
F inal Report

DEVELOPMENT OF A MULTIDISPLAY,

TIME-SHARED COMPUTER FACILITY
AND COMPUTER-AUGMENTED
MANAGEMENT-SYSTEM RESEARCH

By: D. C . ENGELBART W. K. ENGLISH J . F. RULlFSON

Prepared for :

ROME AIR DEVELOPMENT CENTER
GRIFFISS AIR FORCE BASE, NEW YORK 13440

CONTRACT AF 30(602)·4103

STANFORD RESEARCH INSTITUTE
Menlo Park. California 94025 • U . S.A.

April 7968

Final Report

DEVELOPMENT OF A MULTIDISPLAY, TIME-SHARED
COMPUTER FACILITY AND COMPUTER-AUGMENTED
MANAGEMENT-SYSTEM RESEARCH

By: D. C. ENGELBART W. K. ENGLISH J. F. RULlFSON

Prepared for:

ROME AIR DEVELOPMENT CENTER
GRIFFISS AIR FORCE BASE, NEW YORK 13440

SRI Proiect 5979

Approved: BONNAR COX, ACTING MANAGER
Systems Engineering Laboratory

TORBEN MEl SLING, EXECUTIVE DIRECTOR
Information Science and Engineering

CONTRACT AF 30(602)-4103

ABSTRACT

This report describes work in a continuing research effort on
systems for computer aid to management in the AHI Research Center of
Stanford Research Institute. This research is part of an overall
program aimed at significantly augmenting the intellectual abilities of
humans by means of direct, interactive computer aid.

Specific applications to management problems include
management-information systems, aids to conferencing and group
interaction, and the ability to maintain highly flexible and dynamic
records of various kinds and use them as a working frame~ork.

Special software developments for implementation and modification
of interactive user aids include the Tree Neta compiler-compiler; the
~·1OL940 machine-oriented programming language; four Special-Purpose
Languages (SPL's), for high-level specification of user control
functions; and a mUltipurpose interactive user-aid system (NLS) which
integrates these components. These systems operate within a slightly
nodified version of the time-sharing system developed by Project GENIE
at the University of California, Berkeley. The machine used is an sns
940.

Specially developed hardware coupled to the computer provides I/O
service to six CRT user consoles. A novel display system uses SMall
CRT's located in the computer room, with television coupling to the
individual user consoles. TIlis has several advantages, including the
ability to display material as black-on-white lines and symbols.

ii

CONTENTS

ABSTRACT

LIST OF ILLUSTRATIONS

FOREWORD

I INTRODUCTION

II SOFTWARE DEVELOPMENT

III HARDWARE DEVELOPMENT

IV MANAGEMENT-SYSTEr.1 RESEARCH

APPENDIX A: GENERAL BACKGROUND

APPENDI X B: HARDWARE REFERENCE MANUAL

APPENDIX C:

APPENDIX D:

BIBLIOGRAPIIY

WIRELIST GENERATOR PROGRA~1

TREE HETA

iii

ii

iv

v

1

4

13

26

LIST OF ILLUSTRATIONS

Fig. 11-1 Functional Organization of NLS 940 10

Fig. 11-2 Overlay Structure of NLS 940 12

Fig. 111-1 Facility Configuration of SDS 940 Computer 15

Fig. 111-2 Special Devices Channel 19

Fig. 111-3 Executive Control Debugging Panel 21

Fig. 111-4 Display Console 25

Fig. IV-1 MIl Sponsors' On-Line Conference 55

iv

FOREWORD

The work reported here was carried out by the Augmented Human
Intellect (AlII) Research Center of Stanford Research Institute. This
Center is engaged in the exploration of the concept of augmenting the
human intellect by means of direct, interactive computer assistance to
intellectual processes.

The AliI Research Center operates under the multiple sponsorship of
ARPA, NASA, and the U.S. Air Force Rome Air Development Center. The
specific work reported here was funded jointly hy ARPA and Rome Air
Development Center under Contract AF 30(602)-4103.

TIlis report, from the Introduction onwards, is written in a special
format developed by' the AlII Research Center and called "structured
statement fonnat." The reader will see that the text is broken into
brief paragraphs or "Statements" which bear numbers indicating their
positions in a hierarchical structure. References are given in the form
(Smith3) instead of by superscript numbers, and will be found in the
Bibliography at the end of the report. These conventions are part of an
on-line computer text-handling system (NLTS and NLS) developed by the
Center and used for all documentary work.

v

INTRODUCTION

1 INTRODUCTION

lA This is the final report for a contract that began in February
1966 as a one-year exploration into computer-augmented management
techniques, and ended two years later, having focused mostly on the
development of an advanced research facility that will serve as a
laboratory for the exploration of computer aids to management.

lAl The initial management-techniques project, as integrated into
the Augmented Human Intellect (AlII) Program at SRI, was to pursue
its research goals by developing computer-augmented management
techniques to he used and ev,aluated in the management acti vi ties
within the Program.

lAlA Appendix A describes the MIl Program, its "Bootst rap
Community" plan, specific features of its experimental
approach, its prior support history, and the status of the
Program at the beginning of this project.

lA2 A major change in the plans of the AliI Program i.e., to
establish a large computer-display research facility specially
designed to support the AlII research program -- -was approved early
in the contract period and resulted (with the knowledge and
approval of the contract monitor) in the following:

lA2A Defennent of the management-system research until the
major change was implemented

lA2B Enlargement of scope and increase in funding for this
project to support the new AlII research facility. This
enlarged facility will provide greatly increased power for
management-system research and experimentation.

lA3 The new facility is to provide continuous service to the AliI
research staff, to use both in their daily work (design, study,
document, program, plan, etc.) and in their system-improvement
experimentat ion.

lA3A The new facility development is behind its initial
schedule, so that the management-system research has involved a
larger proportion of conceptual and methodological study, and a
sr.laller proportion of computer programming and
special-technique utilization than was initially planned.

lA4 This report includes the following:

lA4A Description of Software Developments:

lA4Al A set of Special-Purpose Languages (SPL's) to

1

INTRODUCTION

facilitate system programming in the areas of user-display
interactive dialogue, character-string analysis,
character-string construction, and ring-structure
manipulation.

lA4A2 ~'()L940 (or simply ~10L), a Machine-Oriented Language
for doing detailed system-subroutine programming

lA4A3 Tree Meta, a compiler-generation
produce the compilers for the SPL's and
syntax analyzer for the MOL compiler.

system used to
to produce the

lA4A4 The On-Line System (NLS) , which interactively serves
the CRT work stations. It is designed for maximum ease in
developing and modifying both the service functions
available to a user and the particular "dialogue procedures"
used to control the application of these functions. Tree
Meta, the SPL' s, and HOL are des igned to serve the need for
flexible development and evolution of the NLS).

lA4B Description of the hardware developments for the new
multiconsole time-shared man-computer research system:

lA4Bl An SDS 940 time-sharing computer, using the latest
time-sharing system developed by Project GENIE, University
of California, Berkeley.

lA4B2 A 96-million-character disc-file system.

lA4B3 A custom-built display system, using two
character-vector generators to drive twelve S-inch CRT's,
with twelve independent closed-circuit TV systems providing
17-inch displays in NIl offices and laboratories.

lA4B4 User-control input equipment, associating with each
display a typewriter-like keyboard, a "mouse" ea
screen-selection device developed by SRI), a five-key keyset
(SRI-developed, for one-handed, chord-coded character
input), and a footswitch (making visible, as special
symbols, the normally non-visible space, tab, and
carriage-return characters).

lA4BS A special SRI-built interface, to service the display
and input equipment with a minimum of burden on the CPU.

lA4C Description of Management-Research Developments:

lA4Cl The framework within which we view the research
the organization to be managed, the "system" of management

2

INTRODUCTION

to be studied and improved, etc.

lA4C2 The "ROMAN" (ROme MANagement) system of on-line aids
for analyzing management data -- initial development, early
in the project, on the CDC 3100.

lA4C3 Planning for the next stage of management-system
research.

lA4D Appendix A describes the AHI Program, including a
discussion of the bootstrap strategy and the notion of
"augmented organization." An outline of existing
text-manipulating systems is also presented. An account of Mil
project support and a brief history of the management-system
project completes Appendix A.

lA4E Appendix B is the programmer's manual for use of the
special SRI-built hardware, giving memory and interrupt
assignments, new computer instructions, and the means of
controlling the disc, the display system, the console-input
devices, and the line printer. It also lists the character set
available for console keyboards, displays, and line printer,
and gives the octal codes used (uniformly throughout the
system) to represent them.

lA4F Appendix C describes the program used
fabrication, checkout, and documentation
hardware. It operates on engineering
generates:

to help in the
of the SRI-built

specifications and

lA4Fl Wire lists specifying the back-panel wiring
connections to be done by fabrication technicians

lA4F2 Printout used to validate the correctness of the
wiring

lA4F3 Printout structured to aid checkout and maintenance.

lA4G Appendix D gives a thorough description of the Tree ~feta
compiler-generation system, including syntax, program
environment, a formal description, som~ detailed examples, a
bib liography , the Tree r.1eta compi ler written in the Tree Meta
language, and supporting subroutines.

3

II -- SOFTWARE DEVELOPMENT

1 Special-Purpose Languages

lA The software effort for the 940 on-line system (NLS) has centered
around the implementation of a set of special-purpose programming
languages (SPL's). This collection of languages, originally known as
the "Control Metalanguage," began as an attempt to formalize the
"control dialogue" between users ~nd our s"pecializ~d system. A
complete discussion of the original thou~hts and motivation is given
in Sec. 111-3 of (Engelbart6). The SPL's are now a series of distinct
languages, differentiated by radically diverse syntaxes, unusual data
bases, and inherently different algorithmic-control or program-flow
procedures.

IB The current thinking on final causes, standards for designing the
manner of expression of languages, and functional aspects (operations
on data) of the SPL's are" quite different from what originally
appeared in (Engelbart6). This evolution has been guided mostly by
shifts of emphasis. Some changes, however, have been qualitative-­
they appear as major changes in the characterization of the SPL's.

lBI Foremost in our design consideration is creating an interface
between the computer (with all of its hardware and software) and
individuals who are designing "user systems." To accomplish this,
the SPL's must somehow embody the potential of the computer and
existing software. They do this by being appropriate in their
generalizations and discriminations (i.e., by having the right
data and operations) and by reflecting this appropriateness in
their syntax. The SPL's are designed to be clear (not necessarily
obvious) to an experienced user. There has been no effort to make
them manifest all of the inherent qualities of the machine and its
system.

1B2 Designing the software foundations to mesh with the
special-purpose languages tends to continuously influence the
final organization of the system. This effect demands that the
machine code supporting the system possess coherent underlying
architecture. It also requires completeness (in command structure
and input codes) and consistency, as the properties of any "user
system."

1B3 Finally, the SPL's present us with a dimension of flexibility
and user-system design experimentation never before possible.
This flexibility is demonstrably unattainable without the SPL's.
Even the most sophisticated macro assemblers and general-purpose
languages lack the required "stylistic" properties.

1R4 It should be noted that the SPL's are neither
self-documenting systems nor training systems.

4

I I -- SOFTWARE DEVELOp~mNT

lB4A As mentioned previously, the SPL's are to be clear but
not obvious; it will take considerable background knowledge to
even read them. TIle SPL's cannot be expected to resolve
semantic ambiguity unless the reader has experience and
familiarity almost on a level with the writer.

lB4B A listing of a user system programmed in the SPL's will
not, in any sense, serve as a user's guide or a method of
teaching the use of the system. An analogy can be drawn with
linguistics, where one might attempt to use the theory of
transformational grammars to teach the use of English.
Transformational theory exhibits a philosophical structure of
sentences and the potential for change in the sentences, but
it says nothing about the application or effectiveness of the
sentences. It is necessary first to master English. Having done
so, one may gain insight through transformation theory; and
having mastered a user system, one may gain insight through the
SPL's and the system specifications written in the SPL's.

IC One of the SPL's is concerned primarily with the syntax and
interpretation of the dialogue between a user and the computer
system. The rest are concerned with the execution of the
interpretation on the data bases.

lCl The dialogue syntax and interpretation SPL began as an
attempt to formally define the control-language dialogue of user
systems.

lelA In the first attempt, the control language was described
as a finite state machine, and the language allowed a formal
textual definition of such a machine. A program written in
the control language accepted input characters from the work
station, gave immediate feedback about each character and the
current control state of the system via the display, and moved
on to the next state, in the restricted context characteristic
of such machines. A more complete discussion of this approach
appears in Sec. V of (Engelbart7).

lClB It was originally thought that such an approach was
adequate for the definition of user-system control languages.
But, to paraphrase John ~1cCarthy, the model is metaphysically
adequate, but epistemologically inadequate. Implementation
revealed that the dialogue is a non-Markovian (nonstochastic,
historically dependent) process on the part of both the machine
and the user, and accurate characterization as a finite state
machine results in so many states that the model is useless. A
better model is a two-stack automaton with a small number of
immediate-access storage registers. Such an automaton does the
following things:

5

II -- SOFTWARE DEVELOPMENT

lC181 Accepts input characters from a work station

lC182 Stores, in its
characters or a variety
state

first stack, either the input
of information about its current

lC183 Stores, in its second stack, specification
information derived from the characters -- e.g., precisely
which character in a file the bug is pointing to

lC184 Places other information in its storage registers

1CIBS Sends immediate feedback to the work station about
its current control state

lCIB6 Moves to its next state on the basis of decisions
influenced by either the first stack or any of the storage
registers. It may even branch to a state whose address it
fetches from the first stack.

1C2 The linear-content-analysis or string-analysis SPL has been
called the "pattern-matcher" in previous reports. Programs
written in this SPL (1) detect entities used in editing or (2)
compute Boolean functions of the presence of entities used in
display filtering.

1C2A The entities detectable within the SPL are characterized
by the delimiting characters or strings around them. For
example, a word might he defined as a string of printing
characters surrounded by blanks or punctuation. Once an
entity is detected, the delimiting positions can be stored for
future use, and general flags may be set to indicate whether
the entity has been found. The algorithmic nature of the
language closely resembles the procedures used in top-down
analysis with backup. The syntax of be entity specification
closely resembles a single BNF rule, with extensions to permit
either left or right scanning, to reposition the scan to
previously stored positions or to specifications from the
second stack of the automaton, and limiting quantification of
an iteration operator.

1C2B The display-filter aspect of the language embeds the
entity-detection constructs in the context of general Boolean
functions, with the extended ability to perform unanchored or
"slide" searches.

lC3 The string-construction SPL is straightforward; it permits
the construction of new strings on the basis of (1) entities from
the linear content-analysis pointers, (2) the contents and format

6

I I -- SOFTWARE DEVELOPMENT

of the display through the specification stack, and (3) literal
strings. Statements of the SPL are concatenation rules. The only
control is an "if-then-else" construct in which the Boolean
expression is a linear content-analysis statement, or an order
relation on the absolute positions of previously stored pointers.

lC4 The structure-manipulation SPL is concerned with the
construction of a "ring," whose elements point to the individual
statements created by the string-construction SPL.

lC4A Each ring element contains, among other things, a pointer
to another ring element which points to the successor statement
(if any), a pointer that points to the sublist statement (if
any), and flags to indicate whether this ring element is the
first or last statement at a given level.

lC4B The structure-manipulation language contains a number of
constructs designed for searching and testing the ring and for
linking up ring elements to form the familar
structured-statement format.

ID These four SPL's are not a complete system. There are portions
of the system being implemented that should be handled through SPL's
but are not. We intend someday to extend the SPL's as follows:

IDI There should be an encoding language in which to specify the
mapping of raw input data from the work stations into the
character or macrocharacter format used in the dialogue
syntax-interpretation SPL.

ID2 The format of the display and the selection of information
displayed should also be handled with a special-purpose language.
\~ile the formatting of the display presents no real problems,
information selection will require a lot of work. We must somehow
make explicit the way in which HOP and JUMP commands will work,
and turn the sequence generator into a special-purpose language.

ID3 Finally, there is the graphics SPL. The syntax of the
graphics part of the system should be part of the control-dialogue
SPL. The graphics SPL is in a sense equivalent to the linear
content-analysis and string-construction SPL.

IE A thorough technical
programming documentation
prepared.

report
on the

7

on the SPL's, and
supporting library,

detailed
are being

I I -- SOFTWARE DEVELOPMENT

2 Tree Meta

2A Developing the SPL's is a dynamic trial-and-error process. The
development could not proceed at a viable pace without a
compiler-generation system. The fact that the SPL's are unspecified,
and much of the nature of their syntax is unforeseeable, means that
the compiler-generation system must also be dynamic. The pliability
of the Tree Meta system has amply sustained the evolution of the
SPL's.

2B Tree Meta is a compiler-compiler system for context-free
languages. Parsing statements of the metalanguage resemble
Backus-Naur form with embedded tree-building directives. Unparsing
rules include extensive tree-scanning and code-generation constructs.
Appendix D describes the Tree Meta system in detaila Thorough
implementation documentation for the SOS 940 appears in the
discussion of the support subroutines. A history of computer
metalanguages and a tutorial guide to Tree Meta are other topics of
Appendix D.

3 The NLS Library

3A The unusual nature of the SPL's means that their operations and
data bases are rarely reflected in the arithmetic-oriented commands
of the computer. Thus, programs written in the SPL's compile mostly
into subroutine calls, and the background of subroutines is called
the NLS Library. The problem of choosing the appropriate
subroutines is the problem of building the right SPL's.

3B The other design problem of the NLS Library is integration into
the time-sharing system so that it performs smoothly, quickly, and
reliably. Considerations, progress, and results in this area are
discussed in (Rul i fson 1) •

4 f'.I) L

4A Wi thin the SPL/Tree Meta/NLS Library system, it is a formidab Ie
task to ensure that the library will remain readable and
comprehensible, while retaining fast, tight code. The solution to
this problem is the Machine-Oriented Language (MOL). Developed
specifically to support the NLS Library programming effort, ~DL940
combines the explicitness of assembly language with the phrase
structure of ALGOL-like languages. Since it allows constructs that
reference the 940 registers, reflect the 940 instruction set, and
smoothly interface with the TSS monitor and executive, it makes
assembly-language coding unnecessary. On the other hand, the
structure of the language--with blocks and if, for, while, and case
clauses--significantly improves the readability of the language and
drastically reduces the number of program labels.

8

II -. SOFTWARE DEVELOPMENT

4B A detailed justification of the development of the MOL is given
in Sec. II-3-d of (Engelbart6). A technical report on the details of
the language is in preparation (Hayl). The system has been received
enthusiastically by other SOS 940 users and is currently being used
by them. Detailed documentation on the compiler itself is available
to those interested in implementing the MOL in their 940 systems.

5 SPL's and the On-Line System

SA The SPL approach to system design may now be seen by viewing the
system first in terms of the functions it is to perform, and then in
terms of its organizational characteristics.

SB When considered as an information-processing system, NLS 940 has
the four basic levels of operation shown in Fig. II-I.

SRI The 940 monitor receives bits, characters, and interrupts
from the work station. It compiles these, along with internal
clock readings, into compact words for further analysis by NLS.

5B2 The input encoder immediately translates this information
into characters for future work. Simultaneously, it sends
immediate feedback to the work station in the form of an echo
register of characters on the display screen.

5B3 The characters, button settings, and screen-position pointers
are then passed on to the dialogue-interpretation phase.
Processing proceeds from this point on by normal time-sharing
programs. The characters are first processed by the two-stack
automaton. Feedback about the control states of the system is sent
to the work station. Characters are compiled into strings,
absolute screen-pointer positions are translated into character
positions within the document, and subroutines of the other parts
of the system are selectively executed.

5B4 Finally, textual editing and structural changes are performed
on the old document. The display generator selectively chooses
statements from the revised document on the basis of the
following:

5R4A The new content and structure of the document

5B4B Previous status of the display screen

5B4C The command just executed

SB4D Certain global parameters (level and truncation).

5C The overlay structure of the system only vaguely resembles this

9

r-

I
940 HANDSET

MONITOR MOUSE
KEYSET

'--

BITS

INPUT ECHO REGISTER, BUG TRACKING
n ENCODING

CHARACTERS
SCREEN POSITIONS DISPLAY

DIALOGUE CONTROL FEEDBACK
I NTERPRETATI ON ill

STRINGS, CHARACTER POSITIONS, PARAMETERS

1 J
CONTENT I STRUCTURE DISPLAY WORKING

ANALYSI S MANIPULATION GENERATION IN FORMATION

TA-5919-1

FIG. 11 .. 1 FUNCTIONAL ORGANIZATION OF NLS 940

10

II -- SOFTWARE nEVELOPMENT

information-processing view. The actual positioning of routines in
the overlay structure has been guided by a number of factors,
including frequency of use. Since the entire system is in reentrant
code and the overlay processor allows subroutines to overlay
themselves and run properly, normal parameter and
information-communication standards may be broken.

SCI Figure 11-2 is shaded to show the languages in which each
overlay is written. The size of each box is proportional to the
number of instructions in the corresponding overlay; the amount of
shading is proportional to the amount of code of each type.

SC2 The content analyzer is an extension of the metacompiler
special-language approach. The real-time content analyzer takes
statements directly from the document currently being worked with
and produces immediately executable code which, when combined with
the utility package, analyzes statements for display-creation
routines. This small on-line compiler is written in an
intermediate language specially designed for this purpose. The
intermediate compiler is, of course, written in Tree Meta.

11

KEY TO PROGRAMING
LANGUAGES

fY.\l ARPAS

IDW~H MOL

~ DIALOGUE

mIII STRUCT. MANI PULATION

~ CONTENT ANALYSIS
~ AND STRING CONST:

FIG.II-2 OVERLAY STRUCTURE OF I~LS 940

12

CONTENT
ANALYZER

TA- 5919-2

III -- HARDWARE DEVELOPMENT: 940 Computer Facility

1 The 940 Computer Facility

lA The 940 computer was selected primarily because of the
sophisticated time-sharing software that was available on it.

IAI The CDC 3300 (with time-sharing hardware) was also carefully
evaluated, since it is program-compatible with the existing
text-handling system on the CDC 3100.

lA2 It became apparent very soon in our examination that for the
size of the facility we were considering, the 940 was the only
machine with really effective time-sharing software. For any
other computer, we would have had to develop whatever software was
necessary for serving multiple display consoles.

lA3 Going to the 940 involved completely reprogramming the text
system, but this system was due for redesign in any case. The
work on it was much more in line with the research goals of the
program than expending our efforts in learning how to write
time-sharing software. .

lB An order for the 940 computer was placed in October 1966,
contingent upon the additional funds requested for this project.

lBl The computer was delivered in June 1967. The acceptance
period began on 5 July and the computer was finally accepted on 5
August 1967. In general, the facility has operated very well,
particularly when compared with some other 940 installations that
we have knowledge of. Some difficulties that have been
encountered since acceptance are worthy of mention.

IBlA During the first few months of operation, there was
considerable difficulty with the tape drives, which were
manufactured by Wang and distributed by SDS. SDS engineers did
not really understand the adjustment and maintenance of these
drives.

lBlB When the facility was first delivered, the circuitry for
direct connection of Teletypes to the Teletype coupling
equipment was not really understood.

lBlC For a period of about one month, in November, we had
continuing difficulty with memory parity errors. The errors
were relatively infrequent and did not occur when SDS
diagnostics were used. This was very costly to us, both in
lost computer time and in time spent helping 50S engineers
track down the difficulties.

IBID The Memory Interface Connection (MIC) delivered with our

13

III -- HARDWARE DEVELOPMENT: 940 Computer Facility

facility was really a prototype and not a production unit.
Documentation delivered with it was not adequate and SDS
engineers did not understand its operation. We spent
considerable time in checking out our equipment, debugging the
~lIC. and bringing its documentation up to date.

lC The present facility is somewhat changed from that originaly
proposed. Fig. 111-1 is a block diagram of the current
configuration, and the following is a summary of its major
components:

lCl A central processor with time-sharing hardware.

1C2 Four 16K memory banks with word length of 24 hits and cycle
time of 1.B microseconds:

lC2A Each memory bank contains provISIons for a second port to
memory through a Hemory Access Module (MA~1).

lC3 Communications equipment for connecting to 16 Teletypes:

1C3A Adaptor cards designed at Bolt, Beranek and Newman are
available for connecting these to dataphone terminals.

1C4 Three magnetic tape units, 75 ips, BOO bpi.

lC5 A paper-tape station with 8-level reader and punch.

1C6 Three RAD storage units:

1C6A These are drums, each with a capacity of 500,000 24-bit
words.

1C6B The RADs connect to the second memory buss through a
Direct Access Communication channel (DACC).

1C7 A Memory Interface Connection (MIC) through which the special
peripheral equipment is interfaced.

14

I
I

16 TELETYPES
I
I
I

CONN.
EQUIPMENT

16 K
CORE

I

CONTROL: RAD

CONSOLE
TTY

CENTRAL
PROCESSOR
WITH TIME- 1-----00004

SHARING
HARDWARE

16 K 16 K
CORE CORE

16 K
CORE

SPECIAL
DEVICES
CHANNEL

FIG. 111-1 FACILITY CONFIGURATION OF SOS 940 COMPUTER

MAG. TAPE
CONTROL ~"""'-t

PAPER
TAPE

STATION

NAG.
TAPE

MAG.
TAPE

MAG.
TAPE

TA-5!U'-3

III -- HARDWARE DEVELOPMENT: Other Facility Equipment

2 Other Facility Equipment

2A In addition to the 50S equipment, the facility includes
peripheral equipment of other manufacturers and a considerable amount
of equipment designed and constructed by SRI.

2B All of the non-SDS equipment is
through the Special Devices Channel
memory buss through the MIC.

interfaced to the computer
which connects to the second

2B1 The decision to construct the special devices channel rather
than to try to interface the equipment through regular 50S
equipment was made primarily for the following reasons:

2B1A The 50S I/O channels (both the DACC and the data
multiplex channel) did not offer the specific features needed.

2B1A1 It was apparent that in trying to provide display
service to users the major limitation would be CPU time
available for processing user requests. The Special Devices
Channel (SDC) is as automatic as possible in its access to
memory, and wherever possible, data is formatted so as to
minimize executive time for processing to users.

2B1B In addition, the SDS channels were not thoroughly checked
out as production items and might have given us considerable
trouble.

2B2 The 940 computer includes a variable priority feature for
memory access, which is critical in allowing the connection of
this much high-speed equipment to the second memory buss.

2B2A The equipment on this buss (not including the proposed
special operations equipment) will require a maX1mum data rate
on the buss of approximately 264,000 words per second or lout
of 2.1 memory cycles.

2B2B The variable priority scheme operates essentially as
follows:

2B2B1 There is a "wired-in" priority for all
connected to the second buss, but any device may
memory access at one of two priority levels.

devices
request

2B2B2 A device requesting high-priority access takes
precedence over the CPU, any device requesting low-priority
access, and any device with a high-priority request which is
below it in the wired-in priority. Ignoring the special
operations equipment, the order of priority access is as
follows:

16

III -- HARDWARE DEVELOP~,tENT: Other Facility Equipment

RAD--High
Disc--High
Display 1--High
Display 2--High
CPU
RAD--Low
Disc--Low
Display 1--Low
Display 2--Low
Input Devices Controller
Low-Priority Controller.

2B2C This variable-priority scheme allows a device to request
memory access at low priority when immediate access is not
required, and to switch to high priority when obtaining a
memory cycle is critical.

2B2C1 For example, ,vhen transferring data, the RAD needs
one of every four memory cycles. TIle RAD controller can
therefore make three memory requests at low priority. If
none of these is successful, it can then request high
priority access and be assured of getting the next cycle
(since it is the highest priority device on the second
buss).

2H2D The variable priority scheme is discussed by Melvin
Pirtle (see Pirtlel). With his help, simulations were run on
our particular configuration.

2B2D1 Results showed that we could expect less than 1
percent degradation in CPU performance due to the loading on
the second memory buss.

2B3 A basic design feature of the channel is that all controllers
operate from a fixed core addresss with no provision for
transmitting addresses by EOM-POT instructions.

2H3A This fixed address is a "Unit Reference Cell" for each
controller (except the Input nevice Controller) that serves as
the comnunication between the controller and the program.

2B3Al The Unit Reference Cell serves two functions:

2B3AIA It contains the address of the command table or
buffer in core that the controller is processing. This
address is set by the program \vhen controller operation
is initiated (by an EO~O and is updated by the controller

17

III -- HARDWARE DEVELOPMENT: Other Facility Equipment

as each command or buffer is successfully processed.

2B3AIB It also contains an error code, written by the
controller when any error is detected in the processing
of a command or buffer.

2B3A2 This method is good for system reliability, since the
Unit Reference Cell will always indicate the nature of any
error and the address of the command or buffer being'
processed when the error occurred.

2B4 Another advantage realized through the design of the hardware
is a uniform character set.

2B4A The line printer, displays, and keyboards all have
characters and codes matching the internal character set of the
timesharing system. (The character set is described in Appendix
B.)

2C The equipment connected to the Special Devices Channel is shown
in block diagram in Fig. 111-2. The major components and their
functions are discussed below.

2Cl Executive Hardware

2C1A This is essentially an electrical interface to the SDS
f.lIC and a mul tiplexer that allows asynchronous access to core
by any of the six controllers connected to it.

2C1B The executive hardware decodes computer EOM instructions
for program control and SKS instructions for sensing the status
of the various controllers.

2C1C It accepts addresses and requests for memory access from
the controller, determines relative priority among the
controllers, and synchronizes the requests and passes them
along to the computer via the MIC.

2CID It contains circuits to generate parity on data
transmitted to the computer, or it can pass along a parity bit
generated by a controller. On read operations, parity is not
checked, but is passed along to the individual controllers.

2C1E It also synchronizes interrupts from the various
controllers and passes them along to the computer.

2CIF Included in the executive hardware are comprehensive
debugging and monitoring aids.

18

DISC-
CONTROL

DISPLAY
- CONTROL

1

TO MIC EXECUTIVE
t---- CONTROL

DISPLAY
- CONTROL

2

INPUT
~ DEVICES

CONTROL

~
SPEClAL

OPERATIONS ~

lOW ~

- PRIORITY
DEVICES ~

i....-

DISC
FJLE

DISPLAY
GENERATOR ~

1

DISPLAY
GENERATOR -

2

NETWORK

LINE
PRINTER

DURA/
PLOTTER

T. V.
S" CAME RA 11" MONITOR

C.R.T. (815 LI NES)

IDI ~[$ 0 ~

~ ~

-
-
~

~

12
STATIONS

~

-
~

~

-

~~ cO 101 I'-a. -
~

FIG. 111-2 SPECIAL DEVICES CHANNEL

MOUSE

KEYSET

KEYBOARD

MOUSE

KEYSET

KEYBOARD

III -- HARDWARE DEVELOPMENT: Other Facility Equipment

2CIFI A debugging panel contains indicators that can be
switched to any of the six controllers to monItor data,
addresses, priority, and other functions (see Fig. 111-3).

2CIF2 Any of the six controllers can be switched "off-line"
and operated from the debugging panel with simulated data
entered by hand in the monitor registers.

2CIF3 A switch is provided for each of the six controllers
that will operate the controller in a step mode (one memory
access per step) either on line or off line.

2CIF4 Two meters are also included on the panel which will
indicate for any selected unit or the entire channel the
percentage of memory cycles being requested and the
percentage of memory cycles actually served.

2C2 Disc File

2C2A The disc-file system will consist of a Bryant Model 4061
disc file and a disc controller.

2C2AI The disc file is an "A" frame with a capacity of
twelve data discs. As delivered, the file will contain six
data discs and will be expanded in the field as the
additional capacity is needed.

2C2AIA With the initial six discs the capacity will be
about 32 million 24-bit words.

2C2A2 The disc controller is being designed and built by
Bryant to interface with the executive hardware.
Specifications for the controller were developed jointly by
Bryant, Project GENIE at Berkeley, and SRI, It includes
features for reading and writing across page boundaries and
extensive error-checking provisions (for details on this and
other devices on the channel see Appendix A).

2C3 Display System

2C3A The display system consists of two identical subsystems
each with display controller, display generator, six CRT's, and
six closed-circuit television systems.

2C3B The display controllers have heen designed and built at
SRI. They process display "command tables" and "display lists"
that are resident in core, and pass along "display buffers"
containing instructions to the display generators.

20

"" " ~ '

"'OI'IE ",,"Ol " "-' '-.~" -' \I:._~ ~~~==~===;;iiiiiiii.r-ws '/0 ,. . , t ""

-I I~
•

I
.. ~:.

~ ' I I

FIG. 111-3 EXECUTIVE CONTROL DEBUGGING PANEL

21

III -- HARDWARE DEVELOPMENT: Other Facility Equipment

2C3C The display generator and CRT's are being purchased from
Tasker to SRI's specifications. Each will have general
character and vector capabilities. They will accept
instructions (beam positioning, character writing, etc.) from
the controller.

2C3Cl They drive in
monitors on which
Presentations for
sequentially and
controllers select
time.

parallel six 5-inch high-resolution CRT
the display pictures are produced.
each of the CRT's are generated

unblank signals from the display
one or more of the monitors at a given

2C3C2 Character-writing time on the displays will be
approximately eight microseconds, allowing an average of
1000 characters on each of the six monitors when
regenerating at 20 cycles per second. Because of image
retention in the vidicons, and video reversal (see below),
it is possible to regenerate at this low rate without
annoying flicker.

2C3D A high-resolution (87S-line) closed-circuit television
system will transmit display pictures from each CRT to a
television monitor at a corresponding work-station console.

2C3Dl It was originally proposed to implement a display
system consisting of two 2l-inch computer-refreshed computer
displays and ten storage-tube display stations.

2C3D2 This system was abandoned because the Tektronix
high-resolution storage tubes that were to be an integral
part of it were not available. They are still not available
in production quantities.

2C3D3 The present system was
alternative for providing display
offices in the building. It has
disadvantages.

the most reasonable
service to individual
both advantages and

2C3D3A On the positive side, refreshed displays will be
provided to users with the capability of much more
dynamic presentations than would have been possible with
storage tubes. In addition, with the television system,
it is possible to invert the video to provide a
black-on-white display. This presentation is usable in
higher ambient light conditions than would be possible
with direct-view CRT's, and subjectively reduces the
effect of flicker due to low regeneration rates.

22

III -- HARDWARE DEVELOP~1ENT: Other Facility Equipment

2C3D3B The most significant disadvantage is that more
computer memory must be allocated to regenerate the
displays. (The television system also was somewhat more
expensive to develop than was expected with the storage
tubes.)

2C4 Input-Devices Controller

2C4A In addition to the television monitor, each work station
console will have a keyboard, binary keyset, and mouse.

2C4B The state of these devices is read by the Input-Devices
Controller (IDC) at a preset interval (about 30 milliseconds)
and written into a fixed location in core.

2C4B1 Bits are added to information from the keyboards,
keysets and mouse switches to indicate when a new character
has been received or a switch has changed state during the
sample period. A new character or switch change causes an
interrupt to be issued at the end of the sample period.

2C4B2 Mouse coordinates are digitized by an A-to-D
converter and formatted by the Input-Devices Controller as
beam-position instructions to the display generator.
prov1s1ons are made in the display controller for including
an entry in the mouse position table as a display buffer.
This ,allows the mouse position to be continuously displayed
without attention from the CPU.

2C4B3 The I DC also has provis ions for turning on or off up
to twelve binary signals to each console for control of bits
set in an output area of the fixed table.

2C4B3A These output signals may be used to control
either audio feedback to the work stations or visual
indicators (other than displays).

2C5 Special Operations

2CSA The box with the label "Special Operations" in Fig. 111-2
is at this time only a provision in the executive hardware for
the addition of a high-speed controller. Tentative plans are
for adding special hardware here to provide operations not
available in the 940 instruction set, such as character string
moves or string pattern matching.

2C6 Low-Priority Devices Controller

2C6A This ' controller accommodates three devices with

23

III -- HARDWARE DEVELOP~lliNT: Other Facility Equipment

relatively low transfer rates.

2C6A1 At this time only the line printer is implemented.
This is a Potter Model IlSP-3S02 chain printer with 96
printing characters and a speed of 230 lines per minute.

2C6A2 Provisions have been made for adding an on-line
selectric typewriter, a graph plotter, and a terminal for
the proposed ARPA computer network.

3 Work Stations

3A Each actual work station consists of a 17-inch television
monitor, keyboard, binary keyset, and mouse.

3A1 The keyboards were manufactured by Friden. They have 61 keys
including spacebar, and have the "system" coding.

3A2 The keyset and mouse were developed at SRI and have been used
with the 3100 system for some time (see English1).

3B Signals are transmitted to and from the work stations by cables
routed through the building ceiling.

3C Experimental physical configurations have been built for various
office and conference room situations. Figure 111-4 shows a console
in a typical office.

4 Wire List Program

4A In the development of the hardware for the facility this project
contributed to the development of some computer aids for producing
wire lists to direct technicians in the construction of the logic
units.

4B
SRI.

This wire list program was also supported by other projects
It is described in detail in Appendix C.

24

at

FIG . "1-4 DISPLAY CONSOLE

25

IV -- MANAGEMENT SYSTEM RESEARCH: Introduction

1 Introduction

1A Our concept of the "system" for doing management work (the system
whose study and improvement this project undertook) has undergone a
steady evolution, particularly in the last few months; it became
clear that we were not likely to have available our new facility for
testing computerized management aids under this project, and we were
led instead to do more basic studying and planning.

1A1 The kind of computer aids developed in the early part of the
project for the CDC 3100 -- as described in Sec. IV-3 below -- are
an important part of what we now see as the "system." But the
study and considerations outlined in Secs. IV-2 and IV-4 of this
section led us to plan for a somewhat different approach for the
next stage of our research from that taken initially.

IA2 This research project is experimenting with the management of
an organization consisting principally of "knowledge workers"
(i.e., those who apply information to specific work and generate
information for others) working together in an environment that
includes sophisticated and highly interactive on-line aids
(representative of many important organizations of tomorrow).

1A3 In the last few months we have become aware that it makes
little sense to consider a "management system" as including only
administrative procedures, conventions, and aids. The
"governmental" aspects of an organization of "knowledge workers"
are now recognized as key problems demanding our attention, within
the concept of a "management system." These aspects include the
processes by which goals are established and conflicts of
attitude, opinion, and special interests are resolved.

1A4 These governmental problems involve a broad range of
organizational questions. In the Bootstrap Community, it is
clear that new and quite different forms of human organization
could evolve--e.g., teams of individuals working extremely
closely, requiring new procedures, protocol, methods, skills, and
attitudes to provide the stable working environment that better
couples human capabilities into coordinated efforts.

lA4A For instance, the monolithic pyramid of responsibility
and decision control will undoubtedly change as a consequence
of a higher degree of personal cooperation. Via the "instant
mobility" of their individual display stations, people could
rally together for a brief cooperative effort, and minutes
later regroup in other ways for another set of problems.

IA4B Alternatively, they can easily keep an eye on an on-going
dialogue (as developed in the common computer-held record

26

IV -- ~MNAGEMENT SYSTEM RESEARCH: Introduction

through which the dialogue communication is taking place) to
enter into it when they feel they can contribute.

lA4C These factors make possible much more flexible means for
integrating individual contributions of judgment, decision,
knowledge, suggestion, etc., and provide an opportunity to
develop faster, more powerful responsiveness to changes in
organizational opportunities, problems, goals, etc.

lAS To evolve towards the new organization, with its different
roles and interpersonal working relationships, is now seen to be a
fundamental and critical part of this project's approach.

lASA Our current plans for launching the second stage include
initial development of basic on-line aids valuable for certain
management tasks.

lASB However, we will also give consideration to the
development of those aspects of the management system that will
contribute to our understanding of "best" Bootstrap Community
organization. This work may concentrate on the establishment
of attitudes, techniques, and practices merely for "working
closely" with one another.

lASC This split suggests a logical classification of work into
"administrative"-related tasks and "organization"-related
tasks.

lB Contents of the Rest of this Section of the Report

1B1 A framework describing management research is presented
first.

IB1A This framework introduces the notions of "task" and
"activity," describes the current project activities, and
discusses the concept of "experimental organization."

1B2 A detailed,
management aids,
framework.

technical
implemented

description of a system of on-line
on the CDC 3100, follows this

1B3 A description of general plans completes this section.

27

IV -- MANAGEMENT-SYSTEM RESEARCH: Framework

2 Framework for Management Research

2A The uniqueness of the AHI Bootstrap Community necessitated an
unconventional scheme for describing work units in the project. The
defini tion of this scheme has been a part of the development of our
management system.

2Al The AHI project has been mapped into a set of "Activities."
Each Activity provides a clear scope of interest to the separate
project sponsors. Actitivies are the prime work-entities in the
Bootstrap Community.

2AIA Each Activity is given certain specific responsibilities,
is set up as a separate cost center, and is allocated resources
and authority as appropriate for its goals.

2AIB There are two basic types of Activity
"action-oriented," and "research-oriented."
these terms will be described below in
current Bootstrap Community Activities.

The
the

relevance of
discussion of

2A2 Day-to-Day work can be described in terms of "tasks." For
example, the programming for the SDS 940 graphics package is a
"task. "

2A2A Each task will tie specifically to one or more
activities, . with task specification, resource allocation,
supervIsIon, etc., stemming directly from the plans, resources,
and responsible staff within the Activities.

2B The current Bootstrap-Community Activity breakdown is as follows:

2B1 The Executive Activity with responsibility for overall
planning and coordinating for the Bootstrap Community.

2B2 Service-System Activity with responsibility for the
design, implementation, and operation of the hardware-software
system which provides service to the users at their respective
consoles.

2B3 User-System Activity -- with responsibility for coordinating
the repertoire of service functions; the control-dialogue
procedures with which the user controls· the execution of these
functions; the terminology and conventions for specifying and
documenting the functions and control-dialogue procedures; and the
development and consistent application of the design principles
for these user-system features.

2B4 The Network-Information-Center Activity with

28

IV -- MANAGEMENT-SYSTEM RESEARCH: Framework

responsibility for designing, implementing, and operating the
Information Center that is to serve the forthcoming ARPA computer
network.

2B5 Miscellaneous Activity -- the catch-all for miscellaneous,
small activities, and for activities that are tentatively being
developed towards becoming full-fledged Activities (e.g.,
development and operation of our X-I~C (external documentation
system), etc.).

2B6 Programming-System Activity with responsibility for
coordinating and improving the principles, conventions,
techniques, computer aids, methods, etc., for doing the
computer-programming tasks within the Bootstrap Community.

2B7 Engineering-System Activity with responsibility for
coordinating and improving the principles, conventions,
techniques, computer aids, methods, etc. for doing the engineering
tasks within the Bootstrap Community.

2B8 Management-System Activity with responsibility for
coordinating and improving the principles, conventions,
techniques, computer aids, methods, etc., for doing the management
tasks within the Bootstrap Community. This includes the
principles, conventions, techniques, etc. necessary for the
establishment of a stable organization of people working closely
together.

2C There are two basic types of Activity

2Cl The first five Activities Executive, Service-System,
User-System, Network Information Center, and Miscellaneous -- are
"action-oriented." This means that these Activities are directly
concerned with day-to-day operations within the Bootstrap
Community. For instance, the Service-System must provide service,
at the consoles, for each member of the Community.

2C2 The last three Activities Programming-System,
Engineering-System, and Management-System are
"research-oriented" in the sense that they "back up" other
Activities, providing the (improved) means for performing other
activities. For instance, the ~fanagement-System Activity provides
the framework, principles, aids, procedures, etc. used by, say,
the Executive Activity, in the actual management and government of
the Bootstrap Community (noting that this Executive Activity is
thus truly "action-oriented").

2C2A Resources allocated to a specific research Activity are
used for the coordination of that system's evolution, for

29

IV -- MANAGEMENT-SYSTEM RESEARCH: Framework

studying, analyzing, designing, and implementing new system
features, or for training Bootstrap Community personnel in the
use of that system.

2C3 It is thus possible for a research Activity to sponsor a task
that will contribute to the performance of either (or both)
action-oriented or research-oriented Activities. It is possihle
for, say, techniques developed as a part of the Management-System
Activity to be used by the Executive Activity to manage further
technique development in the Management-System Activity. The
circularity in this procedure is at the heart of the Bootstrap
strategy.

2C4 "Tasks" cut across Activity boundaries, and may be
simultaneously within more than one Activity designation. For
instance, programming for the development of a r,raphics package
for the SDS 940 is a task that may contribute simultaneously to
the Programming System Activity (e.g., by suggesting a new
programming technique), the Engineering-System Activity (e.g., the
graphics package may be useful as a part of an on-line hardware
debugging system).

2CS The two-dimensional scheme of Activities and Tasks does not
perfectly describe work within the Bootstrap Community. Part of
the task structure is the redefinition of this conceptual scheme,
and this work will proceed as a part of the ~1anagement-System
research.

2D General Characteristics of the Management-System Activity

201 It is to be assumed that management tasks will be executed
continually throughout the various levels and pursuits of each
Activity. The follO\~ing are examples with administrative, rather
than organizational (i.e., "governmental") significance.

2DIA The planning, scheduling, assignment, and supervising of
money and personnel resources comprise a large and important
set of these tasks.

2nlAl As indicated by the breakdown of Activities,
engineering and programming comprise very iMportant pursuits
within the Community, and each has an Activity charged with
coordinating and improving the system of doing its types of
tasks.

2DIA2 But consider that, in the execution of any reasonably
large engineering or programming task, there will actually
be a mixture of management and technical (i.e., engineering
or programming) tasks involved.

30

I V - - rvfANAGEMENT -SYSTE~1 RESEARO-I: Framework

2D1A3 It is not clear at this point what practical
differentiation should be made between what is considered to
be a management task and what is a technical task.
Consider, for example, the principles employed in planning,
assigning, and reviewing the allocation of resources as
involved in (obvious) management tasks. There is a good
reason to assume that these principles will have meaningful
and fruitful application to the way a programmer (for
instance) sets up his time and tasks for the week ahead.

2D1B Recording and accountant-type analysis of resource
expenditures represent another set of common and important type
of management tasks.

2D1Bl Here again, we would find these tasks widely
distributed throughout the Community, and potentially
applicable even for fragments of an individual's activity.

2DIB2 For instance, it is an appealing possibility to
develop flexible and accurate means for monitoring and
recording the expenditures of a person's time towards
different tasks. This would be valuable not only for
regular operational analysis, but for supporting the
Management-System research by helping to study better the
dynamics of organizational activity.

2DIC We expect continual clarification and differentiation of
categories of "management tasks" throughout the project.

2D2 The responsibilities of the Management-System Activity will
be:

2D2A Management-System Development

2D2Al Estahlishing and keeping current a description
(perhaps "model") of the existing management system.

2D2A2 Collecting and analyzing needs and possibilities for
improvement

2D2A3 Developing a framework and methodology for evaluating
and selecting needs and possibilities for investing
next-available resources (or for recommending
special-allocation attention)

2D2A4 Implementing modification/additions to the f\1anagement
system to fill selected needs or to implement selected
possibilities.

31

IV -- MANAGEMENT-SYSTEM RESEARCH: Framework

2D2AS Convincing Bootstrap-Community staff that the system
or its new changes are worth using

2D2A6 Developing tests or performance-evaluation means to
ascertain a user's proficiency with the system

2D2A7 Setting standards or proficiency in system
perhaps with "levels" of proficiency according to
usage

usage
types of

2D2A8 Educating and coaching users, to develop their
proficiency.

2D2B Activity Self-Improvement

2D2B1 Provisionally to develop systematic aids for doing
its own work better, in areas not within another Activity's
responsibility.

2D2B1A Each such pursuit will require explicit approval
of the Executive Activity -- because the Community as a
whole normally has the "right" to benefit directly from
all products of this activity, and also because any
given new user aid might be better specified and
developed in cooperation with other Activities.

2E The "Experimental Organization"

2El There is a subtle distinction between administrative aspects
of the Management-System Activity, and questions of organization
and "government."

2E2 The Bootstrap Community will begin to evolve its own form of
~tanagement System (including both "administration" and
"organization") via an "empirical" approach.

2E2A A fundamental requirement is to have the "experimental
organization" aware of and be practiced users of the best
general "management practices" currently known -- whether or
not these practices involve computer aids.

2E3 We feel that an early emphasis on "good management" will soon
give way (in importance) to the notion of "good government" as the
augmented community grows in complexity.

2E4 One of the most pressing problems is that of changing
attitudes of Community members from wholly scientific orientation
towards a more general concern for human effectiveness. Such
ingredients as attitude, habit, skill, and experience

32

IV -- MANAGEMENT SYSTEM RESEARCH: Framework

fundamentally affect the effectiveness of an organization, and it
seems clear that we have to pay attention to these in the
"experimental organization."

2E4A For instance, to allocate resources effectively requires
serious concern for the relative value of the various results
associated with the alternatives.

2E4B For this one particular practice to become integrated
into one's working life as an effective feature of management
(whether for managing one's personal endeavor or that of a
larger organizational unit), there has to exist both the
attitude-motivation set that brings a person to give this
working technique a real try, and the experience and feedback
that develops intuition, judgment, and skill in its
application.

2ES The broader concept of the management system (i.e., including
the organizational issues) embraces many other problems. These
are basically concerned with the establishment of a stable
configuration for the Bootstrap Community -- a form that is "best"
able to allow the Community to grow in problem-solving capability.

33

I V - - MANAGE~1ENT SYSTEM RESEARCH: The ROMAN Sys tern

3 The ROMAN System for the CDC 3100

3A General

3Al The ROMAN management-aid system was implemented on the 3100
with two objectives in mind. These were to gain experience in
using an on-line system for actual management data and to uncover
some of the problems in implementing such a system and in
expanding NLTS to handle this kind of data.

3A2 In selecting a test area for implementation, we chose the
analysis of the status-report records of our resource expenditures
as a reasonably specific and well-defined problem that would meet
these needs.

3A2A The objectives were as follows:

3A2Al Generate a data base in computer-readable form that
would contain updated records regarding resource status for
projects in the area of our management concern.

3A2A2 Provide the manager with general ways of calling for
summary analysis of these data in tabular or graphic form.

3A2A3 Allow simple mathematical operations such as summing,
averaging, or converting man-hours to dollars.

3A3 While not all of the objectives were achieved, three systems
were developed:

3A3A A system operating with NLTS to generate analytic
summaries of specially structured record files.

3A3B A system for paper-tape logging of computer usage.

3A3C A data structure for personnel time-reporting records
involving specified jobs.

3B The ROMAN System

3Bl Note: The remainder of Sec. IV-3 is increasingly detailed
and technical. The more general discussion is resumed in Sec.
IV-4.

3B2 This system provides for the on-line examination and analysis
of accounting-type data or any data records that can be stored in
the data formats described below.

3B2A The system is operated from NLTS. which serves as an

34

IV -- ~~AGEMENT SYSTEM RESEAR01: The ROMAN System

executive.

3B2Al An instruction calling for a given analytic action on
the record files is written in an NLTS file as part of a
normal text statement, with special first-character(s)
"tags" identifying the beginning of special instruction
words.

3B2A2 A special "execute" cormnand may be designated in
NLTS, with a given analysis-instruction statement as a
command operand (designated by direct selection, by entering
as a literal either the name or the location number, or by
use of indirect selection via a marker call).

3B2A3 After execution, any summary results from the
analysis instruction are inserted back into NLTS as a new
text statement (some instructions merely generate a ne\~

record file).

3B3 In addition to the normal text files, two special file types
are associated with the system.

3B3A The original data base is contained in a packed source
file of four computer words per entry, made up of eight
"fields" defined as follows:

---------------------------------~---------
project class type

name job

----------~--------------------------------hour day

-------------------------------------~-----charge

3B3Al Generic names have been given to the fields \\'i th a
particular application in mind, but any data consistent with
the format of the field could be used.

3B3A2 Data within each field is stored either as a literal
or as a binary code requIrlng table lookup. For the
present, applications of the fields are defined as follows:

3B3A2A Project--the Bootstrap-Community (BC) cost center
against which this charge is made. This corresponds to
the SRI term "project" and to the Be term "Activity."

3B3A2B Class--an activity class such as supervisory,

35

IV -- MANAGEMENT SYSTEM RESEARCH: The ROMAN System

technician, etc. associated with each charge. This was
not actually used in the 3100 system.

3B3A2C Type--the type of charge such as computer time,
labor, purchase ord'er, etc.

3B3A2D Name--the person originating the charge.

3B3A2E Job--a code for a particular defined task against
which charges are to be accumulated.

3B3A2F Hour and Day--the time the charge is incurred.

3B3A2G Charge-.-the actual charge in hours or dollars
depending on the type.

3B3B The second file type unique to the system is the "get"
file.

3B3Bl This file is a subset of a source file and contains
exactly the same data for each record as the source file.

3B3B2 The "get" file is generated by a conunand to the
system specifying the source file, a name for the "get"
file, and parameters identifying the subset of records to be
transferred from the source file.

3B3B2A The "get" file may be generated from another
"get" file or from a source file.

3B3B2B The "get" file was incorporated in the system so
that the user could generate a small file containing the
data in which he is interested.

3B4 Instruction-Syntax Description Conventions

3B4A In the following description of the system, a modified
Backus-Naur form is used to describe instruction syntax.

3B4Al A dollar sign ($) designates "any number of" the
following syntactic entity. Apart from this convention, the
relation to Backus-Naur form is quite direct.

3B4A2 The defined term, in a definition equation,
enclosed in parentheses to make it a "statement name"
NLTS.

is
in

3B4A2A This convention greatly facilitates on-line study
of such descriptive documentation -- using the Hop Name

36

IV -- t.1ANAGEMENT SYSTE~1 RESEARCH: The ROHAN System

command, a user can select the name of a syntactic
entity, as found anywhere in the text (without adjacent
printing characters), and immediately have his display
view transferred to the definition of that term.

3B4B A semicolon terminates the definition equation of a given
syntactic entity, and our convention is to follow the semicolon
with the names of those terms in whose definition the given
entity appears as a right-hand term.

3B4Bl This also facilitates on-line study of this type of
descriptive documentation. The Hop Name command may thus be
used to quickly and easily examine the different descriptive
usages of any of these syntactic entities.

3BS (instruction) = displaycommand searchcornmandstring

3BSA (displaycommand) = "**" operation filenames ; instruction

3BSAl (operation) = listop listspec / getop / plotop
plotspec ; displaycommand

3B5AIA (listop) = "list"; operation. This causes a
summary tabulation to be produced and inserted as a text
statement following the instruction statement.

3B5AIB (listspec) = "("
searchparameter If)" ; operation

searchparameter " " ,

3B5AIBl The LISTSPEC designates how the summary
tabulation is to be ordered.

3BSAIB2
/ "H" /
record
Charge
class

(searchparameter) = "T" / "P" / "I" / "C" / "N"
"D" / "A" ; listspec searchcornrnand T = Type of

P = Job I = Project (or funding center) C =
N = Name II = Hour D = Day A = Activity

3BSAIC (getop) = "get"; operation • This causes a new
data file to be produced, containing a specified summary
of designated data files.

3BSAID (plotop) = "plot"; operation

3BSAIDl The plotspec was to designate which data-field
names would be respectively the X and Y axes of the plot,
i.e.,

3BSAIE (plotspec) =
operation

"(" xfieldname

37

" " , yfieldname ")"

IV -- MANAGEMENT SYSTEM RESEAROI: The ROMAN System

3BSAIEl (xfieldnarne) = fieldnarne plotspec

3B5AIE2 (yfieldname) = fieldname plotspec

3B5AIE3 (fieldriame) = "project" / "class" / "type" /
"name" / "Job" / "hour" / "day" / "charge" xfieldname
yfieldname

3B5A1F Only LIST and GET were implemented. PLOT was to
generate a graphical portrayal of the summary analysis.

3B5A2 (filenames) = "(" {(sourcefile
sourcefile) ")" ; displaycornrnand

" " , get file) /

3B5A2A (sourcefile) = the file upon which the
INSTRUCTION operates; filenames

3B5A2B (getfile) = the file created as a result of the
operation of the INSTRUCTION on the SOURCEFILE
filenames

3B5B (searchcommandstring) = $ searchcommand ; instruction

3B5Bl (searchcornrnand) = (space/comma) "." searchparameter
logicalcondition searchdesignator ; searchcommandstring

3B5BIA (logicalcondition)
searchcornmand

= " " •

3B5BIAl .not was not implemented.

/ " " , / ">not"

3B5B1B (searchdesignator) = specific value ,of data in
field specified by the SEARCHPARAMETER; searchcommand

3B5BIC If a given SEARQ-IPARAMETER does not appear in any
SEARCHCOMMAND, then the data field represented by the
search parameter) is summed over.

3B5BID If a given SEARCHPARA~4ETER appears in a
SEARCHCOH~1AND without any associated LOGICALCONDITION or
SEARCHDESIGNATOR, then all distinct data entries in the
data field represented by that SEARCHPARA~ffiTER are
identified; i.e., there is no summing over this field.

3B5BlE Any LOGICALCONDITION may be used with a given
SEARCHPARAHETER in the SEARCHCOMMAND.

38

IV -- MANAGE~1ENT SYSTEM RESEARCH: The ROMAN System

3B5BIF The use of LOGICALCONDITIONs ft." and ft," implies
some ordering among the SEARCHDESIGNATORs for each type
of SEARCHPARAMETER. If ft." and "," are used, they must
be used as a pair, with the SEARCHCOMMAND containing ft."
appearing before the SEARCHCO~1MAND containing", tt. No
other SEARCIlCOMHAND may appear between the two.

3B5BIG The legal SEARCHDESIGNATORS for all
SEARCliPARAMETERS, except Type itself, are determined hy
the type of record concerned. The list of legal Type
SEARCllDESIGNATORS is as follows:

L = Labor (i.e., personnel) charges, in hours
F = Facility charges for computer use in hours
M = L + 1 = Labor (i.e., personnel) charges, in

dollars
G = F + 1 = Facility charges, in dollars

386 Examples of DISPLAYCOMf'.1AND

3B6A **LIST(N,P)(ROf'.~FILE)

3B6Al Under the control of the associated
SEARCHCOMMANDSTRING, this DISPLAYCOf'.1MAND wi 11 display as a
list of up to 8 columns, an abstract taken from the file
named ROMEFI LE that is sorted by Project within Name.

3B6B **GET(ROf'.1EFILE, TE~fP)

3B6Bl Under the control of the associated
SEARCIlCO~IMANDSTRING, this DISPLAYCOHMAND wi 11 take SUBSET of
RO~lEFILE and store it as a GETFILE named TE~'1P. This will
not be displayed in any form.

3B7 Examples of SEARClICO~lHAND

3B7A *p=csfl •••• searches for Project (job mnemonic) CSFL

3B7B *n •••• searches for all Names

3B7C *d.6603l5 *d,66081l searches for all nates between 15
Harch 1966 and 11 August 1966.

3B8 Example of SEARCHCOMHANDSTRING *T=f *D.660315 *D,660701
*N=wke *N=dce *N=jfr *1=5919 *P=csnl *P=rad

3B8A 111is SEARCHCOMr.1ANDSTRING will search for Type F records
for all Charges under Proj ects CSNL and RAD incurred by NKE,
DeE, and JFR hetween 15 March 1966 and 1 .July 1966.

39

IV -- MANAGEMENT SYSTEH RESEARCH: The ROMAN System

3B9 Example of INSTRUCTION

3B9A
dce

**list(n,i) (romefile)
40.26 wke

*n=dce *n=wke *d660401 *d660501 •
10.10 total 50.36

3B9Al The result of executing this INSTRUCTION is shown
above, listing all charges incurred by DCE and WKE on use of
the computer facility between 1 April and 1 May. The list
is sorted by name. The list is derived from the SOURCEFILE
named ROMEFILE and written as a regular NLTS statement at
the end of the text buffer which is subsequently moved to
follow the statement containing the INSTRUCTION with
conventional NLTS operations.

3810 Source files for the ROMAN system can be generated in two
ways:

3BIOA Text files could be generated and updated by the NLTS
and then through an off-line ROMAN routine translated into the
packed source file.

3B10B Data could also be read directly from punched cards and
translated into packed source files through an off-line
routine.

3BIOC Additional off-line processes were provided for
generating and updating the look-up tables required in
connection with the name and job fields of the data files.

3C Computer Logging System

3Cl To get computer logging information in computer-readable form
for the RO~~ system, we designed and installed a logging system
for the 3100, completely external to the computer.

3CIA Since the computer is used by
laboratory in a "hands on" mode, resident
used for logging.

many people in
programs cannot

the
be

3C2 The logging system consists of a card reader, a clock, and a
tape-punching Teletype.

3C2A The card reader was adapted from an automatic tube
tester. It accepts plastic cards with up to nine alphanumeric
characters. Each card contains the initials of the user and a
six-character code identifying the project or job to which the
computer time is to be charged.

3C28 A simple clock was constructed using a one-minute timer

40

IV -- MANAGEMENT SYSTEM RESEARCH: The ROMAN System

and stepping switches to provide a readout of time (hours and
minutes) in ASCII code.

3C2C When a card is inserted in the reader, the Teletype
prints the time followed by the initials of the user and the
job code. When the card is removed from the reader, the
Teletype prints the time off followed by a carriage return and
two I ine feeds.

3C2D An interlock to the computer "Master Clear" prevents any
computer operations unless a card is in place in the reader.

3C3 This system produces a punched paper tape as well as the
printed record. TIle punched paper tape can then be read into the
NLTS and edited for any errors and then, through file generation
routines, entered into the RO~'1AN source file.

3D Job Structure and Time Reporting Procedures

3D1 We developed a structure of "jobs" that defines the activity
in our area of managerial concern.

3DIA A "job" is any uniquely identifiable task or activity and
is the smallest unit for which accounting records are kept.

3D1B In the structure the importance of a changing environment
has been emphasized. There is flexibility in that jobs may be
broken dO\vn into subjobs or grouped into larger jobs at any
time.

3D1C Procedures for updating a file of job definitions and
information on cost centers to which the jobs will be charged
have been worked out using NLTS.

3D2 On the basis of the job structure, an experimental system of
personnel time reporting was established.

3D2A Individuals taking part in this system were asked to
report all of the time that they spent on any of the defined
jobs, without regard for conventional accounting constraints
(such as reporting 8 hours each day and 40 hours each week).

3D2Al To make this reporting easier, we made provisions for
individuals to define jobs themselves when the previously
defined jobs did not adequately identify their work.

3D2B A program was written to analyze the data collected in
this system.

41

IV -. MANAGEMENT SYSTEM RESEARCH: The ROMAN System

3D2Bl Phase 1 of this program analyzes the raw data
collected from individuals and produces a summary of actual
hours worked on defined jobs.

3D2B2 Phase 2 produces two files to be used as input to the
status-reporting programs.

3D2B2A The first file is a copy of the summary produced
in Phase 1.

3D2B28 The second file is compatible with the external
accounting system, producing daily and weekly totals
corrected for 8 hours per day and 40 hours per week.
This is essentially a file on financial status.

42

IV -- MANAGEMENT-SYSTEM RESEAROI: Augmented Administration

4 Augmented Administration: Some Immediate Possibilities

4A The text-manipulation facility initially built into NLS (the
On-Line System on the 940 see Sec. II) provides in itself
considerable power for aiding general processes of management, such
as planning, coordinating, review, etc. However, we plan certain
extensions to cover other management data-processing needs (such as
were provided by the RO~~ aids on the 3100).

4A1 An "expected" type of extension, for the Hanagement-System
Research Activity, is of course that which operates upon
management-information files to produce analyses of interest to
various management operations.

4A2 These will be important to us, and a rather general approach
is described below that will include within it those capabilities
developed in the ROMAN system, but in addition should allow many
different tools to be developed, experimented with, and integrated
into the management-system tool kit.

48 "Ready-Hade" features

4B1 The NLS "Chain Generator"

4B1A For the requirements of flexible display-creation and
printout-generation, we set up this special processor entity to
search in a p,eneral way through NLS files, locating in a
specified sequence those statements that satisfy given
requirements.

4BIAl For instance, the chain generator could be asked to
generate a "chain" of all those statements found in Fi les
AA, BB, and ce, down to Level 4, whose content satisfied
certain complex specifications.

4R1A2 Alternatively, the generator could be set to follow
cross-reference links of specified type, so that the
generated chain would represent an "associative trail" (to
borrow an old term from Vannevar Bush) through the files.

4B1B This facility will have considerable general value, as
indicated by the value of its more primitive counterpart on the
CDC 3100 NLTS i.e., the Level-Truncation Viewing and the
Pattern-~1atch Filter features.

4B2 CAL

4B2A This is the basic on-line (Teletype) calculator package,
developed by Dr. Butler Lampson of Project Genie at lJ.C.

43

IV -- ~1ANAGEMENT-SYSTEM RESEAROf: Augmented Administration

Berkeley, and furnished as a standard software subsystem with
the SDS 940 Time-Sharing System.

4B2B Besides offering flexible, easy-to-use, interactive
calculator progranuning, CAL has a "graphic" feature providing
for the construction of graphs, etc. on the CRT.

4B2B1 We have experimented with this feature on our new
displays (before the vector generator was really working
well enough to make decent drawings), and we see immediate
and relevant applicability to our needs.

4B2B2 For example, we had it generate "pie" charts,
calculating and displaying the percentage distribution among
an arbitrary list of units.

4B2C We have conjectured as follows upon the possibility of
modifying CAL:

4B2Cl It now uses a two-level hierarchical structure in its
source code (Parts and Steps), and refers "TO" and "DO"
commands to exact location numbers. It tolerates gaps in
the numbering, as well as interpolative numbering -- but one
does not "renumber" (in a cleaning-up operation) without
considerable need, because all of these references must be
updated individually.

4B2C2 We would like to have CAL accept the arbitrary-depth
structure as used in NLS, and to accept the Name-Link
references used there, too. This would let us use the full
power of NLS in composing, studying, and modifying our
calculator programs, as \~ell as providing general
compatibility with our working environment.

4B2C3 We would like also to provide an interface on the
operand-gathering operations of CAL so that it would work in
conjunction with the Chain Generator. Ne want to be able to
reach into any sequence of statements, in any of our NLS
files, to use as input to a CAL operation any terms whose
identity may be specified by l0cation (as in fixed-field
formatting) or by context (e.g., identified by descriptors),
or by some combination thereof.

4B2C4 We would similarly want to develop an output
interface between CAL and NLS, to allow CAL output to be
inserted in an arbitrary place in an NLS file (in specified
format, including graphical), or to replace an existing term
or construct with an updated one, or indeed to generate a
new NLS file if desired.

44

IV -- MANAGEMENT-SYSTEM RESEARCH: Augmented Administration

4C General On-Line Graphic Package

4Cl We have been developing the specifications for extending the
data structure, and the Control f\>fetalanguage syntax and
translator, to enable us to compose, study, and modify graphical
portrayals as an integral part of our NLS file structure.

4CIA We will concentrate initially upon the "integration"
feature, i.e., upon integrating graphs, line drawings, etc.
into the structured-text files so that graphics can be used to
support the expository or descriptive purpose of the text, or
vice versa.

4CIAI There are several ways of achieving this.

4CIAIA One way is to employ a free mixture of both forms
on the display.

4CIAIB Another means is the
cross-reference links embedded in
graphic entities, and vice versa.

use of
text to

compatible
refer to

4CIAIC A third way is to let the product of the chain
generator be an arbitrary mixture of text and graphics,
and also let the pattern-match filtering work on the
graphic entities.

4C1B The control-dialogue procedures for working with the
graphic portrayals are also to be harmonious with the rest of
our system. This promises to be relatively easy to accomplish,
because of the flexibility of the Control Metalanguage approach
and the conceptual order of our basic control-language
approach.

4C2 This graphics package will serve many needs within the
Bootstrap Community, but its early developments will be aimed to
support two principal needs:

4C2A Documentation Diagrams -- for what is needed to record
thoroughly and accurately the goals~ plans, implementation,
operation, etc. of all of our activities. This documentation
effort is very important to many aspects of getting our
"bootstrapping" effectively operative -- including, as noted
below, the r.fanagement-System Research Activity.

4C2B ~fanagement Analysis Portrayals -- -for what is needed to
portray information of special relevance to the communication,
analysis, study, etc. activities of the Management System.
POL= 1;

45

IV -- MANAGEMENT-SYSTEM RESEAR01: Augmented Organization

S Augmented Organization

SA The "environment" will be strongly influenced by the following
factors:

SAl Slow but steady development of the full NLS system on the 940
-- getting the disc system going to provide file capacity, getting
the display system up to quality and quantity, getting NLS and the
Time-Sharing System to give reasonably good response to all the
displays, getting system reliability up past the tolerable and
into the dependable, etc. For a system of its complexity, we must
allO\'1 for many months of this development work.

SA2 An unknown degree of distraction, from such new development
pursuits as the management aids discussed above, caused by crises
in this more fundamental pursuit of getting the basic system
dependab Ie.

SA3 New staffing, to make up for some loss during the winter, and
for an increase in contract budget over last year, is not likely
to mature until early summer, when the university graduates become
available. \ve will be understaffed for a while, and then will be
faced with indoctrinating new people -- i.e., there will be more
burden on old staff before the new staff becomes productive.

S8 To reach significant results in the Management-System research
and to facilitate the "Bootstrap-Conununity" approach, we need to
devote early and serious effort to developing better organizational
structure and activity within the Community and instilling much more
extensive awareness and practice of (and dialogue about) "good"
management principles.

SBl Launching this particular pursuit is not dependent upon the
facility development, and this fact, together with the basic
importance of the pursuit, led us to predict extra emphasis on
this "organizational" topic during the first six months.

SB2 We will specify and steadily pursue the specific
data-manipulation developments described above, but once they are
specified their development rate will hinge upon the evironmental
factors listed above.

SC There are some interesting possibilities for computer aids to the
"organization" problem, particularly in the area of
intercommunication and conferencing.

SCI We anticipate that individual researchers will take part in
team efforts, with each researcher working in his own office and
connected to others by the computer system.

46

IV -- MANAGEMENT-SYSTEM RESEARCH: Augmented Organization

SCIA A system to augment intercommunication is thus necessary
to enhance the capabilities of this team.

SC2 This problem is distinct from that of augmented conferencing
where the concern is with people working together at the same
location.

SO Augmented Intercommunication

SDl What will exist in this regard within the initial NLS is
roughly as follows:

SOIA The creator of a file can designate who else may have
access to this file (i.e., who may get a copy to study), as
well as who else (not necessarily the same group) may modify
the file (i.e., replace one version with another).

SDIB As soon as one person has replaced a modified file into
disk storage, another can pick up a copy to learn what has been
changed.

SDIC If two users may each modify a given file, they may use
it to corranunicate between themselves, more or less as if they
were taking turns writing on a blackboard visible to both. The
difference is that only one at a time may write on the file,
and the other cannot see the new change until it is finished.

SOlD Of course, they may use several communication files, so
that each can be composing a new message simultaneously (on
different files); also, any long message can be sent in parts
so that the recipient need not wait through the entire
composition before seeing any of it.

SD2 Generally, this basic facility, by virtue of the
instantaneous availability of a new version of a given file to
everyone concerned, is in itself a very significant improvement in
the means of organizational intercommunication.

SD2A However, putting this improvement to work raises
immediate questions and problems. Consider, for instance, that
two users will be in disagreement relatively often. For such
an instance, there should be a period of dialogue, arriving at
a resolution of some sort.

SD2Al The dialogue would presumably proceed via
interchanges written into a communication file -- probably
the file containing a passage over which the disagreement
arose.

47

1\' -- ~·1ANAGE~·1ENT-SYSTEH RESEARCH: Augmented Organization '

SD2A2 hl1en the dialogue is over, one user must clean up the
residue and incorporate the outcome of the dialogue into the
original passage. Possibly the other user would later need
help in remembering the original version so as to sec how
the passage had been changed; he would need to find the
record of the dialogue.

5D2A2A There would need to be conventions as to the
recording of the dialogue, etc.

S02A3 A second disagreement could occur during the course
of this dialogue, and a third during the dialogue to resolve
the second disagreement, etc.

503 Special aids to htunan interconnnunication are bound to evolve
ultimately. The following are some possihilities:

S03A Annunciators (User-Interrupt System)

SD3Al TIlis refers to special signals indicating to a user
that there is a message (or a requested operation) to he
brought to his attention.

5D3AIA These signals function like the annunciators in
certain communication equipment -- more or less raising a
flag at the edge of the user's consciousness so that he
can interrupt his current activity \vhen it suits the
occasion. The analogy to the interrupt system in
computer hardware is qui te direct.

SD3AIB Each individual could probab ly estab 1 ish his O\vn
way of having the5e annunciators implemented e.p,.
blinking marks at one edge of the screen, etc.

SD3A2 In responding to an annunciator signal, a user may be
taken automatically to a particular view of some passage
which others are working on and would like his help, or
there may of course just be an independent messa~e. In the
latter case, an automatic message-answering facility could
he useful, setting up in tum an annunciator call upon the
ori ginator.

SD3A3 An announcement could be sent simultaneously to a
specified set of people, with code terns possib-le for
specifying special sets of people to whom group messages are
frequently sent.

SD3A3A A user
specified order

could have
through a

48

a message circulated in a
given set of people, and

I r -- r··fANAGEf'.·1ENT -SYSTE~1 RESEARCH: Augmented Organi zat ion

perhaps could even set up an algorithm for dynamic
determination of· the sequencing (with looping possible)
depending upon the additions made by the successive
people.

sn3A4 Different levels of urgency could be signalled.

51HA5 One typical signal could be an "alarm clock ,tt set by
the user himself for a given time or event.

5D3B Vatinp,

SJ)3Bl A logical extension to the annunciator system is a
set of aids for automatically callinr, for votes, for
inc.reasing the urgency of an ignored annunciator signal, for
presenting the issue to each voter, and for recording the
votes and registering the results.

5D3B2 To ini tiate such a procedure, a user \"ould need to
designate the particular issue, the group over which the
vote is required, the priority level, etc. Perhaps he would
include a request to be interrupted when the voting was
complete, or by a certain time.

5D3C Dialogue structure

51)3(1 The interactive discussion is likcly to take
nonlogical paths in its course toward understanding and
compromise, and it could produce a messy file unless special
means are provided for either accommodating this disorderly
development or elsc cleaning up as it proceeds.

5D3(lA Initially, the parties to the dialogue would have
to do this cleaning up, but it could be very useful to
deve lop a technique for structuring the success i. ve
contributions to reflect the course of the argument and
provide help in clarifying its overall status at a given
moment.

51l3C2 This mipht entail developing a node-link structuring,
with ways of labeling the branching of dead-end paths,
superseded arguments, alternatives yet unexamined, etc., and
various ways of displaying di fferent views of this to help
see where the argument has been, where it i.s incomplete,
what the net rcsul t current Iy is, whose "turn" it is now on
a given branch, etc.

SD3D Sip:natures

49

IV -- ~·1ANAGEMENT-SYSTE~t RESEARCH: Augmented Organization

SD3D1 A ne\\'
identification of
of the entry time.

dialogue entry should include the
the person making it, as well as a record

SD3D2 The computer can
"signature" in each entry.

SD3E Concurrent access

automatically install this

SD3E1 The course of a dialogue would be faster and less
frustrating to all parties if simultaneous access were not
I imitated to "one at a time making additions," as will be
the initial case.

SD3E2 \\'i th the special dialogue structuring, or even in an
ordinary structure (with special algorithms regulating the
operations allowed each participant), simultaneous access
could be much improved without undue difficulty.

SD3E2A It would probably be necessary to enter a special
operating (dialogue) mode, in which many operations arc
disallowed, and special ones provided; all users could
then reference the same file.

SD3E2B For instance, if participants were limited only
to the attachment of new statements (dialogue entries),
as seems a reasonable possibility, then it is logically
feasible to let them both be working on the same file.

SD3E2(User A could see where User 13 is attaching the
entry he is currently composing; if desired, he could
even sec the current state of that entry (although he
could not do anything about it until the entry was
finished) •

SD3F Injunctions

SD3Fl Some sections of a dialogue filc could be open for
modification, to sharpen up an argument, etc. But if some
passage is tmder attatk, it could create great heat and
confusion if someone changed it before another party had had
his say.

SD3F2 To control this, there could be an "injunction"
feature, where User /\ could affix an injunction upon a
specified passage, and the computer system would pennit no
subsequent changes unti I "due process" had 1 i fted that
injunction.

50

IV -- ~1ANAGEMENT-SYSTEr-.1 RESEARCH: Augmented Organization

SD3F2A "Due process" would mean release either by User A
or by some higher authority who overruled him.

SD3G Journal records

SD3Gl Allowing changes to
dialogue record. during the
definite advantage toward
"statement" of interaction.

be made in sections of the
course of the dialogue. has
providing a better current

SD3GIA However. it loses the
development of that current state.

"history" of the

SD3G2 A possible way to save the history would be for the
computer system to automatically keep a log (a journal
record) of each action by each participant, complete enough
so that from this record it could make a dynamic rerun of
the dialogue as it actually occurred.

SD3G3 For research purposes it would be very useful to be
able to study the dynamics of these dialogues.

SD3G3A t'\nong the consequent possibilities is the ability
to evaluate the relative effectiveness of different
individuals in a new and useful way. TIlis possibility
would also be valuable for operational management
systems.

SD3G3B This facility would also enahle analyses to trace
the source of important contributions.

S[Augmented Conferencing

SEl Dialogue from distributed consoles is important, but we are
assuming that personal-confrontation dialogue is still necessary
and very important.

SElA It is not clear how much difference there might be in the
nature of the computer aids required to "augment" a conference
as compared with those for the distributed dialogue, but at
least the physical arrangements will be different.

SEIB TIle fol10win~ is a description of our initial experience
with augmented conferencing.

5[2 The On-Line Sponsors' Progress-Review ~~cting

51:2;\ On 12 and 13 October 1967 the following Sponsors'
representatives visited us for a progress-review meeting:

51

IV -- MANAGEMENT-SYSTEH RESEARCH: Augmented Organization

SE2Al Robert Taylor and Barry Wessler, ARPA

SE2A2 A. E. Gribble, NASA-Langley

SE2A3 Fred Dion and Dean Bergstrom, RADC

SE2B For this meeting we built a special square table, seating
five on a side, with the center area open. We arranged six of
our television monitors in the center area, so that each of the
20 persons was conveniently near at least one of them. Fig.
IV-I shows this arrangement.

SE2Bl These TV monitors were placed low enough to give each
participant an unobstructed view of all other participants
around the table.

SE2B2 At one locati on at the tab Ie tole set up the mouse,
keyboard, and kcyset terminal equipment to remotely control
NLTS on the CDC 3100.

5E2B3 A TV camera captured the image generated on the large
display scope in the computer room, and the video was wired
to the six monitors in the conference room.

SE2B3A The video signals were inverted, so that the
displays in the conference room showed black characters
on a white background.

SE2B4 Six auxiliary mice were located around the tahle,
,,,ired so that depressing the control button on any onc of
them would pick up a relay to connect that mouse into a
special input channel to the computer.

5E2B4A This channel controlled the position on the
screen of a second, extra-large tracking arrow.

5E2B4R This setup allowed any participant easily to take
a nearby mouse, hold the button down to establish his
control of the extra tracking pointer, and move this
pointer about on the screen as a means of pointing out
i terns on the display about which he \vished to talk.

SE2C We collected about 150 of the files that have heen
developed in the program, and put them on one disc pack to he
available for access and study during the conference.

5E2el This included all of the working specifications and
some of the symbolic source code of our 940 system design,
vhe documentation and user guides for the 3100 and 940

52

TV -- ~·fANAGEHENT-SYSTEM RESEARCH: Augmented Organization

subsystems, all of our recent reports and proposals, etc.

SE2C2 We also included some files specially prepared to
show the activity, framework, and candidate conference
topics, and a framework from which to generate the working
agenda.

SE2C3 Figure IV-l shows the specially prepared agenda file,
with the view parameters set to show only first-level
statements, displaying one line of each.

SE2D As a means for presenting a large quantity of complex
material, in a manner flexibly adjustable to the course of the
discussion and to the special needs and questions of the
participants, this setup proved very valuable.

SE2DI The full power of NLTS for moving nimbly between
files, and within a given file for scanning, freezing,
cross-reference hopping, content filtering, etc., gives to a
practiced user an tmusual capability for presenting his
material.

SE3 Conferencing plans and possibilities

SF3A We were all quite enthusiastic about the experience, and
\'JC are looking fonvard not only to regularly running our own
program Meetings and design sessions in this manner, but
perhaps to holding more on-line meetings with sponsors and
people outside the program.

SE3B Besides this 20-man conference setup, we shall need to
develop means appropriate for 2- to S-man groups, perhaps using
the office consoles.

5E3Bl One hasic need would be for independent control
devices (mouse, keyset, etc.) for each participant.

SE3B2 Also, provision so that whatever display surface(s)
are being used can be arbitrarily divided up for independent
control. (This feature is also valuable for single-person
use.)

SF The challenge of adaptinr. to not only a unique working
environment (i.e. the Bootstrapping Community, where a person is a
specialist-contributor researcher as well as a subject), but to a
rapidly evolving environment, is quite critical here.

5G This t.hrust in our general plans rt~presents a shift in focus to a
hroadcr concept of "management system," with emphasis on

53

IV -- MANAGEMENT-SYSTEM RESEARCH: Augmented Organization

orgnizational problems. However, in parallel with efforts to
understand these issues, we will continue to develop software
management (administrative) aids, based on the S[)S 940.

54

(Jl
(Jl

\ ,~ ~. &.~\ -- ,. ,
. ". , ~
a. "'--..
, \ \ QC .. "..,
~ ~ - ~, t, ,...._.,-
'! . ~.,. ~.r~

FIG.IV-' AHI SPONSOR'S ON-LINE CONFERENCE

t\PPENUI X A -- General Background: General Features of AIlI Research

1 Ceneral Features of AlII Hesearch

1/\ Increasing the value of plentiful and immediate computer service
requires a "system engineering" approach which, hesides concerning
itself wit}l the development of the various computer-aid techniques
and operations, treats in a coordinated fashion other significant
aspects of the "user system" that are amenable to study and
improvement. Some of these aspects arc as follows:

1,\1 The nature and structure of concepts \\1i th whi ch the user
approaches his problems. TIlese concepts include "task,"
"cons 1'. rai nt ." "r~snurce," "deadl ine," "progress rev] ow,"
"responsihility," etc. Specific instances of these common and
important concepts will appear in a project environment in
relationships fanning a structure.

1A2 The nature .mel structure of the symbolic representations of
these working concepts such as formatting, footnoting,
cross-referencing, special tagging, charting, etc.

lA3 The way in which the user "encodes" his requests for service
from the COMputer system, considerinp, both the nental and the
physical ~H.:tions that arc required to control the conputer.

1A4 l~e procedures and methods with
at every level of activity where
practically make changes (e.g •• how he
reference, cleans out his files, gets
sets up a project.)

which he pursues his goals,
the system designer can
changes a sentence, adds a
a trial design approved, or

1B This system-oriented approach is also an experimental one, in
which all of the varied developments are put to work in a coordinated
real-life working environment to be tested and evaluated.

Ie The value ascribed to new developments, and the system of
priorities used to select the next implementation from among many
possibilities. are hath based upon the associated improvements to the
system's capability -- i.e., to the working effectiveness of the
people in this experimental environment.

II> The users of this experimental system i.e., the "subjects" of
experimentation -- arc the staff of the Nfl Research Center. We call
this the "hootstrap" approach, and the group of users is called the
"Bootstrap Community."

1))1 Thus. the aids deve loped and experimented wi th are those that
promise to the Bootstrap Community th~ best payoff either in
direct improvement of working abilities or in new understanding
toward that end.

A-l

APPENDIX A -- General Background: General Features of MIl Research

IE Implicit in the above, but deserving explicit comment, is the
evolutionary nature of the system growth that results from this

. approach. Developments of various facets of this system, as well as
our means to study, analyze, design, and implement them, must all
evolve together in a coordinated fashion.

A-2

APPENDIX A -- GENERAL BACK~ROUND: Bootstrap Approach

2 ~~jor ronsiderations Associated With the Bootstrap Approach

2A TIle Whole-System Concept of Augmenting Human Intellect

2Al We are concerned with the effectiveness of an "augmented
human." Our concept of "augmented human" includes the human plus
the language, methodology, and artifacts he uses.

2A2 It- is our concern to improve the effectiveness of the whole
system i.e., augment the human by evolving better language,
methodology and artifacts, and the means for learning how best to
use them in the pursuit of comprehension of our complex
environment.

2A3 lhere is no sense in isolating a part of this system for
study to the exclusion of other parts. TIle Mil Research Center is
concerned with study, design, experimentation, and evaluation of
all aspects of this system.

21\4 Limited problems can he isolated and worked on at any given
time. But the evolutionary nature of our strategy allows us to
continually redirect our concern as new problems are identified.

28 En~irical Evaluation of System Features Within a Working System

2Bl Cons i Jeri ng that this is a \I/hole-sys tem approach and that the
whole system is very complex, we cannot analytically determine .the
mutual-interaction effects that a change in one systeM component
has throughout the rest of the system. The net \vorth of a change
in one component must he evaluated by its effect on whole-system
perfonnancc.

2BZ These considerations argue strongly for evaluating each
feature by observing its effect within a whole system that is not
only in realistic use but has had time to be shaken down. Only
when the system has c.ome to some sort of equilihrium after
implementation of a new feature can the feature be evaluated. The
resulting grovith is by a series of small, evolutionary steps.

2C Evolutionary i\pproach

2Cl An important operational question is how large an
evolutionary step should be to maximize experimental progress.

2C2 The "size" of a r;iven step can he measured in several ways:

2C~A By its development cost in talent, dollars, and computer
demand

A-3

APPENDIX A -- GENERAL BACKGROUND: Bootstrap Approach

2C23 By the magnitude of the changes required in the
operational environment i.e., in hardware, conventions,
skills, procedures, data formats, operating roles, etc.

2C2C By the time required to implement and check out the
change, and to shake down the new whole-system operations.

2C3 At the present state of our development, most "steps" cannot
be quantitatively evaluated. Evaluation and decision thus become
a community problem, demanding new rules, procedures, methods and
organization to enable a "consensus t

' to be attained. These issues
are discussed as "organization" problems in Sec. IV.

2C4 Because of the great uncertainties in our research
environment, the evolutionary approach means we make small steps
in preference to large ones. Less uncertainty is involved with
small pragmatic steps into the "unknown." Small steps can be
accomplished without major equipment changes.

2C4A For example, we do not try to develop automatic
speech-recogni tion capabi Ii ty, because it is a large-step
change and does not at all promise corresponding value in terms
of our goals.

2D The Bootstrap Strategy

2Dl The assumption that the whole-system, empirical, and
evolutionary principles are all to be followed in an exploratory
program leads to certain requirements:

2DIA The first requirement is a an experimental service system
capable of providing the necessary service functions.

2DIB The second requirement is a set of subjects to use the
system.

2DIBI The subjects are trained in the use of current
language, methods, and artifacts.

2DIB2 They use these augmentation means exclusively (where
applicable) in the pursuit of significant intellectual work
in which they have full professional motivations and
pressures.

2DIB3 They not only become comfortable and smoothly
skillful in the use of each innovation, hut also pay
attention to the new needs, possibilities, and complaints
associated with the interaction of each innovation with the
rest of the working environment.

A-4

APPENDIX A -- GENERAL BACKGROUND: Bootstrap Approach

2DIB4 This often calls for a succession of changes until
the dynamic "reverberation" throughout the system caused by
the introduction of the original innovation has died out,
and the system assumes a certain condition of integrated
smoothness in its operation.

2DIC The third requirement is a set of research tasks -- for
example:

2DICl
system

Studying the subjects and the subject-augmentation

2Dl[2 Analyzing and evaluating needs and possibilities

2DIC3 Designing new parts of the system or redesigning
est~)lished parts

201C4 Implementing changes and training subjects to take
advantage of new features

2DIC5 Conducting other normal research support activities
including literature work, reference keeping, professional
conununication, planninp" coordination, documentation,
project management, etc.

2D2 The "bootstrap" principle, as applied here, results in one
set of people playing the roles of both subjects and researchers.

2D2A This Deans that the researchers are constantly studying,
analyzing, evaluating, desipning. implementing, training, and
learning over the whole range of recognizable, understandable,
and designablc portions of their own professional working
environment within a set of objectives, principles, and
concepts that it is their responsibility constantly to improve.

2D2B The areas in which they seek to augment their ability to
comprehend and solve problems will be these activities
thcmsel ves.

ZU2C In that the researchers' dai ly '.vork mir,h t be said to be
"augmentation-system development," the sum of the developments
stemming from their work will he an "augmentation-system
developnent system."

2D2D Tnc principles and techniques
implementation .• evaluation, and traininp,
he comraunicable to others who wish
aup,mentation systems.

A-5

of analysis, design,
that they develop will
to work on specific

APPENDIX A -- GENERAL BACKGROUND: Bootstrap Approach

2E The "Augmented Organization"

2El In our Bootstrap Community, we have an organization of
"augmented h,umans," interactively cooperating and communicating
with the aid of real-time cross-coupling through their computer
system.

2EIA Such an organization is promised a direct
effectiveness because its individual members can
complex tasks and do them better and quicker.

gain in
do more

2EIB Ne expect a source of marked improvement in
organizational effectiveness to be found in the new abilities
to intercommunicate, to follow sophisticated cooperative
procedures, to work simultaneously on common data, to have
semi-automatic interpersonal "interrupt" protocol leading to
approval or voting actions, etc.

2EIC The product of "augmented organizational coordination" of
"augmented human" members presents a truly exciting potential.

2F The Hanagement-System research is viewed as an important part in
pursuing this potential within the SRI M1I Program.

A-6

APPENDIX A -- GENERAL BACKGROUND: Experimental Environment

3 Specific Features of Our Experimental Environment

3A The foregoing has been an attempt to give the reader some insight
into the conceptual framework and research strategy with which the
AliI Program pursues the potential of "augmenting human intellect."
The following is an introduction to the actual work that has been
carried out by the Augmented Human Intellect Research Center.

3B Our initial focus has been on computer-aided text manipulation.
(By "text" we mean generally infonnation represented by strings of
characters. This could include mathematical equations, programming
statements, etc.) There are several reasons for this:

3BI Text is representative of our speech and much of our
conscious reasoning about nontextual records; it is the basic
fabric in which most of the collaboration in system development
work such as ours takes place.

3132 Text is applicable as a representation of our thoughts and
actions at all levels of our working system (e.g., from coding for
the computer up to long-range planninp; for the research program).
TIlis makes it widely applicable to our own work.

3133 A coordinated working system for manipulating text is
relatively easy to implement. With equivalent resources, a wider
collection of useful working aids may be implemented for text than
for graphics, for instance.

3B4 An effective system for handlinp, the text of working records
(planning, design, reference, etc.) will provide a sound structure
in \vhich later to embed manipulation techniques for other symbols
-- e.g., graphics.

3C 'nle Use of Structured Text

3(1 A very early feature of our conceptual framework regarding
Ineans for augmenting human intellect was the introduction of more
explicit "structuring" of workinr. information. We took the view
that the symbols one works with are supposed to represent a
mapping of one's associated concepts, and further that one's
concepts exist in a "network" of relationships as opposed to the
essentially linear form of actual printed records. Thus it was
decided that the concept-manipulation aids derivable from
real- time computer support could be appreci ah ly enhanced by
structuring conventions that would make explicit (for both the
user and the computer) the various types of network relationships
among concepts.

3CIA As an early experiment with this concept, we adopted some

A-7

APPENDI X A -- (;ENERAL BACKGROUND: Experimental Environment

years ago the convention of organizing all information into
hierarchical structures, with provisions for arbitrary
cross-referencing among the elements of a hierarchy. The
principal manifestation of this hierarchical structure is
simply the breaking up of text into short paragraphs caLled
"statements," each of which bears a number showing its serj al
location in the text and its "level" in an "outline" of the
text. For some material, the structured statement form may be
undesirable. In these cases, there are means for suppressing
the special formatting in the final printout of the structu,.·cd
text.

3C1B lne ability to name individual statements and to form
arbitrary cross-reference links between any two statemcnts,
,"hen added to the basic hierarchical form, yie Ids a general
structuring capability that is quite flexible. These
structuring conventions are expected to evolve relatively
rapidly as our research progresses.

3C2 The basic validity of this approach has been well established
by our subsequent experience. We have found that in both off-line
and on-line computer aids, the conception, stipulation, and
execution of significant manipulations is made much easier by the
structuring conventions. Also, in workinp, on line at a CRT
console, not only is manipulation made much easier and more
powerful by the structure, but a user's abi lity to pet about very
quickly within his data, and to have special "views" of it
generated to suit his need, are significantly aided by the
structure.

3C3 We have come to write all of our documentation, notes,
reports, and proposals according to these conventions, because of
the resulting increase in our ability to study and manipulate them
during composition, modification, and usage. Our programming
systems also incorporate the conventions. We have found it to be
fairly common that after an initial period of negative reaction in
reading explicitly structured material, one comes to prefer it to
material printed in the normal form.

3D Means of ~·tanipulating Working Text

3Tn Two coordinated systems of text manipulation are used wi thin
the AlII Research Center. The purpose of these systems is to aid
their users in composing, modifying, and studying the text of
their working information, with special attention to the ease,
flexibili ty, and power that make working records flexib Ie enough
to be kept up to date with current thinking and developments. All
of our text-manipulation techniques will work to some extent wi th
normal "free" text, but are much more effective and powerful when

A-8

APPENDIX A -- GENERAL BACKGROUND:

used on structured text.
manipulated further with the
described below.

3D2 FLTS

Experimental Environment

Output text from either system can be
other system. The two systems are

3D2A One system is the Off-Line Text Manipulation System
(FLTS), which provides a means for harnessing computer aid for
a user sitting off-line at any writing devi.ce that produces
punched paper tape.

3D2Al The paper tape is later batch-processed by a computer
program that operates upon the new text input, as well as
upon any specified "old" or previously processed text,
according to user-specified directives (commands) embedded
in the text. These directives may be deleted from the text
on final output.

3D2A2 FLTS may be used for composing and modifying new
files, for adding to or modifying old files, and for merging
and reorganizing new and old files.

3D3 NLTS

3D3A The other system is the On-Line Text ~lanipulation System
(NLTS), \vith which a user sitting in front of a CRT display
gets immediate response to his key-stroke and pointing actions
in terms of modification to the displayed text, or the place in
text he wishes to view, or the form of a view he wishes to see.

3D4 Printout

305 Special printing-control features have heen developed to
facilitate output printing for either system. Special control
directives are emhedded in the text, to be carried and manipulated
as part of a file's regular content. These are recognized and
interpreted during output. By these means margins ,may be set, page
headings may be established, etc.

3DSA As an example, with the exception of pages cont'aining
illustrations, every page in any of our current reports was
typed on its mat directly from computer output. The system, in
response to directives, automatically leaves page space for the
pages that contain photographs. One directive permits the
printing of the directives to be suppressed, so that they will
not appear in the final copy.

3L Note: These systems are being transferred to the SDS 940
time-sharing computer.

A-9

APPENDIX A -- GENERAL BACKGROlJND: Experimental Enviro' ment

3El "TIle 940 display-oriented on-line system is called NLS, and
will include graphic- as well as text-manipulation capru>ilities.
Its initial version will provide essentially the the same user
features as the 3100 NLTS. An improved printout system is being
implemented.

3E2 The equivalent of FLTS is scheduled for implementation after
NLS is running well. and will be a system usable for either
off-line (via paper-tape) or on-line typewriter-controlled
manipulation of files containing mixed text and graphic
information.

A-IO

APPENDIX A -- GENERAL BACKGROUND: Prior Support History

4 Prior Support History

4A A project for the Air Force Office of Scientific Research
(Contract AF 19(638)-1021, under which the basic conceptual work was
done, as well as the first off-line text-manipulation work

4B An internally sponsored project at Stanford Research Institute,
under \vhich an intennediate-state off-line system w~s developed

4C A project for the Advanced Research Projects Agency (Contract
SD-2(9), under which work on information structuring, basic working
methodology, and the higher-level manipulation processes in the
on-line system were done

4D A project for the Electronic Systems Division of the Air Force
(Contract AF 19(628)-1088) which studied structuring and manipulating
techniques for managing information (specifically, system-program
design documentation)

4E A contract with NASA (Contract NAS 1-3988) in which we studied
and developed the display-control techniques that represent the
operational foundation of the on-line system.

4F A contract jointly sponsored by ARPA and NASA (Contract NAS
1-5904), begun just hefore this management-system research project
and running in parallel since then, which has supported the hasic
developments of the AlII Program (see Engelbart6 and Engelbart7).

A-ll

APPENDIX A -- GENERAL BACKr,ROlmD: Status at Beginning of Project

S Status at the Beginning of the Project

SA At the time the project hegan, we had just replaced our earlier
CDC 160A with the present CDC 3100. Our new facility comprised:

SAl The CDC 3100 computer, in the following configuration:

SA1A ~1emory: 16,000 words, 24 bit, 1.75 microseconds

SA1B Three I/O channels, one of which is compati.ble with the
interface previously used on some of our equipment for coupling
to the CDC 160A

SAle Paper-tape I/O

SAID Three magnetic-tape transports

SAlE One IBM 1311 disk file (2,000,000 character capacity)

SAIF One ISO-line/minute printer

SA1G Punched-card reader, 1200 cards per minute.

5A2 \'.'ork Station

SA2A Special (SRI) interface equipment couples the 3100 to a
display generator, and to the various keyboards and selection
devices of the work station.

SA2B Before the project began, SRI had installed a Straza
character generator, with a repertoire of 63 characters and a
generation rate of the order of 100.000 characters per second.

SA2C Early in the project, SRI added a vector generator to our
display-driving equipment.

SA3 Software for the 3100

SA3A CDC provides a FORTRAN IV compiler, an asset11bler for
their CO~1PASS symbolic machine language, and the SCOPE
operatine system, under which programs in either languap,e may
be run. en-tere are, of course, other clIe soft\vare systems, but
these were the only ones of concern to us.)

SB An carly version of NLTS had heen programmed for the 3100, \>Ji th
essentially the same internal organization and external functional
features that had been implemented on the 160A (see Englishl).

S81 This implementation 'vas programmed in COf'.1PASS.

A-12

APPENDIX A -- GENERAL BACKGROUND: Status at Beginning of Project

5B2 TIle 3100 had considerably more room in core for working data
-- so we now could contain the whole of a 30,OOO-character worki.ng
file in core -- whereas on the 160A only some 3000 characters out
of a 17,OOO-character working file could he held in core.

5B3 TIle response to many commands, when lVorkinp, on a large file,
was thus noticeably faster.

5B4 Qui te a few improvements in detailed software design were
made in this reprogramming, but it was not a "redesign," since our
hasic need was to get a system operating as quickly as possible on
the 3100. The 160A was to be removed, and we did not ''1ant to be
without a usable on-line text manipulation system.

SC The structure-manipulation part of a new FLTS had heen specified
for the 3100, and was being implemented in FORTRAN IV.

SCI The manipulation functions specified were essentially the
same as in the system previously implemented in ALGOL on our B5500
(sec [ngelbartS).

51) The hasic assemhly-debugging facilities within the COPE system
had essentially been put into operation. This version of the system
was still written in COMPASS.

SE A SNOBOL3 compiler had been desi~ned for the 3100, and was
essentially progranuned (in COPE) but not checked out.

SF xnoc: External-Document System

SFI Since 1959, under various successive sponsors, we have been
accumulating a file of "external document" (XDOC) citations and

. reprints.

SF2 The ci tations had been punched on paper tape as they
accumulated. and we had about 2000.

SF3 ()f the actual referenced papers, at least 75 percent existed
as reprints or copies, stored in our files under their XDOC
accession numbers.

SF4 111e only index we had to this was a card file arranged
al phabeti cally by author.

S(; TIle further deve I opments of these 3100 systems are des crihed in
(Enge lbart6) and (Enge lhart 7) •

A-13

APPENDIX A -- General Background: History of Management Project

6 History of Management-System Project

6A The project began in February 1966, and an initial set of
computer aids was specified and implemented (as described earlier in
this report) to support the management of our manpower and facility
resources. This was as initially planned for the research project,
making use of the CDC 3100 computer-display system.

6B At the ARPA Contractors' meeting at r·lIT on 7 and 8 April 1966, in
a discussion between D. C. Engelbart of SRI and Robert Taylor of
ARPA, it was agreed to study the possibilities for a significant
expansion in the computer-display facilities for the N11 Program -­
an expansion for \ .. hich ARPA was tentatively interested in receiving a
proposal.

6Bl The basis for the initial exploration \\las to consider
est~)lishing on the order of twelve CRT consoles, to be
distributed among the offices and work areas of the Mil Research
Program, to be served \\lith full-time availability by a time-shared
computer system able to provide the needed level of response and
file storage.

6C Knowing that any such expansion would sipnificantly alter the
planned activity for the management-system project, Engelbart visited
RADC on 9 April to discuss the situation with Hr. A. R. Barnum and
his staff. TIle consensus reached during this discussion was as
follows:

6Cl If such a change were to be made, it would he better (for the
AliI program as a whole) to do it as soon as possihle, since the
much-increased research progress yielded by the proposed new
system would thus have longer to produce results.

6C2 Once a firm decision to change facilities was reached, it
\>!ould be wasteful to continue to invest time and money in
developing management aids on the CDC 3100 -- since \\Ie would not
carryon with the use of the old facility, and thus would not be
able to use, evaluate, and improve these aids.

6C3 Thus, it was realized that, compared with the iriitial
expectations on this management-system research project,
significantly less results would be obtained during the project
period if this new facility development were to take place
i.e., results represented by explicit new cOMputer-augmented
management practic.es.

6C4 This project had been viewed, hy both sponsor and contractor,
as an initial stage of at least a two-stage effort, and while the
contemplated facility changeover would diminish the results from

A-14

APPENDIX A -- General Background: History of Hanagement Project

the first stage, it would tremendously enhance the productivity of
a second stage.

6C4A Part of the tentative new-facility plan being studied was
that ARPA would support the entire computer facility, allowing
free use of it by other projects (such as this
management-system project) that fitted into the coordinated
"hootstrap" research pursui t. This would free the fairly
significant portion of the subsequent RADC support money
otherwise required for CDC 3100 computer charges, to be applied
towards increased manpower effort on the management-system
research.

6C4B Also, the ncar 20-fold increase in console availahility,
plus the "augmented organizational-coordination" feature, would
produce a very much richer environment in which this increased
management-system research staff would operate. This
environment not only would permit a much wider range of
experimental techniques to be studied, but would also represent
much more realistically the working environment for the manager
of the future.

6C5 In the long run, then, RADC' s return in research results
would be increased by shifting the nature of this first stage to
coordinate with such a facility expansion, if the latter were made
possible.

6C6 It was agreed then that SRI would proceed with a study as to
the feasibility, costs, etc. associated with such an expansi.on,
and if appropriate, submit a proposal to ARPA for its support.
Concurrently, the initial plans for the management-system research
would he pursued; and if the proposed expansion became
significantly probable, discussion of the associated
rearrangements for the RAOC contract would be taken up.

6D Through the Summer of 1966, SRI conducted its study and prepared
a proposal developed around acquiring ,an SOS 940 computer, and
building special interface and display hardware. At a discussion
with personnel representing ARPA and NASA (who were also involved in
support of concurrent AliI research), held at NASA's Langley Research
Center on 21 and 22 September 1966, a consensus was reached regarding
both the value of such an approach to the whole AliI research program,
and the interest of both tJASA and ARPA in proceeding wi th
negotiations. This established a high enough probability of the new
facility becoming a reality that effort under the ARPA-NASA contract
was shifted entirely to the planning and specifications for the new
system.

6E In accordance with prior arrangement, a telephone discussion was

A-15

APPENDIX A -- General Background: History of Management Project

then held with Hr. Barnum in which it was agreed that SRI should
request an extension of the contract without funds for this project.
Accordingly SRI requested that the conract termination date be so
extended, from its original date of 22 March 1967 to a new date of 1
September 1967.

6F It had been initially assumed that the added ARPA funds would be
attached to the existing ARPA-NASA contract. It was found
preferab Ie, however, to route th is added funding to SRI through RADC.
Formal proposals were submitted by SRI on 1 February 1967 (ESt!
67-10).

6G On 5 f\1ay 1967, the modifications to Contract AF 30(602)-4103 were
finalized and money became available for ordering equipment and
implementing the new system.

6Gl Concurrently, the termination date of the contract was
adjusted to 7 March 1968; thus this "first stage" of
management-system research became but a part of the larger
project, and its termination date was made concurrent to that of
the facility support portion the latter being an inflexible
date, since a large segment of the funding supports the computer
lease, which the AliI program has no flexibility to adjust.

@I At the time of this report -- i.e., at the above-mentioned
termination date, the new facility is not quite functional, and no
special aids have been programmed for management-system support.
lIowever, there have been developed special features in the data
structuring, in the Control ~tetalanguage, etc. (see Sec. III) to
enab Ie the ready addi tion of these contemplated special comp'lter
aids.

A-16

IIARDWARE REFERENCE HANUAL

Introduction

IA This document is a preliminary reference manual for programming
the peripheral equipment connected to the Special-Devices Channel
(SHC) •

IB The Special-Devices Channel is an I/O channel designed to
interface a group of nonstandard (non-SDS) equipment to the SDS 940
computer. It consists of an executive control and six independent
lmi ts.

I B I The channel provides direct access to memory for each of the
nnits.

IBIA Hemory addresses, direction of transfer, and priority are
supplied independently by the units.

IBIB The units operate asynchronously. The executive control
standardizes timing and determines priority among the units.

IB2 It responds to EOH and SKS instructions for program control
of the devices.

IB2A Each unit operates from a fixed address in core, with no
provision for transfer of addresses wi th the EO~1 instructions.

IB3 Interrupts are
conditions in the
provided.

transmitted to
various units.

the computer under certain
Nine interrupt lines are

IC The units and associated devices handled by the channel are as
follo,,,s:

lei A disc file with approximately 32 million words of storage.
The average access time is 95 ms and the data rate is 42,000 words
per second.

le2 Two independent display systems each with six displays.

IC3 An Input-Device Controller (IOC), which reads the input
devices associated with the CRT work stations (keyboards, binary
keysets, and mice) and also provides certain output sir-nals for
nse at the consoles.

1 C4 A terminal to accommodate special hardware for time-sharing
system improvements.

ICS A Low-Priority Controller accommodating three low-priority
devices:

B-1

HARDWARE REFERENCE MANUAL

ICSA A line printer with printing speed of 230 lines/min and
·96 characters, including upper- and lower-case alphabets.

ICSB An on-line Selectric typewriter, with provisions to
accommodate a plotter at some future date.

lesc A terminal to interface the proposed ARPA computer
network.

B-2

HARo\~ARE REFERENCE HANUAL

2 TIle following terms are used in describing the operation of the SDC:

2A Advance sector word A word in core that is written by the disc
controller to indicate the sector in each zone that will be availahle
next.

2B Command tahle -- A contiguous huffer in core containing commands
to a disc or display controller.

2C Console status table -- A hank of S6 words that contain data on
the input devices and output signals for each console.

2D Display buffer -- A contiguous buffer in the display pages
containing display instructions.

2J>1 The display buffer may cross the page boundary and has a
maximum length of 1023 words.

2E Display controller The system hardware that interprets
computer instructions (EOM and SKS) and controls the command-table
processing.

2F Display generator -- The display-system hardware that accepts
display instructions and from them produces a picture on a CRT.

2G Display instructions
(heam motion, character
generation of a display.

Instructions to the display generator
writing, etc.) that cause the actual

2H Display list A contiguous buffer in the display pages
containing pointers to display buffers.

21Il The display 1 ist, by definition, begins in the first
page and may extend into the second page (if it exists).
this restriction it may be of any len~th.

display
Nithin

21 Display pages -- One or two pages in user core that may contain a
display list and display huffers.

211 The first display page is the page in which the display list
berins.

212 If a second page is available it is the next consecutive (to
the user) page.

2J Error word -- A fixed core location in which the disc controller
writes bits indicating error conditions in the disc system.

2K Input Devices Controller -- The system hardware that controls the

B-3

HARDWARE REFERENCE MANUAL

input devices (keyboard, keyset, mouse and switches) for each console
and the output signals (other than display) to each console.

2L Unit reference cell (URC) -- A fixed location in core for each
unit that contains the address of the command (or print buffer) being
processed by that unit and the error code associated with that unit
when an error condition is detected.

2~1 Print buffer -- A -contiguous buffer in core containing characters
(control and data) for the line printer.

. B-4

lIARD\'iARE REFERENCE ~ .. tANUAL

3 Core and Interrupt Assignments

3A The following fixed octal core locations are assigned to the
Jevices on the channel:

10
11
12
20
30
50
51
52

260 - 3S0

lJRC - line printer
lIHC - network
UHC - typewriter/plotter
lJRe - first display system
lJRC - second display system
tJRC - disc system
Advance sector word - disc system
Error code - disc system
Console Status Table

3B The following are interrupt assignments:

2US Input Device Controller
206 Disc - normal
207 Disc - error
210 Special Operations
211 Line Printer
212 Network
213 Typewriter/Plotter
214 Display 1
21S Display 2

B-5

llARDWARE RE FE REN CE ~1ANUAL

4 Computer Instructions

4A Program control of the Special Devices Channel is through EOM
instructions.

4Al The EOM code is 20230YXX

4AIA The Y digit refers to the EG1 type.
for the units and are described along
units.

The·EOM actions vary
with the respective

4AIB The X digits refer to the unit. These are

1 Disc file
2 First display system
3 Second display system
4 Special operations
5 Input device controller

16 Line printer
26 Network
36 Typewriter/plotter

4B SKS instructions are used to sense status in the system.

4Bl The SKS code is 04030YXX

4BIA The Y digit refers to the SKS type. The conditions
sensed are described along with the respective units.

4BIB 'l11e X digits refer to the unit with the same coding as
for EOrv1 instructions.

B-6

HARDWARE REFERENCE HANUAL

5 Disc File System

5A General

5AI TIle subsystem described here consists of a Bryant Disc File,
Series 4000, ~1od A2A, and a control unit. The present 7 -disc
system is capable of storing approximately 32 million 24 bit
words.

5B EOM and SKS Instructions

581 Four EOfvl instructions are defined for the disc subsystem.

5B IA TIle EOr.1 codes are

20230101
20230201
20230301
20230401

Go chain
Go no-chain
Disconnect
Reset

5BIB The EOH actions are:

5BIBl Go-Chain
command processing.

This EO~1 causes the cont roll er to start

5BIRIA Processing always starts with the command
addressed hy the lJRC when the EOH is executed.

5B1B18 If a disconnect re~lest has previously been
stored hy a Disconnect EOr-1 and the system is still busy
(processing commands), a Go-Chain ROM cancels the
disconnect request.

5BIBIC A Go-Chain EOH issued while the system is busy
and no disconnect request is stored results in a command
error.

5BIB2 Go-No Chain -- This EO~1 causes the controller to
process the sing Ie cotunand tab Ie entry pointed to by th e
URe.

SB182A A Go-No Chain EOM received while the controller
is processing commands results in a command error.

5BIB3 Disconnect This EON causes the controller to
disconnect at the next normal interrupt conditi.on.

SBIB3A The execution of a Go-Chain EOfvl hefore the next

B-7

HARDWARE REFERENCE MANUAL

normal interrupt condition
disconnect request.

is reached cancels the

SBIB4 Reset -- -TIl is EO~1 immediately terminates any disc
operation in process when the EOM is received, and returns
the system to the disconnect state.

SB2 Two SKS instructions are defined.

SB2A The SKS codes are

04030101
04030201

Skip if Busy
Skip on No Error Conditions

SB2B The conditions sensed are;

SB2Bl Skip if Busy -- This instruction causes the next
instruction to be skipped if the disc system is busy.

SB2H2 Skip on No Error Condition -- This instruction causes
the next instruction to he skipped if no outstanding crror
condi tions exist on the disc subsystem. Execution of this
instruction does not reset any error conditions.

SC Command-Table Processing

SCI After either Go EOH the system begins processing commands
with the command addressed by the tJRC.

SCIA The lJRC always points to the current command being
processed.

SCIAI In a Go-Chain or Go-No Chain operation, after the
successful completion of the command, the URC is updated
(incremented by 3) to point to the first word of the next
command.

SC2 There are three types of conunands in the command tab Ie.

SC2A Data Transfer Conunand -- This command consists of three
command words located in contiguous memory locations.

SC2Al The first word contains the disc address. It consists
of concatenated hinary address fie Ids. Not all comhinations
in certain address fields are used; the lmused combinations
form invalid addresses. The address word has the following
format:

B-8

IlATH)WARE REFERENCE ~1ANlJAL

o 2 3 10 12 19 23
---.
: 1 0: :

I Track Zone Surface Sector

5C2AIA Interrupt bit
interrupt is given after
command.

If Bit 2 is a 1, a normal
successful completion of the

SC2AIB Track Address Field (8 bits) This field is
used to select one of 256 head array positions. All bit
comhinations in this field are valid.

SC2AIC Zone Address Field (2 bits) -- This field is used
to select one of the three disc frequency zones as
follows:

00 Zone 1
01 Zone 2
10 Zone 3
11 Invalid

SC2Al1l Surface Address Field (7 bits) -- This field is
used to select one of the 12 data surfaces and two heads
per zone.

SC2J\lDl Surfaces are numbered 0 to 11, wi th the low
order bit selecting the head.

5C2AID2 The valid addresses for the 6 disc system are
0000000 through 0010111.

SC2AIE Sector Address Field (4 bits) -- This field is
used to select the proper sector on a track.

5C2AIEI The valid combinations for this field depend on
the zone selected. Sectors are numbered zero to k, where
k is one less than the number of sectors in the zone.
The following combinations for each zone are valid.

Zone
1
2
3

Address Field
0000.0010
0000.0111
0000.1010

B-9

Sectors
3
8

11

HARDWARE REFERENCE ~1ANUAL

5C2A2 The second word contains the class and word count.
Its format is as follows:

o 6 12 23

---~-------~------------------------------------
Class Count

5C2A2A Class Field contains the
Bit (Read/Write) and information
subdivided as follows:

Direction-of-Transfer
on headers. It is

o 1 2 6

Head I/O Class

5C2A2A1 Head -- If this bit is a 1, header fields are
written with the record.

SC2A2A2 I/O
trans fer and

These
the use

bits determine the direction of
of the class field as follows:

00 Read - No compare with class
01 Read - Compare with class
10 Write record and class field
11 Write if class compares equal

SC2A2A3 Class -- This 4-bit field appears in each record
defining a class to which the record belongs. If class
comparison is called for and fails, an error interrupt is
given.

5C2A2B Count Field -- This field defines the number of
24-bit words to be transferred.

SC2A2Bl The maximum word count is 2048.
count in the command word results in an
count error.

Exceeding this
illegal word

SC2A2B2 If the field is zero the command serves to
position the head array only. (Headers may be written
with a word count of zero).

B-IO

HARDWARE REFERENCE ~1ANUAL

SC2A3 The third word contains the core memory address at
which the transfer is to begin and mapping information to be
used in crossing page boundaries. The word format

0 2 6 8 23

--~-----~~-----~--------------------------------.
R Map

. . . .
Core Address

is:

5C2A3A TIle R bit indicates whether mapping is to be
used.

SC2A3Al A 1 in the R position indicates mapping, and a 0
indicates no mapping.

5C2A3B The "map" bits (Bits 2 - 6) are used to remap the
16-bit address when a page boundary is crossed.

5C2A3Bl When the page boundary is crossed (lower 11
address bits are zero) and mapping is used, the upper 5
bits of the address are replaced by the map hits.

SC2A3B2 If no mapping is used (R=O), crossing a page
boundary results in a map error.

5C2A3C Core Address -- This field contains the absolute
core address at which the information transfer is to
her,in.

SC2B Branch Command -- This command causes the next command
lvord to be taken from the core location given in the branch
command word rather than in sequence in the command table. The
core address is absolute and no remapping takes place. The
word format is:

o 2 8 23

: 0 1: :

-~-------------------------------~--------------
I Core Address

5C281 If the interrupt hit is set a normal interrupt will
be generated after the command is executed.

5C2B2 Note: After a branch conunand the liRe is written
with the entire contents of the branch command word.

B-11

lIAf~D\vARE REFERENCE ~1ANlJAL

5C2C Disconnect Command
controller to disconnect.

Word This word causes the disc
The word format is:

o 2 23

: 0 1: :

I

5[2C1 If the interrupt bit is set a nOl1nal interrupt will
be generated after the command is executed.

SD Disc File Formats

51)1 Disc Format: Each of the twelve data surfaces is divided
into three zones J \vi th a pair of heads for each zone. Each of the
three zones has a separate clock frequency and hit density
optimized for the zone.

51)2 Zone Format: 1\

corresponding to each
array.

zone is divided into 512 tracks,
of tlvO heads at 256 posi tions of the head

-~ il:1 Tr~j.·~ Fo l'ln(1t : !\ t rae k is d i'v i lied into sectors by prerecorded
~t:ct'or [lid 5es. The nllmhe r of ',ectors per t rack is a .funct ion of
the Lonc.

Zone 1
Zone 2
Zone 3

3 sectors/track
8 sectors/track
11 sectors/track

Inner Zone
~tiddle Zone
Outer Zone

5D4 Sector Format: l11ere is one fixed-length record per sector,
with a data field of 256 24-bit words. Associated with each
record is a header field used to identify the record and ensure
tHat head and zone selection are correct before writing or reading
a record, and a class field llsed to grant access to records by
class.

SU4A In all subfjelds of the sector a preamhle and postamhle
arc used to ensure reliable reading of the first and last bits
of the subfield.

SD4Al 'I11ese bits are all "ones." generated by the
controller and never transferred to the computer.

sn~lB The overall format of the sector is

B-l~

HARDWARE REFERENCE ~fANl1AL

50 bits 2S bits 64S0 bits
--

Header Field Class Field Data Field

5D4B1 The header field consists of two header words
generated by the control unit and is not transferred to the
Central Processor.

SD4BIA These words are written only when special key
switches (one for each header word) are on and a 1
appears in the 0 bit of the class and count word.

S04B1B Header word 1

8 bits 8 bits S hits 1 3 hits
--
: Preamble :Track Address: Zeros: P :Postamhle:

SD4BIBI This \yord is written by the disc controller and
is used for track verification.

SD4BIC Header \-lord 2

8 bits 2 7 bits 4 bits 1 3 hits

: Preamhle : Z : surface :sector : P :postamble:

SD4BICI Zone Subfield (2 bits) These two hits
c6rrespond to the zone address and are used to insure
proper selection of the zone.

51)4B1C2 Surface Subfield (7 hits) -- These seven bits
are used to ensure correct selection of the head and
recording surface.

SI>4B1C3 Sector Subfield (4 bits) This subfield is
used to identify the sector or record and is unique on
each track.

5n481(4 Parity Subfield (1 bit) Odd parity is
generated for each header word and is checked Nhenever
the header is read.

B-13

IIARm\'ARE REFERENCE HANlJAL

5D4B2
is:

Class Field Format -- The format of the class field

R hits tl bits ~} hi ts 1 3 hits

: Preamble : Class : Zeros : P : Postamble:

5D4B2A Class Subfield ._- 'nlis is a 4-hit field defininr,
the class to '<Jhi. eh a record he longs. Nonnally the class
field is read alld compared wi th that appearing in the
command ,",ord; if they aT<' equal the operation proceeds.

5D4B2B Parity Subfield (1 hit) -- Olld parity

5D4B3 Dat a Fi c III Format

8 hit s ' () it 00 bit s 8 hits 3 hits

: PreaJ:lble : Data : Check Bits :Postamble:

5D4B3A nata Suhfield (6tlO() bits) This suhfield
consists of 256 24-bit Plachine \vords.. An odd parity hit
is inserted every 24 bits hy the control uni t. It is
transferred in its entirety on a read operation with odd
parity generated for each word. If less than 256 words
are transferred on a ,,,rite, the control unit generates
the necessary zeros to fill out the data suh field.

5D4B3B Check Suhfield (8 bits) -- This subfield is used
for error checking over the data record. It is generated
hy the control unit on a read or write operation and is
never transferred to the central processor.

5D4B4 Gap Format A gap of 75 hit times is allowed
hetween each alterable segment of the sector format and the
next. This a110\.,.s sufficient time for the recovery of the
read amplifiers after \\'riting a segment of the sector field.

5E Clocking

5El Clock tracks are prerecorded on a separate disc with its own
set of heads that do not move.

5EIA Each zone has a separate heads for \"rite clock and
sector/index pulsed

IL\RDWARE REFERENCE ~fANUAL

SElB When the system is busy, the advance sector word is
updated by the controller to indicate the next available sector
in each zone. This word has the following format.

o 3 4 11 15 19 23

-~--------------~-------------------------------. . . .
TV Track Zone 3 Zone 2 Zone 1

SElSI "TV" is the track verification bit. When this bit is
a 1 the heads have settled on the addressed track.

SEIB2 The "track" code indicates the head array position
if TV is 1 and head array destination if TV is O.

SF Error eondi tions

SFl Whenever an abnormal condition is detected by the controller
the following actions occur:

SF1A Any data transfer operation in process is terminated.

SFIAI A disc read operation is terminated immeciiately on
detection of the error.

5FIA2 On a disc
current sector is
terminated.

write operation the re~ainder of the
filled with zeros and the operation is

SFIB Bits indicating the error conditions are written in the
disc error word.

5FIC An abnormal interrupt is generated.

5Fln The controller goes to the disconnect state.

SF2 The disc error word contains a 1 for every abnormal condition
that has occurred. At least one bit will always be set and more
than one can be set.

5F2A The format of this word is

Bit

12 Illegal Word Count
13 Map Error
14 Control Unit Error

B-15

HARDWARE REFERENCE ~1AN(JAL

15 Class Not Equal
16 Not Ready
17 Angular Position Error.
18 Head Position Error
19 Invalid Address
20 Command Error
21 Data Transfer Error
22 Check Field Error
23 Word Parity Error

SF3 Data and Command Errors

SF3A \'Jord Pari ty Error (Hi t 23) -- This condition is set
whenever the parity is incorrect on a 24-bit sequence in the
data field of a record during a read operation.

SF3B Check Fi e ld Error (Hi t 22) -- This bit is set whenever
the check bits at the end of the record indicate that an error
has been made in reading the record.

SF3C Data Transfer Error (bit 21) -- This bit is set when data
being transferred from the Central Processinp, Unit to the
Control Hnit has incorrect parity.

SF3D Command Error (bit 20) -- This bit is set for the
fallowing conditions:

SF3Dl Incorrect parity for a command word transferred from
the comuter.

SF3D2 Invalid command code.

SF3D3 A Go-No Chain EO~1 received while busy.

SF3D4 Go-Chain EO~f receive whi Ie busy and no disconnect
request \'<'aiting.

SF4 Addressing and Positioning Errors

SF4A Invalid Address (Bit 19) -- This bit is set when the disc
address specified in a transfcr command is invalid or a data
transfer exceeds the cylinder.

5F4Al A cylinder consists of all tracks on all surfaces
that can be accessed from a single head position.

SF4B Head Position Error (Bit 18) -- This bit is set if the
head array is not correctly positioned as determined by failure

B-16

HARDWARE REFERENCE MANUAL

to get track verification after 7 revolutions or incorrect
track address in header word 1.

SF4C Angular Position Error (Bit 17) -- This bit is set when
the angular position specified in the address does not match
that read from header word 2, or if a parity error is detected
in header word 2.

sF4D Illegal Word Count (Bit 12) -- This bit is :;et when the
word count in a data transfer command exceeds 2048.

sFS r·fiscellaneous Errors

sFsA Not Ready (bit 16) -- This bit is set if the control unit
receives an information transfer command and the disc is not
ready.

sFSB Class Compare Not Equal (bit 15) -- This bit is set if a
class compare is requested and the record has a di fferent class
from the Information Transfer Command.

sFsC Control l1ni t Error (hi t
timing or sequencing errors in
completion of the operation.

14)
the

-- This bit is set when
control unit prevent

SF Sf) ~tap Error
transfer crosses

(bit 13) This bit is set when a data
a page houndary and napping is not legal.

B-17

HARDWARE REFERENCE MANUAL

6 The

6A

Display System

General Characteristics

6Al The display system has general character, vector, and
plotting capahi Ii ties.

6A1A Screen position is specified by 10 bits for horizontal
and 10 hits for vertical, with a resolution of at least 500
line pairs in each dimension.

6AIAI The time required
settling to within 0.1
microseconds.

for full screen deflection and
percent is approximately 15

6AIB The character generator can produce 128 characters but at
present only 96 characters are implemented. The lower case
codes act as nulls.

6AIBl Characters and codes are given in Sec. 9.

6AIB2 All characters are written relative to a beam
position at the lower left corner of the allotted character
space.

6AIB3 Four character sizes are available with a range of
sizes allowing from 32 to 128 characters per line.

6AIB4 In the print mode, the average time per character for
a full screen of characters is approximately 12
microseconds.

6AIC The line generator is capable of dra'ving straight lines
of varying type hetween specified endpoints.

6AICl In the line mode, the time required to draw a full
screen line is approximately 25 microseconds; shorter lines
take proportionally less time.

6B Display Controller Operation

6Bl EO~l instructions for the display controller are:

1 Initiate
2 Pause
3 Restart
4 Reset

B-18

HARDWARE REFERENCE r1ANUAL

6B 1A The EO~1 act ions are:

6B1A1 The Initiate Eot·1 starts command processing.

6B1A1A Processing will ah-lays start \-lith the command
addressed by the Unit Reference Cell at the time the EOH
is executed.

6BIAl13 An Initiate EOH directed to a busy unit will be
ignored hy the system.

6B1A2 The Pause EOH will cause the system to stop
processing commands after the command in process at the time
the Em1 is received.

6BIA2A
[OH.

The system may be started again hy the Restart

6B1A3 The Restart EO~f will
processing (with the next
failure interrupt.

cause the
command)

system
after

to continue
a pause or a

6BIA3A A Restart EOM executed following a Pause EOM will
cancel the pause request.

6B1A3R A nestart EO~1 directed to a uni t that is
disconnected (reset) will he ignored.

6B1A4 A Reset EOr1 will immediately stop all display
process.in~~ and return the system to the reset state.

6132 SKS codes for the display controller are •
1 Command Table Active
2 Unit Busy

6B2A l~e conditions sensed are as follows:

6B2A1 Command Table Active

6B2AIA The unit is in the process of interpreting a
command.

6R2AIAI \\Then this status is detected the command table
should not be changed by the progratl.

6H2A2 Unit Busy

6132A2A The unit is processing commands.

B-19

HARDWARE REFERENCE ~IANUAL

6B2A2Al TIle unit is not busy when in either the pause or
disconnect state.

6B3 Command Table Processing

6B3A After an Initiate EOM, the display system will process
the command table without further action by the program.

6B3B The address of the first word of the command being
processed is always contained in the Unit Reference Cell.

6B3B1 This cell is updated on the successful completion of
a command.

6B3C Each entry in the command table consists of two words
with the following format:

6B3Cl First word:

o 2 6 11 17 23

:0 0 1 1:

or id map 1 map 2 console
code

6B3C1A Bits 0-2 contain the op code. Op-codes are

(1 Disconnect
1 Pause
2 Start Display, Normal
3 Start Display, Step t-Iode
4 Branch
5 Branch Timed
6 NOP
7 Reset

6R3C1R Bits 3 - 6 contain a code to identify this as the
first word of a command.

6B3CIC Bits 7 11 contain the relocation map for the
first display page.

6B3CID Bits 12 - 17 contain the relocation map for the
second display page.

6B3C1D1 The highest order bit (Bit 12) of this map

B-20

IlARDWARE REFERENCE ~lANlJAL

indicates a legal map.
be used and only one
user.

If this bit is 0 the map will not
display page is available to the

6B3CIE The 6 bits (18 - 23) indicate which of the 6 CRTs
(one or more) will be unblanked for this display list.

6B3C2 Second word:

o

. . . .
8

I address

6B3C2A Bit 0 is the interrupt bit.

6B3C2B Bits 1 - 7 are not used.

23

6B3C2C Bits 8 - 23 contain an address hut may he ignored
depending on the op-code.

6B3D Processing of op-codes is as follows:

6B3Dl Disconnect -- Command processing will immediately
stop and the system will be reset. An Initiate EO~f must be
issued to initiate further processing.

6B3D2 Pause -- The system will stop processing commands
until a Restart or Initiate EOM is received.

683D3 Start Display, Normal -- The system will display the
identified display list on the selected console.

6B3D3A A 14-hit display-list address
contained in the command address field.
is always used to map this into an
address.

in user core is
Relocation map 1
absolute 16-bit

6B3D4 Start Display, Step ~10de -- The system will display
only the single display list entry pointed to by the address
field.

()B3DS Branch
location specified
process commands.

The display system wi 11 jump to the
in the address field and continue to

6B3D6 Branch Tir.led The same as the Branch command,

B-21

HARDWARE REFERENCE ~1ANlJAL

except that the branch will not be executed unless the
regeneration timer has run out.

6B3D6A For synchronous operation the branch will be
executed on the first sync pulse after the timer has run
out.

683D6B TIle regeneration timer is set for the desired
regeneration rate and will he reset whenever a Branch
Timed command is executed.

6B3D7 NOP Processing will go immediately to the next
command.

6B3D7A The interrupt hit is ignored. No interrupt ",ill
be given.

6B3D8 Reset
generator.

This sends a reset signal to the display

6113E If the interrupt hit is set in any command (except NOr) a
display interrupt is given after successful processing of that
command.

6B4 Display-List Processing

6B4A The display list format is as follows:

o 9 23

m word count buffer address

6B4Al The huffer address is the 14-bit address in user core
of the first word of the display buffer.

6B4A2 The word count gives the length of the buffer.

6B4A3 The ~·1 bit indicate that mapping is not to be used for
this buffer.

6R4B Each entry in the display list is processed in the
following manner:

6134B1 If the word count is not zero, the display buffer
will be transmitted to the display generator.

B-22

HARDWARE REFERENCE MANUAL

6B4B1A If two display pages are available the buffer may
begin in either page and may extend over the page
boundary. The appropriate relocation map will be used.

6B4B1B If the ~'1 bit is set mapping is not applied to this
buffer. The address field refers to an absolute address
in lower core and only one display page is available.

6B4B1C If the buffer begins outside the display pages or
extends beyond the display pages, an error condition will
result.

6B4B2 If the word count is zero, this entry in the display
list will be ignored and the system will proceed immediately
to the next display list entry.

6B4B3 A display list entry containing a zero address
terminates the display list.

6B4B3A If the display list extends beyond the display
pages an error will result.

6BS Errors in display commands will be detected and reported by
the system.

6B5A These error conditions are as follows:

6BSAl Illegal Command

6BSAIA The command identifier field of a command tahle
entry is not correct, or the op-code field is not a legal
op-code.

6BSA2 Display List Overflow

6BSA2A Display list extends beyond display pages.

6BSA3 Illegal Buffer Address

6BSA3A The huffer address given by the display list is
not within the display pages.

6BSA4 Buffer Overflow

6BSA4A Display huffer extends beyond display pages.

6B5AS Excessive Time

6BSASA The processing of a command has exceeded the

B-23

IIARDWARE REFERENCE MANUAL

maximum time allowed.

6B5A5A1 Maximum time will be adjustable and will
normally be set to allow a frame of about 1200 characters
for each command (about 6 milliseconds).

6B5B Action on error conditions is as follows:

6B5B1 Processing action depends on the type of error.

6R5B1A For transmission parity, the processing will
continue without interruption.

6BSBIB For all other errors command processing will
terminate at the command causing the error, and may he
restarted by a Restart EOM.

635B2 An error code indicating the type of error will be
entered into the Unit Reference Cell.

6B5B2A
follows:

The format for the Unit Reference Cell is as

o 2 8

error command table address
code

6B5B2A1 Error codes are

000 No Error (normal interrupt)
001 List Overflow
010 Buffer Overflow
011 Illegal Buffer Address
100 Illegal Command
101 Excessive Time

6B5B2A2 Bits 3 - 7 are unused.

23

6B5B2A3 Bits 8 23 contain the address of the command
that resulted in the error.

6B5B3 An interrupt will be generated.

6C Display Instructions

B-24

HARDWARE REFERENCE ~1ANtJAL

6Cl The display system operates in two rreneral states -- the
control state and the normal state.

6C2 A 1 in the most significant bit position always indicates a
control word. There are two types of control word:

6C2A Parameter and ~tode Speci fication Words

6C2A1 The parameter specification words set parameters that
are retained in the system until changed by a further
parameter specification or by a system reset.

6C2A2 There are two parameter specification words: certain
parameters can be set by .either word.

6C2A3 For both words the "X" bit preceding the parameter
desi gnates whether that parameter is to be changed.

6C2A3A When this bit is set the associated parameter
specification will be used.

6C2A3B When this bit is a 0 the parameter exjsting in
the system will not be changed.

6C2A4 First Parameter Specification Word:

0 2 4 12 14 17 23

:1 1 0: :x: :x: :x: : x:

plot character I size h increment

6C2A4A Bits 5 through 11 specify the plotting character
to be used in plot modes.

6C2A4R Bit 13 specifies the intensity for all writing
modes.

6C2A4Bl A 1 indicates high intensity and a 0 low
intensity.

6C2A4C Bits 15 and 16 specify the character size used in
print and plotting modes.

6C2A4C1 Size codes and corresponding approximate numbers
of characters per line are

Code Characters/Line

B-25

HARDWARE REFERENCE HANUAL

00
01
10
11

128
80
64
42

6C2A4D Bits
increment to be
print mode.

18 through 23
used in the

specify the horizontal
incremental plot mode and

6C2AS Second Parameter Specification Word:

o 2 4 7 10 12 14 17 23

:1 1 l:x: : x: :x: :x: :x: : x:

mode line R I size h increment

6C2ASA Bits 4 through 6 specify the modes for the normal
state.

6C2ASA1 Codes and associated modes are

Code Mode
000 Print
001 Print Italics
010 Incremental Plot, Absolute
011 Incremental Plot, Relative
100 Random Plot, Absolute
101 Random Plot, Relative
110 Line
111 Line Grid

6C2ASR Bits 8 and 9 specify the line type used in line
wri ting modes.

6C2ASBI Line types and codes are

Code Line Type
00 Solid Line
01 Dotted Line
10 Dashed Line
11 Dot-Dash Line

6C2ASC Bit 11 specifies blinking.

B-26

HARDl'lARE REFERENCE ~1ANUAL

6C2ASC1 When blink is called for the unblank will be
gated on and off at a manually adjustable rate (about 1
cycle/second) until the hlink is reset by a parameter
specification word or by a reset.

6C2ASD Other bits are as described for the first
parameter specification word.

6C2B Position Specification Word:

o 2 11 14 23

: 1 0:

-------~--
vertical position horizontal position

6C2B1 Bits 2 through 11 specify the absolute vertical
position.

6C2B2 Bits 14 through 23 specify the absolute horizontal
position.

6C2B3 Bits 12 and 13 are not used.

6C3 In the normal state, there are eight possible modes. The
mode is changed hy a parameter specification word or by a reset.

6C3A Print Hode:

o 8 16 23

-------~-------------------------------~--------
:0 : :x: :x:

character 1 character 2 character 3

6C3A1 This mode is used for writing lines of text on the
display in a typewriter-like fashion.

6C3A2 Characters are packed three to a word with automatic
horizontal incrementing after each character is written.
TIle horizontal increment is specified in the parameter
specification word.

6C3A2A Exceeding the maximum number of characters in a
line will cause the characters to "wrap around" and write
over the first part of the line.

B-27

HARDWARE REFERENCE HANUAL

6C3A3 A 1 in bit positions 8 or 16 indicates that the
remaining characters in the word are to be ignored.

6C3B Incremental Plot, Absolute:

o 2 12 14 23

: 0: : :x: :

-----------------------------------~------------
first v position second v position

6C3B 1 In this mode, two plott ing characters may he written
for each 24-bit word.

6C3B1A Bits 2 through 11 specify the absolute vertical
position of the first character to be plotted.

6C3B1B Bits 14 through 22 specify the absolute vertical
position of the second character to be plotted.

6C382 The horizontal position
character is plotted, by an
parameter specification word.

is incremented after each
amount specified in the

6C3B3 A 1 in bit position 12 indicates that the second half
of this word is to be ignored. The horizontal position will
not be incremented for the second word half.

6C3B4 Bits 1 and 13 are not used.

6C3C Incremental Plot, Relative:

o 2 12 14 23

: 0: s : :X:5 :

first v. increment second v. increment

6C3C1 111is mode is identical to Incremental Plot, Absolute,
except that vertical positions are specified relative to the
previous beam position. Bits 1 and 13 are the sign hits.

6C3(2 In this and all other relative modes negative numbers
are ~iven in two's-complernent form. That is, a negative
change of one unit is called for by the hinary number 11 111
111 111. 6c3c3 Relative positioning that exceeds the
screen limits will result in "end-around" operation.

B-28

HARDWARE REFERENCE ~1ANUAL

6C3D Random Plot, Absolute:

° 2 12 14 23
---.--
:0: : :w: :

vertical position horizontal position

6C3Dl In this mode one plotting character may he written
for each 24-hit word.

6C3DIA Bits 2 through 11 specify the absolute vertical
position.

6C3DIB Bits 14 through 23 specify the absolute
horizontal position.

6C3D2 Bit 12 indicates whether or not a character is to he
\"ri tten.

6C3D2A If Bit 12 is a 1, the designated plottinR
character will he written at the specified position.

6C3D2B If Bit 12 is a 0, the beam position will be
changed but no character will be written.

6C3E Random Plot, Relative:

o 2 12 14 23

: 0: 5: :w: s:

vertical increment horizontal increment

6C3El This mode is identical to Random Plot, Absolute,
except that vertical and horizontal positions are specified
relative to the previous beam position. Bits 1 and 13 are
the sign hits.

6C3F Line:

o 2 12 14 23

-~---------~------------------~-----------------
: 0: s : :w:s:

vertical increment horizontal increment

B-29

HARDWARE REFERENCE ~IANUAL

6C3Fl In this mode a line is written from the previous beam
position to a new point specified relative to that beam
position.

6C3F1A When a line is specified that exceeds the screen
limits it is drawn in the direction and length indicated.
(Some distortion may of course result outside of the
normal working area.) Beam position is then updated in
the normal end-around manner.

6C3F1B Bits 2 through 11 specify the change in vertical
position, with Bit 1 indicating the sign.

6C3FIC Bits 14 through 23 specify the change in
horizontal position, with Bit 13 indicating the sign.

6C3F2 Bit 12 specifies whether or not a line is to be
written.

6C3F2A If Bit 12 is a 1, a line of the type designated
by the parameter specification word will be drawn and the
beam position changed to correspond to the end of the
line.

6C3F2B If Bit 12 is a 0, no 1 ine wi 11 be drawn but the
beron position ,.,rill be changed.

6C3G Line Grid:

o 2 12 14 23

:O:s: :w:x:s: :w:

vertical increment horizontal increment

6C3Gl This mode is provided to facilitate writing
horizontal and vertical lines on the screen. One vertical
and one horizontal line may be written for each 24-hit word.
The accuracy has been reduced to 9 bits to accommodate this
feature.

6C3GIA Bits 2 through 10 specify the change in vertical
position for the first line, with Bit 1 indicating the
sign.

6C3GIB Bit 11 indicates whether or not the line is to be
drmvn as a result of this vertical change.

B-30

HARDWARE REFERENCE ~1ANUAL

6C3GIBI If Bit 11 is a 1, a line with length and
direction specified by the vertical change will be drawn
from the previous beam position. The vertical beam
position will then be changed to correspond to the end of
the line.

6C3GIB2 If Bit 11 is a 0, no line will be drawn, but the
vertical position will be changed.

6C3GIC In a similar manner, Bits 14 through 22 and Bit
13 specify the change in horizontal position with Bit 23
indicating whether or not a line is to be written.

6C3GID The first word half or vertical line is always
executed before the horizontal line.

B-3l

HARDWARE REFERENCE MANUAL

7 Input Devices Controller (IDC)

7A The EOM instructions for the IDC are

1 Initiate
4 Disconnect

7Al No liRe is associated with the IDC. The 16-hit address of the
Console Status Table (CST) will be wired into the IDC.

7A2 No error conditions are detected by the IDC.

7B Communication hetween the IDC and the software is through the
CST.

7B1 At a regular sampling interval (determined by the IDC) the
input devices are read and information relative to their state
written into the CST. A block of "output" words is also read from
memory by the IDC to control signals to the various consoles.

7H2 The format of the CST is

1 1
1 1 Block 0, outputs, 16 words.
1 1

1 1
1 1 Block I, keyboard and keysets, 12 words.

1 1
1 1 Block 2, switches, 12 words.

1 1
1 1 Block 3, A-D converter (mice), 16 words.
1 1

7B2A The order wi thin each b lock corresponds in the ohvious
way to the numbering of the console stations.

7B2B The word format within the blocks is as follows:

7B2B1 Outputs Bits 19-21 correspond to six possihle
output signals the software may send to the console.

7B2B1A An output signal is of a "one-shot" nature. To

B-32

1-IARD\4JARE REFERENCE MANUAL

control a signal that has a duration in time. such as a
light. two signals are required: one to turn the light
on, another to turn it off.

7B2B2 Keyboard-Keyset

012 3

.
6 10

Keyset b

15 23

Keyset a Keyboard

7B2B2A Bits 16-23 contain the code of the character most
recently received from the keyboard. l~aracters and
codes are shown in Sec. 9.

7B2B2B Bits 11-15 contain the code of the character most
recently received from Keyset a.

7B2B2C Bits 6-10 contain the code most recently recieved
from Keyset h.

7B2B20 Bits 0-3 indicate when valid characters have been
wri tten.

782B2Dl Bit 3 is set to one by the hardware whenever a
new keyboard character is written.

782112D2 Bi t 2 is set to one \vhenever a new character is
written for Keyset a.

782B2D3 Hi t 1 is set to one whenever a ne\.; Keyset h
character is written.

782B2D4 Bit 0 is set to one whenever a character is
written in any position.

7B2B2E The valid code remains in the CST for the sampling
interval (approximatly 30 ms). During any sampling
interval \",hen a "valid character" bi t is not set J the
corresponding character location may contain garbage.

7B283 switches

012 18 21 23

--~-~-----~-~-------~----------~----------------.

B-33

.
e. • • • • • •

x X X s r ea

HARDWARE REFERENCE HANUAL

7B2B3A The state of the console switches at each
sampling period is indicated hy Bits 21 - 23, and changes
in the switches between two successive sampling periods
are indicated by bits 18 - 20.

7B2B3Al Bit 23 is the CA switch on the mouse and Bit 20
indicates a change in this switch.

7B2B3A2 Bit 22 is the pointer switch on the mouse, with
Bit 19 indicating a change.

7B2B3A3 Bit 21 is the spare button on the mouse, with
Bit 18 indicating a change.

7B2B3A4 For each switchword, Bit 0 is set to one
lvhenever any switch has changed.

7R2B3A5 In the last word of Rlock 2, Bit 0 is set if
Block 1 contains any valid characters or if any of the
console swi tches (Block 2) have changed state.

7B2B4 ~li ce :

o 2 11 14 23

:0 0: : 1 I:

vertical horizontal

7R2B4A Bits 2-11 contain the vertical coordinate from
the A/n converter

782B4B Bits 14-23 contain the horizontal coordinate from
the A/n converter

7B2B4C The IO-hit coordinates are positive, with origin
at the lower left corner of the display.

7B2B4D Bits 0 and 12 are specified to eliminate the
necessity for reformatting the coordinates before sending
them to the display.

7B2B4E Bits I and 13 are "don't cares" to the display;
however, Bit 1 is set to 0 and Bit 13 is set to 1.

B-34

HARDWARE REFERENCE MANUAL

7B3 After the last word of Block 2 has been written, if there
have been any valid characters written in Block 1 or if any switch
changes have been indicated in Block 2, a 205 interrupt is issued.

B-35

HARDWARE REFERENCE MANUAL

R Line Printer

SA General Information

8Al The
printing
minute.

printer is a
characters and

Potter HSP-3502 chain printer with 96
a printing speed of about 230 lines per

8A2 The printer will accomodate paper widths from 2-1/2 to 18-1/2
inches. Character spacing is 10 per inch and line spacing is
program selectable at 6 per inch or 10 per inch. The maximum
number of characters per line is 132.

8A3 Characters and codes are shown in Sec. 9.

88 EOf.1 and SKS Codes

881 The EOM codes are

882

20230106
20230406

Initiate
Reset

8B1A The Initiate EOM starts the printer with the word and
character designated by the contents of the URC at the time the
EOM is given. .

8BlAl The printer controller will continue to process the
print buffer until an illegal character or end-of-buffer
code is read, or until a Reset EOH is issued.

8BIA2 An Initiate EOf\f given while the printer is busy will
be ignored.

8BlB TIle reset EOH will immediately terminate all printing and
return the system to a reset state.

8R1IH A Reset EOH given while the printer is disconnected
wi 11 he ignored.

One SKS code is provided for the printer. The code is

04030106 Skip on Ready

8B2A This SKS will skip if the printer is ready to begin
operation. If the printer is not ready, the following actions
occur:

B-36

IIARDWARE REFERENCE MANUAL

8B2A1 The indicator lights on the printer begin to blink,
indicating that attention is required.

8B2A2 An interrupt is issued when the printer is made
ready.

8C The Unit Reference Cell associated with the printer system has
the following format:

o 2 6 8 23

-~----------------~-----------------------------
error address

8Cl Bits 6 - 23 contain the absolute address of the first
character of the line in the print buffer currently being printed.

8C1A Bits 8 - 23 denote the absolute word address.

8e1E Bits 6 - 7 indicate the character in the word.

8ClEl A 00 code is the leftmost character. The 11 code is
not used but will be interpreted as the leftmost character.

8C2 When error conditions are detected the error code is
contained in Bits 0-3.

8C3 After a line has been successfuly printed the address in the
unit reference E updated to point to the first character of the
next line.

8D The print buffer is a contiguous sequence of words in core that
is interpreted hy the printer controller as three 8-bit characters
per word.

8D1 Characters in the print buffer may be either data characters
or control characters.

8DIA The control characters are

370 (SCI) Space on Channel 1 (6 lines/inch)
371 (SC4) Space on Channel 4 (10 lines/inch)
373 (NOP) No Operation
372 (NSP) No Spacing
374 (E.lT) Top of Form
375 (EOB) End of Print Buffer
376 (EOL) End of Line

B-37

IIARDWARE REFERENCE HANtJAL

377 (NOP) No Operation

801A1 Control codes contained anywhere in a line control
the gpacing after that line.

8D1A1A The spacing option (SCI or S(4) is stored by the
controller and need not be included in each line.

8D1A1Al When the cantrall er is initiated (hy an Em-f) the
option will be SCI.

8))lA1A2 Channel 1 wi 11 normally he set for single space
and Channel 4 for douhle space.

8DIAIB The NSP code inhihi ts spacinp, only on the lj ne in
which it occurs.

8DIAIC Only one EJT code in a line will be recognized.

S01A1C1 For a page eject operation the EJT must he
followed by an EOL or EOB.

8D1A2 An EOL or EOB code will cause the current line to he
printed with any characters already in the line left
justified.

8D1A2A TIle maximum nwnber of characters in a 1 in£' i g
132. When that number of characters have heen read the
current line will automatically he printed and the next
character in the print huffer will be the first character
in the next line.

snlA3 An EOB code will generate an interrupt to the
computer after the line is printed and any spacing action
has been completed.

snlA4 The number of lines on a page is normally set to 60
(controlled hy the fonnat tape). When the last' line has
been printed, an automatic page eject will position the
paper at the top line of the next page.

8DIB Data characters are either printinr. characters or space.
Characters and codes are given in Sec. 9.

SDIC Any character codes in the print buffer other than data
characters or control characters are considered illegal codes
and will result in an error.

B-38

IIARDWARE REFERENCE MANUAL

8D2 Print buffers may be as large as desired, but no relocation
mapping is provided. If a buffer is to extend across a page
boundary the software system must ensure that the two pages are
consecutive in memory.

BE Error Conditions

8EI On the detection of any error, an interrupt is issued and the
error code is written in the Unit Reference Cell.

RE2 The error conditions detected and p error codes are:

000 No Error
101 Illegal Character Code
110 Printer Not Ready
II I Excessive Time

8E2A Zeros in the error-code hits of the Unit Reference Cell
after an interrupt indicate a normal internlpt (printer made
ready or EOB).

8E2B The 101 code indicates that an illegal character has been
detected in the print buffer.

8E2C The 110 code indicates printer off-line, paper out, or
rihbon failure.

8E2D The I I I code indicates that in a normal printing
operation excessive time has been required for printing a line.

8E2DI The timer is normally set for 2.5 seconds.
error will indicate printer failures not detected by
printer error circuits.

B-39

This
other

HARDWARE REFERENCE MANUAL

9 Character Set

9A The following is the universal character set used with the Mil
940 and peripheral devices. Variations for particular devices are
noted and explained below.

000 (a) u (space) 100 (center dot)
001 101 a
002 " 102 b
003 # 102 c
004 $ 104 d
005 % 105 e
006 & 106 f
007 107 g
010 (110 h
011) III i
012 * 112 j
013 + 113 k
014 114 1
015 115 m
016 . 116 n
017 / 117 0

020 0 120 P
021 1 121 q
022 2 122 r
023 3 123 s
024 4 124 t
025 5 125 u
026 6 126 v
027 7 127 w
030 8 130 x
031 9 131 y
032 132 z
033 . 133 (b) - (overbar) ,
034 < 134 (b) (underline)
035 = 135 (c) (alternate mode) I (d)
036 > 136 (c) (command delete) ¢ (d)
037 ? 137 (c) (rubout) u Cd)
040 @ 140
041 A 141 (c) (backspace)
042 B 142
043 C 143
044 D 144 (c) (command accept)
045 E 145
046 F 146
047 G 147
050 II 150
051 I 151 (a) ~ (tab)
052 .. 1 152

B- 40

HARDWARE REFERENCE HANlJAL

053 K 153
054 L 154
055 M 15S (a) .i (carriage return)
nS6 N IS6
057 0 157
060 P 160
061 Q 161
062 R 162
Ob3 S 163
064 T 164
065 U 165
066 V 166
067 \'i 167 (c) (backspace word)
070 X 170
071 y 171
072 Z 172
073 l 173
074 , 174
075] 175
076 t 176
077 +- 177 (e) null

200 (c) (shift II)

9Al Ca) These symbols for spacing characters apply to the
display only. TIleY are optionally displayed under control of a
separate input signal to the display system but cause horizontal
incrementing at all times.

gAlA For the line printer the 000 code is a space, and codes
151 and 155 are illegal.

9A2 (b) These two characters are displayed and printed outside
the normal character space and do not cause horizontal
incrementing.

9A3 (c)
print.

Keyhoard only. These characters do not display or

VA4 Cd) Plotting character on line printer only

9A5 (e) Null character--no character displayed or printed. and
no incrementing.

B-41

APPENDIX C -- WIRELIST GENERATOR PROGRA~1

1 Introduction

IA This appendix describes a computer program that supports the
design and construction of digital equipment.

1A1 The program automates several of the clerical tasks
associated with logical design, and performs diagnostic operations
that are difficult \'Ji thout computer aid.

1A2 The program produces a set of listings that document a
digital design. Some of the listings are structured to aid the
maintenance and checkout operations, others are structured to aid
the process of wiring the equipment, and another is used to
validate the correctness of the wiring.

1B Experience in the use of this program has so far been as follo\\7s:

1Bl There is a significant reduction in number of errors in
comparison \vi th hand-prepared wire lists.

IB2 Initial checkout of equipment with the listings is relatively
simple.

1B3 '111e program provides an easy means of recording changes and
producing up-to-date documentation on the equipment.

Ie An important aspect of the program is that it permits one to
prepare input data with the on-line text-editing facility (NLTS).

leI The form of program input conforms to present high-level
language standards; statements are free-field, and delimiters and
key words are used to control translation. Since record
boundaries are not significant, the input is essentially a stream
of text, and thus compatible with text files that are prepared
with NLTS.

If) The remainder of this appendix describes the characteristics of
the program in greater detail.

1D1 Section 2 describes the hackground vf the development of the
program.

1D2 Section 3 describes the input language and the role of NLTS
for maintaininB design descriptions in this language.

1D3 Section 4 describes the functions of the program and the
documentation that it produces.

1D4 Section 5 is a summary of experience in the use of the

C-l

APPENDI X C -- WIRELIST GENERATOR PROGRM1

program.

2 Background of Program Development

2A The construction of digital equipment requires a document known
as a "wirelist." This is an ordered list of the wire connections
that are to be made.

2AI Since the standard document for the design of a piece of
equipment is the logic schematic, and not the wirelist, it is
necessary to translate the schematic into a wirelist.

2A2 When this translation is done by hand, it is normal for
errors to appear in the wirelist, even after lahorious
cross-checking. ~'1oreover, the hand-produced wirel ist is not
easily organized to facilitate the assembly of the unit, and if
assemhly is a hand process, additional errors are inevitable in
spite of additional cross-checking.

2B The process of translating logic schematics to wirelists is
purely mechanical, and easily automated.

2B1 A moderate-sized piece of equipment contains several thousand
connections, so that hand translation of logic schematics to
wirelists can take days or weeks of technician time.

2132 \\~1en a wi re 1 ist generator program is used for the
translation, the technician instead spends his time translating
the schematic into machine-readable fom.

2B2A This effort is comparable to the effort required to write
the wirelist it.self, or even somewhat less.

2B3 Once the design is in machine-readable form, many different
processes can he carried out on it over and above the generation
of the wirelist.

2B3A Anong these processes are error-checking, generation of
several different types of documentation, and first-order
optimization of the ordering of connections in the wirelist.

2B4 The cost of computer processing to produce these results is
far smaller than the saving in both time and expense.

2C Wirel ist programs are actually only part of the story. l\Ti thin
the current state of the art, it is possihle to produce diagnostic
test schedules, fault directories, and logic schematic drawings, and
to automate the layout of components in the backplane or on circuit
cards.

C-2

APPENDIX C -- WIRELIST GENERATOR PROGRA~f

2D Wirelist programs have been used for many years, but are not
available in the publlc domain because of proprietary status. For
that reason, and because of a desire to use the wire list program in
conjunction with NLTS, a program development effort was l.mdertaken at
SRI.

2Dl r-1any of the characteristics of the resul ting program are
similar to those of its predecessors (e.g., the TIllJLE system used
by Lockheed Missiles and Space Company, and the ADD system used by
Philco-Ford), but the program has more advanced characteristics
than earlier wirelist programs. Some of these features are
described in the following sections.

3 The Input Language

3A Input data to the program is oriented to the description of logic
gates instead of the description of pins on the gates.

3Al This results in a reduction of 50 percent or more in the
number of characters required to describe a design.

3A2 The free-field form of input is ideally suited to on-line
editing and much less error-prone than conventional fixed-field
input data.

3A3 Finally, the input language is such that a logic designer can
use it \'Ji th ease, instead of adapting to conventions that are
machine-oriented rather than design-oriented.

3B There are four types
to the wirelist program.

of information that the designer must give
They are as follows:

3B1 The backplane, and the conventions used for addressing pins
in the backplane

3B2 The catalog of pluggable logic units

3B3 The catalog of logic gates that are mounted on the pluggable
units

3B4 The logic schematic of the design.

3C In most production environments, the first three items remain
rel1atively constant from design to design.

3C1 The purpose of using catalogs and backplane descriptions is
to save the designer the effort of retrieving data from the
catalogs. Since the program can perform the retrieval when the
catalog is supplied, the designer need not specify the information

C-3

APPENDIX C -- WIRELIST GENERATOR PROGRAH

in the design description. This function of the catalog in the
program will become more clear as the language is described.

3D The backplane description is a single statement
levels of interconnection in the backplane and
specifying pin addresses on the backplane.

that gives the
the s cherne for

For example:

ClIASSIS CAGE[I:101(CARD[A:Zl(PIN[I:201));

301 This statement states that a backplane has ten cages, labeled
1 through 10, each of which has card slots labeled A through Z J

and each card slot has 20 pins, labeled 1 through 20.

3DIA "CHASSIS" is a key word that the program recognizes.

3DIB The names "CAGE," CARD," and "PIN" are names supplied by
the designer.

3n1C A typical pin in the backplane described by the statement
above is specified by giving the cage, card, and pin
designators in that order. Hence an address might be (5,C,10)
which specifies Cage S, Card C, Pin 10.

3E The catalog of logic gates is specified hy gIvIng the nu~)er of
inputs, the loading of each input, and the fanout capabili ty of the
output. For example, a t,..,o-input NAND is specified hy the statement:

GATE N2(A,B), LOAD=l, FANOUT=8;

3E1 This states that there are two inputs, "Alt and "B," that each
input draws one unit load, and that an N2 gate can drive eight
uni t loads.

3F TIlis is the simplest type of gate description. In the general
case, a gate is an iterative collection of stages, with some
additional inputs and outputs that do not fit the iterative
structure. To facilitate the description of these gates, a prototype
stage is described just once and the number of stages is given. The
special inputs and outputs are described individually.

3G The description of pluggable units follows the format of gate
descriptions.

3Gl Each gate on a pluggahle unit is described separately, and
the pins to which the gate inputs and outputs are connected are
specified.

3G2 A unique index is r;iven to each gate, and that index serves

C-4

APPENDIX C -- WIRELIST GENERATOR PROGRAM

to locate signals on cards. Thus, the designer need only specify
that a signal comes from a given gate on a particular card and the
program will supply the proper pin connections.

3G3 An example of a

LOGICAL CARD C100=
1 :=N2<1> (2,3),
4 :=N2<2> (5,6);

pluggable unit specification is:

3G3A Here we have specified that a C100 card has two N2 gates
on it; the first has output on Pin 1 and inputs on Pins 2 and
3, while the second has output on Pin 4, with inputs on Pins 5
and 6.

311 TOe logic schematic can he specified without desi~nating the
absolute physical locations of the gates and pins. This allows the
program to process schematics and perfonn diagnostic functions before
the design has been laid out physically on a backplane.

3111 The form of specification is to give each gate a name, and to
specify the names of the gates that are connected to the input of
each gate. A typical statement of this type is:

YC :=N2(YA,YB);

3111A The output signal name appears to the left of the symbol
": =", and this is followed hy the name of the gate.

3HIB The input signalS appear in parentheses and the semicolon
terminates the statement. This is similar in appearance to the
gate declaration for N2, except that the reserved word "GATE"
replaces the output signal name and the u:=". The symbol ":="
is interpreted to mean "is produced by.u

3I There are several means for specifying the physical location of
signals in the backplane.

311 One such way is to merge a set of location specifications
wi th a set of signal speci fications of the type shown above.

312 Another method is to give the physical address of a gate in
the same statement that gives the names of the inputs to the gate.
Thus, the statement

can he
specify

UC ON 2 AT (2,A)

merged with the signal-definition statement above to
that tIC is the second gate on the card plugged into

C-5

APPENDIX C -- WIRELIST GENERATOR PRO(;RM1

location (2,A). Alternatively, we could have written

YC := N2(YA,YB) ON 2 AT (2,A);

313 The two methods are equivalent. In either event, it is also
necessary to specify that a card is to be plugged into location
(2,A), and this is done by the statement

CIOO AT (2,A);

3J This covers essentially all the main features of the input
language structure. It is important to mention that the program is
insensitive to the order of appearance of statements, except that the
statements that describe the card catalog must appear before the
statements that describe a schematic diagram. Thus, if the medium for
source input is a punched-card deck, the deck can be shuffled without
affecting the program's hehavior.

3K Earlier we remarked that a considerable saving in input
characters is achieved by using a gate-oriented description instead
of a pin-oriented description.

3Kl In practice, even higher-level descriptions are useful and
powerful to have in a language.

3K2 One such tool is the macro, which functions for \ ... irelist
programs in nmch the same way that a macro functions in assemb ly
languages.

3K3 Al though the 1 anguage was des i gned so that macros coul d be
incorporated into it, they have not yet been implemented. The
reason for this is that much of the power of macros has been
realized through the use of an on-line text-editing facility.

31. l1tis facili ty has been used extensively as a powerful aid for
generating and maintaining the files of input data.

3Ll The rapid on-line search and edit facilities make it easy to
find and modify statements that need to be changed.

3L2 Through the use of the "pattern matcher," extensive checking
and correctinp of the syntax can be done on line before the input
data is submitted to the wirelist program.

31.3 Furthermore, the text-structuring features are a convenient
\-Jay to organi zc the input dnt a into sections and inc 1 ude conunent
statements where needed.

4 rn1e Wirelist Program

C-6

APPENDIX C -- WIRELIST GENERATOR PROGRAM

4A The similarity of the input language to ALGOL is no accident.
The'input compiler is an adaptation of an ALGOL compiler, is written
in ALGOL, and is compiled by the same compiler from which it is
adapted. The machine on which it runs is the Burroughs B-5500.

4B The wirelist program is composed of two functional blocks--an
input compiler and a file processor. The interface between the
blocks is an intermediate file that contains the design information.

4BI TIle input compiler creates a symbol table of the catalog
description, as it is scanned, thereby taking advantage of the
symbol table processing capability that is characteristic of
compilers.

4B1A As signals are processed, information from the symbol
table is retrieved and inserted in records that arc output to
an intermediate disc file.

4B1B The disc records bear a striking similarity to the
conventional fixed-field input to wire-list programs, with the
major difference that each record contains JTlore information
than is usually input from punched cards. One record is
written for each pin, so that one input statement may cause
several records to be generated.

4BIC Each record gives an internal name to the pin it
describes and contains the name of the signal at the pin and
the name of the signal on the output of the gate to which the
pin is connected. It also contains the name of the gate, the
name of the pluggable card, the symbolic address, and other
information that is valuable for design documentation.

4B2 The file is ~ocessed by a succession of sorting operations.
At the close of each sort, some processing is done on the file and
a listing of the results is produced. The listings that can be
produced are given below.

4B2A A card-placement listing--This lists the slots in the
backplane and the cards associated with each slot, 'arranged
lexicographically hy card-slot location.

4B2B A load-check listing--This lists every gate output and
all of the inputs driven by the output, ordered
lexicographically by signal name. Allowable fanout is given for
the output of each gate, and the loading of each input is
given. The system automatically checks for overloads, absent
sources, absent loads, and multiply-defined names.

4B2C A signal input list--This lists every signal output and

C-7

APPENDIX C -- WIRELIST GENERATOR PROGRAM

all signals that are inputs to the gate that produces each
signal, ordered lexicographically by signal-output name. In
addition, this listing includes the pin assignment for each
output signal.

4B2D A master-term list--This lists the wire chains to be
made, with each chain arranged lexicographically by backplane
address, and the chains arranged lexicographically by signal
name.

4B2E A pin listing--This lists the signal name associated with
each pin on the backplane, arranged lexicographically by pin
location. The listing also gives the number of wire wraps on
each pin. This is used to check a backplane after wiring.

4B2F Multi level \>Jire lists--These list portions of the wire
chains ordered lexicographically by signal name and backplane
location to facilitate orderly wiring and assembly of the
backplane. The lowest-level listing gives the interpin
connections for each card, ordered lexicographically by card
slot. The next level gives the intercard chains for each cage.
ordered lexicographically by cage and then by signal name. The
next level is an intercage list, and further levels are
possible up to five levels.

4B2G Tallies of gates used--The system can give a tally of
the number of gates of each type that are used. Tallies are
kept for the entire design and for submodules that are
identified by the user.

4C The set of listings that can be produced hy the program resembles
the output of other wirelist programs. A simple set of controls
allows the user to request particular listings, so that the program
does not have to perform all processing on every run. Some of the
listings can be produced when the file is incomplete. An important
example of this capability is the ability to perform load checks when
the addresses of the signals are not specified.

5 User Experience

SA Three different modules of digi tal equipment have heen bui 1 t and
checked out using the wirelist program, and a fourth unit is lmder
development currently. The experience to date has shown the value of
the program in two important areas.

SAl Wiring errors were reduced from 5 percent to 0.1 percent as a
resul t of the computer processing. This accounted for a great
reduction in the time required to check out a unit.

C-8

APPENDIX C -- WIRELIST GENERATOR PROGRAM

5A1A TIlese figures are based on a comparison of similar logic
systems hand-wired hy various technicians. Although the
technicians had similar experience and capabilities,
individual differences may have accounted for some of the
dfference in error rates.

SA2 TIle effort of documentation was reduced. The output listings
that show the wiring chains and the inputs to gates provide
sufficient documentation for capturing the state of the design.
These listings together with logic sketches are adequate for
design debugging. The expense of obtaining accurately drafted,
finished logic schematics was avoided without compromising either
the accuracy of the documentation or its utility for maintenance
and checkout.

sB The program languaee is extremely easy to learn, and was mastered
in a few hours by the logic designers who used it. The wirelist
program was in a state of flux during the processing of the first few
designs, which accounted for a few minor problems. By the time the
most recent design \vas processed, the program operat ion was
ext reme ly smooth and the user was we 11 acquainted wi th the use of all
of its facilities.

sC TIle computer cost
per conductor, with
eliminate all errors.
dependine on the size
many times this cost.

for program operation is roughly 8 to 10 cents
up to five iterations through the program to

Dollar costs for designs run from $100 to $300
of the design. The saving in checkout time is

sD In summary, the wirelist program functions in several capacities
in the support of digital design. It is used to improve production
techniques, quality control, and documentation, and for maintenance
and checkout ass is tance. Not to be overlooked in importance, is the
ability to capture a desir,n in a text file that can he manipulated in
the on-line interactive environment of NLTS.

C-9

APPENDIX 0 -- TREE META: Introduction

1 Terms such as "metalanguage" and "metacompiler" have a variety of
meanings. Their usage within this report, however, is well defined.

lA "Language," without the prefix "meta," means any formal computer
language. These are generally languages like ALGOL or FORTRAN. Any
metalangauge is also a language.

IB A compiler is a computer program that reads a formal-language
program as input and translates that program into instructions that
may be executed by a computer. The term "compiler" also means a
listing of the instructions of the compiler.

Ie A language that can be used to describe other languages is a
metalanguage. English is an infonnal, general metalanguage that can
describe any formal language. Backus-Naur Form or BNF (Nurl) is a
formnl metalanguage used to define ALGOL. BNF is weak, for it
describes only the syntax of ALGOL, and says nothing about the
semantics or meaning. English, on the other hand, is powerfUl, yet
its informality prohihits its translation into computer programs.

In A mctacompiler, in the most general sense of the term, is a
program that reads a metalanguage program as input and translates
that program into a set of instructions. If the input program~is a
complete description of a fonnal language, the translation is a
compiler for the language.

2 TIle broad meaning of the word "metacompi ler," the strong, divergent
views of many people in the field, and our restricted u;e of the word
necessi tate a fonnal statement of the design standards and scope of Tree
r-feta.

2A Tree Meta is built to deal with a specific set of languages and
an even more specific set of users. TIlis project, therefore, adds to
the ever-increasing problem of the proliferation of machines and
languages, rather than attempting to reduce it. There is no attempt
to design universal languages, or machine independent languages, or
any of the other goals of many compiler-compiler systems.

2B Compiler-compiler systems may he rated on two almost independent
features: the syntax they can handle and the features within the
system that ease the compiler-building process.

2B1 Tree ~Ieta is intended to parse context-free laguages using
limi ted backup. There is no intent or desire on the part of the
users to deal with such problems as the FORTRAN "continue"
statement, the PL/I "enough ends to match," or the ALGOL "is it
procedure or is it a variable" question. Tree ~'1eta is only one
part of a system-building technique. There is flexibility at all
levels of the system and the design philosophy has been to take

D-l

APPENDIX n -- TREE HETA: Introduction

the easy way out rather than fight old problems.

2B2 Many of the features considered necessary for a
compiler-compiler system are absent in Tree Mea. Such things as
symbol-tables that handle ALGOL-style blocks and variable types
are not included. Neither are there features for multidimensional
subscripts or higher level macros. These features are not present
because the users have not yet needed them. None, however, would
be difficult to add.

2B3 Tree Meta translates directly from a high-level language to
machine codc. This is not for the faint of heart. There is a
very small number of users (approximately 3); all are
machine-language coders of about the same hiph level of
proficiency. The nature of the special-purpose languages dealt
with is such that general formal systems will not work. The data
structures and operations are too diverse to produce appropriate
code with current state-of-the-art formal compiling techniqucs.

3 There are two classes of formal-definition compiler-writing schemes.

3A In terms of usage, the productive or synthetic approach to
language definition is the most common. A productive grammar
consists primarily of a set of rules that describe a method of
generating all the possible strings of the language.

33 The reductive or analytic technique states a set of rules that
describe a method of analyzing any string of characters and decidinr,
whether that string is in the language. This approach s imul taneous ly
produces a structure for the input strinp so that code may be
compiled.

3C The metacompilers are a combination of hath scheMes. They are
neither purely productive nor purely reductive, but merge both
techniques into a powerful lvorking system.

4 The rnetacompiler class of cOJ11piler-compiler systems may be
characterized by a common top-down parsinp, algorithm and a common
syntax. These compilers are expressible in their own language, whence
the prefix "meta."

4A The following is a formal rliscussion of t.op-down parsing
algorithms. It relies heavily on definitions and formalisms which
are standard in the literature and may be skipped by the lay reader.
For a language L, ",;ith vocabulary V, nonteminal vocabulary N,
productions P, and head S, the top-down parse of a string u in L
starts with S and looks for a sequence of productions such that 5=u
(5 produces u).

D-2

APPENDIX [) -- TREE HETA: Introduction

4Al Let
V = [E, T, F, +, * (,) , X] ,
N = [E, T, FJ
P = [E · .- T / T + F · .-

T · .- F / F * T · .-
F · .- X / (E) · .-

L = (V,N,P,E)

4A2 The fOllowing intentionally incomplete ALGOL procedures will
perform a top-down analysis of strings in L.

4A2A boolean procedure E; E:= if T then Cif issymhoIC'+')
then E else true) else false; comment issymbol Carg) is a
Boolean procedure that compares the next symbol in the input
string with its argument, arg. If there is a match the input
stream is advanced;

4A2B hoolean procedure T; T . - if F then Ci f issymbol C I * I)
then T else true) else false;

4A2C boolean procedure F; F := if issymbol('X') then true
else if issymbolC' CI) then (if E then (if issymbol(') ') then
true else false) else false) else false;

4A3 The left-recursion problem can readily be seen hy a slight
modification of L. Change the first production to

E ::= T / E + T
and the procedure for E in the corresponding way to

E := if T then true else if E ••••

4A3A Parsing the string "X+X", the procedure E will call T,
lvhich calls F, which tests for "X" and gives the result "true."
E is then true hut only the first element of the string is in
the analysis, and the parse stops before completion. If the
input string is not a member of the language, T is false and E
loops infinitely.

4A3B The solution to the problem used in Tree Meta is the
arbitrary number operator. In Tree Heta the first production
could be

E :: = T$ ("+" T)
where the dollar sign and the parentheses indicate that the
quantity can he repeated any number of times, including O.

4A3C Tree Meta makes no check to ensure that the compiler it
is producing lacks syntax rules containing left recursion.
This problem is one of the more common mistakes made by

D-3

APPEND! X D -- TREE ~1ETA: Introduction

inexperienced metalanguage progr~lmers.

4B The input language to the metacompiler closely resembles BNF.
The primary difference between aBNF rule

<go to> ::= go to <lahel>
and a metalanguage rule

GOTO = "GO" "ro" .ID;
is that the metalanguage has been designed to use a computer-oriented
character set and simply delimited basic entities. The
arbitrary-number operator and parenthesis construction of the
metalanguage are lacking in BNF. For ex~ple:

TERH = FACTOR $(("*" / "/" / "") FACTOR);
is a metalanguage rule that would replace 3 BNF rules.

4C The
language
Each one
complex
effort.

ability of the compilers to he expressed in their own
has resulted in the proliferation of metacompiler systems.

is easily bootstrapped from a more primitive version, and
compilers are built with little programming or debugging

5 The early history of metacompilers is closely tied to the history of
SIG/PLAN Working (;roup 1 on Syntax Driven Compilers. The group was
started in the Los Angles area primarily through the effort of IImvard
~1etcal fe (Schmidt 1) •

SA In the fall of· 1962, he designed two compiler-writing
interpreters (~letcal f1) • One used a bottom-to-top analysis technique
based on a method described by Ledley and Ni lson (Ledleyl). The
other used a top-to-hottom approach based on a work by Glennie
(Glennie1) to generate random English sentences from a context-free
granunar.

5B At the same time, Val Schorre described two "met~achines"--one
generative and one analytic. TIle generative machine was implemented,
and produced random algebraic express ions. Schorre implemented ~teta
I the first metacompiler, on an IB~1 1401 at UCLA in January 1963
(Schorre1). Ilis original interpreters and metanachines were written
directly in a pseudo-machine lanp;uage. Meta I, however, was written
in a higher-level syntax language able to describe its own
compilation into the pseudo-machine language. Heta I is described in
an unavailable paper given at the 1963 Colorado ACH conference.

SC Lee Schmidt at Bolt, Beranek, and Newman wrote a metacompi ler in
~larch 1963 that uti Ii zed a CRT di splay on the time-sharing PDP-l
(Schmidt2). This compiler produced actual machine code rather than
interpretive code and was partially bootstrapped from ~·1eta I.

6 Schorrc bootstrapped Meta II from r~ta I during the Spring of 1963
(Schorre2). The paper on the refined metacompiler system presented at

D-4

APPENDIX D -- TREE META: Introduction

the 1964 Philadelphia ACM conference is the first paper on a
metacompiler available as a general reference. The syntax and
implementation technique of Schorre's system laid the foundation for
most of the systems that followed. Again the system was implemented on
a small 1401, and was used to implement a small ALGOL-like language.

7 ~1any similar systems immediately followed.

7A Roger Rutman of A. C. Sparkplug developed and implemented LOGIK,
a language for logical design simulation, on the IBM 7090 in January
1964 (Rutmanl). This compiler used an algorithm that produced
efficient code for Boolean expressions.

7B Another paper in the 1964 ACM proceedings describes ~~ta III,
developed by Schne ider and . .Johnson at UCLA for the IBH 7090
(Schneiderl). Heta III represents an attempt to produce efficient
machine code for a large class of languages. It was implemented
completely in assembly language. Two compilers were written in Meta
III--COnOL, a compiler-wrjting demonstration compiler, and PlJREGOL,
a dialect of ALGOL 60. (It was pure gall to call it ALGOL). The
rumored ~fETAFORE, able to compile full ALGOL, has never been
announced.

7C Late in 1964, Lee Schmidt bootstrapped a metacompiler from the
PDP-l to the Beckman 420 (Schmidt3). It was a logic equation
generating language known as EQr,EN.

8 Since 1964, System Development Corporation has supported a major
effort in the development of metacompilers. This effort includes
powerful metacompilers written in LISP which have extensive
tree-searching and backup capability (Book!) (Book2).

9 An outgrowth of one of the Q-32 systems at SDC is Meta 5 (Oppenheiml)
(Schaffer!) • This system has been success fully released to a wide
number of users and has had many string-manipulation applications other
than compiling. The Heta 5 system incorporates backup of the input
stream and enough other facilities to parse any context-sensitive
language. It has many elaborate push-down stacks, attribute setting and
testing facilities, and output mechanisms. The fact that Meta 5
successfully translates .JOVIAL programs to PL/l programs clearly
demonstrates its power and flexibility.

10 The LOT system was developed during 1966 at Stanford Research
Institute and was modeled very closely after ~1eta II (Kirkleyl). It had
new special-purpose constructs allowing it to generate a compiler which
would in turn be able to compile a subset of PL/l. This system had
extensive statistic-gathering facilities and was used to study the
characteristics of top-down analysis. I t also embedded system control,
normally relegated to ccmtrol cards, in the metalanguage.

D-5

APPEND! X D -- TREE HETA: Introduction

11 The concept of the metamachine originally put forth hy Glennie is so
simple that three hardware versions have been designed and one actually
implemented. TIle latter at Washington University in St. Louis. This
machine was built from macrornodular components and has for instructions
the codes described by Schorre (Schorre2).

D-6

APPENDIX f) -- TREE META: Basic Syntax

12 A ~etaprogram is a set of metalanguages rules. Each rule has the
form of a BNF rule, with output instructions embedded in the syntactic
description.

12A The Tree ~leta compi ler converts each of the rules to a set of
instructions for the computer.

128 As the rules (acting as instructions) compile a program, they
read an input stream of characters one character at a time. Each new
character is subjected to a series of tests until an appropriate
syntactic description is found for that character. The next
character is then read and the rule testinr, moves forward through the
input.

13 The following four rules illustrate the basic constructs in the
system. They wi 11 he referred to later by the reference numbers RIA
through R4A.

RIA EXP = TER~1 ("+" EXP I "-" EXP I .[HPTY);

R2A 11~R~1 = FACTOR $("*" FACTOR I "I" FACTOR);

R3A FACTOR = " -" FACTOR I PRIH;

R4A PRIM = .ID I .NUH I "(n EXP ") ";

13A. The identifier to the left of the initial equal sign names the
rule. This name is used to refer to the rule from other rules. TIle
name of rule RIA is EXP.

13B TIle right part of the rule--everything hetween the initial equal
sign and the trailing semicolon--is the part of the rule which
effects the scanning of the input. Pi ve basic types of enti ties may
occur in a right part. Each of the entities represents some sort of
a test which results in setting a general flag to ather "true" OT
"false".

1381 A string of characters between quotation marks e")
represents a literal string. These literal strings are tested
against the input stream as characters are read.

13B2 Rule names may also occur in a right part. If a rule is
processing input and a name is reached, the named rule is invoked.
R3A defines a FACTOR as being either a minus sign followed by a
FACTOR, or just a PRI~".

13B3 The right part of the rule FACTOR has just been defined as
Ita string of elements," "or" "another string of elements." The

D-7

APPENDIX D -- TREE ~ffiTA: Basic Syntax

"or's" are indicated by slash marks (/) and each individual string
is called an alternative. Thus, in the above example, the minus
sign and the rule name FACTOR are two elements in R3A. These two
elements make up an alternative of the rule.

13B4 The dollar sign is the arbitrary number operator in the
metalanguage. A dollar sign must be followed by a single element,
and it indicates that this element may occur an arbi trary number
of times (including zero). Parentheses may be used to group a set
of elements into a single element as in RIA and R2A

13BS The final basic entities may be seen in rule R4A. These
represent the basic recognizers of the metacompiler system. A
basic recognizer is a program in Tree Heta that may be called upon
to test the input stream for an occurrence of a particular entity.
In Tree ~leta the three recognizers are "identi fier" as • ID,
"number" as .NU~1, and "string" as .SR. There is another hasic
entity tha is treated as a recognizer but does not look for
anything. It is .EHPTY and it always returns a value of "true."

14 Suppose that the input stream contains the string X+Y when the rule
EXP is invoked during a compilation.

14A EXP first calls rule TERH, that calls FACTOR, that tests for a
minus sign. 111is test fails and FACTOR then tests for a plus sirn
and fails again. Finally FACTOR calls PRH-l, that tests for an
identifier. The character X is an identifier; it is recognized and
the input stream advances one character.

14B PRH1 returns a value of "true" to FACTOR, which in turn returns
to TERM. TERr·1 tests for an asterisk and fai 1 s. I t then tes ts for a
slash and fails. The dollar sign in front of the parenthesized group
in TERM, however, means that the rule has succeeded because TER.T\1 has
found a FACTOR followed by zero occurrences of "asterisk FACTOR" or
"slash FACTOR." Thus TERM returns a "true" value to EXPo EXP now
tests for a plus sign and finds it. The input stream advances
another character.

14C EXP now calls on itself. All necessary information is saved 50

that the return may be made to the right place. In calling on itself,
it goes through the sequence just described until it recognizes the
Y.

140 Thinking of the rules in thi 5 ''lay is confus ing and tedi ous. It
is hest to think of each rule separately. For example: one should
think of R2A as defining a TER~l to be a series of FACTORs separated
hy asterisks and slashes and not attempt to think of all the possihle
things a FACTOR could be.

D-8

APPENDIX D -- TREE~tETA: Basic Syntax

15 Tree ~1eta is different from most metacompiler systems in that it
huilds a parse tree of the input stream before producing any output.
Refore we describe the syntax of node generation, let us first discuss
parse trees.

ISA A parse tree is a structural description of the input stream in
terms of the given grammar.

ISAl Using the four rules above, the input stream

X+y*z

has the following parse tree

lSA2 In this tree each node is either the name of a rule or one
of the primary entities recor,nized by the basic recognizer
routines.

lSA3 In this tree there is a great deal of subcater,orization.
For example, Y is a PRIM, which is a FACTOR, which is the left
member of a TERH. This degree of subcater,orization is "generally
undesirable.

ISH The tree produced by the metacompiler program is simpler than
the one above, yet it contains sufficient information to complete the
compi I at ion. •

D-9

APPENDIX D -- TREE HETA: Basic Syntax

15Bl The parse tree actually produced is

ADD

x:

Y Z

15B2 In this tree the names of the nodes are not the rule names
of the syntactic defini tions, but rather the names of rules that
will be used to generate the code from the tree.

15B3 The rules that produce the above
four previous rules with new syntax
appropriate node generation. TIle

tree are the same as the
additions to perform the
complete rules are:

RIB EXP = TER~1 C"+" EXP :ADDI "-" EXP :SlIB) [2] .EMPTY);

R2B TERH = FACTOR $(("*" FACTOR :MlJLTI "I" FACTOR :DIVD)
[2]) ;

R3B FACTOR = "_,, FACTOR :tvIINUS[1] I PRIM;

R4B PRIrt = .In / .NUH I It(H EXP ")";

15C As these rules scan an input stream, they perform just like the
first set. As the entities are recognized, however, they are stored
on a push-down stack until the node-generation elements remove them
to make trees. We will step through these rules with the same sample
input stream:

X+y*z

15C1 EXP calls TERr·,1, which calls FACTOR, which calls PRIM, which
recognizes the X The input stream moves forward and the x is put
on a stack.

15C2 PRH·' returns to FACTOR, which returns to TER~l, which returns
to EXP. The plus sign is recognized and EXP is again called.
Again EXP calls TER~1, which calls FACTOR, which calls PRIH(which
recognizes the Y. The input stream is advanced, and Y is put on
the push-down stack. The stack now contains Y X, and the next
character on the input stream is the asterisk.

D-IO

APPENDIX D -- TREE ~ffiTA: Basic Syntax

15C3 PRIM returns to FACTOR, which returns to TERM. The asterisk
is recognized and the input is advanced another character.

15C4 The rule TERM now calls FACTOR, which calls PRIM, which
recognizes the Z, advances the input stream, and puts the Z on the
push-down stack.

15(5 The :~ruLT in now processed. This names the next node to
be put in the tree. Later we will see that in a complete
metacompiler program there will be a rule named ~flJLT which will be
processed when the time comes to produce code from the tree.
Next, the [2] in the rule TER~1 is processed. This tells the system
to construct a portion of a tree. The branch is to have two
nodes, and they are to be the last two entities recognized (they
are on the stack). The name of the branch is to be ~fULT, since
that \vas the last name given. The branch is constructed and the
top two items of the stack are replaced by the new node of the
tree.

15CSA TIle stack now contains

~fULT

x

l5CSB The parse tree is now

~ y Z

15C5C Notice that the nodes are assemhled in a left-to-right
order, and that the original order of recognition is retained.

15C6 Rule TERr·! now returns to EXP which names the next node by
executing the :ADD i.e., names the next node for the tree.
The [2] in rule EXP is now executed. A branch of the' tree is
generated that contains the top two items of the stack and whose
name is ADD. The top two items of the stack are removed, leaving
it as it was initially, empty. The tree is now complete, as first
shmvn, and all the input has been passeu over.

16 The unparsing rules have two functions: they produce output and they
test the tree in much the same way as the parsing rules test the input
stream. TIlis testing of the tree alows the output to be hased on the
deep st ructure of the input, and hence better output may be nroduced.

D-ll

:'\PPENDIX n -- TREE t1ETA: Basic Syntax

16A Before we discuss the node-testing features, let us first
describe the various types of output that may be produced. The
following list of output-generation features in the metacompiler
system is enough for most examples.

16A1 The output is line-oriented, and the end of a line is
Jetermined by a carriage return. To instruct the system to
produce a carriage return, one writes a backs lash (upper-case L on
a Teletype) as an element of an unparse rule.

16A2 To make the output more readab Ie, there is a tab feature.
To put a tah character into the output strearl, one wri tes a comma
as an element of an output rule.

16A3 A Ii teral string can be inserted in the output strear.l by
~erely writing the literal string in the "nparse rule. Notice
that in the unparse rule a literal string becomes output, while in
the parse rules it hecomes an entity to he tested for in the input
stream. To output a line of code which has L as a lahel, ADD as
an operat ion code, and SYS as an address, one would ,,.rri te the
follO\ving string of clements in an unparse rule:

"L" , "ADD" , "SYS"

16A4 As can be seen in the last example of a tree, a node of the
tree may he ei ther the name of an lmparse rule, such as ADD, or
one of the hasic entities recognized during the parse, such as the
identifier X.

16A4A Suppose that the expression x+y*z has heen parsed and
the program is in the ADD unparse rule processing the 1\1)D node
(1 ater \~e wi 11 see how this state is reached). To pllt the
identifier X into the output stream, one writes "*1" (meaning
"the first node below") as an element. For example, to generate
a line of code with the operation code ADA and the operand
field X, one would write:

, '~nA", *1

16A4[3 To generate the code for the left-hand node of the tree
one merely mentions "*1" as an element of the unparse rule.
Caution must be taken to ensure that no attempt is made to
append a nonterminal node to the output stream; each node must
be tested to be sure that it is the right type hefore it can he
evaluated or output.

16A5 r.enerated label s are handled automatically. As each unrarse

D-12

APPENDIX D -- TREE ~1ETA: Basic Syntax

rule is entered, a new set of labels is generated. A label is
referred to by a number sign (upper-case 3 on a Teletype) followed
by a number. Every time a label is mentioned during the execution
of a rule, the label is appended to the output stream. If another
rule is invoked in the middle of a rule, all the labels are saved
and new ones generated. When a return is made the previous labels
are restored.

17 As trees are being built during the parse
it is necessary to generate code from the tree.
an asterisk as an element of a parse

phase, a time comes when
To do this one writes
rule for example

R5B PROGRAM = ".PROGRA~:l" $(ST *) ".END";

which generates code for each statement after it has been entirely
parsed. When the asterisk is executed, control of the program is
transferred to the rule whose name is the root (top node or last
Renerated node) of the tree. When return is finally made to the rule
which initiated the output, the entire tree is cleared and the
generation process begins anew.

17;\ An unparse rule is a rule name followed by a series of output
rules. Each output rule begins with a test of nodes. The series of
output rules make up a set of highest-level alternatives. When an
unparse rule is called, the test for the first output rule is made.
If it is satisfied, the remainder of the alternative is executed; if
it is false, the next alternative output rule test is made. This
process continues until either a successful test is made or all the
alternatives have been tried. If a test is successful, the
alternative is executed and a return is made from the unparse rule
with the general flag set "true." If no test is successful, a return
is made with the general flag "false."

17B The simplest test that can he made is the test to ensure that
the correct number of nodes emanate from the node beinf, processed.
TIle ADD rule may beflin

AnD [-, -] =>

'The string wi thin the brackets is known as an out-test. The hyphens
are individual items of the out-test. Each item is a test for a
node. All that the hyphen re(llti res is that a node he present. The
name of a rule need not l:1atch the name of the node being processed.

17B1 If one wishes to eliminate the test at the head of the
out-rule, one may write a slash instead of the bracketed string of
items. The slash, then, takes the place of the test and is always
true. Thus, a rule \vhich be2ins with a slash immediately after
the rule name may have only one out-rule. The rule

D-13

APPENDIX D -- TREE ~mTA: Rasic Syntax

~fT / => .E~1PTY;

is frequently used to flag the absence of an optional item in a
list of items. It may be tested in other unparse rules but it
itself always sets the general flag true and returns.

1732 The nodes emanating from the node being evaluated are
referred to as *1, *2, etc., counting from left to right. To test
for equality between nodes, one merely writes *i for some i as
the desired item in an out-test. For example, to see if node 2 is
the same as node 1, one could write either [-,*1] or [*2,-]. To
see if the thi.rd node is the same as the first, one could \vrite
[-,*2,*1]. In this case, the *2 could be replaced by a hyphen.

17B3 One may test to see if a node is an element which was
r,enerated by one of the hasic recognizers by mentioning the name
of the recognizer. '111 us to see if the node is an identifier one
writes .ID; to test for a number one writes .NlJM. To test whether
the first node emanating from the ADD is an identifier and if the
second node exists, one writes [.ID,-].

17B4 To check for a literal string on a node one may write a
string as an item in an out-test. The construct [-,"1"] tests to
be sure that there are t\vO nodes and that the second node is a 1.
The second node will have heen recognized hy the .NUH basic
recognizer during the parse phase.

17B5 A generated label may be inserted into the tree by using it
in a call to an unparse rule in another unparse rule. This
process will be explained later. To see if a node is a previously
generated label one writes a number sign followed by a number. If
the node is not a generated label the test fails. If it is a
generated lahe 1 the test is success ful and the label is associ ated
wi th the number following the number sign. To refer to the 1 abe I
in the unparse rule, one writes the number sign followed hy the
number.

1786 Finally, one may test to see if the name matches a specified
name. Suppose that one had generated a node named STORE. The left
node emanating from it is the name of a variable and on the right
is the tree for an expression. An unparse rule may begin as
follows:

S TO R E [- , ADD [* 1 , " 1"]] = > , ,,~U N" * 1

D-14

APPENDIX D -- TREE ~1ETA: Basic Syntax

The * 1 as an i tern of the ADD refers to the left node of the
STORE. Only a tree such as

STORE

.I~r)[)
~

• ID 1

would satisfy the test, where the t\~O identifiers must he the
same or the test fails. An expression such as X ~ X + 1 meets all
the requirements. The code generated (for the .. SOS 940) would be
the single instruction r·lIN X, which increments the cel I X by one.

17C Each out-rule, or hiehest-Ievel alternative, in an unparse rule
is also made up of alternatives. These alternatives are separated hy
slashes, as are the alternatives in the parse rules.

17C1 The alternatives of the out-rule are called "out-exprs." The
out-expr may ber,in with a test, or it may begin with instructions
to output characters. If it hegins with a test, the test is made.
If it fails the next out-expr in the out-rule is tried. If the
test is successful, control proceeds to the next element of the
out-expr. M:en the out-expr is done, a return is made from the
unparse rule.

17C2 The test in an out - expr rcsemb les the test for the out- rul e.
There are t\~O types of these tests.

17C2A Any nonterminal node in the tree nmy be transferred to
by its position in the tree rather than its name. For example,
*2 would invoke the second node from the right. TIlis operation
not only transfers control to the specific node, but it makes
that node the one fran which the next set of nodes tested
emanate. After control is returned to the },)osition immediately
followinr, the *2, the r,cneral flag is tested. If it is "true"
the out-expr proceedes to the next clement. If it is "false"
and the *2 is the first elenent of the out-expr the next
alternative o.f the out-expr is tried. If the flag is "false"
and the *2 is not the first element of the out-expr, a compiler
error is indicated and the system stops.

17C211 TIle other type of test is made by invoking another
unparse rule by name and testinp, the flag on the completi.on of
the rule. T("'I call another lmparse rule from an out-expr, one
\\lri tcs the l1~une of the rule followed hy an argument 1 ist
enclosed in hrackets. The ar~ument list is a li.st of nodes in

D-15

APPENDI X D -- TREE ~tETA: Basic Syntax·

the tree. These nodes are put on the node stack, and when the
call is made the rule heing called sees the argUJllent list as
its set of nodes to analyze. For example:

AD D [~n NU S [-]. , -]. = > SUB [* 2 , * I : * 1]

17C2B1 Only nodes and generated labels can be written as
arguments. Nodes are \vri tten as * 1, * 2, etc. To reach other
nodes of the tree one may write such things as *1:*2, which
means "the second node emanating from the first node
emanating from the node being evaluated." Referring to the
tree for the expression x+y*z if ADD is beine evaluated,
*2:*1 is Y.To go up the tree one may write an "uparrow"Ct)
follm\1ed hy a number before the asterisk-numher-colon
sequence. The uparrow means to go up that many levels
before the search is made down the tree. I f ~tULT were beinp;
evaluated,t1*1 would be the X.

17C2B2 If a generated label is written as an argument, it
is generated at that time and passed to the called unparse
rule so that that rule may use it or pass j t on to other
rules. The generated label is written just as it is in an
output element--a numher sign followed by a numher.

17C3 The calls on other unparse rules may occur anywhere in an
out-expr. If they occur in a place other than the first element
they are executed in the same way, except that after the return
the flag is tested; if it is false a compiler error is indicated.
This use of extra rules helps in making the output rules more
concise.

17C4 The rest of an out-expr is made up of output elements
appended to the output stream, as discussed above.

170 Somet imes j t is necessary to set the general fl ag in an out-expr,
just as it is sometimes necessary in the parse rules. .EHPTY may be
used as an element jn an out-expr at any place.

17E Out-exprs may be nested, using parentheses, in the same way as
the alternatives of the parse rules.

18 There are a few features of Tree ~!teta which are not essential but do
make programming easier for the user.

18A If a literal string is only one character long, one may write
an apostrophe followed by the character rather than writing a
quotation mark, the character, and another quotation mark. For
example: 'S and "S" are interchangeable in either a parse rule or an

D-16

APPENDIX 0 ~- TREE ~tETA: Basic Syntax

unparse rule.

18B As the parse rules proceed through the input stream they may
corne to a point where they are in the middle of a parse alternative
and there is a failure. This may happen for two reasons: backup i5
necessary to parse the input, or there is a syntax error in the
input. Backup \~i 11 not he covered in this introductory chapter. If
a syntax error occurs the system prints out the line in error with an
arrow pointing to the character which cannot he parsed. The system
then stops. To eliminate this, one may write a question mark
followed by a number followed by a rule name after any test except
the first in the parse equations. For example:

ST = .10 '= question 2 E EXP question 3 E ';

question 4 E :STORE[2] ;

Suppose this rule is executing and has called rule EXP, and EXP
returns with the flag false. Instead of 5topping Tree ~·1eta print5
the line in error, the arrow, and an error comment which contains the
number 3, and transfers control to the parse rule E.

18C Comments may he inserted anywhere in a metalanguage program
,,,here blanks may occur. A comment begins and ends \~i th a percent
sign, and may contain any character -- except, of course, a percent
sign.

18D In addition to the three basic recognizers .In, .NOM, and .SH,
there are two others which are occasionally very use~ll.

18tH The symbol .LET indicates a single letter.
thought of as a one-character identifier.

It could he

18112 The symbol .CIIR indicates any character. In the parse
rules, .CIIR caU5es the next character on the input stream to be
taken as input regardless of what it is. Leading blanks are not
discarded as for • In, .NU~1, etc. The character is stored in a
special way, and hence references to it are not exactly the same
as for the ether basic recognizers. In node testing, if one
\'Jishes to check for the occurrence of a particular character that
was recognized hy a .CIIR, one uses the 5inp,le quote-character
construct. \,;11cn outputt inB a node item ,,,,hich is a character
recognized by a .CIlR, one adds a :C to the node indicator. For
e xamp 1 e, * 1 : C •

18E Occasionally some parts of a compilation are very simple and it
is cumbersome to build a parse tree and then output from it. For this
reason the ability to output directly from parse rules has been
added.

D-17

APPENDIX n -- TREE HETA: Basic Syntax

18E1 TIle syntax for outputting from parse rules is generally the
same as for unparse rules. The output expression is written
\vi thin square hrackets, however. The items from the input stream
that normally are put in the parse tree may be copied to the
output stream by referencing them in the output expression. The
most recent item recognized is referenced as * or *50. Items
recognized previous to that are *51, *52, etc., counting in
reverse order--that is, counting down from the top of the stack
they are kept in.

18E2 Normally the items are removed from the stack and put into
the tree. However, if they are copied directly to the output
stream, they remain in the stack. They are removed hy writing an
ampersand at the end of the parse rule (just before the
semicolon). 111is causes all input items added to the stack hy that
rule to be removed. The input stack is thus the same as it was
when the rule was called.

D-18

APPENDIX D -- TREE ~lliTA: Program Environment

19 When a Tree r.leta program is compi led by the metacompi ler, a
machine-language version of the program is generated. HO\~ever, it is not
a complete program since several routines are missing. All Tree ~leta
programs have common functions such as reading input, generating output,
and manipulating stacks. It would be cumbersome to have the
metacompiler duplicate these routines for each program, so they are
contained in a library package for all Tree Heta prograJlls. The library
of routines must be loaded with the machine-language version of the Tree
~Ieta program to make it complete.

19A The environment of the Tree Heta program, as it is running, is
the library of routines plus the various data areas.

19l1 TIlis section descrihes the environment in its three logical
parts: input, stack organization, and output.

19B1 1his is a description of the current working version, with
some indications of planned improvements.

20 Input ~'lachinery

20A The input stream of text is broken into lines and put into an
input buffer. Carriage returns in the text are used to determine the
ends of lines. Any line longer than 80 characters is broken into two
lines. This line orientation is necessary for the following:

20AI Syntax-error reporting

20A2 A possible anchor mode (so the compiler can sense the end of
a line)

20A3 An interlinear listing option.

20A4 In the future, characters for the input huffer \ViII be
obtained fron another input huffer of arbitrary block si ze, but at
present they are obtained from the system with a Character I/O
conunand.

20n It is the job of routine RLINE to fill the input line buffer. If
the 1 istinp- fl ag j s on, HLINE copi es the nC\<,r I ine to the output fi Ie
(prefixed with a comment character--an asterisk for our assernh ler) •
It also checks for an End-of-File, and for a multiple blank
character, which is a system feature huilt into our text files.
TIlere is a buffer pointer that indi cates which character is to he
read frorl the 1 inc buffer next, and nLH,Eresets that pointer to the
first character of the line.

20e Input characters for the Tree ~·lcta program are not obtained from
the input line buffer, hut from an input window, which is actually a

D-19

APPENDIX n -- TREE ~fETA: Program Environment

character ring buffer. Such a buffer is necessary for backup. There
are three pointers into the input windO\'i. A program-character
counter (pee) points to the next character to be read by the program.
This may be moved back by the program to effect backup. A
library-character counter (Lee) is never chanr,ed except by a library
routine when a new character is stored in the input window. pee is
used to compute the third pointer, the input-windO\4/ pointer (IWP) •
Actually, pee and Lee are counters, and only IWP points into the
array RING which is the character ring huffer. Lec is never backed
up and always indicates the next position in the \vindow where a new
character must be obtained from the input line buffer. RackuTl is
registered in BACK, and is simply the difference hetween PCC and LeC.
BACK is always negative or zero.

20D There are several routines that deal directly with the input
,·:indow.

20D1 The routine PIITIN takes the next character from the input
line buffer and stores it at the input-window position indicated
by I\'JP. "111 is involves incrementing the input-buffer pointer, or
call ing RL INE if the buffer is empty. PUTIN does not change IWP.

20D2 The routine INC is llsed to put a character into the input
\.;i n<lO\v • It i.ncreases I\vP by one hy call ing a rout ine , llP I\vp ,
which makes IWP wrap around the ring buffer correctly. If there is
backup (i.e., if BACK is less than 0), BACK is increased by one
and INC returns, since the next character is in the window
already. Otherwise, LeC is increased by one, and PUTIN is called
to store the new character.

20D3 A routine called INCS is similar to INC except that it
deletes all blanks or conunents that may be at the current point in
the input stream. This routine implements the comment and hlank
deletion for .10, .NU~1, .SR, and other basic recognizers. INCS
first calls INC to get the next character and increment IWP. From
then on, PUTIN is called to store succeeding characters in the
input \vindO\'i in the same slot. As long as the current character
(at IWP) is a blank, INCS calls PUTIN to replace it with the next
character. The nonblank character is then compared with a co~ent
character. INCS returns if the comparison fai Is, hut· otherwise
skips to the next comment character. When the end of the comment
is located, INCS returns to its blank-checking loop.

20D3A Note that comments do not get into the input window.
For this reason, BACK should be zero \~hen a comment is found in
the loop described above, and this provides a good opportunity
for an error check.

20D4 Before beginning any input operation, the IWP pointer must

D-20

APPENDIX D -- TREE ~.ffiTA: Program Environment

be reset, since the program may have set pce back. The routine
WPREP computes the value of BACK from PCC-LCC. This value must be
between 0 and the negative of the window size. IWP is then
computed from pee modulo the window size.

2005 The program-library interface for inputting items from the
input stream consists of the routines ID, NUM, SR, LET, and CHR.
The first four are quite similar. 10 is typical of them, and
works as follows: First HFLAG is set false. WPREP is called to
set up IWP, then INCS is called to get the first character. If
the character at IWP is not a letter, 10 returns (~1FLAG is sti 11
false); otherwise a loop to input over letter-digits is executed.
When the letter-digit test fails the flag is set true, and the
identifier is stored in the string storage area. The class of
characters is detennined by an array (indexed by the character
i tsel f) of integers indicating the class. Before returning, If)
calls the routine GOBL which updates pec to the last character
read in (which \Vas not part of the identifier). That is, Pcr. is
set to LCC+BACK-I.

2006 The occurrence of a given literal string in the input stream
is tested for by calling routine TST. The character count and the
string folIo\': the call instnlction. TST deletes leading hlanks and
inputs characters, comparing them one at a time with the
characters of the literal string. If at any point the match
fails, TST returns false. Upon reaching the end of the string, TST
sets the flag true, sets pee to LCC+BACK, and returns. In
addition to TST, there is a simple routine to test for a single
character string (TCH) • It inputs one character (deleting
blanks), compares it to the given character and returns false, or
adjusts pce and returns true.

21 Stacks and Internal Organization

2lA TIlree stacks arc available to the program. A stack called
\fSTACK is used to hold return locations and generated labels for the
program's recursive routines. Another stack, called KSTACK, contains
references to input i terns. l'.11en a basic recognj zer is executed, the
reference to that input itePl is pushed into KSTACK. The thjrd stack
is called NSTACK, and contains t.he actual tree. The three stacks are
declared in the Tree ~leta pror,ram rather than the library: the
program deternines the size of each.

21A1 The operation of ~lSTACK j s very simple. At the ber,inning of
each routine, the current generated labels and the location that
the routine was called from are put onto ~STACK. TIle routine is
then free to use the generated labels or call other routines. The
routine ends by restoring the generated lahels from !fSTACK and
returning.

D-21

APPENDIX J) -- TREE r,fETA: Program Environment

21A2 KSTACK contains single-word entries. Each entry will
eventually be placed in NSTACK as a node in the tree. The format
of the node words is as follows: There are two kinds of nodes,
terminal and nonterminal. Terminal nodes are references to input
items. Nonterminal nodes are generated hy the parse rules, and
have names which are names of output rules.

21A2A A terminal node is a 24-bit word with either a
string-storage index or a character in the address portion of
the word, and a flag in the top part of the word. The flag
indicates which of the basic recognizers (In, NUM, SR, LET, or
CHR) is to read the item from the input stream.

D-22

APPENDIX D -- TREE ~lliTA: Program Environment

21A2B A nonterrninal node consists of a word with the address
of an output rule in the address portion, and a flag in the top
part which indicates that it is a nonterrninal node. A node
pointer is a word with an NSTACK index in the address and a
pointer flag in the top part of the word. Each nonterminal
node in NSTACK consists of a nonterrninal node word followed by
a word containing the numher of subnodes on that node, followed
by a terminal node word or node pointers for each subnode. For
example,

TREE NSTACK KSTACK

ADD

node ptr. ~

SS item X

X ~1lJLT 2 node ptr.

node ADD -...

SS item Z

SS item y

2

y Z node ~·fULT
..

21A2C KSTACK contains terminal nodes (input
nonterminal node pointers that point to nodes
NSTACK. NSTACK contains nonterminal nodes.

I

items) and
already in

21B Strinr, Storage is another stack-like area. All the items read
from the input stream by the hasic recognizers (except CHR) are
stored in the string-storage area (SS). This consists of a series of
character strings prefixed hy their character counts. An index into
SS consists of the address of the character count for a string.

D-23

APPENDIX n -- TREE META: Program Environment

Strings in SS are unique.
a given string, and enter
the 55 index of that string.

A routine called STORE will search 5S for
it if it is not already there, returninp;

21C Other routines perform housekeeping functions like packing and
unpacking strings, etc. There are three error-message writinr,
routines to write the three types of error messages (syntax, system,
and compiler). The syntax error routine copies the current input
line to the teletype and gives the line number. A rou~ine called
FINISH closes the files, writes the number of cells used for each of
the four stack areas (KSTACK, ~15TACK, N5TACK, and 55), and terminates
the program.

21C1 At many points in the lihrary routines, parameters are
checked to see if they are Nithin their bounds. The system error
routine is called if there is something wrong. This routine
wri tcs a number indicating what the error is, and terminates the
program. In the current version, the numbers correspond to the
followinr, errors:

21ClA (1) Class codes are illegal

21C1B (2) Backup too far

21C1C (()4) Character with code
I

greater than h3 in ring huffer

21C10 (4) Test for string longer than rin? size

21C1E (5) Trying to output a string longer than JTlaximuJl1
string length

21C1F (6) String-storage overflow

21CIG (7) Illegal character code

21C111 (8) Trying to store SS element of length zero

21(11 (11) ~~TACK overfloN

21C1..1 (12) NSTACK overflow

21C1K (13) KSTACK overflow

210 There is a set of routines used by Tree ~~ta that arc not
actually part of the library, hut are loaded '<lith the library for
Tree '.1eta. They are not included in the 1 ihrary since they are not
necessari ly required for every Tree r·1eta progran, but narc likely
only for Tree ncta. They are called "support rnutincs." The
routines perform short hut frequently needed operations and serve to

D-24

APPENDIX n -- TREE ~,1ETA: Program Environment

increase code density in the metacompiler. Examples of the
operations are generating labels, saving and restoring labels and
return addresses on MSTACK, comparing flags in NSTACK, generating
nodes on NSTACK, etc.

22 Output Facilities

22A TIle output from a Tree Meta program consists of a strinR of
characters. In the future it might be a string of bits constituting a
binary program, hut at any rate it can be thought of as a stream of
data. The output facilities available to the program consist of a set
of routines to append characters, strings, and numbers to the output
stream.

22Al A string in SS can he written on the output stream by
calling the routine OUTS with the SS index for that string. OUTS
checks the SS index and generates a system-error message if it is
not reasonable.

22A2 A literal string of characters is written hy calling the
routine LIT The 1 i teral string fo110\vs the call as for TST.

22A3 A number is written using
representation is given, and is
integer.

routine
written

OUTS. The hinary
as a signed decimal

22A4 All of the above routines keep track of the number of
characters \vritten on the output stream (in CHNO). Based on this
count, a routine called TAB will output enough spaces to advance
the current output line to the next tab stop. Tabs are set at
8-character intervals. The routine CRLF will output a carriage
return and a line feed and reset CliNO.

22AS There are several routines that are convenient for
debugging. One (WRSS) will print the contents of SSe Another
(\~RIW) will print the contents of the input window.

D-25

APPENDIX D -- TREE ~1ETA: Formal Description

23 This
language.

chapter is a fomal description of the complete Tree Heta
It is designed as a reference guide.

23A For clarity, strings that would normally be delimited by
quotation marks in the metalanguage are capitalized ins~ead, in this
chapter only.

23B Certain characters cannot be printed on the report-generating
output meuia hut are on the teletypes and in the metalanguage--their
names, preceeded by periods, are used instead. They are
.exclamation, .question, • pound , • ampersand, .hackslash, and
.percent.

24 Programs and Rules

24A Syntax

24Al program = .HETA .id (.LIST / • empty) size / .CONTINUE $rule
.END;

24A2 size = '(siz $(', siz) ') / .empty;

24A3 siz = .chr '= .nurn;

24A4 rule = .id ('= exp (.ampersand / .ernpty) / '/ "=>" r,enl /
outrul) '; ;

248 Semantics

24Bl A file of symbol ic Tree Heta code may he either an original
main file or a continuation file. A compiler may be composed of
any number of files but there may be only one main file.

24BIA The mandatory identifier following the string .~,fETA in a
main file names the rule at which the parse will begin.

24B18 The optional .LIST, if present, will cause the compiler
currently beine generated to list input when it is c~mpiling a
program.

24BIC TIle size construct sets the allocation parameters for the
three stacks and string storage used by the Tree Heta library.
The default si zes are those used by the Tree Heta campi I er. r.f,
K, N, and S are the only valid characters; the size is
something that must he determined by experience. The maximum
number of cells used during each compilation is printed out at
the end of the compilation.

24B2 When a file ,begins with .CONTINUE, no initialization or

D-26

APPEt\DIX D -- TREE HETA: Fonnal Description

storage-allocation code is produced.

24B3 There are three different kinds of rules in a Tree f'-feta
program. All three begin with the identifier that names the TIlle.

24B3A Parse TIlles are distinguished by the = following the
identifier. If all the elements that generate possible nodes
during the execution of a parse rule are not bllilt into the
tree, they must be popped from the kstack hy writing an
ampersand immediately before the semicolon.

24838 ~lles with the strin~ I =) followinR the identifier
may be composed only of dements hat produce output. There is
no testing of flags within a rule of this type.

24B3C Unparse rules have a left hracket follO\\inr. the
identifier. 'ntis signals the start of a series of node tests.

25 Expressions

25A Syntax

25Al exp = '~suback (tl exp I .enpty) I subexp ('I exp I .empty);

2SA2 suback = ntest (suback I .empty) I stest (suback I .empty);

25A3 subexp = (ntest I stest) (noback I .empty);

25A4 noback = (ntest I stest ('.question .nun C.id I '.question)
I .empty)) (nohack I .empty);

25B Semantics

2581 The expressions in parse rules are composed entirely of
ntest, stest, and error-recovery constructs. The four rules
above, which define the allo\vab Ie alternation and concatention of
the test, are necessary to reduce the instructions executed when
there is no backup of the input st ream.

25B2 An expression is essentially a series of subexpressions
separated by slashes. Each subexpression is an alternative of the
expression. The al ternatives arc executed in a left-to-ri ght
order until a successful one is found. The rest of that
alternative is then executed and the rule returns to the rule "that
invoked it.

2SB3 The subexpressions are series of tests. Only subexpressions
that begin with a leftarrow are allowed to back up the input
stream and rescan it.

D-27

APPENDIX n -- TREE ~1ETA: Fonnal Description

25R3A Without the arrow at the head of a subexpression, any
test other than the first within the subexpression may be
followed by an error code. If the error code is absent and the
stest fails during compilation, the system prints an error
comment and stops. If the error code is present and the stest
fails, the system prints the number following the '.question in
the error code, and if the optional identifier is eiven the
system then transfers control to that rule; othen~ise it stops.

25B3B If the test fails, the input stream is restored to the
position it had when the subexpression began to test the input
stream and the next alternative is tried. The input stream may
never be moved back more characters than are in the ring
buffer. Normally, backup is over identifiers or words. and the
huffer is long enough.

26 Elements of Parse Rules

26A Syntax

26A1 ntest = (':.id / '[(.num '] / eenp '] ('.hackslash /
.empty) / ,< genp ') (' .backslash / .empty) / (.CHR / '*) / "=)"
/ comm;

26A2 genp = genpl / .empty;

26A3 gcnpl = gcnp2 (genpl / .empty);

26A4 genp2 = '* (S .num / • empty) (L / C / N / .empty) / genu;

26A5 COJ11l11 = .H1PTY / '.exclamation .sr;

26A6 stest = ' •• id / .id / .sr / '(exp ') / ".chr / (.num '$ /
'S) (.num / .empty) stest / '- (.ST / ".chr);

268 Semantics

26B1 The ntest elements of a parse lule
of the general flag, and therefore
flag-checking code in the compiler.

cannot change· the value
need not he follOl\'ed hy

26RIA The : • ill construct names the next node to be put into
the tree. The identifier must he the name of another rule.

26BIB The .num] constructs a node with the name used in
the last : .id construct, and puts the number of nodes
specified after the arrow on the new node in the tree.

26BIC The [genp J is used to write outllut into the normal

D-28

APPENDIX D -- TREE META: Formal Description

output stream during the parse phase of the compilation.

26BID The < genp) is used to print output back on the user
teletype instead of the normal output stream. This is
generally used during long compilations to assure the user that
the system is still up and running correctly.

26BIE The occurrence of a .chr causes one character to be read
from the input stream into a special register which may be put
into the tree just as the terminal symbols recognized by the
other basic recognizers are.

26BIF An asterisk causes the rule currently in execution to
perform a subroutine call to the rule named by the top of the
tree.

26BIG The "=)" ntest construct causes the input stream to be
moved from its current position past the first occurrence of
the next stest. This may be used to skip over comments, or to
move the input to a recognizable point such as a semicolon
after a syntax error.

26B2 The comrn elements are common to both parse and unparse
rules.

26B2A The .EMPTY in any rule sets the general flag true.

26B28 The .exclamation-string construct is used to insert
patches into the compiler currently being produced. The string
following the .exclamation is immediately copied to the output
stream as a new line. This allows the insertion of any special
code at any point in a program.

26B3 Stests always test the input stream for a literal string or
basic entity. If the entity is found it is removed from the input
stream and stored in string storage. Its position in string
storage is saved on a push-down stack so that the entity may later
be added as a terminal node to the tree.

26B3A A .id construct provides a standard machine-language
subroutine call to the identifier. Supplied with the Tree Heta
library are subroutines for .id, .num, .sr, .chr, and .let
which check for identifier, number, string, character, and
letter respectively.

26838 An identifier by itself produces a call to the rule with
the name of the identifier.

2683C A literal string merely tests the input stream for the

D-29

APPENDIX D -- TREE META: Formal Description

string. If it is found it is discarded. The
apostrophe-character construct functions like the literal
string, except that the test is limited to one character.

26B3D The number-$-number construct is the arbitrary-number
operation of Tree Meta. m$n preceding an element in a parse
rule means that there must be between m and n occurrences of
the next element coming up in the input. The default options
for m and n are zero and infinity respectively.

26B3E The hyphen-string and hyphen-character constructs test
in the same way as the literal string and apostrophe-character
constructs. After the test, however, the flag is complemented
and the input-stream pointer is never moved forward. This
permits a test to be sure that something does not occur.

27 lJnparse Rules

27A Syntax

27Al outrul = '[outr (outrul / .empty);

27 A2 outr = items t] "=>" outexp;

27A3 items = item (', items / .empty);

27A4 item = '- / .id '[outest / nsimpl /' .id / .sr / ".chr /
, .pound;

27B Semantics

27Bl The unparse rules are similar to the parse rules in that
they test something and return a true or false value in the
general flag. The difference is that the parse rules test the
input stream, delete characters from the input stream, and build a
tree, while the unparse rules test the tree, collapse sections of
the tree, and write output.

27B2 There are two levels of alternation in the unparse rules.
The highest level is not written in the nomal style of Tree ~'feta
as a series of expressions separated by slashes; rather, it is
written in a way intended to reflect the matching of nodes and
structure within the tree. Each unparse rule is a series of these
highest-level alternations. The tree-matching parts of the
alternations are tried in sequence until one is found that
successfully matches the tree. The rest of the alternation is
then executed. There may be further test within the alternation,
but not complete failure as with the parse rules.

D- 30

APPENDIX 0 -- TREE META: Formal Description

27R3 The syntax for a tree-matching pattern is a left bracket, a
series of items separated by commas, and a right bracket. TIle
items are matched against the branches emanating from the current
top node. The matching is done in a left-to-right order. As soon
as a match fails the next alternation is tried.

27B4 If no alternation is successful a false value is returned.

27BS Each i tern of an lmparse al ternation test May be one of five
different kinds of test.

27BSA A hyphen is merely a test to he sure that a node is
there. TI1is sets up appropriate flags and pointers so that the
node may be referred to later in the unparse expression if the
complete match is successful.

27B5B The name of the node may be
identifier that is the name of a rule.
be followed hy a test on the stilinodes.

tested by writinR an
The identifer must then

27B5C A nonsimple construct, primarily an
asterisk-number-colon sequence, may be used to test for node
equi val ence. Note that this Joes not test for complete
substructure equivalence, hut merely to see if the node beinr;
tested has the same name as the node specifieJ hy the
construct.

27B5D The .id, .num, .chr, .let, or .sr checks to see if the
node is terminal and was put on the tree by a .iel recoenizer,
.num recognizer, etc. during the parse phase. This test is
very simple, for it merely checks a flag in the upper part a
\oJord.

27RSE If a node is a tenninal node in the tree, and if it has
been recognized by one of the hasic recognizers in meta, it may
be tested against a literal string. This is done by writinp;
the string as an iteM. The literal string does not have to he
put into the tree with a .sr recognizer; it can be any string,
even one put in with a" .let.

2713SF I f the node is terminal and \oJas generated by the • chr
recognizer it may be matched against another specific character
by writing the apostrophe-character construct as an item.

271)5G Finally, the node may be tested to see if it is a
generated labe 1. The 1 abe Is may he generated in the unparse
expressions and then passed down to other unparse rules. The
test is made writing a .pound-number construct as an item. If
the node is a ~enerated label, not only is this match

D-31

APPENDIX D -- TREE tvtETA: Formal Description

successful but the label is made available to the elements of
the unparse expression as the number following the • pound.

28 Unparse Expressions

28A Syntax

28Al outexp = subout ('I outexp I .empty);

28A2 suhout = outt (rest I .empty) I rest;

28A3 rest = outt (rest I .empty) I gen (rest I .empty);

28A4 outt = .id '[arglst '] I '(outexp ') I nsimp! (': (S I L I
N I C) I empty);

28AS arglst = argmnt (', arglst I .empty) I . empty;

28A6 argmnt = nsimp I ' .pound .num;

28A7 nsimp! = 't nsimp I nsimp;

28A8 nsimp = '* .num (, . nsimp I .empty); .
28A9 gent = (out I comm) (genl I .empty);

28AIO gen = connn I genu I ,< I ' > . ,
28B Semantics

28B! The rest of the unparse rules follow more closely the style
of the parse rules. Each expression is a series of al temat ions
separated hy slash marks.

28fl2 Each al ternat ion is a test follO\ved hy a series of output
instructions, calls of other unparse rules, and parenthesized
expressions. Once an unparse expression has begun executing calls
on other rules, elements may not fail; if they do a compi.1er error
is indicated and the system stops.

28B3 TIle first element of the expression is the test. This
element is a calIon another rule, which returns a true or false
value. The call is made by writing the name of the rule followed

hy a series of nodes. The nodes are put together to appear as
part of the tree, and when the call is made the unparse rule
called views the nodes specified as the current part of the tree,
and thus the part to match against and process.

28R3A TNO kinds of things may be put in as nodes for the

D-32

APPENDIX D -- TREE rtETA: Formal Description

calls. The simplest is a generated lahel. This is done by
writing a .pound followed by a number. Only the numhers 1 and
2 may be used in the current system. If a label has not yet
been generated, one is made up. This lahel is then put into the
tree.

28B3B Any already constructed node also may be put into the
tree in this new position. The old node is not removed--rather
a copy is made. An asterisk-number construct refers to nodes in
the sane way as the hir,hest-Ievel alternation.

28R4 This process of making new stnlctures from the
already-existing tree is a very powerful way of optimizine the
compiler and condensing the number of rules needed to handle
compilation.

28B5 The rest of the unparse expression is made up of output
commands, anli more calls on unparse rules. As noted ahove, if any
except the first call of an expression fails, a compiler error is
indicated and the system stops.

28B6 ~lust as in the parse rules, brackets may be used to send
immediate printout to the user Teletype.

28B7 The asterisk-numher-colon construct is used frequently in
the Tree !,leta system. It appears in the node-matching syntax as
\\1cll as in the form of an element in the unparse expressions.
11hen it is in an express i on it rlUS t speci fy a node that cxis ts in
the tree.

28B7A If the node specified is the nrune of another rule, then
control is transferred to that node by the standard suhroutine
linkage.

28B7B I f the node is terminal, then the teminal strinr:
associated with the node is copied onto the output stream.

2RB7C The siP1plest fom of the construct is an. asterisk
followed by a numher, in whi ch case the node is found by
cotmtinr, the appropriate number of nodes from left to rip.ht.
This may be follO\vcd hy a colon-nunber construct, \Vh ich means
to go down one level in the tree after performing the
asterisk-numher choice and count ovcr the number of nodes
specified hy the number following the colon. This process may
he repeated as often as desired, and one may therefore go a~
deep as one tvishes. All of this speci fication may be preceded
by an t-numbcr construct which means to go up in the tree,
through parent nodes, a specified number of times hefore
starting dO\vn.

D-33

APPEND! X D -- TImE ~1ETA: Formal Description

28B7D After the search for the node has been completed, n
number of different types of output may be specified if the
node is terminal. There is a compiler error if the node is not
terminal.

28B7D1 :s puts out the literal string

28B7D2 : 1 puts out the length of the string as a decimal
number

28B7D3 :n puts out the string-storage index pointer if the
node is a string-storage element; otherwise it puts out the
decimal code for the node if it is a .chr node.

28B7D4 : c puts out the character if the node was
constructed with a .chr recognizer.

29 Output

29A Syntax

2 9A 1 ge nu = out / '. • 1· d '] ((. d /) / t) t] / I d _ .• 1 • num • emp y • pOlm

.num (': / .empty);

29A2 out = ('.backslash / I, / .sr / tI.chr / n+w" / "-w" / tt.w"
/ ".pound" ;

29B Semantics

29B1 TIle standard primitive output
following:

features include t.he

29R1A Write a carriage return with a backslash

29B1B Write a tab ,,,ith a comma

29B1C \\Trite a literal string by giving the literal string

29B1D ~vri te a single character using the apos t rophe.-charact er
construct

29BIE Write references to temporary storage by using a working
counter. Three types of action may be performed with the
counter. +h' adds one to the counter and writes the current
value of the counter onto the output stream. -W subtracts one
from the counter and does not write anything. .W writes the
current value ,\'ithout changing it. Finally, .pound W writes the
maximum value that the counter ever reached during the
compilation.

D-34

APPENDIX 0 -- TREE ~1ETA: Formal Description

29B2 The • id [(.nurn/. id)] is used to generate a call (940 BR~f
instruction) with a single argument in the A register. It has
been used mostly as a dehugging tool during various bootstrap
sessions with the system. For example, .CERR[S) generates a call
to the subroutine CERR with a 5 in the A register.

29B3 .pound 2 means "define generated label 2 at this point in
the program heing compiled." It writes the generated lahel in
the output stream followed by an EQU * This construct is added
only to save space and writing.

D-35

APPENDIX D -- Tree ~teta: Conclusions and Future Plans

30 Since the work on Tree Meta is still in progress, there arc few
conclusions and plentiful future plans.

31 There are many research projects that could be undertaken to improve
the Tree Meta system.

31A Something that has never been done, and that we feel is very
important, is a complete study of the compiling characteristics of
top-dONn analysis techniques. l11is would include an accurate study of
where all the time r,oes during a compilation as well as a study of
the flow of control during both parse and unparse phases for
different kinds of compilers and languages. At the same tine it
would be worthwhile to try to get simi liar statistics from other
compilers. It may be possible to interest some people at Stanford in
cooperating on this.

31B sne has added an intermediate phase to thei.r metacompiler
system. TIley call it a bottom-up phase, and it has the effect of
putting various attributes and features on the nodes of thp tree.
This allows one to write simpler and faster nodC-Plutchinr,
instructions in the unparse rules. l\'e would like to investigate this
scheme, for it appears to hold the potential for allowinr; the
conpiler writer to conceptualize more complex tree patt.erns and thus
uti Ii ze the node-matchin~ features to a fuller extent.

3lC Yet another intermediate phase could be added to Tree ~feta which
would do transformations on the tree before the unparse rules produce
the final code. In attempts to wri te compilers in Tree Heta to
compile code for languages with complex data structures (such as
algebraic languages with matrix operations or strinR-oriented
languages with tree operations) and to make these compilers produce
efficient code, we have fOlmd that tree transformations similar to
those used for natural-language translation allow one to specify
easily and simply the rules for tree manipulation that permit the
unparse rules to produce efficient, dense code. Implementation of
the tree-trans format ion phase into the Tree Meta system would be an
extensive research project, but could add a completely new dimension
to the power of Tree r·teta.

31D There are a series of additions, some very small and some major,
that we intend to add to Tree ~~ta during the next year.

3lD1 Other metacornpiler systems have had a construct that allows
nodes to have an arbitrary number of nodes emanating from them.
This requires additions in parse rules to specify such a search,
additions in the node-matching syntax, and additions in the output
syntax to scan and output any number of branches.

3lD2 We have al\vays felt that it would be nice to have the hasic

D-36

APPENDIX D -- Tree Meta: Conclusjons and Future Plans

recognizers such as "identifier" defined in the metalanguage.
TIlere have been systems with th is feature, but the addi t i on has
always had very bad effects on the speed of compilation. We feel
that this new freedom can be added to Tree Meta without having
te lling effects on the compi lation speed.

31D3 The error scheme for unparse rules is rather crude--the
compi ler just stops. \Ye would 1 ike to find a reasonab Ie way of
accommodating such errors and putting the recovery-procedure
control in the metalanguage.

31D4 Currently the unparse rules expand into 6 times as many
machine-language instructions as the narse rules. This hut1pens
because we did not choose the most appropriate set of subroutines
and common procedures for the unparse rules. Without changing the
syntax of Tree ~\1eta or the way the s tacks work, we fee 1 that we
can reduce the size of the unparse rules by a factor of 4. This
would free a considerahly larger amount of core storap;e for stacks
and enlarge the si ze of programs that Tree Heta could handle. It
would also make it run faster in time-sharinr, mode since less
would have to be s\vapped into core to run it.

31D5 I n do ing some sna 11 tests on the speed 0 f Tree ~~et a \ve found
that better than SO percent of the compilation time is spent
outputting strinp,s of characters to the system. The code that
Tree r.teta nolY prolluces is the simplest fom of assemhly code. It
would be a very simple task to make Tree ~~ta ahle to directly
produce hinary code for the loader rather than symbol i c code for
the assemh ler. i\ siTTIi lar change could also he nade to output
absolute code directly into core so that Tree ~·feta could be used
as the compiler for systeMS that do incremental conpilation.

31E Finally, there is the following list of minor additions or
chanr,es to be r.1ade to the Tree ~teta system.

31[1 i'lake the lihrary output routines do block I/O rather than
character I/O. 111is could cut cor.lpi lation tinles by more that 70
percent.

31E2 Fix Tree neta so that strings can be put into the tree and
passed dm.;n to other unparse rules. This would allow the unparse
rules to he more useful "s subroutines and thus cut down the
nurabcr of unparse rules needed~n a compiler.

:) IE3 Finally, t.;c Hould 1 ike to add
of at tributes wi th each tenni nal
test these attributes later, and to
necessary. To do this we would
Kith the strinr, \"rhen it is put into

D-37

the abili ty to associate a set
entity as it is recognized~ to
add more or change them if
associate a single 24-hit word
string storage and add syntax

APPENnIX n -- Tree ~1eta: Conclusions and Future Plans

to the metalanguage to set, reset, and test the hits of the word.

D-38

APPENDIX D -- Tree Meta: Bibliography

1 (Rook1) Erwin Book, "The LISP Version of the ~1eta Compiler," TECH
~1E~O TM-2710/330/00, System Development Corporation, 2500 Colorado
Avenue, Santa r·lonica, California 90406, 2 November 1965.

2 CBook2) Erwin Book and D. V. Schorre, "A Simple Compiler Showing
Features of Extended r.JETA," SP-2822, System Development Corporation,
2500 Colorado Avenue, Santa Honica, California 90406, 11 April 1967.

3 (Glenniel) A. E. Glennie, "On the Syntax ~1achine and the
Construction of a Universal Computer," Technical Report Number 2, AD
240-512, Computation Center, Carnegie Insti tute of Technology, 1960.

4 (Kirkley1) Charles R. Kirkley and Johns F. Rulifson, "The LOT System
of Syntax Directed Compiling," Stanford Research Institute Internal
Report ISR 187531-139, 1966.

5 CLedleyl) Robert Ledley and J. B. lvilson, "Automatic Programming
Language Trans lat ion 'n1rough Syntact ical Analysis, H Communications of
the Association for Computing l'-lachinery, Vol. 5, No.3 pp. 145-155,
~farch 1962.

6 Cr-.fctcal fe 1) Howard r·tetcal fe, "A Parameterized Compi ler Based on
~techanical Linguist i cs, tt Planning Research Corporat ion R-311, ~.farch 1,
1963, also in Annual Review in Automatic Progranuning, Vol. 4, 125-165.

7 C~aur1) Peter Naur et al., "Report on the Algori thmi c Language ALGOL
60," Conununications of the Association for Compting ~1achinery, Vol. 3,
~Jo. 5, pp. 299-384, ~la)' 1960.

g (Oppenheiml) D. Oppenheim and D. llaggerty, "f,,1ETA 5: A Tool to
r:anipulate Strings of Dat a," Proceedings of the 21st Nat i onal
Conference of the Association for COr.1putinr, ~'achinery, 1966.

9 (Rutman 1) Roger Rutman, "LOGI K. A Svn tax Pirectcd Campi ler for
COf,'puter Bit-Time Simulation," ~laster Thesis, UCLA, August 1964.

10 (SChlilidt1) L. O. Schmidt, "TI1C Status Bit," Special Interest Group
on Programming Languages Working Group 1 News Letter, 1964.

11 (Schmidt2) PDP-l

12 (Schmidt3) EQGEN

13 (Schniederl) F. \IJ. Schneider and G. n. Johnson, "A Syntax-Directed
Compiler-Hriting Compiler to Generate Efficient Code," Proceedinp,s of
the l~)th ~:atianal Conference of the Association for Computjnp, ~1achincry,
I ~)()4 •

1~1 (Schorre 1) n. V. Schorrc , "A Synt ax- Oi rect cd S~ !ALGOL for the 14 (H, "

D-39

APPENDI X D -- Tree ~·1eta: Bib liography

Proceedings of the 18th National Conference of the Association for
Computing Hachinery, Denver, Colorado, 1963.

15 (Schorre2) D. V. Schorre, "~1ETA II, A Syntax-Directed Compiler
h'ri tin~ Language," Proceedings of the 19th National Conference of the
Association for Computing Hachinery, 1964.

D-40

APPENDIX D -- TREE META: Detailed Examples

1 This section of the report is merely the listings of compilers for two
languages.

2 The first language, known as SAL for "small algebraic language," is a
straightfo~~ard algebraic ALGOL-like language.

3 The second example resembles Schorre's ~ffiTA II. This is the original
metacompiler that was used to bootstrap Tree Heta. It is a one-page
compiler written in its own language (a subset of Tree Meta).

D-41

%TREE META SMALL ALGEBRAIC LANGUAGE - 29 SEPTEMBER 1967 %

.META PROGRAM .LIST

PROGRAM :: fl. PROGRAM" DEC * $(DEC *) : STARTNC OJ ST * $(''; 5T *)

" • FIN I SHu 1 1 E : EN DN I: 0 J * FIN I 5H J

DEC:: ".DECLARE" .ID $('~ .ID :00[2]) ''; :DECNC 1]';

E = RESET => ,; $(5T *) ". END" 199E : ENOO[OJ * FINISH,;

5T = IFST / WHILEST / FORST / GOS1' / lOST / BLOCK /
.ID (': :LBLCtJ ST :DOC2l / ' .. EXP :STOREC2]);

IF 5T = It. IF" EXP ". THE~·Jl· ST (". ELSE" ST : SIFTEr 3J / • EMPTY : SIFT[2J);

\.JHILEST = fl. WHILE" EXP ".00" S1' : WHL[2J';

FORST = ".FOR" VAR t .. EXP ".BY" EXP ".TO" EXP ".00" ST :FOR[5J;

GO S T = " • GO" " • TO" • I D : GO [1 J ,;

lOST = ".OPEN" ("INPUT" .ID '(.ID 'J :OPNINP[2l /
"OUTPUT" .ID 'e .ID 'J :OPNOUT(2J) /

ft. CLO SE" • I D : CLSFILC IJ /
".READ" .ID ': IDLIST :BRS38(2J /
". I N PUT" • I D ': I DL 1ST : XC I 0 [2] /
".\rlRITE" • ID ': WLIST :OUTNUMC2J /
".OUTPUT" .ID ': WLIST :OUTCAR[2J ,;

IDLIST = VAR (IOLIST :DOC2l / .EMPTY),;

WLIST = (.ID / .NOM / .SR) CWLIST :DO[2J / .EMPTY);

BLOCK = ".BEGIN" ST $('; ST :00[2]) ".END"';

EXP = ". IF" EXP tI. THEN" EXP ". ELSE" EXP : AI F[3J / UNION;

UNION = INTERSECTION C"'/ UNION :OR(2J / .EMPTY);

INTERSECTION = NEG C'& INTERSECTION :AND[2J / .EMPTY),;

NEG = "NOT" NEGNEG / RELATION';

NEGNEG = '~OT U NEG / RELATION :NOTC IJ,;

RELATION = SUM ((U<=" SUM :LE /
"<" SUM :LT /
n>=" S~ :GE /
"> " SUM : 6T /
"=" SUM : EQ /
'I SUM :NE) [2J / • EMPTY)';

n-42

SL~ = TERM (C'+ SUM :ADD/ '- SUM ISUB)C2]/ .EMPTY);

TERM = FACTOR «'* TERM :MULT/'/ TERM :DIVIIV't TERM IREM)[2]/.EMPTY)J

FACTOR = '- FACTOR :MINUSCl] I '+ FACTOR I PRIMARY;

PRIMARY = VARIABLE / CONSTANT I '(EXP ');

V A R I ABL E = • I D : V AR (1] J

CONSTANT = .NUM :CONCtJ;

51 FTEI [1111- J => I "BRU"I 12\ '11" EQU *"\ *2 12. "EQU *"\;

GO[-J => I"BRU"I*l\;

FOR[-I-I-I-I-J => <"00 NOT USE FOR STATEMENTS">;

LOPRCOR(-I-JIIII-J => LOPRC*1:*1111.'2J BRTC*t:*tllIJ
#2."EQU *"\ LOPRC*1:*2.'ll*3l

[ANDE-I-l.-I#IJ => LOPRE*t:*11#21#1] BRFC*I:*t.'I]
1121"EQU *"\ LOPRC*t:*21*21#11

CNOTC-JIIII12J => LOPR[*I:*11121#lJ
C - I - I - J = > • EM P TY .;

BRTCOR(-I-JI#l] => BRT[*1:*2I'lJ
[Ai'1D(-I-]lll] => BRTC*1:*2.#1]
[NOT(-]IIIJ => BRFE*I:*II#lJ
[LE[-1-31#t] => BLE[*I:*II*l *21 11]
CLT[-I-]I#l] => ELTE*I:*II*1 *2.113
[EQ(-I-]111] => BEQ[*I:*II*1 *21#1]
(GE[-I-JIIIJ => BGEC*l:*ll*l *21#IJ
(G T [- I - J • (I 1] = > BL EC * 1 : * 21 * 1 * 11 # 1 3
[N E [- I - J I # 1 J = > EN E(* 1 : * 11 * 1 * 21 # 1]
[-I#lJ => ACCC*IJ .. "SKE =0"\ I"BRl1" .. ll\;

BRF [0 R [- I - J I , 1]
[AN DC -1- JIll]
CNOT[-JI'lJ

=> BRFC*1:*21#13
=> BRFC*I:*2.#lJ
=> BRTC*I:*ll#lJ

D-43

[L EC - JI - 1 JI # 1]
(LTt-Jl-lJlIJ1]
(EQ[- JI -l JI 11]
(GEC - JI -] JI III
(GTE - JI -l. , Il
[N E[- JI -] • , 1]
(-JIll]

=> BLEC*1:*2#*11*1J111J
=> BGEC*I:*IJ1*I:*2J111J
= > BN EC * I: * 1 JI * 1 : * 2 # , 1]
=> BLTC*I:*1.*I:*2.IIJ
= > BL EE * 1 : * 1 # * 11 *2J1 II 1]
=> BEQ(*I:*I.*1:*2. 'I]
=> ACCC * 1] JI "SKA =-1"\ JI "BRU"JI 111 \.:

BLT[-#-#Ill => CTOKEN(*tJ ACCC*2J JI"SKE"JI*I\."SKG"JI*I\ I
WORl{C*lJ ACCe*2]. "SKE"#"T+".W\#"SKG"JI"T+tt.W-~)

nER U *+ 2"\ # "BRU". 111\.:

BL E[- # - # 11] = > (TOK FN (* 2 J A C C (* t] #" SK G" # * 2\ I
TOKENC*t] ACC(*2] #"SKG"#*I\#"BRU *+2"\ I
~ORK(*2J ACC[* tJ # "SKG"# "T+". W-W\)

"BRU"# 11 \.:

BEQ(-#-JlIIJ => (TOKENC*2J Acce*l] JI"SKE".*2\ I
TOK EN (* 1 J Ace (* 2] #" SK E" # * 1 \ I
\tJORK(* 2J Acce * 1 J #" SKE"# "T+". W- w\)

"BRU *+2"\ # "BRU"# '1 \.:

B G E(- # - # 11) = > (TOK EN [* 1 J AC C [* 2 J # .. SK E" # * t \ # .. SK G" # * 1 \ I
wORRC*1] ACC[*2) JlttSKE"#"T+".W\#"SKG"#"T+".W-,\!j\)

"BRU"# 111\;

BNE[-,-##IJ => <TOKENC*2J ACCC*1] #"SKE",*2\ I
TOKENC*t] ACC(*2J #"SKE",*l\ I
WORKC *2J Acce * 1 J JI It SKE" # "T+'·. w- W\)

"B R U" # I 1 \ ;

STOHE[-;VAR[* 1) J => "*ITS ALREADY THERE"\
[-JlADD[VAR(*lJ#CONC"1"JJJ => #"MIN"#*t\
(-#ADD[VARC*lJJI-JJ => ACCC*2:*2J #"AIM"#*I\
(-,SUB[VARC*lJ,-)J => ACC[*2:*2J #"CNA; ArM "*1\
(-#-J => BREG[*2J #"STB"#*t\ I

ACCC*2] #"STA"#*I\':
ADDCMINUS(-]#-J => SUB(*2#*I:*IJ

[-# - J => TOKENC *2J ACCe * IJ # "ADD" # *2' I
\4,JORK[* t J ACCe * 2] # .. ADD" # "T+". W- W\;

SUB[-#-J => TOKENE*2] ACCe*1] #"500"#*2\ I
TOKENE*tJ (BREGE*2J #"CBA; CNA,; ADD "*1\ I

ACCe *2J • "CNAJ ADD "* 1 \) I
WORKC*2] ACCe*1] #"SUB"#"T+".\aj-\oJ\;

MINUS(-J => TOKENE*lJ #"LDA"#*l\ #"CNA"\ I
BREG(*t] ,"CBA; CNA'" I
ACC [* 1] # "eNAn \,;

DIVID[-#-J => TOKEN[*2J (BREGE*1] #I1CBAU
\ I

ACeE * 1 J) # "RSH 23; DIV "*2\ I
vJORKC*2J (BREG[*1] #"CBA"\ I

ACC[*!) #"RSH 23; DIV' T+".'W-\tJ\;

D-44

BREG[MULTC-,,-JJ => TOKENC*la*2J ACCC*t:*tJ ,,"MUL",,*t:*2"; RSH 1"\ /
TOKENC*l:*ll ACCC*1:*21 ,,"MUL",,*l:*t"; RSH 1"\ /
WORKC * 1: * 11 ACe[* t: * 2J ,,"M UL"" "T+". W-W"J RSH 1 "\

CREMC-,,-]] => TOKENC*I:*2] (BREGC*t,*I] ,,"CBA"\ /
ACCC * 1 J) ,,"RSH 23; DIV "* 1: *2\ I

WORK[* 1: *2J CBREGC * I: * 1 J ,,"CBA"\ I

A C C [- 1 = > TO KEN C * 1] ,,"L DA" , * 1 \ I
BREGC*11 ,,"CBA"\ I

* 1;

ACCC * 1: * t J) ,,"RSH 23': DIU T+"
• W-W"; RSH 1 "\;

WORK[- J => BREGC* 1] ""STB",, "T+"+W\ I
ACCC* IJ " "STA"" "T+"+W\;

TOKmeVARe. I D]] => • EMPTY
[CONe. NUM]] => • EMPTY;

MOLT I => • EMPTY;

REM I => • EMPTY;

AND I => • EMPTY;

OR / => • EMPTY;

NOT I => • EMPTY';

ENDN / => "T"" "BSS"" f W\ ,,"END"\;

VAR[.ID] => *IJ

CON(.NOM] => '= *1,;

LE I => • EMPTY;

L T I = > • EM PTY':

EQ I => • EMPTY;

GE / => • EMPTY;

GT I => • EMPTY;

NE / => • EMPTY;

DO[-,,-] => *1 *2;

OPNINP[-,,-] => , "CLEAR': BRS IS': BHU "*2"; BRS 16; SHU "*2"; STA "*1\;

OPNOUTC-,,-] => " "CLEAR; BRS 18.: BHU "*2"; LDX =3,; BRS 19; BRU ..
*2"; STA "*1\;

D-45

CLSFILC-l => ~"LDA "*1"; BRS 20·'\;

BRS38C -#. I Dl
C-.-l

=> # "LDA "* 1"; LDB = 10; BRS 38; STA ".2\
=> BRS38C*1#*2:*ll BRS38C*1#*2:*2l;

XCIOC-#.IDl => #"CIO ".1"; STA ".2\
[-#-l => XCIOC*I.*2:*ll XCIOC*I#*2:*2l;

QUTCARC- •• I DJ => , uLDA "*2"; CIO "* 1\
[-#.N"lJIlJ => .. "LDA ="*2"; CIa "*1\
[-# .SRJ => ."LDA ="#1"; LDB ="*2:L"; LDX "*1"; BRS 36; BHU "*2\

11#"ASC ". '*2"\
[-#-J => OUTCAR[*1#*2:*IJ OUTCARC*I.*2:*2J;

OUTNUM(-#.IDJ => ,"LDA "*1"; LDA =10; BRS 38;"\
C -# .NUMl => .I uLDA ="*2"; CIO "* 1\
C- ... SRJ => .. "LDA ="11"; LDB ="*2:L"; LDX "*1"; BRS 36; BRU "*2\

Il,"ASC ""*2"\
(-#-l => OUTNUMC*I .. *2:*lJ OUTNUMC*1#*2:*2];

STARTN / => "START","EQU" .. "*"\;

DECN[• I DJ
(-)

• END

=> * 1, nBSS 1 "\
=> DECNC*l:*lJ DECNC*1:*2J ,;

D-46

.META PROGRM %5%

PROGRM = ".META" .ID 111 <"META II 1.1">
r" NOLI ST EXT~ NUL; $START BRM INI TL"]
["$KSTKSZ EQU I,; $MSTKSZ EQU 100; $NSTKSZ EQU 1; $SSSIZE EQU 550"]
(".LIST" [,,"CLA; STA LIS1FG"J / .EMPTY)
(~"BRM RLINE; BRM "*"; BRM FINI SH"]
('(SIZ $('~ SIZ) .) 1 17E / .EMPTY)

$ST ". END" 1 2E
("STAR BSS l;SSTOP DATA SS+SSSIZE-S';$SS ass SSSIZE"J
("$MSP DATA MSTKJ $MSPT DATA MSTK+MSTKSZ-5J $MSTK BSS MSTKSZ"J
["$NSP DATA NSTKJ$NSPT DATA NSTK+NSTKSZ-SJ $NSTK BSS NSTKSZ"J
(fI$KSP DATA KSTKJ $KSPT DATA KSTK+KSTKSZ- 5J $KSTK ass KSTKSZ"J
(~"ENDn] <"DONE">';

ST = • I D '= ? 3E <"ST"> (*~ "ZRO; LDA *- 1; BRM CLL"J
EXP ? 4E ''; 1 SE [" "BRU R1N"J;

EXP = SUBEXP $('/ (~"LDA MFLAG; SKE =0; BRU n* IJ
SUBEXP) [* 1~ "EQU *"J;

SUBEXP = (GEN / EL T (~"LDA MFLAG; SKE = I'; BHU fI* 1 J)
$REST (* 1~ "EQU *"J,;

REST = GEN / EL T [~"LDA MFLAG; SKE = 0,; BRU *+4"]
('1 .NUM 112E (~"LDA =n*,,; BRM ERR"]

(. I D [~nBRM"~ *J / '1 [~UBRS EXI TtlJ)1 13E/
• EMPTY [~"CLA; BRM ERR; BRS EX I TnJ) ,;

ELT = ' •• ID 16E [~"BRM"~*"J STA STAR"J /
• I D [~"BRM 'f ~ * J /
• SR [~"BRM TST,; DATA ,,*L "'; ASC ... ,*. 'J /
'(EXP 17E .) ?8E /
" • CHR (~ULDA ="*N"; BRM TCH"J,;

GEN = '[$0 UT 'J ? 1 DE [~"BRM CRLF" J /
'$ [*l~"EQU *nJ ELT 19E

[~"LDA MFLAG,; SKE =0; BRU "*1"; MIN MFLAG"J /
". EMPTY" (~"LDA = 1; STA MFLAG"J /
". CHEn [~"BRM \tlPREP; BRM INC; L DA* I WP; STA STAR'; MIN NCCPttJ /

'< .SR 112E '> 1 13E r~"BRM LITT; DATA "*L"; ASC '" '*' "'; BRM CRLFTI11
It=>" [*I~"EQU *"J ELT 114E

OUT =

E = =>
SIZ =

(~"LDA MFLAG; SKE =0; BRU *+3; MIN NCCP'; BRU "*IJ/
'! • SR 1 15E (" *] ,;

• SR (~"BRM LIT; DATA "*L"; ASC ". '*' 'J /
,~ (~"BRM TAB"] /
'* (.NUM [~t-'LDA =47B; CIO FNUMO; MIN CHNO; LDA GN"

"; BRM GENLAB; STA GN""; BRM OUTN"J /
'L [~"LDA* STAR; BRM OUTN"J /
'N [~"LDA STAR.; BRM OUTN"] /
'C (~"LDA STAR; CIO FNUMO; MIN CHNO"] /
.EMPTY (~"LDA STAR; BRM OUTS"J)/

, •• CHR (~"LDA ="*N"; CIO FNLMO; MIN CHNO"]/
': (~"BRM CFLF"J;
'; (~"BRU RTN"J $ST ".END" 111E [~"END"J FINISH;
"K=" .NlJM ("$KSTKSZ EQU *'*] /
"M=" .NOM ["$MSTKSZ EQU "*J I
"N=" .NUM ["$NSTKSZ EQU "*J /
"S=" • NUM ("$SSSI ZE EQU u*];

• END

D-47

·META PROGRM %TREE 1.3%

PROGRM = (".META" .ID 111 (".LIST" .LISTCO]I .EMPTY :MTCO]) SIZE
: BEG INC 3] I
If.CONTINUE" :MT[OJ) <"TREE 1.3"> :SETUP[l] * $(RULE *)
ft. END" 12E : ENOOC 0] * <"DONE">;

SIZE = '(SIZ $('# SIZ :00[2]) .) ?50E I .EMPTY :MTCO];

517. = .CHR '= 154E .NUIl 155E :SI2S[2];

RULE = .ID
('= EXP 13E ('& :KPOPK[11 I • EMPTY) : OUTPTC 2] I
II "=>" 13E GENI :SIMP[2J I
OUTRUL :OUTPT[2J) 15E '; 16E';

E:XP = '.. SUBACK 17E (' I EXP 18E : SAL TER[2] I • EMPTY : BAL TERC 1]) I
SUBEXP ('I EXP 19E :ALTERC211 .EMPTY);

SUBACK = NTEST (SUBACK : DO(2J I • EMPTY) I
STEST (SUBACK :CONCAT[2] I .EMPTY);

SUBEXP = (NTEST I STEST) (NOBACK :CONCATC2] I .EMPTY);

NOBACK = (NTEST I STEST ('1 .NOM 110E :LOAD(IJ (.ID I '1 :ZRO(O]) 111E
: ERCOD[3] I • EMPTY : ERr 1]))
(NOBACK : DOC 2] I • EMPTY);

NTEST = ':. ID 112E :NDLB[1] I
'[(.NUM 'J 114E :MKNODE(1] I

GENP 'J 152E ('t I. EMPTY :OUTCRC OJ : DO[2])) I
'< GENP '> 153E ('f I.EMPTY :OUTCReO] :00[2J) :TTY[l] I
(".CHR" :GCHR I
'* : GO) [OJ I
"= >" STEST 1 15E : SCANt 1] I
COMM;

GENP = GENPI I • EMPTY :MTC 0]';

GENP 1 = GENP2 (GENP 1 : DO[2J I • EMPTY);

GENP2 = 1* ('S .NUM 151E :PAROUT[l] I .EMPTY :ZROCO] :PAROUTCl])
('L :OL I 'C :OC I 'N ION I • EMPTY :05)(0] :NOPT[2JI GENU;

COMM = ". EMPTY" : 5ET(0] I
'! • 5R 1 1 8 E : 1M ED[1]';

STEST = '. • I D 119E : PRIMe 1] I
• I D : CALL [1] I

.SR :STST[1J I
'(EXP 120E ') 121E I
" .CHR :CTST[IJI

(.NUM '$ 123E /'$:ZROCO) (.NOM I.EMPTY :MT[O]) STEST 124E :ARB[3]1
1- (.SR :N5R(lJ I ".CHR :NCHR(lJ) ?26E :NTST[l];

D-48

--1--

OUTHUL = '(OUTR 127E (OUTRUL :ALTER[21 / .EMPTY) IOSET[1];

OUTH = OUTEST "=>" 129E OUTEXP 130E :CONCAT[2];

OUTEST = e e'l :MT I "-1" :ONE I "-,,-J" :TWO / "-,,-,,-1" :THRE) [0] I
I T EM S .]) : CN TCK [1 1 ;

ITEMS = ITEM ('" ITEMS 132E :ITMSTRC2] I .EMPTY :LITEM[l]) .:

ITEM = 1- :MT[O] I
.ID '(133E OUTEST 134E :RITEM(2]1
NSIMPI :NITEMC 1] I
' •• ID 135E :FITEM[11 I
• SR : TT S T(1] I
'I . CHR I CHT S T[1 J I
'I .NUM ?37E :GNITEM[1];

OUTEXP = SUBOUT ('I OUTEXP :ALTER(2J I .EMPTY);

SUBOUT = OUTT (REST : CONCATC 21 I • EMPTY) / REST.:

REST = OUTT (REST :OER[2]1 .EMPTY) I GEN CREST :00(2]1 .EMPTY);

OUTT = .ID IC 139E ABGLST I] 140E :OUTCLL(21 I '(OUTEXP ') ?41E I
NSIMPI CiS ('S lOS I 'L :OL I IN :ONI 'e :OC)CO] :NOPTC2] I

• EMPTY : DO I T(1]).:

ARGLST = ARGMNT :ARGCI] ('" ARGLST :DO(2l I .EMPTY) I .EMPTY :MTCO]':

ARGMNT = NSIMP :ARGLD[lJ I 'I .NOM :GENARGC1];

NSIMPI = ~ It NSIMP :UP[2] I NSIMP :LKT[I]J

NSIMP = 1* .NUM C~ ': NSIMP :CHASEC2] I .EMPTY :LCHASE[l]);

GEN 1 = COUT/COMM) (GEN 1 : DO[2] I • EMPTY)':

GEN = COMM I GENU I '< : TT,([0] I '> : FIL[OJ;

GENU = OUT I
' •• ID ?42E '[143E «.ID I .NUM) :LOAD[l] :CALL(2J I

• EMPTY : CALLC 1]) '] I
" .NUM :GNLBL[l] (': :DEF[I] / .EMPTY) ;

OUT = (', :OUTCR / '" :OUTAB) [0] I
• SR :OUTSR[1] I
" .CHR :OUTCH[lJ I
"+W" : UPWRK[OJ : OUTWRK[1] I
"- wet : DWN~JRKC 0] I
fI.y;" :MT[OJ :OUTWRK I
'f'W :MAXWRKCO]J

E = • EMPTY RESET => '; $(RULE *) ". END" 1 99E FINI SH;

D-49

--2--

%OUT RULES"

SETUP E - J => ,,"NOLI ST Ntn." EXT; GEN OPD 1 01B5" I" 1; BF OPD 1 02B5" I" 1 "\
"BT OPD 103B5" 1"I;PSHN OPD 104B5"1,, l.JPSHK OPD 105B5" 1" 1"\
"MKND OPD 106B5" I" I;NDLBL OPD 107B5" I" 1; GET OPD 110B5" I" 1"\
"BPTR OPD I11BS,,1,,1;BNPTR OPD 112B5,1"I;Rll OPD 113B5,1,1"\
·'RI2 OPD 114B5" 2; FLGT OPD 115B5" I, 1; BE OPD 116B5" I" 1 "\
"LAB OPD 117BS" I" 1; CE OPD 120B5" 1, tJ LDKA OPD 121B5" I" t"\

n$KSTKSZ EQU 100; $MSTKSZ EQU 130; $NSTKSZ EQU 1300; $SSTKSZ EQU 1400"\
* 1;

BEGIN[-,,-,,-J => "$START BRM INI1L; CLAJ STA WRK; STA X'WRK"\ *3 *2
,,"BRM RL I NE; BRM n* 1"; BRM F IN I SH"\;

LIST / => .. CLA; STA LISTFG;";

OUTPT[-,,-J => *1:S ,,"ZRO; LDA *-1; BRM eLLO"\ *2 ,,"BHU RTNO"\;

SIMP[- .. -] => *1 ,,"ZRO"\ *2 ,,"BRR "*1\;

BAL TER[-] => ,,"BRM SAV"\ * 1 .. "BRM RSTR"\
[-,,-J => ,,"BRM SAV"\ *1 ,,"BRM RSTR; BT "11\ *2 It.DC];

D / => ,,"EQU *"\;

ALTERE-"SET[JJ => *1 *2
[CONCATE-,,-J,,-J =>PMTE*I:*I,,#11 *1:*2 .. "BRU "'2\ Il.DEJ *2 '2.D[J
E - .. - J = > * 1 ,,"B T .. /I 1 \ * 2 # 1 • DC J ;

PMT[PRIM[-],,#l] => ,,"BRM "*I:*I:S"; BF "'I"; MRG "*l:*I:S"FLG; PSfn{ =0"\
[- .. - J = > * 1 ,,"BF II # 1 \;

EREALTER[-,SET[]]] => *1
(-] => *1 ,,"BE =-1"\;

DO [- " - J = > * 1 * 2;

CON CAT [- " -] = > * 1 .. " B F "/I 1 \ * 2 111. DC] ;

LOAD[.NUM] => ,,"LDA ="*I:S\
[• I D] = > , "L DA "* 1 : S \ ;

C~.LL[-] => ,,"BRM "*1\
[-,,-J => *2 .. "BRM "*1\;

MT / => • EMPTY;

CLA / => "CLA";

ZRO / => "0";

D-50

-- :~--

FHCODC-,,-,,-] => *1 *2 ,,"BF~ "*3\;

NDLB(-] => ."NDLBL ="* I\J

MKNODEC-] => ."MKND ="* 1\;

AHBCZROC].Ml'C],,-] => II.DC] *3,,"BT "11"; MIN MFLAG"\
[.Nt.Jt1"MTC].-] => ARB1C*I] II.DC] *3

,,"SKR* MSPJ B1 "ll"J SKN* MSPJ BHU *+3; BT "II"; MIN MFLAG"\
• ARB3[]

(- •• NUM,,-] => ARE1C*2] 11. DC] *3
,,"SKR* MSP; BT "11"; SKN* MSP'" ARB2[*1,,*2JJ

AFB1[-J => ,,"ERM 5AV; LDA ="*1,5"+11 MIN MSP; STA* MSP"\;

l\1\lJ2[-" .NlMl => ,,"SHU *+41 CLAJ Sl'A MFl..AGJ BHU *+LI1 LDA* MSP; SKG ="*2
"-"*1"; MIN MFLAG"\ .ARB3[)

[-] => ,,"BRII *+ 3J CLA 1 STA MFLAG'" • ARB3[) J

ARB3 I => ,,"LDA =-IJ AIXVJ M5P; 8RM RSTR"\;

GCHR 1=> ,,"BRM \J}PREP; BRM INC; LDA* I WP; MHG CHRFLG; MIN NCCP; PSHK =0"1.

GO I => ,,"BRM OUTREEJ BT *+3; LDA =2; BRM CFRR"\;

SET I => ,,"LDA = 1': STA MFLAG",;

TTY(-) => TTY(] *1 FIL(]
(J => ,,"LDA =1; STA FNUMO", XCHCH();

FIL[] => ,,"LDA XFNUMO; STA FNLMO"\;

XCHCH/ => ,,"LDA TCHNO; XMA CHN01 STA TCHNO"\1

STRING[-J => " DATA "*1 :L"; ASC '" '*1' '\;

OSET(-] => ,,"BRM BEGN"\ *11

CNTCK(- J => * 1 , "CLB; SKE NCNT; STB MFLAG"\;

ONE I => ,,"LDA = 1"\;

THPE I => ,,"LDA = 3"\;

I TIr1 STR (-" -] => * 1 ,,"M IN CNTJ EAX - 1" 2"\ *2J

LITEM (-) => *1 ,,"MIN CNT; LDA. CNT"\;

RITEM[-,,-J => ,,"RI1 ="*I"J BHU u'l' *2 ,,"RI2"\ It.DC].:

OEF.(-,,-] => *1" "CE =1"\ *2;

D-51

--4--

DUTeLL [-,,-] => " "LDA NSP; S1'A SNSP; NDLBL ="*1"; CLA; STA CNT"\
,,"LDA KT; STA ME"\ *2

,,"MKND CNT; PSHN SNSP; LDX KT; BRM* 0,2; BRM POPK"\
,,"LDA* NSP; STA NSP"\;

ARGLD(-] => " "LDA M~'\ * 1;

ARG [- J => * 1 ,,"PSHK = 0; MIN CNT"\;

L CHA.5E (-] => ,,"GET = n* 1 \;

DO IT (- J => *1 ,,"BNPTR "Ii 1
"; CAX; PSHK =0; BRM* 0" 2; BRM POPK; BHU *+2"\
111. DE J ,,"BRM OUTS"\;

NOPT (-,,-] => *1 ,,"BNPTR *+3; LDA =4; BRM CERRi" *2;

SCAN (-] => Nt.D[] *1 ,,"BT *+3; MIN NCCP; BHU "61\;

PRIM [-] => , "BRM n* I"; BF *+3; MRG "* l"FLG; PSHK =0"\;

STST [-] => ,,"BRM 1'S1';" STRINGC * 1];

CTST [-] => " "LDA ="*l:N"; BRM 1'CH"\;

OS / => .. BRM OUTS"\;

ON / => " E1'R =77777B; BRM OUTN"\;

OL / => .. CAX; LDA 0" 2; BRM OUTN"\;

DC / => " ETR =377B; CIO FNUVlO; MIN CHNO"\;

GNLBL [-] = > ,,"G EN GNLB"* 1 \;

DEF [-] => *1 ,,"BRM LIT; DATA 6; ASC .. , , .. EQU *", '\;

OUTCR / => , "BRM CRLF"\;

OUTAB / => ,,"BRM TAB"\;

OUTSR [-] => ,,"BRM LIT; If STRINGC*l];

OUTCH [-] => ,,"LDA ="*l:N"; CIO FNUMO; MIN CHNO"\;

ENDN / => "SSTOP DATA SS+ SSTKSZ- 5; $SS BSS SSTKSZ"\
"MSP DATA MSTK; $MSPT DATA MSTK+MSTKSZ- 5; $MSTK BSS
"NSP DATA NSTK; $NSPT DATA NSTK+NSTKSZ- 5; $NSTK BSS
"KSP DATA KSTKi $KSPT DATA KSTK+KSTKSZ- 5; $KSTK BSS
"WRK BSS 1; X\4JRK BSS 1; END"\;

SAVG [-] => ~ "BliM SAVGN"\ * 1 ,,"BRM RSTGN"\;

MSTKSZ"\
NS1KSZ"\
KSTKSZ"\

-~ 5--

I M ED (- J z> ". 1 \;

NI TEM(-J => ,,"STX INDX; LDA KTu , .1
,,"CLB; LDX INDX; SKE 0,,2; 5TB MFLAG",;

FI TEM[- J => ,,"FLGT ".1 J S"FLG"\;

TT5T[-J => ,,"BRM SSTESTJ" STRING(.lJ;

CHTST(-] => ,,"eLB; LDA ="*lJN"; MRG CHRFLG; SKE 0,,2; STS MFLAG"\;

GNITEJ.1C-J => ,,"FLGT GENFLG; ETH =77777B; STA GNLB".lJS\;

GENARG(- J => ,,"LAB GNL13"* 1: S"; MRG GENFLG"\;

NTST[-) => ,,"LDA NCCP; STA SNCCP", * 1
,,"LDA = 1; SKR MFLAG; SHU *+2; STA MFLAG; LDA 5NCCP; 5TA NCCP"\;

NCHR[-] => ,,"LDA ="*l:N"; BRM TCH"\;

NSR[-) => ,,"BRM TST; "STRINGC*l];

UP["l",,-] => ,,"LDA* KSP", *2
[-,,- J => ,,"LDX KSP; LDA 1-"* 1: 5",,2"\ *2;

LKT[- J => "ttL DA KTtI
, * 1;

UP\tlRK / => ,,"MIN WRK; LDA WRK; SKG XWRK; LDA XWRK; STA XWRK"\;
DYiN\\iRK / => ,,"LDA =- 1; ADM WRK",;
OUT\tJRK[-J => *1" uLDA WRK; BRM OUW"\;

. MAXWRK / => ,,"LDA X\lJRK; BRM 0 UTN",;
SIZS[.CHR,,-J => *l:C"STKSZ EQU "*2:5\;

KPOPK(-J => ,,"MIN MSP; LDA KT; STA* M5P; MIN MSP; LDA KSP; STA* MSP"\
*1 " "LDX MSP; LDA 0,,2; STA KSP; LDA -1,,2; STA. KT; LDA =-2; ArM MSP"\;

PAROUT[ZRO(] J => ,,"LDA KT"\
("O"J => ,,"LDA KT"\
[- J => ,,"LDKA ="* 1 \;

• END

D-53

BIBLIOGRAPIIY

1 (Engelbart 1) D. C. Engelbart, "Special Considerations of the
Individual as a User, Generator, and Retriever of Infonnation," Paper
presented at Annual Heeting of American Documentation Institute,
Berkeley, California (23-27 October 1960).

2 (Engelbart2) D. C. Engelbart, "Augmenting Human Intellect: A
Conceptual Framework," Summary Report, Contract AF 49(638)-1024, SRI
Project 3578, Stanford Research Institute, Menlo Park, California
(October 1962), AD289565.

3 (Engelbart3)
Augmentation of
1, D. N. Howerton
D.C., 1963).

D. C. Engelbart, "A Conceptual Framework for the
Han's Intellect," vistas in infonnation handling, Vol.

and David C. Weeks, eds. (Spartan Books, Washington,

4 (Engelbart4) D. C. Engelbart, "Augmenting Human Intellect:
Experiments, Concepts, and Possibilities," Summary Report, Contract AF
49(638)-1024, SRI Project 3578, Stanford Research Institute, Menlo Park,
California (March 1965), AD640989.

5 (Engelbart5) D. C. Engelbart and B. Huddart, "Research on
Computer-Augmented Infonnation Hanagement," Technical Report
ESD-TDR-65-168, Contract AF 19(628)-4088, Stanford Research Institute,
~lenlo Park, California (iv1arch 1965), AD622520.

6 (Englishl) W. K. English, D. C. Engelbart, and B. lIuddart,
"Computer-Aided Display Control," Final Report, Contract NAS 1-3988, SRI
Project 5061, Stanford Research Insti.tute, Menlo Park, California (July
1965).

7 (Engelbart6) D. C. Engelbart, W. K. English, and J. F. Rulifson,
"Study for the Development of Human Intellect Augmentation Techniques,"
Interim Progress Report, Contract NAS 1-5904, SRI Project 5890, Stanford
Research Institute, f>.1enlo Park, California (March 1967).

8 (Engelbart7) D. C. Engelbart, "Study for the Development of Human
Intellect Augmentation Techn1ques," Final Report, Contract NAS 1-5904,
SRI Project 5890, Stanford Research Institute, ~wnlo Park, California
(March 1968).

9 (Hopperl) J. D. Hopper and L. P. Deutsch, HCOPE: An Assembler and
On-Line-CRT Debugging System for the CDC 3100," Technical Report I,
Contract NAS 1-5904, SRI Project 5890, Stanford Research Institute,
~1enlo Park, California (March 1968).

10 (Hayl) R. E. Hay and J. F. Rulifson, "~{)L940: A Machine-Oriented
ALGOL-Like Language for the SDS 940," Technical Report 2, Contract NAS
1-5904, SRI Project 5890, Stanford Research Institute, Menlo Park,
Cal i fornia O·larch 1968).

BIB-l

BIBLIOGRAPHY

11 (Pirtlel) M. Pirtle, "Intercommunication of Processors and Memory,"
Proceedings of Fall Joint Computer Conference (November 1967).

12 (Rulifsonl) J. F. Rulifson, "Aspects of Reliability and Response in
a Display-Oriented Time-Sharing System," Stanford Research Institute,
tvlenlo Park, California (April 1968).

B1B-2

UNClASSIFIED
St'Cll ri t \' Cia s si fica t ion

DOCUMENT CONTROL DATA· R&D

1 Of.<IGINA TING ACTIVITY (Corporate iluthor) .?a. H L f' (; f.< T "E C U r~ I T Y C LAS S I fir: A T lOr.

Stanford Research Institute
Unclassified 333 Ravenswood Avenue

Menlo Park, California 94025 n.a.
3 F'LPOf.<T TITLE

DEVELOPMENT OF A MULTIDISPLAY, TIME-SHARED COMPUTER FACILITY
AND COMPUTER-AUGMENTED MANAGEMENT-SYSTEM RESEARCH

~--~
4 [)[~CRIPTIVE NOTES (Type of report and iflclu~ive dates)

Final Report
5 AU THOR(S) (First name, middle initial, last name)

D. C. Engelbart W. K. English J. F. Rulifson

(, f-lE.I-'Of.<T DATE 7a. TOTAL NO. OF PAGE'S

April 1968 180
88. CONTf.<ACT OR GRANT NO. 9a. ORIGINATOR'S REPOI-< T NUMBER(S)

AF 30(602)-4103 Final Report, SRI Project 5919
b.PRO.JECTNO.

c.

d.

9b. OTHER REPORT NOIS) (AllY other numbers that may be lJ~:>iRned
this report)

1" DISTRIBUTION STATEMENT

11 SUPPLEMENTARY NOTES 12. 5 P 0 N SO R I N G MIL I 1 A f.< Y ACT I V IT Y

Rome Air Development Center
Griffiss Air Force Base
New York

13 ABSTRACT

Specially developed hardware, coupled to an SDS 940 time-shared computer,
allows I/O service to 12 CRT work stations with CPU overhead of only a few
percent. A novel display system includes (per user) one small (5-inch) high-'
resolution CRT, refreshed from core through a shared character generator, with
an 875-line TV system picking up this image and carrying video to a monitor at
the user's work place. Short-term storage, provided by reduced scan-heam
current in the camera, retains good image-change response but allows a 15 frame/sec
refresh rate without monitor flicker (a considerable saving in required character­
generator capacity); also, inverting the video signal yields black writing on
mite background, which proves to be much appreciated by users.

Special software developments, to facilitate easy implementation and mod­
ification of powerful interactive user aids, include the Tree Meta compiler
generator, the MOL940 Macmne-Oriented systems programming Language, four
Special-Purpose Languages (SPL's) for high-level specification of user-control
dialogue and interactive functions, and an associated On-Line System (NLS)
integrating these components. NLS works within a minimally modified version
of the time-sharing system developed by Project GENIE at the University of
Cali! 0 rnia, Berkeley.

The initial stage of a continuing management-system research effont
produced a prototype on-line administrative-data-analysis system on a CDC
3100, evolved an organizational framework for the "Bootstrap Community"
(as developed around the new 940 facility) and its management system, and

develoned nlans for both administrative and organization-communlcation aids.

(PAGE 1)
UNCLASSIFIED

SIN 0101.807.6801 Security Classification

UNCLASSIFIED

Security Classification

, . LINK .. LIN K B LIN K C
KEY WORDS

ROLE WT ROLE WT ROLE WT

l\1ulLidisplay, Time-Shared Computer Facility

Interactive Man/Machine System

Computer Aids to Management

Computer Display Generator

S \' II t ax - Dr i v en Compiler-Compiler

SPl.'C ial-Purpose Languages

DD ,F~oR:etl14 73 (BACK) UNCLASSIFIED

(PAC;E 2) Security Cia s sifiea tion

