
L10 PROGRAMMING GUIDE

(L{5ey GUide)

Augmentation Research Center
Stanfor~ Research In~titute

Menlo park, California 94025

9211.6

CONTENTS

ARC 4 APR 72 9246
CONTE/IlTS

Title statement #

------.--------------------------~----------. -------.---
section 1. INTRODUCTION TO L10 •••••••••••••• (3)

Introduction •••••••••••••••••••••••••••••• (3a.)

CONVENTIONS USED IN DEScRIPTION OF L10 •••• (3 iJ)

DEFINITIONS ••••••••••••••••••••••••••••••• (3c)

Section 2. PROGRAM STRUCTURE AND PROC~DURES.

Introduction •••••••••••••••••••••••••••••• (4a)

USEN P~OGRAM STRUCTURE ••••••••••••••••••••

Section 3. ELEMENTS OF L10 •••••••••••••••••• (5)

Introduction •••••••••••••••••••••••••••••• (Sa)

VARIABL~S ••••••••••••••••••••••••••••••••• (Sb)

OPERATORS ••••••••••••••••••••••••••••••••• (.Sc)

PRIMITIVFS •••••••••••••••••••••••••••••••• (5c1)

EXPRESSIONS ••••••••••••••••••••••••••••••• (Se)

Section 4. DECLARATIONS ••••••••••••••••••••• (6)

Introduction •••••••••••••••••••••••••••••• (6a)

GLOBAL DECLARATIONS ••••••••••••••••••••••• (6b)

REFERENCE DECLARATIONS •••••••••••••••••••• (6c)

LOCAL DECLARATIONS •••••••••••••••••••••••• (6d)

L10 Programming Guide Contents {DaRe 31

ARC 4 APR 72 9246
CON'l'~NTS

Section 5. STATEMENTS •••••••••••••••••••••••

ASSIGNMENT ••••••••••••••••••••••••••••••••

DIVIDE ••••••••••••••••••••••••••••••••••••

BLOCK •••••••••••••••••••••••••••••••••••••

CONDITIONAL •••••••••••••••••••••••••••••• ,

IT~RATIVE •••••••••••••••••••••••••••••••••

TRANSFER ••••••••••••••••••••••••••••••••••

NULL STATEMENT ••••••••••••••••••••••••••••

Section 6. STRING TEST AND MANIPULATION •••••

Introduction ••••••••••••••••••••••••••••••

CURRENT OHARACTER POSITION (CCPos)
AND TEXT POINTERS ••••••••••••••••••••

PATTERNS - the FIND statement
and CONTENT ANALYSIS patterns ••••••••

STRING CONSTRUCTION •••••••••••••••••••••••

Section 7. CONTENT ANALYSIS AND SEQUENCE

(7)

(7c)

(7<1)

(7e)

(7t)

(7g)

(8)

(8a)

(8b)

(8c)

(8d)

GENERATOR PROGRAMS.......................... (9)

IntrOduction •••••••••••••••••••••••••••••• (9a)

THE CREATION OF USER WRITTEN PROGRAMS ••••• (9b)

THE CONTEXT OF USER WRITTEN PROGRAMS •••••• (9c)

L10 programming Guide contents [page 4J

Section 8. INVOCATION OF USER FILTERS
AND PROGRA~S •••••••••••••••••••••••••••••••••

Introduction •••••••••••••••••••••••••••••••

SIMPLE CONTENT ANALYSIS PATTERNS._ •••••••••

PROGRAMS SUBSySTEM •••••••••••••••••••••••••

INDEX •••

L10 programming Guide

ARC 4 APR 72 9246
CONTENTS

(10)

(lOa)

(lOb)

(lOC)

(11)

contents [Da~e 51

ARC 4 APR 72 9246
INTRODUCTION TO L10

Section 1. INTRODUCTION TO L10

Introduction

This document describes a subset of the L10 programming
language used at ARC on the PDP10. The lan~uage contains
some high level features for operations such as string
analysis and manipulation which are implemented in the
language as calls on library routines. In addition, L10
has basic constructions such as local Variables which have
been particularlY usefUl. The L10 compiler ~as written
using the compiler-compiler system Tree Meta.

The sUbset presented is offered primarily to satiSfy the
needS of the novice programmer interested in producing
user programs for Use in the analyzer formatter system
of the NLS portraYal generator.

The portraYal generator, its NLS relative the sequence
venerator, and the NLS commands used to compile users'
programs and establish them as the filters used bY the
system are described in Section 7 and 8 below.

3

3a

3al

3a1a

3alb

L10 Pro~ramming Guide Section 1 [oa~p. 7]

ARC 4 APR 72 9246
INTNODUCTION TO L10

CONVENTIONS USED IN DESCRIPTION or L10 3b

The following conventions (syntax) are used in the
description of the features of L10. 3bl

If there is more than one alternative allowed in any
syntax rule, theY are separated by slashes (/). 3bla

Each alternative consists of a sequence of elements. 3blb

All elements in the sequence must occur in the specified
order. 3blc

Any element enclosed in square brackets, [and l, is
optional. 3bld

The elements may be any of the following: 3ble

the name of a rule; 3blel

a call on a basic recognizer which tests the input
for one of the following 3ble2

ID reco~nizes a lower case identifier, 3ble2a

HUM - reco~nize8 a number, 3ble2b

SR recognizes a string enclosed in quotes ("), lble2c

SRl - reco«nizes a single character
preceded bY an apostrophe (I)

CHR - recognizes any character;

)ble2d

3ble2e

a string enclosed in quotes ("); 3ble3

a single character string indicated bY an aPostroPhe
(I) followed by the character; 3ble4

a list of alternatives enclosed in parentneses; 3ble5

a dollar sign (8) followed bY an element, which means
an arbitrary number of occurrences (including zero)
of the element. 3ble6

comments are enclosed in percent signs (~) and may be
embedded anywhere in the rUle. 3blf

L10 Programming Guide Section 1 [page 51

Rules are terminated by a semicolon (;).

L10 Programming Gui~e

ARC 4 APR 72 9246
INTRODUCTION TO L10

3bl~

section 1 IDa~e 91

ARC 4 APR 72 9246
INTRODUCTION TO L10

DEFINITIONS Jc

1dentitier 3cl

a symbolic name used to identifY procedures. executable
statements. and variables. (When used to identifY
executable statements. identifiers are referred to as
labels.) In L10 identifiers consist of any number of
lowercase letters and/or digits the first of wn1ch must
be a letter. 3cla

label

an executable statement identifier enclosed in
parentheses and followed immediately by a colon.

variable

an identifier Which represents a quantity whose value
was previouslY defined. is not vet defined~ or may
change through the course Of the pro2ram. L10 variables
must be eXPlicitly defined in program declaration
statements. in procedure argument lists or LOCAL
statements. or must be aVailable as NLS ~lobals.

indexed Variable

a mUlti-element variable or array. L10 permits arraYs

3c2

3c2a

3c3

3c4

of one dimension only. 3c4a

global 3c5

pertaining to a variable whose address in memory is
known and accessible throughout all parts of a program.
Global variables may be declared in a program or be NLS
globals. which the NLS environment defines a~d whiCh are
valid for any L10 program. Through the compiler's
knowledge Of the correspondence betWeen the identifier
and the memory address (contained in the system symbOl
table). the contents of the memory cell maY be changed
bY program instructions. 3c5a

local 3c6

pertaining to a variable whose address in memory is
known onlY to a specific portion of a pro~ram. i.e ••
local to a procedure. 3c6a

L10 programming Guide Section 1 [page lO}

ARC 4 APR 72 9246
INTRODUCTION TO L10

constant 3e7

a program element whose value remains Unchanged throuRh
the programming process. A constant maY be a number or
literal text (string). 3c7a

string 3c8

a variable or constant consisting of any number of
characters enclosed in double Quotation marks or a
single character preceded by a single Quotation mark. 3eBa

comments 3C9

information enclosed in percent signs (%) Which may
appear anywhere in the program and are iRnored when the
program is compiled and executed. 3eqa

expression 3elO

in general. any Variable. constant or combination Of
these joined oy operators. L10 also provides some
special expression constructions that are peculiar to
L10. An expression always has a value. 3clOa

statement 3c11

the basic unit of L10 procedures. L10 statements may
consist of many Parts: expressions. L10 reserVed wordS.
other statements. etc. Unlike expressions. statements
dO not necessarily have values. L10 statements may be
labeled or unlabeled. 3clla

execute 3c12

to carry out an instruction or "run" a Dro~ram. 3c12a

L10 Programming Guide Section 1 [pa~e llJ

ARC 4 APR 72 Q2h6
PROGRAM STRUCTURE AND PROCEDURES

Section 2. PROGRAM STRUCTURE AND PROCEDURES

lntroauction

The structure of an L10 program is ALGOL like in its block
arrangement. The formal syntax eQuations for the structure
of L10 User proRrams described below are:

program = header $parts "FINISH";

header = "PROGRAM" ID;

Where ID is the identifier of the first procedure to
be executed.

parts. procedure I declare;

procedure = I(ID ') "PROCEDURE" [I (ar~l~st ')) ';
body;

arglist • ID $(', ID);

body =-

~("LOCAL" locd '; I "REF" i~list ';)
labeled $('; labeled) "END." ;

labeled = [' (ID");"}statement;

id11st. ID .(',ID);

declare = (decl/ext/eQu/regdec/record/PKdec/refd) I ••
, I

4.

4a

hal a

4alb

halbl

4ald

ha.le

half

ha.lfl

4al~

halh

4a11

decl = "DECLARE" ["EXTERNAL") halj

(field I string I tp I stores I items); 4aljl

locd = 4alk

"STRING" lstr $(1, lstr) I
"TEXT""POINT~R" idlist I
loco • (" loco); 4alkl

lstr c .ID '[NUM t}; hall

L10 Programming Guide Section 2 [pa~~ 131

ARC 4 APR 72 9246
PROGRAM STRUCTURE AND PROCEDUwES

NUM gives the maximum length of the local string
being declared

lOco •• ID {I[.NUM Ill;

Local declaration of an array of NUM words or a
simple variable

L10 Programming Guide Section 2 [page 141

4al11

4alm

b.alml

ARC ~ APR 72 9246
PROGRAM STRUCTURE AND PROCEDURES

us~a PROGRAM STRUCTURE 4b

A user program in the NLS environment consists of various
procedures and declarations that are prefaced and followed
by statements that define the boundaries of the program's
text. These elements of the L10 program, which must be
arranged in a definite manner with strict adherence to
syntactic punctuation. are: 4bl

The header - hbla

a statement consisting Of the word "PROGRAM" followe~
bY the ID of a procedure in the prov.ram.(Pro~ram
execution will begin with a call to this proceaure.)
NO punctuation occurs between the header and the
program oody. kolal

The bOdY - 4blb

consists of any number of the fOllowing. in any order: hblbl

declaration statements which specify information
about the data to be processed by the procedures
in the program and cause the data identifiers to
be entered into the program's symbol table. 4blbla

procedures which specify certain execution tasks.
Each procedure must consist of - 4blblb

the procedure identifier enclosed in
parentheses followed bY the word "PROCEDURE"
and optionallY an argument list containing
names of Variables that are paSsed DY the
calling procedure for referenc1n~ within the
called procedure. This statement must be
term1n~ted by a semicolon. ~blblbl

the COdY of the procedure which may consist of
LOCAL, REF, and/or statements which may
optionallY be labeled. 4blblb2

LOCAL is used for declaring data which is to be
used only Within the current procedure. 4blblb3

REF specifies that the named data elments
contain references to other data and When used,
the referenced data 1t8elf will actuallY oe
used. 4blblb4

LIO programming Guide section 2 [pa~e lS}

ARC 4 APR 72 9246
PROGRAM STRUCTURE AND PROCEDURES

The proc@dure terminal statement which consists
of the word "END" followed bY a period (.). 4blblb5

The program terminal statement Which consists of the
word "FINISH". 4blC

L10 programming Guide Section 2 [page 16}

ARC 4 APR 72 9246
VARIABLES~ OPERATORS, PRIMITIVES AND EXPRESSIONS

Section 3. VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

Introduction

This section contains a discussion of the basic elements of
the L10 language which when combined with the L10 reserved
word commandS discussed in the next section~ are the
building blocks of the 110 statements and hence of L10
programs.

VARIABLES

Five types of variables are described in this document:
global, local, referenced, unreferenced. and text pointers.

GLO~AL VARIABLES

A global variable is represented by an identifier and
refers ~o a cell in memory Which is known and accessible
tnroughout the prograM. Global variables are defined in
the program's declaration statements or in the NLS
system environment.

A glObal variable maY be indexed, i.e •• declared as an
arraY. In this case the USer must sDecify the number of
elements of the array bY fOllowing the ID with an
expression in square brackets. For example. in a
declaration statement sam[lOJ specifies an array of 10
elements. In an expression however, sam{lOJ specifies
the tenth element of the arraY sam.

LOCAL VARIABLES

A local variable is represented by an identifier and
refers to a cell in memory which is known and accessible
only to the procedure in which it aPDears. Local
variables must appear in a procedure argument list or be
declared in a prodecure's LOCAL declaration statement.

Local Variables in the different procedures may have the
same identifier without conflict. A global identifier
may not be declared as a local iden~if1er and a
procedure identifier may be used as neither. In such
cases the ID is considered to be mUltiply defined and an
error results.

5

Sa

Sal

5b

Sbl

5b2

5b2a

Sb2b

5b3

5b3a

Sb3b

L10 Pro~ramm1n~ ijuide Section 3 [pa~e 17}

ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

·A local variable may be indexed, i.e., declared as an
array. In a local array declaration the user must
specify the number of elements Of the arraY bY followin~
the ID With an expression in sQuare brackets. For
eXamPle, Odd[6] specifies an array Of 6 elements. 5b)C

REFERENCED VARIABLES 5bh

A variable which represents a pOinter to something
rather than the thing itself may be passed as an
argument to a procedure. If, in the called procedure,
one wishes to access the data referenced bY the pOinter,
the pointer identifier may be declared to be a reference
using the REF cons~ruction. 5bha

A pointer to a cell in memory may be passed bY a
calling orocedure. A convenient way to access the
contents of the cell is to declare the variable to be
"referenced" in the procedure through the use of the
"REF" construction. Sb4al

If a variable has been REF'd, within the scope of the
reference (usually a procedure in which it occurs,
although a variable may be REF'd through an entire
file if deSired), whenever the variable is Used, that
Which is pOinted to will actually be used. 5b4a2

UNREFERENCED VARIABLES 5b5

If it is aesired to use again a pointer to a variable
which has been REF'd, one may "unref" it bY prefacing
the relevant ID with an ampersand (&). 5b5a

TEXT POINTERS 5b6

A text pointer is an L10 feature used in string
manipulation constructions. It is a multi-word entity
which provides information for pointinl to particUlar
lOcations within text Whether free standin~ strings or
strings which contain the text for an NLS file
statement. A text pointer consists of a string
identifier and a character count. A strin~ may be a
declared string, literal strin~, or a string which
contains text of an NLS statement or an NLS fil@ Sb6a

L10 Programming Guide Section 3 [page 18]

ARC 4 APR 72 9246
VARIABLES, OPERATORS, PHIMITIVES AND EXPRESSIONS

The text pointer pOints between two characters in a
statement or string. BY putting the pointers between
characters a single pointer can be used to mark both
the end of one sUbstring and the be~inning of th~
SUbstrin~ starting with the next character therebY
simplifYing the string manipulation algorithms an~
the WaY one thinks about strings. Sb6al

L10 Programming Guide Section 3 [Da~e 19J

ARC 4 APR 12 9246
VARIABLES. OPERATORS, PRIMITIVES AND EXPRESSIONS

OPERATORS 5c

Logical operators 5cl

Every numeric value also has a logical value. A numeric
value not equal to zero has a logical value of true; a
numeric value equal to zero has a lo«1cal value of
false. Scla

Oper$.tor Evaluation ---.-.... - -.--------
OR a OR b :I true if a • true or b = true

• false if a • false and b = false

AND a AND b = false if a • false or b :I false
= true if a • true and b c true

HOT NOT a = false if a = true
:I true if a • false

Relational operators

A relational operator is used in an expression to
compare one quantity with another. The expre8sion
evaluated for a logical value. If true, its valu~
if false. its value is o.

operator Meaning Example -------- ---.-.. - ---.. _-

• equal to 4+1 • 3+2 (true, Ill)

* not equal to 6118 (true, =1)

(less ttlan 6(8 (true, =1)

(= less than or
equal to 8(-6 (false, .0)

) greater than 3)8 (false. 50)

)- greater than or
equal to 8)=6 (true. =1)

NOT may precede any
other relational
operator 6 .NOT) 8 (true, 51)

Ll0 programming Quide Section 3 [page 20)

is
is 1;

5clal

5cla2

5cla4

5c2

.5c2a

5c2al

5c2a2

5c2a3

5e2a4

5c2a5

5c2a6

5c2a7

5c2a8

ARC 4 APR 72 9246
VARIABLES. OPERATORS. PRIMITIVES AND EXPRESSIONS

Interval operators

The interval operators permit one to check whether the
value of a primitive falls in or out of a particular
interval.

IN intre1

OUT intrel ~equivalent to NOT IN'

5c3

5c.3a

5e3al

5c3a2

intrel. (' (I I[) opexp I. opexp (IJ I I» 5c3a3

The opexps are values separated by operators against
which the operand is tested to see whether or not it
lies within (or outside of) a particular interval. Each
side Of the interval may be "open" or "close~". Thus
the values which determine the boundaries may be
included in the interval (by using a SQuare bracket) or
excluded (by usinc parentheses). 5c3b

Example: 5e3bl

x IN [1.100) 5c)bla

is the same as 5c)blb

(x)-1) AND (x < 100)

Arithmetic operators

SC3b1c

5c4

operator --------
unary +

unary -

+

*
I

MOD

Meaning .--.-..
positive value

negative value

addition

subtraetion

multiPlication

integer division (remainder not saved.)

a MOD b gives the remainder of a I b

r;cha

SC4b

5c4d

5c4e

Sc4f

.sc45!:

.sc4h

L10 programming auide Section 3 [page 21J

ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

.v

.x

.A

a .V b • bit pattern Which has lis wherever
either an a or b ha~ a 1 and 0 elsewhere.

a .x b • bit pattern whiCh has lis wherever
either an a had a 1 and b had a O. or a had
a 0 and b had a 1. and 0 elsewhere.

a .A b • bit pattern which has l's wherever
both a and b had l's, and 0 elsewhere.

L10 Progr.amming Guide Section 3 [page 22}

5c4i

5c4j

5c4k

ARC 4 APR 72 9246
VARIABLES. OPERATORS, PRIMITIVES AND EXPRESSIONS

PRIMITIVES

primitives are the basic units which are used as the
operands of LIO expressions. There are many types of
elements that can be used as LIO primitives: each type
returns a value Which is used in the eValuation of an
expression.

Each of the fOllowin« is a valid primitive:

variable

any valid v'ariable identifier

procname args -

a procedure call with argument list

variable ' .. exp

an assignment statement

pOinter -

a pOinter. pOSSiblY a text pointer or a reference to
any other type of array

literal -

a numeric constant or character constant

string. '* stringname '* I .SR;

It is pOSSible to compare variable or literal
strings.

charclass -

provides a simple way to test the common classes of
characters; described in detail below

"MIN" '(exp $(', exp) ')
"MAX" '(exp '(t, exp) ')

select the minimum or maximum. respectively, of th~
values of a list of expressions.

"READe" -

5d

Sdl

5d2

5d2a

5d2al

5c12b

5d2bl

5d2c

5d2cl

5d2d

5t12dl

Sd2e

5d2el

Sd2f

5<:12f1

.Sd2f(

5d2h

5d2hl

t;d2i

L10 programming GUide Section 3 {pa«e 23J

ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

a character is read from the current character
position and in the direction as set bY the last
scan. This facility is described later in this
document under string manipulation. 5d2il

"CCPOS" - 5d2j

the value of the index of the character to the right
of the current character position. This facility is
described later in this document under strin~
manipulation. 5d2jl

"FIND" strin«stuff - ;d2k

used to test text patterns and load text pointers for
use in string construction (see the STRING
MANIPULATION section); return the value TRUE or FALSE
dependin~ on whetner or not the strin~ tests within
it Sucoeed. 5d2kl

"POSH posrel - ~d21

may be used to compare two text pointers 5d211

Procedure Calls 5d3

When a procedure call is used as a primitive. the value
is that of the leftmost result return~d oy the
procedure. 5d3a

procname args 5d3al

Where 5d3b

procname • 5d3bl

ID, a procedure identifier 5d3bla

args • 5d3b2

I ([exp act, exp)) (': var $('. var)} I); 5d)b2a

exp • 5d3b3

any Valid L10 expression. A set of expressions
separated by commas constitute the argument list
for the procedure. 5d)b3a

L10 programming Guide Section 3 [page 241

ARC 4 APR 72 9246
VARIABLES~ OPERATORS, PRIMITIVES AND EXPRESSIONS

var = 5d3bh

any variable. All but the leftmost variables ar~
used to store the results of the procedure. 5d;b4a

The arv.ument list consists Of an arbitrary number of
expressions separated by commas. It is not necessary
for the number of ar~uments to equal the number of
formal parameters for the procedure (altnough this is
generally a ~ood idea). The argument expressions are
evaluated in order from left to right. Sd3c

Following the arguments there may be a list of locations
for mUltiple results to be returned. The list of
variables for multiple results is separated from the
list of argument expressions bY a colon. The number of
locations for results need not equal the number of
results actuallY returned. If there are more locations
than results, then the extra locations get an undefined
value. If there are more results than locations, the
extra results are simply lost. 5d3d

Example: 5d3dl

If procedure P ends with tne statement 5d3d2
,
RETURN (a,b,c) 5d3d2a

then the statement 5d3d3

Q ~ p(:r,s) Sd)d3a

Assignments 5d4

An assignment can be used as a primitive. 5d4a

The form a + b has the effect of storing b into a and
has the value of b as its value. Sd4b

Pointers 5d5

A string or an identifier preceded by a dollar sign (8)
represents a pointer to that string or the variable
represented bY the identifier. 5d5a

pointer = '8 (In I SR) 5d5al

L10 Programming Guide section 3 [page 2S}

ARC 4 APR 72 9246
VARIABLES. OPERATORS. PRIMITIVES A~D EXPRESSIONS

Literals 5d6

A literal is a constant which returns a numerical value.
A literal may be any of the fOllowin~: 5d6a

NUM 5d6al

"TRUi" 5d6a2

"FALSE" ~~6a3

char 5doah

There are several ways in Which numeric values may be
represented. A sequence of d1~its alone or followed bY
a D is interpreted as base ten. If followed bY a B then
it is interoreted as base eight. A scale factor may be
given after the B for octal numbers or after a D for
decimal numbers. The scale factor is equivalent to
adding that many zeros to the original number. 5d6b

Examples: Sd6bl

64 = 100B • lB2 5d6bla

144B = 100 = lD2 5d6blb

The words TRUE and FALSE are equivalent to the numbers 1
and 0 respectively. 5d6c

Characters maY be used as literals as they are
represented internallY bY numeric Values. The following
are synonyms for commonly used characters: 5d6d

SRl - any Single character preceded bY an apostroPhe
e.g. 'a represents the code for the cnaracter
a and 18 equal to 1418. 5d6dl

"ENDCHR" -endcharacter as returned bY READC 5d6d2

"SP" -space 5d6d3

"EOL" -Tenex's version of OR LF 5d6dh

"ALT" -Tenex's version of altmode or escape (=338) 5d6d5

"OR" -carriage return 5d6d6

L10 programming Guide Section 3 [pa~e 261

ARC 4 APR 72 9246
VARIABLES. OPERATORS, PRIMITIVES AND EXPRESSIONS

"LF" -line feed

"TAB" -tab

"BC" -backspace character

"BW" -backspace word

"C." -center dot

CA -Command Accept

CD -Command Delete;

Character classes

charclass =

"CH" I
%any character%

"ULD" I
'uppercase letter or digit~

"LLD" I
%lowercase letter or d1git%

"LD" I

5t16d7

5d6d8

5d6d9

5d6dlO

5d6dll

5d6d12

5d6d13

Sd?

5d?al

5d7a2

5d7a3

%lowercase or uppercase letter or dilit% 5d7a4

"NLD" I
%not a letter or digit%

"UL" I
%uppercase letter%

"LL" I
%lowercase letter%

"L" I
%lowercase or uppercase letter%

"D" I
%d1git%

"PT" I
%printing character%

L10 Programming Guide

Sd7a6

5<17a7

5d7a8

5c17a9

5d7alO

section 3 {page 271

ARC 4 APR 72 9246
VARIABLES~ OPERATORS, PRIMITIVES AND EXPRESSIONS

"NP"
~nonprinting character%; 5d7a11

Example: Sd7a12

char • LD 5d7a12a

1s true if the variable "char" contains a value
which is a letter or a' digit. 5d7a12b

MIN and MAX Sd8

These primitives return the lowest/highest value
expression in the expression list specified. Sd8a

Example; if a = 3, b = 2. c = ~ at time MIN and mAX
called, then MIN(a,b,c) = b (=2) and MAX(a,b,c) = c
(-4). 5d8al

READe 5d9

The primitive READC 1s a special construction for
reading characters from NLS statements or str1n«s. 5d9a

A Character is read from the current character
position in the scan direction set bY the last CCPOS
statement or string analysis FIND statement or
expression. This feature is exPlained in detail
later in this document, under strin« Manipulation. 5d9al

Attempts to read off the end of a strin« in either
direction result in a special "endcharacter" being
returned and the character position is not moved.
This endcharacter is included in the set of
characters for which system mneumonics are provided
and may be referenced by the identifier "ENDCHR". 5d9a2

Example: 5d9a3

to sequentially process the charact@rs of a string Sd9a3a

COPOS *str*;
UNTIL (char. READO) = ENDCHR DO process(char). Sd9a)b

(Note: READC may also be used as a statement if it is
desired to read and simplY discard a character). 5d9a4

L10 Programming Guide Section 3 {page 28}

ARC 4 APR 72 9246
VARIABLES. OPERATORS, PRIMITIVES AND EXPRESSIONS

CCPOS 5dlO

When used as a primitive. CCPOS has as its value the
index of the character to the right of the curr~nt
character position. CCPOS is more commonly used to set
the current character position for use in text pat~ern
matching. This is discussed in detail in section 6 (7b)
below. 5~lOa

Examples: 5dlOal

If str = "glarp", then after CCPOS *str*, the
value of CCPOS is 1 and after CCPOS SE(*str*) the
value of CCPOS is 6 (one greater than the length
of the string). 5~lOala

To sequentially process the first n characters of
a string (assumed to have at least n characters) 5dlOalb

CCPos *str*;
UNTIL CCPOS > n DO process(READC). 5dlOalc

Text Pointer Comparisons 5al1

posrel = 5dlla

pos {"NOT"} (t. I tl I ">=" I "(_" I t> I t() pos; Sdllal

This may be used to comPare two text pointers. 501la2

The pos is a Character position pointer (text
pOinter) in a form discussed in (7b) below. 5dlla2a

If the pOinters refer to different statements then
all relations between them are false expect "not
equal" Which is written 'lor "NOT" t.. If the
pOinters refer to the same statement, then the truth
of the relation is decided on the basis of their
location within the statement with the convention
that a pointer closer to tne front of the statement
1s "less than" a pointer closer to the end. Sd11a3

Ll0 Programming Guide section 3 {page 291

ARC 4 APR 72 9246
VARIABLES, OPEPATORS, PRIMITIVES AND EXPRESSIONS

EXPRESSIONS 5e

Intro~uct1on 5el

An expression is any constant, variable, special
expression form, or combination of these joined bY
operators and parentheses as necessary to denote the
order in which operations are to be performed. Special
L10 expressions are: the FIND expression which is used
for string manipulation; the conditional IF an~ CASE
expressions which may be used to give alternative values
to expressions depending on tests made in the
expressions. Expressions are used where the syntax
requires a value. While certain of these forms are
similar syntactically to L10 statements, when used as an
expression they always have values. 5ela

ORDER OF OPERATOR EXECUTION-- BINDING PRECEDENCE 5e2

The order of performing individual operations within an
equation is determined bY the heirarchy of' operator
execution (or binding precedence) and the use Of
parentheses. 5e2a

operations of the same heirarchY are Performed from left
to right in an expression. operations in parentheses
are performed before operations not in parentheses. 5e2b

The order Of execution hierarchY of operators (from
highest to lOWest) is as follows: 5e2c

unary -, unary +
.A
• V, .x
*~ I~ MOD
+~ -
relational tests (e.g.,)=, (=~). (, =. *~ IN, OUT)
NOT relational tests (e.g., NOT »
NOT
AND
OR

L10 programming Guide Section 3 (page 30)

5e2cl
5e2c2
5e2c3
5e2cb.
5e2c5
5e2c6
5e2c7
5e2c8
5e2c9

5e2clO

ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

CONDITIONAL ~XPRESSIQNS 5e3

IF Expressions 5e3a

IF testexp THEN expl ELSE eXP2 Se3al

testexp is tested for its logical value. If testexo
is true then expl will be evaluated. If it is false,
then exp2 is evaluated. Se3a2

Therefore, the result of this entire expression is
EITHER the result of expl of exp2. 5e3a3

Example: 5e3a3a

Y • IF x IN[l,31 THEN x ~LSE 4; 5e3a3al

% if x = 1, 2, or 3 y+x; otherwise Y~4S

CASE Expression

This form is similar to the above except that it
caUses anyone of a series of expressions to be
evalUated and used as the result of the entire
expression.

CASE testexo OF ~(relist ': exp I;) "ENDCASE" exo
I • ,
re11st • RELOP exp $(', RELQP exp):

Where REtOP • any relational operator

In the above, the testexp is evaluated and used with
tne operator RELOPs and tneir respective exps in a
relist to test for a value of true or false. If true
in any instance the companion exp on the right of the
colon is executed and taken to be the value of the
whOle expression. A value of false for a set of
relist tests causes the next relist in the CASE
expression to be tested against the testexp. If all
relists are false, the ENDCASE expression is taken to
be the value of the whole expression.

Example:

CASE xl OF

5e3a3a2

5e3b

5e3bl

5e3bla

;e3blb

Se3b2

5e3h3

5e3b3a

5e3b3al

L10 programming Guide section 3 [pa~e 3l}

ARC 4 APR 72 9246
VARIABLES. OPERATORS. PRIMITIVES AND EXPRESSIONS

<4: Xl+l;

-4; xl+2;

as: xl;

ENDCASE xl*2;

Value of Xl Value of Expression
-----~----- ------------------

4 6

5 .s
2 .3

6 l2

5e3b)ala

.5e)b)alb

5e)b3alc

5e3b3ald

5e3b3a.2

5e3b3a.3

5e3b3a.4

5e3b3a.5

5e3b3a.6

STRING EXPRESSIONS 5e4

L10 also provides several expression forms which are
used for string manipulation and evaluation. These are
identical to the string manipulation statements
discussed in Section 6 of this document (7). Note that
when using string manipulation statement forms as
expressions. parentheses may be neceSSary to prevent
ambiguities. 5e~a

L10 Programming Guide Section .3 {Dage 32]

ARC 4 APR 72 9246
DECLARATIONS

Section 4. DECLARATIONS

6

Introduction 6a

L10 declarations are necessary to provide information to
the compiler about the nature of the data that is to be
acceSsed. Declarations are non-executable. 6a1

There are various types of declarations available; only the
most freQuently used are discussed here: DECLARE. REF. and
LOCAL. 6a2

Program level declarations (DECLARE amd REF) may appear
anywhere in the program. However. procedure level
declarations (LOCAL and REF inside a procedure) must appear
before any executable statements in the procedure. 6a3

GLOBAL DECLARATIONS 6b

Variables specified in these declarations are global (i.e ••
outside any procedure) and may be used by all procedures in
the program. There are four versions depending on the tyoe
of entity to be defined: scalars. arrays. strings, and
text pOinters. The scalar. array. and string declarations
alloW the user to initialize the value of the variable(s)
specified. 601

DeClaring Scalar Variables 6b2

A scalar variables that is to be used throughout a
program must be declared in a declaration at the program
level. The Quantity represented bY the scalar variable
may be a numeric value, a string, or an address.
optionallY, the user maY specifY the initial value of
the variable bein« declared. If a scalar variable is
not initialized at the program level. it Should be
initialized in the first executed procedure in which it
appears.

To declare a scalar variable only: .Grab-6

"DECLARE" ID ';

To declare and initialize a scalar variable:

"DECLARE" ID '- CONSTANT ';

6b2a

6b2al

6b2ala

6b2a2

6b2a2a

L10 programming Guide Section 4 (pa~e 331

ARC 4 A~R 72 9246
DECLARATIONS

Where ID. the name of the variable being declared.

CONSTANT •

the initial value of ID. It may be any of the
fOllowing:

-a numeric constant optionally preceded by a
unary minus sign (-)

-a str1n~ enclosed in quotation marks

-another identifier (causin~ the latter's
address to be used as the value of the ID bein~

6b2a3

6b2a4

6b2aha

6b2aJ1.al

6b2ab.a2

declared) 6b2a4a3

Examples: 6b2a5

DECLARE xl; %xl is not initialized% 6b2a5a

DECLARE X2=S; %x2 contains the value 5~ 6b?a5b

DECLARE x3="OUT";%x3 contains the word OUT% 6b2a5c

DECLARE xx=xl; ~xx contains the address Of xl% 6b2a5d

Declaring Array Variables 6b3

If the user intends to use any array variables
throughout the program. he must specify the number of
elements of the array at the program level. optiona11Y.
he maY specifY the initial value of each element of the
array. If array values are not initialized at the
program level. they should be initialized in the first
executed procedure in which the array is used. 6b3a

TO declare an arraY variable only: 6b3al

"DECLARE" ID 'f NUM '1 '; 6b3ala

TO declare ~nd initialize an array variable: 6b)a2

"DECLARE" ID '_I(CONSTANT '(,CONSTANT) .) '; 6b.3a2a

where ID = tne name of the variable bein~ declared. 6b3b

NUM = the number of elements in the arraY
if the array is not bein« initialized.

L10 programming Guide s~ction 4 [page J41
6b3c

ARC 4 APR 72 9246
DECLARATIONS

CONSTANT = the initial value of each element Of
the array. The number of constants
implicitlY aefine the number of elements
in the array. They may be any of the
fOllowing:
-a numeric constant optionally preceded by a

unary minus (-)
-a string enclosed in quotation marks
-another identitier (causing the
latter's address to be used as the
value of the ID being declared)

Note: there is a one-to-one correspondence between th@
first constant and the first element. the second

6b3d

constant and the second element. etc. 6b3e

Examples: 6b3f

DECLARE sa.m flO} ; 6b3fl

%declares an array named sam containing 10
elements which are not initia11zed$ 6b3fla

DECLARE numbs:(1.2,3); 6h3f2

declares an array named numbs containing 3
elements which are initialized such that: 6b3f2a

nUmbs = 1 6b3f2al

numbs(l) ~ 2 6b3f2a2

numbs(2) • 3 6b3f2a3

DECLARE motley:(lO,words); 6b3f3

declares an array named motley containing 2
elements which are initialized such that: 6b3f3a

motley • 10 6b3.f3al

motley(l) = the address of the variable words 6b3f3a2

L10 programming Guide section h fca~e 35}

ARC 4 APR 72 9246
DECLARATIONS

DeClaring Many Scalars and/or Arrays in One statement 6bh

one may aVoid putting several individual declarations of
items (i.e., several statements each beginning with the
word DECLARE) by putting items and arrays to be
declared, initialized or not, in a list in one statement
£ollowing a sin~le DECLARE separated by commas and
terminated bY a semi-colon. 6b4a

Example: 6bhal

DECLARE x, y[lO). z = (1. 2, -5):

DeClaring Strin~s

The DECLARE STRING enables the user to declare a global
string variable by initializin~ the string and/or
declaring its maximum character length. Any number
strings may be declared in the same statement.

TO declare a number of strings:

"DECLARE STRING" ID '[NUM') $(',ID'{NUM') ';

TO declare and initialize a number of strings:

"DECLARE STRING" ID'=STRING l(i,IDi.STRING) ';

Where ID = the name of the string bein« declared

NUM • the maximum number of characters
allowed for the string

STRING • a string constant enclosed in dOUble
quotation markS. The length of this
string defines the maximum length of

of

6b4ala

6b5

6b5a

6b5al

6b5ala

6h5a2

6bSa2a

6hSa3

6bSah

the correspondin~ ID. 6b5aS

strings have two associated Values, maximum length
and current length. When strings are simplY
declared, maximum length is specified bY NUM and
current length is 0; when strings are initialized in
a declaration statement, maximum length is equal to
current length. 6b5a6

These numbers may be accessed by specifying the
name of the string followed by a periOd and the
letters M or L respectively. 6b5a6a

L10 programm1n~ Guide Section 4 [~age 36)

ARC 4 APR 72 9246
DECLARATIONS

Examples: 6b5a7

DECLARE STRING lstr1ng{lOO}; 6b5a7a

~eclares a string named lstring with a maximum
length of 100 characters and a current length
of 0 characters 6b5a7al

DECLARE STRING message-"RED ALERT".warn="WARNING".
helPl50); 6b;a7b

declares three strings message. warn. and helD
such that: 6b5a7bl

messaRe has an actual and maximum length of
9 characters and contains the text "RED
ALERT" 6bSa7bla

warn has an actual and maximum length of 7
characters an~ contains the te~t "WARNING" 6b5a7blb

help has a actual length of 0 and a maximum
length of 50 characters. i.e. help.M • 50
and helP.L • 0 6b5a7blc

Declaring Text pointers 6b6

The DECLARE TKXT POINTER declaration enables the user to
~eclare global variables as text ·pointers that are uSed
in string manipulation and construction. 6b6a

"DECLARE TEXT POINTER" ID 8('.ID) t: 6b6al

L10 pro~ramm1ng Guide section 4 [pa~e 371

ARC 4 APR 72 9246
DECLARATIONS

REFERENCE DECLARATIONS 6c

Unlike the other declarations discussed here. the REF
statement does not allocate stora«~; it simply defines the
us~ of the variable(s) specified as references. 6cl

A variable which contains a pOinter to somethin~ rather
tnan the thing itself maY be passed as an argument to a
procedure. If. in the called procedure. one wishes to
access the thing itself. the pointer identifier may be
declared to be a reference using the REF construction. 6cla

If a variable has been REF 'd. within the scope of the
reference (usually a procedure in Which it occurs.
although a variable may be kEFId throu,h an entire
file if desire~) when the variable is accessed as a
normal variable. the value of the cell being pointed
to is actuallY used. 6~lal

Example: 6clala

If x contains the address of y and x has been
REF'd. then: 6cl~lal

z +-x; (;:z+-Y) 6cla,lala

x .. Z (ay+-z) 6clalalb

This is equivalent (without REF'ing) to: 6clala2

z +-[x}; 6clala2a

(xl +-z; 6clala,2b

Referenced variables may be "unreferenced" by preceding
their identifiers bY the ampersand character "&".
Unreferencing a variable causes it to be interpreted as a
pointer. ThUS. any variable name may serve a dual function
ot pointing to an address as well as desi«nating the
contents at that address. 6c2

"REF" ID 8('.ID) I; 6c2a

local variables may he declared as references bY a REF
declaration among declarations in a procedure (see below). 6c3

L10 Programming Guide Section 4 [page 38J

ARC k APR 72 92~6
DECLAQATIONS

LOCAL DECLARATIONS 6d

The LOCAL 4eclaration consists 01 .everal torm. that are
eQu~valent to those 01 the Ilobal DECLA~! forms exeept that
Variables 4eclared in a LOCAL ~eclaration may be u.ed only
bY tbe procedure in which the~ appear. A18 9, tQCAL
declarations do not provide tor the initialisation Of
variable.. 6dl

Any LOCAL declarations must precede the executable
statements in a procedure. 6d2

TO declare a local Icalar Variable only: 6d2a

"LOCAL" ID tJ 6d2al

TO declare a local array variable only: 6d2b

"LOCAL" ID I(NUM 'J II 6d2bl

Alain lilts of items separated by comma. may be deClared
locally. 6d2c

TO declare a local .trinl only: 6d2d

"LOCAL STRING" ID '(NUH') ',t,ID'(NUMi}) tJ 6d2dl

TO declare a local text pointer. 6d2e

"LOCAL TEXT POINTER" ID 8('.ID) 'I 6d2el

L10 prolramminl Guide section k (~ace 391

ARC 27 APR 72 92h6
S'l'ATEMENTS

section 5. STATEMENTS

7

ASSIGNMENT 7a

ASSIGN STATE~E~T 7al

In the ASSIGN statement the expression on the right side
of the "." is evaluated and stored in the variable on
the left side of th~ statement. 7ala

var I. exp ': 7alal

~nere var = any global, local, referenced or
unreferenced variable.

MULTIPLEASSIGN STATEMENT

In the MULTIPLEASSIGN statement the expressions are
evaluated and the values pushed on a stack provided by
the system. Then the values are pOpped from tne stack
and stored into the appropriate left hand side. The
order of evaluation of the expressions is left to right.

, (var $ (t, var) ') 'f- t (exp $ (t. exp) t);

Where var = any glObal, loC~l, referenced or

7alb

7a2

7a2a

7a2al

unreferenced variQble. 7a2b

Naturally, the number of expressions must equal the
number of var's. 7a2c

Example: 7a2cl

(a. b) • (a+b, a-b) 7a2cla

the expression ~+b is evaluated and stacked.
expression a-b is eValuated and stacked, the value of
a-b is pooped ~nd stored into b, and finallY, the
value of a+b is pooped and stored into a. 7a2c2

LIO Programming Guide section 5 [pa~e 4l}

ARC 27 APR 72 9246
STATEMENTS

DIVIDE :lTATEMENT

The divide statement permits both the quotient and
remainder of a division to he saved. The syntax for the
divide statement is ~s follows:

"DIV" exo '. Quotient '. remainder

The central connective in the expression must be 'I.
quotient and remainder are the identifiers in which the
respective values will be saved upon the division.

BLOCK

The BLOCK construction enables the user to group sev~ral
(labeled) statements into one syntactic statement entity.
A block construction of any length is valid where a
statement is reQuired.

"BEGIN" $(statement ';) "END"

Where statement = any executable LIO statement. labeled
or unlabeled.

Example:

BEGIN
a4-b;
c+-d+5;
xx+-yy;
(nono):d+oa+c;
ENr

is equivalent to:

a+-b;

C4-(j+S;

xx"YY:

(nono):d"a+c;

but may be use~ in an instance in Which the syntax
requires one statement. (~ee. for example, the LOOP
constructon below.'

L10 Programmin~ Guide S~ction 5 [page 421

7b

7bl

7bla

7b2

7c

7cl

7cla

7c2

7c2a

7c2al

7c2b

7c2bl

7c2b2

7c2b3

7C2b4

7c2c

ARC 27 APR 72 9246
STATEMENTS

CONDITIONAL 7d

There arp two types of conditional statements described
below-- the common IF statement with optional ELSE and the
CASE statement. 7dl

IF statement 702

This form causes execution of a statement (which may be
a block) if a tested expression is true. If it is false
and the optional ELSE part is present, the stat~ment
followin~ the ELS~ is executed. If no ELSE part is
present, control oasses to the statement immediately
follo~in~ the IF statement. 7d2a

"IF" testexp "THEN" labeledstatement {"ELSE"
labeledstatementj 7d2al

testexp is tested for its logical value. If testexp is
true then the statement following the THEN will be
executed. If it is false and an optional ELSE part is
present, then the statement followin~ the ELSE will be
executed; otherwise the next statement after the IF
statement Will be executed. 7d2b

CAS~ Statement 7d3

This form is similar to tne above except that it caus~s
anyone of a series of statements to be executed
dependin~ on the result of a series of tests. 7d3a

CAS~ testexp OF $(relist I: labeledstat I;)
"ENDCASE" labeledstat I; 7d3al

reJist = R1LOP exp $(1, RELOP exp); 7d3a2

Where RELOP = any relational operator ()=, <. =, I~,
etc.)

The CASE-statement provides a means of executin~ one
statement out of many. The expression after th~ word
"CA5E" is evaluated and the result left in a re~ister.
This 1.s used as the left· hand side of the binary
relations at the beginning of the various cases.
several rela t:S.ons may be listed a t the start of a single
statem~nt; the statement will be executed if any of the
relations is satisfied. If none of the relations is
satisfied, the statement following the word "ENDCASE"
will ~e executed.

7d3b

7d3c

LI0 Pro~rammin~ Guide section S [page 431

ARC 27 APR 72 9246
STATEMENTS

Examnle: 7~3cl

CASE c OF
= a.<d: x • y; %Executed if c = a or c < d%
> b: (x, y) • (x+y, x-Y); %Executed if c > b%
ENDCASE v • x; %Executed otherwise% 7d)cla

LlO Programmin~ Guide Section 5 [page 441

ARC 27 APR 72 9246
STATEMENTS

ITEHATIVE 7e

The stat~ments d~scribed here enable the user to alter the
normal s~quence of execution within a procedure and/or to
cause the r~peated execution of a set of statements until
some condi tion is met. 7el

LOOP STATEMENT 7e2

The statemen~ following the word "LOOP" is repeatedlY
executed until control leaves bY means of some transfer
instruction within the loop. 7e2a

"LOOP" statement: 7e2al

where statement = any execu~able LIO statement
(including a bloCk)~ labeled or
unlabeled. 7e2b

Example: 7e2bl

LOOP 7e2bla

BEGIN 7e2blal

a ~ a * a + 1; 7e2bla2

b ~ a + b; 7e2bla3

IF a > 200 THEN EXIT; 7e2bla4

END; 7e2bla5

It is assum~d that a and b have been initialized
oefore entering the loop. The EXIT construction
is described below. 7e2blb

LIO Programmin~ Guide section S [page 451

ARC 27 APR 72 9246
STATEMENTS

WHILE ••• DO STATEMENT 7e3

This statement causes a statement (or block of
statements) to be repeatedly executed as long as the
expression immediatelY followin" the word WHILE has a
logical value of true or control has not been passed out
of the DO loop by some exPlicit transfer. 7e3a

"WHILE" exp "DO" statement 7e3al

exp is evaluatea and if true the statement followin~ toe
word DO is executed; exp is then reevaluated and tne
statement continually executed until exp is false. In
this event control will PaSS to the next sequential
statement. 7e3b

Example: 7e3bl

WHILE alpha DO 7e3bla

~EGIN 7e)blal

zy~o ~ b+b: 7e3bla2

alOha. alpha-l; 7e3bla3

END: 7e3bla4

If aloha nas a value Of +5 (lo~icallY true) when this
statement is executed. the statement following "nO"
will be executed 5 times as alpha is decremented bY
one each time the statement is executed. once alPha
is equal to zero (false) the next statement will be
executed. 7e3b2

LIO Programmin, Guide Section 5 [page 46J

AHC 27 APR 72 9246
STATEMENTS

UNTIL ••• DO STATEMENT 7e4

This statement is similar to the WHILE ••• DO statement
except that statement(s) following DO are executed until
eXP is true. As long as exp has a lo~ical value of
false the statement(s) will be executed repeatedly. 7e4a

"U.NTIL" exp liDO" statement 7e4al

L10 Programmin2 Guide section 5 [page 471

ARC 27 APR 72 9246
STATEMENTS

DO ••• UNTIL/WHILE STATE~ENT 7eS

This statement is like the preceding st~tement, except
that the lo~ical test is made after the statement has
been executed rather than before. 7e5a

"DO" statement ("UNTIL" / "WHIL~") exp; 7~5al

Tnus the specified statement is always executed at least
once (the first time, before the test is made). 7e5b

L10 Programmin~ Guide Section 5 [page 48}

ARC 27 APR 72 9246
STATEMENTS

FOR STATEMENT 7e6

The FOR statement causes the repeated execution of the
statement fol~owing "DO" until a specific terminal value
is reached. 7e6a

"FO,H" var [' .. exol} ("UP" / "DOWN") [exp2]
"UNTIL" (relop) exp3 "DO" sta.tement; 7e6al

Where var = the variabl~ whose value in incremented/
decremented each time the FOR statement
is executed 7e6b

expl = an optional initial value for var. If
expl is not specified. the current value
of Var is used.

exp2 = an o~tional value by which var will be
incremented (if UP specified) or
decremented (if DOwN specified). If exp2
is not speCified, a value of one will
be assumed.

relop = any relational operator

exp3 = when combined with relop determines whether
or not anotner iteration of the FOR statement
will be performed.

Note that exp2 an~ p.xp3 are recomputed on each
iteration.

Example:

FOF k .. n UP j UNTIL > m*3 DO xlk} .. k;

is equiva.lent to

k .. n;
GOTO test:
(loop): ~ .. k + j;
(test): IF k > m*3 THEN GOTO out;
x[k} .. k:
GOTO 1000:
(ou t) :

7e6c

7e6d

7e6e

7e6f

7e6g

7e6h

7e6hl

7e6h2

7e6h3

L10 Programming Guide Section S {pa~e 491

ARC 27 APR 72 9246
STATEMENTS

TRANSFEk

These statements in ~eneral cause the unconditional
transfer of control fro~ one part of a pro~ram to another
Dart.

PROCEDURE CALL STATEMENT

This statement is useO to direct pro~ram control to the
procedure specified.

procname ar~s

Where procname = ID. a procedure identifier

args = '([exp .(t,exo)) it: var ~(t,var)JI):

exp = any valid L10 expression. The set of
expressions separated by commas is
the argument list for the procedure.

var = any variable. The set of variables
is used to store the results of the
procedure if there is more than one
result.

'rhe argument list consists of an arbitrary number Of
expressions separated by commas. It is recommended
(althoup.h not necessary) for the number of arguments to
equal the number of formal parameters for the procedure.
The argument expressions are evaluated in order from

7£

7fl

7f2

7f2a

7f2al

7f2b

7f2C

7f2d

7f2e

left to ri~ht. 7£2f

Followinr the arguments tnere may be a list of locations
for mUltiple results to be returned. The list of
variables for multiple results is separated from the
list of argument ~xDressions by a colon. The number of
locations for results need not equal the number of
results actually returned. If there are more locations
than results. then the extra locations ~et an undefined
value. If there ~re more results than locations, the
extra results are simply lost. 7f2g

Example: 7f2pl

If procedure P ends with the statement 7f2g2

HETUHN (a,b,c) 7f2g2a

LlO Programminv. Guide Section 5 (page 50)

ARC 27 APR 72 9246
STATEMENTS

then tne statement 7f2~3

Q .. P (:r,s); 7f2g3a

results in (Q,r,s) ~ (a.b.c). 7f2g4

A procedure call may just exist as a statement alone
wi t.h.out returning a value: 7f2g5

z(); 7f2g5a

LIO Programming Guide Section 5 [cage 51}

ARC 27 APR 72 9246
STATEMENTS

RETURN aTATEMENT 7£3

This statement causes a procedure to return an arbitrary
number of results. The order of evaluation of results
is from left to rignt. 7f3a

"RETURN" {I (exp $(I~ exp) ')) 7f3al

GOTQ STATEMENT 7£4

Goto provides for unconditional transfer of control to a
new location. 7f4a

"GO""TO" IV 7f4al

The ID is the narn~ of a label elsewn~re in the program. 7f4b

EXIT STATEMENT 7f5

This construction provides for forward branches out 0/
CASE or iterative statements. ~he optional number (NUM)
specifies the numner of lexical levels of CASE or
iterative statements respectively that are to be exited.
If a number is not ~iven then 1 is assumed. All of the
iterative statements (LOOP~ WHILE~ UNTIL. DO, FOR) can
be exited by the EXIT LOOP construct. 7f5a

"EXIT" ("CASE" {NUM] / {"LOOP"] (NUM))

EXIT and EXIT LOOP have the same meaning.

Examples:

LOOP
BEGIN
• • • • • • • •
IF test TH~N EXIT;
%the EXIT will branch out of tne LOOPI
••••••••
END;

LIO Programming Guide section 5 {page 52]

7f5al

7f'ib

7f5bl

7f5bla

UNTIL something DO
BEGIN
• • • • • • • •
wHILE testl DO

8EGIN
• • • • • • • •
IF test2 THEN EXIT;

ARC 27 APR 72 9246
STATEMENTS

%the EXIT will branch out of the WHILE%
,
ENDj

• • • • • • • •
END:

UNTIL something DO
BEGIN
• • • • • • • •
WHILE testl DO

BgGIN
• • • • • • • •
IF test2 THEN EXIT 2;
%the EXIT 2 will branch out of the tJNTIL%
• • • • • • • •
END;

• • • • • • • •
END:

CASE exp OF
=something:

dEGIN
• • • • • • • •
IF test THEN EXIT CASE;
%the EXIT will branch out of the CASE%
• • • • • • • •
END;

• • • • • • • •

7f.Sblc

7f.5bld

L10 Programming Guide Section 5 [page 53}

ARC 27 APk 72 9246
STATE;MENTS

Tilis construe tion p:,~o'liaE"s for bacKward brancne,g to the
front of LiA3 :': or condi'c,ional statements. The optional
number (NU~) n~s the sa~e meaning as in the tXIT
statement.

" REP EAT" (" L 0 (J P " [N lJ ""11 / [II CAS E "J { N U M] [' (ex D ')])

If an exore~sion is riven with the REPEAT CASE. then it
is eV~luated a~o used in olace of the expression ~iven
at the head of the specified CASE statement. If the
expression is not ~jven. then the, one at thp heRd of the
CAS h sta t.t:~ t~l~" rl t is rt't:v al ua ted.

It is worth not1r a t~at the availacilitv nf EXIT and
k1PEA'r sta terrt:nt,~ hp.s reslll ted in clearer progrp.ms whicll
are ~enerallY wi~nout laoels and GOTO's. Tne EXIT and
R~PEAT replace GOTO's to the start or end of the most
common comoound for~s. BY nrov1ding implicit labels in
these positions far use with EXIT or R~PEAT. explicit
la.bels are avo~,0ed.

REPEA'I' ana q~~cEAT CASE flave the same meaning.

Examples:

CA S E expl OF'
=some~h::l.ng:

'" '" • • WI • , •

IF tes~l THEN REPEAT;
%REPEAT with a reevaluated expl%
'" .. '" '" ...
IF tpst2 THEN REPEAT(exp2);
%RFPEAT with exo2% '" '" . .
f;ND; ·

LOOP
E~GIN · '"
IF test THEN kt?~AT LOOP:
%RFPEAT LOOP will ~o ~o the top of tne LOOP%
· '" '" '"
EtID;

LIO Programminv Guide Section 5 [page 54}

7£6

7f6a

7f6al

7f6b

7f6c

7f6d

7f6e

7f6el

7f6e2

NULL STATE~1Ea,TT

ARC 27 APR 72 9246
STATEMENTS

The NULL statement may be used as a convenience to the
pro~rammer. It is a no-oPe 7e:l

null = "NULL";
7g1a

L10 Programm1n~ Guide section 5 [page 55}

ARC ~ APR 72 9246
STRING TEST AND MANIPULATION

Section 6. STRING TEST AND MANIPULATION

INTRODUCTION

The following special statements allow for complex strin«
analysis and construction. The three Das1c elements of
string manipulation discussed here are the Current
Character Position (ccpoe) and text pOinters which allow
the user to delimit sUbstrings within a strin~. Patterns
that cause the system to search the strin~ for specific
occurrences of text and set up pointers to various textual
elements, and actual string construction.

The content analysis facility of NLS maY be invoked
using similar search patterns without the
point~r-loading capabilities.

CURRENT CHARACTER POSITION (CCPOS) AND TEXT POINTERS

The Current Character Position is similar to the TNLS OM
(cQrrent marker) in that it specifies the location in the
string at Which SUbSequent operations are to begin. All
L10 string tests start their search from the current
character position.

"CCPOS" (pos I t* stringname '* ('(exp Ill);

pos is a position in a statement or strin~ that may be
expressed as any of the following:

A previously declared and set text pointer ID

The Scan direction over tne text will remain
unchanged. The direction of scanning may be set
implicitlY using the string front of string end
facilities or explicitlY using the direction Bettin!
"(" or ")" in an earlier pattern. (See "other
parameters" under PATTERNS below.)

string Front left of the first character

"SF(" stspec t)

When SF is specified 8cann1n~ will take place from
left to right within the string.

8

8a

8al

8ala

8b

8bl

8bla

8b2

8b2a

8b2al

6b2b

8b2bl

8b2b2

L10 programming Guide section 6 (page 57l

ARC ~ APR 72 9246
STRING TEST AND ~ANIPULATION

"stspec" is a string specification that may be
expressed as a previoulY declared text pointer ID or
previously declared string ID enclosed in asterisks.

string End -- right Of the last character

8b2b3

8b2c

"SE(" stspec I) 8b2cl

When SE is specified scanning will take place from
right to left within the string. 8b2c2

A text pointer pOints between two characters in a string. 8b3

The variable holding a text pOinter is declared bY a
D~CLARE TEXT POINTER or LOCAL TEXT POINTER statement.
There 1s a special declaration for these because text
pointers require more than a single word of storage. The
identifier used as a text pointer may be such a variable or
a reference, defined by a REF statement. to such a
variable. 8b4

If a text pointer is given after COPOS, then the character
position is set to that location. 8b5

If a stringname (1* strin~name'*) is given after CCPOS.
then the position is moved to that string. The scan
direction 1s set left to right. 8b6

Indexing the stringname (bY spec1fyin, If exp I}) simply
specifies a particular position within the string. Thus
*str*f3} puts the current character Dosition between the
second and third characters of the strin« DetrO. If the
scan direction i8 left to rignt, then the third
character will be read next. If the direction is right
to left, then the second will be read next. 8b6a

If no indexing is given, then the position is set to the
left Of the first character in the str1n«. This is
equivalent to an index of 1. 8b6b

L10 Programming Guide Section 6 {page 58}

ARC 4 APR 72 9246
STRING TEST AND MANIPULATION

PATTERNS - the FIND statement and CONTENT ANALYSIS patterns Bc

FIND Statements an~ Expressions 8cl

This statement specifies a string pattern to be teste~
and text pOinters to be manipulated and.set starting
from the current character position. If the test
succeeds the character position is moved past the last
character read. If the test· fails the character
position is reset to the position prior to the test and
the valUeS of all text pOinters set within the cat tern
will be reset. 8cla

"FIND" 8strentity; 8clal

FINDS may be used as expressions as well as
free-standing elements. If used as an expression. for
example in IF statements, it has the value "TRUE" if all
pattern elements within it are true and the value
"FALSE" if one of the elements is false. 8clb

Content Analysis Patterns 8c2

content analysis patterns are simply strin« pattern
entities fOllowed by a semi-colon. When placed in an
NLS file and "compiled" using the EXecute Content
Analyzer command, the pattern may be invoked usin~ a
special viewspec to search throURh an NLS file tor
statements satiSfying the patterns. (The process is
describe~ in detail in sections 7 and 8 below.) 8c2a

Implicit in content Analysis patterns is the notion
that they will start a pattern matching search·at the
beginning of each NLS text statement. 8c2al

Certain of the arguments are valid only in the
context of complete L10 programs. These are noted
below. 8c2a2

Because text pointers may not be loaded in Content
Analysis patterns and because strings may no~ be
recons~ructed in them, they may only be use~
effectively in relatively simple cases. In more
complex Situations, full L10 pro~rams are
necessary. 8c2a2a

String pattern entities-- (strentities) 8e)

L10 Programming Guide Section 6 [page 59}

ARC ~ APR 72 9246
STRING TEST AND MANIPULATION

A string entity (strent1ty) may be any va11~ combination
of the following: logical operators. testing arguments.
and other non-testing parameters which in general cause
repositioning within tne current strin«. 8e)a

Logical operators-- These combine and delimit groues
of patterns. Each compound group is considere~ to be
a single pattern with the value TRUE or FALSE. If
text pointers are set within a test pattern and the
pattern is not true, the values ot those text
pOinters are reset to the Values they had before the
test was made. (See examples below.) 8c3al

"OR" 6c3ala

Either of the two separated groups must be true
for the pattern to be true. 8c3alal

"AND" 8c]alb

Both of the two separated groups must be true
for the pattern to be true. 8c3albl

"NOT" 8c]alc

The following pattern group must not De true
for the pattern to be true. 8c3alcl

"I" 8c3ald

Either of the two separated groups must be true
for the pattern to be true. Has lower
precedenee than OR, i.e., bindS less tightlY
than "OR". 8c3aldl

Pattern MatChing Arguments-- (each of these can be
true or false) Bc3a2

These may appear in Content Analysis patterns: 8c3a2a

SR 8c3a2al

string constant, e.g. "ABC" 8e)a2ala

L10 Programm1ng Guide Section 6 {page 60}

ARC 4 APR 72 9246
STRING TEST AND MANIPULATION

It should be noted that if the scan
direction is set right to left the
pattern string constant pattern shOUld be
reversed. In the above example. one
would have "CBA". 8c]a2alal

char 8c3a2a2

any character 8c)a2a2a

charclass 8c3a2a3

look for a character of a specific class
(see primitives for a list of character
classes) If found, • true. otherwise false.

6c3a2a3a
'(strentity ') 8c3a2a4

lOOk for an occurrence of the pattern
specified by strentity. If found •• true,
otherwise false. ' 8c3a2a4a

'- parameter 8c3a2a5

True only if the parameter follow1nR the
dash does not occur. 8c)a2a5a

'f strentity '} 8c3a2a6

true if the pattern specified bY strentity
can be found anywhere in the remainder of
the string. First searches from current
position. If the search failed, then. the
current position is incremented by one and
resets. Incrementing and searching
continues until the end of the string. The
value of the search is false if the testinl
strinR entity is not matched before the end
of the string is reached. 8c)a2a6a

NUM argument

find (exactly) the specified number of
occurrences of the argument.

8c)a2a7

8c3a2a7a

L10 programming Guide section 6 fpa~e 611

ARC 4 APR 72 9246
STRING TEST AND MANIPULATION

NUMl 'I NUM2 argument 8c3a2a8

Tests for a range of occurrences of the
argument specified. If the ar«ument is
found at least NUMl times and at most NUM2
times, the value of the test is true. 8c3a2a8a

Either number is optional. The default
value for NUMi is zero. The default
value for NUM2 is 10000. Thus a
construction of the form "$3 CH" would
search for any number of characters
(including zero) up to and including
three. 8c3a2a8al

"ID" ('1"=) DID 8c3a2a9

if the string being tested is the text of an
NLS statement then the identifier of user
who created the statement is tested by this
construction. Bc)a2a9a

"SINCE" datim 8c)a2alO

if tne string being tested is the text of an
NLS statement, this test is true if the
statement was created after the date and
time (datim, see below) specified. 8c3a2alOa

"BEFORE" dat1m 8c3a2all

if the string bein~ tested is the text of an
NLS statement, this test_is true if the
statement Was created before the date and'
time (datim, see below) specified. 8c3a2alla

These may not appear 1n content Analysis patterns: 8c3a2b

'* stringname '*
string variable

"BETWEEN" pos pos (strentity ')

L10 programming Guide

search limited to between Dositions
specified. Scan character position is set
to first pOSition before the pattern is
tested.

Section 6 [page 621

8c3a2bl

8c3a2bla

8c3a2b2

8c3a2b2a

l

ARC 4 APR 72 92h6
STRING TEST AND MANIPULATION

Format of date and time for pattern matching 8c3a2c

datim :I I (date time ') Bc3a2cl

Acceptable dates and times folloW the forms
permitted by the TENEX system's IDTIM JSYS
described in detail in the JSYS manual. It
accepts "most any reasonable date and time
syntax." 8c3a2cla

Examples of valid

17-APR-70
APR-17-70
APR 17 70
APRIL 17, 1970
17 APRIL 70
17/5/1970
5117/70

Examples of

1:12:13
1234

valid

dates:

times:

16:30 (4:30 PM)
1234:56
1:56AM
1:56-EST
1200NOON
12:00:00AM (midnight)
11:59:59AM-EST (late mornin~)
12:00:01AM (early morning)

8c3a2clal

Bc3a2clala
8c3a2clalb
Bc)a2c1a,lc
8c3a,2cla,ld
8c3a2clale
8c3a2clalf
8c3a2clal~

8c3a2cla2

8c3a2c1a2a
8c.3a2cla2b
8c3a2cla2c
8c3a2cla2d
8c3a2cla2e
8c3a2cla2f
8c3a2cla21l:
8c3a2cla2h
8c3a2cla,2i
8c3a2cla2j

other Arguments-- (these dO not involve tests;
ratner, they involve some execution action. They are
always TRUE for the purposes of pattern matChing
tests.) 8c3a3

These may appear in simple content Analysis
Patterns: 8c3a3a

,< 8c3a3al

set scan direction to the left 8c3a3ala

L10 Programming Guide section 6 [pa~e 631

ARC 4 APR 72 9246
STRING TEST AND MANIPULATION

In this case. care Should be taken to
specifY patterns in reverse. that is in
the order which the computer will scan
the text. 8c3a3alal

') 8c3ala2

set scan direction to the right 8c3a3a2a

"TRUE" - 8c3a3a3

has no effect; it is generally used at the
end of FIND when a value of true is desired
even if all tests fail. 8c3a3a3a

These may not appear in simple Content Analysis
Patterns:

pos

set current character Position'to this
position. If the SE pointer is used. set
scan direction from right to left. If th~
SF pointer is used. set scan direction from

oc3a3b

8c3a3bl

left to right. 8c3a3bla

It ID -

store current scan position into the
text pointer specified by the identifier

I~ (NUM] ID -

back up the specified text pointer bY the·
specified number (NUM) of characters.
Default value for NUM is one. Backup is in
the opposite direction of the current scan

8c3a3h2

8c3a3b2&

8c3a3b3

direction. 8c3a;b3a

£10 programming Guide Section 6 (page 641

ARC 4 APR 72 9246
STRING TIST AND MANIPULATION

STRING CONSTRUCTION 8d

strine con.truct1onl allOW the replacement ot one st~inl
(Iub.trine) bY another string. 8d1

("ST" (pOI I IUbstr) '. st11st I 8dla

i* str1ngname '* {~(exp "TO" exp'JJ) '. stli8t; 8~lb

The .tr1nc to w~1eh ~o. or strincname refers 11 replaced bY
the .trine specified to the right Of the arrow. A
sUbstrine 11 replaced if a sUbstr or an indexed atrinlname
11 specified. 8d2

Examplel: 8d2a

ST Pl p2 • strine:
il equivalent to
ST pl • SF(pl) pl. strine. p2 SE(g2); 8d2a1

Itr{lower TO upperJ • string;
i8 equivalent to
Itr • *str*(l TO lower-1J. strine. *str*{upper+l TO
str.LJ; 8~2a2

st11st •• tprim 1(', .tprim)J 6d3

atprim • Sdk

"NULL" I 804&

reprelents

SR I

for .trine

sUbltr I

sUbatrine

, + sub.tr I

IUb.trine

,- .ubltr I

sUb.trine

the zero length strine

constant, e.e. "ABC"

capitalized

in lower case

L10 Programminl GUide

8d1a.al

8c14b

8dhbl

8dll.c

8t!1a.c:l

8c14c1

6dlA,dl

Section 6 {pace 6SJ

ARC 4 APR 72 9246
STRING TEST AND MANIPULATION

'a 8ubstr I

If it is preceded by a dollar sign (8), then the
SUbstring 1s copied without movin« any associated
markers to the new position. This element is
relevant only if the string is the text of an NLS
statement.

'* string name t* I

for strinR variables

'* stringname t* t[exp 'J I

8dhfl

8d4~

8dagl

8dih

for character variables 8dahl

'* stringname t* 'f exp "TO" exp IJ I 8dki

sUbstring by indices 8~ail

A construction of the form *str*[i TO jJ refers to
the sUbstring starting with the ith character in
the string up and including the jth character.
Thus *str*[i TO i+10J is the eleven character
sUbstring startin~ with the ith character of str.
and *str*[i TO str.LJ is the strinl str With the
first i-1 characters deleted. 8dhila

exp I 8ct4j

value of a general LlO expression taken as a
character; i.e •• the character with the ASCII code
value equivalent to the value of the expression 8dajl

"STRING" '(exp it, exp) I); 8dak

gives a string which represents the value of the
expression as a signed decimal number. If the second
expression is present. a number of that base is .
produce~ instead of a decimal number. 8dakl

SUbstr K pos pos; 8d5

This is tne SUbstring bounded bY the two positions. 8dSa

L10 Programming Guide Section 6 [page 66J

ARC 4 APR 72 9246
STRING TEST AND MANIPULATION

Example: 8d6

Let a "word" be defined as an arbitrary number of
letters and digits. The two statements in thiS examPle
delete the word pointed to bY the text painter "t". ana
if tnere is a space on the right of the word. it is also
deleted. otherwise, if there is space on the left of
the word it is deleted. 6d6a

Tne text pointers x and yare used to delimit the left
and right respectivelY of the string to be deleted. 6d6b

LD is true if the character is a letter or a di,it. and
SP is true if the character is a space. 8d6c

FIND t < SLD tx t > $LD (SP ,y I ty x < (SP tx I TRUE));
ST x y ~ NULL; 8d6d

The reader ShOUld work through thiS example until it is
clear that it really behaves as adVertised. 8d6e ,

The new string or sUbstring is speCified as a concatenation
Of string primaries, with the primaries separated bY
commas.

6d7

L10 programming GUide section 6 [page 67]

ARC 4 APR 72 92h6
CONTENT ANALYSIS AND SEQUENCE GENERATOQ PROGRAMS

Section 7. CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

Introduction

NLS provides a variety of commands for file manipulation
and viewing. All of the editing commands. ana the print
command with associated viewspecs (like line truncation and
statement numbers) provide examples of these manipulation
and viewing facilities.

But occasionally one may need more SOPhisticated view
controls than those aVailable with the viewspec and
viewchange features in NLS.

For example. one may want to see only those statements
that contain a particular word or Phrase.

or one might want to see one line of text that compacts
the information found in several lon~er statements.

One might also wiSh to perform a series of routine editin2
operations without specifying each of the NLS commands over
and over again.

The Network Information Center at ARC uses the ability
to create text using the information from several
different statements (and even different files) and the
ability to insert this new text into a file to prOduce
catalogues and indices.

User written programs enable one to tailor the presentation
of the information in a file to his particula~ needS.
Experienced USers may write programs that edit files
automaticallY.

CREATION OF USER WRITTEN PROGRAMS

User written programs must be coded in L10. They may call
other user written routines and Various procedures in the
NLS program itself.

User programs that control the way material is portrayed
take effect when NLS presents a sequence of statements in
response to a command like print Group.

9

9a

9a1

9a2

9a2a

9a2b

9a3

9b

9bl

9b2

L10 Programming GUide Section 7 [pa~e 691

ARC 4 APR 72 9246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

In processing a command such as Print NLS lOOks at a
sequence of statements. examining each statement to see
if it falls within the range specified in the Print
command and if it satisfies the viewspecs. At this pOint
NLS may also pass the statement to a user written
program to see if it satisfies the requirements
specified in that program. If the user program returns
a value of true, the (passed) statement is printed and
the next statement in the sequence is tested; if false.
the next statement in the sequence is tested. 9b2a

User programs that modifY files usually ~ain control at the
Same point in processing as those that control the view. 9b3

Typically. one' wants such a program to operate on a
sequence of statements chosen bY a User When he decides
to run the program. In addition, one usuallY wants to
see the results ot such an automated series of editin~
operations immediatelY after it happens. 9b)a

,
Although a user program may be called explicitly (usin2
a speCial purpose NLS command). it is usually inVOked
,when one aSks to view a part of the file. 9b3b

CONTEXT OF USER WRITTEN PROGRAMS -- THE PORTRAYAL GENERATOR 9c

Generally. the user written program runs in the framework
of the portraYal generator. It maY be inVOked in several
ways, described below. whenever one aSks to view a portion
of the file. e.g •• with a print command in TNLS. with any
of the output to printer commandS. and with the Jump
command in DNLS. 9cl

All of the portrayal generators in NLS have at least two'
sections -- the formatter and the sequence Kenerator; if
the user invokes' a program of his own, the portraYal
generator will have at least one. and possiblY two,
additional parts -- a user filter program and a us~r
sequence generator. 9c2

FORMATTER 9c3

The formatter section arranges text passed to it by the
sequence generator (described below) in the stYle
specified by the user. The formatter observes viewspecs
such as line truncation, length and indentin~; it alSO
formats the text in accord with the reQUirements of the
output device. 9cJa

L10 programming Guide Section 7 (page 70)

ARC 4 AP~ 72 q246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

The formatter works by calling the sequence generator.
formatting the text returned. then repeating this
process until the sequence generator decides that the
sequence has been eXhausted or the formatter has filled
the desired area (e.g. the display). 9c3b

SE~UENC~ GENERATOR 9C4

The sequence generator looks at statements one at a
time. beginning at the point specified bY the user. It
observes viewspecs like level truncation in determinin«
whico statements to pass on to the formatter. 9c4a

For example. the viewspecs may indicate that only the
first line of statements in the two highest levels
are to be output. The default NLS sequence "enerator
will return pointers only to those statements passing
the structural filters; the formatter will further
truncate the text to only the first line. 9c4al

When the sequence generator finds a statement that
passes all the viewspec requirements. it returns the
statement to the formatter and waits to be called again
for the next statement in the sequence. 9c4b

one of the viewspecs that the sequence generator pays
particular attention to is "i" -- the viewspec that
indicates Whether a user filter is to be applied to the
statement. If this viewspec is on, the sequence
generator Passes control to a user filter program. which
looks at the statement and decides Whether it Should be
inclUded in the sequence. If the statement passes the
filter (i.e. the user program returns a value Of true).
the sequence generator sends the statement to the
formatter; otherwise. it proceSSes the next statement in
the sequence and sendS it to the USer filter program ~or
verification. (The particUlar user Drogram chosen as a
filter is determined by commandS describe~ below.) 9c4c

USEH FILTERS 9cS

The USer filter program maY be either a content analYsis
pattern (comp1led and invoked in the manner described
below) or an L10 program which maY contain What are
essentiallY content analysis patterns as well as text
mOdification elements which may edit the NLS file
automatically. 9c5a

L10 programming Guide section 7 [page 711

ARC 4 APR 72 9246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

CONTENT ANALYSIS PATTERNS 9c5al

content analysis patterns describe characteristics
that a statement must have to be included in the
sequence being generated. For example, a content
analysis pattern may stipulate that a statement
must contain a particular phrase. or that it must
have been written since a particular date. In
general, content analysis patterns may use any of
the pattern matching facilities permitted in L10
FIND statements. 9cSala

content analysis patterns cannot affect the format
of a statement, nor can they initiate editing
operations on a file. They can only determine
whether a statement ShoUld be viewed at all. 9c5alb

NeVertheless, content analysis filters provide a
powerful tool for user control Of the portraYal of
a series of statements. TheY are th~ most
frequently used, and easily written, of the user
programs. However, if one wiShes to chan~e the
format of a statement, or to mOdifY the file as it
i8 displayed, he must use a user written L10
program. 9c5alc

USER WRITTEN L10 PROGRAMS 9c5a2

A user written program maY be «iven control bY the
sequence generator in eXactlY the Same fashion
that -a content analysis program is initiated.
writin~ and using such programs effectivelY
requires a thorough knOWledge of NLS (content
analysis, in Particular) and a modicum of exposure
to L10. 9c5a2a

Such a program may change the format of a
statement being displayed and it may modifY the
statement itself (as well as other statements in
the file). 9c5a2b

L10 programmin~ Guide Section 7 [page 72J

ARC 4 APR 72 9246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

A user written program invoked bY the seQuence
generator has several limitations. It can
manipulate only one file and it can look at
statements only in the order in which they are
presented by the sequence generator. In
particular. it cannot back up and re-examine
previous statements. nor can it skip ahead to
other parts of the file. A user-written seaUence
generator must be provided when one needs to
OVercome these restrictions. 9c$a2c

USER-WRITTEN SEQUENCE GENERATORS 9c6

A user may provide his own sequence lenerator to be used
in lieu of the regular NLS sequence lenerator. (This is
controlled by viewspecs 0 and P.) Such a program may
call the normal NLS sequence generator. as well &s
content analySis filters and user-written L10 prograMS.
It may even call other user-written seQuence generators. 9c6a

,
This technique provides the most pOwerful means tor a
user to reformat (and even create) files and to affect
their portrayal. However. since writing them requires a
detailed knowledge of the entire NLS prolram. the
practice is limited to experienced NLS prolrammers. 9c6b

L10 programming GUide section 7 [page 7)]

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

section 8. INVOCATION OF USER FILTERS AND PROGRAMS

10

Introduction. lOa

The user-written filters described in this document may be
imposed in some cases throu~h the NLS command "Execute
Content Analyzer" and in other cases by an NLS subsystem
accessed bY the command "Goto pro~rams". The former method
is easier but maY be used onlY with simDle content Analyzer
patterns. The latter method requires more of the user;
furthermore. the seVeral additional capabilities offered bY
general user-written programs maY be invoked only throu~h
the "Goto Programs" sUbmode. 10al

User sequence generator programs for more complex
editing among many files may be written. Additionally.
programs may be written in this L10 SUbset to be used to
generate sort keys in the NLS sort and Mer~e commandS.
Descriptions of these more complicated types of user
programs ~nd of NLS procedures whicn maY be accessed bY
such programs is deferred un~il a later document. In
such examples, however, the user would still make use of
the commands in the NLS "Goto programs" subsystem. 10ala

These TNLS commands are used to compile. institute and
execute User programs and filters. 10a2

Compilation-- 10a2a

is the process by WhiCh a set of instructions in a
program is tranSlated from a form understandable by
humans (e.g •• the L10 language) into a form which the
computer can use to execute those instructions. 10a2al

Institution-- 10a2b

1s the process by which a compiled program is linked
into the NLS running system for execution. 10a2bl

Execution-- lOa2c

is the process in which the computer carries out the
instructions contained in a compiled an~ instituted
program. 10a2cl

L10 Programming Guide Section 8 [page 751

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

This section additionally presents, in detail. examples of
the use of the L10 programming lan~uage to construct user
analyzer filters and reformatters. These pro~rams were
written by members of ARC who are not experienced
programmers. They do not make use of any constructions not
eXPlained in this manual. 10a3

SIMPLE CONTENT ANALYSIS PATTERNS lOb

The content analysis feature of NLS permits the user to
specify a Pattern of text content to be matched bY
statements in NLS files. onlY those statements passed to
the filter bY the sequence generator satisfYing the test
will be sent to the formatter for disPlay to the user. A
simple content analyzer pattern is compiled bY the Execute
Content Analyzer command or throu~h the Goto programs
sUbmode, and is activated bY a Viewspec parameter. 10bl

The NLS portrayal Generator, made up of the formatter,
the sequence generator, and user filters. 1s invoked
wheneVer the USer requests a neW "view" of' the file, for
example through the use of the TNLS "Print" command or
any of the output to printer commands. ThUS if one had
a user content filter compiled. instituted. and invoked,
one could have a printout made (usin« "output
QUickprint", for example) containing only those
statements in the file satisfying the pattern. Section
7 (Bc) discusses these concepts in detail. 10bla

syntax of simPle Content Analysis Patterns lOb2

A Simple content analyzer pattern is made up of any
number ot String patterns to be matChed terminated bY a
s~mi-colon. lOb2a

8strentity t; lOb2al

It is thus similar to the FIND statement described in
section 6 (7c) ot the L10 Primer. It is different
because some of the pattern constructions, noted in that
section, are neither Valid nor releVant out of the
context of a complete L10 user program incluQ1n~ the
constructions Which manipulate text pOinters. lOb2b

L10 Programming Guide Section 8 [page 76]

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

A pattern maY be written as text anywhere in an NLS
file. A file may thus contain any number of patterns.
However, only one pattern may De instituted (or placed
as tne active pro~ram or pattern) at a time although any
number Of content analysis patterns may be compiled.
Using commands 1n the Programs SUbsystem. one may switch
back and forth between the invocation of any of them. lOb2c

Execute Content Analyzer lOb)

The TNLS command used to cOMPile simple content analysis
patterns is: lOb3a

e[xecute} co[ntent analyzer type in?} SP
CA
y[es}
n[o} lOb)al

(1f SP. CA. or y[es}) LIT CA lOb3ala

(1f n[o}) ADDR CA 10b)alb

In response to th~ prompt "type in?" the user maY
respond with SP, CA, or "y" indicating that the pattern
will be entered directly from the keYboard. Repondinc
bY "n" indicates that the address of the pattern will be
specified. lOb3b

ADDR is a TNLS address specification pointing to the
first character in the Pattern or non-printing
characters immediatelY preCedinv. the pattern. If the
pattern is imbedded in the text of an NLS statement the
process will read characters until the first semi-colon
is read. lOb3c

If the semi-COlon is omitted 1n this instance. an
error will result. lOb3cl

Thus one may make use of parts of complex patterns by
positioning the TNLS current pOSition pointer at an
appropriate place in the middle of the pattern text. lOb]c2

If a LIT is specified it is taken to be the text of a
Content Analysis pattern. (The semi-colon may be
omitted here; it will be appended bY the system.) lOh3c)

LIO pro~rammin~ Gui~e Section 8 [pa~e 77}

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS A~D PROGRAMS

When this comman~ is given the pattern specified is
compile~ into the User program bUffer, a name is
aS8igne~ and put on the user program name stack, an~ it
is instituted as a content analyzer program. lOb3~

When the CA is typed the messa~e "CompilinR User
program" will be put out. If the compilation WaS
succeSsful, the User will be left at the TNLS command
specification level. If there were any errors in the
compilation a list of the places in the pattern in Which
the error Was discovered followe~ by the message
"{number} error(s): Type CA". lOb)e

The description of the errors may be relatiVely
cryptic. Syntax errors ~eal with some violation Of
acceptable language form. Compiler an~ 8Y3tem errors
may relate to some more general (and perhaps more
obscure) error in the compiler Which the ordinary
user cannot easily fix. lOb3el

Remember that the L10 compiler does not do
anything about misspelled wor~s and misplaced
punctuation marks. lOb3ela

Content Analysis Via Goto programs 10b4

Simple content Analysis patterns may alSO be COMPiled
using a command Of the programs SUbsystem ~escribed
below.' lOb~a

Execution and Effect 10b5

When apPlie~ to a proper pattern the "Execute content
AnalYZer" command, in ad~ition to comp1lin~ the user's
pattern, institutes it as the current content analyzer
filter deinstituting any existing content analyzer
pattern program. lOb5a

Most users need not be aware of this fact. lOb5al

Those. however, whO may compile more than one content
analyzer pattern in a session may wiSh to switch
between them. lOb5a2

L10 Programming Guide Section 8 {page 78]

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

To provide a handle on Content Analyzer patterns theY
are assi~ned program names made UP of the first 5
characters of the pattern preceded bY the letters
"UP" (for user program), a number referring to the
order of compilation, and an exclamation mark (1). lOb5a3

Using this name one may institute and deinst1tute
patterns as content analyzer filters by usinR a
command in the programs sUbsystem described below.
The Patterns will appear under these names in the
user program stack which may be examined with the
program status command. lOb5a4

After compilation and institution a content analyzer
pattern may be applied as a filter to any NLS file bY
uSing certain viewspecs and anY-COmmand which causes the
portrayal Generator to examine the file~ e.g., the TNLS
print COmmandS. Simple content analYzer programs do not
mOdify files. Rather, theY just serve as "filters" for
the portraYal Generator (see Section 7 (8c)). Relevant
viewspecs are: lOb5b

1-- sho~ only statements with content Which passes
the filter. For example an output Quickprint with
viewspec i on WOUld print only those statements
passing the filter. If none satisfy the filter test,
an "Empty" will be displayed on-line, a blank file
will be printed bY the Quickprint command. 10b5bl

j-- show all content. ThiS is the default viewspec
1n NLS. The filter is not used 1n this case. 10bSb2

k-- show the first statement passing the filtej then
all others. 10b5b3

Again we emphasize that the files are not mOdified bY
simple content analys1s filters. L10 user programs must
be used for this purpose. 10b5c

Examples of Simple Content Analysis patterns lOb6

BEFORE (2S-JAN-72 12:00); lOb6a

This pattern will match those statements created or
mo~ifled (Whichever happened most recently) before
noon on 25 January 1972. 10b6al

ID • HGL OR ID c MFA; 10b6b

L10 Programming Guide Section 8 [pa~e 791

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

This pattern will match all statements created or
mOdified (whichever happened most recentlY) bY Users
with the identifiers "HGL" or "MFA". lOb6bl

D 2$LD I ["CAP I "Content Analyzer"}: lOb6c

This pattern will match any of three types of
statements: those beginning with a numerical digit
followed by two characters which maY be either
letters or digits. and statements with either the
patterns "CAR or "content Analyzer" anywhere in the
statement. lOb6cl

Note the use of the brackets to permit an
unanchored search -- a search for a pattern
anywhere in the statement. Note also the use of
the Slash for alternations. lOb6cla

[(2L (SP/TRUE) 12D) D '. 4D}; lOb6d
~

This pattern will match characters in the form Of
phone numbers anywhere in a statement. Numbers
matched may have a two digit alPhabetic exchange
followed bY an optional space (note the use of the
TRUE construction to accomplish this) or a numerical
exchange. lOb6dl

Examples include YU 4-1234. YU4-l234. and
964-1234. lOb6dla

L10 programming Guide Section 8 [page 80}

ARC 4 APR 72 92h6
INVOCATION OF USER FILTERS AND PROGRAMS

PROGRAMS SUBSYSTEM lOc

Introduction lOcl

This NLS sUbsystem provides several facilities for the
processing of User written pro~rams and filters. It is
entered bY using the NLS "Goto" (subsystem name)
command. This sUbsystem enables the user to compile L10
user pro~rams as well as content Analyzer patterns.
control hOW these are arranged internallY for different
uses. define how pro~rams are Used. and interro,ate the
status of User programs. 10cla

Programs SUbsystem commands lOc2

The Goto programs SUbsystem is entered bY the NLS
command: lOc2a

g[oto} p{rograms}... lOc2al

After the user types the above the system expects one of
the fOllowing commandS: lOc2b

Status Of User programs lOc2c

This SUb-command prints out information concerning
actiVe user programs and filters Which have been
compiled and/or instituted. The system may be
interrogated about this status With the command: lOc2cl

s[tatus of user programs} CA lOc2cla

When this command is executed the system will print: lOc2c2

-- the names of all the programs in the stack.
inclUding those generated for simcle content
analysis patterns. starting at the bottom of the
staCk. This stack contains the symbolic names of
all compiled programs and a pOinter to the
corresponding compiled code. The stack is
arranged in order of compilation with the most
recentlY compiled program at the head of the
stack. loc2c2a

LIO programming Guide Section 8 [pa~e 811

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

-- the remaining free space in the buffer. The
bU~fer contains the compiled corte for all the
current compiled programs. New compiled cOde is
1nserted at the first free location in this
bUffer. lOc2c2b

-- the current Content Analyser program or "None" lOc2c2c

the current user sequence generator program or
"None"

-- the User key program or "None"

content Analyzer

This command allows the user to specify a content
analYsis pattern as a content analyzer filter.

c[ontent analyzer type in?i
SP
CA
Y[es}

lOc2c2d

lOc2c2e

lOc2d

lOc2d1

n[o} loc2dla

(if SP, CA, or y[es}) LIT CA lOc2dlal

(if n[o}) ADDR CA lOc2dla2

In response to the prompt "type 1n?" the user may
respond with SP. CA, or "y" indicat1nK that the
pattern will be entered directlY from the keyboard.
Reponding by "n" indicates that the address of the
pattern will be specified. lOc2d2

ADDR must be the address of the first character or
immediatelY preCeding space of the pro~ram or
pattern. lOc2d3

When this command is executed the pattern specified
1s compiled into the buffer. its name is put on the
stack, and it is instituted as a content analyzer
program. lOc2dh

The name assigned is generated in the same manner
as those for Patterns compiled bY th~ "Execute
content AnalYzer" command. lOc2d4a

L10 Programm1n~ Guide

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

This command is eQuivalent to the "Execute Content
Analyzer" command in compilation error indications
(9b)e) and execution (9bSa).

L10 Compile

This command compiles the program spec1fie~.

1[10 compile at) ADDR CA

ADDR is the address of the first statement of the

lOc2d5

lOc2e

lOc2el

loc2ela

program. lOc2e2

This command caUSeS the pro~ram specified to be
compiled into the user program bUffer and ita name
entered into the stack. The program is not
instituted. lOc2e3

The name of the program 1s the visible followin,
the word PROGRAM or FILE in the stat~ment
indicated by ADDR. lOc2e)a

Errors are indicated as above for the compilation Of
simple patterns in (9b)e). lOc2e4

The program may be instituted and executed by the
appropriate commands. lOc2e5

Institute Program 10c2f

This command enables the uSer to designate a program
as a content analyzer. sequence generator. or key
extractor. lOc2fl

i[nstitute program} PROGNAME CA [CR}
NUM

[as} CA [content analyzer} CA
c[ontent analyzer} CA
k[ey extractor) CA
s[equence generator} CA loc2fla

PROGNAME is the name of a program which had been
previously compiled wi~h any of the Execute content
Analyzer, Program LIO. or Program content Analyzer
Commands. That is, PROGNAME must be in the staCk
when this command is executed. lOc2f2

L10 programming GUide Section 8 {pa~e 831

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

Instead of PROGNAME the user may specifY the program
to be instituted bY NUM. a numeric value indicatin~
the nth program from the bottom of the stack. lOc2f3

The program on the bottom of the stack is the
program compiled first. loc2f)a

Execute program lOc2~

This command transfers control to the specified
program. lOe2g1

e[xecute programJ PROGNAME CA
HUM loc2~la

PROGNAME is th@ name of a program which had been
previously compiled. That is. PROGNAME must be in
the stack when this command is executed. lOc2g2

Instead of PROGNAM-E the user may speciff the program
to be instituted bY NUM. a numeric value ind1catin~
the nth program in the stack. lOe2g3

Deinstitute program lOc2h

This command deactivates the indicated program .. but
does not remove it from the stack and buffer. It may
be reinstituted at any time. lOc2hl

d(einstitute programJ PROGNAME CA
NUM

PROGNAME is the name of a program which had been
previously compiled. That is. PROGNAME" must be in"

loc2hla

the stack when this command is executed. lOc2h2

Instead of PROGNAME the user maY specify the program
to be instituted bY NUM .. a numeric value indicatin«
the nth program in the stack. lOc2h3

This assumes one program will not be used for more
than one purpose at one time. loc2h3a

L10 programming Guide Section 8 (page 84J

ARC 4 APR 72 92~6
INVOCATION OF USER FILTERS AND PROGRAMS

pop Stack 10c2i

The Pop stack command deletes the top (or most
recent) program on the stack. The oro«ram is
deinstituted, its name removed from the stack. and
its space in the bufter marked as free. lOc2il

plop stack1 CA lOc2ila

Pop Stack pro~ram command (lOc2il) lOc2i2

Reset Stack lOc2j

This command clears all prolrams from the USer
program area. All programs are deinstituted, the
stack is clear~d, and the buffer is marked as empty. lOc2jl

r[eset stack} CA lOc2jla

L10 programming Gui~e Section 6 [nage 851

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

Note on Returning from User Analyzer-Formatter programs lOc)

When a user writes an analyzer-formatter filter program,
the main routine must RETURN to the Portrayal Generator.
The RETURN must have an argument which is checked by the
sequence generator. If the value Of that argument 1s
TRUE, the statement will be passed to the formatter to
be displayed; if the value is FALSE. it will not be
displayed. lOc3a

The user could thus use FIND statements and expressions
to check for the presence of statements to be edited bY
the string construction elements and either display the
edited statement or not, therebY savin« the formatt1n,
time. lOc)b

A file could thus be edited quickly without any
immediate feedback to the user with the i viewspec
on. However. bY turning views pee j on afterwards,
the user coula then see the completely ~dited file. lOc3bl

Examples of Analyzer-Formatter programs lOc4

The fOllowing are eXamples of user analyzer-formatter
programs which selectively edi~ statements in &n NLS
file on the basis of text searched for bY the pattern
matching capabilities. Examples of more sophisticated
user programs such as sort keys and user sequence
generator programs will be presented in a later
supplement with a description of NLS routines easily
accessed bY users. loc4a

Example 1-- lOc4b

PROGRAM outname % removes statement names
--~

DECLARE TEXT POINTER sf, Daf, pae;
(outname)PROCEDURE;

IF FIND tsf aNP I (tpaf [I)} tpae THEN
BEGIN
ST sf. pae SEes!);
RETURN(TRUE);
END

ELSE RETURN(FALSE);
END.

FINISH

L10 programming Guide Section 8 (page 861

del: ()
lOc4bl

lOcllbla
lOc4,blh

lOc4blbl
lOc4blbla
lOchblblb
lOeb-bIble
lOchblbld

lOc4blb2
lOc4blb3
lochblc

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

This program removes the text and delimiters of NtS
statement names from the beginnin« of the statements. lOc4b2

Example 2--

PROGRAM changed;
(changed) PROCEDURE;

LOCAL TEXT POINTER £, e;
FIND tf SElf) tel
IF FIND SINCE (2S-JAN-72 12:00) THEN

BEGIN
ST f + "(CHANGED)". f e;
RETURN(TRUE);
END

ELSE RETURN(FALSE);
END.

FINISH

lOchc

lOcac1
lOch.c2

10c4c2a
lOc4c2b
10ch.c2c

lOc4c2cl
lOcac2c2
lOch.c2c3
lOcac2eh.

lOch.c2d
loch.c2e

lOeh.c3

This program cheCkS to see if a statement was written
after a certain date. If it was, the string
"[CHANGED}" will be put at the front o~ the
statement. lOch.ch.

L10 Programmin« Guide Section 8 [page 87}

A (Sc4.k)

ALT (Sd6dS)

INDEX

analyzer-formatter programs, examples of (lOC~&)

AND (SCla3), (Hc)alb)

argument lists (S~3b2)

arithmetic operators (5C4a)

array variables, ~eclaring (6bJa)

assignment statement (7a1a)

assignments (Sd~a)

bC ('5<16d 9)

BEFORE datim (8c3a2alall)

BEGIN (7cla)

BETWEEN pos pos (strent1ty) (8c)&2b2)

bin~1ng precedence (Se2a)

BLOCK construction (7cl)

body, program (,bIb)

BW (5<16d10)

LI0 programMin~ Guide

ARC ~ APR 72 9246
INDEX

Index [page 89)

ARC k APR 72 92k6
INDEX

C. (.5d6ctll)

CA (Sd6d12)

CASE expression (Se3a)

CASE statement (7d3a)

CCpos (Sc12j), (5dlOa). (8b)

CD (5d6d13)

CH (S07al)

char (8c,3a2ala2)

character classes (Sd7)

charclass (8c3a2ala3)

CHR (3ble2e)

comments. def. (3c9)

compilation (lOa2a)

Compile program command (lOc2el)

conditional expressions (Se)

cond1t1on~1 statements (7dl)

constant. def. (3c7)

content analysis

and Goto programs (lObka)

-formatter programs. examples of (10Q4a)

"

-formatter programs. returning from (lOc3a)

goto programs command (lOc2dl)

patterns (6c2). (lObI)

L10 Programming Guide Index· {page 90}

OR ('5d6d6)

current character position (8b)

d (Sd7a9)

declarations (6a1)

global (6bl)

local (6d1)

procedure level (6a3)

program level (6a3)

reference (6c1)

DECLA~E STRING statement (6b5a)

DECLARE TEXT POINTER statement (6b6a)

declaring

array variables (6b3a)

mUltiple variables (6b4a)

scalar Variables (6b2a)

string Variables (6bSa)

text pointers (6b6a)

Deinstitute program command (lOc2hl)

Divide statement (7bl)

END (7cla)

ENDCASE statement (7d)al)

ENDCHR (5c16d2)

L10 pro~ramm1ng Guic1e

ARC 4 APR 72 92h6
INDEX

Index [paf(e 9l}

ARC 4 APR 72 9246
INDEX

EOL (506<'4)

examples of analyzer-formatter programs (lOc~a)

Execute Content Analyzer command (lOb3a)

Execute program command (lOC2g1)

execute. def. (3c12)

execution (lOa2c)

expression. def. ()elO)

expressions (Sela)

conditional (Se)

FIND (8el)

FALSE (.506&3)

filters (9cSa)

FIND (Sc12k)

FIND Expressions and Patterns(Bcl)

FIND Statements (Bel)

FINISH statement (~blc)

formatter (9c3a)

global. def. (3cS)

declarations (6bl)

variable (.5b2)

Goto Pro«rams subsystem (lOcla)

and content analysis (lOb~a)

L10 programming ·Guide Index [page 92J

commands (lOc2a)

header. program (4b1a)

heirarehy of o~erations (Se2a)

i viewspec (9c4c). (lObSbl)

ID (.3ble2a)

ID ('/-) Uln (8c)a2ala9)

identifier. de!. (3el)

IF expressions (Se3a)

IF statement (7d2a)

IN (Sc)al)

indexed variable. def. (3c4)

indexing stringnames (8b6a)

Institute Program command (lOc2fl)

institution (lOa2b)

interval operators (Sc.3a)

j viewspec (lOb5b2)

k viewspec (lOb5b)

L10 programming Guide

ARC 4 APR 72 9246
INDEX

Index (page 93]

ARC, 4. APR 72 9246
INDEX

1 (S«17a8)

L10

Compile command (lOc2el)

declarations (6al)

programs, user-written (9cSa2a)

syntax (3bl)

label. def. (3c2)

LD (5<17a4)

LF (50607)

literal (5d6a)

LL (5d7a7)

LLD (5d7a))

LOCAL declaration (6d1)

local variable (5b3)

local. def. (3c6)

logical operators (8c3al). (5cla)

MAX (5d2h). (5«18)

MIN (5d2h).(5d6)

MOD (5c4h)

multiass1gnment statement (7a2a)

L10 Programming Guide Index [page 9b.J

NLD (Sd7aS)

NLS Portrayal Generator (lObla)

NOT (Scla4). (8c)a1c)

NP (5<17a11)

NUM ()ble2b), (Sd6al)

NUM argument (8e)a2ala7)

NUMl • NUM2 argument (8e3a2a1a8)

o viewspee (9c6a)

operations, hierarchy of (se2a)

operators (Sc)

arithmetiC (5eka)

interval (Se3a)

logical (Scla)

relational (Se2a)

OR (SC1A2), (8c3a1a)

OUT (SC)A2)

P views pee (9c6a)

pattern matching arlumenta (8c3a2~

patterns (Be)

patterns,

content analysis (8c2), (9cSala), (lObl)

L10 Pro«ramm1ng Guide

ARC k APR 72 9246
INDEX

Index [parce 951

ARC· 4 APR 72 9246
INDEX

syntax of content analysis (lOb2a)

pointers (SdSa)

Pop Stack command (lOc211)

portrayal generator (9c1)

P~S (Sd21), (8c3a3b1)

posre1 (Sd11a)

primitives (5d1)

procedure call, as primitive (5d31')

program

compilation (10a2a)

compile command (lOc2el)

deins~itute command (10c2h1)

execute command (10c2gl)

execution (10a2c)

institute command (lOc2fl)

institution (10a2b)

pop stack command (10c211)

reset stack command (lOc2jl)

structure (4a1), (4bl)

programs.

crea.ting (9bl)

examples of (lOc4a)

returning from (lOc3a)

status command (lOc2cl)

L10 Pro~ramming ·Guide . Ihdex [page 96J

SUbsystem (lOcla)

SUbsystem commands (lOc2a)

user filter (9cSa)

user-written (9c5a2a)

PT (Sd7alO)

READe (Sd2i), (5d9a)

REF statement (6cl)

reference declarations (6cl)

referenced variable (Sb4)

relational operators (Sc2a)

Reset Stack program command (lOc2jl)

ARC 4 APR 72 9246
INDEX

returning from user analyzer-formatter Drograms (lOc3a)

SAB (SD6D~)

scalar variables, declarin~ (6b2a)

SE (8b2C)

sequence generator (9caa)

sequence generator, user-written (9c6a)

SF (8b2b)

SINCE Oat1m (8c)a2ala10)

SP (SD6D)

SR ()B1E2C). (8c3a2alal)

SRl ()B1E2D), (SD6Dl)

L10 programming Guide Index [page 971

ARC 4 APR 72 9246
INDEX

statement. def. (Jcll)

statements, FIND (8el)

status of User programs command (lOc2cl)

strentities (8c)

-string

construction (Sd)

def. (le8)

end (8b2c)

expressions (Se4a)

front (8b2b)

pattern entities (8e)

patterns (Se)

test and manipUlation (8)

variables, declaring (6b5a)

syntax ()bl)

content analysis patterns (lOb2a)

program structure (4a1)

terminal statement~ program (4blc)

text pointer (5b6)~ (Bb)

comparisons (Sd11)

declaring (6b6a)

Tree Meta (3a1)

TRUE (5d6a2), (8c3a3a3)

L10 Programming Guide Index [page 96)

UL (5d7a6)

ULD (Sd7a2)

unreferenced variable (SbS)

unreferencing (6c2)

ARC ~ APR 72 9246
INDEX

user analyzer-formatter pro«rams. returning from (lOc3a)

user filters (9c5a)

user programs (9bl)

user programs status command (10c2cl)

user-written L10 program (9cSa2a)

user-written sequence generators (9c6a)

variables (Sb1)

def. ()c3)

declaring multiple (6b4a)

viewspec

1 (9c4c). (lObSbl)

j (lObSb2)

k (10b5b3)

o (9c6a)

p (9c6a)

L10 programming Guide Index [paa:e 99J

ARC ~ APR 72 92~6
INDEX

(6c2)

(strent1ty) (8c3a2ala4)

* str1ngname * (8c3a2bl)

- parameter (8c3a2alaS)

.A (Sc4k)

.v (Sc41)

.x (Sc4j)

I (8c3alc1)

< (8c3a3al)

> (8c3a3a2)

[strentity } (8c3a2ala6)

t ID (8c3a3b2)

~ [NUM} ID (8c3a3b3)

LlO programming Guide Index [page 100J

