DIA LLG ANDY 3~-FEB-77 17206 28745

FRONTEND SYSTEM DOCUMENTATICN

Donald I. Arncrews
Lawrerce L. Garlick
Andrew Ae. Poggio

January Se 1977

Aucmentation Research f‘enter
Stanford Research Institute
Menlo Parke California 94025

DIA LLG ANDY 3-FEB-77 17:0€6 28745

ad
[e]
D
wde
~de
e

fugmentation Research Center oa

OIA L

TATA REPRESENTATICN INTERFACE ecevecesccsescsscccscctoscsoccsccnsnce
IntrCsuUCtiON aeseecsecscsccnssccsanccsscscssnccsscscsssssscnscascae
Re%ding 8 PCP Data Structure secessvevcccoccecoscsncscnsncone

Mritin’} a PCP Data StructuUre cecececscecsccosccssccsncnsconsace

USER PROFILE DATA STRUCTURE AND TOOL

INtrocduction seececcccscscscnnsssocssncsscscsncssscsscansssanss

Current Capabilities

Envisioned C2pabilitiesS sesecccscssccccncvocscnssccnsscscocese
User Profile Data Structure ceeeccecssccsrecccccrccccscccscccccnsca
GENERATING A NEW FRONTEND ..;.................................
Introcduction ceceecccercccsssscncssccscvcscvacscnncssscsscssnasne
CO:’!?DiLEt'iOQ e N N Y N R o A N N Y TR R TR TR TS
LOoZCIN0C seevssscesescesccsesccccnscnssssnscscsccsssassnoasosccncoce
Frontend FilesS eesesccescscsccccvccncscscssesasscsoscscsssocscsscesns

~n o I
WLFEJENCES LK AN S N BN 2N B O A A B R SR A AN JX KN BN N R X IR AN X NN S BRSO ST SX BN A IR NI N N A B W N N Y

Augmentation Research Center

LG ANDY 3-FEB-77 17:06

28745

Frontend System Cocumentation

80 & S0 SO OSOSLBLETPTSSIOSESLSISOTOES

Q

40

52

52

53

S6

—dt
~bo

DIA LLG ANDY 3-FEB-77 17:10¢ 287

Frontend System Documentat?

TABLE OF CONTENTS

2R

m

FACE seeecccccoscscccsccsessoscaasccccsscccscsoccccoscscscscssscsccsnccs
CLI OPERATICON eeseeccecsscscscccccnccsccssccsscsnsaccssccscscsancscsse
The CML'Grammar eecsceccresscssncsssessssssssssscsccssstsnone
CML Grammar Interpretation ecececccceccccccsccscccsccccsncccaces
CML COMPILER AND COMPACTOR DESCRIPTION ecocccvcccscccsscccacscos
Introduction cescesccsccsccvecccreccssnssscscsccsccsscovcccsccsces
The COMPILlSr sceecevscscescncessnscccccscscrsncccosnssssccscsocse
The CoMpacter seeeccesssccsscscnccssocscccssscsccsncsscencscvcsnncne
CML VARIABLE TYPES seeecsecscccccsccscsnscscscsccsaacssovancscscsese
Introduction seececcscscecccesccsccccscscscsssccosccscncncssce
CML Variable Structure ceccscocecsccscscccsssscscscsscccccncnscsse
CML TYIES teessesvsscsnscsncsscctsassaanssscsccsssssssssccsonscess
VIRTUAL TERMINAL CONTROLLER DESCRIPTION -ecccecccccccccscccsssce

INtrocduCtion seececccccecrcccecsssscvscscncsacccsccscnscsscsscane

vic O

th

STON ecccsesssssscnccsesscnccnsssosnssovsncsecssnsossns
VTC Trmplementztion sececcecccccscccssncsscocosnvsccssscssssccscnasn
CLOSSErY «csccsreccsosesssscscscscssnsncostccsacecscsnnssnscnccnsose

PROCESS COMMUNICATIONS INTERFACE (PCI) MODULE eceesecssccsccsse
INtrocductiOn cceecceacsececsecescscsecccescssscacccscsacesssne
Imoortzant fata Elements ecececscssccccecnrtoccscsccscssccscnscsnccsce

PCI ProceduresS eecescsescscncssoccscsossacscsncsscscsssssssssns

Augment=tion Research Center p

5
‘Q
o]

45

on

R]

N

ey

DIA LLG ANDY 3-FEB-77 17206 28745

Frontend System Cocumentation

Celiverable for the ANSWws Contract No. F 30602-75-C-0220

Augrentzticn Research Center rege 0§

DIA LLG ANDY 3-FEB-77 17:0€& 28745

Frontend System Documentation

PREF X

(w}
™

This cocumenty which reflects the current stete of the MSU
Trontency provides information z2bcut the Frertend necesszary to
thoez workinc with §t or building their own Frentend. The three
ctasszes of Frontend components and the extent to which this
document describss them follows?®

Mo-ulese The programs with which the user interacts durirg
command spnecification and which communicate with the tcol: the
Virtual Terminal Control (VTC)e the Cormand Languace
Interpreter (CLI)s and the Process Communication Interface
(PCIYe A cescription of CLI oreration and of the FCI and VTC
is provided. &4lso included is a cdiscussion of date
recresentation typese.

Cata Beses. The data bases and date structures associsted with
th> user interface machinery: the grammars User Profile and
Help data basese User Statisticss CML source programse and
Commzncd Seguencese More information orn the data bases may be
found in & GUIDE TC THE CML AND €LI [13.

Auxiliary Yools. The auxiliary progrars anc tocls that allow
th~ user or tool builder/installer to creates examines or
manipulate the above data bases: the CML compilers User
Profile tcolsy Help toolese Statistics Analysis prograzmse and
Command Seauence Processor. A detziled descriptior of the CML
cempiler and compacter and CML variable types s provicded here,
a2long with a section on the current anc future capabilities of
the User Frofile tool and its data structure.

The Last section tells briefly hcw to ereate and Lcac a Frontende.

Augmentzstion Research Center o

m
[(p]
[y}
[

DIA LLG ANDY 3~-FEB=-77 17106 28745

Frontend System Cocumentation

CLI 0OPEIRATION

The ML Srammar
A CML grazmer concsists of = seriec of instructions and
aseociated tables. The qgremmar instru-tions form =
tree-structured progcram which the ZLI interprets. It $s this
process of arammar interpretation that produces the high
quzlity user interaction for which the CLI s so well known.

A CML grammar consisting of the twc cormmandse

celete COMMAND

BOELETE™ ¢ “"WORD®™ /7 HYCHARACTER®)3
insert COMMAND = YWINSERT® ¢ IF DISPLAY ®PWINCOW®™ / "YCRD™)3
whsn compiled produces the following (upside down) tree

structure:

root of grammar tr:ze

I
{1} €2)
WRELETE™® "INSERT"®
I I
(3) (4) (S) (&)
"WOROY "CHARACTER™ IF DISPLAY "WORD®
I
(7)
THINCCW®

Augmentation Research Center page 2

CIA LLG ANDY 3-FEB=-77 17206 28745

Frontend System Cocurmentation

refarence. MNodec 3¢ 44 7o

and &
hecauses there g nothing follcowi

are cclled terminal nodes

n: ther in the tree.

CML Zrammar Intarporetation

Th= CLI implements the comrand lanciuage described ty a grarmmar
by interpretiny the instruecticns contained in the crammare. The
CLI becins at the root of the grammar tree and simultaneousty
processes the wvarious paths throuch the tree to terminzl ncdese.
On= such path is through nodes 1 and 33 another is throuch 2,
5S¢ ang 7., Completing the processing of a terminal node such as
noce 2 is syncnymous with command completion and causes the CLI
to begin pgrocessing again at the rcct cf the grammar tree.

Th: CLI path processing may be cdirectec by user input or
r2asults ottained from processing instructions. In the aktove
exzmpley the CLI woulc start by processine nocdes 1 and 2 &t the
same time. Since bcth of these nodes zre command wordse user

. chzraecters are reguired for the LI to determine uwhich path to
tzkees Let us assume that the user is in expert recognition
mode and that she types a ®d%", The CLI can then determire that
noce 1 ¥s on the coerreet path and rode 2 is not because the
us=pr must be *typing the "CDELETE"™ command words as & result it
discontinu=s processing the pasth throuch node 2 anc proceeds
dewn the gath through node 1 to praocess nodes 3 arcd 4« Tte
ugser types a "c"®, The L7 can then determine that nrode 4 is on
the right path. HNode 4 s a terminal node and so upon
completion of the processing of necde 4+ the current cormand is
complete and the CLI will begin processing again at the rcot.

I¥ instead the user types an #i® as the first character of her
cormance the TLI will then process the nodes followina rnrede 2--
nocses £ and 6. Node % checks the value of the built-in
variable DISPLAY which is TRUE §f the user is at a disrleay
terminale. If CISPLAY s TRUEs the CLI s directed to continue
down to nocde 7 and grocess it together with noce £3 otterwise
it will discontinue processing the path through noce S and only
process node 4. Let us assume that DISPLAY s TRUE and so
nores 7 and & are btoth processed. The user types a "w®™. The
CLT c2nnot determine whether ncde 7 or nocde € is on the correct
p=th because both are command words becirning with "w". a2nd so
it must get another character from the user tc continue.
Suppose this next character is "x", The CLI finds that neither
nc“e 7 nor node 6 is correct for this character and there eare
no other currently active pathse. The <LI then assumes that the
us:r typed a bad charzcters tells her sos and cets another
ch:razter which hopefully will be #*i"™ or "o", thus clicewing the
CLI tc finish prcocessing the commande.

Augmentation Recearch Center

ko)
jat]

Q
1]
(M

DIA LLG ANDY 3-FEB-77 17:0€& 28745

Frontend System Cccumentation

CML COMPILER AND CCMPACTOR DESCRIPTICN

Introducticon

The CML compiler and CML compacter are used to trarsform the
text of a ZML arammar into 2 form :sxecutable by the CLI. The
CML compitar takes as input a source filesy either en NLS or
text files and procduces as ocutput 2 file containing an
appropriate set of CML instructionse The CML compécter is a
pocst-processer for the compiler which recduces the size of the
compiler cutput ard produces any mcdificaticns necessary for
the grammar to run on jts target machire.

The following discussion assumes that the reader jc familiar
with the CML and L1C langusgese.

The Compiler

The CML cowmpiler is written in Tree Metas & compiler-ur
Languzge« and runs cn the FDP-10. It can be rur in NLS %5
as input z2n NLS filee or from the IZXEC with a text file ac
input.

wdy
4 ot

The foermat of the compiler ocutput ¥s a directed graph whose
nodecs are instructionse. each of which cccupies two 3€6-tit
wordse The Links in the directed -graph are implemented throuch
twe fields in each instruction-~-the alternative field and the
successor fields The alternative fielc contains the address of
the CML dnstruction to execute in parallel with this onees while
ths successor field contains the address of the next
instruction to execute should this one succeede.

Ancther field in each instruction indicates the type of the
fnstructions such 2s "recognize & commznd word"™ or "“call an
execution functicn®, 0Other fields contain informazaticn
dependent ¢cn the instruction type. For examples the "recocnize
2 command worc® instruction has a fielcd which contains a
pointer to the command worcd string.

The compiler output is a relocatable file which must be
link-tcaded before being used.

Pugmentztion Research Center cage 4

DIA LLG ANDY 3-FEB-77 17:C6 28745

Frontend System Documentation

The Comnacter
Qy=ryiew

The compacter is written in the L1¢ larguage z2nd rurs on z
PCP-10e The input to the compacter is the compiler outoput
fitesy its ocutput is a2 compacted grazmmar file. The compacter
further processes the output of' the cospiler to recuce its size
ar? put it into a form appropriate for the type of computer
thzt it will be running on. As a2 results, there are twe

compacterss one for producing grammars to run on the PCP~-10 and
on= for the PDP-11.

Th2 output of the two compacters differs ir only two wayse. The
first is the dispatch record at the becinning of the cgrarmare.
This record is specially formatted for the POP-11 so that the
szme L1929 RECGRO definition can reference it on both the FCF-10
and PLP-11.

Th> second difference lies in the way strings and pointers to
strings are handled. For the PDP-10¢ characters are packed
five to a word, Strinc pointers pecint to the worc previocous to
the strings which contains the maximum Length of the string in
th= left half cf the word and the current length ¢f the strinc
in the richt halfe ieCes MesglLe For the POP-11e characters are
packed tuwo to a words with the exception cof the first word
which contains only the first character of the string in the
high hytee. (Strinc pointers point to this first word.) The
current length of the string is in the worcd previous tc where
thz strinc pointer points: the maximum length of the strina is
in the word previous to thate. You may already have noticed
thst strincs and string pointers in compacted grammars are
imctemented in 2 manner identical to that of the L10 and L1011
languagese.

ALL further discussion of the compacter applies tc both the
PCP-10 and PDP-11 cecmpacterse.

A compacter operates by Loading the relocatable file procuced
by the compil=2re tcgether with any relzted parse function
files. Thuse the grammar has all cf its references resolved
and may be put into a form that need not be Link loaded. Uponr
compltetina the compaction processings the rnewly-prccuced
compacted grammar is written on a file.

dugmenta2tion Research Center rage 5

CIA LLG ANDY 3-FEB-77 17:06 28745

Frontend System Cocumentation

Cormpzcted Zramnar Descrio®ion
Guerall Strurture

4 compacted grazmmar consists cf two sesments: & ccde secgment
and a cdata segment. The code secment contains the dispatch
recerdy various tables used by the grazmars anc the CML
instructions. 7The data segment contains the grammarets
variables and process recordse.

The Corle Seqgment

The first jtem in the code segment is the dispatch record. It
contains pointers te the tables in the segments byte numbkers of
certair instructions in the grammeare ard other information
about the ¢grammare. Pointers are relative to the beginning of
the segment starting at 0: the byte nusbers are relative toc the
seginning of the secgcment starting a2t 13 a ¢ byte number
incdicztes the absence of an instructiore The dispatch record
has the followinag L1030 RECORD definitior:

{subr) RECORD % crammar dispatch record %
subnamel[ADGRESS I, % pointer to subsystem name string %

firstinst [ADDRESSIe % byte number of first instruction of
commands Z

valcodeTADDRESS Iy % valication code - 10 for the FOP-10.
11 for the POP-11 %

hlpruleC ADDRESS e %X agrzmmz2r help ritle /7 0 indicatirec none %

initinstC ADDRESS Iy

8

initiazlization rule 7 ¢ ¥
reeninstL ADDRESS 1o % reentry rule 7 0 %
termrulef ADDRESS J» ¥ terminztion rule / 0 %

prsrecf ADDRESS e % pointer tc process reccrds relative to
beainning of DATA segment / 0 indicating none %

kword[L ADDRZSS]y ¥ pointer tc commard word table %

echowordfL ADDRESSIe % pointer to noise word string tatle %

tugmentatiorn Research Center cage 6

DIA LLG ANDY 3-FEB-77 17:06 28745

Frontend System Documentation

execvector CADCRESS]e % pointer to execute byte number
ctznle ¥
cfunce TADDRESSIy % pointer tec parse function zddress table

funcs CADDRESSIe % pointer to function record table ¥

gvstart CADDRESSIy % pointer to gicbal variables relative
to becinning of DATA segment %

sharl [ADDRESS]e % number of 32 word blocks in code segment
"

Jo

oriv TADDRESSIs % not used %

privi [ASDEESSI; % number of 32 word blocks in data segment

ar
T

pfecsizel 2 1 % number of 32 word blocks in parse function
coce Yy :

nfdsizefl & 3 % number of 32 word blecks in parse furcticn
data *i

Followine the dispatch record in the code segment are the CML
irgtructionse. If 2n instruction has &r alternative
instructions it is zlways the next instruction. The successor
of an instructiones if it has onres always fotlows the
instructione although it is not necessarily the next
instruction. Instructions are coced into 8-bit bytese There
are byte numbers for certatin of these instructions--e.ge.s the
first instruction of the commands--in the dispatch record. A
description of the instruction format is given btelow in
®Compacted Grammar Instruction Format®.

The tabtes for the grammar follow the instructions. With one
extceptions an entry in any table consicsts of 2 pointer relative
t2 the beginning of the code seament. The single exception is
the execute byte number table fpointed to by the *execvector?
field) whose entries consist of the byte number of an
instruction relative to the beginning ¢t the code segment. ALL
tzble entries cccupy a full computer worde.

Following the tables are various constant data elements used by
the grammars 2.3ee command word strincse Command words cdefined
as selectors are slichtly cdifferent frem other command werdse
in that thes three words previous to the command word string zre
incices into the parse function table. These indices indicate

Augmentation Recearch Center

Ty
]
[fe]
[t]
~)

DIA LLG ANDY 3-FEB=-77 17:06 28745

Frontend System Cocumentation

th- selecticn narse functions to be used tc gather a selection
by pointinne tyaning iny, 2ncd tyning the address. The cocrder of
thz three worde s

Ay

noint satlection parse function ircex

L d

ype in selection parse function index
type address selection parse functior incex
crommand word string

The selection parse function may be built intc the CLI+ 2s with
a TEXT selector for examples or may be written by 2 CML
progrzmmer. A zerc index indicates that selection by the
corresponcing method is undefined. For examplee 2 zero for the

point selection parse function index means that the selection
canrot be pecinted toe.

The Dzta Segment

The data segment of 2 compacted grammar contains those elements
which may change during the use of the grammar: this orevents
it from being shared amonc multiple users of the grammar as is
the code szegment.

The first elements in the data secment are the grammar
variables. During execution of the grzmmars these elements
will contain cointers to the actual values of the crammarts
variables. Typicallys these point intc the free srace area of
ths CLY. The variables are divided into two croups: tLocal
variables followed by global variables-

Following the vazriables in the data segment are the process
recordse. These are four word recordses one for each backend
process that the grammar might interact withs as civen in the
grzmmar source, The fermat of these records is dependent on
th: interprocess communication protocol being used by the FE.

Compacted Grammar Instruction Format

1w

ch CHL instruction censists of one or more conticuous #-bit
y*es. The first byte of zn instruction always incicaztes its
yre. Following the first byte there may cptionally bte ore or
more bytes of fields related to the instruction typee. 1In
additions there may optionally be ane c¢r two bytes cf cuccesscr
fielda

+ O

sugmentation Rezearch Center rage 8

DIA LLG AMNDY 3-FEB=-77 17106 28745

Frontend System [Cocumentation

The firct byte of z2r instruction has three fieldss cdefined as
arn L17 REUCTRD s follows:

{inestrecy RECORD crcodeiZ]e altsucf2ly tiemgbl11l:

The *onccde® field irndicates the instruction typee €eg.
trecocnize a command word?¥ or *call an execution functiornt.

The tlLicmdy fiz2ld is used by different types of instructions in
different ways. For exampley the *reccgnize a command werd?®
instructicon uses it to indicate whether its commanc word is
first level or not.

The valtsuct fielde together with the optional successcr fielde
nrovicdes information sbocut the instructionts alternative and
successor instructicnse. It may assume the followirg valuess
which are defined as external constants in the CLI:

notlzst--The instruction is not the last alternative and its
stternative instruction is the next instruction following ite

=

2 suncessor field indicates the successor®s location.

Lastnon=--The instruction is the last alternatives Taiecee it
has no alternative and no suctcessore.

Ltastfielad--The instruction is the last alternative and its
successor is indicated by its successor field.

tastnext--The instruction is the last alternative and its
successer is the next instruction.

A successor field may be used tc indic:zte the ltocation of an
instructionts successcr. Whether cr nct an instruction has a
surcessor field is indicated by the *aitsuc® field in the first
byte. A successor field contains the cisplacement of the
su~cessor instruction relative to the last byte of the
successor field. & displacement c¢f 2 would meanrn that the
successor instruction begins at the third byte followina the
Lzst byte of the successor fielde A z'ro successor field
indicates that the instruction has no successcor.

A successor ficld may be one or two bytes longi its first byte
hzs two fields with the following L10 RECORD definitior:

{sucrec) RECCRD sucaddl73se Lonal113

tugmentation Resezrch Center rage @

DIA LLG ANDY Z-FEB-77 17266 2874S

“rontend System Ccoccumentation

inde g

0o

* the *ilecngt ficsld ecuals 0+ the value of the successcr field
simply the vzlue of the *sucazdd® fi=lde If the tlong® field

ectials 14 *here are twc bytes cf successor fielce The value of

th: field s

value = ¢ sucacdd field * 25¢&) + sezond byte of field

Gther fields in instructions are often incdices intc one cf the
grzmmar tables. Table indices always start at 0. They cere
used to compute the absolute addresses of varicus crammar
elements. For examplee to compute the absolute address of a
command word in the arammar given its index *ind*. the
following steps are taken?

1. Compute the address ¢f the beginrning ¢f the command word
table tcomworctab®s aiven the acddress of the becginning cf the
code seament *codsec?®s 2nd usinc the 'kword' field of the
arammar dispatch record:

corworctab codseg + [codsegli.kwords:

2« Compute the absolute address of the command word
*comwordaddr®:

comwordaddr _ codseg + [comwordtabllincls

Some fields in instructions are variable desicnatorse These
are used to locate vzriables referencec by the grammar. 2an
8-0it byte used as a variable designater is formatted zccording
to the L10 REZGRD cdeclaration

(addrrec} RECCRD varindlélese vartypel dummyl1le nctlocatl 13 23

I¥ the 'notlocal?! fietd equals 0y the variable is and the
antire byte is zn index whose base is the beginninc of the
gremmar data sacgment. If the *rotlocal?' field equals 1e¢ the
tyortypet field is used to determine whether the variable ig

global=--meaning the tvarind®* field is an index into the data
segment with tase indicated by the dispatch record field
gvstartty or

“Ltin--meaning the variazble is built in to the CLI ard

tvarind' is an index into the CLI*s zarray of built-in
variablese.

tugrentation Ressarch Center rage 10

CIA LLG ANDY Z-FEB-7T 17:06 28745

Frontend System Cocumertaticn

Instruction Ty:res

The dnstruction types--defined 23 zxternal constants ir the
CLI-=znd the fnrmat o0f their bytes are described betowa. ALL
instructions use the *opncoce® ancd ¥altsuc® fields. Thecge
descricticns co not include the successor fields which mey or
ma2y not be present in a particular instruction. The vzlue of
thes dinstruction types in octal is given in parenthesis.

abortop (0)e. Show the user the contents of the CLI
zccurulatsr and abort the commande.

first byte: (instrec) RECCRD -pcocdelSle altsucf2l,
tiemndE 133

%0 other fields are useds

kevyon (1's Recognize a command 'orce The command word
may be a literals or s variazble containing & stringe or a
List of strings.

first bytetr (¢instrec) RECCRDC cpcodel51e altsuel 23
tiemgD11s%

licmd--this field ecquat to 1 implies command word 1is
first levele.

second byte: This entire byte is interpreted
differently depending on the *kwvar® field in the third
byte and is either:

an index into the commancd word table if the command
word is a literals cr

2 variable designator if the command worc s a
variable.

third byte: <{fvalrac) RECCRD numofargsf tstrell32.
tstintf13e tstnotf1Je fillerC1-]e hashelpriutelile.
kwvarl11s

kwvar=-this fietd equal to 7 dimplies that the second
kyte contains an index intoc the command word tzble
and the entire third byte is the integer token
zgscciated with the command word. This fielc ecqual
to 1 implies thzt the second byte cortains a veriable
dtesicnator and the remainder of the thirc byte sheould
re ixnorede.

sugmentation Research Center : rece 11

OIA LLG ANDY 3-FEB-T77 17:0& 2874%

Frontend System Cccumentation

Yo othasr fields are usec.

confirmation frocm the Usere €aCes bv

sontirm (2Ye Tet &
a COMMAND ACCEPT.

the uyser tvping

first byte: (instrec) RECCRD cpcodelSle altsuclZ.
ticmdl 1313

No other fields are usede.

cesely dsele Lsel (3« 49 5)e Get a sourcees destirations
or Liter=l selection from the user.

first byte: (instrec) REZZRD -pcocelSlse altsucC2].
Licmd[113

No othear fields are used.

susharg (6)e Push the £ML value in the accurulator onto
the argument stack. This is the method by which
arcuments are gathered fer parse or executiorn functicn
calls,

bkl

st byte: (instrec) RECORD cpcodelS5ly altsucl[21,
cemdl 1173

— b

No other fields are used.

answer (7)e Get an answer from the users e+g%e.9 by the
user typing "y®"™ for “yes",

first byte: (instrec) RECCRD opcocdel 51y altsucl2],
Licedf 133

No cther fields are usecde.
cption (102). Get an OPTION character from the usere.

first hyte: (instrec) RECCRD zpcodelSle altsucf2]s
ticmdl11:

Mo other fields are useda
pfellop ¢118). VUse 3 parse functione.

first byte: (instrec) RECORD cpcodel5]y altsucl 1l
Liemdf11;

Mo other fields are ucsed.

dugmentation Research Center pagce 12

DIA LLG ANDY 3-FEB-77 17:C6 28745

Frontend System Documentation

seconc bhyte: entire byte is ar incex into the parse
function acdcdress tabkle.

[7, B o
[l
[e |

tstneti11e fillerll Je hashelprulelf1].

Pl]

d b
f
1_.

te: (valrec) REZCORD numofarcsl tstrel{3l.
'n Je
r H

o
1 o+
Lad b

A

numofargs~-~the number of arguments that the parse
function is to hbe OPENPORTed withe.

Mo other fields are used.

execute (12F)e Execute a series of CML elements.

firct byte: (instrec) RECORD cpcocdeltJs altsucl22.
Liemdf13:

o other fields are useds.

se-ond byte: entire byte is &r incex into the execute
hyte number table. :

call (132)e Call an execution functione.

first byte: (instrec} RECCRD cpcodelSle altsuel 2],
Licmdl113

!lemd--this field ecual tc 1 implies thet the
function ¥s to be called in “out of Lline¥® mocde.

second bytel entire byte is an index into the function
record tablee '

third byte: (valrec) RECGRD numofargs? tstrell3Z2.

tetintl1ls tstnotL 1Je fillerf113s hashelprutef1].
kwvari*]J:

numcfzrgs-—-the number of arcuments thkat the furction
is to be called withe

¥0 othar fields are used.
fhelear (148)e flear the feedback windowe

first hyte: (instrec) RECTRD cpcodelSly attsucl 2],
Licmdl133

Yo other fields are used.

Augmentztion Research Center rege 13

DIA LLG ANDY 3-FEB-77 17:C6& 28745

Fron'end System Cocumentation

echs (157ra Put a ncise word string in the feecdhback
Windowe

firet byte: (instrec) RECCRD cpecccelS3e altsucl23.
ticmd{ 132

Mo other fields ars usede.

second byter entire tyte is arn index into the noice
word string tablee.

recho (15B)e Remove the last item from the feedback
window 2nd put in 2 noise word stringce

first byte: (instrec) RECCRD c¢cpcodel®l1e altsucl2l,
ticmd{ 113

Mo other fields are usec.

- second byte: entire byte is amn index intoc the noise
word string table. :

sterecp (17B)s Store the CML value of the accumulater
intoe 2 CML varizble.

first byte: (instrec} RECCRD cpcodel51s altsucl 2T«
lemdD1 3]s

¥c other fields are used.
second byte: entire byte is a2 variable designator.

Ltoad (20"7)e Load the accumulator with the velue of a CML,
variable.

- first byte: (instrec) RECCRD copcocelSle attsucl22,
Licmdl1 33

No other fields are used.
second byte: entire byte is a variabite designatore.
enter (21B). Enter a number intc the accumutatore.

first byte: {instrec) RECCRDO cpcocdelZle altsucf 23]
Aiemdf1 13

Mo other fields are used.

tugmentztion Resezrch Center rege 14

DIA LLG ANDY 3-FEB=-77 17:06 28745

Frontend System Cocumentation

cserond byte: entire byte is the number tec enter inte
the zccurmulator.

test (222). Test the value of the accumulatcr.

first byte: (instrec) RECDRD cpccdelSie altsucEZls
ticmdC115

Mo other fields are usec.
second byte: entire byte is interpreted differently ,
depending on the *tstint* field in the third bytes The
second byte is either:

an integer to compare the accumulator withs cr

2 variable cdesignator to comrpare the accumulater
witha.

third byte: ({valrec) RECCRD numofargsl tstrell33.
tstintT1ls tstnotL1]le fillerL13le hashelprulefl 1],
kwvarf 113
tstrzl--the relation which is bheing tested for. The
followinge which are declared in the CLIs are
possible values:
equsal
greater
less
grequsal
Lessequal
tstint--this field equal to : implies the test s an
intager test and the seccond tyte contains the
intecer. This field equal tc 0§ implies s test
against a variatle and the seconc byte contains 2

variable designator.

tstnot--this fietd equal to ' implies thzt the result
of the test should te complerented.

tugmentztion Research Center rage 15

DIA LLG ANDY 3-FEBE-77 17:06 28745

Frontend System Cocurentation

showep (238). Show the conternte of the zccurulator to
the user.

first bhytet t(instrec) RECORD npcocelS1y attsucl 23,
Licmdl 133

Mo other fields are usede.

enterecw (24B). Enter intc the accumulater a command
worde.

first byte: (instrec) RECCRD cpcodel5]e altsucl 2],
LlemdC13:

No other fields are used.

second byte: the entire byte is an incdex intc the
command word table.

third ~yte: the entire byte is the integer token
cssocizted with the ccmmand worde

enternull (25B)e. Enter into the accumultator a NitlLe

first byte: (instrec) RECGRD cpcocelS1s altsucl21,
Liemdl 133

Mo other fields are used.
entertrue (26B)., Enter irto the accumulator a TRUF.

first byte: (instrec) RECCRD cpcodel5]s altsucl2l.
ticmdL 113

No other fields are usece.
apnterfalse (278)e Enter into the accumulator a FALSE.

first byte: (instrec) RECCRD cpcodelS1s altsucl23.
Liemcdf 1312

Mo other fields are useds
resure (30B). Resume a help call.

first byte: (instrec) RECIRD rpceodelS1se altsucl22,
LicmdC11s

No othespr fields zre used,

Augmentztion Research Center ’ pace 16

BIA LLG ANDY 3-FEB-77 17:06 28745

Frontend System Cocumentation

zppaprd (315). Append the value cf the accumulater to 2
CML yariable.

f
t

b odn

“ "!

DH'

hyte: (instrec) REZTRD cpcocel=ls altzucl 2,
13

HU

No other fields are used.
second byte: entire byte is a variable designator.
testtrue (32BY. Test to see if the accumulator is TRUE.

first byte: (instrec) RECCGRD cpcocel51s altsucl 2],
Licmdf11s

Licmd=-~thies fielcd egual tc 1 implies thezt the result
of the test should be complemented.

testnull ¢338). Test toc see if the accumulator s NULL
ocr FALSE.

first byte: (instrec) RECCRD opcodefS]y altsuclf2].
tLicmdl 133

Licmd-=-this field egual to 1 implies thzt the result
of the test should be complemented.

helpcall (34B). Call an execution function that hes
specified a help rule.

first Byte: (instrec) RECCRD opcodelSie altsucl2],
Liemd{13s

No other fields are used.

second byte: entire tyte is an index into the functicn
record tablee.

third byte: (valrec) RECCRD numofargsl tstrelf3l,
tstintf1ly tstnotlL1le fillerL1:-1s hashelprulef13J.
kwvarf{ 133

numofargs--the number of arguments that the furction
s to he called with.

No other fields are usecd.

sugmentation Research Center rage 17

DIA LLG ANDY 3-FEB-77 17:06 28745

Frontend System LCocumentation

fsurth byte: the entire byte is an incex 3into the
executs byte number tahle indicating the first
instru-ticn ¢f the help rulee.

cxzmple

The following crovides a comparisor between a CML crazmmar
scurce and the corresponding compacter ocutput. The scurce
is: FILE cmlexp %<nsw=-sourcesscgcmly>
<{poggicscmiexpescmls>%

Augmentation Research Center pege 18

DIA LLG ANDY 3-FEB-77 17206 28745

Frontend System Cocumentation

“ Declarations ¥
GECLARE COMMAND WGRD
TSHOW M,

reMLT

1]

ls

“CcLI™

23

DECLARE VARIABLE wvars
DECLARE FUNCTION cdoexamples
SUBSYSTEM cmlexp KEYWORD "“EXAMPLE®™

expy COMMANEG = "SHOW"™ wvar _ (WOML® / WCLInIL2Y)
<Mexample®> doexamplel var)3

END.
FINISH
The compacter output is shown in cctal 8-cit bytes.
Instruction boundaries are indicated by dashes.
341
Recognize first Level command word ®"SHOW®"™. This

instruction has no alternative and its successor is the
next instruction.

™)

*SHOW® is the third entry in the command word table.

Its integer token is 0 hecause none was declared.

™
)]
iQ
@
oo
0

stugmentation Research Center

CIA LLG ANDY 3-FEB-77 17206 28745°

Frontend System Cocumentation

fe~ognize first level command word ®CML", Thic
instructior has an alterna*ive which s the next
instrucztion. It has a successor field which indicates
the tocation of the successor.

[

»"CML® is the second entry in the command wocrd table.

Its integer token iz 1.

This is the successor fielcds T“he Ylongt! field of the
pyte is O« indicating that the successcr field is only
1 byte lonce The successor field has & value of &,
indicating that the successor necins at the fourth byte
following this one. This is the 157 bytes the first
byte of the store instructione.

Recognize second level command word "CLI®., This
instrucztion has nc alternative and its successor is
nexte.

"CLIM® is the first entry in the command word table.

Ny

Its integer token is 2.

. T - - - . - - - - - G G W — W - - —— —— - — .

Augmentztion Research Center page 20

CTA LLG ANDY 3-FEB-77 17:06 28745

Frontend System Cocumentation

Steocre the contents of the zccuszulator intc the vzriable
tysrt, This instruction has nc zlternative arnd its
surcessor s next.

<

The *notlocal?' field ecuals & implying that this is a
Local variables. It is the first lecal variable in the
data segmente.

- — - ————— - - - - — " - — - - - - - - A G S . - -

158

Show the noise word "exzample™ to the user. This
instru-tion has no alternztive and its csuccessor fs
nexte

Rl

Th= noise word "example®™ is the first entry in the
noise word table.

160
toad the accurulator with the contents of the variable

fyar?*. This instruction has no alternative and “ts
successor ic next.,

The *notlocal® field equals 0 implyings that this s a
Local variablee. It is the first local variable in the
data segmente.

Augmentation Research Center race 21

OIA LLG ANDY 2-FEB-77 17:06 28745

Frontend System Cocumentatiocn

14k
Tuch the contents of the zccurmulater ontc the rfroument

stzckse This instruction has no alternaztive ancd its
surcessor is next.

83

Call the execution function "doexample™s This
instruction has no alternative and no successore.

The execution function "doexample® is the first entry
in the function record tablee.

[oeY

The *numofargs® *field ecuals 1 indicating that ore
arcument should be poppec off the arcumernt stack and
pzssed to the execution functicn.

Augmentation Research Center page 22

OIA LLG ANDY 3-FEB=-77 17206 28745

Frontend System Documentation

£ML VARIABLE TYPES

Introduction

This section describes the Command Meta Language (CML) variable
types and their translation into FCP tyo:sse. It is intendcded for
CML parse function writers but may be of interest tc anyone
familar with CML .

CHML Variable Structure

CML varizbles all contain & pointer to a block cf one or more
conticucus words of memorye The first wecrd (word 0) of the block
is always & heacer with the following fields riaght acjusted in
word:

AkxXkkxkrkehkrtkhkrtrrrhrhkdrrrvrhrrhrhk bbb rxrdhkrktrrherthkdrtxrikrk

¥* * * *
* ulength (8 bits) * vmarks (2 tits)y x vtype (€ bits) « -
* ’ * * ¥*

hkhkkkkkhkrtrrhdtrhrhhkktrthrrkrtrthkrhrrrrhr Ak rdrk *x

As their names csuggesty the vlength fielc indicates the variable
Length and the vtype field the varigble type. The vrarks field
indicates how many marks were msde on th- display during tre
creation of the variables its values typically zeros will derend
on how the vsariable was createde.
The header fields are defined in L1C as:

(var) RECCRD %header of a variableX

vtynel £1e vmarks[23e vlencthL 81}

CML Tvyoeg

STRIXG
word §: vtype = strtype (= 1})s vlength = 2
word 1! integer token asscciated with string or 0 if rcorne
wcrd 2! address of L10 string

{

Augment=ztion Rescearch Center rage

")
W

DIA LLG ANDY 3-FEB-77 17:06 28745

Frontend System Cocumentation

COMMAND WORE

~

word 21 viype = cwitvype (= 2)e vbargth = 3
worcd 1t 1dntecer token associated with string or ¢ it nore
word 2! @address of L10 string

The distinction between a command *ype and a strinc type is
th3st a command word string may have been defined tc be &
SELECTOR. In *this czcse the three words previous tc the string
may point to selection functions for pcintinoes addressinge and
tvping in. This fact may be generally ignored by the CML
programmer.,

INTZGER

Ny

worc 4 vitype = integer (= 3}s vlength =
word 1: the integer

POINT

(€]

word i vtype = pointtype (= 4)y vlenczth
word 1: the window identifier
word 2: the string identifier
word 21 the Line segment identifier
word 4t the character position
ADDRESS
word 0t wtype = addrtype (= S}, vlencgth = &

word 1: dinteger token associated with string or 0 if none

word 2: address of L10 string
word Z: window identifier
NULL
word 2! vtype = nulltype (= £€)s viencth = 1

fugmentation Research Center rece 24

CIA LLG AKDY

2-FEB=-77 17:0¢

28745

Frontend System Cccumentztion

EIST
wore 7 wtype = l[isttype (= 7}s uvlencth =2 + nunmkter
ctements in lict
word 1: number of elements in the List
word 2 to wora MN: addresses of elements in the List

may be of any type?
TRUE

woerg s

<
~+
~
0
D
i

truetype (= 8)y vleng'h = 1

FALS

™

worcd D! viype falecetype (= 9)y vienath = 1

(5]
1N

(elermentc

BLOCK
werd 0 vtype = blocktype (= 10}« vliength = number of bits in
nlock
word 1 to word N: the bits (32 per 36-bit word left-adjusted)
WINDOY
word 0: wvtype = windtype (= 11)e vlencth = 2
word 1: the window identifier
ACDRESS EXPRESSION
werd 0 vitype = adexptype (= 12)e vlie gth = 2 + number of
elements
word 1: number of etements in the acddress expression
word 7 ?o word Nt adéresses of elements in the address
expression

tdugmentztion Research fLenter

DIA LLG ANDY 3-FEB-77 17:06 28745

Frontend System LCocumentaticn

VIRTUAL TZRMINAL COMTROLLER DESCRIPTICGN

Iintrocduction

The VYirtual Terminal Controller (VTC) morcule of the rFrontend
oresents a virtual terminal interface to the tools and the
Frontend itself. It contains the prcecedures and data to map the
virtual operatiors intc the actual operations necessary for
communicaetion with the connected terminal cdevicee.

The VTC cefines three classes of terminals: (1) half duplex
(possibly Lline at a time) tygewritersy (2) full duplex
typewriterss. and (3) alphanumeric display terminals. perhapes with
pointing devices« etcse A set of operaticns are defined for each
class of terminazl. £Cecause cperations are the same for classes 1
and 2+ tcols zddress themselves to two virtual terminal types:
typewriter and display. More advanced graphics termirals fall in
a fourth classe but the operations for this class are not yet
specified.

The YTC functions as & service module in the FE. When a call is
made on the VICe it performs some specified function anc returnse.
The VTIC is accessed through cne of tuwo entry point procecduress
which in turn c2ll on the other VYTC procedures. One entry
procedure is used only by the Frontend tc manipulate the terminal
in some tool-independent fashioni the other is used wher a tecol
explicitly calls on the VTC.

VTC Destan
This section describes VIC capabilities énd the desicn approach
to the VICs A glossary cof terms useg in this description may be
found 2t the end of this chapter.
Capabilitiss
For typewriter terminals, VIC capabilities consist of setting
the terminal device typesy writing strings cn the terminal, and
controlline the carriage pcsition.
A rich set of primitives exists for the display class of
terminalss many of Wwhich rely on the ccncept of a cdisplay
*windcw"e. Several windows are predefired by the Frontend and

created by the FE through VTC primitivses:

& TTY¥-simulation window for status or errcr messzges.

Augmentation Research Center pace 26

BIA LLG ANDY 3Z~-FEB~-77 17206 28745

Frontend System Documentation

4 command feedback windowe
Zne cr more tool windcowse
4 specizl small windcw for tcel moce infcocrmaticn.

These windows are created by the rrontend proper by way of VIC
primitives.

Th= screen may contain adjacent ard overlapping wircowse much
the way a person views several pieces ~f paper on his ceske.
Fach window has an associated priority to determine which
window is visible when the windcws overlape.

Tools zre given custocdy of 2 windowe ccllied a primery wirdows
when they are first startecd. The tool is then free to write
and delete strings in the windowe clear the window: and create
more windows within it. Typically the primary window is nearly
all of the screen {eeges 20 cut of 24 full Lliresl.

A user czan maintain separate primary windows for meny tools
corncurrently by instructing the Frontend to divide an ex¥sting
window. Frimary windows may nct overl:zp ancé can only be
reconfigured and written cy the owning toocl. Within the
houndaries of a2 primary windows a tool may create overlapping
Windowse

Wh=n using a3 displtay terminale the user cer select any text
visibte to him instead of typing it on the keybcardae Thice
combined with the ability to run sever:zls tools in different

windows concurrentlys gives the user a helpful cross-tcol
facilitye

When a tool is terminatede via 2 call to ?toolrst?y all windows
asgsigned during the toolt*s use are released. The cata
structure taol List (ttist) is used to find the windows
asscciated with the toole given the tool code.

Jesign Approach

The VIL is comprised of a collection o0f service procedures and
a date base. The data base contains structural anc textuasl

information about the screen contents which the prccedures
menipulate in useful ways.

The data base consists of 2 minimum of ®"glocbal® information

th:t is always cresents for the most pzrt runtime-zllocated
blocks of data: of variable sizes that describe the structure

Augmentztion Research Center re

m
Q
4]
i)
-~

DIA LLG ANDY 3-FEB~-77 17:06 2874S

Frontend System Cocumentation

angd centents of the windowss This frees memory whon net in
usece and makes possible a more efficient use of memory bv
skrring the allocation pool ameng many Frontend procesces.

The most important performance critericn for the VIC ic
rzsponse times. T.ee9 the speed of display manipulztion. Hence
a2 great deal of care is tzken to mzke <isplay manipgulaeticr
efficient. This even manifests itself to the tool in the form
of the "batch-commands" prccedures which will perform rary
display operations at one time anc more efficiently than if
done by manry callse.

VIC Implementation
This section briefly describes the nature of the VIC interfaces.
data structurese storage management technicquess 2nc¢ error
haniling strategye It provices references that will be useful in
ltocating functional areas within the source codea
Display Package Interfaces
The YT module has three lLleogicael interfacese the external tool
interfzces the internal CLI interfzcees. and the terminzl device
interface.
4 call generated from the CLI is of the form

DPYCALLtnames Ne ale eaeand

where rame (an integer) is an internal VIC procedure numbter,
and n is the number of arcguments 31 through an.

The orocecdure TPYCALL calls the specified internal display
procedure {many of which corresgonc one-to-one to the external
proceduress but with the arguments in z different form)e The
procedure Llist is in array IDPYTAB. The associaticn between
the procedure name and its number is showne.

{scroltwindow = 1)~-scroll a windowe.

(getdstr = 2)~-get display string from display structure.

{toolset = 3i--set 3 window tc be given tool®s primary
wincowe
{toetirst = 4Y=-=-remove tool from toot Liste.

tugmentztion Research Center . page 28

OIA LLG ANDY 3-FEB-77 17:06 28745

Frontend System Dccumentation

twrtlss: = 5)y=--write Line secrent.

fdelstr = €)-=-delete a stringe.

tdellsg = 7}--cdelete Line secgment.

{rplilszs = 8)--replace Line segmenta.

fopointssl = 3)--point selection routine.

{xywindouw = 10)=--given xe y real coordinatess return

window-ide.

{wurtstr = 11i~--write stringe.
ftcrewind = 12)=-create windows
{intseaqw = 13)--initialize secuential windowe

L4

[14]

etdftty = 14)=-set default TTY win-owe

{cwatt = 15)~-~-set window attributese.

fsetsatt = 1£)=--gset string attributese.

inwind = 17}=-=determine if a2 "windouw-relative® peint is in a
Wwindowa

{setiatt = 13)~-~-set linseg attributeca

{delwind = 1%)=-=-delelte window given window=icae
{cdelsubs = 20)--cdelete all sub-windows civen wincow-ide.
{clrwind = 21Y=-=-clear windou§4given vindow=-ide

{markfcn = 22)=--mark screen to show cr remove a2 seltecticone.
fwurtliteral = 23)=-~-write literal string in 2 windcowe.

(wrtcart = 24)=--yrite partial string. sutordinate to
wrtliter=l,.

tfinish = 25)-=finish display manipulation sequence.

CzLls to the display package from tools are externzl procedure
calls as defined in Appendix 4 of A GUIDE TO THE CML AND CLI.
Th: CLT transforms that into a call of the forre

Augrentstior Research Center r

v}
o]

4]

[
V]

DIA LLG ANDY Z-FEB-77 17:06 28745

Frontend System Cocumertztion

Eoey

W]

SPfiports cpert)
wh-re the two zrnuments z2r= port-icentifiers for scurce and
sink 0% the current cata representatior fargumerts and
resulits)e The display package procedures read their arcumentes
ana gererat theri results using the twc port-icentifiers.
VTC Routines Avezilable through the CLI
The crocedure ECPYDSP dispatches external calls tc the
correct procedures rpassing two coroutine port-ids as
argumentss one for the coroutine that supports reading
argument Lliste (rlist) and one for writinc result lists
(wlist). Each procedure reads the P PBE argument Liste.
nerforms some functions and then writes & PCPBE result List.

The orocedure names below are these found in the source code
of the VYTC module.

(ecrewind)~-~create windowe.
(eclrwind)--clear windowe
(escroll)-~-scroll wincdowe.
(ewrtlsg)=-write Line~-segment.
{eceluind)--delete window.
tewrtstr)--write strinc;
(ecdellsg)--delete Line-segment.
tecelstr)-~delete stringe.
(zrpllscl)l=-replace line-seqgmente.
(zurtlit)--write iiteral inteo wincowe
tecetsztt)-=-set strine attributes.
(esetlntt)--sét line-segment attritutes.
(eposstr)--reposition string.
(2poslsgl~--reposition line-segmente.

(erolstrY=-replcce stringe.

Augmentation Research Center race 30

DIA LLG ANDY Z-FEE-77 17:06 28745

Frontend System Cocumentation

{esateh)=-=-batch commands proccessor -
fzgetwindouws)--crt window information.

(etrzck)=-~turn cursor trackinc on/cff¥ for grachics
terminzt,

The VTC external procedures are callzble through a set of
sxternally callzble routines in the FE. The List of user
callable procedures with their crguments and results are
described in A GUIDE TGO THE CML AND CLIs Appendix 4o
s*Externally Callable Procedures in the Frontend®.

Terminal Cevice Interface

Keyboard and Line Frocessor input is performed by the procedure
tdinptc?s which makes use of the following procedures:?

tdinptecl)-=-sinclte character input routinee.

flogetchar)-~Lline crocessor GETCHAR routine.
{angetchar)=-~getchar for alphanumeric displayse.
fancnv)--alphanumeric display convert typein to coorcdinates.
tdinkc)-~read a big character.

(dinbcl)--read mouse butteon changes.

S%splay and Line Proéessor manipulation is performed by the
following procedures. They are called by various VTC
nrodecures to manipulate the terminal device.
{andspstr)-~-display string on alchanumeric display.
tpad)-~-pad with given number of null characters.
tanreset)--reset azlphanumeric displavy.

(position)--position cursor - alphanumeric cdisplayse.
(trnslz)--trznslate coorcs for alphanumeric display.

tcscreen)=-clear screen - alphanumeric displayse.

ttrackd=--resume tracking - LP dicsplayse.

Auagmentation Resezrch Center race 31

DIA LLG AXDY 3-FEB-77 17:06 28745

Frontend System Cocumentation

{rtrackY-~-resume tracking - LP displayse

‘clireY--uwrite blanks - a2lphanumeric displave.
{dline)~~-delete Line - alphanumeric displayse.
{inlLine)--inzert lLire - alphanumeric displayse.
{standout}--Send stand cut command - alphanumeric displayse.

(endstangout)~--Send end stand cut command -~ alphznumeric
cdisplays.

ttottywindowl--specify default tty - LP terminalc.
trealcds}Y~--convert relative coorcs tc real screer cocordse.
({Lsatrnc=ate)--Line segment truncate function.
tsndlsgy--send line segment to termirale.

(dnysout)--cdisplzay string ocutput with control charse.

Special VIC Data Eltements

The primary data elements are summarized here and described in
detail in the code file. BRelow s a lLlist of impcocrtant date
elements. with their corresponding names as found in the scurce
code. In some casess further description can be fcund in the
glossary 2t the end of this chzaptere.

User information

tyserinfo) RECORD--Each userinfo recaord contains informtion
that is referenced during a terminal sessions It containrs
terminal specific informations the tcol-list addresss and the

window-List adcdresse '
Tool~-Lizt

(tLlist) RECORC-~A List of tool ecode and primary windeow-id
cairse.

Winceow tzble
{wtab) RECORD--CLach entry contains window size ard lLocation

fieldse priority. types attribute Licst addresses rcarent
Wwindow-ids and bookkeeping for the contents c¢f the wincdow.

tugmrentation Research Center ra

v}
(1]
(N
[A%]

OIA LLG ANDY 3-FEB=-77 17:06 28745

Frontend System Documentation

atts) RECORD=~-=Esch werd contzins attritutes for Linsegs or
recurs oF lirseas (strings cor wincdows)e The attributes
fncluyde visibility and high-lighting. the type of desicrnation
ttext string or ccordinates)s 2nd selectcr ccdes

{slist) RECCREC-~-Each element containes a string attribute
words @ Linsecg-list element addresss and coordinates fer the
oricin of the stringe.

Lins=g-list

ttstist) RECURD~-Each element contains @ linseg ettribute
words the address of the text string. and the cccordinates of
the origin ¢f the Linseg origin.

Garbage list

fgarbgr) RECTRD=--each element contains a wincow-id and’
coordinates and character counts suitable for clearing
Lensegs from the screen.

Celaved write Llist

¢ RECCRD--each element contains windowe strince and

)
i¢ information for deferred ucdatinc of the screen.

i M

Y
S

oy

¢ ec
L g-

wd

“ark block List

{markr) RECCRD=--ezch element contains mark types window=1ids
string~ide 3 pair of Llinsea-idss and a pair of character
counts used to record a marked (bugged) entity.

Storage Management

Storage manacement is handled by a stardarc package of rcutines

thzt ¢ usad by most L10 mocdulese Intesrface to the packace iz

provided by the procedures below. They assume that a sterage

manaqgement zone "doyzone™ has been initialized thrcucgh & call

to "makezone"y 2 procedure in the storzge maragement packace.
{getdpy)--get block of storage from cpyzone.

{fredpyt~--free block of storace from cpyzonee.

tugmentation Pes=zarch Center cage =3

ODIA LLG AXKDY 3-FEB-77 17:C6 28745

Frontend System Cocurertation

trror hanclins

frrors are bhandled vie the L1C sicnalling facility. Ar zbort
may occur in any procedure and may bte scted upon in any active
catchohrase encountered up the thread of contrcle. Aborts are
gererelly ignored until they reach the top level dispatching
routine (dpycall or ecpydsole at which time (finish) is called
fer cleanuce.

Glossary
big character

An element c¢f the Line Processor protorol--a secuerce cf
characters in the terminal stream that begins with <ESC>. Used
in conjunction with Line Processor terrinals to send pointing
ccordinates and special characters.

coorcinates

Ths horizonal {x) and vertical (y) disclacements from the
origin (Lower teft corner) of a window-

delayed writes

The method used to optimize display manipulation sequercing by
doing all ®writes” lzst. The urites are recorcded in a list
pointed to by dlybltke Delaywl(windtabe stre lsg) wikl recerd
entries and wrtdely(TRUE) will actually do the writese.
Wrtdelv(FALSE) will celete the records without writinge.

garbege List
A Linked set of garbace blccks with "sizg?” garbace elements in
each. €Each garbage etement indicates & string of carbage that
is ocn the screen and must be cleared scmetime. Each element
locks Like ®garbgor®. Globatl ®"garbg®" contains the zddress of

- the first blocke. 4Word zero of each blcock contains the address
of the next (or zerc if the tast bleock:.

Ling=sg-id

Identifier for a Line segment (linseg) in a2 specified strinrg.

Augmenteztion Research Center page 24

L

1'

DIA LLG AAMDY 2-FEB~-77 17:0€ 2874S

Frontend System Documentation

-Ligt

nse

e}

2 Ligt of tingeg elemant recordse one for each Linseg in a
civen stringe. Zach element points to text strince.

merk block

An allccaeted block which defines a selection mark cn the
screen: "markit" creates them and "pormark® uses them to
remove the marks. They are then Linkec in reverse crder
through userinfcemark (i.cee the most recernt mark is first in
the Link}e. See userinfo and markre.

selector code

An 8=-bit number that indicates the selectivity of strings on
thec screen., Three vzlues are civen serantics by the Frontend:

zero z2nd one: Cnly selectzble as Literal (LSEL).

two: NEVER selectable as Literal (LSEL) execept across toolse
{SSFfL end BSEL okav)e.

greater than two: Semantics given by tool. AlL selections
okays

ther 3 selection is mzdee a selector cocde arcument is civer to
"npointsel™. ormally it Lloocks conly at strinas with an exact
m=tchs except:

if arg <= 1 Anything is elegible.

if selcd = 2 Case is checked ty parsefunctiona

{Usirng z2rg = 2 is not normally done.:?

&n jdentifier for a string in a specified windcue

strinc~list

dugmentation Research Center e

A Llist of string element records. There is one element for
each string in the specified windowe ach string element
record (stist) is referenced by a strirg-id and contains =z
pointer to either a2 Ltinseg-list or a text stringe.

8}

Q
[}
!
u

DIA LLG ANDY Z-FEE-77 17:06 28745

Frontend System Cocumentaticn

tool code
A ®ORDT thz2t unicuely identifies 2 tool.

tfool List
A tist that containse for each tool for a oiven jcbs the pair
tocol code and window—-id (window-id of that tool®s crimary
window?’e. :

Wwindow
A rectangular area of the display screene.

window oriority
An integer used to determine which of the overlapping wirndouws
will showe A& *"privis bit® is set for each window that
indicates if the wirdow is visible due to pricritye.

window=id
An integer that designates display wincow or other channel.

window=-tist

Contains the window-table-address for cach window. Incexed by
window-idae

window-table

Contains all the information perteinince to the given windows
including the string-List zddress.,

dugmentation Research Center page 36

DIA LLG ANDY 3-FEB-77 17206 28745

Frecntend System Cocumentation

PROCESS COMMUNICATIONS INTERFACE (PCI) MCDULE

erl

Introduction
The ©roc2ss Cemmunicatiens Interface Module (PCI) dinterfzces the
Frontend to *the communicaticns media. and hence to cther
nrocesses such a2 tools and the Works Manager. As described in
AN INTRODUCTION TO THE FRONTEND L£21. there is a FCI for each
communication medium. each PZI supplying the same dinterface to
the Frontend. The primary functions of the PCI are to provide &
way for the Frontend to call remote processesy and for those
remote processes to call Frontend (externatly callable) functions
anc to atlow for character-oriented communicatione.

Important Data Elements

The primzry cata eslement of the PCI is the process record
'tnrocessr*y which contains information necessary to communicate
with 2 remote processe The actual information may differ
depending on the communication mecdiums but it woulc typicelly
inclucde the process rame and other icentifiers for the process cr
connections to it. The process communicztion buffers record
tpcorrec® is another important cdatz elements containing pointers
and zddresses of sernd and receive bufferse

Character orientedé communication is implemented as a Telnet
retwork connection between the Frontend znd the other (tcol)
processe A data elementy the Telnet control bloek (TCEB)e is used
to maintain each such connection the Frontend establishese.

PCI Prccedures

The following procedures are usecd by the Frontence.

ipcinit ¢ -2) : . .

-4

hie procedure has no arguments and no resultse It is celled
t initialization time so that the FCI mocdule may initialize
tselfs

-

ipcnewzram (instance REF =>)

The single argument tinstance* is a gremmar instance némee. The
procedure initalizes the process record for the remote process
which that grarzmar will make calls upcre It is czlled eackh
time 2 new crammar instance is created.

Augmentatior Recearch Center . rege 27

DIA LLG ANDY 3I-FEE-T77 17:06 28745

Frontend System Cocumentation

3~
Icc

[$)]

ncéoram (instance REF =->)

Tris crocedure s znalooous toc *iccneworam® ard is called
wn-never a grammar instance is nc longsr tc be usec by the FE.

-

ipccall (¥n REFe cutofline ->)

The procedure 'ipccall?t performs the c:zlLL on a3 remote proccess.
The first argument is a CML funeticn name identifier. The
boolean toutofline® indicates uwhether the PCI is to wait for
the remote reply or return as soon as possiblees processinc the
remcte reply at a later time (FALSE implies weitincl)e This
procedure decodes the parameters in the functior name blocke
sets up the data to be communicateds and initiates the
transmissicne. ’

jocnetrec (echos netinjfns netoutjfn -> telcb)

This procedure is called to set up a character oriented
(Telnet) connection to a toolt. The call is made after ttre
connections are establishecds out before they are used in any
WaY e

The argument *echo* is TRUE only if ingut echoing is to ke done
by the Frontend. (Normally echeoing is cone by the toole.) The
arzuments tnetinjfnt and 'netoutjfn' are handles on the 'input?
(with respect to the Frontend) and the *output® cornections of
the Telnet pair. The single result is the address of the
Telnet control block for this connection paire. The procedure
catling *ipcnetrec?® must remember the TCB a2ddress and delete
the TCE when it closes the connection cair. This is usualiy
done by a parscfunctions such as tfetermtelnetr.

Thkis orocedure creates and initfalizes the Telnet control
blocke sending an initial Telnet optiorn negotiation strinc to
th2 server Telnet at the tool end. In the TENEX
implementations it creates a sub=-fork to read characters from
the connection and interrupt the main “rontend fork when
characters are available. The main fork interrupt routine
txtelnetpsi® (in PCI) then disgoses of the characters as
appropriate: it will reply to Telnet copticn negotiation by
either outoutting characters to the terminal or writing them in
the proper window of the display screere ALlL the information
needed by *xtelnetpsi? resides in the Telnet control block for
the connection in cuestion. When ther- are several such
connectionse. the control blocks are lLirked together and
txtelnetpsi®* handles each of them in turn.

Augmentztion Research Center peage 38

BIA LLG ANDY 3-FEE-77 17:0€6 28745

Frontend System Documentation

The following PUI arocedure is callec when a remote call is made
on the Frontsnd.

docall (inbuf RCFa. outhuf REFs cutbufciz -> resler)

The procedure *cdocall?* performs the calls on externally
czllable Frontend precedurss on behalf of remote crocecssese.
Its first a2rgument is the address of the input buffers which
nust contain a message-oriented procedure invocaticn of the
form defined in Appendix 1 of A GUICE TO THE CLI AND CML.

The procedure t*docallt remcves the parzmeters from the
top-level list (e.ges mMessage types prccedure namels
initializes the output buffer toutbuf* for the results (if
necessaryle and calls the designated procecure.

To read the data types 2nd values in the messages *'docall® uses
the Data Representation Interfzce rcutines. It alsoc passes on
the port identifiers fer the coroutines to the externally
czllable procedure. That iss every Frontend exterratly
cellable procecdure is catled with two zrguments: the port
identifiers of coroutines toc rezd and write data structuress
respectively. &t the time of the call-. the positicon within the
tinpyt* dota structure is such that the first element read is
the first argument for the externat catl; likewisey, the first
element writtea in the output structure will be the first
resultts and so forth. The externally callable procedures are
responsible for correctly reading their arcuments using the
port identifiers provided and builcing ary result structures.

The following are externally callable preocceduress described in
Appendix 4 of A GUIDE TO THE CML AND CLI, They resicde in the PCI
mocdule because most of the functions they perform involve the
communications media.

fzcpenconn~--whose internal name ic =sopenconne.

feclosconn--whose internal name is ecl-sconne.

f2terrtool~--whose internat name is etermtool.

&dugmentation Resesarch Center rzge 29

DIA'LLG ANDY 3-FEB-77 17:06 28745

Frontenc System EZocumentation

DATA REFPRESENTATION INTERFACE

Introguctior

This section describes the L10 corsutines used to rezd/write PCP
data structurese. PCPER is described in ° GUICE TO TFE CML AND
CLI» Appendix 3+ *Frontend Data Representatin for Message
Communicetion®. Since PCP data structures are sequertizl (f.c.9
there are no links)s it is necessary to keep track of the current
position in the structure while it is being encoded cr decoded.
L10 coroutines czn perform the task of helding the currert
positione and thus are well suited to the encoding ard decoding
of FCP data structures.

Two things should be noted befcre we continue:
These coroutines assume the PCPE8 type PAD.
The coroutines are cenerally usefuls ard compatible on a FOP-10
>CPB3Et or BR&Y and PDP~-11 (PCPBZ2).
Readinag a PCP Deta Structure
RLIST (adr REFs zcne => [iportl)
To read 2 date structures openport on rlists providing the
address of the PCF data structure (first word)e and a free
storage zone. The returned port ID «ill be used subsecuently

to read elements from the data structures as described below:

rtype PCALL [Cipecrtl]l (types lengthy dest: wvalues oir)

trtype* is the actual element type.

ttype? desicnates the expected typv of the element(s) to be
rezd or a special ocperatore.

ttengtht is a count of the number c¢f elements of type
*type? to read into array tcdestv.

tdegt? is the zddress of an array to store element values
ine

*vatue*t is the element value or a pointer.

totr? 3s an address into the data structure that cen be

Ltugmzntation Research Center ’ page 40

DIA LLG ANDY 3-FEB-77 17:0€ 28745

Frontend System Cocumentation

used t~ reset yocur positicn to this point in the datsa
cstructure.

The following are typicel uses of cne rlist PCALL:
rtype _ PCALL [iportd (8: waltus:

WilL read one element of AXY type. dest ancd length need
not be specified here when typse is zero.

PCALL [Liportl (pcpindexe $arraye 3)3

¥ill read © indexes and store the values ir an array
starting at tarrav'e

PCALL Ciport? (pecplist: Llistlen 3

¥ill read one elementy, which must be 2 tListe. 2n abort
will orcur if it is not a list (err is called). The
List Ul=nath will be stored in tistlen. Subsequert
PCaillLs will obtain the List elements.

In the zbove examples the returned 'ptr* was icnored. It
rould also have been stored.

These types are possible (see & GUIDE TO THE CML AND CLI.
Appendix 4s for PCP type wvalues):

type = pepany (=0):

Any PCP data type except P2D is returned. The dest and
Length parameterss if presents are ignored.

typs = peplist

Hare ?dest? is ignored. An abcecrt is generzted if the
2lement is not a Lists or if it doces not have *length?
elementess The value returned is the number of elements
in the liste. Subseguent PCALLs will rezd the tist
etements. There is no indication of when the end of
the List is reached’ the element following the List
will e returned after the last List element is
returnede.

types = pcpbooleane cepindexs pcp mpty

The type must match the element(s) being read cr an
abort will be generated. The value returned is the

tugmentztion Resezrch fenter cege 41

DIA LLG ANDY 3-FEB-77 17:06 28745

Frontend System Cocumentation

vzlue of the element. Zero is returned for an empty
of e :

It is tricky to enable simitar implementations on the
POP=-10 2nd POP-11. If the elerent is being returred as
a PCALL result. the value will be the address of the
integer (32 bits)s which must te moved before the next
PCalLe If the element is being stored in an arrave 32
bits will be stored at the given location. This ¥s a
word on the PDP-12 and two worcds on the PGF-114 of
course.

type = pcpcharstr

The character string is moved to the free storage zone
and the address of the string is returned. On the
PrP=-11s if the zone is *dpyzoncty the string is nct an
a-string but is compacted: there are no M and L words
and th= Lenath is in character zero.

type = pcppad

Pads are icnored and will never be returnedi this will
always fail.

type = rlistignorecl120)

This will cause the next *lenatht' things to be ignorede.
They may be Lists. This PCALL returns after advencing
through the data structure. The type and value results
are unspecifieds but fptr* is rorrecte.

type = rlistreset(103)

This will re-establish the positicn in the data
structure to that given by tlength®. It must Lbe a
pointer obtained from another rlist PCALL (thirc
result)s The type and value results are unspecified.
but *ptr? is correcte The next PCALL will return the
element following the one that was returnec when the
pointer w2s obtained.

type = rlistzone(lol)

This will set the zone that rlist uses for storinc
pepecharstrts to the value given as *lencthe.?' It does

Augmentation Resesrch Center page 42

DIA LLG ANDY 3-FEB=77 17:06 28745

Frontend System Cocumentation

not zdvance through the dasta structure. The type and
vzlue results are unscecifisde but ®ptr* is correctes

tyoe = rifctnoptl02}
This does nothing. The type for the next element is
returneds but the value is unspecifiede anc tptre is
corrects It can be callied to obtain the current
pcsitien without advancing and or get the type of the
next etement without actually reading it.
If *cest® is non-zero AND ttype' is charstrs, then
integers indexs emptye or boolean *length?® elements are
read and stored at lLeccation ®*cest®. In that case an
ABCRT is generated if the next *lenctht' elements ere not
cf type *typete.
If *cdestt is non-zeroce 'type? may not be pcplist type.
That 1se only non-list elements nmay be storec in a
designated arrzay.
The result type and value are summarized here:
rtype: valus

tist: numbar of elements
index: the index value
intacer: the address of 32 Gtits
(Cn 11+ first word is most significant)
charstr: the address of the string
hoolean: TRUE or FALSE
empty: zero
citstr: address of bitstring
Notes:

Currentlye the ABORT takes the form of a procecdure call
to 2rr($"8ad PCPF data type =-RLIST™): .

Augmentation Research Center vage 43

DIA LLG ARDY 3-FEB=-77 17:086 28745

Ffrontend System Tocumentztion

GPENPORT rtistdiparamss zone: L[iportl)

% rezd one element of tynes indexe put it in incexvzlue %
pCaLL [iport I(pcpindexs 07 indexvalue)

% read three booleans into array ary %
PCALL [3iportl] (pcpbooleans Scrys 3)3

% read one elementsy either index or List ¥

type PCALL Ciportl (802 wvalue)

CASE type cf
zpepindex: ecee %Zvalue is in *tyatuetr %

=pcplist: asee % Lenoth is in *value?* X

% read entire List ¢f charstrings into tstre array
%

PCALL Tiportl (pcpcharstry $stre value):

ENDCASE err(s®wrong type element®™3}s

[w

Writing a PCP Data Structure

WLIST (2dr REF. n => Lcportl)
Cpenport on *wlist?® takes the adcress of a block in which to
ouitd the data structure and a word count representing the
numcer of words available in the blocks. A HELP signal
reqguests more room it the block is overrune.
Tach subsequent PCALL on oport tuilds one element in the data
structure (approximately). The PCALL arcuments zre type and
values WLIST always returns a WORD count and a pointere.
count _ PCALL [Coport] (types value: ptris

ttypet is a PCP data type or other special operatore.

*value® is usually the value of the PCP element.

Augrmentztion Research Center cage 44

DIA LLG ANDY Z-FEB-77 17:06 28745

Frontend System Cocumentation

tcountt s & WORD count ¢f the structure so fare.

fotr? 3ig & pointer that can be userd to reset the pesition
in the data structure.

The types allowed and the action taken are as follows,
tyce: action
scpindex:
Element of type indexs value 'value® is ccocnstructede.
pcpboolean:
Element of tyce boolean is constructede.
(value=0 = FALSE)
ccgempty:
“mpty element is constructed.
pcpinteger:

fvalue?! points to 32 bits usec to make integer elemente.
8n 11« most significant 16 bits is first worde

sepcharstr:

yzlue is the zddress of an L10 string. An element of
type charstr (containing thet strina) is constructed.

pcpbitstr:
value® is the address of a bitstringe The first word of
the 2itstring is taken as an integers which is the rumber
of tits in the bitstring.

pcplist:
If *tvalue® s zeroe a list of unknown length may be

suilte Otherwise the list lLlength is taken as tvaluet and
spproprizte checks are made.

Augmentaztion Sesearch Center cage 45

DIA LLG ANDY Z-FEB-77 17:06 28745

Frontend System Cocumentation

d'

ncpp

[N

fne PCP-PAC element 3s cenrstructede.

(2 d

2nd(2203 2

wde

wlis
This closes the last List construction. If the tength

"was provideds @ lergth check is made and err s catled if
not correct. Ctherwise the length is computed and stored
in the Llist elemente.

wlistreset(201):

This resets the writing position to *value®e which must
have been obtained from wlist praviously as a *ptr*. The
rext element written will follow the tast element written
when the *gtrt was obtained.

This is dengerous! After doing thiss you may NOT clese a

List (wlistend) that was started BEEFORE the wlistreset

was cones. The ftcount?! after doing a wlistreset uwill be

the number of words to the current pecsition irn the Liste

rot the total number of words in the data structure.
wlistnop(202):

This is = NO-0OF that returns tcount® ancd *ptr* for the
current position,

Note th=t Lists may be nested and data structures may te
fuilt without prior knowledge of the contentse.

If WLIST overruns the area:

A HELP(wlistoverflows addresse needed) 1is gererated,
where ftaddress” is the address of the first word of the
areas anc *neecedt is the number of words that MUST te
present to write the next element.

The proper return is RESUME(gothelps newaddresss nle
where *newaddress? is the address of the relocated area,
and *n?* is the number of words allocatec¢ in that new

Zrede

The helping routine must copy the entire zrea intoc the new
&rede.

Augmentation Research Center . pace 46

OIA LLG ANDY 3-FEB=-77 17:06 28745

Frontend System Cocumentaticn

USER PROFILE CATA STRUCTURE AND TOOL

Introcduction

User Frofile refers to the per node cdata base thzat holds
parameters describing the desired tcol-irndependent
charactericstics of the FE. The dynamic cata base is reac when &
node session begins and is used throughout the session to ¢ive
the user a3 personalized FE.

The User Profile Tool is a separatees fully split NSW tool that 1is
accessed through the Runtool command given to the WM EXEC. This
tool acives the node the ability te modify his own User Profile
cata basee. :

Current Capabilx%ieé

The User Profile data base is not currently supportec by either
the WM or the FE. If the FE did read the User Profile data bases
any modifications made in the User Profile Tcol woulc becore
active at the next sessions when the User Profile would again be
read by the FE. Currently the User Frofile Tool reacs and writes
the data base to 2 Tenex file that is uniquely named (using the
project-node named.

tnvisioned Capabilities

whilz the User Profile has never been fully integrated intc the
NSWe it is envisioned that the User Profile be a2 data base whose
access is restricted by the WM (eege 3s zn NSW file cr through WM
calls to resd/write it)s At session startupe it would te read by
the %M and returned as a PCPB8 data structure as a result of
WMLOGIN

The User Profile Tool would provicde immecdiate profile updating
and the coption to make the modification rermanent or restrict it
to the current s=ssion. To support immediaste profile upcdatirg,
the FE would provide an external cally allowing it te rezd a
profile or profile-part from the User Profile tcol.

Lugmentztion Research Center race 47

DIA LLG AMDY 3-FEB-77 17.0€6 28745

Frontend System Locumentation

UYser Profile Tatza Structure

-
1

CData Structure

[}

The User Profile data structure consists ¢cf one tist (ccded
in FCPB! containing the fclliowins fiuve elements (in orcder):

1, Profite - ZITSTR

Feedbacks heraldy etcs See definition of fields telowe
2+ Startupstring - CHARSTRING

Startup input command stringc.
3« Tool Lict = LIST(toolle tool2s eae)

Fach element tool-i is of type CHARSTRING and contains a
. Ltegzl name of 2z toola.

4. Control Character list - LIZT (Referred tc as cntchr
Liste?

Tach element of the List is itself a LIST (referred toc as
dvclet) of the following structure:

LIST(indexy LIST(cfecharsechod)s LIST(cfechareechole eee
)] .)

where?
index - INDEX - device coée
cf = INBEX - Controt functiorn code

char - CHARSTRING - String of characters where each
serves the specified function

echo - CHARSTRING - Strinc to eche when the cortrot
character is typed.

Se Version - INDEX

ror compatibitity checka.

Augrmentastion Research Center page 48

‘DIA LLG ANDY 3-FEB-77 17:06 28745

Frontend System Cocumentation

le The profile bitetr is currently 3 bBits tcnge with the
=ite 3llocatesd as follows (bit number 1 is the ltefitmcst):

Fisld Bite
feedback L=rath 1 thru 8
herala length 9 thru 12
recognition moce 13 thru 14

secondary reccgnition 15 thru 16
orompting 17 thru 18
command word lLength 19 thru 23

In the L1 orocgremming languacge this results irn the
following recorc:

(prtl) RECORD

paddingliSle cmcdudlenl(Sle prptL2le rcg2021y rcgl2],
hidleni43e foltenbzl 5

2. Startupstring is a2 null string if nere is specified.

‘'3« TJool=List convention:
First ~lement is the entry tocls or NULL if none ¢
defineds {Undefined entry tocl causes the user to stay in
the EXEC after logine.)
Other elements (if any) are tccl nemes (all as strinocs)e.

4. Control chzracters?

If 2 List for 2 specific device (dvclst) does rot exist all
control chzracters defaulte.

Tf 3 List exists for a specific device only thcse
control-characters that deviate frcm the default have
entriese.

17 this entire control character List has only one NULL
zlement all control chzracters for all devices defaulte.

Augmentation Research Center o

o
Q1
D
el
\D

DIA LLG ANDY 3-FEB-77 17:06 28745

Frontend System Cocumentation

S, VYersion numbsr is currently 2.

feaning of Fields in the Frofile “itstr

§ = Verbose tdefault value)
"1 = Terse
2 = oFf
Recognition {(Both Levels)
& = Anticioatory
1 = Terse {(default value)
2 = Fixed
3 = Cemand
Feedback lengthe herald lengthy and command word Lencth

cantain the zorrespondinc length (in characters) and default
tc the maximum number al lowed.

Ltugmentation Research Center rage S0

DIA LLG AMDY Z-FEB=-77 17:C6& 28745

Frontend System Cocumentation

- Cerntrol Function Incdexina and Cefaults

Funeticonr Index Sefault
CCMMAND ACCEST 4 iC
COGMMAND DELETE 24 | ¥
REPEAT 2 16
BACKSPACE CHARACTER & IH
RACKSPACE WORD 23 1%
BACKSPACE STATEMENT 16 iP
LITERAL ESCAPE 22 jv
IGNORE 0 Nc Cefault
SHIFT CHARACTER 47 Ne Lefault
CHIFT WORD Sz Ne Default
TEB ' g 11
CPTION 21 1y

Device Code Indexing

Cevice Name Index
TI P4
NVT - 3
LINEPROCESSOR 4 .
IMLAC 5
ZXECUPORT (3
TTY33 7
TTY3S R
ITYz?7 g

Augmentation Research Center

3
m
«Q
a
o
[eey

DIA LLG ANDY 3~FEB-77 17:06 28745

Frontend System LCocumentation

~d
bt

rd
D
A
<
m
&

n
a3
(]
z
-
™
]

T

CENE

»J

Introducticn

The followin: steps must be itzken tec crerte a new Frcntend:

Make sure the relocatable binary files are up to datee

tcad the desired Frontend configuration to create a save
«SAY) fiteo

~

- Create the initial grammare.

(Other csteps may be necessary depending ¢cn the Frontend
configurations?

zading process is usually dore by a RUNFIL procrzme
file available for each Frontend configuratior.

« Locadings and saving cperations currently must be
EX or TOPS-20 heste.

Compilation

fach Frontend source file contains the nz=me c¢f the compilerf(s)
and the REL file{s) that are to be used when compiling that
source file. To create a Frontend fcr the PCP-10y use the L10
compiler: for the FCP~11e use the L1011 compiler. Of cources if
the source file has not been changed since the existing REL file
was createds. it is not necessary to compilte that source file
hefore creating a new Frontende

Frontend source Tiles are currently NLS iles. To compile theme
uce the Complie File commana in the Frograms subsystema
Sequential files may be compiled by simply running the same
compiler as a TENEX subsystems giving the secquential file as
inrputy and specifying the REL file 25 output.

Loading

To load a2 Frontends run a loader to bind all the REL files
together and savs the ccre image in & SAV file. For a PCP-11
Frontancds you must also format the SaAV file into PCP-11 toad
format. The names of the RUNFIL files that perform the loading
for each Frortend configuration zre specified belows along with
the names of the wvarious files that comprise each Frentend
modulee.

tugmentztion Research Center page 52

DIA LLG AMDY Z-FEB-77 17106 28745

Frontend System Documentation

To m_.ke 2 Frernterc ready for uses the S file s placed in the
*ile directory in which it is to run. The initizl grarmer is
staced in the ssme directory with the name IXECLCERS rarcse
funrtion files zre alsc vlacec n the cdirectorys with the
extensions «FFC {Tor code) or oFFD (for catale This is explained
in the "irammar Compilation and Compacticn®™ section ¢f A GUIDE TC
THE (ML AND CLI.

In some casese the Frontend is then ready to usee. The excepticons
are a stand-alone single fork tool that uses the Frontend and a
frontend that uses the shared page communication mecdiume. In the
first casee refer to "Making a Stand Alone Tocol"™ in Appendix 2 of
& GUIDE TC THE CML AND CLI. For the seccnd cases the SAV file
for the tool backend must be placed in the same directory as the
Frortends clong with the Frontend and the initisl gremmar.

dhen making s PCP-11 Frontends an acditicnal step is performed by
the RUNFIL file. The SAV file is converted into FCF-11 Lloading
formate by wzy of program SAVBIN. The resulting BIN files are
then lozded on the PIP-11. Recause that loadinc process is still
und2rcoing changes it will not be described in detail at this
timee.

Frontend Files
Selow is a List cf the Frontend scurce filesy the REL files they
produces and information about which Frontend configuratior
requires them. +“hen no file directory is givens the directory is
<NSW-SQURCES>. UWhere several REL files :re produced from one
sources they are separated oy a semi-colon (3 Je The L1920 rurntime
support files (code and data) are not included in this liste but
they are lczded in each Frontend configuratione.
NEWCLIWNLS

NEWCLIA.REL? recuirec for ALL PDP-10 FEs

CL1I011>CLTIWRELSY required for ALL POP-11 FEs
L1011STEMGT.NLS

FESTGMET «RELS required for ALL PCP-10 FEs

<L1G11DFESTGMET.RELS recuired for ALL FDP-11 FEs

Augmentztior Research Cznter rege

tn
(£}

DIA LLG ANDY 3-FEB=-77 17:06 28745

Frontend System [ocumentation

XOSICLTILRZLY XOSIDATALRELS reguirecd for ALL PCP-1C FEs

PFADDSREL® reguired for ALL PCP-16 FE:

<L1011>PFADDS.RELS required for 2Ll PDP-11 FEs
XFEROUTINES .NLS

XFERTNS.RELS r=quired for ELL POP-10 Fts
XFEDATALNLS

XFEDATALREL: r:=quired for ALL PCP-10 FEs

<L1011>FEDATALRELS reqguired for all PDP-11 FES<
OPYPKG.NLS

DPYPKG.RELY reouired for ALL PCP-10 FE:

<L1011i>DPYPKG.RELY required for ALL PDF-11 FEs
CPY-10NLS

DPY=10.RELY required for all PCP-15 F

m
(2]

MSG-3I.NLS

MSG=31.RELS: MSG-3DATALREL: required for MSG-3
TYPEZLIWLNLS

‘TYPEI.RELS recuired for TYPEOUT
SAFE .NLS

SAFETLRELS required for Stand Atope FE
<RELNINE>NLSILNLS

CRELNINEDNLSILRELS required for Shared Page
FCPBE~10NLS

PCPBR.RELY required for MSG-3, Raw Net Conne ard Shared Pecge

Augrent:tion Research Center npece

DIA LLG ANDY 3-FEB-77 17:06 28743

Frontend System Cocumentation

<L1711>70PB2~114NLE3
<L1I011>PCPR3.RZLY recuired for all PPP-11 FEs

CGRAMLDR «NL

("

CGRAMLDRWRELS recuired for ALL PDP-10 FEs
<L1211>0PY=-11.NLS

<L10115DPY—11.REL§ recuired for all PBP-11 FEs
OPYDATA-10.NLS |

DPYDATALRELSY reoquired for all PCP-10 Fts
CL1011>DFYDATA-11aNLS

<LI1I211>DPYDATALRELS recuired for atl P"P-11 FEs
MSG3IFE «RUN

RUNFIL dnput to mazke MSG-3 Frontend
TYPETLI.RUN

RUNFIL input to make TYPEQUT Frontend
CRELNINEDNLSOFELRUN

RUNFIL dinput to make Shared Page Frontend
SAFE .RUN

RUNFIL 1input to meke Stand Alcone Frontend
<L1011>CLILRUN

RUNFIL innut to make POP-11 Frorntend

Augmentation Research Center rage =5

DIA LLG ANDY 3-FEB-77 17:06 2874S

Frontend System Cocumentation

REFERENCESR

le Ton=ld Ie Ancrewse Severly Re Sclis :nd Andrew 2. Focoicse 4
Zuide tc the Commang Metea Languace and Command Lancuage
Interpreter. Augmnentation Resezrch (Tantery Stanfcrd Sesearch
institutze Mento Parke. Californize. February 3 19577, (287449) e

2« Donald I. Andrewss Beverly Re. Bolie 'nd Andrew A, Pocaics An
Introcuction to the Frontend: Augmentaticn Research Centers
Stanford Research Institutes Menlo Parke. Catifornia. February 3.
1977« (287434)e

Augmentztion Research Center race 56

