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CHAPTER

6.1 OVERVIEW

The bus designated for I/0 operations is called the F bus
The F bus is a 36 bit bidirectional data bus, and in addition
contains control and address signals as shown in Figure 6-1
Three types of operations can occur on the F bus: (I0T) for
Data transfers to and from the CPU, (DMA) for channeTing data
from a device d1rect1y to and from memory, and INTERRUPT for
getting the CPU's attention.
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~Each type of I0OB operation involves two machine cycles.
However, by overlapping opposite cycles of contiguous I0OB opera-
tions to the same device, each cycle may act as an IO0B cycle.
Figure 6-2 illustrates this further.

As shown in Figure 6-2, the second cycle of each operation
is referred to as an IO0B cycle. It is during this cycle that
data is actually transferred on the F bus. During the first
cycle of the first operation the device code is latched for
eternity into the ION BUF. Because of inherent restrictions on
uCode field usage, setting up the device code requires a sepa-
rate cycle, during the first operation.

6.1 10T TRANSFERS

An IOT transfer originates after the CPU clocks a micro
instruction with I0OB REQ IN, or OUT coded in its SPEC RUN Field.
I0B REQ IN or OUT is decoded to set IOB DRIVE IN or IOB OUT at
the first BUS CLK during the NEXT cycle. BUS CLK is a delayed
version of CPU CLK, which determines the IOB cycles. Figure
6-3 illustrates this timing.
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[ I0T IN & OUT TIMING ]
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6.2.1 10T out operations ‘

Each CPU CLK addresses and decodes another micro instruction.
Two or more micro instructions are required for any IOT operation, as
shown in Figure 6-4. [I0B OUT is decoded from the SPEC RUN field
of the first micro instruction as previously mentioned. The first
micro instruction may also decode the EXT D field as = 1o (mem).
This enables the Main Memory Data which may represent the contents
of E from the Macro I/0 instruction into the IOD register via the
0 BUS, as a result of decoding an 11g from the DEST field. The
second micro instruction asserts the device subselect code as an
image of the MAP F field. Also this instruction must specify a
7q (constant) in its DEST field in order to load the DEVICE ADDRESS
régister as an image of the Constant field. The CONSTANT field;
physically the low order bits of the MASK field, will specify a
physical device number only when the EXT D field is coded as 38-
It is important to realize that different micro instructions may
be addressed from the macro op-codes, and that the op-codes are
particular to the device code. Thus, for each type of macro I/0
instruction the microcode will be addressed in a manner such that
the correct device address will be sent to the F BUS, during the
execution of the second and subsequent micro instructions.
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The BUS CLK, that occurs 100 nS after the CPU CLK, which
initiated the second cycle, will cause I0B OUT to set from IOB
OUT RQ. IOB OUT causes the OUTPUT DATA BUFFER (IOD BUF) to be
enabled onto the F BUS. At this point in time the F BUS has all
the necessary information in terms of DATA, DEVICE ADDRESS, and
SUBSELECT CODE to perform the IOT operation.

The CPU CLK which signifies the end of the second machine
cycle is ANDED with IOB OUT to produce IOB QUT STB. This signal
is sent to the F BUS and strobes the addressed device to latch
the SUBSELECT CODE, and the DATA into its internal registers.

The SUBSELECT CODE, specifies what type of DATA was sent, and is
interpreted by the device as a command. The second micro instruc-
tion may involve yet another IOT operation on the next cycle by
setting the appropriate code for IOT OUT or IOT IN, in the SPEC
field. The device code which is still latched and on the F BUS
allows any subsequent IOT operations to use only the format of

the second micro instruction thus permitting every MACHINE CYCLE
to be an I0B CYCLE. The last cycle to be performed does not set
IOT IN or OUT in its SPEC field, hence terminating the REQUEST for
subsequent I0B operations.

I0OT type transfers are NOT used to transfer DATA to and
from MASS STORAGE DEVICES, but instead their DATA field is inter-
rupted as CONTROL DATA by a controller. Actual mass storage
DATA transfers are done directly to memory by DMA operations. In
this case, the CPU must specify to the controller a starting ad-
dress in main memory, and a location address of where the DATA
can be found on mass storage. It is the purpose of IOT transfers
to provide this type of information.

Since there is no handshake involved in an IOT OUT, an
operation to a non-existent device does not cause the F BUS to
hang, nor will the CPU ever know whether the device received the
information without doing an IOT IN. (Setting Interrupts are
an obvious exception to this).

6.2.2 10T in operations

Inputting control information from an F BUS controller,
shares much of the same timing and features as IOT OUT, with
major differences occurring in the destination of DATA, and
some of the microcode fields. As with an IOT OUT this type of
operation is not used for obtaining actual DATA from MASS STORAGE,
but rather is used for inquiring about the status of a controller
by the CPU.

A macro I/0 input instruction will cause the execution
of two or more micro instructions. At the end of the second micro-
instruction the requested information in terms of a 36 bit DATA
word will be available in the CPU., Destinations for input data
may be either a location in main memory, or an accumulator in
the CPU as determined by the effective address of the MACRO I/0
Input instruction.
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When the first micro instruction is addressed (referring to
Figure 6-5), it will have coded in its SPEC RUN field an octal
16 (IOD IN). This will allow the signal I0B DRIVE IN to set
during the second cycle. Also in the first micro instruction
period we must load the DEVICE ADDRESS register since the field
which does this also specifies the code for gating the input
DATA which must be done during the second cycle. This is done
with the DEST field = 7g, and the EXT D field = 38 The EXT D
field code 3g specifies that the constant field will contain
the correct DEVICE CODE to be loaded into the DEVICE ADDRESS
register, and a DEST field of 7g causes the contents of the con-
stant field to be strobed into the ION BUF or Device Address
Register.

The first micro instruction, having specified the type of
operation (IOB IN), and the device number, as well as setting
up IOB REQ IN, leaves the second micro instruction with the task
of specifying the SUBSELECT CODE, gating the appropriate DATA
into the CPU and writing it into main memory. The SUBSELECT
field is taken from the MAP F field of the micro code as a direct
image. This field will be coded accordingly in the second micro
instruction to specify the source of the input data from within
the controller on the F BUS. The second micro instruction will
also have its EXT D field = 6g. The purpose of this field is to
specify the source of the external DATA mixer located in the CPU
to be selected as I0OD, or in other words, the F BUS DATA lines.
The second instruction will also have its DEST FIELD = 1 (MEMSTO).
The F BUS DATA will be enabled through the EXTFRNAL DATA SELECTOR
through the ROTATOR, the MASKER, the ALU, and onto the 0 BUS
where it will be clocked into the HOLD REGISTER and during the
next machine cycle sent to a main memory location specified in the
E of the MACRO INSTRUCTION which originated the operation. An
important point to remember is that the last micro instruction of
the I/0 routine must strobe the ION BUF by DEST = 7g with the
EXT D field = 3g and CONSTANT = 0. This will zero the F BUS ION
lines which were set during the first micro instruction.

6.3 DMA TRANSFERS

DMA provides the means, by which I/0 devices on the F BUS
may transfer mass storage data to and from MAIN MEMORY. All
DMA transfers are initiated by F BUS devices and are arbitrated
in terms of priority in the event that more than one device asserts
a DMA request at the same time.

MAIN MEMORY PHYSICAL ADDRESSES are supplied by, and are
incremented by the device for each word which is sent or,
received. Figure 6-6 shows data and address paths in s1mp11-
fied form. Note data and address information utilize regis-
ters within the CPU. The reason for this type of architecture
is that the MAIN MEMORY is not multi-controlled, and can thus
handle only one device;the CPU.

DMA operations are handled in a totally autonomous manner
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which requires no intervention on the.part of tﬁe MICRO PROGRAM
running with in the CPU Because of tﬁis independenc§ it is al

common circumstance to have a DMA REQUEST simultaneous with a :
micro program MAIN MEMCRY REQUEST. 1In this case the CPU has higher
priority and gets to transfer its data while the DMA REQUEST
remains pendina. This might seem confusing unless one realizes
that first, there is no way of stopping the CPU MICRO INSTRUCTION
PROCESS .except by hard error, or manually, by switch control,

Thus if a micro instruction was clocked which specified a memory
operation and memory was busy doing DMA“the CPU data would be
lost. The second consideration to keep in mind, is that only

a small percentage of micro instructions in the micro program
flow actually require memory references; while most are crunch-
ing numbers and gating data internal to the CPU. Hence, the
majority of machine cycles are available for DMA use.

Another condition which will cause DMA onerations to be
temporarily suspended is when the CPU does an. IDOT operation.
In this case any DMA requests will yield the F Bus to the
CPU for the duration of the IOT while the request for DMA
remains pending, to be acknowledged upon tompletion of the
I0T.

Both F BUS and memory cycles are delayed 100nS from
CPU machine cycles. By virtue of this convention DMA write
cycles require only one cycle to gate information from a
controller into main memory, while DMA reads are done in
two cycles. The length of the cycles which are normally
controlled by the CYLEN field of the micro code are forced
to a length of 550nS in the event of a DMA operation. The



only effect this has on any number crunching which the uCode
may be involved in at the time of the DMA is to allow more time
than what otherwise may be required for propagation allowances
relative to any operation invoked by the uCode.

6.31 DMA priority

In the event that more than one F BUS device makes a DMA
request, a determination must be made based on each device's
priority ass1gnment as to whose request to honor first. This
priority is determined soley by the particular F BUS slot
into which devices are plugged. Figure 6-7 illustrates how this
convention is 1mp1emented A device will set 1ts INTERNAL
REQUEST when it is ready to read or write data.

OTHER F BUS DEVICES-————;-

SOME RQ 1 1
BUS RQ STB  E 1 -
CPU

' e , ¢« 29 IT's YU
IT's YOU —> | 1 nfurs vou . >
FLOATING DEVICE A DEVICE B
LEVEL
FIRST PHYSICAL F BUS SECOND PHYSICAL F BUS
DEVICE: HIGHEST DEVICE: NEXT HIGHEST
PRIORITY PRIORITY

[F BUS Priority Arbitration]
Figure 6-7

BUS REQUEST STROBE clocks a flop which sets SOME RQ when INTERNAL
REQUEST is true. BUS RQ STB will occur every CPU CLK, unless

SOME RQ already has been set. Therefore the BUS RQ STB which causes
SOME RQ to set will inhibit further BUS RQ STROBES. At this

point the first physical device on the bus with its SOGME RQ

Flop set will become F BUS MASTER by virtue of the daisy chained
signal named IT'S YOU. This signal is actua11y floating going

into the first physical device slot which in Figure 6-7 is

device A. Thereafter, provided that device A does not have its

SOME RQ flop set it will be gated on down the F BUS to device
B etec.
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6.3.2 DMA write

DMA write operations are initiated by an F BUS device
whenever it has data to deposit into MAIN MEMORY., As a typical
example the CPU under program control will issue several commands
to the device in the form of IOT transfers. The commands will
specify the location on mass storage of a block of data, the
initial address in main memory, and that it is to be a DMA WRITE.
Once these commands have been issued the CPJ is free to go about
other business, meanwhile the F BUS device (normally a periphial
controller) will command the specific periphial to locate the
beginning of the deisired data block and begin reading it into
a FIFO buffer. Once the F BUS device has data ready to be
sent to main memory it will raise its internal request and
will begin arbitration according to priority as previously
discussed. Assuming that no other requests are pending from
other F BUS devices or that the particular device being dis-
cussed 1is the highest priority; it will then become
F BUS MASTER. Refer to Figures 6-8 arid 6-9 and observe that
once F BUS MASTER, the device will drive the initial memory
address,having been previously loaded into a register by an IOT
OUT transfer,onto IOA lines 15:35. The address will be gated
onto the PHYSICAL MEMORY ADDRESS lines (PADR) between the
occurance of CPU CLK and BUS CLK. If the CPU was attempting
a memory request or an IOT the DMA cycle will remain pending
for one or more cycles, and the above operation and subsequent
operations will be delayed accordingly. With the occurance of
BUS CLK the memory cycle will begin and DATA will be transmitted
from the F BUS device onto the F BUS 10D lines 00:35 and the
CPU will gate the IOD lines onto the MEMORY OUT lines for
storage. The next cycle will once again be available for a
DMA cycle and the same process repeats itself.

6.3.3 _DMA read

While it was possible to perform a DMA WRITE operation in
only one machine cyle a DMA READ will requrire two machine cycles.
During the first cycle the device supplies a main memory address
to the CPU and the CPU uses this address to retrieve the DATA
from memory and latch it internally. The second cycle will
send the data onto the device. The major reason that two
cycles are necessary comes from the fact that DATA is
received by the CPU from MEMORY too late in the machine cycle
to be sent onto the Controller on the F BUS, and hence another
cycle is required for this task.

During the first cycle of a DMA. READ a great deal of simi-
larity exists with the exception that a MEMORY READ will be done.
Priority arbitration remains unchanged, and provided that the
CPU desires neither a MEMORY RQ or an IOT transfer the cycle
of events will continue. Otherwise the DMA operation will be
delayed until this condition “is satisfied whereby the DMA
OPERATION will continue.
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Figure 6-9

[DMA WRITE CYCLE TIMING DIAGRAM]

If the CPU sees that it is doing a DMA READ it will
drop DMA CYCLE after the first cycle and bring up DMA SECOND
CYCLE. With DMA SECOND CYCLE = 1, the next CPU CLK will cause
DMA SECOND CYCLE STROBE whose purpose is to latch the DATA
intoF BUS device from the IOD lines. Both figure 6-10 and
6-11 show timing and flow of events in detail for DOMA READ
operations.

6.4 INTERRUPTS

Interrupts provide the means by which I/0 devices may
alert the CPU to various conditions which exist from within
the device. These conditions may include errors, and completion
of data transfers. For purposes of understanding the hardware
involved with priority interrupts we shall segregate the logic
into two subjects; that of arbitrating a request, and that of
servicing and dismissing the request.
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Figure 6-11

The arbitration process will allow a priority scheme to
determine which device will get the processors attention first
in the event that more than one device makes a request at the
same time. However once the processor honors a particular request,
other requests are locked out (even if they are from a higher priority
device). In other words further arbitration is inhibited until
the dismissal of the interrupt being serviced. For this reason
most interrupt service routines are kept shorter than 30 or 40
micro-seconds.
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Servicing interrupts is controlled by the micro code.
During a dispatch where by the micro code is going to branch
to service the next instruction in the macro instruction sequence,
the interrupt flop is tested and if found to be set the microcode
will instead dispatch to a special location to begin handling
the request. Upon completion of the service, or handler routine
the microcode wil do yet another dispatch, at which time if there
are no additional interrupts the dispatch will branch the microcode
according to the op-code of the instruction previously being
considered. It is important to be aware that dispatching occurs
preceding the execution of each macro instruction.

6.4.1 Interrunt arhitration
hould more than one device request an interrupt at the

same t1me it will be necessary to assign a priority such that
faster devices such as disk will be reconized before slower ones
1ike mag-tape. The convention used for this purpose is almost
identical to that which was incorporated into the DMA priority
scheme, however the hardware for doing PI arbitration is completly
seperate.

The signal BUS INT STB is sent out on the F BUS as an
image of CPU CLK. This is a bussed signal which is used to
synchronize the internal requests of different devices. Before
a device may become the F BUS MASTER it must also have INT IT'S
YOU OUT as a true condition. INT YOU OUT is a daisy chained
signal, which establishes the priority of a particular device
according to the physical F BUS slot into which it is pluagged.
This signal is actually floting as it enters the first device
slot on the F.BUS This allows the device plugged into that
slot to always become F BUS MASTER if its INTERNAL REQUEST
is set when it receives a BUS INT STB.
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Figure 6-12

[ INTERRUPT PRIORITY ARBITRATION ] 6=15




BUS ANY INT L I

INT IN PROGRESS

Refering to figure 6-12, let us assume that device B
has an internal request, and that device A has no request.
At the occurance of BUS INT STB device B will become F BUS
MASTER, by virtue of the presence of INT IT'S YOU OUT. If
device A had an internal interrupt request the daisy chained
signal INT IT'S YOU OUT would have been inhibited from being
passed along to device B. Conversly if device B had not had
an interrupt request set, then this would cause INT IT'S YOU
OUT to be gated on to the next device and so on. Since in
our example device B is interrupting, it will set its BUS
ANY INT flop whose primary function is to alert the CPU and
inhibit further BUS INR STB pulses from the CPU. The devices
ANY INT signal is anded with INT IT'S YOU OUT to generate the
internal signal F BUS MASTER, which gates the device address
onto the INT ADR 1lines (00:04). The signal ANY INT will be
turned off during the interrupt service routine which is
tending to the interrupting device. If however more than one
device had requested interrupts at the same time the ANY INT
signal would remain on in the Tower priority device untill it
too was serviced. When the last device is finished being
serviced and the ANY INT line is finally cleared BUS INT STB
will be re-enabled for synchronizing future requests.

CPUCLK L LJ

BUS INT STB | l

- r

U U
| U
[
L

INT F/F I

DISPATCH | |

AWMWM!\

1115

tj
INTERRUPT HANDLER

Figure 6-13 ‘

[ SIMPLIFIED INTERRUPT TIMING ]
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6.4.2 Interrupt service

During each sequencial macro instruction, the
micro-code will perform a conditional dispatch. This
dispatch in its normal form, will branch the micro-code
as a function of the op-code of the macro instruction
contained in the IR (instruction registor). However,
if when the dispatch occurs, the INT flop is set the
micro code will instead be forced to location 2002.

After the arbitration process is completed the
selected interrupring device will place its device
address on to the INR ADR lines (00:04). This device
address will be latched onto the DEV ADR lines (00:04),
and will also address a block of 8 locations in A-MEM,
The A-MEM contains 256 locations x 36 bits, and accordingly
requires 8 bits of address. Of these 8 bits the high
order 5 bits are derived directly from INT ADR (00:04)
and are used to address one of 32 blocks. The remaining
three low order address bits of the A-MEM are supplied
from one of two fields within the micro instruction
depending on whether data is being read from or written
into the A-MEM it need only be concerned with selecting
which word it wishes to reference.

As mentioned earlier the micro-code checks the
interrupt flop during each macro instruction dispatch
and if the interrupt condition is satisified the micro-
code will be forced to location 2002. Once at this location
the micro-code "still doesn't know" which device has caused
the interrupt. In order that this be resolved the micro-
code will do a SPECIAL DISPATCH (S DISP), unconditionally,
vectoring from word @ of the A-MEM block currently add-
ressed by the interrupting device. The S DISP function
is specified by a J CODE = (15) and causes the next
micro-code address to be loaded from the 0 BUS. In the
instruction at 2002 we will also specify a function for
getting word @ onto the O BUS. This is accomplished by
utilization of the 4 bit EXT D field whose nigh oraer bit
being = 1 specifies the A-MEM as the selected source of
EXTERNAL DATA SOURCE MIXER whose output feeds the 0 BUS
via the ALU, the MASK, and the ROTATOR. The remaining
low order 3 bits of the EXT D field are used to provide
the three low order address bits to the A-MEM and thus
select the word. Since word @ is being used in the
S DISP, the EXT D field = 1@). See figure 6-14.
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[ SIMPLIFIED INTERRUPT DISPATCHING ].

The Micro code will now be branched to a routine
which is particular to the specific device. The other
locations in the A-MEM Blocks may be utilized by the
micro-code as a scratch pad in handling the devices
interrupt. I0T's can also be performed to and from the
device from A-MEM. Figure 6-15 and 6-16 show the logic
for doing this. Note, that in performing the I0T's, the
micro instruction need not be concerned with specifing
the device address. This is made possible by having
the device address latched for eternity from the INT
ADR lines, which brings us to a very important point...
how do we unlatch it at the end of the handler. This
isn't shown in any of the figures however the micro-code
must issue a CLEAR DEV ADR FORM INTERRUPT DEVICE command
which is specified by DEST field = (12).

A simplified illustration of the micro-code and
hardware implemented in performing an IOT OUT from A-MEM
is shown in figure 6-15. This type of IOT is simpler
than one from main memory in that we need not specify
the device address. The SPEC field = (17) will cause
an I0OT OUT on the next machine cycle, while the EXT D
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and DEST fields will select the A-MEM word and route
the Data through the EXTERNAL DATA SOURCE onto the 0
BUS and strobe the IOD BUF to latch the data from the

0 BUS. The EXT D field selects the appropriate A-MEM
word according to the three Tow order bits, while the
high order bit causes the A-MEM to be selected as the
input to the EXTERNAL DATA SOURCE. By setting the DEST
field = (11) the I0D BUF will be strobed thus Tlatching
the data.

In a single IOT out the second micro instruction
need only specify the device subselect code as an image
of the MAP field. 1In the event that successive IOT outs
are to be performed they may be over lapped by keeping
the SPEC field = (17).

Figure 6-16 shows the IOT IN operation to A-MEM.
IOT IN operations may not be over lapped., This is
because the SPEC field must be used during the second
micro instruction to write enable the A-MEM. Another
apparent difference occurs in the A-MEM address which
is derived from the low order 3 bits of the DEST field
(all other bits in the DEST FIELD MUST BE ZERO).



_SPEC EXT D DEST

S 1 On)g [ v #pl C1)g ] *y
.\'ﬂ—_J T Ist micro instr
I10B-0UT T
RQ STB 10D

o

N 385 " | 108 _0UT STB
| T L D q]_108 ouT \
BV3C!5 C ’ CPUCLK:::)“"'
BUSCLK] ¢
A-MEM-ADR(1:3) ,
k“/ ST INTADR{00:04) 3
YA b
| Sl
DATA 0 BUS 10D(00:35) >
A-MEM < 1. \_ FORCE DEV ADR FRO¥
36"256 EX@TA INT ADR
W\'\/\NN l SUBSELECT (00:03) >

SPEC " MAPF = NOTE A: SPEC FIELD is used

21 (17)g lsusseLecT] ] only if overlapped, successive
(NOTE A ) B I0OT OUT transfers are to be
used. SPEC=17 causes I0T
2nd micro instr OUT on NEXT cycle. EXT and

DEST must also be reéespecified
(NOT SHOWN).

Figure 6-15

[I0T OUT DATA FROM A-MEMORY]

6-20



SPEC

H 1 (e | —§----FIRST uINSTRUCTION
108 IN RQ
D Q
BUSCLK .
10B IN RQ
B DRIVE IN
510 v -
C
CPUCLK 108 IN STB
EXTERNAL DAT.
SoORCE \{/ EN
VNA/AVF\J\\/\\/\/\J\VAVAVV D 10D REG
1 ]
A-MEM DATA 0 _BUS | ALU (MASK {ROT 10D < 2100(00:35)
36 x256 —
ADDRESS WREN SEL 10D INPUT ¥~
]YlYl;'Yl'llglxl;]
r”\ /\
y  |x INTADR(00:04) INTADR(00:04) §
e —— ~
$ 1 o **A (4)g | (6)g JSUBSELCT 7 |3 |
- DEST SPEC EXT D —— DEVADR > (00:04)

SECOND MICRO INSTRUCTION

INT ADR

FORCE DEV ADR FROM I

SUBSELECT(00:03>>

Figure 6-16

[I0T IN TO A~MEMORY]
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XXV Main Memory

ROW Bvveneennnnns ROW 7
INPUT {3116 rRAM's 1116 RAM's
LATCH
£ DATA IN > DATA_IN >IN /‘D IN
. TRI-STATE
R > WRT Ll WRT
/ Z
| RO/ wrr ] > RAS £6—>{RAS
; v »{ CAS ———5 45— CAS
£ OUTPUT
LATCH |
DATA OUT < DATA OUT | OUT <:::;jfs ouT
TRI-STATE ‘

ROW @ m ROW @ mROW 7
ROW ENA | RAS/CAS RAS/CAS

DECODER |
' ; o
{ADDR__(19:21)> /et I I I S B -
! po—> .
! >
—
ROW 7 |
ENA /\
>5-
N RAS/CAS RAS/CAS
REFRESH & 14 [RESTCRS RIS/
(22:35) > -

MUX CONTROL-——}}—-» MUX CONTROL

RAS
MEM START PLS CAS|-
> 712
«—LATCH STRB auT MUX CONTROL
TIMING
GENERATOR

REVISED /-2/-8/, F HEBBEL



0 BUS
MASKER 1
A rJ
' «_ROT FIELD ALy
MASK ROTATOR | SOURCE
GEN 1 Fuiu)
2 2
FIELD ROT SIZE
%M?\g?(}z: MASK SIZE F'fﬁsl')( L7/EXT ik * M
‘ T I \w\@;ﬂo BUS ACSELFELD
O BUS FIEL
“_ out 10D AR AC 3
23, A-MEMORY, K SELECT
ADDR in :%rfo 0 BUS LOGIC
2R Trew 30256
[ O
WE L AA Al
_ f 10 uis'gl || Mmas2:3 4
SPEC'%RFSE&\ r_"
% A-MEM-AP DEST FIELD:2:4 CODE DEST:
D FIELD:1:3 OB[U_S AC CNT %ACSEL
I0A | 5
; MA DEST 0 BUS 0D
J CODE: : /
g0 —I1|| s ; | N
9%DEV ADR SJR MAIN /
Lv SPEC: FIELD
DEV ADR %MAP HOLD MEMORY y 6
IN ouTt
0 "L 0 BUS 08Us— oo
PC ADDR  WE 10D | «— DEST:
INT ADR (' *ioD
} DEST: MEMORY 0 JIIS
t’ OBUS o«pPC MAP | 7
INT ADR i I IOA

Foenly CPU BLOCK DIAGRAM &+ .rreo HesseL- Tv®5HARE



CY-LEN | COND J CODE |[M|A| DEST o| EXT D ALU
I 1 1 | [} I | I l 1 1 |A|R | | I 1 l 1 IDI | IOPI I ISI
fo ala 8l9 ——12|13h4ls 1912021 —— 24|25 — 27128 — 3dl31— 33
M :
c| ac |8 ROT 81 MASK p|l SPEC MAPF JADR
R|SEL|T K al
YlstIIISILlllkllllll'ljlllllllll'
3435 36l37l3s adladlas 50l51l52——55556——59l60 7l
COND DEST J CODE True /  False EXT D SPEC CYLEN AC SEL
O| TRUE (NONE) (NONE ) PC=@, RESET STACK AR (NONE) LONG 1.05 |JA-MEM-CNTR
1] INTRPT TR-ADR PUSHJ PUSH PC+1/PC:JADR MEM LEFT 1.00 | IXx MA
2| MA-AC IR-23 LBJUMP PC:JADR V 1/PC:JADRA-1 MASK LEFT/MA:PC AC
3| AC=p IR-ALL JUMP PC:JADR/PC:PC+1 CONST MA:PC .90 AC+1
4 | MEM-1DX-IND| AC-SEL PC CRYOV/MA:PC o _
5| USER ROTR LOOP note f#1 MA___[CRYOV K rd A S e
6 MASKR POPJ PC:STACK/PC:PC+1 10D PC+1 IF & NOTE #2) if COND#T, then
780 {DEV ADR JPOP PC:JADR/PC:PC+1 IR PC+1 IF C70@ .70 | PC:(OPCODE x 2)+2000
10| 0 BUS=@ | MAP DISP ESET STACK A-MEM PC+1 c65¢0 .65 | NOTE #3) if R=p then PC:PC+1
11 0 BUS @ | 10D e A-MEM | CLR HALF | cepp .60 | if R#D ahd cond=T, then
12| J COND __ [FLR-DEV-INT | DISP note #2 A-MEM _ |A-MEW-APR |cssg .55 | POiAAOR 2. 1T TAB S
13] 0 BUS (18)] HI-ABS-MA PC:0 BUS/PC:PC+1 A-MEM APR+DEST A | C500 .50
14] (00:35) . A-MEM DEST A MEM | C450 .45
15 CRYQ note #3 A-MEM NORM .40
16| HALF . PC:PC+1 A-MEM 10B-IN SHORT
17| BYTE-OVF | CLR MI ERR | LLOAD R:0 BUS, PC:PC+1 A-MEM 10B-0UT TOO SHORT
20 FALSE STRT WRT
21] -INTRPT | MEMSTO
22| -MA-AC HOLD ALU
23 -AC=p PC . D oP )
24] _IDX/IND | CLR MAP 0 Q S+R A,B/D,A
STO MAP 1| NONE S-R A,Q/8.A
| CRYOV 2| @-AC R-S 9,8/D,p
FIX_EXC SR 3 AC RvS 9,Q0/D,Q
MAPF RD 4 |B+(Q=0/2 RAS D,A/Q,A
31| -0 BUS @ |MAPF WRT 5| B=0/2 -RAS #,A/D,A
32| -J COND | FIXMAC 6 |B=0+2,0=0+2]  RwS D,$/D,Q
33| -0 BUS(18 7| B=0+1 Rss D,Q/D,@
34| -Q(00:35) | AMEM CNTR +
35| -CRYQ A MEM CNTR =
s | FOONlY Microcode
37] -BYTE OVF | uCODE LOW ,



DISPATCH

[/0 INTERRUPTS

uPC: 2002
IO ST uPC: 2003
ECC ERRORS WPC: 2005
i uPC: 2006
D [wc: 2007
NORMAL INDIRECT wPC: 2010
NORMAL INDEXING uPC: 2012
MAP FATL uPC: 6100 + (MAPF x 4)

(OCCURS ON MEM REFS)
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