
-Il-':~ 'RIGBTS. IISERVID ·.f 'f.SHARE '.'. .IIIL.M.RA.I
8Y Fr." Hebbel

Foonly' liD
CHAPTER 6

6.1 OVERVIEW
The bus designated for I/O operations is called the F bus.

The F bus ;s a 36 bit bidirectional data bus, and in addition
contains control and address signals as shown in Figure 6-1
Three types of operations can occur on the F bus: (lOT) for
Data transfers to and from the CPU, (DMA) for channeling data
from a device directly to and from memory, and INTERRUPT for
getting the CPU's attention.

Data

Conlrol signals

B US Dt·1A C Y

[F-BUS SIGNALS]

Figure 6-1

6-1

e

f 1st lOB OPERATION t 3rd lOB OPERATIONI

1st CYCLE

I 2nd lOB OPERATION 14th lOB OPERATION

Figura 6·2
[lOT CYCLE OVERLAPPING]

Each type of lOB operation involves two machine cycles.
However, by overlapping opposite cycles of contiguous lOB opera­
tions to the same device, each cycle may act as an lOB cycle.
Figure 6-2 illustrates this further.

As shown in Figure 6-2, the second cycle of each operation
is referred to as an lOB cycle. It is during this cycle that
data is actually transferred on the F bus. During the first
cycle of the first operation the device code is latched for
eternity into the ION BUF. Because of inherent restrictions on
uCode field usage, setting up the device code requires a sepa­
rate cycle, during the first operation.

6.1 lOT TRANSFERS
An lOT transfer originates after the CPU clocks a micro

instruction with lOB REQ IN, or OUT coded in its SPEC RUN Field.
lOB REQ IN or OUT is decoded to set rOB DRIVE IN or lOB OUT at
the first BUS ClK during the NEXT cycle. BUS ClK is a delayed
version of CPU ClK, which determines the lOB cycles. Figure
6-3 illustrates this timing.

f 1st CYCLE f 2nd CYCLE I
U u U CPU ClK

U ~U U BUS ClK (delayed 100 nS
from CPU ClK)

lOB RQ (IN or OUT)

lOB DRIVE (IN or OUT)

n (IN or OUT) STROBE

/ "- DATA
'I

,/ "- DEVICE ADDRESS &
SUBSELECT CODE

Figure 6·3
[lOT J N &- 0 U TTl r,1 I N G] 6-2

6.2.1: lOT out operations
Each CPU elK addresses and decodes another micro instruction.

Tw 0 0 r m 0 rem i c r 0 ins t r u c t ion s are r e qui red for any lOT 0 pe ra t i on, as
shown in Figure 6-4. lOB OUT is decoded from the SPEC RUN field
of the first micro instruction as previously mentioned. The first
micro instruction may also decode the EXT 0 field as = 18 (mem).
This enables the Main Memory Data which may represent-the contents
of E from the Macro I/O instruction into the 100 register via the
o BUS, as a result of decoding an 118 from the DEST field. The
second micro instruction asserts the device subselect code as an
image of the MAP F field. Also this instruction must specify a
78 (constant) in its DEST field in order to load the DEVICE ADDRESS
register as an image of the Constant field. The CONSTANT field:
physically the low order bits of the MASK field, wi'll specify a
physical device number ~ when the EXT 0 field is coded as 38 .
It is important to realize that different micro instructions may
be addressed from the macro op-codes, and that the op-codes are
particular to the device code. Thus, for each type of macro I/O
instruction the microcode will be addressed in a manner such that
the correct device address will be sent to the F BUS, during the
execution of the second and subsequent micro instructions.

SPEC ~ DEST EXT-O
~~~I~(_1_7~)8~~~~~(_1_l~)8~~~(~1)~8~~I_~~ ---1st MICROINSTRUCTION 

Figure 6-4 
[ lOT OUT OPERATION ] 

100 
BUF 

100 00: 35 

SUBSELECT CODE 00:03 

6-3 



The BUS ClK, that occurs 100 nS after the CPU ClK, which 
initiated the second cycle, will cause lOB OUT to set from lOB 
OUT RQ. lOB OUT causes the OUTPUT DATA BUFFER (IOD BUF) to be 
enabled onto the F BUS. At this point in time the F BUS has all 
the necessary information in terms of DATA, DEVICE ADDRESS, and 
SUBSElECT CODE to perform the lOT operation. 

The CPU ClK which signifies the end of the second machine 
cycle is ANDED with lOB OUT to produce lOB OUT STB. This signal 
is sent to the F BUS and strobes the addressed device to latch 
the SUBSElECT CODE, and the DATA into its internal registers. 
The SUBSElECT CODE, specifies what type of DATA was sent, and is 
interpreted by the device as a command. The second micro instruc­
tion may involve yet another lOT operation on the next cycle by 
setting the appropriate code for lOT OUT or lOT IN, ;n the SPEC 
field. The device code which ;s still latched and on the F BUS 
allows any subsequent lOT operations to use only the format of 
the second micro instruction thus permitting every MACHINE CYCLE 
to be an lOB CYCLE. The last cycle to be performed does not set 
lOT IN or OUT in its SPEC field, hence terminating the REQUEST for 
subsequent lOB operations. 

lOT type transfers are NOT used to transfer DATA to and 
from MASS STORAGE DEVICES, but instead their DATA field is inter­
rupted as CONTROL DATA by a controller. Actual mass storage 
DATA transfers are done directly to memory by DMA operations. In 
this case, the CPU must specify to the controller a starting ad­
dress in main memory, and a location address of where the DATA 
can be found on mass storage. It is the purpose of lOT transfers 
to provide this type of information. 

Since there is no handshake involved in an lOT OUT, an 
operation to a non-existent device does not cause the F BUS to 
hang, nor will the CPU ever know whether the device received the 
information without doing an lOT IN. (Setting Interrupts are 
an obvious exception to this). 

6.2.2 lOT in operations 
Inputting control information from an F BUS controller, 

shares much of the same timing and features as lOT OUT, with 
major differences occurring in the destination of DATA, and 
some of the microcode fields. As with an lOT OUT this type of 
operation is not used for obtaining actual DATA from MASS STORAGE, 
but rather is used for inquiring about the status of a controller 
by the CPU. 

A macro I/O input instruction will cause the execution 
of two or more micro instructions. At the end of the second micro­
instruction the requested information in terms of a 36 bit DATA 
word will be available in the CPU. Destinations for input data 
may be either a location in main memory, or an accumulator in 
the CPU as determined by the effective address of the MACRO I/O 
Input instruction. 

6-4 



FIRST ulliST 

DEST 
t 

l I ( 7 ) 
L 

,. 

~ 
-USED TO REQ 

ANOTHER lOB CY. 
NOT USED IN 
lAST uINST. 

, 

- r 

SPEC * 
~ ] ( 1 6 ) 

~ ~·1EMSTO 

INIT MEM CY , 
EN 

( OUTPUT 
TO MAIN 
MEH 

HOLD 
REG 

I 
l 

1 t \ 
EXT 0 SPEC CnN~T 

( 3 ) 1 6 ) DEVADR # ~ 
L .J\. J 

'r 

r, _lOB IN REQ 

.LrrK: 
D Q 

BUS C ..... 
STR nFV AnR 

,- l 
LD Q I--

BUS ClK _ 
C ~ 

lOB IN STB -
.L I" 

CPU elK 
. "'!i 

SECOID ullST 

DESi EXT 0- MAP ,.. 

(21 l I ( 6l ISUBSEl #~ t~ 
..It JL .J .... 

SEl IOD INPUT 

Y 
~ I I --

o BUS ALU! t4ASK! ROT EXT.SRC 
, I 
I I 
I ! 

Figure 6-5 

C:~L DATA 
SOURCE SELECTOR 

[ lOT IN OPERATION ] 

DEV 
ADR 

ION 00:0 

- C 
--

C 

10D 
<: LOD 00 :35 ...... REG 

lOB DRIVE IN ~ 
~ 

SUBSElECT 00:03 

6-5 



When the first micro instruction is addressed (referring to 
Figure 6-5), it will have coded in its SPEC RUN field an octal 
16 (IOD IN). This will allow the signal lOB DRIVE IN to set 
during the second cycle. Also in the first micro instruction 
period we must load the DEVICE ADDRESS register since the field 
which does this also specifies the code for gating the input 
DATA which must be done during the second cycle. This is done 
with the DEST field = 78' and the EXT D field = 38 The EXT D 
field code 38 specifies that the constant field w,1l contain 
the correct DEVICE CODE to be loaded into the DEVICE ADDRESS 
register, and a DEST field of 78,causes the contents ,of the con­
stant field to be strobed into the ION BUF or Device Address 
Register. 

The first micro instruction, having specified the type of 
operation (lOB IN), and the device number, as well as setting 
up lOB REQ IN, leaves the second micro instruction with th~ task 
of specifying the SUBSELECT CODE, gating the apprqpriate DATA 
into the CPU and writing it into main memory. The SUBSELECT 
field is taken from the MAP F field of the micro code as a direct 
image. This field will be coded accordingly in the second micro 
instruction to specify the source of the input data from within 
the controller on the F BUS. The second micro instruction will 
also have its EXT D field = 68. The purpose of this field is to 
specify the source of the external DATA mixer located in the CPU 
to be selected as IOD, or in other words, the F BUS DATA lines. 
The sec 0 n din s t r u c t ion w ill a 1 soh a v e its DES T FIE L D = 1 ( r~ E t~ S TO) . 
The F BUS DATA will be enabled through the f~TfRNAL DATA SELECTOR 
through the ROTATOR, ,the MASKER, th_eALU, a-ridonto'--fh"e"'":O--S"US" 
where it will be clocked into theH~LD RE~ISTER and during the 
next machine cycle sent to a main memory location specified in' the 
E of the MACRO INSTRUCTION which originated the operation. An 
important' point to remember is that the last micro instruction of 
the I/O routine must strobe the ION BUF by DEST = 78 with the 
EXT D field = 38 and CONSTANT = O. This will zero the F BUS ION 
lines which were set during the first micro instruction. 

6.3 OIA TRANSFERS 
D t4 Apr 0 v ide s the mea n s, by w h i chI / 0 d e vic e s· 0 nth e F BUS 

may transfer mass storage data to and from MAIN MEMORY. All 
DMA transfers are initiated by F BUS devices and are arbitrated 
in terms of priority in the event that more than one device asserts 
a DMA request at the same time. 

MAIN MEMORY PHYSICAL ADDRESSES are supplied by, and are 
incremented by the device for each word which is.sen~ or. 
received. Figure 6-6 shows data and address paths 1n slmpl1-
fied form. Note data and address information utilize reqis­
ters within the CPU. The reason for this type of architecture 
is that the MAIN MEMORY is not multi-controlled, and can thus 
handle only one device;the CPU. 

DMA operations are handled in a totally autonomous manner 

6-6 



DMA WRT 
CYC 

TRI 
STArE 

CPU 

MEM TO 100 

FIGURE 6-6 
[ SIMPLIFIED DATA AND ADD~ESS 

PATHS FOR DMA OPERATIONS ] 

I 
.1 
I 
I 

MEMOUT 00:35 
I 
I 
l­
I 

'which requires no intervention on the. part of the MICRO PROGRAM 
run n i n 9 wit h i nth e CP U B e c a use 0 f t his i n d e pen den c e i tis a 
common circumstance to have a DMA REQUEST simultaneous with a 
micro program MAIN MEMCRY REQUEST. In this case the CPU has higher 
priority and gets to transfer its data while the DMA REQUEST 
remains pendinq. This might seem confusing unless one realizes 
that first, there is no way of stopping the CPU MICRO INSTRUCTION 
PRO C E 5 S .. e x c e p t by hard error, or manually, by switch control. 
Thus if a micro instruction was clockp.d which soecified a memory 
operation and memory was busy doing DMA 'the 'CP'U data ~/oul a be 
lost. The second consideration to keep in mind, is that only 
a small percentage of micro instructions in the micro program 
flow actually require memory references; while most are crunch­
ing numbers and gating data internal to the CPU. Hence, the 
majority of machine cycles are available for DMA use. 

Another condition which will cause DMA onerations to be 
temporarily suspended is when the CPU does an. lOT operation. 
In this case any DMA requests will yield the F Bus to the 
CPU for the duration of the lOT while the re~ues~ for OM~ 
remains pending, to be acknowledged upon completion of the 
lOT. 

Both F BUS and memory cycles are delayed lOOnS from 
CPU machine cycles. By virtue of this convention DMA write 
cycles require only one cycle to gate information from a 
controller into main memory, ~hile DNA reads are done in 
two cycles. The length of the cycles which are normally 
controlled by the CYLEN field of the micro 'codea're forced 
to. a length of 550n5 in the event of a DM~ operation. The 

6-7 



only effect this has on any number crunching which the uCode 
may be involved in at the time of the DMA is to allow more time 
than what otherwise may be required for propagation allowances 
relative to any operation invoked by the uC6de. 

6.3.1 ; DMA priority 
In the event that more than one F 'BUS device makes a DMA 

request, a determination must be made based on each device's 
priority assignment as to whose request to honor first. This 
priority is determined soley by the particular F BUS slot 
into which devices are plugged. Figure 6-7 illustrates how this 
convention is implemented. A device will set its INTERNAL 
REQUEST when it is ready to read or write data.-

OTHER F BUS DEVICES .. 

BUS IQ STB 

IT'S YOU ---:i~-----"--t IT'S YOU 
FLOATING 

lEVEL 
FIRST PHYSICAL F BUS 
DEVICE: HIGHEST 
PRIORITY 

[F BUS Priority Arbitration] 

Figure 6-7 

DEVICE B 

SECOND PHYSICAL F BUS 
DEVICE: NEXT HIGHEST 
PRIORITY 

BUS REQUEST STROBE clocks a flop which sets SOME RQ when INTERNAL 
REQUEST is true. BUS RQ STB will occur every CPU ClK, unless 
SOME RQ already has been set. Therefore the BUS RQ STB which causes 
SOME RQ to set will inh'ibit further BUS RQ STROBES. At this 
point the first physical device on the bus with its SOME RQ 
flop set will become F BUS MASTER by virtue df the daisy th4ined 
signal named IT'S YOU. This signal is actually floating going 
into the first physical device slot which in Figure 6-7 is 
device A. Thereafter, provided that device A does not have its 
SOME RQ flop set it will be gated on down the F BUS to device 
B etc. 

, 6-8 



6.3.2- DMA write 
Dt .. 1A write operations are initiated by an F' BUS device 

whenever it has data to deposit into MAIN MEMORY, As a typical 
example the CPU under program control will issue several commands 
to the device in thp form of lOT transfers. The commands will 
specify the .location on mass storage of a block' of data, the 
initial address in main memory, and that it is to be a DMA WRITE. 
Once these commands have been issued the CPJ is free to go about 
6therbusiness, meanwhile' the F BUS device (normally a periphial 
controller) will command the specific periphial to loc~te the 
beginning of the deisired data block and begin reading it into 
a FIFO buffer. Once the F BUS device has data ready to be 
sent to main memory it will raise its internal request and 
will begin arbitration according to priority as previously 
discussed. Assuming that no other requests are pending from 
other F BUS devices or that the particular device being dis­
cussed is the highest priority; it will then become 
F BUS MASTER. Refer to Figures 6-8 arid 6-9 and observe·that 
once F BUS MASTER, the device will drive the initial memory 
address;having been previously loaded into a register by an lOT 
OUT transfer, onto lOA 1 i nes 15: 35. The address wi 11 be gated 
o n tot h e P H Y SIC A l ~1 E t1 0 R Y ADD RES S 1 i n e s (P A DR) bet wee nth e 
occurance of CPU elK and BUS ClK. If the CPU was attempting 
a memory request or an lOT the DMA cycle will remain pending 
for one or more cycles, and the above operation and subsequent 
operations will be delayed accordingly. With the occurance of 
BUS ClK the memory cycle will begin and DATA will be transmitted 
from the F BUS device onto the F BUS 100 lines 00:35 and the 
CPU will gate the 100 lines onto the MEMORY OUT lines for 
storage. The next cycle will once again be available for a 
OMA cycle and the same process repeats itself. 

6.3.3 . DMA read 
While it was possible to perform a DMA WRITE operation in 

only one machine cy1e a OMA READ will requrire two machine cycles. 
During the first cycle the device supplies a main memory address 
to the CPU and the CPU uses this address to retrieve the DATA 
from memory and latch it internally. The second cycle will 
send the data onto the device. The major reason that two 
cycles are necessary comes from the fact that DATA is 
received by the CPU from MEMORY too late in the mathine cycle 
to be sent onto the Controller on the F BUS, and hence another 
cycle is required for this task. 

During the first cycle of a D~1A. READ.a great deal of simi­
larity exists with the exception that a MEMORY READ will be done. 
Priority arbitration remains unchanged, and provided that the 
CPU desires neither a MEMORY RQ or an lOT transfer the cycle 
of events will continue. Otherwise' the DMA ope.ration 'will be 
delayed until this condition is'-satisfied.whereby the DMA 
UPERAT·ION will coritinue. 

6-' . 



FLOW CHART KEY 

0 PULSE I 
CONDITION 

I 
> TIME 

STATE 

11 CLOCK 

1 
FIXED FLOW GOES TWO 

I 
DELAY WAYS AT ONCE 

A 

B 

"SUBROUTINE" oELA Y­
A IS SUBROUTINE. B 

A f\ 8 

IS RETURN THAT 
RESTARTS CLOCK 

SYNCHRONIZER­
FLOW CONTINUES 
WHEN A AND 8 
ARE BOTH TRUE 

I JLo~co;MiNT1 r" L2~~_ ... 

I I I 
CONDITION A CONDITION B CONDITION C 

I I 
FLOW DIVERGES DEPENDING 
ON MULTIPLE CONDITIONS 4MA Y 
FOLLOW MORE THAN ONE PATH». 

l 

FLOW 
CONVERGES 

A:B 

A--a 
L..c 

ACTION OR EVENT BOXES 

IF A IS TRUE. B OCCURS 

A IS TRUE AND HENCE B AND 
C ARE BOTH TRUE 

fA: t A IS A CONDmON GUARANTEED 
TO BE TRUE 

A A IS TRUE. AND IF B IS ALSO 
L.t\ B:C TRUE. C OCCURS 

fAI A OCCURS BUT IS IRRELEVANT 

: COMMENT 

() (I {} USED FOR GROUPING IN FLOWS 1 fLOW CONTINUES AT o ENTRY POINT 0 AND LOGIC DRAWINGS (IN LATt'ER. 
BRACJCETS ALSO ENCLOSE EXPLANATORY 
SYMBOLS ACCOMPANYING A LOGIC 

fLOW CONTINUES FROM 
EXrT POINT 0 

EVENT A CAUSES EVENT B. OR 
A BEING TRUE CAUSES B. MAYBE 
DC LOGIC OR EVENT B TRIGGERED 

SIGN AU 

BY TRANSITION IN A. PROVIDED /r 
NEED FOR TRANSITION IS OBVIOUS ..... __ ~ 
AS THROUGH A PAt IF TRANSITION 
IS NOT OBVIOUS. THIS SYMBOL IS USED INSTEAD ..... _____ .j 

6-10 



~ 15n5 

SOME RQ LA-lOT 
ADMA WR RQ 
AEN DMA RQ 
A- CPU MEr~ RQ 

EARLY D~,1A 
\~R& 

100 nS 

. 100 nS 

250 nS 

0·EDGE 
START PULS 

DMA WRITE 
Figure 6-8 

~ ~ EN DMA RQS . 
,.SUS EN l~RT OAT 
[EARLY DMA HRT:J 
~l~US D~1A ,eyc 

CYCLE 

0·0MA cye 

1. EN DMA RQS 
INTERNAL RQ: ' 
1 ~SOME RQ L _. , 

6-11 



EARLY CPU CPK u ..... ·~-- 550nS --•• U u 
-

CPU ClK 

BUS ClK 

ENDMA RQS 

STB RQ~ 

SOME RQ l 

D~,1A WR RQ l 

u 

U 
I 

EN ~1A IDA ------" 

U u 
u u 

u u 

DMA C Y -------'" 

BUS EN WR DATA l 

E.START PULSE _-_____ ~___'n BUS ClK + lOOnS 

Figure 6-9 
[DMA WRITE CYCLE TIMING DIAGRAM] 

If the CPU sees that it is doing a DMA READ it will 
drop DMA CYCLE after the first cycle and bring up DMA SECO~D 
CYCLE. Hi th DMA SECOND CYCLE = 1, the next CPU ClK wi 11 cause 
DMA SECOND CYCLE STROBE whose purpose is to latch the DATA 
intoF BUS device from the roo lines. Both figure 6-10 and 
6-11 show timing and flow of events in detail for DMA READ 
operations. 

6jt4 INTERRUPTS 
Interrupts provide the means by which I/O devices may 

alert the CPU to various conditions which exist from within 
the d e vic e . The sec o'n d i t ion s Tn a yin c 1 u dee r r 0 r s, and com p 1 e t ion 
of data transfers. For' purpose~ of understanding the hardware 
involved with priority interrupts we -shall segregate the logic 
into two subjects; that of arbitrating a request, and that of 
~~tvicing and dismissing the request. 

6-12 



SOME RQ L A -lOT 
ADMA RD RQ 
AEN DMA RQ 
A- CPU MEM RQ 

EARLY DMJ\ 
~b& 

100 nS 

100 nS 

1 EDGE 
START 
PULSE 

250 nS 

• START 
PULSE 

"Figure" . 6-10 

,. EN DMA RQS 
INTERNAL RQ: 
1"S0ME RQ L .. 

DMA READ CYCLE 

J.llr·1A RD 
rEARLY DMA RD:J 
r..l. BUS OMA 

CYCLE 

MEt1 DMA LATCH 

100 nS 

100 nS 

1>-r1EM TO roo 
.-..-_~~t~A CY 

l~DMA 2nd CY 

[D~~A 2nd CY: J 
.....--... ~: DMA 2nd CY 

STB 

~MA 2nd CY 
1---'" ~EM to 100 

6-13 



EARLY CPU ClK u:·.---5 5 a n $--". u· 
CPU ClK 

SUS ClK 

EN or~A RQs ___ ~1 

u 

STS RQS LJ 
SOME RQ l L 

DMA t~R RQ l l 

EN MA IOA---....J.-

u 

OMA CY ____________ ~ 

'U 

Ot1A RD 2nd CY ______________ ---... 

u 

~O.START PUlSL-F _______ ~ .... n BUS elK + lOOnS 

u 

u 

E. 

m4A 2nd CY STB ______________________ ....an ___ _ 

[DMA READ CYCLE TIMING DIAGRAM] 

Figure 6-11 

The arbitration process will allow a priority scheme to 
determine which device will get the processors attention first 
in the event that more than one device makes a request at the 
same time. However once the processor honors a particular request, 
o the r r e que s t s a re 'I 0 c ked 0 u t (e v e n i f the y are fro m a h i g her p rio r i t Y 
device). In other words further arbitration ;s inhibited until 
the dismissal of the interrupt being serviced. For this reason 
most interrupt service routines are kept shorter than 30 or 40 
micro-seconds. 

6-14 



CPU 

Servicing interrupts is controlled by the micro code. 
During a dispatch where by the micro code is going to branch 
to service the next instruction in the macro instruction sequence, 
the interrupt flop is tested and if found to be set the microcode 
will instead dispatch to a special location to begin handling 
the request. Upon completion of the service, or handler routine 
the microcode wil do yet another dispatch, at which time if there 
are no additional interrupts the dispatch will branch the microcode 
according to the op-code of the instruction previously being 
considered. It is important to be aware that dispatching occurs 
preceding the execution of each macro instruction. 

6.4.1 Interrupt arbi t rat ion 
Should more than one device request an interrupt at the 

same time it will be necessary to assign a priority such that 
faster devices such as disk will be reconized before slower ones 
like mag-tape. The convention used for this purpose is almost 
identical to that which was incorporated into the DMA priority 
scheme, however the hardware for doing PI arbitration is completly 
seperate. 

The signal BUS INT STB ;s sent out on the F BUS as an 
image of CPU ClK. This is a bussed signal which is used to 
synchronize the internal requests of different devices .. Before 
a device· may become the F BUS MASTER it must also have INT IT'S 
YOU OUT as a true condition. INT YOU OUT is a daisy chained 
signal, which establishes the priority of a particular device 
according to the physical F BUS slot into which it is plugged. 
This signal is actually floting as it enters the first device 
slot on the F .BU~ This allows the device plugged into that 
slot to always become F BUS MASTER if its INTERNAL REQUEST 
is set when it receives a BUS INT STB. 

OTHER F BUS DEVICES 

l~~~~~~h . I DEV ADBril ~~~~~~~h I DEV A~~ I 
L D Q ~ /"} L D Q I~ 

-LJ'FBUS / 
C Q MSTR ~ F BUS 
~-.... ill C Q M . ~·1STR INT IT' ~ 

l.J~ INT IT'S U~ YQU 
IN TIT ' __ SY~O_U~ ... ...-. ____ ~ "---_I-Y~'O"_l::U~~ ... +__---~~~ I } 
(FLOATING) DEVICE A . DEVICE B 

FIRST F BUS DEVICE: HIGHEST 
PRIORITY 

Figure 6-12 

SECOND F BUS DEVICE: 
NEXT HIGHEST PRIORTY 

[ INTERRUPT PRIORITY ARBITRATION] ·6-15 



Refering to figure 6-12, let us assume that device B 
has an internal request, and that device A has no request. 
At the occurance of BUS INT STB device B will b~come F BUS 
MASTER, by virtue of the presence of INT IT'S YOU OUT. If 
device A had an internal interrupt request the daisy chained 
signal INT IT'S YOU OUT would have been inhibited from being 
passed along to device B. Conversly if device B had not had 
an interrupt request set, then this would cause INT IT'S YOU 
OUT to be gated on to the next device and so on. Since in 
our example device B is interrupting, it will set its BUS 
ANY INT flop whose primary function is to alert the CPU and 
inhibit further BUS INR STB pulses from the CPU. The devices 
ANY INT signal is anded with INT IT'S YOU OUT to generate the 
internal signal F BUS MASTER, which gates the device address 
onto the INT ADR lines (00:04). The signal ANY INT will be 
turned off during the interrupt service routine which is 
tending to the interrupting device. If however more than one 
device had requested interrupts at the same time the ANY INT 
signal would remain on in the lower priority device untill it 
too was serviced. When the last device is finished being 
serviced and the ANY INT line is finally cleared BUS INT STB 
will be re-enabled for synchronizing 'future requests. 

CPUCLK 

BUS INT STB 

BUS ANY INT L 

INT F / F -----...-. 
DISPATCH 

----------------~ 
INT IN PROGRESS 

Figure 6-13 
[ SIMPLIFIED INTERRUPT TIMING] 

6-16 



6.4.2. Interrupt serv ice 
During each sequencial macro instruction, the 

micro-code will perform a conditional dispatch. This 
dispatch in its normal form, will branch the micro-code 
as a function of the op-code of the macro instruction 
contained in the IR (instruction registor). However, 
if when the dispatch occurs, the INT flop is set the 
micro code will instead be forced to location 2002. 

After the arbitration process is completed the 
selected interrupring device will place its device 
address on to the INR ADR lines (00:04). This device 
address will be latched onto the DEV ADR 1 ines (00 :04), 
and will also address a block of 8 locations in A-MEM. 
The A-MEM contains 256 locations x 36 bits, and accordingly 
requires 8 bits of address. Of these 8 bits the high 
order 5 bits are derived directly from INT ADR (00:04) 
and are used to address one of 32 blocks. The remaining 
three low order address bits of the A-MEM are supplied 
from one of two fields within the micro instruction 
depending on whether data is being read from or written 
into the A-MEM it need only be concerned with selecting 
which word it wishes to reference. 

As mentioned earlier the micro-code checks the 
interrupt flop during each macro instruction dispatch 
and if the interrupt condition is satisified the micro-
code will be forced to location 2002. Once at this location 
the micro-code "still doesn't know" which device has caused 
the interrupt. In order that this be resolved the micro­
code will do a SPECIAL DISPATCH (5 DISP), unconditionally, 
vectoring from word 0 of the A-MEM block currently add­
ressed by the interrupting device. The 5 DISP function 
is specified by a J CODE = (15)8 and causes the next 
micro-code address to be loaded from the 0 BUS. In the 
instruction at 2002 we will also specify a function for 
getting word 0 onto the 0 BU~. This is atc6~plish~d by 
utilization of the 4 bit EXT D field whose high oraer bit 
being = 1 specifies the A-MEM as the selected source of 
EXTERNAL DATA SOURCE MIXER whose output feeds the 0 BUS 
via the ALU, the MASK, and the ROTATOR. The remaining 
low order 3 bits of the EXT D field are used to provide 
the three low order address bits to the A-MEM and thus 
select the word. Since word 0 is being used in the 
S DISP, the EXT D field = 10). See figure 6-14. 

6-17 



START 

GO 'ID 2002 
& 00 S DrSp 
VEC"roRED FRCM 
A - MEM roc ~ 

INTERRUPr SERVICE 
ROUrINE. 

NO 

Figure 6-14 

DISPAroI ON OP CODE 
INmANDDO . 
INSTR ROUTINE 

[ SIMPLIFIED INTERRUPT DISPATCHING]. 

The Micro code will now be branched to a routine 
which is particular to the specific device. The other 
locations in the A-MEM Blocks may be utilized by the 
micro-code as a scratch pad in handling the devices 
interrupt. lOT's can also be performed to and from the 
device from A-MEM. Figure 6-15 and 6-16 show the logic 
for doing this. Note, that in performing the lOT's, the 
micro instruction need not be concerned with specifing 
the device address. This is made possible by having 
the device address latched for eternity from the INT 
ADR lines, which brings us to a very important point ... 
how do we unlatch it at the end of the handler. This 
isn't shown in any of the figures however the micro-code 
must issue a CLEAR DEV ADR FORM INTERRUPT DEVICE command 
which is specified by DEST field = (12). 

A simplified illustration of the micro-code and 
hardware implemented in performing an lOT OUT from A-MEM 
is shown in figure 6-15. This type of lOT is simpler 
than one from main memory in that we need not specify 
the device address. The SPEC field = (17) will cause 
an lOT OUT un the next machine cycle, while the EXT D 

6 18 



and DEST fields will select the A-MEM word and route 
the Data through the EXTERNAL DATA SOURCE onto the 0 
BUS and strobe the 100 BUF to latch the data from the 
o BUS. The EXT D field selects the appropriate A-MEM 
word according to the three low order bits, while the 
high order bit causes the A-MEM to be selected as the 
input to the EXTERNAL DATA SOURCE. By setting the DEST 
field = (11) the 100 BUF will be strobed thus latching 
the data. 

In a single lOT out the second micro instruction 
need only specify the device subselect code as an image 
of the MAP field. In the event that successive lOT outs 
are to be performed they may be over lapped by keeping 
the SPEC field = (17). 

Figure 6-16 shows the lOT IN operation to A-MEM. 
lOT IN operations may not be over lapped. This is 
because the SPEC field-must be used during the second 
micro instruction to write enable the A-MEM. Another 
apparent difference occurs in the A-MEM address which 
is derived from the low order 3 bits of the DEST field 
(all other bits in the DEST FIELD MUST BE ZERO). 

6-19 



Q...-.-

ADR 

DATA 
A-MEl 

36)(256 

DEST 
(11)8 ;, 

lsi micro inslr 

STB laD 

lOB 
OUT RQ 0 Q lOB OUT 

BUSCl C 

100 
BUF 

CPUCl 

STB 

ADR FROi'1 

~ ~ ______ ~S~U~B~S~E.lE~C~T~(~Q~Q~:~Q3~)~ ______ ~» 

SPEC 1 r ~ip F 1 ~ NOT E A: S P E C FIE l D ; sus e d 
,}.....I.-I ~(...:..1..:...7.J...J) 8Uo-....:~I..:=:.s.:::;..U.!:::.:3 S:;u~ E~l;,J;;E~C..:..T ...... I_--.J1 0 n 1 y ; f 0 ve r 1 a p p e d., s u c c e s s ; ve 

(NOTE A)~·- rOT OUT transfers are to be 

2nd micro instr 
used. SPEC=17 causes lOT 
OUT on NEXT cycle. EXT and· 
DEST m~st also be r~~~ecif;ed 
(NOT SHOHN). 

Figura 6 -15 
[ lOT OUT D A T A FRO r1 A - t1 E r·10 R Y ] 

6-20 



SPEC 
t ____ ---'-_~( 1.:....;:6~) Su-------II...-____ ..Jf ----FIR ST u IN STR U CT I ON 

BUSCLK 

lOB IN RQ 

o Q"""-'-

c 

lOB IN RQ 

lOB DRIVE IN 
o Q~~~----------------~ 

c 

, , , , 

lOB IN STS 

EN 

100 REG 

A-MEl 
36)( 256 

DATA o SUS ALU 'MASK 'ROT 
I • 

100 "'-----\- 100 (00: 35 ) 

ADDRESS REN 

• , 

EL 100 INPUT 

INTAOR(OO:04) 

o ,X,)(,.cl (14)8 (6)8 ISUBSELCT # I) 
~ DEST SPEC EXT 0 

SECOND MICRO INSTRUCTION FORCE DEV AOR FROM 
INT ADR 

Figure 6 -16 
[lOT IN TO A~MEMORYJ 

DEVADR (00:04) 

6-21 



xxv Main Memory 

ROW 0 ............... ROW 7 

INPUT 
4116 RA~11 s 4116 RA~11 s 

t DATA IN 

1 
-s Rb/WRT 

7 

> 
LATCH 

'i!?1-5TAre 

, 

1-
E OUTPUT 

DATA IN > IN 

... WRT 

I 
7' 

- RAS 
---. CAS 

'-------.... LATCH < DATA OUT OUT DATA OUT 

f ADDR (19:210= 

7~/-STATe 

ROW 
DECODER 

ROW 0 
ENA 

r 
t 
t , 

0--7 , , , " ... , 
I 

ROW 7 
"----- ENA 

1\ 

/\ 

REFRESH EN RAS/CAS 
~--------------,'~I ~REFR~ 

~~(~22~:~35~) ______________ ~> 3242 

PJ :> IN 

// WRT 
~ .... RAS 
~/ ... CAS ,., 

q; OUT 

/\ 
RO~J 0 ROW 7 
RAS/CAS RAS/C 

r--
-- .... ""~~-

,. 

1\ 

RAS/CAS 
I---~L / REFRESH 
L-...-.-....J~ tZ-. ,. 

F/J--> 3242 

r+- MUX CONTROLt--~/~/--'" MUX CONTROL 
~ 

RASI--_-' 

~1EM START PLS ... IN CASt------' 

712 
~....;L;.:..A~T.::.:.CH..:.....;::;.ST.:..:.R.;.:;:.B-___1 OUT 

TIMING 
Gr!NERATOR 

~·1UX CONTROL 

,REVISE}) 1-2/- 8/ j F./I£B8Et.. 

AS 



A 

DEST: 
%MASKR 

%A-MFM-JIlPRI-....----t ... 

B c 

GEN 

OIUS 

o 

36)( 256 

eNT 1:3 

ST­
A-MEM 

DEST FIELD :2:4 
o FIELD:1:3 OIUS 

E 

DEST: 
%HOLD or 
%ME STO 

MEMORY 
MAP 

F 

AC 
SELECT 
LOGIC 

G 

MAIN 
MEMORY 

H 
o BUS 

IN OUTt--'----... 

ADDR WE 

lOA 

I J 

DEST: 
%100 

1 

2 

3 

4 

5 

6 

7 

Fotnly CPU BLOCK DIAGIAM BY:FAED HEBBEL-TY~HAAE 



C 
R 
V 

Cy- LEN COND J CODE M A DEST 
A R 

0-- 3 4 --- 8 9 --12 13 14 15---

o EXT D ALU 

-----------------71 

NOTE #1) if R=0 then PC:PC+1 
-----+------f--~-----__t-___:_--""i'"'":"......_ ____ :_____t---___t~i f 'R1~:. then PC: JADR :.R=R-1 
------+---------t---~~ ______ ---+__~~-~~~::__+~_::____=_::~ NOTE #2) if CONDIT:. then 

PC:(OPCODE x 2)+2000 

ALU 
D OP 

0 Q S+R 
1 NONE S-R 
2 0-AC R-S 
3 AC RvS 
4 B+Q=0/2 RAS 
5 8=0/2 -RAS 
6 B=0+2,Q=0+2 RYS 
7 B=0+1 Riii5 

Foonly Microcode 

S 

A,B/O,A 
A,Q/0,A 
0,8/0,0 
0,Q/D,Q 
D,A/0,A 
0,A/O,A 
0,0/0,Q 
O,Q/D,0 

NOTE #3) if R=~ then PC:PC+1 
if RI0 ahd cand=T:. then 
PC:JAOR V 2:. if RI0 and 
cand1T:. t~n PC: JAORA -2 



DISPATCH 

I/O INTERRUPTS 2002 
'----------, u PC : .--

L-S
_
T
_
O
_
P 

_S_W_I T_C_H __ -, uP C : 2003 

L-E_C_C _E_R_R O_R_S ____ -,_ u PC : 200 5 

L-.
P
_
C

_
o
_
v 
____ -, u PC : 2006 

-

BOTH ECC & PC OV 
uPC: 2007 

L-N_O_RM_A_L __ IN_D_I R_E_C_T --, u PC : 
L_~ _____ _ 2010 

L-N_O_R M_A_L __ IN_D_E X_I_N_G --, uP C : 
L-______ _ 2012 

~M ___ AP __ FA_I L---~U~p~C~:~_.:6::..1~0~0~+~(:.....M_A_P_F_)(_4 __ ) __ 
(OCCURS ON MEM REFS) 



DEVICE CODE INST N' 'NDEX 
CODE 

o 
y 

-----9 10-121314--1718--------------35 


