LiO Users' guide

Augmentation Research Center

6 NOV T4

Stanford Kesearch Institute
333 Ravensvwood Avenue
Menlo Park, California 94025

L10 uysers' Guiae ARC c4426 rev. O WUV Ti
Table of Contents

TabLys OF CONTENTS
lNTRUDUCTION..'Ql‘..O‘.O.....O...O.......O.'....."'I..l.......z

PART OHE: Content Analyzer Patterns-.o'o.oovoovoocn00..00.0.0.3

3Jection 1:¢: IatroduUCtiOilececeessvseacesscccccasosssacsnsessesessi3d
sect‘ion 2: ;atr‘errls'......'.'.'.....'..Q'.I....'..........35
section 3: Examples of Content AnalyZer PatlerNSeseesessss3U
Section L: UsSing the Content AN2iYZe@rl'ssescecscscescccsossaccidl

PART T¥O03: 1Introqucticl to L1O ProgramillnNgecscccccecsesccscncnccii

Section 1: Content AnalyzZer PiCErallSesecescecsecsayoccnccssiph
II)Lroduction'.'....‘....?‘.......'....'............‘...u-ﬂnl
Progran Structure...................-.....-............uq?
Procedurq Structure-.......o--.-..o..-......-n.-.....-.uéj
Exarﬂple:.....'.........-.‘.....'.“..'.‘.'...’.'..’....h&,u
Declaration S‘atements........................'.....".u“s
Doay Of the Procedure.'......'...'.."..-...........'..uﬁé
Programminﬁ btyie: File Structure..............-..-....hb?
Using Content Analyzer Proér&ms...-....................u#d
Probletns..'."'.........'......".".....".‘."'.....‘uﬁ,\

3ection 2: Content AnalyZer Programs: MOQALLYiNg€eeseseecesold
inLrOQUCtion.o.-....--............o....-......-...-..--u?l
Strlng Construction".'......'...'.......".....'......u§2
b’xample:.'...'..."...'.'.....'."......‘......‘....'..uDB
More Than une Cndange per StalemenNteceescssssocsscsecvesibd
Controiling wialch statements are Modifl€dsesecsccesevesild

Prob;ems.................o.-........».--..-............ubé

page 1L

L1C Users' Guiae ARC 24426 Rrev, o
Introduction

INTRODUCTLON

NLS provides a variety of cosnands for file manipulation and
viewing. Editing commands allow the user 1o insert and change tne
text in & file. Viewing commands (viewspecs) allow the user to
control how the system prints or dispiays the file., Line
truncation and control of statement numbers &are eximnples of these
viewing facilities,

Occasionalliy one nay need more sophisticated view controls than
those avaiiable with the viewspec and viewchange features in NLS.

For example, one may want to see only those statements that
contain a particular word or pihrase.

Or one might want to see one iine of texi that compacts %vae
information found in several longer statements,

one might also wish to perform a series of routine editing
operations without specifiying each ¢i tie wlLS commands over and
over againie.

User~-written programs may tailor the presentation of %he
information in a fllie to particular needs, Ekxperienced users may
write programa tinat edit files autcmatically.

User-wriiten programs curren%tly must be coded in ARC's
procedure=~oriented prcecgramming language, Ll10. NLS ivself is coded
in L10. LiO is & high=level language which must pe compiled into
machine-readatle instructions.

Tnis document describes three general types of programs:
=-gimple filters that control what is poTKAYEvV ON
THE USER's teletype or display {(Parvs une ana Two),
-=programs tLthat may modify the statements as they
decide whether to print them {Parts Two ana Taree),
~=those that, like commands, are explicitly given
control of ihe job and interact with the user (rartv Four).

User programs that control what naterial is portrayed tvake
effect when NLS presents a sequence 0of statenents in respense
10 a command iike Print (or Jump in DNLS).

In processing such a command, nLs loOks at a sequence Of
statements, examining each statemnent to see if it satisfies
the viewspecs then in force, At tnis point NLS may pass tne
statement vo a user-written program to see if 1t satisfies

NUV (i

2a

<P

e

<c

ce

2rl

bage 4

L10 Users' Guide ARC 24126 ReV. 0 KUV 'f4
Introducvion

the reyuirenents specified in that program. Ii tae user

program reiurns 4 value of TkUE, the (passea) statementy is

printed and the next statement in tie sequence 1s tested; if
FALSE, NLS Jusi goes oun to tne nexth stestenent, rla

While the program is ex<mining the statement %o aecide whether

or not to print it, it may modiify tne contenis of the

statement. SUCh & program can Jdo anything vhe user can do wiun

NLS conmands, ‘ 2f2

For more compiicated tasks. control may be passed expiicitly to
the program. In tlils case, a user prograu appears as i

special=purpose subsystem having (in additvion to the supervisor
commands) one or nore commands., Once such « program is loaded,
it can be used Jjuat like any of *the standard sucsystems, (ihe

MESSAGE progran is an example.) 213
This docunent describes the L1O pregramming language used at ARC, g
Part One is intendeu for the general user, 28l

It 18 a pruiner on Content Analyzer Patterns, This does not
invoive learning the L10 language nor programning, This

section can stand alone, and tne genergl (if somewhat

experienced) NLS user should £find 1t useful. dgla

Part Two is intended for ine veginning programmer, Qg2

It presents a hasty overview of L10 programming, with enough
touls Lo write simple proerans. This is invended as an '
introduction for the beginning L10 programmer, who we assupe
is reasonably familiar with HLS (ivs commanas, subsystems,
and capabilities; and has some aptitude for programming. 2g2a

Parts Three ana Four are not included in this document. They are
presently beang updated. You can read tnhese sections online oy
Jumping to the link <userguides,Ll0-Guide,,., When compietea: an

Part Three wiil inciude a more compliete presentation of L10. 2nd

It is intended to acquaint a potential L10 progranmmer with

enough cf uvhe language and HLS environment to satisfy most
requirements for automated ediving programs, sany of inhe

concepts in kart Two are repeated in Part Three so tnat it

nay stand aione as an intermediate programmer's reference

guide, ehia

page 2

L10 Users' Gulae ARC 2Ly42€ Re€Ve & NOUV [y
Introduction

Part Four wily present more advanced L1O to0ls anu an
introduction vo Cidl, allowaing ccmmand gynuvax specificatione. 2ne

This should give the progranmer the ability to write

prograns wWihich wWork across files, whicn move tirough files

in otlher tuan the standard sequential order, and waich

interact with the user, éned

We suggestyu that Lhose wWwno are new Lo L1u pegin with section 1

and read trhis document one section a% a time, pausing between
sections Lo Lry outl the concepts presented by actually writing
patterns or programs that put the new ideas t0 experinmental

use, Handsg=-on experience is of av least as much value &8 tnids
tutorial. If you have problems at any voint, ycu should gel

nelp from ARC beiore proceeding to the next section, eh3

More conplete documentdtion can pbe found in (7052,1). for

examples of user progrdams wWhich serve a variety of needs, consult

the User Programd Liorary iable of Contents

(programs,-conteuts,i). For information about commands mentioned,

ask for the programming subsystem with the NLS Help command, inis
document is8 avaiiable online in <userguides,LlO=~guiae,>, 21

page 3

L10 Users' Guide ARG 2lu26 Rev, & NUV 14

Part One: Intrcaducticu

PART ONE: Content, analyzer Patterns

section 1t Introductaon

Content analysis patterns cannot atffect the xormat of a gtatement,

nor can tney ediv a file. They can onliy determine wuether a
Statement should be pr'inted at all. They 4atve, in a 8ense, &
filter tnrough which you may view the file. More complex tasks
can De accomplisnea through programs, as aescriped later in tnis
document.

The Content aAralyzer filter is created by typing in (or selecting
from the texu in & fiie) a strineg cf s special form. This straing
1s callea the "Content Aralyzer Pattern". Lach statenent is
checked against the pattern before it is printed; only statements
that are described by the pattern will be pranted.

Some quack exampies of Convent Analyzer ratterns:

'(LD ") will sihow all statements whose first
character is an open parenthesis, then any
humber of letters or digits, ihen a close
parenthesis.

["biap") Wwill show all staterments with thpe
suring "blap" sonewhere in themn,

SINCE (3=JUN=73 0C:00) walil shovw all statements
edited since June 3, 19173

The next pertv of this section will describve the elements which

make up content analyzer Patterns, icllowWwed Ly some examples, Tae

final supject of tnis section is hew vo put them to use,

page i

3az2

Ja3

Jaja

Jasp

343C

Jaly

L10 Users!' gGuide ARC 2i4u2é keve. & WUV (i
Part One: Patterns

Section 2: Patterns 30

Elenments of Content Analyzer Patterns 304

content Analyzer Patterns deacribte certain things the systen
must check teicre printing a statement. It may check one or a
series of things. The Content aAnalyzer searches & statement
from the beginning, character oy character, for descrived
elements, As it encounters eacn element ¢f tne pattern, tne
Content Analyzer checke the statement for the occurrence of
that pattern; if the test failis, ihe whole statement i1s failecq
(unless there was an "or" condition, as described later) and
not printed; if the test is passed, an imaginary marker moves
on to the next character in the statement, and the next test in
the pattern is considered, Jola

The pattern maY include any sequence of the following elements,
the Content Analyzer moves the marker through the statement

checking for each eiement of the Pattern in turn: 30D

Literal 3trings Jolc
'c the given character (e,g. a lower case c) '
"stvring" the given string (may include ’

non=printing characters, suchi as spaces)

Character classes Jolu
CH any character
L iowercase or uppercase jetver
D Caigat
UL uppercase letter
LL lowercase letvter
VLD uppercase letter, or Aigit
LLD lowercase jetter, or digat
)] lowercase or uprercase letter, or aigit
NLD not 4 levter nor digit
PT any printing character
NP any non-printing characver (e.g. space)

Special characters spLie
SP a srice)
TAB tab character
CR a carriage return
LF line feed character
EOL TENEX EOL cCharacter
ALT altmude character

Special elerents JoLl
ENDCHR ceginning and end of every

statement; can't scan past it

page >

L10 Users' Guide ARC 24426 Kev. o MUV ‘(4

Part one: Patterns

TRUE i3 true without checking anyuvhing
in siatement

1u= id statement created Ly user wnose
ident is given

ID# id statement not created by user wnose

ident is given
BEFORE (a=1) statement editeq Ceiore ¢given date and tinme
SINCE (d=%t} sStavement eaitveg since given aate and tine
e.g. BEFCORE (1 OCT 1974 00:00; ;
The date and time nust botlh appear, in the parentheses,
Il accepls almost any reascnapvle date and time syntax.
Examples ¢of valid datves:

17=APR='1} 17 APRIL T4
APR=17~T4 17/5/1974
APR 17 'l 5/17/74

APRIL 17, 1974
Examples cf valid taimes:

l:12:13 1234356
1234 i:56AM
l:56=EST L200NOON

16:30 (4230 PM)
12:00:00AN (midnignu)
11:59:59AM=EST (late morning)
12:00:C1lAN (early morning)
Scan direction
< set scan directicn to the ieit
> set scan directicn to the right

The defauit, re-initialized for eacu new statement, 18
scan tvo the raight.

Conbining Elementis

These elements may be combined in any order, Spaces within tne
pattern are ignorea f{except in literal straings) so they may bve
used to make reading essier for ycu. Several operators can '
modify the elements:

NUMBER =~ muliiple occurrences

A number preceding any element other tian one of the
"Special elements" means tiat the test will succeed only ii
it finds exactly that many occurrences of the element. If
there aren't that many, the statement will be rejected.
Even though there may Dde more, it wiili stop after that many
anag go on o check tne next element in the pattern,

301l means taree upper case letters

page 6

5018

3ne

3p2a

3020

110 Users' Guide ARC 24426 Rev. 6 iUV 4

Part

$

[]

One: Fatterns

-- ralige of cccurrences Jpec

A dollar sigh () preceaing any element other tnan the
"Special esements" means "any number or cccurrences of".
This may include zerc occurrences.

3'=- meauns any number c¢f dashes

A nuuber in iront of the doliar sign sets a lioder linive.
38D neans three or iicre Aaigits

A numper azter the dollar sign sets an upper limit for the
search. IV wiil stop after that numper and then check ior
the next eliement in the pattern, even if it could nave fcuhu
riore.
831D neans from zerc t¢ itnree letters or gigitvs
537PT neans fronm s to 7 (inclusive) printang
characters

-= floating scan 3oea

To do othelr than & cnharacter bty cnaracler check, you lay
enclose an element or series oif elements in square brackeivs
{]. The Content Analyzer will scan a Statement until the
elenent is found. (If the element is nov in aquare
brackets, the wnole statement fails ii the very next
character or siring fails the tesSt of the next element.)
This test wiil reject the statement if it can't £ind tne
element anywhere in the statement, if it succeeds, it will
leave the marker for the next test Jjust after the string
satisfying the contents of the square oracKkeuvs.

"svare" means check to see if the statement
begins with the string "start" (or,
if iv is in the middle ¢f a patiern,
check the next & characters to see
if they are 8 t a r y).

["start"/ means scan until it rinds tne
string s ¢t a r t.

{3D) means scan until it finds
three digits.

{ 3D ':] meens Scan untii it £inds three
digits follcwed by & colon

-= negation ap2ce

bage ¢

L10 Users' Guide ARC 24426 Reve © KOV (i
Part one: Patterns

If an element is preceded by a minus sign =, the statement
will pass that test i1f the elenent does not occur,

-LU means anything other than a letter
or digit, such a8 punctuation,
invisibles, etc,

You may put together any number of any of these (o form a
pattern. 3bef

€. 1$PT (" .NLS3;" 18DJ =-Sp
Logic in Patterns 303
More sophisticated patterns can by written py using tne logac
features of Li0. Generally, an expression is executed left tc

right. The following operations are done in the given order:
0

/

NOT

AND

oR 3p3a
() Josp

Parentheses (and square brackets for fioating 8cans) may be
used to group elements. ItV 18 good practice Lo use
parentheses liverally.

/ 3b3¢

/ means "“either or%; the element wili be true if either
element 18 true.

(3D L 7/ 4U) means either three Jigits and a letter
cr four digite.

sometimes you may want want the scan Lo pass your marker
over something if it happens to be there (an optional
element). "TRUL" is true withcout testing the statement., I[f
the other vests faill, the imaginary marker is not movea. '

(D / TRUE) 1looks for & digit and passes the
imaginary marker over it. If the
next character is not a dagit 1t
will Jjust go cn to the next test
element in the pattern withoudt movang
the marker., JIhis %test always passes,

page 8

L10 Users! Guide ARG 241426 reV, 6 NOV ‘f4
Part oOne; Patteirns :

i.e. It is used to scan past somethang(s) wnicn may or
may not be there.

Since expressions are executed flom lierft to right, it aoces
ne good to have TRUE as the first option. (If it is first,
the tlest will immediately pass withoul trying Lo scan over
any elemenuis.)

NGT s03a

NOT Will be TRUE if the element or group of elements
enciosed in parentheses follcwing the WOT is fdalse,

NOT 1D will pass i1f the neXu character is neither
a letter nor a digit.

3ince Lhe slash 15 eXecutea f£irst, NOT v / 'h Will be tI'ue
if the rexv charecter i1s NEITHER & digilt nor the ievver "h'".
It 18 tre same as NOT (L/'h).

AND 3bge

ANl means both ©if the (Wwo 3eparatea gr'oups ot elements must
pe tLrue for the statement %o pass.

SINCE (3/6/73 CO:00) AU ID#NDM means statements .
written since Marcn 6, 1973 by
someone other than NUM.

OR Jost

OR means the test will be true iif either oi the separateaq
elements i9 true, It does the same tning as slash, but
after "AND" and "NOT" have ceen executed, allowing greater
flexibality.

D AND L1D OR UL means the 3gane as (D AND LLD) OR UL
D AND 11T /7 UL means the same as U AND (LLD /7 UL)

Whiie such paiterns are ccrrect ana succinci, parentneses
make for much clearer patterns. slements withain
parerntheses al'e tuken as a group; the group wiili be true
only if the slatement passes all the requirements of vune
grour. Il is a good idea L0 use parentheses wnenever
there might be any ambiguity.

page S

L10 Users' Guide ARC 24426 Reve 6 NOUV T4

Part One: Examples cf Content Analyzel' Patterus

Section 3: Examples of Content Analiyzer Patterns

D 28LD / ("CA"] 7 [("content analyzer"/) .

This pattern will match any of three types of statements: those
beginning with a nhuwerical digit followed by at least tLwo
characters whach may be either letters or digits, ana
Statenents with eitner the patterus "CA" or "Content Analyzer”
anywhere in the statement,

Note the use 0f (he square vprackets to permitv a firoating
scan -~ a dearch for a pattern anywhere in the statement.
NOte also Ulhe use of the slash for aiternatives,

BEFORE (25-JAN=72 12:00)

This pattern will match tiose staiements created or moaified
before noon on 25 January 1972.

(ID = HGL) OR (ID = NIHM)

This pattern will match all 8statements created or nodified oy
users with the identifiers "HGL" or "NDM".

[(2L (SP/TRUE) / 2L) L '= 4D/

This pattern will match characters in the form of phone numgers
anywhere in a statement, Numpers matched may have an
alphabtetic exchange followed by an optiondi space (note tane use
of the TRUE construction to accemplish this) or a numerical
exchange, '

EXamnples include DA 6=6200, [A6-6200, ana 326-6200.

[ENDCKR] < "cba"

This will rass thoSe statements ending with "aoc". It will gc
Yo the end of the statement, change the scan airection to lefv,
and check for the characters "cca". Nole that Since you are
scanning backwards, Lo find "abc" you nmust look for "cba".
Since the "cba" is not enclosed in square prackets, it must pe
the very last characters in the statenent,

page 10

3¢4

Jcla

3¢ce

jcea

3¢3

jcza

3cu

3cha

3¢5

scha

L10 Users' Guide ARC 2iuu2é Reve 6 NUV 74
Part One: Using the Content Anajiyzer

Section y: Jsing the Content Analyzer 3G
vontent Analyzer Pavteirns may be entered in twWo ways: Jad
1) From the BASE subsysten, use the command: 3dia

Set Conteny (patvern) To PATTEKN QK
2) From the PROGRAMS supsystem, use the comnmand: 3d1ip
Compile Content (pattiern) PAITERN 0K

OK mearns "Command Accept", & conirol-D or,
in TNLS (by default) a carriage return.

In either case: 3ae
1) Patterns rnay be Lyped in from ihe Keyboard, cor Jdea
2) they may be addresseqg from a file. Jaep

In this case, ine pattern will be read from the first
character addressed and continue until it finds a semicolcen
(3) so you nust put a semicclon at the end of the pattern
(in the fiie).

Viewsgec j must te on (i.e. Content Analyzer off) when entering
a2 pattern. 3dzc
Entering a Content Anaiyzer pattern automatically does two tnings: 3a3

1) conmpiles a small user program from tne chiaracters in tne
pattern, and sa3a

2) takes that progranm and "institutes" it as the current
content Analyzer filiter progran, deinstituting any previous
pattern. 5a30

"Instituting" a program means selectang it as the one to
take effeci¢ when the Content Analygser is turned on., You may
have more than one program corpiled but only one instituted.
when a patiern is deinstituted, i% still exists in your
program buifer space and may be instituted again at any lime
with the command in the PRUGRAMAS subsysten:

Institute Prcgram PROGRAM-NAME (as) Content (analyzer) UK

page 1l

110 Users' Guide ~ ARC 24426 keve 6 NUV T4
Part One: 1Using the Content Analyzer

The prograns may be refered Lo by number instead ol
name, They are numbered sequentviaily, tue first
entered veing number 1,

All the prograns you have compiled and the one you have
instituted may bte listed with the Commana in the PROGRAMS
subsystem:

shew Status (of programs cufferi) Ok

Programs may build up in your program ouffer., To clear tne
program buifer, use the PROGRAMS subsystem commanas

Delete All (programs in cuffer) Ok

we recommend that yYyou do this hefore each new pattern,
unless you specificalily want to preserve previocus
patterns.

To invoke the Content Analyzer: 3a4

When viewspec i is on, the instituted Content analiyzer program
(1f any) will check every statement before it is printed (ov
displayed). 3dga

If a statement doves not pass all of the requirements of tne
Content Analyzer program, it will not be printed.

In DNLS, if no statements from the top of the screen on
pass the Content Analyzer, the word "ompty" wiil pe
displayed.

Note: You will liot Ssee the normal structure sitnce one
statement mey prass the Content AnalyzZelr although ils sSource
does not. Viewspec n (statement numbers on) will help you
aetermine the pcsition of the statement in the file.

When viewspec k is on, the instituted Content Analyzer search

program will check until it finds one statenent tnat passes ine
requirements ©f the pattern, Then, the resi of the output

(branch, plex, disrlay screen, etc,) Wiil be printed without

checking the Con%tent Analyzer, 3ayp

When viewsprec j is on, no Content Analyzelr searching is done.

This is the defaultl state; every statement in thne output

(brancnhn, plex, display screen, etc.) wWiil be printed. Note

that i, J, and Kk are mutually exclusive. Jalc

page 12

L10 Users' Guiae ARC 24426 eV,
Part One: Using tne conilent Anaiyzer

Notves on the use oi (Cciitent aAnalyzelr filters:

© NUV 14

3a5

Some NLS commands are alilways affected by the current viewspecs

(inciuding 1,J, or Kk):
Qutput
Jump (in DhL>S)

print (in ¢NLS)

Jas4

Most NLS commanas ignore the content Alalyzer in their editing.

The foliowing BASE subsystem connands oxirer the option of
specifying viewspecs, or "Filters", (which may turn on the

Content Analyzer) wiich apply cnly for the purpose of that one

command and arfect what statements the commana wWOI'ks on:

Copy
Delete
Mcve
Supstitute

At this point, iV would be wise Lo prdactice uniil you becomne
proficient ai Content Analyzer patterns, You might begin by
trying to use some of ithe pPatterns given in tne aocve exanmples,
anad then try wriving a few patterns cf your own., These patterns
are both a usefud NLS toel and a basic compounent of many L10O
Programs, ’

Jaso

34a6

page 13

L10 Users' Guiage ARC 24426 Rev, & NOV 74
Part Two: Content Analyzer PIrograms

PART TwQ: Introducticn to L10O Programming 4
Section i: Content Analyzer PIrograms ba
Introductaion 4al

Wnen you specify @ Content Analyzer Pattern, the FROGRAMS
subsystem constructs a program which looks for the pattern an
each statenent and only displays the statement if the pattern
matching succeeds, You can gain more control and do more
things 1f you buiid the program yourseli, The program will pe
used just like the simple pattern program and has many of the
same linmitations, Fkrograms are written in NLS Just like any
other text fiile., <They then can be converteq to executable coae
by a compiler. This coae resides (or is loaded) in your
programs obuffer 3pace; it can bpe instituted as the current
content AnalyZer fiiter program like & Coatent Anglyzer
Pattern. kala

Program Structure v Lac
If you specify a Content analyzer Pattern, NLS compiles ua small
program that i1ooks iike tnis (with the word "pattern" standang
for whatever you typed inj: kLaza

PROGKkANM nane
(name) PRGCEDUEE;
IF FIND pattern THEN RETURN(TRUL) ELSE RETUKRN(FALSWL),
EXND,
FINISH
All L10 precgrans must beginr with a lieader statement, the word
PROGRAM (all caps) followed by the name of the first procedure
to be executed (all lowerw=case), This name is also the name of
the program. If the program is being compiled into a file (to
be descrived 4t the end of this section), the weru FILg Snould
be substituteu for vhe word PROGRAM. 4ae2 B

E«ge PROGRAM first
FILE deldir

Page 1i

L10 Users' Guiue AKG 24426 ReV. © NUV T4
Part Two: Cortent Anaiyzer pPrograms

{NOLe: the Content Analyzer makes up a progran nane
consisting of UFP#IXXXXX , where

is a sequeniial number, %Lthe fairst pattern teillg numoer
one, ana

XXXXX 1S the rirst iive cnaracters of your pattern.)

The body of a program consists cf a series of LECLARATION
statements and PRUCEDURsS (in any orderj. In tpe atove case,

the progrem coensisted of only one smail procedure and ho
declarations. when tlhe program is loadeg intc your programs

buffer space, tihe declarations reserve space in the system lo

store informavion (variables). #When the program is used as a

Content AnalyZer illter program, the first procedure 1s calieaq

for each statenent. It may in turn celi other procedures and

access variabies in he program or in the WLS systen. baec

e+ge DECLARE X, ¥y, 2 {descriced below)
(first) PROCEDURs;

L LN]

The end of the program is delimited bY the word "FINiISH" (in
all upper case}. ‘ 4adu

Comnents nay be enclosed in percent signs (») anywhere anh uine
program, even in the middle of L10 statements., The L.i0
compiler will ignore then. 4ace

EXcept within literal strings, variable names and special L0

Wwords, spaces are ignored, Il is good practice 1o use tien

liberaliy s¢ that your progranr will be easy to read. AisS0, NLo

file structure is ignored. Structure is, however, very

valuable in naking the program readable, and it is good

practice tco use it in close correlation to the progranm's

logical strucvure, For instance, the programmer usually mékes

each Of the eiements of a program (declarations, procegures,

and FINlSu) separate 3tatements, belowWw the header statement in

file structlure, <{his point wailil be discussed furiher later. Lagf

So far, we have file Which looks something like: La2g
FRUGRAM nanes

DECLAEE +eo

L 1)

U‘LCLAkE LI J

-s

page 1>

L10 Users' Guide ‘ ARC 24426 Rev. © NOV 74
Part Two: Cortent Anajlyzer Progrars

(namel} PROCEDURE

-e

(name?2) PROCEDURE

-

FINISH
Procedure structuyre 4s3
Each procedure must begin with its header statement, This

header sStatement i3 a name enclosSed in parentheses followed by
the word PROCEDURE, and terminated by a semicolon, hasa

.

.8 (name) PROVEDURE ;

The body of the procedure may ccnsist of Local declarations,
then L10 statements. An L10 statement is any progranm
instruciiorn, terminated by a semicolon. The body must at some
point return control to the procedure that callea it. All this

Will pe discuscsea more later. kba3o
The procedure nust end With the terminali statement: ‘ 4ajc
END.

page 16

ARRU 24426 K€V,

L10 Users' #uiae
Part Two: Convent Ana.yzer Prograls
kxariple:

FROGRAM Comgare

% Conterti anaiyzere.

LECLARE TEAT FOINTEK ptl,

DECLARE STKING v1sl(1l00/,

{compare) PROCEDURE ;
IF FIND 8NP Tptl 13pT.

BEGIN

#visl¥ e ptl pt2 ;
*yisae# « pL2 ptlh ;
IF #visl# = #yis2#

SND3
RETUEN (FALSL)
END.
FINISE

Peclaration Statenents

A5 you may havVe guesSsed from tpe above exanmple,
AnalyzZerl prcgrams can deal wWith variaples

Displays statenent i1f farst two
visibles are tne sane. %

Plu; wreserves
{"ueclares") iour
"ptl"

pte, PtB’
spdce ior
text pointers naneg
through "puk"%
visg2{100y; sreserves 100
characters or space tor each
Cf LwO SLring variables named
"visi" and "vas2",%

tptd &NP TPi3 iePT tpull THEN
»set pointers around first
twe visibles (strings of
Printing chalacvers)s

#1f a1t found tLwo visiblesw»
%put visibles in stringss

THEN RETUAN(TRUL) 3 %CoOmpare
centents or strings, return
and uisplay uvne statenentu
if 1dentical®

»otherwise, retul'n ana don'tv

disrlays

gontent
(like text poinvers

and strangs), while patterns cahinct,

Text Pointers

6 NUV T4

4ay

4ayd

4ab

4aba

4a50

A text pcinter points to a particular iocation wivhin an N.3

statement

{er into a string,

as descrived latver).

The teXl pointer points petween LWo characters in 4

statement.
Single pointer can be

Siring and the veginning cf the stiring startving witln une

next character.

used Lo mark ooth the ena of olLie

By putting the pointers petween characlters, a

page i

L10 Users' Guiae ARC 24426 Reve 6 NOV T7u
Part Two: Content Anaiyzer Progranms

Text pointers are declared with the folilowing veclaration
statement:

DECLARE TEXT POINTER name ;
3itrings basc

String variables hold text. When they are declared, the
maximum number c¢f characters is set,

To deciare a stiring:
LDECLARE STRING name(nunmn/ ;

num is the maxXximum number of characters allowed for tne
Btt‘inl .

e.f. DECLARE STRING 18tring({lo0/;
declares a string named "lstring" witn a maximunm
lengih of 100 characters and a current iength of O
characters (it's enmpiy).

You can refer to the contents of a string variaole by
surrounding the name with asterisks.

€.g. #istring* 1s the string stored in the
variable named "istring".

YOU can putl the teXt between two text pointers in a string
variable with the 110 statement:

#1lstring# « ptrl pirz ;

where pur'l and pir2 are the names of previously declareg
and set text pointers, and lstring as a previously
declared string variable.

TheSe variables will retain their value from one statement lo
the next, Other types of variatles and their use will be

discussed in detail in Part Three, Section 3. 4aba
Body of the Procedure } 4ab
RETURN Statement La6a

No matter what it does, every ﬁrocedure must return control

page 1b

L10 Users' Guigde - ARG 24426 heve. 6 NUV 74

Part Twc: Content Analyver Progranc

¢ the procedure thatv c¢alled it. The statement wnich does
this is the KETUKEN statement.

€.8. KkCoTURN;

A «rTURN statenent may pass vaives Lo tae prcecedure that
called iv, The values musty pe encloseqa in parentiheses aiter
vhe word RaTURN,

A Contenrt analyzZer program must return eitner a value of
TRUE or of FALSk. If it returns the value TxUk (i), the
statemert will be pranted; if it returas FALSE (0), tne
statement wiil not be printed.

1.€e RETURN (TRUE); will print tue statement
ReTURN (FALSE); will not print tne statement

The RETURN statement often is at tne end of a precedure, bput
it neea noy pbe, For example, un tne miadale ci the procedure
JOU hay waht to either RETUxkN or go on aependcing on the
result of a test,

Other than the requirement of & REILURN stetenent, the body of
the procedure is entirely a function of the purpose of the
procedure. A few cIi the many pcssiole statemenitis wiil bpe
descrioed here; others will be introduced in Part Three of this
docunent .

FIND Statementy

Cne of the nost useful statements for content aAnalyzer
prograng 1s the FIKND statement. The FIND statenent
specifies a Content Analyzelr pattern Lo be tested against
the statement, and text pointers to ve manipulatea and setv,
starving firom the Current (Clharacter position (that invisible
rarker refered 1o in Section 1), If the test sSucceeds, uihe
character positvion is moved past the last character read,

If the tesy f£3ils, the character posation is left at the
rosivior priecr to the FIND statement and the values of all
text pointers setu wiithin the statement will be reseti,

FIND pattern ;

Ihe Current Chardcter Positior is initialized to bEFORL iHu
FIRST CHARACTEk, and the Scan direction i1s initvializea O

4act

4ace

page 1y

L10 Users' Gulde ARC 24426 kev. o NOV 7u
Part Two: Content Anaiyzer pPrograms

left to RIGHT, FUR EACH NEW STATEMENT passed to tne content
Analyzer progran.

Any sinple Contient Analyzer pattern (a8 descrioe above) 1s
valid in a FIND statement, 1inh addition, the following
elements can be inccrporated in the pattern:

#3Lringname#*

tre contents of tne string variaple

tptr

stcre current scan position into the textu pointer
Specified by pir, the name of a declared text pointver

«NUM ptr
Back up the Specified text pointer by the specified
number (NUm) of characters., Ii NUM is not speciiaied,

1l will be assumed. Backup is in the direction
orposite 1o the current scan darection.

ptr

Set current character position to thais position. ptir
is the naie of a previcusly 8set lext pointer.

SF(ptr)
The Current Character Fesition is set to the front oi

the statement in which tne text pointer pir is set ana
scan direction is set from left vo rignt,

SE(pir)
The Current Character rFcsition is set to the end of
the statement in which the text pointer ptr is set and
8can direction is set from right to leit,

BETWEEK ptr pir (pattern)
Search limited to between positions specified, ptir is
& Previously set text pointer; the two must be in the
same 8Staterent or string. Current Character Position
18 set o f£irst positicn before the pattern is tested.

e.g. EBETWEEN ptl pt2 (2D [.] ®NP)

page 20

L10 Users' Guide ARC 24426 KReV. 6 NUV fi4
Part Two: Cortent Analywuer FPrograms

FINDS may be uUsSed as expressions as wedd as iree-stanaing
statements., If used as an eipression, Ifor example in 4ir

statenents, it has the value TxnUps 1f all pattern elenents
Within it are irue and the value FALSE 1f any cne of the

elements is false,

complicated example:

IF FIND tsf $HF '(3(LD/'=) ') (". " #stre] Sp{(sf) suP
' THEN RETURN(TPUE) ELSE RLTURN(FALSE);

I@ staterent 4ada

IF ciuses executlion of a S8tatement if & tesSted expression is
TRUE. TIf 1t is FALSE and the optional ELSE part 1§ present,
the statement foilowing the ELSFE 13 executea. Control then
passes to Lhe statement immediately following the 1F
statement.

It testexp THEN statenent ;
IF testexp TdwoN statenmentl EL3SE statenentg ;

The statements within the iF statement can ve any valic ul¢
Statement, but ale not iollcwed LY the usual semicolon; tuhe
whole 1T stiatenent is treated 1ike one statement ang
focliovwed by the semicolon,

Cef e
Ir FIND [(5D] THEN RRTURN(FALSE) ELS& RETURN(TRUE) ;
Programning Style: File Stiructure 4af

You may remember that the compiler whici converts your WLS text

to coce igneres file structure, This allows you Lo use

Structure tc umaxKe ycur prograin text easier 10 read and

understand, Loglcal use of structure often facilitates tne

actual programning task as well. Some conventions have

develcped at ARC in this respect. All of these should seen

obvious anud logical to you. 4atfa

All declarations and PROCEDURE statements snould be one
level below the PROGKAM statement.

page <1

L10 Users' Gulcde ARC zhu26 Rev, 6 NuV 74
Part Two; Cortent Analiyzer progranms ’

All local declarations (not yet descrived) and code should
be one level below the PROCELURE statemnent.

It is gocd siyle, and makes fCr nmuch easier programming, to
list what you want to do as comment statements (in percent
8igns) at the level below the PROCEDURE statement. Then you
can go¢ tack and rill in the code that accomplishes the ULask
cescrived in each comment statement. Tne code Should go one
level bvelow the comment. :

We Will later describe how %0 block a Series of statenments
where one 1is required. These blocks sShould go a level velow
the 3tatement of which they are a partv,

File structure should follow tihe logical structure of tue
program as closely as posSible.

Cefe iF FiNb [5D)
THEN RETURN(TKUE)
ELSE RETURN(FALSE) ;
Using Content Anaiyzer Prograins Y]
Once the Content Analyzer program has been written (in an NLS
file), there are twe steps in using it, First, the progran
nust be "compiled," i.e. %translated into machine-readgable code;
the compilied code is "loaded" intc a Space reserved for user
programs (the user programs buffer)? Secondly, the loaded
program must be "instituted" as the current content Analyzer
Progranm. bava
There are iwo ways Lo compile and load & program: baob
1) You may compile a program and lecad it intve your progranms
puftfer all in one ocperation. The program heaaer stavement
must have the word PROGRAM in it. When the user resetis nis
job or logs cif, the compiled code will disappear.
First, enter the Programs subsysten with the command:
Goto Programs 0K
Then you may compile the prograh with tne command:

Compile L1lU (user program at) SUUkCE OK

page 22

L10 Users' Guide ARC 24426 ReV. © NUV fu
Part Two: Content Analyzer FErograms

SCURCE is the address of tile PrOGRAM statement,

2) You may compile a program into 4 riie and then loaa it
into your tLuifer as a separate operation. The progran can
then be loaded from the file 1nto0 your user grograms dufter
at any time without recompililing. The header statement musvu
use the word FILE instead of PxQURAM,., Use the PROGRAIlS
supsystem commands:

compile File t(at) SQURCE (using) LiU (to file) FILENAME
OK

Tne FILENAME nust be tne same ’Rg the program's name.

Tne code riie is caliled a REL (RELocataple code) file,
Whenever you wigh to load the program coae into the user
programs bufifer, use the PFROGRAMS subsystem commands:

Load Ril (file) FILENAME Ok

Once a conpiled progran Las beer ioaded (py eitner route), it
must be instituted. This 28 done with the PROGKANS subsystem
coemnanda: 4a30¢C

institute Program PRUGRAM=NAME
{as) Content (andiyzer program) Oh

ihe named yprogram will be inagtituted as the current Content
Analyzer progran, and «Nnhy previous Program wild be
deinstituted (but will remain ain the oufrier).

Ag&inl, the pPrograns in the pufiel' are nunpered, the £irstv in
peing number ene. You may usSe the nunuer instead of the
precgran's name as a shortnand rorr FPROGRAM=NAME.

To invcocke the Content AnalyZer using Whatever program is

currentiy insivituted, use the viewspec i, J, Or K, as descrived

in rart One, Secticn i (3c4), 4aod
Probiems La¥

Given these few consiructs, you sShould now ve able to write a
numoer ¢f uSesui Cchtent Analyzer prograns. Iry programning
the fcoliowing: 4ayae

1) Show those statements winich nave a number somewhere in
the first ¢0 characters.,

page 23

L10 Users' Guide : ARC zu4426 Rev, o6 NOV 7u
Part Two: Conrntent Anaiyzer Programs ’

2) Show those statements where the first visivle in the
stetemernt 18 repeated somewhere in the statenment,

page 2§

L10 Users' Guice ARC 24426 Heve © NUV 7u
Part Two: Content Anaiyzer Programs

Sample sciutions:
Proclem 1

PROGRAM numuer
DECLARE TEXT POINTER ptri, ptre ;
(numver) FrOCEUURE 3
FIND tpurl $20CH tpire ;
IF FIND BETWEEN ptri ptr2 ((D])
THEN RETURN(TRUE)
ELSt RETURN(FALSE);
END.
FINISH

Frob.en 2

PROGRANM vis
DECLARE TEAT POINTER ptri, pire ;
DECLARE STKING 8tr/500/ ,
(vis) PRUCEDURE ;
FINL ¥NP tptrl 1sPT tptrz ;
#3tr# € pirl pire ;
IF FIGL ptr2 (NP #stir» NP/
THEN RETURN{(TRUE)
EL3E RETURN({FALSE);
END.
FINISH

page 25

L10 Users' Guiae ARC 24426 kev. © NUV Ty
Part Two; Content Analyzer fprograns: Modiiyaing Statements

Section 2: Content Analygzelr Programs: Modifying statements Lo

Introduction 4bd

content Analyzer programs may edit the statements as well as

decide whethel’ or not they are grainted. ishey are very useful

Where a series of editing operations has to be done time and

time again. 7This section will intmoduce you to these

capabilities. All these constructs wll ove coverea in detail an

Part Tnree, ' 4bia

A Content Analiyzel program has several limitations., It can
manipulate oniy one file and it can 100K &4t sStatements only in
sequential orcer (as they appear in the file). It cannot pack

up and re-exanine previous statements, nor can it skip ahead to

Other parts of the file. It cannot interact witn the uger,

Part rour rrovides the tools t¢c overcome these limitations, 4plo

String constructicon 4b2

Statenents and the contents of string variables may be modified
by either of the fcilowing two statenments: Lb2a

ST pir ¢ strlistv ;
Ihe whole statement in which the text pointer namea "ptr"
resides will be replaced ty the string list (to pe
described in & minute),

ST ptr ptr ¢ strdiist ;

The rart of the statement from the tirst ptir to the
second ptr wiil be replaced by the string 1ist.

Ptr nay vte a previously set text pointer or sS¥(ptr) or
SE(ptri.

String variables may also ve modified with the string
assignment statementi: ubzp
#stringname# ¢ strlist ;

Tne suring list (strilist) may ve any series of string

designaiors, seperated by cominag®. The sString designators may

be any of the folicwing (other rossibilivies vLo pe described

later): bo2c

pPage 26

L10 Users' Guide ARC 24426 reva
part Two: Content Analiyzer Programs: Modirfying Statements

a String coenstant, e.ge "ASC" Or 'w
ptr ptr

the tex\ Celvween iwWo text pcinters previously set in
either u statement or a strang

¥strangrame*

a string nawme in asterisks, refering to the contents of
thie 3atring

ST pl p2 ¢ *string» ;
or
3T pl ¢ SF(pl) pl, stiring, pe SE(pR);

(Note: these nave exactly the same megning.)
Exanple:
PROGRAM delsp

% Content analyzer. Deletes ail leading spaces from
statenerts., %
DECLARE TEAT POINTER pt; %reserves space for
("declares") a text pointer
nared "pt"%
idelsp) PROCHEDUKE ;
IF FIND 18SP tpt THEN #scans over leading spaces,
then sets pointers
ST pt « pt SE{(pt); %replaces statement with text
frerm pointer to statement enak
RETURN (FALSE) return, don't dispiay anything%
END,
PINISH
More Tnan One Change rper Statenenyg
Part of a texy polnter 1s a character count, This count stays
the same until the text pointer is agsain set (Lo some otner
rosition), even though the statement Las ceen ecgited, If, teor
eXanple, you have the statement
abcdefghiJkimnopurswuvwxyz

and if you have set a pointer between tihe "d4" and the "e", 1t

nov

soza

43

4Djsa

Loy

4O4a

page

el

L10 Users! Guide ARG 24426 Rev. 6 NOV 74
Part Two: Content Analyzer Programs; pModiiying Statements ’

will slvways point Letween the fourth ana fifth characters in

the statement, 1If you then delete the character "a", your

pointer Will be between the "e" and the "f", now the fourth and

fifth characters. JFor this reason, you probably want to ao a

series of ediis beginning with the last one in the statenment

and working backwards through the statement, 4dyo

Controlling which Statements are Mcdified 4b5

In TNLS, the Content Analyzer program wiili be called for

commands which construct a printout of the file (Print and

Qutput). The progrim will run on every statement for which it

15 called (e,g. every statement in the branch during a print

Branch command) which pass all the other viewspecs. Once you

have written, compiled, and instituted & program which does

some editing operation, the Print command is the easiest way to

run the progrim on @ statement, branch, plex, or group. 4bojya

In DNLs, the system will call tne Content Analyzer progranm
whenever the display is recreated (e.g. viewspec i and the Jump
commands), and alsc for the Output commands. 1f the progran
returns TRUE, it will only run on enough statements to £ill tne
sCreen. It is safer to have prcgrams that edit the file return
FALSE. Then when you set viewspec i, it will run on all
statements from the top of the aisplay on, and when it is aone
it will display the word "Empty". At that point, change to
Viewspec j and recreate the display with viewspec £, then all
statements including the changes will be displayed. You can
control which statements are edited with level viewspecs ana
‘the branch oniy (g} or plex only (1) viewspecs, 4050

After having run your program on a file, you may wish to Update
to permanently incorporate the changes in the file. 11t is wise
10 Update before you run the pregram 8o that, if the progranm
does something unexpected, you can Delete Modifications ana

return to a good fiie, Lbsc
Problenms 2 06
Try writing the foilowine programs: Looa

1) Remove any invisibles from the end of each statement.

2) Make the first visible a statement name (surrounded by
parentheses; if it is a word (letters ana aigits).

page 24

L10 users' Guiae ARC 24u26 Heve o NUV T4
Part Two: Con%tent Analyzer pProframs: Mouiriying Statements

Sample solutions: 4060
*
Provolien 1

PROGRAM endinv
DECLARE TEAT POINTEK ptr ;
(endinv) PROCEDURE ;
IF FIRL tTptr oe{ptr) 1&NP tTpur
THEN ST ptr ¢ SF(ptr) ptr ;
RETURN (FALSE) ;
END.
FINISH

rrooien ¢

PROGRAM nakenane

DECLARE TEXT POINTER ptrl, pwue ;
(makename) PRCCEDURE ;

L]

IF FIND 8NP tptrl 1l4LL Tpuira2 wk

THEN ST ptrl « '(, ptrl ptr2, '), pire SE(ptrei;
RuTURN(FALSE) :
END.

FINISH

bege ¢§

