L10 PROGRAMMING GUIDE

(User (;u;d%\>

Augmentation Research Center
Stanford Reseagrch Institute
Menlo Park, California 94025

7

9246

CONTENTS

Title

- e S G G D D D B G R S G S NP G N T D G G R S O G TS U G D R SR G R SR OB TR D ER WS N G e

Section 1. INTRODUCTION TO Llooonf.ooonou...
IntroduCtiONecececsccccsccscosnccsccccsscnccnsne
CONVENTIONS USED IN DESCRIPTION OF LlO...e

DEFINITIONS.....I...'.........I...‘..‘....

Section 2., PROGRAM STRUCTURE AND PROCEDURES,
Introduction.-........I.......‘...........

USER PROGRAM S‘rRUCTURP;...‘..........'...I.

Section 3., ELEMENTS OF LlOccecccccscncsccccns
IntroductiOneecscececccceccscsecsscscacsccccse
VARIABLES e eeeescecesssscccccsnscscnscccssne
OPERATORS . sc0cccescessccccscsccsccscccccccsscae
PRIMITIVFSceeececccscesccscscsscccnccccccsnse

EXPRESSIONS...............‘.........‘.I‘..

Section 4. DECLARATIONSeeccsccccacscnccscsaccs
IntroductiOneescccceccncscccscccrsccecccccans
GLOBAL DECLARATIONS.seecccsvacscscccccsesas
REFERENCE DECLARATIONSaecccocacenscssccsvesnse

LOCAL DECLARATIONS......-..o...o.o.b......

L10 Programming Guide

ARC L APR 72 92146
CONTENTS

Statement #

(3)

(3a)
(30)
(3c)

(L)
(ha)
" (4b)

(5)
(5a)
(5b)
(5¢)
(54)
(5e)

(6)

(6a)
(6Dp)
(6c)
(64)

contents [page 3]

ARC L4 APR 72 9246

CONTENTS

Section 5. STATEMENTSceeetcccccésccncnccccnns (7)
ASSIGNMENT ceeevecccocsssccccecsncscssavavasnse (7a)
DIVIDE:eceeeqoccsscccsccscsccscscscccccscccssene (7o)
BLOCKecvssoooaoosecasancocgacscccsccccccans (7c)
CONDITIONAL.ceoeecsoevosvsasccccsccncccndans (74)
ITERATIVE eeecececoccossccscscsscssscncsnne (7e)
TRANSFER s cseceesscoceseescencccccscscsvcoe (7£)
NULL STATEMENT icecccescsccccscccoscscsssans (78)

Section 6, STRING TEST AND MANIPULATION:.ea. (8)
INtroductionececscecsoseccscncccscscscsans (8a)

CURRENT CHARACTER POSITION (ccpos)

AND TEXT POINTERSQ..0................ (BD,
PATTERNS - the FIND statement

and CONTENT ANALYSIS patternSceececcee (8c)
STRING CONSTRUCTION...l."...QIO.......‘.. (ad)

Section 7. CONTENT ANALYSIS AND SEQUENCE

GENERATOR PROGRAMS:ce¢cscscscscncecscccccanne (9)
IntroductioN.cscececcscssccocncsccsccsccsvasns S (9a)
THE CREATION OF USER WRITTEN PROGRAMS..... (9b)
THE CONTEXT OF USER WRITTEN PROGRAMS.veeee (9c)

L10 Programming Guide contents [page LJ

Section 8, INVOCATION OF USER FILTERS
AND PROGRAMS'........O....................‘..

INtroductiONeceecscscscnssccnscasocsncccannas
SIMPLE CONTENT ANALYSIS PATTERNS:veecccence

PROGRAMS SUBSYSTEM.......I...‘..'.........‘

INDEx....‘0..'.‘.............I......OOQQ......

110 Programming Guide

ARC 4 APR 72 9246
CONTENTS

(10)

(10a)
(10b)
(1oc)

(11)

contents [page S§]J

ARC 4 APR 72 9246
INTRODUCTION TO L1O

Section 1., INTRODUCTION TO L1O

Introduction 3a

This document describes a subset of the 1L10 programmning

language used at ARC on the PDP1l0. The language contains

some high level features for operations such as string

analysis and manipulation which are implemented in the

language as calls on library routines, 1In addition, L10O

has basic constructions such as local variables which have

been particularly useful. The L10 compiler was written

using the compiler-compiler system Tree Meta, 3al

The subsSet presented is offered primarily to satisfy the

needs of the novice programmer interested in producing

user programs for use in the analyZer formatter system

of the NLS portrayal generator. 3ala

The portrayal generator, its NLS relative the sequence
generator, and the NLS commands used to compile users'!
programs and establish them as the filters used by the
system are descripbed in Section 7 and 8 below, 3alb

L10 Programming Guide Section 1 [vage 7]

ARC L APR 772 9246
INTRODUCTION TO L1O

CONVENTIONS USED IN DESCRIPTION OF L1O

The following conventions (syntax) are used in the
description of the feagtures of L10O.

If there 1s more than one alternative allowed in any
syntax rule, they are separated by slashes (/).

Each alternative consists of a sequence of elements,

All elements in the sequence must occur in the specified
order,

Any element enclosed in square brackets, [and J, is
optional.

The elements may be ahy of the following:
the name of g rule;

a call on a basic recognizer which tests the input
for one of the following

ID = recognizes a lower case identifier,
NUM = recognizes a number,
SR = recognizes a 8tring enclosed in quotes ("),

SRl = recognizes a single character
preceded by an apostrophe (')

CHR = recognizes any character;
a string enclosed in quotes (");

a 8ingle character string indicated by an apostrophe
(') followed by the character;

a list of alternatives enclosed in parentneses;

a dollar sign (3) followed by an element, which means
an arbitrary numvber of occurrences (including zero)
of the element,

comments are enclosed in percent signs (%) and may bpe
embedded anywhere in the rule,

L10 Programming Guide Section 1 [page 8]

3b

3bl

3bla
3blb

3ble

3blda
3ble

3blel

3ble2
3ble2a
3ble2b

3ble2c

3ble2ad
3ble2e

3ble3

3blel

3blesS

3bleé

3blt

ARC L APR 72 9246
INTRODUCTION TO L1O

Rules are terminated by a Semicolon (;). 3bleg

L10 Programming Guide section 1 /[vage 9]

ARC

L APR 72 9246

INTRODUCTION TO L1O

DEFINITIONS

identifier

a symbolic name used to identify procedures, executable
statements, and variables, (When used to identify
exXxecutable statements, identifiers are referred to as
labels.) In L10 identifiers consist of any number of
lowercase letters anda/or digits the first of which must
be a letter,

dy

label

an executable statement identifier enclosed in
parentheses and followed immediately by a colon,

variable

anh identifier which represents a quantity whose value
Wwas previously defined, is not vet defined, or may
change through the course of the program. 110 variables
must be explicitly defined in program declaration
statements, in procedure argument lists or LOCAL
statements, or must be available as NLS globals,

indexed variable

a hulti-element variable or array. L1l0 permits arrays
of one dimension only.

global

pertaining to a variable whose address in memory is
known and accessible throughout all parts of a program,
Global variables may be declared in a program or be NLS
globals, which the NLS environment defines and which are
valid for any 110 program, Through the compiler's
knowledge of the correspondence between the identifier
and the memory address (contained in the system symbpol
table), the contents of the memory cell may be changed
by program instructions,

local

pertaining to a variable whose address in memory is
known only to a specific portion of a proegram, i.e.,
local to a procedure,

L10 Programming Guide Section 1 [page 10/J

3c

3cl

3cla

3¢c2

3c2a
3c3

3¢3a
3ch

3cha

3¢5

3cSa

3cé

3céa

ARC L4 APR 72 9246
INTRODUCTION TO L1O

constant

a program element whose value remains unchanged through
the programming process, A consStant may be a number or
literal text (string).

string

a variable or constant consisting of any number of
characters enclosed in double quotation marks or a
single character preceded by a single quotation mark.

comments

information enclosed in percent signs (%) which may
appear anywhere in the program and are ignored when the
program is compiled and executed,

expression

in general, any variable, constant or combination of
these joined by operators. L1lO also provides some
special expression constructions that are peculiar to
L1O. An expression always has a Vvalue,

statement
the basic unit of L10 procedures, L10 statements may
consist of many parts: expressions, L10 reserved words,
other statements, etc. Unlike expressions, statements
do not necessarily have values, L1l0 statements may be
labeled or unlabeled,

execute

to0 carry out an instruction or "run" g vprogran.

3¢7?

3c7a
3cé

3c8a
3e9

3¢cSa

3¢10

3¢l0a

3cll

3clla
3¢cl2

3ecl2a

L10 Programming Guide Section 1 [page 11]

ARC 4 APR 72 9246
PROGRAM STRUCTURE AND PROCEDURES

Section 2. PROGRAM STRUCTURE AND PROCEDURES

I
Introduction ha
The structure of an L10 program 1s ALGOL like in its block
arrangement. The formal Syntax equations for the structure
of L10 user programs described below are: hal
program = header $parts "FINISH"; hala
header = "PROGRAM" ID; halb
Where ID is the identifier of the first procedure to
be executed. halbl
parts = procedure / declare; halce
procedure = '(ID ') "PROCEDURE" ['(arglist ')J] ';
body; hald
arglist = ID $(', ID); hale
body = half
$("LOCAL" locd '; 7/ "REF" ialist ';)
labeled $('; labeled) "END." ; halfl
labeled = ['(ID");"]statement; pale
idlist = ID #(',ID); halh
declare = (decl/ext/equ/regdec/recordspgdaec/refd) ';; hali
decl = "DECLARE" ["“"EXTERNAL"J halj
(field / string / tp / stores / items); haljl
locd = alk
"STRING" 1str 3(', 1lstr) /
"TEXT""POINTER" idlist /
loco $(', loco); : halkl
1lstr = ,ID '[NUM ']; hall

110 Programming Guide Section 2 [page 13]

ARC 4 APR 72 92146
PROGRAM STRUCTURE AND PROCEDURES

NUM gives the maximum length of the local string
being declared 4alll

loco = ,ID ['[.NUM ']]; halm

Local declaration of an array of NUM words or a
simple variable halml

110 Programming Guide Section 2 [page 1)

ARC L4 APR 72 92k6
PROGRAM STRUCTURE AND PROCEDURES

USER PROGRAM STRUCTURE Lb

A user program in the NLS environment consists of various
procedures and declarations that are prefaced and followed

by statements that define the boundaries of the program's

text, These elements of the L10 program, which must be

arranged in a definite manner with strict adherence to

syntactic punctuation, are: hbl

The header - ‘ ibla

a statement consisting of the word "PROGRAM" followed

by the ID of a procedure in the program. (Progranm

execution will begin with a call to this procedure,)

No punctuation occurs between the header and the

progranmn pody, holal

The boay = Lblb
consists of any number of the following in any order: Lblbl

declaration statements which specify information
about the data to be processed by the procedures
in the program and cause the data identifiers to
pe entered into the program's symbol table. 4blbla

procedures which specify certain execution tasks.
Each procedure nmust consist of - kblblb

the procedure identifier enclosed in

parentheses followed by the worada "PROCEDURE"

and optionally an argument l1list containing

names of variables that are passed by the

calling procedure for referencing within the

called procedure, This statement must be

termingted by a semicolon, Lblblbl

the pody of the procedure which may consist of
LOCAL, REF, and/s/or statements which may
optionally be labeled, hblblb2

LOCAL is used for declaring data which is to be
used only within the current procedure, 4blblb3

REF specifies that the named data elments

contain references to other data and when used,

the referenced data itself will actually bpe

used., Lblblbl

L10 Programming Guide Section 2 [page 15])

ARC L4 APR T2 9246
PROGRAM STRUCTURE AND PROCEDURES

The procedure terminal statement which consists
of the word "END" followed by a period (.). hblblb5s

The program terminal statement which consists of the
word "FINISH", Lble

L10 Programming Guide Section 2 [page 16)J

ARC L4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

Section 3, VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

Introduction Sa

This section contains a discussion of the basic elements of

the L10 language which when combined with the L10 reserved

word commands d4discussed in the next section, are the

building plocks of the L10 statements and hence of L10O

programs, 5al

VARIABLES 5b

Five types of variables are described in this document:
global, local, referenced, unreferenced, and text pointers, 5bl

GLOBAL VARIABLES 5pb2

A global variable is represented by an identifier ana

refers to a cell in memory which is known and accessible
throughout the program. Global variagbles are defined in

the program's declaration statements or in the NLS

system environment., 5b2a

A global variable may be indexXed, il.e., declared as an
arrayY. In this case the user must specify the number of
elements of the array by following the ID with an
expression in square brackets, For example, in a
declaration statement sam/l0] specifies an array of 10
elements, In an expression however, sam[l0] specifies
the tenth element of the array Ssan. . 5b2b
LOCAL VARIABLES 5b3

A local variable is represented by an identifier and

refers to a cell in memory which is kxnown and accessible

only to the procedure in which it appears, Local

variables must appear in a procedure argument list or be
declared in a prodecure's LOCAL declaration statement, Eb3a

Local variables in the different procedures may have the

same identifier without conflict. A global identifier

may not be declared as a local identifier and a

procedure identifier may be used as neither, In such

cases the ID is considered to be multiply defined and an

error results. 5b3Db

110 Programming Guilde Section 3 [page 17]

ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

A local variable may be indexed, i.e,, declared as an

array. 1In a local array declaration the user must

specify the number of elements of the array by following

the ID with an expression in square brackets, For

exXample, odd/6] specifies an array of 6 elements, 5h3c

REFERENCED VARIABLES S5bl

A variable which represents a pointer to something

rather than the thing itself may be passed as an

argument to a procedure, 1If, in the called procedure,

one wishes to access the data referenced by the pointer,

the pointer identifier may be declared to be a reference

using the REF construction. Sbha

A pointer to a cell in memory may be passed by a

calling procedure., A convenient way to access the

contents of the cell is to declare the variable to be
"referenced" in the procedure through the use 0of the

"REF" construction. . 5bual

If a variable has been REF'd, within the scope of the
reference (usually a procedure in which it occurs,

although a variable may be REF'd through an entire

file if desired), whenever the variable is used, that

which is pointed to will actually be used. Fbha?

UNREFERENCED VARIABLES 5b5

If it is desired to use again a pointer to a variable
which has been REF'd, one may "unref" it by prefacineg
the relevant ID with an ampersand (&), SbsSa

TEXT POINTERS ' : S5bé

A text pointer is an 1L10 feature used in string

manipulation constructions. It is a multi-word entity

which provides information for pointing to particular

locations within text whether free standineg strings or

strings whieh contain the text for an NLS file

statement., A text pointer consists of a string

identifier and a character count., A string may be a

declared string, literal string, or a string which

contains text of an NLS statement or an NLS file 5béa

L10 Programming Guilde Section 3 [page 18]

ARC L APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

The texXt pointer points between two characters in a
statement or string. BY putting the pointers between
characters a single pointer can be used to mark both

the end of one substring and the beginning of the

substring stgrting with the next character thereby
simplifying the string manipulation alegorithms and

the way one thinks about strings. Bpéal

L10 Programming Guide Section 3 [pare 19)

ARC L4 APR 72 9246

VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

OPERATORS

L10 Programming guide

Logical operators

Every numeric value also has a logical value., A numeric
value not equal to zero has a logical value of true; a
numeric value equal to zero has a logical value of
false,

Operator Evaluation
- de 0w wf = Tl L rLrY
OR a OR b = true if a = true or b = true
z false if a = false and b = false
AND a AND b = false 1f a = false or b = false
= true if a = true and b = true
NOT NOT a = false if a = true

= true if a = false

Relational Operators

A relational operator is used in an expression to
compare one quantity with another. The expression is
evaluated for a logical value., If true, its value is 1;
if false, its value is O,

Operator Meaning Example
- R w uwm B o W - h U ey - wn 0 g 0 o -
= equal to L+l = 3+42 (true, =1)
not equal to 6#8 (true, =1)
< less than 6<8 (true, =1)
<= less than or
equal to 8<sé6 (false, =0)
> greater than 3>8 (false, =0)
s greater than or
equal to 8>=6 (true, =1)
NOT may precede any
other relational
operator 6 NOT > 8 (true, =l)

Section 3 [page 20)

5¢
5cl

S5cla
5clal
Sc1a27
5cla3

5clal
5c2

Sc2a

5c2al
5ec2a?2
5e2a3

S5c2al

5c2a5b

5c2ab

5¢2aT7

5c2a8

ARC 4 APR 72 92Lh6
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

Interval operators
The interval operators permit one to check whether the
value of a primitive falls in or out of a particular
interval.
IN intrel
OQUT intrel %equivalent to NOT IN%
intrel = ('(/7 '[) opexp ', opexp ('] /7 '))
The opexps are values separated by operators against
which the operand is tested to see whether or not it
lies within (or outside of) a particular interval, Each
side 0of the interval may be "open" or "closed", Thus
the values which determine the boundaries may be
included in the interval (by using a square bracket) or
exXcluded (by using parentheses).
Example:
x IN [1,100)
is the same as
(x >=1) AND (x ¢ 100)

Arithmetic operators

Operator Meaning
- rmeame-
unary + positive value
unary = negative value
+ addition
- subtraction
* multiplication
/ integer division (remainder not saved.)
MOD a MOD b gives the remainder of a / b

5c3

5c3a
5e3al
5¢c3a2

5e3a3

Se3p
5¢3bl
Bc3bla
5¢3blb
5e3blce
S5cl

Sclha
S5chb
Scice
Scua
Sche
Schf
Scur
Schkh

L10 Programming Guide Section 3 [page 21]

ARC) APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

oV a .VDb = bit pattern which has 1's wherever
either an a or b had a 1 and O elsewhere, Schi

X a X b =2 bit pattern which has 1's wherever
either an a had a 1 and b had a 0, or a had
a 0 and b had a 1, and O elsewhere. Sclhj

oA a «A b 3 pit pattern which has 1's wherever
both a and b had 1's, and O elsewhere. Schk

L10 Programming Guide Section 3 [page 22)

ARC L4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

PRIMITIVES 54

Primitives are the basic units which are used as the
operands of L10 expressions, There are many types of
elements that can be used gs L10 primitives; each type
returns a value which is used in the evaluation of an

expression, 541
Each of the following is a valid primitive: 5d2
variable = 5d2a
any valid variable identifier 542al
procname args - 542b
a procedure call with argument list 542pl1
variable '« exp = 5d2¢
an assignment statement ' 5d42cl
pointer - 5d42d
a pointer, possiply a text pointer or a reference to
any other type of array 512dl
literal - 5d2e
a numeric constant or character constant 542el
string = '# stringname '% / .SR; 542f
It is possible to compare Varigble or literal
strings. 5d2f1
charclass - 5d2¢g
provides a simple way to test the common classes of
characters; described in detail below 542¢1
"MIN" '(exp $(', exp) ')
"MAX" '(exp $(', exp) ') 5d2h
select the minimum or maximum, respectively, 0f the
values of a list of expressions. 5d2hl
"READC" = 5421

110 Programming Guide Section 3 [page 23]

ARC) APR 72 92146
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

a character is read from the current character
position and in the direction as set by the last
scan, This facility is describped later in this
document under string manipulation.
"CCPOSY =
the value of the index of the character to the right
of the current character position, This facility is
described later in this document under string
manipulation,
"FIND" stringstuff =
used to test text patterns and load text pointers for
use in string construction (see the STRING
MANIPULATION section); return the value TRUE or FALSE
depending on whether or not the string tests within
it sucoeed.
"POS" posrel -
may be used to compare two text pointers
Procedure Calls
when a procedure call is used as a primitive, the value
is that of the leftmost result returned oy the
procedure.
prochname args
Where
procname =
ID, a procedure identifier
args =
'([exp (', exp)] [': var $(', var)] ');
exp =
any valid L10 expression., A Set of expressions

separated by commas constitute the argument 1list
for the procedure,

L10 Programming Guide Section 3 [page 2U4]

5d2i1
sd2]

£423j1

5d2k

5d2k1l
5a21
5d211

5d3

5d3a
5d3al
5d3b
543bl
5d3bla
543b2
5d3b2a

5d3b3

Ed3b3a

ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

var = 5d3bk

any variable. All but the leftmost variables are
used to store the results of the procedure, 5d3blka

The argument list consists of an arbitrary number of
expressions separated by commas. It is not necessary

for the number of arguments 10 equal the number of

formal parameters for the procedure (altnough this is

generally a good idea). The argument expressions are

evaluated in order from left to right, 5d3c

Following the arguments there may be a list of locations
for multiple results to be returned, The 1list of
variables for multiple results is separated from the
1ist of argument expressions by a colon. The number of
locations for results need not equal the numper of
results gctuglly returned, If there are more locations
than results, then the extra locations get an undefined
value, If there agre more results than 1ocations, the

extira results are simply lost. 5434

Example: 54341

1f procedure p ends with tne statement 54342

RETURN (a,b,c) 5d342a

then the statement 5d3d3

q ¢ p(:r,s) 5d3d3a

results in (q,r,s) ¢ (a,b,c). o 5434l

Assignments | | 5dk

An assignment can be used as a primitive, Sdha
The form a « b has the effect of storing b into a and

has the value of b as its value, 5daub

Pointers 545

A 8tring or an identifier preceded by a dollar sign (8)
represents a pointer to that string or the variable
represented by the identifier. 5d5a

pointer = '$ (ID / SR) 545al

L10 Programming Guilde Section 3 [page 25)

ARC) APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

Literals 5dé
A literal is a constant which returns a numerical value,

A literal may pe any of the following: 5déa

NUM 5d6al

"PRUE" 5déa?

"FALSE" 546a3

char Sdeal

There are several ways in which numeric values may bpe
represented, A Sequence of digits alone or followed by
a D i8 interpreted as base ten., If followed by a B then
it is interpreted as base eight, A scale factor may be
given after the B for octal numbers or after a D for
decimal numbers. The scale factor is equivalent to

adding that many zeros to the original number, 5d6b
EXamples: 5d6bl

é4 = 100B = 1B2 5débla

1yyB = 100 = 1D2 5d6blb

The words TRUE and FALSE are equivalent to the numbers 1
and O resgpectively. 5déc

characters may be used as literals as they are
represented internally by numeric values., The following

are synonyms for commonly used characters: 5déd
SRl = any single character preceded by an apostrophe
e.g. 'a represents the code for the character
a and is equal to 1lhlB. 546dl
"ENDCHR" =endcharacter as returned by READC 54642
"SP" =gpace 54643
"EOL" =-Tenex's version of CR LF 5464k
"ALT" =Tenex's version of altmode or escape.(=338) 54645
"CR" =carriage return 54646

L10 Programming Guide Section 3 [page 26]

ARC L4 APR 72 92146

VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

"LF" =line feed 54647
"TAB" =tab 53648
"BC" =backspace character 546d9
"BW" =backspace word 5d6dl0
"C." =center dot 546411
CA =Command Accept 546412
CD =Command Delete; 5d6d413
Character classes 547
charclass = Sd7a
"CHI! /
%any character% 547al
"yLp" /
%uppercase letter or digit% 5d7a2
"LLD" /
%lowercase letter or 4igit% Ed7a3
"LDII /
%lowercase or uppercase letter or digit% 5d7al
"NLDII /
%not a letter or digit% 547a5
IiULOl /
%uppercase letter% 547aé
"LLII /
%lovwercase letter% 547a7
"Lll /
%lowercase or uppercase letter%® £47a8
”Dll /
%4igit® Sd7a9
IIPT" /
%printing character% 54d7al10

L10 Programmineg Guide

Section 3 [page 27]

ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

NNP P
Np%nonprinting character%; 5d7all
Example: 5d7al2
char = LD 5d7al2a

is true if the variable "char" contains a value
which is a letter or a digit. 5d7al2b
MIN and MAX 548

These primitives return the lowest/highest value
expression in the expression list specified. 5d8a

Example; 1f a = 3, b = 2, ¢ = I at time MIN and mAX
called, then MIN(a,b,c) = b (=2) and MAX(a,b,c) = ¢
(=h). 5d8al

READC , 5d9

The primitive READC is a special construction for
reading characters from NLS statements or strings. 549a

A character is read from the current character

position in the scan direction set by the last CCPOS
statement or string analysis FIND statement or

expression. This feature is explained in detail

later in this document, under String mManipulation. 5d9al

Attempts to read off the end of a string in either
direction result in a special "endcharacter" being

returned and the character position is not noved.

This endcharacter is included in the set of

characters for which system mneumonics are provided

and may be referenced by the identifier "ENDCHR", 5d9a?2

Example: 54%9a3
to sequentially process the characters of a stiring 5d%9a3a

CCPOS #Sstr+:
UNTIL (char ¢ READC) = ENDCHR DO process{char). 5d9a3b

(Note: READC may also be used as g statement if it is
desired to read and simply discard a character). 5d9al

L10 Programming Guide Section 3 [page 28]

ARC 4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

CcCcPoOS 5410

When used as a primitive, CCPOS has as its value the

index of the character to the right of the current

character position. CCP0OS is more commonly used to set

the current character position for use in text pattern
matching., This is discussed in detail in section 6 (7b)

below. 5d410a

Examples: 5d10al
If str = "glarp", then after CCPOS #str#, the
value of CCPOS is 1 and after CCPOS SE(#str#) the
value of CCPOS 1s 6 (one greater than the length
of the string). 5dl0ala

To sequentially process the first n characters of
a string (assumed to have at least n characters) 5dl0alb

CCPOS #8tr#*;

UNTIL CCPOS > n DO process(READC). 5d10alc

Text Pointer Comparisons 5d11
posrel = 5dlla

pos ["NOT"] ('s / '# / ">=" / "C=" / '> / '<) pos; 5dllal

This may be used to compare two text pointers. 5dlla?2

The pos is a character position pointer (text
pointer) in a form discussed in (7b) below. 5d1la2a

If the prointers refer to different statements then

all relations between them are false expect "not

equal" which is written '# or "NOT" 's, If the

pointers refer to the same statement, then the truth

of the relation is decided on the basis of their

location within the statement with the convention

that a pointer closer to the front of the statement

is "less than" a pointer closer to the end. 5dl1la3

110 Programming Guide Section 3 [page 29]

ARC L APR T2 9216
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

EXPRESSIONS se
Introduction Sel

An expression is any constant, variable, special
eXpression form, or combination of these joined by
operators and parentheses as necessary to denote the
order in which operations are to be performed, Spvecial
L10 expressions are: the FIND expression which is used
for string manipulation; the conditional IF and CASE
eXpressions which may be used to give alternative vzlues
10 expressions depending on tests made in the
expressions, Expressions are used where the syntax
requires a value. while certain of these forms are
similar syntactically to L10 statements, when used as an
exXpression they always have values, Sela

ORDER OF OPERATOR EXECUTION== BINDING PRECEDENCE se2

The order of performing individual operations within an
equation is determined by the heirarchy of operagtor

execution (or binding precedence) and the use of

.parentheses, 5e2a

operations of the same heirarchy are performed from left
to right in an expression, Operations in parentheses

are performed before operations not in parentheses. 5e2b

The order of execution hieragrchy of operators (from

highest to lowest) is as follows: Se2c
unary =, unary + Se2cl
A : Se2c¢c?2
oV, «X ' ’ Se2c3
*#, /, MOD Se2ch
ty, = Se2c5
relational tests (e.g., >z, <=, >, <, =, #, IN, OoUT) 5e2c¢cé
NOT relational tests (e.g., NOT >) Se2c7
NOT Ee2c8
AND b5e2c9
OR Fe2¢cl0

L10 Programming Guide Section 3 [page 30]

ARC L4 APR 72 9246
VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

CONDITIONAL EXPRESSIONS 5e3
IF Expressions Ke3a
IF testexp THEN expl ELSE exp2 5e3al

testexp is tested for its logical value. If testexp
is true then expl will be evaluated. If it is false,

then exp2 is evaluated. Se3a?2
Therefore, the result of this entire expression is

EITHER the result of expl of exp2. 5e3a3

Example: 5e3a3a

y ¢ IF x IN[1,3] THEN X ELSE L; Se3a3al

% if x = 1, 2, or 3 yeéXx; otherwise yei% 5e3a3a2

CASE Expression ‘ S5e3b

This form is similar to the above except that it

causes any one of a series of expressions to be

evaluated and used as the result of the entire

expression. S5e3bl

CASE testexp OF $(relist ': exp ';) "ENDCASE" exp

' Se3bla
relist s RELOP exp $(', RELOP exp): 5e3blb
Where RELOP = any relational operator 5e3b2

In the apbove, the testexp is evaluated and used with
the operagtor RELOPS and their respective exps in a
relist to test for a value of true or false. If true
in any instance the companion exp on the right of the
colon is executed and taken to be the value of the
whole expression, A value of false for a set of
relist tests causes the next relist in the CASE
expression to be tested against the testexp, If all
relists are false, the ENDCASE expression is taken to

be the value of the whole expression. Se3b3
Example: fe3b3a
CASE x1 OF Se3b3al

L10 Programming Guide Section 3 [page 31]

ARC L4 APR 72 92146

VARIABLES, OPERATORS, PRIMITIVES AND EXPRESSIONS

<{hes x1+1;

sl xX1+2;

=53 x1;
ENDCASE x1%2;

Value of X1 Value of Expression

4 6
5 5
2 3
6 12

STRING EXPRESSIONS

L10 also provides several expression forms which are
used for string manipulation and evaluation,
identical to the string manipulation statements
discussed in Section 6 of this document (7).
when using string manipulation statement forms as

exXpressions, parentheses may be necessary to prevent

ambiguities,

L10 Programming Guide Section 3 [page 32)

These are

Note that

Se3b3ala
5e3b3alb
S5e3b3alc
S5e3b3ala

5e3b3a2
Se3b3a3
S5e3b3alk
5e3b3a5
Se3b3aé

Sel

Selka

ARC 4 APR 72 9246
DECLARATIONS

Section 4. DECLARATIONS

Introduction éa

L10 declarations are necessary to provide information to
the compiler about the nature of the data that is to be
accessed, Declarations are non-executable. 6al

There are various types of declarations available; only the
most frequently used are discussed here: DECLARE, REF, and
LOCAL., 6a?2

Program level declarations (DECLARE amd REF) may appear

anywhere in the program, However, procedure level

declarations (LOCAL and REF inside a procedure) must appear

before any executable statements in the procedure. 6a3

GLOBAL DECLARATIONS ’ 6b

Variables specified in these declarations are global (i.e.,
outside any procedure) and may be used by all procedures in

the program, There are four versions depending on the type

of entity to be defined: scalars, arrays, strings, and

text pointers. The scalar, array, and string declarations

allow the user to initialize the value of the variable(s)
specified. 6bl

Declaring Scalar Variables é6b2

A scalar variables that is to be used throughout s
program must be declared in a declaration at the progranm
level, The quantity represented by the Scalar varigble
may be a numeric value, a string, or an address,
optionally, the user may specify the initial value of
the variable peing declared, If a scalar varilable is
not initialized at the program level, it should be
initialized in the first executed procedure in which it

appears, 6b2a
To declare a Scalar variable only: .Grab=zé 6b2al
"DECLARE" ID '; | 6b2ala

To declare and injtialize a scalar variable: 6b2a?2
"DECLARE" ID '= CONSTANT '; 6b2a2a

L10 Programming Guide Section 4 (pare 33]

ARC) APR 72 9246
DECLARATIONS

Where 1ID = the name of the variable being declared. é6b2a3

CONSTANT = éb2al
the initial value of ID. It may be any of the
following: 6b2ala
-2 numeric constant optionally preceded by a
unary minus sign (=) 6b2alal
=a strine enclosed in quotation marks éb2ajka?2

=another identifier (causing the latter's
address to be used as the value of the ID beine

declared) 6b2aia3

Examples: 6b2a5
DECLARE x13 %x1 is not initializeqd% 6b2aba

DECLARE x2=5; %xX2 contains the valueﬁs% 6b?asb

DECLARE x3="OUT";%x3 contains the word OUT% 6b2abc¢c

DECLARE xx=x1; %xx contains the address of x1% 6b2a5d
Declaring Array Variables 6b3

If the user intends to use any array variables
throughout the program, he must specify the numper of
elements of the array at the program level. Optionally,
he may specify the initial value 0f each element of the
array. If array values are not initialized at the
program level, they should be initialized in the first

exXxecuted procedure in which the array is used., 6b3a
TO declare an array variable only: 6n3al
"DECLARE" ID '[NUM '] '3 6b3ala

To declare and initialize an array variatvle: 6b3a2
"DECLARE" ID '=a!(CONSTANT $(,CONSTANT) ') '; 6b3a2a

where 1ID = the name of the variable being declared, 6b3b

NUM = the number of elements in the array
if the array is not being initialized. éb3c
L10 Programming Guide Section L [page 3iJ)

ARC 4 APR 72 9246
DECLARATIONS

CONSTANT = the initial value of each element of
the array. The number of constants
implicitly define the number of elements
in the array. They may be any of the
following:
-2 numeric constant optionally preceded by a
unary minus (=)
=a string enclosed in qQuotation marks
=another identifier (causing the
latter's address to be used as the
value of the ID being declared) 6b3d

Note: there is a one=to=one correspondence between the
first constant and the first element, the second

constant and the second element, etc. 6b3e

Examples: 6n3f

DECLARE sam/[10)}; 603f1
%declares an array named sSam containing 10

elements which are not initialized% 6b3fla

DECLARE numbs=(1,2,3); 6h3f2
declares an array named numbs8 containing 3

elements which are initialized such that: 6b3f2a

numbs = 1 6p3f2al

numbs(l) = 2 6b3f2a?2

numbs(2) = 3 _ 6p3f2a3

DECLARE motleys (10,words); | | | 6b3£3

declares an array named motley containing 2
elements which are initialized such that: 6b3f3a
motley = 10 6b3f3al

motley(l) = the address of the variable words 6éb3f3a2

110 Programming Guide Section 4 [vage 35]

ARC L4 APR 72 92146
DECLARATIONS

Declaring Many Scalars'and/or Arrays in oOne statement

one may avoid putting several individqual declarations of
items (i.e., several statements each beginning with the
word DECLARE) by putting items ana arrays to bpe
declared, initializeda or not, in a l1list in one statement
following a single DECLARE separated by commas and
terninated by a semi-colon.

Example:
DECLARE x, yl1l0]J, 2z = (1, 2, =5):
Declaring Strines

The DECLARE STRING enables the user to declare a global
string variable by initializing the string and/or
declaring its maximum character length, Any number of
strings may be declared in the same statement,

.

To declare a number of strings:
"DECLARE STRING" ID '/[NUM'J $(',ID'[NUM']) !';

To declare and initialize a number of strings:
"DECLARE STRING" ID'=STRING $(',ID'sSTRING)';

where ID = the name of the string being declared

NUM = the maximum number of characters
allowed for the string

STRING = a string constant enclosed in double
quotation marks. The length of this
string defines the maximum length of
the corresponding ID.

strings have two agssociated values, maximum length
and current length. when strings are simply
declared, maximum length i3 specified by NUM and
current length is 0; when strings are initialized in
a declaration statement, maximum length is equal to
current length,

These numbers may be accessed by sSpecifying the

name of the string followed by a period and the
letters M or 1 respectively.

L10 Programming Guide Section 4 [page 36/

6ok

ébla
éblhal
éblhala

6b5

6b5a
6b5al
é6b5ala
6b5a2
6bba2a

éh5a3

6b5al

6b5ab

éb5aé

é6bKaba

ARC L APR 72 92)6

DECLARATIONS
Examples: 6b5a7
DECLARE STRING 1lstring/l00]; é6bsaTa

declares a string named 1lstring with a maximum
length of 100 characters and a current length
of O characters é6b5a7al

DECLARE STRING message="RED ALERT".warns"WARNING",
help/50J; : 6b5a7b

declares three strings message, warn, and help
such that: 6b5a7bl

message has an actual and maximum length of
9 characters and contains the text "RED
ALERT" 6b5a7bla

warn has an actual and maximum length of 7
characters and contains the text "WARNING" 6éb5a7blb

help has a actual length of O and a maximum
length of 50 characters, i,e, help.M = 50
and help,L = O éb5a7blce
Declaring Text Pointers 6bé
The DECLARE TEXT POINTER declaration enables the user to
declare global variables as text pointers that are used
in string manipulation and construction, ébéba

"DECLARE TEXT POINTER" ID $(',ID) ' ' 6b6al

L10 Programming Guide Section 4 [page 37)

ARC L APR 72 9216
DECLARATIONS

REFERENCE DECLARATIONS é6c
Unlike the other declarations discussed here, the REF
statement does not allocate storage; it simply defines the
use of the variable(s) specified as references, é6cl
A variable which contains a pointer to something rather
than the thing itself may be passed as an argument to a
procedure, 1If, in the called procedure, one wishes to
access the thing itself, the pointer identifier may be
declared to be a reference using the REF construction, écla
If a variable has been REF'd, within the scope of the
reference (usually a procedure in which it occurs,
although a variable may be KEF'd through an entire
file if desired) when the variable is accessed as a
normal variable, the value of the cell being pointed
to is actually used. 6clal
Example: éclala
If x contains the address of v and x has been
REF'd, then: 6clalal
z €x; (=gz¢Y) 6clalala
X ¢ Z (syez) 6clalalb
This is equivalent (without REF'ing) to: 6clala?2
z «[X]; 6clala2a
[x] «z; : 6clala2b
Referenced variables may be "unreferenced" by preceding
their identifiers by the ampersand character "&".
Unreferencing a variable causes it to be interpreted as a
pointer. Thus, any variable name may serve a dual function
of pointing to an address a8 Well as designating the
contents at that address. é6c2
"REF" ID 8$(',ID) '3 éc2a
Local variables may be declared as references by a REF
declaration among declarations in a procedure (see below). é6c3

L10 Programming Guide Section 4 [page 38]

ARC L4 APR 72 9246
DECLARATIONS

LOCAL DECLARATIONS 64

The LOCAL declaration consists of several forms that are
equivalent to those of the global DECLARE forms except that
variables declared in a LOCAL declaration may be uged only
by the procedure in which they apprear, Also, LOCAL
declarations do not provide for the initialization of

variables, 6dl
Any LOCAL declarations must preéede the executable
statements in a procedure, 642
To declare a local Sscalar variable only: 6d2a
"LOCAL" ID '; éd2al
TOo declare a local array variable only: 6420
"LOCAL" ID '[NUM '] ', 6d2bl
Again 1ists of items separated by commas may be declared
locally. éd2c
TO declare a local string only: édaa
"LOCAL STRING" ID '[NUM') ‘('aID'INUM‘]) '3 6d2d1
To declare a local text pointers 6d2e
"LOCAL TEXT POINTER" ID $(',ID) '3 6d2el

L10 Programming Guide Section L [page 39)

ARC 27 APR 72 9246

STATEMENTS
section 5. STATEMENTS
7
ASSIGNMENT 7a
ASSIGN STATENMENT 7al

In the ASSIGN statement the expression on the right side

of the "e¢" is evaluated and stored in the variable on
the left side of the statement,

var 'e exp ':

wnere var = any global, local, referenced or
unreferenced variable,

MULTIPLEASSIGN STATEMENT
In the MULTIPLEASSIGN statement the expressions are
evaluated and the values pushed on a stack provided by
the system. Then the values are popped from the S8tack
and stored into the appropriate left hand side. The
order of evaluation of the expressions is left to right.
'(var $(', var) ') 'e '(exp $(', exp) ');

Where var = ainy global, local, referenced or
unreferenced variable.

Naturally, the numpber of expressions must equal the
number of var's,

Example:
(2, b) € (a+b, a=b)

the expression a+b is evaluated and stacked,

expression a=b is evaluated and stacked, the value of

a=b is vooped and stored into b, and finally, the
value of 3+b is poopped and stored into 3.

7ala

7alal

T7alb

a2

7a2a

7a2al

7a2b

7a2c

Ta2cl

7a2cla

T7a2c¢c2

L10 Programming Guide Section 5 [page 41]

ARC 27 APR 72 9246
STATEMENTS

DIVIDE STATEMENT To

The divide statement permnits both the quotient and
remainder of a division to he saved. The syntax for tne
divide statement is 35 follows: Tbl

"DIV" exp ', quotient ', remainder 7bla
The central connective in the expression must be '/.

Quotient and remainder are the identifiers in which the
respective values will be saved upon the division. Tb2

BLOCK Te

The BLOCK construction enables the user to group seversl
(labeled) statements into one syntactic statement entity,
A block construction of any length is valid where a

statement is required. 7cl
"BEGIN" $(statement ';) "END" Tcla
Where statement = any executable L1l0 statement, labeled
or unlabeled. Te2
Example: 7¢c24
BEGIN
aeb;
ced+5:
XXeyy
({nonoc) :de«a+c:
END ‘fe2al
is equivalent to: 7c2b
a¢b; Tc2bl
ced+5; Te2b2
XXeyy: T7c2b3
(nono) :dea+cy Tc2bl

but may be used in an instance in which the syntax
requires one Sstatement. (see, for example, the LOOP
constructon below.) 7c2c

L10 Programming Guide Section 5 [page 42]

ARC 27 APR 72 9216
STATEMENTS

CONDITIONAL 74

There are two types of conditional statements described
below== the common IF statement with optional ELSE and the
CASE statement, 741

IF Statement 742

This form causes execution of a statement (which mav be

a block) if a tested expression is true. If it is false

and the optional KELSE part is present, the statement

follovine the ELS® is executed, If no ELSE part is

present, control vasses to the statement immediately

following the IF statement. 742a

"IF" testexp "THEN" labeledstatement /"ELSE"
lateledstatement) 7d2al

testexp is tested for its logical value. If testexp is

true then the statement following the THEN will be

executed, Tf it is false and an optional ELSE part is

present, then the statement following the ELSE will be
executed; otherwise the next statement after the IF

statement will be executed, 7d2b

CASE Statement 743

This form is similar to tne above except that it causes
any one of a series of statements to be executed
dependineg on the result of a series of tests. 7d3a

CASE testexp OF $(relist ': labeledstat 'j;)
"ENDCASE" labeledstat '3 T7d3al

relist = RELCP exp $(', RELOP exp); 7d3a2

Wwhere RELOP = any relational operator (>=, <, =, IN,
etc.) 7d3b

The CASE=statement provides a means of executine one

statement out of many. The exXpression after the word

"CASE" is evaluated and the result left in a register,

This is used as the left=hand side of the binary

relations at the beginnine of the various cases,

Seversl relations mzy be listed at the start of a single
statement; the statement will be executed i1f any of the
relations is satisfied. If none of the relations is

satisfied, the statement following the word "ENDCASE"

will be executed. 743¢C

110 Programming Guide Section 5 [page L43]

ARC 27 APR T2 9246
STATEMENTS

Examnle: 7d43cl
CASE ¢ OF .
= 3,4d: X ¢ Yy3 %Executed if ¢ = a or ¢ < 4%
> br (x, y) € (x+y, X=¥); %Executed if ¢ > b%
ENDCASE v e X3 %Executed otherwise% 7d3¢cla

L10 Programming Guide Section 5 [page 4L/

ARC 27 APR 72 9246
STATEMENTS

ITERATIVE
The statements described here enable the user to alter the
normal sequence of execution within a procedure and/or to
cause the repeated execution of a set of statements until
some condition is met.
LOUP STATEMENT
The statement following the word "LOOP" is repeatedly
eXecuted until control leaves by means of some transfer
instruction within the loop.
"LOOP" statement;
where statement = any executable L1l0 statement
(including a block), labeled or
unlabeled.
Example:
LOOP
BEGIN
a € 2 # a3 + 1;
b ¢« a + b
IF a > 200 THEN EXIT:
END:
It i8s assumed that a and b have been initialized

pefore entering the loop, The EXIT construction
is descriped bhelow,

Te

Tel

Te2

Te2a

T7e2al

7e2b
7e2bl
Te2bla
7e2blal
Te2bla?2
7e2bla3
7e2blal

7Te2blab

7e2blb

110 Programming Guide Section 5 [page L5]

ARC 27 APR 72 92L46
STATEMENTS

WHILE...DO STATEMENT Te3

This statement causes a statement (or block of

statements) to be repeatedly executed as long as the

expression immediately following the word WHILE has a

logical value of true or control has not pneen passed out

of the DO loop by some explicit transfer, 7e3a

"WHILE" exp "DO" statement Te3al

eXp is evaluated and if true the statement following the
word DO is executed:; eXp 1s then reevaluated and tne
statement continually executed until exp is false, In
this event control will pass to the next sequential

statement. 7e3b
Example: T7e3bl
WHILE alpha DO 7e3bla

BEGIN Te3blal

ZYZO ¢ b+Db: Te3bla2

alpha ¢ alpha=1; Te3bla3

END: Te3blal

If alnha has a value of +5 (logically true) when this
statement is executed, the statement following "DO"

will pe executed 5 times as alpha is decremented by

one each time the statement is executed. Once alpha

is equal to zero (false) the next statement will be
eXecuted, 7e3b2

L10 Programming Guide Section 5 [page L46]

ARC 27 APR 72 9246
STATEMENTS

UNTILeoe DO STATEMENT Tel
This statement is similar to the WHILE...DO statement
except that statement(s) following DO are executed until
eXp 1s true, As long as eXp has a logical value of
false the statement(s) will be executed repeatedly. 7eha

"UNTIL" exp "DO" statement Tehal

110 Programmineg Guide Section 5 [page u7J

ARC 27 APR 72 9246
STATEMENTS

DOeoe « UNTIL/WHILE STATEMENT 7es
This statement is like the preceding statement, except
that the logical test is made after the statement has
been executed rather than before, 7eb5a
"DO" statement ("UNTIL" / "WHILE") exp: 7e5al

Tnus the specified statement is always executed at least
once (the first time, pefore the test is made). Te50

L10 Programming Guide Section 5 [page 48]

ARC 27 APR T2 9246
STATEMENTS

FOk STATEMENT - Teéb

The FOR statement causes the revreated execution of the
statement following "DO" until a specific terminal value
is reached. 7eba

"FOR" var ['e expl] ("UP" / "DOWN") [exp2]
"UNTIL" (relop) exp3 "DO" statement: Tebéal

Where var = the variable whose value in incremented/
decremented egch time the FOR statement

is eXecuted Teéb
expl = an optional initial value for var. If
eXxpl is not specified, the current value
of var is used, Teéc
exp2 = an optional value by which var will be
incremented (if Up specified) or
decremented (if DOWN specified). If exp2
is not specified, a value of one will
be assumned. Teéd
relop = any relational operator Tebe
eXp3 = when combhined with relop determines whether
or not anotner iteration of the FOR statement
will pne performed, Teéf
Note that exp2 and exp3 are recomputed on each
iteration. Teég
Example: ' 7eéh
FOF k € n UP J UNTIL > m#3 DO x[K] ¢ K} Teé6nl
is eguivalent to T7e6h?2
K ¢ n;

GOTO test:

(loop): k¥ « k + 3

(test): IF k > m#3 THEN GOTO out;

x[k] « K:

GOTO loop:

(out.) s Teéh3

1L10 Programming Guide Section 5 [page L49]J

ARC 27 APk 72 9246
STATEMENTS

TRANSFEk 7f

These statements in eeneral cause the unconditional
transfer of control from one part of a program to another

part. 7£f1
PROCEDURE CALL STATEMENT Tf2

This statement is used to direct program control to the
procedure specified. 7f2a
procname args 7£f2al
Where procnane = ID, a procedure identifier 7f2b
args = '([exp &(',exp)] (': var af',var)]'): 7f2¢

exp = any valid L10 expression. The set of

expressions separated by commas is
the areument list for the procedure. 7f£24

any variable. The set of variables

is used t0 store the results of the

procedure if there is more than one

result, 7f2e

var

The argument list consists of an arbitrary number of
expressions separated by commas. It is recommended

(although not necessary) for the numper of argumenis to

equal the number of formal parameters for the procedure,

The argument expressions are evaluated in order from

left to rieht. 7f£2f

Folloving the arguments tnere may be a list of locations
for multiple results to be returned, The list of
variapbles for multiple results is separated from the
list of argument exoressions by a colon. The number of
locations for results need not equal the number of
results actually returned, If there asre more locations
than results, then the extra locations get an undefined
value., TIf there are more results than locations, the

eXtra results are simply lost. 7£2¢
Examples T£2¢l

If procedure p ends with the statement T7f2g2
RETURN (a,b,c) 7£2g2a

L10 Programmine Guide Section 5 [page 50]

ARC 27 APR 72 9246

STATEMENTS

then the statement 7£2¢3

q ¢« pl:r,s); 7f2g3a

results in (q,r,s) ¢ (a,b,c). T€2eh
A procedure call may Just exist as a statement alone

without returning a value: T£2¢5

z()s 7f2g5a

L10 Programming Guide Section 5 [vage 51)J

ARC 27 APR 72 G246
STATEMENTS

RETURN STATEMENT

This statement causes a procedure to return an arbitrary
number of results. 7The order of evaluation of results
is from left to rignt.

"RETURN" ['(exp $(', exp))]
GOTO STATEMENT

Goto provides for unconditional transfer of control to a
new location,

llGo" "TOII ID
The ID is the namne of a label elsewWwhere in the progranm.
EXIT STATEMENT

This construction provides for forward branches out of
CASE or iterative statements. The optional number (NuUM)
specifies the number of lexjical levels of CASE or
iterative statements respectively that are to be exited,
If a number is not eiven then 1 is assumed., All of the
iterative staterents (LOOP, WHILE, UNTIL, DO, FOR) can
be exited by the EXIT LOOP construct,

"EXIT® ("CASE" [NUM] / ["LOOP"] [WNUM])
EXIT and EXIT LOOP have the same meaning.
Examples:

LOOP
BEGIN
IF test THwN EXIT;
%tne EXIT will branch out of tne LOOPY%

END:

L10 Programming Guide Section § [page 52]

T£3

7f3a
T£f3al
Tfh

7fha
Tfhal
T7fub

Tt5

7f5a
T7f5al
7£5b

7£5p1

7f5bla

ARC 27 APR 72 9246

STATEMENTS
UNTIL something DO
BEGIN
WHILE testl DO
BEGIN
IF test2 THEN EXIT:
%Zthe EXIT will branch out of the WHILE%
S ®ooeges
END;
END: 7£5blb

UNTIL something DO
BEGIN
WHILE testl DO
BEGIN
IF test2 THEN EXIT 2;
%the EXIT 2 will branch out of the UNTIL%
END;

ENDs 7£5blc

CASE exp OF
=something:
pEGIN
IF test THEN EXIT CASKE;
%the EXIT will branch out of the CASE%
END; :
®6 g000 00 7f5b1d

L10 Programmineg Guide Section 5 [page 53]

ARC 27 APk 72 9246
STATEMENTS

REPEAT STATEMENT 7£6

This construction providges for backward branches to the

front of CAZ: or conditional statements. The opntional

namper {(NUM) nis the same meaning as in the EXIT

statement. 7féa

"REPEAT" ("LOUP" [NuM]J / ["CASE"] [NUM] ['(exD ')]) T£6al

If an expression is given with the REPEAT CASE, then it

is evzluated ara used in place of the expression given

at the head of the specified CASE statement. If the

exXpression is not riven, then the one at the head of the

CASE stateunant is reevaluated, 7£éDb

It is worth notine tihat the availarcility ~f EXIT and
REPEAT staterents nas resulted in clearer programs which
are generally witnout lapbels and GOTO's. The EXIT and
REPEAT revlace GOTO's to the start or end of the most
commor comvound formws. By providing implicit labels in
these positions for use with EXIT or EkePEAT, explicit

labels are avoided, 7f£6c
REPEAT and S~ FEAT CASE have the same meanine. 7f6d
Examples: 7fée

CASE expl OF

=something:
REGIN
> ® g e uw 6w
IF testl THEN REPEAT;
%ZREPEAT with a reevaluated expl%
IF test2 THEN REPEAT(exp2):
%RFPFAT with exp2%
END:

® % e e " g e e 7f6el

LOCP
BEGIN
IF test THEN kePrAT LOOP:
%REPEAT LOOP will go to the too of the LOOP%

ERD; Tf6e2

L10 Programming Guide Section 5 [page 54J

ARC 27 APR 72 9246

STATEMENTS
NULL STATEMENT TE
The NULL statement may pe used as a convenience to the
programmer, It is a no=-op,. Tel
null = "“NULL";
7gla

L10 Programming Guide Section 5 [page 55]

ARC U4 APR 72 9246
STRING TEST AND MANIPULATION

Section 6, STRING TEST AND MANIPULATION

INTRODUCTION 8a

The following special statements allow for complex strine

analysis and construction. The three pasic elements of

string manipulation discussed here are the current

Character Position (ccpos) and text pointers which allow

the user to delimit substrings within a string, patterns

that cause the system to search the string for specific
occurrences of text and set up pointers to various textual
elements, and actual string construction, 8al

The content analysis facility of NLS may be invoked
using similar search patterns without the
pointer=-loading capabilities. 8ala

CURRENT CHARACTER POSITION (CCPOS) AND TEXT POINTERS 8b

The Current Character Position is similar to the TNLS CM

(current marker) in that it specifies the location in the

string at which subsequent operations are to pbegin, All

L10 string tests start their search from the current

character position. 8bl

"CCPOS" (pos / '% stringname ' ['[exp ']]); 8bla

pos is8 a position in a statement or string that may be
exXxpressed as any of the following: 8p2

A previously declared and Set text pointer 1D i 8b2a
The Scanh direction over the text will remain
unchanged, The direction of scanning may be set
implicitly using the string front of string end
facilities or explicitly using the direction setting
"K" or ">»" in an earlier pattern, (See "Other
parameters” under PATTERNS below.) 8b2al
string Front =« 1left of the first character 8p2b
"SF(" stspec ') : 8b2bl

When SF is specified scanning will take place from
left to right within the string. 8b2b2

110 Programming Guide Section 6 [page 57]

ARC I APR 72 9246
STRING TEST AND MANIPULATION

"stapec" 1s a string specification that may be
eXpressed as a previouly declared text pointer ID or
previously declared string ID enclosed in asterisks,

string End =~ right of the last character
"SE(" stspec ')

when SE is specified scanning will take place from
right to left within the string.

A text pointer points between two characters in a strine.

The variable holding a text pointer is declared by a
DECLARE TEXT POINTER or LOCAL TEXT POINTER statement.

There is a special declaration for these because text
pointers require more than a single word of storage. The
identifier used as a text pointer may be such a variable or
a reference, defined by a REF statement, to such a
variable, 3

If a text pointer is given after CCPOS, then the character
position is set to that locatione.

If a stringname ('% stringname'#) is given after CCPOS,
then the position is moved to that string. The scan
direction is set left to right.

Indexing the stringname (by specifying '[exp 'J) simply
specifies a particular position within the string. Thus
#3Lr* /3] puts the current character position between the
second and third characters of the string "str", If the
scan direction is left to right, then the thira -
character wWill be read next. If the direction is right
to left, then the second will be read next.

If no ingqexing is given, then the position is set to the

" left of the first character in the string. This is
equivalent to an index of 1.

L10 Programming Guide Section 6 [page 58J]

50203
8b2¢c

8b2cl

8§b2¢c2

6b3

8bk

8b5

8bé

8bba

8béDb

ARC L APR 72 9246
STRING TEST AND MANIPULATION

PATTERNS = the FIND statement and CONTENT ANALYSIS patterns &c
FIND Statements and Expressions 8cl

This statement specifies a string pattern to be tested

and text pointers to be manipulated and set starting

from the current character position, If the test

succeeds the character position is moved past the last
character read., If the test fails the character

position is reset to the position prior to the test and

the values of all text pointers set within the pattern

will be reset, 8cla

"FIND" $stirentity: 8clal

FINDS may be used as expressions as well as

free-8tanding elements, If used as an expression, for

exXxample in IF statements, it has the value "TRUE" if all
pattern elements within it are true and the value

"FALSE" if one of the elements is false. 8clb

content Analysis Patterns 8c2

content analysis patterns are simply string pattern

entities followed by a semi-colon. when placed in an

NLS file and "compiled" using the Execute Content

AnalyzZer command, the pattern may be invoked usine a

special viewspec to search through an NLS file for

statements satisfying the patterns. (The process is

describped in detail in sections 7 and 8 below,) 8c2a

Implicit in content Analysis patterns is the notion
that they will start a pattern matching search.at the
beginning of each NLS text statement, 8c2al

Certain of the arguments are valid only in the
context of complete L10O programs, These are noted
below, 8c2a?2

Because text pointers may not be loaded in Content
Anglysis patterns and because sirings may not be
reconstructed in them, they may only be used

effectively in relatively simple cases, In more

complex situations, full L10 programs are

necessary. 8c2a?a

sString pattern entities=- (strentities) 8c3

L10 Programming Guide Section 6 [page 59])

ARC) APR T2 9246
STRING TEST AND MANIPULATION

A 8string entity (strentity) may be any valid combination

of the following: loglcal operators, testing arguments,

and other non=-testing parameters which in general cause
repositioning within the current string. 8c3a

Logical Operators==- These combine and delimit groups
of patterns. Each compound group is considered to be
a single pattern with the value TRUE or FALSE. If
text pointers are set within a test pattern and the
pattern is not true, the values of those text
pointers are reset to the values they had before the

test was made, (See examples below,) 8c3al
"OR" - $c3ala
Either of the two separated groups must be true
for the pattern to be true, 8c3alal
"AND" =~ 8c3alb
Both of the two separated groups must be true
for the pattern to be true, 8c3albl
"NOT" = 8c3ale
The following pattern group must not be true
for the pattern to be true, 8c3alecl
wyn - 8c3ald

Either of the two separated groups must be true
for the pattern to be true, Has lower
precedence than OR, i.e.,, binds less tightly

than "OR", - 8c3alqdl
Pattern Matching Arguments-- (each of these can he

true or false) 8c3a?2

These may appear in Content Anglysis patterns: 8c3a2a

SR ’ 8c3a2al

string constant, e.g. "ABC" _ ; 8c3a2ala

L10 Programming Guide Section 6 [page 60J

ARC 4 APR 72 9246
STRING TEST AND MANIPULATION

It should be noted that if the scan
direction is set right to left the
pattern string constant pattern should be
reversed. In the agbove example, one

would have "CBA", 8c3a2alal

char 8c3a2a2
any character 8c3a2a2a
charclass 8c3a2a3

look for a character of a specific class
(see Primitives for a list of character
classes) 1If found, = true, otherwise false,

8c3a2a3a

'(strentity ') 8c3a2al

look for an occurrence of the pattern

specified by strentity. 1If found, = true,

otherwise false. 8c3a2ala
'« pargmeter 8¢c3a2ab

True only if the parameter following the

dash does not occur, 8c3a2aba
'[strentity '] 8c3a2a6

true if the pattern sSpecified by strentity

can be found anywhere in the remainder of

the string. First searches from current

position, 1If the search failed, then. the

current position is incremented by one and

resets, Incrementing and searching

continues until the end of the string. The

value of the search is false if the testing

string entity is not matched before the end

of the string is reached, 8c3a2aéa

NUM argument 8c3a2a7

find (exactly) the specified number of
occurrences of the argument. 8c3a2a7a

LL10 Programming Guide Section 6 [page 61)

ARC 4 APR 72 9246
STRING TEST AND MANIPULATION

NUM1 '$ NUM2 argument 8¢c3a2a8

Tests for a range of occurrences of the

argument specified. If the argument is

found at legast NUM1 times and at most NUM2

times, the value of the test is true, 8c3a2a8a

Either number is optional. The default

value for NUM1l is Zzero, The default

value for NUM2 is 10000, Thus a _
constiruction of the form "$3 CH" would

search for any number of characters

(including zZero) up to and including

three, 8c3a2adal

"ID" ('#/'=) UID 8c3a2a9

if the string being tested is the text of an

NLS statement then the identifier of user

who created the statement is tested by this
construction. 8c3a2a9a

"SINCE" datim 8c3a2al0

if tne string being tested is the text of an

NLS statement, this test is true if the

statement was created after the date and

time (datim, see below) specified, 8c3a2alla

"BEFORE" datim 8¢c3a2all
if the string being tested is the text of an
NLS statement, this test is true if the
statement was created before the date and
time (datim, see below) specified. 8c3a2alla

These may not appear in content Analysis patterns: 8c3a2b

'*# stringname '# 8c3a2bl
string variable 8c3a2bla
"BETWEEN" pos pos (strentity ') ‘ 8c3a2b2

Search limited to between positions

specified. Scan character position is set

to first position before the pattern is

tested. 8c3a2b2a

L10 Programming Guide Section 6 [page 62]

STRING

Format of date and time for pattern

datim = '(date time ')

ARC U4 APR 72 92146
TEST AND MANIPULATION

matching 8c3az2c¢c

8c3a2cl

Acceptable dates and times follow the forms

permitted by the TENEX systenm!

s IDTIM JSYS

descrined in detail in the JsyYS manual. It
accepts "most any reasonable date and time

syntax."
4 Examples of valid dates:

17=APE=T70
APR=17=70

APR 17 70
APRIL 17, 1970
17 APRIL 70
177571970
5/17/70

Examples of valid times:

1:12:13

1234

16:30 (L:30 PM)
1234:56

1:56AM

1l:56=EST

1200NOON

12:00:00AM (midnight)
11:59:59AM=EST (late
12:00:01AM (early mor

8c3a2cla
8c3a2clal

8c3a2clala
8c3a2clalb
8¢c3a2clale
8c3a2clald
8c3a2clale
8c3a2clalf
8c3a2clalr

8c3a2cla?

8c3a2cla?a
8c3a2¢cla2b
8c3a2claze
8c3a2cla2d
8c3a2claze
8c3a2cla2f
8c3a2cla?g
8c3a2clazh
morning) 8c3a2cila2i
ning) 8c3a2cla2j

Other Arguments=-=- (these 4o not involve tests;
rather, they involve some execution action. They are
always TRUE for the purposes of pattern matching

tests,) 8c3a3
These may appear in simple Content Analysis

Patterns: 8c3a3a

' < - 8c3a3al

set scan direction to the left 8c3a3ala

L10 Programming Guide

Section 6 [pare 63]

ARC 4 APR T2 9246
STRING TEST AND MANIP

'>

"TR

These
Patter

pos

‘e

L10 Programming Gguide

ULATION

In this case, care should be taken to
specify patterns in reverse, that is in
the order which the computer will scan

the text, 8c3a3alal
- 8c3a3a2
set scan direction to the right 8c3a3a2a
UE" = | 8c3a3a3

has no effect; it is generally used at the
end of FIND when a value of true is desired

even if all tests fail. 8c3a3a3a

may not appear in simple Content Analysis

ns: 6c3a3db
- 8c3a3bl

set current character position to tanis

position, If the SE pointer is used, set

scan direction from right to left, If the

SF pointer is used, set scan direction from

left to right, 8c3a3bla

ID = 8c3a3bh2

store current scan position into the
textpointer specified by the identifier 8c3a3b2a

[NUM] ID = 8c3a3b3

back up the specified text pointer by the.
specified numpber (NUM) of characters,

Default value for NUM 1s one. Backup is in

the opposite direction of the current scan
direction. 8c3a3b3a

Section 6 [page 6U4]

ARC 4 APR 72 92u6
STRING TEST AND MANIPULATION

STRING CONSTRUCTION

string constructions allow the replacement of one string
{substring) by another string.

("ST" (pos / substr) ‘e atlist /
f% stringname '# ['[eXp "To" exp']J]) ‘e stlist;
The string to which pos or stringname refers is replaced by
the string specified to the right of the arrow, A
supstring is replaced if a substr or an indexed stiringname
is specifieq.
EXanples:
ST pl P2 « siring:
is equivalent to
ST pl « SF(pl) pl, string, p2 SE(p2);
#str#flower TO upper] ¢ string;
is equivalent to
#8tre ¢ #3trx/l TO lower=-l/, string, #strs/upper+l TO
8‘&?.1«]3
stlist = stprim $(!', stprim);
stprim =
WNULL" /
repregents the zero length string
SR /
for string constant, e.g. "ABC"
substr /
substring
1+ substr /
substring capitalized
' gubstr /

substring in lower case

L10 Programming Guide Section 6 [page

8da

8dl
8dla

8d4lb

8d2
842a

8d2al

8d2a2
8a3
8ak
8dLa
8dkal
8dkp
84kbl
8dlc
8dhel
8dLud
8anal
8dje
8dhel

65]

ARC 4 APR 7
STRING TEST

'3

LR

eXxp

2 9246
AND MANIPULATION

substr /

If it is preceded by a dollar sign (8$), then the
substring is copied without moving any associated
markers to the new position, This element is
relevant only if the string is the text of an NLS
statement,

stringname '#* /

for string variables

stringname '% '[exp '] /

for character variables

stringname '# '[exp "TO" exp '] /

substring by indices
A construction of the form #str#/i TO 3j] refers to
the substring starting with the ith character in
the string up and including the jth character,
Thus #str#/i TO i+10] i8 the eleven character
substring starting with the ith character of str,.
and #str*/i TO str.lL] is the string str with the
first i-=1 characters deleted.

/
value 0f a general L10 expression taken as a

character; i.e,, the character with the ASCII code
value equivalent to the value of the expression

"STRING" '(exp [', exp] ');

gives a string which represents the value of the

expression as a signed decimal number, If the second

expression is present, a number of that base is
produced instead of a decimal numbper,

Supbstir = pos pos;

This is the substring bounded by the two positions.

L10 Programming Guide Section 6 [page 66]

3dLf

8aLfl
8dig
8dhgl
8dLh
8dLhl
8aui
8anil

8dhila

8dLJ

84aunjl
8dlk

8dukl
8as

8d5a

ARC L APR 72 9246
STRING TEST AND MANIPULATION

Example: 8dé

Let a "word" be defined as an arbitrary number of

letters and digits. The two Statements in this example

delete the word pointed to by the text pointer "t", ana

if there is a space on the right of the word, it is also
deleted. Otherwise, if there is space on the left of

the word it 1is deleted. 8d6a

The text pointers x and y are used to delimit the left
and right respectively of the string to be deleted. 84éb

LD is true if the character is a letter or a digit, and
SP 18 true if the character is a space. 8déc

FIND ¢t ¢ 8LD tx t > $LD (SP 1ty /7 1ty x < (SP tx / TRUE));
ST x y ¢ NULL; 8déd

The reader should work through this example until it is
clear that it really behaves as aGVertised, 8qse

The new 8tring or supstring is specified a8 a concatenagtion
of string primaries, with the primaries separated by
commas.

8a7

110 Programming Guide Section 6 [page 67)

ARC 4 APR 72 9246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

Section 7. CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

Introduction

NLS provides a variety of commands for file manipulation
and viewing. All of the editing commands, and the print
command with associated viewspecs (like 1line truncation and
statement numbers) provide examples of these mgnipulation

and viewing facilities.

But occasionally one may need more sophisticated view
controls than those available with the viewspec and

viewchange features in NLS.

For example, one may want to see only those statements

that contain a particular word or phrase.

Or one might want to see one line of text that compacts
the information found in several longer Statements.

One might also wish to perform a series of routine editing
operations without specifying each of the NLS commands over

and over again,

The Network Information Center at ARC uses the ability
to create text using the information from several

different statements (and even different files) and the
ability to insert this new text into a file to produce

catalogues and indices,

User written programs enable one to tailor the presentation
of the information in a file to his particular needas.
Experienced users may write programs that edit files

automatically.
CREATION OF USER WRITTEN PROGRAMS

User written programs must be coded in 1l0.

They may call

other user written routines and various procedures in the

NLS program itself,

User programs that control the wWway material is portrayed
take effect when NLS presents a sequence of statements in

response to a command like Print Group.

L10 Programming Guide

Section 7 [page

9a

9al

9a2

932a

9a2b

9a3

9a3a

9al

Sb

9bl

9b2

69]

ARC 4 APR 72 9246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

In processing a command such as Print NLS 1o00ks at a

sequence of statements, examining each statement to see

if 1t falls within the range specified in the Print

command and if it satisfies the viewspecs. At this point

NLS may also pass the statement to a user written

program to see if it satisfies the requirements

specified in that program., If the user program returns

a Value of true, the (passed) statement is printed and

the next statement in the Sequence is tested; if false.

the next statement in the sequence is tested. 9b2a

User programs that modify files usually gain control at the
Ssame point in processing as those that control the view, 9b3

Typically, one wants such a program to operate on a

sequence of statements chosen by a user when he decides

to run the program. In addition, one usually wants to

see the results of such an automated series of editing
operations immediately after it happens. 9b3a

Although a user program may be called exolicitly {usine
a special purpose NLS command), it is usually invoked
-Wwhen one asks to view a part of the file. 9b3b

CONTEXT OF USER WRITTEN PROGRAMS == THE PORTRAYAL GENERATOR 9¢

Generally, the user written program runs in the framework

of the portrayal generator, It may be invoked in several

ways, described below, whenever one asks to view a portion

of the file, e,g., with a Print command in TNLS, with any

of the output to printer commands, and with the Jump

command in DNLS. 9cl

All of the portrayal generators in NLS have at least two

sections -- the formatter and the sequence generator; if

the user invokes a program of his own, the portrayal

generator will have at least one, and possibly two,

additional parts =- a user filter program and a user

sequence generator, 9c2

FORMATTER 9c3

The formatter section arranges text passed to it by the
sequence generator (described below) in the style

speclified by the user. The formatter obhserves viewspecs

such as line truncation, length and indenting; it also

formats the text in accord with the requirements of the

output device. ’ 9c3a

L10 Programming Guide Section 7 [page 70]

ARC L APR 72 9246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

The formatter works by calling the sequence generator,
formatting the text returned, then repeating this

process until the sequence generator decides that the

sequence has been exhausted or the formatter has filled

the desired area (e,g. the display). 9c3b

SEQUENCE GENERATOR 9ch

The Sequence generator looks at statements one at a

time, beginning at the point specified by the user, It
observes viewspecs like level truncation in determinineg

which statements to pass on to the formatter, 9cha

For example, the viewspecs may indicate that only the

first line of statements in the two highest levels

are to be output, The default NLS sequence generator

will return pointers only to those statements passing

the structural filters; the formatter will further

truncate the text to only the first line, 9clhal

When the sequence generator finds a statement that

passes all the viewspec requirements, it returns the

statement to the formatter and waits to be called again

for the next stagtement in the sequence, 9chb

Oone of the viewspecs that the sequence generator pays
particular attention to is "i" ==« the viewspec that
indicates whether g user filter is to be applied to the
statement, If this viewspec is on, the sequence
generator passes control to a user filter program, which
100ks at the stgtement and decides whether it should bpe
included in the sequence, If the statement passes the
filter (i.e, the user program returns a value of true),
the Ssequence generagtor sends the statement to the
formatter; otherwise, it processes the next statement in
the sequence and sends it to the user filter program for
verification, (The particular user program chosen a8 a
filter is determined by commands described below.) 9clhc

USER FILTERS | 9c5

The user filter program may be either a content analysis
pattern (compiled and invoked in the manner desScribed

below) or an L10O program which may contain what are

essentially content analysis patterns as well as text
modification elements which may edit the NLS file
automatically. , 7 9cSa

110 Programming Guide Section 7 [page 71]

ARC 4 APR 72 9246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

CONTENT ANALYSIS PATTERNS 9c5al

content analysis patterns describe characteristics

that a statement must have to be ineluded in the

sequence being generated. For example, a content
analysis pattern may stipulate that a statement

must contain a particular phrase, or that it must

have been written since a particular date, 1In

general, content analysis patterns may use any of

the pattern matching facilities permitted in Ll0

FIND statements. g9cSala

content analysis patterns cannot affect the format

of a statement, nor can they initiate editing

operations on a file. They can only determine

whether 3 statement should be viewed at all, 9ckalb

Nevertheless, content analysis filters provide a

powerful tool for user control of the portrayal of

a series of statements. They are the most

frequently used, and easily written, of the user
programs, However, if one wishes to change the

format of a statement, or to modify the file as it

is displayed, he must use a user written L1l0

progranm. 9chalc

USER WRITTEN L10 PROGRAMS 9cba2

A user written program may be given control by the
sequence generator in exactly the same fashion

that a content analysis program is initiated,

Writing and using such programs effectively

requires a thorough knowledge of NLS (content

analysis, in particular) and a modicum of exposure

to L1O, 9cba2a

Such a program may change the format of a

statement being displayed and it may modify the

statement itself (as well as other statements in

the file). 9c5a2b

L10 Programming Guide Section 7 [page T72]

ARC L4 APR 73 9246
CONTENT ANALYSIS AND SEQUENCE GENERATOR PROGRAMS

A user written program invoked by the sequence

generator has several limitations, It can

manipulate only one file and it can look at

statements only in the order in which they are

presented by the sequence generator, In

particular, it cannot back up and re-examine

previous statements, nor can it skip ahead to

other parts of the file. A user-written sequence
genergtor must be provided when one needs to

overcome these restrictions, 9c5a2c

USER=WRITTEN SEQUENCE GENERATORS 9cé

A user may provide his own sequence generator to be used

in lieu of the regular NLS sequence generator. (This is
controlled by viewspecs O and P.) Such a program may

call the normal NLS sequence generator, as well as

content analysis filters and usere-written L10 progranms,

It may even call other user-written sequence generators, 9céa

This technique provides the most powerful means for a

user to reformat (and even create) files and to affect

‘their portrayal. However, since writing them requires a
detailed knowledge of the entire NLS program, the

practice is limited to experienced NLS programnners, 9céb

110 Programming Guide Section 7 [page 73]

Introduction.

ARC U4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

Section 8, INVOCATION OF USER FILTERS AND PROGRAMS

The usSer=written filters described in this document may be
imposed in some cases through the NLS command "EXecute
Ctontent Analyzer" and in other cases by an NLS subsystem
accessed by the command "Goto Programs", The former method
is easier but may be used only with simple Content Analyzer
patterns, The latter method requires more of the user;
furthermore, the several additional capabilities offeread by
general user-written programs may be invoked only through

10

10a

the "Goto Programs" submode, 10al

User sSequence generator programs for more complex
editing among many files may be written. Additionally.
programs may be written in this 110 subset to be used to
generate sort keys in the NLS Sort and Merge commands,
Descriptions of these more complicated types of user
programs and of NLS procedures which may be accessed by
such programs i1s deferred until a later document. In
such examples, however, the user would still make use of

the commands in the NLS "Goto Programs" subsysten, 1l0ala

These TNLS commands are used to compile, institute anad

exXxecute User Programs and filters, 10a2

Compilation==- lOa2a

is the process by which a set of instructions in a
program is translated from a form understandable by
humgns (e.g., the L10 language) into a form which the

computer can use to0 execute those instructions. 10a2al

Institutione=- 10a2b

is the process by which a compiled program is linked

into the NLS running system for execution. 10a2bl

Execution==- 1l0a2c

is the process in which the computer carries out the
instructions contained in a compiled and institutedqd

progranm, 10a2cl

L10 Programming Guide Section 8 [page 75)

ARC

L APR 72 9246

INVOCATION OF USER FILTERS AND PROGRAMS

This section additionally presents, in detail, examples of
the use of the L10 programming language to construct user
analyzer filters and reformatters, These programs were
written by members of ARC who are not experienced
programmers, They do not make use of any constructions not
explained in this manual.

SIMPLE CONTENT ANALYSIS PATTERNS

The content analysis feature of NLS permits the user to
specify a pattern of text content to be matched by
statements in NLS files, Only those statements passed to
the filter by the sequence generator satisfyineg the test
Will be sent to the formatter for display to the user, A
simple content analyzer pattern is compiled by the Execute
Content AnalyZer command or through the Goto Progranms
submode, and is activated by a Viewspec parameter.

The NLS Portrayal Generator, made up of the formatter,
the sequence generator, and user filters, is invoked
whenever the user requests a new "view" of the file, for
example through the use of the TNLS "Print" command or
.any of the output to printer commands. Thus if one had
a user content filter compiled, instituted, and invoked,
one could have a printout made (using "Output
Quickprint", for example) containing only those
statements in the file satisfying the pattern. Section
7 (8c) discusses these concepts in detail.

syntax of Simple Content Analysis Patterns

A simple content analyzer pattern 1s made up of any
number of String patterns to be matched terminated by a
séni=-colon.

$strentity ';

It is thus similar to the FIND statement descrived in
section 6 (7¢c) of the L10 Primer., It is aqifferent
because some of the pattern constructions, noted in that
section, are neither valid nor relevant out of the
context of a complete L10 user program inecluding the
constructions which manipulate text pointers,

L10 Programming Guide Section 8 [page 76]

10a3

10b

10bl

l0bla

10b2

10b2a

10b2al

10b2b

ARC L4 APR 72 92)46
INVOCATION OF USER FILTERS AND PROGRAMS

A pattern may be written as text anywhere in an NLS
file, A file may tnus contain any number of patterns,
However, only one pattern may be instituted (or placed
as the active program or pattern) at a time although any
number of content analysis patterns may be compiled.
Using commands in the Programs subsystem, one may switch

back and forth between the invocation of any of them. 10b2c
Execute Content Analyzer 10b3
The TNLS command used to compile simple content analysis
patterns is: l0b3a
e/xecute] cofntent analyzer type in?] SP
CA
yles]
nfol 10b3al
(1f SP, CA, or yl[es]) LIT CA l0b3ala
(1£ nfo]) ADDR CA] 10b3alb

In response to the prompt "type in?" the user may

respond with SP, CA, or "y" indicating that the pattern

Will be entered directly from the Keyboard. Reponding

by "n" indicates that the address of the pattern will be
specifieq. 10b3b

ADDR is a TNLS address specification pointing to the

first character in the pattern or none-printing

characters immediately preceding the pattern, 1If the

pattern is imbedded in the text of an NLS statement the

process will read characters until the first semi«colon

is read. ‘ ' 10b3c

If the semi«colon is omitted in this instance, an
error will result, 10b3cl

Thus one may make use of parts of complex patterns by
positioning the TNLS current position pointer at an
appropriate place in the middle of the pattern text., 10b3c2

If a LIT is specified it is taken to be the text of a

Content Analysis pattern, (The semi-colon may be
omitted here; it will be appended by the system.) 10b3c3

110 Programming Guide Section 8 [pagze T77]

ARC

L APR 72 9246

INVOCATION OF USER FILTERS AND PROGRAMS

when this command is given the pattern specifieq is
compiled into the user program buffer, a name is
assigned and put on the user program name stack, and it
is instituted as a content analyzer progranm,

when the CA is typed the message "Compiling User
Program" will be put out. If the compilation was
successful, the user will be left at the TNLS command
specification level. 1If there wWere any errors in the
compilation a 1list of the places in the pattern in which
the error was discovered followed by the message
"[number] error{s): Type CA",

The description of the errors may be retatively
cryptic. Syntax errors deal with some violation of
acceptable language form, Compiler and system errors
may relate to some more general (and perhaps more
obscure) error in the compiler which the ordinary
user cannot easily fix.

Remenber that the L10 compiler does nhot do
anything about misspelled words and misplaced
punctuation marks,

content Analysis Via Goto Programs

Simple Content Analysis patterns may also be compiled
using a command of the Programns subsystem desScribed
below, '

Execution and Effect

when applled to a proper pattern the "Execute Content
Analyzer" command, in addition to compiling the user's
pattern, institutes it as the current content analyzer
filter deinstituting any existing content analyzer
pattern progran,

Most users need not be aware of this fact.

Those, however, who may compile more than one content

analyzer pattern in a session may wish to switch
between then,

L10 Programming Guide Section 8 [page 78]

10b3d

10b3e

10b3el

1l0b3ela

10bk

1l0bla

10b5

10bba

10bBal

10b5Ka?2

ARC L4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

To provide a handle on Content AnalyzZer patterns they

are assigned program names made up of the first 5

characters of the pattern preceded by the letters

"UP" (for user program), a number referring to the

order of compilation, and an exclamation mark (!). 10b5a3

Using this name one may institute and deinstitute

patterns as content analyzer filters by using a

command in the Programs subsystem described bhelow.

The patterns will appear under these names in the

user program sStack which may be examined with the

Program Status command, 10b5sal

After compilation and institution a content analyzer

pattern may be applied as a filter to any NLS file by

using certain viewspecs and any command which causes the
pPortrayal Generator to examine the file, e.g., the TNILS

Print commands. Simple content analyzer programs do not

modify files, Rather, they Jjust serve as "filters" for

the Portrayal Generator (see Section 7 (8c)). Relevant
viewspecs are: 10b5b

i==- show only statements with content which passes

the filter. For eXample an Output Quickprint with

viewspec 1 on would print only those statements

passing the filter. If none satisfy the filter test,

an "Empty" will be displayed on=-line, a blank file

will be printed by the Quickprint commagnd. 10b5bl

Jme show all content, This is the default viewspec
in NLS. The filter is not used in this case, 10p5b2

K== show the first statement passing the filtej then
all others. ' 10b5b3

Again we emphasize that the files are not modified by
simple content analysis filters. Ll1lO user programns must

be used for this purpose, 10b5c
Examples of Simple Content Analysis Patterns 10bé
BEFORE (25=JAN=72 12:00); 10béa

This pattern will match those statements created or
modified (whichever happened most recently) before
noon on 25 January 1972. 10b6al

ID = HGL OR ID = MFA; ' 10béb

L10 Programming Guide Section 8 [page 79)

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

This pattern will match all statements created or
modified (whichever happened most recently) by users
with the identifiers "HGL" or "MFaA', 10bébl

D 28LD / ["CA" / "Content AnalyZzer"]; l0bée

This pattern will match any of three types of

statements: those beginning with a3 numerical digit

followed by two characters which may be either

letters or digits, and statements with either the

patterns "CA" or "Content AnalyZer" anywhere in the
statement. 10nécl

Note the use of the brackets to permit an

unanchored search == a search for a pattern

anywhere in the statement., Note also the use of

the Slash for alternations. l0bécla

[(2L (SP/TRUE) /2D) D '= 4DJ; 10béda

This pattern will match characters in the form of

phone numbers anywhere in a statement, Numbers

matched may have a two digit alphabetic exchange

followed by an optional space (note the use of the

TRUE construction to accomplish this) or a numerical
exchange. 10b6dl

Examples include YU L4=-1234, YUL-123Y4, and
98L4=1234. lobédla

L10 Programming Guide Section 8 [page 80J

ARC L4 APR 72 9Q2h6
INVOCATION OF USER FILTERS AND PROGRAMS

PROGRAMS SUBSYSTEM 10c
Introduction 10cl

This NLS subsystem provides several facilities for the
processing of user written programs and filters, It is

entered by using the NLS "Goto" (subsystem name)

command. This subsysten enables the user to compile L1O

user programs as well as content Analyzer patterns,

control how these are arranged internally for different

uses, define how programs are used, and interroeate the

status of user prograns, , l0Ocla

Programs subsystem commands 10c2

The GOoto Programs subsystem is entered by the NLS

command: l0c2a
g[oto] pfrogramsj... 10c2al

After the user types the above the system éxpects one of

the following commands: 10c2b

Status of User Prograns 1l0c2c

This sub=command prints out information concerning

active user programs and filters which have been

compiled and/or instituted. The system may be

interrogated about tnis status Wwith the command: 10c2cl

s/tatus 0of user programsj CA l0c2cla
when this commgnd is executed the system will print: 10c2c?2

== the names of all the programs in the stack,

inecluding those generated for simple content

analysis patterns, starting at the bottom of the

stack, This stack contains the symbolic names of

all compiled programs and a pointer to the

corresponding compiled code. The stack is

arranged in order of compilation with the most

recently compiled program at the head of the

stack, l0c2c?2a

L10 Programming Guide Section 8 [page 81]

ARC)} APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

== the remaining free space in the pbuffer, The
buffer contains the compiled code for all the
current compiled programs, New compiled code is
inserted at the first free location in this
buffer,

~= the current Content Analyser Program or "None"

== the current user sequence generator progranm or

"None"
== the user Kkey program or "None"
content Analyzer

This command allows the user to specify a content
analysis pattern as a content analyzer filter.

c/ontent analyzer type in?J
SP
CA
y(es]
nfol

(if SP, CA, or y/les]) LIT CaA
(1f nfoJ) ADDR CA

In response to the prompt "type in?" the user may
respond with SP, CA, or "y" indicating that the
pattern will be entered directly from the keyboard,
Reponding by "n" indicates that the address of the
pattern will be specified.

ADDR must be the address of the first character or
immediately preceding space of the program or
pattern.

when this command is executed the pattern specified
is compiled into the buffer, its name is put on the
stack, and it is instituted as a content analyzer
progranm.

The name agssigned is generated in the same manner

as those for patterns compiled by the "EXecute
content Analyzer" command.

L10 Programming Guide Section 8 [page 82)

loc2ce2Db

l0c2cec2c

l0c2c2d
loc2c2e

10c2d

10c2al

1l0c24la

10c2d4dleal

10c2d4laZ2

10c2a2

10c2d3

10ec24k

l0c2dia

ARC L APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

This command is equivalent to the "Execute Content
Analyzer" command in compilation error indications

(9b3e) and execution (9bsa). 10c245
L10 Compile l0c2e
This command compiles the program specified. 10c2el
1/10 compile at] ADDR CA loc2ela

ADDR is the address of the first statement of the
pProgranme. . 10c2e?2

This command causes the program specified to be

compiled into the user program buffer and its name

entered into the stack, The program is not

instituted. 10c2e3

The name of the progran 15 the visible following
the word PROGRAM or FILE in the statement

indicated by ADDR. l0c2e3a
Errors are indicated as above for the compilation of
simple patterns in (yb3e),. 10c2e)}
The program may be instituted and executed by the
appropriate commands, , 10c2e5
Institute Program 1l0c2f

This command enables8 the usSer t0 designate a program
as a content analyZer, SequUence generator, or key

extractor, 10c2f1
i/nstitute program/ PROGNAME CA [CRJ
NUM
[a8] CA [content analyzer] CA

cl/ontent analyzer] CA

k[ey extractor] CA

s{equence generator/ CA l1oc2fla
PROGNAME is the name of a program which had been
previously compiled with any of the Execute content
Analyzer, Program L10, or Program Content Analyzer
commands, That is, PROGNAME must be in the stack
when this commgnd is executed, 10c2f2

L10 Programming Guige Section 8 [page 83]

L APR T2 9246
INVOCATION OF USER FILTERS AND PROGRAMS

Instead of PROGNAME the user may specify the progranm
to be instituted by NUM, a numeric value indicating

the nth program from the bottom of the stack, 10c2£3
The program on the bottom of the stack is the

program compiled first, 10c2£3a

EXecute Program _ 10c2¢

This command transfers control to the specified
progranm. 10c2¢l

e/xecute program/ PROGNAME CA
NUM 10c2gla

PROGNAWE is the name of a program which had been
previously compiled. That is, PROGNAME must be in
the stack when this command is executed, 10c2g?2

Instead of PROGNAME the user may specify the progranm
to be instituted by NUM, a numeric value indicating

the nth program in the stack. 10c2g3
Deinstitute Progran 10c2n
This command deactivates the indicated program,
does not remove it from the Sstack and pbuffer, It may
be reinstituted at any tinme, 10c2hl
d/einstitute program/ PROGNAME CA
NUM 1l0c2hla
PROGNAME is the name of a program which had been
previously compiled, That 1s, PROGNAME must be in
the stack when this commgnd is executed, 10c2h2
Instead of PROGNAME the user may specify the progranm
to be instituted by NUM, a numeric value indicating
the nth program in the stack, 10e¢2h3
This assumes one program will not be used for more
~than one purpose at one time. loc2h3a

L10 Programming Guide Section 8 [page 8)J]

ARC 4 APR 72 92146
INVOCATION OF USER FILTERS AND PROGRAMS

Pop Stack 10c2i

The Pop Stack command deletes the top (or most
recent) program on the stack. The progranm is
deinstituted, its name removed from the stack, and

its space in the buffer marked as free, 10¢2il
plop stack] CA 10c2ila

Pop Stack program command (10c2il) l0c2i2
Reset Stack loc2]

This command clears all programs from the user
program area. All prograns are deinstituted, the
stack is cleared, and the buffer is marked as empty. 10c2il

r/eset stack/ CA 10c2ila

110 Programming Guide section 8 [vage 85)

ARC 4 APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

Note on Returning from User Analyzer=-Formatter Programs 10¢3

Wwhen a user writes an analyzer=formatter filter progranm,

the main routine must RETURN to the Portrayal Generator.

The RETURN must have an argument which is checked by the
sequence generator, If the value of that argument is

TRUE, the statement will be passed to the formatter to

be displayed; if the value is FALSE, it will not be

displayed. ‘ loc3a

The user could thus use FIND statements and expressions

to check for the presence of sStatements to be edited by

the string construction elements and either display the

edited statement or not, thereby saving the formatting

tinme. : 10e¢3b

A file could thus be edited quickly without any

immediate feedback to the user with the i viewspec

on., However, by turning viewspec j on afterwards,

the user coula then see the completely edited file, 10c¢c3bl

Examples of AnalyzZer=Formatter Programs 10clh

The following are examples of usSer analyzer=formatter
prograns which selectively edit{ statements in &n NLS
file on the basis of text searched for by the pattern
matching capabilities., Examples of more sophisticated
user programs such as sort keys and user sequence
generator programs will be presented in a later
supplement with a description of NLS routines easily

accessed by users, locha
Example l1l=- . 10eckd

PROGRAM outname % removes statement names == del=z ()

-=% 10ckbl
DECLARE TEXT POINTER sf, vaf, pae; lochbla
(outname) PROCEDURE; loechblb

IF FIND *sf $NP '(tpaf [')] tpae THEN 10ciblbl
BEGIN 1l0clhblbla

ST sf ¢ ©pae SE(sf); 10ckblblb
RETURN (TRUE) 3 10chkblble

END 10ckblbla

ELSE RETURN(FALSE); ' 10chblb2
END. 10ckblb3
FINISH lochble

L10 Programming Guide Section 8 [page 86l

ARC L APR 72 9246
INVOCATION OF USER FILTERS AND PROGRAMS

This program removes the text and delimiters of NLS
statement names from the beginning of the statements, 10chb?2

Example 2== 10che
PROGRAM changed: l0chkel
{changed) PROCEDURE; 10cke2

LOCAL TEXT POINTER £, e; lochc2a
FIND *f SE(f) te; loche2b

IF FIND SINCE (25-JAN=72 12:00) THEN locke2c

- BEGIN 10cke2cl

ST £ ¢ "[CHANGED]", £ e; l0clke2c?2
RETURN (TRUE) ; l10chke2c3

END 10che2ch

ELSE RETURN(FALSE); lockhc2d
END. 10c1l-c2e
FINISH 10che3

This program checks to see if a3 statement was written

after a certain date, If it was, the string

"[CHANGEDJ" will be put at the front of the

statement. 10chech

le Programming Guide " Section 8 [page 87J

INDEX

A (5chkk)

ALT (5dé6d45)

analyzer-formatter programs, examples of (1Ocha)
AND (5c¢cla3), (8c3alb)

argument lists (543b2)

arithmetic operators (5cla)

array variables, declaring (6éb3a)

assignment statement (7ala)

assignments (544a)

BC (546d9)

BEFORE datim (8c3a2alall)

BEGIN (7cla)

BETWEEN pos pos (strentity) (8c3a2b2)
binding precedence (5e23)

BLOCK construction (7cl)

body, program (4blb)

BW (5d6410)

L10 Programming Guide

ARC L APR 72 9246
INDEX

Index [page 89]

ARC) APR 72 9246
INDEX

C. (5a6all)

CA (5d6a12)

CASE expression (5e3a)

CASE statement (7d3a)

CCPOS (5d23), (5410a), (8b)

CD (5d46dl13)

CH (5d47al)

char (8c3a2ala2)

character classes (5d47)

charclass (8c3a2ala3)

CHR (3ble2e)

comments, def. (3c9)

compilation (10a2a)

Compile program command (lOc2el)

conditional expressions (5e3)

conditional statements (7d4l)

constant, def. (3c7)

content analysis
and Goto Programs (1lObla)
=formatter programs, examples of (lOeia)
=fornatter programs, returning from (l10c¢3a)
goto programs command (10c2d4l)

patterns (8c2), (10bl)

L10 Programming Guide Index fpage 90]

ARC L4 APR 72 92khé6
INDEX

CR (5d6aé)

current character position (8b)

a (5d7a9)
declarations (6al)

global (6bl)

local (6dl)

procedure level (6a3)

program level (6a3)

reference (é6cl)
DECLARE STRING statement (éb5a)
DECLARE TEXT POINTER statement (ébéa)
declaring

array variables (6b3a)

multiple variables (6bla)

scalar variables (éb2a)

string variables (6bS5a)

text pointers (6béa)
Deinstitute Program command (1l0c2hl)

Divide statement (7bl)
END (7cla)

ENDCASE statement (7d43al)

ENDCHR (54642)

L10 Programming Guide Index [page 91]

ARC 4 APR T2 9246
INDEX

EOL (5dédy)
examples of analyzer=formatter programs (lOcla)
Execute Content Analyzer command (1Ob3a)
Execute program command (10c2gl)
execute, def. (3cl2)
execution (10a2c)
expression, def. (3cl0)
expressions (5ela)
conditional (5e3)
FIND (8cl)

FALSE (5d6a3)

filters (9c5a)

FIND (5a2k)

FIND Expressions and Patterns(8cl)
FIND Statements (8cl)

FINISH statement (Lblc)

formatter (9c3a)

élObal, def, (3cb)
declarations (6bl)
variable (5b2)
Goto Programs subsystem (1lOcla)

and content analysis (10bla)

L10 Programming Guide Index [page 92]

commands (l0c2a)

header, program (4bla)

heirarchy of operations (5e2a)

i viewspec (9clc), (10b5bl)
ID (3ble2a)

ID (#/=) UID (8c3a2ala9)
identifier, aef. (3cl)

IF expressions (5e3a)

IF statement (7d2a)

IN (5c3al)

indexed variable, def. (3clh)
indexing stringnames (8béa)
Institute Program command (10c2fl)
institution (1l0a2b)

interval operators (5c3a)
J viewspeec (10b5b2)

k viewspec (10p5b3)

L10 Programming Guide

ARC L4 APR 72 9246
INDEX

Index [page 93]

ARC. 4 APR 72 9246
INDEX

1 (5d7a8)

L10
compile command (lOc2el)
declarations (6al)
programs, user-written (9cb5a2a)
syntax (3bl)

label, def., (3c2)

LD (5da7al)

LF (5d6d7)

literal (5d6a)

LL (5d7a7)

LLD (5a7a3)

LOCAL declaration (6d1l)

local variable (5b3)

local, def. (3c¢c6)

logical operators (8¢3al), (5cla)

MAX (5d2h), (5d8)
MIN (5d42h), (5d8)
MOD (5ckh)

multiassignment statement (7a2a)

L10 Programming Guide Index [pqge 9uJ

NLD (5d47a5)

NLS Portrayal Generator (lObla)
NOT (5clal), (8c3alc)

NP (5d7all)

NUM (3ble2b), (5d6al)

NUM argument (8c3a2ala?7)

NUM1 8 NUM2 argument (8c3a2ala8)

0 viewspec (9céa)
operations, hierarchy of (5e2a)
operators (5c)
arithmetic (5cla)
interval (5c3a)
logical (5cla)
relational (5c2a)
OR (5ClA2), (8¢c3ala)
OUT (5C3A2)

P viewspec (9céa)

pattern matching arguments (8c3a2i
patterns (8c¢)

patterns,

content analysis (8c2), (9c5ala), (1lObl)

L10 Programming Guide

ARC 4 APR 72 9246
INDEX

Index [page 95]

ARC - 4 APR 72 9246
INDEX

syntax of content ahalysis (10b2a)
pointers (5d5a)
Pop Stack command (10c2il)
portrayal generator (9cl)
POS (5d421), (8c3a3pl)
posrel (5dlla)
primitives (541)
procedure call, as primitive (5431)
progranm
compilation (10a2a)
compile command (1lOc2el)
deinstitute command (10c2nl)
execuge command (10c2gl)
execution (10a2c)
institute command (10c2f1)
institution (10a2b)
pop stack commgnd (10c2il)
reset stack command (1l0ec2]jl)
structure (4al), (4Dbl)
progranms,
creating (9bl)
examples of (1Ocla)
returning from (1l0c3a)

status command (l0c2cl)

L10 Programming Guide ° Index [page 96]

subsystem (10cla)
subsystem commands (10c2a)
user filter (9cb5a)
user=-written (9c5a2a)

PT (5d47a10)

READC (5d2i), (5d9a)

REF statement (écl)
reference declarations (6cl)
referenced variable (5blk)
relational operators (5c2a)

Reset Stack program command (l0c23jl)

ARC L4 APR 72 9246
INDEX

returning from user analyzZer=formatter programs (l0c3a)

SAB (5D6D8)

scalar variables, declaring (6éb2a)

SE (8b2c)

sequence generator (9cla)

sequence generator, user-written (9céa)
SF (8b2b)

SINCE datim (8c3a2alalO)

SP (5D6D3)

SR (3Bl1E2C), (8c3a2alal)

SR1 (3BlE2D), (5DéD1l)

L10 Programming Guide

Index [page 97]

ARC L APR 72 9246
INDEX

statement, def, (3cll)
statements, FIND (8cl)
Status of User Programs command (10c2cl)
strentities (8c3)
-8tring
construction (8a)
def. (3c8)
end (8b2c)
expressions (5ela)
front (8b2b)
pattern entities (8c3)
patterns (8c)
test and manipulation (8)
variables, declaring (éb5a)
syntax (3bl)
content analysis patterns (10b2a)

program structure (lLal)

terminal statement, program (kblc)
text pointer (5b6), (8b)
comparisons (5dll)
declaring (6bé6a)
Tree Meta (3al)

TRUE (5d6a2), (8c3a3a3)

L10 Programming Guide Index [page 98]

UL (5d7aé)

ULD (5d7a2)

unreferenced variable (5b5)

unreferencing (6c2)

ARC L APR 72 9246
INDEX

user analyzer-formattef programs, returning from (10c¢3a)

user filters (9cb5a)

user programs (9bl)

user programs status command (10c2cl)

user=written 110 program (9c5a2a)

user=-written sequence generators (9céa)

V (5chi)

variables (5bl)

def. (3c3)

declaring multiple (ébka)

viewspec

i

J
k
0
P

(9cke), (10b5b1)
(10b5b2)
(10b5b3)

(9céa)

(9céba)

L10 Programming Guide

Index [page 99]

ARC) APR 72 9246
INDEX

(6c2)
(strentity) (8c3a2alal)
stringname % (8c3a2bl)
- parameter (8c3a2alab)
«A (5chk)
.V (5¢cki)
«X (5ck])
/ (8c3ald)
< (8c3a3al)
> (8c3a3a2)
[strentity J (8c3a2alaé)
t ID (8c3a3b2)
¢ [NUM] ID (8c3a3b3)

L10 Programming Guide Index [page 100]J

