MARY »

S-dan-82 15205 < USERGUIDESe PROGRAMMERS-GUIDELAUGI1s >

< USERGUIDESs PROGRAMMERS-GUIDE«NLS3S5e >e 3-Sep~7G 10:34 LEN

-
*

s3ivVersion with directives Llocated in <JOURNAL$342104>

Send requests for printed copies to <FEEDBACK> .
TABLE OF CONTENTS

I&TRDQUCTIQ&Q“‘.QG..O..0.0‘.C&G'lﬁ“‘.Q.CFO.“.‘.‘..QCQI ...2

PART ONEZ Content Analyzer PatternsSecesecccsecccssaccncneeael

Section 1: Introduct i0Nececescsccccccscscocsscsnnessce sedh
Section 2: PatternSeecescesecssccescsescssssssnccccscene «e3B
Section 3¢ Examples of Content Analyzer Patternseeasee sae3l
Section 47 Using the Content AnalyzZéeressccancesecsscess a3l
PART TWO: Introduction to L1¢C Programming--...-.g...-...¢..4
Section 1 Content Anatyzer ProgramSecesscncecsveccsnce ool

IntroductionNeessceccessssssssrconsesceascnsasnscscces odil
Program Structureescoscoccvesscsccscsscscecsscasssscnes a2
Procedure StructuUrceecvcecncenccssvescscescsnscesvecs «4A3
EXBmpte:ootucoalc-olctcinocatt.oco.oe..cew...Qt«&.o64&4
Declaration StatementsSecesesccescssccccsncescessccnnse +4AS
BOGY of the Procedurfecssccecsvescssecccccessencsanes s4A6
Programming Style?! File Structur€sececcescssascesssnese «4A7
USiﬂg Content Analyzer ProgramSecsecesscsscncnscosscsss oAl

ProblemSeeccscesssevssscccccsossssroscsscccossssvnses o4AT

Section 2¢ Content Analyzer Programs: FModifyinQeeeees se4B

IntroductioNesssecsensnsecccessnncsescsorsscsasscsece o481
String ConstructioNecescescrecsesssoscscscanccssncsnsnas o482
Example:........«...c..........-.-..c...............483
More Than One Change per Statementececescccecacensee 484
Controtlling Which Statements are Modifiedeecececeaces «485

ProblemSeeeccssossscssscacnsccvssscosscncsconcsnsosnsoes 436

PART THREE: Basic L10 Programming...n..-‘...ee.¢-..-.......5

Section 1: The User Program EnvironmenNteceecscscscecnse sadA

IntroductioNecevecscccsrnsssvoscesccccnscsccssncsssnee +5A1
The Sequence Generatorececcscsccscscossvesssscassssnse «3A2

Content Analyzer FiltersSseseseseancecsassncenccossanes «3A3
The Portrayal Formatteresssessecscceccesncsccacssnces s5A4

Section 2: Program Structure......«-......¢...-...o....58

An NLS user program consists of the followinGeseaee «581
An example of a simple L10 pDrogroMecsccccosssncescse «HB2

Section 3: DeclaratioNSecceveccscecvoscossescvcscescsses sl

IntroductiONeseccescscsesacsccsscncssccncscnssenncscscas ol
Variablesessececescessscncccssscsnscessscccsancsencese «5(02
SiMQLe Variables.-.n.....g......-..¢-...........;..¢SCE
ConstantSecssscnscecoscscscesccccccscscsnconcsesnssccceseal4
ArraYSeeesceccscsocscosascoscsnccscorcsosscnnscccsssncese +3CH
Text Pointerseescecsscccsccncosncsccnccasvcscannscssscnen (6
StriUQSla‘cto..ultotto..t.ﬁ.oncn.alcun--me--canta‘--5c7
Referenced Variabtesq..t‘...us...s.-.........-.«...-SCB
Declaring Many Variables in One Statementeacececcsnee «5C°
QECLBT*“Q LocalSececncccoacscccoscsscscsncesssencecnccseeSC10

Section 4: StatementSesescessscacesscnccscccssscscsncsne saill

IntroductioNesscossecessccsscscccccevscnnssonsaccsnae «5001
Assignmento.....-....-.--...s.-.....-¢-¢..o-c...a‘..502
BUMP Statementececssccecscsscessscssscscsccccscsccnse oD
IF Statementecesecsccsscescsccncsncnsessocsnssenssnnreee «D4
CASE Statementececsscccescccccsccssscscscacccsscnsace o505

LOOP Statementecesssssccasssvssencosscoscnccnssrssnscse « 1016

1

MARY s S5~-Jan-82 15:05 < USERGUIDESs PROGRAMMERS-GUIDE.AUG31y >

WHILEve « D0 Statementesccecsscsscacnnssccececessscncece 507
UNTILeeoeD0 Statementeacescescscecoenncscssssseacessscscecce ¢ 508
D00es e UNTIL/D0ee e WHILE Statementeceeccecssnconceccnes 509
FOReeeDO Statementececccescervecsscccecccncsscrccense 5010
BEGINe«e e END Statementececscececcsnecnsnccccscnncnnetlll
EXIT Statement-c..&.ttc:.t.aq«coou...cg.co'o..neco.sglz
REPEAT Statementececcecsescsccasccnconcscsccsncssnnes 5013
DIVIDE Statcementeesesccescesscsccscescsncsncccosncnes 14
PROCEDURE CALL Statementecececscscsncccscscnsvsescess 3015
RETURN Statementececscssscscsnccsvsccesessscsssnsancee 011G
GOTO Statementeeceaceeescecrecescscsesscccncccsnsnee 5017
NULL Statementecscoceccscscescccoscenscecsccccacescen D18
Section 532 EXDP&SS&O“S-:&&«:.:.«..wocﬁcctﬁtcao-oc.&a-u&ﬁg
Introduct i0Neeccccsccssssvsssscsnsasacssscnssacsssnse «3F1
PrimitiveSeeceesssesscscccscssscecssvrcsscscscccscsssccee ¢IE2
AperatorSecescecerssscsccevosncosccscsscsncescssnssnae sl 3
Expressions....s.-..........-......-.c-.c..-..¢.¢...554
Section 63 String Test and ManipulationNesecscoer sesscace ¢ oBF
Introductiofnecececsccevsecscrscosscvscecscsvncesvscences «5F1
Current Character Position (CCPOS)evscccccscvsscnne oS5F2
FIND Statementecevoessccevescacoccnscsscossncoscncannce «5F3
FIND Patterncecscccsccccecccessssncnssccscccocscncsce «F4
String ConstructioNessscccsccsccsnsncsnnscasnnsncnee «3FS
Examg{e:t.....-l‘.'l.l‘QG..‘(‘.G.CQ.“O‘@...0..‘0.&GSF&
More Than One Change per Statementecececessscsscnns «S5F7
Text Pointer Comparisons..gs...-....-...a......¢....5F8
Section 72 Invocation of User FiltersSececescscsccsccee ¢l
IntroductioNecscsevsecsencsesssssncsccsscnccsscnssncce s30G1
Programs SUbSYStEMoucoc.tccco.¢tc¢a.0¢¢.¢o:‘lcctolﬁ0562
Examples of User Programss eescssscsccsssscscnvecnce 363
PART FOURS Interactive L10O Programming-.«.-.‘....-..¢..-s..6
Section 1: IntroductioNesecesccsscrcesvcsasnsscsscsncoce sabh
Section 2: Command Meta Language (CHML)cescecscccsscceecetB
IntroductionNeecsecscecsenscsscecscscssneconscnsessnna HR1
Program Structur€ececescccscosccscocoscencsccncacsccnce o682
SUbDSYStemSeeceoceccacsssvsccsccoscsensacsncssscsnsanse o83
RUleCSeeecevsossccesssccsncncocsncccsconcrsncosssacsesce «OB4
Declarat ioNSeeesscansscsescacsssccncsncreacncsacsesece «6B5
CHML ElementSeesvsecccosscscsccccsccsncnssscsccscscncans o&B6
Sample CHL PrograMescscscccsscsccscsscssccsccscscscasnce «5B7
Section 3! L10O Execution ProcedurfSeecscscccssesssscsseeseil
Section 4: Additionatlt L10 Capabilities.--............q.&D
IntroductioNecececencssccsscoscccccccccscanssnssnssee ofl1
MOVin@ Around Within NLS FileSesevescescssscccsannes «6D2
Calling NLS CommandSecscscssscesvscnscsncsasccsssacsenss «603
Opening FileSeesecesssssscnecsseaccssscsanscsnssasnse o604
Qisplaying MEeSSE0ECSenecssnscsscsccscvcscscacnsccnsnsens 505
Setting tp for ﬁisplay Refreshing-..........-..‘....696
Other Useful ProceduresSesscncscccccccsocsassccesase +607
Globals of Interestececesscesccsesncsscscsssocsncnscee o608
Section 5: CLreating and Using Attachable SubsystemsSes eebE
PART FIVE: Advanced ?rogramming TOQ*CS.Q.&&GO«.Q:&OQc;:.u&o?
Sect fon 1 Error Handling ~= SIGNALSesscsscscsacscanse el
Section 23 NDDT Debugging.'-..............e...........¢TB
Introductionecssecoescesacsscrcenccscscoscsoscocscacesfil
Accessing NDDT ewnscoscsoscsccsssncsancsoscsscsosance el B2

MARY s S=Jan~-82 15:405 < USERGUIDESy PROGRAMMERS-GUIDELAUGI1e > 3

NDDT Address EXGPGSSiOﬂSsst.toco.vo.o‘toc.cc-oeccc.Q?BS
S‘ingie-i{ord VariableSeesesssscecesncocsccsccacnceccce o« 784
String VariableSeescsescacscscscancscscoascsccscnscece o /85
RecordSeecoscscsccsscssscscsccssnscacsnsssosssassncsnnsse « /156
Built in NDDT symbols.e...g...................-..¢. « 787
SDG‘C’!B{ character COmMMaridSecssssscvsencssscsccsccncnsece « /B8
Traces and 8reakp0ints-g...........‘.....-.....‘...‘739
L10 ProcedureSeseoscsssanscesccssscsncsssscacocsccescnsee /510
Sy;ﬂbats&...t.t‘0.'06'.'.‘!.'....‘l.'l..&.&....‘!l..?gll
Scanning for Contenteceseccccosccccrcsscscscsccanee /812
Section 3¢ Hr‘itinﬁ CHML ParsefunctionSeecacccessncsssenceecell
Section 4: Calculator Capabi[’ities.......«‘......-.....Ti}
IntroductiONecesescccsscsscscscacscscscsacssassnncoseolill
Converting String to Doublte-Precision Flcocatingeeceese «702
Converting Floating Point to Stringececcccsnscsccnces 703
Ca[cutatians Wit’h F(}ating pOthOQQOJQQottQ.a...&a.. «7TD4
Section S:@ Fields and ReCOrdSeecsscsasscossssaccsccccese oo ll
Section 62 Stacks and RiﬁgSnvec‘ooooc-oc.ot*o.o..ancccQc?F
Section 77 Using the Sequence Generatoresscsccscssecce sl
IntroductioONeecssecscecssosccssccsocsscnsseascsnscsenslicl
Co-Routine Effect ececosccnecscssnsccsnscecscssscssncscneelGE
Sequence WOrk Aredescesccccssscscssessscccsscoccsnse «7G3
D‘isplayin? Stringsececcscccsccesccscsvccessssscoscosse o« 1G4
USinQ S EQUENCE S s s e 6000 ssecetssscsecsssssssscscssecsse « 765
Section 82 Conditional Cﬁmﬁitingaoco.ooccc&ocaoacooo.«q?ﬁ
AQCII 7 BIT CHARACTER CGBESQO‘GQC.&..’"..‘Gll.lt“..".&‘1008
INTRODUCTION
NLS provides a variety of commands for fite manipulation and
viewing. Editing commands altow the user to insert and change the
text in a file. Viewing commands (viewspecs) allow the user to
control how the system prints or displays the filee« Line truncation
and control of statement numbers are examples of these viewing
facilitiese.
Occasionally one may need more sophisticated view controts than
those available with the viewing features of NLS.
For examples one may want to see only those statements that
contain a particular word or phrasee
Or one might want to see one Line of text that compacts the
information found in several longer statements.
One might also wish to perform a series of routine editing
operations without specifying each of the NLS commands over and over
againy or build commands for specific applicationse
User-written programs may tailor the presentation of the informatiocn
in @ file to particular needse Experienced users may write programs
that edit files automatically.
User-written programs currently must be coded in ARC®*s
procedure-oriented programming languages L10es NLS itself is coded
in L10. L10 4s a high-lLevel language which must be compiled into
machine-readable instructionse This document describes L10.
Programs which interact with users additiconally use a2 tanguage
developed at ARC called Command Meta Language (CML)e described in
Part Four of this document.
This document describes three general types of programs:
~=simple filters that controt what is portrayed on the user’'s
teletype or display (Parts One and Twols
--nrograms that may modify the statements as they decice whether

MARY s S-Jan=-82 15105 < USERGUIDESs PROGRAMMERS-GUIDE«AUGS1e > 4

to print them (Parts Two and Threeds

-=-those thate like commandsse are explicitly agiven control of the

job and dinteract with the user (Part Four)e.

User programs that control what material is portrayed take effect

when NLS presents a sequence of statements 1in response to a

command Like Print (or Jump in DNLS).
In processing such a commands NLS looks at a sequence of
statementses examining each statement to see if it satisfies
the viewspecs then in forcee At this point NLS may pass the
statement to a user-written program to see if it satisfies the
requirements specified in that programe. If the user program
returns a value of TRUEs« the {passed) statement is printed and
the next statement in the seguence is testeds if FALSEs NLS
just goes on to the next statemente.

While the program is examining the statement to decide whether or

not to print ite it may modify the contents of the statemente.

Such a program can do anything the user can do with NLS commandse.

For more complex taskssy a user program function as a

special-purpose subsystem having (in addition to the mey

supervisor commands) one or more commandse Once such @ program

is loadeds it can be used just Like any of the standarc

subsystemse (The MESSAGE program is an examplesd)

This document 1is divided into five parts:

Part One is intended for the general usere.
It is a primer on Content Analyzer Patternse allowing the RNLS
user to set up simple yet powerful filters whrough which he
may view and edit filese This does not involve Learning the
L1060 language nor programminge This section can stard alonee
and the general (if somewhat experienced) NLS user should fing
it very usefule
It presents a hasty overview of L10 programmings with enough
tools to write simple programse This is intended as an
introduction for the beginning user programmere who we assume
is reasonably famitfar with NLS (its commandss subsystemse and
capabilities) and has some aptitude for programming.

Part Three is a more complete presentation of L10.
It ¥s intended to acquaint a potential L18 programmer with
encugh of the lLanguage and NLS environment to satisfy most
requirements for automated editing programse. Many of the
concepts in Part Two are repeated in Part Three so that it =may
stand alone as an intermediate programmer®s reference guide.
This is the section in which to begin Locking for answers to
specific questionse

Fart Four presents more advanced L10 tools and an introduction to

CHMLe allowing command syntax specification.
This should give the programmer the ability to write programs
which work across filess which move through files in other
than the standard sequential orders and which interact with
the usere« It allows the programmer to build user—-attachable
subsystems with commands lLooking very much like stardard KNLS
facilitiese.

Part Five presents a number of subjects of interest to the

advanced L10 progamneres

We suggest that those who are new to L1§ begin by acquiring a

thorough understanding of Part Onee« Then Part Two should be

MARY s 5~dan=82 15305 < USERGUIDESs PROGRAMMERS~-GUIDE.AUGI1e >

studied one section at a times pausing between sections to try
out the concepts presented by actually writing patterns or
programs that put the new ideas to experimental use. Actuat
experience s of at least as much vatue as this tutoericale.
Tutorial guidance should be requested from ARC through your
architecte If you have problems at any pointe you should get
help from ARC before proceeding to the next sectione.
Note! For syntactical correctnesss some examples include
constructs not yvet defined in the texti they will be discussed
soon thereaftere.
For examples of user programs which serve a variety of necdse
examine the attachable subsystems in the <PROGRAMS> directory and
their descriptions in Helpe. For information about commancs
mentionedy ask for the programming subsystem with the NLS Help
commancde NOM
PART ONE: Content Analyzer Patterns
Section 1 Introduction
Content analysis patterns cannot affect the format in which a
statement is printeds nor can they edit a file. They can only
determine whether 2 statement should be printed at all. They
ares in a sensey a filter through which you may view the file.
More complex tasks can be accomplished through programse as
described Later in this documentes
The Content Analyzer filter is created by typing in (or seleecting
from the text in a file) a string of a special form which
describes those statements which will pass through the filter.
This string is called the *Content Analyzer Pattern®*. £ach
statement is checked against the pattern before it is printed:
only staetements that are described by the pattern will be
printeds.
Some quick examples of Content Analyzer Patterns:
*¢ sLD *3 will show all statements whose first character is
an open parenthesises then any number of letters or digitsse
then a close parenthesise.
E*blap®]l will show all statements with the string ®*blap®
somewhere in them.
SINCE (3-JUN=75 00:00) will show all statements edited since
June 3¢ 1975
The next part of this section will describe the elements which
make up Content Analyzer Patternse followed by some examplese
The final subject of this section is how to put them tc use.
Section 2: Patterns
Flements of Content Analyzer Patterns
Content Analyzer Patterns describe certain things the system
must check before printing a statements It may check one or a
series of thingse Each test is called an elements the many
possible elements will be described belowe
The Content Analyzer searches a statement from the
beginnings character by charactere for described elementse.
As it encounters each element of the patterny the Content
Analyzer checks the statement for the occurrence of that
elements if the test failss the whole statement is failed
(untess there was an %or" conditione as described Later)
and not printed; if the test is passeds an imaginary
marker moves on to the next character in the statements and
the next test in the pattern is considerede.

5

MARY y

5-dan-82 15:05 < USERGUIDESs PROGRAMMERS-CUIDE.AUGS1e >

For exampley if the next element in the Content Analyzer

pattern is ®"LD"e the imaginary marker will move cver the

next character and go on to test the next element of the

pattern only if the next character is a letter or a digit:

otherwise the whole statement fails to pass the filtere.
The pattern may include any sequence of the following
elementsy the Content Analyzer moves the marker thrcugh the
statement checking for each element of the Pattern in turn:
Literal String elements

¢ == the given character (e«ge a lower case ¢}

"otring¥ -- the given string (may include non-printing

characterss such as spaces)
Character class elements

CH -- any character

. -- lLowercase or uppercase Letter

D == digit

Ut =-- uppercase Letter

LL -~ lowercease lLetter

ULD ==~ uppercase lettery or digit

LLD =~ lowercase letters or digit

LD -- lowercase or uppercase Letteres or digit

NLD -~ not a Letter nor digit

PT == any printing character ¢(letterss digitsy punctuation)

NP == any non—printing character (eege spacess controtl
characters}
Speecial non-printing character elements

SP == a space

TAB ~- tab character

CR -- a carriage return

LF == tine feed character

EQOL == TENEX EOL (end of Line} character

ALY ~-- altmode character

Special elements

ENDCHR =- beginning and end of every KLS statements cantt

scan past its not considered a character

TRUE ~- is true without checking anything in statement

(used with OR constructse as described below)

I0= §d -- statement created by user whose ident is given

I0# id =-- statement not created by user whose ident fis

given

BEFORE (d=t) -- statement edited before given date and time

SINCE (d-t) -- statement edited since given date and time
Esge BEFORE (1 OCT 1974 00:00) 3
The date and time must both appear in the parenthesese.
It accepts almost any reasonable date and time syntaxe

Examples of valid dates:

17-APR~-T4 17 APRIL 74
APR=1T-T4 17/5/71974
APR 17 T4 5/17/74

APRIL 17s 1974
Examples of valid times:

1:12:213 12342156
1234 1:56AM
1:56-EST 1200NO0OOK

16230 (iece 4230 PM)

6

MARY ¢

5-dan=-82 15105 < USERGUIDESs PROGRAMMERS-GUIDE«AUGS1ly >

12:00:00AM {iece midnight)
11259 :59AM-EST (iece Late morning}
12:00:01AM (iece ecarly morning}

Scan direction

¢ == set scan direction to the left
> ~= set scan direction to the right

The defaulte re~initialized for each new statements is
scan to the right from before the first character in the
statement (beginning to end)e

Modifying Elements
Several operators can modify any of the elements except the
sgspecial elements®:
NUMBER =-- multtiple occurrences

$

A number preceding any element other than one of the
nSpecial elements” means that the test will succeed only f
it finds exactly that many occurrences of the elementes If
there aren®t that manys the statement will be rejecteds
Even though there may be morey it willt stop after that many
and go on to check the next element in the patterne

2UL means three upper case letters
range of occurrences

A dollar sign (3) preceding any element other than the
#Special elements™ means “any number of occurrences of".
This may include zero occurrences. It 15 good practice to
put the element itself in parentheses.

${*~) means any number of dashes

A& number in front of the dollar sign sets a Lower Limite

3$(D) means three or more digits

A number after the dollar sign sets an upper Limit for the
searche It will stop after that number and then check for
the next element in the patterns even if it could have
found moree.

$3(LD) means from zero to three lLetters or digits
5$7(PT)Y means from % to 7 ¢incltusive) printing
characters

£l -=- floating scan

To do other than a character by character checks you may
enclose an element or series of elements in square brackets
fJe The Content Analyzer will scan a statement untitl the
etlement(s) is founde (If the element s not in square
bracketse the whole statement fails if the very rext
character or string fails the test of the next etements)
This test will reject the statement §f it can®t find the
element anywhere in the statement. If it succeedss it will
Leave the marker for the next test just after the string
satisfying the contents of the square bracketse

"start® means check to see i1f the next five characters
are: s t ar te

[*start®] means scan until it finds the string: s t a r
te

£30) means scan until it finds three digitse.

[3D ¢:1 means scan until 1t finds three digits
followed by a colon

-=- negation
If an element is preceded by a minus sign -+ the statement
will pass that test if the element does not occure

7

MARY ¢ 5~Jdan-82 15105 < USERGUIDESe PROGRAMMERS-GUIDE.AUGI1e >

-L0 means anything other than a lLetter or digite such
as punctuationy invisiblese etce
NOT == negation
NOT will be TRUE if the element or group of elements
enclosed in parentheses following the NOT is false.
NOT LD will pass if the next character is neither a
Letter nor a digite
Combining Elements
You may put together any number of any of these elements to
form a patterne They may be combined in any order. Spactes
within the pattern are ignored (except in Literal strings) so
they may be used to make reading easier for youe.
Cele 1$PT E%.NLSs"® 13D1 ~-SP
feee one or more printing characterse then scan for «NLSS
followed by one or more digitsse then check that the next
character is not a space
thore sophisticated patterns can by written by using the
Boolean togical expression features of L1080« Combinztions of
elements may in turn be treated as single elementss to be
modified or combined using logical operatorse.
Generallyes an expression is executed Left to righte The
following operations are done in the given order:
{)
/
NGT
AND
oRrR

Parentheses (and square brackets for floating scans) may be
used to group elementse It is good practice to use
parenthesis Liberallye.

/ means ®either or®; the bracketed elemente consisting of
two or more alternativessy will be true if either (any)
element is truee.
(30 L /7 4Dy means either three digits and a letter or
four digitse
Since the slash is executed before NOTe NOT U / th will be
true it the next character is NEITHER a digit nor the
tetter ®*h*, It is the same as NOT (D/%h}.
Sometimes you may want want the scan to pass your marker
over something ¥f it happens to be there (an optional
element)e M"TRUE"™ ds true without testing the statement.
1f the other tests faily the imaginary marker is not movede.
(0 / TRUE)Y LtLooks for a digit and passes the imaginary
marker over ite If the next character is not a digite
it will just go on to the next test etement ir the
pattern without moving the marker and without failing
the teste (This test always passese)
iece It is used to scan past something(s) which may or
may not be theree.
Since expressions are executed from Left to righte it does
no good to have TRUE as the first optione (If it is firstoe
the test will immediately pass without trying to scan over
any elementsea)
AND

8

HARY s 5-dan~-82 15105 < USERGUIDESs PROGRAMMERS~GUIOELAUGS1s >

AND means both of the two separated groups of el ements must
be true for the statement to passe
SINCE (376773 00:00) AND IDH#NDM means statements
written since March &¢ 1973 by someone other than KDM.
OR :
0R means the test witl be true if either of the separated
elements is true. It does the same thing as sltashes but
after "ANDY and "NOTY have been executedy allowing greater
flexibilitye.
D AND LLD OR UL means the same as (D AND LLD} OR UL
D AND LLD /7 UL means the same as D AKND (LLD / UL}
While such patterns are correct and succincts
parentheses make for muceh clearer patternse« flements
within parentheses are taken as a groups the group will
be true only if the statement passes att the
requirements of the groupe It ¥s a good idea to use
parentheses whenever there might be any ambiguitye.
Section 3: Examples of Content Analyzer Patterns
D 2%LD /Z ["CA"]Y / [®"Content Analyzer®]
This pattern will match and pass any of three types of NLS
statements! those beginning with a numerical digit followed by
at teast two characters which may be either letters or digitse
or statements with either of the strings ®*CA® or "Ccntent
Analyzer® anywhere in the statemente.
Note the use of the square brackets to permit a floating
stcan -- a search for a pattern anywhere in the statemente.
Note also the use of the slash for alternativese.
BEFORE (25-JAN=-72 12:00)
This pattern will match those statements created or modified
before noon on 2% January 1972.
€10 = HGLY OR (ID = NDM)
This pattern will match all statements created or mcdified by
users with the identifiers ®"HGL®" or ®"NDM®,
EC2L (SP/TRUEY / 20) D = 40
This pattern will match characters in the form of phone
numbers anywhere in a statement. Numbers matched may have an
alphabetic exchange followed by an opticnal space (note the
use of the TRUE construction to accomplish this) or a
numerical exchangee.
Examples include DA 6~-6200¢ DAG~6200+ and 326-6200e
CENDCHR] < ™"cha"®
This will pass those statements ending with "abe®. It will go
to the end of the statements change the scan direct ifon to
tefte and check for the characters "cba". Note that since you
are scanning backwardse to find "abec®™ ycu must look for ®cha™e
Since the ®"cba* is not enclosed in square bracketss it must
be the very last characters in the statement.
Section 4t Using the Content Analyzer
Content Analyzer Patterns may be entered in two ways:
1Y From the BASE subsystems use the command:
Set Content (pattern) To PATTERN 0K
2) From the PROGRAMS subsystemsy use the command:
Compile Content (pattern) PATTERN 0K
0K means "Lommand Accept®s a control=D ors
in TNLS (by default) a carriage returne.
In either case:

9

MARY « S-Jdan-82 15:05 < USERGUIDESs PROGRAMMERS-GUIDE.AUGS1s > 10

1) Patterns may be typed in from the keyboarde or
2) they may be text in a file.
In this cases the pattern will be read from the first
character addressed and continue until it finds & semicolon
€3) so you must put & semicolon at the end of the pattern
{in the filel.
Viewspec § must be on (f.ece Content Anatyzer off) when
entering a patterne
Entering a Content Analyzer Pattern does two things:
1) compiles a small user program from the characters in the
patterns and
2y takes that program and "institutes® it as the current
Content Analyzer filter programe deinstituting any previous
patterns
*Instituting®™ a program means selecting it as the one to
take effect when the Content Analyzer is turned cne You
may have more than one program compiled but only one
institutede.
when a pattern is deinstituteds it still exists in your
program buffer space and may be instituted again at any
time with the command in the PROGRAMS subsystem:
Institute Program PROGRAM-NAME (as) Content (znalyzer}
0K
The programs may be refered to by number irstead of
names They are numbered sequentiallys the first
entered being number 1.
ALL the programs you have compiled and the one you have
instituted may be listed with the command in the PROGRAMS
subsystem:
Show Status (of programs buffer) 0K
Programs may build up ¥n your program buffere Tc clear the
program buffere use the PROGRAMS subsystem command:
Delete ALL (programs in buffer) OK
We recommend that you do this before each new patterns
untess you specifically want to preserve prev fous
patternse
To invoke the Content Analyzer:
khen viewspee 1 is one the instituted Content Analyzer program
(if any) will check every statement before it is printed (or
displayed)e.
If a2 statement does not pass all of the requirements of the
Content Analyzer programs it will not be printede.
In DNLSe if no statements from the top of the screen
onward through the file pass the Content Analyzer
filtere the word "Empty® will be displayede.
Note: You will not see the normal structure since one
statement may pass the Content Analyzer although its source
does note Viewspec m (statement numbers on) witl help ycu
determine the position of the statement in the file.
When viewspec k is ons the instituted Content Analyzer filter
will check untit it finds one statement that passes the
requirements of the patterns Thene the rest of the output
(branchy plexs display screens etcas) will be printed without
checking the Content Analyzer.
Khen viewspee § is one no Content Analyzer searching is done.
This is the default state; every statement in the output

MARY s 5«Jdan-82 15185 < USERGUIDESs PROGRAMMERS-GUIDE«AUG:1e > 11

(branchs plexs display screeny etce} will be printeces Note
that ie js and k are mutually exctusivee.
Notes on the use of Content Analyzer filters:
Some NLS commands are always affected by the current viewspecs
{including 1eje or kj:
gutput
Jump €(in DNLS)
Print ¢in TNLS)
Most HNLS commands dignore the Content Analyzer in their
editingss The following BASE subsystem commands offer the
option of specifying viewspecse or "Filters®y (which may turn
on the Content Analyzer} which apply only for the purpose of
that one command and affect what statements the command works
an (only those statements which pass the filter will be
copieds moveds etce’ structure will be adjusted):
Copy
Delete
Move
Substitute
At this points it would be wise to practice until you becosme
proficient at Content Analyzer patternse Ycocu might becin by
trying to use some of the patterns given in the above exampless
and then try Wwriting a few patterns of your owne These patterns
are both a useful NLS tool and a basdic compconent of many L1¢
programse e further recommend that you contaet ARC via your
architect before you begin the next parte
PART TWo: Introduction to L10 Programming
Section 1: Content Analyzer Programs
Introduction
When you specify a Content Analyzer Fatternes the PRCGRANS
subsystem constructs a program which looks for the pattern in
each statement and only displays the statement if the pattern
matching succeedse You can gain more control and do more
things if you build the program yourselfe. The program witl be
used just lLike the simple pattern program and has many of the
same limitations. Programs are written in NLS just Like any
other text file. They then can be converted to executable
code by a compiler. This code resides (or 1is loaded) in your
programs buffer spaceis it can be instituted as the current
Content Analyzer filter program like a Content Analyzer
Patterne.
Program Structure
I1f you specify a Content Analyzer Patterne RLS compiles a
small program that tooks Like this (with the word "gpattern®
standing for whatever you typed in):
PROGRAM name
(name) PROCEDURES
IF FIND pattern THEN RETURNCTRUE) FELSE RETULRN(FALSES
END e
FINISH
L1¢ programs must begin with a2 header statements the word
PROGRAM (all caps) followed by the name c¢f the first procedure
to be executed (all lower~casede This name is also the name
of the programe If the proaram is being compiled irnto a file
tto be described at the end of this section)s the word FILE
should be substituted for the word PROGRAMe EeGe

MERY

S=-Jan-82 15205 < USERGUIDES s PROGRAMMERS~GUIDEAUGI1y >

PROGRAM first
or
FILE deldir
{Note: the Content Analyzer compiler makes up a program
name consisting of UP#Yxxxxxe where
1is a sequential numbers the first pattern being
number ones and
xxxxx 1is the first five characters of your patterne)
E.g. UPL1!SLDLP
The body of a program consists of a series of DECLARATION
statements and PROCEDURES (in any order) which are blocks of
instructionse In the above casee the prooram consisted of
onty one small procedure and no declarationse When the
program is loaded into your programs buffer spacee the
dectarations reserve space in the system to store information
(variables). When the program is used as a Content Analyzer
filter programs the first procedure is called for eazach
statements It may in turn call other procedures and access
variables in the program or in the NLS systeme Eege
DECLARE xe Ye 2 3 (described below}
(first) PROCEDURE 3
[N 2
The end of the program is delimited by the word "FIKISH®" (in
atl upper casede The compiler stops at that points so any
text after that in the NLS source file will be ifagnored.
Comments may be enclosed in percent signs (%) anywhere in the
programs even in the middle of L10 statementse The L10
compiter will ifgnore theme
Except within Literal stringss variable names and special L10
wordss spaces are ignorede It 1s good practice to use thenm
tiberally so that your program will be easy to reade Alsos
NLS file structure is ignoreds statements will be read
sequentiallyy regardless of their levele Structure ise
howevers very valuable in making the program readables and it
is good practice to use it in close correlation to the
program®*s logical structuree For iInstances the programmer
usually makes each of the elements of a program (declarationse
proceduress and FINISH) separate statementss below the header
statement in file structures This point will be discussed
further later.
So fare we have file which tooks something Like:
PROGRAM namel
DECLARE eee 3
DECLARE «ae 3
{namely PROCEDURE 3
(name2) PROCEDURE 3
FINISH

Procedure Structure

Fach procedure must begin with its header statement. This
header statement is a name enclosed in parentheses followed hy
the word PROCEDUREs and terminated by a semicolone Eege
(name) PROCEDURE 3
The body of the procedure may consist of Local declarationss
then L10 statementse An LI0 statement is any program
instructione terminated by a semicolon. The body must at some
point return control to the procedure that catled ite AlLL

12

MARY ¢ 5=-Jan-82 15:05 < USERGUIDESs PROGRAMMERS-GUIDE.AUGS1y >

this will be further discussed lateres
The procedure must end with the terminal statement:
ENDe
Example (the actual L10 statements in this example will become
clear as you read on):
PROGRAM. compare % Content analyzer. Cisplays statement if
first two visibles are the samee %
“reserve space for ("declare®) four text pointers named
"5t1l" through ®"ptanX
DECLARE TEXT POINTER ptle pt2y pt3e pté4s
%Yreserve 100 characters of space for each of two string
variables named ®visl®™ and "vis2%+% :
DECLARE STRING visi{1003y vis2U10033
tcompare) PROCEDURE 3
%if find two visiblese set pointers around first two
visibles (strings of printing characters)?%
IF FIND $NP “ptl 1$PT “pt2 $NP “pt3 1$PT “pt4 THEN
BEGIN
%put visibles in strings¥
*yislis _ ptl pt2 §
ayis2* pt3 pta ;
%compare contents of stringse return and display
the statement if identical¥
IF #*#yislx = *xyig2+ THEN RETURNC(TRUE) $
END 3
%otherwises return and dont*t display%
RETURN (FALSE)Y 3
ERNDe
FINISH
Declaration Statements
As you may have guessed from the above examples Lontent

ktnalyzer programs can manipulate variables (lLike text pointers

and strings)e while patterns cannot.
Text Pointers
A text pointer points to a particular tocation within an
NLS statement (or into a strings as described Laterd.
The text pointer points between two characters in &
statemente By putting the pointers between characterss

a single pointer can be used to mark both the end of one
string and the beginning of the string startirg with the

next character.
Text pointers are decltared with the following Declaration
statement:
DECLARE TEXT POINTER name 3
Strings
String variables hold texte When they are declaredy the
maximum number of characters is sete.
To declare a string:
DECLARE STRING namelnuml 3§
num is the maximum number of characters allowed for the
stringe
| » TN
DECLARE STRING Llstringf1001s
declares a string named "lstring” with a maxirum length
of 100 characters and a current length of & characters
(it*s empty).

13

MARY ¢

5-Jdan-82 15105 < USERGUIDESs PROGRAMMERS~-GUIDE.AUGsS1s > 14

You can refer to the contents of a string variable by
surrounding the name with asteriskse Ee«ge
- *lstring*» 1is the string stored in the variakle named
“lLstring®,
(Refering to Llstring without the asterisks represents
onty the first computer word of the string This is
rarely neededs)
You can put the text between two text pointers in a string
variable with the L10 statement?
*Lstringx _ ptrl ptr2 3
where ptrl and ptr?2 are the names of previocusly declared
and set text pointerses and lstring is a previcusly
dectared string variablee.
These variables wiltl retain their value from one statement to
the nexte Gther types of variables and their use will he
discussed in detail in Part Threes Section 3.

Body of the Procedure

RETURN Statement
No matter what it doese every procedure must return control
to the procedure that called ite The statement which does
this is the RETURN statemente Eage
RETURN 3
A RETURN statement may pass values to the procedure that
called ite The values must be enclosed in parentheses
after the word RETURNe EeQe
RETURHN €(1423¢47) 3
A& Content Analyzer program must return either a value of
TRUE or of FALSE. If it returns the value TRUE (1)s the
statement will be printed; if it returns FALSE (0)e the
statement will not be printede Tece
RETURN (TRUEYS will print the statement
RETURN (FALSE): will not print the statement
The RETURN statement often is at the end of a procedures
but it need not bee For examples in the middle c¢f the
procedure you may want to either RETURN or go on depending
on the result of a teste.
Other than the requirement of a RETURN statements the body of
the procedure is entirely a function of the purpose of the
procedurees A few of the many possible statements will be
described heres others will be dintroduced in Part Three of
this documente.
FIND Statement
One of the most useful statements for Content Analyzer
programs is the FIND statemente The FIND statement
specifies a Content Analyzer pattern to be tested against
the statementsy and text pointers to be manipulated and sets
starting from the Current Character Position (that
invisible marker refered to in Section 1)e If the test
succeedss the character position is moved past the Llast
character reade If at any point the test failse the
character position is lLeft at the position prior to the
FIND statemente The values of text pointers set in the
statement prior to the failing element will remain as sets
others of course wiltl not be changede.
FIND pattern 3§
The Current Character Position s initialized to BEFQRE THE

MARY o

1F

S=-dJdan-82 15:05 < USERGUIDESs PROGRAMMERS-GUIDEAUGS1y >

FIRST CHARACTERs and the scan direction is initialized to
Lteft to RIGHTe FOR EACH NEW STATEMENT passed to the Content
Analyzer programe
Any simple Content Analyzer pattern (as describe above) s
valid in a FIND statemente.
In additiony the following elements can be incorporated in
the pattern:
*rstringnamex
the contents of the string variable
“ptr
store current scan position intc the text pointer
specified by ptre the name of a declared text pointer
_NUM ptr
back up the specified text pointer by the specified
numher (NUM)Y of characterse If NUM is not specifieds
1 will be assumede. Backup is in the direction
opposite to the current scan direction.
ptr
Set current character position to this pesition. ptr
is the name of a previously set text pointeres
SFéptr)
The Current Character Position is set to the front of
the statement in which the text pointer ptr s set
and scan direction is set from teft to righte
SE(ptr)
The Current Character Position is set to the end of
the statement in which the text pointer ptr is set
and scan direction is set from right to Left.
BETWEEN ptrl ptr2 (pattern)
Search Limited to between positions specifieds ptr
is a previously set text pointers the two must be in
the same statement or stringes Current Character
Position s set to first position before the pattern
is tested. Fege
BETWEEN ptl pt2 (2D L1 $HP)
FINDs may be used as expressions as well as free~standing
statementss If used as an expressions for example in IF
statementses it has the value TRUE if all pattern elements
within it are true and the value FALSE if any one of the
elements is falses Eege
IF FIND pattern THEN eee 3
Complicated examplte?
IF FIND "sf $SNP *¢(s$cLD/fv=) *} [®, ® «gtrx] SE(sT) SNP
*e THEN RETURN(TRUE) ELSE RETURN(FALSE)S
Statement
IF causes execution of a statement if a tested expression
s TRUE. If 4§t is FALSE and the optional ELSE part is
presents the statement following the ELSE is executed.
Control then passes to the statement immediately following
the IF statement.
IF testexp THEN statement S
IF testexp THEN statementl ELSE statement2 3
The statements within the IF statement can be any valid L10
statemente but are not fotlowed by the usual semicoloni the
whole IF statement is one L10 statement and is followed by
2 semicolone

15

MARY ¢

S-dan-82 15105 < USERGUIDESs PROGRAMMERS-GUIDEAUGS1e >

E.g.
IF FIND £5DY THEN RETURNCFALSE) ELSE RETURN(TRUE)

Proaramming Style: File Structure

The compiler which converts your NLS text to tode ignores NLS
fite structurees This atlows you to use structure tc¢ make your
program text easier to read and understande Logical use of
structure often facilitates the actual programming task as
welle Some conventions have developed at ARC in this respecty
although flexibility is essentiale These should seem obvious
and logical to youe

ALl declarations and PROCEDURE statements should be one

level below the PROCRAM statement.

AtlL Local declarations (not yet described) and cocde should

be one tevel below the PROCEDURE statement.

It is good styley and makes for much easier programmings to

List what you want to do as comment statements (in percent

signs) at the lLevel below the PROCEDURE statemente Then

you can go back and filt in the code that accomplishes the

task described in each comment statement. The code should

go one Level below the commente

It 4s also worthwhile to put comments in individual

statements whose purpose is not obvicuse

e will later describe how to bhlock a series of statements

where one is requirede These blocks should go a level

betow the statement of which they are a part.

File structure should follow the Logical structure of the

program as closely as possiblee Eege

IF FIND E£5D1
THEN RETURN(TRUE)
FLSE RETURN(FALSE) S

Using Content Analyzer Programs

Once the Content Analyzer program has been written (in an NLS
file)y there are two steps in using ite Firste the program
must be “compileds" isee transtated into machine-readablte
code: the compiled code is "toaded"™ into a space reserved for
user programs (the user programs buffer)e. Secondlys the
Loaded program must be "instituted® as the current Content
Analyzer programe
There are two ways to compile and toad a program:
1} You may compile a program and load it into your programs
buffer atl in one operatione In this cases the program
header statement must have the word PROGRAM in ite. VWhen
the user resets his job or Logs offes the compiled code will
disappeare.
Firste enter the Programs subsystem with the command:
Goto Programs 0K
Then you may compite the program with the comgand:
Compile L10 (user program at) SCOURCE OK
SOURCE 1s the KLS file address of the PROGRAM
statemente.
2Y You may compile a program into a TENEX code file and
then load it into your buffer in a separate operation. The
program can then be toaded from the file into your user
programs huffer at any time without recompilinge The
header statement must use the word FILE instead of PROGRAM.
tUse the PROGRAMS subsystem command:

16

MARY » 5-Jan-82 15:05 < USERGUIDESey PROGRAMHRERS-GUIDE.AUGS1le > 17

Compite File (at) SOURCE (using) L1080 (to file) FILENAME
0K '
The FILENAME must be the same as the program®s name.
The code file is called a REL (RELocatable code) file.
¥henever you wish to tLoad the program code into the user
programs buffere use the PROGRAMS subsystem command?
Load Program (file) FILENAME OK
Once a compiled program has been loaded (by either routel)s it
must be institutede This is done with the PROGRAMS subsysten
command:
Institute Program PROGRAM-NAME (as) Content (analyzer
program) 0K
The named program will be instituted as the current fontent
Anatyzer filters and any previously inst ituted program will
be deinstituted (but will remain in the bufferl.
Againe the programs in the buffer are numbereds the first
in being number onee. You may use the number instead of the
program®s name as a shorthand for PROGRAM-NAME.
To invoke the Content Analyzer using whatever program is
currentiy instituteds use the viewspec i+ Jo or ke as
described in Part Ones Section 4 (3dade.
Problems
Given these few constructse you should now be able to write a
number of useful Content Analyzer programse Try prcgramming
the following:
1) Show those statements which have a number somewhere in
the first 20 characterse.
2)Y Show those statements where the first visible in the
statement is repeated somewhere in the statement.
Sample solutions:
Problem 1
PROGRAM number
DECLARE TEXT POINTER ptrle ptr2 3
(number) PROCEDURE 3
FIND “ptrl $20CH "ptr2z i
IF FIND BETWEEN ptrl ptr2 ¢ [DB]1)
THEN RETURN(TRUE)
ELSE RETURNCFALSE) S
END «
FINISH
Alternate Sotution to Probltem 1: Content Analyzer Filter
$20CH < LD
Problem 2
PROGRAM vis
DECLARE TEXY PUOINTER ptrle ptr2
DECLARE STRING stri5001 3
(vis) PROCEDURE 3
FIND $NP “ptr1l 13%PT “ptr2 3
*strx _ ptrl ptr2 3
IF FIND ptr2 [NP *str» NF]
THEN RETURNCTRUE)
ELSE RETURN(FALSE);
END »
FINISH
Section 22 Content Analyzer Programs: Modifying Statements
Introduction

MARY s 5-Jan=82 15105 < USERGUIDESe PROGRAMMERS~GUIDE.AUGS1e > 18

Content Anatyzer programs may edit the statements as well as
decide whether or not they are printede They are very useful
where a series of editing operations has to be done time and
time againe This section witl introduce you to these
capabilitiess ALl these constructs will be covered in detail
in Part Threee
A Content Analyzer program has several lLimitationse It can
manipulate only one file and it can look at statemernts only in
sequent ial order (as they appear in the filede It canncot back
up and re-examine previous statementse nor can it skip ahead
to other parts of the filee« It cannot interact with the user.
Part Four provides the tools to overcome these Limitationse.
String Construction
Statements and the contents of string variables may be
modified by efther of the following two statements:
ST ptr _ stringlist i
The whole statement in which the text pointer named
"otr* resides will be replaced by the string list (to be
described in a minutele.
ST ptr ptr _ stringlist ;
The part of the statement from the first ptr to the
second ptr will be replaced by the string tListe.
ptr may be a previously set text pointer or SFi(ptr) or
SECptri. »
The content of string variables may be replaced with the
string assignment statement:
stringname _ stringltist 3
The string list (stringlist) may be any series of string
designatorse separated by commase The string desigrators may
be any of the following (other possibilities to be cescribed
Laterl):
a string constants eege "ABC" oOr *w
ptr ptr
the text between two text pointers previously set in
either a statement or a string
xstringnamex
a string name in asteriskses refering to the contents of
the string
EeGes
ST pl1 p2 _ *string* 3
or
ST pl _ SFipl) ple *string*ey p2 SE(Pp2)5
(Note: these have exactly the same meaninge.}
Examples
PROGRAM delsp X Content analyzer. Deletes all Lleading
spaces from statementse %
Zreserve space for ("declare") a text pointer named "pt®¥%
DECLARE TEXT POINTER pts
{delsp) PROCEDURE 3
%Xif any Leading spacess scan past them and set pointer¥%
IF FIND 13$SP “pt THEN
Xreplace statement with text from pointer to
statement endX
ST pt _ pt SE(pt)s
¥returne don't displtay anything¥%
RETURN (FALSE) 3

MARY s

5=-Jdan=82 15:05 < USERGUIDESe PROGRAMMERS~GUIDELAUGSls >

END.
FINISH

More Than One Change per Statement

Part of a text pointer is a character count. This count stays
the same until the text pointer is again set (to sore other
paosition)y even though the statement hasg been editece Ife for
examplee you have the statement

abcdefg
and if you have set a pointer between the ®d® and the "e"s it
will always point between the fourth and fifth charecters in
the statementse If you then delete the character ®a®™, your
pointer will be between the ®%e®" and the "f"4 now the fourth
and fifth characterse For this reasons you should begin a
series of edits with the Last one in the statement and work
backwards through the statemente.

Controlling Which Statements are Modified

In THLSe the Content Analyzer program will be catlled for
commands which construct a printout of the file (Print and
Qutput)e The program will run on every statement for which it
is called (eege every statement in the branch during a Print
Branch command) which pass all the other viewspecse Once you
have writtens compilteds and instituted a program which does
some editing operatione the Print command is the easiest way
to run the program on a statements branche plexs or groupe

In DRNLSe the system will callt the Content Analyzer program
whenever the display is recreated (e«ge viewspec F and the
Jump commands)s and also for the Output commands. If the
program returns TRUEs it will only run on enough statements to
fill the screen. It is safer to have programs that edit the
file return FALSE. Then when you set viewspec iy 1t will run
on all statements from the top of the display ons and when it
is done it will display the word "Empty¥. At that point.
change to viewspec § and recreate the display with viewspec Fs
then all statements including the changes will be displayede.
You can control which statements are edited with level
viewspecs and the branch only (g) or plex onty (L) viewspecsy
and by positioning the top of your windowe

After having run your program on a files you may wisgh to
Update to permanently incorporate the changes in the files It
is wise to Update before you run the program so thatey if the
program does something unexpecteds you can Delete
Modifications and return to a good file.

Problems

Try writing the following programs:
1} Remove any invisibles from the end of each statement.
2y Make the first word a statement name surrounded by
parenthesese
Sample solutions:
Problem 1
PROGRAM endinv
DECLARE TEXT POINTER ptr 3
(endinv) PROCEDURE 3
IF FIND "ptr SE(ptr) 1$NP “ptr
THEN ST ptr _ SF(ptr) ptr 3
RETURN (¢FALSE) 3
ERD W

i3

MARY s 5-Jan=-82 15105 < USERGUIDESe PROGRAMMERS-GUIDELAUGI1e > 20

FINISH
Problem 2
PROGRAM makename
DECLARE TEXT POINTER ptrls ptr2 3§
{makename) PROCEDURE 3
IF FIND $SNP “ptrl 1%LD “ptr2
THEN ST ptrl _ *(e ptrl ptr2s *)e ptr2
SE(ptr2};s
RETURNCFALSE)
END o
FINISH
PART THREE: Basic L10 Programming
Section 1 The User Program Environment
Introduction
User~-uritten Content Analyzer progranrs are calted in the
process of creating a view of an NLS file e«gdes with a Print
command in TNLSe with any of the Output commandss and with the
Jump command in DNLS.
The sequence generator provides statements one at a times
the Content Analyzer may then check each one. F inallys the
formatter prints it or puts it on the screen.
Thus if one had a user Content Analyzer program compiled
and institutedy one could have a printout made containing
only those statements in the file satisfying the patterns
Attachable subsystems are independent of this portrayal
processe although they are welcome to make use of it. They
consist of commandss which may utilize all the pouwers of NLS.
The Sequence Generator :
In the portrayal processs the seqguence generator tococks at
statements one at a times beginning at the point specified by
the usere It observes viewspets Like Level truncat ion in
determining which statements to pass on to the formattera
When the sequence generator finds a statement that passes all
the viewspec requirementssy it sends the statement toc the
formatter and waits to be callted again for the next statement
in the sequencee.
For exampley the viewspecs may Indicate that only the first
Line of statements in the two highest levels are to be
outpute The default NLS sequence generator wiltl produce
pointers only to those statements passing the structural
filterss the formatter will then truncate the text to only
the first Line before it displays or prints the statement.
Content Analyzer Filters
One of the viewspecs that the sequence generator pays
attention to is "i" -~ the viewspec that indicates whether a
user Content Analyzer filter is to be applied to the
statemente If this vieuwspec is ons the sequence generator
passes control to a user Content Analyzer programe which looks
at the statement and decides whether it should be included in
the sequences If the statement passes the Content Analyzer
(ieee the user program returns a value of TRUE)s the sequence
generator sends the statement to the formatter; otherwises it
processes the next statement in the sequence and sends it to
the user Content Analyzer program for verificatione (The
particular user program chosen as a filter is deterrined by
what program is Instituted as the current Content Analyzer

MARY s 5-Jan=82 15205 < USERGUIDESes PROGRAMMERS~-GUIDE«AUGS1s >

programs as described belowe)
In the process of examining a2 statement and deciding
whether or not it should be printeds the Content Analyzer
program may edit the text of the statemente These edits
appear in the partial copys just as if the user had made
them himself. This provides a powerful mechanism for
automatic editinge.
In DNLSe if you display any statementses the program will
stop after filling the screene If you are not displaying
any statementss the program will run on either the whole
files a plex (viewspec L}e or a branch (viewspec gle These
along with Levelt clipping viewspees give one precise
controt over what statements in the file will be passed teo
the programe
The Portrayal Formatter
The formatter arranges text passed to it by the sequence
generator in the style specified by other viewspecse The
formatter observes viewspecs such as line truncatiors Length
and indentings it also formats the text in accord with the
requirements of the cutput devices
Section 2: Program Structure
An NLS user progran consists of the following elementss which
must be arranged in a definite manner with strict adherence to
syntactic punctuation:
The header =~
a statement consisting of the word PROGRAMs follcwed by the
name of a procedure in the programe Program execution witl
begin with 2 call to the procecdure with this namee
PROGRAM name
The PRUGRAM statement may have a statement name in
parenthesess it will be ignorede.
The word FILE should be substituted for the word FROGRAM if
the code is to he compiled into a file to be saved.
The FILE statement may have a statement names if soy
that name will be used as the code-file symbole You
must not follow the word FILE with a name if there is a
statement name preceding FILE.
The body =
consists of declarations and procedures in any order:
1) declaration statements which specify information
about the data to be processed by the procedures in the
program and enter the data identifiers in the program®s
symbol tables terminated by a semicolons FEege
DECLARE xeyez 3
DECLARE STRING test[5007 5
REF xe¢ 23
Declaration statements will be covered in Sectior 3
{(S5c)e
2 procedures which specify certain execution taskse
Each procedure must consist of:
the procedure name encltosed in parentheses followed
hy the word PROCEDURE and optionally an arcument List
containing names of variables that are passed by the
caltling procedure for referencing within the called
procedures This statement must be terminated by a
semicolone Eege

21

MARY s S-Jdan-82 15105 < USERGUIDESs PROGRAMMERS-GUIDE.AUG:1e > 22

(name) PROCEDURE &
{name)} PROCEDURE (paramle param2) 3
You should always include a comment in the
procedure statement breifly summarizing the
function of the proceduree.
the body of the procedure which may consist of LOCAL,
REFe and L10 statementse
LOCAL and REF declarations within a procedure must
precede executable codee They will be covered in
Section 3 (5¢c)e.
£10 statements will be covered in Secticns 4 and &
(5d} (5ele.
A RETURN statement must be included at some
pointy to pass control back to the calling
proceduree. If it is missings execut ion will
run - off the end of the procedure and an ILLEGAL
INSTRUCTION will occure.
the statement that terminates the precedure (note the
final period):
END.
The program terminal statement -
FINISH
Note: +this is a signal to the compiler to step
compilations it does not mean stop executione. Any text
after that in the NLS source file will be igncred.
Notes on Program Writing Style
Except for within literal stringse variable namess and special
L10 reserved wordss spaces are ignorede It is good practice
to use them lLiberally so that your program will be easy to
reade
Comments may be enclosed in percent signs (%) wherever spaces
are atlowedse They will be ignored by the compiler. It is
gocd practice to use the lLlevel below the procedure statement
for commentse filling in the code that executes the commented
function at the level below the comment. It is alsc wise to
add comments to any individual statements whose function is
not obviouse particularly catls on other procedurese.
You may find it convenient to add a comment to the FILE
statement including the information needed by the Compile
File commande Eege
FILE program % (L10¢)} to (directoryeprogramesubsyse) %
Alsos NLS file structure is ignored.s Structure ise howevery
very valuable in making the program readabley and it is good
practice to use it in close correlation to the program®s
togical structuree.
An example of a simple L180 program is provided here. The reader
should easily understand this program after having studied this
documente. :
PROGRAM delsp X Content analyzere Detetes all leadineg
spaces from statementse %
%reserve space for ("declare®) a text pointer named "pt"x%
DECLARE TEXT POINTER pts
(delsp) PROCEDURE 3
£if any leading spacessy scan past them and set pointerX%
IF FIND 13SP “pt THEN
Zreplace statement holding pt with text from

MARY o S=Jdan~-82 15205 < USERGUIDESes PROGRAMMERS~GUIDE.AUGI1s > 23

pointer to statement endX
ST pt _ pt SE(ptis
%*returny don*t display%
RETURN (FALSE) 3
ENDe
FINISH
Section 3: Declarations
Introduction
L10 declarations provide information to the compiler about the
data that is to be accessed; they are not executede Every
variable used in the program must be declared somewhere in the
system (efther in your program or in the NLS systemle.
There are a number of types of variables availables each with
its own declaration statements the most frequently used are
discussed heree (Complete documentation is available in the
L10 Reference Guide == 70524¢)
Variables ,
Six types of variables are described in this document: simple,
constantsy arrayse text pointerse stringses and referencede.
Each is represented by an identifiers some unique lcwercase
namee. Each can be declared on three levels: Llocale globale cor
external.
tocal vVariables
& local variable is known and accessible only to the
procedure in which it appearse Local variables rmust appear
in a procedure argument (ist or be declared in a
procedure®s LOCAL dectaration statements (to be explained
below)e Any LOCAL dectarations must precede the executable
statements in a procedurees ,
tocal variables in the different procedures may have the
same name without conflicte A global variable may not be
declared as a local variable and a procedure name may be
used as neithere In such cases the name is cons idered to
be multiply defined and a compilation error results.
Global Variables
Global variables are defined in the program®s DECLARE
statementss Variables specified in these declarztions are
outside any procedure and may be used by all procedures in
the programe
External Variables
External variables are defined in the program®s CECLARE
statements or in the NLS system programe.
Variables specified in these declarations may be used by
all procedures anywhere in the systeme Many externals are
defined as part of the NLS systemi user programs have
complete access to theses Since other procedures may
access the same variables the user programmer must be very
careful about changing their valuese
Simple Variables
Simple variables represent one computer worde or 36 bitsy of
memorye EFach bit is either on or offe allowing binary numbers
to be stored in wordse Each word can hold up to five ASCII
7-bit characterse a single numbery or may be divided into
fields and hold more than one numbers
fleclaring a variable allocates a word in the computer to
hotd the contents of the variable. The variable name

MARY o

5-dJdan=-82 15105 < USERGUIDESe PROGRAMMERS-GUIDEAUGS1e >

refers to the contents of that worde One may refer to the
address of that computer word by preceding the variable
name by a dollar sign ($)e.
For examples if one has declared a simple variable
called ®"num®e one may put the number three in that
variable with the statement:
num _ 3 3
One may add two to a variable with the statement:
num _ num + 2 3
One may put the address of num intc a variable called
addr with the statement:
addr _ $num 3§
One may refer to predefined fields in any variable by
following the naeme of the variable with a periods then the
field names For examples the fields RH and LH are globally
defined to be the right and left half (18 bits) of the word
respectively: eege
numelH _ 2 %
num«RHY _ 3 3
Fields may be defined by the user with RECORD statements
(described in Section 5 of Part Fivele Additionallys you
may refer to system-defined fields (eege RH)a They divide
words into fields by numbers of bitss so they may refer to
any declared wordes For examples the field "LH* refers to
the left-most 18 bits in any 36-bit worde
If you assign a full word to a field of n bits within &
words the right-most n bits will be assigned to the
field in the destination words the rest of the
destination word will be untouched.
If you assign a field with a word to a full werde it
Wwitl be right=justified within the destination words the
remaining bits in the destination sord (to the Left of
the assigned bits) will be set to zero.

Beclaring Simple Global variables

DECLARE name 3§
"name®™ is the name of the variable. It must be all
Lower~case letters or digitse and nmust begin with a
tetters
EaJe
DECLARE x1 3
optionallys the user may specify the initial valtue of the
variable being declarede If a simple variable ¥s not
initialized at the program levels for safety it should be
initialized in the first executed procedure in which it
appearse
DECLARE name = exp 3
exp is the initital value of name. It may be any of the
following:
~ a numeric constant optionally preceded by a minus
sign (-)
- a strings up to five characterse enclosed in
quotat ion marks
- another variable name previously defined in a SET
statement (described below}s causing the Latterts
value to be assigned
Examples:

24

MARY s S5-Jan-82 15:0%8 < USERGUIDESy PROGRAMMERS~-GUIDE.AUG31le >

DECLARE x2=53%
%x2 contains the value 5%
DECLARE x3=%0QUT":
¥x3 contains the word OUTX
DECLARE xx=x43
Zx4 has previously been declared in a SET
statementX
Formal parameters (passed to a procedure) are allocated as
Ltocal simple variabless then initialtized whenever the
procedure is catleds Hithin the called procedurey they should
be treated as simple variabless
Constants
You may dectare a (simple) variable to be a constant value
with the statement:
SET namel=exp 3
where names and expressions are as descr ibed above for
initializing simple variablese.
Constants take no memorye. They may be refered to just like
simple variablesy except the name must be preceded by a dollar
sign ($)«. They may not be changed by the programe Eege
after the dectaration:
SET var = 4 3§
the assignment:
num _ 3$var 3
will assian the value 4 to the variable nume
Arrays
Multi-word (one-dimensional) array variables may be declareds
computer words within them may be accessed by indexing the
variable namee The index follows the variable names¢ and is
enclosed in square brackets [Je The first word of the array
need not be indexede The index of the first word 1s zeroes so
if we have declared a ten element array named ®blah":
blah 1is the first word of the array
blahf1l 1is the second word of the array
blah{3]l 1is the last word of the array
Declaring GLobal Array Variables
DECLARE namelnumil 3
num is the number of elements in the array if the array
s not being initializeds It muste of courses be an
integer.
E.g.
DECLARE saml1015
declares an array named "sam®" containing 10 etementse.
Optionallys the user may specify the inttial value of each
element of the arraye 1If array values are not initialized
at the program levely for safety they should be initialized
in the first executed procedure in which the array is usede
DECLARE name = (numle NUMZ2e eee } 3
num is the initial value of each element of the
arraye The number of constants implicitly defines
the number of elements in the arraye They may be any
of the constants allowed for simple variablese.
Mote: there is a one-to-one correspondence between the
first constant and the first elementy the second
constant and the second elements etce
Examples:

25

MARY ¢

5-Jan~82 15:05 < USERGUIDESy PROGRAMMERS-GUIDE.AUG31le >

DECLARE numbs=(1¢2¢3)3
declares an array named numbs containing 3
elements which are initialized such that:

numbs = 1
numbsi1l = 2
numbsl2] = 3

DECLARE motley=(10+%blah)s
declares an array named mottey containing 2
elements which are initiatized such that:
motley = 10
motleyl1 = $blah = the address of the variable
"blah®

Text Pointers

A text pointer is an L1¢ feature used in string manipulation
constructionss. It is a two=-word entity which provices
information for pointing to particular locations within textys
whether in string variables or In NLS statementse

The text pointer points between two characters in a
statement or string. By putting the pointers between
characters a single pointer can be used to mark both the
end of one substring and the beginning of the substring
starting with the next characters thereby simplifying the
string manipulation algorithms and the way one thinks about
strinose ’

A text pointer consists of two words: a string identifier and
a tharacter counte. Assume you have declared a text pointer
named "pte"

pt refers to the first word of the text pointers The first
words called an "stide®™ contains three system=-de fined
fields:
stfile -~ the file number (if an NLS statement)
stastr -- a bit indicating strings not an NLS statement
stpsid -- the psid of the statements every statement has
a unique number (psid) attached to it.
The stid is the basic handle on a statement irn L10. It
is often used atonee Since it is a single-word values
it may be stored in a simple variable and passed easily
between proceduress and is used by many routires to
specify a statement or stringe.
If an stid is used without being properily sets the
run~time error message "fst entry nonexistant® may
resulte.
ptE1] refers to the second word of the text pointere The
second word contains a character counte with the first
position being 1 (before the first character).
For examples one might have the following series of
assignment statements which fill the three fields of the
first word and the second word with datas with pt being the
name of a declared text pointer:
ptestfite _ filenos
“filenc is a simple variable with a3 number in it%
ptestastr _ FALSES
Xa statements not a string¥
ptestpsid _ origini
%all origin statements have the psid = 23 crigin s a
global variable with the value 2 in it%

26

MARY » 5-dan-82 15105 < USERGUIDESs PROGRAMMERS-GUIDELAUGS1s > 27

ptE£1l _ 13
%the word one after pt (i.ee the character count)
gets 19 the beginning of the statementX.
It is ¥mportant that stid*s be initialized properly to
avoid errorse Text pointers may be most easily initialized
by setting them in a FIND statement (see Section 6)e
Declarinog Text Pointers
DECLARE TEXT POINTER pt 3§
The names pls p2s p3e¢ p4s and p5 are globally declared and
reserved for system usee.
Strings
String variables are a series of words holding text. When
they are declaredy the maximum number of characters is sete.
The first word contains the two globatly defined fietds:
M -= the maximum number of characters the string can hold
L == the actual number of characters currently in the
string :
The next series of words (as many as are required by the
maximum string size) hold the actual characterss five per
words in ASCII 7-bit codee.
xstrx refers to the contents of the string variable "strv.
str refers to the first word of the string variable ®"str®;:
typically this ¥s only useful in combination with the two
fields "HM"™ and "wL":
streM refers to the maximum declared length of the
string variable ®"str® (an integer)e.
strelL refers to the current lLength of the string stored
in the string variable ®*str®" (an integer).
Dectaring Strings
The DECLARE STRING enables the user tc declare a global
string variable by initializing the string and/or declaring
its maximum character lengthe
To declare a string:
DECLARE STRING namelnuml 3
num is the maximum number of characters al towed for
the string
Since the maximum statement lLength is 2000
characterss you should not need to declare a string
greater than 2000 characters longe
qu.
DECLARE STRING lstringfiools
declares a string named ®"lstring® with a maximum
Length of 100 characters and a current Ltength of 0
characters
To declare and initialize a string:
DECLARE STRING name="Any string of text® 3
The Length of the Literal string defines the maximum
Length of the string variable.
Eele
DECLARE STRING message="RED ALERT®;
declares the string messages with an actual and
max imum Length of 9 characters and contains the text
"RED ALERT™
REF: Referenced Variables
Reference Declarations
After a simple variable has been declareds the REF

MARY o 5-dan~-82 15105 < USERGUIDESes PROGRAMMERS-GUIDE«AUGs1le > 28

statement can define it to represent some other variable.
A referenced variable holds the address of another declared
variable of any type. Whenever the referenced variabte is
mentionedsy L10 will operate on the other variable insteads
as if it were declared in that procedure and named at that
pointe.
This is useful when you wish a procedure to know about a
multi~-word variablees In procedure callse you are only
allowed to pass single=-word parameterse If you wWish &
called procedure to use or operate on a text pointers
arraye or stringe you may pass the address of that
multi-word variablee Thene in the called procedures you
must REF the formal parameter receiving that address, From
then on in the called procedures when you refer to the
REFed parameters you are actually operating on the
multi-word vartable declared in some cther procedure to
which the Local REFed wvariable pointss f.ee on the variable
at the address contained in the REFed parameteres
Example:?

1f the simple variable "lLoc® in the current procedure

has been REFed and contains the address of the string

“str® local to the calling procedures then operations

on toc actualtly operate on the string in str:

smes* _ *xloc*}
%mes gets the string in str¥
*Locx _ "corpuscle®;
%str gets the string “"corpuscle®X
Similarlys vyou cannot return sutlti-word variables from a
caltled procedure« If you wish a procedure to return g
stringe you must declare the string as a tocal in the
CALLING procedures pass its address toc a REFed variable in
the called procedures Then the called procedure can modify
the string as if it were local (and return nothing}. The
modifications will be made in the actual string variablee.
Unreferencing REFed Variables
tne may refer to the actual contents (an address} of a
REFed variable (i.es "unref® §t) by preceding the
referenced vartfable name with an ampersand (8. Ife for
examples an address was passed to a REFed variables and you
wish now to pass that address on to another procedures you
can “unref* ite ieee access the actual content (the address
of some variablel.
Fege if x has been REFed and holds the address of y:

Z X &
%z gets the CONTENTS of v%
z &x 3

%z gets the ADDRESS of yX%

This construct might be useds for exampley if one procedure
has been passed the address of a strings operates on ite
then wishes to pass (the address of) that string on to
another procedure that it callse
This can be & tricky concepts it may be worthwhile to
review this section carefully.

REFing Simple Variables
Once a simple variable has been declared (as a globalse
tocals or parameterdsy it may be REFed with the L10

MARY » S-Jdan-82 15305 < USERGUIDESs PROGRAMMERS~GUIDEAUGS1y > 29

declaration statement:
REF wvar 3
It will be a reference from then on in that procedurey and
you must always use the ampersand to refer to its actual
contents: the address of the variable it referencese.
Note that the REF statement does not allocate storages
it just sets an attribute of an existing variablee.
If you wish to use a variable that is not REFed as if it
were REFedy enclose it in square brackets [Je« Ea«ge assume
the simple variable ™astr®™ holds the address of a string
variable but was NOT REFed:?
*Fastrl*x refers to the contents of the string variable
whose address is in astre
Note on Programming Style
You should atways REF locals and parameters whichk hold the
address of something to be accessed (even if that variable
is only used to pass the address on to¢ another procedurel.
Declaring Many Variables in One Statement
One may avoid putting several individual declaratiors of
variables in a series by putting variables of similar types
initialized or nots in a List in one statement following a
single DECLAREs separated by commas and terminated by the
usual semicolon. Array and simple varibles may be put
together in one statemente.
Examples:
DECLARE xe¢ yE101e 2z = (1s 2¢ =5)3
DECLARE TEXT POINTER tpe sfe ptle pt2 i
DECLARE STRING Ulstringf100]s message="RED ALERT™ 3§
Peclaring Locals
Program level declarations (DECLARE and REF} and prccedures
may appear in any order. Howevers procedure level
declarations (LOCAL and REF inside a procedure) must appear
before any executable statements in the procedure. The
different types of variables may be declared in any orders but
a variable must be dectared before it can be REFeds
Whenever possibles LOCALs should be used instead of
globalse It makes for a cleaner program if you pass
parameters among procedures rather than depend on global
vartables to transmit information.
With one exceptions a local variable declaration statement s
just the same as a global with the word ®"LCOCAL" substituted
for the word “"DECLARE®. The one exception is that LOCAL
declarations can not initialize the variablese.
Examples:
LOCAL vare flags tevell121 ;
LOCAL TEXT POINTER tps pte sf 5
LOCAL STRING testl1003¢ ocutf2000] 3
Wwhen a procedure is called by another procedures the calling
procedure may pass one~word parameterse The procedire
receives these values in simple local variables declared in
the PROCEDURE statementts parameter liste. For examples two
Locals will automatically be declared and set to the passed
values whenever the procedure "“procname®™ s called?
(procname) PROCEDURE (varls var2) s
varl and var2 must not be declared again in a LOCAL
statementes They maye howevere be REFed by a REF statements

MARY 5~Jdan=82 15185 < USERGUIDESy PRUOGRAMMERS-GUIDELAUGS1e >

as discussed aboves and used throughout the procedures
The statement which calls procname may lLook Like:
procname {(lLocvars 2) 3
varl will be initialized to the value of the variable
“lLocvar® and var2 wili get the value 2.
Declaring Externals
Externats are declared just lLike globalse with one exception.
The word DECLARE must be followed by the word EXTERKALe. E«Ge
SET EXTERNAL onex=1l,s two=2 3
DECLARE EXTERNAL ae bL10]Js c=5 3
DECLARE EXTERNAL TYEXT POINTER exptrls exptr2 3
DECLARE EXTERNAL STRING exstrf 1007 3
REF specifications may not be external tc¢ the programe
Accessing Registers
The user may access machine registers (the same tencgth as
other wordse ieee 36 bits) by naming them with the
declaration:
REGISTER name = regnum 3
or
REGISTER namel=regnumle name2=regnum2 3
The declared names will then represent the registers to which
they are attacheds You may then access or assign values to
their contente On TENEXs the user programmer may use the
first seven registerssy registers 0 through 6« (Registers 7
through 15 are reserved for system usee) Eoge
REGISTER r0=0¢ rizle r2=2¢ r3=3e r4=4y r5=85¢ rect
The names used in the above example are used most often by
convention,.
Registers must be used very carefully! They are typically
used when calling TENEX JSYS (see Section 4)e Many LI1O
constructs and procedures use the registersi you should assign
their content to a variable immediately after the JSYS call if
you wish to save ite
Section 4: Statements
Introductien
This section will describe some of the types of statements
with which one can build a procedures The term "expression®
(often abbreviated to “exp®™) will be used in this sectione and
will be explained in detail in Section 5 (S5el.
Assignment
In the assignment statements the expression on the right side
of the ®"_"™ ic evaluated and stored in the variable ocn the Left
side of the statement.
var _ exp 3
where var = any globals Locale referenced or unreferenced
variables
One may make a series of assignments in one statement by
enclosing the List of variables and the tist of expressions in
parentheseses The order of evaluation of the expressions is
teft to righte The expressions are evaltuated and pressed onto
a stacks after all are evaluated they are popped from the
stack and stored in the variablese
(varle varZs eee) _ (expls exp2s oo} 3
Naturatlyes the number of expressions must equal the number
of variablese
Example:

38

MARY ¢

S-~Jan-82 13105 < USERGUIDESs PROGRAMMERS-GUIDELAUGS1y >

(as b)Y _ lcedy a-b)
The expression c+d is evaluated and stackeds the
expression a-b is evaluated and stackedy the value of
a=-b is popped from the stack and stored into be and
finallys the value of c+d ¥s popped and storecd into ae.
It is eguivalent to:

templ _ c+d 3

temp2 _ a=b 3

b _ temp2 3§

a templ 3

-

One may assign a single value to a series of variables by
stringing the assignments together:

-

varl _ vareg _ var3d _ exp 3§
The assignment will be made from right to Lefte varle
varzs and var3 will att be given the vatue of the
expression.
Example:

a b _ 0%

Bogh a and b willl be given the value zeroe. This type of

statement can be useful in initializing a series of
variables at the beginning of a proceduree

BUMP Statement

IF

The BUMP statement will add one to a variable:
BUMP wvar %
This is equivalent to:
var _ var + 1 3
BUMP DOWN will subtract one from a variable:
SUMP DOWN var 3
This is equivalent to:
var _ var = 1 3
You may BUMP more than cne variable in a singte statement:
BUMP varls var2y varlsees
or
BUMP DOWN varls var2ye var3seee 3
Stztement
This form causes execution of a statement 1f a tested
expression is TRUEe If the expression is FALSE and the
optional ELSE part {is presente the statement following the
ELSE ¥s executede Control then passes to the statement
immediately following the IF statement.
IF testexp THEN statement 3§
IF testexp THEN statementl ELSE statement2 3§
The statements within the IF statement can be any statements
but are not followed by the usual semicoloni the whole IF
statement is treated Like one statement and followed by the
semicolone
E.g.
IF y=2 THEN y_y+1 ELSE y_z 3%

In some casesy complex nested IFs may be simpler if rewritten

as a CASE statemente.

CASE Statement

This form is similar to the IF statement except that it causes
one of 2 series of statements to be executed depending on the

result of a series of testse.
CASE testexp OF
relop exp ! statement 3

31

MARY S5-Jdan~82 15205 < USERGUIDESe PROGRAMMERS-GUIDE.AUGS1e > 32

L)

statement
statement

relop exp
relop exp

e 2

-

ENDCASE statement 3
where reltop = any retational or interval operator (>=¢ <e
=y INy etce) see Section 5 (S5e3c) and (5e3d).
The CASE statement provides a means of executing one statement
ocut of manye« The expression after the word “CASE"™ is
evatuated and the result Lteft in a reglister. This is used as
the left-hand side of the binary relations at the beginning of
the various casese FEach expression is evaluated and compared
accaording to the relational operator to the CASE expressione.
If the relationship is TRUEs the statement is executed. If
the relationship is FALSEe the next expression and relational
operator will be triede If none of the reltations is
satisfieds the statement following the word "ENDCASE"™ will be
executeds Control then passes to the statement fol lowing the
CASE statement
Note that the relop and expressions are followed by a
colone and the statements are terminated with the usual
semicolone The word ENDCASE is not followed by & colone
in ENDCASEs the statement may be left out -- this is the
equivalent of having a NULL statement there; nothing will
happene
Example:
CASE ¢ OF
= at Xexecuted if ¢ = aX
X _ Y3
> bt Xexecuted if ¢ > bX
(xe ¥) _ (x+ye x-y)}
ENDCASE Xexecuted otherwise¥
y _ X%
CASE char OF
= Dt %if char = the code for a digitX
char _ *13
= yt: %if char = the code for an upper=-case lLetterX
char _ %03 :
ENDCASE: Xotherwise nothing¥%
Several retlations may be Listed at the start of a single case}
they should be separated by commase The statement will be
executed if any of the relations is satisfied.
CASE testexp OF
relop exp: statement 3
relop exps relop exp! statement 3
relop exps relop expse relop expl statement 3

-

ENDCASE statement 3§
Example: .
CASE ¢ OF
zay <d: ZXexecuted if c=a or e¢<d%
X _ Y5
>be =d: ZXexecuted if ¢>h or c=d¥
(xey) _ (xtygx=y)s
ENDCASE %executed otherwise%

MARY o 5-Jdan-82 15105 < USERGUIDES e PROGRAMMERS-GUIDELAUGI1s > 33

Y _ X%
As a paoint of styles the conditions of the CASE statement
should be put one Level below the CASE statement in the source
{text) filte. The statements (if they are more than one Line)
may be put one level below the conditione
LOOP Statement
The statement following the word "LOOP™ 1is repeatedly executed
until control Leaves by means of some transfer instruction
within the toope
LOOP statements
where statement = any executable L10 statement
Example:
LOOP IF ad>=b THEN EXIT LOOP ELSE a _ a+l 3
(It is assumed that a and b have been initial ized before
entering the Loops}
The EXIT constructtion is desecribed belows It is extremely
important to carefully provide for exiting a lLoope.
WHILE«e DO
This statement causes a statement to be repeatedly executed as
Long as the expression immediately following the word WHILE
has a Logical value of TRUE or control has not been passed out
of the DO toop by EXIT LOOP (described belowlde
WHILE exp DO statement 3
exp is evaluated and if TRUE the statement following the word
DO is executeds exp is then reevaluated and the statement
continually executed until exp is FALSEe. Then control will
pass to the next statemente.
For exampley if you want to fill cut a string with spaces
through the 20th character positions you could:
WHILE stro.l € 20 DO #2strx _ *strxe SP3S ¥what¥s already
theree then a spaceX
Remember that the first word of every string wvariable
has two globally defined fields:
L =-=- actual length of contents of string variable
M == maximum length of string vartable
The WHILE construct s equivalent to:
Loop
IF NOT exp THEN EXIT LOOP
ELSE statement 3§
Statement
UNTIL«eeDO Statement
This statement is similar to the WHILEs« D0 statement except
that the statement following the DO is executed unt il exp is
TRUE« As Long as exp has a Logical value of FALSE the
statement will be executed repeatedlye.
UNTIL exp DO statement 3
Example:
UNTIL a>b DO a _ a+1 3
The UNTIL construct is equivalent to:
LOOP
IF exp THEN EXIT LOOP ELSE statement 3
DO0eesUNTIL/D0eeeWHILE Statement
These statements are Like the preceding statementsy except
that the logical test i1s made after the statement hes been
executed rather than before.
DO statement UNTIL exps

MARY s 5-dan=-82 15:05 < USERGUIDESs PROGRAMMERS~-GUIDE.AUG3S1e >

DO statement WHILE exps
Thus the specified statement is atlways executed at Least once
(the first times before the test is madele For examples this
DOees UNTIL?
00 arrayfvarl _ 6 UNTIL (var = var - 1) = 0 3
and this DOeseeWHILE:
DO arraylvarl _ 0 WHILE {var = var - 1) > 0 3
are both equivalent to:
Loop
BEGIN
arrayfvarl _ 0 3
IF (var = var - 1} = 0 THEN EXIT LOOP 3§
ENDS
FOReseDD Statement
The FOR statement causes the repeated execution of the
statement following "DO" until a specific terminal value fis
reachede.
FOR var UP UNTIL relop exp DO statements
(UP will be assumed if lLeft oute)
FOR var DOWN UNTIL relop exp 00 statements

where
var = the variable whose value is ifncremented or
decremented each time the FOR statement is
executed
relop = any relational operator (described in S5e3c}
exp = when combined with relops determines whether

or not another iteration of the FOR statement
Wwill be performeds It is recomputed on each
iteration.
Eege FOR § UP UNTIL > 7 DO a _ a + tLi1 3
Optionatlys the user may initialize the wvariable and may
increment it by other than the default of ones
FOR var _ expl UP exp2 UNTIL relop exp3 DO statements;
FOR var _ expl DOWN exp2 UNTIL relop exp3 DO statements
where
expl = an optional inftial vatue for vare If expl is
not specifieds the current value of var is usede
exp?2 = an optional value by which var wilt be
incremented (if UP specified) or decremented (if DOWN
specified)e If exp2 is not specifieds 2 vatue of one
will be assumede.
Note that expZ2 and exp3 are recomputed on each iteratione.
Example:
FOR k _ n UP k/2 UNTIL > m*3 DO xEk1l _ k3§
is equivalent to

k _ ns
LOOP
BEGIN
IF k >m*3 THEN EXIT LOOPS
xCk1 _ k3
k _ k + k/23
ENDS

BEGINeosoEND Statement
The BEGINee«END construction enables the user to group several
statements into one syntactic statement entitye A BEGIN.«sEND
construction of any tength is valid where one staterent is

34

MARY 5-Jdan=-82 15:0% < USERGUIDESe FROGRAMMERS~GUIDELAUGS1ly >

requirede
BEGIN statement § statement § eee END §
Example:
IF a >= b*c THEN
BEGIN
a_»bs
c_d+53%
END %no semicolon here because an L10
statement here wouldn®t have ones see 5d4¥%
ELSE
BEGIN
a_cs
b_d+23
c_bxdx73
ENDS Xthis semicoton terminates the entire IF
statement ¥
Mote the use of NLS file structure to clarify the Logic and
separate the blockse Blocks should always be put one level
below the statement of which they are a parte.
EXIT Statement
The EXIT statement transfers control (forward) out of CASE or
fterative statementse A CASE statement can be Left with an
EXIT CASE statemente ALL of the iterative statements (LOOPs
WHILEs UNTILe DOs FOR) can be exited by the EXIT LOOP
statements EXIT and EXIT LGOP have the same meanince
EXIT LOOP num or EXIT num
EXIT CASE num
where num is an optional integer. The opticnal number
(num) specifies the number of lexical levels c¢f CASE or
iterative statements respectively that are to be exited
(eege if loops are nested within toops)e If & number is
not given then 1 is assumede.
Examples:
LOOP
BEGIN
[N XN 3 8 B 3 3
IF test THEN EXITS
%the EXIT wiltl branch out of the LOOPX

[N B ¥ N N ¥ J
ENDS
UNTIL something DO
-BEGIN
I E N N X N B N3
WHILE testl DO
BEGIN
e s0oOGGES
IF test2 THEN EXITS
%the EXIT will branch out of the WHILEX
LR N N W N N
END S
"R ESER GO
ENDs
UNTIL something DO
BEGIN

L N X N B

WHILE testl DO

35

MARY ¢

S5-Jan-82 15:05 < USERGUIDESsy PROGRAMMERS-GUIDE.AUGS1y >

BEGIN
LX N N W N 3
IF test2 THEN EXIT 2%
xthe EXIT 2 will branch out of the UNTILY%
[Z E N N ¥ N ¥ 3
END3S
L N N N N N
ERDS
CASE exp OF
zgsomething:
BEGIN
[N W N W N
IF test THEN EXIT CASE: .
%the EXIT wilb branch out of the CASEX

LR B N N N N 3
END 3

LA N B X N N ¥ J

REPEAT Statement

The REPEAT statement transfers control (backward) tc the front
of CASE or iterative statementss The optional number has the
same meaning as in the EXIT statements REPEAT and REPEAT CASE
have the same meaninge.
REPEAT LOOP num
REPEAT CASE num (exp) or REPEAT num (exp}
I1f an expression is given in parentheses with the REPEAT CASEs
then i1t s evaluated and used in place of the expression given
at the head of the specified CASE statemente If the
expression is not givensy then the one at the head of the CASE
statement is reevaluatede.
Examples:
CASE expl OF
zgsomething:
BEGIN
IF testl THEN REPEAT:
%XREPEAT with a reevatuated expl¥
[N N N & N N]
1F test2 THEN REPEAT(exp2)s
AREPEAT with exp2X
ENDS
ENDCASE 3
LOOP
BEGIN
IF test THEN REPEAT LOOPS
YREPEAT LOOP will go to the top of the LOOPX

L N N N R

ENDS

DIVIDE Statement

The divide statement permits both the guotient and remainder

of an integer division to be savede The syntax for the divide
statement is as follows:

DIV expl / exp2 ¢ quotient ¢ remainder §
Quotient and remainder are variable names in which the

36

MARY 5=-Jan=-82 15:05% < USERGUIDESe PROGRAMMERS-GUIDEAUGS1e > 37

respective values will be saved after the divisione
FeQe
DIV a /7 be as r 3
a Wwill be set to afb to the greatest integer with r
getting the remainder
Ftoating point calculations are described in Part Fiveys
Section 4.
PROCEDURE CALL Statement
Procedure calls direct program control to the procedure
specifiede A procedure call cccurs when the name of the
procedure is followed by parentheses. If the procedure
requires that arguments be passeds they should be included in
the parenthesess separated by commase
procname (exps €Xpe eee} 3
where procname = the name of a procedure
exp = any valid L10 expression (explained in Section S)e
The set of expressions separated by commas is the
argument List for the proceduree.
The argument List consists of a number of expressiors
separated by commase. The number of arguments should equal the
number of formal parameters for the procedure. The argument
expressions are evaluated in order from left to righte Each
expression (parameter) must evaluate to a one=word value. The
values will be assigned to the formal parameters of the called
procedures.
To pass an arrays text pointeres strings or any multi-word
parametery the programmer may pass the address of the first
word of the variables then REF the receiving local in the
calied procedures
For examples one may pass an stid directlys but to pass a
text pointers you must pass the address of the text pointer
and REF the receiving parameter. Remember that a dollar
sign ($) preceding a variable represents the address of
that variablee.
The procedure may return one or more valuese The first value
is returned as the value of the procedure calte Therefores if
only one value is returneds one might say:
a _ proc (b) 3
In this contextys the procedure call ¥s an expressione.
If more than one value is returned by the called procedures
one must specify a List of variables in which to stcre them.
The List of variables for multiple results is separated from
the List of argument expressions by a colone The number of
Ltocations for results need not equal the number of results
actualtly returnede If there are more Locations than resultse
then the extra locations get an undefined value. If there are
more results than locationss the extra resutts are simply
Losts The first RETURN value is stiltl taken only as the value
of the procedure calle
var _ procname (eXps €XPS see I Vars vars ses}) 3
Example:
If procedure "proc®" ends with the statement
RETURN (asbec)
then the statement
q _ preclires)s
results in (qeres) _ (asbec)e

MARY ¢

5=~Jan-82 15105 < USERGUIDESs PROGRAMMERS-GUIDE.AUG31ls > 38

A procedure call may just exist as a statement alone without
returning a valuees Not all procedures require parameterss hut
the parentheses are mandatory in order tc¢ distinguish a
procedure call from other constructse
CEege Lda()s
If a block of instructions are used repeatedlys or are
duplicated in different sections of a programe it is often
wise to make them a separate procedure and simply call the
procedure when appropriatees
It ¥s considered good style to ®"modularize® the functions
of your program as much as possibles where each procedure
represents a function which will be performed no matter
which procedure called ite This implies very Limited use
of global variables and careful definition of the procedure
interface.
Procedures should not be made too tonge nor have complex
nested loopse Often breaking the code intoc a nusmber of
shorter procedures will make the program clearer and easier
to debug.
& procedure may recursively call itself. Each call will have
its own unique set of Local variabless This may be useful if
a procedure is built to handle a general case as well as a
specific case or number of casese The general case may call
that same procedure for the specific case after some
manipulationse
A great many procedures are part of the NLS system and are
available to your programse A List of them s available in
the file <NLSeXPROCSy> or <NLSe¢SYSGDe>e SYSGD Lists Links to
the source codes so that you can examine the procedure in
detail to see just what it expects as arguments and what it
returnse

RETURN Statement

This statement causes a procedure to return controtl to the
procedure which called it. Optionallys it may pass the
calling procedure an arbitrary number of results. The order
of evaluation of results is from left to right.

RETURN 3

RETURN (exps eXpy eoe) 3
EeGe

RETURN (TRUEs a+b) 3

RETURN ¢ getnmf(stid)) 3

GOTO Statement

Any statement may be labeleds: one puts the desired Label (a
string of lower case letters and digits) in parentheses and
followed by a colon at the beginning of a2 statemente.
(Label): statement 3
FeGe
(there):l a _ b + ¢ 3§
GOTO provides for unconditional transfer of control to & new
tocatione.
6070 Label 3
E¢g.
GOTO there 3
GOTO statements make reading and debugging your procram
difficult and are not considered good stylei they can usually
be eliminated by use of procedure calls and the iterative

MARY » S5=-dan-82 15105 < USERGUIDESes PROGRAMMERS-GUIDE«AUGsS1le > 39

statementse.
NULL Statement
The RNULL statement may be used as a convenience to the
programmere. It does nothing.
NULL 3
Example:
CASE exp OF
=0y =1 NULLS
ENDCASE y_13
JSYS Call and Assembly Language Statement
The use of these capabilities should be limited to system
programmerse. Assembly language code makes user programs
difficult to understand and to maintain as the executive
underlying NLS changes over times L10 procedures are
available to accomplish most of the tasks one might want to do
with a JSYSe System programmers shoutd refer to the TENEX
JSYS manual for a3 description of the available JSYS‘*s.
Assembly language statements may be included in the L1080 ccode
by preceding the statement with an exclamation=-point (1)e The
instruction must be upper-casei the arguments must ke
lower-cases Eege
*PUSH seifn 3
A TENEX JSYS may be invoked with a statement similar to the
procedure call statement; the name of the JSYS must be
tower-casey preceded by an exclamation-point:
Yisysname (regls reg2seeed) 3
EeGe !gjinf(} H
The arguments in the parentheses are evaluated and loaded into
the registers before the JdSYS is invokeds. The first argument
will be put in register ones the second in register twos etce
Up to eight arguments may be given.
Like a procedure caltye multiple resutts may be receiveds. They
will be taken in order from the registerse (See <13510+¢3¢c>
for a description of user JSYS callse.
Some JSYS return to the assembly~tanguage line of ccde (not
the L10 statement) one beyond the normal return locatione.
With such JSYSs you may use the SKIP construct to test if it
has done so:
IF SKIP tjsystargleeae) THEN eoe §
In using SKIPs you may not receive multiple results directliys
but must read the registers into globals (see 5¢12).
Section 5 Expressions
Introduction
This section will describe the composition of the expressionsy
which are an integral part of many of the statements described
in Section 4.
Primitives
Primitives are the basic units which are used as the operands
of L10 expressionse There are many types of elements that can
be used as L1868 primitivess each type returns a value which is
used ¥n the evaluation of an expression.
Each of the following is a valid primitive:
a constant (see below)
any valid variable names refering to the contents (of the
first wordy if not indexed) of that variable
the contents of a string variablesy refered to as +*varx

MARY s

S=-Jan-82 15:05 < USERGUIDES s PROGRAMMERS-GUIDELAUG:I1ye >

a dollar sign (3) followed by a variable names refering to
the address of the variable
a procedure call which returns at Least one value
the first (Lefimost) value returned is the value of the
procedure call; other values may be stored in other
variables as described in Section 4.
an assignment (see below)
classes of characterss described in Section 1 of Part One
MIN (exps eXpe eee) the minimum of the expressions
MAX (exps €XxXpes eee) the maximum of the expressions
TRUE has the value 1
FALSE has the value 0
VALUE (astring) given the address of a string corntaining &
decimal numbere has the value of the number
VALUE (astrings num) given the address of a string
containing a number and the base of that numbers has the
value of the number (allows other than base-ten numbers)
READC (see below)
CCPOS (see below)
FIND
used to test text patterns and load text pointers for
use in string construction (see Section 6} returns the
value TRUE or FALSE depending on whether or not altl the
string tests within it suctceed.
POS
POS textpointerl relop textpointer?2
may be used to compare two text pointers. If the POS
construction is not usedy ontly the first words of the
pointers (the stid*s) will be comparede If a pointer is
before anothere it is considered less than the other
pointer.
Ecgo
POS pt1 = pt2
POS first >= last

Constants

A constant may be either a number or a Literal constante.
There are several ways in which numeric values mgay be
representede A sequence of digits alone (or fol lowed by a
D) is interpreted as base tenes If followed by a B then it
is interpreted as base eighte A scale factor may be given
after the 8 for octal numbers or after a 0D for decimal
numberse The scale factor is equivalent to addirg that
many zeros to the original number.

Examples?
64 = 100B = 1B2
1448 = 100 = 1b2

Literals may be used as constants as they are represented
internally by numeric valuese The following are valid
Literal constants:
-~any single character preceded by an apostrophe
cede %a represents the code for 141B8.
~-the following synonyms for commonly used characters:
ENDCHR == endcharacter as returned by READC
SP -- gpace
ALT == Tenex®s version of altmode or escape (=33B)
CR == carriage return

40

MARY ¢ 5-Jdan-82 15205 < USERGUIDESy PROGRAMMERS-GUIDELAUGI1e > 41

LF == line feed
EQ0L == Tenex ECL character
TABR -- tab
BC -- backspace character
BW -- backspace word
Ce -—- center dot
CA -- Command Accept
CO == Command Celete
Ass ignments
An assignment can be used as a value in an expressione.
The form a2 _ b has the effect of storing b into & and has
the value of b as the value of the assignment.
Another form of the assignment statement is:
a :=
This will store b into ae but have the old value of a as
the value of the assignment when used as a primitive in
an expressione.
For exampley
b _ (a = b} 3§
The value of b witl be put in a« The assicnment will
get the old value of as which is then put in be. This
transposes the values of a and be (The parentheses
are not really necessaryes)
READC - ENDCHR
The primitive READC is a2 special construction for reading
tharacters from NLS statements or stringse
A character is read from the current character position
in the scan direction set by the Last CCPOS statement or
string analysis FIND statement or expressione CCPO0S and
FIND are explained in detail in Section 6 of this
documente
Attempts to read off the end of a string in e ither
direction result in a special "endcharacter®™ being
returned and the character position not being moved.
This endcharacter is included in the set of characters
for which system mneumonics are provided and mray be
referenced by the identifier "ENDCHR™.
For examples to sequentially process the characters
of a string:
CCPOS #str»;
UNTIL (char _ READC) = ENDCHR DO processfchar)}
(Note: READC may also be used as a statement if it is
desired to read and simply discard a characterde.
CCPOS
When used as a primitives CCPOS has as its value the index
of the character to the right of the current character
positione If str = "glarp®"s then after CCPOS 2strxe the
value of CCPOS is 1 and after CCPOS SE(*str*) the value of
CCPOS is & (one greater than the ltength of the stringle.
CCPOS is more commonly used as a statement to set the
current character position for use in text pattern
matching. This is discussed in detail in Section 6.
CCPOS may be useful as an index to sequentially process the
first n characters of a string tassumed to have at least n
characters).
Example:

MARY »

5-Jan~82 15205 < USERGUIDESy PROGRAMMERS~-GUIDL.AUGS1lse >

CCPOS SF(xstr*);

XCCPOS now has the index value of onee¢ the front
of the stringX
UNTIL CCPOS > n DO process(READC)S

%READC reads the next character and increments
CCPOSX%

Operators

Primitives may be combined with operators to form expressionse.
Four types of operators will be described here: arithmetice

relationale intervals and logicale.
Arithmetic Gperators

+ (in front of a number) =-- positive valtue
¢in front of a number) ~-- negative value
-= addition
-=- subtraction
-=- pultiplication
-= integer division (remainder not saved)
M0D =-- a MOD b gives the remainder of a / b

b S IR N |

eV == (OR) a oV b => bit pattern which has 1*s where either

a or b contains 1l¢ 0 elsewhere

eX == (XOR)Y a eX b => bit pattern which has 1%*s where
either a holds 1 and b contains 0+ or a contains 0 and b
contains 1y 0 elsewhere

A =~ (AND) a A b => bit pattern which has 1%s where both

a and b contain 14 0 elsewhere
Relational Operators

A relational operator is used 1in an expression to compare
one quantity with another. The expression is evazluated for

a logical valuee If truees its vatue is 13 if falsey its
value is GC.

Gperator Meaning Example

= equal to 4+1 = 3+2 (TRUEy =1}
it not egqual to 688 (TRUEs =11}
< tess than 6<8 (TRUEs =1)
£= tess than or

equal to 8<=6 (FALSEs =0}
> greater than 3>8 CFALSEs =0)
>= greater than or

equal to 8>=6 (TRUEes =11}

NOT <other-relational-operator>
& NOT > 8 (TRUEe =11
Interval Operators
The interval operators permit one to check whether the
value of a primitive falls in or out of a particular
intervale.
IN tprimitives primitive) IN [primitives primitivel

The vatue is tested to see whether or not it Lies within a

particular intervale Each side of the interval may be
*open" or "closed®e Thus the values which deterrine the
boundaries may be included in the interval (by using a
square bracket) or excluded (by using parentheses)es
Example?

x IN [1s4100)

is the same as
(x >=13) AND (x < 180)

42

MARY »

5-dan-82 15:05 < USERGUIDESs PROGRAMMERS-GUIDE.AUGS1y >

Logical Operators

Every numeric value also has a logical valuees A numeric
value not equal to zero has a logical value of TRUES e
numeric value equal to zero has a Logical value of FALSE.
OR

a DR b = TRUE ++f a = TRUE or if b = TRUE
= FALSE if a = FALSE and if b = FALSE
AND
a AND b = TRUE 1f a = TRUE and if b = TRUE
= FALSE if a = FALSE or if b = FALSE
HNOT
NOT a = TRUE if a = FALSE
= FALSE if a = TRUE

Expressions

Introduction

An expression is any constants variables special expression
forme or combination of these joined by operators and
parentheses as necessary to denote the order in which
operations are to be performede.
Examples of assigning an expression to a variable:
var _ 03
var _ var + 2 3
var _ POS ptrl >= ptr2 3
var _ (a > b) OR (a IN [cey dI) 3
Liberal use of parentheses is highly recommendede.
Special L10 expressions are:
~ the FIND expression which s used for string
manipulations and
- the conditionalt IF and CASE expressions which may be
used to give alternative values to expressions depending
on tests made in the expressionse
Expressions are used where the syntax requires a valuee.
Yhile certain of these forms are similar syntactically to
L10 statementse when used as an expression they always have
values (see helow).

Order of Operator Execution-- Binding Precedence

The order of performing individual operations within an
equation is determined by the hierarechy of operator
execution (or binding precedence) and the use of
parenthesese.
Operations of the same heirarchy are performed from teft to
right in an expression. Operations in parentheses are
performed before operations not in parenthesese.
The order of execution of operators (from first to lLast}) is
as follows:

unary =-s unary +

eh

eVyg oX

g fo¢ MOD

e -

relational tests (eeQey D¢ <=g 29 <9 =g H9 IKe OUT)

NOT relational tests (eegee NOT >)

NOT

AND

OR

Conditional Expressions

43

MARY o =Jan-82 15:05 < USERGUIDESs PROGRAMMERS~-GUIDELAUGS1y > 44

The two conditional constructs (IF and CASE) can be used as
expressions as well as statementses As expressionss they
must return a value.
IF Expressions
IF testexp THEN expl ELSE exp2
testexp is tested for its Logical values If testexp is
TRUE then expl will be evaluatede If it is FALSEe then
exp2 is evaltuated.
Thereforesy the result of this entire expression is
EITHER the result of expl or exp2e.
Example:
y _ IF x IN[1433 THEN x ELSE 43
%if x = 14 24 or 3¢ then y_x3i otherwise y_4%
CASE Expression
This form is similar to the above except that it causes
any one of a series of expressions to be evaluated and
used as the result of the entire expressione.
CASE testexp OF

relop exp ¢ exp
relop exp : exp 3
relop exp © exp 3

.

ENDCASE exp
where relop = any relational or interval operator
(>z¢g <94 =¢ IN¢ etce See above (S5e3c) and (5e4d)
In the aboves the testexp is evaluated and used with the
operator relops and their respective exps to test for a
value of TRUE or FALSEe If TRUE ¥n any instances the
companion expression to the right of the colorn is
executed and taken to be the value of the whole
expressions A value of FALSE for all tests causes the
next relop in the CASE expression to be tested against
the testexpe If all relops are FALSEys the ENECCASE
expression is taken to be the value of the whole
expressione : '
Note that ENDCASE cannot be nulls it must have a valuee
As with the CASE statements any number of cases may be
specifiedy and each case may include more thar one relop
and expressions separated by commase
Examples
y _ CASE x OF
<32 x+13
=3¢ =4I %23
=52 X3
ENDCASE x*23
Value of X Value of y
2 3
3 5
4 6
5 5
6 12
String Expressions
L1090 also provides several expression forms which are used
for string manipulation and evaluation. These are

MARY s S-dan-82 15105 < USERGUIDESe PROGRAMMERS~GUIDE.AUGS1ly > 45

discussed in Section & of this documente When using string
manipulation statement forms as expressionse parentheses
may be necessary to prevent ambiguitieses
Section &: String Test and Manipulation
Introduction
This section describes statements which atlow complex string
analysis and constructione The three basic elements of string
manipulation discussed here are the Current Character Position
(£CCPOS)Y and text pointers which allow the user to delimit
substrings within a string (or statement)s patterns that cause
the system to search the string for specific occurrences of
text and set up pointers to various textual elementse and
actual string constructione.
Current Character Position (CCPOS)
The Current Character Position 1s similar to the TNLS CHM
(Control Marker) in that it specifies the Location in the
string at which subsequent operations are to begine ALl L1B
string tests start their search from the Current Character
Positione In Content Analyzer programse it i1s initialized to
the BEGINNING OF EACH NEW STATEMENT. For each new statements
the scan direction is initialized to LEFT TO RIGHT. It is
moved through the statement or through strings by FIND
expressions. It may be set to a particular position in a
statement or string by the L10 statement:
CCPOS pos 3
pos is a position in a statement or string that may be
expressed as any of the following:
A previously declared and set text pcintere.
1¥f a text pointer 4s given after CCPOSe then the
character position 1s set to that location. 2 text
pointer points between two characters in a stringe.
€CeGe CCPGS ptl H
Steing Front =-- Left of the first character
SF(stspec}
$hen SF is specifiedsy CCPOS will be set before the first
character of the statement or string variable specified
by stspece
stspec is a string specification that may be expressed
as
~ an stid (eege the first computer word of a
previously declared text pointer)e or
- a previously declared string name enclosed in
asteriskse
Examples?
CCPOS SF(ptl) 3
%ptl is a text pointerX
CCPOS SF(stid) 3
¥stid s an stid¥%
CCPOS SF(xgtrx)
Zstr is a stringX
String End ~- right of the Last character
SE(stspec)
When SE 1s specified scanning will take place from right
to teftsy and CCPOS will he set after the tast character
of the statement or string variable specified by stspece.
A string (*stringname+) is given after CCPOSe. The position

MARY o S5~Jan-82 15:05 < USERGUIDESs PROGRAMMERS-GUIDE.AUGS1le > 46

is moved to the beginning of that stringe.
Indexing the stringname (by specifying [exp]) simply
specifies a particutar position within the string. Thus
*+str*f£3] puts the Current Character Position between the
second and third characters of the string *str“e If the
scan direction is Left to rights then the third
character will be read next. If the directior is right
to lefty then the second will be read nexte
EeGe
CCPOS xstr+[31 3
If no indexing is givens then the position is set to the
Left of the first character in the stringe This 1is
equivalent to an index of 1.
EaGe
CCPOS *strx 3
means the same as
CCPOS SFirstr*);
Setting the current character position with the CCP({S
statement also sets the scan direction to forward
(left-to=-right)s except 1f the SE construct is used.
FIND Statement
The FIND statement specifies a string pattern to be tested
against a statement or string variablesy and text pointers to
be manipulated and sets starting from the Current Character
Positions. If the test succeeds the character position is
moved past the Last character read. If the test fails the
character position is teft at the position prior to the FIND
statements The values of text pointers set in the statement
prior to the failing element will remain as sets others of
course wiltl not be changede
FIND pattern i
FINDs may be used as expressions as well as free-standing
etementses If used as an expressione for example in IF
statementse it has the value TRUE if all pattern elements
within it are true and the value FALSE if any one of the
elements is falses
FaGQe
IF FIND pattern THEN eee ¥
It is good practice to use FIND as an expression with the
appropriate error conditions if the FIND failse If the FIND
failse text pointers may not be set as expecteda
FIND Patterns
A string pattern may be any valid combination of the following
Logical operatorss testing argumentse and other non-testing
parameters (note the identity with Content Analyzer Patterns):
FPattern Matching Arguments--
(each of these can be TRUE or FALSE)
string constanty ee«ge "ABC"®
or any characters preceded by an apostrophy
It should be noted that if the scan direct ion is set
right-to=-Left the string constant pattern should be
reversede In the above examplee one would have to
search for “CBA".
Any of the system defined mnemonicsy as described in
the last section (S5e2c)e such as ®"SP" or *(CR"s are
also valide.

MARY ¢

5=Jdan-82 15105 < USERGUIDESe PROGRAMMERS-GUIDE.AUGS1e >

character class
took for a character of a specific classs if founde =
TRUEe otherwise FALSE.
Character classes:
CH =-- any character
L -- lowercase or uppercase Letter
UL =-- uppercase lLetter
Lt =-- lowercase letter
0 -=- digit
Lb -~ lowercase or uppercase letter or cigit
NLD =~=- not a letter or digit
ULD == uppercase letter or digit
LtD == lowercase letter or digit
PT == printing character
NP ~-=- nonprinting character
Exampte:
char = LD
is TRUE if the variable char contains a value
which is a lLetter or a digit.
{elements)
Ltook for an occurrence of the pattern specified by
the elementse If founde = TRUE, otherwise FALSE.
Elements may be any patternd the parentheses serve to
group the elements so as to be treated as a2 sincle
element in any of the following elementse.
-element
TRUE only if the string constant or character class
element following the dash does not occure
NOT element
TRUE only if the element or group of elements
following the NOY does not occure
[elements]
TRUE if the pattern specified by the elements can be
found anywhere in the remainder of the stringe.
elements may be any patterni the squarebrackets also
aroup the elements so as to be treated as a single
element. It first searches from current pcsition.
If the search falledy then the current position is
incremented by one and the pattern is tried againe
Incrementing and searching continues untit the end of
the strings. The value of the search is FALSE if the
testing string entity is not matched before the end
of the string is reachede.
NUM element
find (exactly) the specified number of occcurrences of
the element.
E-g.
3¢LD) means three letters or digits
NUM1 ¢ NUM2 element
Yests for a range of occcurrences of the element
specifieds If the element is found at least HNUM1
times and at most NUMZ2 timese the value of the test
is TRUEe
Either number s optionale« The default value for
NUM1 s zeroe. The default value for NUFK2 is
10000 Thus a construction of the form ®"$3(CH)"

47

MARY ¢

5-dan=82 152105 < USERGUIDESe PROGRAMMERS-GUIDE.AUGI1s 2

ID
1D

FT

would search for any number c¢f characters
(including zero) up to and including threee.
Examples:
2%4(UL) -- from two to four upper-case Letters
$106(SP) ~-- up to ten spaces
13(%.) -~ one or more periods
= user-ident
user-ident
if the string being tested is the text of an HNLS
statement then ident of the user who created or last
edited the statement is tested by this constructions
1f CCPOS is in a stringe you will get the error
*string treated as statement®
var
TRUE 1if the variable holds a value of TRUE
(non=-zerode.

SINCE datim

if the string being tested is the text of an NLS
statementy this test s TRUE if the statement was
created or modified after the date and time (datims
see below) specified.

BEFORE datim

if the string being tested is the text of an NLS
statementy this test is TRUE if the statement was
created or modified before the date and time (datime
see below) specifiede.
Acceptable dates and times follow the forms permitted
by the TEHNEX system®*s IDTIM JSYS described in detail
in the TENEX JSYS manuale. It accepts "most any
reasonable date and time syntax."
Examples of valid dates:
17-APR-7Q
APR=-17-70
APR 17 70
17 APRIL 70
1775/7197¢
5/17/70
APRIL 17+ 1970
txamples of valid times (zeroc assumed if time left
ocut):
1:12:13
1234
1234:56
1:56AM
1:56-ES7
1200N00N
16230 (4330 PH)
12:00200AM (midnight)
11:59:59AM=-EST (lLate morning)
12:00:01AM (earty morning)
Examples:
BEFORE (MAR 1%9¢ 73 161:49)
SINCE (25-JUL-73 2130:00)

These may not appear in Content Analysis patternse but are
valid elements in FIND statements in any program:
*stringnamex

48

MARY 5=dJdan-82 15205 < USERGUIDESe PROGRAMMERS-GUIDE.AUGS1e > 49

the contents of the string variable
BETWEEN pos pos (element)
Search Limited to between positions specifieds pos
is a previously set text pointer: the two must be in
the same statement or stringe Scan character
position is set to first position before the pattern
is tested (This is not an unanchored scan unless
square brackets are used within the parenthesesele
Eege
BETWEEN ptl pt2 (2D [eJ $NP)
Logical QOperators--
These combine and delimit groups of patternse Each
compound group is considered to be a single pattern with
the value TRUE or FALSEe The character position will be
reset to its position before encountering the grcup before
a new group is testedes Any text pointers set within a test
pattern before it fails will retain their new values. (See
examples belowe)
/
AND
OR
These lLogical concatenators bind in the order in which
they are Listede Ieee
a / b AND ¢
means the same as
(a / b}y AND ¢
Other Elementg--
These do not involve testss rathery they involve some
execution actione They are always TRUE for the gpurposes of
pattern matching testse.
These may appear in simple Content Analysis Patterns:

<
set scan direction to the Left
In this cases care should be taken to specify
patterns in reverses that 4s in the order which
the computer Wwill scan the text.
>

set scan direction to the right
TRUE
has no effects it is generally used at the end of OR
when a value of TRUE is desired even if all tests
faite.
ENDCHR
Attempts to read off the end of a string in etther
direction result ¥n a special "endcharacter™ being
returned and the character position is not movede.
This endcharacter is included in the set of
characters for which system mneumonics are provided
and may be referenced by the identifier “"ENKDCHRY.
These may not appear in simple Content Analysis Patternss
but may in FIND statements:
pos
pos is a previcusly set text pointers or an SE(pos?
or S8F(pos) construction. Set current character
position to this positione If the SE pointer is
useds set scan direction from right to Lefte If the

MARY o S5-Jan=-82 15:05 < USERGUIDESes PROGRAMMERS~GUIDE.AUE31y > 50

SF pointer is useds set scan direction fror left to
r‘ight.
EaCe
FIND x3 %sets CCPOS to position of previously set
text pointer x%
~ 1D
store current scan position into the textpcecinter
specified by the identifier
_ [NuMI1 ID
back up the specified text pointer by the specified
number (NUM) of characterse Default value for NUM is
ones Backup is in the opposite direction of the
current scan direction.
FS var
FR var
FS will set the variable to TRUE (1)e FR will reset
the variable to FALSE (0).
String Construction
One may modify an NLS statement or a string with the
statement:
ST pos _ stringlist 3
The whole statement or string in which pos resides wittl
be replaced by the string liste.
ST pos pos _ stringlist 3
The part of the statement or string from the first pos
to the second pos will be replaced by the string liste.
*nos™ may be a previously set text pointer or the
SF{pos)/SE(pos) construction.
There are two additional ways of modifying the contents of a
string variable:
ST »stringname*lexp TO expl _ stringlist 3
means the same as
*stringname*fexp TO expl _ stringlist 3
The string from the first position to the second
position will be replaced by the string liste The
square-bracketed range is entirelty optionals if {t is
Left offe the whole string will be replacede.
Note that the "ST®* is optional when assigning a
stringlist to the contents of a string variables The
statement then resembles any simple assignment
statemente lece
stringname _ stringlist 3
The string Llist (stringlist) may be any series of string
designatorss separated by commase. The string desigrators may
be any of the following:
the word NULL
represents a zero length (empty) string
string constantsy ee.ge "ABC®™ or *w
part of any string or statements denoted either by
two text pointers previocusly set in either a statement
or a strinag
pos pos
a string name in asteriskse refering to the whole string
*stringname=
a string name in asterisks followed by an indexe
refering to a character in the string

MARY ¢

Example:

a "word" be defined as an arbitrary number of Letters and
digitse The text pointer *t®* is set before or after some
character in the wordes The two statements in this example
detete the word which holds the text pointer ®"t"y ard if there
is a space on the right of the words it is also deleted.
Otherwises if there is space on the left of the word¢ it 1is
deletede.

The text pointers ptrl and ptr2 are used to delimit the Left
and right respectively of the string to be deleted.

IF CFIND t < $LD “ptrl > SLD (SP “ptr2 7 “ptr2 ptrl < (SP

S5=Jdan=-82 15:05 < USERGUIDESes PROGRAMMERS-GUIDE.AUGS1ly >

*stringnamexfexp]
(The index of the first character is onees)
a string name in asterisks followed by two incicess
refering to a substring of the string
*stringname«fexp TO expl
A construction of the form »str+li 7O j1 refers to
the substring starting with the ith character in
the string up and including the jth characters.
Examples:
*str*xf7 T0 101 is the four character substring
starting with the 7th character of stre
*xstr*l ¥ TO stretl is the string str without the
first 1-1 characters. (i is a declared
variables)

+ substring

substring capitalized

-~ substring

substring in Lower case

value of a3 general L10 expression taken as a characters
ieces the character with the ASCII code value (see chart
at end of document) equivalent to the value of the
expression

STRING (exple exp2);

gives a string which represents the value of the
expression expl as a signed decimal number. If the
second expression is presents a number of that base is
produced instead of a decimal numbere
Ecge

STRING (3*2) is the same as the string "&"®

aor
STRING (1448) is the same as the string "1&¥

Examples:
ST pt p2

_ *string+;
does the same as

ST pl _ SFipl) ple *string*ey p2 SE(DP2)}

assuming pl and p2 have been set scmewhere in the same
statemente The lLatter reads "replace the statement
holding pl1 with the text from the beginning of the
statement to ple the contents of strings then the text
from p2 to the end of the statement.®

*gt+*l Llow TO highl _ "string"s

does the same as

*stx _ *st«l1 TO low=1Je "string®s *sta[high+1l TC st.lL1s

assuming tow and high are declared simple variables.

51

MARY &

5-Jdan-82 15105 < USERGUIDESe PROGRAMMERS~-GUIDE.AUGS1ly >

“ptrl / TRUE))Y)Y THEN

ST ptrl ptr2 _ NULLS
The reader should work through this example until it is clear
that it really behaves as advertisede.

More Than One Change per Statement

The second word of a text pointers the character countes stays
the same until the text pointer is again set to some other
position (as does the first word)s even though the statement
has been editede Ifs for examples you have the statement
abedefg
FAN
and if you have set a pointer between the "d" and the ®"e®y it
will always point between the fourth and fifth characters in
the statement; the second word of the text pointer holds the
number S« If you then delete the character ™a"e+ your pointer
will be between the "e®™ and the "fw,
bcdefg
/\
For this reasons you probably want to do a series of edits
beginning with the Last one in the statement and working
backwardss

Text Pointer Comparisons

This may be used to compare two text pointerse
POS pt1 pt2;s

A\VAVSSR VAR 1]

=

ptl and pt2 are text pointerse.
NOT may precede any of the retational operatorse If the
pointers refer to different statements then all retations
between them are FALSE except ®"not equal®™ which is written
or NOT=e 1If the pointers refer to the same statement,
then the truth of the relation is decided on the basis of
their Location within the statemente.
A pointer closer to the front of the statement s "less
than* a pointer closer to the ende.

Section 7: Invocation of User Filters
Introduction

The Content Analyzer filters described in this document may be
imposed through the NLS PROGRAMS subsystem.
User-attachable subsystems may be written for more complex
taskse This type of user program and NLS procedures which
may be accessed by them will be discussed in Part Foure.
4ith such a programe howevers the user will still make use
of the commands in the NLS PROGRAMS subsysteme
This section describes NLS commands which are used to compiles
institute and execute user programs and fitterse
Compilation--
is the process by which a set of instructions in a
program is translated from the L10 language written in
an NLS source file into object codes which the computer
can use to execute those instructicnse.
Loading=-
is the process which copies the compiled instructions

52

MARY 5-Jan=82 15:05 < USERGUIDESs PROGRAMMERS-GUIDE.AUG:I1y > 53

into the user-programs buffers
Instttution~-~
is the process by which a compiled and Loaded Content
Analyzer program is designated as the current Content
Analyzer filter.
This section additionally presents examples of the use of the
L10 programming languages They do not make use of any
coenstructions not explained so¢ far in this manuals.
Programs Subsystem
Introduction
The PROGRAMS subsystem provides several faciltities for the
processing of user written programs and fitterse It is
entered by using the NLS command:
Goto Programs OK
This subsystem enables the user to compile L10 user
programs as well as Content Analyzer patternss control how
these are arranged internally for different usess define
how programs are usede and to see the status of user
programse
PROGRAMS subsystem commands
After entering the PROGRAMS subsystems you may use one of
the following commands:
Show Status of programs buffer
This command prints out information concerning active
user programs and filters which have bheen loaded and/or
instituted:
Show Status (of programs buffer) 0K
When this command is executed the system will print:
-=- the names of all the programs in the user programs
buffere including those generated for simple Content
Analysis patternsy starting with the first program
loadedes
-= the remaining free space iIn the buffere The buffer
contains the compiled code for all the current
compiled programse.
-= the current Content Analyzer Program or "None"
~=- the current user Sequence Generator program or
®None®
== the user Sort Key program or "None"
Compile
L10 Program
This command compiles the program specifiecde
Compile L1080 (Cuser program at) ADDRESS 0K
ADDRESS is the address of the first statement of the
programe
This command causes the program specified to be
compiled and loaded into the user program buffer in a
single operations. The program is not inst ftuted.
The name of the program is the vigsible following
the word PROGRAM. ADDRESS points to the PROGRAM
statemente.
The program may be instituted by the appropriate
commandse
File
The user program buffer is cleared whenever the user
resets or logs out of the systeme If you have a long

MARY s S5-Jan-82 15105 < USERGUIDESe PROGRAMMERS~-GUIDELAUG31le > 54

program which will be used periodicallys ycu may wish
to save the compiled code in a TENEX file. It can
then be retrieved with the Load Program cormands. The
command to compile the code intoc a TENEX fite is:
Compile File (at) ADDRESS (using) L10 0K (to file)
FILENAME 0K
The FILENAME must be the same as the program name.
The program witl then be compiled and stored in the
TENEX file of the given name (with the extension REL,
unless otherwise specified)e The user may then load
it at any time.
Before doing thise the programmer must replace the
word PROGRAM at the head of the program with the word
FILE.
Content Analyzer Pattern
This command allows the user to specify a Content
Analyzer pattern as a Content Analyzer filtere.
Compile Content (analyzer filter) ADDRESS 0K
The pattern must begin with the first visible after
the ADDRESSe or at that point you may type it in. 1t
will read the pattern up to a semicolons sc be sure
to insert a semicolon where you want it to stope.
When this command is executeds the pattern specified
is compiled into the bufferes AND it s autcmatically
instituted as the Content Analyzer filter.
Procedure
This command compiles a single procedures.
Compile Procedure (at) ADDRESS 0K
ADORESS ts the address of the PROCEDURE stztement.
This command causes the procedure specified to be
compiled and loaded into the user program buffer in a
single operatione. :
If a procedure of the same name has already been
toaded (in the user programs buffer or in the NLS
system)s the old procedure will be replaceds Ilece
any calts to that procedure name will invoke the
newly compiled procedure.
Error Message during Compilation
*SYNTAX ERROR™ messages include the type of errore
the tocation of the line of assembly code that caused
troubley and a few characters of the NLS scurce code.
The last of these characters is the one which caused
the errore In some cases this may be misleadings
when a previous error (e.ge a missing quote or
percent sign) caused trouble tLater in the
compilation.
"ext & Local"™ -- 3 symbol was used as both an
external or global and a Local variable in the
filee If a variable is not declared in the
programs the compiler assumes 1t is a system
EXTERNALS If it is Later used as a LOCAiLe an
error will resulte.
"field too Large® -- a field may not be defined as
more than 36 bitse
"sides not equal®™ -- in a multiple assig¢gnment
statementy the sides must have the same number of

MERY o

S5-dan-82 15205 < USERGUIDESe PROGRAMMERS~-GUIDE«AUGSI1le >

valuess €e8e (asbec) _ (xeyez2);

*not REF or POINTER® <= an ampersand (&) was used

on a variable not REFed or declared as & POINTER

(not described in this document}.

%8 args max" -~ you may not pass more than eight

arguments in a JSYS callie
B8SYSTEM ERROR® messages also include the type of
errors the location of the Line of assembly code that
caused troubles and a few characters of the NLS
source code.

“EQF READ® ~= the compiler hit the end cf the NLS

file before it read a FINISH statemente (This may

happen if you dont®t have viewspecs set to atl

Linese all lLevelssd)

"HASH TABLE FULL"™ -- you have used too many

symbols in the filee FEach file is Limited to

approximately 2000 symbolse

“BACKUP T0OO0 FAR® =-- a symbol or a titeral string

(text within quotes) has too many characters in

ite They are Limited to 148 characterse

"SYMBOL TOO LONG® -- as aboves a symbol has too

many characters in it.

“INPUT TOO LONGY -~ as abovey & Literal string has

too many characters in it.

*SsS5e FULLY == as aboves a symbol has tco many

characters in ite.

®"1/0 ERROR"™ =-- a number has too many digits in ite.

"LIT TABLE FULL® == the file has too marny tLiteral

strings and numberse.
*PUSHDOWN OVERFLOW™ means that one of the stacks that
the compiler uses overftoweds Look for an L10
statement containing too many parentheses cor
particularly complex constructiconse You meay have to
break some statements into multiple statementse.
"*Boolean as operand® -- you used an expression as a
parameter or in a RETURN statement. This is NOT an
errory but only a warning of unusual (though in many
cases ¢good) programming practice.

If you include the L10 statement

NOMESS 3§

at the beginning of the files at the sare level as

global declarations (i.e« not within a procedurels

this warning will not be printede Errors will be

printed as usuale
When the compilation is finisheds 4t will Ulist the
number of errors and wait for a Command Accept to
continues You should then search for the error in
the NLS source code files correct ite and recompile
before attempting to use the progranme
Errors involving undefined variables will be reported
when you attempt to load the programe Of course any
code using these variables will cause execution
errorse

If you include the L10 statement

LIST 3
anywhere in the codee all the undefined symbols at

55

MARYs 5-Jdan-82 15:05 < USERGUIDESs PROGRAMMERS~GUIDE.AUGSYls > 56

that point in the compilation wiltl be printede.
The Compile Procedure command will generate
undefined variable errors lLlegitimately if the
procedure refers to global variabless.
If the addition of your program to the user programs
buffer requires more than the maximum space allotted
for user programs (either in number of pages or
number of symbols)e you will get a "format error®
upon tLoadinges (If you have any other programs
loadeds use the *Delete ALL® command prior to
Loadinge)
NDDT (described in Part Fives Section 2) will help
you trace run-time errors to errors in the NLS source
codes
L.oad Program
A pre-compiled program existing as a REL file may he
toaded into the program buffer with the command:
Load Program FILENAME 0K
If the FILENAME is specified without specifying an
extension names this command will search the ctonnected
directorys then the <PROGRAMS> directorye for the
following extensions:
REL == it will simply load the REL file
CA =- it will toad the program and institute it as
the current content analyzer program
SK ~=- it will Load the program and institute it as
the current sort key extractor program
86 ~=- it will lLoad the program and institute it as
the current seguence generator progranm
SuUBSYS =~ it will lcad the program and then lLook for
a file of the same name with extension CML3 §if both
are successfully loadedy they will be treated as a
single program
CML -- it will Lload the program and then try to
attach it as a subsystem
PROC-REP -~ it will tload the program and then try to
replace an existing procedure of the same rame as the
TENEX code file by the first procedure in loaded
program
Sort key extractor and sequence generator programs
are more complex and are generally lLimited to
experienced L10 programmerse
FILENAME 1is the name of the TENEX code files rot the
name of the programe.
If any variables are undefineds they will be reported
upon Loadinge The program should not be used until
those variables are declared somewheres
Delete
At
This command clears all programs from the user
program buffere AlL programs are deinstituted and
the buffer 1s marked as emptye.
Delete ALL (programs in buffer) 0K
The user programs buffer shares memory with date
pages for files which the user has opens therefore
increasing the size of the user programs buffer

MARY s 5-dan~82 15:05 < USERGUIDESs PROGRAMMERS~GUIDE«AUG31e > 57

decreases the amount of space available for file data
Wwith a possible slowdown in response for that usere.
The buffer size is fncreased automatically as needede.
This command also resets the buffer size to the
original 8 pages (saving system storage spacede.
Last
This command deletes the most recently Loaded program
in the buffere« The program is deinstituted if
instituted and its space in the buffer marked as
free.
Delete Last (program in buffer) 0K
Run Progranm
This command transfers controt to the specified programe.
This type of program is used very Littiey having been
substantially replaced by user-attachable subsystemss as
described in Part Foure
Run Program PROGNAME OK
Run Program NUMBER 0K
PROGNAME is the name of a program which had been
previously compilede That ise PROGNAME must be in the
buffer when this command is executed.
Instead of PROGNAMEs the user may specify the program to
be run by its number. This first program loaded into
the buffer is number onee. :
Institute Program
This command enables the user to designate a program in
the buffer as the current Content Analyzers Sequence
Generators or Sort Key extractor programe
Institute Program PROGNAME 0K (as) type OK
where type is one of the following:
Content (analyzer)
Sort (key extractor)
Sequence (generator)
If no type is specifiedys Content analyzer willt be
assumeda
Instead of PROGNAME the user may specify the program
to be instituted by numbere The first program loaded
into the buffer is number onee.
If a program has already been instituted ¥n that
capacitys it will be deinstituted (but not removed from
the bufferl)e
Deinstitute Program
This command deactivates the indicated prograres but does
not remove it from the buffer. It may be reinstituted
at any timee.
Deinstitute type 0K
where type is one of the following:
Content (analyzer)
Sort (key extractor)
Sequence (generator)
Assemble File
Files written in Tree-Meta can be assembled directly
from the NLS source file with the Assemble File command.
This aspect of NLS programming will not be described in
this documente.
Examples of User Programs

MARY » 5-Jan-82 15:05 < USERGUIDESe PROGRAMMERS-GUIDE.AUGs1le > 58

The following are examples of user programs which selectively
edit statements in an NLS file on the basis of text matched
against the patterne For examples of L10 programming
problemsse you may find out how the standard NLS commands work
by tracing them throughs beginning with <NLSe SYNTAXe 2>« A
table of contents to atl the global NLS routines is available
to the user in <NLSe SYSGDe 1D
Example 1 =-=- Content Analyzer program
PROGRAM outname %X removes the text and delimiters €¢) of NLS
statement names in parentheses from the beginning of each
statement?
DECLARE TEXT POINTER sfs
(outname) PROCEDURES
IF FIND *C £*)] st THEN Xfound and set pointer after
name¥%
BEGIN
*replace stmnt by everything after pointerX
ST sf _ st SE(sf);
*display statementX
RETURNCTRUE) ;
END
Yotherwise don*t display statementi
ELSE RETURN(FALSE)S
ENDe
FINISH
Example 2 =-- Content Analyzer program
PROGRAM changed %XThis program checks to see if a
statement was written after a certain datee If it wase the
string “[CHANGEDI™ will be put at the front of the
statemente¥
(changed) PROCEDURE 3
LOCAL TEXT POINTER pt 3§
Y“remembere CCPOS is iniftialized to the beginning of
each new statementX%
IF FIND “pt SINCE (25«JAN-72 12:00) THEN
%the substring of zero length is replaced with
"L CHANGED1"X
ST pt pt _ *"LCHANGEDI™;
RETURN(FALSE) 3
END«
FINISH
PART FOUR: Interactive L10 Programming
Section 1: Introduction
For many programming applicationse it is sufficient to accept
statements one at a time from the seaquence generator and assume
as an initial character position the beginning of the statement
(a Content Analyzer program as described abovele For more
complex applicationss you may have to write programs which skip
around fileses between filesy and interact with the usere. These
are not called by the sequence generator but *"Attached®™ and then
used Like standard NLS subsystemss holding one or more commandse
ALL the capabilities described above are available to such
programse
There are two parts to every user—attachable subsystem:
1) the L10 execution routines which do the file manipulationss
and

MARY 5-Jdan-82 15:0% < USERGUIDESe PROGRAMMERS-GUIDESAUGI1le > 59

2) the command syntaxe specified in a language calied Command
Meta Language (CHML)y describing the user interface c¢f each
command in the user attachable subsystem.
These two parts are two separate programse compiled separately
into two REL fites. The two programs are loaded in unison and
together comprise the subsysteme
Like L10s source programs for the CML compiler are free form NLS
filess Comments may be used wherever a blank is permitted and
the structure of the source fite is ignored by the compilere CML
source programs are compiled into REL files with the Compile File
command in the PROGRAMS subsystems CHML is the compiler name for
the CHML compilere
The REL file name of the CML code should have the extension
"eml®, The REL file name of the corresponding L10 execution
procedures shoutld have the same first name as the CKL code
filey and should have the extension Ysubsys® If these
conventions are followedy the Load Program command in the
PROGRAMS subsystem will automatically load both parts of the
user subsystem and attach ites making it available fcr usee.
The usert's subsystem may then be invoked by using the Goto or
Execute commandse
The CML program describes the command wordss noise wordss
selection requestsy etce that make up an NLS commande The CML
code interacts with the user when he enters the subsystem and as
he specifies commandse In the process of interacting with the
users the CHML code may call one or a number of L10 execution
procedures which ®do the worke"
CHML automatically provides promptings questionmarks and
<CTRL-S> facilitiess The CML syntax specification applies to
both TNLS and DNLS (unless restricted by the prograsmer to one
or the other)e and will conform to all user options. with
respect to prompting and to recognition and complet ion modesa
The next section will describe CMLe and how to design the user
interfaces Section 3 explains the requirements of the L10
procedures which CML catlse The remainder to Part Four discusses
additional L10 capabitities useful in the context of attachable
subsystemse
Section 2: Command Meta Language (CML)
Introduction
This section describes the Command Meta Language (CML)e CML
allows the specification of the user interface to commandse
The CML program (the grammar) may call L10 procedures of a
certain type (described in the next section)se The programs
written in CML are similar in structure to L10 programse
Typicallys a CML and an L10 program are used in unison as a
user attachable subsysteme A more technical presentation of
CML may be found in <20438e¢>e
Program Structure
The basic CML program structure ¥s much Llike that of L10O
programse The program begins with a *FILE®™ statement (as does
an L10 program) of the form:
FILE name
where name is the name of the program code (in lowercase
letters and numberse beginning with a Letter}s; it must be a
unique symbole different from the FILE name of the L10 code
filee

FMARY s 5-Jan-82 1505 < USERGUIDESs PROGRAMMERS=-GUIDE.AUG31s > 60

The program ends with the statement (Like L10):
FINISH
Within the programe one may have a series (in any order) of
declarationss ruless and subsystemse.
As in L10s all variables used in the program must be
declared somewhere in the systeme Other values and
attributes must also be declared in CML.
Rules are defined sequences of the CML elements described
belows Rule names can be placed anywhere in a CFKL command
specificatione When a rule is called within a ccommande it
is almost as if the CML elements represented by that rute
were inserted at that point in the commande This allowus
the definition of general interactions that may be of use
in a number of commands or points in a commande
Each program usually represents one or more subsystemse A
subsystem may include one or more commandse Fach command
is 3 rule itself. It may optionally include rules to be
performed upon entering or leaving the subsysteme (One
enters a subsystem with the Goto or Execute commandss and
teaves with the Guit command.) A subsystem may also
include general rules defined throughout the subsystemes
Each of these parts of the CML program will be described
independentliye The CML elements which make up rutes will also
be described.
Subsystems
A CML procoram holds declarationss general rules which apply
throughout the programes and subsystems (usually only onele.
The Subsystem begins with a statement of the form:
SUBSYSTEM name KEYWORD ®“NAME®
where name is the internal name of the subsystem (primarily
for debugging purposes) and NAME is the name which the user
must specify (in a Goto or Execute command) to access
commands in the subsysteme
These two names may be the same but they must be uniques
different from the FILE names of the CML and L10 filese.
A subsystem ends with the statement:
ENDe
Within the subsystems you may have any number of rulese.
A rule as described below will be known throughout the
subsystems but not outside the subsysteme
A rule preceded by the word ®COMMAND® will be available as
a command in the subsystem. It should begin with a command
word elemente Eogesd
COMMAND zshow = "SHOW®™!L2!
ent _ (®"EXAMPLE“/®SAMPLE™)
CONFIRM
proc (ent) 3§
& rule preceded by the word ®"INITIALIZATION® will be
executed whenever the subsystem is entered (either with a
Goto or an Execute command from another subsystem)ese Eoge:
INITIALIZATION example =
procl (ent)
proc2 (ent) 3
A rule preceded by the word *TERMINATION™ will be executed
whenever the subsystem {4s lteft (with a Goto or Quit command
from this subsystemi.

MARY o

5-Jdan-82 15105 ¢ USERGUIDESe PROGRAMMERS~-GUIDEL.AUGS1e >

A rule preceded by the word ®RENTRY"™ will be executed
whenever the subsystem is reentered (either with a Quit
command from another subsystems having Left this one with a
Gotoe or upon completing an Execute of a command in another
subsystem from this subsystem).
Preceding a rule with the above modifiers deces not prevent
calling that rule from within another rule.

Rules

A CHML rule is a defined series of etementse each of which
represents one pliece of the interaction with the user or
system actione The elements will be described below. The
name of a rule (defined to be the given series of CHL
elements) may be used in other rules. When the name of a rule
appears in another ruley the CHML code which it represents will
be executed at that pointe.
& rule takes the form:
name = elementl element2 element3d ee.e¢ element 3
where "name®™ is any unique name (lowercase letters and
numbersy beginning with a Lletter’.
Alternative elements (where the user has a choice) are
indicated by a slash (/) in the expressione Farentheses
should be used to group elementse particularly when
alternative Logie and nesting of alternatives is involved.
Eege
name = {elementl / element2 element3) elementsd 3
Note thate by use of parenthesese an alternative may
include more than one element.
Elements grouped in square brackets are optionss and the
user must type the option character <CTRL-u> to zaccess
them. E.Qf.
name = elementl [element?2 element3] elements 3
E.g.
zinsert = "INSERT®™ ent_("WORD"/"CHARACTER"™) <(“at">
dest_DSEL(ent) xins(dest)s
A number of elements may be included in a s ingle rulee (If
you exceed the maximume you will get a "stack overflow™ error
at run-time.) Flements are NOT separated by any delimiter
character (except by spaces or the source file structurel.
The entire rule is terminated by a semicolone
The return value of elements may be assigned to CML variables
(single-word as in L10)y using a left-arrow (_) in the form:
variable _ element
The variaeble must have been declareds as described below.
A variable must be initialized by such an assignment before
its content is passed to any routines It must be inttialized
in the rule which passes it to a routine (not just in other
rules called from the given rules even though other rules may
subsequently set it to another value)e (If you fail to do sos
you will get the run-time error ®"reference to undef ined
interpreter variablee®)
Names on the teft side of an assignment are assumed to be
variables; other names in CML rules are assumed to be CML
ruleses

Declarations

Declarations are used to associate names with their CML
functions A number of types of names may be used in CML

61

MARY s 5-dan-82 15:05 < USERGUIDESe PROGRAMMERS~-GUIDE.AUG:ls > 62

programse
Variables

Whenever a procedure is called from CMLe CML creates &
ten-word recorde The address of the record is passed to
the procedurey which may put information in any of the ten
wordse The procedure usually returns the address of its
recorde
A CML variable is a cell which holds the address of a CML
recorde By this mechanisme up to ten words of information
may be handled with a single parameter by passing the
address of the first word of the recorde A variazble may be
declared with the statement:

DECLARE VARIABLE name 3

or

DECLARE name 3

where "name®™ is any unique name (lowercase letters and

numberss beginning with a Letter).
You may declare any number of variables in a sincle
statementy feeel

DECLARE VARIABLE namels nameZeves 3

or

DECLARE namels nameZsecee 3
Many CML variables have been declared for use anywhere in
the systems and may be used freely in user attachable
subsystems (without being declared by the user programmer).

Some commonly used variable names are:

ent namfil tevel param

dent dest filtre param?2
sent source vs param3
port fromwhom Literal paramb

External Variables
As in L10s external variables are variables which are made
available to any procedure anywhere in the NLS system.
(Simple variables are only known in the file in which they
are declarede} One or more may be declared with a
statement of the form:
DECLARE EXTERNAL namels namelsees 3
Parsefunctions
An L10 function which processes input and supplies a prompt
string 1s called a "parsefunction.™ The name of the
procedure must be declared as a parsefunction for CML to
request a prompt string whenever the procedure 1s callede.
DECLARE PARSEFUNCTION namelsy name2yese 3
More detailed information about the nature of
parsefunctions will be offered belowe
Command Words
A command word is a word specified as part of a command
(eeCe "Insert® or "Word® in the Insert Word command)si it 1is
specified in accordance with each user®s recognition schene
{often recognized after the first character)e A
declaration may assign a value to a command words to be
passed to an L10 procedure which needs to know which
command word was chosen by the usere.
DECLARE COMMAND WORD "“WORD1"=100¢ "WORD2"=101sees 3
The value must be a positive decimal integere less than
511« (This Linmit may have to be changed to 255 in

MARY s 5-Jdan~-82 15305 < USERGUIDESs PROGRAMMERS-GUIDE.AUG31y > 63

future versions of NLS.)
More than one command word may have the same value
tunless of course the L10 procedure must distinguish the
user®s choice between the two)e.
A command word that has not been declared may be included
in the syntax; 1t will have no value thoughe Only those
command words which are assigned a value and then passed to
an L10 procedure must be declarede Many command words have
been declared for use in the NLS systems It 1s cons idered
good practice to use command words already known to users
when possibles and to use the same vatues for those words
as declared in NLS. Section 5 offers a set of
declarationss including all the system defined command
wordss it can be copied as the foundation for a CML
programe
You may not use command words identical to the names of
the L1080 or CML filese to the name of the subsystems nor
to any variable namese.
CML Elements
The CML elements described here are the building blocks of
rulesy which describe interactions with the useres
Command Word Recognition
The appearance of a command word element in a rule means
that the user must specify that (or an alternative command
word) at that point in the command specification.
In the CML descriptions each command word is represented
by its full text. The algorithm used to matech a userts
typed input against any list of alternative command
words s known as "“recognitione®™ ©Each individualt®s
command word recognition mode will determine what
characters the user must type to specify the command
worde This is handled automatically by the cemmand
interpreter. : '
As the user specifies a commands the command words fand
noise words described below) are echoed in a lLine at the
top of the DNLS screens or printed in TNLS. This is
called the "command feedback lLine."™
Command word elements must be uppercase words enclosed in
double-quotes (®"); eege
®"INSERT™ :
Command words optionally may be followed by one or more
qualifiers which modify the recognition processes separated
by spaces and enclosed in exclamation pointse The
qualifiers are:
NOTT =-- not available tn TNLS
NOTD =-- not available in DNLS
L2 ==~ second lLevel (some recognition modes differentiate
first from second level command wordss eege second lLevel
are preceded by a space)
number -- explicit value for command word$3 supercedes
any value assigned by a DECLARE COMMAND WORD
For example:
WSETnIL2!
"PRINT®INOTD!
SEXAMPLEWORD®™!L2 104!
The address of records holding declared command word values

MARY o S5=-Jan-82 15:05 < USERGUIDESs PROGRAMMERS-GUIDE.AUG31ls > 64

may be assigned to CML variables so that the user*s choice
tan be passed to subsequent routiness €ege
ent _ “CHARACTER™
or
ent _ ("CHARACTER®™ / "WORD"™)
then
xprocedure (ent)
Remember thats Like all other CML ass ignmentss the
varfable receives the address of a record which holds
the informations When the content of this variabte (the
address of the record) is passed to a procedures the
procedure must REF its receiving variable to access the
contents of the records the value.
This vatue will be assigned as above even if the command
word s followed by ather CML elementss e«ge
ent _ ("CHARACTERY param_FALSE / “WORD"™ <*at">
param_LSEL(#"WORD®))
ent will get the value of the command word CHARACTER
or the value of the command word WORDe The
appropriate actions willt happen after the user
chooses the command worde.
You may wish to pass this value without forcing the user to
type the command worde This address may be assigned by
preceding the command word by a pound=-sign (#).
ent _ #"CHARACTER®
will assign the address of the declared command word
value without forcing the user to type the command word
Selection Recogniticon
Selections are input from users pointing to places in files
or typing in strings of texte« The three types of selection
routines available in CMLe with their respective command
promptse ares
DSEL =- destination selection

B/A

SSEL == source selection
B/A/LT]

LSEL == Literal selection
B/T/CA]

where B = bug (not available in TNLS)e A = Dyramic
Address Element (any series of NLS addressing elements)e
and T = typein from keyboard.
Fach of these predefined selection routines prompts the
user and receives the inpute
The selection routines must be passed the address of a
record holding the value of a noun command word
(characters swordy statementy plexe etcede The command
word enclosed in double-quotes and preceded by a
pound=-sign (#) is equivalent to the address of a record
hotding the declared value of that command words €eges
DSEL(H®CHARACTER®™)
Or you may have assigned the address of the value of a
previousty selected command word to a CML var iables then
pass the content of the variables €eget
ent _ "CHARACTER"™
DSEL(ent)
CHL will prompt the user for the appropriate inpute If

MARY ¢ 5-Jan-82 15:05 < USERGUIDESs PROGRAMMERS-GUIDELAUGS1y > 65

more than one selection is necessary (e«ge to specify
beth ends of a group or string of textle they will
prompt for both automaticallye They will del imit the
appropriate entity automatically (eege both ends of a
word will be found from a single selection).

The routine witl return the address of a CML record
holtding two text pointers in the first four wordsy
delimiting the beginning and end of the entity selected.

for string entities within statements
words 1-2: txt ptr before first character of
string
words 3-4: txt ptr after last character of string
for types "STATEMENT®™ and "BRANCH®
words 1-2: txt ptr before first character of
statement
words 3-4: txt ptr after last character of
statement
for types ®GROUP®" and "PLEX"
words 1-2: txt ptr before first character of first
statement
words 3-4: txt ptr before first character of Last
statement
for type ®"WINDOW"®
word 1! address of display area
word 2: x and y screen coordinates
One usually assigns the returned address of this record
to a CHBL variables €ege:
dest _ DSEL(#®STATEMENT®)
Other Recognizers
Other prespecified input routines are avatlables each
prompting for and receiving a type of input from the user:
VIEWSPECS -- takes no argument and returns the address
of a CML record holding:
Wword 1: updated viewspec word 1
word 2% updated viewspec word 2
words 3-7: used for collecting characters from user
LEVADJY -- takes no argument and returns the address of a
CML record holding:
word 1: Llevel adjust count
(up = +1¢ same = 0¢ down = =1g¢ up two Levels = +2,
etce)
words 2-7: used for collecting characters from user
CONFIRM =-~- waits for user to type confirmation character
(a Command Accepte Inserts or Repeat character)s it
takes no argument and returns the address of a CML
record holding the confirmation code in word 1.
These values are rarely useds since subsequent
functions are handled automatically by the command
parsers For references they are:

1 = Command Accept
2 = Insert
%3 = Repeat

bu¥My -- does nothing but always TRUE: may be used to
allow elements to be skipeds €eges
("OPTION™ somprocedure() / DUMMY) CONFIRE

MARY ¢ 5-dJan-82 15105 < USERGUIDESs PROGRAMMERS~GUIDE.AUG31s > 66

allows the user to specify "Option® before the
CONFIRMe or skip it and just type a CONFIRM.
CML Constants
TRUE == holds the address of @ CML record whose first word
has the value TRUL (ife.e¢ 1)
FALSE ==~ holds the address of a CML record whose first word
has the value FALSE (feee. 0)
L1¢ Procedure Calls
L10 procedures may be called at any point in the rule by
including the name of some routine followed by its
parameter List enclosed in parenthesese (The next section
describes the special requirements of L10 procedures called
from CML.) FeQe
procedurename (paramle param2seee’
Parameters may include CML variahles (whose content is
passed)y the CHML elements TRUEs FALSE or NULLe or the #
construct (see "Selection Recognition®") representing the
address of a command word values
Helpful Procedures in building CML togic:
isdnls() -= returns TRUE if DNLSe else FALSE
istnls() == returns TRUE if TNLSs else FALSE
true() =-- returns TRUE
false() -~ returns FALSE
abort() -~ abort command as if user typed a Command
Delete
Parsefunctions
Procedures which are declared as PARSEFUNCTIONs examine the
information being typed by the user during command
specification (characters going into the input bufferle.
CHML places additional requirements on L10 procedures
declared as parsefunctionss as deseribed in the next
sections They may be called from CML Like any other L10O
procedure. The following parsefunctions are available as
part of the running systems they of course must be declared
as parsefunctions in any program which uses them as such:
answ()} == if the next character in the input buffer is a
CONFIRMs option characters or the letter "y"y it reads
the character (out of the input buffer) and returns
TRUES else it reads the next character and returns FALSE

answer() =-- reads next characters like answe but returns
the address of a CML record whose first word holds
either the value TRUE (1) or the value FALSE(DO)
Lookansuw() -~ if next character is a CONFIRMs option
characters or the tetter "y"y returns TRUE anc lLeaves
next character in buffer; else returns FALSE and reads
ctharacter

mylookansw() =-- 1f next character is a CONFIRMe option
characters or the letter "y®"s returns TRUES else returns
FALSE; Leaves next character in buffer

readconfirm() =-- if next character a CONFIRM characters
reads and returns TRUES; else leaves character in buffer
and returns FALSE

Ltookconfirm() =-- if next character is a CONFIRMe returns
TRUE; else returns FALSES Leaves next character in
buffer

MARY ¢ S5-dan=-82 15205 < USERGUIDESy PROGRAMMERS~GUIDE&AUG31e > &7

readbug() =-- if next character a Command Accept
charactere reads and returns TRUES else Leaves character
in buffer and returns FALSE
tockbug() =-- if next character is a Command Accepte
returns TRUES else returns FALSES leaves next character
in buffer
notca() == 1f next character NOT a Command Accept
characters reads and returns TRUE: else Lleaves Command
Accept character in buffer and returns FALSE
readoption() ~- if next character an option characters
reads and returns TRUES: else leaves character in buffer
and returns FALSE
readrepeat() =-- if next character a repeat characters
reads and returns TRUE: else Leaves character in buffer
and returns FALSE
Lookrpt() =~ if next character is a REPEATs recturns
TRUES else returns FALSES leaves next character in
buffer
sp() -=- if next character a spaces reads and returns
TRUES else leaves character in buffer and returns FALSE
Lookback() -- if next character is a back=-arrcw (_)e
returns TRUES else returns FALSES leaves next character
in buffer
Looknum() == if next character is a digits returns TRUES
else returns FALSES leaves next character in buffer
Parsefunctions may appear as alternatives to recognizerse.
Howeversy they must precede any non-failing recogrizers in
the List of alternativess Eege:
(Loockconfirm€) / “APPEND®™ / "FILE"®™) CONFIRM
-~ this example either will accept a CONFIRM cr will
accept a specification of the command word APPEND or
FILE followed by a CONFIRM.
Feedback
Noise words between command words are very helpful to the
user ltearning a new commande Any string of text may be
added to the command feedback Line by enclosing the text 1in
parentheses and within angle~brackets in a rulee Feg.
<*Text of noise waords®>
The Last noise word string on the command feedback Line (in
DNLS) may be replaced with a new string by placing three
dots before the first double-quotes eege?
Ceso™new noise words">
The Last noise word string can be erased ¢(in DONLS) with the
procedure call:
clearname(}
The entire command feedback Lline can be cleared €¢in DNLS)
with the CHML element:
CLEAR
A few characters of the noise word will foltow the command
word in the system®s response to a questionmark if:
1) the noise word immediately follows the command wordse
and
2) the command word is not being assigned to & variable
(it may however be part of a tist of alternatives being
assignedle.
Eege the noise words in the CML below will show in the

MARY ¢ 5-Jdan-82 152105 < USERGUIDESs PROGRAMMERS-GUIDE«AUGS1y > 68

systems response to a questionmark:
ent _ ("FILE"™ <(™name"“> / "“STATEMENT™ <{"at">)
Loops
A looping facility permits repetition of a different rule
untit an exit condition 1s mete The rule is evaluated and
then the expression following the UNTIL keyword is
evaluatedes If the expression returns TRUEe then the Ltoop
is exited and the next element of the rule is evaluated.
If the expression returns FALSEs then the named rule is
invoked once againe
PERFORM rulename UNTIL € exp)
where rulename is the name of the rule to be repeatedly
executed and exp is an expression of CML elements which
evatuates to TRUE or FALSE.
EeGe
PERFORM rulename UNTIL ¢ <"*Finished?®> answ(})
Nested Loops (loops within rules called by a PERFORM
element) are not currently allowede Backspacing through
executed Loops requires special treatment not described
heree«
Sample CML Program
The following sample program should hetp Yllustrate the use of
the CHML language for describing NLS commandse For rore
exhaustive examplesy look at the CML specification for the
standard NLS commandse in <NLSeSYNTAXe>e An example of a
problem treatment can often be found by thinking of an NLS
command which 4s similare.
FILE sampleprogram X <CHMLe> to <samplesrele> %
DECLARE whats whome where 3§
DECLARE COMMAND WORD
"GLUE™ = 14
UPASTE® = 2,4
"CRAYONS" = 3,4
UPENS® = 44
"PENCILS® = § 3§
SUBSYSTEM sample KEYWORD "SAMPLE"™
objects =
"GLUE"
/ "PASTE"®
/ writingthings 3
writinagthings =
"CRAYONS™
/ “PENS®
/ SPENCILS®!L2Y ;
COMMAND zuse = ®USE®
what _ writingthings
CLEAR
<"to draw a pretty"> whom _
{ "PICTURE®™ <"of Aunt Mary">
/7 ®*SKETCH®" <%of your dog®>
)}
CONFIRM
2 call execution routine process the USE command X%
xusel whaty whom) §
COMMAND ztake = P®TAKE™®
what _ objects

MARY o 5-Jdan~82 15105 < USERGUIDESes PROGRAMMERS~-GUIDE.AUGI1s > 69

<*"out of your®>
where _ (“EARS™!1Y! / "NOSE®!2! / "MOUTH“!3!)
CYPLEASE!In>
CONFIRM
xtake (whate where) 3
ENDe
FINISH
Given this sample CMLe the user might specify the command:
*Use Pens
(to draw pretty) Sketch (of your dog) <0K>'
*Take Crayons (out of your) Mouth (PLEASEY¥!) <OK>"
The execution routines called from CHML typically have names
beginning with the letter ®*x".
Section 3: L10 Execution Procedures
The CHML program interacts with the user and gathers informations;
it subsequently ecalls one or more L10 proceduress The procedure
CML calls must meet certain requirementss described in this
sections. Because of these requirementse typically the execution
routine is written as an interface to a number of other L10
procedures performing the actual functions. This way the
function routines can be written independent of which command or
procedure calls themes This section will describe the
requirements of procedures called from CMLe. The next section
offers additional L10 capabilities in this environmente.
CML can be in one of four states as it parses a command based on
the syntax described in your CML program (known as the
"narsemode"}:
1) parsing: recognition state where input text is compared
with grammatical constructs in CML program
2) backup: the user has typed a backspaces or a prcecedure
call has returned FALSES CML backs up through previocusly
specified elements of the CML codes calling each in backup
modes to before the ltast CML alternative (not necessarily
equivalent to user input elements maybe through the entire
commands aborting the command)
3) cleanup: the user has typed a Command Deletes or the
command has been completed (fncluding any execution procedure
calls): CML backs up through all previously specified elements
of the CML code; each procedure is again calledg this time in
®"eleanup® mode
4) parsehelp: (used only with parsefunctions) befcre calliing
a parsefunction in *parsing® modes the procedure is called in
“narsehelp” mode to solicit a user prompt string.
53 parseqmark: (used only with parsefunctions) when the user
types a questionmarks the procedure is called in "parseagmark®
mode to solicit a questionmark stringe.
When CML calls a procedurey it automatically passes twc extra
implicit parameters before the parameters the programmeer
specifies:
The first parameter is the address of a CML record reserved
for use by that proceduree. The record is initially empty (or
fitled with garbage)s The execution procedure may fitl the
ten words of the record by receiving the address in a REFed
parameter variable and then indexing intoc the array.
CML considers the procedure to have returned TRUE ¥f it
returns the address of the (ML recordi: otherwise the return

MARY s

5~-Jan-82 15:0% < USERGUIDES s PROGRAMMERS~GUIDELAUGS1e >
is considered FALSE. When a procedure returns FALSEs CML
will back ups calling that and previous procedures in
"backup™ modes until another branch in the commard syntax
togic 4s found or until the entire command has been
abortedes
The second parameter is a value (not an address of & record)
representing the parse mode« Whenever CHL encounters a
procedure catl in the syntax (in any mode) it calls the
procedurey passing it the value of the parsemode.
Typicallys the execution routine should only perform its
primary function in the parsemode "parsing®. In *backup®™
and "cleanup®y it may reset any globals or state
information it may have affected while in the parsemode
"parsinge® The names of the modes (see above) are globals
to which you may compare the value received in the second
parametere. An execution routine typically consists of a
Large CASE statementy €0ge
CASE parsemode OF
= parsing:
BEGIN

[4

L]
END 3
= backups =
BEGIN

L

cleanup:

END 3

ENDCASE 3
Calls on procedures declared as parsefunctions pass a third
implicit parametery the address of a string in which to put
the prompte They are called in the parsemode "parschelp® for
the string before being called in the parsemode "parsing®e or
in parsemode "parseqmark" when the user types a questionmarke.
CML passes the parameters specified in the call after the two
or three system supplied parameters. Remember that these
parameters will always be the address of a record holding the
informations so the receiving variable must be REFede The
format of the record itself is determined by the routine that
fitled ite

For examples 1f the CML procedure call loocked as follows:

then the L10 execution procedure would receive parameters

xprocedure (paramle param2)
as

fotlows:

{xprocedure) PROCEDURE (resulte parsemodes parameterls
parameter2) 3

ALL parameters except the parsemode should be REFed 1in
execution proceduree.

the

Section 4: Additional L10 Capabilities

Introduction

The attachable subsystems have access to the full cepabilities
of the NLS environmente This sectfon will describe some
capabilities not discussed in the context of Content Analyzer

programse
Fivee

Further capabilities will be discussed in Part

Moving Around Within NLS Files

70

MARY «

5-Jdan-82 15:05 < USERGUIDESy PROGRAMMERS~GUIDESAUGS1ls >

Generallysy at least one simple variable or a text pointer will
have to be declared to hold the statement identifier (stid) of
the current statemente (The first word of a text pointer is
an stide) Assume the simple variable with the name %"stid"™ has
been declared for the purpose of the following discussion,.
In the NLS file systemsy two basic pointers are kept with each
statement: toc the substatement and to the successors
I1f there is no substatements the substatement-pointer will
point to the statement itselfe.
The procedure getsub returns the stid of the
substatemente To do something to the substatement if
there 1is one:
IF (stid 2= getsub(stid)) # stic THEN somethingees
stid is given the value of the substatement-pointers
then the old value of stid is compared to the newe
If they are the sames then there is no substructures.
If they are differents you have the stid of the
substatement and can operate on ite
1f there is no successor (at the tail of a plex)s the
successor-pointer will point to the statement UP from the
statement (i.ce the statement to which the currert
statement is a suble.
The procedure getsugc returns the stid of the successor
(or uple.
To move to the successor:
stid _ getsuc(stid);
Given these two basic proceduress a number of other procedures
have been written and are part of the NLS systemes AlLL of the
following procedures take an stid as their only parametere and
do nothing but return a values usually a stide If the end of
the file is encountereds these procedures return the gltobal
value "endfil®,.
getup(stid) -- returns the stid of the up
getprd(stid) -- returns stid of the predecessor
getnxt(stid) ~-- returns stid of next statement or endfil
getbeckistidy ~~ returns the stid of the back or endfil
gethed{stid) -- returns stid of the head of the plex
getait(stid) ~-- returns stid of the tail of the plex
getend(stid) =-- returns the stid of the end of the tail of
the plex
getftil(stid) -- returns TRUE 1f stid is tail of plexs else
FALSE
getlev(stid) -~ returns level of statement
Once you have the stid of 3 statements you may operzte on it
as in Content Analyzer programse Eege
FIND SF(stid) $NP “ptr;..
Anocther common operation is to access the statement (fite) in
which the C4 (or bug) was at the time of the last Command
keccept (or other command terminator)e This is stored in the
systemes and can be accessed with the following procedure caltl:
stid _ ltcesp() 3§
Thens if you wish to set the stpsid to the ortgin of that
files you could say:
stidestpsid _ origin § Xorigin ¥s a global with the
stpsid of the origin statement in #t¥%
The following procedures may also assist you in moving around

71

MARY » S=Jan-82 15:05 < USERGUIDESy PROGRAMMERS~-GUIDESAUGS1y > 72

files:
caddexp(aptrisaptr2edaestartptr) -~ given the addresses of
two text pointers surrounding an NLS address expressiong
the address of a display areas and the address of a text
pointer representing the starting position: caddexp will
evaluate the address expression with respect to the
starting positions and update the start pointer to the new
locatione.
This procedure will follow file returnse Linkse etces
opening files as necessarye. Remember to close any open
files when you are done with them (see 6d4 below).
The procedure Lda() returns the address of the display
area which hetd the bug at the time of the Last Command
Accept; it may be used a2s the third parameter of
caddexpse Eage
caddexp(Sptrle $ptr2e Lda()s S$sptr) 3
namingrp{stidlestid2yastringslevels) == given twc st ids
representing a groups the address of a string holding the
names and a number representing tevels of depth helow the
stids*: returns stid of the statement with the given
statement name in the group specified by the stidse Only
searches through oiven number of levels below stid Level.
(If the stids are the sames will search the branche)
Lookup(ptrestringstype) -~ given the address of a text
pointers the address of a stringe and a types will do a
variety of searches (in the process destroys string and
changes pointer). type may be one of the foltlowing:
nametyp -- non-sequential search for statement of name
given in string; returns stid and sets pointer to stid
or else returns endfil in both places
nxtname -~ lLlike namesy also a non-sequential searchs but
starts from place in file ring to which ptr points
segname -~ starting with the statement following the one
refered to by the ptres does a sequential search of the
file for the given name; returns stid or endfil in
pointer
contnt =-- does a sequential search of the files
beginning with the character following the pointers for
a statement with the content of the strings: returns stid
or endfil in pointer
contls -~ same as contnte but lLooks only in statement
holding pointer
wordtyp -- same as contnte but looks for word given in
string
sid =~ pass an SID instead of the address of the strings
searches for statesent with that SID and returns in
pointer and as procedure value the stid or encfil
Calling NLES Commands
A program may execute any of the standard NLS commands by
calling the same procedure that the system execution routines
call for each commande These procedures are called the "core®
procedurese They are lListed in <NLS¢XPROCS¢> and in
CNLSeSYSGDe>e Their names begin with the letter *c"e
generally followed by three initials of each commanc words
eege Insert Statement could be executed by calling the
procedure "cinssta®.

MARY s

S-Jdan-82 15105 < USERGUIDESs PROGRAMMERS-GUIDE.AUGS1y >

Usually the required arguments can be discovered by knouwing
the command and by Looking at XPROCS and/or SYSGD. For
examples the formal parameters to the procedure "cinssta"™ are
(stiderleventetpletp2)e As one might guess from the command
syntaxe the procedure wants a target stide the value of level
adjustment (up = +1l¢ same = (¢ down = =14 etcles and the
address of two text pointers surrounding the string of text to
be inserted.
Much can be learned by Looking at the code of the ccre
procedures You can see what procedures it in turn calls to
discover how the command is actually performede But most
importantlys you can find out what the procedure returnse The
RETURN statement for "cinssta* Look lLike:

RETURN(stid) s
from which it can be inferred that the procedure returns the
stid of the newly created statement.
When you are not sure what the arguments means a gocd way to
find out is to see where the command parser picks up the
informatione You can follow through the parsing of a command
by beginning with <NLS¢SYNTAXe>e the actual NLS CML code.
Tracing a command from <NLS+SYNTAXe> is also valuable in
finding out how the system performs an operation which you
would Like your program to doe For examplesy 1f you wish te
parse a Link and open the given files you might Learn how to
do it by following the Jump to Link command throughe

Opening Files

¥hen you ask the user for an address or bugs you donrntt have to

open the file$ you have a handle on it with the stid the user

gives youe There may be timeses howevers when you wish your

proaram to open a file not specified by the users There is a

procedure which does this:
open (jfne astringl);

You should pass zero as the jfne and the address of a string

containing the name of the file to astringe This procedure

will return the file number. 1If the file is not already opens
it will open ite. It wiltl atso fill out the string with the
complete file name 1f you do not specify the directory or
version number.
If the file does not existe open calls the procecure ®Terr®,
which generates a signal of the value "errsig." Signals
are discussed in Part Fivee.

The usual sequence of steps to open a file is as follows:
i*st1d" has been declared as a simple variable or text
pointer¥X
stid _ orgstidi %Xorgstid is a global with all zeros except
in the stpsid fieldy where it has the stpsid of the origin
statement (the same for every file)X
str _ "ddirname>filenamesnls™; Xstr is of course a
declared string variableX
stidestfile _ open (Oe¢S$str)s;

Note that the procedure "open® requires a TENEX file name.

The procedure ®*inbfls®™ converts links to TENEX file names:
tnbfls (Linkstre Llinkparseblocke filenamestr)

Pass the address of the string holding the Link as the
first parameters zero for the second parameter (used if
Ltink already parsed)s and the address of a string to

73

MARY s

5=-Jdan—-82 15:05 < USERGUIDESs PROGRAMMERS~GUIDE.AUGS1s 2

receive the filename as the third parameter.
The procedure returns the host number in case the Link
includes a site name. This value might be compared to the
following globals:
Lhostn == the number of the local host
utilhost -- the number of 0ffice~1 ;
archost -=- the number of the ARC machine (BBN-TENEX-B)
For examples you might use the procedure as follows:
CASE Lnbfls(&LinkstreGesfitlename) OF
= Lhostn?t NULLS
ENDCASE err(notyet) 3
At the end of your programe you should close any files that
you have openeds Use the procedure?
close (filnum)s
EeGe
close (stidestfile)s

Displaying Messages

The foltowing procedures may be of use in displaying messagese.
In all casesy the appropriate actions will occur in TNLS as
well as DNLSe atthough these descriptions are oriented to
DNLS.
dismes(typey astring} -~ teletype window
where type is one of the following:
0 -~ clear teletype window (no address need be
passed)}
1 == add text in string whose address is passed as a
new Line in the teletype window
2 == add text in string whose address is passed as a
new Line in the teletype window for about 3 secondse
then clear window
n == any number >=1000 represents the number of
mitliseconds the message s to be displayed before
the teletype window is clearede.
In TNLSy type = 1e 24 and >=1000 all simply print the
string starting on a new line.
fbetl(typey astring) =-- Literal display window
where type is one of the following:
typenutlllit == begin empty Literal display (replacing
file window)sy no string address passed
fbaddl it -- add string whose address is passed to
current Literal display
addcal it == add ®"Type <CA> to continues” tc current
Literal displayy then wait for <CA> or <CD>e then
restore file window
typelit -- start Literal display with strings then
wait for user inpute then restore file window
fbendl it -~ add string to current Literal displays
then wait for user inputs then restore file window
typecalit ~~ start Literal display with string., add
*Type <CA> to continue«®s then wait for <CA> or <CD>y
then restore file window
The literal display replaces the file window on the
screens or is simply printed in TNLS. For examples it
is used by the Show File Status commande
dn(astring) -- name display
add string whose address is passed to command feedback

74

MARY s 5-Jdan=-82 15:05 < USERGUIDESy PROGRAMMERS-GUIDE«AUG:1le > 75

Lines enclosed in quotes
Setting Up for Display Refreshing
The command parser calls the procedure ®"cmdfinish" after
completing and cleaning up every commande If certain
parameters are set properlys "cmdfinish® will automatically
update the userts screen (primarily of concern in DNLS})e You
may also move a different statement to the top of the window
€iece Jump) before updating the screene
To refresh the screen after editing a file:
The procedure "dpset® sets up parameters for refreshing the
screen after a commande If "dpset®™ is properly useds the
screen will automatically be refreshed after the commande.
One should Look for the most efficient way to make the
proper changese
The procedure "dpset" must be callied BEFORE any changes
are made in the file. This is so that the display
reformatter will have something with which to compare
swhen Looking to see what has been changede.
The procedure call should Look as follows:
dpset (types stidlse stid2y stopstid) 3
There are a number of globals which may be passed for

"type®:
dsprfmt -- rewrite the content of one or two
statements
stidl == the stid of the statement that has been
changed

stid2 == the stid of another statement that has
been changeds or "endfil™
stopstid -- fgnoreds pass it ®*endfilL"™
dspstre == if file restructuring occured beginning at
at one or two placesi doesn*t rewrite content of
statementss will add new statements in a structure
stidl == the stid of the statement where a
structural change begins
stid2 == the stid of where another structuratl
change beginss or "endfil"”
stopstid == the stid of the statement after which
jt can stop changing the screen (whether change
began with stidl or stid2)s the procedure "dpstp™
may be of service here; if you cannot figure out
where {1t should stope pass it "endfil®™ (go till
end of window)
dsprfst == rewrites content of one or two statementse
then looks for structural changes thereafter
stidl -~ the stid of the statement where a set of
changes begins
stid2 -~ the stid of where another set c¢f changes
beginse or "endfil®
stopstid -~ the stid of the statement after which
it can stop changing the sereen (whether change
began with stidl or stid2); the procedure "dpstp"®
may be of service herej if you cannot figure out
where 1t should stope pass it "endfil®™ (go till
end of window)
dspipf == jump command in one window onlye no editing
stidl -~ the stid of the statement to be at the

MARY s

To

S-Jan=82 15205 < USERGUIDESs PROGRAMMERS-GUIDE.AUGI1le >

top of the screens see below for other parameters
which must be set
stid2 =--mendfil®
stopstid == "endfil™
dspyes -~ completely refresh all windows helding one
or either of two files specified
stidl -- the stid of a statement in the file where
changes will be made
stid2 == the stid of a statement in the file where
another set of changes will be mades or "endfil"®
stopstid -- ®endfil®
dspno =-- do no display refreshing
stidl -- ®"endfil®
stid2 =~ mendfil®
stopstid -~ "endfil®
dspallf == refresh the entire screen
stidl -- ®endfil"
stid2 -- %endfil®
stopstid -~ "endfil®
The procedure "dpstp®"s when passed an stide returns the
stid of the next statement in the file at the sarme or a
higher tevel. This can be used as the stopstid in “dpset®
if structural changes are occuring such that you don*t know
a priori what the Llast statement changed will be.
change the position of & window (jump):
The global "cspupdate" should be set to the address of the
display area descriptor for the window you want changede.
In TNLSe it 1s always the address contained in the
global "tda™.
If you wish to change the view in the window which held
the bug at the time of the last CONFIRMy, you may use. the
statement:
cspupdate _ lda()3
This also works for TINLS.
Once cspupdate s setes any of the globals described
below will repltace the appropriate fietld in the display
area descriptor upon completion of the command.
The global ®"curmkr® {is a text pointer pointing tc the
statement at the top of a window in DNLSe or the CK in
TNLS .
The first word of ®"curmkr" should be set to the stid of
the statement you want at the top of the windew (in TNLS
the statement which you want to hold the CM)e.
The second word of "curmkr®y ieee curmkrf1le should hotd
the character position for the CM. (In DNLS it is
usually le)
The global "cspvs®™ is a two word array which should hold
two viewspec words for the new viewe
The global stdvsp is a two work array holding the NLS
standard viewspecs (feee the ones in effect when you
first enter NLS).
The current viewspec words may be gotten from the
display area descriptor. If you have REFed a variable
calted "da"e for examples you may assign the address of
the display area which held the cursor at the time of
the Last command Accept with the statement:

76

MARY o 5~-Jan~&2 15:05 < USERGUIDES. PROGRAMMERS~-GUIDE.AUGSI1ls >

&da _ ltdat) 3 Z%return address of display area
descriptorX
You may then refer to fields within the display area
descriptore
davspec =~ holds the first viewspec word
davspc?2 == holds the second viewspec word
You may change individual fields within viewspec wordse
The following fields apply to viewspec words:
vslev -=- Lowest level to be displayed
vsrlev =- if set to TRUEs the level of the current
statement will be added to vslev
vsleyd == if set to TRUE and vsrlev is TRUEs the
current level will be subtracted from rather than
added to wvslev
vstrne -- number of Lines of each statement to be
displayed
vscapf -~ if TRUEs content analyzer on (viewspec 1)3
takes precedence over vscakf
vscakf == if TRUEe content analyzer on unt il one
statement passes (viewspec i)
vsusgf -=- if TRUEe user seguence generator on
(viewspec 0)
vsbrof -- if TRUEes branch only on (viewspec g)3 takes
precedence over vsphixf
vsplxf == if TRUEe plex only on (viewspec U)
vsblkf == if TRUEes blank lines on (viewspec y}
vsindf -- if TRUEes indenting on (viewspec A3 on by
defautt)
vsrind =-- if TRUEs indenting relative to first
statement in display (viewspec &)
vsnanf -~ if TRUEe statement names on (viewspec C5 on
by default)
vsstnf -- 1f TRUEs statement numbers or SICs on
(viewspec m)
vsstnr == if TRUEs statement numbers/SIis put on
right (viewspec G}
vss ¥df =- i1f TRUEe SIDs replace statement rumbers
(viewspec I)
vsidtf -- {if TRUE. statement signatures on (viewspec
K)
vefrzf -- if TRUEs frozen statements on (v iewspec o)
vspagf == if TRUEe pagination on in TNLS (viewspec E3
on by default)
vsdaft == if TRUEs dontt defer display recreation in
DNLS (viewspec us on by default)
I1f you wishe you may set the variable "cspcacod" to the
address of a user content analyzer procedures anc/or the
variable ®"cspusgcecod® to the address of a user sequence
generator procedures they will be instituted before the
window 1s updatede.
The following fields in the display area descriptor may
be useful:
dacacode -- holds address of currently instituted
Content Analyzer procedure
dausgcod =-- holds address of currently instituted
user Sequence Generator procedure

77

MARY »

5=-Jan=-82 15:05 < USERGUIDESs PROGRAMMERS-GUIDE-AUG3ls > 78

If you have a REFed variable called ®da"e will not edit the
filey and do not wish to change the viewspecss ycu might
use the following sequence of commands:
%2address of last display areaX
&da _ cspupdate _ lda()s
%stid of stmnt to be put at top of windowX
curmkr _ stid ;3
curmkr[1] _ 1 3
%two current viewspec words¥
cspvs _ daedavspecs
cspvsl1] _ dae.davspc23
Lturn on Content Analyzer¥%
cspvsevscapt _ TRUES
Xinstitute the procedure "filterproc® as Content
AnalyzerX
cspcacod _ sfilterprocs
2set up for display recreationX
dpset (dspipfs curmkre endfily endfil);
If you have edited the files use the type "dspyes" instead
of "dspipf" in your call on ®“dpset®,

Other Useful Procedures

astruc(astring) -- given the address of a strings sets the
string to upper casee.

fechno(stidesastring) ~-- given an stide appends the statement
number string to the string variable whose address 1is passeds
getsid(stid} -- given an stide returns value of SID (dontt
forget to add zero to front if converting to a string)
fechsig(stidsastring) ~-- given an stids appends the statement
signature to the string variable whose address is passede.
getdatlastring) -~ given the address of a stringes appends date
and time to stringe.

grptst(stidlest 1d2) -- checks that two stid®s specify a legal
groups returns them ordered or else an "illegal group™ signal
is generatede.

plxset(stid} =-- given an stide returns the stid of the head
and of the tail of the plex of which the passed stid s a
members eege first _ plxset(stid : last) 3

resetf(filenc) =~ given the file number of and open files
deletes all contents of the file leaving only origin
statements resets date and fdent in origin statement (leaves
fite Locked)

fitnam(filnosastring) -- given the file numbere appends the
file name (in Link format surrounded by angle-brackets <131 to
string whose address is passed

pause(milliseconds) -~ waits the given number of millisecondss
then returns
settimer(millisecondssaproceparamlsparamZeparam3sparans) --
calls procedure whose address is passeds passing up to four
parameters to that proceduresy after given number of
mitilisecondss other code will be executed in the mean time

Globals of Interest:

+initsr* -- is the login ident of the person currently using
the programe

inptef -- s incremented every time the user types a <CTRL=0>}
this can be used as a user program interrupt mechanismi 1.e.
you can set it to 0 at the beginning of the program and then

MARY s 5~-dan=-82 15105 < USERGUIDESs PROGRAMMERS-GUIDE«AUG31ly > 79

check it at the start of each loop of your program to see if

the user has typed a <CTRL=0>y feee wishes ta abort the

commande.

inpstp == is incremented every time the user types a <CTRL-s>.

Section 8¢ Creating and Using Attachabtlte Subsystenms

In summarys the programmer must write two programs to build a
user attachable subsystem: the CML and the L1080 support
procedures. FEach of these programs is compiled separately (by
their respective compilers) into separate REL filese The Load
Program command (in the PROGRAMS subystem) will lLoad both at once
if the extension on the filename holding the CHL code is "eml®
and the extension on the L10 code file is "subsys®. Once loaded,
the user may use commands in the subsystem as he does commands in
any of the standard subsystemse
You may find it convenient to begin writing a program by copying
the following skelton (plex) from this NLS file
CUSERGUIDES+L10-GUIDEsbe2a>s It can then be modified to fit the
needs of your programe (The comments in the FILE statements
allow you to quickly bug the information required by the Compile
File commande« ALL the CML declarations that are used in the NLS
system are included only to contribute to consistent use of
command words and valuese The CML rules have been left blanks
they must be filled in or removede ALL files procedures
subsysteme and rule names are only exemplarye The last three
parameters in the L1080 procedure are only exemplaryes)}

FILE cname % (CMLeSAVe) TO (cnamee.cmls) %

% DECLARATIONS %
DECLARE PARSEFUNCTION

answe % reads answer construct X%

answers %2 for questions - returns 0/1 %

Sps X reads next chare TRUE if space %
readconfirme % reads next char if ca %

readbuge X reads next char if BUG %

readoptions X TRUE if next char is optchar ¥%
readrepeate % TRUE if next char is repeat %
Lookansws % TRUE if next char ¥s Y/CA %
Lookconfirme ¥ TRUE if next char 1s CA/REPEAT/INSERT
x

tookbugs % TRUE if next char is BUG %

Looknum, ¥ TRUE %f next char is a number %
clearname, %X clears the name area %

notcas X reads next chare TRUE if not CA char %

DECLARE COMMAND WORD
“BRANCH®™ =.1 o
"GROUP" = 2
"PLEX®™ = 3 »
®STATEMENT"® = 4
"CHARACTER®™ = §
"CONTROLCHAR® =
®INVISIBLE® = 7
"LINK®" = 8
"DIRECTORY® = 9
"PASSWORD™ = 10 o«
"NUMBER"™ = 11
BTEXT™ = 12

. he e
-

-

MARYs 5-Jan=82 15:05 < USERGUIDESs PROGRAMMERS-GUIDE.AUGi1e > 80

"VISIBLE"™ = 13 o
"WORD" = 14 o
UFILE"™ = 15 o
UNEWFILELINK®
“OLDFILELINK®
PNAME®™ = 18 o
“IDENT® = 19 o
"IDENTLIST™ = 20 o
"EDGE®™ = 21 o
BMARKER® = 22
"NLS" = 23

RITEM® = 24 4
"ITEMNOVS® = 25
"SUCCESSOR® = 26
"PREDECESSGR® = 27
"UP® = 28

16 ¢
17 «

W u

TDOWN® = 29
"HEAD® = 30 o
BTAIL® = 31 o
"END" = 32

"BACK® = 33

BREXT® = 34
"ORIGIN® = 35
"FILERETURN® = 36 o
BRETURN"™ = 37
“FILENAME"™ = 38
P"FIRSTNAME"™ = 39
“NEXTNAME™ = 40 o
PEXTNAME" = 41 o
"FIRSTCONTENT™ = 42 o
"HNEXTCONTENT® = 43
"FIRSTWORD"™ = 44 «
"NEXTWORD" 45
"DETACHED® 46 o
"TTYY = 47 o

MAUTO®™ = 48 o
“CONTINUE®™ = 49

i n

"ON® = 50 o
"RECOVER® = 51 o
"SLINKER® = 52

RUPDATE®™ = 53
"CLEAR™ = 54
“IDENTS® = 55
"FILES"™ = 56 o
"DELETE"™ = 57
"DEFERRED®™ = 58
HIMMEDIATE® = 59
"NOT™ = 60
"PREVENT® = 61 o
"RESET" = 62 o
RARCHIVE®" = 63 o
“SEQUENTIAL"®™ = 64
"TWO™ = 65 4
®JUSTIFIED®
PASSEMBLER"
"BOTH" = 68

66 %
&7 «

- 1N

S~-dan-&82 15105

< USERGUIDES,

"UNDELETE®™ =
"FOR" = 70
®STATUSY™ = 71
STAPE® = T2 o
“ACCOUNT® = 73 o
"NO® = T4
"VERSIONS"™ =
BEXTENSION® =
®DATE®™ = 77 «
CREATION®™ = 78 o
RLAST®™ = 79
PFIRST™ = 80 o
“READ™ = 81 o
"WRITE® = 82 o
"OUMPY = 83 o
“"EVERYTHING"™ = 84
®"LENGTH®" = 85 o
"MISCELLANEQUS" =
"ACCESSES"™ = 87
"PROTECT" = 88 o
“SIZE®" = 89
“TIME® = 90
"VERBOSE® = 91
®SORT® = 92
"BYTESIZE"
®ARCHIVED™®
RALL" = 95
“MODIFICATIONS®
"UPPER"™ = 97 ¢ »
BLOWER™ = 98
“MODE®™ = 39
"SENDMAIL" = 100
"BUSY™ = 101
"QUICKPRINT® = 102 «
“JOURNAL™ = 103
"PRINTER"™ = 104 o
"COM™ = 105 o
"TERMINAL® = 106 o
"REMOTE™ = 107
BREST® = 108 »
"CASE™ = 109 »
HCONTENT™ = 110 o
"TEMPORARY™ = 111
"VIEWSPECS™ = 112 .
"EXTERNAL® = 113 o
"TO™ = 114
“PRIVATE" = 115 4
"PUBLIC" = 116
"TENEX™®™ 117
PALLOW® 118 o
“EXECUTE®™ = 119 o
HAPPEND" = 120
RLIST™ = 121 »

"SET® = 122

“SELF"™ = 123
“FORBID®" = 124

69 o

75 «
76 »

86 o

93
94

{11
L]

-

H

96 ¢

" oH

PROGRAMMERS-GUIDEAUGS1s >

81

MARY

5=-Jdan-82 15:05

< USERGUIDES,

"DISK® = 125 o

“DEFAULT™

P
-

126 o

"OLD" = 127 »
“NEW® = 128

SCOMPACT® = 129
*RENAME®™ = 130 o
"ADD®™ = 131
RSUBTRACT™ = 132 »
"MULTIPLY" = 133
"DIVIDE"™ = 134 .
"RIGHT®" = 135 o
"LEFTY = 136
BACTION® = 137
"AUTHORS™ = 138
RCOMMENT™ = 139
"EXPEDITE®™ = 140 o
"HARDCOPY" = 141
"INFORMATION®" = 142 o
BINSERT™ = 143
"KEYWORDS® = 144

"OBSOLETES®™ = 145
*RFC®" = 146 »
"SUBCOLLECTIONS™ = 147 »

"TITLE® =

1

48 o

"UNRECORDED™ = 149
"L10" = 150 »

"PROCEDURE

= 181

“SEQGENERATOR®™ = 152

“BUFFER® =

153 ¢

"NDDT" = 154 o
"PARSERULE"™ = 155 o
“CA®" = 156 o

"CD" = 157

"RPT"® = 158 »

"BC" = 159
“BW" = 160
gs® = 16l
"LITESC® =
*IGNORE™ =
®SC" = 164
®SW" = 165

’
)
3
162 o
163 o
.
*

"TAB™ = 166 o
SIMLAC® = 167
"TI" = 168

ENVT® = 169 o
"EXECUPORT™ = 170 o
"MENU® = 171 »
"ONLS™ = 172 »
“TNLS" = 173 o

“COMMAND"

174

"RULE"™ = 175 o
"SUBSYSTEM®" = 176 «

"DISPLAY®
"FROZEN" =
“HLPCOM® =
"PROGRAM®

—
-

177 «
178 o
179

180

PROGR AMMERS~GUIDELAUGI1le 2

a2

MARYs S5=-Jdan=-82 15:05 < USERGUIDESs PROGRAMMERS-GUIDELAUG31ly > 83

BTERSE™ = 181 o
"INDENTING® = 182 o
BUNIVERSAL®™ = 183 o
HENTRY® = 184
STNCLUDE® = 185 o
"BOTTOM® = 186 o
"PAGE® = 187 o
®"O0FF® = 188 o
BEULLY = 189 o
"PARTIALY = 190
BANTICIPATORY"™ = 191 o«
BDEMAND® = 192
B"FIXED"™ = 193 o
W"CONTROL"™ = 194
RFCURRENTCONTEXT™ = 195 4
“"FEEDBACK® = 196 o
BHERALD®™ = 197 o
RPRINTOPTIONS® = 198
YPROMPT® = 199 .
"RECOGNITION® = 200 o
®STARTUP® = 201 o
SLEVELADJUST" = 202 o
H"REVERSE®™ = 283
BTEST™ = 204
"TASKER®™ = 205
“LINEPROCESSOR™ = 206 «
"CENTER®™ = 207 »
"CNTLG" = 208 §

X COMMON RULES %X

X ENTITY DEFINITIONS %
editentity = textent / structures

X TEXT ENTITY DEFINITIONS X
textent = textl /7 ®*TEXT® / ®LINK®:
textl = "CHARACTER®™ / "WORD® / ®=yISIBLE®" /
"INVISIBLE™ / “NUMBER®™:

% STRUCTURE ENTITY DEFINITIONS ¥
structure = *STATEMENT™ / notstatement;
notstatement = "GROUP®™ / "BRANCH®™ / ®“pLEX" 3

SUBSYSTEM name KEYWORD "NAME® :

INITIALIZATION fnamel =

]
COMMAND fname2 = *"COMMANDWORD®™

]
TERMINATION fnameld =
4
ENDe
FINISH
FILE lname % (L10.SAVe) TO (lnameessubsyss) %
% globals %
{xname) PROCEDURE % execution procedure X
XFormal Parameters¥

(resultey result recordX

parsemodes Xparsings backupe cleanup¥%
paraml s Xyour first parametersee¥
param2s Xof course you may haveeess¥

param3}3 X0 to 7 of your own parametersy

MARY ¢ S5-Jdan-82 15:05 < USERGUIDESe PROGRAMMERS-GUIDE.AUG31ls > 84

%LocalsX
REF results paramle param2s paramds
CASE parsemode OF
= parsing?
BEGIN
ENDS
= backupses = cleanup:
BEGIN
END S
ENDCASES
RETURN(Zresult);
ENDe

FINISH
PIRT FIVE: Advanced Programming Topics
Section 1: Error Handling =-- SIGNALS
Introduction
When an NLS system procedure fails to perform praperlys it may
generate an error signale Every signal has a value. When a
signal is generateds control 1s passed back to the lLast signal
trap in effecte If no explicit program control statement
{e«ge RETURNs GOTO) 4s given in that signal trapese 2 new signal
will be generateds If the error is not deatt withy the signal
wiltl eventually bubble all the way back to the execution
routines The execution routine should always trap 2 signale.
You may trap signals and regain control by setting up the
response in advancee.
Trapping Signals
To trap error signals of any error value:
ON SIGNAL ELSE statement 3

FeQs
ON SIGNAL ELSE
BEGIN
dismes(2¢s$string)s
RETURNS
ENDS

It is a good idea to set up a signal response before calling
any NLS system procedurese.
Once the signal response is sets it remains in effect through
the end of the procedure or until it is changede anc will be
executed whenever a signal is received by that proceduree. Any
subsequent ON SIGNAL statements will at that point change the
signal response (i.e. only one signal response can be in
effect at any point during procedure execution)a
Only signals generated by procedures below (ee.ge called by)
your procedure will be trapped by your procedure®s signal
trape It will not trap signals generated in the sasme
procedure.
The signal response may be any (block of) L10 statemsent (s},
It will be executeds then
- if you have an explicit program controt statement
(RETURNe GOTOe EXIT LOOP)s control will be passed
accordingly and the signal will stop theres or
- if the signal trap includes no expticit prograr control
statements another signalt of the same value witl be
generateds and control will pass upward through the stack

MARY S-dJdan-82 15:05 < USERGUIDESes PROGRAMMERS~GUIDE.AUG:1lye >

of procedures called untit i1t encounters another signal
trape
A RETURN will return control to the procedure which called the
one which intercepted the signal (not the one which generated
it).
Thuss if you wish to resume control in the current procedures
the signal trap will have to end with a GOTO statement
pointing to an appropriately lLabeled statemente This is one
of the few places where a GOTO is really necessarye
I1f the signal trap applies to a Loops an EXIT LOOP cr REPEAT
LOOP is a valid signal program control statemente.
Trapping Signals in Executien Routines
If a signal bubbles up through the execution routine to the
command parser (in a command in an attachable subsystem)s the
results may be unpredictables Execution routines should
always include signal trapse
A RETURN(FALSE) will shift CML into backup modes. It will back
up to before the tast set of CML alternatives (not necessarily
equivalent to the Last user 1input element)ey and then shift
back into parsing modee (This may imply backing all the way
through the commands fe.ees aborting the commande.)
The procedure "abortsubsystem® may be useful in this contexte
It witl shift the command parser into backup mode and abort
the current commande Then it will execute a Quit (from the
current subsystem) and return the user to the previocusly used
subsysteme It should be passed the address of an error string
to be displayede Eege
ON SIGNAL ELSE abortsubsystem($™Error in xprocedureeee®™) 3
or
ON SIGNAL ELSE abortsubsystem({sysmsg})
(see "Specific Signals"™)
Cancelting Signal Traps
After program execution sets up a signal responses the
following statement will cancel it so that thereafter a signat
will jJust bubble on up:
ON SIGNAL ELSE NULL 3
or just
ON SIGNAL ELSE 3
i1t may be subsequently reset by execution of another ON SIGNAL
statement.
Specific Signals
When a signal is generateds the NLS system globat variable
*sysgnl® is given a specific value (the value of the signal).
Each value represents a certain type of errore. Alsc the
system global variable "sysmsg"™ ¥s given the address of a
string which holds an error messagee.
The above constructions react to any signals no matter what
its value may bee The ON SIGNAL statement can be used much
Like a CASE statement (comparing cases to the gltobal sysgnt)
if you wish to trap specific signals:
ON SIGNAL
=constant: statement;
=constant: statement:
ELSE statement;
E.g.

MARYs 5-Jan~82 15:05 < USERGUIDESs PROGRAMMERS-GUIDE.AUGs31y > B86

ON SIGNAL
=gfilerr: Zopen file error¥
BEGIN
IF sysmsg THEN dismes(2ssysmsg) s
RETURNS
END3S
ELSE %any other error signaly
BEGIN
dismes(2+8%*Error®)s
RETURNS
ENDS
The current signal constants can be found in {NLS+BCONSTe¢De
The common reason for using this specific signal treatment is
when you call a procedure which you know will generate a
certain signal value under certain conditionse In such a
ctasey you can Learn the signal constant of concern from the
SIGNAL statement which generates it.
Generating Signals
~You may generate a SIGNAL in a procedure by the statement:
SIGNAL (values astring) 3
where valtue is the value of the signal (perhaps a system
global) and astring is the address of a string holding the
error messages If the second parameter is omittedy 1t will be
assumed to be zero and no message wllil be printeds The first
parameter s mandatorys every signal must have a vatlues
Examples:
SIGNAL (ofilerres $"Couldn*t open your file.®) 35
SIGNAL (2) 3 \
Another way to generate a SIGNAL is by calling the procedure
err{errno)
It will generate a SIGNAL of the value “errsig" (a systen
global) and will set up a message depending on the value
you pass for errnoe. errno may be any of the fol lowing:
-~ "File copy fails®;
-= ®"Onen scratch fafls"s
-~ ®Cannot Load program®;
*1/70 Error®s
-= ®"fExceed capacity®s
-~ "Bad file block*;
-= ®hot implemented”™
If you pass it the address of a string as the error
numbere it will signal using that address for sysmsge
and that string will be printed.
By allowing err to generate all the signalses you will find
it easy to freeze execution upon an error condition while
debugging using NDDTs as described in the next section (by
setting a breakpoint at errle.
Be careful not to call err and then trap its SIGNAL in that
same procedure. You might say:

~SNOTH NN
]
]

ON SIGNAL
zerrsigt NULLS
ELSE eee
Section 2: NDDT Debugging
Introduction

Debugging is the process of finding the errors in a program.
Once the problem is locateds you may correct it in the source

MARY s

5-Jdan-82 1505 < USERGUIDESe PROGRAMMERS-GUIDEAUG:1e >

code (NLS file) and recompiles

NLS inctudes a debugging tool called NDOTe for "HLS Dynamic
Oebugging Technique«® NDDT allows you to examine the state of
vour program during or after running it (i.ee« using the
command or fitter)e This section describes the capezbilities
of NDDTe

Accessing NDDT

To make NDDT available from NLSe you must execute the command
in the PROGRAMS subsystem:

Set Nddt (control-h) OK
This adds the program NDDT to your user programs buffere.
Thereafters whenever you type a <CTRL-h>y NLS will immediately
be interrupted (be it in a waiting or running state) and you
will enter NDDTe. NDDT will respond with its command hearalde
a right angle-bracket (>)s indicating that NDDY ¥s ready to
accept a commande.

NDDT commands are specified by typing the first character

of the command worde
You may continue with NLS (from the point where it was
interrupted) with the NODT command:

Continue 0K
You may continue NLS from a specific instruction address with
the NDDT command:

Goto ADDRESS 0K

NODTY Address Expressions

Everything stored in the machine (instructions and variables)
has an addresssy its location within the computer‘¥s memorye An
address is an octal (base-eight) numbere.
The name of a procedure or of a named L10 statement may be
used instead of a numbere It represents the octal Llocation cof
the named statement or of the first instruction of the
proceduree.
Addresses {(symbols or numbers) may be combineds to evaluate to
some Locatione An expression concatenated with the following
operators will be evaluated from left to right (no
hierarchical ordering) to a single value:

<SP> same as +

*

/
Thuse a symbol may be folltowed by a space (or pltus—-sign) and
then an octal number. The number 1s added to the LlLccation
represented by the symbole.

Single~Word Variables

Oftens programmers wish to examine or modify the cortents of a
single word at a given locatione The NDDY Show command prints
the contents of the word at that addresse
Show Location ADDRESS 0K
where address i1s an address expression as defined above or
one of the following:
~ == preceding entity
CLF> == next entity
Next =-- next entity
<TAB> -- entity whose address is the content ¢f current
Lloeation
NDDT maintains some address as your current tocations and the

a7

MARY »

5-Jdan-82 15108 < USERGUIDESe PROGRAMMERS~GUIDE.AUGS1e > 88

Show command sets this location to the one it examinese If
you do not specify an address in a show commande the current
tocation is assumed.
NDBT can print the contents in three ways: as a symbol
followed by a number (to be added to the symbol Llocation)s as
a single numbers or as texte The default printout xode is
symbolice The printout mode may optionally be changed in a
Show commande The new printout mode remains in effect until
subsequently changeds
Show Location ADDRESS <CTRL-b> PRINTMODE 0K
where PRINTMODE is one of the following:
Numeric
Symbolic
Text
A fast way to do the same thing is provided with the value
command:
Value of ADDRESS OK
or
Value of ADDRESS <CTRL-b> PRINTMODE 0K
You may print and then replace the valtue in a word with the
Show command:
Show Location ADDRESS _ EXP OK
or
Show Location ADDRESS <CTRL-b> PRINTMCGDE _ EXP 0K
where EXP 1s an expression whose value will replace the old
vatue of the given location. In addition to the address
expressions discussed aboves you may use the fornm:
valuelsgvatue2
where "valuel®™ s a standard expression which witl be
put in the left half of the worde and "value2® is an
expression which will be put in the right hal fe

String Variables

The contents of a string variable may be examined and modified
as well as simple variabless using the command:

Show String ADDORESS 0K
Strings are always printed in text printout mode.
You may print and then replace the string with the Show
command ¢

Show String ADDRESS _ STR 0K

where STR is a Literal string which you type ine

Records

To work with L10 recordss you must first set the NDDT record
pointer to the first word of an L10 record definiticne with
the command:
Record pointer set to: SYMBOL 0K
where SYMBOL is the name of some L10 record. Note that it
may be necessary to use the MARK command (described beltow)
to make local records known to the NDDT systeme
This is equivalent to the command:
Show Location RP _ SYMBOL OK
You may then examine all the fieltds of any record with the
command:
Show Record ADDRESS 0K
or
Show Record ADDRESS <CTRL-b> PRINTMODE OK
You may examine and optionally change a single field within a

MARY ¢

S5=-Jan-82 15105 < USERGUIDESs PROGRAMMERS~-GUIDEAUGS1y >

record with the Show Location commands substituting
ADDRESSFIELD for ADDRESS.
You may replace each field in a record with the command:

Show Record ADDRESS _

The name of each field is then printed and a new value may

be typed ins terminated by a Command Accepte Typing only a
Command Accept will advance to the next field of the record
Wwithout modifying the lLast field.

Built in NDDT symbols

A number of symbols are built in to NODT and may be used in
address expressions. When they are useds PRINTMODE will be
ignoreds since the printout mode is predefined for each of
these symbolse

Built in Locationss Registers

Al =-- register Al
A2 -= register A2
A3 =~= register A3
A4 -~ register A4
Rl == register R1
R2 == register R2
R3 == register R3
R4 ==~ register R4

Built in Locationse Frame

When a procedure is calleds a "frame® is added tec the
stacke It includes a word (holding the return Location of
that procedure in the right half) followed by all the
parametersy then all the Localse Some predefinec symbols
allow you access the current or any previous frares and the
information in theme

M -- contains address of current frame

MARK ==~ contains address of previous franme

RET == return Location in current franme

RP -- address of record definition of last field used

S «= contains address of top of stack (last LOCAL worde or
whatever)

S$I6 == current frame signal location

Built ¥n Records

BASE == first frame 1in procedure stack

FRAME -- current frame description

F =-= same as FRAME

LOCALS ~= current frame LOCALS

L == same as LOCALS

RECP == description of current record

R -- same as RECP

PARMS =~ current frame parameters

P == same as PARMS

TOP -- description of top frame in procedure stack

Control Switches

EC == Current symbol escape character (3)

.RNAMES =~ If FALSE suppresses printing of record field
names

SF == If FALSE disables these NODT built in symbols

Special character commands

The special character commands are provided for commonly used
functionse ALL but = are essentially subcommands of the SHOW
command and are processed exactly as if they had been preceded

89

MARY o

5-dan=82 15:05 < USERGUIDESs PROGRAMMERS-GUIDE.AUG31e >

by the command word Showe
= == Show current Location in numeric typout without
changing the current printing mode
_ == #Assign a value to current Llocation
~ == Show previous location
LF -~ Show next Location
TAB ~~ Show tocation addressed by current Llocation

Traces and Breakpoints

If you set a "trace™ at a Locations the system will print that
address every time that instruction is executede Execution
will not be interrupteds You may set a trace with the
command:

Trace location ADDRESS OK
If you set a breakpoint at a locations & <CTRL-h> will
automatically be executed just before the given instruction
(causing you to interrupt execution and enter NDDT)e. This
allows you to interrupt execution of your program at a given
point and examine and change the state of the systenr. A
breakpoint may be set with the command:

Breakpoint Set ADDRESS 0K
Each trace and breakpoint is assigned a numbers beginning with
zerce when it is sete You may cancel a trace or breakpoint
using this number or using the address to which it is set:

Breakpoint Clear NUMBER 0K

or

Breakpoint Clear ADDRESS OK
You may cancel all traces and breakpoints that you have set
with the command:

Breakpoint Clear ALl OK
You may Llist a trace or breakpoint of a given number and the
Llocation to which it is set with the command:

Breakpoint Print NUMBER 0K
You may list all traces and breakpointse their numberssy and
their Locations with the command:

Breakpoint Print 0K
A breakpoint may replace a previous trace or breakpecint (new
addresss same number) with the command:

Breakpoint Set ADDRESS <CTRL~-b> Replaces breakpoint NUMBER

0K
A breakpoint may be set so that it only interrupts if a
comparison between Llocation and a given constant is trues with
the following command:

Breakpoint Set ADDRESS <CTRL-b> Test ADDRESS RELOP CONSTANT

0K

where ADDRESS s the locattion of the word to be compareds

RELOP is one of thfe following: = § < > €= >=
CONSTANTY 1is an expression Wwith a valuee.

A breakpoint may be set so that it only interrupts if a
procedure is called and returns truee with the following
command? \

Breakpoint Set ADDRESS <CTRL-b> Call PROCEDURENAME OK

L10 Procedures

You may call an L1G procedure from NDDT with the command:
Procedure Catl PROCEDURENAME 0K

If the procedure reguires parametersse you must List them tn

parenthesess separated by commasey after the name of the

g0

MARY ¢ 5-Jdan~-82 15:05 < USERGUIDESs PROUGRAMMERS~GUIDE.AUGS1e >

procedures
Procedure Call PROCEDURENAME (paramle param2¢ eee) 0K
One strings enclosed in quotess may be included in the
parameter Lists €ege:
Procedure Call PROCEDURENAME ("Literal®™y paramZ2s see) 0K
The return value(s) of a procedure catl will be typed oute
NODT allows you to replace an existing procedure with a new
proceduree Whenever the old procedure is called anywhere in
the systeme the new procedure will be called insteade The new
procedure will be passed the same parameters as were passed to
the otdes This replacement can be done with the command:
Procedure Replace OLDNAME OK NEWNAME 0K
The name of the procedure which was replaced is saved so that
it may be restorede The replacement may be cancelled with the
command: ~
Procedure Back up to OLDNAKME 0K
Symbols ,
The system maintains a table of symbol names and the addresses
which they represent. When a user program is loadeds its
symbols are added to the symbol tablee Thuse (in acdition to
system globals) the table is composed of blockse one for each
programe.
Each block 1s refered to by the tunique) name of the
programe (This i1s why the CML and SUBSYS parts of a user
attechable subsystem must have different names in the FILE
statements.) The List of blocks (programs) is called the
®"mark stacke® Locals as well as globals are recognized by
NDDT for only those user programs in the mark stacke
You may Llist the names of the blocks currently in the mark
stack with the command:
Mark symbol table: Print contents of stack 0K
% block may be deleted from the mark stack (the symbols remain
in the symbol tabley but they are not recognized by NODT) with
the command:
Mark symbol table: Clear block PROGRAMNAME 0K
A block may be reinstated to the mark stack with the command:
Mark symbol table: Set at PROGRAMNAME OK
A new (empty) block may be added to the mark stack with the
command: :
Mark symbol table: Set at NEWBLOCKNAME DK
If there is at Least one block in the mark stacks a new symbol
representing some address may be created with the command:
Define New SYMBOLNAME 0K ADDRESS OK
Symbols defined with this command have a global scopes and
may be used to satisfy external references in L1G user
programs subsequently compiled.
Any symbol within a block Listed in the mark stack may be
redefined to represent a different address with the command:
Define OlLd SYMBOLNAME OK ADDRESS 0K
If you wish to reptace an existing routine by a new version of
the same routines some method of distinguishing between new
and otd occurrences of the same symbol is requirede Any
symbol preceded by a semicolon (i) refers to the olc¢
occurrence of the symbole (The semicolon has the e ffect of
disabling the symbol table marking mechanism for the given
symbole causing it to be identified in the ™old"™ section of

91

MARY o 5-dan-82 15:05 < USERGUIDESs PROGRAMMERS-GUIDE.AUGS1ls > 92

the symbol tabled)
For examples suppose an existing routine named TEST is teo
be replaced by a new version of the same routine which you
have just compiled (hence is ¥n the mark stack)e The NDBDT
Procedure Replace command can be used as follows!:
Procedure Replace STEST OK TEST OK
Scanning for Content
You may search a set of words for a specific content with the
command?:
Find content: CONTENT OK masked by: 0K lower address:
STARTADDRESS 0K upper address: ENDADDRESS OK OK
The content of every word in the specified range will be
compared to CONTENT. CONTENT may be of the form of an address
or a PDP13 machine instructions The address and content of
each word which matches will be printede (Note that the
"masked by" field was fgnored.)
If you wish only to compare certain bits in each word to
corresponding bits in CONTENTes you may specify a maske A mask
is a2 number (of the address form)e Only those bit positions
in which the mask has a one will be comparede (If the mask is
not specifiede all ones will be assumed and the entire word
will be compareds)
Find content: CONTENT OK masked by: MASK OK lower address:
STARTADDRESS OK upper address: ENDADDRESS 0K 0K
MASK may also be of either the ADDRESS form or the PDP1O
instruction forme.

Section 3: Writing CML Parsefunctions
Parsefunctions
Functions which are declared with the PARSEFUNCTION attribute
in CML are assumed to be L1080 procedures which are designed to
be parsing functionse They are used to examine the user®s
inpute They are called in “parsehetp® mode before heing
calted in "parsing™ mode. When so calleds they are passed the
address of a2 string as a third implicit argument. The
parsefunction routine should fill that string with the
appropriate prompt characters which tell what the parsing
function is looking for.
When the user is faced with alternatives which inctude a
parsefunctions the parsefunction will be called in parsemode
"narseqmark® for the string to include in the quest ionmark
displaye This string must be no greater than 24 characters.
Sample Interpreter Parsefunction Routine
Assume that in some command we want the typein of a number to
appear as an altternative to some set of keywordse. e can
accomplish this by defining a parsefunction €catl it Looknum)
which Looks at the next input character and succeeds if the
next character is a digit and fails otherwisee If we uwrite
this function as the first atternative in some commands then
control will pass from the interpreter to the parsefunction
hefore ¥t passes to the keyword interpreter.
Suppose our command lLooks Like:
COMMAND sample = ®INSERT®

¢ Looknum() <®number"> ent _ #"NUMBER"™

/ ent _ ("TEXT®"/YLINK"))

%2 entity now contains an entity type (NUMBER ¢ TEXTy or

MARY y 5-Jan=-82 15:05 < USERGUIDESe PROGRAMMERS-GUIDELAUGS1y > 93

LINK e UWe now use the LSEL function to get a selection
of this type % :
source _ LSEL(ent}
CONF IRM
xinsert (ents source) 3§
The parsefunction Locknum which is called by the interpreter
both when prompting the user and also during the actual parse
of the commande
(Llooknum) PROCEDURE X looks at the next input characters
if it s a digits then return TRUEs else return FALSE %
X FORMAL ARGUMENTS %
(resulte X address of the result record X
parsemodes X parsing mode of the interpreter %
string)s X address of prompting string %
REF resulte strings
CASE parsemode OF
= parsing:
CASE tookc() OF ¥Xvalue of next character in input
buffer¥
IN [*0y *93: NULL §
ENODCASE RETURN(FALSE) 3
parsehelp: Xsupply string for promptx
*strings _ "NUMI® 3
parseqmark: Zsupply string for gquestionmarkx
*strings _ "Number® 3}
ENDCASES
RETURN (&result);
ENDe

it

Section 4 Calculator Capabilities
Introduction
L1080 artthmetic can only work with integerse The CALCULATOR
subsystem holds a2 numbers of procedures which the user
programmer may callt to do double-~precision floating point
arithmetice Floating point numbers are stored in two-word
arrayse which the user programmer must declares AlLL
CALCULATOR routines work with these two word arrayse.
Converting String to Double-Precisjon Floating Point
A number in a string variable may be converted to a floating
point array with the procedure:
nfloat (astrings awordle aword2)
where astring is the address of a string holding the
numbers :
awordl ts the address of the first word of the arrays
and
aword2 is the address of the second word of the
arraye
The number in the string may hold a decimal pointy and may be
preceded by a minus-sign (-}« Other characters (e.ge a dollar
sign) may precede the first character of the number (a digit,
minus signs or decimal)s they will be ifgnored.
Converting Floating Point to String
The two word array may be converted back to a strinc with the
procedure: ,
gfloutp tavare astrings format)
where

MARY s S5-dan~-82 15:05 < USERGUIDESs PROGRAMMERS-GUIDELAUGSYs > 94

avar is the address of the (first word of the} array
holding the floating point numberes and
astring is the address of a string variabte in which the
text of the number is to be placeds
the third parameter is ignoreds so just pass zeroe.
The format of the string is dictated by the global variable
“dfoutme®™ The foltlowing fields apply to this global [default
values are in square bracketsl:
ftdl =-- characters to the teft of the decimatl [1C]
fld2 =-- characters to the right of the decimat [2]
fld3d =-- characters in exponent field [0]
round -- number of significant digits to round tc [12]
round must be less than or equal to fldi + fild2z fidi + fid2
must be less than or equal to 12
oflo =-- go to exponent notation if Left-of-decimal too big
£ol v
exsign == {if a positive exponents use first character of
exponent field for: [01]
¢ -- first digit of exponent
] == fgm
2 -=- a space
exp2 =-- prefix on exponent: [0
0 == no exponent
1 == ngm
2 == ®Q)m
3 -- mx1gnw
dpt == print decimal point switch (0=0ffs 1=0n) [1]
dig -~ print at least one digit to left of decimal (0 if
necessary) (0=0ffy 1=0n) [11] :
just ==~ justify number within space of three fields: 1]
0 == right justify by adding spaces tc Left
you must also set the
globalt "calfig" to TRUE
1 == right justify by adding “0%s
2 == right justify by adding %®a%g
3 == Left jJustify by adding spaces to right
you must also set the
global "calflg®™ to FALSE
sign == if a positive numbers use first character of field
1 for: 01
0 -~ first digit of number
1 -- a space
2 —- WNa®
Additionatlys 1f the global "cacflg™® is TRUEs the number will
be formatted with commase
Calcultations with Foating Point
The following procedures do floating point calculations on the
two-word arrays described above« AlL of the following
procedures require as parameters the address of the (first
word of the) arrayse.
gcadd(aeb) -~ a _ a b
gcsublaeb) -- a _ a b
gemultCaeb) -- a _ a > b
gediviasb) -- a _a / b
qcdivwlasbet) -~ ¢ _a / b
genegfa) -- a _ -a

+

MARY s 5=Jdan=-82 15:05 < USERGUIDESs PROGRAMMERS~-GUIDE«AUG31s > 95

Section 5 Fields and Records
Introduction
A set of bits within a word can be used without affecting the
rest of the worde (0On the PDP~10+s words are 36-bits longe) A
cont iguous set of bits within 2 word is called a fielde.
Fields altow more efficient use of storage.
Once a field is defineds you may apply it to any word
(variable)es It will refer to the defined set of bits in
that word (e.ge the field "KH" refers to the right-most 18
bits of whatever word it modifies).
You may assign a number to or from a fifeld by folltowing the
variable name with a period (<)}s then the name of the field:
varefietd
Fage stidestpsid _ origin 3
Many fields are defined in the NLS systemes and may be used by
user programmers. Some have been mentioned in preceding
sections; others may be found in the NLS source code.
Declaring Records
Records are always defined globallye. Record definitions aree
Like global declarationses put outside of procedures within L10
filese
A record definition defines a series of fieldse with the
Length (number of bits) specified for each field:
RECORD fieldillengthle field2[lenathls esee 3
The fields are allocated from right to left within the worde
Fege the record definition:
RECORD rightfL18)e Left[171] 3
would define two fieldse The field ®"right"™ refers to the
right-most 18 bits of the worde The field "ileft" refers to
the next 17 bits to the left of the field "right.* (The
Left~-most bit is not used in this examples)
A RECORD definition may specify any number of fieldss If a
field is defined to be too large to fit in the remaining bits
of the current worde it is automatically defined to represent
the first field in the next worde I.ee this and subsequent
fields are defined from the right of the next worde This can
extend through any number of wordse
Eege the RECORD definition:
RECORD fieldll183e field2010)y fleld3[181y fiecld4l36] §
would define the fields as follows:
fieldl == right half of word
field2 =-- right-most 10 bits in left half of word
fieldd -~ right half of next word
fieldd =~ entire third word (i.e. wordf2z1)
0f course when using fields that refer to subsequent wordss
you must be sure that you are operating on arrays of the
appropriate sizee.
Declaring Fields
Although you can declare single fields as described heres the
practice is Limitede (It is useful in manipulating byte
pointerse.) User programmers should use RECORD definitions
instead.
A single field may be defined with the declaration:
DECLARE FIELD name = [addresss size I positionl ;
where _
address is the address of the word to which the field

MARY » 5-Jdan=-82 15:05 < USERGUIDESs PROGRAMMERS~-GUIDE.AUG3I1ls > 96

referss
size is the number of bits in the fields and
position is the number of bits left to the richt of the
fielde.
In an assignments the address of the word referenced is kept
in a registers named "rpe"™® It may be used as an index by
ptacing it in parenthesese Thus a FIELD declaration refering
to the right half of a word is:
DECLARE FIELD right=C(rp)s 18:01 3
The Lleft half of the next word could be defined:
DECLARE FIELD left=[itrp)s 18:183 3
The address is held in the right half of a byte pointer. You
may declare a field with zero as the addresss then assign the
field definition plus an address to set up a byte pointer:
DECLARE FIELD right=L0s 18:01 3
then
bytepocinter _ right + $variable 3
A FIELD declaration may be external as well as global:
DECLARE EXTERNAL FIELD name = [addresss size ! pcsitionl] 3§
Section &: Stacks and Rings
Declaring Stacks and Rings
Stacks and rings are allocated series of words of storage. A
stack or ring is defined to hold a given number of recordss
each record may be a single or a defined number of wordse. You
may “"push"™ records onto the stack or ring and then ®pop"™ them
offs as described heree.
A stack may be declared (at the global Level) with the L10
declaration:
DECLARE STACK stacknamelsizel 3§
where size 1s the number of one-word records in the stacke
You may work with records of more than one word with the stack
declaration:
DECLARE STACK stacknamelsizesrecsizel 3
where recsize is the number of words in each recorde AlL
records in a stack must be the same size.
Like other declarationss any number of stacks may be declared
with the same statement:
DECLARE STACK stacknamelsizels stacknamelsizegrecsizel,
LA X B J .
Stacks may be declared as external to the program:
DECLARE EXTERNAL STACK stacknarmelsizegrecsizels eees
Ring decltarations are identicale with the word ®RING®
substituted for "STACKe"™ Ee«ge:
DECLARE RING ringnamelsizels ringnamelsizesrecsizels eee 3
DECLARE EXTERNAL RING ringnamelsizesrecsizels oo el
Initializing Stacks and Rings
Before it is usedy a stack or ring must be initialized (i.c.
cleaned up)s with the L10 statement:
RESET stackname 3
or
RESET ringname 3
The storage can then be considered empty. The RESET statement
can be used Wwhenever you wish to clean up the stack or ringe
Using Stacks and Rings
You may add a record to the top of the stack or rinc with the
L10 statement:

MARY

5-Jan=-82 15:05 < USERGUIDESe PROGRAMMERS-GUIDELAUG:1lse >

PUSH address ON stackname i
where address is the address of the first word (perhaps the
single word) of the record to be added to the stacke
-If you try to add more elements than the stack can holde a
SIGNAL will be generatede.
-If you try to add more etements than the ring can holde
records will be replaceds starting from the bottoem (the
first record pushed on)e
You may remove a record from the stack or rings and optionally
assign it to a record variable (a simple variable or array of
the appropriate size) with the L10 statement:
POP stackname 3§ .
or
POP stackname TO address &
where address is the address of the first word (perhaps the
single word) of the record to receive the record from the
stacke
-If you try to remove more elements than the stack
currently holdse a SIGNAL will be generated.
-If you try to remove more elements than the ring currently
holdss records will be rereads starting from the tope. This
should be avoidede If you did not previously fill the
rings this top record wiltl hold garbage.
You may read the first word of the record at the top of the
stack or ring (without affecting the stack or ring) as an
expression by enclosing the name in square-brackets:
[stacknamel
The second word (the one below that one the stack) may be
read as Estackname -~ 1Js and so one
E¢g.
var _ [stacknamel 3
To use stacks and ringse one usually must keep track of how
many records are currently on the storage. Thuse you probably
will need to maintain a count in a simple variable in parallel
to use of the stack or ringe.

Section 7: Using the Sequence Generator
Introduction

The Sequence Generator is used by a number of NLS commands
which require a series of statements from an NLS files. A
procedure may open a sequence holding a number of statementss
the Sequence Generator then passes those statements backe one
at a times every time it is callede

The Sequence Generator considers viewspeecs in choos ing which
statements to returns e.ge level truncation. 1If viewspec 1 or
k is ones it may call a Content Analyzer program before
returning the statement. This allows a great deal of
flexibility in working with a series of statements.

Co=Routine Effect

Once the Sequence Generator decides to return a statement (or
string)e it calls a mechanism which returns control to the
procedure that called the Sequence Generatore Thus control
will return directly to that calling procedurey ever from
other procedures the Sequence Generator has calleds 1ees even
if the return mechanism was called from a procedure caltled by
the Sequence Generatore.

When the Sequence Generator is called the next times¢ it passes

97

MARY s

5-Jan-82 15105 < USERGUIDESs PROGRAMMERS-GUIDESAUG31y > 98

control to the instruction after the one which called the
return mechanisme Ieee it continues right where it Left off.
Thuse the Sequence Generator may call a Content Analyzer
program which may return controt directly to the prccedure
which called the Sequence Generatore The next time the
Sequence Generator is caltled, execution will begin in the
middile of that Content Analyzer program (which may later
return through the normal RETURN statement to the Sequence
Generatord)e. (Thusse the Sequence Generator 1is behaving like a
co-routine to the calling procedures)

Calling Procedure Sequence Generator Content Analyzer

1 [X N}
2 see
3 seqoent8sw? >>=> 1 ses
2 LB X J
3 CA filter Do===2 1 see
2. L X N J
4 eee (=mmrmeccccmccrnncnncncmmneeee==({ 3 return mechanism
5 ese
3 seqgen(&sw) dDd--ememccmemeaa mmmm==3 4 a0
5 [X X J
4 ¢ee mmmmwe—eal{ 6 normal return
5 [N X]
T eee {~~wmmwmea=l(6& return mechanisn

Sequence Work Area

When a Content Analyzer program is called by the Sequence
Generatores one parameter is passeds the address cof an array
called the "“sequence work areae™ This arrays although ignored
by most Content Analyzer programss holds a great deal of
useful informatione 1If the Content Analyzer procedure
receives this address as a parameters and then REFs its it may
refer to the following fietds in the sequence work area (see
CNLS¢BRECORDSeseqr> for entire record declaration):

swstid -- stid of current statement or string in sequence

swestid -- stid of current real STATEMENT in sequence (even

if swstid points to a string)

swlbstid -~ stid of statement heading tast branch in

sequence

swelvlt == level of current statement in sequence

swslvl -~ Level of first statement in sequence

swvspeec =-- first word of viewspecs for sequence

swvsp2 =-- second word of viewuspees for sequence

swusgecod -—- address of user Sequence Generator procedure

for sequence

swcacode -=- address of Content Analyzer procedure for

sequence

swkflg -- FALSE when sequence is openeds TRUE once

something has been returned by seqguence

Displaying Strings

You may call the return mechanism from Content Analyzer
programs while causing the Sequence Generator to inject a
string in the sequence« Under the normal circumstances where
the sequence is being used to put up a display or print a file
or to do filtered editings this allows you to inject a string
into the outpute Thus you may receive a statementsy reformat
it into a string (without editing the statement 1itself)y and

MARY s

5-dan-82 15105 < USERGUIDESy PROGRAMMERS~GUIDE.AUG:1le > 99

then display the stringe.
The following procedure injects a string in the sequences then
returns to the procedure that catled the Sequence Generator?
send (swe astring} 3
where sw is the address of the sequence work areas and
astring is the address of the string. (Remembers If you
REFed the parameter holding the address of the sequence
work areae use the ampersand (&) construct when passing it
to sende)
Note that the co-routine effect will cause execution to pick
up right where it lLeft off when the Sequence Generator is
called for the next statement. Thuss execution will begin
just after the sende If you then RETURN a value of TRUEs the
statement itself will ALSO be displayede Most applications of
send will RETURNC(FALSE) immedifately after the call on send.
An example of a Content Analyzer program using send() to show
only the first Line of each statement?
tfirstline) PROCEDURE (sw) 3 Xcontent analyzer filter to
display only first Lines¥%
LOCAL TEXT POINTER ptr 3
REF sw 3
Xto hold address of sequence work areaX
%set pointer at end of first Line¥
CASE READC OF
= ENDCHR: FIND “ptr 3
= EOL: FIND “ptr _ptr 3
ENDCASE REPEAT CASES
Xput first Line in global stringX
*dspstrx _ SF(ptr) ptr 3
Xinject string into sequence¥%
send (&swe $dspstr) 3
%sc statement won*t also be displayed¥
RETURN (FALSE) 3
ENDe

Using Sequences

You may open and use your oWwh sequences in attachable
subsystemss This may be useful when you wish to prcocess a
series of statementssy perhaps only those passing certain
requirements (e«ge level or a Content Analyzer filter)e.
To open a sequences you should have declared and REFed a
variable to hold the address of the sequence work area that
will be reserved for your sequence. The procedure which opens
the segquence returns this addresse.
Lsw _ openseg(stidly stid2s vspecls vspec2sy seqprocs
caprocls
where
stidl and stid2 are two stids deliniating a group in an
NLS file that will be the source of the statements in
the sequences. They may be the same (for a branch)e The
Sequence Generator ignores the branch only and plex only
viewspecse
To get stid2s the procedure "segend™ may be usefule
Given stidl and the two viewspec wordss it checks the
branch~only and plex-only viewspees and returns the
appropriate stid for stid2« Eege:
&sw _ openseqg (stidle segend{stidisvspeclevspec2)s

MARY s

5-Jdan-82 15:05 < USERGUIDESe PROGRAMMERS-GUIDE«AUGS1y >

vspecle vspecZes S€Qprocs caprocls
vspecl and vspec?2 are two words holding the v iewspecs
for the sequences There a a number of predefined fields
which allow you to set bits within these wordse (See
Part Fours Section 4.) 0Of particular interest to the
Sequence &enerator are the Level truncation (not the
Line truncation) and the Content Analyzer viewspecse
seqproc is the address of the Sequence Generator routine
to be usede If you pass zeroe the NLS standard Sequence
Generator will be usede. (User Seguence Generators are
not described heres)
caproc is the address of a Content Analyzer procedure to
be used if needed by the sequence (as specified in the
viewspecs)e If none is neededs you may pass zeroe.
Passing the address of a sequence is in effect
instituting that praocedure for that sequence. The
address of the currently instituted procedure may be
gotten from the display area descriptore 2s described in
Part Fours Section 4.
A call on the procedure ®"seqgen® will increment the fields in
the sequence work area to the next statement (or string) in
the sequences 1t will return the first statement in the
sequence the first time it is callede You must pass it the
address of a sequence work areas €eQ0e’
seqgen (&sw) 3
seqgen returns the new swstid field of the sequences or
endfil if there are no more statements in the sequencee.
You may then refer to the fields in the sequence work area
for information about that statements €ege:
sWweswstid == stid of current item in sequence
sweswClvl == lLevel of current item in sequence
When you are done Wwith a sequences you must close it by
calling the procedure "closeseq™ with the adddress of the
sequence work areas eegel
closeseqg(&sw) 3
A typical use of the Sequence Generator might be as follows:
% set up sequence X
X set up viewspecs ¥
%get adress of display area descriptor; da is REFed
simple variableX
&da _ lda() 3
%get current viewspecss vspec is LOCAL two-word
array¥X
vspec _ daedavspec 3
vspecl1] _ dae.davspc2 3
%turn on Content Analyzer for this sequenceX
vspecevscapf _ TRUE 3
%Yopenseg with ®proc®™ as Content Analyzer filtters returns
the address of seaquence work areas sw is REFec simple
variable¥
&sw _ openseqlsourcestide sourcestidy vspecs
vspecl1le daedausgcode $procls
ON SIGNAL ELSE closeseqgl&sw)
% loop through sequence %
Xreset control-o flag¥k
inptrf _ 0 3

100

MARY 5-dan-82 15:05 < USERGUIDESe PROGRAMMERS-GUIDE.AUG31s > 101

LOOP
BEGIN
IF inptrf THEN Xuser typed a control-oX%
BEGIN
dismes (l¢ $"User terminated process®™} ;
EXIT LOOP 3
- END
%increment to next statement in branch you are
processing which passed filter "proc®™; or else exitZ
IF seggent&sw) = endfit THEN EXIT LOOP 3
%call some procedure to process current stid (could
as well have been any block of codelX%
process(suweswstid) §
END3
% close sequence ¥
ON SIGNAL ELSE 3
closeseg (&sw) 3
Section 8: Conditional Compiling
You may delimit blocks of code within procedures that will only
be compiled if a constant is TRUE or FALSE. If the coce is not
compiledy of course it will not be part of the code file and will
not be executeds
First a constant must be defined with the SET construct (at
the beginning of the file) as either zeroc (FALSE) or non-zero
{TRUE).
Thene code delimited by the string:
X+nameX
where name 1is the SET constant
will onty be compiled if the constant is SET to & TRUE

values.
Similarlys code delimited by the string:
Z=-nameX
will only be compiled if the constant 1is set to zero
(FALSE).

For examples
if the following statement appears at the beginning of the
program:
SET test=03%
then a procedure in the program might include code celimited
by this constructs ee¢ge:
L10 statement 5§ %Xnormal codes always compiledX

L10 statement ;3 Xnormal codesy always compiledX
¥-testX
L10 statement 5§ Xthis statement WILL be compitledX

10 statement 3 Xthis statement WILL be compiledX
X~testi :
¥+testX
L10 statement § Xthis statement will NOT be compiledX
L J

L10 statement § Zthis statement will NOT be compitedX
Xx+testX

MARY s

5-dJdan~£2 15105

< USERGUIDESs PROGRAMMERS~GUIDEAUGS1le >

L10 statement 3 %normal codes always compiledX

ASCII 7-BIT CHARACTER CODES

Char ASCII
~A 001
“B g0z
~C 003
~0 004
“E 00s
~F 006
Bell 607
B8s 010
Tab 011
LF g12
VT 013
FormFeed 014
CR 015
~H 016
~0 017
~p g20
~q g21
~R gze
~8 0623
7 024
~U 025
~V 026
~y ge7
~% 030
~Y 031
~Z 032
EsSC 033
spP 040
TITLE PAGE

Char ASCII
041
042
043
0as
045
046
047
650
051
052
053
054
055
056
057
060
061l
062
063
064
065
066
067
870
071
gr2
073
074
075
076
077
100

1 @ % % wem 5@ 538 & T w

)W H AR QO NN PN O N

NLS Programmers® Guide

Content Analyzer
L10 Language

Command Heta Language

NODT

Char ASCII
101
102
103
104
105
106
187
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

did ¥ MINX X LT A NADTVOZRTXALTOOMMOQODT P

Char ASCII
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
1790
171
172

N X EC€C 03580 0@ MmX T daooow

DEL 177

hugmentation Research Center Stanford Research Institute
333 Ravenswood Avenue
Menlo Parks California 924025

102

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102

