, the next instruction in sequence is executed. If the result is zero, the next
instruction in sequence (should be a short form instruction) is skipped. The overflow is not
affected.

DXS Decrement X and Skip if Zero 003 | ~n |

Lt 11 t1 | S T T

- Timing: 1.4 cycles

The contents of register X are decremented by the complement of n (0008 to 177 8) and
replaced. If the result is not zero, the next instruction is executed. If the result is zero, the
next instruction in sequence (shouldbe a short form instruction) is skipped. The overflow is not

affected.

SP-18-9 : , 9-4

DRS

Decrement memory and Skip if Zero

000 10]m

IR T T U T N O O

.

VI T T N O O O B

Timing: 4 cycles
[e] - 1 —[e]; then

If [e] # O execute next (short form) instruction
If [e] =

0 skip next (short form) instruction

SP-18-9

9-5

SECTION 10

SHIFT INSTRUCTIONS

10.1 DIRECT SHIFT INSTRUCTION FORMAT

doftsz.n...J

8 specifies the kind of shift .
n specifies the number of bit positions shifted (0 - 31)

10.2 INDEXED SHIFT INSTRUCTION FORMAT

ﬂiol‘[_?_l[$1.h lr.ll 1l

The right nine bits of the index register are added to the right nine bits of the instruction.
The sum of this addition determines the effective value of s and n.

10.3 INSTRUCTION SHIFT TYPES

s Shift Type
ggp -Arithmetic shift left of A
" pg4p Logical shift left of A
- 168 Arithmetic shift right of A
144 Logical shift right of A
200 Arithmetic shift left of B
- 24p Logical shift left of B
348 Arithmetic shift right of B
344 Logical shift right of B
400 Arithmetic shift left of A, B
4448 « « = —-—Logical shift left of A,B
508 Arithmetic shift right of A,B
544 Logical shift right of A,B
680 Logical rotate left of A-
640 Logical rotate left of B
g8 | Logical rotate left of A,B

10.4 SYMBOLIC SHIFT INSTRUCTIONS

The following descriptions specify the symbolic names accepted by the Assembler for the
above types of shift. The variable field contains the value for n and may optionally be followed by
an X within parentheses (indexed shift).

Examples:
LSLA 6
LSLA 6(X)

- SP-18-9 : s ’ - ' 10-1

LSLA Logical shift left of A ; Sar+n

Timing: 1+.2 cycles

+ The contents of register A are shifted left n bit positions, where 0 S n <37 Zeros are

g
shifted into the right of A. Bits shifted out of the sign bit of A set or reset the overflow flag.

OF < A ¢—0

LSLB Logical shift left of B 1 240+n

BN OO DA U0 N 2 0 T 1 O B R

Timing: 1+.2n cycles

The contents of register B are shifted left n bit positions, where 0 <n < 378. Zeros are
shifted into the least significant bits of B. Bits shifted out of the sign bit of B set or reset the

ore— 5 Je—o

overflow flag.

LSLD Logical shift left double gg1 44f+n]

e et ettty

Timing: 1+.4n cycles

The contents of registers A and B are shifted n bit positions, where 0 < n < 378. The
sign bit of the B register is shifted into the right of the A register. Zeros are shifted into the
right of the B register. Bits shifted out of the sign position of A set or reset the overflow flag.

loF e— A& Je— B J¢e——o0

LSRA Logical shift right of A [[fif [146+n]

tia ey g by b ety

Timing: 1+.2N cycles

The contents of register A are shifted right n bit positions, where 0 <n< 3'7'8. Zeros
are shifted into the sign bit of A and bits shifted out of the right of the A register set or reset the
overflow flag. : .

0 ;L A I or |

SP-18-9 e e N SRR 10-2

LSRB Logical shift right of B gg1 [34@+n

NN tar et

Timing: 1+.2n cycles

The contents of register B are shifted right n bit positions, where 0 <n < 378. Zeros are
shifted into the sign bit of B and bits shifted out of the right of the B register set of reset the
overflow flag.

0 B A —slor |

'LSRD Logical shift right double m

Timing: 1+.4n cycles

The contents of registers A and B are shifted right n bit positions where 0 <n < 378‘
The rightmost bit of A is shifted into the sign bit of B. Zeros are shifted into the sign bit of A.
Bits shifted out of the rightmost bit of B set or reset the overflow flag.

0 —» A b B oF |

LRLA Logical rotate left of A gp1 | 60f+n
Timing: 1+.2n cycles

The contents of register A arerotated left n bit positions, where 0 <n < 378. The sign
bit of A is shifted into the right-most bit of the A register. The last bit shifted into the right-most

bit of A sets or resets the overflow flag.

Lo) o

LRLB Logical rotate left of B [gg1] 64f+n l

O O O O I

Timing: 1+.2n.

The contents of register B arerotated left n bit positions, where 0<n < 378. The sign
bit of B is shifted into the right-most bit of B. The last bit shiﬁed into the rightmost bit of B sets

or resets the overflow flag.

L ! o

SP-18-9 | | o | , , 10-3

LRLD Logical rotate left double go1 | TPP+n
“Timing: 1+.6n cycles

The contents of registers A and B are rotated left n bit positiohs, where 0 <n< 378. The

>

sign bit of B is shifted into the right most bit of A and the sign bit of A is shifted into the rightmost
bit of B. The last bit shifted into the rightmost bit of B sets or resets the overflow flag,

[S—" "

ASLA Arithmetic shift left of A 601 g83+n

Timing: 1+ .4n cycles

The contents of register A are shifted left n bit positions, where 0 <n <37 Zeros are

8
shifted into the rightmost bit of A. The overflow flag is set and remains set if significant bits are

lost, otherwise it is reset. The sign bit is unaltered.

o e A o

-ASLB Arithmetic shift left of B - gg1 | 26@+n
Timing: 1+ .4n cycles

The contents of register B are shifted left n bit positions, where 0 S n< 378. Zeros are
shifted into the rightmost bits of B. The overflow flag is set and remains set if significant bits

are lost. The sign bit is unaltered.

[ov Je——f B j—0

ASLD Arithmetic shift left double gg1 l 40p+n |

Timing: 1+.6n cycles

The contents of registers A and B ‘are's‘hifted left n bit positions, where 0 <n< 37 8 The
bit next to the sign bit in B is shifted into the right of A and zeros are shifted into the right of B.
The overflow flag is set and remains set if the sfgnificant bits are lost, otherwise it is reset.
The sign bit of the A register is unaltered and the sign bit of the B register is set to zero.

[ov Je--B Al f_B5_J—o

SP-18-9 T - | - 10-4

ASRA Arithmetic shift right of A [#P1 | 10Bn |

[U 0 O O T I I O

Timing: 1+.2N cycles

The contents of register A are shifted right n bit positions, where 0 <n< 378. The
sign bit of A is copied into the bit to the right of the sign. The overflow flag is reset.

‘ !lelllylAlllllllll]

o1 | 3ddm |

Timing: 1+.2n cycles

ASRB Arithmetic shift right of B

The contents of register B are shifted right n bit positions, where 0<n < 378. The sign
bit of B is copied into the bit to the right of the sign bit. The overflow flag is reset.

B

ASRD Arithmetic shift right double | #81 | 580en |

O T T O O O O

Timing: 1+.4n cycles

The contents of registers A and B are shifted right n bit positions, where 0 <n < 378.
The sign bits of A and B remain unchanged. The sign bit of A is copied into the bit to the right
of the sign bit, and bits shifted from the right of A go into the bit to the right of the sign bit in B.
The overflow flag is reset.

S A B

SP-18-9 , » o : 10-5

SECTION 11

- INPUT/OUTPUT INSTRUCTIONS

Input and output instructions have format

110 |z d or ILOI %lEJIL]dLIJ

|00 T IO T I I O I

z specifies the operation

r specifies whether register A, register B, register X, memory or an immediate
instruction is involved.

d is the device address

a is the address or operand if there is one. The address may be direct, indexed, indirect,
or indirect post-indexed, depending on the r field.

EXCA External control from A 1:0 10

INEREN NN NN

Timing: 1 cycle

A 16-bit command word is sent to device d from register A.

EXCB External control from B 0 0 d
Timing: 1 cycle

A 16-bit command word is sent to device d from register B.

EXCX External control from X 0 |0 B

d
e bet b r Pl il

Timing: 1 cycle

" A 16-bit command word is sent to device d from register X.

EXCM External control from memory 110 [0‘ }l . l I

11

a
t e eer gttty

) Timing: 2 cycles
A 16-bit command word is sent to device d from the effective memory location.

EXCI External control immediate 1,0, lq . b, . I d., .,

-

. . A
d , Llrirrr et

Timing: 2 cy cles

' The 16-bit command word v is sent to device d.

SP-18-9 , o 111

.SENA Sense status to A [1’ o, ll. L | & u]

Timing: 1 cycle

The status bits for device d are placed in register A.

SENB Sense status to B : _ ﬂgn lulzull(h“]

Timing: 1 cycle

" The status bits for device d are place in register B.

SENX Sense status to X | ﬂplllxllsllllcniuLJ

Timing: 1 cycle

The status bits for device d are placed in register X.

L

SENM Sense status to memory 110 |1, L-I , l 4,
a

I NN Y. N

Timing: 2 cycles

The status bits for device d are placed in the effective memory location.

SENS Sense status and skip if zero 0, ! 1, IO , | 4, .,

S TS RO M N

Timing: 2 cycles

If any of the masked status bits for device d is 1" the next instruction in sequence is

executed. If not, the next instruction in sequence is skipped. The next instruction must be short

form. (See Section 13 for Mask Descriptions.)

OTA OutputfromA . [lilolllell!L[aldJIl]

Timing: 1 cycle

The contents of register A are transferred to device d.

OTB v Output from B : : H 0 12]2 l d I

* - , , Timing: 1 cycle

The contents of register B are transferred to device d.

SP-18-9 o B o S 11-2

OTX outputfromx ﬂ[p|[?|l3|lllqll_l—l

Timing: 1 cycle

The contents of register X are transferred to device d.

OTM Output from memory 1{0 [2 r | d

'l B St N | |

lJll!lllallllIIl

Timing: 2 cycles

The contents of the effective memory location are transferred to device d.

OTI Output Immediate 10f21]0, 1,4 .,
v

TN T T 0 G O O I |

Timing: 2 cycles

The operand V is transferred to device d.

ClA Clear and input to A 0 1 d
Timing: 1 cycle

Register B is cleared and a data word from device d is transferred into register A.

CiB Clear and input to B 013 (2 d:
Timing: 1 cycle

Register B is cleared and a data word from device d is tranferred into register B.

CIX Clear and input to X 7 Wols 3,].4,..]

Timing: 1 cycle

Register X is cleared and a data word from device d is transferred into register X.

CIM , Clear and input to memory 11 013, h-

.4,
1

1111

Lol

L 100 I T

Timing: 2 cycles

A data word from device d replaces the contents of the effective memory location.

;

SP-18-9

11-3

INA Input and OR with A . M 0 |5 |1 | d I

Timing: 1 cycle

A logic OR is performed on the contents of register X and a data word from device d.
The result is placed in register X.

INB Input and OR with B Mol5i2],4,,]

L)}

Timing: 1 cycle

A logic OR is performed on the contents of register B and a data word from device d.
The result is placed in register B.

INX Input and OR with X 10|53 d

Timing: 1 cycle

A logical OR is performed on the contents of register X and a data word from device d.
The result is placed in register X.

ARM Arm Interrupt o l4,l0,]0, k]

Timing: 1 cycle

The Arm Interrrupt Flag is set and the Overflow Flag is reset. If an interrupt is waiting
to be processed, one additional instruction following the ARM instruction is processed before the
interrupt takes place.

ARMF Arm Interrupt and Set Overflow 110 14 o o B]

Timing: 1 cycle

Same as ARM except the Overflow Flag is set on.

DRM \ Disarm Interrupt | ﬁl Iol “% ! Jq L [01 ! k’l 1]

Timing: 1 cycle

The Arm Interrupt Flag is reset causing interrupts to be held back by the éomputer until
| ingermpts.-are allowed again. The Overflow Flag is reset.

DRMF Disarm Interrupt and Set Overtlow [0 [4.]0 0 L |

Timing: 1 cycle

Same as DRM escept the Overflow Flag is set on.

SP-18-9 ’ : : ‘ 11-4

SECTION 12

INPUT/OUTPUT PROCEDURES

12.1 GENERAL PROCEDURES

There are five general procedures for performing 1/0 functions with the SPIRAS-65

computer.

12.1.1 Programmed Input/Output

In this procedure, a sense instruction is used to check the status of the device (busy, etc.),
if necessary an External Control instruction is used to start a motion (start card reader, etc.)
and an Inpuf or Output instruction to input or output a data byte or word. A combination of Sense and
Input or Output instructions must be executed for each character or word to be processed in this

manner.

12.1.2 Interrupted Input/Output

Rather than waiting for the device to be non-busy or periodically checking 1/0 status as
was done in Procedure 1, Interrupts can be armed and requested such that after the Input or Output
of a data byte or werd is started, no additional checking is required. When the specified I/O action
is completed, the computer program is interrupted, an interrupt handling program initiates the

next I/O action, and the interrupted program is resumed.

12.1.3 Direct Controlled Input/Output and Interrupt

The procedure requires that two control words be set up for the I/O device being used
(DMC words). The first word specifies the location of the first data word transfer. The second
word specifies the location of the last word to be processed. After arming interrupts, enabling
the DMC and initiating the first input/output action, the computer will automatically fetch or store
additional data from the specified memory area until all data is processed. At that time, an

interrupt occurs informing the computer that the data block has been processed.

The table of DMC word pairs are in fixed locations starting at twice the Device Number.

For the standard devices, these locations are:

Teletype (Device 2) ~-==----- 0004, 0005
Card Reader (Device 3)~--~--0006, 0007
Paper Tape (Device 4)------- 0010, 0011
Line Printer (Device 5)-=~=~= 0012, 0013

If useful, the value of the two words can be modified during the I/O process, thereby extending or

changing the memory area being pxjocessed.

SP-18-9 . _ 12

12. 1.4 Direct Controlled Input/Qutput Without Interrupt

The only difference between this and the previous procedure is that interrupts are not
requested.

12.1.4.1 DMA Option

The previous procedures are all possible using a basic SPIRAS-65 Computer. As an
additional option, any device can also be equipped with two DMA registers. These registers allow
an operation identical to paragraph 11.1. 3 except that no memory accesses are required between

data words thereby increasing the potential I/O transfer rate.

12.1.5 Input/Output Interrupts

Location 00000 points to the location of an interrupt table. This table consists of four

words for each device number and each four word group is used as follows:

(1) ARM Location of first word in
this 4-word group is 4*d

@) IMP + {contents of 0000).

(3) RETURN

(4) JMPS ALPHA

The computer will set word 1 to an ARM or an ARMF instruction depending if the over-
flow was set at the time of the interrupt. Word 3 is set to the next location to be executed after

interrupt processing is completed. The (short form) instruction in word 4 is then executed.

When an I/O device generates an interrupt signal and interrupts are armed;

1) Interrupts will be disarmed.

2) The program being executed is interrupted after the current instruction is
' complete, (CALL, CALS, and ARM instructions will execute one additional
instruction before interrupting.)

3) The currentvalue of the P register is saved in word 3 of the interrupt table
4-word group for the interrupting device, and an ARM or ARMF instruction
is constructed and placed into word 1 of the 4-word group.

4) The instruction in word 4 of the 4-word group is executed.

The instruction executed is probably a Jump to an interrupt handling program which will
save any necessary registers, do whateveff processing is necessary to service the interrupt,

reset the registers (which also resets the register comparison status flags) and jurhp to word 1

SP-18-9 LIRS L e e 12-2

.of the Interrupt Table 4-word group. That, in turn, will ARM the interrupts (as well as reset the

original overflow status) and do a long jump back to the proper place in the interrupted program.

The location of the 4-word groups depend on the contents of word 0000 (=BASE) and the

interrupting device number. For the standard I/O devices, the following addresses are applicable.

4-WORD GROUP LOC.
Teletype (Device 2) BASE+0010
Card Reader (Device 3) BASE+0014
Paper Tape (Device 4) BASE+0020
Line Printer (Device 5) BASE+0024

12.2 RESERVED LOCATIONS IN CORE

0000

0001
0002
0003
0004
0005
0006
0007
0010
0011

- 0012
0013
0014
0015

.
°

°

0176
0177

Location of Interrupt Table

(Used by Floating Point Logic)

Executed when indirect address trap occurs,

Executed by 00041X-00077X Instructions

———(Device £2 DMC (Teletype)

"’—"CDevice 03 DMC (Card Reader)}

———Device 04 DMC (Paper Tape))

——(Device 05 DMC (Line Printer))

——(Device 06 DMC)

——CDevice 077 DMQ}

Those words in the above table for which a DMC Device is not attached to the system, may

be used for any other purposes. Most standard software packages (Assembler, Fortran, etc.)

utilize the memory area starting at location 0074. (fn addition, the memory area between 0000

and 0073 is often used for bootstrap loading purposes.)

SP-18-9

12-3

SECTION 13

1/0 STATUS AND CONTROL WORD FORMATS

13.1 CONSOLE INPUT/OUTPUT

m i |

SENS -0
SENA 0 ‘—K—A L
SENB 0 Remote SS1 set
SENX 0 . : Remote SS2 set
SENM 0,a Remote SS3 set
Enter Key Not Pressed Remote SS4 set
Position of Register Display Switch
000 = Memory Data Position
001 = P Register Position
010 = X Register Position
011 = B Register Position
100 = A Register Position
101 = Instruction 1 Position
110 = Instruction 2 Position
111 = Memory Address Position
EXCA 0 Ui | i
EXCB 0 A A
EXCX 0 ‘
EXCM 0,a Display in Decimal
EXCI o,v
Display in Octal (not needed unless display was previously set to decimal).
OTA 0
OTB 0.
oTX 0 (Octal-Display)
OT™M 0,a
OT1 o,v

| 0 —> 9 only

Information is displayed only if the computer is in run mode.

N A N A
@@éé@é “
EOJ _ / (Decimal D1splay)
Lot

- -

INA
INB
INX
CIA
CiB
CIX
CIM

L!lilllllLLllllJ

Information currently in the "NIXIE" display
,a buffer is input as 16 bits of data.

OCOO0O0O0COO

SP-18-9

13-1

13.2 TELETYPE INPUT/OUTPUT

. ~--SENSE---
SENS 2,m 7 %
SENA 2 v | Yo
SENB 2 A ?
SENX 2 Output Busy
SENM 2,a DMC Complete
Input Not Ready
Input Mode
---CONTROL---
EXCA 2 % 7
EXCB 2 oo | G
EXCX 2 A A T
EXCM 2,a Output Mode
EXCI 2,v (Interrupt & DMC)
Input Mode
(Interrupt & DMC)
Disable DMC and Interrupt
Enable DMC
Enable Interrupt
DMC Complete
---QUTPUT---~
OTA 2 ¢
OTB 2 W IR IO
orx 2 YYeIvyyy
o™ 2,3. . ———— ——
OTI 2,v OOOOQOOO¢~——<PWMT@9)
. e N ESINED ——— ——
---INPUT---
INA 2
INB 2 ,UNCHANGED | <— OR —
INX 2 e .
0] OOOO§OO O ¢— '—-*(Paper Tape)
&b a7 A
‘CIB 2 -
CIX. 2 00000000 -
CIM 2,a R T S O T I JLl.LlJl

SP-18-9

13-2

13.2.1 Teletype Programming Notes

The ASR 33/35 is operated in the full duplex mode on the SPIRAS-65 computer. Full
duplex means that it is possible to simultaneously and asynchronously input (keyboard or reader)
and output (page printer andApunch). The teletypes used on the SPIRAS-65 feature an even parity
coding. All SPIRAS-65 system software forces the eight bit to be a logical ''1" inside the computer.
Either code may be output with equal effectiveness.

The teletypes respond to the tape control characters as follows:

ASC 1I Code , FUNCTION
021,221 X-ON . (Reader On)
022,222 : TAPE (Punch On)
023,223 X-OFF (Reader Off)
024,224 FAPE (Punch Off)

‘The punch-on code should always be followed by a RUBOUT (ASCII 377) or an equivalent
amount of time before attempting to punch data or a synchronization problem will develop.

There is no method of inhibiting printing on the SPIRAS-65. teletypes. When it is desired
to punch without printing; the 4 x4 format, which derives its name from the fact that each sixteen
bit computer word is represented by four characters, should be used.

4 BIT CODE PUNCH CHARACTER
0000 00010- 000
0001 00000- 001
0010 00000. 010
0011 00000. 011
0100 00000. 100
0101 00010. 101
0110 00010. 110
0111 : 00010. 111
1000 00011. 000
1001 B ~ 00011.000
1010 00011. 010
1011 - 00011. 011

1100 , 00011. 100 -
1101 00011. 101
1110 00011. 110

1111 , . 00011. 111

SP-18-9 3 o | | A | 13-3

When turning the reader on and off under program control it is necessary to allow two

extra characters onthe tape for every off-on cycle because the teletype does not stop "on character.”

13.3 CARD READER INPUT

---SENSE---
' SENS

SENX A 4
»a Not Operational
Overflow
DMC Complete’
Busy
Data Not Ready

NN

SENM

————— Input Mode
---CONTROL---
EXCA 3 9
EXCB 3 sl
EXCX 3 ‘ 4
EXCM 3,a Read One Card
EXCI 3,v Disable DMC and Interrupt
Enable DMC
Enable Interrupt
DMC Complete
---INPUT---
INA 3
INB 3
INX 3 UNCHANGED <+— OR—¥
IR T S O Y T O O A A
IEa.ch card |
| column is [
<¢| converted
lfrom EBCDIC l
(029) Card
gﬁ : g |codetoa6 l
x5 , | bit code. |
CIM 3,a | 0000000000 e

R N RSN S SN N N RO s NN DO A IO O

SP-18-9 | " Sl D T e SRRETI 13-4

13.4 HIGH SPEED PAPER-TAPE INPUT/OUTPUT

---SENSE---
_SENS 4, m Y /// 7/
SENA 4 % 7 e
SENB 4 A A A
SENX 4 Punch Not Available
SENM 4,a (or busy)
Punch Interrupt
Punch Busy
DMC Complete
Reader Error
Reader Interrupt
L Reader Not Ready
Input Mode
---CONTROL---
EXCA 4 s 7
EXCB 4 o) |
EXCX 4 AAAA
EXCM 4,a Reader On
EXCI 4,v Reader Off
Reader Rewind On
Reader Rewind Off
Set Output Mode
Set Input Mode
L— Disable DMC and Interrupt
Enable DMC
Enable Interrupt
Set DMC Complete
---OUTPUT---
OTA 4
OTB 4
g,}:}hi ia LS T T T S T I D N |
2 . — ——— a—
OTI 4,v X . /(Paper Tape>
Q000 00004 —_— — —
---INPUT---
INA 4
INB 4 -
INX 4 UNCHANGED
N SISV BE SN N {
ClA 4 /
CIB 4 00000000O0
CIX 4 [N S NS SN S GRN SRS NN N NN TN N N |
CIM 4,a

SP-18-9

13-5 .

'SECTION 14

SPIRAS-65 ASSEMBLER PROGRAM

14.1 PROGRAM TYPES

The Assembler Program is available in two versions; the primary version which requires
a minimum of 8192 words of memory, and a basic version which operates within a 4096 word
memory computer. The basic version is a compatible subset of the primary version without any
macro or concordance capabilities. ‘

Both versions of the Assembly Program operate under the SPIRAS-65 Operating System.
This operating system is tailored to the configuration of the computer and performs all the standard

1/0 functions required by the Assembler Program, Fortran Compiler, etc.

Except where specified, the assembler characteristics described in the rest of this
section apply to both the basic and primary versions of the Assembler.

14.2 ASSEMBLY FORMAT

For documentation purposes, a source statement normally positions its fields as follows:

Label Field--~-=-w=e-- Column 1
Command Field-----~- Column 8
Argument Field --=---- Column 16
Comments Field ~-=--- Column 32

The assembler, however, actually allows source statements to be "free-form" using the
following logical rules:

e A Label Field (if present) must start in Column 1.
e The Command Field starts with the first non-blank character following the Label Field.

e The Argument Field starts with the first non-blank character following the Command
Field. If more than 10 blanks follow the Command Field, the Argument Field is
presumed vacant.

® The Argument Field may consist of several arguments separated by a comma, a
single space, or both. A doubleblank terminates the Argument Field. '

e Any characters following the Arg‘dment Field (or following Column 72) are ignored
except for listing, and can be used for comments. Teletype listings are terminated
at Col. 50. .

-

e An asterisk in Column 1 will cause the rest of that line to be considered as comme_nts.

SP-18-9 R R S . 14-1

14.3 SYMBOLIC LABELS

Labels consists of a sequence of characters in which the first character is a letter, and
the remaining characters are either letters, digits, dollar sign orthe underline character. (It
is suggest:ed that the dollar sign ($) be reserved for use by system programs in order to avoid
conflicts with system variables and subroutines.) Labels may be any length, but only the first
8 characters are retained by the assembler requiring that all labels be unique within the first 8

characters.
Examples

LABY7

VOLTMETER
- X10031

F$31

MAX_SIZE

14.4 COMMANDS

The Command Field consists of any of the instruction mnemonics described in earlier

sections of the manual, or pseudo-op mnemonics described later in this section.

When applicable, the mnemonic may be followed by the Ietfer 1 if an immediate address

is being specified, or by the asterisk character (*) if an indirect address is being specified.

If the Command Field consists of a constant, then this field is processed as if it were

the argument Field of a DATA pseudo-operation.
Examples

LDA
LDAI
LDA*
CALS
PTR
DATA
0102511

14.5 ARGUMENTS

Arguments are made up of symbolic label operands (és described in paragraph 14. 3),
constant operands, or combinations of operands separated by operators. Tables 14-1 and 14-2
describe the various constant formats and the allowable operator types.

SP-18-9 : 14-2

“TABLE 14-1

ALLOWABLE CONSTANT TYPES

. CONSTANT TYPE EXAMPLES
Octal (Leading Zero) g17717717,083, -g177
. Integer (no decimal point) 123,32768, -50,+9

ASCII (2 char. max,

if neeessary)

stored right

justified with a leading zero byte 'AB', X', '12', '§'

Single Precision Floating Point*

12.3, -6E5,.1,+9.,123.4E-5

Double Precision Floating Point *

12. 3D@, -6D5, . 1D@, +12. 3D-5

Single Precision Fixed Point*

12.3B5,-6B+15,.1B-2,+1.5B2
12. 3E2B10, -6E-10B-20

Double Precision Fixed Point*

12. 3BB5, -6BB+15, . 1BB-2
12.3D2BB10, -6E-10BB-20

* _Not allowed by the basic version of the Assembly Program.

TABLE 14-2

ALLOWABLE OPERATORS

ARITHMETIC (overflow ignored)

+"’*7/ -

LOGICAL (bit-by-bit logical operation)
~— " .AND.,.OR.,.XOR.

RELATIONAL (result is 1 if true, # if false)
.EQ.,.NE.,.GT.,.LT.,.LE.,.GE.

SHIFT (logical shift)
.LS.,.RS.

NOTE: The basic version of the Assembler
Program allows only the operators
+and -, - '

SP-18-9

14-3

Operators are executed according to a priority value attached to each operator and

according to the depth of parenthese nesting (operators within parentheses will be executed before

any operator outside of parentheses). The priority value attached to each operator is shown in

Table 14-3.

TABLE 14-3

OPERATOR PRIORITY VALUES

OPERATORS PRIORITY VALUE
*/ 15+B
4, - 12+B
.EQ.,.NE.,.GT. 9+B
.GE.,.LT.,.LE. 9+B
.AND. +B
. OR. 6+B
. XOR. 5+B
.RS.,.LS, 3+B
(B=B+20
) B=B-20
(Terminators) 0

Operands are typed as values (or absolute addresses), as multiple-word data, as relative

addresses, or as external addresses.

Certain combinations of operators and operands are im-

proper. Table 14-4 indicates which combinations are proper (Y=Yes, N=No).

14. 6 ADDRESS MODIFIERS

Memory referencing instructions may wish to specify an address modifier (such as an

index tag) in addition to the symbolic address. This is done by following the address with a

register letter enclosed in parentheses.

LDA
LDA
LDA
LDA*
LDA*
LDA*

SP-18-9

ALPHA(X)
A+B+C(A)

ALPHA-1(P)

ALPHA
g12372(X)
ALPHA(Y)

-

For example:

Relative to X Register
Relative to A Register
Relative to P Register
Indirect Address

Pre-Indexed Indirect Address
Post-Indexed Indirect Address

14-4

SP-18-9

TABLE 14-4

ALLOWABLE OPERATOR/OPERAND COMBINATIONS

A2
Al+A2 ABS. REL. EXT.
ABS.
Al REL.
EXT.
Al-A2
ABS. N N
Al REL. Y* N
EXT. N Y**
Al RELATIONAL A2
ABS. N N
Al REL. N
EXT. Y**

Al OTHERS A2

ABS.
Al REL.

EXT.

* Result is an absolute value.
** Operands must be in same external group.

14-5

LDAS* ALPHA , Short-Form Indirect Address
LDAS ALPHA+5 (X) Short-Form Relative to X Register
LDAS ALPHA (P) Short-Form Relative to (Advanced) P Register

 Symbolic addresses with no modifiers are processed as follows:

1) If the address contains a reference to an externally defined variable, the instruction
is passed on to the loader for resolution.

2) Otherwise, the instruction is made Direct (if possible).
3) Otherwise, the instruction is made relative-to-P if P is within range of the address.

4) Those short-form instructions that contain an address that is neither in range of P
(i51110) or Direct (0-102310) will be passed on to the loader which will generate

an indirect link to the address, modifying the instruction accordingly. (Indirect links
are processed by the loader identically the same as literals.)

ORG g1700
GAMMA LDAS ALPHA =LDAS *3@1086(P)
ORG B2008p
ALPHA LDAS g5gg =LDAS g509
LDAS ALPHA =LDAS *-1(P)
LDAS BETA =LDAS *14(P)
LDAS GAMMA =LDAS $1708
LDAS BETA (P) =LDAS *;2(P)
LDAS ALPHA (P) =LDAS *_5(P)
BETA LDAS #5898 (P) (out of range)
LDAS GAMMA (P) =LDAS *-71(P)
LDA KAPPA ~ =LDA g5pad
LDA KAPPA(P) =LDA *+02766(P)
KAPPA EQU g5 00

14.7 LITERALS -

A literal is any single or double word data value appearinginanargument field and is preceeded |
by an equals sign. The SPIRAS-65 Loader Program constructs a literal pool such that all identi-
cal literals within the group of programs being loaded will share the same location. Because the
literal table starts at location 0100, literals may be referred to by either long or short instructions.
The assembly program, therefore, does not construct its own literal table but only passes onb the
‘literal value to the Loader. Literals may, -however, be constructed within the program by using
the LIT pseudo-op (see paragraph 14. 8. 15).

Examples:
LDAS =3
ADDS ='X!
ANDS =@#377
DIV =1.5B8
DLD =1, 234 . .
FADD -9876E5 Not in basic version
DADD -0. 0032BB-6 of the assembler.

SP-18-9 . a 14-6

14. 8 PSEUDO-OPS
14.8.1 ORG

This pseudo-op specifies the location of the next data item generated by the assembler,

and also determines the mode of this data (absolute or relative).

S

The variable field must contain one argument (or expression).” If this argument specifies
an absolute value, that value becomes the storage location for the next word generated, and the
mode of all symbolic labels defined after this line (until another ORG statement is processed) are
defined as absolute addresses. If the argument specifies a relative value, that relative location
is used for subsequent data storage, and all symbolic labels defined after this line are defined as

relative addresses.

Several ORG statements may be present in one program. If none is present, the

assembler will presume an ORG to relative location zero has been specified.

Example:
ORG * Relative Zero Origin
ORG @3¢dg Absolute Origin
ORG *.5 Relative or Absolute (depending on previous mode)

ORG START+2¢0 Relative Origin (if START is relative)

14.8.2 BOOT

If this pseudo-op is present, it specifies the binary output of the assembler is to be in
absolute bootstrap format. The ENT, EXT and COMN pseudo-ops cannot be present within a
program containing a BOOT pseudo-op. The ORG pseudo-op may be used but only with absolute

addresses. The assembler will presume the LIT pseudo-op has been specified.

14.8.3 EXT

The argument field of this pseudo-op contains the names of all symbolic labels whose
location will be externally defined (library subroutines, etc.). Several EXT pseudb—ops may be

used in one program if convenient,
Examples:

EXT SIN,COS,SQRT, EXP
EXT S$10

SP-18-9 ‘ : ‘ 14-7

14.8.4 COMN

The COMN pseudo-op creates storage areas which are to be shared by several sub-
programs. The symbol appearing in the location field specifies the COMMON region (a BLANK
location field specifies BLANK common). The variable field contains the list of variables {and
their sizes) that are to be located within these common regions (assigned in the order of appearance
within the variable field). Because of loader limitations, labels used in a COMN statement are
limited to 6 characters.

COMN A1(5), A2(1)
STUDNT COMN NAME(30), AVERAG(1)

14.8.5 ENT

If any of the symbolic labels defined within the program being assembled is to be referenced
symbolically by some other program or subroutine, these labels must be specified in the argument
field of the ENT pseudo-op. The ENT pseudo-op must preceed all other lines within the program

except for comment lines, listing control lines or EXT pseudo-op lines.

Because of Loader symbol table format restrictions, only 1 to 6 character labels may be
specified in the argument field of an ENT pseudo-op.

Examples:
ENT POINT1,ENTRY2
ENT ALT 2
14.8.6 EQU

- The EQU pseudo-op declares the symbolic label appearing in the label field is to be
assigned the same value as the variable or expression appearing in its argument field. = Any

symbolic names appearing in the argument field must be previously defined.

. Examples:
TEST2 EQU ALPHA

ENTRY EQU *-1 :
SIZE EQU TEND-TSTART

14.8.7 SET

This pseudo-op is the same as EQU except the name in the label field can be redefined

without generating error messages. This capability is frequently required within MACROs.

SP-18-’9 ; ' 14-8

14,8.8 BSS

A block of words is reserved by this pseudo-op starting at the current program location
with a size equal to the number of words specified by the value in the argument field.

. If a label is present, it is assigned to the first word of the reserved block. If any sym-
bolic names are present in the argument field, they must be previously defined and the argument

field must result in an absolute value.

Examples:
TABLE BSS 25
BSS SIZE
LIST BSS MAX+1
14,8.9 PTR

This pseudo-op is used to define an argument pointer (often used when calling subroutines).
Its argument field can be any mode of variable or expression whose value does not exceed 32767
(15 bits). In addition, the indirect bit (sign'bit) will be set if an asterisk follows the PTR.

Examples:
ARG1 PTR ALPHA
PTR* ARG3+2
PTR *
ARG2 PTR* 1000
PTR SQRT
PTR 0

14.8.10 DATA

Any of the constant types shown in Table 14-1 may bespecified in the argument field of a
DATA pseudo-op. As many constants as desired may be specified in the argument field separated
by commas. If a label is present in the label field it is assigned to the location of the first word

of the first constant.

Character strings within the argument field of a DATA pseudo-op may contain one or two
characters and are stored right justified (with a leading zero byte if necessary).

Examplés:
CONVRSN DATA #,1,2,774,9,2
. DATA 12.3,'AB',. 1D
NOTE DATA 'EN', 'DX', f173
' DATA 1A

DATA @

SP-18-9 SRR | i - 14-9

14.8.11 TEXT (Not in The Basic Assembler)

The TEXT pseudo-op is used to specify a data block consisting of ASCII coded 8-bit
characters packed 2 per word (with space character added if necessary to fill the last word).

>

The variable field consists of a string of characters enclosed within quote characters.
Certain characters (such as quote, carriage return, colon, etc.) cannot normally be included
within the text string. Such characters can be specified by giving their ASCII code as 3 octal
digits preceeded by a colon (:). These four characters will be replaced by the specified 8 bits of
data within the data block.

Examples:

TEXT 'PART:2475 NAME:272'
DATE TEXT 'SEPT 23, 1970’

14. 8,12 VFD (Not in Basic Assembler)

The Variable Field of the VFD pseudo-op (Variable-Field-Data) consist of pairs of
arguments, The first argument of the pair is a value that specifies the number of bits (sub-field
width) that the second argument should occupy. The second argument is then positioned properly
and combined with the values of other argument pairs specified in this same variable field, The
resulting data word is formed from left to right with trailing zeros if necessary. An error message
results from a field-width total greater than 16, or from any sub-field value that will not fit within
its specified sub-field width.

Examples:
VFD 3(1),10(0123),1(1) (=021234)
VFD 3(A), 10(X-BASE+2), 1(FLAG), 2(MODE)
VFD F1(X), F2(Y), F3(Z)

14.8.13 IF, ENDF (Not in Basic Assembler)

The variable field of the IF pseudo-op is evaluated and if it is zero (False), all source
statements following this pseudo-op, up to the corresponding ENDF pseudo-op, are treated as
comments. IF and ENDF must be used in pairs and these pairs may be nested within each other

to any depth. - See the example in the next paragraph.

-14.8.14" MAC, ENDM (Not in Basic Assembler)

The label field of the MAC pseudo-op specifies the name of the macro about to be defined.
The statements that follow the MAC pseudo-op up to the corréspond‘mg ENDM pseudo-op define the
'"Macro Prototype."

SP-19-8 - ’ | | 14-10

Example:

*--,-;,-;!Movg | lN{aLc[rol " Arlg ment, 1 ,s,p‘eic,i;flilelél the number of, words, to.
W AR Arjgument, 2 is the pame of the 'FROM'list, argumant
*,LL,,,}?,,IS, ,he[name of, the 'TQ Ullpt“,“l,“,H“UUL,,1“.1“
Mqv)elllMAQLllL‘lllLLllllltllll [N T U U N W N W U L U OO0 00 O OV I OO O B A B B S B S A
SIS IR L{IFI L1 !_[1111-J—4T1-12 oo Bkip if not a l-word maove
LALLlil‘g;‘p!ASLllll_[Lzl]L J O N
AJYIIIFIASIlLLl[lsl]lll!Ll

-

| N - 1SS S N SO SO0 WA U Y O OO O S U U U NS U0 N N NN (TN T A G TS Y S N U

.

| OO U VAU TSR U VO U T 0 U U TS N TS O U T S T T N T TN U A

f NS S W DU Y 00 R S N Y VO S T OO O Ut O NS S S S U TS O S s S T W &

JJLJJL%E,NDFIIIIJLLL'III[

s (LF 1]”-11111- EQ. 2 kiip if, mnot, a 2-ward move , i,

-

ll!llbjl"Lnl >4[12J1I111[

Ll MRS T I U ST R NN AN TN U000 N 00 SN TR U U ST 000 U I U W C 0 WS W A A A SR U N N SR A U AR A
LJ_LJLJ'H)ST111L1![13111lllLlJlIllll [SN I R EE A B O B B SR O O SN U R AR U A A S AR N G I B AN IS R SR U
LJLL'&!ENPF]lllgiLJllllLIllllli N DT A 0 T 0 S O S 0 S S
LlJll!!IlFl'11ll!l—lll]i‘pl'l‘l'lzlllllJAl kiip, if, less then 3 -wands , 1 .
iillng"leIiLllll-LlllLLlIlllllllll TSR 00 0 TE DS 0 0 B O O S O A B A W A U E S U B U U R U SR U A A |
111141!LDIA11x111|[x2LL[Xlnlxnlxnt TR OO0 B T O O S A O B IO O O A U0 GO O O G A B U B A A A U U U U W A
lillil‘SIFALLLLLI[L:;L]:IL(X[)LIILllll [IS N A AR IS I N BR B BN SN G O I D T BN U U SR SR R N SR S S R AN
JJiLxll"DXxsxx(xxllxuxnlnxlxxx[xxl R SR ER T B N S SR S SR BE U B 0 I U SN SR R SR U I U S N SN SN BRSNS N !
IJLLJIJM‘PSAL‘L_l*l-{S‘51!][111!11: NSNS .
llijjl[‘ENDFllllgllillllllllllll I I IR IR I SN SR B A US AN IR A AR N S U B U SR O A A U SR R U AR U

-

) U S O Y T S S Y O T TS 0 U N0 S0 U N VU U TN W T W

J;J‘L"leNpMLLLl{lLLL!llllIlll

Calls to a Macro would consist of the Macro name in the operator field, and the

arguments to the Macro within the variable field separated by commas if necessary.

Example:

JlILlquVE‘i'IL'II’IALPH'AI’IBIETAIlll["L_LilllillllJiJJlJ F SN 0 TS W T U U A N D S S S S !

JLLIJK! QVE111|201’II'118T11’| lAfBI"‘EIll!ll_L,_l.Llllll.l)llLlij__L_l_J_‘l_j__LJ__L_L__t_l__L_L_L

14.8.15 LIT

Cause literals within a relocatable program to be placed within the program just prior
to the "END'" statement. If no LIT pseudo-op is encountered, literals will be transmitted to the
loader for assignment in its literal pool which permits sharing of common literals by all sub-

routines loaded.

14.8. 16 END

The END pseudo-op must be the last statement within the program being assembled.
If a label is specified in the argument field, it represents the starting location of the program.

SP-18-9 ‘ 14-11

14.9 LISTING CONTROL

The following pseudo-ops control various listing options that may be set orreset as
desired throughout the program. (LIST, LIF and NLMC are initially presumed.)

>

LIST ---- Generate symbolic listing

NLST ---- List only those lines containing errors

LIF ---~ List all card images that are not processed w1th an IF/ENDF area
NLIF ---- Do not list any lines within an IF/ENDF area that are not assembled
LMAC---- List all lines generated by a macro call

NLMC---- Do not list any macro generated lines

(The above pseudo-ops are not in the basic assembler.)

~ The assembler automatically skips over paper seams and titles and numbers each page.
A quote character (') in Column 1 causes the current page to be ejected and the rest of the line is

printed on the top of this new page and all following pages.

A double quote character (") in Column 1 causes the current page to be ejected. (The
page header is not modified.)

Example:

! DEBUG PROGRAM (VERSION 3)-~-----~ 8 June 69

4.10 ERROR MESSAGES

If an error is detected by the assembly program one or more of the following error codes
will be added to the error columns (left 4 columns) of the listing.

CODE MEANING
A-meeeen Incorrect address used.]
Bo-oceeenen Incorrect combination of operands used in an expression.
C-—ue- Incorrect character used. Any of the following conditions can cause this
error: ‘

1. First character of statement incorrect.

2. Argument field of a register copy or shift instruction incorrect.
3. The M-Field of a memory reference instruction is incorrect

4. An incorrect terminator.

D------- An EQU or SET pseudo instruction does not have a label field.
E------- The exponent used in a floating point number is too large.

| An I/O error has occurred.

L --=-==- Incorrect literal usage.

M------- Multiple symbolic definifions. :

N -------The number used in this instructia is too Iarge.

O ------- The operation field is undefined.

P--eeee- Parenthesis incorrectly used in an expression

S ------- The scale factor used in a fixed point number is incorrect.

U -=-=m=- Undefined symbol referenced.

V ===me- The second word of a valued I/O instruction is incorrect.

$ e This in an assembler fault. It indicates that the memory locations reserved

for the symbol table is full., The remainder of this assembly will be incorrect.

SP-18-9 ' . . 14-12

Mnemonic

ABD
ADD
ADDS
ADX
AND
ANDS
ARM
ARMF
ASLA
ASLB
ASLD
ASRA
ASRB
ASRD
CAB
CABF
CAS
CAX
CAXF
CALL
CALS
CBS
CIA
CIB
CIM
CIX
cpP
CPC
CPCF
' CPD
CPDF

SP-18-9

Operation Code

APPENDIX A

INSTRUCTION SUMMARY

A.1 INSTRUCTION BY MNEMONICS

00 0 23 m
00 0 04 m
04 m aaa
00 0 24 m
00 0 15 m

15 m aaa

10
10
00
00
00
00

002
002
002
002
002

n n u» n »

002

e D DN
[e TN o)

o

Function

Addto B

Add to A

Add Short From

Add to X

Logical AND with A

Logical AND with A Short Form
Arm Interrupt, Set Overflow OFF
Arm Interrupt, Set Overflow ON
Arithmetic Shift Left of A
Arithmetic Shift Left of B
Arithmetic Shift Left Double
Arithmetic Shift Right of A
Arithmetic Shift Right of B
Arithmetic Shift Right Double
Copy A to B and (s) to (d)

Copy A to B and (s) to (d) if Overflow set
Compare with A and Skip

Copy A to X and (s) to (d)

Copy A to X and (s) to (d) if Overflow set
Call Unconditionally

Call Short Form

Compare with B and Skip

Clear and Input to A

Clear and Input to B

"Clear and Input to Memory

Clear and Input to X

Copy

Copy and Complement

Copy and Complement if Overflow set
Copy and Decrement

Copy and Decrement if Overflow set

] o3 O O O O

e e - =
QO O O O O O =

W ®© 00 O W O O

[N T
[O SO e

[=- B -2 B o~ B o - Y =}

Section

Mnemonic Operation Code
CPF 002 s 2 d
CPI 002 s 0 d
CPIF 002 s 0 d
CPN 002 s 3 d
CPNF 002 s 3 d
CXB 002 s 7 d
CXBF 002 s 7 d
CXS 000 22 m
DRM 10 4 000
DRMF 10 4 001
DCR 00 0 256 m
DIV 000 27T m
DADD 00 0 32 m
DLD 00 0 30 m
DRS 00 0 10 m
DST 00 0 31 m
DSUB 00 033 m
DXS g¢ 3 nnn
EXCA 10 0 1 dd
EXCB 10 0 2 dd
EXCI 10 0 0 dd
EXCM 10 0 r dd
EXCX 10 0 3 dd
-FADD 00 0 34 m
FDIV 00 0 37 m
FMUL 00 0 36 m
FSUB 00 0 35 m
HLT 00 0 000
INA 10 51 dd
INB 10 5 2 dd
INR 00 0 26 m
INX - 10 5 3 dd
IXS g6 6 nnn
JMP 00 0 17 m
JMPS 17 m aaa
LDA 00 0 11 m
SP-18-9

Function

Copy if Overflow Set
Copy and Increment

Copy and Increment if Qverflow set

Copy and Negate
Copy and Negate if Overflow set
Copy X to (B) and (s) to (d)

Copy X to (B) and (s) to (d) if Overflow set

Compare with X and Skip

Disarm Interrupt, set Overflow off

Disarm Interrupt, set Overflow on

Decrement and Replace
Divide

Double Precision Add

Double Precision Load
Decrement, Replace, Skip if @
Double Precision Store
Double Precision Subtract
Decrement X and Skip if Zero
External Control from A

External Control from B

External Control Immediate
External Control from Memory
External Control from X

Floating Point Addition
Floating Point Division
Floating Point Multiply
Floating Point Subtract

Halt

Input and Or with A

Input and Or with B
Increment and Replace

Input and Or with X
Increment X and Skip if Zero
Jump Unconditionally

Jump Unconditionally Short Form
Load A

e
Lo S RS L S B '~ I = B = I = B - I = T o - S =)

[y
L]

Section

Mnemonic Operation Code
LDAS 11 m aaa
LDB 00 0 12 m
LDBS 12 m aaa
LDX . 00 0 13 m
LDXS 13 m aaa
LEA 00 0 41 m
LRLA 00 1 600+n
LRLB 00 1 640+n
LRLD 00 1 700+n
LSLA 00 1 040+n
LSLB 00 1 240+n
LSLD 00 1 440+n
LSRA 00 1 140+n
LSRB 00 -1 340+n
LSRD 00 1 540+n
MUL 00 0 01 m
MULS 01 m aaa
NOP 00 2 000
ORA 00 0 16 m
ORAS 16 m aaa
OTA 10 2 1 dd
OTB 10 22 dd
OTI 10 2 0 dd
OoT™M 10 2 r dd
OoTX 10 2 3 dd
OVF 00 1 74 n
RGC 00 2 sss
SAN 00 5 140
"SANN 00 4 140
SANP 00 5 040
 SANZ 00 5 100
SAP 00 4 040
SAZ 00 4 100
SBNZ 00 5 200
SBZ 00 4 200
SENA 10 1 1 dd

5P-18-9

Function

Load A Shbrt Form
Load B
Load B Short Form
Load X

1.oad X Short Form

Load Effective Address into X
Logical Rotate Left of A
Logical Rotate Left of B
Logical Rotate Left Double

Logical Shift Left of A
Logical Shift Left of B

. Logical Shift Left Double

Logical Shift Right of A
Logical Shift Right of B

Logical Shift Right Double

Multiply

Multiply Short Form
No Operation
Logical OR with A

Logical OR withi A Short Form

Output from A

Output from B

Output Immediate
Output from Memory
Output from X

Set Overflow
Register Copy

Skip if A Negative
Skip if A Not Negative
Skip if A Not Positive
Skip if A Not Zero
Skip if A Positive
Skip if A Zero

Skip if B Not Zero
Skip if B Zero

Sense Status to A

10
10
10
10
10
10
10
10
10

T S
Ll B B RS B |

i b
i

W PO W W W W W O OO

[y
b

Section

Mnemonic Operation Code
SENB 10 1 2 dd
SENM 10 1 r dd
SENS 10 1 0 dd
SENX"* 10 1 3 dd
SKF 00 5 ccc
SKIP 00 5 000
SKT 00 4 ccc
SNOF 00 5 020
SNS1 00 5 001
- SNS2 00 5 002
SNS3 00 5 004
SNS4 00 5 010
SOF 00 4 020
ss1 00 4 001
SS2 00 4 002
SS3 00 4 004
Ss4 00 4 010
STA 00 002 m
STAS 02 m aaa
STB 00 0 03 m
STBS 03 m aaa
STX 00 0 06 m
STXS 06 m aaa
SUB 00 0 05 m
SUBS 05 m aaa
SXNZ 00 5 400
SXZ 00 4 400
XOR 0000 14 m
XORS 14 m aaa

SP-18-9

Function

Sense Status to B
Sense Status to Memory

Sense Masked Status and Skip if Zero

Sense Status to X
Skip if Condition False

Skip Unconditional

Skip if Condition True

Skip if Overflow Not Set

Skip if Sense Switch 1 Not Set
Skip if Sense Switch 2 Not Set
Skip if Sense Switch 3 Not Set
Skip if Sense Switch 4 Not Set
Skip if Overflow Set

Skip if Sense Switch 1 Set
Skip if Sense Switch?2 Set
Skip if Sense Switch 3 Set
Si.ip if Sense Switch 4 Set
Store A

Store A Short Form

Store B .

Store B Short Form

Store X

Store X Short Form

Subtract

Subtract Short Form

Skip if X Not Zero

Skip if X Zero

Exclusive OR with A
Exclusive OR with A Short Form

11
11

9
11

©

] o3 © WO N i B A B b W WD W W WO W W W W W O © O

Section

A-4

A.2 INSTRUCTIONS ORDERED BY OP-CODE NUMBER

00 0 000 HLT 00 1 000+n ASLA |00 4 140 SANN [10 2 0 dd OTI
00 0 01 m MUL 00 1 040+n LSLA |00 4 200 SBZ 10 2 1 dd OTA
00 0 02 m STA 00 1 100+n ASRA |00 4 400 SXZ 10 2 2 dd OTB
00 0 03 m STB 00 1 140+n LSRA |00 5 ccc SKF 10 2 3 dd OTX
00 0 04 m ADD 00 1 200+n ASLB |00 5 000 SKIP 10 2 r dd OTM
00 0 05 m SUB 00 1 240+n LSLB (00 5 001 SNS1 10 3 1 dd CIA
00 0 06 m STX 00 1 300+n ASRB |00 5 002 SNS2 10 3 2 dd CIB
00 0 07 m CALL 00 1 340+n LSRB |00 5 004 SNS3 10 3 3 dd CIX
00 0 10 m DRS 00 1 400+n ASLD |00 5 010 SNS4 10 3 r dd CIM
00 0 11 m LDA 00 1 440+n LSLD |00 5 020 SNOF [10 4 000 DRM
00 0 12 m LDB 00 1 500+n ASRD |00 5 040 SANP |10 4 001 DRMF
00 0 13 m LDX 00 1 540+n LSRD |00 5 100 SANZ |10 4 002 ARM
00 0 14 m XOR 00 1 600+n LRLA |00 5 140 SAN 10 4 003 ARMF
00 0 15 m AND 00 1 640+n LRLB |00 5 200 SBNZ [10 5 1 dd INA
00 0 16 m ORA 00 1 700+n LRLD |[00 5 400 SXNZ |10 5 2 dd INB
00 0 17 m JMP 00 1 740+n OVF 00 6 nnn IXS 10 5 3 dd INX
00 0 20 m CAS 00 2 000 NOP 00 7 xnn indexed |11 m aaa LDAS
00 0 21 m CBS 00 2 sss RGC shift |42 m aaa LDBS
00 0 22 m CXS 00 2 s0d CPI 01 m aaa MULS 13 m aaa LDXS
00 0 22 m ADB 00 2 sid CPD 02 m aaa STAS 14 m aaa XORS
00 0 24 m ADX 00 2 s2d CP 03 m aaa STBS 15 m aaa ANDS
00 0 25 m DCR 00 2 s3d CPN |04 m aaa ADDS 16 m aaa ORAS
00 0 26 m INR 00 2 s4d CPC 05 m aaa SUBS 17 m aaa JMPS
00 0 27T m DIV 00 2 s5d CAB 06 m aaa STXS
00 0 30 m DLD 00 2 s6d CAX 07 m aaa CALS
00 0 31 m DST 00 2 s7d CXB 10 0 0 dd EXCI
00 0 32 m DADD 00 3 nnn DXS 10 0 1 dd EXCA
00 0 33 m DSUB 00 4 ccc SKT 10 0 2 dd EXCB
00 0 34 m FADD 00 4 001 SSI 10 0 3 dd EXCX
00.0 35 m FSUB 00 4 002 SS2 100 r dd EXCM
00 0 36 m FMUL 00 4 004 SS3 10 1 0 dd SENS
00 0 37 m FDIV 00 4 010 SS4 10 1 1 ad SENA
00 040 m LEA |00 4 020 SOF 10 1 2 dd SENB
00 0 41 n 00 4 040 SAP 10 1 3 dd SENX

(trap) 00 4 100 = SAZ 101 rdd SENM
00 0 77 n
SP-18-9

APPENDIX B

TABLES AND CONSTANTS

B.1 TABLE OF POWERS OF TWO

SP-18-9

2" n 2°h
1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125
16 4 0.062 5
32 5 0.031 25
64 6 0.015 625
128 7 0.007 812 5
256 8 0.003 906 25
512 9 0.001 953 125
1 024 |10 0.000 976 562 5
2 048 |11 0.000 488 281 25
4 096 |12 0.000 244 140 625
8 192 {13 0.000 122 070 312 5
16 384 |14 0.000 061 035 156 25
32 768 |15 0.000 030 517 578 125
65 536 |16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 |18 0.000 003 814 697 265 625
524 288 {19 0.000 001 907 348 632 812 5
1 048 576 |20 0.000 000 953 674 316 406 25
2 097 152 (21 0.000 000 476 837 158 203 125
4 194 304 (22 0.000 000 238 418 579 101 562 5
8 388 608 |23 0.000 000 119 209 289 550 781 25
16 777 216 |24 0.000 000 059 604 644 775 390 625
33 554 432 |25 0.000 000 029 802 322 387 695 312 5
67 108 864 |26 0.000 000 014 90T 161 193 847 656 25
134 217 728 |27 0.000 000 007 450 580 596 923 828 125
268 435 456 128 0.000 000 003 725 290 298 461 914 062 5
~e-536 87092129 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 |30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 |31 0.000 000 000 465 661 287 307 739 257 812 5
4 294 967 296 |32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 |33 0.000 000 000 116 415 321 826 934 814 453 125
17 179 869 184 |34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 |35 0.000 000 000 029 103 830 456 733 703 613 281 25
68 719 476 736 |36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 |37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 |38 0.000 000 000 003 637 978 807 091 712 9571 660 156 25
549 755 813 888 |39 0.000 000 000 001 818 989 403 545 856 475 830 078 125
1 099 511 627 766 |40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 {41 0.000 000 000 000 454 747 350 886 464 118 957 519 531 25
4 398 046 511 104 |42 0.000. 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 |43 0.000 000 000 000 113 686-837 .721 616 029 739 379 882 812 5
17 592 186 044 416 |44 0.000 000 000 000.056 843 418 860 808 014 869 689 941 406 25
™35 184 372 088 832 |45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125
B-1

B.2 TABLE OF POWERS OF TEN

IN OCTAL
. 10" n 107"

R 0 1.000 000 000 000 000 000 OO

12 1 |0.063 146 314 631 463 146 31

144 2 |0.005 075 341 217 270 243 66

1 750 3 | 0.000 406 111 564 570 651 77

23 420 4 |0.000 032 155 613 530 704 15

303 240 5 0.000 002 476 132 610 706 64

3 641 100 6 | 0.000 000 206 157 364 055 37

46 113 200 7 |0.000 000 015 327 745 152 75

575 360 400 8 |0.000 000 001 257 143 561 06

7 346 545 000 9 | 0.000 000 000 104 560 276 41

112 402 762 000 10 0.000 000 000 006 676 337 66

1 351 035 564 000 11 | 0.000 000 000 000 537 657 77

16 432 451 210 000 12 | 0.000 000 000 000 043 136 32

221 411 634 520 000 13 | 0.000 000 000 000 003 411 35

2 657 142 036 440 000 14 | 0.000 000 000 000 000 264 11

34 327 724 461 500 000 15 0.000 000 000 000 000 022 01

434 157 115 760 200 000 16 | 0.000 000 000 000 000 001 63

5 432 127 413 542 400 000 17 | 0.000 000 000 000 000 000 14

67 405 553 164 731 000 000 18 | 0.000 000 000 000 000 000 01

B.3 USEFUL MATHMATICAL CONSTANTS IN OCTAL

7= 3.11037 552421 e = 2.55760 521305 Y = 0.44742 147707
77t 0.24276 301556 e”' = 0.27426 530661 In ¥ = 0.43127 233602
{77= 1.61337 611067 Je = 1.51411 230704 lTog, ¥ = 0.62573 030645
In 7= 1.11206 404435 log,, e= 0.33626 754251 /2 = 1.32404 746320
Tog, 7= 1.51544 163223 log, e = 1.34252 166245 . n 2 = 0.54271 027760
410 = 3.12305 3.24464 741136 In 10 = 2.23273 067355

$P-18-9

407267 aogz 10=

B-2

APPENDIX C

SPIRAS-65 CODES

TELE- | INTER-
. |TyPE NAL 029 | CARD
ASCII | ASCII | CARD [READER
CHAR. | CODE CODE | CODE | cODE
o | os60 260 o | oo
1 261 261 1 01
2 262 262 2 02
3 063 263 3 03
4 | 264 264 4 04
5 065 265 5 05
6 066 266 6 06
7 267 267 7 07
8 270 270 8 10
9 | o7 271 9 1
A 101 301 12-1] 61
B 102 302 12-2| 62
¢ | 303 303 12-3| 63
D | 104 304 12-4| 64
E 305 305 12-5| 65
F | 306 306 12-6| 66
6 107 307 12-7| 67
H | 1o 310 12-8{ 70
1 3N N 12-9) 71
J 312 312 1-11 41
K | 113 313 1-2| 42
L 314 314 11-3| 43
M 115 315 | 11-4| 44
N 116 316 11-5| 45
0 317 317 11-6| 46
P 120 | 320 1-7| 47
Q | 321 | 321 11-8 50
R | 322 322 11-9| 51
S 123 323 0-2| 22
T 324 324 0-3| 23,
u 125 325 0-4| 24
v 126 326 0-5| 25

S+ -18-9

TELE- | INTER-
TYPE NAL | 029 CARD
ASCII | ASCII | CARD READER
CHAR.|CODE CODE | CODE CODE
W 327 327 |0-6 26
X 330 330 | 0-7 27
Y 131 331 |o0-8 30
z 132 332 | 0-9 31
! 041 241 1-8-2 52
" 042 242 | 8-7 17
243 243 | 8-3 13
$ 044 244 |11-8-3 53
% 245 245 | 0-8-4 34
& 246 246 |12 60
' 047 247 | 8-5 15
(050 250 12-8-5 75
) 251 251 [11-8-5 55
* 252 252 11-8-4 54
+ 053 253 [12-8-6 76
. 254 254 | Q-8-3 33
- 055 255 11 40
. 056 256 | 12-8-3 73
/ 257 257 0-1 21
: 072 272 8-2 12
; 273 273 [11-8-6 56
< 074 274 12-8-4 74
= 275 275 8-6 16
> 276 276 | 0-8-6 36
? 077 277 | 0-8-7 37
e 300 | 300 8-4 14
[333 333 [12-8-2 72
AN 134 334 | 0-8-2 32
] 335 335 [11-8-7 57
A 336 336 [12-8-7 77
< 137 337 | 0-8-5 | 35
(sp)| 240 240 |(blank) 20
c-1

Sp-18-9

APPENDIX C (Continued)

SPIRAS-65 CODES

TELETYPE INTERNAL
CHARACTER ASCII CODE ASCII CODE
SOM 201 201
EOA 202 202
EOM(EOF) 003 203
EOT(STOP 204 204
WRY 005 205
RU 006 206
BELL 207 207
FE 210 210
HORZ 011 211

TAB

LINE 012 212
FEED

VERT 213 213
TAB

FORM 014 214
CAR. 215 215
RET.

S0 216 216
SI 017 217
DCO 220 220
X-ON 021 221
P-ON 022 222
X-OFF 223 223
P-OFF 024 224
ERROR 225 225
SYNC 2217 227
SPACE 240 240
RUB-OUT 377 377

C-2

6-81-ds

I-a

0001

PROGRAM TU LIST CAKDS CR (SPACE) CCMFRESSED TAPES

000017¢

ccol
cco2
€003
CCC4
ccos
CCCh
ccar
occs
CCO9
0c1o0
ccLl
cCle2
CCl3
CClr4
ccis
ccle
ccl7y
ccis
cC19
cecace

4 F O 3 3 % o3 3 3 F R I =

#*

PROGRAM TC LIST CARDS OR (SPACE) COMPRESSED TAPES

Ao 80 Aok ok Ao e ek R K ok ek o e

* *
* CARD/TAPE L1 ST ER *
* *

A8 o0 ok o R oK s o o 2k e ook ok ko ol KR

wemw-==THIS PRCGRAN USES THE OPERATING SYSTEM TO READ A RECORD FROM

ONE DEVICE (CARD READER., MAG TAPE, PAPER TAPE, ETC) AND OUTPUT
1T TO A SECCND CEVICE (LINE PRINTER, ASR PRINTER, ETC)e THE
CHOICE CF ODEVICES IS MADE WITHIN THE OPERATING SYSTEM. SENSE

SWITCH & WILL CAUSE A PAUSE (FUR DPERATOR ACTION) BEFORE INPUT ™ 7

OF THE NEXT RECCRDe. PAGES WiLL BE NUMBERED.

BCOY "~ ASSEMBLE [N BOOTSTRAP FORMATY

ORG 0scCco
EWU 076 ENTRY POINT TO OPERATING SYSTEM

SHTINVXH WVUD0ud

ad XIaNIddV

.

6-81-dS

¢-a

0002

005000
005001:

005002

005003:

' 005004:

005005

0050C6:
0050C7:
005010:

005011:
005012
005013
005014:
005015%:

005016

005011:
0050202
005021
005022
005023:
005024:
005025:
005026
005021
005030

005031
005032:
005033:
005034z
005035
005036
005037:

PROGRAM TO LISY CARDS OR (SPACE) CCMNPRESSED TAPES

ccz2y v

€C22 #*====—(OPEN
074076 CC23 LIST CALS*
COLCCl C€C24 DATA
074C76 0C25 CALS*
001044 CC26 DATA
003774 0C27 DXS
066C73 CC28 ~ STXS
002121 0C29 cp
026070 0C30 STAS
176¢23 ¢C31 JMPS

. 0c32 *

0(33 #=———===START
00501C CC34 LIST4 SNS&
c000CC 0035 HLY
000130 0C36 LOXI
005114 ,
074076 CC37 CALS*
0001CL €C38 DATA
00012¢ €C39 DATA
0041CC CC40 SAZ
176CC6 0C4l JMPS
00013C 0C42 LOXI
005114
074C76 . 0C43 CALS*
010344 CC44 DATA
00012C GC45 DATA
0C41CC CC4b SAZ
0000CC 0C47 LIST8 HLT

CC48 *

_ CC49 #mmm=m=CHECK
0001C1 €CS50 DRS
005C77

177755 CC51 JMPS
000261 CC52 PAGE INR
acs1ce

136C44 0C53 LDXS
126C4C CC54 LDBS

INPUT ANC CUTPUT DEVICES

IC OPEN INPUT DEVICE

0Cl001 o L N
1C OPEN QUTPUT ODEVICE

001044 e e

4

MAXCNY SET MAX LINES PER PAGE)
04

PAGENC RESET PAGE NUMBER L
PAGE OQUTPUT A PAGE EJECT

oF ccey Lcop

WAIT FOR OPERATOR ACTION

BUFFER LOCATION OF BUFFER i i
16) CINPUT ‘1 RECORD L

000101 KEYWORD

8¢ SI1ZE OF BUFFER

LIST8 INPUT STATUS ERROR

BUFFER

IC QUTPUT 1 RECORD

01C344

8¢

STATUS ERRQOR PRESENT

IF PAGE EJECT REQUIRED

CCUNT DECREMENT LINE COUNT

LIST4 NOT AT BOTTOM Of PAGE

PAGENC

=4 CONVERT PAGE NO. TO ASCII CHARACTERS
PAGENC

6-81-dS

£-a

0003

005040:
005041:
005042:
005043:
005044:
005045
005046:
0050417:
00505¢Cs
005051:
005052:
005053
005054:
005055
0050563
0050572

00506C:

-005061:

005062
0050633
005064
0050653
005066
0050673
00507C:
005071
005072:

00501773
00510032
005101

005102

PROGRAM TC LISY CARDS OR [SPACE) CCMPRESSED

002121
o0027¢C
ooocCl2
C46C4C
goacz2eé
005C72
003711
177177C
¢o0l13c¢C
005CécC
074C76
C20444
cooclv

11623

C26C2¢C
171731

00024C
00024C
00024¢C
00024C
00024C
00024C
00032¢
0003C1
c003C7
000305
00024C

ooocac
cooncce
ceeooecce

CCs5
0cs56

. ces?

cCs8

ces9
CC60
ccel

0c62
CC63
CC64
CC65
ccé66
cCo67
CCs8
CC69

ccre

ccr1
ccr2
ccr3
CC74
CCTy
cC76
ccr7
cCc78
ccrs
ocsc

PAGE2

BUF

CGOUNTY

PAGENO
MAXCNT
LITRLS
BLFFER

cp
DIVI

ADDS
STA

DXS
JMPS
LDXI

CALS*

DATA
DATA
LDAS
STAS
JMPS

DATA

DATA

BSS

DATA
DATA
DATA
BSS
BSS

GRG
END

0.A
1c

=0260
BUF+10(X)

1
PAGE2
BUF

IC
02C444
15
MAXCNT
COUNT
LISTA

P

x~ OO0

[eNe]

LITRLS

TAPES

STORE INTO PAGE HFADER BUFFEQ

.HEADER BUFFER LOCATION

EJECT PAGE AND PRINT PAGE NUMBER

RESET LINE COUNT

PROCESS NEXT RECORD

CURRENT LINE COUNT

CURRENT PAGE NUMBER

MAXTIMUM LINE COUNT/PAGE

ROOM FOR ANY NEEDED LITERALS
COPY BUFFER

CAUSE LITERALS TO BE OUTPUT BEFURE BUFFER

6-81-dS

a

LITERAL TAEBLE

005103: 0000C4
0051C4: 00C26C
SYMANL LOC CARDS THAT REFERENCE SYMBCL
BUF 005060 CCSE CC6l
RUFFER 005114 CC2e CC42
COUNT 005C77 CCSC CC66
10 £00C76 €C23 €C25 0C37 €043 CO62
LIST4 COS011 0CS1 CC67
LIST8 C€CS503C CCA4l
LIST ~ C€CS000
LITRLS 005102 CC7S
MAXCNT 005101 CC2E CC65
PAGEND 005100 'CC30 €C52 CC54
PAGE2 D0S040 CCeC
PAGE 005034 CC31
CARDS WITF ERRORS: NCONE

- 6-81-dS

¢-a

....0001 . TYPE OCTAL WORD SUBROUTINE {20 FEB 70}

: ccol ¢ TYPE CCTAL WCRC SUBROUTINE (20 FEB 70)
.) ccoz = . . -
0C03 % A3 ook ok ok ok b Aok o b ook ok ok e o ofe i sl o o e gk Al ol ok ok Kok ek
0Cco4 * * A * B
cces = * TYFE CCTAL WORD *
- CCo6 * * I . . - -
cco7 * * SUBROUTINE *
10cos * * . o o * e)
¢ cQ09 * Aok o o A ok o ok 8 2k oK ok X e ol ok ke ok ok ok o o o ol o ok ok gk ook
' cCclo * :
CCll *————==CALLING SECUENCES ((X) REGISTER IS NOT MODIFIED)
" 0Cl2 * {TYPE 6 OCTAL CHARS.) (TYPE 6 OCTAL CHARS. WITHIN PARENS)
cCl3 * LDBS . VALUE LDBS VALUE
cCl4 x CALS TYPCCT CALS TYPIOC
cCls5 * (RE TURN) (RETURN)
CCle * .)
CCl7 *
ccls ENT TYFCCT,TYPIGC
0C19 EXT TYPCHR
€020 *
ccal *
cc22 ORG &

6-81-dS

9-a

0002 TYPE OCTAL WORD SUBRQUTINE {20 FEB 70)
cca3 v
CC24 #————=—— TYPE CCTAL WCKRD
000000: 000171 cCc2s JMP 0 EXIT
0o0o00C1l: cocecc
oonccl CC26 TYPOCT EQU *-1 ENTRY LOCATION
000002: 060C15 ccz27 STXS TYPCC6+] SAVE [INDEX
0000C€3: 130C323 ccas LDXS ==-6
c000C4: 002121 cca2s ce 0.4
0000C5: 001441 cc3c LSLD 1
000006: 040C32 CC31 TYPOC4 ADDS =0260
0000C7: C7COCC CC32 CALS TYFCHR TYPE CHARACTER
000010: 002121 cC33 cp 0.A
000011: 001443 CC34 LSLD 3
000012: C06CC1 CC35 IXS 1
’ 000013: 170CC6 CC36 JMPS TYFCC4
000014: o00013¢C CC37 TyPOCS LDXI . O RESET INDEX
000015: C€O00OCC
0000162 170C0C cc3s8 JMPS TYFCCT-1 RETURN
cC39 *
0C40 *=—=——=TYPE CCTAL WCRD WITHIN PARENTHESES
000017: 000171 0c4l JMP 0 EXIT
00002C: QOCCCC)
oooczac 0C42 TYPICC EQU *-1 ENTRY LOCATION
000021: QOC!1C 0C43 LDAI 0124240 (spP){()
000022: 12424C
000023: Q7CCCC CC44 CALS TYPCHR TYPE 2 CHARACTERS
0000243 070CC! €045 CALS TYFCCT TYPE OCTAL VALUE
000025: 00011C CC46 LDAI 0120251 {)){(SP)
0000262 120251
000027: 0700CC 0C47 CALS TYFCHR TYPE 2 CHARACTERS
000030: 170C17 CC48 JMPS TYFICC-1 RETURN
CC49 *
000031: 0Cs50 END

LITERAL TABLE
000032: 0002¢C
000033 177772

SYMBOL LOC CARDS THAT REFERENCE SYNMBCL
TYPCHR 177777 0C22 CCa44 .CCa?

TYPIOC C€CCC2C CCa8

TYPOCY cCCCCcl CC28 CCA4S5

TYPOC4 000GC6 CC2¢

TYPOCo6 000Cl4 CC27-

6-81-dS

0001

000000
000001:

000002:
0000C3:
000004

: 000005
" .. 000006
c00007:
00001C:
000011:

000012

SYMBOL LOCC
TYPCHR 000CClL

T¥PE CHARACTER SUBRGUTINE

K}

000171
gooccce
000CC1

ro1cc2’

cog1cc
1700C2
1021cC2
C0514¢C

rrecec

0o11sc
17¢00C2

ccol
ccez
cco3
ccos
cCcos
CCo6
cco?
0cos
cco9
CcCclo
ccll
CCl2
cc13
CCl4
cecls
cCle
CCl17
cci8
ccls
ccz2o
ocat
cc22

Cc23
CC24

- CC25

cc26
cc27
cca8
€c29
0C30
€C31

€C32

(20 FEB 70)
' TYPE CHARACTER SUBRCUTINE {20 FEB 70)
*
% dodododod ol ok o 8 0 o ok o o ok ol ak o ok 3 o ool ok e ok ok el ook ook
* * *
* ® TYFE CHARACT ER *
* * *
* * SUBROUTI NE *
% % *
* R A o o o o ok e b o ok ok ok o o e o ofe e o ok ok ko e e Ak kol K ok K ok ok ok ok
*
#*—em—=—CALLING SECUENCE ((B) AND {(X) NOT MODIFIED)
* LDAS CHAR {A)= 00000000ClC1ClCl OR C2C2C2C2CclClClCL
* CALS TYPCHR
* {RETURN)
*
*x
ENT TYPCHR
»
ORG %
* N
#=-——=——TYPE 1 CR 2 CHARACTERS
JMp 0 EXIT
TYPCHR EQU *-1 'ENTRY POINT
SENS 20100
JMPS *-2 WRET IF PRINTER BUSY
OTA 2 TYPE ASCII CHARACTER
SAN SKIP IF 2 CHARACTERS TO OUTPUT
JMPS TYFCHR-1 RETURN
LSRA 8
JMPS TYFCHR+1 TYPE SECUND CHARACTER
*
END

CARDS THAT REFERENCE SYMBCL

CARNS WIThH ERRURS:

cez8 Cc3c

NENE

APPENDIX E
CONSOLE CONTROLS

[CONTROL/POSITION | ~ |DESCRIPTION |
Register Function Display on NIXIE Tubes the function indicated
A » A register
B B register
X X register
P P register

INSTRUCTION 1
INSTRUCTION 2
MEMORY ADDRESS

MEMORY DATA

lMode Speed

RUN |
SINGLE STEP

VARIABLE

Keyboard

CLEAR
NUMERALS
ENTER

POWER

INIT

HALT

RUN

851 - Ss4

MEMORY (P)

MEMORY (P+1)

Address at which "MEMORY DATA"
is located

~ Location determined by "MEMORY

ADDRESS"

Processor Runs at full speed when
RUN is pressed

Processor executes a single instruc-
tion when RUN is pressed

Processor RUNS at a speed determined
by potentiometer setting when RUN
is pressed

Clears NIXIE display and gives con-
trol to operator.
Enters numeral depressed into display

_ Contents of the display replace the

contents of the register indicated by
the REGISTER FUNCTION switch.

Alternate action switch controls primary
power. . '

Momentary switch resets computer
control logic. Computer is then in-
the HALT mode.

Momentary switch halts the processor
after the instruction currently in
process is completed.

Momentary switch causes the pro-
cessor to run in the mode determined -
by the MODE-SPEED switch

Alternate action switches that can be
tested by skip on sense switch instruc-
tions.

Key Lock
NORMAL
LOCK
BOOTSTRAP

.| INDICATOR

OVERFLOW

ARM INTERRUPTS

. SP-18-9

The usual operating position where all
controls are functional

The ENTER, HALT, INIT, and RUN
switches are disabled.

Upon pressing the INIT switch the

bootstrap program is entered.

| DESCRIPTION |

Indicates that the OVERFLOW
flag is set.

Indicates that the interrupts are armed-
(can interrupt program).

REGISTER FUNCTION

SPIRAS -65

15457

P INSTRUCTION |
X INSTRUCTION 2
B MEMORY ADDRESS
MEMORY DATA
LOCK
NORMAL BOOTSTRAP
[]
RUN
HALT] MODE SPEED

INIT

SINGLE@RUN

p[ola
BEE
BisE

CLEAR] IENT

| 3]

Q

)

OVERFLOW

ARM INTERRUPTS

SS1

ss2

$83

sS4

SPIRAS SYSTEMS, INC. EHS-69-M145
332 Second Avenue
Waltham, Mass.

SUBJECT: PHASE § SPIRAS-65

DATE: . 24 October 1969
FROM: E. H. Sonn
TO: ; All SPIRAS-65 Users

The User's Manual, dated October, 1969, is written for the Phase I
machines which will be released before the end of 1969. The user
should be aware of the OP Code and other operational differences
between the two machines.

OP CODES
MNEMONIC PHASE & CODE PHASE I CODE
LDA gPgg1m ' ggg1lm
LDAS fimaaa ' llmaaa
LDB g89g2m | #eg12m
LDBS 02maaa 12maaa
LDX gEgE3m gPP13m
LDXS #3maaa 13maaa
STA ggglim - 9838 2m
STAS limaaa #2maaa
STB gEg12m ggga3m
STBS ‘ 12maaa @3maaa
STX gPP13m ggggem
STXS 13maaa gémaaa
MUL geggem geg¥1m
MULS ‘ gémaaa | Pflmaaa
IXS lgénnn . ggeéennn
DXS.~ “1g7nnn " g@3nnn .
INA 1¢35dd . 1g5144d
INB | 136dd 195244

INX - 1g374d - 1g5344

Phase @ SPIRAS-65 -2~ 24 October 1969

ADDRESSING MODES

The. long form Addressing Modes have been changed as shown:

MODE CODE PHASE ¢ PHASE I
g Immediate Immediate
1 Direct Direct
2 Indirect Indirect
3 Indirect Indirect

Pre-indexed with X
Indexed with A
Indexed with B

Indexed with X
Relative to P

INPUT?OUTPUT INSTRUCTION FORMAT

Pre-indexed with X
Indexed with A

Indirect
Post-indexed with X

Indexed with X
Relative to P

The Input-Output Memory Reference format has been changed. 1In the
Phase I format, the second word of the instruction is a sixteen
bit address whereas the Phase g format has an indirect bit, an
index bit and a fourteen bit address.
indicated in the first word of the instruction. The new format per-
mits the use of sixteen bit addresses, but limits indexing on
indirect to pre-indexing or post-indexing whereas previously, index-
ing could be accomplished on any level of indirect addressing. See
Page 3-2 of the Manual for a more complete description.

INDIRECT ADDRESS FORMAT

The Addressing Modes are now

The Indirect Address formats have been changed to eliminate the

index bit.

PHASE ¢

PHASE I

BOOTSTRAP OPERATION

The Phase f§ Bootstrap requires. that the "Run" button be pressed
between reading the secondary Bootstrap and the main body of the
tape. This Bootstrap cannot be used for relocatable tapes. A
Bootstrap Simulator Program has been provided for reading relocat-
able tapes from the teletype. Another Bootstrap Simulator

Phase @ SPIRAS-65 -3~ 24 October 1969

has been provided to users of the high-speed paper tape reader.
This simulator is necessary to read either absolute or relocatable
tapes.

INSTRUCTION SUMMARY

For your convenience, a copy of the Instruction Summary from the
previous edition of the manual is attached.

B Y ,-""l"‘
R S
(W s >7)pr-

E. H. Sonn
EHS:HL

Attachment

Mnemonic

ABD
ADD
ADDS
ADX
AND
ANDS
ARM

ARMF
ASLA
ASLB
ASLD
ASRA
ASRB
ASRD
CAB

CABF

CAS
CAX
CAXF

CALL
CALS
CBS
CIA
CIB
CIM
CIX

CcP
CPC
CPCF

APPENDIX 1:

INSTRUCTION SUMMARY

1.

INSTRUCTIONS BY MNEMONICS

Operation Code

00 0 23 m
00 0 04 m
04 m aaa
00 0 24
00 0 15 m
15 m aaa
10 4 002
10 4 003
00 1 000+n
00 1 200+n
00 1 400+n
00 1 100+n
00 1 300+n
- 00 1 500+n
002 s 5 d
002 s 6 d
00 0 20 m
002 s 6 d
002 s 6 d
00 0 07m
07 m aaa
00 0 21m
10 3 1 dd
10 3 2 dd
10 3 4-dd
10 3 3 dd
002 s 2 d
002 s 4 4

002 s 4 d

Function
Add to B
Add to A
Add Short Form
Add to X

Logical AND with A
Logical AND with A Short Form

Arm Interrupt, Set Overflow
OFF

Arm Interrupt, Set Overflow On
Arithmetic Shift Left of A
Arithmetic Shift Left of B
Arithmetic Shift Left Double
Arithmetic Shift Right of A
Arithmetic Shift Right of B
Arithmetic Shift Right Double
Copy A to B and (s) to (d)

Copy A to B and (s) to (d)
if Overflow set

Compare with A and Skip
Copy A to X and (s) to (d)

Copy A to X and (s) to (d)
if Overflow set

Call Unconditionally

“Call Short Form

Compare with B and Skip
Clear and Input to A
Clear and Input to B

". Clear and Input to Memory

- Clear and Input to X

Copy
Copy and Complement

Copy and Complewent if OV set

T X1

J4
J4
H4
14
H4
H5
H5
H5
D2

D2
G4
D2

D2
F1
F1
G4
J3
J3
J4
J3
D2
D2
D2~

Mnemonic Operation Code Function Page
CPD 002 s 1 4 Copy and Decrement D2
CPDF 002 s 14 Copy and Decrement if OV set D2
CPF 002 s 2 d Copy if Overflow Set D2
CPI 002 s 0 4 Copy and Increment D2
CPIF 002 s 0 4 Copy and Increment if OV set D2
CPN 002 s 3 d Copy and Negate D2
CPNF 002 s 3 4 Copy and Negate if OV set D2
CXB 002 s 7 a4 Copy X -to (B) and (s) to (d) D2
CXBF 002 s 7 d Copy X to (B) and (s) to (4}
if Overflow set D2
CXs 000 22 i Compare with X and Skip G4
DRM 10 4 000 Disarm Interrupt, set OV off J5
DRMF 10 4 001 Disarm Interrupt, set OV on J5
DCR 00 0 25 m Decrement and Replace c4
DIV 00 0 27 m Divide c2
DADD 00 0 32 m Double Precision Add c2
DLD 00 0 30 m - Double Precision Load B2
DRS 00 0 10 m Decrement, Replace, Skip if ¢ G5
DST 00 0 31 m Double Precision Store B3
DSUB 00 0 33 m Double Precision Subtract C3
DXS 10 7 nnn Decrement X and Skip if Zero G5
EXCA 10 0 1 dd External Control from A Jl
EXCB 10 0 2 44 External Control from B Jl
EXCI 10 0 0 4ad External Control Immediate J2
EXCM 10 0 4 dd External Control from Memory Jl
EXCX 10 0 3 44 External Control from X Jl
FSUB 00 0 35m " FPloating Point Subtract C3
HLT 00 0 000 Halt | ' . E2
INA ' 10 3 5 dd Input and Or with A : J4
INB ‘ 10 3 6 ad ° Input and Or with B - J4
INR | 00 026 i Increment and Replace c4
INX ' 10 3 7 ad Input and Or with X - J4
IXS 10 6 nnn Increment X and Skip if Zero G5
- JMP ’ 000 17m Jump Unconditionally Fl
JMPS 17 m aaa Jump Unconditionally Short Form Fl
LDA | 00 0 01 m Load A R | B1
LDAS 01 m aaa Load A Short Form , -~ Bl

X2

Mnemonic Operation Code V Function Page

1DB 00 0 02 m Load B B1
LDBS 02 m aaa Load B Short Form B1
LDX 00 0 03 m Load X Bl
LDXS 03 m aaa Load X Short Form Bl
LEA 00 0 41 m Load Effective Address into X B3
LRLA 00 1 600+n Logical Rotate Left of A H3
LRLB 00 1 640+n Logical Rotate Left of B | H3
LRLD 00 1 700+n Logical Rotate Left Double H4
Lsa 00 1 040+n Logical sShift Left of A 12
LSLB 00 1 240+n Logical shift Left of B H2
LSLD 00 1 440+n Logical Shift Left Double H2
LSRA 00 1 140+n Logical Shift Right of A H2
LSRB .00 1 340+n Logical Shift Right of B H3
LSRD 00 1 540+n Logical Shift Right Double H3
HMUL 00 0 06 m Multiply Cc2
MULS 06 m aaa Multiply Short Form Cc2
NOP 00 2 000 No Operation E2
ORA 00 0 16 m Logical OR with A E2
ORAS _..16 m aaa ~—ILogical OR with A Short Form E2
OTA 10 2 1 dad Output from A J2
OTB 10 2 2 d4 Output from B J2
OoTI 10 2 0 dd Output Immediate J3
oTM 10 2 4 aa Output from Memory J3
OTX - 10 2 3 dd Output from X J3
OVF 00 1 74x Set Overflow : . E2
RGC 00 2 sss _ Register Copy) D2
SAN .00 4 140 Skip if A Negative ' G3
SANN 00 5 140 Skip if A Not Negative G3
SANP 00 5 040 . Skip if A Not Positive G3
SANZ 00 5 100 Skip is A ©Not Zero - G3
sap 00 4 040 Skip if A Positive G3
SAZ 00 4 100 Skip if A Zero | - G3
SBNZ : 00 5 200 Skip if B Not Zerxro G3
SBZ 00 4 200 Skip if B Zero G3
SENA | 10 1 1 a4 Sense Status to A 32

%3

Mnemonic

SENB
SENM
SENS

SENX
SKF
SKP
SKT
SNOF

SNsS1
SNS2
SNS3
SNS4
SOF
SS1
Ss2
SS3
SS4
STA
STAS
STB
STBS
STXS
EUB
SUBS
SXNZ
SX2
XOR'
XORS

Operation Code . _

10
10
10

10
00
00
00

00

00
00

00

00
00
00
00
00
00
00
11
00
12
13
00
05
00
00
00
14

1
1
1

(S - O B) B

g o o U, 8 o 8 8 o 83 O & o obobhobsoNh U, o Utou,m

2 dd
4 dd
0 dd

w

ccc
000
ccc
020

001
002
004

010

020
001
002
004
010
1l m
aaa
12 m
aaa
aaa
05 m
ada
400
400

14 m

aaa

da

X4

Function

Sense Status to B

Sense Status to Memory

Sense Masked Status and Skip

if Ze

ro

\
Sense’ Status to X

Skip
Skip
Skip
Skip
Set
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Store
Store
Store
Store

Store

Subtract

if

Condition False

Unconditional

if
if
if
if
if

B
X

Condition True
Overflow Not

Sense Switch
Sense Switch

Sense Switch

oW NN

Sense Switch
Overflow Set
Sense Switch
Sense Switch

Sense Switch

S W =

Sense Switch
Short Form

Short Form
Short Form

Subtract Short Form
Skip if X Not Zero
MSkip if X Zero
Exclusive OR with A

Exclusive OR with A Short Form

Not Set
Not Set
Not Set
Not Set

Set
Set
Set
Set

G5

g2

Gl
G4
Gl

G2
G2
G2
G2
G2
G2
G2
G2
G2
G2

B2
B2
B2
B2
Cl
Cl

[
(&)

G3

‘Bl

El

2.

INSTRUCTIONS ORDERED BY OP-CODE NUMBER

.00

00 0 000
00 0 01 ¢
00 0 02 m
00 0 03 m
00 0 04 m
00 0 05 m
00 0 06 m
00 0 07 m
00 0 10 m
00 0 11 m
00 0 12 m
00 0 13 m
00 0 14 m
00 0 15 m
00 0 16 m
00017 m
00 0 20 m
00 0 21 m
00 0 22 m
00 023 m
00 0 24 m
00 0 25 m
00 0 26 m
00 0 27 m
00 0 30 m
00 0 31 m
00 0 32 m
00 0 33
00 0 34 m
GO 0 35
00 0 36 m
00 0 37 m
00 0 40 m
041 n
000 77 n

HLT
LDA
LDB
LDX

SUB
MUL
CALL
DRS

- STA

STB
STX
XOR
AND

ORA
JMP
CAS
CBS
CXS

ADB
ADX
DCR
INR
DIV
DLD
DST
DADD
DSUB
FADD
FSUB

FMUL
FDIV
LEA

(trap)

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00

00
00

00

00

NP DD P W NN RN RN NN N NN R e e e et et e e s e b e e e

000+n
040+n
1004n
1404n
200+n
2404n
300+n
3404n
400+n
440+n
500+n
540+n
600+n
640+n
700+n
7404n
000
sss
s0d
sld
s2d
s3d
s4d

s5d
s6d

s7d

nnn

ccce

001

002

004
010
020
040

100

ASLA
LSLA
ASRA
LSRA
ASLB
LSLB
ASRB
LSRB
ASLD
LSLD
ASRD
LSRD
LRLA
LRLB
LRLD
CVF
NOP
RGC
CPI
CPD
Cp
CPN
CPC
CAB
CAX
CXB
(trap)

SKT
Ss1
Ss2.

Ss3
SS4

SOF ~

SAP
SAZ

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

01
02
03
04
05

06
07

10
10
10
10
10

10

10
10

10

10

o e = O 0O O 0O o8 8 8 8 83 83 38

S~ W N O P W NN - O

LN R Y IV, IV PV, IV, BV, BV, DV, RV, W, R U, B S S R &)

140
200
400
cece
000
001
002
004
010
020
040
100
140
200

400
nnn

snn

aaa

- aaa

aaa
aaa
aaa

aaa

aaa

dd
dd
dd
dd
dd

dd
dd
dd
dd

dd

SANN
SBZ
SKX
SKF
SKF
SNS1
SNS2
SNS3
SNS4
SNOF
SANP
SANZ
SAN
SBNZ
SXNZ

(trap)

indexed
shift

LDAS
LDBS
LDXS
ADDS
SUBS

MULS
CALS

EXCI
EXCA
EXCB
EXCX
EXCM

SENS

SENA
SENB
SENX

SENM

10
10
10
10
10
10
10
10
10
10
10
10
10
10

10
10
10
10
11
12
13
14
15

16
17

2 82 83 383 83 2 25 oSS LS PHLWWWLWWWLWWweNDNDNN

dd
dd
dd
dd
dd
dd
dd
dd
dd

dd
dd
000
001
002
003

nnn

NP0 =W N - O

nnn

aaa

aaa

aaa

aaa

aaa

aaa

aaa

ad

0TI
OTA
OTB
OTX
OTM
CIA
CIB
CIX
CIM
INA
INB
INX
DRM
DRMF
ARM
ARMF
IXS
DXS
STAS

STBS
STXS
XORS
ANDS

ORAS
JMPS

X5

SPIRAS-65 INST

e=(a)+(X} [a=0-65535] = -

UCTIONS R

LOAD/STORE JUMP/CALL INSTRUCTIONS REGISTER SHIFTING
MNEMONIC DESCRIPTION TIMING MNEMONIC DESCRIPTION TIMING MNEMONIC DESCRIPTION TIMING
LDA a1 (31 JMP al _(e)=(P) (3] ASLA n Arithmetic left shift. [1+.2n]
LDAS 2 } (e}~ (A) 12} JMPS a2 ge)—»(P) (2] ASLB n -0
LB at ~8) 3] CALL al .+2->e, er1-(P) (3]
a2 } te) (2] CALS a2 “+1-e et1-=(P) (2 _ ASRA n Arithmetic right shift {1+.2n]
3 : =
O e 8 SR
STA al } (A~ (e} (3} LSLA n Logical left shift {1+.2n}
STAS a2 (21 LSLB n «0
sT8 a! } (B)-(e) fai LOGICAL/CONTROL —
STBS a2 [2] LSRA n Logical right shift {1+.2n]
STX at } (X1 {e) (3l MNEMONIC DESCRIPTION TIMING LSR8 n 0~
STXS 82 (2l AND al (3]
DLD al (e), let1)>(A), (B) (4] ANDS a2 } (e} and (A} >{A} 2 LRLA n Logical shift rotate (1+.2n]
DST a1 (A} (B)~(e), lex)) (5] XOR a1 13l LALB n
LEA al e—(X) 14] XORS 22 } (e) eor (A)>(A) 2l S—
ORA al } [3)

:) {e} or {A)—(A) ASLD n oV P p «0 [1+.4n
ARITHMETIC w2 t Uk (1,40
MNEMONIC DESCRIPTION TIMING NOP No operation {1.4] ASRD n [SJ_, > 1 =] {1+.4n]
A0D 31 A)eie) > (A) fal il o f LSLD n U= J[C <] <0 (1+.4n]
ADDS a2 e 2l S| 1~ Protect Flag i1 -

ADB al (B)+{e}~(B) (3 LSRD n 0 - | | - | ! [1+.4n]
ADX al (X)+{e}={X) [3]
sus al —le)= (3 LRLD n - <~] [0V] t1+.4n)
. i DATA WORD FORMATS e
MUL at N {1
M SUMCRON ol REGISTER TRANSFER
DIV al (A}, {B)/e—(B), rem~(A) {15] [) | M I A] MNEMONIC DESCRIPTION TIMING
gsgg al (A){B)++{e), {e+1}~(A),(B) [5] [P P AT e cp sd [CPF] (s~{d) [ifov=1] {1.4]
al (A}, (B} ——fe), e+ 1)~ (A), (B) (6l 1-Word instruction CcPI s,d [CPIF] (s)+1->(d it OV =
FADD al (A](B).+(e), e+ 1)~ (A}, (B) [11-28] . s) litov=1] (14]
FSUB al (A), (B).—le], le+1)~(A], (B) [11.28] cPD nd [CPOF} (s)-1~(d) [if OV=-1] (1.4]
FMUL al (A), (B)."(e), (e+1)~ (A}, (B) [60-70) 0-0 l c !] M cPC s,d [CPCF] (§)~(d) [ff ov=1j {1.4]
IR A I SN AN e CPN s,d [CPNF] -(s)—=(d} [ifOV=1] (1.4]
FDIV al (A (B)./(e), e+ 1){A),(B) [60-70]
INR at (e} + 1= {e) 14} A CAB s,d [CABF] {A)=(B), (s}>{d) [ifOV=1][1.4]
OCR a le)—1-(e) (4l S I IS A I CAX s.d [CAXF] {A)=(X), {s)=(d) [if OV=1][1.4]
2-Word instruction CX8B s,d [CXBF] (X)={(B), (s)={d) [ifOV=1]{1.4]
RGC nnn Operation depends on bits nnn {1.4]
0’ INSTRUCTIONS [. l A] s= Zero, A, B or X
MNEMONIC DESCRIPTION TIMING 'ndireét ‘A;d:e;s 1 es boa g 13y d = Zero, A, B, X, AB, AX, BX or ABX
SKIP unconditionally skip 1 word 11 OUTPUT
v o a1 70 o LS I Dete 128 Complement) } MNEMONIC DESCRIPTION TIMING
SAN skip 1 word if {A) <0 (1} Single Precision EXCA n (A) - device n control 1
SANN skip t word if {A)2>0 {1 EXCB n (B} — device n control &)}
" SAP skip 1 word if (A)>0 &) —— EXCX n (X) - device n control [1]
SANP skip 1 word if (A}<0 {1 S M"l““'?”;"fa:‘""i‘al ey EXCM na3 (e - device n control {3l
$BZ skip 1 word if (B) =0 {1} o * Lem wienifioam a2t EXCH nv v device n control {2]
SBNZ skip tword if {B) #0 (&]] Ll 1g| Ci Ll il OTA n {A) = device n data [1
Sx2Z skip 1 word if (X) =0 {1l Double Precision oTB n {B) - device n data (1}
SXN2Z skip 1 word if (X) #0 [oTX n {X) = device n data {1
SOF skip 1 word if (OV) =0 [} - oT™M n,a3 (e) — device n data (2}
SNOF skip 1 word if (OV) # 0 1] s Fraction-1 oTi nv v device n data [al
sst skip 1 word if 5510on 1 S ARM arm interrupts, 0 > OV {1l
SNS1 skip 1 word if $S1 off 1 0 FIECtLiOH-l’I lEXD (1128) DRM disarm interrupts, 0 > OV [1]
552 skip 1 word if SS2 on 1l F!oaxi;g P — tdd ARMF arm interrupts, 1> 0V [1]
SNS2 skip 1 word if SS2 off {1 i DRMF disarm interrupts, 1 >0V [1}
§S3 skip 1 word if SS3 on (81} -
SNS3 skip 1 word if SS3 off i s , F"’°|"°""l L, INPUT ‘
4 H R 11 1 11 1
is“ :::z : :z:: :; 22: 2:' {: : 0 Fraction-2 MNEMONIC DESCRIPTION TIMING
SKT n skip 1 word if any conditions True [1] T -t e SENA n - device n status > (A) [§3]
SKF. n skip 1 word if all conditions False [1] 0 Fractlsn—i) SENB- n device n status ~ (B) {11
cAS al " IF(R) < (¢}, don't skip 13l e S SENX . device n status > (X) (1
[:33 al IF(R} = (e}, skip 1 word 31 S Exponent SENM n,a3 device n status — (e) {31
cxs al IF(R) > (e, skip 2 words 3] et Lot SENS nm skip it device n status masked by m) = 0 {2]
ORS al {e) - 1-{e), skip if (e) = O 141 Double Precision Floating Point CIA n device n data - (A} 1
XS n (X} =X} +n,skipif (X)= 0 {n=0-511] 2] ciB n device ndata—> (B) {1}
OXS n {X) 7 (X} - n,skipif (X):0|n=0-+511} |2} CIX n device n data - (X) {11
Cim n,a3 device n data — {e) {31
INA n device n-data OR (A) = (A) (11
ADDR ESS'NG INB n device ndata OR {B} — (B) {1
A1 XXXS. a(D) e.j a laj 0~ 1023} INX n device ndata OR (X) > (X) 111
A2 Xxxs" a e=(a) - fa=0-1023] :)
XXX aD) e-a :)):xs alX) e za (X [a: 0~ 1023]
xb, a={a) XS alf) e=a+(P) [a=-512-++511]
X alX) - e=ar(x)
XXX® alX] - e={a+ (X)) ‘
XXX® a(V) e-(a)eqx) [270065535 XXX 2D} e=a {a= 0~ 65535]
XXX alA) e=a+(A) XXX* a e=(a) {a= 0~ 65535]
XXX aP) e:a+(P) XXX - aX) e=a+(X) .fa=0- 65535]
XXXI - a operand = g XXX* a{Y) '

	000
	001
	003
	004
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	07-01
	07-02
	08-01
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	10-05
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	13-01
	13-02
	13-03
	13-04
	13-05
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	U-01
	U-02
	U-03
	X-01
	X-02
	X-03
	X-04
	X-05
	Y-01

