
u

Spiras Systems, Inc.
Affiliate of

USM Corporation

SPIRAS®-65

REFERENCE MANUAL

October 1969

©Copyright 1969

All rights reserved. Contents
of this publication may not be
reproduced in any form with­
out permission of the copyright
owner.

Published by the Technical Communications
Dep.artment, Spiras Systems, Inc.

0 Spiras.Systems, Inc.
Affiliate of

USM Corporation

332 Second Avenue
Waltham, Massarhusetts 02154
(617) 891-7300 • TWX 710-324·6699

3.QQ

®REGO. T.M.

TABLE OF CONTENTS

Section Title Page

1 SPIRAS-65 ORGANIZATION 1-1

1. 1 Description 1-1

1.2 Control Unit 1-1

1. 3 Arithmetic Unit 1-1

1.4 Core Memory 1-1

1.5 Input/Output 1-4

2 CONSOLE OPERATION 2-1

2. 1 Power-On and Bootstrap Sequence 2-1

2.2 Register Display 2-2

2.3 Displaying Memory (Halt Mode) 2-2

2.4 Display and Write Memory (Halt Mode) 2-3

2.5 Single Step Debugging 2-3

3 INSTRUCTION FORM:ATS AND ADDRESSING MODES 3-1

3.1 Long Instruction Format 3-1

3.2 Short Instruction Format 3-2

3.3 Input/Output Format 3-2

3.4 Indirect Address Format 3-3

3.5 Single Precision Fixed Point Format 3-3

3.6 Double Precision Fixed Point Format 3-3

3.7 Single Precision Floating Point Format 3-3

3.8 Double Precision Floating Point Format 3-3

4 LOAD/STORE INSTRUCTIONS 4-1

5 ARITHMETIC INSTRUCTIONS 5-1

6 REGISTER COPY INSTRUCTIONS 6-1

7 LOGICAL/CONTROL INSTRUCTIONS 7-1

8 JMP/CALL INSTRUCTIONS 8-1
•

9 • SKIP INSTRUCTIONS 9-1

9.1 Skip On Condition Instructions 9-1

9.2 Compare and Skip Instructions 9-3

9.3 Modify and Skip Instruction 9-4

SP-18-9 iii

TABLE OF CONTENTS (Cont.)

Section Title !>age·

10 SIIlFT INSTRUCTIONS 10-1

10.1 Direct Shift Instruction Format 10-1

10.2 Indexed Shift Instruction Format 10-1

10.3 Symbolic Shift Instructions 10-1

11 INPUT/OUTPUT INSTRUCTIONS 11-1

12 INPUT/OUTPUT PROCEDURES 12-1

12.1 General Procedures 12-1

12.2 Reserved Locations in Core 12-3

13 I/O STATUS AND CONTROL WORD FORMATS 13-1

13.1 Console Input/ Output 13-1

13.2 Teletype Input/Output 13-2

13.3 Card Reader Input 13-4

13.4 High Speed Paper Tape Input/Output 13-5

14 SPIRAS-65 ASSEMBLER PROGRAM 14-1

14.1 Program Types 14-1

14.2 Assembly Format 14-1

14.3 Symbolic Labels 14-2

14.4 Commands 14-2

14.5 Arguments 14-2

14.6 Address Modifiers 14-4

14.7 Literals 14-6

14.8 Pseudo-Ops 14-7

14.9 Listing Control 14-12
I

14.10 Error Messages 14-12

APPENDIX A INSTRUCTION SUMMARY A-1

APPENDIX B TABLES AND CONSTANTS B-1

APPENDIX C SPIRAS-65 CODES C-1

APPENDIX D PROGRAM EXAMPLES D-1

APPENDIX E CONSOLE CONTROLS E-1

SP-18-9 iv

SECTION 1

SPIRAS-65 ORGANIZATION

1. 1 DESCRIPTION

The description of the SPIRAS-65 which follows does not reflect the actual hardware

implementation but describes the computer from the programmers viewpoint.

A simplified block diagram of the SPIRAS-65 is shown in Figure 1-2. The computer

consists of a control unit, arithmetic unit, core memory unit and the console which is attached to

the I/O buss of the computer.

1. 2 CONTROL UNIT

The control unit causes an instruction word to be fetched from core memory and deposited

in the instruction register. The instruction is then decoded and executed unless the computer is

in one of the following conditions:

• HALT mode

• single-step mode

• variable speed mode

• an interrupt has been requested

• a direct memory control data transfer has been requested

The basic control cycle is shown in Figure 1-1.

1. 3 ARITHMETIC UNIT

The arithmetic unit consists of the A register (upper accumulator), the B register (lower

accumulator) which is used in the multiplication and division operations, the X register (an index

register), the P register (indicating the address of the next instruction) and the adder unit which can

perform the operatio118 of ADD, AND, OR, EXCLUSIVE OR, Left Shift, and Right Shift.

1. 4 CORE MEMORY

The core memory unit is used for the storage of programs and data. It is modular in

4096 word increments to a maximum of 65, 536 words. If a non-implemented memory location is

addressed, no operation results and an all zero word will be read.

SP-18-9 1-1

SP-18-9

Df4C
SERVICE
ROUTINE 1-----------a.1 FETCH INSTRUCTION

YES

INTERRUPT
SERVICE
ROUTINE

CONSOLE
SERVICE
ROUTINE

FETCH
INSTRUCTION

NO

rF-;;-;;-EFFECT IVEJI
I ADDRESS

L__ (See NOTE2j

EXECUTE
INSTRUCTION

ANY = DMC + INTERRUPT + HALT

NOTE: Effective address computation
not required for generic
instructions.

Figure 1-1. Basic Control Cycle

1-2

\.

FRONT
PANEL

TELETYPE

OTHER
I/O

DEVICES

CORE
MEMORY

I/O BUSS

M BUSS

,--y--1
; I INSTRUCTION I

REGISTER

I I
I CONTROL I

LOGIC

M BUSS

I/0 BUSS

,------------,
I c BUSS

I

I
I
I
L.

.I

A B

S BUSS

ADDER UNIT

x p

. I

I

AR ITH MET IC
UNIT -----------'

Figure 1-2. SPIRAS-65 Organization

1. 5 INPUT/OUTPUT

Input/output devices attached to the SPIRAS-65 share a party-line I/O buss. Only one

device can communicate with the computer at any given instant. An attempt to sense or input data

from a non-existent device will cause an all zero word to be transferred. An attempt to output

data, or a control word to a non-existent device results in no-operation.

SP-18-9 1-4

SECTION 2

CONSOLE OPERATION

The eon~ole cont4ol~ and thei~ 6unction~ a4e li~ted
in Appendix E. The 4eade4 ~hould 0 amil~a~ize him­
~el6 w~th the~e be 0 o~e p4oeeed~ng.

2. 1 POWER-ON AND BOOTSTRAP SEQUENCE

1) Depress POWER

2) Turn key switch to NORMAL

3) Depress INITIALIZE

4) Set MODE SPEED fully clockwise

5) Select Pon REGISTER FUNCTION

6) Depress CLEAR

7) Key in location where loading is to begin

8) Depress ENTER

9) Select X

10) Depress CLEAR

11) Key in bootstrap device number

2 = ASR

3 = Card Reader

4 = High Speed Paper Tape Reader

11 Magnetic.Tape Unit #1

12 = Magnetic Tape Unit #2

13 = Magnetic Tape Unit #3

14 = Magnetic Tape Unit #4

12) Depress ENTER

13) Select B (If relocatable program)

SP-18-9 2-1

14) Key in BIAS

15) Depress ENTER

16) Select BOOTSTRAP

17) Depress INIT

18) Select NORMAL

The bootstrap micro-program will start the medium (except ASR), ignore leading zero

bytes, assemble two bytes per word starting at the location determined by P until an all zero

sixteen-bit word is loaded. Control is now transferred to the location determined by P. The

micro-program computes a check-sum which is the arithmetic sum of all sixteen bit words

loaded (overflow is ignored). The secondary bootstrap program (program which was loaded)

should examine this check-sum.

2 .• 2 REGISTER DISPLAY

The contents of the A, B,X, P registers may be displayed in the HALT, SINGLE STEP,

or VARIABLE SPEED modes by selecting the desired register on the REGISTER FUNCTION

·switch. The contents of the selected register may be mcxlified by depressing CLEAR, keying

in new data, and depressing ENTER. The REGISTER FUNCTION switch is not functional when

the processor is in the RUN mode.

The key .6W~tch mu.6t be ~n NORMAL
po.6~t~on.

2.3 DISPLAYING MEMORY (HALT MODE)

To display the contents of memory starting at location XXX.

1) Select NORMAL

2) Depress HALT, INIT

3) Select MEMORY ADDRESS

4) Depress CLEAR

5) Key in XXX

6) Depress ENTER

7) Select MEMORY DATA
(The contents of location XXX: .is now displayed)

SP-18-9 2-2

8) Depress ENTER

The contents of location XXX + 1 is now displayed. One can
select MEMORY ADDRESS which will now show XXX + 1.

2.4 DISPLAY AND WRITE MEMORY (HALT MODE)

To display the contents of Location XXX and then write YYY into location XXX:

1) Select NORMAL

2) Depress HALT, INIT

3) Select MEMORY ADDRESS

4) Depress CLEAR

5) Key in XXX

6) Depress ENTER

7) Select MEMORY DAT A

8) Depress CLEAR

9) Key in YYY

10) Depress ENTER

The contents of XXX is now YYY and the contents of XXX + 1
is displayed. If it is desired to modify location XXX + 1 repeat
the process or examine XXX + 2 by depressing ENTER. The
DISPLAY and DISPLAY /WRITE operations may be intermixed.

2. 5 SINGLE STEP DEBUGGING

To single step through a program after it has been loaded:

1) Select NORMAL

2) Depress HALT, INIT

3) Select SINGLE STEP

4) Select P

5) D~press CLEAR

6) Key in location for start of single step· operation

7) Depress ENTER

8) Select INSTRUCTION 1

SP-18-9 2-3

The instruction which will be executed upon depressing RUN
is displayed. This instruction may be modified by depressing
CLEAR, keying in a new instruction, and depressing ENTER.

9) Select INSTRUCTION 2

If the instruction to be executed is a two word instruction, the
second word is displayed here, otherwise the next sequential
instruction is displayed. The contents can be modified.

10) Select and set up A, B, X as necessary

11) Depress RUN

Examine register contents with the aid of the REGISTER FUNCTION
switch to see the results of each step of program execution.

NOTE

16 the Octal key4et and/o~ NIXIE di4play a~e
u4ed a-0 p~og~ammed output device4, they will
not ope~ate p~ope~ly ln the SINGLE STEP and
VARIABLE 4peed mode4 becau-0e the4e devlce4
d~e u4ed by the con4ole 4e~viee ~outlne.

The instructions CALL/CALS, ARM/ ARMF and DRM/DRMF always execute the next

sequential instruction before control passes toDMC, interrupt or console service routines:

therefore, if a LDAS instruction is located at location 02¢1, and the P counter is set to ¢1¢0, and

location ¢1¢¢ contains a CALS ¢200 instructio~ the P counter will show 2¢2 after RUN is depressed

in the SINGLE STEP mode.

SP-18-9 2-4

SECTION 3

INSTRUCTION FORMATS AND ADDRESSING MODES

The instructions in the SPIRAS-65 may be sixteen or thirty-two bits in length. Thirty­

two bit instructions are stored in two consecutive memory locations with the first sixteen bits

stored in the lower memory location.

A portion of the instruction set is implemented in both short (16 bit) and normal (32 bit)

forms. This feature saves core locations when the referenced data is within addressing range

and stores the full address or data with the instruction when extended addressing is required.

3.1 LONG INSTRUCTION FORMAT

SP-18-9

z is the operation code

mis the mode

a is the address or operand

m MODE -
0 Immediate

1 Direct

2 Indirect

3 Indirect pre-indexed
with X

4 Index with A

5 Indirect post-
Indexed with X

6 Index wlth X

7 Index with P

I : :o:o:: ~! : : : : : ! ::I

Effective Address/Operand

The operand is a.

The address is a. (e = a)

The address is stored at a. (e = (a))

The address is stored at a plus contents
of register X. (e = (a + X))

The address is a, plus contents of
register A. (e = a +A)

The address is stored at a, plus contents
of register X. (e = (a) + X)

The address is a, plus contents of
register X. (e = a + X)

The address is a, plus contents of
program counter P. (e =a+ P)

Multilevel indirect addressing is peJ:mitted.

NOTE

The P register always points to the next instruction in sequence. The
state of the P register must be taken into account when computing
effective addresses.

3-1

. 3. 2 SHORT INSTRUCTION FORMAT

z is the operation code

mis the addressing mode

a is the address

m Octal Addressing Mode

00 0,1 Direct

01 2,3 Indexed with X

10 4,5 Indi~ect

11 6,7 Relative to P

I . ~ I 1~ I . " .~ " II I

Effective Address

The address is a. Range of a is 0 to 1023 10. (e = a)

The address is a, plus contents of register X.
Range of a is 0 to 1023

10
. (e =a+ X)

The address is stored at a. Range of a is 0 to 102310.
(e = (a)).
The address is a, plus contents of program
counter P. Range of a is ±_511 10• (e = P ±_a)

The m bits are combined with the most significant address bit in octal presentation.

3.3 INPUT/OUTPUT FORMAT

I i ~0. I .z. I .r. I . , ?. , I

z is the operation code
r is the register mode
d is the device address
a is the memory address

or I:::! ::t: ! : :: : : I

Input/Output instructions are one word if there is no memory reference. Memory

reference instructions require two words, the second of which is a sixteen-bit address.

r Mode - --
0 IMMEDIATE

1 Register A

2 Register B

3 Register X

4 Direct

5 Indexed. with X

.
6 Indirect

7 Indirect post-
indexed with X

SP-18-9

Effective Address

The address is the address of the instruction plus one.

Register A

Register B

Register X

The address is a. (e =a)

The address is a plus the contents of register X.
(e =a+ X)

Th; address is stored at a. (e = (a))

The address which is stored at a is added to
register X. (e = (a) + X)

3-2

3. 4 INDIRECT ADDRESS FORMAT

El I I I I I,, I I I I I I I I
All forms of instructions requiring indirect address pointers use the indirect address

format shown. A one in the sign bit position is used to indicate that another level of indirect

addressing is to be involved.

3.5 SINGLE PRECISION FIXED POINT FORMAT

~I. I I I rilf¥~~~. I I
Single precision numbers consist of 15 bits plus the sign bit S. Negative numbers are

represented in two's complement form.

3. 6 DOUBLE PRECISION FIXED POINT FOfu"\IAT

[e]
[e+l]

S HIGH ORDER BITS
0 LOW ORDER BITS

Double precision numbers consist of 30 bits plus the sign bit, S. The sign bit of the

· -second word is always zero. Negative data is represented in two's complement form.

3. 7 SINGLE PRECISION FLOATING POINT FORMAT

S = sign of mantissa
Ml = high order part of mantissa
M2 = low order part of mantissa

E = biased exponent (+2008)

[e]
[e+l]

The mantissa consists of 22 bits plus the sign bit, S. The exponent consists of 8 bits

with bit 7 serving as the sign. The sign bit of the second word is always zero. Negative data

is represented in two's complement form. Adding 2003 to the exponent results in an offset-by-28

notation, making the sign bit of the exponent "l'' if the exponent is positive, and "0" if it is

negative.

3. ~ DOUBLE PRECISION FLOATING POINT FORMAT

(e]
[e+l)
[e+2]
(e+3]

MANTISSA 2
MANTISSA 3
EXPONENT

The mantissa consists of 45 bits plus the sign bit S. The exponent consists of 15 bits

plus the sign bit Sl. The sign bit of words 2 and 3 is always zero. Negative .. data is represented

in two's complement form.

·sP-18-9 3-3

..._ .

LDA --
~

LDAS --

Load A register

SECTION 4

LOAD/STORE INSTRUCTIONS

Load A register short form

~o ! II !ml ~::::~: ::: :: : .
Timing: 3 cycles

I . 1.1. li;i I , I I I ~ I I I I I
- Timing: 2 cycles

The contents of the effective memory location {operand) are placed in the A register.

LDB Load B register I : :
0
::: : ! : ~:: : ! ~ I --

Timing: 3 cycles

LDBS Load B register short form 1.~2• l~I. I I'~ I I I, I --
Timing: 2 cycles

The contents of the effective memory location {operand) are placed in the B register.

I : ::: : : ! ~ : 1:3: : ! ~ I LDX Load X register --

Timing: 3 cycles

LDXS Load X register short form i .~31 -11;1 I , , , ,a, , , , , I

- Timing: 2 cycles

The contents of the effective memory location (operand) are placed in the X register.

I: :o::'. ·. 1.~:0:2:: ! ~I STA Store register A --

Timing: 3 cycles
-

I .~~ llrl I I I If I I I I I STAS Store register A short form --
Timing: 2 cycles

'Dhe contents of register A replace the contents of the effective memory location

{operand). -

SP-18-9 4-1

STB Store register B

Timing: 3 cycles

STBS Store register B short form IP~. f~I. I I.~ I I,, I
Timing: 2 cycles

The contents of register B replace the contents of the effective memory location

(operand).

STX Store register X

Timing: 3 cycles

STXS Store register X short form I .0,6. lml.,,, ~.,,,I
Timing: 2 cycles

The contents of register X replace the contents of the effective memory location

(operand).

DLD Double Precision Load

Timing: 4 cycles

The double precision or floating point number contained in the two successive memory

locations beginning with the effective memory location is placed in registers A and B with the

most significant half in register A. The immediate addressing mode should not be used.

DST Double Precision Store

Timing: 5 cycles

The double precision or floating point number in registers A and B is placed in the two

successive memory locations beginning with the effective memory location. The immediate

addressing mode should not be used.

SP-18-9 4-2

LEA Load Effective Address

Timing: 4 cycles*

The effective address is resolved taking into account indexing and all levels of indirect,

and this address replaces the contents of the X register.

Typical use would be to fetch the argument address for a subroutine such as in the

following example:

CALS
PTR
PTR*

SUBR
A
B

SUBR DATA 0

LDXS SUBR
LEA* O(X)

.
LEA* l(X)

Another use of the LEA instruction is when it is necessary to set the index register to an

address within a program that is to be "self-relative." A LDXI TABLE instruction would set the

regi.ster correctly but would not be a self-relative instruction. A LEA TABLE(P) instruction

would also set the register as desired but would also be self-relative.

* Includes the first indirect cycle.

SP-18-9 4-3

SECTION 5

ARITHMETIC INSTRUCT10NS

ADD Add to register A

Timing: 3 cycles

ADDS Add to register A short form I . ~4. I i;n! I I I I ~ I I I I I
Timing: 2 cycles

The contents of the effective memory location (operand) are added to the contents of the

A register. The sum, mod 215 is placed in the A register. If the sum is~ 215 or <-215 the

overflow flag is set. Otherwise it is reset.

ADB Add to register B

Timing: 3 cycles

The contents of the effective memory location (operand) are added to the contents of

register B. The sum, mod 215 , is placed in register B. The overflow flag is not affected.

Add to register X I : : ::: : !~ : :4

: : ! ~ I
Timing: 3 cycles

The contents of the effective memory location (operand) are added to the contents of

register X. The sum, mod 215, is placed in register B. The overflow flag is not affected.

Subtract from register A

3 cycles

SUBS Subtract from register A short form I .0,5i l~J , , , , ~ , , , , I
Timing: 2 cycles

The contents of the effective memory location (operand) are subtracted from the contents

of the A register. The difference, mod 215 , is placed in the A register. If the difference is

~ 215 or <-215 the overflow flag is set. Otherwise it is reset.

SP-18-9 5-1

MUL Multiply I : ::o:o: : ~: ::: : ! :: I
Timing: 11 cycles .

MULS Multiply Short Form I ?~~ l~I . I I I ~I I I I I
Timing: 10 cycles

The contents of the effective memory location (operand) are multiplied by the contents

of register B. The result is placed in registers A and B in double precision format, i.e., most

significant half in register A, least significant half in register B and the sign bit of register B

set to "0". The overflow flag is not affected. (NOTE: Multiplying -215 by -2 15 produces zero.)

DIV Divide

Timing: 15 cycles

The contents of registers A and B (double precision format) are divided by t~e contents

of the effective memory location (operand). The quotient is placed in register B and the remain­

der is placed in register A with the sign of the dividend. The overflow flag is set if A _ ope­

rand. An attempt to execute an improper divide will cause the overflow flag to be set and regis­

ters A and B to be unaltered.

For single precision fractional divide, the fractional dividend should be in the A register

and the B register should be set to zero. For single precision integer divide, the integer divi­

dend should be placed in the B register and the A register should be set to zero if the integer is

positive and to all ones if the integer is negative. Integer division may be set up by loading the

; A register with the integer and performing an ASRD 15 instruction.

SP-18-9 5-2

DADD Double Precision Add

Timing: 5 cycles

The double precision number contained in the two successive memory locatiqns starting

with th'e effective memory location is added to the double precision number in registers A and B.

The sum, mod 2
30

is placed in registers A and Bin double precision format. The overflow flag

is set if the sum is greater than full scale or less than minus full scale. The immediate addres­

sing mode should not be used.

DSUB Double Precision Subtract I : : :o:o: : !~ : :3: : ! :: I
Timing: 6 cycles

The double precision number contained in the two successive memory locations starting

with the effective memory location is subtracted from the double precision number in registers

A and B. The difference, mod. 2
30

, is placed in. registers A and B in double precision format.

The overflow flag is set if the difference is~ -2
30

e The immediate addressing mode should

not hP. lLC:P.d.

F ADD Floating Point Add

Timing: 11-28 cycles and
normalize time

The floating point number in the two successive memory locations starting with the

effective address is added to the floating point number in registers A and B. The sum is placed

in registers A and B in normalized form. If the sum is greater than full scale or less than minus

full scale the overflow flag is set. A floating point number may be normalized by adding it to

zero. The .. immediate addressing mode should not be used.

FSUB Floating Point Subtract

Timing: 11-28 cycles and
normalize time

The floating point number in the two successive memory locations beginning with the

effective address is subtracted from th~ floating point number in registers A and B. The difference

is placed in registers A and B in normalized form. If the difference is greater ~han full scale or

less than minus full scale the overflow flag is set. The immediate addressing mode should not be

used.

SP-18-9 5-3

FMUL Floating Point Multiply

Timing: 60-70 cycles

The floating point number in the two successive memory locations starting with the

effective address is multiplied by the floating point number in registers A and B. The product is

placed in registers A and B. If the product is greater than plus full scale or less than minus full

scale the overflow flag is set. The immediate addressing mode should not be used.

FDIV Floating Point Divide

Timing: 60-70 cycles

The floating poi11t number in the two successive memory locations starting with the

effective address divides the floating point number in registers A and B. The quotient is placed

in .registers A and B. If the quotient is greater than full scale or less than minus full scale the

overflow flag is set. An attempt to divide by zero will cause registers A and B to be set to plus

or minus full scale and the overflow flag to be set. The immediate addressing_ mode should not be

used.

Floating Point Normalize: See Floating Point Add

INR Increment and replace

Timing: 4 cycles

The contents of the effective memory location (operand) are incremented by one and

replaced. The overflow is not affected.

DCR Decrement and replace

Timing: 4 cycles

The coo tents of the effective memory location (operand) are decremente~ by one and

replaced. The overflow is not affected.

SP-18-9 5-4

SECTION 6

REGISTER COPY INSTRUCTIONS

• The format of the register copy instruction is as follows:

Source Register & Condition

0 Value Zero Conditional
1 Value Zero
2 A Conditional
3 A
4 B Conditional
5 B
6 X Conditional
7 x
Conditional operations are NOPs
if OVERFLOW is not set.

0
1......1 1

2
3
4
5
6
7

0
1
2

'----!
3
4
5

6

7

Destination Register

No Destination (NOP)
(A)

= (B)
(A) and (B)

= (X)
(A) and (X)
(B) and (X)

= (A), (B) and (X)

Operation

= Add 1
= Subtract 1
= No Change

Two's complement (Negate) =
= One's complement
= Copy (A) to (B) and

(s) to (d)
= Copy (A) to (X) and

(s) to (d)
= Copy (X) to (B) and

(s) to (d)

Thus, the instruction 002235 specifies that the contents of the source, register A, are

negated and placed in registers A and X if the overflow flag is set.

SP-18-9 6-1

There are 445 Register Change Instructions. Mnemonics for the more useful Register

Change Instructions follow.

~

SP-18-9

RGC

CP

CPF

CPI

CPIF

CPD

CPDF

CPC

CPCF

CPN

CPNF

CAB

CABF

CAX

CAXF

CXB

CXBF

S=

\,.

nnn Copy operation depends on the value nnn.

s,d Copy

s,d Copy if overflow is on

s,d Copy and increment

s,d Copy and increment if overflow is on

s,d Copy and decrement

s,d Copy and decrement if overflow is on

s,d Copy and (one's) complement

s,d Copy and (one's) complement if overflow is on

s,d Copy and negate (two's complement)

s,d Copy and negate if overflow is on

s,d Simultaneously copy (A) to (B) and (s) to (d)

s,d Same as CAB if overflow is on

s,d Simultaneously copy (A) to (X) and (s) to (d)

s,d Same as CAX if overflow is on

s,d Simultaneously copy (X) to (B) and (s) to {d)

s,d Same as CXB if overflow is on

NOTE

Conditional operations are NOP if the overflow flag

is off.

0 0
A A

B d= B

x x
A,B (Add 0. 2 cycles to time)

A,X (Add O. 2 cycles to time)

B,X (Add 0. 2 cycles to time)

A,B,X
.

(Add 0. 4 cycles to time)

Timing: 1. 4 cycles if unconditional

1. 6 cycles if conditioned on ~verflow

6-2

XOR

SECTION 7

LOOICAL/CONTROL INSTRUCTIONS

Exclusive OR with A I: ::o:o:: !~ ::4:: ! :: I
Timing: 3 cycles

XORS Exclusive OR with A short form ~},4 , f irL I I I~ I I I I I
Timing: 2 cycles

A bit by bit exclusive OR is performed on the contents of register A and the contents of

the effective memory location (operand). The result is placed in register A.

(A)i (e)i A.XOR (e)i
1

0 0 0
0 1 1
1 0 1
1 1 0

AND Logical AND with A

Timing: 3 cycles

ANDS Logical AND with A short form I ,~5, I~! I I I I~ I I I I I
Timing: 2 cycles

A bit by bit logical AND is performed on the contents of register A and the contents of

the effective memory location (operand). The result is placed in register A.

(A)i (e). A.AND (e)i
1 1

0 0 0
0 1 0
1 o· 0
1 1 1

SP-18-9 7-1

ORA Logical OR with A I : : ::: J :1:6: : ~ ~ I
Timing: 3 cycles

ORAS OR with A short form I . ~ 6, I 1:11. I I I ~ I I I I I
Timing: 2 cycles

A bit by bit logical OR is performed on the contents of register A and the contents of the

effective memory location (operand). The result is placed in register A.

HLT

0
0
1
1

Halt

[e]i
-

0
1
0
1

(A). OR [e].
l 1

0
1
1
1

I , , , , , ~~~~0,°, , , , , I
Computation is halted. When the RUN button is pressed after execution of a Halt

instruction computation starts with the next instruction is sequencP..

NOP No Operation I , , , , , ~~~~0?, , , , , I
Timing: 1. 6 cycles

Execution of the No Operation instruction affects only the program counter P.

OVF Set Overflow

n = O; Set overflow OFF

n = 1; Set overflow ON

Timing: 1. 2 cycles

TRAPPED INSTRUCTIONS: Instructions 0004 ln thru 00077n will be trapped if executed.

These instructions may be used for· simulation purposes under software control. Trap instructions

will cause the instruction in location 0003 to be executed. This instruction is ~sually a CALS

instruction. Indirect address chains of greater than 31 indirects, or system protect violations

~ (when,.memory and instruction protect feature is tmplemented) will generate a trap causing the

instruction in location 0002 to be executed.

SP-18-9
7-2

JMP

SECTION 8

JMP/CALL INSTRUCTIONS

JUMP Unconditionally

JMPS JUMP - Short form

Timing: 3 cycles

I .1.7. l~I . I I I ~I I I I I
Timing: 2 cycles

The next instruction executed is at the effective memory location.

CALL CALL Unconditionally I : : ::: : !~ ::7: : ! :: I
Timing: 3 cycles

CALS CALL - Short form l.~7• l~I. I I!~ I 11 I I
Timing: 2 cycles

The contents of the program counter P are incremented by one for the short form call

and placed in the effective memory location. The contents of the program counter P are incre­

mented by two for the long form call and placed in the effective memory location. The next

instruction executed is at the effective memory location plus one.

(If an interrupt occurs during a CALL or CALS instruction, one additional instruction

will be executed before the interrupt occurs. In the single step or variable speed modes the

instruction following will be executed before halting again.)

SP-18-9 8-1

SECTION 9

SKIP INSTRUCTIONS

9. 1 SKlP ON CONDITION INSTRUCTIONS

The Skip instructions have the form:

z is the operation code
CCC is the condition code

z Operation

4 Skip on any tested condition true

5 Skip on all tested conditions false

CCC Condition Tested

000 Unconditional

001 Sense Switch 1

002 Sense Switch 2

004 Sense Switch 3

010 Sense Switch 4

020 Overflow Flag

040 Register A Positive

100 Register A Zero

200 Register B Zero

400 Register X Zero

NOTE

The skip instruction should always be followed by
a single word instruction.

SKT Skip on any conditions true ~~ I .4• I . I 2PS I I I
Timing: 1 cycle

If any of the tested conditions is true skip one word, otherwise execute next sequential

instruction.

SKF Skip on all conditions false I .0•
0
, I ,5, I , If~~ I I I

Timing: 1 cycle

If all of the tested conditions are false, skip one word, otherwise execute next sequential

instruction.

SP-18-9 9-1

The most common combinations of the CCC Field have been given mnemonic names as

shown by the next 21 instructions.

..
SSl Skip if Sense Switch 1 set I 1~01 I 141 I 1 I I ~011 1 I I I --

Timing: 1 cycle

SNS! Skip if Sense Switch 1 not set l,~0• L5
• L, 1~0,11 1 , I --

Timing: 1 cycle

I, ~0, I ,4, L 1 1 ~0.2, , 1 I SS2 Skip if Sense Switch 2 set -
Timing: 1 cycle

SNS2 Skip ii Sense Switch 2 not set I 1 ~01 I 151 I 1 1 1 ~0?, 1 1 I
Timing: 1 cycle

SS3 Skip if Sense Switch 3 set I 1~01 I 141 I 1 I 1~014 1 I J
Timing: 1 cycle

SNS3 Skip if Sense Switch 3 not set I 1°1°1 I 151 I 1 I .~0•4 1 I I I
Timing: 1 cycle

f , ~0• I ,4, I , , 1~ 11°1 1- 1 I SS4 Skip if Sense Switch 4 set --
Timing: 1 cycle

SNS4 Skip if Sense Switch 4 not set
- L~0, 1.5• I,, 1~ 1•0, 1 1 I

Timing: 1 cycle

SOF . Skip if overflow flag set f ,~0, I ~. I 1 1 1 ~2•0• , • I
Timing: 1 cycle

SNOF Skip if overflow flag not set l.~01 L5
1 Ii, 1~21°1 1 1 I

..
Timing: 1 cycle

f,~~ 1.
4

1 I 1 I·, ~~01 I I I SAZ Skip if (A) = 0 --
Timing: 1 cycle

- I .~01 I 151 I , , . ~~o, 1 • I SANZ Skip if (A) -I 0

Timing: 1 cycle

SP-18-9 9-2

SAP Skip if (A) > 0 I .~0, 1.4, I , .. ~~~ , , , I --
Timing: 1 cycle

SANP Skip if (A} ~ 0 f ,
0
,0• I,~ I, .. ~~~,,, I .

Timing: 1 cycle

SAN Skip if (A) < 0 I .~0• I , ~ I , , , ~~~ , , , I --
Timing: 1 cycle

SANN -- Skip if (A) > 0 I .tJ.0• I ,~ I , , , ~~~ , , , I
Timing: 1 cycle

I .~~ I .~ I , I I~~~ I I I I SBZ Skip if (B) = 0 --
Timing: 1 cycle

SBNZ Skip if (B) f 0 l.~0, I ,~ I , , , ~~~ , , ,_I

Timing: 1 cycle

SXZ Skip if (X) = 0 I .~0, I.~ I, , .~~~, , , I
Timing: 1 cycle

SXNZ Skip if (X) I 0 I .~0, I.~ I ... ~~q;,, I --
Timing: 1 cycle

I , ~~ I , ~ I , I I ~~q I I I I SKIP Skip unconditionally --
Timing: 1 cycle

9. 2 COMPARE AND SKIP INSTRUCTIONS

CAS

SP-18-9

Compare with A register and skip I : : ::: : ! ~: :: : : ! ~I
If (A) < [e] execute next (short form) instruction

Timing: 3 cycles

If (A) = [e] skip next (short form) instruction

Timing: 3 cycles

If (A) > [e f skip next two (short form) instructions

Timing: 3 cycles

9-3

CBS

cxs

Compare with B register and skip

If {B) < (e] Execute next (short form) instruction

Timing: 3 cycles

If (B) = [e] skip next (short form) instruction

Timing: 3 cycles

If (B) > [e] skip next two (short form) instruction

Timing: 3 cycles

Compare with X and skip

If (X) < [e] execute next (short form) instruction

Timing: 3 cycles

If (X) = [e] skip next (short form) instruction

Timing: 3 cycles

If (X) > [e] skip next two (short form) instructions

Timing: 3 cycles

9. 3 MODIFY AND SKIP INSTRUCTION

IXS Increment X and Skip if Zero I. ,9~6, I I, I I ~l I I I I
Timing: 1. 4 cycles

The contents of register X are incremented by n (000
8

to 777
8

) and replaced. U the

result is not zero, the next instruction in sequence is executed. U the result is zero, the next

instruction in sequence (should be a short form instruction) is skipped. The overflow is not

affected.

DXS Decrement X and Skip if Zero I, I ?~3• I I, I I?. I I I I
Timing: 1. 4 cycles

The contents of register X are decremented by the complement of n (000
8

to 777
8

) and

r.eplaced. If the result is not zero, the next instruction is executed. If the result is zero, the

next instruction in sequence (should be- a short foFm instruction) is skipped. The overflow is not

affected.

SP-18-9 9-4

DRS

SP-18-9

Decrement memory and Sldp if Zero

[e] - 1 --. [e]; then

If [e] I 0 execute next {short form) instruction

If [e] = 0 skip next {short form) instruction

I : : ::: : ~ :
1

:: : ! :: I
Timing: 4 cycles

9-5

SECTION 10

SHIFT INSTRUCTIONS

.
10. 1 DIRECT SHIFT INSTRUCTION FORMAT

s specifies the kind of shift

n specifies the number of bit positions shifted (O - 31)

10. 2 INDEXED SHIFT INSTRUCTION FORMAT

MJo, I 7, I ~ .+, , TJ. ••• I

The right nine bits of the index register are added to the right nine bits of the instruction.

The sum of this addition determines the effective value of s and n.

10. 3 INSTRUCTION SHIFT TYPES

s Shift Type

000 Arithmetic shift left of A
. 040 Logical shift left of A

100 Arithmetic shift right of A
140 Logical shift right of A
200 Arithmetic shift left of B
24.0 Logical shift left of B
300 Arithmetic shift right of B
340 Logical shift right of B
400 Arithmetic shift left of A, B
440 -···- ~·-Logical shift left of A, B
500 Arithmetic shift right of A, B
540 Logical shift right of A, B
600 Logical rotate left of A'
640 Logical rotate left of B
7.0.0 I Logical rotate left of A, B

10. 4 SYMBOLIC SHIFT INSTRUCTIONS

The following descriptions specify the symbolic names accepted by the Assembler for the

above types of shift. The variable field contains the value for n and may optionally be followed by

an X within parentheses (indexed shift).

Examples:

LSLA 6

LSLA 6(X)

SP~18-9 10-1

LSLA Logical shift lefLof A

Timing: 1+. 2 cycles

• The contents of register A are shifted left n bit positions, where 0 ::::_ n ~ 37
8

• Zeros are

shifted into the right of A. Bits shifted out of the sign bit of A set or reset the overflow flag.

0

LSLB Logical shift left of B

Timing: 1+. 2n cycles

The contents of register Bare shifted left n bit positions, where 0 ~ n ~ 37
8

• Zeros are

shifted into the least significant bits of B. Bits shifted out of the sign bit of B set or reset the

overflow flag.

LSLD Logical shift left double I . ~~;I I I , (,4~~~. I I
Timing: 1+. 4n cycles

The contents of registers A and Bare shifted n bit positions, where 0 ~ n ~ 37 8. The

sign bit of the B register is shifted into the right of the A register. Zeros are shifted into the

right of the B register. Bits shifted out of the sign position of A set or reset the overflow flag.

~--~ ---ii __ A~H~ B llo!ll-,.--o

LSRA Logical shift right of A

Timing: 1+. 2N cycles

The contents of register A are shifted right n bit positions, where 0 ::::_ n ~ 37
8

. Zeros

are shifted into the sign bit of A and bits shifted out of the right of the A register set or reset the

overflow flag.

0 -----~..__ __ A _ ___.H OF I

SP-18-9 10-2

LSRB Logical shift right of B

Timing: 1+. 2n cycles

The contents of register B are shifted right n bit positions, where 0 ~ n ~ 37 8• Zeros are

shifted into the sign bit of B and bits shifted out of the right of the B register set of reset the

overflow flag.

0 -----~.__ __ A _ ___,H OF I

LSRD Logical shift right double

Timing: 1+. 4n cycles

The contents of registers A and B are shifted right n bit positions where 0 ~ n ~ 37 8.

The rightmost bit of A is shifted into the sign bit of B. Zeros are shifted into the sign bit of A.

Bits shifted out of the rightmost bit of B set or reset the overflow flag.

0 --~ __ A _ ____..i--I ---a..a .. __ I __ B ___,--I --•I OF I

LRLA Logical rotate left of A

Timing: 1+. 2n cycles

The contents of register A are rotated left n bit positions, where 0 :S n ~ 37
8

• The sign

bit of A is shifted into the right-most bit of the A register. The last bit shifted into the right-most

bit of A sets or resets the overflow flag.

OF

LRLB Logical rotate left of B

Timing: 1+. 2n

The contents of register B. are rotate~ left n bit positions, where 0 ~ n ~ 37 8. The sign

bit of B is shifted into the right-most bit of B. The last bit shifted into the rightmost bit of B sets

or resets the overflow flag.

* OF

SP-18-9 10-3

LRLD Logical rotate liif double

·Timing: 1+. 6n cycles

• The contents of registers A and B are rotated left n bit positions, where 0 ~ n :S 37 8• The

sign bit of B is shifted into the right most bit of A and the sign bit of A is shifted into the rightmost

bit of B. The last bit shifted into the rightmost bit of B sets or resets the overflow flag.

y A H B f:J I JF I

ASLA Arithmetic shift left of A

Timing: 1+ • 4n cycles

The contents of register A are shifted left n bit positions, where 0 ~ n ~ 37
8

• Zeros are

shifted into the rightmost bit of A. The overflow flag is set and remains set if significant bits are

~ost, otherwise it is reset. The sign bit is unaltered.

I ov r----l __ aj __ A_--~ -o

·ASLB Arithmetic shift left of B

Timing: 1+ . 4n cycles

The contents of register Bare shifted left n bit positions, where 0 :Sn~ 37 8• Zeros are

shifted into the rightmost bits of B. The overflow flag is set and remains set if significant bits

are lost. The sign bit is unaltered.

I ov "4----1 sl ___ B~--~--o

ASLD Arithmetic shift left double (, ~f I I f , (P~t~ I I I
Timing: 1+. 6n cycles

The contents of registers A and B are· shifted left n bit positions, whe.re 0 ~ n ~ 37 8• The

bit next to the sign bit in B is shifted into the right of A and zeros are shifted into the right of B.

-... The overflow flag is set and remains set if the significant bits are lost, otherwise it is reset.

The sign bit of the A register is unaltered and the sign bit of the B register is set to zero.

SP-18-9 10-4

ASRA Arithmetic shift right of A

Timing: 1+. 2N cycles

The contents of register A are shifted right n bit positions, where 0 ~ n ~ 37 8. The

sign bit of A is copied into the bit to the right of the sign. The overflow flag is reset.

cJG111A·1·•·1·11I

ASRB Arithmetic shift right of B

Timing: 1+. 2n cycles

The contents of register Bare shifted right n bit positions, where 0 ~ n ~ 37 8. The sign

bit of B is copied into the bit to the right of the sign bit. The overflow flag is reset.

0si ~ ... ,,,,I
ASRD Arithmetic shift right double I. ~P,1, I I, ~P~t?, I I

Timing: 1+. 4n cycles

The contents of registers A and B are shifted right n bit positions, where 0 :Sn :S 37 8•

The sign bits of A and B remain unchanged. The sign bit of A is copied into the bit to the right

of the sign bit, and bits shifted from the right of A go into the bit to the right of the sign bit in B.

The overflow flag is reset.

d&' 111A11 I 11,, ri~----~__,f 11111¥1111111 I

SP-18-9 10-5

SECTION 11

INPUT/OUTPUT INSTRUCTIONS

Input and output instructions have format

111 p. 1~ , r, . 1? 1 or
1

1! :: ! : : !~: ! : ;: : : I
z specifies the operation

r specifies whether register A, register B, register X, memory or an immediate
instruction is involved.

d is the device address

a is the address or operand if there is one. The address may be direct, indexed, indirect,
or indirect post-indexed, depending on the r field.

EXCA External control from A ~I ? I I~ I ~I I I , 9 I I I I
Timing: 1 cycle

A 16-bit command word is sent to device d from register A.

EXCB External control from B ~I?, 1°, , §, , 19, , , , I
Timing: 1 cycle

A 16-bit command word is sent to device d from register B.

EXCX External control from X µj 9, 1°. , p, , I, ,d, , , I
Timing: 1 cycle

-A 16-bit command word is sent to device d from register X.

•

SP-18-9

EXCM External control from memory t ! : : !0: : ~~: ! : : : : : I
Timing: 2 cycles

A 16-bit command word is sent to device d from the effective memory location.

EXCI External control immediate

Timing: 2 cycles

The 16-bit command word v is sent to device d.

.11-1

SENA Sense status to A 111 p I , , I 11, I I , ? I I I I

Timing: 1 cycle

The status bits for device d are placed in register A.

SENB Sense status to B

Timing: 1 cycle

The status bits for device d are place in register B.

SENX Sense status to X ~I p I , , I §, I I , ? I I J
Timing: 1 cycle

The status bits for device d are placed in register X.

I

t! : : ! : : ~a: ! : : : : : I I
SENM Sense status to memory

Timing: 2 cycles I
The status bits for device dare placed in the effective memory location. --1

I~ :0: ! W.~* ! :d: : : : I SENS Sense status and skip if zero

Timing: 2 cycles

If any of the masked status bits for device dis "l" the next instruction in sequence is

executed. If not, the next instruction in sequence is skipped. The next instruction must be short

form. (See Section 13 for Mask Descriptions.)

OTA Output from A jaj ,0, I ~I If , I I fl, I I I
Timing: 1 cycle

The contents of register A are transferred to device d.

OTB Output from B I~ P. I ~I I ~ I I , ~I I I I
Timing: 1 cycle

The contents of register B are transferred to de1iice d.

SP-18-9 11-2

OTX Output from X ~I e, I ~ , I~ I I , 9 I , ~
Timing: 1 cycle

The contents of register X are transferred to device d.

~

OTM Output from memory ~! : : ! : : !:a: ! : : : : : I
Timing: 2 cycles

The contents of the effective memory location are transferred to device d.

OTI Output Immediate I~ :0: ! :+!:: ! : :: : : I
Timing: 2 cycles

The operand vis transferred to device d.

CIA Clear and input to· A l~.01 I~' ll, I 1~111 I
Timing: 1 cycle

Register B is cleared and a data word from device dis transferred into register A.

I rn '°' 1 ~I 1 ~ I 1 , p I , • 1
CIB Clear and input to B

Timing: 1 cycle

Register B is cleared and a data word from device dis tranferred into register B.

CIX Clear and input to X rnP1 I~, I~ 1I1 ?, , , I
Timing: 1 CY.Cle

Registe~ X is cleared and a data word from device d is transferred into register X.

I~ :: ! : : ! : ~ ! : : : : : I CIM ~lear and inplt to memory
..

Timing: 2 cycles

A data word from cievice d replaces the contents of the effective memory location. . .
/

SP-18-9

INA Input and OR with A ltl p, I ? I I~ I I . ,q I I I
Timing: 1 _cycle

A logic OR is performed on the contents of register X and a data word from device d.

The result is placed in register X.

INB Input and OR with B 111 p I I ,5, : ,2, I , p, I I I
Timing: 1 cycle

A logic OR is performed on the contents of register B and a data word from device d.

The result is placed in register B.

INX Input and OR with X

Timing: 1 cycle

A logical OR is performed on the contents of register X and a data word from device d.

The result is placed in register X.

ARM Arm Interrupt Iii p I I 1, I q I lq I p, I I
Timing: 1 cycle

The Arm Interrrupt Flag is set and the Overflow Flag is reset. If an interrupt is waiting

to be processed, one additional instruction following the ARM instruction is processed before the

interrupt takes place.

ARMF Arm Interrupt and Set Overflow 11 I P , 11 , I q , lo, , §, , I
Timing: 1 cycle

Same c.s ARM except the Overflow Flag is set on.

DRM Disarm Interrupt ~I p I I 1 , I q I '°' I ~I I I
Timing: 1 cycle

The Arm Interrupt Flag is reset causing interrupts to be held back by the computer until

interrupts are allowed again. The Overflow Flag is r-eset.
~

DRMF Disarm Interrupt and Set Overflow

Timing: 1 cycle

Same as DRM escept the Overflow Flag is set on.

SP-18-9 11-4

SECTION 12

INPUT/OUTPUT PROCEDURES

12. 1 GENERAL PROCEDURES .
There are five general procedures for performing I/O functions with the SPIRAS-65

computer.

12. 1. 1 Programmed Input/Output

In this procedure, a sense instruction is used to check the status of the device (busy: etc.),

if necessary an External Control instruction is used to start a motion (start card reader, etc.)

and an Input or Output instruction to input or output a data byte or word. A combination of Sense and

Input or Output instructions must be executed for each character or word to be processed in this

manner.

12. ·i. 2 Interrupted Input/Output

Rather than waiting for the device to be non-busy or periodically checking I/O status as

was done in Procedure 1, Interrupts can be armed and requested such that after the Input or Output

of a data byte or word is started, no additional checking is required. When the specified I/O action

is completed, the c0mputer program is interrupted, an interrupt handling program initiates the

next I/O action: and the interrupted program is resumed.

12. 1. 3 Direct Controlled Input/Output and Interrupt

The procedure requires that two control words be set up for the I/0 device being used

(DMC words). The first word specifies the location of the first data word transfer. The second

word specifies the location of the last word to be processed. After arming interrupts, enabling

the DMC and initiating the first input/ output action, the computer will automatically fetch or store

additional data from the specified memory area until all data is processed. At that time., an.

interrupt occurs informing the computer that the data block has been processed.

The table of DMC word pairs are in fixed locations starting at twice the Device Number.

For the standard devices, these locations are:

Teletype (Device 2) --------~0004, 0005
Card Reader (Device 3)---·--0006, 0007
Paper Tape (Device 4)-------0010, 0011
Line Printer (Device 5)------0012, 0013

If useful, the value of the two words can be modified during the I/0 process, the:reby extending or

changing the memory area being processed.

SP-18-9 12-1

12. 1. 4 Direct Controlled Input/Output Without Interrupt

The only difference between this and the previous procedure is that interrupts are not

requested.

12. 1. 4. l' DMA Option

The previous procedures are all possible using a basic SPIRAS-65 Computer. As an

additional option, any device can also be equipped with two DMA registers. These registers allow

an operation identical to paragraph 11. 1. 3 except that no memory accesses are required between

data words thereby increasing the potential I/O transfer rate.

12. 1. 5 Input/Output Interrupts

Location 00000 points to the location of an interrupt table. This table consists of four

words for each device number and each four word group is used as follows:

(1)

(2)

(3)

(4)

ARM

JMP

RETURN

JMPS ALPHA

A Location of first word in r"
this 4-word group is 4*d
+ (contents of 0000).

The computer will set word 1 to an ARM or an ARMF instruction depending if the over­

flow was set at the time of the interrupt. Word 3 is set to the next location to be executed after

interrupt processing is completed. The (short form) instruction in word 4 is then executed.

When an I/O device generates an interrupt signal and interrupts are armed;

1)

2)

3)

4)

Interrupts will be disarmed.

The program being executed is interrupted after the current instruction is
complete. (CALL, CALS, and ARM instructions will execute one additional
instruction before interrupting.)

The current value of the P register is saved in word 3 of the interrupt table
4-word group for the interrupting device, and an ARM or ARMF instruction
is constructed and placed into word 1 of the 4-word group.

The instruction in word 4 of the 4-word group is executed.

The instruction executed is probably a Jump to an interrupt handling program which will

save any necessary registers,, do whatever processit}g is necessary to service the interrupt,

reset the registers (which also resets the register comparison status flags) and jump to word 1

SP-18-9
12-2

of the Interrupt Table 4-word group. Thar,- in turn, will ARM the interrupts (as well as reset the

original overflow status) and do a long jump back to the proper place in the interrupted program.

The location of the 4-word groups depend on the contents of word 0000 (=BASE) and the

interrupting device number. For the standard I/0 devices, the following addresses are applicable.

4-WORD GROUP LOC.

Teletype (Device 2) BASE+OOlO

Card Reader (Device 3) BASE+0014

Paper Tape (Device 4) BASE+0020

Line Printer (Device 5) BASE+0024

12. 2 RESERVED LOCATIONS IN CORE

0000

0001

0002

0003

0004

0005

0006

0007

0010

0011

0012

0013

0014

0015

0176

0177 ~

Location of Interrupt Table

(Used by Floating Point Logic)

Executed when indirect address trap occurs.

Executed by 00041X-00077X Instructions

/'Device 02 DMC (Teletype)'

f Device 03 DMC (Card Reader))

{Device 04 DMC (Paper Tape)'-

f Device 05 DMC (Line Printer) J

I" Device 06 DMC'

.

~~ ~Device on DMC -

-- ~
Those words in the above table for wi1ich a DMC Device is not attached to t_he system, may

be used for any other purposes. Most standard software packages (Assembler, Fortran, etc.)

utilize the memory area starting at location 0074. (I°u addition, the memory area between 0000

and 0073 is often used for bootstrap loading purposes.)

SP-18-9 12-3

SECTION 13

I/O STATUS AND CONTROL WORD FORMATS

13.1 CONSOLE INPUT/OUTPUT

SP-18-9

SENS
SENA
SENB
SENX
SENM

EXCA
EXCB
EXCX
EXCM
EXCI

OTA
OTB
OTX
OTM
OTI

r1 O,a

Lj
0,v

I I I I I

.
·]--v----'+ Ar LRReemote SSl set I I L'==_: mote SS2 set

~Remote SS3 set
Enter Key Not Pressed Remote SS4 set

Position of Rc~ister Display Switch

000 = Memory Data Position
001 = P Register Position
010 = X Register Position
011 = B Register Position
100 = A R.ef!ister Position
101 = Instruction 1 Position
110 = Instruction 2 Position
111 = Memory Address Position

I~
AA

..... I ___ Display in Decimal

Display in Octal (not needed unless display was previously set to decimal}.

L)
O,v

(Octal· Display)

(Decimal Display)
0-+ 9 only

Information is displayed only if the computer is in run mode.

INA
INB
INX
CIA
CIB
CIX
CIM

0
0
0
0
0
0
O,a

I I I I· I I I I I I I I I I

Information currently in the "NIXIE" display
buffer is input as 16 bits of data.

13-1

13. 2 TELETYPE INPUT/OUTPUT

SP-18-9

SENS
SENA
SENB
SENX
SENM

EXCA
EXCB
EXCX
EXCM
EXCI

OTA
OTB
OTX
OTM
OTI

INA
INB
INX

CIA
·cm
CIX
CIM

r1 2,a

LI 2,v

LI 2,v

Ll

---SENSE---

11™1™

t i jL___f __ Output Busy
_ - DMC Complete

Input Not Ready
'----------------Input Mode

---CONTROL---

1111~1™

LJt ~!Fe:!;'~ DMC)
-------Input Mode

(Interrupt & DMC)
Disable DMC and Interrupt

'-------Enable DMC
.....__-----Enable Interrupt

...__------DMC Complete

---OUTPUT---

---INPUT---

UNCHANGED

00000000

13-2

13. 2. 1 Teletype Programming Notes

The ASR 33/35 is operated in the full duplex mode on the SPIRAS-65 computer. Full

duplex means that it is possible to simultaneously and asynchronously input (keyboard or reader)

and output (page printer and punch). The teletypes used on the SPIRAS-65 feature an even parity

coding. All SPIRAS-65 system software forces the eight bit to be a logical "1" inside the computer.

Either code may be output with equal effectiveness.

The teletypes respond to the tape control characters as follows:

ASCII Code

021,221

022,222

023,223

024,224

FUNCTION

X-ON (Reader On)

TAPE (Punch On}

X-OFF (Reader Off)

!fAPE (Punch Off}

The punch-on code should always be followed by a RUBOUT (ASCII 377) or an equivalent

amount of tim~ before attempting to punch data or a synchronization problem will develop.

There is no method of inhibiting printing on the SPIRAS-65. teletypes. When it is desired

to punch without printing; the 4 x 4 format, which derives its name from the fact that each sixteen

bit computer word is represented by four characters, should be used.

4 BIT CODE PUNCH CHARACTER

0000 00010.000

0001 00000.001

0010 00000. 010

0011 00000. 011

0100 00000.100

0101 00010.101

0110 00010.110

0111 00010.111

1000 00011. 000

1001 00011. 000

1010 00011~ 010

1011 00011. 011

1100 00011. 100

1101 00011. 101

1110 00011. 110

1111 00011. 111

SP-18-9 13-3

When turning the reader on and ofLunder program control it is necessary to allow two

extra characters on the tape for every off-on cycle because the teletype does not stop "on character."

13. 3 CARD READER INPUT

SP-18-9

SENS
SENA
SENB
SENX
SENM

EXCA
EXCB
EXCX
EXCM
EXCI

INA
INB
INX

CIA
CIB
CIX
CIM

3,m
3
3
3
3,a

3
3
3
3,a
3,v

3
3
3

3
3
3
3,a

.

---SENSE---

I I ~v01 ~ 81 I I
•• ~t Not Operational

Overflow

DMC Complete·
Busy

---Data Not Ready
'-----Input Mode

---CONTROL---

I I I I I

I

·1b . t Read One Card
Disable DMC and Interrupt
Enable DMC
Enable Interrupt

.___ ______ DMC Complete

---lliPUT---

--

UNCHANGED
I I I I I I I I I ,----,

I Each card I

•CARD 1 .. , , I I
L_ ; I column is I
r"1 converted I

0 . . l
1 1 I from EBCDIC .

(029) Card I
I code to a 6
I bit code. I

l?_.__o o-'--o-L-o_..._o o__._o__.__o o_.. j__.___,__~L__.i__.I _ - - _ .1
_I I I 1 1 I I 1·1 . I I I __ .

13-4

13. 4 HIGH SPEED PAPER-TAPE INPUT/OUTPUT

SP-18-9

SENS
.SENA
SENB
SENX
SENM

EXCA
EXCB
EXCX
EXCM
EXCI

OTA
OTB
OTX
OTM
OTI

INA
INB
INX

CIA
CIB
CIX
CIM

r1 4,a

LI 4,v

LI 4,v

: }

LI

---SENSE---

1111~111~

I ~
t L_ Punch Not Available L_ (or busy)

Punch Interrupt
Punch Busy
DMC Complete

Reader Error
Reader Interrupt
Reader Not Ready
Input Mode

---CONTROL---

1111~1rg1111

r U~::~=~~f L Reader Rewind On
Reader Rewind Off

Set Output Mode
Set Input Mode

Disable DMC and Interrupt
--Enable DMC

...__ __ Enable Interrupt
---- Set DMC Complete

-

---OUTPUT---

---INPUT---

UNCHANGED

00000000

13-5

_SECTION 14

SPIRAS-65 ASSEMBLER PROGRAM

14. 1 PROGRAM TYPES

The Assembler Program is available in two versions; the primary version which requires

a minimum of 8192 words of memory, and a basic version which operates within a 4096 word

memory computer. The basic version is a compatible subset of the primary version without any

macro or concordance capabilities.

Both versions of the Assembly Program operate under the SPIRAS-65 Operating System.

This operating system is tailored to the configuration of the computer and performs all the standard

I/O functions required by the Assembler Program, Fortran Compiler, etc.

Except where specified, the assembler characteristics described in the rest of this

section apply to both the basic and primary versions of the Assembler.

14.2 ASSEMBLY FORMAT

For documentation purposes, a source statement normally positions its fields as follows:

Label Field-----------Column 1
Command Field -------Column 8
Argument Field -------Column 16
Comments Field ------Column 32

The assembler, however, actually allows source statements to be "free-form" using the

following logical rules:

SP-18--9

• A Label Field (if present) must start in Column 1.

• The Command Field starts with the first non-blank character following the Label Field.

• The Argument Field starts with the first non...;blank character following the Command
Field. If more than 10 blanks follow the Command Field, the Argument Field is
presumed vacant.

• The Argument Field may consist of several arguments separated by a comma, a
single space, or both. A double blank terminates the Argument Field.

• Any characters following the Argument Field (or following Column 72) are ignored
except for listing, and can be used for comments. Teletype listings ·are terminated
at Col. 50.

• An asterisk in Column 1 will cause the rest of that line to be considered as comments.

14-1

14. 3 SYMBOLIC LABELS

Labels consists of a sequence of characters in which the first character is a letter, and

the remaining characters are either letters, digits, dollar sign or the under line character. (It

is sugges!ed that the dollar sign ($)be reserved for use by system programs in order to avoid

conflicts with system variables and subroutines.) Labels may be any length, but only the first

8 characters are retained by the assembler requiring that all labels be unique within the first 8

characters.

Examples

LAB7
VOLTMETER
X10031
F$31
MAX SIZE

14. 4 COMMANDS

The Command Field consists of any of the instruction mnemonics described in earlier

sections of the manual, or pseudo-op mnemonics described later in this section.

When applicable, the mnemonic may be followed by the letter I if an immediate address

is being specified, or by the asterisk character (*) if an indirect address is being specified.

U the Command Field consists of a constant, then this field is processed as if it were

the argument Field of a DATA pseudo-operation.

Examples

LDA
LDAI
LDA*
CALS
PTR
DATA
0102511

14. 5 ARGUMENTS

Arguments are made up of symbolic label operands (as described in paragraph 14. 3),

constant operands, or combinations of operands separated by operators. Tables 14-1 and 14-2

describe the various constant formats and the allowable operator types.

SP-18-9 14-2

* I

-TABLE 14-1

ALLOWABLE CONSTANT TYPES

. CONSTANT TYPE EXAMPLES

Octal (Leading Zero) ~177777,~3, -¢77

Integer (no decimal point) 123,32768,-50,+9

ASCII (2 char. max, stored right
'X', '12', '¢' justified with a leading zero byte 'AB',

if neeessary)

Single Precision Floating Point* 12. 3, -6E5,. 1, +9. , 123. 4E-5

Double Precision Floating Point* 12. 3D¢, -6D5,. 1D¢, +12. 3D-5

Single Precision Fixed Point* 12. 3B5, -6B+15,. lB-2, +1. 5B2

12.3E2Bl0,-6E-10B-20

Double Precision Fixed Point* 12. 3BB5, -6BB+15,. lBB-2

12. 3D~BB10, -6E-10BB-20

Not allowed by the basic version of the Assembly Program.

TABLE 14-2

ALLOWABLE OPERATORS

ARITHMETIC (overflow ignored)
+,-,*,/

LOGICAL (bit-by-bit logical operation)
• AND. , • OR. , . XOR.

RELATIONAL (result is 1 if true, ~if false)
.EQ. ,.NE. ,.GT.,. LT.,. LE. ,.GE.

SHIFT (logical shift)
. LS.,. RS.

NOTE: The basic version of the Assembler
Program allows only the operators
+and-.

SP-18-9 14-3

Operators are executed accordiii{(to a priority value attached to each operator and

according to the depth of parenthese nesting (operators within parentheses will be executed before

any operator outside of parentheses). The priority value attached to each operator is shown in

Table .14-3.

TABLE 14-3

OPERATOR PRIORITY VALUES

OPERATORS PRIORITY VALUE

*,/ 15+B

+,- 12+B

• EQ. , . NE. , . GT. 9+B

.GE.,. LT. ,.LE. 9+B

.AND. 7+B

.OR. 6+B

.XOR. 5+B

.RS.,. LS. 3+B

(B=B+20

) B=B-20

(Terminators) 0

Operands are typed as values (or absolute addresses), as multiple-word data, as relative

addresses, or as external addresses. Certain combinations of operators and operands are im­

proper. Table 14-4 indicates which combinations are proper (Y=Yes, N=No).

14. 6 ADDRESS MODIFIERS

Memory referencing instructions may wish to specify an address modifier (such as an

index tag) in addition to the symbolic address. This is done by following the address with a

register letter enclosed in parentheses. For example:

SP-18-9

LDA
LDA
LDA
LDA*
LDA*
LDA*

ALPHA(X)
A+B+C(A)
ALPHA-l(P)
ALPHA
~12372(X)
ALPHA(Y)

Relative to X Register
Relative to A Register
Relative to P Register
Indirect Address
Pre-Indexed Indirect Address
Post-Indexed Indirect Address

14-4

TABLE 14-4

ALLOWABLE OPERATOR/OPERAND COMBINATIONS

. A2
A ..

Al+A2 ABS. REL. EXT.

ABS. y y y

Al REL. y N N

EXT. y N N

A1-A2

ABS. y N N

Al REL. y Y* N

EXT. y N Y**

Al RELATIONAL A2 I ABS.
y N N

Al REL. N y N

EXT. N N Y**

Al OTHERS A2

[
ABS. y N N

Al REL. N N N
\

EXT. N N N

..

* Result is an absolute value.
** Operands must be in same external group. ..

SP-18-9 14-5

LDAS*
LDAS
LDAS

ALPHA
ALPHA+5 (X)
ALPHA (P)

Short-Form Indirect Address
Short-Form Relative to X Register
Short-Form Relative to (Advanced) P Register

Symbolic addresses with no modifiers are processed as follows:

1) If the address contains a reference to an externally defined variable, the instruction
is passed on to the loader for resolution.

2) Otherwise, the instruction is made Direct (if possible).

3) Otherwise, the instruction is made relative-to-P if Pis within range of the address.

4) Those short-form instructions that contain an address that is neither in range of P
(±:_51110) or Direct (0-1023

10
) will be passed on to the loader which will generate

an indirect link to the address, modifying the instruction accordingly. (Indirect links
are processed by the loader identically the same as literals.)

ORG ¢17¢¢
GAMMA LDAS ALPHA =LDAS *-+¢1¢~(P)

ORG ¢2¢¢¢
ALPHA LDAS ¢5¢¢ =LDAS ¢5¢¢

LDAS ALPHA =LDAS *-l(P)
LDAS BETA =LDAS *+4(P)
LDAS GAMMA =LDAS ¢17¢¢
LDAS BETA (P) =LDAS *+2(P)
LDAS ALPHA (P) =LDAS *-5(P)

BETA LDAS ¢5¢¢ (P) (out of range)
LDAS GAMMA (P) =LDAS *-7l(P)
LDA KAPPA =LDA ¢5¢¢¢

KAPPA
LDA KAPPA(P) =LDA *+¢2766(P)
EQU ¢5¢¢¢

14. 7 LITERALS

A literal is any single or double word data value appearing in an argument field and is preceeded

by an equals sign. The SPIRAS-65 Loader Program constructs a literal pool such that all identi­

cal literals within the group of programs being loaded will share the same location. Because the

literal table starts at location 0100, literals may be referred to by either long or short instructions.

The assembly program, therefore, does not construct its own literal table but only passes on the

literal value to the Loader. Literals may, however, be constructed within the .program by using

the LIT pseudo-op (see paragraph 14. 8. 15).

SP-18-9

Examples:

LDAS
ADDS
ANDS
DIV
DLD
FADD
DADD

=3
='X'

=~~~~8 }
=1. 234
=9876E5
=0. 0032BB-6

Not in basic version
of the assembler.

14-6

14. 8 PSEUDO-OPS

14. 8.1 ORG

This pseudo-op specifies the location of the next data item generated by the assembler,

and also determines the mode of this data (absolute or relative).

The variable field must contain one argument (or expression)., If this argument specifies

an absolute value, that value becomes the storage location for the next word generated, and the

mode of all symbolic labels defined after this line (until another ORG statement is processed) are

defined as absolute addresses. If the argument specifies a relative value, that relative location

is used for subsequent data storage, and all symbolic labels defined after this line are defined as

relative addresses.

Several ORG statements may be present in one program. If none is present, the

assembler will presume an ORG to relative location zero has been specified.

Example:

ORG
ORG
ORG
ORG

14. 8. 2 BOOT

*
~3¢¢¢
*-5
START+2¢¢

Relative Zero Origin
Absolute Origin
Relative or Absolute (depending on previous mode)
Relative Origin (if START is relative)

If this pseudo-op is present, it specifies the binary output of the assembler is to be in

absolute bootstrap format. The ENT, EXT and COMN pseudo-ops cannot be present within a

program containing a BOOT pseudo-op. The ORG pseudo-op may be used but only with absolute

addresses. The assembler will presume the LIT pseudo-op has been specified.

14. 8. 3 EXT

The argument field of this pseudo-op contains the names of all symbolic labels whose

location will be externally defined (library subroutines, etc.). Several EXT pseudo-ops may be

used in one program if convenient.

SP-18-9

Examples:

EXT
EXT

SIN, COS, SQRT, EXP
S$IO

14-7

14. 8.4 COMN

The COMN pseudo-op creates storage areas which are to be shared by several sub­

programs. The symbol appearing in the location field specifies the COMMON region (a BLANK

location field specifies BLANK common}. The variable field contains the list of variables (and

their sizes) that are to be located within these common regions (assigned in the order of appearance

within the variable field). Because of loader limitations, labels used in a COMN statement are

limited to 6 characters.

14. 8. 5 ENT

COMN
STUDNT COMN

A1(5), A2(1)
NAME(30),AVERAG(1)

If any of the symbolic labels defined within the program being assembled is to be referenced

symbolically by some other program or subroutine, these labels must be specified in the argument

field of the ENT pseudo-op. The ENT pseudo-op must preceed all other lines within the program

except for comment lines, listing control lines or EXT pseudo-op lines.

Because of Loader symbol table format restrictions, only 1 to 6 character labels may be

specified in the argument field of an ENT pseudo-op.

Examples:

ENT POINT!, ENTRY2
ENT ALT 2

14. 8. 6 EQU

The EQU pseudo-op declares the symbolic label appearing in the label field is to be

assigned the same value as the variable or expression appearing in its argument field. Any

symbolic names appearing in the argument field must be previously defined.

Examples:

14. 8. 7 SET

TEST2 EQU
ENTRY EQU
SIZE EQU

ALPHA
*-1
TEND-TSTART

This pseudo-op is the same as EQU except the name in the label field can be redefined

without generating error messages. This capabili.ty is frequently required within MACROs.

SP-18-9 14-8

14. 8. 8 BSS

A block of words is reserved by this pseudo-op starting at the current program location

with a size equal to the number of words specified by the value in the argument field.

.. If a label is present, it is assigned to the first word of the reserved block. If any sym­

bolic names are present in the argument field, they must be previously defined and the argument

field must result in an absolute value.

Examples:

TABLE

LIST

14. 8. 9 PTR

BSS
BSS
BSS

25
SIZE
MAX+l

This pseudo-op is used to define an argument pointer (often used when calling subroutines).

Its argument field can be any mode of variable or expression whose value does not exceed 32757

(1'5 bits). In addition, the indirect bit (sign'bit) will be set if an asterisk follows the PTR.

Examples:

ARGl

ARG2

14. 8.10 DATA

PTR
PTR*
PTR
PTR*
PTR
PTR

ALPHA
ARG3+2

*
1000
SQRT
0

Any of the constant types shown in Table 14-1 may be specified in the argument field of a

DATA pseudo-op. As many constants as desired may be specified in the argument field separated

by commas. If a label is present in the label field it is assigned to the location of the first word

of the first constant.

Character strings within the argument field of a DAT A pseudo-op may contain one or two

characters and are stored right jusfified (with a leading zero byte if necessary).

SP-18-9

Examples:

CONVRSN

NOTE

DATA
DATA
DATA
DATA
DATA

.0,1,2,7;4,9,2
12. 3, 'AB', • lD,0'
'EN' 'DX' n..173 ' ,P
'A'
.0

14-9

14. 8. 11 TEXT (Not in The Basic Assembler-)

The TEXT pseudo-op is used to specify a data block .consisting of ASCII coded 8-bit

characters· packed 2 per word (with space character added if necessary to fill the last word).

The variable field consists of a string of characters enclosed within quote characters.

Certain characters (such as quote, carriage return, colon, etc.) cannot normally be included

within the text string. Such characters can be specified by giving their ASCII code as 3 octal

digits preceeded by a colon (:). These four characters will be replaced by the specified 8 bits of

data within the data block.

Examples:

TEXT
DATE TEXT

'PART:2475 NAME:272'
'SEPT 23, 1970'

14. 8. 12 VFD (Not in Basic Assembler)

The Variable Field of the VFD pseudo-op (Variable-Field-Data) consist of pairs of

arguments. The first argument of the pair is a value that specifies the number of bits (sub-field

width) that the second argument should occupy. The second argument is then positioned properly

and combined with the values of other argument pairs specified in this same variable field. The

resulting data word is formed from left to right with trailing zeros if necessary. An error message

results from a field-width total greater than 16, or from any sub-field value that will not fit within

its specified sub-field width.

Examples:

VFD 3(1}, 10(0123), 1(1) (=021234)
VFD 3(A), 10(X-BASE+2), l(FLAG), 2(MODE)
VFD Fl(X), F2(Y), F3(Z)

14. 8. 13 IF, ENDF (Not in Basic Assembler)

The variable field of the IF pseudo-op is evaluated and if it is zero (False), all source

statements following this pseudo-op, up to the corresponding ENDF pseudo-op, are treated as

comments. IF and ENDF must be used in pairs and these pairs may be nested within each other

to any depth. See the example in the next paragraph •

. l4. 8. 14• MAC, ENDM (Not in Basic Assembler)

The label field of the MAC pseudo-op specifies the name of the macro about to be defined.

The statements that follow the MAC pseudo-op up to the corresponding ENDM pseudo-op define the

"Macro Prototype."

SP-19-8 14-10

Example:

Calls to a Macro would consist of the Macro name in the operator field, and the

arguments_ to the Macro within the variable field separated by commas if necessary.

Example:

I::::::~~~:
14. 8. 15 LIT

Cause literals within a relocatable program to be placed within the program just prior

to the "END" statement. If no LIT pseudo-op is encountered, literals will be transmitted to the

loader for assignment in its literal pool which permits sharing of common literals by all sub­

routines loaded.

14. 8. 16 END

The END pseudo-op must be the last statement within the program being assembled.

If a label is specified in the argument field, it represents the starting location of the program.

SP-18-9 14..:11

14. 9 LISTING CONTROL

The following pseudo-ops control various listing options that may be set or reset as

desired throughout the program. (LIST, LIF and NLMC are initially presumed.)

LIST ---­
NLST ---­
LIF
NLIF ---­
LMAC---­
NLMC----

Generate symbolic listing
List only those lines containing errors
List all card images that are not processed with an IF /ENDF area
Do not list any lines within an IF /ENDF area that are not assembled
List all lines generated by a macro call
Do not list any macro generated lines

(The above pseudo-ops are not in the basic assembler.)

The assembler automatically skips over paper seams and titles and numbers each page.

A quote character (') in Column 1 causes the current page to be ejected and the rest of the line is

printed on the top of this new page and all following pages.

A double quote character (")in Column 1 causes the current page to be ejected. (The

page header is not modified.)

Example:

DEBUG PROGRAM (VERSION 3)--------8 June 69

4. 10 ERROR MESSAGES

If an error is detected by the assembly program one or more of the following error codes

will be added to the error columns {left 4 columns) of the listing.

SP-18-9

CODE MEANING

A------- Incorrect address used.
B -------Incorrect combination of operands used in an expression.
C -------Incorrect character used. Any of the following conditions can cause this

error:
1. First character of statement incorrect.
2. Argument field of a register copy or shift instruction incorrect.
3. The M-Field of a memory reference instruction is incorrect.
4. An incorrect terminator.

D -------An EQU or SE.T pseudo instruction does not have a label field.
E -------The exponent used in a floating point number is too large.
I -------An I/0 error has occurred.
L -------Incorrect literal usage.
M-------Multiple symbolic definitions.
N -------The number used in this instructicn is too large.
0 -------The operation field is undefined.
P -------Parenthesis incorrectly used in an expression
S -------The scale factor used in a fixed point number is incorrect.
U -------Undefined symbol referenced.
V -------The second word of a valued I/O instruction is incorrect. .
$ -------This in an assembler fault. It indicates that the memory locations reserved

for the symbol table is full. The remainder of this assel)1bly· will be incorrect.

14-12

APPENDIX A

INSTRUCTION SUMMARY

A.1 INSTRUCTION BY MNEMONICS

Mnemonic Operation Code Function Section

ABD 00 0 23 m Add to B 5

ADD 00 0 04 m Add to A 5

ADDS 04 m aaa Add Short From 5

ADX 00 0 24 m Add to X 5

AND 00 0 15 m Logical AND with A 7

ANDS 15 m aaa Logical AND with A Short Form 7

ARM 10 4 002 Arm Interrupt, Set Overflow OFF 11

ARMF 10 4 003 Arm Interrupt, Set Overflow ON 11

ASLA 00 1 OOO+n Arithmetic Shift Left of A 10

.ASLB 00 1 200+n Arithmetic Shift Left of B 10

ASLD 00 1 400+n Arithmetic Shift Left Double 10

ASRA 00 1 lOO+n Arithmetic Shift Right of A 10

ASRB 00 1 300+n Arithmetic Shift Right of B 10

ASRD 00 1 500+n Arithmetic Shift Right Double 10

CAB 002 s 5 d Copy A to B and (s) to (d) 6

CABF 002 s 6 d Copy A to B and (s) to (d) if Overflow set 6

CAS 00 0 20 m Compare with A and Skip 9

CAX 002 s 6 d Copy A to X and (s) to (d) 6

CAXF 002 s 6 d Copy A to X and (s) to (d) if Overflow set 6

CALL 00 0 07 m Call Unconditionally 8

CALS 07 m aaa Call Short Form 8

CBS 00 0 21 m Compare with Band Skip 9

CIA 10 3 1 dd Clear and Input to A 11

cm 10 3 2 dd Clear and Input to B 11

CIM 10 3 r dd · Clear and Input to Memory 11

CIX 10 3 3 dd Clear and Input to X 11

CP 002 s 2 d Copy 6

CPC 002 s 4 d Copy and Complement 6

CPCF 002 s 4 d Copy and Complement if Overflow set 6

CPD 002 s 1 d Copy and Decrement 6

CPDF 002 s 1 d Copy and Decrement if Overflow set 6

SP-18-9 A-1

Mnemonic Operation Code Function Section

CPF 002 s 2 d Copy if Overflow Set 6

CPI 002 s 0 d Copy and Increment 6

CPIF 002 s 0 d Copy and Increment if Overflow set 6

CPN 002 s 3 d Copy and Negate 6

CPNF 002 s 3 d Copy and Negate if Overflow set 6

CXB 002 s 7 d Copy X to (B) and (s) to (d) 6

CXBF 002 s 7 d Copy X to (B) and {s) to {d) if Overflow set 6

cxs 000 22 m Compare with X and Skip 9

DRM 10 4 000 Disarm Interrupt, set Overflow off 11

DRMF 10 4 001 Disarm Interrupt, set Overflow on 11

DCR 00 0 25 m Decrement and Replace 5

DIV 00 0 27 m Divide 5

DADD 00 0 32 m Double Precision Add 5

DLD 00 0 30 m Double Precision Load 4

DRS 00 0 10 m Decrement, Replace, Skip if 0 10

DST 00 0 31 m Double Precision Store 4

DSUB 00 0 33 m Double Precision Subtract 5

DXS 00 3 nnn Decrement X and Skip if Zero 10

EXCA 10 0 1 dd External Control from A 11

EXCB 10 0 2 dd External Control from B 11

EXCI 10 0 0 dd External Control Immediate 11

EXCM 10 0 r dd External Control from Memory 11

EXCX 10 0 3 dd External Control from X 11

FADD 00 0 34 m. Floating Point Addition 5
FDIV 00 0 37 m Floating Point Division 5
FMUL 00 0 36 m Floating Point Multiply 5

FSUB 00 0 35 m Floating Point Subtract 5

HLT 00 0 000 Halt 7

INA 10 5 1 dd Input and Or with A 11
INB 10 5 2 dd Input and Or with B 11
INR 00 0 26 m Increment and Replace 5
INX. 10 5 3 dd Ingut and Or with X 11
IXS ~~ 6 nnn Increment X and Skip if Z.ero 9

JMP 00 0 17 m Jump Unconditionally 8

JMPS 17 m aaa Jump Unconditionally Short Form 8

LDA 00 0 11 m Load A 4

SP-18-9 A-2

Mnemonic Operation Code Function Section

LDAS 11 m aaa Load A Short Form 4

LDB 00 0 12 m Load B 4

LDBS 12 m aaa Load B Short Form 4

LDX . 00 0 13 m Load X

LDXS 13 m aaa LJoad X Short Form 't

LEA 00 0 41 m Load Effective Address into X 4

LRLA 00 1 600+n Logical Rotate Left of A 10

LRLB 00 1 640+n Logical Rotate Left of B 10

LRLD 00 1 700+n Logical Rotate Left Double 10

LSLA 00 1 040+n Logical Shift Left of A 10

LSLB 00 1 240+n Logical Shift Left of B 10

LSLD 00 1 440+n Logical Shift Left Double 10

LSRA 00 1 140+n Logical Shift Right of A 10

LSRB 00 1 340+n Logical Shift Right of B 10

LSRD 00 1 540+n Logical Shift Right Double 10

MUL 00 0 01 m Multiply 5

MULS 01 m aaa Multiply Short Form 5

NOP 00 2 000 No Operation 7

ORA 00 0 16 m Logical OR with A 7

ORAS 16 m aaa Logical OR with A Short Form 7

OTA 10 2 1 dd Output from A 11

OTB 10 2 2 dd Output from B 11

OTI 10 2 0 dd Output Immediate 11

OTM 10 2 r dd Output from Memory 11

OTX 10 2 3 dd Output from X 11

OVF 00 1 74 n Set Overflow 7

RGC 00 2 SSS Register Copy 6

SAN 00 5 140 Skip if A Negative 9

SANN 00 4 140 Skip if A Not Negative 9

SANP 00 5 040 Skip if A Not Positive 9

SANZ 00 5 100 Skip if A Not Zero 9

SAP· 00 4 040 Skip if A Positive 9

SAZ 00 4 100 Skip if A Zero 9

SBNZ 00 5 200 Skip if B Not Zero 9

SBZ 00 4 200 Skip if B Zero 9

SENA 10 1 1 dd Sense Status to A 11

SP-18-9 A-3

Mnemonic Operation Code Function Section

SENB 10 1 2 dd Sense Status to B 11

SENM 10 1 r dd Sense Status to Memory 11

SENS 10 1 0 dd Sense Masked Status a.nd Skip if Zero 9

SENX· 10 1 3 dd Sense Status to X 11

SKF 00 5 CCC Skip if Condition False 9

SKIP 00 5 000 Skip Unconditional 9

SKT 00 4 CCC Skip if Condition True 9

SNOF 00 5 020 Skip if Overflow Not Set 9

SNSl 00 5 001 Skip if Sense Switch 1 Not Set 9

SNS2 00 5 002 Skip if Sense Switch 2 Not Set 9

SNS3 00 5 004 Skip if Sense Switch 3 Not Set 9

SNS4 00 5 010 Skip if Sense Switch 4 Not Set 9

SOF 00 4 020 Skip if Overflow Set 9

SSl 00 4 001 Skip if Sense Switch 1 Set 9

SS2 00 4 002 Skip if Sense Switch 2 Set 9

SS3 00 4 004 Skip if Sense Switch 3 Set 9

SS4 00 4 010 Silp if Sense Switch 4 Set 9

STA 00 0 02 m Store A 4

STAS 02 m aaa Store A Short Form 4

STB 00 0 03 m Store B 4

STBS 03 m aaa Store B Short Form 4

STX 00 0 06 m Store X 4

STXS 06 m aaa Store X Short Form 4

SUB 00 0 05 m Subtract 5

SUBS 05 m aaa Subtract Short Form 5

SXNZ 00 5 400 Skip if X Not Zero 9

sxz 00 4 400 Skip if X Zero 9

XOR 00 0 14 m Exclusive OR with A 7

XORS 14 m aaa Exclusive OR with A ~hort Form 7

SP-18-9 A-4

A. 2 INSTRUCTIONS ORDERED BY OP-CODE NUMBER

00 0 000 HLT 00 1 OOO+n ASLA 00 4 140 SANN 10 2 0 dd OTI

00 0 01 m MUL 00 1 040+n LSLA 00 4 200 SBZ 10 2 1 dd OTA

00 0 02· m STA 00 1 lOO+n ASRA 00 4 400 sxz 10 2 2 dd OTB

00 0 03 m STB 00 1 140+n LSRA 00 5 CCC SKF 10 2 3 dd OTX

00 0 04 m ADD 00 1 200+n ASLB 00 5 000 SKIP 10 2 r dd OTM

00 0 05 m SUB 00 1 240+n LSLB 00 5 001 SNSl 10 3 1 dd CIA

00 0 06 m STX 00 1 300+n ASRB 00 5 002 SNS2 10 3 2 dd CIB

00 0 07 m CALL 00 1 340+n LSRB 00 5 004 SNS3 10 3 3 dd CIX

00 0 10 m DRS 00 1 400+n ASLD 00 5 010 SNS4 10 3 r dd CIM

00 0 11 m LDA 00 1 440+n LSLD 00 5 020 SNOF 10 4 000 DRM

00 0 12 m LDB 00 1 500+n ASRD 00 5 040 SANP 10 4 001 DRMF

00 0 13 m LDX 00 1 540+n LSRD 00 5 100 SANZ 10 4 002 ARM

00 0 14 m XOR 00 1 600+n LRLA 00 5 140 SAN 10 4 003 ARMF

00 0 15 m AND 00 1 640+n LRLB 00 5 200 SBNZ 10 5 1 dd INA

00 0 16 m ORA 00 1 700+n LRLD 00 5 400 SXNZ 10 5 2 dd INB

00 0 17 m JMP 00 1 740+n OVF 00 6 nnn IXS 10 5 3 dd INX

00 0 20 m CAS 00 2 000 NOP 00 7 xnn indexed 11 m aaa LDAS

00 0 21 m CBS 00 2 RGC shift 12 SSS m aaa LDBS

00 0 22 m cxs 00 2 sOd CPI 01 m aaa MULS 13 m aaa LDXS

00 0 23 m ADB 00 2 sld CPD 02 m aaa STAS 14 m aaa XORS

00 0 24 m ADX 00 2 s2d CP 03 m aaa STBS 15 m aaa ANDS

00 0 25 m DCR 00 2 s3d CPN 04 m aaa ADDS 16 m aaa ORAS

00 0 26 m INR 00 2 s4d CPC 05 m aaa SUBS 17 m aaa JMPS

00 0 27 m DIV 00 2 s5d CAB 06 m aaa STXS

00 0 30 m DLD 00 2 s6d CAX 07 m aaa CALS

00 0 31 .m DST 00 2 s7d CXB 10 0 0 dd EXCI

00 0 32 m DADD 00 3 nnn DXS 10 0 1 dd EXCA

00 0 33 m DSUB 00 4 CCC SKT 10 0 2 dd EXCB

00 0 34 m FADD 00 4 001 SSl 10 0 3 dd EXCX

00·0 35 m FSUB 00 4 002 SS2 10 0 r dd EXCM

00 0 36 m FMUL 00 4 004 SS3 10 1 0 dd SENS

00 0 37 m FDIV 00 4 010 SS4 10 1 1 dd SENA
-

00 0 40 m LEA 00 4 020 SOF 10 1 2 dd SENB

00 0 41

:l
00 4 040 SAP 10 1 3 dd SENX . . (trap) 00 4 100 SAZ 10 1 r dd SENM .

00 0 77

SP-18-9 A-5

APPENDIX B

TABLES AND CONSTANTS

8.1 TABLE OF POWERS OF TWO

2" n 2-n

1 0 1. 0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5
256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25
4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125
65 536 16 0.000 015 258 789 062 5

131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 l 0 l 562 5
8 388 608 23 0.000 000 119 209 289 550 7 81 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 84 7 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5

~ - ·--- --~---536 870 ·921 ··I 29 0.000 000 001 862 645 149 230 957 031 25
l 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 5
4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 3 21 826 934 814 453 125

17 179 86 9 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25
68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625

137 438 953 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

l 099 511 627 766 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062 5
2 199 023 255 552 41 0.000 000 000 000 454 747 350 886 ;464 118 957 519 531 25
4 398 046 5 ll 104 42 0.000 000 000 000 227 373 675 443 232 059 478 759 765 625
8 796 093 022 208 43 0.000 000 000 000 ll 3 686 837 721 616 029 739 379 882 812 5

17 592 186 044 416 44 0.000 000 000 000 .. 056 843 418 860 808 014 869 689 941 406 25
•c.35 184 372 088 832 45 0.000 000 000 000 028 421 709 430 404 007 434 844 970 703 125 -

SP-18-9 B-1

B.2 TABLE OF POWERS OF TEN IN OCTAL

. 10" n 10-n

l 0 l. 000 000 000 000 000 000 00
12 l 0.063 146 314 631 463 146 3.1

144 2 0.005 075 341 217 270 243 66
l 750 3 0.000 406 111 564 570 651 77

23 420 4 0.000 032 155 613 530 704 15

303 240 5 0.000 002 476 132 610 706 64
3 641 100 6 0.000 000 206 157 364 055 37

46 113 200 7 0.000 000 015 327 745 152 75
575 360 400 8 0.000 000 001 257 143 561 06

7 346 545 000 9 0.000 000 000 104 560 276 41

112 402 762 000 10 0.000 000 000 006 676 337 66
1 351 035 564 000 11 0.000 000 000 000 537 657 77

16 432 4 51 210 000 12 0.000 000 000 000 043 136 32
221 411 634 520 000 13 0.000 000 000 000 003 411 35

2 657 142 036 440 000 14 0.000 000 000 000 000 264 11

34 327 724 461 500 000 15 0.000 000 000 000 000 022 01
434 157 115 760 200 000 16 0.000 000 000 000 000 001 63

5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14
67 405 553 164 731 000 000 18 0.000 000 000 000 000 000 01

8.3 USEFUL MATHMATICAL CONSTANTS IN OCTAL

TT== 3.11037 552421 e = 2.55760 521305 Y= 0.44742 147707
·t -1 y = ff= 0.24276 301556 e 0.27426 530661 ln 0.43127 233602

/TT= 1.61337 611067 {e= 1.51411 230704 1092 y = 0.62573 030645

ln 71; 1.11206 404435 log 10 e= 0.33626 754251 ff= 1.32404 746320

1092 7T = 1.51544 163223 log 2 e = 1.34252 166245 ln 2 = 0.54271 027760

{10 = 3.12305 407267 log 2 1 O= 3.24464 741136 1 n 1 O = 2.23273 067355

SP-18-9 B-2

APPENDIX C

SP IRAS-65 CODES

TELE- INTER- TELE- INTER-
.. TYPE NAL 029 CARO TYPE NAL 029 CARD

ASCII ASCII CARD READER ASCII ASCII CARD READER
CHAR. CODE CODE CODE CODE CHAR. CODE CODE CODE CODE

0 060 260 0 00 w 327 327 0-6 26
1 261 261 1 01 x 330 330 0-7 27
2 262 262 2 02 v 131 331 0-8 30
3 063 263 3 03 z 132 332 0-9 31
4 264 264 4 04 I 041 241 01-8-2 52 .
5 065 265 5 05 II 042 242 8-7 17
6 066 266 6 06 # 243 243 8-3 13
7 267 267 7 07 $ 044 244 11-8-3 53

8 270 270 8 10 % 245 245 0-8-4 34
9 071 271 9 11 & 246 246 12 60
A 101 301 12-1 61 I 047 247 8-5 1 5

B 102 302 12-2 62 (050 250 n 2-8-5 75

c 303 303 12-3 63) 251 251 11-8-5 55
D 104 304 12-4 64 * 252 252 nl-8-4 54
E 305 305 12-5 65 + 053 253 12-8-6 76
F 306 306 12-6 66 s 254 254 Q-8-3 33
G 107 307 12-7 67 - 055 255 11 40
H 110 310 12-8 70 . 056 256 12-8-3 73
I 311 311 12-9 71 I 257 257 0-1 21
J 312 312 11-1 41 : 072 272 8-2 12

K 113 313 11-2 42 ; 273 273 11-8-6 56
L 314 314 11-3 43 < 074 274 12 -8-4 74
M 115 31 5. 11-4 44 = 275 275 8-6 16
N 116 316 11-5 45 > 276 276 0-8-6 36
0 317 317 11-6 46 ? 077 277 0-8-7 37
p 120 320 11-7 47 @ 300 300 8-4 14
Q 321 321 11-8 50 [333 333 12-8-2 72
R 322 322 11-9 51 ' 134 334 0-8-2 32
s 123 323 0-2 22] 335 335 11-8-7 57
T 324 324 0-3 23 . '1' 336 336 12-8-7 77

u 125 325 0-4 24 -E- 137 337 0-8-5 35
v 126 326 0-5 25 (sp) 240 240 (blank) 20

-18-9 C-1

APPENDIX C (Continued}

SPIRAS-65 CODES

TELETYPE INTERNAL
CHARACTER ASCII CODE ASCII CODE

SOM 201 . 201

EOA 202 202
EOM(EOF) 003 203
EOT(STOP 204 204
WRU 005 205
RU 006 206
BELL 207 207
FE 210 210
HORZ 011 211
TAB

LINE 012 212
FEED

VERT 213 213
TAB

FORM 014 214
CAR. 215 215
RET.

so 216 216
SI 017 217
oco 220 220
X-ON 021 221
P-ON 022 222
X-OFF 223 223
P-OFF 024 224
ERROR 225 225
SYNC 227 227
SPACE 240 240
RUB-OUT 377 377 . .

SP-18-9 C-2

0001 PROGRAM TU LIST CAkOS OR (SPACE) CC~FRESSED TAPES

000076

CCOl '
CC02 *
0003 *
CCC4 *
CC05 *
CCC6 *
CC01 *
OCC8 *

PROGRAM TC LIST CARDS OR (SPACE) COMPRESSED TAPES

*••••••••*****************************
* * * C ~ R D I T A P E L l S T E R *
• *
·~······******************************

CC09 *-~---THIS PROGR~~ USES THE OPf.RATING SYSTEM TO READ A RECORD FROM
OClO * ONE DEVICE tCARD READER, MAG TAPE, PAPER TAPE, ETC) ANO OUTPUT
CCll * IT TO A SECC~C CEVICE {LINE PRINTER, ASR PRINTER, ETC). ThE
CC12 * CHOICE CF OEVI~ES IS MADE WITHIN THE OPERATING SYSTEM. SENSE
CC13 * SWITCH 4 ~ILL CAUSE A PAUSE (FOK OPERATOR AtfION) BE~O~E-TNPUT
0Cl4 * Of THE ~EXT RECCRO. PAGES WILL OE NUMBERED.
CC15 *
CCl6 *
CC17
CCl8
cc1q *
cc2r. 10

BOOT
OKG

f ~U

ASSEM8LE [N BOOTSTRAP FORMAT
05CCO

076 tNTRY POINT TO OPERATING SYSTEM

fll
"'d
I

OJ
I
co

_.0002 PROGRAM TO LI ST CARDS OR (SPACE) CCP'PRESSEO TAPES

CC21 ,,
CC22 *-----OPEN INPUT ANC CUT PUT DEVICES

005000: 074076 CC23 LI ST CALS• IC OPEN INPUT DEVICE
005001: COlCCl CC24 DA TA 001001 - . - .

005002: 074C76 OC25 CALS• IC OPEN OUTPUT OEVICE
0050C3: 001044 CC26 DATA 001044 ··-W - ~-·• -· •- ·•- - -- ·-·-··-·······-·
005004: 003774 OC27 DXS 4
005005: 066C13 CC28 STXS ft'AXCNT SET MAX L lNES PER PAGE
0050C6: 002121 OC29 CP Q,A
005007: 026070 OC30 STAS PAGENC RESET PAGE NUMBER
005010: l76C23 CC31 JMPS PAGE OUTPUT A PAGE EJECT

CC32 *
CC33 *----START OF CCPY tcoi> ... - -· --·-· - -· ---·-- ------- .. --- ,._

005011: 00501C CC34 l I ST4 SNS4 ... -- -- - - . ·-·-------·-------
005012: cooocc 0035 HLT WAIT FOK OPERATOR ACT lON
005013: 000130 0036 LDXI BUFFEP LOCATION OF BU Ff~~ - ·- - -·-- . ~ -
005014: 005114
005015: 074C76 CC37 CALS* IG INPUT l RECORD --·-·- ·-"·•--· . - -· ... - ·-· ...

00'5016: OOOlCl CC38 DATA 000101 KEYWORD
- ..

005017: 00012C CC39 DATA 80 SIZE OF BUFFER
005020: C041CC CC40 SAZ
00.50?1: l76CC6 OC4l JMP S LISTS INPUT STATUS ERROR
005022: 00013C OC42 LDXI BUFFEP
005023: 005114
005024: 074C76 OC43 CALS• IC our PUT 1 RECORD
005025: 010344 CC44 DATA 01C344
005026: 00012C CC45 DATA 80
005027: CC41CC CC46 SAZ
005030: cooocc OC47 LI ST8 HLT STATUS ERROR PRESENT

0048 * CC49 *------CHECK IF P~GE EJECT RECU l RED
005031: OOOlCl ('050 DRS CCl~T DECREMENT LlNt: COUNT
005032: 005C77
005033: 17 7755 CC51 JMPS LI ST4 NOT AT BOTTOM Of- PAGE
005034: 000261 CC~2 PAGE tNR PAGEi\(
00503!"J: OC51CC
005036: 136C44 OC53 lOXS =4 CONVE:RT PAGE NO. TO ASCII CHARACTERS
005037: l26C4C CC54 LOBS PAGEH

t1
I

!.':)

000-3 PROGRAM TC LIST CARDS OR (SPACE) CC~PRESSED TAPES

005040: 002121 CC55 PAGE2 CP 0 .A
005041: 000270 OC56 DIV I 10
005042: OOOC12
005043: 046C4C CC57 ADDS =0260
005044: OOOC26 CC5A STA BUF+lO(X) STORE INTO PAGE HFADER. BUFFER
005045: ooscn
005046: 003'777 CC59 oxs l
005047: l 77 71C CC60 JMPS PAGE2
00505C: 00013C CC61 LOXI BUF HEADER BUFFER LOCATION
005051: 005C6C
005052: 074C16 OC62 CALS* IC EJECT PAGE ANO PR INT PAGE NUMBER
005053: 020444 CC63 DATA 020444
005054: COOC17 CC64 DATA 15
005055: ll6t23 OC65 LOAS f'AAXC~T RES ET LINE COUNT
005056: C7.6C2C CC66 STAS CCLl\T
005057: 17 7731 CC67 JMPS Lt ST4 PROCESS NEXT RECORD

CC68 *
00506C: 00024C CC69 BUF DATA • . '. ' '. ••• ' ' ' ' ' . '
005061: 00024C
005062: 00024C
005063: 00024C
005064: 00024C
005065: 000240
005066: 00032C CC7C DATA 'F','A','G','E'•' •
005067: 0003Cl
00507C: C003C7
005071: 000305
005072: C0024C

CC71 BSS 4
CC72 * 005077: oooooc CC73 COUNT DATA 0 CURRENT LINE COUNT

005100: oooccc C\.74 PAGE NO DATA 0 CURRENT PAGt NUMBER
005101: cooccc CC7'=> MJ\XCN 1 DATA 0 MAXIMUM l INE COUNT/PAGE

OC76 LI TIU S ASS 10 ROOM FOR ANY NH:UEU LI TE::RALS
CC77 BLFFER BSS 80 COPY 1-\UFFER
CC78 * CC7S fWG LITRLS CAUSE LIH-RAL5 TO HE OUTPUT BEFURE BUFFER

005102: OC8C E~D

t:I
I
~

LITERAL TABLE
005103: OOOOC4
0051C4: OOOUC

SYMROL LOC CARDS THAT
BUF 005060 ccse CC61
RUFFER 00 5114 CC3t: CC42
COUNT 005077 ccsc 0(66

REFEREt-fCE SY~Bct

IO COOC76 CC23 CC25 0 C31 C043 C062
LIST4 co 5011 OC51 CC67
LI ST8 CC5030 CC41
LIST cc moo
l ITRL S 005102 CC7S
MAXCNT 005101 CC2E CC65
PAGFNO 005100 CC30 CC52 OC54
PAGf 2 UC5040 cc cc
PAGE 005034 CC31

CARDS WIT~ ERRORS: NONF

t:1
I

c.n

.. 0001 TYPf OCTAL kORO SUBROUTINE (20 FEB 70)

CCOl '
CC02 *
0003 *
OC04 *
CCC5 *
CC06 *
CC07 *

TYPE CCTAL ftCPD SUBROUTINf (20 FEB 70_) __ _

********••••••••*************************
* * * T V f E C C T A l W O R D *

· OC08 *
0009 *
CClO *

*
*
*

CCll *~----CALLING SECUE~CES (
OC12 * {TYPE 6 OCTAL CHARS.>
CC13 * LOBS VALUE
CC14 * CALS TYPCCT
CC15 * (RETURNJ
CC16 *
CC17 *
CC18
0Cl9
C020 *
CC21 *
0022

ENT
EXT

ORG

TYPCCT,TYPIOC
TYPCHR

* -~-- ' -- .

*
*

(XJ REGISTER IS NOT MODIFIED)
(TYPE 6 OCTAL CHARS. WITHIN
LOBS VALUE
CALS TYP IOC
(RETURN)

PARENS)

C'll
"d
I 0002 TYPE OCTAL kO~O St;BROUTINE 120 FEB 70)
~
co
I
co

CC23 "
CC24 *------TYPE CCTAL k(~Q

000000: 000171 CC25 JMP 0 EXIT
000001: cocccc

OOOCCl CC26 T\'POC T EQU *-1 FNT RY LOCATION
000002: 060015 CC27 STXS TVPCC6+l SAVE INDEX
OOOOC3: 130C33 CC28 lDXS =-6
COOOC4: 002121 C C2 '1 CP

0 ·"' 000005: 001441 CC3C LSLD 1
000006: 040C32 CC31 TVPOC4 ADDS =0260
ooooc1: C7COCC OC32 CALS TYFCHR TYPE CHARACTER
000010: 002121 OC33 CP

0 ·" 000011: 001443 CC34 LSLO 3
000012: 0060Cl CC35 IXS l
000013: 170CC6 CC36 JMPS TYFCC4
000014: 00013C CC37 T'fPOC6 LDXI 0 RESET INDEX
000015: cooocc
000016: 170COC CC38 JMPS TYFCCT-1 RETURN

CC39 * OC40 *-----TYPE OCTAL kCf<O WITHIN PARENTHESES
000017: 000171 0041 JMP 0 EX IT
00002c: cocccc

OOOC2C OC42 TVPIOC EQU *-1 ENT RY l OCAT ION
000021: OOCllC OC43 LUAI 0124240 <SP)(()
000022: T2424C
000023: 07CCCC CC44 CALS TY PCHR TYPE 2 CHARACTERS
0000?4: 070CC1 C045 CALS T\' FCC T TYPE OCTAL VALUE
000025: OOOllC CC46 LOAI 0120251 ())(SP}

000026: 120251
000027: 0700CC OC4 7 CALS TYFCHP TY PE 2 CHARACTERS
000030: 170017 CC48 JMPS TYHCC-l RETU~N

CC49 *
000031: OC50 ENO

LJTERAL TABLE
000032: 00026(
000033: 177712

SYMBOL LOC CAPOS THAT REFERE~CE SY fol Bet
TYPCHR l 17711 OC32 OC44 CC4 7
TYP IOC CCCC?C CC4e
TYPOCT COCCCl CC38 CC45

t1 TYPOC4 OOOOC6 CC3e
I TYPOC6 000014 CC27 ·

O'>

tll
~
I

""" co
I .

c.o

0001 TYPE CHARACT~k SUDRGUTINE (20 FEB 70)

000000: 000171
000001: oooccc

OOOCCl
000002: 101CC2
OOOOC3: COOlCC
000004: 170002
000005: 1021C2
000006: 00514C
coooo 1: 1 7CCCC
OOOOlC: 00115C
000011: l700C2

000012:

CCOl ' TYPE CHAR.dCTER SUARCUTIM~ (20 FEB 70,
OC02 *
CC03 * •********~•******************************
C004 * • *
CC05 * * l Y F E C H A R A C T E R *
CC06 * * *
CC07 * * S ~ e R 0 U T l N E *
OCOB * * *
CC09 * **********•******************************
OClO *
CCll *-----CAllif\G SECUEt\CE ((8) AND (X) NOT MODIFIED)
CC12 * LDAS CHA~ (A)= OOOOOOOOClClClCl OR C2C2C2C2ClClC1Cl
CC13 * CALS TYPCHR
CC14 * (KETURN)
OC15 *
CC16 *
CC17 ENT TYPCHR
CClH *-
CC19 OKG *
CC20 *
OC21 •-~---TYPE l CR 2 CHARACTERS
CC22 JMP I 0 EXIT

CC2.3 TYPCHk EQU
CC24 SENS

0("25
CC26
CC2 7
CC28
CC29
OC30
CC31 *
CC32

Jf-IPS
OTA
SAN
JMPS
LSRA
JMPS

END

*-1
2,0100

*-2
2

TYS:CH~-1

8
TYPCHR+l

ENTRY POINT

WftlT IF PRINTER BUSY
TYPE ASCII CHARACTER
SKIP IF 2 CHARACTERS TO OUTPUT
RETURN

TYPE SECOND CHAHACTER

SYMROL LOC CAHOS THAT REFERENCE SY~OCl
TYPf.HR 000001 OC28 CC3C

CAROS WITH ERRU~S: f'JCNE

f CONTROL/POSITION I
Register Function

A
B
x
p
INSTRUCTION 1
INSTRUCTION 2
MEMORY ADDRESS

MEMORY DATA

Mode Speed

RUN

SINGLE STEP

VARIABLE

Keyboard

CLEAR

~P-18-9

NUMERALS
ENTER

POWER

INIT

HALT

RUN

SSl - SS4

APPENDIX E

CONSOLE CONTROLS

I DESCRIPTION I
Display on NIXIE Tubes the function indicated

A register
B register
X register
P register
MEMORY (P)
MEMORY (P+l)
Address at which "MEMORY DATA"

is located
Location determined by "MEMORY

ADDRESS"

Processor Runs at full speed when
RUN is pressed

Processor executes a single instruc­
tion when RUN is pressed

Processor RUNS at a speed determined
by potentiometer setting when RUN
is pressed

Clears NIXIE display and gives con­
trol to operator.

Enters numeral depressed into display
Contents of the display replace the

contents of the register indicated by
the REGISTER FUNCTION switch.

Alternate action switch controls primary
power.

Momentary switch resets computer
control logic. Computer is then -in
the HALT mode.

Momentary switch halts the processor
after the instruction currently in
process is completed.

Momentary switch causes the pro­
cessor to run in the mode determined
by the MODE-SPEED switch

Alternate action switches that can be
tested by skip on sense switch instruc-
tions. ,

E-1

Key Lock

NORMAL

LOCK

BOOTSTRAP

. 1 INDICATOR I

OVERFLOW

ARM INTERRUPTS

_§P-18-9

The usual operating position where all
controls are functional

The ENTER, HALT, INIT, and RUN
switches are disabled.

Upon pressing the INIT switch the
bootstrap program is entered .

I DESCRIPTION I
Indicates that the OVERFLOW

flag is set.

Indicates that the interrupts are armed·
(can interrupt program).

E-2

REGISTER FUNCTION

A

INSTRUCTION I

INSTRUCTION 2

MEMORY ADDRESS

LOCK MEMORY DATA

NORMAL-w-BOOTSTRAP

MODE SPEED

. SINGLE@RUN

SPIRAS-65

11 I 5 4 3 7 I OVERFLOW

. ARM INTERRUPTS

Or-~----o

SPIRAS SYSTEMS, INC.
332 Second Avenue
Waltham, Mass •

.
SUBJECT: PHASE ,0 SPIRAS-65

DATE: 24 October 1969

FROM: E. H. Sonn

TO: All SPIRAS-65 Users

EHS-69-Ml45

The User's Manual, dated October, 1969, is written for the Phase I
machines which will be released before the end of 1969. The user
should be aware of the OP Code and other operational differences
between the two machines.

o~ CODES

MNEMONIC PHASE ,0 CODE PHASE I CODE

LOA ',0)5,0lm ,0,0',0llm

LDAS g1maaa llmaaa

LDB f!~~,0'2m f1~,012m

LOBS 02maaa 12maaa

LOX gf5,0'f53m g,0')513m

LDXS '3maaa 13maaa

STA ~~,0'llm f1,0,0',0'2m

STAS llmaaa ~2maaa

STB ,0,0'~12m f1.0f1.0'3m
STBS 12maaa ,0'3maaa

STX ~)5)513m ,0)5,0,0'6m

STXS 13maaa ,0'6maaa
·-

MUL ~~~~6m ¢~~,0'lm

MULS ~6maaa ¢lmaaa

IXS lf56nnn .. ¢f16nnn
DXS - l,07nnn ,0')53nnn_

INA l,035dd lfl5ldd

INB l,036dd 1_0'52dd

INX l,037dd" l,0'53dd

Phase ~ SPIRAS-65 -2- 24 October 1969

ADDRESSING MODES

The.long form Addressing Modes have been changed as shown:

MODE CODE PHASE JJ PHASE I

~ Immediate Inunediate

1 Direct Direct

2 Indirect Indirect

3 Indirect Indirect
Pre-indexed with x Pre-indexed with x

4 Indexed with A Indexed with A

5 Indexed with B Indirect
Post-indexed with x

6 Indexed with x Indexed with x
7 Rel.ative to p Relative to P

INPUT-OUTPUT INSTRUCTION FORMAT

The Input-Output Memory Reference format has been changed. In the
Phase I format, the second word of the instruction is a sixteen
bit address whereas the Phase ~ format has an indirect bit, an
index bit and a fourteen bit address. The Addressing Modes are now
indicated in the first word of the instruction. The new format per­
mits the use of sixteen bit addresses, but limits indexing on
indirect to pre-indexing or post-indexing whereas- previously, index­
ing could be accomplished on any level of indirect addressing. See
Page 3-2 of the Manual for a more complete description.

INDIRECT ADDRESS FORMAT

The Indirect Address formats have been changed to eliminate the
index bit.

PHASES PHASE I

I * .·x.. ·I -
BOOTSTRAP OPERATION

The Phase S Bootstrap_requires. that the "Run" button be pressed
between reading the secondary ·B'ootstrap and the main body of the
tape. This Bootstrap cannot be used for relocatable tapes. A
Bootstrap Simulator Program has been provided for reading relocat­
able tapes from the teletype. Another Bootstrap Simulator

Phase ~ SPIRAS-65 -3- 24 October 1969

has been provided to users of the high-speed paper tape reader.
This simulator is necessary to read either absolute or relocatable
tapes.

INSTRUCTION SUMMARY

For your convenience, a copy of the Instruction Summary from the
previous edition of the manual is attached.

E. H. Sonn

EHS:HL

Attachment

[APPENDIX 1: INSTRUCTION SUMMARY I
1.. INSTRUCTIONS BY .MNEMONICS

Hnemonic Operation Code Function Page

ABD 00 0 23 m Add to B Cl

ADD 00 0 04 rn Add to A Cl

ADDS 04 m aaa Add Short Form Cl

l1-DX 00 0 24 m Add to X Cl

.Z\ND 00 0 15 m Logical AND with A El

Aims 15 m aaa Logical Aim with A Short Form El

ARM 10 4 002 Arm Interrupt, Set Overflow
OFF J4

ARMF 10 4 003 Arm Interi;:-upt, Set Overflow On J4

i\SLA 00 1 OOO+n Arithmetic Shift Left of A H4

ASLB 00 1 200+n Arithmetic Shift Left of B II4

ASLD 00 l 400+n Arithmetic Shift Left Double H4

ASRA 00 1 lOO+n Arithmetic Shift Right of A HS

ASRB 00 1 300+n Arithmetic Shift Right of B HS

ASRD 00 1 SOO+n Arithmetic Shift Right Double HS

CAB 002 s 5 d Copy A to B and (s) to (d) D2

CABF 002 s 6 d Copy A to B and (s) to (d)
if Overflow set D2

CAS 00 0 20 m Compare with A and Skip G4

CAX 002 s 6 d Copy A to x and (s) to (d) 02

CAXF 002 s 6 d Copy A to x and (s) to (d)
if Overflow set 02

CALL 00 0 07 m Call Unconditionally Fl

CALS 07 m aaa Call Short Form Fl
....

CBS 00 0 21 m Compare with B and Sk.ip G4

CIA 10 3 1 dd Clear and Input to A J3

CIB 10 3 2 dd Clear and Input to B J3

CII-1 10 3 4·dd Clear and Input to Memory J4

CI;{ 10 3 3 dd Clear and Input to x J3

CP 002 s 2 d Copy D2

CPC 002 s 4 d Copy and Complement D2.

CPCF 002 s 4 d Copy and Cornpleu1ent if OV set D2--

Xl

Mnemonic

CPD

CPDF

CPF

CPI

CPIF

CPN

CPl\F

CXB

CXBF

cxs
DRM

DRMF

DCR

DIV

DADD

DLIJ

DRS

DST

DSUB

DXS

EXCA

EXCB

EXCI

EXCM

EXCX

FSUB

HLT

INA

INB

INR

INX

IXS

JMP

JMPS

LDA

LDAS

Operation Code------

002 s l d

002 s l d

002 s 2 d

002 s 0 d

002 s 0 d

002 s 3 d

002 s 3 d

002 s 7 d

002 s 7 d

000 22 i

10 4 000

10 4 001

00 0 25 m

00 0 27 m

00 0 32 m

00 0 30 m

00 0 10 m

00 0 31 m

00 0 33 m

lo 7 nnn

10 0 1 dd

10 0 2 dd

10 0 0 dd

10 0 4 dd

10 0 3 dd

00 0 35 m

00 0 000

10 3 5 dd

10 3· 6 dd

00 0 26 i

10 3 7 dd

10 6 nnn

00 0 17 m

17 m aaa

00 O 01 m

01 m aaa

Function Page

Copy and Decrement D2

Copy and Decrement if OV set D2

Copy if Overflow Set D2

Copy and Increment D2

Copy and Increment if OV set D2

:opy and Negate D2

Copy and Negate if OV set D2

Copy X - to (B) and (s) to (d) D2

Copy X to (B) and (s) to (d)
if Overflow set D2

Compare with X and Skip G4

Disarm Interrupt, set OV off JS

Disarm Interrupt, set OV on JS

Decrement and Replace C4

Divide C2

Double Precision Add C2

Double Precision Load B2

Decrement, Replace, Skip if ~ GS

Double Precision Store B3

Double Precision Subtract C3

Decrement X and Skip if Zero GS

External Control from A Jl

External Control from B Jl

External Control Immediate J2

External Control from Memory Jl

External Control from X Jl

Floating Point Subtract C3

Halt E2

Input and Or with A J4

Input and Or with B J4

Increment and Replace C4

Input and Or with X J4

lncrement X and Skip if Zero GS

Jump Unconditionally Fl

Jump Unconditionally Short Form Fl

Load A Bl

Load A Short Form Bl

X2

Mnemonic

LOB

LDBS

LOX

LDXS

LEA

LRLA

LRLB

LRLD

LSLA

LSLB

LSLD

LSRA

LSRB

LSRD

MUL

MULS

NOP

ORA

ORAS

OTA

OTB

OTI

OTX

OVF

RGC

SAN

SANN

SANP

SANZ

SAP

SAZ

SBNZ

SBZ

SENA

Operation Code

00 0 02 m

02 m aaa

00 0 03 m

03 m aaa

00 0 41 m

00 1 600+n

00 1 640+n

00 l 700+n

00 1 040+n

00 1 240+n

00 1 440+n

00 1 140+n

.00 1 340+n

00 1 540+n

00 0 06 m

06 m aaa

00 2 000

00 0 16 m

_16 m aaa

10 2 1 dd

10 2 2 dd

10 2 0 dd

10 2 4 dd

10 2 3 dd

00 1 74x

00 2 SSS

00 4 140

00 5 140

00 5 040

00 5 100

00 4 040

00 4 100

00 5 200

00 4 200

10 1 1 dd

Function

Load B

Load B Short Form

Load X

Loap X Short Form

Load Effective Address into X

Logical Rotate Left of A

Logical Rotate Left of B

Logical Rotate Left Double

Logical Shift Left of A

Logical Shift Left of B

Logical Shift Left Double

Logical Shift Right of A

Logical Shift Right of B

Logical Shift Right Double

Multiply

Multiply Short Form

No Operation

Logical OR with A

---Logical OR with A Short Form

Output from A

Output from B

Output Inunediate

Output from Memory

Output from X

Set Overflow

Register Copy

Skip if A Negative

Skip if A Not Negative

Skip if A Not Positive

Skip is A Not Zero

Skip if A Positive

Skip if A Zero

Skip if B Not Zero

Skip if B Zero

Sense Status to A

X3

Page

Bl

Bl

Bl

Bl

B3

H3

H3

H4

H2

H2

H2

H2

H3

H3

C2

C2

E2

E2

E2
J2

J2

J3

JJ

J3

E2

D2

G3

G3

G3

G3

G3

G3

G3

G3

J2

Mnemonic Operation Code Function Page
SENB 10 1 2 dd Sense Status to B J2

SENM 10 1 4 dd Sense Status to Memory J2

SENS 10 1 0 dd Sense Masked Status and Skip
if Zero GS

\..
SENX 10 1 3 dd Sense· Status to X J2

SKF 00 5 CCC Skip if Condition False Gl

SKP 00 5 000 Skip Unconditional G4

SKT 00 4 CCC Skip if Condition True Gl

SNOF 00 5 020 Skip if Overflow Not
Set G2

SNSl 00 5 001 Skip if Sense Switch 1 Not Set G2

SNS2 00 5 002 Skip if Sense Switch 2 Not Set G2

SNS3 00 5 004 Skip if Sense Switch 3 Not Set G2

SNS4 00 5 010 Skip if Sense Switch 4 Not Set G2

SOF 00 4 020 Skip if Overflow Set G2

SSl 00 4 001 Skip if Sense Switch l Set G2

SS2 00 4 002 Skip if Sense Switch 2 Set G2

SS3 00 4 004 Skip if Sense Switch 3 Set G2

SS4 00 4 010 Skip if Sense Switch 4 Set G2

STA 00 0 11 m Store A B2

STAS 11 m aaa Store A Short Form B2

STB 00 0 12 m Store B B2

STBS 12 m aaa Store B Short Form B2

STXS 13 m aaa Store x Short Form B2

SUB 00 0 05 m Subtract Cl

SUBS 05 m aaa Subtract Short Form Cl

SXNZ 00 5 400 Skip if X Not Zero G3

sxz 00 4 400 Skip if X Zero G3

XOR 00 0 14 m Exclusive OR with A .El

XORS 14 m aaa Exclusive OR with A Short Form El .

X4

2. INSTRUCTIONS ORDERED BY OP-CODE NUMBER

00 0 000 HLT 00 1 OOO+n ASLA 00 4 140 SANN 10 2 0 dd OTI
00 0 01 :m. LDA 00 1 040+n LSLA 00 4 200 SBZ 10 2 1 dd OTA
00 0 02 m LDB 00 1 lOO+n ASRA 00 4 400 SKX 10 2 2 dd OTB
00 0 03 m LDX 00 1 140+n LSRA 00 5 CCC SKF 10 2 3 dd OTX .
00 0 04 m ADD 00 1 200+n ASLB 00 5 000 SKF 10 2 4 dd OTM
00 0 05 m SUB 00 1 240+n LSLB 00 5 001 SNSl 10 3 1 dd CIA
00 0 06 m MUL 00 1 300+n ASRB 00 5 002 SNS2 10 3 2 dd CIB
00 0 07 rn CALL 00 1 340+n LSRB 00 5 004 SNS3 10 3 3 dd CIX
00 0 10 rn DRS 00 1 400+n ASLD 00 5 010 SNS4 10 3 4 dd CIM
00 0 11 m · STA 00 1 440+n LSLD 00 5 020 SNOF 10 3 5 dd INA
00 0 12 rn STB 00 1 500+n ASRD 00 5 040 SANP 10 3 6 dd INB
00 0 13 m STX 00 1 540+n LSRD 00 5 100 SANZ 10 3 7 dd INX
00 0 14 m XOR 00 1 600+n LRLA 00 5 140 SAN 10 4 000 DRM
00 0 15 rn AND 00 1 640+n LRLB 00 5 200 SENZ 10 4 001 DRMF

00 0 16 m ORA 00 1 700+n LRLD 00 5 400 SXNZ 10 4 002 ARM
00 0 17 rn JMP 00 1 740+n CVF 00 6 nnn (trap) 10 4 003 ARMF
00 0 20 rn CAS 00 2 000 NOP 00 7 snn indexed 10 6 nnn IXS
00 0 21 m CBS 00 2 SSS RGC shift 10 7 nnn DXS
00 0 22 rn cxs 00 2 sOd CPI 01 rn aaa LDAS 11 rn aaa STAS

00 0 23 m ADB 00 2 sld CPD 02 rn aaa LDBS 12 rn aaa STBS

00 0 24 m ADX 00 2 s2d CP 03 rn aaa LDXS 13 rn aaa STXS

00 0 25 m DCR 00 2 s3d CPN 04 rn aaa ADDS 14 m aaa XORS

00 0 26 m INR 00 2 s4d CPC 05 rn aaa SUBS 15 rn aaa ANDS

00 0 27 rn DIV 00 2 s5d CAB 06 rn aaa MULS 16 rn aaa ORAS

00 0 30 rn DLD 00 2 s6d CAX 07 rn aaa CALS 17 rn aaa JMPS

00 0 31 rn DST 00 2 s7d CXB 10 0 0 dd EXCI

00 0 32 rn DADD 00 3 nnn (trap) 10 0 1 dd EXCA

00 0 33 rn DSUB 00 4 CCC SKT 10 0 2 dd EXCB

00 0 34 rn FADD 00 4 001 SSl 10 0 3 dd EXCX

00 0 35 rn FSUB 00 4 002 SS2. 10 0 4 dd EXCM

00 0 36 rn FMUL 00 4 004 SS3 10 1 0 dd SENS
00 0 37 rn FDIV 00 4 010 SS4 10 1 1 dd SENA
00 0 40 rn LEA 00 4 020 SOF • 10 1 2 dd SENB
00 0 41 n 00 4 040 SAP . 10 1 3 dd SENX . (trap) . 00 4 100 SAZ 10 1 4 dd SENM .
00 0 77 n

XS

SPIRAS-65 INSTRUCTIONS

LOAD/STORE
MNEMONIC

LOA
LDAS
LOB • STA
STAS
STB
STBS
STX
STXS
OLD
OST
LEA

DESCRIPTION

:; } (e)-+(A)

:; } (eHBI

11 } (e)-+(X)
12

a1 l (Al-M
a2 I
a1 } (B)-+(el
a2

:; J (X)-+(e)

al (e), (e+l)-+(A), (Bl
al (Al, (8)-+(el, (e+l)
al e-+(X)

TIMING

(3)
(2)
(3)
(2)
(3)
(2)
(3)
(2)
(3)
(2)
(3)
(2)
(4)

(5)

(4)

ARITHMETIC
MNEMONIC

ADO
ADDS
ADB
AOX
SUB
SUBS
MUL
MULS
DIV
DADO
OSUB
FAOO
FSUB
FMUL
FOIV
INR
OCR

:; }
a1
a1

:; }
:; }
al
al
al
al
al
al
al
a1
al

DESCRIPTION

(A)+(e)-+(AI

(B)+(el-+(BI
(X)+(el-+(XI

(A)- (e)-(A)

(B) • (e)-+(A), !Bl

TIMING

(3)
(2)
(3)
(3)
(3)
(2]

l 11 I
(10)

(A). IBl/e-+(BI, rem-+(A) (15]
(A), (Bl++ (e). (et 1)-+ (A), (Bl (5)

(A), 18)--(el, (e+l)-+(A). (Bl (6)
(A). (B).+(e). (e+ll-+(A). (8) (11-28]
(A).(B).- (el, (e+ 1)-+(A), (Bl { 11·28)
(A), (Bl. "(el, (e+ll-+(A). (B) {60-70)
(Al. (B)./(e), (e+l)->(A), (B) {60-701
(el+1->(el (4)

(e)-1->(e) (41

• INSTRUCTIONS
MNEMONIC

SKIP
SAZ
SANZ
SAN
SANN
SAP
SANP
SBZ
SBNZ
sxz
SXNZ
SOF
SNOF
SS1
SNSI
SS2
SNS2
SSJ
SNSJ
SS4
SNS4
SKT
Sl<F
CAS
CBS

cxs
ORS
IXS
oxs

DESCRIPTION TIMING

unconditionally skip 1 word (11
skip 1 word if (Al= 0 (11
skip 1 word if (Al I 0 111
skip 1 word if (A) <O Ill
skip 1 word if (Al*'O Ill
skip 1 word if (Al>O (1]
skip 1 word if (Alo;;;O (1)
skip 1 word if (B) = 0 (11
skip 1 word if (Bl; 0 (1)
skip 1 word if (X) = 0 Ill
skip 1 word if (X) I 0 Ill
skip 1 word if (OVI = 0 111
skip 1 word if (OVI; 0 Ill
skip 1 word if SSl on 111
skip 1 word if SS 1 off 111
skip 1 word if SS2 on 11 I
skip 1 word if SS2 off 11 I
skip 1 word if SSJ on 11 I
skip 1 word if SS3 off (11
skip 1 word if SS4 on 111
skip 1 word if SS4 off [1 I

n skip 1 word if any conditions True [l I
n skip 1 word if all conditions False [1 I
al IF(R) < (e), don't skip (3)
al IF(R) = (e), skip 1 word {3)
al IF(R) >(el, skip 2 words 131
al (el - 1 - (e). skip if (el = O 141

n (X),(X)+n,skipif(X)'O(n~0 5111 121
n (X)~(X)-n,skipif(X)'Oln=0-•5111 121

JUMP/CALL INSTRUCTIONS
MNEMONIC

JMP a_1
JMPS a2
CALL al
CALS a2

DESCRIPTION

(e)-+(P.l
(el-+(P)
"+2-+e, e+1-+(P)
•+1-+e, e+1-+(P)

LOGICAL/CONTROL
MNEMONIC

AND
ANDS
XOR
XORS
ORA

•ORAS
HLT
NOP
OVF
SPF

DESCRtPTION

:~ } (el and (AJ-+(A)

:; } {e) eor (A)-+(A)

:; } (el or (A)-+(AI

Halt
No operation
n-+OV,
1-+ Protect Flag

TIMING

(31
(21
{3]
(21

TIMING

[3}
(2]
(31

121
[3}
(21
(-]

(1.4)
(1]
(1 J

DATA WORD FORMATS

I I: I I~ I 1 I I.~
1-Word instruction

2-Word instruction

Indirect Address

I S I Data (2's Complement)
I I I I I I II I II I I

Single Precision

S Most significant data

0 Least significant data

Double Precision

S Fraction-1

0

Floating Point

S F raction-1

0 Fraction-2

0 Fraction-3

S Exponent

Double Precision Floating Point

ADDRESSING
A1
X~alDl
x ~

e' a
a~ (a)

e=a+(X)
e={a+(X)I
e - (a) +IX)
e ~a+ (A)

XXXS a(D)

A2 xxxs· a
XXXS a(X)
XXXS a(P)

e =a
e =(al
e =a+ (X)
e =a+ {Pl

[a=0 10231
[a= o-. 1023)

[a= 0-10231
(a=-512-+511]

X a(XI
xxx· afXI
xxx· a(Y)
XXX a(A)
XXX a(P)
XXXI

e ' a+ (P)

operand= a

(a' 0 .. 65535)

A3
xxx
xxx·
xxx

a{OI
a
a(X)

xxx· a(Yl

e=a
e =(a)
e=a+(XI
e =(al+ (X)

{a= 0-> 65535)
(a= 0 _. 655351
!a= o- 65535]
[a= 0-+ 65535)

REGISTER SHIFTING
MNEMONIC

ASLA n

DESCRIPTION

Arithmetic left shift

TIMING

[1+.2nl
ASLB n ~ --o

ASRA
ASRB

LSLA
LSLB

LSRA
LSRB

LRLA
LRLB

ASLO

ASRD

LSLD

LSRD

LRLO

n
n

n
n

n
n

n
n

Arithmetic right shift

1[1' I
Logical left shift

~ +-0

Logical right shift

0-+~

Logical shift rotate

II !fil ~

n ~

n ~I~---..---_.,... ~...--~

(1+.2n]

(1+.2nl

(1+.2n]

(1+.2nl

+- 0 (1+.4nl

(1+.4n)

n ~----' ~..-----JI +- 0 (1 + .4n]

n 0-+l ~ [1+.4n)

n I I r<Wl [1+.4n)
~l ____ :::~::::::::~t~-~~

REGISTER TRANSFER
MNEMONIC DESCRIPTION TIMING

CP s,d (CPF) {sl-+(d) {ifOV=l) (1.4)
CPI s,d [CPIF) (s)+l-+(d) {ifOV=t) (1.4]
CPD s,d [CPDF) (sl-1-(d) [ifOV=l) (1.4)
CPC s,d (CPCFl {s)-+(dl (if OV= 1) (1.4)
CPN s,d [CPNF) -Isl -+{di [if OV= 1) (1.41
CAB s,d (CABFJ (A)->(B), (s)-+(d) {if OV= 11 [1.4]
CAX s,d [CAXFl (A)->(X), (s)-+(d) (if OV= 1) [l.41
CXB s,d (CXBF] (X)-+(B).(s)-+(d) (ifOV=ll (1.41
RGC nnn Operation depends on bits nnn (1.4)

s = Zero. A, B or X
d = Zero, A, B, X, AB, AX, BX or ABX

OUTPUT
MNEMONIC

EXCA
EXCB
EXCX
EXCM
EXCI
OTA
OTB
OTX
OTM
OTI
ARM
ORM
ARMF
ORMF

INPUT
MNEMONIC

SENA
SENS
SENX
SENM
SENS
CIA
CIB
CIX
CIM
INA
INB
INX

n
n

n
n,a3
n,v
n
n
n
n,a3
n,v

DESCRIPTION

(A) -+ device n control
(Bl -+device n control
(XI -+device n control
(el -+ device n control

v-+ device n control
(Al -+ device n data
(Bl -+ devi~e n data
(X) -+device n data
{el ... device n data

v -+ device n data
arm interrupts, 0-+ OV
disarm interrupts, 0 -+ OV
arm interrupts, 1 -+ OV
disarm interrupts. 1 -+ OV

TIMING

111
(11

Ill
131
(21
[1)

[11

Ill
(21
[3]
(11
[1]
[1]
(1)

DESCRIPTION TIMING

n device n status-+ (A) [1)

n device n status-+ (8) Ill
n device n status-+ (X) (1 J
n,a3 device n status-> (e) (3)
n,m skip if device n status (masked by ml = 0 (2)

•n device n data-+ (A) Ill
n devicendata-+(BI (1)
n device n data-+ (X) (1]
n,a3 device n data-+ (e) (3}
n device n data OR (A)-+ (A) {1)
n device n data OR {B)-> (8) {1)
n device n data OR (X)-+ (X} (1}

	000
	001
	003
	004
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	07-01
	07-02
	08-01
	09-01
	09-02
	09-03
	09-04
	09-05
	10-01
	10-02
	10-03
	10-04
	10-05
	11-01
	11-02
	11-03
	11-04
	12-01
	12-02
	12-03
	13-01
	13-02
	13-03
	13-04
	13-05
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	U-01
	U-02
	U-03
	X-01
	X-02
	X-03
	X-04
	X-05
	Y-01

