
' '

FRONTEND SYSTEM DOCUMENTATION

Donald I. Andrews
Beverly R. Boli

Andrew A. Poggio

January 5, 1977

ARC Catalogue Number 28745

DlA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

TABLE OF CONTENTS

PREFACE .
CL! OPERATION .

The CML Grammar .
CML Grammar Interpretation .

CML COMPILER AND COMPACTOR DESCRIPTION .
Introduction .
The Compiler .
The Compacter .

. CML VARIABLE TYPES

Introduction .
CML Variable Structure .
CML Types .

VIRTUAL TERMINAL CONTROLLER DESCRIPTION .
Introduction .
VTC Design .
VTC Implementation .
Glossary .

PROCESS COMMUNICATIONS INTERFACE (PCI) MODULE
Introduction .
Important Data Elements

PC! Procedures .

1

2

2

3

4

4

4

4

23

23

23

23

26

26

26

28

34

37

37

37

37

Augmentation Research Center page i

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

DATA REPRESENTATION INTERFACE .
Introduction .
Reading a PCP Data Structure

Writing a PCP Data Structure

.

.
USER PROFILE DATA STRUCTURE AND TOOL

Introduction

.

Current Capabilities

Envisioned Capabilities

User Profile Data Structure

.

.
GENERATING A NEW FRONTEND .

Introduction

Compilation

.
.

Loading .
Frontend Files .

REFERENCES .

40

40

40

44

47

47

47

47

52

52

52

52

53

56

Augmentation Research Center page ii

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

PREFACE

This document, which reflects the current state of the NSW
Frontend, provides information about the Frontend necessary to
those working with it or building their own Frontend. The three
classes of Frontend components and the extent to which this
document describes them follows:

Modules. The programs with which the user interacts during
command specification and which communicate with the tool: the
Virtual Terminal Control (VTC} , the Command Language
Interpreter (CL!}, and the Process Communication Interface
(PC!}. A description of CL! operation and of the PC! and VTC
is provided. Also included is a discussion of data
representation types.

Data Bases. The data bases and data structures associated with
the user interface machinery: the grammar, User Profile and
Help data bases, User Statistics, CML source programs, and
Command Sequences. More information on the data bases may be
found in A GUIDE TO THE CML AND CL! [l].

Auxiliary Tools. The auxiliary programs and tools that allow
the user or tool builder/installer to create, examine, or
manipulate the above data bases: the CML compiler, User
Profile tool, Help tool, Statistics Analysis programs, and
Command Sequence Processor. A detailed description of the CML
compiler and compacter and CML variable types is provided here,
along with a section on the current and future capabilities of
the User Profile tool and its data structure.

The last section tells briefly how to create and load a Frontend.

Augmentation Research Center page 1

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

CLI OPERATION

The CML Grammar

A CML grammar consists of a series of instructions and
associated tables. The grammar instructions form a
tree-structured program which the CLI interprets. It is this
process of grammar interpretation that produces the high
quality user interaction for which the CLI is so well known.

A CML grammar consisting of the two commands,

delete COMMAND = "DELETE" "WORD" I II CHARACTER") ;

insert COMMAND = "INSERT" IF DISPLAY "WINDOW" / "WORD") ;

when compiled produces the following (upside down) tree
structure:

root of grammar tree

I

(1) (2)

"DELETE" "INSERT"

I I

(3) (4) (5) (6)

"WORD" "CHARACTER" IF DISPLAY "WORD"

I

(7)

"WINDOW"

Each place in the tree where an instruction such as "WORD"
exists is called a node. Each node has been numbered for

Augmentation Research Center page 2

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

reference. Nodes 3, 4, 7, and 6 are called terminal nodes
because there is nothing following them in the tree.

CML Grammar Interpretation

The CLI implements the command language described by a grammar
by interpreting the instructions contained in the grammar. The
CL! begins at the root of the grammar tree and simultaneously
processes the various paths through the tree to terminal nodes.
One such path is through nodes 1 and 3: another is through 2,
5, and 7. Completing the processing of a terminal node such as
node 3 is synonymous with command completion and causes the CLI
to begin processing again at the root of the grammar tree.

The CL! path processing may be directed by user input or
results obtained from processing instructions. In the above
example, the CLI would start by processing nodes 1 and 2 at the
same time. Since both of these nodes are command words, user
characters are required for the CLI to determine which path to
take. Let us assume that the user is in expert recognition
mode and that she types a "d". The CLI can then determine that
node 1 is on the correct path and node 2 is not because the
user must be typing the "DELETE" command word: as a result it
discontinues processing the path through node 2 and proceeds
down the path through node 1 to process nodes 3 and 4. The
user types a "c". The CLI can then determine that node 4 is on
the right path. Node 4 is a terminal node and so upon
completion of the processing of node 4, the current command is
complete and the CLI will begin processing again at the root.

If instead the user types an "i" as the first character of her
command, the CLI will then process the nodes following node 2-­
nodes 5 and 6. Node 5 checks the value of the built-in
variable DISPLAY which is TRUE if the user is at a display
terminal. If DISPLAY is TRUE, the CLI is directed to continue
down to node 7 and process it together with node 6: otherwise
it will discontinue processing the path through node 5 and only
process node 6. Let us assume that DISPLAY is TRUE and so
nodes 7 and 6 are both processed. The user types a "w". The
CLI cannot determine whether node 7 or node 6 is on the correct
path because both are command words beginning with "w", and so
it must get another character from the user to continue.
Suppose this next character is "x". The CL! finds that neither
node 7 nor node 6 is correct for this character and there are
no other currently active paths. The CLI then assumes that the
user typed a bad character, tells her so, and gets another
character which hopefully will be "i" or 11 0 11 , thus allowing the
CLI to finish processing the command.

Augmentation Research Center page 3

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

CML COMPILER AND COMPACTOR DESCRIPTION'

Introduction

The CML compiler and CML compacter are used to transform the
text of a CML grammar into a form executable by the CLI. The
CML compiler takes as input a source file, either an NLS or
text file, and produces as output a file containing an
appropriate set of CML instructions. The CML compacter is a
post-processer for the compiler which reduces the size of the
compiler output and produces any modifications necessary for
the grammar to run on its target machine.

The following discussion assumes that the reader is familiar
with the CML and Ll0 languages.

The Compiler

The CML compiler is written in Tree Meta, a compiler-writing
language, and runs on the PDP-10. It can be run in NLS taking
as input an NLS file, or from the EXEC with a text file as
input.

The format of the compiler output is a directed graph whose
nodes are instructions, each of which occupies two 36-bit
words. The links in the directed graph are implemented through
two fields in each instruction--the alternative field and the
successor field. The alternative field contains the address of
the CML instruction to execute in parallel with this one, while
the successor field contains the address of the next
instruction to execute should this one succeed.

Another field in each instruction indicates the type of the
instruction, such as "recognize a command word" or "call an
execution function". Other fields contain information
dependent on the instruction type. For example, the "recognize
a command word" instruction has a field which contains a
pointer to the command word string.

The compiler output is a relocatable file which must be
link-loaded before being used.

Augmentation Research Center page 4

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

The Compacter

Overview

The compacter is written in the Ll0 language and runs on a
PDP-10. The input to the compacter is the compiler output
file; its output is a compacted grammar file. The compacter
further processes the output of the compiler to reduce its size
and put it into a form appropriate for the type of computer
that it will be running on. As a result, there are two
compacters, one for producing grammars to run on the PDP-10 and
one for the PDP-11.

The output of the two compacters differs in only two ways. The
first is the dispatch record at the beginning of the grammar.
This record is specially formatted for the PDP-11 so that the
same Ll0 RECORD definition can reference it on both the PDP-10
and PDP-11.

The second difference lies in the way strings and pointers to
strings are handled. For the PDP-10, characters are packed
five to a word. String pointers point to the word previous to
the string, which contains the maximum length of the string in
the left half of the word and the current length of the string
in the right half, i.e., M,,L. For the PDP-11, characters are
packed two to a word, with the exception of the first word
which contains only the first character of the string in the
high byte. (String pointers point to this first word.) The
current length of the string is in the word previous to where
the string pointer points; the maximum length of the string is
in the word previous to that. You may already have noticed
that strings and string pointers in compacted grammars are
implemented in a manner identical to that of the Ll0 and Ll011
languages.

All further discussion of the compacter applies to both the
PDP-10 and PDP-11 compacters.

A compacter operates by loading the relocatable file produced
by the compiler, together with any related parse function
files. Thus, the grammar has all of its references resolved
and may be put into a form that need not be link loaded. Upon
completing the compaction processing, the newly-produced
compacted grammar is written on a file.

Augmentation Research Center page 5

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

Compacted Grammar Description

Overall Structure

A compacted grammar consists of two segments: a code segment
and a data segment. The code segment contains the dispatch
record, various tables used by the grammar, and the CML
instructions. The data segment contains the grammar's
variables and process records.

The Code Segment

The first item in the code segment is the dispatch record. It
contains pointers to the tables in the segment, byte numbers of
certain instructions in the grammar, and other information
about the grammar. Pointers are relative to the beginning of
the segment starting at 0; the byte numbers are relative to the
beginning of the segment starting at l; a 0 byte number
indicates the absence of an instruction. The dispatch record
has the following Ll0 RECORD definition:

(subr) RECORD % grammar dispatch record %

subname[ADDRESS], % pointer to subsystem name string %

firstinst [ADDRESS], % byte number of first instruction of
commands %

valcode[ADDRESS], % validation code - 10 for the PDP-10,
11 for the PDP-11 %

hlprule[ADDRESS], % grammar help rule / 0 indicating none %

initinst[ADDRESS],

reeninst[ADDRESS],

termrule[ADDRESS],

% initialization rule I 0 %

% reentry rule I 0 %

% termination rule I 0 %

prsrec[ADDRESS], % pointer to process records relative to
beginning of DATA segment I 0 indicating none %

kword[ADDRESS], % pointer to command word table %

echoword[ADDRESS], % pointer to noise word string table %

Augmentation Research Center page 6

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

execvector [ADDRESS], % pointer to execute byte number
table %

pfuncs [ADDRESS], % pointer to parse function address table
%

funcs [ADDRESS], % pointer to function record table %

gvstart [ADDRESS], % pointer to global variables relative
to beginning of DATA segment %

sharl [ADDRESS] , % number of 32 word blocks in code ~egment
%

priv [ADDRESS], % not used %

privl [ADDRESS], % number of 32 word blocks in data segment
%

ofcsize[8
code %,

% number of 32 word blocks in parse function

pfdsize[8] % number of 32 word blocks in parse function
data %~

Following the dispatch record in the code segment are the CML
instructions. If an instruction has an alternative
instruction, it is always the next instruction. The successor
of an instruction, if it has one, always follows the
instruction, although it is not necessarily the next
instruction. Instructions are coded into 8-bit bytes. There
are byte numbers for certain of these instructions--e.g., the
first instruction of the commands--in the dispatch record. A
description of the instruction format is given below in
"Compacted Grammar Instruction Format".

The tables for the grammar follow the instructions. With one
exception, an entry in any table consists of a pointer relative
to the beginning of the code segment. The single exception is
the execute byte number table (pointed to by the 'execvector'
field) whose entries consist of the byte number of an
instruction relative to the beginning of the code segment. All
table entries occupy a full computer word.

Following the tables are various constant data elements used by
the grammar, e.g., command word strings. Command words defined
as selectors are slightly different from other command words,
in that the three words previous to the command word string are
indices into the parse function table. These indices indicate

Augmentation Research Center page 7

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

the selection parse functions to be used to gather a selection
by pointing, typing in, and typing the address. The order of
the three words is:

point selection parse function index

type in selection parse function index

type address selection parse function index

command word string

The selection parse function may be built into the CLI, as with
a TEXT selector for example, or may be written by a CML
programmer. A zero index indicates that selection by the
corresponding method is undefined. For example, a zero for the
point selection parse function index means that the selection
cannot be pointed to.

Th~ Data Segment

The data segment of a compacted grammar contains those elements
which may change during the use of the grammar: this prevents
it from being shared among multiple users of the grammar as is
the code segment.

The first elements in the data segment are the grammar
variables. During execution of the grammar, these elements
will contain pointers to the actual values of the grammar's
variables. Typically, these point into the free space area of
the CLI. The variables are divided into two groups: local
variables followed by global variables.

Following the variables in the data segment are the process
records. These are four word records, one for each backend
process that the grammar might interact with, as given in the
grammar source. The format of these records is dependent on
the interprocess communication protocol being used by the FE.

Compacted Grammar Instruction Format

Each CML instruction consists of one or more contiguous 8-bit
bytes. The first byte of an instruction always indicates its
type. Following the first byte there may optionally be one or
more bytes of fields related to the instruction type. In
addition, there may optionally be one or two bytes of successor
field.

Augmentation Research Center page 8

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

The first byte of an instruction has three fields, defined as
an Ll0 RECORD as follows:

(instrec) RECORD opcode[5], altsuc[2], llcmd[l];

The 'opcode' field indicates the instruction type, e.g.
'recognize a command word' or 'call an execution function'.
The 'llcmd' field is used by different types of instructions in
different ways. For example, the 'recognize a command word'
instruction uses it to indicate whether its command word is
first level or not.

The 'altsuc' field, together with the optional successor field,
provides information about the instruction's alternative and
successor instructions. It may assume the following values,
which are defined as external constants in the CLI:

notlast--The instruction is not the last alternative and its
alternative instruction is the next instruction following it.
A successor field indicates the successor's location.

lastnone--The instruction is the last alternative, i.e., it
has no alternative and no successor.

lastfield--The instruction is the last alternative and its
successor is indicated by its successor field.

lastnext--The instruction is the last alternative and its
successor is the next instruction.

A successor field may be used to indicate the location of an
instruction's successor. Whether or not an instruction has a
successor field is indicated by the 'altsuc' field in the first
byte. A successor field contains the displacement of the
successor instruction relative to the last byte of the
successor field. A displacement of 3 would mean that the
successor instruction begins at the third byte following the
last byte of the successor field. A zero successor field
indicates that the instruction has no successor.

A successor field may be one or two bytes long; its first byte
has two fields with the following Ll0 RECORD definition:

(sucrec) RECORD sucadd[7], long[l];

Augmentation Research Center page 9

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

If the 'long' field equals 0, the value of the successor field
is simply the value of the 'sucadd' field. If the 'long' field
equals 1, there are two bytes of successor field. The value of
the field is

value = (sucadd field * 256) + second byte of field

Other fields in instructions are often indices into one of the
grammar tables. Table indices always start at 0. They are
used to compute the absolute addresses of various grammar
elements. For example, to compute the absolute address of a
command word in the grammar given its index 'ind', the
following steps are taken:

1. Compute the address of the beginning of the command word
table 'comwordtab', given the address of the beginning of the
code segment 'codseg', and using the 'kword' field of the
grammar dispatch record:

comwordtab _ codseg + [codseg] .kword;

2. Compute the absolute address of the command word
'comwordaddr':

comwordaddr codseg + [comwordtab] [ind];

Some fields in instructions are variable designators. These
are used to locate variables referenced by the grammar. An
8-bit byte used as a variable designator is formatted according
to the Ll0 RECORD declaration

(addrrec) RECORD varind[6], vartype[dummy[!], notlocal[l]] ;

If the 'notlocal' field equals 0, the variable is and the
entire byte is an index whose base is the beginning of the
grammar data segment. If the 'notlocal' field equals 1, the
'vartype' field is used to determine whether the variable is

global--meaning the 'varind' field is an index into the data
segment with base indicated by the dispatch record field
'gvstart', or

bltin--meaning the variable is built in to the CLI and
'varind' is an index into the CLI's array of built-in
variables.

Augmentation Research Center page 10

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

Instruction Types

The instruction types--def ined as external constants in the
CLI--and the format of their bytes are described below. All
instructions use the 'opcode' and 'altsuc' fields. These
descriptions do not include the successor field, which may or
may not be present in a particular instruction. The value of
the instruction types in octal is given in parenthesis.

abortop (0). Show the user the contents of the CL!
accumulator and abort the command.

first byte: (instrec) RECORD opcode[5], altsuc[2],
llcmd [1] ;

No other fields are used.

keyop (1). Recognize a command word. The command word
may be a literal, or a variable containing a string, or a
list of strings.

first byte: (instrec) RECORD opcode[5], altsuc[2],
l lcmd [1] ;

llcmd--this field equal to 1 implies command word is
first level.

second byte: This entire byte is interpreted
differently depending on the 'kwvar' field in the third
byte and is either:

an index into the command word table if the command
word is a literal, or

a variable designator if the command word is a
variable.

third byte: (valrec) RECORD numof arg s [ts tr el [3] ,
tstint[l], tstnot[l], filler[l]], hashelprule[l],
kwvar[l];

kwvar--this field equal to 0 implies that the second
byte contains an index into the command word table
and the entire third byte is the integer token
associated with the command word. This field equal
to 1 implies that the second byte contains a variable
designator and the remainder of the third byte should
be ignored.

Augmentation Research Center page 11

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

No other fields are used.

confirm (2). Get a confirmation from the user, e.g., by
the user typing a COMMAND ACCEPT.

first byte: (instrec) RECORD opcode[5], altsuc[2],
l lcmd [1] ;

No other fields are used.

ssel, dsel, 1 sel (3, 4, 5) . Get a source, destination,
or literal selection from the user.

first byte: (instrec) RECORD opcode[S], altsuc[2],
l lcmd [1] ;

No other fields are used.

pusharg (6). Push the CML value in the accumulator onto
the argument stack. This is the method by which
arguments are gathered for parse or execution function
calls.

first byte:
l lcmd [1] ;

(instrec) RECORD opcode[S], altsuc[2],

No other fields are used.

answer (7). Get an answer from the user, e.g., by the
user typing "y" for "yes".

first byte: (instrec) RECORD opcode[S], altsuc[2],
llcmd [1] ;

No other fields are used.

option (10B). Get an OPTION character from the user.

first byte: (instrec) RECORD opcode[5], altsuc[2],
l lcmd [1] ;

No other fields are used.

pfcllop (llB). Use a parse function.

first byte: (instrec) RECORD opcode[S], altsuc[2],
l lcmd [1] ;

No other fields are used.

Augmentation Research Center page 12

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

second byte: entire byte is an index into the parse
function address table.

third byte: (valrec) RECORD numofargs [tstrel [3] ,
tstint[l], tstnot[l], filler[l]], hashelprule[l],
kwvar[l] 1

numofargs--the number of arguments that the parse
function is to be OPENPORTed with.

No other fields are used.

execute (12B). Execute a series of CML elements.

first byte: (instrec) RECORD opcode[S], altsuc[2],
llcmd [1] 1

No other fields are used.

second byte: entire byte is an index into the execute
byte number table.

call (13B). Call an execution function.

first byte: (instrec) RECORD opcode[S], altsuc[2],
llcmd [1] 1

llcmd--this field equal to 1 implies that the
function is to be called in "out of line" mode.

second byte: entire byte is an index into the function
record table.

third byte: (valrec) RECORD numofarg s [ts tr el [3] ,
tstint[l], tstnot[l], filler[l]], hashelprule[l],
kwvar [l] 1

numofargs--the number of arguments that the function
is to be called with.

No other fields are used.

fbclear (14B). Clear the feedback window.

first byte: (instrec) RECORD opcode[S], altsuc[2],
llcmd [1] 1

No other fields are used.

Augmentation Research Center page 13

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

echo (15B). Put a noise word string in the feedback
window.

first byte: (instrec) RECORD opcode[5], altsuc[2],
llcmd [l] :

No other fields are used.

second byte: entire byte is an index into the noise
word string table.

recho (16B). Remove the last item from the feedback
window and put in a noise word string.

fir st byte: (instrec) RECORD opcode [5] , al tsuc [2] ,
llcmd [l] :

No other fields are used.

second byte: entire byte is an index into the noise
word string table.

storeop (17B). Store the CML value of the accumulator
into a CML variable.

first byte: (instrec) RECORD opcode[S], altsuc[2],
llcmd [1] :

No other fields are used.

second byte: entire byte is a variable designator.

load (20B). Load the accumulator with the value of a CML
variable.

first byte: (instrec) RECORD opcode[S], altsuc[2],
llcmd [1] :

No other fields are used.

second byte: entire byte is a variable designator.

enter (21B). Enter a number into the accumulator.

first byte: (instrec) RECORD opcode[S], altsuc[2],
llcmd [l]:

No other fields are used.

Augmentation Research Center page 14

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

second byte: entire byte is the number to enter into
the accumulator.

test (22B). Test the value of the accumulator.

first byte: (instrec) RECORD opcode[5], altsuc [2],
l lcmd [1] ;

No other fields are used.

second byte: entire byte is interpreted differently
depending on the 'tstint' field in the third byte. The
second byte is either:

an integer to compare the accumulator with, or

a variable designator to compare the accumulator
with.

third byte: (valrec) RECORD numofargs [tstrel [3],
tstint[l], tstnot[l], filler[!]], hashelprule[l],
kwvar[l];

tstrel--the relation which is being tested for. The
following, which are declared in the CLI, are
possible values:

equal

greater

less

gr equal

lessequal

tstint--this field equal to 1 implies the test is an
integer test and the second byte contains the
integer. This field equal to 0 implies a test
against a variable and the second byte contains a
variable designator.

tstnot--this field equal to 1 implies that the result
of the test should be complemented.

Augmentation Research Center page 15

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

showop (23B). Show the contents of the accumulator to
the user.

first byte: (instrec) RECORD opcode[S], altsuc[2],
llcmd [1] ;

No other fields are used.

entercw (24B). Enter into the accumulator a command
word.

first byte: (instrec) RECORD opcode[5], altsuc[2],
llcmd [1] ;

No other fields are used.

second byte: the entire byte is an index into the
command word table.

third byte: the entire byte is the integer token
associated with the command word.

enternull (25B). Enter into the accumulator a NULL.

first byte: (instrec) RECORD opcode[S], altsuc[2],
l lcmd [1] ;

No other fields are used.

entertrue (26B). Enter into the accumulator a TRUE.

first byte: (instrec) RECORD opcode[S], altsuc[2],
llcmd [l];

No other fields are used.

enterfalse (27B). Enter into the accumulator a FALSE.

first byte: (instrec) RECORD opcode[S], altsuc[2],
llcmd [l] ;

No other fields are used.

resume (30B). Resume a help call.

first byte: (instrec) RECORD opcode[S], altsuc[2],
llcmd [1] ;

No other fields are used.

Augmentation Research Center page 16

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

append (318). Append the value of the accumulator to a
CML variable.

first byte: (instrec) RECORD opcode[S], altsuc[2],
l lcmd [1] :

No other fields are used.

second byte: entire byte is a variable designator.

testtrue (328). Test to see if the accumulator is TRUE.

first byte:
l lcmd [1] :

(instrec) RECORD opcode[S], altsuc[2],

llcmd--this field equal to 1 implies that the result
of the test should be complemented.

testnull (338). Test to see if the accumulator is NULL
or FALSE.

first byte: (instrec) RECORD opcode[S], altsuc[2],
llcmd[l]:

llcmd--this field equal to 1 implies that the result
of the test should be complemented.

helpcall (348). Call an execution function that has
specified a help rule.

first byte: (instrec} RECORD opcode[5], altsuc[2],
l lcmd [1] :

No other fields are used.

second byte: entire byte is an index into the function
record table.

third byte: (valrec} RECORD numofargs[tstrel[3],
tstint[l], tstnot[l], filler[!]], hashelprule[l],
kwvar [l];

numof args--the number of arguments that the function
is to be called with.

No other fields are used.

Augmentation Research Center page 17

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

fourth byte: the entire byte is an index into the
execute byte number table indicating the first
instruction of the help rule.

Example

The following provides a comparison between a CML grammar
source and the corresponding compacter output. The source
is: FILE cmlexp %<nsw-sources,cgcml,>
<poggio,cmlexp.cml,>%

Augmentation Research Center page 18

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

% Declarations %

DECLARE COMMAND WORD

"SHOW",

"CML" = 1,

"CLI" = 2:

DECLARE VARIABLE var:

DECLARE FUNCTION doexample:

SUBSYSTEM cmlexp KEYWORD "EXAMPLE"

exp COMMAND= "SHOW" var ("CML" / "CLI"!L2!)
<"example"> doexample(var):

END.

FINISH

The compacter output is shown in octal 8-bit bytes.
Instruction boundaries are indicated by dashes.

341

Recognize first level command word "SHOW". This
instruction has no alternative and its successor is the
next instruction.

2

"SHOW" is the third entry in the command word table.

Its integer token is 0 because none was declared.

Augmentation Research Center page 19

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

201

1

1

4

Recognize first level command word "CML". This
instruction has an alternative which is the next
instruction. It has a successor field which indicates
the location of the successor.

"CML" is the second entry in the command word table.

Its integer token is 1.

This is the successor field. The 'long' field of the
byte is 0, indicating that the successor field is only
1 byte long. The successor field has a value of 4,
indicating that the successor begins at the fourth byte
following this one. This is the 157 byte, the first
byte of the store instruction.

241

2

Recognize second level command word "CLI". This
instruction has no alternative and its successor is
next.

"CLI" is the first entry in the command word table.

Its integer token is 2.

Augmentation Research Center page 20

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

157

0

Store the contents of the accumulator into the variable
'var'. This instruction has no alternative and its
successor is next.

The 'notlocal' field equals 0 implying that this is a
local variable. It is the first local variable in the
data segment.

155

0

Show the noise word "example" to the user. This
instruction has no alternative and its successor is
next.

The noise word "example" is the first entry in the
noise word table.

160

0

Load the accumulator with the contents of the variable
'var'. This instruction has no alternative and its
successor is next.

The 'notlocal' field equals 0 implying, that this is a
local variable. It is the first local variable in the
data segment.

Augmentation Research Center page 21

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

146

53

1

Push the contents of the accumulator onto the argument
stack. This instruction has no alternative and its
successor is next.

Call the execution function "doexample". This
instruction has no alternative and no successor.

The execution function "doexample" is the first entry
in the function record table.

The 'numofargs' field equals 1 indicating that one
argument should be popped off the argument stack and
passed to the execution function.

Augmentation Research Center page 22

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

CML VARIABLE TYPES

Introduction

This section describes the Command Meta Language (CML) variable
types and their translation into PCP types. It is intended for
CML parse function writers but may be of interest to anyone
familar with CML.

CML Variable Structure

CML variables all contain a
contiguous words of memory.
is always a header with the
word:

pointer to a block of one or more
The first word (word 0) of the block

following fields right adjusted in

**
* * * *
* vlength (8 bits) * vmarks (2 bits) * vtype (6 bits) *
* * * *
**

As their names suggest, the vlength field indicates the variable
length and the vtype field the variable type. The vmarks field
indicates how many marks were made on the display during the
creation of the variable~ its value, typically zero, will depend
on how the variable was created.

The header fields are defined in Ll0 as:

(var) RECORD %header of a variable%

vtype[6], vmarks[2], vlength[8] ~

CML Types

STRING

word 0: vtype = strtype (= 1), vlength = 3

word 1: integer token associated with string or 0 if none

word 2: address of Ll0 string

Augmentation Research Center page 23

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

COMMAND WORD

word 0: vtype = cwtype (= 2), vlength = 3

word 1: integer token associated with string or 0 if none

word 2: address of Ll0 string

The distinction between a command type and a string type is
that a command word string may have been defined to be a
SELECTOR. In this case the three words previous to the string
may point to selection functions for pointing, addressing, and
typing in. This fact may be generally ignored by the CML
programmer.

INTEGER

word 0: vtype = integer (= 3), vlength = 2

word 1: the integer

POINT

word

word

word

word

word

ADDRESS

word

0:

1:

2:

3:

4:

0:

vtype = pointtype (= 4), vlength = 5

the window identifier

the string identifier

the line segment identifier

the character position

vtype = addrtype (= 5) , vlength = 4

word 1: integer token associated with string or 0 if none

word 2: address of Ll0 string

word 3: window identifier

NULL

word 0·: vtype = nulltype (= 6), vlength = 1

Augmentation Research Center page 24

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

LIST

word 0: vtype = listtype (= 7), vlength =2 + number of
elements in list

word 1: number of elements in the list

word 2 to word N: addresses of elements in the list (elements
may be of any type}

TRUE

word 0: vtype = truetype (= 8), vlength = 1

FALSE

word 0: vtype = falsetype (= 9), vlength = 1

BLOCK

word 0: vtype = blocktype (= 10), vlength = number of bits in
block

word 1 to word N: the bits (32 per 36-bit word left-adjusted}

WINDOW

word 0: vtype = windtype (= 11}, vlength = 2

word 1: the window identifier

ADDRESS EXPRESSION

word 0: vtype = adexptype (= 12), vlength = 2 + number of
elements

word 1: number of elements in the address expression

word 2 to word N: addresses of elements in the address
expression

Augmentation Research Center page 25

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

VIRTUAL TERMINAL CONTROLLER DESCRIPTION

Introduction

The Virtual Terminal Controller (VTC) module of the Frontend
presents a virtual terminal interface to the tools and the
Frontend itself. It contains the procedures and data to map the
virtual operations into the actual operations necessary for
communication with the connected terminal device.

The VTC defines three classes of terminals: (1) half duplex
(possibly line at a time) typewriters, (2) full duplex
typewriters, and (3) alphanumeric display terminals, perhaps with
pointing devices, etc. A set of operations are defined for each
class of terminal. Because operations are the same for classes 1
and 2, tools address themselves to two virtual terminal types:
typewriter and display. More advanced graphics terminals fall in
a fourth class, but the operations for this class are not yet
specified.

The VTC functions as a service module in the FE. When a call is
made on the VTC, it performs some specified function and returns.
The VTC is accessed through one of two entry point procedures,
which in turn call on the other VTC procedures. One entry
procedure is used only by the Frontend to manipulate the terminal
in some tool-independent fashion; the other is used when a tool
explicitly calls on the VTC.

VTC Design

This section describes VTC capabilities and the design approach
to the VTC. A glossary of terms used in this description may be
found at the end of this chapter.

Capabilities

For typewriter terminals, VTC capabilities consist of setting
the terminal device type, writing strings on the terminal, and
controlling the carriage position.

A rich set of primitives exists for the display class of
terminals, many of which rely on the concept of a display
"window". Several windows are predefined by the Frontend and
created by the FE through VTC primitives:

A TTY-simulation window for status or error messages.

Augmentation Research Center page 26

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

A command feedback window.

One or more tool windows.

A special small window for tool mode information.

These windows are created by the Frontend proper by way of VTC
primitives.

The screen may contain adjacent and overlapping windows, much
the way a person views several pieces of paper on his desk.
Each window has an associated priority to determine which
window is visible when the windows overlap.

Tools are given custody of a window, called a primary window,
when they are first started. The tool is then free to write
and delete strings in the window, clear the window, and create
more windows within it. Typically the primary window is nearly
all of the screen (e.g., 20 out of 24 full lines).

A user can maintain separate primary windows for many tools
concurrently by instructing the Frontend to divide an existing
window. Primary windows may not overlap and can only be
reconfigured and written by the owning tool. Within the
boundaries of a primary window, a tool may create overlapping
windows.

When using a display terminal, the user can select any text
visible to him instead of typing it on the keyboard. This,
combined with the ability to run severals tools in different
windows concurrently, gives the user a helpful cross-tool
facility.

When a tool is terminated, via a call to 'toolrst', all windows
assigned during the tool's use are released. The data
structure tool list (tlist) is used to find the windows
associated with the tool, given the tool code.

Design Approach

The VTC is comprised of a collection of service procedures and
a data base. The data base contains structural and textual
information about the screen contents which the procedures
manipulate in useful ways.

The data base consists of a minimum of "global" information
that is always present, for the most part runtime-allocated
blocks of data, of variable size, that describe the structure

Augmentation Research Center page 27

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

and contents of the windows. This frees memory when not in
use, and makes possible a more efficient use of memory by
sharing the allocation pool among many Frontend processes.

The most important performance criterion for the VTC is
response time, i.e., the speed of display manipulation. Hence
a great deal of care is taken to make display manipulation
efficient. This even manifests itself to the tool in the form
of the "batch-commands" procedure, which will perform many
display operations at one time and more efficiently than if
done by many calls.

VTC Implementation

This section briefly describes the nature of the VTC interfaces,
data structures, storage management techniques, and error
handling strategy. It provides references that will be useful in
locating functional areas within the source code.

Display Package Interfaces

The VTC module has three logical interfaces, the external tool
interface, the internal CL! interface, and the terminal device
interface.

A call generated from the CL! is of the form

DPYCALL(name, n, al, .•. an)

where name (an integer) is an internal VTC procedure number,
and n is the number of arguments al through an.

The procedure DPYCALL calls the specified internal display
procedure (many of which correspond one-to-one to the external
procedures, but with the arguments in a different form). The
procedure list is in array IDPYTAB. The association between
the procedure name and its number is shown.

(scrollwindow = 1)--scroll a window.

(getdstr = 2)--get display string from display structure.

(toolset = 3)--set a window to be given tool's primary
window.

(toolrst = 4)--remove tool from tool list.

Augmentation Research Center page 28

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

(wrtlsg = 5)--write line segment.

(delstr = 6)--delete a string.

(dellsg = 7)--delete line segment.

(rpllsg = 8)--replace line segment.

(ppointsel = 9)--point selection routine.

(xywindow = 10)--given x, y real coordinates, return
window-id.

(wrtstr = 11)--write string.

(crewind = 12)--create window.

(intseqw = 13)--initialize sequential window.

(setdftty = 14)--set default TTY window.

(swatt = 15)--set window attributes.

(setsatt = 16)--set string attributes.

(inwind = 17)--determine if a "window-relative" point is in a
window.

(setlatt = 18)--set linseg attributes.

(delwind = 19)--delete window given window-id.

(delsubs = 20)--delete all sub-windows given window-id.

(clrwind = 21)--clear window, given window-id.

(mar kf en = 22)--mark screen to show or remove a selection.

(wrtliteral = 23)--write literal string in a window.

(wrtpart = 24)--write partial string, subordinate to
wrtliteral.

(finish= 25)--finish display manipulation sequence.

Calls to the display package from tools are external procedure
calls as defined in Appendix 4 of A GUIDE TO THE CML AND CLI.
The CL! transforms that into a call of the form

Augmentation Research Center page 29

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

EDPYDSP(iport, oport}

where the two arguments are port-identifiers for source and
sink of the current data representation (arguments and
results}. The display package procedures read their arguments
and generat ther i results using the .two port-identifiers.

VTC Routines Available through the CLI

The procedure EDPYDSP dispatches external calls to the
correct procedure, passing two coroutine port-ids as
arguments, one for the coroutine that supports reading
argument lists (rlist} and one for writing result lists
(wlist}. Each procedure reads the PCPB8 argument list,
performs some function, and then writes a PCPB8 result list.

The procedure names below are those found in the source code
of the VTC module.

(ecrewind}--create window.

(eclrwind}--clear window.

(escroll}--scroll window.

(ewrtlsg}--write line-segment.

(edelwind}--delete window.

(ewrtstr}--write string.

(edellsg}--delete line-segment.

(edelstr}--delete string.

(erpllsg}--replace line-segment.

(ewrtlit}--write literal into window.

(esetsatt}--set string attributes.

(esetlatt}--set line-segment attributes.

(eposstr}--reposition string.

(eposlsg}--reposition line-segment.

(erplstr}--replace string.

Augmentation Research Center page 30

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

(ebatch)--batch commands processor.

(egetwindows)--get window information.

(etrack)--turn cursor tracking on/off for graphics
terminal.

The VTC external procedures are callable through a set of
externally callable routines in the FE. The list of user
callable procedures with their arguments and results are
described in A GUIDE TO THE CML AND CLI, Appendix 4,
"Externally Callable Procedures in the Frontend".

Terminal Device Interface

Keyboard and Line Processor input is performed by the procedure
'dinptc', which makes use of the following procedures:

(dinptc)--single character input routine.

(lpgetchar)--line processor GETCHAR routine.

(angetchar)--getchar for alphanumeric displays.

(ancnv)--alphanumeric display convert typein to coordinates.

(dinbc)--read a big character.

(dinbcl)--read mouse button changes.

Display and Line Processor manipulation is performed by the
following procedures. They are called by various VTC
prodecures to manipulate the terminal device.

(andspstr)--display string on alphanumeric display.

(pad)--pad with given number of null characters.

(anreset)--reset alphanumeric display.

(position)--position cursor - alphanumeric displays.

(trnslz)--translate coords for alphanumeric display.

(cscreen)--clear screen - alphanumeric displays.

(track)--resume tracking - LP displays.

Augmentation Research Center page 31

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

(rtrack)--resume tracking - LP displays.

(cline)--write blanks - alphanumeric displays.

(dline)--delete line - alphanumeric displays.

(inline)--insert line - alphanumeric displays.

(standout)--Send stand out command - alphanumeric displays.

(endstandout)--Send end stand out command - alphanumeric
displays.

(lpttywindow)--specify default tty - LP terminals.

(realcds)--convert relative coords to real screen coords.

(lsgtrncate)--line segment truncate function.

(sndlsg)--send line segment to terminal.

(dpysout)--display string output with control chars.

Special VTC Data Elements

The primary data elements are summarized here and described in
detail in the code file. Below is a list of important data
elements, with their corresponding names as found in the source
code. In some cases, further description can be found in the
glossary at the end of this chapter.

User information

(userinfo) RECORD--Each userinfo record contains informtion
that is referenced during a terminal session. It contains
terminal specific information, the tool-list address, and the
window-list address.

Tool-list

(tlist) RECORD--A list of tool code and primary window-id
pairs.

Window table

(wtab) RECORD--Each entry contains window size and location
fields, priority, type, attribute list address, parent
window-id, and bookkeeping for the contents of the window.

Augmentation Research Center page 32

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

Attribute Word

(atts)- RECORD--Each word contains attributes for linsegs or
groups of linsegs (strings or windows). The attributes
include visibility and high-lighting, the type of designation
(text string or coordinates), and selector code.

String-list

(slist) RECORD--Each element contains a string attribute
word, a linseg-list element address, and coordinates for the
origin of the string.

Linseg-list

(lslist) RECORD--Each element contains a linseg attribute
word, the address of the text string, and the coordinates of
the origin of the linseg origin.

Garbage list

(garbgr) RECORD--each element contains a window-id and
coordinates and character counts suitable for clearing
lensegs from the screen.

Delayed write list

(dlyrec) RECORD--each element contains window, string, and
linseg-id information for deferred updating of the screen.

Mark block list

(markr) RECORD--each element contains mark type, window-id,
string-id, a pair of linseg-ids, and a pair of character
counts used to record a marked (bugged) entity.

Storage Management

Storage management is handled by a standard package of routines
that is used by most Ll0 modules. Interface to the package is
provided by the procedures below. They assume that a storage
management zone "dpyzone" has been initialized through a call
to "makezone", a procedure in the storage management package.

(getdpy)--get block of storage from dpyzone.

(fredpy)--free block of storage from dpyzone.

Augmentation Research Center page 33

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

Error Handling

Errors are handled via the Ll0 signalling facility. An abort
may occur in any procedure and may be acted upon in any active
catchphrase encountered up the thread of control. Aborts are
generally ignored until they reach the top level dispatching
routine (dpycall or edpydsp), at which time (finish) is called
for cleanup.

Glossary

big character

An element of the Line Processor protocol--a sequence of
characters in the terminal stream that begins with <ESC>. Used
in conjunction with Line Processor terminals to send pointing
coordinates and special characters.

coordinates

The horizonal (x) and vertical (y) displacements from the
origin (lower left corner) of a window.

delayed writes

The method used to optimize display manipulation sequencing by
doing all "writes" last. The writes are recorded in a list
pointed to by dlyblk. Delayw(windtab, str, lsg) will record
entries and wrtdely(TRUE) will actually do the writes.
Wrtdely(FALSE) will delete the records without writing.

garbage list

A linked set of garbage blocks with "sizg" garbage elements in
each. Each garbage element indicates a string of garbage that
is on the screen and must be cleared sometime. Each element
looks like "garbgr". Global "garbg" contains the address of
the first block. Word zero of each block contains the address
of the next (or zero if the last block).

linseg-id

Identifier for a line segment (linseg) in a specified string.

Augmentation Research Center page 34

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

1 inseg-list

A list of linseg element records, one for each linseg in a
given string. Each element points to a text string.

mark block

An allocated block which defines a selection mark on the
screen: "markit" creates them and "popmark" uses them to
remove the marks. They are then linked in reverse order
through userinfo.mark (i.e., the most recent mark is first in
the link). See userinfo and markr.

selector code

An 8-bit number that indicates the selectivity of strings on
the screen. Three values are given semantics by the Frontend:

zero and one: Only selectable as literal (LSEL).

two: NEVER selectable as literal (LSEL) except across tools.
(SSEL and DSEL okay) •

greater than two: Semantics given by tool. All selections
okay.

When a selection is made, a selector code argument is given to
"ppointsel". Normally it looks only at strings with an exact
match, except:

if arg <= 1: Anything is elegible.

if selcd = 2: Case is checked by parsefunction.

(Using arg = 2 is not normally done.)

string-id

An identifier for a string in a specified window.

string-list

A list of string element records. There is one element for
each string in the specified window. Each string element
record (slist) is referenced by a string-id and contains a
pointer to either a linseg-list or a text string.

Augmentation Research Center page 35

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

tool code

A WORD that uniquely identifies a tool.

tool list

A list that contains, for each tool for a given job, the pair
tool code and window-id (window-id of that tool's primary
window) .

window

A rectangular area of the display screen.

window priority

An integer used to determine which of the overlapping windows
will show. A "privis bit" is set for each window that
indicates if the window is visible due to priority.

window-id

An integer that designates display window or other channel.

window-list

Contains the window-table-address for each window. Indexed by
window-id.

window-table

Contains all the information pertaining to the given window,
including the string-list address.

Augmentation Research Center page 36

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

PROCESS COMMUNICATIONS INTERFACE (PCI) MODULE

Introduction

The Process Communications Interface Module (PCI) interfaces the
Frontend to the communications media, and hence to other
processes such as tools and the Works Manager. As described in
AN INTRODUCTION TO THE FRONTEND [2], there is a PCI for each
communication medium, each PCI supplying the same interface to
the Frontend. The primary functions of the PCI are to provide a
way for the Frontend to call remote processes, and for those
remote processes to call Frontend (externally callable) functions
and to allow for character-oriented communication.

Important Data Elements

The primary data element of the PCI is the process record
'processr', which contains information necessary to communicate
with a remote process. The actual information may differ
depending on the communication medium, but it would typically
include the process name and other identifiers for the process or
connections to it. The process communication buffers record
'pcomrec' is another important data element, containing pointers
and addresses of send and receive buffers.

Character oriented communication is implemented as a Telnet
network connection between the Frontend and the other (tool)
process. A data element, the Telnet control block (TCB), is used
to maintain each such connection the Frontend establishes.

PCI Procedures

The following procedures are used by the Frontend.

ipcinit (->)

This procedure has no arguments and no results. It is called
at initialization time so that the PCI module may initialize
itself.

ipcnewgram (instance REF ->)

The single argument 'instance' is a grammar instance name. The
procedure initalizes.the process record for the remote process
which that grammar will make calls upon. It is called each
time a new grammar instance is created.

Augmentation Research Center page 37

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

ipcendgram (instance REF ->)

This procedure is analogous to 'ipcnewgram' and is called
whenever a grammar instance is no longer to be used by the FE.

ipccall (fn REF, outofline ->

The procedure 'ipccall' performs the call on a remote process.
The first argument is a CML function name identifier. The
boolean 'outofline' indicates whether the PCI is to wait for
the remote reply or return as soon as possible, processing the
remote reply at a later time (FALSE implies waiting). This
procedure decodes the parameters in the function name block,
sets up the data to be communicated, and initiates the
transmission.

ipcnetrec (echo, netinjfn, netoutjfn -> telcb)

This procedure is called to set up a character oriented
(Telnet) connection to a tool. The call is made after the
connections are established, but before they are used in any
way.

The argument 'echo' is TRUE only if input echoing is to be done
by the Frontend. (Normally echoing is done by the tool.) The
arguments 'netinjfn' and 'netoutjfn' are handles on the 'input'
(with respect to the Frontend) and the 'output' connections of
the Telnet pair. The single result is the address of the
Telnet control block for this connection pair. The procedure
calling 'ipcnetrec' must remember the TCB address and delete
the TCB when it closes the connection pair. This is usually
done by a parsefunction, such as 'fetermtelnet'.

This procedure creates and initializes the Telnet control
block, sending an initial Telnet option negotiation string to
the server Telnet at the tool end. In the TENEX
implementation, it creates a sub-fork to read characters from
the connection and interrupt the main Frontend fork when
characters are available. The main fork interrupt routine
'xtelnetpsi' (in PCI) then disposes of the characters as
appropriate: it will reply to Telnet option negotiation by
either outputting characters to the terminal or writing them in
the proper window of the display screen. All the information
needed by 'xtelnetpsi' resides in th~ Telnet control block for
the connection in question. When there are several such
connections, the control blocks are linked together and
'xtelnetpsi' handles each of them in turn.

Augmentation Research Center page 38

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

The following PC! procedure is called when a remote call is made
on the Frontend.

docall (inbuf REF, outbuf REF, outbufsiz -> reslen)

The procedure 'docall' performs the calls on externally
callable Frontend procedures on behalf of remote processes.
Its first argument is the address of the input buffer, which
must contain a message-oriented procedure invocation of the
form defined in Appendix 1 of A GUIDE TO THE CL! AND CML.

The procedure 'docall' removes the parameters from the
top-level list (e.g., message type, procedure name),
initializes the output buffer 'outbuf' for the results (if
necessary), and calls the designated procedure.

To read the data types and values in the message, 'docall' uses
the Data Representation Interface routines. It also passes on
the port identifiers for the coroutines to the externally
callable procedure. That is, every Frontend externally
callable procedure is called with two arguments: the port
identifiers of coroutines to read and write data structures,
respectively. At the time of the call, the position within the
'input' data structure is such that the first element read is
the first argument for the external call; likewise, the first
element written in the output structure will be the first
result, and so forth. The externally callable procedures are
responsible for correctly reading their arguments using the
port identifiers provided and building any result structures.

The following are externally callable procedures, described in
Appendix 4 of A GUIDE TO THE CML AND CLI. They reside in the PC!
module because most of the functions they perform involve the
communications media.

feopenconn--whose internal name is eopenconn.

feclosconn--whose internal name is eclosconn.

fetermtool--whose internal name is etermtool.

Augmentation Research Center page 39

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

DATA REPRESENTATION INTERFACE

Introduction

This section describes the Ll0 coroutines used to read/write PCP
data structures. PCPBS is described in A GUIDE TO THE CML AND
CLI, Appendix 3, "Frontend Data Representatin for Message
Communication". Since PCP data structures are sequential (i.e.,
there are no links), it is necessary to keep track of the current
position in the structure while it is being encoded or decoded.
Ll0 coroutines can perform the task of holding the current
position, and thus are well suited to the encoding and decoding
of PCP data structures.

Two things should be noted before we continue:

These coroutines assume the PCPBS type PAD.

The coroutines are generally useful, and compatible on a PDP-10
(PCPB36 or BS) and PDP-11 (PCPB8).

Reading a PCP Data Structure

RLIST (adr REF, zone-> [iport])

To read a data structure, openport on rlist, providing the
address of the PCP data structure (first word), and a free
storage zone. The returned port ID will be used subsequently
to read elements from the data structure, as described below:

rtype PCALL [iport] (type, length, dest: value, ptr)

'rtype' is the actual element type.

'type' designates the expected type of the element(s) to be
read or a special operator.

'length' is a count of the number of elements of type
'type' to read into array 'dest'.

'dest' is the address of an array to store element values
in.

'value' is the element value or a pointer.

'ptr' is an address into the data structure that can be

Augmentation Research Center page 40

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

used to reset your position to this point in the data
structure.

The following are typical uses of one rlist PCALL:

rtype _ PCALL [ipor t] (0: value)

Will read one element of ANY type. dest and length need
not be specified here when type is zero.

PCALL [iport] (pcpindex, $array, 5);

Will read 5 indexes and store the values in an array
starting at 'array'.

PCALL [iport] (pcplist: listlen);

Will read one element, which must be a
will occur if it is not a list (err is
list length will be stored in listlen.
PCALLs will obtain the list elements.

list. An abort
called) . The

Subsequent

In the above examples the returned 'ptr' was ignored. It
could also have been stored.

These types are possible (see A GUIDE TO THE CML AND CLI,
Appendix 4, for PCP type values):

type= pcpany (=0):

Any PCP data type except PAD is returned. The dest and
length parameters, if present, are ignored.

type = pcplist

Here 'dest' is ignored. An abort is· generated if the
element is not a list, or if it does not have 'length'
elements. The value returned is the number of elements
in the list. Subsequent PCALLs will read the list
elements. There is no indication of when the end of
the list is reached; the element following the list
will be returned after the last list element is
returned.

type = pcpboolean, pcp1ndex, pcpempty

The type must match the element(s) being read or an
abort will be generated. The value returned is the

Augmentation Research Center page 41

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

value of the element. Zero is returned for an empty
element.

type = pcpinteger

It is tricky to enable similar implementations on the
PDP-10 and PDP-11. If the element is being returned as
a PCALL result, the value will be the address of the
integer (32 bits), which must be moved before the next
PCALL. If the element is being stored in an array, 32
bits will be stored at the given location. This is a
word on the PDP-10 and two words on the PDP-11, of
course.

type = pcpcharstr

The character string is moved to the free storage zone
and the address of the string is returned. On the
PDP-11, if the zone is 'dpyzone', the string is not an
a-string but is compacted; there are no M and L words
and the length is in character zero.

type = pcppad

Pads are ignored and will never be returned; this will
always fail.

type = rlistignore(l00)

This will cause the next 'length' things to be ignored.
They may be lists. This PCALL returns after advancing
through the data structure. The type and value results
are unspecified, but 'ptr' is correct.

type = rlistreset(l03)

This will re-establish the position in the data
structure to that given by 'length'. It must be a
pointer obtained from another rlist PCALL (third
result). The type and value results are unspecified,
but 'ptr' is correct. The next PCALL will return the
element following the one that was returned when the·
pointer was obtained.

type= rlistzone(l01)

This will set the zone that rlist uses for storing
pcpcharstr's to the value given as 'length.' It does

Augmentation Research Center page 42

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

not advance through the data structure. The type and
value results are unspecified, but 'ptr' is correct.

type = rlistnop(l02)

This does nothing. The type for the next element is
returned, but the value is unspecified, and 'ptr' is
correct. It can be called to obtain the current
position without advancing and/or get the type of the
next element without actually reading it.

If 'dest' is non-zero AND 'type' is charstr, then
integer, index, empty, or boolean 'length' elements are
read and stored at location 'dest'. In that case an
ABORT is generated if the next 'length' elements are not
of type 'type'.

If 'dest' is non-zero, 'type' may not be pcplist type.
That is, only non-list elements may be stored in a
designated array.

The result type and value are summarized here:

rtype: value

----:
list: number of elements

index: the index value

integer: the address of 32 bits

(On 11, first word is most significant)

charstr: the address of the string

boolean: TRUE or FALSE

empty: zero

bitstr: address of bitstring

Notes:

Currently, the ABORT takes the form of a procedure call
to err ($"Bad PCP data type -RLIST"); •

Augmentation Research Center page 43

DIA r.r.~ ANDY ~-Feb-77 17:06 28745

Frontend System Documentation

Examples:

OPENPORT rlist(¶ms, zone: [ipor t])

% read one element of type index. put it in indexvalue %

PCALL [iport] (pcpindex, 0: indexvalue)

% read three booleans into array ary %

PCALL [iport] (pcpboolean, $ary, 3);

% read one element, either index or list %

type PCALL [iport] (0: value)

CASE type of

=pcpindex: • • • %value is in 'value' %

=pcplist: ••• % length is in 'value'%

% read entire list of charstrings into 'str' array
%

PCALL [iport] (pcpcharstr, $str, value);

ENDCASE err($"wrong type element");

Writing a PCP Data Structure

WLIST (adr REF, n -> [oport])

Openport on 'wlist' takes the address of a block in which to
build the data structure and a word count representing the
number of words available in the block. A HELP signal
requests more room if the block is overrun.

Each subsequent PCALL on oport builds one element in the data
structure (approximately). The PCALL arguments are type and
value. WLIST always returns a WORD count and a pointer.

count PCALL [oport] (type, value: ptr);

'type' is a PCP data type or other special operator.

'value' is usually the value of the PCP element.

Augmentation Research Center page 44

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

'count' is a WORD count of the structure so far.

'ptr' is a pointer that can be used to reset the position
in the data structure.

The types allowed and the action taken are as follows.

type: action

----:

pcpindex:

Element of type index, value 'value' is constructed.

pcpboolean:

Element of type boolean is constructed.

(value=0 = FALSE)

pcpempty:

Empty element is constructed.

pcpinteger:

'value' points to 32 bits used to make integer element.
On 11, most significant 16 bits is first word.

pcpcharstr:

'value' is the address of an Ll0 string. An element of
type charstr (containing that string) is constructed.

pcpbitstr:

'value' is the address of a bitstring. The first word of
the bitstring is taken as an integer, which is the number
of bits in the bitstring.

pcplist:

If 'value' is zero, a list of unknown length may be
built. Otherwise the list length is taken as 'value' and
appropriate checks are made.

Augmentation Research Center page 45

LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

pcppad:

One PCP-PAD element is constructed.

wlistend (200}:

This closes the last list construction. If the length
was provided, a length check is made and err is called if
not correct. Otherwise the length is computed and stored
in the list element.

wlistreset(201}:

This resets the writing position to 'value', which must
have been obtained from wlist previously as a 'ptr'. The
next element written will follow the last element written
when the 'ptr' was obtained.

This is dangerous! After doing this, you may NOT close a
list (wlistend} that was started BEFORE the wlistreset
was done. The 'count' after doing a wlistreset will be
the number of words to the current position in the list,
not the total number of words in the data structure.

wlistnop(202}:

This is a NO-OP that returns 'count' and 'ptr' for the
current position.

Note that lists may be nested and data structures may be
built without prior knowledge of the contents.

If WLIST overruns the area:

A HELP(wlistoverflow, address, needed} is generated,

where 'address' is the address of the first word of the
area, and 'needed' is the number of words that MUST be
present to write the next element.

The proper return is RESUME(gothelp, newaddress, n},

where 'newaddress' is the address of the relocated area,
and 'n' is the number of words allocated in that new
area.

The helping routine must copy the entire area into the new
area.

Augmentation Research Center page 46

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

USER PROFILE DATA STRUCTURE AND TOOL

Introduction

User Profile refers to the per node data base that holds
parameters describing the desired tool-independent
characteristics of the FE. The dynamic data base is read when a
node session begins and is used throughout the session to give
the user a personalized FE.

The User Profile Tool is a separate, fully split NSW tool that is
accessed through the Runtool command given to the WM EXEC. This
tool gives the node the ability to modify his own User Profile
data base.

Current Capabilities

The User Profile data base is not currently supported by either
the WM or the FE. If the FE did read the User Profile data base,
any modifications made in the User Profile Tool would become
active at the next session, when the User Profile would again be
read by the FE. Currently the User Profile Tool reads and writes
the data base to a Tenex file that is uniquely named (using the
project-node name).

Envisioned Capabilities

While the User Profile has never been fully integrated into the
NSW, it is envisioned that the User Profile be a data base whose
access is restricted by the WM (e.g. as an NSW file or through WM
calls to read/write it). At session startup, it would be read by
the WM and returned as a PCPBB data structure as a result of
WMLOGIN.

The User Profile Tool would provide immediate profile updating
and the option to make the modification permanent or restrict it
to the current session. To support immediate profile updating,
the FE would provide an external call, allowing it to read a
profile or profile-part from the User Profile tool.

Augmentation Research Center page 47

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

User Profile Data Structure

Data Structure

The User Profile data structure consists of one list (coded
in PCPB) containing the following five elements (in order):

1. Profile - BITSTR

Feedback, herald, etc. See definition of fields below.

2. Startupstring - CHARSTRING

Startup input command string.

3. Tool list - LIST(tool!, tool2, •••)

Each element tool-i is of type CHARSTRING and contains a
legal name of a tool.

4. Control Character list - LIST (Referred to as cntchr
list.)

Each element of the list is itself a LIST (referred to as
dvclst) of the following structure:

LIST(index, LIST(cf,char,echo), LIST(cf,char,echo),
)

where:

index - INDEX - device code

cf - INDEX - Control function code

char - CHARSTRING - String of characters where each
serves the specified function

echo - CHARSTRING - String to echo when the control
character is typed.

5. Version - INDEX

For compatibility check.

Augmentation Research, Center page 48

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

Data Structure Conventions

1. The profile bitstr is currently 23 bits long, with the
bits allocated as follows (bit number 1 is the leftmost):

Field Bits

feedback length 1 thru 8

herald length 9 thru 12

recognition mode 13 thru 14

secondary recognition 15 thru 16

prompting 17 thru 18

command word length 19 thru 23

In the Ll0 programming language this results in the
following record:

(prfl) RECORD

padding[9], cmdwdlen[5], prpt[2], rcg2[2), rcg[2),
hldlen[4], fblen[8] ;

2. Startupstring is a null string if none is specified.

3. Tool-list convention:

First element is the entry tool, or NULL if none is
defined. (Undefined entry tool causes the user to stay in
the EXEC after login.)

Other elements (if any) are tool names (all as strings).

4. Control characters:

If a list for a specific device (dvclst) does not exist all
control characters default.

If a list exists for a specific device only those
control-characters that deviate from the default have
entries.

If this entire control character list has only one NULL
element all control characters for all devices default.

Augmentation Research Center page 49

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

5. Version number is currently 9.

Meaning of Fields in the Profile Bitstr

Prompt

0 = Verbose (default value)

1 = Terse

2 = Off

Recognition (Both Levels)

0 = Anticipatory

1 = Terse (default value)

2 = Fixed

3 = Demand

Feedback length, herald length, and command word length
contain the corresponding length (in characters) and default
to the maximum number allowed.

Augmentation Research Center page 50

Control Function Indexing and

Function Index

COMMAND ACCEPT 4

COMMAND DELETE 24

REPEA'r 2

BACKSPACE CHARACTER 8

BACKSPACE WORD 23

BACKSPACE STATEMENT 16

LITERAL ESCAPE 22

IGNORE 0

SHIFT CHARACTER 47

SHIFT WORD 92

TAB 9

OPTION 21

Device Code Indexing

Device Name Index

TI 2

NVT 3

LINE PROCESSOR 4

IMLAC 5

EXECUPORT 6

TTY33 7

TTY35 8

TTY37 9

Augmentation Research Center

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

Defaults

Default

"D

"x

"B

"H

"w

"p

"v

No Default

No Default

No Default

"I

"u

page 51

DIA r.r.~ ?.NOY 3-Feb-77 17: 06 28745

Frontend System Documentation

GENERATING A NEW FRONTEND

Introduction

The following steps must be taken to create a new Frontend:

- Make sure the relocatable binary files are up to date.

- Load the desired Frontend configuration to create a save
(.SAV) file.

- Create the initial grammar.

- (Other steps may be necessary depending on the Frontend
configuration.)

The actual loading process is usually done by a RUNFIL program,
with a RUNFIL file available for each Frontend configuration.
All compiling, loading, and saving operations currently must be
done on a TENEX or TOPS-20 host.

Compilation

Each Frontend source file contains the name of the compiler(s)
and the REL file(s) that are to be used when compiling that
source file. To create a Frontend for the PDP-10, use the Ll0
compiler; for the PDP-11, use the Ll011 compiler. Of course, if
the source file has not been changed since the existing REL file
was created, it is not necessary to compile that source file
before creating a new Frontend.

Frontend source files are currently NLS files. To compile them,
use the Complie File command in the Programs subsystem.
Sequential files may be compiled by simply r~nning the same
compiler as a TENEX subsystem, giving the sequential file as
input, and specifying the REL file as output.

Loading

To load a Frontend, run a loader to bind all the REL files
together and save the core image in a SAV file. For a PDP-11
Frontend, you must also format the SAV file into PDP-11 load
format. The names of the RUNFIL files that perform the loading
for each Frontend configuration are specified below, along with
the names of the various files that comprise each Frontend
module.

Augmentation Research Center page 52

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

To make a Frontend ready for use, the SAV file is placed in the
file directory in which it is to run. The initial grammar is
placed in the same directory with the name EXEC.CGR: parse
function files are also placed in the directory, with the
extensions .PFC (for code) or .PFD (for data). This is explained
in the "Grammar Compilation and Compaction" section of A GUIDE TO
THE CML AND CLI.

In some cases, the Frontend is then ready to use. The exceptions
are a stand-alone single fork tool that uses the Frontend and a
Frontend that uses the shared page communication medium. In the
fir st case, refer to "Making a Stand Alone Tool" in Appendix 2 of
A GUIDE TO THE CML AND CLI. For the second case, the SAV file
for the tool backend must be placed in the same directory as the
Frontend, along with the Frontend and the initial grammar.

When making a PDP-11 Frontend, an additional step is performed by
the RUNFIL file. The SAV file is converted into PDP-11 loading
format, by way of program SAVBIN. The resulting BIN files are
then loaded on the PDP-11. Because that loading process is still
undergoing changes it will not be described in detail at this
time.

Frontend Files

Below is a list of the Frontend source files, the REL files they
produce, and information about which Frontend configuration
requires them. When no file directory is given, the directory is
<NSW-SOURCES>. Where several REL files are produced from one
source, they are separated by a semi-colon (:). The Ll0 runtime
support files (code and data) are not included in this list, but
they are loaded in each Frontend configuration.

NEWCLI.NLS

NEWCLI.REL: required for ALL PDP-10 FEs

<Ll0ll>CLI.REL: required for ALL PDP-11 FEs

Ll011STGMGT.NLS

FESTGMGT.REL; required for ALL PDP-10 FEs

<Ll0ll>FESTGMGT.REL; required for ALL PDP-11 FEs

Augmentation Research Center page 53

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

XOSI-CLI.NLS

XOSICLI.REL; XOSIDATA.REL; required for ALL PDP-10 FEs

CGPFADDS.NLS

PFADDS.REL; required for ALL PDP-10 FEs

<Ll0ll>PFADDS.REL; required for all PDP-11 FEs

XFEROUTINES.NLS

XFERTNS.REL; required for ALL PDP-10 FEs

XFEDATA.NLS

XFEDATA.REL; required for ALL PDP-10 FEs

<Ll0ll>FEDATA.REL; required for all PDP-11 FEs

DPYPKG.NLS

DPYPKG.REL; required for ALL PDP-10 FEs

<Ll0ll>DPYPKG.REL; required for ALL PDP-11 FEs

DPY-10.NLS

DPY-10.REL; required for all PDP-10 FEs

MSG-3!.NLS

MSG-3!.REL; MSG-3DATA.REL; required for MSG-3

TYPECLI.NLS

TYPEI.REL; required for TYPEOUT

SAFE.NLS

SAFEI.REL; required for Stand Alone FE

<RELNINE>NLSI.NLS

<RELNINE>NLSI.REL; required for Shared Page

PCPB8-10.NLS

PCPB8.REL; required for MSG-3, Raw Net Conn. and Shared Page

Augmentation Research Center page 54

DIA LLG ANDY 3-Feb-77 17:06 28745

end System Documentation

<Ll0ll>PCPB8-ll.NLS

<Ll0ll>PCPB8.REL: required for all PDP-11 FEs

CGRAMLDR.NLS

CGRAMLDR.REL: required for ALL PDP-10 FEs

<Ll0ll>DPY-ll.NLS

<Ll0ll>DPY-ll.REL: required for all PDP-11 FEs

DPYDATA-10.NLS

DPYDATA.REL: required for all PDP-10 FEs

<Ll0ll>DPYDATA-ll.NLS

<Ll0ll>DPYDATA.REL: required for all PDP-11 FEs

MSG3FE.RUN

RUNFIL input to make MSG-3 Frontend

TYPECLI.RUN

RUNFIL input to make TYPEOUT Frontend

<RELNINE>NLS9FE.RUN

RUNFIL input to make Shared Page Frontend

SAFE.RUN

RUNFIL input to make Stand Alone Frontend

<Ll0ll>CLI.RUN

RUNFIL input to make PDP-11 Frontend

Augmentation Research Center page 55

DIA LLG ANDY 3-Feb-77 17:06 28745

Frontend System Documentation

REFERENCES

1. Donald I. Andrews, Beverly R. Boli, and Andrew A. Poggio, A
Guide to the Command Meta Language and Command Language
Interpreter. Augmentation Research Center, Stanford Research
Institute, Menlo Park, California. February 3, 1977. (28744,).

2. Donald I. Andrews, Beverly R. Boli, and Andrew A. Poggio, An
Introduction to the Frontend, Augmentation ~esearch Center,
Stanford Research Institute, Menlo Park, California. February 3,
1977. (28743,).

Augmentation Research Center page 56

