
OIA LLG A~DY 3-FEB-77 17:06 28745 

FRONTEND SYSTEM DOCUMENTATION 

Donald I. Ancrews 
Lawrerce L. Garlick 

Andrew A. Poggio 

January 5~ 1977 

Ausmentation Research Center 
Stanford Re~earch Institute 

Menlo Park. California 94025 



OIA LLG ANDY 3-FE8-17 17:06 28745 

~ugmentat;on Research Center page iii 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Cocumentation 

SATA REPRES~NTATICN INTERFACE •••••••••••••••••••••••••••••••• 

Intrcsuctior. ••••••••••••••••••••••••••••••••••••••••••••••• 

Re3ding a PCP Data structure 

Writing a PCP Data structure 

••••••••••••••••••••••••••••••• 

••••••••••••••••••••••••••••••• 

USER PROFILE DATA STRUCTURE AND TOOL ••••••••••••••••••••••••• 

Introduction ••••••••••••••••••••••••••••••••••••••••••••••• 

Current Capabilities 

Envisioned Caoabilities •••••••••••••••••••••••••••••••••••• 

U~er Profile OQta structure •••••••••••••••••••••••••••••••• 

GENERATING A NEY FRONTEND •••••••••••••••••••••••••••••••••••• 

Intro~uction ••••••••••••••••••••••••••••••••••••••••••••••• 

Compilation •••••••••••••••••••••••••••••••••••••••••••••••• 

•••••••••••••••••••••••••••••••••••••••••••••••••••• 

Frontend Files ••••••••••••••••••••••••••••••••••••••••••••• 

REFERENCES ••••••••••••••••••••••••••••••••••••••••••••••••••• 

40 

40 

40 

~4 

47 

47 

47 

52 

52 

52 

52 

53 

56 

Augmentation Research Center page i; 

/ 



OIA LLG ANDY 3-FEB-71 17:06 28745 

Frontend System Documentation 

TABLE OF CONTENTS 

DREFlCE ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1 

ell OPERATIGN ••••••••••••••••••••••••••••••••••••••••••••••••• 2 

The CML Grammar ••••••••••••••••••••••••••••••••••••••••••••• 2 

CMl Grammar Interpretation •••••••••••••••••••••••••••••••••• 

CML COMP ILER AND COMPACTOR DESCRIPTION •••••••••••••••••••••••• 

Introduction •••••••••••••••••••••••••••••••••••••• ~ ••••••••• 4 

Tho:: Compiler •••••••••••••••••••••••••••••••••••••••••••••••• 

The Compacter ••••••••••••••••••••••••••••••••••••••••••••••• 

CML VARIA~lE TYPES ••••••••••••••••••••••••••••••••••••••••••• 

Introriuction ••••••••••••••••••••••••••••••••••••••••••••••• 

CML Variable structure ••••••••••••••••••••••••••••••••••••• 

CMl Tyr:es •••••••••••••••••••••••••••••••••••••••••••••••••• 

VIRTUAL TERMINAL CONTROLLER DESCRIPTION •••••••••••••••••••••• 

Intror:uction ••••••••••••••••••••••••••••••••••••••••••••••• 

VTC Design ••••••••••••••••••••••••••••••••••••••••••••••••• 

VTC Implement?tion ••••••••••••••••••••••••••••••••••••••••• 

4 

23 

23 

23 

26 

26 

26 

28 

Glossary ••••••••••••••••••••••••••••••••••••••••••••••••••• 34 

PROCESS COMMUNICATIONS INTERFACE (P C I) MODULE •••••••••••••••• 

Intro0uction ••••••••••••••••••••••••••••••••••••••••••••••• 

37 

37 

Irnport2nt Data Elements •••••••••••••••••••••••••••••••••••• 37 

PC! Procedures ••••••••••••••••••••••••••••••••••••••••••••• 37 

Augment~tion Research Center P?g~ ; 



orA LlG ANDY 3-FEB-77 17:06 28745 

Frontend System Cocu~entation 

Celiverabte for the ~SW. Contract No. F 30602-75-C-0320 

Augment8ticn Research Center rage 0 



DIA llG A~OY 3-FEB-77 17:06 28745 

Frontend System Documentation 

PREFACE 

This cocument, which reflects the current state of the NS~ 
~rontpnd~ provi~es information about the Frcrtend necessary to 
thos~ wryrkin~ with it or building their cwn Frontend. The three 
classes of ~rontend comoonents and the eytent to which this 
document describes them follows: 

M00Ul~s. The orograms with which the user interacts dur;rg 
command sD~cification and which communicate with the tool: the 
Virtual Terminal Control (VTC). the Corrmand language 
Interpreter (ell). and the Process Communication Interface 
(PCl). A description of ell operation and of the Fer anc VTC 
is provided. Also included is a ~iscussion of datz 
reoresentation types. 

Data Sases. The data bases and date structures associe.ted with 
th~ user interface machinery: the gra~mar. User Profile and 
Help data bases9 User Statistics. CML source programs. and 
Command Seauences. More information on the data bases may be 
found in ~ GUIDE TO THE CML AND eLI [1J. 

Auxiliary Toots. The auxiliary progra~s and tools that allow 
th~ user or tool builder/installer to create. examine~ or 
manipulate the above data bases: the CML comptler, User 
Profile toot. Help tool. Statistics Analysis programs. and 
Comm~nd Sequence Processor. A detailec description of the CML 
compiler and compacter and CML variable tyoes is provided here, 
clang with a section nn the current anc future capabilities of 
th 0 User Profile tool and its data structure. 

The l~st section tells briefly how to create and loac a Frontend. 

Augmentation Rese~rch Center pcge 1 



DIA LLG ANDY 3-FEB-71 17:06 28745 

Frontend System Cocu~entation 

ell OPERATIO~ 

The CMl ':;ra""~ar 

A CML gr2~rnar consists of a series of instructions and 
associated tables. The grammar instru~tions form a 
tree-structured program which the ell interprets. It 15 this 
process of grammar interpretation that oroduces the high 
Quality user interaction for which the ell is so well known. 

A CMl grammar consisting of the two co~mandst 

celete COMMAND = "DELETE" ( "WORD" I "CHARACTER" ); 

insert COMMAND = "INSERT" ( IF DISPLAY "WINDOW" I "WCRD" ); 

wh~n compiled produces the following (upside down) tree 
structure: 

root of grammar tree 

I 

( 1 ) (2) 

"DELETE" "INSERT" 

I I 

----_ .. - ..... --- ... _----
(:) ) (4) (5) (6) 

ffCHARACTER" IF DISPLAY 

I 

(7) 

"WINDCW" 

Each place in the tree where an instruction such as "weRr" 
exists is called a node. Each node has been numbered for 

AugmentRtion Research Center page 2 



OIA LLG ANDY 3-FEB-77 17:06 287q5 

Frontend System Documentation 

r~fer~nc~. Nodes 3. 4, 7. and 6 are colled terminal node~ 
becaUS0 th~r~ ~s nothinq following the~ in the tree. 

CMl Grammar Interoretation 

Ths elI implements the com~and langLage described by a gr8~mar 
by interp r etin1 the instructions contained in the gra~mar. The 
ell begins at the root of the grammar tree and simultaneously 
processes the various paths through the tree to terminal nodes. 
On~ such path is through nodes 1 and 3; another is through 2. 
5. and 7. Completing the processing of a terminal node such as 
nOGe 3 is synonymous with command completion and causes the eLI 
to begin processing again at the rcct of the grammar tree. 

Th~ eLI path nrocessing may be directec by user input or 
r~sults oetainee from processing instructions. In the above 
ex?mpt~. the eLI WOUld start by prccess;n~ nodes 1 and 2 at the 
same time. Since both of these nodes Ere command ~ords. user 
characters are required for the eLI to determine ~hich path to 
take. let us· assume that the user is in expert recognition 
mode end that she types a Rd D • The eLI can then determire that 
n00e 1 is on the correct path and rode 2 is not because the 
us~r must be typing the "DELETE" command word; as a result it 
discontinu~s processing the path through node 2 anc proceeds 
down the path through node 1 to process nodes 3 a"~ 4. T~e 
user types a "c". The eLI can then determine that node a is on 
the right oath. Node 4 is a terminal node and so upon 
~ompletion of the processing of node 4. the current co~mand is 
complete and the eLI will begin processing again at the reot. 

If instead the user types an "in as the first character of her 
command. the ell will then process the nodes follo~inq nrde 2-­
nodes 5 and 6. Node 5 checks the value of the built-in 
variable DISPLAY which is TRUE if the user is at a display 
terminal. If tISPLAY is TRUE, the eLI is directed to cont~nue 
down to node 7 and process it together with node 6; ot~erwise 
it will discontinue processing the path through nace 5 and only 
process node 6. Let us assume that DISPLAY is TRUE and so 
nores 7 and 6 are both processed. The user types a "w n • The 
elI c~nnot determine whether node 7 or node E is on the correct 
peth because both are command words be~inning with nw", cnc so 
it must get another character from th~ user to continue. 
Suppose this next character is "xU. The ell finds that neither 
no~e 7 nor node 6 is correct for this character and there are 
no other currently active paths. The ell then assumes that the 
us:r typed a bad character. tells her SOt and gets another 
ch'Jracter which hopefully ~ill be aift or "0", thus allowing the 
eLI to finish processing the command. 

Augmentation Research Center page 3 



OIA lLG ANDY 3-FEB-11 17:06 28145 

Frontend System Cccumentation 

CMl COMPILER AND COMPACTOR DESCRIPTION 

Introduction 

The CML compil~r and CML compacter are used to trarsform the 
text of a CML grammar into a form executable by the ell. The 
CML compiler takes as input a source file, either Gn NLS or 
text file. and produces as output a file containins an 
appropriate set of CML instructions. The CML compacter is a 
post-processer for the compiler which reduces the size of the 
compiler output and produces any modifications necessary for 
the grammar to run on its target machine. 

Th~ following discussion assumes that the reader is familiar 
with the/ CMl and LID languages. 

The Compiler 

The CML compiler ;s written in TrEe Meta. a compiler-writing 
langu3ge~ and runs en the PoP-IO. It can be run in NLS +aking 
as input an NLS file. or from the EXEC with a text file as 
inr--ut. 

The format of the compiler output is a directed graph whose 
nodes are instructions. each of which cccupies two 36-tit 
words. The links in the directed 'grapr are implemented through 
twc fields in each instruction--the alternative field and the 
successor field. The alternative fielc contains the address of 
th~ CML instruction to execute in parallel with this one, while 
th~ successor field contains the address of the next 
instruction to execute should this one succeed. 

Another field in each instruction indicates the type of the 
instruction. such as "recognize a command word" or "call an 
execution function". Other fields contain information 
dependent on the instr.uction type. For example. the "recoQnize 
a command word" instruction has a fiel~ which contains a 
pointer to the command word string. 

The compiler output is a relocatable file which must be 
link-leaded before being used. 

~ugment2tion Research Center page 4 



CIA LLG ANDY 3-FEB-77 l7:0~ 28745 

Frontend System Documentation 

Th~ Lomoacter 

The compacter is written in the LID language and runs on a 
PCP-lC. The 1nput to the cornoacter is the compiler output 
file; its output is a compacted grammar file. The co.pacter 
further processes the output of'the co~piler to reduce its size 
ard put it into a form appropriate for the type of computer 
that it will be running on. As a result. there are two 
compacters. one for producing gra~mars to run on the PDP-IO and 
on~ for the PDP-ll. 

The output of the two compacters differs ir. only tkO weyS. The 
first is the disoatch record at the be9inning of the gra~mar. 
This record is soecially formatted for the PDP-l1 so that the 
sa~e L1G RECORD definition can reference it on both the FOP-lO 
and POP-Il. 

Th0 second difference lies in the way qtrings and cointers to 
strings are handled. For the PDP-lO. characters are packed 
five to a word. Strin~ pointers point to the word previous to 
the string? which contains the maximum length of the string in 
th~ left half of the word and the curr~nt length of the string 
in the right half~ i.e •• M.,L. For the PCP-11. characters are 
packed two to a word, with the exception of the first word 
which contains only the first character of the string in the 
high byte. (Strine pointers point to this first word.) The 
current length of the string is in the word previous to where 
the strino pointer points; the maximum length of the strinq is 
in the word previous to that. You may already have noticed 
that strings and string pointers in corrpacted gram~ars are 
implemented in a manner identical to that of the LI0 and LlOll 
languages. 

All further discussion of the compacter applies tc both the 
POP-tO and PDP-t1 ccmpacters. 

A compacter operates by loading the relocatable file proruced 
by the compiler. tcgether kith any rel~ted parse f~nction 
files. Thus, the grammar has all of its references resolved 
and may be put into a form that need not be link loaded. Upon 
completinq the compaction processing, the newly-prcduced 
compacted grammar is written on a file~ 

Augmentation Research Center ~2ge 5 



OIA LLG ANDY 3-FEB-77 17:a6 28745 

Frontend System Cocumentation 

Co~p2c~ed 3rammar Descrio~ion 

Over2ll Structure 

A compacted grammar consists of two se~ments: a code segment 
and a data seqMent. The code segment contains the dispatch 
record~ var;ous tables used by the grammar. and the CML 
instructions. The data segment contains the grammcr·s 
variables and process records. 

The Co~e Segment 

The first item in the code segment is the dispatch record. It 
contains pointers to the tables in the segment. byte numbers of 
certain instructions in the gra~mar9 a~d other information 
about the grammar. Pointers are relative to the beginning of 
the segment starting at 0; the byte nu~bers are relative to the 
beginning of the segment starting at 1~ a 0 byte number 
incicates the absence of an ;nstrLctior. The dispatch record 
h~s the fotlowin9 LI0 RECORD definitior: 

{subr) R~CORO % grammar dispatch record: 

subname[ADDRESSJ. % pointer to subsystem na~e string ~ 

firstinst (ADDRESS]. % byte number of first i~struction of 
commands % 

valcode[ADORESSJ. % ~al;cation code - 10 for the pep-I0. 
11 for the PDP-II % 

hlprule(AOORESS]. % grammar help r~le I 0 indicating none % 

initinst(ADDRESSJ. ~ initialization rule I 0 ~ 

reeninst[ADORESSJ. % reentry rule I 0 % 

termrule[ADDRESS]. % termination rule I 0 % 

prsrec(AODqESSJ. % pointer to process records relative to 
beqinning of DATA segment J 0 indicating none ~ 

kword(ADDRESSJ. ~ pointer to ccmmard word table ~ 

~choworo[ADORESSJ. % pointer to noise word string table ~ 

Aug~entdtion Research Center oage 6 



OIA LlG ANDY 3-FEB-77 17:06 28745 

Frontend System Documentation 

execvector [ADDRESS), X point~r to execute byte nu~ber 
ts~le v 

cfuncs ~ADDRESSJ~ ! pointer to parse function address table 

funcs (ADDRESS), % pointer to function record table ~ 

gvstart [ADDRESS], ~ pointer to glcbal variables relative 
to beginning of DATA segment % 

sharl (ADDRESS], ~ number of 32 word blocks in code segment 
% 

oriv [ADDRESS], % not used X 

pr~vl (ADD?ESSJ. % number of 32 word blocks in data se~ment 
~ 
~ 

pfcsizef 8 ] % number of 32 word blocks in parse f~nr.tion 
eoce ~, 

nfdsizeE Q ] : number of 32 word blocks in parse fu~ction 
data ~; 

ollowing the dispatch record in the code segment are the CMl 
rstructions. If ~n instruction has an alternative 
nstruction, it is always the next instruction. The successor 

of ~" instruction, if it has one, always follows the 
instruction, although it is not necessarily the next 
instruction. ~nstructions are coced into 8-bit bytes. There 
are byte numbers for certain of these instructions--e.g.~ the 
first instruct;on of the commands--in the dispatch record. A 
description of the instruction format is given below in 
nCompacted Grammar Instruction Formatn~ 

The tables for the grammar follow the instructions. With one 
exception. an entry in any table consists of a poirter relative 
t~ the beginning of the code segment. The single exception is 
the execute byte number table (pointed to by the gexecvector. 
field) whose entries consist of the byte number of an 
instruction relative to the beginning of the code segment. All 
t~ble entries occupy a full computer word. 

Following the tables are various constant data elements used hy 
the gr~mmar, e.g •• command word strings. Command words defined 
as selectors are slightly different from other command words, 
in that the three words previous to the command word string are 
inLices into the p?rse function table. These indices indicate 

Augmentation Research Center page 7 



OIA LLG A~OY 3-FEB-77 17:06 28745 

Frontend System Cocumentation 

th~ selection parse functions to be used to gather a selection 
by oointin"_ typin1 in, and typing the address. The order of 
th2 three words ~s~ 

ooint s2le~tion oar~e function irtex 

type in selection parse function index 

type address selection parse functior incex 

~ommand word string 

Th p selection parse function may be built into the elIt as with 
a TEXT selector for example. or may be written by a CML 
programmer. A zero index indicates that selection by the 
corresponding method is undefined. For example', a zero for the 
point selection oarse function index means that the selection 
canrot be pointed to. 

The 02ta Segment 

The data segment of a compacted grammar contains those elements 
which may change during the use of the grammar~ this orevents 
it from being shared amon~ multiple users of the grammar as is 
the code segment. 

The first elements in the data segment are the grammar 
variables. Outing execution of the gr~mmar. these elements 
will contain pointers to the actual values of the ~rammarts 
variables. Typically. these paint into the free s~ace area of 
the eLI. The variables are divided into two croups: local 
variables followed by global variables~ 

Following the variables in the ~ata segment are the process 
records. These are four word records. one for each backend 
process that the grammar might interact with, as given in the 
grammar source. The format of these records is dependent on 
the interprocess communication protocol being used by the FE. 

Compacted Grammar Instruction Format 

E~ch CML instruction consists of one or more conti£uous P-bit 
by~es. The first byte of an instruction always inticates its 
type. Following the first byte there may optionally be one or 
more bytes of fields related to the instruction ty~e. In 
addition. there may optionally be one cr two bytes cf ~uccesscr 
field. 

Augmentation Research Center page 8 



DIA LLG A~DY 3-FEB-77 17:06 28745 

Frontend System Cocuw.entation 

Th 0 fir$t byte of ar instruction has t~ree fields, define~ as 
an Ll~ REC~RD 2S follows! 

{1~stre~} RECORD cccode[~]. altsuc[2J, llcmc(lJ: 

The ·opcode- field indicates the instruction type, e.g. 
'recognize a command word~ or 'call an execution function t • 

Th~ ~llcmd· field is used by different types of instructions in 
different ways. For example. the 'recognize a command wcrd 9 

i~struct;on uses it to indicate whether its commanc word is 
first level or not. 

The 'altsuc' field. together with the optional successor field. 
provides 1nformation 3bcut the instruction's alternative and 
successor instructions. It may assume the followirg values. 
which are defined as external constants in the ell: 

nott3st--The instruction is not the last alternative and its 
~tternative instruction is the next 1nstruction following it. 
A successor field indicates the successor·s location. 

lastnone--The instruction is the last alternative. i.e •• it 
has no alternative and no successor. 

last~ield--The instruction is the last alternative and its 
successor is indicated by its successor field. 

lastnext--The instruction is the last alternative and its 
successor is the next instruction. 

A successor field may be used to indic2te the location of an 
instruction's successor. ~hether or not an instruction has a 
surcessor fieLd is indicated by the -altsuc- field in the first 
byte. A successor field contains the cisplacement of the 
su~cessor instruction relative to the last byte of the 
successor field. A displacement of 3 would mean that the 
successor instrtJction begins at the third byte following the 
last byte of the successor field. A z~ro successor field 
indicates that the instruction has no successor. 

A successor field may be one or two bytes long; its first byte 
has two fields with the following lID RECORD definitior: 

(sucrec) RECORD sucaddC7J. LongE 1]; 

Augmentation Res~arch Center page 9 



orA LLG ANDY 3-FEB-11 11:06 28145 

Crontend System Cocumentation 

I~ the 'long t field ecuals O. the value of the successcr field 
is simply the value of the ·sucadd~ fial~. If t~e ~longt field 
eoual~ 1. +her~ ~re two bytes of succe~sor field. The value of 
th~ f1eld ~s 

v~lu~ = ( sucndd field * 256 ) + se~ond byte of field 

other fields in instructions are often incices into one of the 
sr3mmar tables. Table indices always start at o. They ere 
used to computf the absolute addresses of varicus grammar 
elements. For example. to compute the absolute address of a 
command wore in the grammar given its index -ind-, the 
following steps are taken: 

1. Compute the address of the begin~ing of the command word 
table .comworctab •• oiven the a~dress of the beginning of the 
cede se~ment ·cocseg·. and usinc the 'kword' field of the 
?rammar dispatch record: 

cOTworctab _ codseg + [codsegJ.kword; 

2. Compute the absolute address of the command ~ord 
~comwordaddr~: 

comwo~daddr _ codseg + LcomwordtabJ[inc]; 

Some fields in instructions are variable designators. These 
are used to locate variables referenced by the grammar. An 
8-bit byte used as a variable designatcr is formatted according 
to the LIG RECORD declaration 

(addrrec) RECORD varind[6J. vartype( dummy[lJ. nctlocal[lJ J; 

If the tnotlocal' field equals Q, the ~aria~le is and the 
entire byte is an index whose base is the beginnin~ of the 
gr3mmar data s~gment. If the ·~otlocat' field equals 1. the 
.v2rtype· field is u&ed to determine whether the variable is 

global--meaning the .varind- field is an index into the data 
segment with base indicated by the dispatch record field 
fgvstart·. or 

~ltin--meaning the variable is built in to the eLI and 
'varind' is an index into the CLI.s array of built-in 
variables. 

Aug~entation Research Center page 10 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Cocumertaticn 

I~stru~tion Ty:es 

Th~ instruction types--defined as external constants in the 
CLI--~~d the f~rmat of their bytes are described below. All 
instructions u~e the 'oocode. and -altsuc· f~elds. These 
descrictions co not inelude the successor field. which mayor 
may not be present in a particular instruction. The value of 
th~ in~truction types in octal is given in parenthesis. 

abortop (0). Show the user the contents of the eLI 
~ccu~utator and abort the co~mand. 

first byte: Cinstrec) RECORD rpcode(5]. altsuc(2J, 
llcmd[!J; 

No other fields are used. 

keVOD (I). Recognize a command ~ord. The command word 
may be a literal. or a variable containing a string. or a 
list of strings. 

first byte: (instrec) RECCRD opcode[SJ. aLtsuc[2J. 
llcmd[l]; 

llcmd--this field eaual to 1 implies command word is 
first level. 

second byte: This entire byte is interpreted 
differently depending on the ·kwvar· field in the third 
byte and is either: 

an index into the command word table if the rornmand 
word is a literal. or 

a variable designator if the command wor~ is a 
variabLe. 

third byte: (valrec) RECCRO nLmofargs( tstrel[3J. 
tstintCIJ. tstnot(lJ. filler(l:J. hashelprLle[lJ, 
Kwvar(l]; 

Kwvar--this field equal to a implies that the second 
byte contains an index into the command ~ord table 
~nd the entire third byte is the integer tOKen 
associated with the command ~ord. This fiel~ eQual 
to 1 implies th2t the second byte contains a variable 
iesignator and the remainder of the thirc byte should 
~e i~nored. 

Augment2tion Research Center 



OIA lLG ANDY 3-FEB-77 17:06 28745 

Frontend System Cocumentation 

NO other fields are used~ 

~onfirm (2). ~et a confirration from the uspr, e.g •• by 
the user typin~ a COMMAND ACCEPT. 

first byte: (instrec) RECfRD cpcode[SJ. altsuc(21~ 
llcmd[lJ; 

No other fields are used. 

sset, dsel. lsel (3. 4. 5). Get a source. destination. 
or literdl selectio~ from the user. 

first byte: (instrec) RECCRO -peode[S]. altsuc[2J. 
tlcmd[lJ; 

No other fields are used. 

pusharg (6). Push the CMl ~alue in the accurrulator onto 
the argument stack. This is the method by which 
arournents are gathered fer parse or execution function 
calls. 

fi~st byte: (instrec) RECORD cpcode(5J, altsuc[2J. 
l1cmd[lJ; 

No other fields are used. 

3nswer (7). Get an answer from the user. e.g •• by the 
user typing nyR for ·yes". 

first byte: Cinstrec) RECORD opcode[5J, altsuc[2J. 
llcmd(lJ~ 

No other fields are used. 

cpt~on (108). Get an OPTION character from the user. 

fir~t byte: (instrec) RECORD cpcode[5J. altsuc[2J. 
llcmd[lJ: 

No other fieLds are used. 

pfcllop {lIB). Use a oarse function. 

first byte: (instrec) RECORD cpcode[5J. altsuc[2J. 
llcrnd[lJ; 

No other fields are used. 

Augment2tior: Research Center page 12 



orA LLG ANDY 3-FE8-11 17:06 28145 

FrQntend System Documentation 

second byte: entire byte is ar index into the pcrse 
function address table. 

third ~yte: (valrec) PEceRD nLmofargs[ tstrel[3J. 
tstintflJ. tstnct[l]~ filLer(l~J. hashelprule[l], 
kwvar[~]: 

numofargs--the number of arguments that the parse 
function is to be OP~NPORTed with. 

Mo other fields are used. 

execute (12E). Execute a series of CML elements. 

first byte: (instrec) RECORD cpcode[5J. attsuc[2J. 
l!cmd[lJ; 

~o other fields are used. 

se~ond byte: entire byte is ar index into the execute 
byte number table. 

call (138). CaLL an execution function. 

first byte: Cinstrec) RECORD opcode(5J. altsuc[2J, 
llcmd(lJ; 

llcmd--this field ecual to 1 i~pties that the 
function is to be called in flout of line" mode. 

second byte: entire byte is an index into the function 
re~ord table. 

third byte: (valrec) RECORD numofargs[ tstrel[3J. 
ts+int[lJ~ tstnot[lJ. filler(lJJ. hashelpruleCl], 
kwvar[!]; 

numofargs--the number of arguments that the function 
is to be called with. 

NO other f1etds are used. 

fbclear (148). Clenr the feedback window. 

first byte: f;nstrec) RECORD cpcode[5J. altsuc[2J. 
llcmd[lJ; 

~o other fields are used. 

Augmentation Research Center page 13 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Fron~end System Cocumentation 

echo {15~}. Put n noise wore string in the feedback 
\-.,Ii nr~ ow. 

first byte: (instrec) RECCRO cpccdeC5J, aLtsuc[2J. 
llcmdLl]: 

~o other fields are used. 

second byte: entire byte is an index into the noise 
word string table. 

recho (168). Remove the last item from the feedback 
window and put in a noise word string. 

first byte: (instrec) RECCRD cpcode[5J~ attsuc[2J. 
tlcmd[lJ; 

No other fields are used. 

second byte! entire byte is an index into the noise 
word string table. 

stor~cp (178). store the CMl value of the accumulatcr 
into a CML variAble. 

first byte: (instrec} RECORD cpcode(5], altsuc[2J. 
llcmdCl]; 

No other fields are used. 

second byte: entire byte is a variable designator. 

load (20F). load the accumulator with the velue of a CMl, 
variable .. 

- first byte! (instrec) RECCRO cpcoce(5J. altsuc[2J. 
llcmdCl]; 

No other fields are used. 

se~ond byte: entire byte is a variable designator. 

enter (218). Enter a number into the accumulator. 

first byte: (instrec) RECCRO cpcoce[5J. attsuc(2J~ 
·llcmd[l]; 

~o other fields are used. 

Aug~p.nt2tion Research Center ~ege 14 



OIA LLG A~DY 3-FEB-71 17:06 28745 

Frontend System Documentation 

setond byte: entire byte is tre number tc ent~r into 
the accuMulator. 

test (22S). Test the value of the accumulatcr. 

first byte: (instrec) RECDRD cpccde(SJ. altsuc(2J. 
llcmd[l]; 

No othpr fields are used. 

second byte: entire byte is interpreted differently 
depending on the 'tstint· field in the third byte. The 
second byte is either: 

an integer to compare the accumulator with. or 

c variable designator to compare the acc~mulator 
with. 

third byte: (valrec) RECORD numofargs( tstrel(3], 
tstint~1J~ tstnot(lJ~ filler[lJJ. hashelprule[lJ. 
kwvar[lJ; 

tstr~l--the relation which is being tested for. The 
followi"9. which are declared in the eLI. are 
possible values: 

equal 

greater 

less 

grequal 

l~ssequal 

tstint--this field eQual to 1 implies the test is an 
integer test and the second byte contains the 
intpger. This field equal to 0 implies a test 
against a variable and the second byte contains a 
variable designator. 

tstnot--this field equal to 1 implies that the result 
of the test should be complewented. 

Augmentation Research Center rage 15 



orA LLG ANDY 3-FEB-71 17!06 28145 

Frontend System [ocumentation 

showcp (238). ~how the contents of the 3ccurr-ul3tor to 
+h~ user .. 

T1fst byte! 
llcmd[lJ; 

(instrec) REC0RD 0pcoce[5J. altsuc[?J. 

NO other fieLds are used. 

tnterew (246). Enter into the accumulator a command 
word. 

first byte: (instrec) RECORD cpcode[5]. altsuc[2], 
llcmd[l]~ 

No othp.r fields are used. 

second byte: the entire byte is an index into the 
c~mmand word table. 

third ~yte: the entire byte is the integer token 
~ssoc;ated with the command word. 

4=nternult (258). Enter into the accumulator a NULL. 

first byte: Cinstrec) RECORD cpcode[5J. altsuc[2J. 
llcmd[lJ; 

No other fields are used. 

~ntertrue C26B}. Enter irto the accumulator a TPUF. 

first byte: (inst~ec) RECORD cpcode[5J. altsuc[2J. 
t1.cmd(lJ; 

No other fields are usee. 

~nterfalse (27B). Enter into the accumulator a FALSE. 

first byte: (instrec) RECCRD opcode[5J, altsuc[2J~ 
llcmdC1J; 

No other fields are used~ 

resure (30B). Resume a help call. 

first byte: (instrec) RECDRD npcode[SJ. altsuc[2J. 
llcmd[l]; 

No other fields are used. 

Augmentation Research Center r;age 16 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Documentation 

~pperd f31S). Append the value cf the accum~latcr to 3 

CML lJarli3ble .. 

first byte: (instrec) RECCRO 0pcode[~J, altsuc[~Jt 

tle~c[l]; 

No other fields are used. 

second byte: entire byte is a variable designator. 

testtrue (328). Test to see if the accumulator is TRUE. 

first byte: (instrec) RECORD cpcode[SJ. altsuc[2], 
llcmd[lJ; 

l1cmd--this f;elc eQual to 1 impl·1e!! thct the result 
of the test should be complemented. 

testnull (338). Test to see if the accumulator is NULL 
nr FALSE .. 

first byte: (instrec) RECORD opcode(SJ, altsuc(2J. 
llcmd(l); 

tlcmd--this field equal to 1 implies that the result 
of the test should be complemented. 

helpcall (34B). Call an execution function that has 
specified a help rule. 

first byte: Cinstrec) RECCRD opcode[5J. altsuc[2], 
tlcmd(l); 

No other fields are use~. 

second byte: entire byte is an index into the function 
record table. 

third byte: (valrec) RECORD numofargs[ tstrel[3J. 
tst1nt~lJ, tstnot(ll, filler(l:J. hashelprule[lJ· 
kwvar[lJ; 

numofargs--the number of arguments that the function 
is to be called with. 

No other fields are usee. 

Augment~tion Research Center page 17 



OIA LLG A~DY 3-FEB-77 17:06 28745 

Frontend System Cocumertation 

fourth byte: the entire byte is an incex into the 
execute byte num.ber table indi~ating the f~rst 
instru~ticn cif the help rule. 

~~ample 

Th~ following provides a comparisor between a CMl grammar 
source and the corresponding compacter output. The source 
is: FILE cmlexp %(nsw-sources.cgcml.> 
<poggio.cmlexp.cml.)% 

Aug~entation Research Center page 18 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Documentation 

- Declarations ~ 

DECLARE COMMAND WORD 

DECLARE VARIABLE var; 

DECLARE FUNCTION doexample; 

SUBSYSTEM cmtexp KEYWORD "EXAMPLE-

exp COMMAND = "SHO~" var _ ( "(Ml" I "CLI"!L2! ) 
("examDle") doexample( var ); 

~ND. 

The comoacter output is shown in octal 8-bit bytes. 
Instruction boundaries are indicated by dashes. 

341 

o 

Recognize first level command word "SHOW". This 
instruction has no alternative and its successor is the 
n?xt instruction. 

"SHOW" is the third entry in the command word table. 

Its integer token is 0 because none was declared. 

Augment~tion Research Center page 19 



OIA LLG ANDY 3-FEB-17 17:06 28145' 

Frontend System Documentation 

201 

1 

1 

4 

Q~~ognize first level command word RCML". Thi~ 

instruction has an alternative which is the next 
instru~tion. It has a successor field which ir.dicates 
the loc3tion of the successor. 

"CML" is the second entry in the command word table. 

Its integer token is 1. 

This is the successor field. ~he 'long' field of the 
oyte is o. indicating that the successor field is only 
1 byte long. The successor field has a value of 4. 
indicating that the successor begins at the fourth byte 
followinq this one. This is the 157 byte, the first 
byte of the store instruction. 

241 

o 

Recognize second level command word "CLI". This 
instruction has no alternative and its successor i~ 
next. 

"CLIft is the first entry in the command word table. 

Its integer token is 2. 

Augment6tion Research Center page 20 



c 

DlA LLG A~DY 3-FEB-77 17:06 28745 

Frontend System Documentation 

store the contents of the 2ccu~ulator into the v2r1able 
fV3r •• This instruction has nc alternative arc it~ 
su~cessor is next. 

Th€ 'notLocal' field ecuals 0 1mplying that this is a 
local variable. It is the first local variable in the 
data segment. 

155 

Show the noise word wexamole" to the user. This 
instru~tion has no alternative and its successor is 
next. 

The noise word ftexample" is th~ first entry in the 
noise word table. 

160 

Load the accu~ulator kith the contents of the variable 
'var·. This instruction has no alternative and ~ts 
successor is next. 

The -notlocal. field equals 0 implying. th2t this is a 
local variable. It is the first local var;abl~ in the 
duta segment. 

Augmentation Research Center 



DIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Cocumentation 

146 

1 

cu~h the contents of the accumulator onto the 2rcument 
st~ck. This instruction hes no alternative and its 
su~cessor is next. 

Call the execution function ndoexample n • This 
instruction has no alternative and no successor. 

The execut~on function "doexam~led is the first entry 
in the function record table. 

The 9numofargs· field eouals 1 indicating that ore 
argument should be popped off the argument stack and 
ocssed to the execution function. 

Augmentation Research Center page 22 



OlA LLG ANDY 3-FEB-71 17:06 28745 

Frontend System Oocu~entation 

CML VARIABLE TYPES 

!ntroduction 

This section desc~ibes the Command Meta language (CML) variable 
types and their translation into PCP tyo~s. It is intended for 
CML parsp. function writers but may be of interest to anyon~ 
familar with CML. 

CML Variable structure 

CML variables all contain a pointer to a blocK of one or more 
conti~uous words of memory. Th~ first wcrd (word 0) o~ the block 
is always a heace r with the fottowinp fields right acjustec in 
word! 

******************************************************** 
* * * * 
* vlength (8 bits) * vmarks (2 tits) * vtype (6 bits) * 
* * * * 
******************************************************** 

As their na~es suggest, the vlength fielc indicates the variable 
length and the vtype field the variable type. The vrrarKs field 
indic~tes hew many marks' were made on th~ display during the 
creation of the variable; its value. typically zer09 will depend 
on how the v~riable was created. 

The header fields are defined in LIG as: 

CV2r) RECORD %header of a variable! 

vty~e[f]. vmarKs[2J. vlength[8J; 

CML Typ~s 

STRI~G 

word c: vtype = strtyp~ (= 1). vlength = 3 

wor~ 1: integer token associated with string or 0 if rene 

word~: address of LID string 

Augmentation Res~arch Center 



OIA LlG A~DY 3-FEB-77 17:06 28745 

Frontend System Cocumentation 

ror~r''!AND wORD 

worri '" · vtype = cwtype (= 2). vlergth - <: 
- ..J 

wore 1 .. 
.J. · integer token associated with string or 0 if none 

word 2 · · address of LlO string 

The distinction between a command type and a strin~ type is 
th3t a command word string may have been defined tc be a 
SELECTOR. In this case the three words previous to the string 
may point to selection functions for pointing. addressing. and 
typing in. This fact may be generally ignored by the CMl 
progr~mmer. 

INT:::GER 

wore 0: vtype = integer (= 3). vlength = 2 

word 1: the integer 

POINT 

word i~ .• 

:J • vtype = pointtype (= 4). vlen~th = 5 

word 1 : the window identifier 

word 2: the string identifier 

word <: : the line segment identifier 

word '+ : the character position 

ADDRESS 

word o : vtype= addrtype (= 5). vlength = 4 

word 1 = integer token associated with string or 0 if none 

word '" . c: . address of LIO string 

wo rrl :: : window identifier 

NULL 

word n· • 
'.-; . vtvpe = nulltype (= 6). vlength = 1 

Augment3tion Research Center page 24 



OIA LLG ANDY 3-FEB-17 17:06 28745 

Frontend System Documentation 

LIST 

wert~: vtype = listtype (= 7), vtength =2 + number 0~ 

elements in t1~t 

word 1: number of elements in the list 

wcr~ 2 to word N: adcresses of elements in the list (elements 
may be of any type) 

TRUE 

word~: vtype = truetype C= 8), vleng h = 1 

FALSE 

word 0: vtype = fulsetype <= 9). vlen~th = 1 

BLOCK 

word O~ vtype = blocktype C= 10). vlength = number of bits in 
block 

word! to wor~ N: the bits (32 per 36-bit word left-adjusted) 

WINDOW 

word 0: vtype = windtype (= 11). vlenQth = 2 

wor~ 1: the window identifier 

ADDRESS EXPRESSION 

were 0: vtype = adexptype C= 12). vle gth = 2 + number of 
elements 

word 1: number of elements in the address expression 

word? to word N: addresses of elements in the address 
expression 

Augmentation Research Center 



OIA LLG A~DY 3-FEB-77 17:06 28745 

Fron~end System Cocumentation 

VIRTUAL TERMINAL CONTROLLER DESCRIPTION 

Introduction 

The Virtual Terminal Controller (VTC) mo~ule of the Frontend 
oresents a virtual terminal interface to the tools and the 
Frontend itself. It co"tains the procedures and data to map the 
virtual operatio~s into the actual operations necessary for 
communication with the connected terminal device. 

The VTC cefines three classes of terminals: (1) half duplex 
(possibly line at a time) tycewriters. (~) full duplex 
typewriters~ and (3) alphanumeric display terminals! perhaps with 
pointing devices. etc. A s~t of operations are defined for each 
class o~ terminal. DeC2use operations are the same for classes 1 
3nd 2. tools address themselves to two virtual termiral types: 
typewriter and disDlay. ~ore ad~anced graphics terminals fall in 
a fourth class. but the operations fer this class are not yet 
specified. 

The VTC functions as a service module in the FE. shen a call is 
~ade on the VTC~ it performs some specified function and returns. 
The VTC is accessed through one of two entry point procedures. 
which in turn call on the other VTC procedures. One entry 
procedure is used only by the Frontend to manipulate the terminal 
in some tool-independent fashion; the other is used ~her a tool 
explicitly calls on the VTC. 

VTC Design 

This section describes VTC capabilities and the design approach 
to the VTC. A gloss~ry of terms usee in this description may be 
found at the end of this chapter. 

CBoabilities 

For typewriter terminals, VTC capabilities consist of setting 
the terminal device type, writing strings on the terminal. and 
controlling the carriage position. 

A rich set of primitives p.xists for the display class of 
terminals~ many of which rely on the concept of a aisplay 
"window". Several windows are predefired by the Frontend and 
created by the FE through VTC primitives: 

A TTY-simulation window for status or error messages. 

Augmentation Research Center page 26 



DIA LLG ANDY 3-FEB-71 17:06 28745 

Frontend System Documentation 

~ command feedback window. 

Cn~ or more tool windows. 

~. soecial small window for toel mode information. 

Th~se windows ~re created by the Frontend proper by way of VTC 
primitives. 

Th~ screen may contain adjacent and overlapping wincows9 much 
the way a person views several pieces ~f paper on his iesk. 
Each window has an associated priority to determine which 
window is visible when the windows overlap. 

Tools are given custody of a window. c~lled a primary wirdow. 
when they are first startec. The tool is then free to write 
3nd delete strings in the window~ clear the window, and create 
more windows within it. Typically the primary window is nearly 
all of the screen (e.g •• 20 cut of 24 ful.l lines). 

A user can maintain separate primary windows for many tools 
corcurrently by instructing the Frontend to divide an existing 
win~ow. Primary windows may net overl2p and can only be 
r~configured and written by the owning tool. Within the 
boundaries of a primary window. a tool may create overlapping 
windows. 

Yhen using a display terminal. the user can select any text 
visible to him instead of typing it on the keyboard. This. 
combined with the ability to run sever2ls tools in different 
windows concurrently. gives the user a helpful cross-tool 
facilit.y. 

When a tool is terminated. via a call to ·toolrst t , all windows 
assigned during the tool's use are released. The tata 
structure tool list (ttist) is used to find the wirdows 
associated with the tool. given the tool code. 

Design Approach 

Th~ VTC is comprised of a collection o~ service procecures and 
a data base. The data base contains structural and textual 
information about the screen contents which the prccedvres 
m2nipulate in useful ways. 

The data base consists of 2 mlnlmum of -global" information 
th3t is always present. for the most part runtime-allocated 
blocks of data, of variable size. that describe the structure 

Aug~ent2tion Re~earch Center 



OIA LLG A~OY 3-FEB-71 17:06 28145 

Frontend System Cocumentation 

3n~ contents of the windoASe This frees ~emory when not in 
u~e. 2"d makes possible a more efficient use of memory by 
sb~ring the allocation pooL 3monR reany Froritend precesses. 

Th~ most important performance criterion for the VTC is 
r~spo~se time~ i.ee. the sceed of display manipulation. Hence 
a great deal of care is taken to maKe cisplay mani~ulaticr 
efficient. This even manifests itself to the tool· in the form 
o~ the "batch-commands" procedure. which will perform ~any 
display operations at one time anc more efficiently then if 
done by many calls. 

VTC Implementation 

This section briefly describes the nature of the VTC interfaces. 
data structures. storage management technioues. and error 
hancling strategy. It provices. references that will be useful in 
locating functional areas within the source code. 

Oisplay Package Interfaces 

The VTC module has three logical interfaces~ the external tool 
interf~c~. the internal eLI interface. and the terminal cevice 
interface. 

A call generated from the eLI is of the form 

DPYCALL(name. n. al •••• an) 

where name (an integer) is an internal VTC procedure number. 
and n is the number of arguments 31 through an. 

The procedure DPYCALL calls the specified internal display 
procedure {many of which correspond one-to-one to the external 
procedures~ but with the arguments in a different form}. The 
procedure list is in array IDPYTAB. The association between 
thp procedure name and its number is shown. 

(scrotlwindow = l)--scroll a window. 

{getdstr = 2)--get display string from display structure. 

{toolset = 3l--set a window to be given tool's primary 
window. 

ctoolrst = 4)--remove tool from tool list. 

Augment3tion ~esearch Center page 28 



OIA LLG ANDY 3-FEB-17 17:06 28145 

Frontend System Documentation 

(wrtLs~ = 5}--write Line segment. 

~deLstr = E}--delete a string. 

CdeLlsg = 7)--delete line segment. 

(rpllsg = 8)--replace line seg~enta 

(opointset = 9)--point selection routine. 

{xywindow = lO)--given x. y real coordinates. return 
window-ide 

Cwrtstr = 111--write string. 

(cre4~nd = 12)--create w~ndow. 

{intseqw = 13)--initialize secuentiat window. 

(s~tdftty = 14)--set default TTY winrow. 

(gW3tt = 15)--set window attributes. 

(setsatt = 16)--set string attributes. 

'ir.w.ind = 17)--determine if a "window-relative" point is in a 
window. 

fsetlatt = IP)--set linseg attribute~. 

Cdelw1nd = 19)--delete window given ~indow-id. 

[detsubs = 20)--detete all sub-windows given wincow-id. 

(clrwind = 21~--clear window. given ~indow-id. 

{markfcn = 22)--merk screen to show or remove a selection. 

(wrtl1teral = 23)--write literal string in a window. 

(wrtcart = 24)--write partial string~ subordinate to 
wrtliter?l. 

{finish = 25l--finish display manipulation sequence. 

C3tls to the display package from toots are external procedure 
calls as defined in Appendix 4 of A GUIDE TO THE CML AND ell. 
Th~ ell transforms that into a call of the form 

AugmentAtior Research Center rage 29 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Fron+end System [ocumer.tation 

EDDVDSPflPort. opcrt) 

wh~re the two er?uments ar~ port-identifiers for scurce and 
s~nk of the current cata representation largumer.ts and 
results). The disolay package procedures read their arguments 
and generat th~ri results ~sing the twc Dart-identifiers. 

VTC Routines Available through the ell 

The procedure EDPYDSP dispatches external calls to the 
correct procedure. passing two coroutine port-ids as 
arguments. one for the coroutine that supports reading 
argument lists (rlist) and one for writing result lists 
(wlist). Each procedure reads the PCPB8 argument l1st~ 
performs som~ function. and then writes a PCPB8 result list. 

The orocedur~ names below are these found in the source code 
of the VTC module. 

Cecrewind)--create window. 

(eclr~ind)--clear window. 

(escroll)--scroll wincow. 

(ewrtlsg)--write line-segment. 

(ecelwind)--delete window. 

{ewrtstr)--write strine. 

(ecellsg)--delete line-segment. 

Cecelstr)--delete string. 

(erpltsg)~-replace line-segment. 

(ewrtl1t)--write literal into wincow. 

Cesetssttl--set string attributes. 

(esetlntt)--set line-segment attributes. 

(eposstrl--reposition string. 

(~poslsg)--reposition line-segment. 

(erolstr)--reptcce string. 

Augment~t;on Research Center rage 30 



orA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Documentation 

{ebatch)--batch commands processor~ 

(2get~indows)--gpt'window information. 

(etreck)--turn cursor trackin£ on/eff for graphics 
termin3t. 

The VTC external procedures are callable through a set of 
externally callable routines in the FE. The list of user 
callable procedures with their arguments and results are 
described in A GUIDE TO THE CMl AND ell, Appendix 4. 
"Externally Callable Procedures in the Frontend-. 

Terminal Cevice Interface 

Keyboard and line Processor input is performed by the procedure 
·dinptc'. which makes use of the iollowing procedures: 

~~inptc)--single character input routine. 

(logetcharl--line processor GETCHAR routine. 

(angetchar)--getchar for alphanumeric displays. 

fancnv)--alohanumeric display convert typein to coordinates. 

(dinbc)--read a big character. 

<dinbcl)--read mouse button changes. 

Disolay and line Processor manipulation is performed by the 
following procedures. They are called by various VTC 
orodecures to manipulate the terminal device. 

(ancspstr)--display string on alphanumeric display. 

(pad)--pad with given number of null characters. 

(anresetJ--reset alphanumeric display. 

!position)--position cursor - alphan~meric ~isplays. 

(trnslz)--tr3nslate coords for alphanumeric display_ 

(cscreen)--ctear screen - alphanumeric displays. 

ftrack)--resume tracking - lP displays. 

Augmentation Research C~nter c?ge 31 



orA LLG A~DY 3-FEB-77 17:06 28145 

Frontend System Documentation 

{rtrGck)--resume trackin~ - LP displays. 

icline)--write blanks - alphanumeric displays. 

{cline)--delete tine - alphanumeric displays. 

(inline)--insert li~e - alphanumeric displays. 

(standoutl--Send stand cut command - alphanumeric displays. 

(endstanoout)--Send end stand out command - alphanumeric 
displays. 

(lottywindow)--specify default tty - lP terminal~. 

(reaLcdsl--convert reLative coorcs tc re2l,screen coords. 

(lsgtrnc?tel--line segment truncate function. 

fsndlsg>--send line segment to terminal. 

(doysout)--display string output with control chars. 

Special VTC Data Elements 

The primary data elements are summarized here and described in 
detail in the code file. Below is a list of important data 
elements, with their corresponding names as found in the source 
code. In some cases. further description can be found in the 
glossary at the end of this chapter. 

User information 

~userinfo) RECORO--Each userinfo record contains informtion 
that is referenced during a terminal session~ It contains 
ter~inal specific information. the tool-list address. and the 
win~ow-list address. 

Tool-li~t 

(tlist) RECORD--A list of tool code and primary window-id 
pairs. 

Wincow t?ble 

(wtab) RECORO--Each entry contains window size ard location 
fields, priority. typ~. attribute list address. parent 
window-id. and bookkeeping for the ccntents of the wincow. 

Aug~entation Research Center 



OlA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Documentation 

~ttr~hute werd 

(~tts) RECORD--E3Ch wor~ contains attri~utes for linsegs or 
-rouns of linseg£ (strin~s or windows). The attributes 
include visihility and high-lighting~ the type of desiQnat10n 
'text string or coordinates). and selectcr cede. 

string-list 

(slist) RECCRD--Each element contains a string attribute 
word. a linseg-list element address. and coordinates for the 
oricin of the string. 

Linsng-list 

(tstist) RECORD--Each element contains a linseg attribute 
~ord~ the address of the text string~ and the coordinates of 
the origin of the tinseg origin. 

Garbage list 

fgarbgr} RECCRD--each element contains a wintow-id and" 
coornina+es and character counts suitable for clearing 
l~nsegs from the screen. 

)el3ved write list 

fdlyrec) RECORD--ench element contains window. string. and 
lins0g-iri information for deferred ucdating of the screen. 

Mark block list 

(markr) RECORD--ecch element contains mark type. window-id. 
string-id. a pair of linseg-ids9 and a pair of character 
counts used to record a marked (bugged) entity. 

storage Management 

storage management is handled by a sta~dard package of routines 
that is used by most LtD modules. Interface to the p~ckage is 
provided by the procedures below. They assume that a storage 
management zone "doyzone n has been initialized through a call 
to "makezone". a procedure in the storage manageme~t peckaae. 

(getdpyl--get block of storage from dpyzone. 

{fredpy)--free block of stora~e from dpyzone. 

Augment2tion Peseerch Center page ~3 



orA LLG A~DY 3-FEB-77 17:06 28745 

Frontend System Docu~entation 

Error Handlin~ 

Errors are handled via the L1D signalling facility. Ar abort 
M~Y occur in any procedure and may be Jcted upon in any active 
cGtchphrase encountered up the thread of control. Aborts are 
generally ignored until they reach the top level dispatching 
routine Cdpycall or etpydso). at which time (finish) is called 
fer cleanup. 

Gtossa~y 

big character 

An element of the Line Processor protorol--a secuerce cf 
ch~racters in the terminal stream that begins with <ESC). Used 
in conjunction with Line Processor terminals to send pointing 
coordinates and special characters. 

coordinates 

Th~ horizonal Ix) and vertical (y) displacements from the 
origin (lower left corner) of a window, 

delayed wr1tes 

Thp method used to optimize display manipUlation seQuencinq by 
doing all ~writesn taste The writes are recorded in a list 
pointed to by dlyblk. Delayw<windtab. str, lsg) will record 
entries and wrtdety(TRUE> will actually do the writes. 
Wrtdety(FALSE) will del~te the records without writing. 

garbege list 

A linked set of garbage blocks with "sizg R garbage elements in 
each. Each garbage element indicates a string of garbage that 
is en the screen and must be cleared sometime. Each element 
looks lik? ftg2rbgr n • Global ngarbg ft cnntains the address of 
the first block. Word zero of each block contains the address 
of the next (or zero if the last block~. 

linseg-id 

Irientifier for a line segment Clinseg) in a speci 4 ied string. 

Augmentation Research Center page 34 



OIA lLG A~DY 3-FEB-77 11:06 28745 

Frontend System Documentation 

lins~g-list 

A list of lins~g element recor~s. one 
given string. Each element points to-

~ark block 

for eac~ linseg 
text string. 

in a 

An allccated block which defines a selection mark en the 
screen: "~arkit" creates them and "popmark" uses them to 
remove the marks. They are then linkec in reverse order 
through userinfo.mark (i.e •• the most recent mark i~ first in 
the link). See userirfo and markr. 

selector code 

An 8-hit number that indicates the selectivity of strings on 
the screen. Three values are given semantics by the Frontend: 

zero and one= Only selectable as literal (lSEL). 

two: NEVER selectable as literal (LSEL) except across tools. 
(SSfL enG DSEL okay). 

greater than two: Semantics given by tool. All selections 
okay. 

~hen 3 selection is m2de.a selector ccce argument is giver. to 
"opointsel n • \ormally it looks only at strinQs with an exact 
m~tch. except: 

i+ arg <= 1: Anything is elegible. 

if selcd =~! Case is checked by parsefunction. 

(Using 2rg = 2 is not normally done.' 

string-i~ 

An identifier for a string in a specified windOW. 

strinq-list 

A list of string element records. There is one element for 
each ~tring in the specified window. _ach string element 
re~ord (slist) is referenced by a string-id and co~tains a 
pointer to either a linseg-list or a text string. 

Augmentation Research Center ccge 35 



OlA LlG ANDY 3-FEB-17 17:06 281~5 

Frontend System Cocumentaticn 

tool code 

A WORf th3t unicuely identifies a tool 

A list that contains. for each tool for a given job. the pair 
tool code and window-id {window-id of that tool 9 s primary 
window}. 

window 

A rectangular area of the display screen. 

window oriority 

An int~ger used to determine which of the overlapping ~indows 
will show. A ·privis bit n is set for each window that 
indicates if the window is visible due to priority. 

windcw-id 

An integer that designates display win~ow or other channel. 

window-list 

Contains the window-tabLe-address for each window. Indexed by 
window-ida 

window-table 

Contains all the information pertaininQ to the given window. 
in~lud;ng the stri~g-list address. 

Aug~€ntation Research Center page 36 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Documentation 

PROCESS COMMUNICATIONS INTERFACE (PCI) MCDULE 

Introduction 

The Croc~ss Communications Interface ModLle (PCI) interf2ces the 
Frontend to the communications media, and hence to other 
nrocesses such a~ tools and the works Manager. As described i~ 

AN INTRODUCTION TO THE FRONTEND [2]. there is a PCI for each 
communication medium~ each PCI supplying the same interface to 
the Frontend. The primary functions of the PCI are to provide a 
way for the Frontend to call remote processes. and fer those 
remote processes to call Frontend (externally callable) functions 
and to aLlow for cha~acter-oriented communication. 

I~oortant Data Elements 

The primary data element of the PCI is the process record 
'orocessr'. which contains information necessary to communicate 
with a remote process. The actual information may differ 
depending on the communication mecium. but it would typically 
incluce the process name and other identifiers for the process or 
eonnections to it. The process communication buffers record 
'pcornrec· is another important data element. containing pointers 
and addresses of send and receive buffers. 

Character oriented communication is implemented as a Telnet 
network connection bet~een the Frontend ~nd the other (toot) 
process. A data element. the Telnet control block (TCB), is used 
to m~intain each such connection the Frontend establishes. 

PCI Procedures 

The following procedures are used by the Frontenc. 

ipcinit ( -> ) 

This procedure has no arguments and no results. It is called 
at initialization time so that the pcr module may initialize 
itself. 

;pcnew~ram ( instance REF -> ) 

Th~ single argument .instance 9 , is a grammar instance neme. The 
procedure initalizes the process record for the remote process 
~h1ch that gra~mar will make calls upon. It is .called eac~ 
time 2 new grammar instance is created. 

Augment~tior Rese3rch Center fege ~7 



DIA lLG A~OY 3-FEB-77 17:06 28745 

Frontend System Cocumentation 

iocend0ram ( instance REF -) ) 

T~is Qrocedure is analoqous to tiocnew2ram 9 and is called 
wh~never a gra~mar instance is no longer to be uset by the FE. 

iPCC3ll ( fn R~F~ cutofline -) ) 

Th~ procedure 'ipccall' performs the call on a remote process. 
The first argument is a CML function name identifier. The 
boolean .outofline 9 indicates whether the pcr is to wait for 
th~ remote reply or return as soon as possible, processinp the 
remote reply at a later time (FALSE imrlies waitins). This 
~rocedure decodes the parameters in th~ function name block. 
sets UP the data to be communicated. and initiates the 
transmission. 

ipcnetrec ( echo. netinjfn. netoutjfn -) telcb ) 

This procedure is called to set up a character oriented 
(T~tnet) connection to a tool. The call is made after tre 
connections are establishec. but before they are used in any 
way. 

The argument .echo· is TRUE only if input echoing is to ~e done 
by the Frontend. {Normally echoing is cone by the tool.} The 
ar]uments tnetinjfnt and tnetoutjfn' are handles or. the 'input' 
(with respect to the Frontend) and the ·output. connections of 
the Telnet pair. The ~ingle result is the address of the 
Telnet control block for this connection pair. The procedure 
c~lling ·ipcnetrec· must remember the TeB address and delete 
th0 reB when it closes the connection pair. This is usually 
done by a parsefunction, such as tfetermtelnet·. 

This orocedure creates and initializes the Telnet control 
block. sanding an initial Telnet option negotiation string to 
th~ server Telnet at the tool end. In the TENEX 
implementation~ it creates a sub-fork to read characters from 
the connection and interrupt the main =rontend fork when 
ch~racters are available. The main fork interrupt routine 
'xtetnetps;· <in PCI) then disposes of the characters as 
appropriate: it will reply to Telnet option negotiation by 
either Qutoutting characters to the terminal or writing them in 
th~ proper windoW of the display scree~. All the information 
needed by 'xtelnetpsi 9 resides in the Telnet contfol block for 
the connection in cuestion. When ther2 are several such 
connections- the control blocks are lirked together and 
·xtelnetpsi t handles each of them in turn. 

Augmentation Research Center page 38 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Documentation 

The followinq pcr orocedure is callec when a remote call is made 
on the Fron~~nd. 

doc~ll ( inbuf REF. outbuf REF. outbufsiz -) rester) 

The procedure tdocall· performs the calls on externally 
callable Frontend procedures on behalf of remote processes. 
Its first argument is the address of the input buffer9 which 
must contain a message-oriented procedure invocation of the 
form defined in Appendix 1 of A GUIDE TO THE eLI AND CML. 

The procedure ~docall' removes the parameters from the 
top-level list {e.g •• message type. prccedure name>. 
initializes the output buffer 90utbuf' for the results (if 
necessary). and calls the designated procedure. 

To read the data types ana values in the message. 'docall 9 uses 
the Data ~eoresentat;on Interface routines. It also passes on 
th~ port identifiers for the coroutines to the externally 
c~llable procedure. That is. every Frontend exterr.ally 
ccllable procedure is called with two crguments: the port 
irientifiers of coroutines to read and write data structures. 
r0spectively. At the time of the call~ the position within the 
'input· d2ta structure is such that the first element read is 
the first argument for the external call; likewise, the first 
element written in the output structure will be the first 
result, and so forth. The externally callable procedure~ are 
rpsponsible for correctly reading their arguments using the 
po~t 1Hentifiers provided and builcing any result structures. 

The following are externally callable prccedures. described in 
Appendix 4 of A GUIDE TO THE CML AND CLI, They reside in the PCI 
mocule because most of the functions they perform involve the 
communications media. 

feopenconn--whose internal name is eopenconn. 

feclosconn--whose internal name is ecl~sconn. 

fetermtoot--whose internal name is etermtool. 

Augment~tion Research Center rage 39 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Frontenc System Documentation 

DATA RE?RES[NTATION INTERFACE 

Introcuctio'-" 

This se~tion describes the LID coroutines used to read/write PCP 
data structures. PCP 6 B is described in' GUIDE TO T r E C M l AND 
ell. Appencix 3. "Frontend Data Representatin for Message 
Communication". Since PCP data structures are seQuertiaL (i.e •• 
there are no links), it is necessary to keep track of the current 
position in the structure while it ;s being encoded cr decoded. 
LIO coroutines can perform the task of holding the currert 
oosition. and thus are well suited to -the encoding ard decoding 
of PCP data structures. 

Two things should be noted before we continue: 

Those coroutines assume the PCPB8 type PAD. 

The coroutines are generally useful. ard compatible on a PCP-IO 
fPCPB36 or 88) and PDP-ll (PCP88). 

Reading a PCP Data structure 

RLIST (adr REF. zone -> [iportJ) 

To read a data structure. openport on rlist. providing the 
address of the PCP data structure (f~rst word>. and a free 
storage zone. The returned port 10 ~ill be used subsecuently 
to read elements from the data structure. as described below: 

rtype _ PCAll Eipcrt] (type. length, dest: value. otr) 

~rtype· is the actual element tyoe~ 

'type· designates the expected type of the etementfs) to be 
read or a special-operator. 

'length' is a count of the number of elements of type 
-type. to read into array 9dest •• 

·dest- is the address of an array to store element values 
in. 

·value· is the element value or a pointer. 

·ptr' is An address into the data structure that can be 

Augmentation Research Center page 40 



DIA LlG ANDY 3-FEB-77 17:06 28745 

Frontend System Documentation 

used t~ reset your position to this point in the data 
~tructure. 

The followin~ are typical uses of one rlist PCALL: 

rtype _ PCALL CiportJ (0: ~~lue) 

Yill read one element of A~Y type. dest anc l~ngth need 
not be soecified here when type is zero. 

PCALL (iportJ (pcpindex9 $array. 5); 

Will read 5 indexes and store the values ir an array 
starting at 'array'. 

PC ALL (iportJ Cpcplist: listlen'; 

~ill read one element, which rrust be a list. An abort 
will orcur if it is not a list (err is called). The 
l1st l~ngth will be stored in listlen. Subsequert 
PCAlLs wilt ottain the list elements. 

In the above examplp.s the retLrned 'ptr' was ionored. It 
r.ould also have been stored. 

These types are possible (see A GUIDE TO THE CML AND CLI, 
Appendix 4, for PCP type values): 

type ~ pcpany (:0): 

Any PCP data type except PftD is returned. The d~st and 
length parameters. if present. are ignored. 

tyP? = pcplist 

Here 9dest· is ignored. An abcrt is generated if the 
~lement is not a list, or if it does not have rlength' 
elements. The value returned is the number of elements 
in the list. Subsequent PCALLs will read the list 
~lements. There is no indication of when the end of 
thp list is reached; the element following the list 
will he returned after the last list element is 
r~turned. 

type = pcpboolean. Dcpindex. pcp"mpty 

The type must match the element(s) being read cr an 
abort will be generated. The value returned is the 

Augment5tion Research Center cege 41 



OIA LLG ANDY 3-FEB-17 11:06 28745 

Fronten~ System Cocumentation 

v~lue of the element. Zero is returned for an e~oty 
~lemen+. 

type = ~cpinteger 
It is tricky to enable similar implementations on the 
PDP-lO and PDP-11. If the ele~ent 1s being returned as 
a PCALL result. the value will be the address of the 
integer (32 bits), which must :e moved before the next 
PCAlL. If the element is being stored in an array. 32 
bits will be stored at the given location. This is a 
word on the POP-IO and two wores on the POP-I1. of 
course. 

type = pcpcharstr 

The chdracter string is moved to the free storage zone 
and the address of the string is returned. 0" the 
PDP-li. if the zone is 9dpyzone 9 , the string is net an 
3-string but is compacted: there are no M and l words 
and th~ length is in character zero. 

type = pcppad 

Pads are ignored and will never be returnee; this will 
always fail. 

typ~ = rlistignoreClOO) 

This will cause the next 'length' things to be ignored. 
They may be lists. This PCALL returns after advancing 
t~rough the data structure. The type and value results 
are unspecified, but tptr' is correct. 

type = rlistreset(I03) 

This will re-establish the pos1tion in the data 
~tructure to that given by .length t • It must be a 
pointer obtained from another rlist PCALL (third 
result). The type and value results are unspecified, 
but 9ptr9 is correct. The next PCALL will return the 
element f~llowing the one that was returnee when the 
pointer was obtained. 

type = rlistzoneCl01) 

This will set the zone that rlist uses for storin~ 
pcpcharstr's to the v1lue given as 'length.' It does 

Augmentation Research Center page 42 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Documentation 

not advance through the data structure. 
v3tue results are unspecified. but ~otr· 

tyoe = rt i stnop(102) 

The type and 
is correct. 

This does nothing. The type for the next element is 
returned. but the value is unspecified. anc 'ptr' is 
correct. It can be called to obtain the current 
position without advancing and or get the type of the 
next element without actualLy reading it. 

If 'dest' is non-zero AND 'type' is charstr. then 
'n~cger. index. empty. or boolean 'length· elements are 
read and stored at location 'cest'. In that case an 
ABORT ;s gener3ted if the next 'length' eLements are not 
of type 'type·. 

If 'dest? is non-zero. 'type· may not be pcplist type. 
That is. only non-list elements may be stored in a 
designated array. 

The result type and value are summarized here: 

rtype! value 

list: number of elements 

index: the index va lue 

integer: the address of 32 bits 

(On 11. first word is most significant> 

charstr: the address of the string 

boolean: TRUE or FALSE 

empty: ze ro 

hitstr: address o~ bitstring 

Note s : 

Currently. the ABORT takes the ferm of a procedure call 
to err($"Bad PCP data type -RLIST"); • 

Augmentation Research Center r::age 43 



OIA LLG ANDY 3-FEB-17 11:06 28745 

Frontend System Documentation 

ExamDles~ 

OP~NP0RT rlist(~params, zone: [ip~rtJ} 

~ read one element of type index. ~ut it in incexvalue % 

PCALL (iportl(pcpindex. 0: inrlexvalue) 

% read three booleans into array ary % 

PCALL (iport] (pcpb~olean. Sary, 3); 

% read one element, either index or list ~ 

type PCALL CiportJ (0: value) 

CA~E type of 

=pc~index: ••• %value is in 'value' % 

=pcplist: ••• X length is in 'value' % 

% read entire list of charstrings into ·stre array 
% 

PCALL [iportJ (pcpcharstr. $str. value); 

ENOCASE err($"wrong type element"); 

Writing a PCP Data structure 

WLIST (adr REF~ n -) [oport]) 

Openport on 'wtist e takes the adoress of a block in which to 
build the data structure and a word count representing the 
number of words available in the block. A HELP signal 
requests more room if the block is overrun. 

Each subsequent PCALL on oport builds one element in the data 
structure (approximately). The PC ALL arguments are type and 
value. wLIST always returns a WORD count and a pointer. 

count PCAlL [eport] (type. value: ptr)j 

'type' is a PCP data type or other special operator. 

'v2lue 9 is usually the value of the PCP element. 

Augmentation Research Center page 44 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Documentati~n 

'count· 4S a ~CRC count of the structure so far. 

'otr' is d pointer th5t can be used to reset the position 
i~ the data structure. 

The types allowed and the action taken are as follow~. 

type: action 

-~--: 

pcpindex: 

Element of type index. value 'vatue' is constructed. 

pcpboolean~ 

Element of type boolean is constructed. 

<value=D = FALSE) 

pcpempty: 

~mpty element is constructece 

pcpinteger: 

'value t points to 32 bits usee to make integer element. 
On 11~ most significant 16 bits is first word. 

Dcpcharstr: 

·value· is the address of an LID string. An element of 
type charstr (containing that string) is constructed • 

. pcpbitstr: 

Jv~lue· is the address of a bitstring. The first word of 
the bitstring is taken as an integer. which is the number 
of tits in the bitstring. 

pcolist: 

If 'value· is zero~ a list of unknown length may be 
built. Otherwise the list length is taken as 'value' and 
appropriate checks are made. 

Augmentation Research Center cage 45 



OIA LlG A~OY 3-FEB-77 17:06 28745 

Frontend System Documentation 

One PCP-PAD ~lement is ccrst~ucted. 

wtist2nd(2GO): 

This closes the last list constr~ction. If the length 
was provlced, a length check is ~ade and err is called if 
not correct. Otherwise the length is computed and stored 
in the list element. 

wlistr~set(201): 

This resets the writing position to 'value·. which must 
have been obtained from wlist pr~viously as a ·ptr'. The 
next element written will follow the last element written 
when the 'otr' was obtained. 

This is dangerous! After doing this. you may NOT close a 
list (wlistend) that was started BEFORE the wlistreset 
was done. The 'count' after doing a wlistreset will be 
the number of words to the current position in the list. 
not the total number of words in the data structure. 

wlistnop(202): 

This is 3 NO-OP that returns ·coLnt· and ·ptr· for the 
current position. 

Note th3t lists may be nested and data structures may be 
bujlt without prior knowledge of the contents. 

If YLIST oVerruns the area: 

A HELP(wlistoverflow, address. needed) is generated. 

where taddress· is the address of the first word of the 
area. and -neeced· is the number of words that MUST ce 
present to write the next element. 

The proper return is RESUMECgothelo. newaddress. nJ. 

where .newaddress' is the address of the relocated area. 
2nd tn' is the number of ~orcs allocated in that new 
area. 

The helping routine must copy the entire area into the new 
area. 

Augmentation Research Center. page 46 



DIA LLG ANDY 3-FEB-17 11:06 28745 

Frontend System Documentation 

USER PROFILE DATA ST~UCTURE AND TOOL 

Introduction 

User Profile refers to the per node data base that holds 
parameters describing the desired tool-i~dep~ndent 
characteristics of the FE. The dynamic cata base is read when a 
node session begins and is used throughout the session to give 
the user a personalized FE. 

The User Profile Tool is a separate. fully split NSW tooL that is 
Gccessed through the Runtool command given to the WM EXEC. This 
tool gives the node the ability to modify his own User Profile 
aata base. 

Current Capabilities 

The User Profile data base is not currently supportec by either 
the WM or the FE. If the FE did read the User Profile data base. 
any modifications made in the User Profile Teol woul~ becore 
active at the next session. when the User Profile would again be 
read by the FE. Currently the User Frofile Tool reacs and writes 
the data base to a Tenex file that is uniquely named (using the 
project-node name). 

Envisioned C2pabilities 

Whil~ the User Profile has never been fully integrated into the 
NSW. it is envisioned that the User Profile be a data base whose 
access is restricted by the WM (e.g. as an NSW file cr through WM 
calls to read/write it). At session sta,tup, it would be read by 
the ~M and returned as a PCPB8 data structure as a result of 
WMLOGIN. 

The User Profile Tool would provide immeciate profile updating 
and the option to make the modification ~ermanent or restrict it 
to the current s~ssion. To support immediate profile updating. 
the FE would provide an external call. allowing it to read a 
profile or profile-part from the User Profile tool. 

Augmentstion Research Center rage 47 



OIA LLG ANDY 3-FEB-17 17:06 28745 

Frontend System Cocumentation 

User Profile Sa~a structure 

D~ta structure 

The User Profile data structure cons1sts af one list {ceded 
:n PCPB' containing the followin~ five elements (in oreer): 

1. Profile - SITSTR 

Feedback~ herald, etc. See definition of fields below. 

2. startupstring - CHARSTRING 

startup input command string. 

3. Tool li$t - LIST( tooll. tool2, ••• ) 

Each ele~ent tool-i is of type CHARSTRING and contains a 
legal name of a tool. 

4. Control Character list - LIST <Referred to as cntchr 
list.' 

Each element of the list is itself a LIST (referred to as 
dvclst) of the following structure: 

LIST(index, LIST<cf.char.echo), LISTCcf,char,er.ho) • 
) 

where: 

index - INDEX - device code 

cf - INDEX - Control function code 

char - CHARSTRING - String of characters where each 
serves the specified function 

echo - CHARSTRING - Strin~ to echo when the cortrot 
character is typed. 

5. Version - INDEX 

For compatibility check. 

••• 

Aug~entation Research Center page 48 



DlA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Docu~entation 

D3ta structur= Conventions 

1. The rro+ile bitstr is currently 3 bits tong~ with t~e 

~its 3llocated as follows (bit number 1 is the leftmcst): 

Field Eit£ 

feedback l~ngth 1 thru 8 

her-ala length 9 thru 12 

recognition mode 13 thru 14 

secondary recognition 15 thru 16 

promoting 17 thru 18 

command wo rd length 19 th ru 23 

In the LID orogramming langua£e this results in the 
following record: 

{prill RECORD 

osdding[9l. cm~wdlen(5J. prpt(2J. rcg2(2], rcg(2J, 
hldlen'4J. fblen[B] ; 

2. startupstrinq is a null string if nore is specified. 

'3. Tool-list convention: 

First olement is the entry tocl. or NULL if none is 
defined. (Undefined entry tool causes the user to stay in 
the EXEC after login.) 

other elements (if any> are toel ncmes (all a~ strin9s). 

4. Control characters: 

If a list for a specific device (d~clst) does not exist all 
control characters default. 

If a list exists for a specific device only those 
control-characters that deviate from the default have 
entries. 

If this entire control character list has only one NULL 
element all control characters for all devices default. 

Augmentation Research Center page 49 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Cocumentation 

~. Version number is curre~tly ~. 

re~ning of Fields i~ the Profile 2itstr 

;:;rorpt 

o = Verbose (default vaLue) 

1 = TE-rse 

2 = Off 

Recognition (Both LeveLs) 

G = Anticl?atory 

1 = Terse (default value) 

2 = Fixed 

3 = Demand 

Feedback len~th. herald length, and command word length 
contain the ~orrespondin9 length (in characters) and default 
to the maximum number allowed. 

Augmentation Research Center page 50 



DIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Documentation 

Centrol Function In~exing and DefauLts 

Index Defat:lt 

c 0 ~~ MAN 0 ACe E ;: T 4 f 0 

COMMAND DELETE 24 I x 

REPEAT 2 1 p , -

BACKSPACE CHARACTER 8 fH 

BACKSPACE WORD 23 p-

BACKSPACE STATEMENT 16 fP 

LITERAL ESCAP~ 22 , V 

IGNORE 0 Nc Default 

SHIFT CHARACTER 47 No Default 

SHIFT WORD 92 No Default 

TAB 9 f I 

OPTION 21 , IJ 

Device Code Indexing 

Device Name Index 

TI 

NVT 3 

LINEPRQ.CESSOR 4· 

IMLAC 5 

EXECUPORT 

TTY33 7 

TTY35 

TTY37 9 

Augmentation Research Center cage 51 



DIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Locumentation 

EENE~~TrNG t ~EW FRONTENO 

Introduction 

The followin~ steps must be taken to cre~te a new Frcntend= 

- Make sure the relocatable binary files are up to date. 

- Load the desired Frontend configuration to create a save 
(.SAV) file. 

- Create the initial grammar. 

- (Other steps may be necessary depending on the Frontend 
configuration.) 

The actual laading process is usually do~e by a RUNFIL program. 
with a RUNFIL file available for each Frontend configuration. 
All ~ompiling. loading, and saving operations currently must be 
done on a TE~EX or TOPS-20 host. 

Compilation 

Each Frontend source file contains the n~me of the compiler(s) 
and the REL file(s) that are to be used when compiling that 
source file. To create a Frontend fer the PCP-IO, use the LIO 
compiler; for the PDP-II. use the LlCl! compiler. Of course. if 
the source file has not been changed since the existing REL file 
was created. it is not necessary to compile that source file 
bef~re creating a new Frontend. 

Frontend source files are currently NLS .iles. To compile them~ 
use the Compli~ File command in the Programs subsystem. 
Sequential files may be compiled by simply running the same 
compiler as a TENEX subsystem. giving the sequential file as 
~nput~ and specifying the REL f~te as output. 

loading 

To toad a Frontend. run a loader to bind all the REL files 
together and save the core image in a SAV file. For a PCP-I! 
~rontend. you must also format the SAY file into PCP-II load 
format. The names of the RUNFIL files that perform the leading 
~or each Fror.tend configuration are specified below, along with 
the names of the various files that comprise each Frontend 
module. 

Augmentation Research Center page 52 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Documentation 

To ~~ke a Frorterc ready for use. the SAV file is placed in the 
~ile directory in which it is to run~ The initial grammar is 
~laced in the some cirectory with the na~e £XEC.CGR; rarse 
funrtion files 2re also placec ~n the directory~ with the 
pxtensions .~FC (for code) or .FFO (for data). This is explained 
in the "Grammar Compilation and Compaction" section of A GUIDE TO 
THE CML AND eLI. 

In some cases. the Frontend is then ready to use. The exceptions 
3re a stand-alone single fork tool that uses the Frontend and a 
Frontend th3t uses the shared page com~unication medium. In the 
first case. refer to "Making a Stand Alone Teal" in Appendix 2 of 
A GUIDE TO THE CML AND eLI. For the second case. the SAV file 
for the tool backend must be placed in the same directory as the 
Frontend. along with the Frontend and th~ initial grammar. 

~hen making 3 PDP-ll Frontend. an additional step is performed by 
the RUNFIL file. The SAY file is converted into PDP-ll loading 
format. by Wcy of program SAVBIN. The resulting BIN files are 
then loaded on the PCP-ll. Because that loading process is still 
undergoing changes it will not be described in detail at this 
tirn~. 

Frontenc F;l~s 

Selow is a list of the Frontend source files, the REL files they 
proouce- and information about which Frontend configLratior 
requires them. ~hen no file directory is given. the directory is 
<NSW-SOURCES). Where several REl files ~re prOduced from one 
source~ they are separated by a semi-colcn (;). The LID runtime 
support +iles (code and data) are not included in this list. but 
they are leaded in each Frontend configuration. 

NE~CLI.NLS 

NEWCLI.REL; recuired for ALL PDP-lO FEs 

(LIOll)CL!.REL; required for ALL POP-II FEs 

LlOllSTGMGT.NlS 

FESTGMGT.REL; required for ALL PDP-lO FEs 

(LIOll)FESTGMGT.REL; r~Quired for ALL POP-11 FEs 

Aug~ent3tior ~ese~rch Center rcge 53 



OIA LLG ANDY 3-FEB-77 17:06 28745 

Frontend System Cocumentation 

XOSI-CLJ.NlS 

XOSICLI.P~L; XDSIDATA.REL: requ1rec for ALL POP-IO FEs 

CGPFADDS.NLS 

PF~DDS.REL~ reauired for ALL PDP-I0 FEr 

<LIOI1>PFADDS.REl: reQuired for all PDP-II FEs 

XFEROUTINES.NLS 

XFERTNS.REL. rpqu;red for ALL PDP-IO FEs 

XFEDATA.NLS 

XFEDATA.REL; r~Quired for ALL PDP-lO Ffs 

(LIOll)FEDATA.REl; required for all PDP-II FE£ 

DPYPKG.NLS 

DPYPKG.REL; reauired for ALL PDP-IO FEs 

<LIOll)OPYPKG.REL; required for ALL PDP-II FEs 

DPY-IO.NLS 

DPY-IO.REL; required for all POP-I0 FEs 

fwlSG-3 I .NLS 

MSG-3I.REL; MSG-3DATA.REL; required for MSG-3 

TYPECL!.NlS 

TYPEI.REL~ required for TYPEOUT 

SAFE.NLS 

SAFEI.REL~ required for Stand Alone FE 

<RELNINE)NLSI.NLS 

<RELNINE)NlSI.REL; required for Shared Pag~ 

PCPBfi-I0.NlS 

pePBR.REL; required for MSG-3, Raw Net Conn. ard Shared Page 

Augw.ent3tion Research Center page 54 



OIA LLG ANDY 3-FEB-71 17:06 28745 

Frontend System Documentation 

<LIJ11>~rpB8-11.NLS 

(LIOl1)PC?B3.REL: recuired for·~ll POP-II FEs 

CGRA~LDR~NLS 

CGRAMLDR.REL; reauirec for ALL PDP-lO FEs 

(LIOll)OPV-l1.NLS 

<LI01I~OPY-11.REL; recuired for all PDP-II FEs 

DPYOATA-IO.NlS 

DPYDATA.REL; r~auired for all PCP-IO FEs 

(LI011>OPYDATA-II.NlS 

<LIOl1)DPYDATA.REL' r€auired for aLL PiP-1I FEs 

MSG3FE.RU~ 

RUNFIL input to make MSG-3 Frontend 

TYPE~LI.RUN 

RUNFIL input to make TYPEOUT Front€nd 

(RELNINE)NLSgFE.RUN 

RuNFIL input to make Shared Page Frontpnd 

SAFE_RUN 

RUNFIL input to meke Stand Alone Frontend 

~LI011>CLI.RUN 

RUNFIL in,ut to make POP-II Frontend 

Augment3tion Research Center ~age ~5 



OIA LLG A~OY 3-FEB-77 17:06 28745 

Frontend System Cocumentation 

REFERENCES 

1. ~on~td I. Ancrews, Beverly R. Eoli, ~nd Andrew A. PO~9io. A 
Guije tc the Co~mand Meta Language and Command LangLage 
Interpreter~ Augmentation Rese3rch Center, Stanford Sesearch 
Institute~ Menlo Park! California. February 3, 1977. (28744,). 

2. Donald I. Andrews. Beverly R. Boli, -nd Andrew A. Po~g10, An 
Introduction to the Frontend, Augmentation Research Center, 
Stanford Research Institute. Menlo Park. California. February"3. 
1977. (28743,). 

Augment2t;o~ Research Center page 56 


